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Preface

This book is meant for students in their introductory heat transfer course
— students who have learned calculus (through ordinary differential equa-
tions) and basic thermodynamics. We include the needed background in
fluid mechanics, although students will be better off if they have had
an introductory course in fluids. An integrated introductory course in
thermofluid engineering should also be a sufficient background for the
material here.

Our major objectives in rewriting the 1987 edition have been to bring
the material up to date and make it as clear as possible. We have substan-
tially revised the coverage of thermal radiation, unsteady conduction,
and mass transfer. We have replaced most of the old physical property
data with the latest reference data. New correlations have been intro-
duced for forced and natural convection and for convective boiling. The
treatment of thermal resistance has been reorganized. Dozens of new
problems have been added. And we have revised the treatment of turbu-
lent heat transfer to include the use of the law of the wall. In a number of
places we have rearranged material to make it flow better, and we have
made many hundreds of small changes and corrections so that the text
will be more comfortable and reliable. Lastly, we have eliminated Roger
Eichhorn’s fine chapter on numerical analysis, since that topic is now
most often covered in specialized courses on computation.

This book reflects certain viewpoints that instructors and students
alike should understand. The first is that ideas once learned should not
be forgotten. We have thus taken care to use material from the earlier
parts of the book in the parts that follow them. Two exceptions to this
are Chapter 10 on thermal radiation, which may safely be taught at any
point following Chapter 2, and Chapter 11 on mass transfer, which draws
only on material through Chapter 8.
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We believe that students must develop confidence in their own ability
to invent means for solving problems. The examples in the text therefore
do not provide complete patterns for solving the end-of-chapter prob-
lems. Students who study and absorb the text should have no unusual
trouble in working the problems. The problems vary in the demand that
they lay on the student, and we hope that each instructor will select those
that best challenge their own students.

The first three chapters form a minicourse in heat transfer, which is
applied in all subsequent chapters. Students who have had a previous
integrated course thermofluids may be familiar with this material, but
to most students it will be new. This minicourse includes the study of
heat exchangers, which can be understood with only the concept of the
overall heat transfer coefficient and the first law of thermodynamics.

We have consistently found that students new to the subject are greatly
encouraged when they encounter a solid application of the material, such
as heat exchangers, early in the course. The details of heat exchanger de-
sign obviously require an understanding of more advanced concepts —
fins, entry lengths, and so forth. Such issues are best introduced after
the fundamental purposes of heat exchangers are understood, and we
develop their application to heat exchangers in later chapters.

This book contains more material than most teachers can cover in
three semester-hours or four quarter-hours of instruction. Typical one-
semester coverage might include Chapters 1 through 8 (perhaps skipping
some of the more specialized material in Chapters 5, 7, and 8), a bit of
Chapter 9, and the first four sections of Chapter 10.

We are grateful to the Dell Computer Corporation’s STAR Program,
the Keck Foundation, and the M.D. Anderson Foundation for their partial
support of this project.

JHL IV, Houston, Texas
JHL V, Cambridge, Massachusetts

August 2002
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Exchange
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1. Introduction

The radiation of the sun in which the planet is incessantly plunged, pene-
trates the air, the earth, and the waters; its elements are divided, change
direction in every way, and, penetrating the mass of the globe, would raise
its temperature more and more, if the heat acquired were not exactly
balanced by that which escapes in rays from all points of the surface and
expands through the sky. The Analytical Theory of Heat, J. Fourier

1.1 Heat transfer

People have always understood that something flows from hot objects to
cold ones. We call that flow heat. In the eighteenth and early nineteenth
centuries, scientists imagined that all bodies contained an invisible fluid
which they called caloric. Caloric was assigned a variety of properties,
some of which proved to be inconsistent with nature (e.g., it had weight
and it could not be created nor destroyed). But its most important feature
was that it flowed from hot bodies into cold ones. It was a very useful
way to think about heat. Later we shall explain the flow of heat in terms
more satisfactory to the modern ear; however, it will seldom be wrong to
imagine caloric flowing from a hot body to a cold one.

The flow of heat is all-pervasive. It is active to some degree or another
in everything. Heat flows constantly from your bloodstream to the air
around you. The warmed air buoys off your body to warm the room you
are in. If you leave the room, some small buoyancy-driven (or convective)
motion of the air will continue because the walls can never be perfectly
isothermal. Such processes go on in all plant and animal life and in the
air around us. They occur throughout the earth, which is hot at its core
and cooled around its surface. The only conceivable domain free from
heat flow would have to be isothermal and totally isolated from any other
region. It would be “dead” in the fullest sense of the word — devoid of

3



4 Introduction §1.1

any process of any kind.
The overall driving force for these heat flow processes is the cooling

(or leveling) of the thermal gradients within our universe. The heat flows
that result from the cooling of the sun are the primary processes that we
experience naturally. The conductive cooling of Earth’s center and the ra-
diative cooling of the other stars are processes of secondary importance
in our lives.

The life forms on our planet have necessarily evolved to match the
magnitude of these energy flows. But while “natural man” is in balance
with these heat flows, “technological man”1 has used his mind, his back,
and his will to harness and control energy flows that are far more intense
than those we experience naturally. To emphasize this point we suggest
that the reader make an experiment.

Experiment 1.1

Generate as much power as you can, in some way that permits you to
measure your own work output. You might lift a weight, or run your own
weight up a stairwell, against a stopwatch. Express the result in watts (W).
Perhaps you might collect the results in your class. They should generally
be less than 1 kW or even 1 horsepower (746 W). How much less might
be surprising.

Thus, when we do so small a thing as turning on a 150 W light bulb,
we are manipulating a quantity of energy substantially greater than a
human being could produce in sustained effort. The energy consumed
by an oven, toaster, or hot water heater is an order of magnitude beyond
our capacity. The energy consumed by an automobile can easily be three
orders of magnitude greater. If all the people in the United States worked
continuously like galley slaves, they could barely equal the power output
of even a single city power plant.

Our voracious appetite for energy has steadily driven the intensity
of actual heat transfer processes upward until they are far greater than
those normally involved with life forms on earth. Until the middle of the
thirteenth century, the energy we use was drawn indirectly from the sun

1Some anthropologists think that the term Homo technologicus (technological man)
serves to define human beings, as apart from animals, better than the older term Homo
sapiens (man, the wise). We may not be as much wiser than the animals as we think we
are, but only we do serious sustained tool making.
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using comparatively gentle processes — animal power, wind and water
power, and the combustion of wood. Then population growth and defor-
estation drove the English to using coal. By the end of the seventeenth
century, England had almost completely converted to coal in place of
wood. At the turn of the eighteenth century, the first commercial steam
engines were developed, and that set the stage for enormously increased
consumption of coal. Europe and America followed England in these
developments.

The development of fossil energy sources has been a bit like Jules
Verne’s description in Around the World in Eighty Days in which, to win
a race, a crew burns the inside of a ship to power the steam engine. The
combustion of nonrenewable fossil energy sources (and, more recently,
the fission of uranium) has led to remarkably intense energy releases in
power-generating equipment. The energy transferred as heat in a nuclear
reactor is on the order of one million watts per square meter.

A complex system of heat and work transfer processes is invariably
needed to bring these concentrations of energy back down to human pro-
portions. We must understand and control the processes that divide and
diffuse intense heat flows down to the level on which we can interact with
them. To see how this works, consider a specific situation. Suppose we
live in a town where coal is processed into fuel-gas and coke. Such power
supplies used to be common, and they may return if natural gas supplies
ever dwindle. Let us list a few of the process heat transfer problems that
must be solved before we can drink a glass of iced tea.

• A variety of high-intensity heat transfer processes are involved with
combustion and chemical reaction in the gasifier unit itself.

• The gas goes through various cleanup and pipe-delivery processes
to get to our stoves. The heat transfer processes involved in these
stages are generally less intense.

• The gas is burned in the stove. Heat is transferred from the flame to
the bottom of the teakettle. While this process is small, it is intense
because boiling is a very efficient way to remove heat.

• The coke is burned in a steam power plant. The heat transfer rates
from the combustion chamber to the boiler, and from the wall of
the boiler to the water inside, are very intense.

• The steam passes through a turbine where it is involved with many
heat transfer processes, including some condensation in the last
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stages. The spent steam is then condensed in any of a variety of
heat transfer devices.

• Cooling must be provided in each stage of the electrical supply sys-
tem: the winding and bearings of the generator, the transformers,
the switches, the power lines, and the wiring in our houses.

• The ice cubes for our tea are made in an electrical refrigerator. It
involves three major heat exchange processes and several lesser
ones. The major ones are the condensation of refrigerant at room
temperature to reject heat, the absorption of heat from within the
refrigerator by evaporating the refrigerant, and the balancing heat
leakage from the room to the inside.

• Let’s drink our iced tea quickly because heat transfer from the room
to the water and from the water to the ice will first dilute, and then
warm, our tea if we linger.

A society based on power technology teems with heat transfer prob-
lems. Our aim is to learn the principles of heat transfer so we can solve
these problems and design the equipment needed to transfer thermal
energy from one substance to another. In a broad sense, all these prob-
lems resolve themselves into collecting and focusing large quantities of
energy for the use of people, and then distributing and interfacing this
energy with people in such a way that they can use it on their own puny
level.

We begin our study by recollecting how heat transfer was treated in
the study of thermodynamics and by seeing why thermodynamics is not
adequate to the task of solving heat transfer problems.

1.2 Relation of heat transfer to thermodynamics

The First Law with work equal to zero

The subject of thermodynamics, as taught in engineering programs, makes
constant reference to the heat transfer between systems. The First Law
of Thermodynamics for a closed system takes the following form on a
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Figure 1.1 The First Law of Thermodynamics for a closed system.

rate basis:

Q︸ ︷︷ ︸
positive toward

the system

= Wk︸ ︷︷ ︸
positive away

from the system

+ dU
dt︸ ︷︷ ︸

positive when
the system’s

energy increases

(1.1)

where Q is the heat transfer rate and Wk is the work transfer rate. They
may be expressed in joules per second (J/s) or watts (W). The derivative
dU/dt is the rate of change of internal thermal energy, U, with time, t.
This interaction is sketched schematically in Fig. 1.1a.

The analysis of heat transfer processes can generally be done with-
out reference to any work processes, although heat transfer might sub-
sequently be combined with work in the analysis of real systems. If pdV
work is the only work occuring, then eqn. (1.1) is

Q = p dV
dt

+ dU
dt

(1.2a)

This equation has two well-known special cases:

Constant volume process: Q = dU
dt

=mcv dTdt (1.2b)

Constant pressure process: Q = dH
dt

=mcp dTdt (1.2c)

where H ≡ U + pV is the enthalpy, and cv and cp are the specific heat
capacities at constant volume and constant pressure, respectively.

When the substance undergoing the process is incompressible (so that
V is constant for any pressure variation), the two specific heats are equal:



8 Introduction §1.2

cv = cp ≡ c. The proper form of eqn. (1.2a) is then

Q = dU
dt

=mc dT
dt

(1.3)

Since solids and liquids can frequently be approximated as being incom-
pressible, we shall often make use of eqn. (1.3).

If the heat transfer were reversible, then eqn. (1.2a) would become2

T
dS
dt︸ ︷︷ ︸

Qrev

= p dV
dt︸ ︷︷ ︸

Wkrev

+dU
dt

(1.4)

That might seem to suggest thatQ can be evaluated independently for in-
clusion in either eqn. (1.1) or (1.3). However, it cannot be evaluated using
T dS, because real heat transfer processes are all irreversible and S is not
defined as a function of T in an irreversible process. The reader will recall
that engineering thermodynamics might better be named thermostatics,
because it only describes the equilibrium states on either side of irre-
versible processes.

Since the rate of heat transfer cannot be predicted using T dS, how
can it be determined? If U(t) were known, then (when Wk = 0) eqn. (1.3)
would give Q, but U(t) is seldom known a priori.

The answer is that a new set of physical principles must be introduced
to predict Q. The principles are transport laws, which are not a part of
the subject of thermodynamics. They include Fourier’s law, Newton’s law
of cooling, and the Stefan-Boltzmann law. We introduce these laws later
in the chapter. The important thing to remember is that a description
of heat transfer requires that additional principles be combined with the
First Law of Thermodynamics.

Reversible heat transfer as the temperature gradient vanishes

Consider a wall connecting two thermal reservoirs as shown in Fig. 1.2.
As long as T1 > T2, heat will flow spontaneously and irreversibly from 1
to 2. In accordance with our understanding of the Second Law of Ther-
modynamics, we expect the entropy of the universe to increase as a con-
sequence of this process. If T2 �→ T1, the process will approach being
quasistatic and reversible. But the rate of heat transfer will also approach

2T = absolute temperature, S = entropy, V = volume, p = pressure, and “rev” denotes
a reversible process.
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Figure 1.2 Irreversible heat flow
between two thermal reservoirs through
an intervening wall.

zero if there is no temperature difference to drive it. Thus all real heat
transfer processes generate entropy.

Now we come to a dilemma: If the irreversible process occurs at
steady state, the properties of the wall do not vary with time. We know
that the entropy of the wall depends on its state and must therefore be
constant. How, then, does the entropy of the universe increase? We turn
to this question next.

Entropy production

The entropy increase of the universe as the result of a process is the sum
of the entropy changes of all elements that are involved in that process.
The rate of entropy production of the universe, ṠUn, resulting from the
preceding heat transfer process through a wall is

ṠUn = Ṡres 1 + Ṡwall︸ ︷︷ ︸
= 0, since Swall

must be constant

+Ṡres 2 (1.5)

where the dots denote time derivatives (i.e., ẋ ≡ dx/dt). Since the reser-
voir temperatures are constant,

Ṡres = Q
Tres

. (1.6)

Now Qres 1 is negative and equal in magnitude to Qres 2, so eqn. (1.5)
becomes

ṠUn =
∣∣∣∣Qres 1

∣∣∣∣
(

1
T2
− 1
T1

)
. (1.7)
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The term in parentheses is positive, so ṠUn > 0. This agrees with Clau-
sius’s statement of the Second Law of Thermodynamics.

Notice an odd fact here: The rate of heat transfer, Q, and hence ṠUn,
is determined by the wall’s resistance to heat flow. Although the wall
is the agent that causes the entropy of the universe to increase, its own
entropy does not changes. Only the entropies of the reservoirs change.

1.3 Modes of heat transfer

Figure 1.3 shows an analogy that might be useful in fixing the concepts
of heat conduction, convection, and radiation as we proceed to look at
each in some detail.

Heat conduction

Fourier’s law. Joseph Fourier3 (see Fig. 1.4) published his remarkable
book Théorie Analytique de la Chaleur in 1822. In it he formulated a very
complete exposition of the theory of heat conduction.

He began his treatise by stating the empirical law that bears his name:
the heat flux,4 q (W/m2), resulting from thermal conduction is proportional
to the magnitude of the temperature gradient and opposite to it in sign. If
we call the constant of proportionality, k, then

q = −k dT
dx

(1.8)

The constant, k, is called the thermal conductivity. It obviously must have
the dimensions W/m·K, or J/m·s·K, or Btu/h·ft·◦F if eqn. (1.8) is to be
dimensionally correct.

3Joseph Fourier lived a remarkable double life. He served as a high government
official in Napoleonic France and he was also an applied mathematician of great impor-
tance. He was with Napoleon in Egypt between 1798 and 1801, and he was subsequently
prefect of the administrative area (or “Department”) of Isère in France until Napoleon’s
first fall in 1814. During the latter period he worked on the theory of heat flow and in
1807 submitted a 234-page monograph on the subject. It was given to such luminaries
as Lagrange and Laplace for review. They found fault with his adaptation of a series
expansion suggested by Daniel Bernoulli in the eighteenth century. Fourier’s theory
of heat flow, his governing differential equation, and the now-famous “Fourier series”
solution of that equation did not emerge in print from the ensuing controversy until
1822.

4The heat flux, q, is a heat rate per unit area and can be expressed as Q/A, where A
is an appropriate area.



Figure 1.3 An analogy for the three modes of heat transfer.

11
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Figure 1.4 Baron Jean Baptiste Joseph Fourier (1768–1830).
(Courtesy of Appl. Mech. Rev., vol. 26, Feb. 1973.)

The heat flux is a vector quantity. Equation (1.8) tells us that if temper-
ature decreases with x, q will be positive—it will flow in the x-direction.
If T increases with x, q will be negative—it will flow opposite the x-
direction. In either case, q will flow from higher temperatures to lower
temperatures. Equation (1.8) is the one-dimensional form of Fourier’s
law. We develop its three-dimensional form in Chapter 2, namely:

�q = −k∇T

Example 1.1

The front of a slab of lead (k = 35 W/m·K) is kept at 110◦C and the
back is kept at 50◦C. If the area of the slab is 0.4 m2 and it is 0.03 m
thick, compute the heat flux, q, and the heat transfer rate, Q.

Solution. For the moment, we presume that dT/dx is a constant
equal to (Tback − Tfront)/(xback − xfront); we verify this in Chapter 2.
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The range of thermal conductivities is enormous. As we see from
Fig. 1.6, k varies by a factor of about 105 between gases and diamond at
room temperature. This variation can be increased to about 107 if we in-
clude the effective conductivity of various cryogenic “superinsulations.”
(These involve powders, fibers, or multilayered materials that have been
evacuated of all air.) The reader should study and remember the order
of magnitude of the thermal conductivities of different types of materi-
als. This will be a help in avoiding mistakes in future computations, and
it will be a help in making assumptions during problem solving. Actual
numerical values of the thermal conductivity are given in Appendix A
(which is a broad listing of many of the physical properties you might
need in this course) and in Figs. 2.2 and 2.3.

Example 1.2

A copper slab (k = 372 W/m·K) is 3 mm thick. It is protected from
corrosion by a 2-mm-thick layers of stainless steel (k = 17 W/m·K) on
both sides. The temperature is 400◦C on one side of this composite
wall and 100◦C on the other. Find the temperature distribution in the
copper slab and the heat conduction through the wall (see Fig. 1.7).

Solution. If we recall Fig. 1.5 and eqn. (1.10), it should be clear that
the temperature drop will take place almost entirely in the stainless
steel, where k is less than 1/20 of k in the copper. Thus, the cop-
per will be virtually isothermal at the average temperature of (400+
100)/2 = 250◦C. Furthermore, the heat conduction can be estimated
in a 4 mm slab of stainless steel as though the copper were not even
there. With the help of Fourier’s law in the form of eqn. (1.8), we get

q = −kdT
dx

� 17 W/m·K ·
(

400− 100
0.004

)
K/m = 1275 kW/m2

The accuracy of this rough calculation can be improved by con-
sidering the copper. To do this we first solve for ∆Ts.s. and ∆TCu (see
Fig. 1.7). Conservation of energy requires that the steady heat flux
through all three slabs must be the same. Therefore,

q =
(
k
∆T
L

)
s.s.
=

(
k
∆T
L

)
Cu
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Figure 1.7 Temperature drop through a
copper wall protected by stainless steel
(Example 1.2).

but

(400− 100)◦C ≡ ∆TCu + 2∆Ts.s.

= ∆TCu

[
1+ 2

(k/L)Cu

(k/L)s.s.

]
= (30/18)∆TCu

Solving this, we obtain ∆TCu = 9.94 K. So ∆Ts.s. = (300 − 9.94)/2 =
145 K. It follows that TCu, left = 255◦C and TCu, right = 245◦C.

The heat flux can be obtained by applying Fourier’s law to any of
the three layers. We consider either stainless steel layer and get

q = 17
W

m·K
145 K

0.002 m
= 1233 kW/m2

Thus our initial approximation was accurate within a few percent.

One-dimensional heat diffusion equation. In Example 1.2 we had to
deal with a major problem that arises in heat conduction problems. The
problem is that Fourier’s law involves two dependent variables, T and
q. To eliminate q and first solve for T , we introduced the First Law of
Thermodynamics implicitly: Conservation of energy required that q was
the same in each metallic slab.

The elimination of q from Fourier’s law must now be done in a more
general way. Consider a one-dimensional element, as shown in Fig. 1.8.
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Figure 1.8 One-dimensional heat conduction through a differ-
ential element.

From Fourier’s law applied at each side of the element, as shown, the net
heat conduction out of the element during general unsteady heat flow is

qnetA = Qnet = −kA ∂
2T
∂x2

δx (1.12)

To eliminate the heat loss Qnet in favor of T , we use the general First
Law statement for closed, nonworking systems, eqn. (1.3):

−Qnet = dUdt = ρcA
d(T − Tref)

dt
δx = ρcAdT

dt
δx (1.13)

where ρ is the density of the slab and c is its specific heat capacity.5

Equations (1.12) and (1.13) can be combined to give

∂2T
∂x2

= ρc
k
∂T
∂t

≡ 1
α
∂T
∂t

(1.14)

5The reader might wonder if c should be cp or cv . This is a strictly incompressible
equation so cp = cv = c. The compressible equation involves additional terms, and
this particular term emerges with cp in it in the conventional rearrangements of terms.
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Figure 1.9 The convective cooling of a heated body.

This is the one-dimensional heat diffusion equation. Its importance is
this: By combining the First Law with Fourier’s law, we have eliminated
the unknown Q and obtained a differential equation that can be solved
for the temperature distribution, T(x, t). It is the primary equation upon
which all of heat conduction theory is based.

The heat diffusion equation includes a new property which is as im-
portant to transient heat conduction as k is to steady-state conduction.
This is the thermal diffusivity, α:

α ≡ k
ρc

J
m·s·K

m3

kg
kg·K

J
= α m2/s (or ft2/hr).

The thermal diffusivity is a measure of how quickly a material can carry
heat away from a hot source. Since material does not just transmit heat
but must be warmed by it as well, α involves both the conductivity, k,
and the volumetric heat capacity, ρc.

Heat Convection

The physical process. Consider a typical convective cooling situation.
Cool gas flows past a warm body, as shown in Fig. 1.9. The fluid imme-
diately adjacent to the body forms a thin slowed-down region called a
boundary layer. Heat is conducted into this layer, which sweeps it away
and, farther downstream, mixes it into the stream. We call such processes
of carrying heat away by a moving fluid convection.

In 1701, Isaac Newton considered the convective process and sug-
gested that the cooling would be such that

dTbody

dt
∝ Tbody − T∞ (1.15)

where T∞ is the temperature of the oncoming fluid. This statement sug-
gests that energy is flowing from the body. But if the energy of the body
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is constantly replenished, the body temperature need not change. Then
with the help of eqn. (1.3) we get, from eqn. (1.15) (see Problem 1.2),

Q ∝ Tbody − T∞ (1.16)

This equation can be rephrased in terms of q = Q/A as

q = h
(
Tbody − T∞

)
(1.17)

This is the steady-state form of Newton’s law of cooling, as it is usually
quoted, although Newton never wrote such an expression.

The constant h is the film coefficient or heat transfer coefficient. The
bar over h indicates that it is an average over the surface of the body.
Without the bar, h denotes the “local” value of the heat transfer coef-
ficient at a point on the surface. The units of h and h are W/m2K or
J/s·m2·K. The conversion factor for English units is:

1 = 0.0009478 Btu
J

· K
1.8◦F

· 3600 s
h

· (0.3048 m)2

ft2

or

1 = 0.1761
Btu/h·ft2·◦F

W/m2K
(1.18)

It turns out that Newton oversimplified the process of convection
when he made his conjecture. Heat convection is complicated and h
can depend on the temperature difference Tbody − T∞ ≡ ∆T . In Chap-
ter 6 we find that h really is independent of ∆T in situations in which
fluid is forced past a body and ∆T is not too large. This is called forced
convection.

When fluid buoys up from a hot body or down from a cold one, h
varies as some weak power of ∆T—typically as ∆T 1/4 or ∆T 1/3. This is
called free or natural convection. If the body is hot enough to boil a liquid
surrounding it, h will typically vary as ∆T 2.

For the moment, we restrict consideration to situations in which New-
ton’s law is either true or at least a reasonable approximation to real
behavior.

We should have some idea of how large h might be in a given situ-
ation. Table 1.1 provides some illustrative values of h that have been
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Table 1.1 Some illustrative values of convective heat transfer
coefficients

Situation h, W/m2K

Natural convection in gases
• 0.3 m vertical wall in air, ∆T = 30◦C 4.33

Natural convection in liquids
• 40 mm O.D. horizontal pipe in water, ∆T = 30◦C 570
• 0.25 mm diameter wire in methanol, ∆T = 50◦C 4,000

Forced convection of gases
• Air at 30 m/s over a 1 m flat plate, ∆T = 70◦C 80

Forced convection of liquids
• Water at 2 m/s over a 60 mm plate, ∆T = 15◦C 590
• Aniline-alcohol mixture at 3 m/s in a 25 mm I.D. tube, ∆T = 80◦C 2,600
• Liquid sodium at 5 m/s in a 13 mm I.D. tube at 370◦C 75,000

Boiling water
• During film boiling at 1 atm 300
• In a tea kettle 4,000
• At a peak pool-boiling heat flux, 1 atm 40,000
• At a peak flow-boiling heat flux, 1 atm 100,000
• At approximate maximum convective-boiling heat flux, under

optimal conditions 106

Condensation
• In a typical horizontal cold-water-tube steam condenser 15,000
• Same, but condensing benzene 1,700
• Dropwise condensation of water at 1 atm 160,000

observed or calculated for different situations. They are only illustrative
and should not be used in calculations because the situations for which
they apply have not been fully described. Most of the values in the ta-
ble could be changed a great deal by varying quantities (such as surface
roughness or geometry) that have not been specified. The determination
of h or h is a fairly complicated task and one that will receive a great
deal of our attention. Notice, too, that h can change dramatically from
one situation to the next. Reasonable values of h range over about six
orders of magnitude.
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Example 1.3

The heat flux, q, is 6000 W/m2 at the surface of an electrical heater.
The heater temperature is 120◦C when it is cooled by air at 70◦C.
What is the average convective heat transfer coefficient, h? What will
the heater temperature be if the power is reduced so that q is 2000
W/m2?

Solution.

h = q
∆T

= 6000
120− 70

= 120 W/m2K

If the heat flux is reduced, h should remain unchanged during forced
convection. Thus

∆T = Theater − 70◦C = q
/
h = 2000 W/m2

120 W/m2K
= 16.67 K

so Theater = 70+ 16.67 = 86.67◦C

Lumped-capacity solution. We now wish to deal with a very simple but
extremely important, kind of convective heat transfer problem. The prob-
lem is that of predicting the transient cooling of a convectively cooled
object, such as is shown in Fig. 1.9. We begin with our now-familiar First
law statement, eqn. (1.3):

Q︸ ︷︷ ︸
−hA(T − T∞)

= dU
dt︸ ︷︷ ︸

d
dt
[ρcV(T − Tref)]

(1.19)

where A and V are the surface area and volume of the body, T is the
temperature of the body, T = T(t), and Tref is the arbitrary temperature
at which U is defined equal to zero. Thus6

d(T − T∞)
dt

= − hA
ρcV

(T − T∞) (1.20)

6Is it clear why (T−Tref) has been changed to (T−T∞) under the derivative? Remem-
ber that the derivative of a constant (like Tref or T∞) is zero. We can therefore introduce
(T − T∞) without invalidating the equation, and get the same dependent variable on
both sides of the equation.
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Figure 1.10 The cooling of a body for which the Biot number,
hL/kb, is small.

The general solution to this equation is

ln(T − T∞) = − t
(ρcV

/
hA)

+ C (1.21)

The group ρcV
/
hA is the time constant, T . If the initial temperature is

T(t = 0) ≡ Ti, then C = ln(Ti − T∞), and the cooling of the body is given
by

T − T∞
Ti − T∞

= e−t/T (1.22)

All of the physical parameters in the problem have now been “lumped”
into the time constant. It represents the time required for a body to cool
to 1/e, or 37% of its initial temperature difference above (or below) T∞.
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The ratio t/T can also be interpreted as

t
T
= hAt (J/◦C)
ρcV (J/◦C)

= capacity for convection from surface
heat capacity of the body

(1.23)

Notice that the thermal conductivity is missing from eqns. (1.22) and
(1.23). The reason is that we have assumed that the temperature of the
body is nearly uniform, and this means that internal conduction is not
important. We see in Fig. 1.10 that, if L

/
(kb/h)� 1, the temperature of

the body, Tb, is almost constant within the body at any time. Thus

hL
kb

� 1 implies that Tb(x, t) � T(t) � Tsurface

and the thermal conductivity, kb, becomes irrelevant to the cooling pro-
cess. This condition must be satisfied or the lumped-capacity solution
will not be accurate.

We call the group hL
/
kb the Biot number7, Bi. If Bi were large, of

course, the situation would be reversed, as shown in Fig. 1.11. In this
case Bi = hL/kb 	 1 and the convection process offers little resistance
to heat transfer. We could solve the heat diffusion equation

∂2T
∂x2

= 1
α
∂T
∂t

subject to the simple boundary condition T(x, t) = T∞ when x = L, to
determine the temperature in the body and its rate of cooling in this case.
The Biot number will therefore be the basis for determining what sort of
problem we have to solve.

To calculate the rate of entropy production in a lumped-capacity sys-
tem, we note that the entropy change of the universe is the sum of the
entropy decrease of the body and the more rapid entropy increase of
the surroundings. The source of irreversibility is heat flow through the
boundary layer. Accordingly, we write the time rate of change of entropy
of the universe, dSUn/dt ≡ ṠUn, as

ṠUn = Ṡb + Ṡsurroundings =
−Qrev

Tb
+ Qrev

T∞
7Pronounced Bee-oh. J.B. Biot, although younger than Fourier, worked on the anal-

ysis of heat conduction even earlier—in 1802 or 1803. He grappled with the problem
of including external convection in heat conduction analyses in 1804 but could not see
how to do it. Fourier read Biot’s work and by 1807 had determined how to analyze the
problem. (Later we encounter a similar dimensionless group called the Nusselt num-
ber, Nu = hL/kfluid. The latter relates only to the boundary layer and not to the body
being cooled. We deal with it extensively in the study of convection.)
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Figure 1.11 The cooling of a body for which the Biot number,
hL/kb, is large.

or

ṠUn = −ρcV dTbdt
(

1
T∞

− 1
Tb

)
.

We can multiply both sides of this equation by dt and integrate the right-
hand side from Tb(t = 0) ≡ Tb0 to Tb at the time of interest:

∆S = −ρcV
∫ Tb
Tb0

(
1
T∞

− 1
Tb

)
dTb. (1.24)

Equation 1.24 will give a positive∆S whether Tb > T∞ or Tb < T∞ because
the sign of dTb will always opposed the sign of the integrand.

Example 1.4

A thermocouple bead is largely solder, 1 mm in diameter. It is initially
at room temperature and is suddenly placed in a 200◦C gas flow. The
heat transfer coefficient h is 250 W/m2K, and the effective values
of k, ρ, and c are 45 W/m·K, 9300 kg/m3, and c = 0.18 kJ/kg·K,
respectively. Evaluate the response of the thermocouple.
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Solution. The time constant, T , is

T = ρcV
hA

= ρc
h
πD3/6
πD2

= ρcD
6h

= (9300)(0.18)(0.001)
6(250)

kg
m3

kJ
kg·K m

m2·K
W

1000 W
kJ/s

= 1.116 s

Therefore, eqn. (1.22) becomes

T − 200◦C
(20− 200)◦C

= e−t/1.116 or T = 200− 180 e−t/1.116 ◦C

This result is plotted in Fig. 1.12, where we see that, for all practical
purposes, this thermocouple catches up with the gas stream in less
than 5 s. Indeed, it should be apparent that any such system will
come within 95% of the signal in three time constants. Notice, too,
that if the response could continue at its initial rate, the thermocouple
would reach the signal temperature in one time constant.

This calculation is based entirely on the assumption that Bi � 1
for the thermocouple. We must check that assumption:

Bi ≡ hL
k
= (250 W/m2K)(0.001 m)/2

45 W/m·K = 0.00278

This is very small indeed, so the assumption is valid.

Experiment 1.2

Invent and carry out a simple procedure for evaluating the time con-
stant of a fever thermometer in your mouth.

Radiation

Heat transfer by thermal radiation. All bodies constantly emit energy
by a process of electromagnetic radiation. The intensity of such energy
flux depends upon the temperature of the body and the nature of its
surface. Most of the heat that reaches you when you sit in front of a fire
is radiant energy. Radiant energy browns your toast in an electric toaster
and it warms you when you walk in the sun.
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Figure 1.12 Thermocouple response to a hot gas flow.

Objects that are cooler than the fire, the toaster, or the sun emit much
less energy because the energy emission varies as the fourth power of ab-
solute temperature. Very often, the emission of energy, or radiant heat
transfer, from cooler bodies can be neglected in comparison with con-
vection and conduction. But heat transfer processes that occur at high
temperature, or with conduction or convection suppressed by evacuated
insulations, usually involve a significant fraction of radiation.

Experiment 1.3

Open the freezer door to your refrigerator. Put your face near it, but
stay far enough away to avoid the downwash of cooled air. This way you
cannot be cooled by convection and, because the air between you and the
freezer is a fine insulator, you cannot be cooled by conduction. Still your
face will feel cooler. The reason is that you radiate heat directly into the
cold region and it radiates very little heat to you. Consequently, your
face cools perceptibly.
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Table 1.2 Forms of the electromagnetic wave spectrum

Characterization Wavelength, λ

Cosmic rays < 0.3 pm

Gamma rays 0.3–100 pm

X rays 0.01–30 nm

Ultraviolet light 3–400 nm

Visible light 0.4–0.7 µm

Near infrared radiation 0.7–30 µm

Far infrared radiation 30–1000 µm




Thermal Radiation
0.1–1000 µm

Millimeter waves 1–10 mm

Microwaves 10–300 mm

Shortwave radio & TV 300 mm–100 m

Longwave radio 100 m–30 km

The electromagnetic spectrum. Thermal radiation occurs in a range
of the electromagnetic spectrum of energy emission. Accordingly, it ex-
hibits the same wavelike properties as light or radio waves. Each quan-
tum of radiant energy has a wavelength, λ, and a frequency, ν , associated
with it.

The full electromagnetic spectrum includes an enormous range of
energy-bearing waves, of which heat is only a small part. Table 1.2 lists
the various forms over a range of wavelengths that spans 24 orders of
magnitude. Only the tiniest “window” exists in this spectrum through
which we can see the world around us. Heat radiation, whose main com-
ponent is usually the spectrum of infrared radiation, passes through the
much larger window—about three orders of magnitude in λ or ν .

Black bodies. The model for the perfect thermal radiator is a so-called
black body. This is a body which absorbs all energy that reaches it and
reflects nothing. The term can be a little confusing, since such bodies
emit energy. Thus, if we possessed infrared vision, a black body would
glow with “color” appropriate to its temperature. of course, perfect ra-
diators are “black” in the sense that they absorb all visible light (and all
other radiation) that reaches them.

It is necessary to have an experimental method for making a perfectly
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Figure 1.13 Cross section of a spherical hohlraum. The hole
has the attributes of a nearly perfect thermal black body.

black body. The conventional device for approaching this ideal is called
by the German term hohlraum, which literally means “hollow space”.
Figure 1.13 shows how a hohlraum is arranged. It is simply a device that
traps all the energy that reaches the aperture.

What are the important features of a thermally black body? First
consider a distinction between heat and infrared radiation. Infrared ra-
diation refers to a particular range of wavelengths, while heat refers to
the whole range of radiant energy flowing from one body to another.
Suppose that a radiant heat flux, q, falls upon a translucent plate that
is not black, as shown in Fig. 1.14. A fraction, α, of the total incident
energy, called the absorptance, is absorbed in the body; a fraction, ρ,
called the reflectance, is reflected from it; and a fraction, τ , called the
transmittance, passes through. Thus

1 = α+ ρ + τ (1.25)

This relation can also be written for the energy carried by each wave-
length in the distribution of wavelengths that makes up heat from a
source at any temperature:

1 = αλ + ρλ + τλ (1.26)

All radiant energy incident on a black body is absorbed, so that αb or
αλb = 1 and ρb = τb = 0. Furthermore, the energy emitted from a
black body reaches a theoretical maximum, which is given by the Stefan-
Boltzmann law. We look at this next.
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Figure 1.14 The distribution of energy
incident on a translucent slab.

The Stefan-Boltzmann law. The flux of energy radiating from a body
is commonly designated e(T) W/m2. The symbol eλ(λ, T ) designates the
distribution function of radiative flux in λ, or the monochromatic emissive
power:

eλ(λ, T) =
de(λ, T)
dλ

or e(λ, T) =
∫ λ

0
eλ(λ, T)dλ (1.27)

Thus

e(T) ≡ E(∞, T ) =
∫∞

0
eλ(λ, T)dλ

The dependence of e(T) on T for a black body was established experi-
mentally by Stefan in 1879 and explained by Boltzmann on the basis of
thermodynamics arguments in 1884. The Stefan-Boltzmann law is

eb(T) = σT 4 (1.28)

where the Stefan-Boltzmann constant, σ , is 5.670400 × 10−8 W/m2·K4

or 1.714× 10−9 Btu/hr·ft2·◦R4, and T is the absolute temperature.

eλ vs. λ. Nature requires that, at a given temperature, a body will emit
a unique distribution of energy in wavelength. Thus, when you heat a
poker in the fire, it first glows a dull red—emitting most of its energy
at long wavelengths and just a little bit in the visible regime. When it is
white-hot, the energy distribution has been both greatly increased and
shifted toward the shorter-wavelength visible range. At each tempera-
ture, a black body yields the highest value of eλ that a body can attain.
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Figure 1.15 Monochromatic emissive
power of a black body at several
temperatures—predicted and observed.

The very accurate measurements of the black-body energy spectrum
by Lummer and Pringsheim (1899) are shown in Fig. 1.15. The locus of
maxima of the curves is also plotted. It obeys a relation called Wien’s
law:

(λT)eλ=max = 2898 µm·K (1.29)

About three-fourths of the radiant energy of a black body lies to the right
of this line in Fig. 1.15. Notice that, while the locus of maxima leans
toward the visible range at higher temperatures, only a small fraction of
the radiation is visible even at the highest temperature.

Predicting how the monochromatic emissive power of a black body
depends on λ was an increasingly serious problem at the close of the
nineteenth century. The prediction was a keystone of the most profound
scientific revolution the world has seen. In 1901, Max Planck made the
prediction, and his work included the initial formulation of quantum me-
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chanics. He found that

eλb =
2πhc2

o
λ5 [exp(hco/kBTλ)− 1]

(1.30)

where co is the speed of light, 2.99792458× 108 m/s; h is Planck’s con-
stant, 6.62606876×10−34 J·s; and kB is Boltzmann’s constant, 1.3806503×
10−23 J/K.

Radiant heat exchange. Suppose that a heated object (1 in Fig. 1.16a)
radiates only to some other object (2) and that both objects are thermally
black. All heat leaving object 1 arrives at object 2, and all heat arriving
at object 1 comes from object 2. Thus, the net heat transferred from
object 1 to object 2, Qnet, is the difference between Q1 to 2 = A1eb(T1)
and Q2 to 1 = A1eb(T2)

Qnet = A1eb(T1)−A1eb(T2) = A1σ
(
T 4

1 − T 4
2

)
(1.31)

If the first object “sees” other objects in addition to object 2, as indicated
in Fig. 1.16b, then a view factor (sometimes called a configuration factor
or a shape factor ), F1–2, must be included in eqn. (1.31):

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
(1.32)

We may regard F1–2 as the fraction of energy leaving object 1 that is
intercepted by object 2.

Example 1.5

A black thermocouple measures the temperature in a chamber with
black walls. If the air around the thermocouple is at 20◦C, the walls
are at 100◦C, and the heat transfer coefficient between the thermocou-
ple and the air is 15 W/m2K, what temperature will the thermocouple
read?

Solution. The heat convected away from the thermocouple by the
air must exactly balance that radiated to it by the hot walls if the sys-
tem is in steady state. Furthermore, F1–2 = 1 since the thermocouple
(1) radiates all its energy to the walls (2):

hAtc (Ttc − Tair) = −Qnet = −Atcσ
(
T 4
tc − T 4

wall

)
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Figure 1.16 The net radiant heat transfer from one object to
another.

or, with Ttc in ◦C,

15(Ttc − 20) W/m2 =
5.6704× 10−8

[
(100+ 273)4 − (Ttc + 273)4

]
W/m2

since T for radiation must be in kelvin. Trial-and-error solution of
this equation yields Ttc = 51◦C.

We have seen that non-black bodies absorb less radiation than black
bodies, which are perfect absorbers. Likewise, non-black bodies emit less
radiation than black bodies, which also happen to be perfect emitters. We
can characterize the emissive power of a non-black body using a property
called emittance, ε:

enon-black = εeb = εσT 4 (1.33)

where 0 < ε ≤ 1. When radiation is exchanged between two bodies that
are not black, we have

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
(1.34)

where the transfer factor,F1–2, depends on the emittances of both bodies
as well as the geometrical “view”.
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The expression forF1–2 is particularly simple in the important special
case of a small object, 1, in a much larger isothermal environment, 2:

F1–2 = ε1 for A1 � A2 (1.35)

Example 1.6

Suppose that the thermocouple in Example 1.5 was not black and
had an emissivity of ε = 0.4. Further suppose that the walls were
not black and had a much larger surface area than the thermocouple.
What temperature would the thermocouple read?

Solution. Qnet is now given by eqn. (1.34) and F1–2 can be found
with eqn. (1.35):

hAtc (Ttc − Tair) = −Atcεtcσ
(
T 4
tc − T 4

wall

)
or

15(Ttc − 20) W/m2 =
(0.4)(5.6704× 10−8)

[
(100+ 273)4 − (Ttc + 273)4

]
W/m2

Trial-and-error yields Ttc = 35◦C.

Radiation shielding. The preceding examples point out an important
practical problem than can be solved with radiation shielding. The idea
is as follows: If we want to measure the true air temperature, we can
place a thin foil casing, or shield, around the thermocouple. The casing
is shaped to obstruct the thermocouple’s “view” of the room but to permit
the free flow of the air around the thermocouple. Then the shield, like
the thermocouple in the two examples, will be cooler than the walls, and
the thermocouple it surrounds will be influenced by this much cooler
radiator. If the shield is highly reflecting on the outside, it will assume a
temperature still closer to that of the air and the error will be still less.
Multiple layers of shielding can further reduce the error.

Radiation shielding can take many forms and serve many purposes.
It is an important element in superinsulations. A glass firescreen in a
fireplace serves as a radiation shield because it is largely opaque to ra-
diation. It absorbs heat radiated by the fire and reradiates that energy
(ineffectively) at a temperature much lower than that of the fire.
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Experiment 1.4

Find a small open flame that produces a fair amount of soot. A candle,
kerosene lamp, or a cutting torch with a fuel-rich mixture should work
well. A clean blue flame will not work well because such gases do not
radiate much heat. First, place your finger in a position about 1 to 2 cm
to one side of the flame, where it becomes uncomfortably hot. Now take
a piece of fine mesh screen and dip it in some soapy water, which will fill
up the holes. Put it between your finger and the flame. You will see that
your finger is protected from the heating until the water evaporates.

Water is relatively transparent to light. What does this experiment
show you about the transmittance of water to infrared wavelengths?

1.4 A look ahead

What we have done up to this point has been no more than to reveal the
tip of the iceberg. The basic mechanisms of heat transfer have been ex-
plained and some quantitative relations have been presented. However,
this information will barely get you started when you are faced with a real
heat transfer problem. Three tasks, in particular, must be completed to
solve actual problems:

• The heat diffusion equation must be solved subject to appropriate
boundary conditions if the problem involves heat conduction of any
complexity.

• The convective heat transfer coefficient, h, must be determined if
convection is important in a problem.

• The factor F1–2 or F1–2 must be determined to calculate radiative
heat transfer.

Any of these determinations can involve a great deal of complication,
and most of the chapters that lie ahead are devoted to these three basic
problems.

Before becoming engrossed in these three questions, we shall first
look at the archetypical applied problem of heat transfer–namely, the
design of a heat exchanger. Chapter 2 sets up the elementary analytical
apparatus that is needed for this, and Chapter 3 shows how to do such
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design if h is already known. This will make it easier to see the impor-
tance of undertaking the three basic problems in subsequent parts of the
book.

1.5 Problems

We have noted that this book is set down almost exclusively in S.I. units.
The student who has problems with dimensional conversion will find
Appendix B helpful. The only use of English units appears in some of the
problems at the end of each chapter. A few such problems are included
to provide experience in converting back into English units, since such
units will undoubtedly persist in the U.S.A. for many more years.

Another matter often leads to some discussion between students and
teachers in heat transfer courses. That is the question of whether a prob-
lem is “theoretical” or “practical”. Quite often the student is inclined to
view as “theoretical” a problem that does not involve numbers or that
requires the development of algebraic results.

The problems assigned in this book are all intended to be useful in
that they do one or more of five things:

1. They involve a calculation of a type that actually arises in practice
(e.g., Problems 1.1, 1.3, 1.8 to 1.18, and 1.21 through 1.25).

2. They illustrate a physical principle (e.g., Problems 1.2, 1.4 to 1.7,
1.9, 1.20, 1.32, and 1.39). These are probably closest to having a
“theoretical” objective.

3. They ask you to use methods developed in the text to develop other
results that would be needed in certain applied problems (e.g., Prob-
lems 1.10, 1.16, 1.17, and 1.21). Such problems are usually the most
difficult and the most valuable to you.

4. They anticipate development that will appear in subsequent chap-
ters (e.g., Problems 1.16, 1.20, 1.40, and 1.41).

5. They require that you develop your ability to handle numerical and
algebraic computation effectively. (This is the case with most of the
problems in Chapter 1, but it is especially true of Problems 1.6 to
1.9, 1.15, and 1.17).
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Partial numerical answers to some of the problems follow them in
brackets. Tables of physical property data useful in solving the problems
are given in Appendix A.

Actually, we wish to look at the theory, analysis, and practice of heat
transfer—all three—according to Webster’s definitions:

Theory: “a systematic statement of principles; a formulation of apparent
relationships or underlying principles of certain observed phenom-
ena.”

Analysis: “the solving of problems by the means of equations; the break-
ing up of any whole into its parts so as to find out their nature,
function, relationship, etc.”

Practice: “the doing of something as an application of knowledge.”

Problems

1.1 A composite wall consists of alternate layers of fir (5 cm thick),
aluminum (1 cm thick), lead (1 cm thick), and corkboard (6
cm thick). The temperature is 60◦C on the outside of the for
and 10◦C on the outside of the corkboard. Plot the tempera-
ture gradient through the wall. Does the temperature profile
suggest any simplifying assumptions that might be made in
subsequent analysis of the wall?

1.2 Verify eqn. (1.15).

1.3 q = 5000 W/m2 in a 1 cm slab and T = 140◦C on the cold side.
Tabulate the temperature drop through the slab if it is made
of

• Silver

• Aluminum

• Mild steel (0.5 % carbon)

• Ice

• Spruce

• Insulation (85 % magnesia)

• Silica aerogel

Indicate which situations would be unreasonable and why.
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1.4 Explain in words why the heat diffusion equation, eqn. (1.13),
shows that in transient conduction the temperature depends
on the thermal diffusivity, α, but we can solve steady conduc-
tion problems using just k (as in Example 1.1).

1.5 A 1 m rod of pure copper 1 cm2 in cross section connects
a 200◦C thermal reservoir with a 0◦C thermal reservoir. The
system has already reached steady state. What are the rates
of change of entropy of (a) the first reservoir, (b) the second
reservoir, (c) the rod, and (d) the whole universe, as a result of
the process? Explain whether or not your answer satisfies the
Second Law of Thermodynamics. [(d): +0.0120 W/K.]

1.6 Two thermal energy reservoirs at temperatures of 27◦C and
−43◦C, respectively, are separated by a slab of material 10
cm thick and 930 cm2 in cross-sectional area. The slab has
a thermal conductivity of 0.14 W/m·K. The system is operat-
ing at steady-state conditions. what are the rates of change of
entropy of (a) the higher temperature reservoir, (b) the lower
temperature reservoir, (c) the slab, and (d) the whole universe
as a result of this process? (e) Does your answer satisfy the
Second Law of Thermodynamics?

1.7 (a) If the thermal energy reservoirs in Problem 1.6 are suddenly
replaced with adiabatic walls, determine the final equilibrium
temperature of the slab. (b) what is the entropy change for the
slab for this process? (c) Does your answer satisfy the Second
Law of Thermodynamics in this instance? Explain. The density
of the slab is 26 lb/ft3 and the specific heat is 0.65 Btu/lb·◦F.
[(b): 30.81 J/K].

1.8 A copper sphere 2.5 cm in diameter has a uniform temperature
of 40◦C. The sphere is suspended is a slow-moving air stream
at 0◦C. The air stream produces a convection heat transfer co-
efficient of 15 W/m2K. Radiation can be neglected. Since cop-
per is highly conductive, temperature gradients in the sphere
will smooth out rapidly, and its temperature can be taken as
uniform throughout the cooling process (i.e., Bi � 1). Write
the instantaneous energy balance between the sphere and the
surrounding air. Solve this equation and plot the resulting
temperatures as a function of time between 40◦C and 0◦C.



Problems 39

1.9 Determine the total heat transfer in Problem 1.8 as the sphere
cools from 40◦C to 0◦C. Plot the net entropy increase result-
ing from the cooling process above, ∆S vs. T (K). [Total heat
transfer = 1123 J.]

1.10 A truncated cone 30 cm high is constructed of Portland ce-
ment. The diameter at the top is 15 cm and at the bottom is
7.5 cm. The lower surface is maintained at 6◦C and the top at
40◦C. The other surface is insulated. Assume one-dimensional
heat transfer and calculate the rate of heat transfer in watts
from top to bottom. To do this, note that the heat transfer, Q,
must be the same at every cross section. Write Fourier’s law
locally, and integrate it from top to bottom to get a relation
between this unknown Q and the known end temperatures.
[Q = −1.70 W.]

1.11 A hot water heater contains 100 kg of water at 75◦C in a 20◦C
room. Its surface area is 1.3 m2. Select an insulating material,
and specify its thickness, to keep the water from cooling more
than 3◦C/h. (Notice that this problem will be greatly simplified
if the temperature drop in the steel casing and the temperature
drop in the convective boundary layers are negligible. Can you
make such assumptions? Explain.)

Figure 1.17 Configuration for
Problem 1.12

1.12 What is the temperature at the left-hand wall shown in Fig. 1.17.
Both walls are thin, very large in extent, highly conducting, and
thermally black. [Tright = 42.5◦C.]

1.13 Develop S.I. to English conversion factors for:

• The thermal diffusivity, α
• The heat flux, q
• The density, ρ



40 Chapter 1: Introduction

• The Stefan-Boltzmann constant, σ
• The view factor, F1–2

• The molar entropy

• The specific heat per unit mass, c

In each case, begin with basic dimension J, m, kg, s, ◦C, and
check your answers against Appendix B if possible.

Figure 1.18 Configuration for
Problem 1.14

1.14 Three infinite, parallel, black, opaque plates transfer heat by
radiation, as shown in Fig. 1.18. Find T2.

1.15 Four infinite, parallel, black, opaque plates transfer heat by
radiation, as shown in Fig. 1.19. Find T2 and T3. [T2 = 75.53◦C.]

1.16 Two large, black, horizontal plates are spaced a distance L
from one another. The top one is warm at a controllable tem-
perature, Th, and the bottom one is cool at a specified temper-
ature, Tc . A gas separates them. The gas is stationary because
it is warm on the top and cold on the bottom. Write the equa-
tion qrad/qcond = fn(N,Θ ≡ Th/Tc), where N is a dimension-
less group containing σ , k, L, and Tc . Plot N as a function of
Θ for qrad/qcond = 1, 0.8, and 1.2 (and for other values if you
wish).

Now suppose that you have a system in which L = 10 cm,
Tc = 100 K, and the gas is hydrogen with an average k of
0.1 W/m·K . Further suppose that you wish to operate in such a
way that the conduction and radiation heat fluxes are identical.
Identify the operating point on your curve and report the value
of Th that you must maintain.



Problems 41

Figure 1.19 Configuration for
Problem 1.15

1.17 A blackened copper sphere 2 cm in diameter and uniformly at
200◦C is introduced into an evacuated black chamber that is
maintained at 20◦C.

• Write a differential equation that expresses T(t) for the
sphere, assuming lumped thermal capacity.

• Identify a dimensionless group, analogous to the Biot num-
ber, than can be used to tell whether or not the lumped-
capacity solution is valid.

• Show that the lumped-capacity solution is valid.

• Integrate your differential equation and plot the temper-
ature response for the sphere.

1.18 As part of a space experiment, a small instrumentation pack-
age is released from a space vehicle. It can be approximated
as a solid aluminum sphere, 4 cm in diameter. The sphere is
initially at 30◦C and it contains a pressurized hydrogen com-
ponent that will condense and malfunction at 30 K. If we take
the surrounding space to be at 0 K, how long may we expect the
implementation package to function properly? Is it legitimate
to use the lumped-capacity method in solving the problem?
(Hint: See the directions for Problem 1.17.) [Time = 5.8 weeks.]

1.19 Consider heat conduction through the wall as shown in Fig. 1.20.
Calculate q and the temperature of the right-hand side of the
wall.

1.20 Throughout Chapter 1 we have assumed that the steady tem-
perature distribution in a plane uniform wall in linear. To
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Figure 1.20 Configuration for
Problem 1.19

prove this, simplify the heat diffusion equation to the form
appropriate for steady flow. Then integrate it twice and elimi-
nate the two constants using the known outside temperatures
Tleft and Tright at x = 0 and x = wall thickness, L.

1.21 The thermal conductivity in a particular plane wall depends as
follows on the wall temperature: k = A + BT , where A and B
are constants. The temperatures are T1 and T2 on either side
if the wall, and its thickness is L. Develop an expression for q.

Figure 1.21 Configuration for
Problem 1.22

1.22 Find k for the wall shown in Fig. 1.21. Of what might it be
made?

1.23 What are Ti, Tj , and Tr in the wall shown in Fig. 1.22? [Tj =
16.44◦C.]

1.24 An aluminum can of beer or soda pop is removed from the
refrigerator and set on the table. If h is 13.5 W/m2K, estimate
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when the beverage will be at 15◦C. Ignore thermal radiation.
State all of your other assumptions.

1.25 One large, black wall at 27◦C faces another whose surface is
127◦C. The gap between the two walls is evacuated. If the sec-
ond wall is 0.1 m thick and has a thermal conductivity of 17.5
W/m·K, what is its temperature on the back side? (Assume
steady state.)

1.26 A 1 cm diameter, 1% carbon steel sphere, initially at 200◦C, is
cooled by natural convection, with air at 20◦C. In this case, h is
not independent of temperature. Instead, h = 3.51(∆T ◦C)1/4

W/m2K. Plot Tsphere as a function of t. Verify the lumped-
capacity assumption.

1.27 A 3 cm diameter, black spherical heater is kept at 1100◦C. It
radiates through an evacuated annulus to a surrounding spher-
ical shell of Nichrome V. The shell has a 9 cm inside diameter
and is 0.3 cm thick. It is black on the inside and is held at
25◦C on the outside. Find (a) the temperature of the inner wall
of the shell and (b) the heat transfer, Q. (Treat the shell as a
plane wall.)

1.28 The sun radiates 650 W/m2 on the surface of a particular lake.
At what rate (in mm/hr) would the lake evaporate away if all of
this energy went to evaporating water? Discuss as many other

Figure 1.22 Configuration for Problem 1.23
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ways you can think of that this energy can be distributed (hfg

for water is 2,257,000 J/kg). Do you suppose much of the 650
W/m2 goes to evaporation?

1.29 It is proposed to make picnic cups, 0.005 m thick, of a new
plastic for which k = ko(1+aT 2), where T is expressed in ◦C,
ko = 0.15 W/m·K, and a = 10−4 ◦C−2. We are concerned with
thermal behavior in the extreme case in which T = 100◦C in
the cup and 0◦C outside. Plot T against position in the cup
wall and find the heat loss, q.

1.30 A disc-shaped wafer of diamond 1 lb is the target of a very high
intensity laser. The disc is 5 mm in diameter and 1 mm deep.
The flat side is pulsed intermittently with 1010 W/m2 of energy
for one microsecond. It is then cooled by natural convection
from that same side until the next pulse. If h = 10 W/m2K and
T∞=30◦C, plot Tdisc as a function of time for pulses that are 50
s apart and 100 s apart. (Note that you must determine the
temperature the disc reaches before it is pulsed each time.)

1.31 A 150 W light bulb is roughly a 0.006 m diameter sphere. Its
steady surface temperature in room air is 90◦C, and h on the
outside is 7 W/m2K. What fraction of the heat transfer from
the bulb is by radiation directly from the filament through the
glass? (State any additional assumptions.)

1.32 How much entropy does the light bulb in Problem 1.31 pro-
duce?

1.33 Air at 20◦C flows over one side of a thin metal sheet (h = 10.6
W/m2K). Methanol at 87◦C flows over the other side (h = 141
W/m2K). The metal functions as an electrical resistance heater,
releasing 1000 W/m2. Calculate (a) the heater temperature, (b)
the heat transfer from the methanol to the heater, and (c) the
heat transfer from the heater to the air.

1.34 A black heater is simultaneously cooled by 20◦C air (h = 14.6
W/m2K) and by radiation to a parallel black wall at 80◦C. What
is the temperature of the first wall if it delivers 9000 W/m2.

1.35 An 8 oz. can of beer is taken from a 3◦C refrigerator and placed
in a 25◦C room. The 6.3 cm diameter by 9 cm high can is placed
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on an insulated surface (h = 7.3 W/m2K). How long will it
take to reach 12◦C? Ignore thermal radiation, and discuss your
other assumptions.

1.36 A resistance heater in the form of a thin sheet runs parallel
with 3 cm slabs of cast iron on either side of an evacuated
cavity. The heater, which releases 8000 W/m2, and the cast
iron are very nearly black. The outside surfaces of the cast
iron slabs are kept at 10◦C. Determine the heater temperature
and the inside slab temperatures.

1.37 A black wall at 1200◦C radiates to the left side of a parallel
slab of type 316 stainless steel, 5 mm thick. The right side of
the slab is to be cooled convectively and is not to exceed 0◦C.
Suggest a convective process that will achieve this.

1.38 A cooler keeps one side of a 2 cm layer of ice at −10◦C. The
other side is exposed to air at 15◦C. What is h just on the
edge of melting? Must h be raised or lowered if melting is to
progress?

1.39 At what minimum temperature does a black heater deliver its
maximum monochromatic emissive power in the visible range?
Compare your result with Fig. 10.2.

1.40 The local heat transfer coefficient during the laminar flow of
fluid over a flat plate of length L is equal to F/x1/2, where F is
a function of fluid properties and the flow velocity. How does
h compare with h(x = L)? (x is the distance from the leading
edge of the plate.)

1.41 An object is initially at a temperature above that of its sur-
roundings. We have seen that many kinds of convective pro-
cesses will bring the object into equilibrium with its surround-
ings. Describe the characteristics of a process that will do so
with the least net increase of the entropy of the universe.

1.42 A 250◦C cylindrical copper billet, 4 cm in diameter and 8 cm
long, is cooled in air at 25◦C. The heat transfer coefficient
is 5 W/m2K. Can this be treated as lumped-capacity cooling?
What is the temperature of the billet after 10 minutes?
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1.43 The sun’s diameter is 1,392,000 km, and it emits energy as if
it were a black body at 5777 K. Determine the rate at which it
emits energy. Compare this with a value from the literature.
What is the sun’s energy output in a year?

Bibliography of Historical and Advanced Texts

We include no specific references for the ideas introduced in Chapter 1
since these may be found in introductory thermodynamics or physics
books. References 1–6 are some texts which have strongly influenced
the field. The rest are relatively advanced texts or handbooks which go
beyond the present textbook.
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2. Heat conduction concepts,
thermal resistance, and the
overall heat transfer coefficient

It is the fire that warms the cold, the cold that moderates the heat. . .the
general coin that purchases all things. . .

Don Quixote, M. de Cervantes

2.1 The heat diffusion equation

Objective

We must now develop some ideas that will be needed for the design of
heat exchangers. The most important of these is the notion of an overall
heat transfer coefficient. This is a measure of the general resistance of a
heat exchanger to the flow of heat, and usually it must be built up from
analyses of component resistances. In particular, we must know how to
predict h and how to evaluate the conductive resistance of bodies more
complicated than plane passive walls. The evaluation of h is a matter
that must be deferred to Chapter 6 and 7. For the present, h values must
be considered to be given information in any problem.

The heat conduction component of most heat exchanger problems is
more complex than the simple planar analyses done in Chapter 1. To
do such analyses, we must next derive the heat conduction equation and
learn to solve it.

Consider the general temperature distribution in a three-dimensional
body as depicted in Fig. 2.1. For some reason (heating from one side,
in this case), there is a space- and time-dependent temperature field in
the body. This field T = T(x,y, z, t) or T(�r , t), defines instantaneous
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Figure 2.1 A three-dimensional, transient temperature field.

isothermal surfaces, T1, T2, and so on.

We next consider a very important vector associated with the scalar,
T . The vector that has both the magnitude and direction of the maximum
increase of temperature at each point is called the temperature gradient,
∇T :

∇T ≡ �i ∂T
∂x

+ �j ∂T
∂y

+ �k ∂T
∂z

(2.1)

Fourier’s law

“Experience”—that is, physical observation—suggests two things about
the heat flow that results from temperature nonuniformities in a body.
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These are:

�q
|�q| = −

∇T
|∇T |

{
This says that �q and ∇T are exactly opposite one
another in direction

and

|�q| ∝ |∇T |
{

This says that the magnitude of the heat flux is di-
rectly proportional to the temperature gradient

Notice that the heat flux is now written as a quantity that has a specified
direction as well as a specified magnitude. Fourier’s law summarizes this
physical experience succinctly as

�q = −k∇T (2.2)

which resolves itself into three components:

qx = −k∂T∂x qy = −k∂T∂y qz = −k∂T∂z

The coefficient k—the thermal conductivity—also depends on position
and temperature in the most general case:

k = k[�r , T(�r , t)] (2.3)

Fortunately, most materials (though not all of them) are very nearly ho-
mogeneous. Thus we can usually write k = k(T). The assumption that
we really want to make is that k is constant. Whether or not that is legit-
imate must be determined in each case. As is apparent from Fig. 2.2 and
Fig. 2.3, k almost always varies with temperature. It always rises with T
in gases at low pressures, but it may rise or fall in metals or liquids. The
problem is that of assessing whether or not k is approximately constant
in the range of interest. We could safely take k to be a constant for iron
between 0◦ and 40◦C (see Fig. 2.2), but we would incur error between
−100◦ and 800◦C.

It is easy to prove (Problem 2.1) that if k varies linearly with T , and
if heat transfer is plane and steady, then q = k∆T/L, with k evaluated
at the average temperature in the plane. If heat transfer is not planar
or if k is not simply A + BT , it can be much more difficult to specify a
single accurate effective value of k. If ∆T is not large, one can still make a
reasonably accurate approximation using a constant average value of k.



Figure 2.2 Variation of thermal conductivity of metallic solids
with temperature
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Figure 2.3 The temperature dependence of the thermal con-
ductivity of liquids and gases that are either saturated or at 1
atm pressure.
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Figure 2.4 Control volume in a
heat-flow field.

Now that we have revisited Fourier’s law in three dimensions, we see
that heat conduction is more complex than it appeared to be in Chapter 1.
We must now write the heat conduction equation in three dimensions.
We begin, as we did in Chapter 1, with the First Law statement, eqn. (1.3):

Q = dU
dt

(1.3)

This time we apply eqn. (1.3) to a three-dimensional control volume, as
shown in Fig. 2.4.1 The control volume is a finite region of a conducting
body, which we set aside for analysis. The surface is denoted as S and the
volume and the region as R; both are at rest. An element of the surface,
dS, is identified and two vectors are shown on dS: one is the unit normal
vector, �n (with |�n| = 1), and the other is the heat flux vector, �q = −k∇T ,
at that point on the surface.

We also allow the possibility that a volumetric heat release equal to
q̇(�r)W/m3 is distributed through the region. This might be the result of
chemical or nuclear reaction, of electrical resistance heating, of external
radiation into the region or of still other causes.

With reference to Fig. 2.4, we can write the heat conducted out of dS,
in watts, as

(−k∇T) · (�ndS) (2.4)

The heat generated (or consumed) within the region R must be added to
the total heat flow into S to get the overall rate of heat addition to R:

Q = −
∫
S
(−k∇T) · (�ndS)+

∫
R
q̇ dR (2.5)

1Figure 2.4 is the three-dimensional version of the control volume shown in Fig. 1.8.
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The rate of energy increase of the region R is

dU
dt

=
∫
R

(
ρc
∂T
∂t

)
dR (2.6)

where the derivative of T is in partial form because T is a function of
both �r and t.

Finally, we combine Q, as given by eqn. (2.5), and dU/dt, as given by
eqn. (2.6), into eqn. (1.3). After rearranging the terms, we obtain

∫
S
k∇T · �ndS =

∫
R

[
ρc
∂T
∂t
− q̇

]
dR (2.7)

To get the left-hand side into a convenient form, we introduce Gauss’s
theorem, which converts a surface integral into a volume integral. Gauss’s
theorem says that if �A is any continuous function of position, then

∫
S
�A · �ndS =

∫
R
∇ · �AdR (2.8)

Therefore, if we identify �A with (k∇T), eqn. (2.7) reduces to

∫
R

(
∇ · k∇T − ρc ∂T

∂t
+ q̇

)
dR = 0 (2.9)

Next, since the region R is arbitrary, the integrand must vanish identi-
cally.2 We therefore get the heat diffusion equation in three dimensions:

∇ · k∇T + q̇ = ρc ∂T
∂t

(2.10)

The limitations on this equation are:

• Incompressible medium. (This was implied when no expansion
work term was included.)

• No convection. (The medium cannot undergo any relative motion.
However, it can be a liquid or gas as long as it sits still.)

2Consider
∫
f(x)dx = 0. If f(x) were, say, sin x, then this could only be true

over intervals of x = 2π or multiples of it. For eqn. (2.9) to be true for any range of
integration one might choose, the terms in parentheses must be zero everywhere.
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If the variation of kwith T is small, k can be factored out of eqn. (2.10)
to get

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

This is a more complete version of the heat conduction equation [recall
eqn. (1.14)] and α is the thermal diffusivity which was discussed after
eqn. (1.14). The term∇2T ≡ ∇·∇T is called the Laplacian. It arises thus
in a Cartesian coordinate system:

∇ · k∇T � k∇ ·∇T = k
(
�i
∂
∂x

+ �j ∂
∂y

+ �k ∂
∂x

)
·
(
�i
∂T
∂x

+ �j ∂T
∂y

+ �k∂T
∂z

)

or

∇2T = ∂
2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2

(2.12)

The Laplacian can also be expressed in cylindrical or spherical coor-
dinates. The results are:

• Cylindrical:

∇2T ≡ 1
r
∂
∂r

(
r
∂T
∂r

)
+ 1
r2

∂2T
∂θ2

+ ∂
2T
∂z2

(2.13)

• Spherical:

∇2T ≡1
r
∂2(rT)
∂r2

+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14a)

or

≡ 1
r2

∂
∂r

(
r2 ∂T
∂r

)
+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14b)

where the coordinates are as described in Fig. 2.5.



Figure 2.5 Cylindrical and spherical coordinate schemes.
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2.2 Solutions of the heat diffusion equation

We are now in position to calculate the temperature distribution and/or
heat flux in bodies with the help of the heat diffusion equation. In every
case, we first calculate T(�r , t). Then, if we want the heat flux as well, we
differentiate T to get q from Fourier’s law.

The heat diffusion equation is a partial differential equation (p.d.e.)
and the task of solving it may seem difficult, but we can actually do a
lot with fairly elementary mathematical tools. For one thing, in one-
dimensional steady-state situations the heat diffusion equation becomes
an ordinary differential equation (o.d.e.); for another, the equation is lin-
ear and therefore not too formidable, in any case. Our procedure can be
laid out, step by step, with the help of the following example.

Example 2.1 Basic Method

A large, thin concrete slab of thickness L is “setting.” Setting is an
exothermic process that releases q̇ W/m3. The outside surfaces are
kept at the ambient temperature, so Tw = T∞. What is the maximum
internal temperature?

Solution.

Step 1. Pick the coordinate scheme that best fits the problem and iden-
tify the independent variables that determine T. In the example,
T will probably vary only along the thin dimension, which we will
call the x-direction. (We should want to know that the edges are
insulated and that L was much smaller than the width or height.
If they are, this assumption should be quite good.) Since the in-
terior temperature will reach its maximum value when the pro-
cess becomes steady, we write T = T(x only).

Step 2. Write the appropriate d.e., starting with one of the forms of
eqn. (2.11).

∂2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2︸ ︷︷ ︸

=0, since
T ≠ T(y or z)

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since
steady

Therefore, since T = T(x only), the equation reduces to the
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ordinary d.e.

d2T
dx2

= − q̇
k

Step 3. Obtain the general solution of the d.e. (This is usually the
easiest step.) We simply integrate the d.e. twice and get

T = − q̇
2k
x2 + C1x + C2

Step 4. Write the “side conditions” on the d.e.—the initial and bound-
ary conditions. This is always the hardest part for the beginning
students; it is the part that most seriously tests their physical
or “practical” understanding of problems.

Normally, we have to make two specifications of temperature
on each position coordinate and one on the time coordinate to
get rid of the constants of integration in the general solution.
(These matters are discussed at greater length in Chapter 4.)

In this case there are two boundary conditions:

T(x = 0) = Tw and T(x = L) = Tw

Very Important Warning: Never, never introduce inaccessible
information in a boundary or initial condition. Always stop and
ask yourself, “Would I have access to a numerical value of the
temperature (or other data) that I specify at a given position or
time?” If the answer is no, then your result will be useless.

Step 5. Substitute the general solution in the boundary and initial con-
ditions and solve for the constants. This process gets very com-
plicated in the transient and multidimensional cases. Fourier
series methods are typically needed to solve the problem. How-
ever, the steady one-dimensional problems are usually easy. In
the example, by evaluating at x = 0 and x = L, we get:

Tw = −0+ 0+ C2 so C2 = Tw

Tw = − q̇L
2

2k
+ C1L+ C2︸ ︷︷ ︸

=Tw

so C1 = q̇L
2k
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Figure 2.6 Temperature distribution in the setting concrete
slab Example 2.1.

Step 6. Put the calculated constants back in the general solution to get
the particular solution to the problem. In the example problem
we obtain:

T = − q̇
2k
x2 + q̇

2k
Lx + Tw

This should be put in neat dimensionless form:

T − Tw
q̇L2

/
k
= 1

2

[
x
L
−

(
x
L

)2
]

(2.15)

Step 7. Play with the solution—look it over—see what it has to tell you.
Make any checks you can think of to be sure it is correct. In this
case we plot eqn. (2.15) in Fig. 2.6. The resulting temperature
distribution is parabolic and, as we would expect, symmetrical.
It satisfies the boundary conditions at the wall and maximizes
in the center. By nondimensionalizing the result, we have suc-
ceeded in representing all situations with a simple curve. That
is highly desirable when the calculations are not simple, as they
are here. (Notice that T actually depends on five different things,
yet the solution is a single curve on a two-coordinate graph.)
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Finally, we check to see if the heat flux at the wall is correct:

qwall = −k
∂T
∂x

∣∣∣∣
x=0

= k
[
q̇
k
x − q̇L

2k

]
x=0

= − q̇L
2

Thus, half of the total energy generated in the slab comes out
of the front side, as we would expect. The solution appears to
be correct.

Step 8. If the temperature field is now correctly established, you can,
if you wish, calculate the heat flux at any point in the body by
substituting T(�r , t) back into Fourier’s law. We did this already,
in Step 7, to check our solution.

We shall run through additional examples in this section and the fol-
lowing one. In the process, we shall develop some important results for
future use.

Example 2.2 The Simple Slab

A slab shown in Fig. 2.7 is at a steady state with dissimilar temper-
atures on either side and no internal heat generation. We want the
temperature distribution and the heat flux through it.

Solution. These can be found quickly by following the steps set
down in Example 2.1:

Figure 2.7 Heat conduction in a slab (Example 2.2).
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Step 1. T = T(x) for steady x-direction heat flow

Step 2.
d2T
dx2

= 0, the steady 1-D heat equation with no q̇

Step 3. T = C1x + C2 is the general solution of that equation

Step 4. T(x = 0) = T1 and T(x = L) = T2 are the b.c.s

Step 5. T1 = 0+ C2, so C2 = T1; and T2 = C1L+ C2, so C1 = T2 − T1

L

Step 6. T = T1 + T2 − T1

L
x; or

T − T1

T2 − T1
= x
L

Step 7. We note that the solution satisfies the boundary conditions
and that the temperature profile is linear.

Step 8. q = −kdT
dx

= −k d
dx

(
T1 − T1 − T2

L
x
)

so that q = k∆T
L

This result, which is the simplest heat conduction solution, calls to
mind Ohm’s law. Thus, if we rearrange it:

Q = ∆T
L/kA

is like I = E
R

where L/kA assumes the role of a thermal resistance, to which we give
the symbol Rt . Rt has the dimensions of (K/W). Figure 2.8 shows how we
can represent heat flow through the slab with a diagram that is perfectly
analogous to an electric circuit.

2.3 Thermal resistance and the electrical analogy

Fourier’s, Fick’s, and Ohm’s laws

Fourier’s law has several extremely important analogies in other kinds of
physical behavior, of which the electrical analogy is only one. These anal-
ogous processes provide us with a good deal of guidance in the solution
of heat transfer problems And, conversely, heat conduction analyses can
often be adapted to describe those processes.
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Figure 2.8 Ohm’s law analogy to conduction through a slab.

Let us first consider Ohm’s law in three dimensions:

flux of electrical charge =
�I
A
≡ �J = −γ∇V (2.16)

�I amperes is the vectorial electrical current, A is an area normal to the
current vector, �J is the flux of current or current density, γ is the electrical
conductivity in cm/ohm·cm2, and V is the voltage.

To apply eqn. (2.16) to a one-dimensional current flow, as pictured in
Fig. 2.9, we write eqn. (2.16) as

J = −γdV
dx

= γ∆V
L
, (2.17)

but ∆V is the applied voltage, E, and the resistance of the wire is R ≡
L
/
γA. Then, since I = J A, eqn. (2.17) becomes

I = E
R

(2.18)

which is the familiar, but restrictive, one-dimensional statement of Ohm’s
law.

Fick’s law is another analogous relation. It states that during mass
diffusion, the flux, �j1, of a dilute component, 1, into a second fluid, 2, is
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Figure 2.9 The one-dimensional flow of
current.

proportional to the gradient of its mass concentration, m1. Thus

�j1 = −ρD12∇m1 (2.19)

where the constant D12 is the binary diffusion coefficient.

Example 2.3

Air fills a thin tube 1 m in length. There is a small water leak at one
end where the water vapor concentration builds to a mass fraction of
0.01. A desiccator maintains the concentration at zero on the other
side. What is the steady flux of water from one side to the other if
D12 is 2.84× 10−5 m2/s and ρ = 1.18 kg/m3?

Solution.

∣∣∣�jwater vapor

∣∣∣ = 1.18
kg
m3

(
2.84× 10−5 m2

s

)(
0.01 kg H2O/kg mixture

1 m

)

= 3.35× 10−7 kg

m2·s

Contact resistance

One place in which the usefulness of the electrical resistance analogy be-
comes immediately apparent is at the interface of two conducting media.
No two solid surfaces will ever form perfect thermal contact when they
are pressed together. Since some roughness is always present, a typical
plane of contact will always include tiny air gaps as shown in Fig. 2.10
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Figure 2.10 Heat transfer through the contact plane between
two solid surfaces.

(which is drawn with a highly exaggerated vertical scale). Heat transfer
follows two paths through such an interface. Conduction through points
of solid-to-solid contact is very effective, but conduction through the gas-
filled interstices, which have low thermal conductivity, can be very poor.
Thermal radiation across the gaps is also inefficient.

We treat the contact surface by placing an interfacial conductance, hc ,
in series with the conducting materials on either side. The coefficient hc
is similar to a heat transfer coefficient and has the same units, W/m2K. If
∆T is the temperature difference across an interface of area A, then Q =
Ahc∆T . It follows thatQ = ∆T/Rt for a contact resistance Rt = 1/(hcA)
in K/W.

The interfacial conductance, hc , depends on the following factors:

• The surface finish and cleanliness of the contacting solids.

• The materials that are in contact.

• The pressure with which the surfaces are forced together. This may
vary over the surface, for example, in the vicinity of a bolt.

• The substance (or lack of it) in the interstitial spaces. Conductive
shims or fillers can raise the interfacial conductance.

• The temperature at the contact plane.

The influence of contact pressure is usually a modest one up to around
10 atm in most metals. Beyond that, increasing plastic deformation of
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Table 2.1 Some typical interfacial conductances for normal
surface finishes and moderate contact pressures (about 1 to 10
atm). Air gaps not evacuated unless so indicated.

Situation hc (W/m2K)

Iron/aluminum (70 atm pressure) 45,000

Copper/copper 10,000− 25,000
Aluminum/aluminum 2,200− 12,000
Graphite/metals 3,000− 6,000
Ceramic/metals 1,500− 8,500
Stainless steel/stainless steel 2,000− 3,700
Ceramic/ceramic 500− 3,000
Stainless steel/stainless steel

(evacuated interstices)
200− 1,100

Aluminum/aluminum (low pressure
and evacuated interstices)

100− 400

the local contact points causes hc to increase more dramatically at high
pressure. Table 2.1 gives typical values of contact resistances which bear
out most of the preceding points. These values have been adapted from
[2.1, Chpt. 3] and [2.2]. Theories of contact resistance are discussed in
[2.3] and [2.4].

Example 2.4

Heat flows through two stainless steel slabs (k = 18 W/m·K) that are
pressed together. The slab area is A = 1 m2. How thick must the
slabs be for contact resistance to be negligible?

Solution. With reference to Fig. 2.11, we can write

Rtotal =
L
kA

+ 1
hcA

+ L
kA

= 1
A

(
L
18
+ 1
hc
+ L

18

)

Since hc is about 3,000 W/m2K,

2L
18

must be 	 1
3000

= 0.00033

Thus, Lmust be large compared to 18(0.00033)/2 = 0.003 m if contact
resistance is to be ignored. If L = 3 cm, the error is about 10%.
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Figure 2.11 Conduction through two
unit-area slabs with a contact resistance.

Resistances for cylinders and for convection

As we continue developing our method of solving one-dimensional heat
conduction problems, we find that other avenues of heat flow may also be
expressed as thermal resistances, and introduced into the solutions that
we obtain. We also find that, once the heat conduction equation has been
solved, the results themselves may be used as new thermal resistances.

Example 2.5 Radial Heat Conduction in a Tube

Find the temperature distribution and the heat flux for the long hollow
cylinder shown in Fig. 2.12.

Solution.

Step 1. T = T(r)

Step 2.

1
r
∂
∂r

(
r
∂T
∂r

)
+ 1
r2

∂2T
∂φ2

+ ∂
2T
∂z2︸ ︷︷ ︸

=0, since T ≠ T(φ, z)

+ q̇
k︸︷︷︸
=0

= 1
α
∂T
∂T︸ ︷︷ ︸

=0, since steady

Step 3. Integrate once: r
∂T
∂r

= C1; integrate again: T = C1 ln r + C2

Step 4. T(r = ri) = Ti and T(r = ro) = To
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Figure 2.12 Heat transfer through a cylinder with a fixed wall
temperature (Example 2.5).

Step 5.

Ti = C1 ln ri + C2

To = C1 ln ro + C2

�⇒



C1 = Ti − To

ln(ri/ro)
= − ∆T

ln(ro/ri)

C2 = Ti +
∆T

ln(ro/ri)
ln ri

Step 6. T = Ti −
∆T

ln(ro/ri)
(ln r − ln ri) or

T − Ti
To − Ti

= ln(r/ri)
ln(ro/ri)

(2.20)

Step 7. The solution is plotted in Fig. 2.12. We see that the temper-
ature profile is logarithmic and that it satisfies both boundary
conditions. Furthermore, it is instructive to see what happens
when the wall of the cylinder is very thin, or when ri/ro is close
to 1. In this case:

ln(r/ri) �
r
ri
− 1 = r − ri

ri
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and

ln(ro/ri) �
ro − ri
ri

Thus eqn. (2.20) becomes

T − Ti
To − Ti

= r − ri
ro − ri

which is a simple linear profile. This is the same solution that
we would get in a plane wall.

Step 8. At any station, r :

qradial = −k
∂T
∂r

= + l∆T
ln(ro/ri)

1
r

So the heat flux falls off inversely with radius. That is reason-
able, since the same heat flow must pass through an increasingly
large surface as the radius increases. Let us see if this is the case
for a cylinder of length l:

Q (W) = (2πrl)q = 2πkl∆T
ln(ro/ri)

≠ f(r) (2.21)

Finally, we again recognize Ohm’s law in this result and write
the thermal resistance for a cylinder:

Rtcyl =
ln(ro/ri)

2πlk

(
K
W

)
(2.22)

This can be compared with the resistance of a plane wall:

Rtwall =
L
kA

(
K
W

)

Both resistances are inversely proportional to k, but each re-
flects a different geometry.

In the preceding examples, the boundary conditions were all the same
—a temperature specified at an outer edge. Next let us suppose that the
temperature is specified in the environment away from a body, with a
heat transfer coefficient between the environment and the body.
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Figure 2.13 Heat transfer through a cylinder with a convective
boundary condition (Example 2.6).

Example 2.6 A Convective Boundary Condition

A convective heat transfer coefficient around the outside of the cylin-
der in Example 2.5 provides thermal resistance between the cylinder
and an environment at T = T∞, as shown in Fig. 2.13. Find the tem-
perature distribution and heat flux in this case.

Solution.

Step 1 through 3. These are the same as in Example 2.5.

Step 4. The first boundary condition is T(r = ri) = Ti. The second
boundary condition must be expressed as an energy balance at
the outer wall (recall Section 1.3).

qconvection = qconduction
at the wall

or

h(T − T∞)r=ro = −k
∂T
∂r

∣∣∣∣
r=ro

Step 5. From the first boundary condition we obtain Ti = C1 ln ri +
C2. It is easy to make mistakes when we substitute the general
solution into the second boundary condition, so we will do it in
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detail:

h
[
(C1 ln r + C2)− T∞

]
r=ro

= −k
[
∂
∂r
(C1 ln r + C2)

]
r=ro

(2.23)

A common error is to substitute T = To on the lefthand side
instead of substituting the entire general solution. That will do
no good, because To is not an accessible piece of information.
Equation (2.23) reduces to:

h(T∞ − C1 ln ro − C2) = kC1

ro

When we combine this with the result of the first boundary con-
dition to eliminate C2:

C1 = − Ti − T∞
k
/
(hro)+ ln(ro/ri)

= T∞ − Ti
1/Bi+ ln(ro/ri)

Then

C2 = Ti −
T∞ − Ti

1/Bi + ln(ro/ri)
ln ri

Step 6.

T = T∞ − Ti
1/Bi + ln(ro/ri)

ln(r/ri)+ Ti

This can be rearranged in fully dimensionless form:

T − Ti
T∞ − Ti

= ln(r/ri)
1/Bi + ln(ro/ri)

(2.24)

Step 7. Let us fix a value of ro/ri—say, 2—and plot eqn. (2.24) for
several values of the Biot number. The results are included
in Fig. 2.13. Some very important things show up in this plot.
When Bi 	 1, the solution reduces to the solution given in Ex-
ample 2.5. It is as though the convective resistance to heat flow
were not there. That is exactly what we anticipated in Section 1.3
for large Bi. When Bi � 1, the opposite is true: (T−Ti)

/
(T∞−Ti)
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Figure 2.14 Thermal circuit with two
resistances.

remains on the order of Bi, and internal conduction can be ne-
glected. How big is big and how small is small? We do not
really have to specify exactly. But in this case Bi < 0.1 signals
constancy of temperature inside the cylinder with about ±3%.
Bi > 20 means that we can neglect convection with about 5%
error.

Step 8. qradial = −k
∂T
∂r

= k Ti − T∞
1/Bi + ln(ro/ri)

1
r

This can be written in terms ofQ (W) = qradial (2πrl) for a cylin-
der of length l:

Q = Ti − T∞
1

h2πrol
+ ln(ro/ri)

2πkl

= Ti − T∞
Rtconv + Rtcond

(2.25)

Equation (2.25) is once again analogous to Ohm’s law. But this time
the denominator is the sum of two thermal resistances, as would be
the case in a series circuit. We accordingly present the analogous
electrical circuit in Fig. 2.14.

The presence of convection on the outside surface of the cylinder
causes a new thermal resistance of the form

Rtconv =
1

hA
(2.26)

where A is the surface area over which convection occurs.

Example 2.7 Critical Radius of Insulation

An interesting consequence of the preceding result can be brought out
with a specific example. Suppose that we insulate a 0.5 cm O.D. copper
steam line with 85% magnesia to prevent the steam from condensing
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Figure 2.15 Thermal circuit for an
insulated tube.

too rapidly. The steam is under pressure and stays at 150◦C. The
copper is thin and highly conductive—obviously a tiny resistance in
series with the convective and insulation resistances, as we see in
Fig. 2.15. The condensation of steam inside the tube also offers very
little resistance.3 But on the outside, a heat transfer coefficient of h
= 20 W/m2K offers fairly high resistance. It turns out that insulation
can actually improve heat transfer in this case.

The two significant resistances, for a cylinder of unit length (l =
1 m), are

Rtcond =
ln(ro/ri)

2πkl
= ln(ro/ri)

2π(0.074)
K/W

Rtconv =
1

2πroh
= 1

2π(20)ro
K/W

Figure 2.16 is a plot of these resistances and their sum. A very inter-
esting thing occurs here. Rtconv falls off rapidly when ro is increased,
because the outside area is increasing. Accordingly, the total resis-
tance passes through a minimum in this case. Will it always do so?
To find out, we differentiate eqn. (2.25), again setting l = 1 m:

dQ
dro

= (Ti − T∞)(
1

2πroh
+ ln(ro/ri)

2πk

)2

(
− 1

2πr2
o h

+ 1
2πkro

)
= 0

When we solve this for the value of ro = rcrit at which Q is maximum
and the total resistance is minimum, we obtain

Bi = 1 = hrcrit

k
(2.27)

In the present example, adding insulation will increase heat loss in-
3Condensation heat transfer is discussed in Chapter 8. It turns out thath is generally

enormous during condensation so that Rtcondensation is tiny.
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Figure 2.16 The critical radius of insulation (Example 2.7),
written for a cylinder of unit length (l = 1 m).

stead of reducing it, until rcrit = k
/
h = 0.0037 m or rcrit/ri = 1.48.

Indeed, insulation will not even start to do any good until ro/ri = 2.32
or ro = 0.0058 m. We call rcrit the critical radius of insulation.

There is an interesting catch here. For most cylinders, rcrit < ri and
the critical radius idiosyncrasy is of no concern. If our steam line had a 1
cm outside diameter, the critical radius difficulty would not have arisen.
When cooling smaller diameter cylinders, such as electrical wiring, the
critical radius must be considered, but one need not worry about it in
the design of most large process equipment.

Resistance for thermal radiation

We saw in Chapter 1 that the net radiation exchanged by two objects is
given by eqn. (1.34):

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
(1.34)

When T1 and T2 are close, we can approximate this equation using a
radiation heat transfer coefficient, hrad. Specifically, suppose that the
temperature difference, ∆T = T1 − T2, is small compared to the mean
temperature, Tm = (T1 + T2)

/
2. Then we can make the following expan-
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sion and approximation:

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
= A1F1–2σ(T 2

1 + T 2
2 )(T

2
1 − T 2

2 )

= A1F1–2σ (T 2
1 + T 2

2 )︸ ︷︷ ︸
= 2T2

m + (∆T)2/2

(T1 + T2)︸ ︷︷ ︸
=2Tm

(T1 − T2)︸ ︷︷ ︸
=∆T

� A1

(
4σT 3

mF1–2

)
︸ ︷︷ ︸

≡hrad

∆T (2.28)

where the last step assumes that (∆T)2/2 � 2T 2
m or (∆T/Tm)2/4 � 1.

Thus, we have identified the radiation heat transfer coefficient

Qnet = A1hrad∆T

hrad = 4σT 3
mF1–2


 for

(
∆T

/
Tm

)2 /
4 � 1 (2.29)

This leads us immediately to the introduction of a radiation thermal re-
sistance, analogous to that for convection:

Rtrad =
1

A1hrad
(2.30)

For the special case of a small object (1) in a much larger environment
(2), the transfer factor is given by eqn. (1.35) as F1–2 = ε1, so that

hrad = 4σT 3
mε1 (2.31)

If the small object is black, its emittance is ε1 = 1 and hrad is maximized.
For a black object radiating near room temperature, say Tm = 300 K,

hrad = 4(5.67× 10−8)(300)3 � 6 W/m2K

This value is of approximately the same size as h for natural convection
into a gas at such temperatures. Thus, the heat transfer by thermal radi-
ation and natural convection into gases are similar. Both effects must be
taken into account. In forced convection in gases, on the other hand, h
might well be larger than hrad by an order of magnitude or more, so that
thermal radiation can be neglected.
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Example 2.8

An electrical resistor dissipating 0.1 W has been mounted well away
from other components in an electronical cabinet. It is cylindrical
with a 3.6 mm O.D. and a length of 10 mm. If the air in the cabinet
is at 35◦C and at rest, and the resistor has h = 13 W/m2K for natural
convection and ε = 0.9, what is the resistor’s temperature? Assume
that the electrical leads are configured so that little heat is conducted
into them.

Solution. The resistor may be treated as a small object in a large
isothermal environment. To compute hrad, let us estimate the resis-
tor’s temperature as 50◦C. Then

Tm = (35+ 50)/2 � 43◦C = 316 K

so

hrad = 4σT 3
mε = 4(5.67× 10−8)(316)3(0.9) = 6.44 W/m2K

Heat is lost by natural convection and thermal radiation acting in
parallel. To find the equivalent thermal resistance, we combine the
two parallel resistances as follows:

1
Rtequiv

= 1
Rtrad

+ 1
Rtconv

= Ahrad +Ah = A
(
hrad + h

)
Thus,

Requiv = 1

A
(
hrad + h

)
A calculation shows A = 133 mm2 = 1.33× 10−4 m2 for the resistor
surface. Thus, the equivalent thermal resistance is

Rtequiv =
1

(1.33× 10−4)(13+ 6.44)
= 386.8 K/W

Since

Q = Tresistor − Tair

Rtequiv

We find

Tresistor = Tair +Q · Rtequiv = 35+ (0.1)(386.8) = 73.68 ◦C
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Tresistor

Qconv Qrad

Qconv

Qrad

Tresistor Tair

Rtconv
= 1

– 
hA

Rtrad
= 1

h
rad

A

Figure 2.17 An electrical resistor cooled
by convection and radiation.

We guessed a resistor temperature of 50◦C in finding hrad. Re-
computing with this higher temperature, we have Tm = 327 K and
hrad = 7.17 W/m2K. If we repeat the rest of the calculation, we get a
new value Tresistor = 72.3◦C. Further iteration is not needed.

Since the use of hrad is an approximation, we should check its
applicability:

1
4

(
∆T
Tm

)2

= 1
4

(
72.3− 35.0

327

)2

= 0.00325 � 1

In this case, the approximation is a very good one.

Example 2.9

Suppose that power to the resistor in Example 2.8 is turned off. How
long does it take to cool? The resistor has k � 10 W/m·K, ρ �
2000 kg/m3, and cp � 700 J/kg·K.

Solution. The lumped capacity model, eqn. (1.22), may be appli-
cable. To find out, we check the resistor’s Biot number, noting that
the parallel convection and radiation processes have an effective heat
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transfer coefficient heff = h+ hrad = 18.44 W/m2K. Then,

Bi = heffro
k

= (18.44)(0.0036/2)
10

= 0.0033 � 1

so eqn. (1.22) can be used to describe the cooling process. The time
constant is

T = ρcpV
heffA

= (2000)(700)π(0.010)(0.0036)2/4
(18.44)(1.33× 10−4)

= 58.1 s

From eqn. (1.22) with T0 = 72.3◦C

Tresistor = 35.0+ (72.3− 35.0)e−t/58.1 ◦C

Ninety-five percent of the total temperature drop has occured when
t = 3T = 174 s.

2.4 Overall heat transfer coefficient, U
Definition

We often want to transfer heat through composite resistances, as shown
in Fig. 2.18. It is very convenient to have a number, U , that works like
this4:

Q = UA∆T (2.32)

This number, called the overall heat transfer coefficient, is defined largely
by the system, and in many cases it proves to be insensitive to the oper-
ating conditions of the system. In Example 2.6, for example, we can use
the value Q given by eqn. (2.25) to get

U = Q(W)[
2πrol (m2)

]
∆T (◦C)

= 1
1

h
+ ro ln(ro/ri)

k

(W/m2K) (2.33)

We have based U on the outside area, Ao = 2πrol, in this case. We might
instead have based it on inside area, Ai = 2πril, and obtained

U = 1
ri
hro

+ ri ln(ro/ri)
k

(2.34)

4This U must not be confused with internal energy. The two terms should always
be distinct in context.
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Figure 2.18 A thermal circuit with many
resistances.

It is therefore important to remember which area an overall heat trans-
fer coefficient is based on. It is particularly important that A and U be
consistent when we write Q = UA∆T .

Example 2.10

Estimate the overall heat transfer coefficient for the tea kettle shown
in Fig. 2.19. Note that the flame convects heat to the thin aluminum.
The heat is then conducted through the aluminum and finally con-
vected by boiling into the water.

Solution. We need not worry about deciding which area to base A
on because the area normal to the heat flux vector does not change.
We simply write the heat flow

Q = ∆T∑
Rt
= Tflame − Tboiling water

1

hA
+ L
kAlA

+ 1

hbA

and apply the definition of U

U = Q
A∆T

= 1
1

h
+ L
kAl

+ 1

hb

Let us see what typical numbers would look like in this example: h
might be around 200 W/m2K; L

/
kAl might be 0.001 m/(160 W/m·K)

or 1/160,000 W/m2K; and hb is quite large— perhaps about 5000
W/m2K. Thus:

U � 1
1

200
+ 1

160,000
+ 1

5000

= 192.1 W/m2K
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Figure 2.19 Heat transfer through the bottom of a tea kettle.

It is clear that the first resistance is dominant, as is shown in Fig. 2.19.
Notice that in such cases

UA �→ 1/Rtdominant (2.35)

where A is any area (inside or outside) in the thermal circuit.

Experiment 2.1

Boil water in a paper cup over an open flame and explain why you can
do so. [Recall eqn. (2.35) and see Problem 2.12.]

Example 2.11

A wall consists of alternating layers of pine and sawdust, as shown
in Fig. 2.20). The sheathes on the outside have negligible resistance
and h is known on the sides. Compute Q and U for the wall.

Solution. So long as the wood and the sawdust do not differ dramat-
ically from one another in thermal conductivity, we can approximate
the wall as a parallel resistance circuit, as shown in the figure.5 The

5For this approximation to be exact, the resistances must be equal. If they differ
radically, the problem must be treated as two-dimensional.
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Figure 2.20 Heat transfer through a composite wall.

total thermal resistance of the circuit is

Rttotal = Rtconv +
1(

1
Rtpine

+ 1
Rtsawdust

)+ Rtconv

Thus

Q = ∆T
Rttotal

= T∞1 − T∞r
1

hA
+ 1(

kpAp
L

+ ksAs
L

)+ 1

hA

and

U = Q
A∆T

= 1

2

h
+ 1(

kp
L
Ap
A
+ ks
L
As
A

)

The approach illustrated in this example is very widely used in calcu-
latingU values for the walls and roofs houses and buildings. The thermal
resistances of each structural element — insulation, studs, siding, doors,
windows, etc. — are combined to calculate U or Rttotal , which is then used
together with weather data to estimate heating and cooling loads [2.5].
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Table 2.2 Typical ranges or magnitudes of U

Heat Exchange Configuration U (W/m2K)

Walls and roofs dwellings with a 24 km/h
outdoor wind:
• Insulated roofs 0.3−2
• Finished masonry walls 0.5−6
• Frame walls 0.3−5
• Uninsulated roofs 1.2−4

Single-pane windows ∼ 6†

Air to heavy tars and oils As low as 45
Air to low-viscosity liquids As high as 600
Air to various gases 60−550
Steam or water to oil 60−340
Liquids in coils immersed in liquids 110−2,000
Feedwater heaters 110−8,500
Air condensers 350−780
Steam-jacketed, agitated vessels 500−1,900
Shell-and-tube ammonia condensers 800−1,400
Steam condensers with 25◦C water 1,500−5,000
Condensing steam to high-pressure

boiling water
1,500−10,000

† Main heat loss is by infiltration.

Typical values of U

In a fairly general use of the word, a heat exchanger is anything that
lies between two fluid masses at different temperatures. In this sense a
heat exchanger might be designed either to impede or to enhance heat
exchange. Consider some typical values of U shown in Table 2.2, which
were assembled from a variety of technical sources. If the exchanger
is intended to improve heat exchange, U will generally be much greater
than 40 W/m2K. If it is intended to impede heat flow, it will be less than
10 W/m2K—anywhere down to almost perfect insulation. You should
have some numerical concept of relative values of U , so we recommend
that you scrutinize the numbers in Table 2.2. Some things worth bearing
in mind are:

• The fluids with low thermal conductivities, such as tars, oils, or any
of the gases, usually yield low values of h. When such fluid flows
on one side of an exchanger, U will generally be pulled down.
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• Condensing and boiling are very effective heat transfer processes.
They greatly improve U but they cannot override one very small
value of h on the other side of the exchange. (Recall Example 2.10.)

In fact:

• For a high U , all resistances in the exchanger must be low.

• The highly conducting liquids, such as water and liquid metals, give
high values of h and U .

Fouling resistance

Figure 2.21 shows one of the simplest forms of a heat exchanger—a pipe.
The inside is new and clean on the left, but on the right it has built up a
layer of scale. In conventional freshwater preheaters, for example, this
scale is typically MgSO4 (magnesium sulfate) or CaSO4 (calcium sulfate)
which precipitates onto the pipe wall after a time. To account for the re-
sistance offered by these buildups, we must include an additional, highly
empirical resistance when we calculate U . Thus, for the pipe shown in
Fig. 2.21,

U
∣∣∣older pipe

based on Ai
= 1

1

hi
+ ri ln(ro/rp)

kinsul
+ ri ln(rp/ri)

kpipe
+ ri
roho

+ Rf

Figure 2.21 The fouling of a pipe.
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Table 2.3 Some typical fouling resistances for a unit area.

Fluid and Situation
Fouling Resistance
Rf (m2K/W)

Distilled water 0.0001
Seawater 0.0001− 0.0004
Treated boiler feedwater 0.0001− 0.0002
Clean river or lake water 0.0002− 0.0006
About the worst waters used in heat

exchangers
< 0.0020

No. 6 fuel oil 0.0001
Transformer or lubricating oil 0.0002
Most industrial liquids 0.0002
Most refinery liquids 0.0002− 0.0009
Steam, non-oil-bearing 0.0001
Steam, oil-bearing (e.g., turbine

exhaust)
0.0003

Most stable gases 0.0002− 0.0004
Flue gases 0.0010− 0.0020
Refrigerant vapors (oil-bearing) 0.0040

where Rf is a fouling resistance for a unit area of pipe (in m2K/W). And
clearly

Rf ≡
1
Uold

− 1
Unew

(2.36)

Some typical values of Rf are given in Table 2.3. These values have
been adapted from [2.6] and [2.7]. Notice that fouling has the effect of
adding a resistance in series on the order of 10−4 m2K/W. It is rather like
another heat transfer coefficient, hf , on the order of 10,000 W/m2K in
series with the other resistances in the exchanger.

The tabulated values of Rf are given to only one significant figure be-
cause they are very approximate. Clearly, exact values would have to be
referred to specific heat exchanger configurations, to particular fluids, to
fluid velocities, to operating temperatures, and to age [2.8, 2.9]. The re-
sistance generally drops with increased velocity and increases with tem-
perature and age. The values given in the table are based on reasonable
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maintenance and the use of conventional shell-and-tube heat exchangers.
With misuse, a given heat exchanger can yield much higher values of Rf .

Notice too, that if U � 1,000 W/m2K, fouling will be unimportant
because it will introduce a negligibly small resistance in series. Thus,
in a water-to-water heat exchanger, for which U is on the order of 2000
W/m2K, fouling might be important; but in a finned-tube heat exchanger
with hot gas in the tubes and cold gas passing across the fins on them, U
might be around 200 W/m2K, and fouling will be usually be insignificant.

Example 2.12

You have unpainted aluminum siding on your house and the engineer
has based a heat loss calculation on U = 5 W/m2K. You discover that
air pollution levels are such that Rf is 0.0005 m2K/W on the siding.
Should the engineer redesign the siding?

Solution. From eqn. (2.36) we get

1
Ucorrected

= 1
Uuncorrected

+ Rf = 0.2000+ 0.0005 m2K/W

Therefore, fouling is entirely irrelevant to domestic heat loads.

Example 2.13

Since the engineer did not fail you in the preceding calculation, you
entrust him with the installation of a heat exchanger at your plant.
He installs a water-cooled steam condenser with U = 4000 W/m2K.
You discover that he used water-side fouling resistance for distilled
water but that the water flowing in the tubes is not clear at all. How
did he do this time?

Solution. Equation (2.36) and Table 2.3 give

1
Ucorrected

= 1
4000

+ (0.0006 to 0.0020)

= 0.00085 to 0.00225 m2K/W

Thus, U is reduced from 4,000 to between 444 and 1,176 W/m2K.
Fouling is crucial in this case, and the engineer was in serious error.
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2.5 Summary

Four things have been done in this chapter:

• The heat diffusion equation has been established. A method has
been established for solving it in simple problems, and some im-
portant results have been presented. (We say much more about
solving the heat diffusion equation in Part II of this book.)

• We have explored the electric analogy to steady heat flow, paying
special attention to the concept of thermal resistance. We exploited
the analogy to solve heat transfer problems in the same way we
solve electrical circuit problems.

• The overall heat transfer coefficient has been defined, and we have
seen how to build it up out of component resistances.

• Some practical problems encountered in the evaluation of overall
heat transfer coefficients have been discussed.

Three very important things have not been considered in Chapter 2:

• In all evaluations of U that involve values of h, we have taken these
values as given information. In any real situation, we must deter-
mine correct values of h for the specific situation. Part III deals with
such determinations.

• When fluids flow through heat exchangers, they give up or gain
energy. Thus, the driving temperature difference varies through
the exchanger. (Problem 2.14 asks you to consider this difficulty
in its simplest form.) Accordingly, the design of an exchanger is
complicated. We deal with this problem in Chapter 3.

• The heat transfer coefficients themselves vary with position inside
many types of heat exchangers, causingU to be position-dependent.

Problems

2.1 Prove that if k varies linearly with T in a slab, and if heat trans-
fer is one-dimensional and steady, then q may be evaluated
precisely using k evaluated at the mean temperature in the
slab.
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2.2 Invent a numerical method for calculating the steady heat flux
through a plane wall when k(T) is an arbitrary function. Use
the method to predict q in an iron slab 1 cm thick if the tem-
perature varies from −100◦C on the left to 400◦C on the right.
How far would you have erred if you had taken kaverage =
(kleft + kright)/2?

2.3 The steady heat flux at one side of a slab is a known value qo.
The thermal conductivity varies with temperature in the slab,
and the variation can be expressed with a power series as

k =
i=n∑
i=0

AiT i

(a) Start with eqn. (2.10) and derive an equation that relates
T to position in the slab, x. (b) Calculate the heat flux at any
position in the wall from this expression using Fourier’s law.
Is the resulting q a function of x?

2.4 Combine Fick’s law with the principle of conservation of mass
(of the dilute species) in such a way as to eliminate j1, and
obtain a second-order differential equation inm1. Discuss the
importance and the use of the result.

2.5 Solve for the temperature distribution in a thick-walled pipe
if the bulk interior temperature and the exterior air tempera-
ture, T∞i , and T∞o , are known. The interior and the exterior
heat transfer coefficients are hi and ho, respectively. Follow
the method in Example 2.1 and put your result in the dimen-
sionless form:

T − T∞i
T∞i − T∞o

= fn (Bii,Bio, r/ri, ro/ri)

2.6 Put the boundary conditions from Problem 2.5 into dimension-
less form so that the Biot numbers appear in them. Let the Biot
numbers approach infinity. This should get you back to the
boundary conditions for Example 2.5. Therefore, the solution
that you obtain in Problem 2.5 should reduce to the solution of
Example 2.5 when the Biot numbers approach infinity. Show
that this is the case.
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Figure 2.22 Configuration for
Problem 2.8.

2.7 Write an accurate explanation of the idea of critical radius of
insulation that your kid brother or sister, who is still in grade
school, could understand. (If you do not have an available kid,
borrow one to see if your explanation really works.)

2.8 The slab shown in Fig. 2.22 is embedded on five sides in insu-
lating materials. The sixth side is exposed to an ambient tem-
perature through a heat transfer coefficient. Heat is generated
in the slab at the rate of 1.0 kW/m3 The thermal conductivity
of the slab is 0.2 W/m·K. (a) Solve for the temperature distri-
bution in the slab, noting any assumptions you must make. Be
careful to clearly identify the boundary conditions. (b) Evalu-
ate T at the front and back faces of the slab. (c) Show that your
solution gives the expected heat fluxes at the back and front
faces.

2.9 Consider the composite wall shown in Fig. 2.23. The concrete
and brick sections are of equal thickness. Determine T1, T2,
q, and the percentage of q that flows through the brick. To
do this, approximate the heat flow as one-dimensional. Draw
the thermal circuit for the wall and identify all four resistances
before you begin.

2.10 Compute Q and U for Example 2.11 if the wall is 0.3 m thick.
Five (each) pine and sawdust layers are 5 and 8 cm thick, re-
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spectively; and the heat transfer coefficients are 10 on the left
and 18 on the right. T∞1 = 30◦C and T∞r = 10◦C.

2.11 Compute U for the slab in Example 1.2.

2.12 Consider the tea kettle in Example 2.10. Suppose that the ket-
tle holds 1 kg of water (about 1 liter) and that the flame im-
pinges on 0.02 m2 of the bottom. (a) Find out how fast the wa-
ter temperature is increasing when it reaches its boiling point,
and calculate the temperature of the bottom of the kettle im-
mediately below the water if the gases from the flame are at
500◦C when they touch the bottom of the kettle. Assume that
the heat capacitance of the aluminum kettle is negligible. (b)
There is an old parlor trick in which one puts a paper cup of
water over an open flame and boils the water without burning
the paper (see Experiment 2.1). Explain this using an electrical
analogy. [(a): dT/dt = 0.37◦C/s.]

2.13 Copper plates 2 mm and 3 mm in thickness are processed
rather lightly together. Non-oil-bearing steam condenses un-
der pressure at Tsat = 200◦C on one side (h = 12,000 W/m2K)
and methanol boils under pressure at 130◦Con the other (h =
9000 W/m2K). Estimate U and q initially and after extended
service. List the relevant thermal resistances in order of de-
creasing importance and suggest whether or not any of them
can be ignored.

2.14 0.5 kg/s of air at 20◦C moves along a channel that is 1 m from
wall to wall. One wall of the channel is a heat exchange surface

Figure 2.23 Configuration for
Problem 2.9.
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(U = 300 W/m2K) with steam condensing at 120◦C on its back.
Determine (a) q at the entrance; (b) the rate of increase of tem-
perature of the fluid with x at the entrance; (c) the temperature
and heat flux 2 m downstream. [(c): T2m = 89.7◦C.]

2.15 An isothermal sphere 3 cm in diameter is kept at 80◦C in a
large clay region. The temperature of the clay far from the
sphere is kept at 10◦C. How much heat must be supplied to
the sphere to maintain its temperature if kclay = 1.28 W/m·K?
(Hint: You must solve the boundary value problem not in the
sphere but in the clay surrounding it.) [Q = 16.9 W.]

2.16 Is it possible to increase the heat transfer from a convectively
cooled isothermal sphere by adding insulation? Explain fully.

2.17 A wall consists of layers of metals and plastic with heat trans-
fer coefficients on either side. U is 255 W/m2K and the overall
temperature difference is 200◦C. One layer in the wall is stain-
less steel (k = 18 W/m·K) 3 mm thick. What is ∆T across the
stainless steel?

2.18 A 1% carbon-steel sphere 20 cm in diameter is kept at 250◦C on
the outside. It has an 8 cm diameter cavity containing boiling
water (hinside is very high) which is vented to the atmosphere.
What is Q through the shell?

2.19 A slab is insulated on one side and exposed to a surround-
ing temperature, T∞, through a heat transfer coefficient on the
other. There is nonuniform heat generation in the slab such
that q̇ =[A (W/m4)][x (m)], where x = 0 at the insulated wall
and x = L at the cooled wall. Derive the temperature distribu-
tion in the slab.

2.20 800 W/m3 of heat is generated within a 10 cm diameter nickel-
steel sphere for which k = 10 W/m·K. The environment is at
20◦C and there is a natural convection heat transfer coefficient
of 10 W/m2K around the outside of the sphere. What is its
center temperature at the steady state? [21.37◦C.]

2.21 An outside pipe is insulated and we measure its temperature
with a thermocouple. The pipe serves as an electrical resis-
tance heater, and q̇ is known from resistance and current mea-
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surements. The inside of the pipe is cooled by the flow of liq-
uid with a known bulk temperature. Evaluate the heat transfer
coefficient, h, in terms of known information. The pipe dimen-
sions and properties are known. [Hint: Remember that h is not
known and we cannot use a boundary condition of the third
kind at the inner wall to get T(r).]

2.22 Consider the hot water heater in Problem 1.11. Suppose that it
is insulated with 2 cm of a material for which k = 0.12 W/m·K,
and suppose that h = 16 W/m2K. Find (a) the time constant
T for the tank, neglecting the casing and insulation; (b) the
initial rate of cooling in ◦C/h; (c) the time required for the water
to cool from its initial temperature of 75◦C to 40◦C; (d) the
percentage of additional heat loss that would result if an outer
casing for the insulation were held on by eight steel rods, 1 cm
in diameter, between the inner and outer casings.

2.23 A slab of thickness L is subjected to a constant heat flux, q1, on
the left side. The right-hand side if cooled convectively by an
environment at T∞. (a) Develop a dimensionless equation for
the temperature of the slab. (b) Present dimensionless equa-
tion for the left- and right-hand wall temperatures as well. (c)
If the wall is firebrick, 10 cm thick, q1 is 400 W/m2, h = 20
W/m2K, and T∞ = 20◦C, compute the lefthand and righthand
temperatures.

2.24 Heat flows steadily through a stainless steel wall of thickness
Lss = 0.06 m, with a variable thermal conductivity of kss = 1.67 +
0.0143 T(◦C). It is partially insulated on the right side with glass
wool of thickness Lgw = 0.1 m, with a thermal conductivity
of kgw = 0.04. The temperature on the left-hand side of the
stainless stell is 400◦Cand on the right-hand side if the glass
wool is 100◦C. Evaluate q and Ti.

2.25 Rework Problem 1.29 with a heat transfer coefficient, ho = 40
W/m2K on the outside (i.e., on the cold side).

2.26 A scientist proposes an experiment for the space shuttle in
which he provides underwater illumination in a large tank of
water at 20◦C, using a 3 cm diameter spherical light bulb. What
is the maximum wattage of the bulb in zero gravity that will
not boil the water?
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2.27 A cylindrical shell is made of two layers– an inner one with
inner radius = ri and outer radius = rc and an outer one with
inner radius = rc and outer radius = ro. There is a contact
resistance, hc , between the shells. The materials are different,
and T1(r = ri) = Ti and T2(r = ro) = To. Derive an expression
for the inner temperature of the outer shell (T2c ).

2.28 A 1 kW commercial electric heating rod, 8 mm in diameter and
0.3 m long, is to be used in a highly corrosive gaseous environ-
ment. Therefore, it has to be provided with a cylindrical sheath
of fireclay. The gas flows by at 120◦C, and h is 230 W/m2K out-
side the sheath. The surface of the heating rod cannot exceed
800◦C. Set the maximum sheath thickness and the outer tem-
perature of the fireclay. [Hint: use heat flux and temperature
boundary conditions to get the temperature distribution. Then
use the additional convective boundary condition to obtain the
sheath thickness.]

2.29 A very small diameter, electrically insulated heating wire runs
down the center of a 7.5 mm diameter rod of type 304 stain-
less steel. The outside is cooled by natural convection (h = 6.7
W/m2K) in room air at 22◦C. If the wire releases 12 W/m, plot
Trod vs. radial position in the rod and give the outside temper-
ature of the rod. (Stop and consider carefully the boundary
conditions for this problem.)

2.30 A contact resistance experiment involves pressing two slabs of
different materials together, putting a known heat flux through
them, and measuring the outside temperatures of each slab.
Write the general expression for hc in terms of known quanti-
ties. Then calculate hc if the slabs are 2 cm thick copper and
1.5 cm thick aluminum, if q is 30,000 W/m2, and if the two
temperatures are 15◦C and 22.1◦C.

2.31 A student working heat transfer problems late at night needs
a cup of hot cocoa to stay awake. She puts milk in a pan on an
electric stove and seeks to heat it as rapidly as she can, without
burning the milk, by turning the stove on high and stirring the
milk continuously. Explain how this works using an analogous
electric circuit. Is it possible to bring the entire bulk of the milk
up to the burn temperature without burning part of it?



Problems 93

2.32 A small, spherical hot air balloon, 10 m in diameter, weighs
130 kg with a small gondola and one passenger. How much
fuel must be consumed (in kJ/h) if it is to hover at low altitude
in still 27◦C air? (houtside = 215 W/m2K, as the result of natural
convection.)

2.33 A slab of mild steel, 4 cm thick, is held at 1,000◦C on the back
side. The front side is approximately black and radiates to
black surroundings at 100◦C. What is the temperature of the
front side?

2.34 With reference to Fig. 2.3, develop an empirical equation for
k(T) for ammonia vapor. Then imagine a hot surface at Tw
parallel with a cool horizontal surface at a distanceH below it.
Develop equations for T(x) and q. Compute q if Tw = 350◦C,
Tcool = −5◦C, and H = 0.15 m.

2.35 A type 316 stainless steel pipe has a 6 cm inside diameter and
an 8 cm outside diameter with a 2 mm layer of 85% magnesia
insulation around it. Liquid at 112◦C flows inside, so hi = 346
W/m2K. The air around the pipe is at 20◦C, and h0 = 6 W/m2K.
Calculate U based on the inside area. Sketch the equivalent
electrical circuit, showing all known temperatures. Discuss
the results.

2.36 Two highly reflecting, horizontal plates are spaced 0.0005 m
apart. The upper one is kept at 1000◦C and the lower one at
200◦C. There is air in between. Neglect radiation and compute
the heat flux and the midpoint temperature in the air. Use a
power-law fit of the form k = a(T ◦C)b to represent the air data
in Table A.6.

2.37 A 0.1 m thick slab with k = 3.4 W/m·K is held at 100◦C on the
left side. The right side is cooled with air at 20◦C through a
heat transfer coefficient, and h = (5.1 W/m2(K)−5/4)(Twall −
T∞)1/4. Find q and Twall on the right.

2.38 Heat is generated at 54,000 W/m3 in a 0.16 m diameter sphere.
The sphere is cooled by natural convection with fluid at 0◦C,
and h = [2 + 6(Tsurface − T∞)1/4] W/m2K, ksphere = 9 W/m·K.
Find the surface temperature and center temperature of the
sphere.
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2.39 Layers of equal thickness of spruce and pitch pine are lami-
nated to make an insulating material. How should the lamina-
tions be oriented in a temperature gradient to achieve the best
effect?

2.40 The resistances of a thick cylindrical layer of insulation must
be increased. Will Q be lowered more by a small increase of
the outside diameter or by the same decrease in the inside
diameter?

2.41 You are in charge of energy conservation at your plant. There
is a 300 m run of 6 in. O.D. pipe carrying steam at 250◦C. The
company requires that any insulation must pay for itself in
one year. The thermal resistances are such that the surface of
the pipe will stay close to 250◦C in air at 25◦C when h = 10
W/m2K. Calculate the annual energy savings in kW·h that will
result if a 1 in layer of 85% magnesia insulation is added. If
energy is worth 6 cents per kW·h and insulation costs $75 per
installed linear meter, will the insulation pay for itself in one
year?

2.42 An exterior wall of a wood-frame house is typically composed,
from outside to inside, of a layer of wooden siding, a layer
glass fiber insulation, and a layer of gypsum wall board. Stan-
dard glass fiber insulation has a thickness of 3.5 inch and a
conductivity of 0.038 W/m·K. Gypsum wall board is normally
0.50 inch thick with a conductivity of 0.17 W/m·K, and the sid-
ing can be assumed to be 1.0 inch thick with a conductivity of
0.10 W/m·K.

a. Find the overall thermal resistance of such a wall (in K/W)
if it has an area of 400 ft2.

b. Convection and radiation processes on the inside and out-
side of the wall introduce more thermal resistance. As-
suming that the effective outside heat transfer coefficient
(accounting for both convection and radiation) is ho = 20
W/m2K and that for the inside is hi = 10 W/m2K, deter-
mine the total thermal resistance for heat loss from the
indoors to the outdoors. Also obtain an overall heat trans-
fer coefficient, U , in W/m2K.
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c. If the interior temperature is 20◦C and the outdoor tem-
perature is −5◦C, find the heat loss through the wall in
watts and the heat flux in W/m2.

d. Which of the five thermal resistances is dominant?

2.43 We found that the thermal resistance of a cylinder was Rtcyl =
(1/2πkl) ln(ro/ri). If ro = ri+δ, show that the thermal resis-
tance of a thin-walled cylinder (δ � ri) can be approximated
by that for a slab of thickness δ. Thus, Rtthin = δ/(kAi), where
Ai = 2πril is the inside surface area of the cylinder. How
much error is introduced by this approximation if δ/ri = 0.2?
[Hint: Use a Taylor series.]

2.44 A Gardon gage measures a radiation heat flux by detecting a
temperature difference [2.10]. The gage consists of a circular
constantan membrane of radius R, thickness t, and thermal
conductivity kct which is joined to a heavy copper heat sink
at its edges. When a radiant heat flux qrad is absorbed by the
membrane, heat flows from the interior of the membrane to
the copper heat sink at the edge, creating a radial tempera-
ture gradient. Copper leads are welded to the center of the
membrane and to the copper heat sink, making two copper-
constantan thermocouple junctions. These junctions measure
the temperature difference∆T between the center of the mem-
brane, T(r = 0), and the edge of the membrane, T(r = R).
The following approximations can be made:

• The membrane surface has been blackened so that it ab-
sorbs all radiation that falls on it

• The radiant heat flux is much larger than the heat lost
from the membrane by convection or re-radiation. Thus,
all absorbed radiant heat is removed from the membrane
by conduction to the copper heat sink, and other loses
can be ignored

• The gage operates in steady state

• The membrane is thin enough (t � R) that the tempera-
ture in it varies only with r , i.e., T = T(r) only.

Answer the following questions.
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a. For a fixed copper heat sink temperature, T(r = R), sketch
the shape of the temperature distribution in the mem-
brane, T(r), for two arbitrary heat radiant fluxes qrad1
and qrad2, where qrad1 > qrad2.

b. Find the relationship between the radiant heat flux, qrad,
and the temperature difference obtained from the ther-
mocouples, ∆T . Hint: Treat the absorbed radiant heat
flux as if it were a volumetric heat source of magnitude
qrad/t (W/m3).

2.45 You have a 12 oz. (375 mL) can of soda at room temperature
(70◦F) that you would like to cool to 45◦F before drinking. You
rest the can on its side on the plastic rods of the refrigerator
shelf. The can is 2.5 inches in diameter and 5 inches long.
The can’s emissivity is ε = 0.4 and the natural convection heat
transfer coefficient around it is a function of the temperature
difference between the can and the air: h = 2∆T 1/4 for ∆T in
kelvin.

Assume that thermal interactions with the refrigerator shelf
are negligible and that buoyancy currents inside the can will
keep the soda well mixed.

a. Estimate how long it will take to cool the can in the refrig-
erator compartment, which is at 40◦F.

b. Estimate how long it will take to cool the can in the freezer
compartment, which is at 5◦F.

c. Are your answers for parts 1 and 2 the same? If not, what
is the main reason that they are different?

References

[2.1] W. M. Rohsenow and J. P. Hartnett, editors. Handbook of Heat
Transfer. McGraw-Hill Book Company, New York, 1973.

[2.2] R. F. Wheeler. Thermal conductance of fuel element materials.
USAEC Rep. HW-60343, April 1959.

[2.3] M. M. Yovanovich. Recent developments in thermal contact, gap
and joint conductance theories and experiment. In Proc. Eight Intl.
Heat Transfer Conf., volume 1, pages 35–45. San Francisco, 1986.



References 97

[2.4] C. V. Madhusudana. Thermal Contact Conductance. Springer-
Verlag, New York, 1996.

[2.5] R. A. Parsons, editor. 1993 ASHRAE Handbook—Fundamentals.
American Society of Heating, Refrigerating, and Air-Conditioning
Engineers, Inc., Altanta, 1993.

[2.6] R.K. Shah and D.P. Sekulic. Heat exchangers. In W. M. Rohsenow,
J. P. Hartnett, and Y. I. Cho, editors, Handbook of Heat Transfer,
chapter 17. McGraw-Hill, New York, 3rd edition, 1998.

[2.7] Tubular Exchanger Manufacturer’s Association. Standards of
Tubular Exchanger Manufacturer’s Association. New York, 4th and
6th edition, 1959 and 1978.

[2.8] H. Müller-Steinhagen. Cooling-water fouling in heat exchangers.
In T.F. Irvine, Jr., J. P. Hartnett, Y. I. Cho, and G. A. Greene, editors,
Advances in Heat Transfer, volume 33, pages 415–496. Academic
Press, Inc., San Diego, 1999.

[2.9] W. J. Marner and J.W. Suitor. Fouling with convective heat transfer.
In S. Kakaç, R. K. Shah, and W. Aung, editors, Handbook of Single-
Phase Convective Heat Transfer, chapter 21. Wiley-Interscience,
New York, 1987.

[2.10] R. Gardon. An instrument for the direct measurement of intense
thermal radiation. Rev. Sci. Instr., 24(5):366–371, 1953.

Most of the ideas in Chapter 2 are also dealt with at various levels in
the general references following Chapter 1.





3. Heat exchanger design

The great object to be effected in the boilers of these engines is, to keep
a small quantity of water at an excessive temperature, by means of a
small amount of fuel kept in the most active state of combustion. . .No
contrivance can be less adapted for the attainment of this end than one or
two large tubes traversing the boiler, as in the earliest locomotive engines.

The Steam Engine Familiarly Explained and Illustrated,
Dionysus Lardner, 1836

3.1 Function and configuration of heat exchangers

The archetypical problem that any heat exchanger solves is that of get-
ting energy from one fluid mass to another, as we see in Fig. 3.1. A simple
or composite wall of some kind divides the two flows and provides an
element of thermal resistance between them. There is an exception to
this configuration in the direct-contact form of heat exchanger. Figure
3.2 shows one such arrangement in which steam is bubbled into water.
The steam condenses and the water is heated at the same time. In other
arrangements, immiscible fluids might contact each other or nonconden-
sible gases might be bubbled through liquids.

This discussion will be restricted to heat exchangers with a dividing
wall between the two fluids. There is an enormous variety of such config-
urations, but most commercial exchangers reduce to one of three basic
types. Figure 3.3 shows these types in schematic form. They are:

• The simple parallel or counterflow configuration. These arrange-
ments are versatile. Figure 3.4 shows how the counterflow arrange-
ment is bent around in a so-called Heliflow compact heat exchanger
configuration.

• The shell-and-tube configuration. Figure 3.5 shows the U-tubes of
a two-tube-pass, one-shell-pass exchanger being installed in the

99
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Figure 3.1 Heat exchange.

supporting baffles. The shell is yet to be added. Most of the re-
ally large heat exchangers are of the shell-and-tube form.

• The cross-flow configuration. Figure 3.6 shows typical cross-flow
units. In Fig. 3.6a and c, both flows are unmixed. Each flow must
stay in a prescribed path through the exchanger and is not allowed
to “mix” to the right or left. Figure 3.6b shows a typical plate-fin
cross-flow element. Here the flows are also unmixed.

Figure 3.7, taken from the standards of the Tubular Exchanger Manu-
facturer’s Association (TEMA) [3.1], shows four typical single-shell-pass
heat exchangers and establishes nomenclature for such units.

These pictures also show some of the complications that arise in
translating simple concepts into hardware. Figure 3.7 shows an exchan-
ger with a single tube pass. Although the shell flow is baffled so that it
crisscrosses the tubes, it still proceeds from the hot to cold (or cold to
hot) end of the shell. Therefore, it is like a simple parallel (or counter-
flow) unit. The kettle reboiler in Fig. 3.7d involves a divided shell-pass
flow configuration over two tube passes (from left to right and back to the
“channel header”). In this case, the isothermal shell flow could be flowing
in any direction—it makes no difference to the tube flow. Therefore, this
exchanger is also equivalent to either the simple parallel or counterflow
configuration.
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Figure 3.2 A direct-contact heat exchanger.

Notice that a salient feature of shell-and-tube exchangers is the pres-
ence of baffles. Baffles serve to direct the flow normal to the tubes. We
find in Part III that heat transfer from a tube to a flowing fluid is usually
better when the flow moves across the tube than when the flow moves
along the tube. This augmentation of heat transfer gives the complicated
shell-and-tube exchanger an advantage over the simpler single-pass par-
allel and counterflow exchangers.

However, baffles bring with them a variety of problems. The flow pat-
terns are very complicated and almost defy analysis. A good deal of the
shell-side fluid might unpredictably leak through the baffle holes in the
axial direction, or it might bypass the baffles near the wall. In certain
shell-flow configurations, unanticipated vibrational modes of the tubes
might be excited. Many of the cross-flow configurations also baffle the
fluid so as to move it across a tube bundle. The plate-and-fin configura-
tion (Fig. 3.6b) is such a cross-flow heat exchanger.

In all of these heat exchanger arrangements, it becomes clear that a
dramatic investment of human ingenuity is directed towards the task of
augmenting the heat transfer from one flow to another. The variations
are endless, as you will quickly see if you try Experiment 3.1.

Experiment 3.1

Carry a notebook with you for a day and mark down every heat ex-
changer you encounter in home, university, or automobile. Classify each
according to type and note any special augmentation features.

The analysis of heat exchangers first becomes complicated when we
account for the fact that two flow streams change one another’s temper-



Figure 3.3 The three basic types of heat exchangers.
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Figure 3.4 Heliflow compact counterflow heat exchanger.
(Photograph coutesy of Graham Manufacturing Co., Inc.,
Batavia, New York.)

ature. It is to the problem of predicting an appropriate mean tempera-
ture difference that we address ourselves in Section 3.2. Section 3.3 then
presents a strategy to use when this mean cannot be determined initially.

3.2 Evaluation of the mean temperature difference
in a heat exchanger

Logarithmic mean temperature difference (LMTD)

To begin with, we take U to be a constant value. This is fairly reasonable
in compact single-phase heat exchangers. In larger exchangers, particu-
larly in shell-and-tube configurations and large condensers, U is apt to
vary with position in the exchanger and/or with local temperature. But
in situations in which U is fairly constant, we can deal with the varying
temperatures of the fluid streams by writing the overall heat transfer in
terms of a mean temperature difference between the two fluid streams:

Q = UA∆Tmean (3.1)



Figure 3.5 Typical commercial one-shell-pass, two-tube-pass
heat exchangers.
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Figure 3.7 Four typical heat exchanger configurations (contin-
ued on next page). (Drawings courtesy of the Tubular Exchan-
ger Manufacturers’ Association.)
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Figure 3.7 Continued

Our problem then reduces to finding the appropriate mean temperature
difference that will make this equation true. Let us do this for the simple
parallel and counterflow configurations, as sketched in Fig. 3.8.

The temperature of both streams is plotted in Fig. 3.8 for both single-
pass arrangements—the parallel and counterflow configurations—as a
function of the length of travel (or area passed over). Notice that, in the
parallel-flow configuration, temperatures tend to change more rapidly
with position and less length is required. But the counterflow arrange-
ment achieves generally more complete heat exchange from one flow to
the other.

Figure 3.9 shows another variation on the single-pass configuration.
This is a condenser in which one stream flows through with its tempera-
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Figure 3.8 The temperature variation through single-pass
heat exchangers.

ture changing, but the other simply condenses at uniform temperature.
This arrangement has some special characteristics, which we point out
shortly.

The determination of ∆Tmean for such arrangements proceeds as fol-
lows: the differential heat transfer within either arrangement (see Fig. 3.8)
is

dQ = U∆T dA = −(ṁcp)h dTh = ±(ṁcp)c dTc (3.2)

where the subscripts h and c denote the hot and cold streams, respec-
tively; the upper and lower signs are for the parallel and counterflow
cases, respectively; and dT denotes a change from left to right in the
exchanger. We give symbols to the total heat capacities of the hot and
cold streams:

Ch ≡ (ṁcp)hW/K and Cc ≡ (ṁcp)c W/K (3.3)

Thus, for either heat exchanger, ∓ChdTh = CcdTc . This equation can
be integrated from the lefthand side, where Th = Thin and Tc = Tcin for
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Figure 3.9 The temperature distribution through a condenser.

parallel flow or Th = Thin and Tc = Tcout for counterflow, to some arbitrary
point inside the exchanger. The temperatures inside are thus:

parallel flow: Th = Thin −
Cc
Ch
(Tc − Tcin) = Thin −

Q
Ch

counterflow: Th = Thin −
Cc
Ch
(Tcout − Tc) = Thin −

Q
Ch

(3.4)

whereQ is the total heat transfer from the entrance to the point of inter-
est. Equations (3.4) can be solved for the local temperature differences:

∆Tparallel = Th − Tc = Thin −
(

1+ Cc
Ch

)
Tc + CcCh

Tcin

∆Tcounter = Th − Tc = Thin −
(

1− Cc
Ch

)
Tc − CcCh

Tcout

(3.5)
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Substitution of these in dQ = CcdTc = U∆T dA yields

UdA
Cc

∣∣∣∣
parallel

= dTc[
−

(
1+ Cc

Ch

)
Tc + CcCh

Tcin + Thin

]
UdA
Cc

∣∣∣∣
counter

= dTc[
−

(
1− Cc

Ch

)
Tc − CcCh

Tcout + Thin

] (3.6)

Equations (3.6) can be integrated across the exchanger:∫ A
0

U
Cc
dA =

∫ Tcout

Tc in

dTc
[−−−] (3.7)

If U and Cc can be treated as constant, this integration gives

parallel: ln



−
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Ch

)
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Ch
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−
(
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)
Tcin +

Cc
Ch
Tcin + Thin


 = −UA

Cc

(
1+ Cc

Ch

)

counter: ln



−

(
1− Cc

Ch

)
Tcout −

Cc
Ch
Tcout + Thin

−
(

1− Cc
Ch

)
Tcin −

Cc
Ch
Tcout + Thin


 = −UA

Cc

(
1− Cc

Ch

)

(3.8)

If U were variable, the integration leading from eqn. (3.7) to eqns. (3.8)
is where its variability would have to be considered. Any such variability
of U can complicate eqns. (3.8) terribly. Presuming that eqns. (3.8) are
valid, we can simplify them with the help of the definitions of ∆Ta and
∆Tb, given in Fig. 3.8:

parallel: ln
[(1+ Cc/Ch)(Tcin − Tcout)+∆Tb

∆Tb

]
= −UA

(
1
Cc
+ 1
Ch

)

counter: ln
∆Ta

(−1+ Cc/Ch)(Tcin − Tcout)+∆Ta
= −UA

(
1
Cc
− 1
Ch

)
(3.9)

Conservation of energy (Qc = Qh) requires that

Cc
Ch

= −Thout − Thin

Tcout − Tcin

(3.10)
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Then eqn. (3.9) and eqn. (3.10) give

parallel: ln




∆Ta−∆Tb︷ ︸︸ ︷
(Tcin − Tcout)+ (Thout − Thin)+∆Tb

∆Tb




= ln
(
∆Ta
∆Tb

)
= −UA

(
1
Cc
+ 1
Ch

)

counter: ln
(

∆Ta
∆Tb −∆Ta +∆Ta

)
= ln

(
∆Ta
∆Tb

)
= −UA

(
1
Cc
− 1
Ch

)

(3.11)

Finally, we write 1/Cc = (Tcout − Tcin)/Q and 1/Ch = (Thin − Thout)/Q on
the right-hand side of either of eqns. (3.11) and get for either parallel or
counterflow,

Q = UA
(
∆Ta −∆Tb

ln(∆Ta/∆Tb)

)
(3.12)

The appropriate∆Tmean for use in eqn. (3.11) is thus the logarithmic mean
temperature difference (LMTD):

∆Tmean = LMTD ≡ ∆Ta −∆Tb
ln

(
∆Ta
∆Tb

) (3.13)

Example 3.1

The idea of a logarithmic mean difference is not new to us. We have
already encountered it in Chapter 2. Suppose that we had asked,
“What mean radius of pipe would have allowed us to compute the
conduction through the wall of a pipe as though it were a slab of
thickness L = ro − ri?” (see Fig. 3.10). To answer this, we compare

Q = kA∆T
L
= 2πkl∆T

(
rmean

ro − ri

)

with eqn. (2.21):

Q = 2πkl∆T
1

ln(ro/ri)
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Figure 3.10 Calculation of the mean radius for heat conduc-
tion through a pipe.

It follows that

rmean = ro − ri
ln(ro/ri)

= logarithmic mean radius

Example 3.2

Suppose that the temperature difference on either end of a heat ex-
changer,∆Ta, and∆Tb, are equal. Clearly, the effective∆T must equal
∆Ta and ∆Tb in this case. Does the LMTD reduce to this value?

Solution. If we substitute ∆Ta = ∆Tb in eqn. (3.13), we get

LMTD = ∆Tb −∆Tb
ln(∆Tb/∆Tb)

= 0
0
= indeterminate

Therefore it is necessary to use L’Hospital’s rule:

limit
∆Ta→∆Tb

∆Ta −∆Tb
ln(∆Ta/∆Tb)

=

∂
∂∆Ta

(∆Ta −∆Tb)
∣∣∣∣
∆Ta=∆Tb

∂
∂∆Ta

ln
(
∆Ta
∆Tb

)∣∣∣∣∣
∆Ta=∆Tb

=
(

1
1/∆Ta

)∣∣∣∣∣
∆Ta=∆Tb

= ∆Ta = ∆Tb
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It follows that the LMTD reduces to the intuitively obvious result in
the limit.

Example 3.3

Water enters the tubes of a small single-pass heat exchanger at 20◦C
and leaves at 40◦C. On the shell side, 25 kg/min of steam condenses at
60◦C. Calculate the overall heat transfer coefficient and the required
flow rate of water if the area of the exchanger is 12 m2. (The latent
heat, hfg , is 2358.7 kJ/kg at 60◦C.)

Solution.

Q = ṁcondensate · hfg
∣∣∣

60◦C
= 25(2358.7)

60
= 983 kJ/s

and with reference to Fig. 3.9, we can calculate the LMTD without
naming the exchanger “parallel” or “counterflow”, since the conden-
sate temperature is constant.

LMTD = (60− 20)− (60− 40)

ln
(

60− 20
60− 40

) = 28.85 K

Then

U = Q
A(LMTD)

= 983(1000)
12(28.85)

= 2839 W/m2K

and

ṁH2O = Q
cp∆T

= 983,000
4174(20)

= 11.78 kg/s

Extended use of the LMTD

Limitations. There are two basic limitations on the use of an LMTD.
The first is that it is restricted to the single-pass parallel and counter-
flow configurations. This restriction can be overcome by adjusting the
LMTD for other configurations—a matter that we take up in the following
subsection.
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Figure 3.11 A typical case of a heat exchanger in which U
varies dramatically.

The second limitation—our use of a constant value of U— is more
serious. The value of U must be negligibly dependent on T to complete
the integration of eqn. (3.7). Even if U ≠ fn(T), the changing flow con-
figuration and the variation of temperature can still give rise to serious
variations of U within a given heat exchanger. Figure 3.11 shows a typ-
ical situation in which the variation of U within a heat exchanger might
be great. In this case, the mechanism of heat exchange on the water side
is completely altered when the liquid is finally boiled away. If U were
uniform in each portion of the heat exchanger, then we could treat it as
two different exchangers in series.

However, the more common difficulty that we face is that of design-
ing heat exchangers in which U varies continuously with position within
it. This problem is most severe in large industrial shell-and-tube config-
urations1 (see, e.g., Fig. 3.5 or Fig. 3.12) and less serious in compact heat
exchangers with less surface area. If U depends on the location, analyses
such as we have just completed [eqn. (3.1) to eqn. (3.13)] must be done
using an average U defined as

∫A
0 UdA/A.

1Actual heat exchangers can have areas well in excess of 10,000 m2. Large power
plant condensers and other large exchangers are often remarkably big pieces of equip-
ment.



Figure 3.12 The heat exchange surface for a steam genera-
tor. This PFT-type integral-furnace boiler, with a surface area
of 4560 m2, is not particularly large. About 88% of the area
is in the furnace tubing and 12% is in the boiler (Photograph
courtesy of Babcock and Wilcox Co.)
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LMTD correction factor, F. Suppose that we have a heat exchanger in
which U can reasonably be taken constant, but one that involves such
configurational complications as multiple passes and/or cross-flow. In
such cases it is necessary to rederive the appropriate mean temperature
difference in the same way as we derived the LMTD. Each configuration
must be analyzed separately and the results are generally more compli-
cated than eqn. (3.13).

This task was undertaken on an ad hoc basis during the early twen-
tieth century. In 1940, Bowman, Mueller and Nagle [3.2] organized such
calculations for the common range of heat exchanger configurations. In
each case they wrote

Q = UA(LMTD) · F



Ttout − Ttin
Tsin − Ttin︸ ︷︷ ︸

P

,
Tsin − Tsout

Ttout − Ttin︸ ︷︷ ︸
R


 (3.14)

where Tt and Ts are temperatures of tube and shell flows, respectively.
The factor F is an LMTD correction that varies from unity to zero, depend-
ing on conditions. The dimensionless groups P and R have the following
physical significance:

• P is the relative influence of the overall temperature difference
(Tsin − Ttin) on the tube flow temperature. It must obviously be
less than unity.

• R, according to eqn. (3.10), equals the heat capacity ratio Ct/Cs .

• If one flow remains at constant temperature (as, for example, in
Fig. 3.9), then either P or R will equal zero. In this case the simple
LMTD will be the correct ∆Tmean and F must go to unity.

The factor F is defined in such a way that the LMTD should always be
calculated for the equivalent counterflow single-pass exchanger with the
same hot and cold temperatures. This is explained in Fig. 3.13.

Bowman et al. [3.2] summarized all the equations for F , in various con-
figurations, that had been dervied by 1940. They presented them graphi-
cally in not-very-accurate figures that have been widely copied. The TEMA
[3.1] version of these curves has been recalculated for shell-and-tube heat
exchangers, and it is more accurate. We include two of these curves in
Fig. 3.14(a) and Fig. 3.14(b). TEMA presents many additional curves for
more complex shell-and-tube configurations. Figures 3.14(c) and 3.14(d)
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Figure 3.13 The basis of the LMTD in a multipass exchanger,
prior to correction.

are the Bowman et al. curves for the simplest cross-flow configurations.
Gardner and Taborek [3.3] redeveloped Fig. 3.14(c) over a different range
of parameters. They also showed how Fig. 3.14(a) and Fig. 3.14(b) must
be modified if the number of baffles in a tube-in-shell heat exchanger is
large enough to make it behave like a series of cross-flow exchangers.

We have simplified Figs. 3.14(a) through 3.14(d) by including curves
only for R � 1. Shamsundar [3.4] noted that for R > 1, one may obtain F
using a simple reciprocal rule. He showed that so long as a heat exchan-
ger has a uniform heat transfer coefficient and the fluid properties are
constant,

F(P,R) = F(PR,1/R) (3.15)

Thus, if R is greater than unity, one need only evaluate F using PR in
place of P and 1/R in place of R.

Example 3.4

5.795 kg/s of oil flows through the shell side of a two-shell pass, four-



a. F for a one-shell-pass, four, six-, . . . tube-pass exchanger.

b. F for a two-shell-pass, four or more tube-pass exchanger.

Figure 3.14 LMTD correction factors, F , for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
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c. F for a one-pass cross-flow exchanger with both passes unmixed.

d. F for a one-pass cross-flow exchanger with one pass mixed.

Figure 3.14 LMTD correction factors, F , for multipass shell-
and-tube heat exchangers and one-pass cross-flow exchangers.
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tube-pass oil cooler. The oil enters at 181◦C and leaves at 38◦C. Water
flows in the tubes, entering at 32◦C and leaving at 49◦C. In addition,
cpoil = 2282 J/kg·K and U = 416 W/m2K. Find how much area the
heat exchanger must have.

Solution.

LMTD = (Thin − Tcout)− (Thout − Tcin)

ln

(
Thin − Tcout

Thout − Tcin

)

= (181− 49)− (38− 32)

ln
(

181− 49
38− 32

) = 40.76 K

R = 181− 38
49− 32

= 8.412 P = 49− 32
181− 32

= 0.114

Since R > 1, we enter Fig. 3.14(b) using P = 8.412(0.114) = 0.959 and
R = 1/8.412 = 0.119 and obtain F = 0.92.2 It follows that:

Q = UAF(LMTD)
5.795(2282)(181− 38) = 416(A)(0.92)(40.76)

A = 121.2 m2

3.3 Heat exchanger effectiveness

We are now in a position to predict the performance of an exchanger once
we know its configuration and the imposed differences. Unfortunately,
we do not often know that much about a system before the design is
complete.

Often we begin with information such as is shown in Fig. 3.15. If
we sought to calculate Q in such a case, we would have to do so by
guessing an exit temperature such as to make Qh = Qc = Ch∆Th =
Cc∆Tc . Then we could calculate Q from UA(LMTD) or UAF (LMTD) and
check it againstQh. The answers would differ, so we would have to guess
new exit temperatures and try again.

Such problems can be greatly simplified with the help of the so-called
effectiveness-NTU method. This method was first developed in full detail

2Notice that, for a 1 shell-pass exchanger, these R and P lines do not quite intersect
[see Fig. 3.14(a)]. Therefore, one could not obtain these temperatures with any single-
shell exchanger.
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Figure 3.15 A design problem in which the LMTD cannot be
calculated a priori.

by Kays and London [3.5] in 1955, in a book titled Compact Heat Exchang-
ers. We should take particular note of the title. It is with compact heat
exchangers that the present method can reasonably be used, since the
overall heat transfer coefficient is far more likely to remain fairly uni-
form.

The heat exchanger effectiveness is defined as

ε ≡ Ch(Thin − Thout)
Cmin(Thin − Tcin)

= Cc(Tcout − Tcin)
Cmin(Thin − Tcin)

(3.16)

where Cmin is the smaller of Cc and Ch. The effectiveness can be inter-
preted as

ε = actual heat transferred
maximum heat that could possibly be

transferred from one stream to the other

It follows that

Q = εCmin(Thin − Tcin) (3.17)

A second definition that we will need was originally made by E.K.W.
Nusselt, whom we meet again in Part III. This is the number of transfer
units (NTU):

NTU ≡ UA
Cmin

(3.18)
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This dimensionless group can be viewed as a comparison of the heat
capacity of the heat exchanger, expressed in W/K, with the heat capacity
of the flow.

We can immediately reduce the parallel-flow result from eqn. (3.9) to
the following equation, based on these definitions:

−
(
Cmin

Cc
+ Cmin

Ch

)
NTU = ln

[
−

(
1+ Cc

Ch

)
ε
Cmin

Cc
+ 1

]
(3.19)

We solve this for ε and, regardless of whether Cmin is associated with the
hot or cold flow, obtain for the parallel single-pass heat exchanger:

ε ≡ 1− exp [−(1+ Cmin/Cmax)NTU]
1+ Cmin/Cmax

= fn
(
Cmin

Cmax
,NTU only

)
(3.20)

The corresponding expression for the counterflow case is

ε = 1− exp [−(1− Cmin/Cmax)NTU]
1− (Cmin/Cmax) exp[−(1− Cmin/Cmax)NTU]

(3.21)

Equations (3.20) and (3.21) are given in graphical form in Fig. 3.16.
Similar calculations give the effectiveness for the other heat exchanger
configurations (see [3.5] and Problem 3.38), and we include some of the
resulting effectiveness plots in Fig. 3.17. To see how the effectiveness
can conveniently be used to complete a design, consider the following
two examples.

Example 3.5

Consider the following parallel-flow heat exchanger specification:

cold flow enters at 40◦C: Cc = 20,000 W/K

hot flow enters at 150◦C: Ch = 10,000 W/K

A = 30 m2 U = 500 W/m2K.

Determine the heat transfer and the exit temperatures.

Solution. In this case we do not know the exit temperatures, so it
is not possible to calculate the LMTD. Instead, we can go either to the
parallel-flow effectiveness chart in Fig. 3.16 or to eqn. (3.20), using

NTU = UA
Cmin

= 500(30)
10,000

= 1.5

Cmin

Cmax
= 0.5
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Figure 3.16 The effectiveness of parallel and counterflow heat
exchangers. (Data provided by A.D. Krauss.)

and we obtain ε = 0.596. Now from eqn. (3.17), we find that

Q = ε Cmin(Thin − Tcin) = 0.596(10,000)(110)
= 655,600 W = 655.6 kW

Finally, from energy balances such as are expressed in eqn. (3.4), we
get

Thout = Thin −
Q
Ch

= 150− 655,600
10,000

= 84.44◦C

Tcout = Tcin +
Q
Cc

= 40+ 655,600
20,000

= 72.78◦C

Example 3.6

Suppose that we had the same kind of exchanger as we considered
in Example 3.5, but that the area remained unspecified as a design
variable. Then calculate the area that would bring the hot flow out at
90◦C.

Solution. Once the exit cold fluid temperature is known, the prob-
lem can be solved with equal ease by either the LMTD or the effective-



Figure 3.17 The effectiveness of some other heat exchanger
configurations. (Data provided by A.D. Krauss.)
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ness approach.

Tcout = Tcin +
Ch
Cc
(Thin − Thout) = 40+ 1

2
(150− 90) = 70◦C

Then, using the effectiveness method,

ε = Ch(Thin − Thout)
Cmin(Thin − Tcin)

= 10,000(150− 90)
10,000(150− 40)

= 0.5455

so from Fig. 3.16 we read NTU �1.15 = UA/Cmin. Thus

A = 10,000(1.15)
500

= 23.00 m2

We could also have calculated the LMTD:

LMTD = (150− 40)− (90− 70)
ln(110/20)

= 52.79 K

so from Q = UA(LMTD), we obtain

A = 10,000(150− 90)
500(52.79)

= 22.73 m2

The answers differ by 1%, which reflects graph reading inaccuracy.

When the temperature of either fluid in a heat exchanger is uniform,
the problem of analyzing heat transfer is greatly simplified. We have
already noted that no F -correction is needed to adjust the LMTD in this
case. The reason is that when only one fluid changes in temperature, the
configuration of the exchanger becomes irrelevant. Any such exchanger
is equivalent to a single fluid stream flowing through an isothermal pipe.3

Since all heat exchangers are equivalent in this case, it follows that
the equation for the effectiveness in any configuration must reduce to
the same common expression as Cmax approaches infinity. The volumet-
ric heat capacity rate might approach infinity because the flow rate or
specific heat is very large, or it might be infinite because the flow is ab-
sorbing or giving up latent heat (as in Fig. 3.9). The limiting effectiveness
expression can also be derived directly from energy-balance considera-
tions (see Problem 3.11), but we obtain it here by letting Cmax → ∞ in
either eqn. (3.20) or eqn. (3.21). The result is

lim
Cmax→∞

ε = 1− e−NTU (3.22)

3We make use of this notion in Section 7.4, when we analyze heat convection in pipes
and tubes.
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Eqn. (3.22) defines the curve for Cmin/Cmax = 0 in all six of the effective-
ness graphs in Fig. 3.16 and Fig. 3.17.

3.4 Heat exchanger design

The preceding sections provided means for designing heat exchangers
that generally work well in the design of smaller exchangers—typically,
the kind of compact cross-flow exchanger used in transportation equip-
ment. Larger shell-and-tube exchangers pose two kinds of difficulty in
relation to U . The first is the variation of U through the exchanger, which
we have already discussed. The second difficulty is that convective heat
transfer coefficients are very hard to predict for the complicated flows
that move through a baffled shell.

We shall achieve considerable success in using analysis to predict h’s
for various convective flows in Part III. The determination ofh in a baffled
shell remains a problem that cannot be solved analytically. Instead, it
is normally computed with the help of empirical correlations or with
the aid of large commercial computer programs that include relevant
experimental correlations. The problem of predicting h when the flow is
boiling or condensing is even more complicated. A great deal of research
is at present aimed at perfecting such empirical predictions.

Apart from predicting heat transfer, a host of additional considera-
tions must be addressed in designing heat exchangers. The primary ones
are the minimization of pumping power and the minimization of fixed
costs.

The pumping power calculation, which we do not treat here in any
detail, is based on the principles discussed in a first course on fluid me-
chanics. It generally takes the following form for each stream of fluid
through the heat exchanger:

pumping power =
(
ṁ

kg
s

)(
∆p
ρ

N/m2

kg/m3

)
= ṁ∆p

ρ

(
N·m

s

)

= ṁ∆p
ρ

(W)

(3.23)

where ṁ is the mass flow rate of the stream, ∆p the pressure drop of
the stream as it passes through the exchanger, and ρ the fluid density.

Determining the pressure drop can be relatively straightforward in a
single-pass pipe-in-tube heat exchanger or extremely difficulty in, say, a
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shell-and-tube exchanger. The pressure drop in a straight run of pipe,
for example, is given by

∆p = f
(
L
Dh

) ρu2
av

2
(3.24)

where L is the length of pipe, Dh is the hydraulic diameter, uav is the
mean velocity of the flow in the pipe, and f is the Darcy-Weisbach friction
factor (see Fig. 7.6).

Optimizing the design of an exchanger is not just a matter of making
∆p as small as possible. Often, heat exchange can be augmented by em-
ploying fins or roughening elements in an exchanger. (We discuss such
elements in Chapter 4; see, e.g., Fig. 4.6). Such augmentation will invari-
ably increase the pressure drop, but it can also reduce the fixed cost of
an exchanger by increasing U and reducing the required area. Further-
more, it can reduce the required flow rate of, say, coolant, by increasing
the effectiveness and thus balance the increase of ∆p in eqn. (3.23).

To better understand the course of the design process, faced with
such an array of trade-offs of advantages and penalties, we follow Ta-
borek’s [3.6] list of design considerations for a large shell-and-tube ex-
changer:

• Decide which fluid should flow on the shell side and which should
flow in the tubes. Normally, this decision will be made to minimize
the pumping cost. If, for example, water is being used to cool oil,
the more viscous oil would flow in the shell. Corrosion behavior,
fouling, and the problems of cleaning fouled tubes also weigh heav-
ily in this decision.

• Early in the process, the designer should assess the cost of the cal-
culation in comparison with:

(a) The converging accuracy of computation.

(b) The investment in the exchanger.

(c) The cost of miscalculation.

• Make a rough estimate of the size of the heat exchanger using, for
example, U values from Table 2.2 and/or anything else that might
be known from experience. This serves to circumscribe the sub-
sequent trial-and-error calculations; it will help to size flow rates
and to anticipate temperature variations; and it will help to avoid
subsequent errors.
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• Evaluate the heat transfer, pressure drop, and cost of various ex-
changer configurations that appear reasonable for the application.
This is usually done with large-scale computer programs that have
been developed and are constantly being improved as new research
is included in them.

The computer runs suggested by this procedure are normally very com-
plicated and might typically involve 200 successive redesigns, even when
relatively efficient procedures are used.

However, most students of heat transfer will not have to deal with
such designs. Many, if not most, will be called upon at one time or an-
other to design smaller exchangers in the range 0.1 to 10 m2. The heat
transfer calculation can usually be done effectively with the methods de-
scribed in this chapter. Some useful sources of guidance in the pressure
drop calculation are the Heat Exchanger Design Handbook [3.7], the data
in Idelchik’s collection [3.8], the TEMA design book [3.1], and some of the
other references at the end of this chapter.

In such a calculation, we start off with one fluid to heat and one to
cool. Perhaps we know the flow heat capacity rates (Cc and Ch), certain
temperatures, and/or the amount of heat that is to be transferred. The
problem can be annoyingly wide open, and nothing can be done until it is
somehow delimited. The normal starting point is the specification of an
exchanger configuration, and to make this choice one needs experience.
The descriptions in this chapter provide a kind of first level of experi-
ence. References [3.5, 3.7, 3.9, 3.10, 3.11, 3.12] provide a second level.
Manufacturer’s catalogues are an excellent source of more advanced in-
formation.

Once the exchanger configuration is set, U will be approximately set
and the area becomes the basic design variable. The design can then
proceed along the lines of Section 3.2 or 3.3. If it is possible to begin
with a complete specification of inlet and outlet temperatures,

Q︸︷︷︸
C∆T

= U︸︷︷︸
known

AF(LMTD)︸ ︷︷ ︸
calculable

Then A can be calculated and the design completed. Usually, a reevalu-
ation of U and some iteration of the calculation is needed.

More often, we begin without full knowledge of the outlet tempera-
tures. In such cases, we normally have to invent an appropriate trial-and-
error method to get the area and a more complicated sequence of trials if
we seek to optimize pressure drop and cost by varying the configuration
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as well. If the C ’s are design variables, the U will change significantly,
because h’s are generally velocity-dependent and more iteration will be
needed.

We conclude Part I of this book facing a variety of incomplete issues.
Most notably, we face a serious need to be able to determine convective
heat transfer coefficients. The prediction ofh depends on a knowledge of
heat conduction. We therefore turn, in Part II, to a much more thorough
study of heat conduction analysis than was undertaken in Chapter 2.
In addition to setting up the methodology ultimately needed to predict
h’s, Part II will also deal with many other issues that have great practical
importance in their own right.

Problems

3.1 Can you have a cross-flow exchanger in which both flows are
mixed? Discuss.

3.2 Find the appropriate mean radius, r , that will make
Q = kA(r)∆T/(ro−ri), valid for the one-dimensional heat con-
duction through a thick spherical shell, whereA(r) = 4πr2 (cf.
Example 3.1).

3.3 Rework Problem 2.14, using the methods of Chapter 3.

3.4 2.4 kg/s of a fluid have a specific heat of 0.81 kJ/kg·K enter a
counterflow heat exchanger at 0◦C and are heated to 400◦C by
2 kg/s of a fluid having a specific heat of 0.96 kJ/kg·K entering
the unit at 700◦C. Show that to heat the cooler fluid to 500◦C,
all other conditions remaining unchanged, would require the
surface area for a heat transfer to be increased by 87.5%.

3.5 A cross-flow heat exchanger with both fluids unmixed is used
to heat water (cp = 4.18 kJ/kg·K) from 40◦C to 80◦C, flowing at
the rate of 1.0 kg/s. What is the overall heat transfer coefficient
if hot engine oil (cp = 1.9 kJ/kg·K), flowing at the rate of 2.6
kg/s, enters at 100◦C? The heat transfer area is 20 m2. (Note
that you can use either an effectiveness or an LMTD method.
It would be wise to use both as a check.)

3.6 Saturated non-oil-bearing steam at 1 atm enters the shell pass
of a two-tube-pass shell condenser with thirty 20 ft tubes in
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each tube pass. They are made of schedule 160, ¾ in. steel
pipe (nominal diameter). A volume flow rate of 0.01 ft3/s of
water entering at 60◦F enters each tube. The condensing heat
transfer coefficient is 2000 Btu/h·ft2·◦F, and we calculate h =
1380 Btu/h·ft2·◦F for the water in the tubes. Estimate the exit
temperature of the water and mass rate of condensate [ṁc �
8393 lbm/h.]

3.7 Consider a counterflow heat exchanger that must cool 3000
kg/h of mercury from 150◦F to 128◦F. The coolant is 100 kg/h
of water, supplied at 70◦F. If U is 300 W/m2K, complete the
design by determining reasonable value for the area and the
exit-water temperature. [A = 0.147 m2.]

3.8 An automobile air-conditioner gives up 18 kW at 65 km/h if the
outside temperature is 35◦C. The refrigerant temperature is
constant at 65◦C under these conditions, and the air rises 6◦C
in temperature as it flows across the heat exchanger tubes. The
heat exchanger is of the finned-tube type shown in Fig. 3.6b,
withU � 200 W/m2K. IfU ∼ (air velocity)0.7 and the mass flow
rate increases directly with the velocity, plot the percentage
reduction of heat transfer in the condenser as a function of air
velocity between 15 and 65 km/h.

3.9 Derive eqn. (3.21).

3.10 Derive the infinite NTU limit of the effectiveness of parallel and
counterflow heat exchangers at several values of Cmin/Cmax.
Use common sense and the First Law of Thermodynamics, and
refer to eqn. (3.2) and eqn. (3.21) only to check your results.

3.11 Derive the equation ε = (NTU, Cmin/Cmax) for the heat exchan-
ger depicted in Fig. 3.9.

3.12 A single-pass heat exchanger condenses steam at 1 atm on
the shell side and heats water from 10◦C to 30◦C on the tube
side with U = 2500 W/m2K. The tubing is thin-walled, 5 cm in
diameter, and 2 m in length. (a) Your boss asks whether the
exchanger should be counterflow or parallel-flow. How do you
advise her? Evaluate: (b) the LMTD; (c) ṁH2O; (d) ε. [ε �0.222.]
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3.13 Air at 2 kg/s and 27◦C and a stream of water at 1.5 kg/s and
60◦C each enter a heat exchanger. Evaluate the exit tempera-
tures if A = 12 m2, U = 185 W/m2K, and:

a. The exchanger is parallel flow;

b. The exchanger is counterflow [Thout � 54.0◦C.];

c. The exchanger is cross-flow, one stream mixed;

d. The exchanger is cross-flow, neither stream mixed.
[Thout = 53.62◦C.]

3.14 Air at 0.25 kg/s and 0◦C enters a cross-flow heat exchanger.
It is to be warmed to 20◦C by 0.14 kg/s of air at 50◦C. The
streams are unmixed. As a first step in the design process,
plot U against A and identify the approximate range of area
for the exchanger.

3.15 A particular two shell-pass, four tube-pass heat exchanger uses
20 kg/s of river water at 10◦C on the shell side to cool 8 kg/s
of processed water from 80◦C to 25◦C on the tube side. At
what temperature will the coolant be returned to the river? If
U is 800 W/m2K, how large must the exchanger be?

3.16 A particular cross-flow process heat exchanger operates with
the fluid mixed on one side only. When it is new, U = 2000
W/m2K, Tcin = 25◦C, Tcout = 80◦C, Thin = 160◦C, and Thout =
70◦C. After 6 months of operation, the plant manager reports
that the hot fluid is only being cooled to 90◦C and that he is
suffering a 30% reduction in total heat transfer. What is the
fouling resistance after 6 months of use? (Assume no reduc-
tion of cold-side flow rate by fouling.)

3.17 Water at 15◦C is supplied to a one-shell-pass, two-tube-pass
heat exchanger to cool 10 kg/s of liquid ammonia from 120◦C
to 40◦C. You anticipate a U on the order of 1500 W/m2K when
the water flows in the tubes. If A is to be 90 m2, choose the
correct flow rate of water.

3.18 Suppose that the heat exchanger in Example 3.5 had been a two
shell-pass, four tube-pass exchanger with the hot fluid moving
in the tubes. (a) What would be the exit temperature in this
case? [Tcout = 75.09◦C.] (b) What would be the area if we wanted
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the hot fluid to leave at the same temperature that it does in
the example?

3.19 Plot the maximum tolerable fouling resistance as a function
of Unew for a counterflow exchanger, with given inlet temper-
atures, if a 30% reduction in U is the maximum that can be
tolerated.

3.20 Water at 0.8 kg/s enters the tubes of a two-shell-pass, four-
tube-pass heat exchanger at 17◦C and leaves at 37◦C. It cools
0.5 kg/s of air entering the shell at 250◦C with U = 432 W/m2K.
Determine: (a) the exit air temperature; (b) the area of the heat
exchanger; and (c) the exit temperature if, after some time,
the tubes become fouled with Rf = 0.0005 m2K/W. [(c) Tairout

= 140.5◦C.]

3.21 You must cool 78 kg/min of a 60%-by-mass mixture of glycerin
in water from 108◦C to 50◦C using cooling water available at
7◦C. Design a one-shell-pass, two-tube-pass heat exchanger if
U = 637 W/m2K. Explain any design decision you make and
report the area, TH2Oout , and any other relevant features.

3.22 A mixture of 40%-by-weight glycerin, 60% water, enters a smooth
0.113 m I.D. tube at 30◦C. The tube is kept at 50◦C, and ṁmixture

= 8 kg/s. The heat transfer coefficient inside the pipe is 1600
W/m2K. Plot the liquid temperature as a function of position
in the pipe.

3.23 Explain in physical terms why all effectiveness curves Fig. 3.16
and Fig. 3.17 have the same slope as NTU → 0. Obtain this
slope from eqns. (3.20) and (3.21).

3.24 You want to cool air from 150◦C to 60◦C but you cannot af-
ford a custom-built heat exchanger. You find a used cross-flow
exchanger (both fluids unmixed) in storage. It was previously
used to cool 136 kg/min of NH3 vapor from 200◦C to 100◦C us-
ing 320 kg/min of water at 7◦C; U was previously 480 W/m2K.
How much air can you cool with this exchanger, using the same
water supply, if U is approximately unchanged? (Actually, you
would have to modify U using the methods of Chapters 6 and
7 once you had the new air flow rate, but that is beyond our
present scope.)
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3.25 A one tube-pass, one shell-pass, parallel-flow, process heat ex-
changer cools 5 kg/s of gaseous ammonia entering the shell
side at 250◦C and boils 4.8 kg/s of water in the tubes. The wa-
ter enters subcooled at 27◦C and boils when it reaches 100◦C.
U = 480 W/m2K before boiling begins and 964 W/m2K there-
after. The area of the exchanger is 45 m2, and hfg for water
is 2.257× 106 J/kg. Determine the quality of the water at the
exit.

3.26 0.72 kg/s of superheated steam enters a crossflow heat ex-
changer at 240◦C and leaves at 120◦C. It heats 0.6 kg/s of water
entering at 17◦C. U = 612 W/m2K. By what percentage will the
area differ if a both-fluids-unmixed exchanger is used instead
of a one-fluid-unmixed exchanger? [−1.8%]

3.27 Compare values of F from Fig. 3.14(c) and Fig. 3.14(d) for the
same conditions of inlet and outlet temperatures. Is the one
with the higher F automatically the more desirable exchanger?
Discuss.

3.28 Compare values of ε for the same NTU and Cmin/Cmax in paral-
lel and counterflow heat exchangers. Is the one with the higher
ε automatically the more desirable exchanger? Discuss.

3.29 The irreversibility rate of a process is equal to the rate of en-
tropy production times the lowest absolute sink temperature
accessible to the process. Calculate the irreversibility (or lost
work) for the heat exchanger in Example 3.4. What kind of
configuration would reduce the irreversibility, given the same
end temperatures.

3.30 Plot Toil and TH2O as a function of position in a very long coun-
terflow heat exchanger where water enters at 0◦C, with CH2O =
460 W/K, and oil enters at 90◦C, with Coil = 920 W/K, U = 742
W/m2K, and A = 10 m2. Criticize the design.

3.31 Liquid ammonia at 2 kg/s is cooled from 100◦C to 30◦C in the
shell side of a two shell-pass, four tube-pass heat exchanger
by 3 kg/s of water at 10◦C. When the exchanger is new, U =
750 W/m2K. Plot the exit ammonia temperature as a function
of the increasing tube fouling factor.
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3.32 A one shell-pass, two tube-pass heat exchanger cools 0.403
kg/s of methanol from 47◦C to 7◦C on the shell side. The
coolant is 2.2 kg/s of Freon 12, entering the tubes at −33◦C,
with U = 538 W/m2K. A colleague suggests that this arrange-
ment wastes Freon. She thinks you could do almost as well if
you cut the Freon flow rate all the way down to 0.8 kg/s. Cal-
culate the new methanol outlet temperature that would result
from this flow rate, and evaluate her suggestion.

3.33 The factors dictating the heat transfer coefficients in a certain
two shell-pass, four tube-pass heat exchanger are such that
U increases as (ṁshell)0.6. The exchanger cools 2 kg/s of air
from 200◦C to 40◦C using 4.4 kg/s of water at 7◦C, andU = 312
W/m2K under these circumstances. If we double the air flow,
what will its temperature be leaving the exchanger? [Tairout =
61◦C.]

3.34 A flow rate of 1.4 kg/s of water enters the tubes of a two-shell-
pass, four-tube-pass heat exchanger at 7◦C. A flow rate of 0.6
kg/s of liquid ammonia at 100◦C is to be cooled to 30◦C on
the shell side; U = 573 W/m2K. (a) How large must the heat
exchanger be? (b) How large must it be if, after some months,
a fouling factor of 0.0015 will build up in the tubes, and we still
want to deliver ammonia at 30◦C? (c) If we make it large enough
to accommodate fouling, to what temperature will it cool the
ammonia when it is new? (d) At what temperature does water
leave the new, enlarged exchanger? [(d) TH2O = 49.9◦C.]

3.35 BothC ’s in a parallel-flow heat exchanger are equal to 156 W/K,
U = 327 W/m2K and A = 2 m2. The hot fluid enters at 140◦C
and leaves at 90◦C. The cold fluid enters at 40◦C. If both C ’s
are halved, what will be the exit temperature of the hot fluid?

3.36 A 1.68 ft2 cross-flow heat exchanger with one fluid mixed con-
denses steam at atmospheric pressure (h = 2000 Btu/h·ft2·◦F)
and boils methanol (Tsat = 170◦F and h = 1500 Btu/h·ft2·◦F) on
the other side. Evaluate U (neglecting resistance of the metal),
LMTD, F , NTU, ε, and Q.

3.37 Eqn. (3.21) is troublesome when Cmin/Cmax = 1. Develop a
working equation for ε in this case. Compare it with Fig. 3.16.
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3.38 The effectiveness of a cross-flow exchanger with neither fluid
mixed can be calculated from the following approximate for-
mula:

ε = 1− exp
[
exp(−NTU0.78r)− 1](NTU0.22/r)

]
where r ≡ Cmin/Cmax. How does this compare with correct
values?

3.39 Calculate the area required in a two-tube-pass, one-shell-pass
condenser that is to condense 106 kg/h of steam at 40◦C using
water at 17◦C. Assume that U = 4700 W/m2K, the maximum
allowable temperature rise of the water is 10◦C, andhfg = 2406
kJ/kg.

3.40 An engineer wants to divert 1 gal/min of water at 180◦F from
his car radiator through a small cross-flow heat exchanger with
neither flow mixed, to heat 40◦F water to 140◦F for shaving
when he goes camping. If he produces a pint per minute of
hot water, what will be the area of the exchanger and the tem-
perature of the returning radiator coolant if U = 720 W/m2K?

3.41 In a process for forming lead shot, molten droplets of lead
are showered into the top of a tall tower. The droplets fall
through air and solidify before they reach the bottom of the
tower. The solid shot is collected at the bottom. To maintain a
steady state, cool air is introduced at the bottom of the tower
and warm air is withdrawn at the top. For a particular tower,
the droplets are 1 mm in diameter and at their melting tem-
perature of 600 K when they are released. The latent heat of
solidification is 850 kJ/kg. They fall with a mass flow rate of
200 kg/hr. There are 2430 droplets per cubic meter of air in-
side the tower. Air enters the bottom at 20◦C with a mass flow
rate of 1100 kg/hr. The tower has an internal diameter of 1 m
with adiabatic walls.

a. Sketch, qualitatively, the temperature distributions of the
shot and the air along the height of the tower.

b. If it is desired to remove the shot at a temperature of
60◦C, what will be the temperature of the air leaving the
top of the tower?
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c. Determine the air temperature at the point where the lead
has just finished solidifying.

d. Determine the height that the tower must have in order to
function as desired. The heat transfer coefficient between
the air and the droplets is h = 318 W/m2K.
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4. Analysis of heat conduction and
some steady one-dimensional
problems

The effects of heat are subject to constant laws which cannot be discovered
without the aid of mathematical analysis. The object of the theory which
we are about to explain is to demonstrate these laws; it reduces all physical
researches on the propagation of heat to problems of the calculus whose
elements are given by experiment.

The Analytical Theory of Heat, J. Fourier

4.1 The well-posed problem

The heat diffusion equation was derived in Section 2.1 and some atten-
tion was given to its solution. Before we go further with heat conduction
problems, we must describe how to state such problems so they can re-
ally be solved. This is particularly important in approaching the more
complicated problems of transient and multidimensional heat conduc-
tion that we have avoided up to now.

A well-posed heat conduction problem is one in which all the relevant
information needed to obtain a unique solution is stated. A well-posed
and hence solvable heat conduction problem will always read as follows:

Find T(x,y, z, t) such that:

1.

∇ · (k∇T)+ q̇ = ρc ∂T
∂t

for 0 < t < T (where T can �→ ∞), and for (x,y, z) belonging to
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some region, R, which might extend to infinity.1

2. T = Ti(x,y, z) at t = 0

This is called an initial condition, or i.c.

(a) Condition 1 above is not imposed at t = 0.

(b) Only one i.c. is required. However,

(c) The i.c. is not needed:

i. In the steady-state case: ∇ · (k∇T)+ q̇ = 0.

ii. For “periodic” heat transfer, where q̇ or the boundary con-
ditions vary periodically with time, and where we ignore
the starting transient behavior.

3. T must also satisfy two boundary conditions, or b.c.’s, for each co-
ordinate. The b.c.’s are very often of three common types.

(a) Dirichlet conditions, or b.c.’s of the first kind :

T is specified on the boundary of R for t > 0. We saw such
b.c.’s in Examples 2.1, 2.2, and 2.5.

(b) Neumann conditions, or b.c.’s of the second kind :

The derivative of T normal to the boundary is specified on the
boundary of R for t > 0. Such a condition arises when the heat
flux, k(∂T/∂x), is specified on a boundary or when , with the
help of insulation, we set ∂T/∂x equal to zero.2

(c) b.c.’s of the third kind :

A derivative of T in a direction normal to a boundary is propor-
tional to the temperature on that boundary. Such a condition
most commonly arises when convection occurs at a boundary,
and it is typically expressed as

−k ∂T
∂x

∣∣∣∣
bndry

= h(T − T∞)bndry

when the body lies to the left of the boundary on the x-coor-
dinate. We have already used such a b.c. in Step 4 of Example
2.6, and we have discussed it in Section 1.3 as well.

1(x,y, z) might be any coordinates describing a position �r : T(x,y, z, t) = T(�r , t).
2Although we write ∂T/∂x here, we understand that this might be ∂T/∂z, ∂T/∂r ,

or any other derivative in a direction locally normal to the surface on which the b.c. is
specified.
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Figure 4.1 The transient cooling of a body as it might occur,
subject to boundary conditions of the first, second, and third
kinds.

This list of b.c.’s is not complete, by any means, but it includes a great
number of important cases.

Figure 4.1 shows the transient cooling of body from a constant initial
temperature, subject to each of the three b.c.’s described above. Notice
that the initial temperature distribution is not subject to the boundary
condition, as pointed out previously under 2(a).

The eight-point procedure that was outlined in Section 2.2 for solving
the heat diffusion equation was contrived in part to assure that a problem
will meet the preceding requirements and will be well posed.

4.2 The general solution

Once the heat conduction problem has been posed properly, the first step
in solving it is to find the general solution of the heat diffusion equation.
We have remarked that this is usually the easiest part of the problem.
We next consider some examples of general solutions.
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One-dimensional steady heat conduction

Problem 4.1 emphasizes the simplicity of finding the general solutions of
linear ordinary differential equations, by asking for a table of all general
solutions of one-dimensional heat conduction problems. We shall work
out some of those results to show what is involved. We begin the heat
diffusion equation with constant k and q̇:

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

Cartesian coordinates: Steady conduction in the y-direction. Equation
(2.11) reduces as follows:

∂2T
∂x2︸ ︷︷ ︸
=0

+∂
2T
∂y2

+ ∂
2T
∂z2︸ ︷︷ ︸
=0

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since steady

Therefore,

d2T
dy2

= − q̇
k

which we integrate twice to get

T = − q̇
2k
y2 + C1y + C2

or, if q̇ = 0,

T = C1y + C2

Cylindrical coordinates with a heat source: Tangential conduction.
This time, we look at the heat flow that results in a ring when two points
are held at different temperatures. We now express eqn. (2.11) in cylin-
drical coordinates with the help of eqn. (2.13):

1
r
∂
∂r

(
r
∂T
∂r

)
︸ ︷︷ ︸

=0

+ 1
r2

∂2T
∂φ2︸ ︷︷ ︸

r=constant

+ ∂
2T
∂z2︸ ︷︷ ︸
=0

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since steady

Two integrations give

T = −r
2q̇

2k
φ2 + C1φ+ C2 (4.1)

This would describe, for example, the temperature distribution in the
thin ring shown in Fig. 4.2. Here the b.c.’s might consist of temperatures
specified at two angular locations, as shown.
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Figure 4.2 One-dimensional heat conduction in a ring.

T = T(t only)

If T is spatially uniform, it can still vary with time. In such cases

∇2T︸ ︷︷ ︸
=0

+ q̇
k
= 1
α
∂T
∂t

and ∂T/∂t becomes an ordinary derivative. Then, since α = k/ρc,
dT
dt

= q̇
ρc

(4.2)

This result is consistent with the lumped-capacity solution described in
Section 1.3. If the Biot number is low and internal resistance is unimpor-
tant, the convective removal of heat from the boundary of a body can be
prorated over the volume of the body and interpreted as

q̇effective = −
h(Tbody − T∞)A

volume
W/m3 (4.3)

and the heat diffusion equation for this case, eqn. (4.2), becomes

dT
dt

= − hA
ρcV

(T − T∞) (4.4)

The general solution in this situation was given in eqn. (1.21). [A partic-
ular solution was also written in eqn. (1.22).]
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Separation of variables: A general solution of multidimensional
problems

Suppose that the physical situation permits us to throw out all but one of
the spatial derivatives in a heat diffusion equation. Suppose, for example,
that we wish to predict the transient cooling in a slab as a function of
the location within it. If there is no heat generation, the heat diffusion
equation is

∂2T
∂x2

= 1
α
∂T
∂t

(4.5)

A common trick is to ask: “Can we find a solution in the form of a product
of functions of t and x: T = T (t) · X(x)?” To find the answer, we
substitute this in eqn. (4.5) and get

X′′T = 1
α
T ′X (4.6)

where each prime denotes one differentiation of a function with respect
to its argument. Thus T ′ = dT/dt and X′′ = d2X/dx2. Rearranging
eqn. (4.6), we get

X′′
X = 1

α
T ′

T (4.7a)

This is an interesting result in that the left-hand side depends only
upon x and the right-hand side depends only upon t. Thus, we set both
sides equal to the same constant, which we call −λ2, instead of, say, λ,
for reasons that will be clear in a moment:

X′′
X = 1

α
T ′

T = −λ2 a constant (4.7b)

It follows that the differential eqn. (4.7a) can be resolved into two ordi-
nary differential equations:

X′′ = −λ2X and T ′ = −αλ2T (4.8)

The general solution of both of these equations are well known and
are among the first ones dealt with in any study of differential equations.
They are:

X(x) = A sinλx + B cosλx for λ ≠ 0
X(x) = Ax + B for λ = 0

(4.9)
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and

T (t) = Ce−αλ2t for λ ≠ 0
T (t) = C for λ = 0

(4.10)

where we use capital letters to denote constants of integration. [In ei-
ther case, these solutions can be verified by substituting them back into
eqn. (4.8).] Thus the general solution of eqn. (4.5) can indeed be written
in the form of a product, and that product is

T = XT = e−αλ2t(D sinλx + E cosλx) for λ ≠ 0
T = XT = Dx + E for λ = 0

(4.11)

The usefulness of this result depends on whether or not it can be fit
to the b.c.’s and the i.c. In this case, we made the function X(t) take the
form of sines and cosines (instead of exponential functions) by placing
a minus sign in front of λ2. The sines and cosines make it possible to fit
the b.c.’s using Fourier series methods. These general methods are not
developed in this book; however, a complete Fourier series solution is
presented for one problem in Section 5.3.

The preceding simple methods for obtaining general solutions of lin-
ear partial d.e.’s is called the method of separation of variables. It can be
applied to all kinds of linear d.e.’s. Consider, for example, two-dimen-
sional steady heat conduction without heat sources:

∂2T
∂x2

+ ∂
2T
∂y2

= 0 (4.12)

Set T = XY and get

X′′
X = −Y

′′

Y = −λ2

where λ can be an imaginary number. Then

X = A sinλx + B cosλx

Y = Ceλy +De−λy


 for λ ≠ 0

X = Ax + B
Y = Cy +D

}
for λ = 0

The general solution is

T = (E sinλx + F cosλx)(e−λy +Geλy) for λ ≠ 0
T = (Ex + F)(y +G) for λ = 0

(4.13)
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Figure 4.3 A two-dimensional slab maintained at a constant
temperature on the sides and subjected to a sinusoidal varia-
tion of temperature on one face.

Example 4.1

A long slab is cooled to 0◦C on both sides and a blowtorch is turned
on the top edge, giving an approximately sinusoidal temperature dis-
tribution along the top, as shown in Fig. 4.3. Find the temperature
distribution within the slab.

Solution. The general solution is given by eqn. (4.13). We must
therefore identify the appropriate b.c.’s and then fit the general solu-
tion to it. Those b.c.’s are:

on the top surface : T(x,0) = A sinπ
x
L

on the sides : T(0 or L,y) = 0

as y �→∞ : T(x,y →∞) = 0

Substitute eqn. (4.13) in the third b.c.:

(E sinλx + F cosλx)(0+G · ∞) = 0

The only way that this can be true for all x is if G = 0. Substitute
eqn. (4.13), with G = 0, into the second b.c.:

(O + F)e−λy = 0
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so F also equals 0. Substitute eqn. (4.13) with G = F = 0, into the first
b.c.:

E(sinλx) = A sinπ
x
L

It follows that A = E and λ = π/L. Then eqn. (4.13) becomes the
particular solution that satisfies the b.c.’s:

T = A
(

sinπ
x
L

)
e−πy/L

Thus, the sinusoidal variation of temperature at the top of the slab is
attenuated exponentially at lower positions in the slab. At a position
of y = 2L below the top, T will be 0.0019A sinπx/L. The tempera-
ture distribution in the x-direction will still be sinusoidal, but it will
have less than 1/500 of the amplitude at y = 0.

Consider some important features of this and other solutions:

• The b.c. at y = 0 is a special one that works very well with this
particular general solution. If we had tried to fit the equation to
a general temperature distribution, T(x,y = 0) = fn(x), it would
not have been obvious how to proceed. Actually, this is the kind
of problem that Fourier solved with the help of his Fourier series
method. We discuss this matter in more detail in Chapter 5.

• Not all forms of general solutions lend themselves to a particular
set of boundary and/or initial conditions. In this example, we made
the process look simple, but more often than not, it is in fitting a
general solution to a set of boundary conditions that we get stuck.

• Normally, on formulating a problem, we must approximate real be-
havior in stating the b.c.’s. It is advisable to consider what kind of
assumption will put the b.c.’s in a form compatible with the gen-
eral solution. The temperature distribution imposed on the slab
by the blowtorch in Example 4.1 might just as well have been ap-
proximated as a parabola. But as small as the difference between a
parabola and a sine function might be, the latter b.c. was far easier
to accommodate.

• The twin issues of existence and uniqueness of solutions require
a comment here: It has been established that solutions to all well-
posed heat diffusion problems are unique. Furthermore, we know
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from our experience that if we describe a physical process correctly,
a unique outcome exists. Therefore, we are normally safe to leave
these issues to a mathematician—at least in the sort of problems
we discuss here.

• Given that a unique solution exists, we accept any solution as cor-
rect since we have carved it to fit the boundary conditions. In this
sense, the solution of differential equations is often more of an in-
centive than a formal operation. The person who does it best is
often the person who has done it before and so has a large assort-
ment of tricks up his or her sleeve.

4.3 Dimensional analysis

Introduction

Most universities place the first course in heat transfer after an introduc-
tion to fluid mechanics: and most fluid mechanics courses include some
dimensional analysis. This is normally treated using the familiar method
of indices, which is seemingly straightforward to teach but is cumber-
some and sometimes misleading to use. It is rather well presented in
[4.1].

The method we develop here is far simpler to use than the method
of indices, and it does much to protect us from the common errors we
might fall into. We refer to it as the method of functional replacement.

The importance of dimensional analysis to heat transfer can be made
clearer by recalling Example 2.6, which (like most problems in Part I) in-
volved several variables. Theses variables included the dependent vari-
able of temperature, (T∞ − Ti);3 the major independent variable, which
was the radius, r ; and five system parameters, ri, ro, h, k, and (T∞ − Ti).
By reorganizing the solution into dimensionless groups [eqn. (2.24)], we
reduced the total number of variables to only four:

T − Ti
T∞ − Ti︸ ︷︷ ︸

dependent variable

= fn


 r

/
ri,︸ ︷︷ ︸

indep. var.

ro
/
ri, Bi︸ ︷︷ ︸

two system parameters


 (2.24a)

3Notice that we do not call Ti a variable. It is simply the reference temperature
against which the problem is worked. If it happened to be 0◦C, we would not notice its
subtraction from the other temperatures.
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This solution offered a number of advantages over the dimensional
solution. For one thing, it permitted us to plot all conceivable solutions
for a particular shape of cylinder, (ro/ri), in a single figure, Fig. 2.13.
For another, it allowed us to study the simultaneous roles of h, k and ro
in defining the character of the solution. By combining them as a Biot
number, we were able to say—even before we had solved the problem—
whether or not external convection really had to be considered.

The nondimensionalization made it possible for us to consider, simul-
taneously, the behavior of all similar systems of heat conduction through
cylinders. Thus a large, highly conducting cylinder might be similar in
its behavior to a small cylinder with a lower thermal conductivity.

Finally, we shall discover that, by nondimensionalizing a problem be-
fore we solve it, we can often greatly simplify the process of solving it.

Our next aim is to map out a method for nondimensionalization prob-
lems before we have solved then, or, indeed, before we have even written
the equations that must be solved. The key to the method is a result
called the Buckingham pi-theorem.

The Buckingham pi-theorem

The attention of scientific workers was apparently drawn very strongly
toward the question of similarity at about the beginning of World War I.
Buckingham first organized previous thinking and developed his famous
theorem in 1914 in the Physical Review [4.2], and he expanded upon the
idea in the Transactions of the ASME one year later [4.3]. Lord Rayleigh
almost simultaneously discussed the problem with great clarity in 1915
[4.4]. To understand Buckingham’s theorem, we must first overcome one
conceptual hurdle, which, if it is clear to the student, will make everything
that follows extremely simple. Let us explain that hurdle first.

Suppose that y depends on r ,x, z and so on:

y = y(r ,x, z, . . . )
We can take any one variable—say, x—and arbitrarily multiply it (or it
raised to a power) by any other variables in the equation, without altering
the truth of the functional equation, like this:

y
x
= y
x

(
x2r ,x,xz

)
To see that this is true, consider an arbitrary equation:

y = y(r ,x, z) = r(sinx)e−z
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This need only be rearranged to put it in terms of the desired modified
variables and x itself (y/x,x2r ,x, and xz):

y
x
= x

2r
x3

(sinx) exp
[
−xz
x

]

We can do any such multiplying or dividing of powers of any variable
we wish without invalidating any functional equation that we choose to
write. This simple fact is at the heart of the important example that
follows:

Example 4.2

Consider the heat exchanger problem described in Fig. 3.15. The “un-
known,” or dependent variable, in the problem is either of the exit
temperatures. Without any knowledge of heat exchanger analysis, we
can write the functional equation on the basis of our physical under-
standing of the problem:

Tcout − Tcin︸ ︷︷ ︸
K

= fn


Cmax︸ ︷︷ ︸

W/K

, Cmin︸ ︷︷ ︸
W/K

,
(
Thin − Tcin

)︸ ︷︷ ︸
K

, U︸ ︷︷ ︸
W/m2K

, A︸︷︷︸
m2


 (4.14)

where the dimensions of each term are noted under the quotation.
We want to know how many dimensionless groups the variables in

eqn. (4.14) should reduce to. To determine this number, we use the
idea explained above—that is, that we can arbitrarily pick one vari-
able from the equation and divide or multiply it into other variables.
Then—one at a time—we select a variable that has one of the dimen-
sions. We divide or multiply it by the other variables in the equation
that have that dimension in such a way as to eliminate the dimension
from them.

We do this first with the variable (Thin − Tcin), which has the di-
mension of K.

Tcout − Tcin

Thin − Tcin︸ ︷︷ ︸
dimensionless

= fn


Cmax(Thin − Tcin)︸ ︷︷ ︸

W

, Cmin(Thin − Tcin)︸ ︷︷ ︸
W

,

(Thin − Tcin)︸ ︷︷ ︸
K

, U(Thin − Tcin)︸ ︷︷ ︸
W/m2

, A︸︷︷︸
m2



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The interesting thing about the equation in this form is that the only
remaining term in it with the units of K is (Thin − Tcin). No such
term can exist in the equation because it is impossible to achieve
dimensional homogeneity without another term in K to balance it.
Therefore, we must remove it.

Tcout − Tcin

Thin − Tcin︸ ︷︷ ︸
dimensionless

= fn


Cmax(Thin − Tcin)︸ ︷︷ ︸

W

, Cmin(Thin − Tcin)︸ ︷︷ ︸
W

, U(Thin − Tcin)︸ ︷︷ ︸
W/m2

, A︸︷︷︸
m2




Now the equation has only two dimensions in it—W and m2. Next, we
multiply U(Thin−Tcin) byA to get rid of m2 in the second-to-last term.
Accordingly, the term A (m2) can no longer stay in the equation, and
we have

Tcout − Tcin

Thin − Tcin︸ ︷︷ ︸
dimensionless

= fn


Cmax(Thin − Tcin)︸ ︷︷ ︸

W

, Cmin(Thin − Tcin)︸ ︷︷ ︸
W

, UA(Thin − Tcin)︸ ︷︷ ︸
W

,




Next, we divide the first and third terms on the right by the second.
This leaves only Cmin(Thin−Tcin), with the dimensions of W. That term
must then be removed, and we are left with the completely dimension-
less result:

Tcout − Tcin

Thin − Tcin

= fn
(
Cmax

Cmin
,
UA
Cmin

)
(4.15)

Equation (4.15) has exactly the same functional form as eqn. (3.21),
which we obtained by direct analysis.

Notice that we removed one variable from eqn. (4.14) for each di-
mension in which the variables are expressed. If there are n variables—
including the dependent variable—expressed in m dimensions, we then
expect to be able to express the equation in (n − m) dimensionless
groups, or pi-groups, as Buckingham called them.

This fact is expressed by the Buckingham pi-theorem, which we state
formally in the following way:
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A physical relationship among n variables, which can be ex-
pressed in a minimum of m dimensions, can be rearranged into
a relationship among (n−m) independent dimensionless groups
of the original variables.

Two important qualifications have been italicized. They will be explained
in detail in subsequent examples.

Buckingham called the dimensionless groups pi-groups and identified
them as Π1,Π2, ...,Πn−m. Normally we call Π1 the dependent variable
and retain Π2→(n−m) as independent variables. Thus, the dimensional
functional equation reduces to a dimensionless functional equation of
the form

Π1 = fn (Π2,Π3, . . . ,Πn−m) (4.16)

Applications of the pi-theorem

Example 4.3

Is eqn. (2.24) consistent with the pi-theorem?

Solution. To find out, we first write the dimensional functional
equation for Example 2.6:

T − Ti︸ ︷︷ ︸
K

= fn
[
r︸︷︷︸
m

, ri︸︷︷︸
m

, ro︸︷︷︸
m

, h︸ ︷︷ ︸
W/m2K

, k︸ ︷︷ ︸
W/m·K

, (T∞ − Ti)︸ ︷︷ ︸
K

]

There are seven variables (n = 7) in three dimensions, K, m, and W
(m = 3). Therefore, we look for 7− 3 = 4 pi-groups. There are four
pi-groups in eqn. (2.24):

Π1 = T − Ti
T∞ − Ti

, Π2 = rri
, Π3 = rori

, Π4 = hrok ≡ Bi.

Consider two features of this result. First, the minimum number of
dimensions was three. If we had written watts as J/s, we would have
had four dimensions instead. But Joules never appear in that particular
problem independently of seconds. They always appear as a ratio and
should not be separated. (If we had worked in English units, this would
have seemed more confusing, since there is no name for Btu/sec unless
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we first convert it to horsepower.) The failure to identify dimensions
that are consistently grouped together is one of the major errors that the
beginner makes in using the pi-theorem.

The second feature is the independence of the groups. This means
that we may pick any four dimensionless arrangements of variables, so
long as no group or groups can be made into any other group by math-
ematical manipulation. For example, suppose that someone suggested
that there was a fifth pi-group in Example 4.3:

Π5 =
√
hr
k

It is easy to see that Π5 can be written as

Π5 =
√
hro
k

√
r
ri

√
ri
ro
=

√
Bi
Π2

Π3

Therefore Π5 is not independent of the existing groups, nor will we ever
find a fifth grouping that is.

Another matter that is frequently made much of is that of identifying
the pi-groups once the variables are identified for a given problem. (The
method of indices [4.1] is a cumbersome arithmetic strategy for doing
this but it is perfectly correct.) We shall find the groups by using either
of two methods:

1. The groups can always be obtained formally by repeating the simple
elimination-of-dimensions procedure that was used to derive the
pi-theorem in Example 4.2.

2. One may simply arrange the variables into the required number of
independent dimensionless groups by inspection.

In any method, one must make judgments in the process of combining
variables and these decisions can lead to different arrangements of the
pi-groups. Therefore, if the problem can be solved by inspection, there
is no advantage to be gained by the use of a more formal procedure.

The methods of dimensional analysis can be used to help find the
solution of many physical problems. We offer the following example,
not entirely with tongue in cheek:

Example 4.4

Einstein might well have noted that the energy equivalent, e, of a rest
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mass, mo, depended on the velocity of light, co, before he developed
the special relativity theory. He wold then have had the following
dimensional functional equation:(

e N·m or e
kg· m2

s2

)
= fn (com/s, mo kg)

The minimum number of dimensions is only two: kg and m/s, so we
look for 3 − 2 = 1 pi-group. To find it formally, we eliminated the
dimension of mass from e by dividing it by mo (kg). Thus,

e
mo

m2

s2
= fn

[
co m/s, mo kg︸ ︷︷ ︸

this must be removed
because it is the only
term with mass in it

]

Then we eliminate the dimension of velocity (m/s) by dividing e/mo
by c2

o :

e
moc2

o
= fn (co m/s)

This time co must be removed from the function on the right, since it
is the only term with the dimensions m/s. This gives the result (which
could have been written by inspection once it was known that there
could only be one pi-group):

Π1 = e
moc2

o
= fn (no other groups) = constant

or

e = constant ·
(
moc2

o

)
Of course, it required Einstein’s relativity theory to tell us that the
constant is unity.

Example 4.5

What is the velocity of efflux of liquid from the tank shown in Fig. 4.4?

Solution. In this case we can guess that the velocity, V , might de-
pend on gravity, g, and the head H. We might be tempted to include
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Figure 4.4 Efflux of liquid
from a tank.

the density as well until we realize that g is already a force per unit
mass. To understand this, we can use English units and divideg by the
conversion factor,4 gc . Thus (g ft/s2)/(gc lbm·ft/lbf s2) = g lbf/lbm.
Then

V︸︷︷︸
m/s

= fn
[
H︸︷︷︸
m

, g︸︷︷︸
m/s2

]

so there are three variables in two dimensions, and we look for 3−2 =
1 pi-groups. It would have to be

Π1 = V√
gH

= fn (no other pi-groups) = constant

or

V = constant ·
√
gH

The analytical study of fluid mechanics tells us that this form is
correct and that the constant is

√
2. The group V2/gh, by the way, is

called a Froude number, Fr (pronounced “Frood”). It compares inertial
forces to gravitational forces. Fr is about 1000 for a pitched baseball,
and it is between 1 and 10 for the water flowing over the spillway of
a dam.

4One can always divide any variable by a conversion factor without changing it.
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Example 4.6

Obtain the dimensionless functional equation for the temperature
distribution during steady conduction in a slab with a heat source, q̇.

Solution. In such a case, there might be one or two specified tem-
peratures in the problem: T1 or T2. Thus the dimensional functional
equation is

T − T1︸ ︷︷ ︸
K

= fn


(T2 − T1)︸ ︷︷ ︸

K

, x, L︸ ︷︷ ︸
m

, q̇︸︷︷︸
W/m3

, k︸ ︷︷ ︸
W/m·K

, h︸ ︷︷ ︸
W/m2K




where we presume that a convective b.c. is involved and we identify a
characteristic length, L, in the x-direction. There are seven variables
in three dimensions, or 7 − 3 = 4 pi-groups. Three of these groups
are ones we have dealt with in the past in one form or another:

Π1 = T − T1

T2 − T1

dimensionless temperature, which we
shall give the name Θ

Π2 = xL dimensionless length, which we call ξ

Π3 = hLk which we recognize as the Biot number, Bi

The fourth group is new to us:

Π4 = q̇L2

k(T2 − T1)
which compares the heat generation rate to
the rate of heat loss; we call it Γ

Thus, the solution is

Θ = fn (ξ,Bi, Γ) (4.17)

In Example 2.1, we undertook such a problem, but it differed in two
respects. There was no convective boundary condition and hence, no h,
and only one temperature was specified in the problem. In this case, the
dimensional functional equation was

(T − T1) = fn
(
x,L, q̇, k

)
so there were only five variables in the same three dimensions. The re-
sulting dimensionless functional equation therefore involved only two
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pi-groups. One was ξ = x/L and the other is a new one equal to Θ/Γ . We
call it Φ:

Φ ≡ T − T1

q̇L2/k
= fn

(
x
L

)
(4.18)

And this is exactly the form of the analytical result, eqn. (2.15).

Finally, we must deal with dimensions that convert into one another.
For example, kg and N are defined in terms of one another through New-
ton’s Second Law of Motion. Therefore, they cannot be identified as sep-
arate dimensions. The same would appear to be true of J and N·m, since
both are dimensions of energy. However, we must discern whether or
not a mechanism exists for interchanging them. If mechanical energy
remains distinct from thermal energy in a given problem, then J should
not be interpreted as N·m.

This issue will prove important when we do the dimensional anal-
ysis of several heat transfer problems. See, for example, the analyses
of laminar convection problem at the beginning of Section 6.4, of natu-
ral convection in Section 8.3, of film condensation in Section 8.5, and of
pool boiling burnout in Section 9.3. In all of these cases, heat transfer
normally occurs without any conversion of heat to work or work to heat
and it would be misleading to break J into N·m.

Additional examples of dimensional analysis appear throughout this
book. Dimensional analysis is, indeed, our court of first resort in solving
most of the new problems that we undertake.

4.4 An illustration of the use of dimensional analysis
in a complex steady conduction problem

Heat conduction problems with convective boundary conditions can rap-
idly grow difficult, even if they start out simple, and so we look for ways
to avoid making mistakes. For one thing, it is wise to take great care
that dimensions are consistent at each stage of the solution. The best
way to do this, and to eliminate a great deal of algebra at the same time,
is to nondimensionalize the heat conduction equation before we apply
the b.c.’s. This nondimensionalization should be consistent with the pi-
theorem. We illustrate this idea with a fairly complex example.
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Figure 4.5 Heat conduction through a heat-generating slab
with asymmetric boundary conditions.

Example 4.7

A slab shown in Fig. 4.5 has different temperatures and different heat
transfer coefficients on either side and the heat is generated within
it. Calculate the temperature distribution in the slab.

Solution. The differential equation is

d2T
dx2

= − q̇
k

and the general solution is

T = − q̇x
2

2k
+ C1x + C2 (4.19)
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with b.c.’s

h1(T1 − T)x=0 = −k dTdx

∣∣∣∣
x=0

, h2(T − T2)x=L = −k dTdx

∣∣∣∣
x=L

.

(4.20)

There are eight variables involved in the problem: (T −T2), (T1−T2),
x, L, k, h1, h2, and q̇; and there are three dimensions: K, W, and m.
This results in 8− 3 = 5 pi-groups. For these we choose

Π1 ≡ Θ = T − T2

T1 − T2
, Π2 ≡ ξ = xL , Π3 ≡ Bi1 = h1L

k
,

Π4 ≡ Bi2 = h2L
k
, and Π5 ≡ Γ = q̇L2

2k(T1 − T2)
,

where Γ can be interpreted as a comparison of the heat generated in
the slab to that which could flow through it.

Under this nondimensionalization, eqn. (4.19) becomes5

Θ = −Γ ξ2 + C3ξ + C4 (4.21)

and b.c.’s become

Bi1(1−Θξ=0) = −Θ′ξ=0, Bi2Θξ=1 = −Θ′ξ=1 (4.22)

where the primes denote differentiation with respect to ξ. Substitut-
ing eqn. (4.21) in eqn. (4.22), we obtain

Bi1(1− C4) = −C3, Bi2(−Γ + C3 + C4) = 2Γ − C3. (4.23)

Substituting the first of eqns. (4.23) in the second we get

C4 = 1+ −Bi1 + 2(Bi1/Bi2)Γ + Bi1Γ
Bi1 + Bi21

/
Bi2 + Bi21

C3 = Bi1(C4 − 1)

Thus, eqn. (4.21) becomes

Θ = 1+ Γ
[

2(Bi1
/
Bi2)+ Bi1

1+ Bi1
/
Bi2 + Bi1

ξ − ξ2 + 2(Bi1
/
Bi2)+ Bi1

Bi1 + Bi21
/
Bi2 + Bi21

]

− Bi1
1+ Bi1

/
Bi2 + Bi1

ξ − Bi1
Bi1 + Bi21

/
Bi2 + Bi21

(4.24)

5The rearrangement of the dimensional equations into dimensionless form is
straightforward algebra. If the results shown here are not immediately obvious to
you, sketch the calculation on a piece of paper.
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This is a complicated result and one that would have required enormous
patience and accuracy to obtain without first simplifying the problem
statement as we did. If the heat transfer coefficients were the same on
either side of the wall, then Bi1 = Bi2 ≡ Bi, and eqn. (4.24) would reduce
to

Θ = 1+ Γ
(
ξ − ξ2 + 1/Bi

)
− ξ + 1/Bi

1+ 2/Bi
(4.25)

which is a very great simplification.
Equation (4.25) is plotted on the left-hand side of Fig. 4.5 for Bi equal

to 0, 1, and ∞ and for Γ equal to 0, 0.1, and 1. The following features
should be noted:

• When Γ � 0.1, the heat generation can be ignored.

• When Γ 	 1,Θ → Γ/Bi + Γ(ξ − ξ2). This is a simple parabolic tem-
perature distribution displaced upward an amount that depends on
the relative external resistance, as reflected in the Biot number.

• If both Γ and 1/Bi become large, Θ → Γ/Bi. This means that when
internal resistance is low and the heat generation is great, the slab
temperature is constant and quite high.

If T2 were equal to T1 in this problem, Γ would go to infinity. In such
a situation, we should redo the dimensional analysis of the problem. The
dimensional functional equation now shows (T − T1) to be a function of
x, L, k, h, and q̇. There are six variables in three dimensions, so there
are three pi-groups

T − T1

q̇L/h
= fn (ξ,Bi)

where the dependent variable is like Φ [recall eqn. (4.18)] multiplied by
Bi. We can put eqn. (4.25) in this form by multiplying both sides of it by
h(T1 − T2)/q̇δ. The result is

h(T − T1)
q̇L

= 1
2

Bi
(
ξ − ξ2

)
+ 1

2
(4.26)

The result is plotted on the right-hand side of Fig. 4.5. The following
features of the graph are of interest:

• Heat generation is the only “force” giving rise to temperature nonuni-
formity. Since it is symmetric, the graph is also symmetric.
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• When Bi � 1, the slab temperature approaches a uniform value
equal to T1 + q̇L/2h. (In this case, we would have solved the prob-
lem with far greater ease by using a simple lumped-capacity heat
balance, since it is no longer a heat conduction problem.)

• When Bi > 100, the temperature distribution is a very large parabola
with ½ added to it. In this case, the problem could have been solved
using boundary conditions of the first kind because the surface
temperature stays very close to T∞ (recall Fig. 1.11).

4.5 Fin design

The purpose of fins

The convective removal of heat from a surface can be substantially im-
proved if we put extensions on that surface to increase its area. These
extensions can take a variety of forms. Figure 4.6, for example, shows
many different ways in which the surface of commercial heat exchanger
tubing can be extended with protrusions of a kind we call fins.

Figure 4.7 shows another very interesting application of fins in a heat
exchanger design. This picture is taken from an issue of Science maga-
zine [4.5], which presents an intriguing argument by Farlow, Thompson,
and Rosner. They offered evidence suggesting that the strange rows of
fins on the back of the Stegosaurus were used to shed excess body heat
after strenuous activity, which is consistent with recent suspicions that
Stegosaurus was warm-blooded.

These examples involve some rather complicated fins. But the analy-
sis of a straight fin protruding from a wall displays the essential features
of all fin behavior. This analysis has direct application to a host of prob-
lems.

Analysis of a one-dimensional fin

The equations. Figure 4.8 shows a one-dimensional fin protruding from
a wall. The wall—and the roots of the fin—are at a temperature T0, which
is either greater or less than the ambient temperature, T∞. The length
of the fin is cooled or heated through a heat transfer coefficient, h, by
the ambient fluid. The heat transfer coefficient will be assumed uniform,
although (as we see in Part III) that can introduce serious error in boil-



Figure 4.6 Some of the many varieties of finned tubes.
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Figure 4.7 The Stegosaurus with what
might have been cooling fins (etching by
Daniel Rosner).

ing, condensing, or other natural convection situations, and will not be
strictly accurate even in forced convection.

The tip may or may not exchange heat with the surroundings through
a heat transfer coefficient, hL, which would generally differ from h. The
length of the fin is L, its uniform cross-sectional area is A, and its cir-
cumferential perimeter is P .

The characteristic dimension of the fin in the transverse direction
(normal to the x-axis) is taken to be A/P . Thus, for a circular cylindrical
fin, A/P = π(radius)2/(2π radius) = (radius/2). We define a Biot num-
ber for conduction in the transverse direction, based on this dimension,
and require that it be small:

Bifin =
h(A/P)
k

� 1 (4.27)

This condition means that the transverse variation of T at any axial po-
sition, x, is much less than (Tsurface − T∞). Thus, T � T(x only) and the
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Figure 4.8 The analysis of a one-dimensional fin.

heat flow can be treated as one-dimensional.
An energy balance on the thin slice of the fin shown in Fig. 4.8 gives

−kA dT
dx

∣∣∣∣
x+δx

+ kA dT
dx

∣∣∣∣
x
+ h(Pδx)(T − T∞)x = 0 (4.28)

but

dT/dx|x+δx − dT/dx|x
δx

�→ d2T
dx2

= d
2(T − T∞)
dx2

(4.29)

so

d2(T − T∞)
dx2

= hP
kA
(T − T∞) (4.30)
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This dimensionless temperature drops to about 0.014 at the tip whenmL
reaches 5. This means that the end is 0.014(T0 − T∞) K above T∞ at the
end. Thus, if the fin is actually functioning as a holder for a thermometer
or a thermocouple that is intended to read T∞, the reading will be in error
if mL is not significantly greater than five.

The lower graph in Fig. 4.9 hows how the temperature is distributed
in insulated-tip fins for various values of mL.

Experiment 4.1

Clamp a 20 cm or so length of copper rod by one end in a horizontal
position. Put a candle flame very near the other end and let the arrange-
ment come to a steady state. Run your finger along the rod. How does
what you feel correspond to Fig. 4.9? (The diameter for the rod should
not exceed about 3 mm. A larger rod of metal with a lower conductivity
will also work.)

Exact temperature distribution in a fin with an uninsulated tip. The
approximation of an insulated tip may be avoided using the b.c’s given
in eqn. (4.31a), which take the following dimensionless form:

Θξ=0 = 1 and − dΘ
dξ

∣∣∣∣∣
ξ=1

= BiaxΘξ=1 (4.46)

Substitution of the general solution, eqn. (4.35), in these b.c.’s yields

C1 + C2 = 1

−mL(C1emL − C2e−mL) = Biax(C1emL + C2e−mL)
(4.47)

It requires some manipulation to solve eqn. (4.47) for C1 and C2 and to
substitute the results in eqn. (4.35). We leave this as an exercise (Problem
4.11). The result is

Θ = coshmL(1− ξ)+ (Biax/mL) sinhmL(1− ξ)
coshmL+ (Biax/mL) sinhmL

(4.48)

which is the form of eqn. (4.33a), as we anticipated. The corresponding
heat flux equation is

Q√
(kA)(hP) (T0 − T∞)

= (Biax/mL)+ tanhmL
1+ (Biax/mL) tanhmL

(4.49)
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We have seen that mL is not too much greater than unity in a well-
designed fin with an insulated tip. Furthermore, when hL is small (as it
might be in natural convection), Biax is normally much less than unity.
Therefore, in such cases, we expect to be justified in neglecting terms
multiplied by Biax. Then eqn. (4.48) reduces to

Θ = coshmL(1− ξ)
coshmL

(4.41)

which we obtained by analyzing an insulated fin.
It is worth pointing out that we are in serious difficulty if hL is so

large that we cannot assume the tip to be insulated. The reason is that
hL is nearly impossible to predict in most practical cases.

Example 4.8

A 2 cm diameter aluminum rod with k = 205 W/m·K, 8 cm in length,
protrudes from a 150◦C wall. Air at 26◦C flows by it, and h = 120
W/m2K. Determine whether or not tip conduction is important in this
problem. To do this, make the very crude assumption that h � hL.
Then compare the tip temperatures as calculated with and without
considering heat transfer from the tip.

Solution.

mL =
√
hPL2

kA
=

√
120(0.08)2

205(0.01/2)
= 0.8656

Biax = hLk = 120(0.08)
205

= 0.0468

Therefore, eqn. (4.48) becomes

Θ (ξ = 1) = Θtip = cosh 0+ (0.0468/0.8656) sinh 0
cosh(0.8656)+ (0.0468/0.8656) sinh(0.8656)

= 1
1.3986+ 0.0529

= 0.6886

so the exact tip temperature is

Ttip = T∞ + 0.6886(T0 − T∞)
= 26+ 0.6886(150− 26) = 111.43◦C
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Equation (4.41) or Fig. 4.9, on the other hand, gives

Θtip = 1
1.3986

= 0.7150

so the approximate tip temperature is

Ttip = 26+ 0.715(150− 26) = 114.66◦C

Thus the insulated-tip approximation is adequate for the computation
in this case.

Very long fin. If a fin is so long thatmL	 1, then eqn. (4.41) becomes

limit
mL→∞

Θ = limit
mL→∞

emL(1−ξ) + e−mL(1−ξ)
emL + e−mL = e

mL(1−ξ)

emL

or

limit
mL→large

Θ = e−mLξ (4.50)

Substituting this result in eqn. (4.42), we obtain [cf. eqn. (4.44)]

Q =
√
(kAhP) (T0 − T∞) (4.51)

A heating or cooling fin would have to be terribly overdesigned for these
results to apply—that is, mL would have been made much larger than
necessary. Very long fins are common, however, in a variety of situations
related to undesired heat losses. In practice, a fin may be regarded as
“infinitely long” in computing its temperature if mL � 5; in computing
Q, mL � 3 is sufficient for the infinite fin approximation.

Physical significance of mL. The group mL has thus far proved to be
extremely useful in the analysis and design of fins. We should therefore
say a brief word about its physical significance. Notice that

(mL)2 = L/kA
1/h(PL)

= internal resistance in x-direction
gross external resistance

Thus (mL)2 is a hybrid Biot number. When it is big, Θ|ξ=1 → 0 and we
can neglect tip convection. When it is small, the temperature drop along
the axis of the fin becomes small (see the lower graph in Fig. 4.9).
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The group (mL)2 also has a peculiar similarity to the NTU (Chapter
3) and the dimensionless time, t/T , that appears in the lumped-capacity
solution (Chapter 1). Thus,

h(PL)
kA/L

is like
UA
Cmin

is like
hA
ρcV/t

In each case a convective heat rate is compared with a heat rate that
characterizes the capacity of a system; and in each case the system tem-
perature asymptotically approaches its limit as the numerator becomes
large. This was true in eqn. (1.22), eqn. (3.21), eqn. (3.22), and eqn. (4.50).

The problem of specifying the root temperature

Thus far, we have assmed the root temperature of a fin to be given infor-
mation. There really are many circumstances in which it might be known;
however, if a fin protrudes from a wall of the same material, as sketched
in Fig. 4.10a, it is clear that for heat to flow, there must be a temperature
gradient in the neighborhood of the root.

Consider the situation in which the surface of a wall is kept at a tem-
perature Ts . Then a fin is placed on the wall as shown in the figure. If
T∞ < Ts , the wall temperature will be depressed in the neighborhood of
the root as heat flows into the fin. The fin’s performance should then be
predicted using the lowered root temperature, Troot.

This heat conduction problem has been analyzed for several fin ar-
rangements by Sparrow and co-workers. Fig. 4.10b is the result of Spar-
row and Hennecke’s [4.6] analysis for a single circular cylinder. They
give

1− Qactual

Qno temp. depression
= Ts − Troot

Ts − T∞
= fn

[
hr
k
, (mr) tanh(mL)

]
(4.52)

where r is the radius of the fin. From the figure we see that the actual
heat flux into the fin, Qactual, and the actual root temperature are both
reduced when the Biot number, hr/k, is large and the fin constant,m, is
small.

Example 4.9

Neglect the tip convection from the fin in Example 4.8 and suppose
that it is embedded in a wall of the same material. Calculate the error
inQ and the actual temperature of the root if the wall is kept at 150◦C.



Figure 4.10 The influence of heat flow into the root of circular
cylindrical fins [4.6].
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Solution. From Example 4.8 we have mL = 0.8656 and hr/k =
120(0.010)/205 = 0.00586. Then, with mr = mL(r/L), we have
(mr) tanh(mL) = 0.8656(0.010/0.080) tanh(0.8656) = 0.0756. The
lower portion of Fig. 4.10b then gives

1− Qactual

Qno temp. depression
= Ts − Troot

Ts − T∞
= 0.05

so the heat flow is reduced by 5% and the actual root temperature is

Troot = 150− (150− 26)0.05 = 143.8◦C

The correction is modest in this case.

Fin design

Two basic measures of fin performance are particularly useful in a fin
design. The first is called the efficiency, ηf.

ηf ≡
actual heat transferred by a fin

heat that would be transferred if the entire fin were at T = T0
(4.53)

To see how this works, we evaluate ηf for a one-dimensional fin with an
insulated tip:

ηf =
√
(hP)(kA)(T0 − T∞) tanhmL

h(PL)(T0 − T∞)
= tanhmL

mL
(4.54)

This says that, under the definition of efficiency, a very long fin will give
tanh(mL)/mL → 1/large number, so the fin will be inefficient. On the
other hand, the efficiency goes up to 100% as the length is reduced to
zero, because tanh(mL) → mL as mL → 0. While a fin of zero length
would accomplish litte, a fin of small m might be designed in order to
keep the tip temperature near the root temperature; this, for example, is
desirable if the fin is the tip of a soldering iron.

It is therefore clear that, while ηf provides some useful information
as to how well a fin is contrived, it is not generally advisable to design
toward a particular value of ηf.

A second measure of fin performance is called the effectiveness, εf:

εf ≡
heat flux from the wall with the fin

heat flux from the wall without the fin
(4.55)
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This can easily be computed from the efficiency:

εf = ηf
surface area of the fin

cross-sectional area of the fin
(4.56)

Normally, we want the effectiveness to be as high as possible, But this
can always be done by extending the length of the fin, and that—as we
have seen—rapidly becomes a losing proposition.

The measures ηf and εf probably attract the interest of designers not
because their absolute values guide the designs, but because they are
useful in characterizing fins with more complex shapes. In such cases
the solutions are often so complex that ηf and εf plots serve as labor-
saving graphical solutions. We deal with some of these curves later in
this section.

The design of a fin thus becomes an open-ended matter of optimizing,
subject to many factors. Some of the factors that have to be considered
include:

• The weight of material added by the fin. This might be a cost factor
or it might be an important consideration in its own right.

• The possible dependence of h on (T − T∞), flow velocity past the
fin, or other influences.

• The influence of the fin (or fins) on the heat transfer coefficient, h,
as the fluid moves around it (or them).

• The geometric configuration of the channel that the fin lies in.

• The cost and complexity of manufacturing fins.

• The pressure drop introduced by the fins.

Fin thermal resistance

When fins occur in combination with other thermal elements, it can sim-
plify calculations to treat them as a thermal resistance between the root
and the surrounding fluid. Specifically, for a straight fin with an insulated
tip, we can rearrange eqn. (4.44) as

Q = (T0 − T∞)(√
kAhP tanhmL

)−1 ≡
(T0 − T∞)
Rtfin

(4.57)
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where

Rtfin =
1√

kAhP tanhmL
for a straight fin (4.58)

In general, for a fin of any shape, fin thermal resistance can be written in
terms of fin efficiency and fin effectiveness. From eqns. (4.53) and (4.55),
we obtain

Rtfin =
1

ηfAsurfaceh
= 1

εfArooth
(4.59)

Example 4.10

Consider again the resistor described in Examples 2.8 and 2.9, start-
ing on page 76. Suppose that the two electrical leads are long straight
wires 0.62 mm in diameter with k = 16 W/m·K and heff = 23 W/m2K.
Recalculate the resistor’s temperature taking account of heat con-
ducted into the leads.

Solution. The wires act as very long fins connected to the resistor,
so that tanhmL � 1 (see Prob. 4.44). Each has a fin resistance of

Rtfin =
1√
kAhP

= 1√
(16)(23)(π)2(0.00062)3/4

= 2,150 K/W

These two thermal resistances are in parallel to the thermal resis-
tances for natural convection and thermal radiation from the resistor
surface found in Example 2.8. The equivalent thermal resistance is
now

Rtequiv =
(

1
Rtfin

+ 1
Rtfin

+ 1
Rtrad

+ 1
Rtconv

)−1

=
[

2
2,150

+ (1.33× 10−4)(7.17)+ (1.33× 10−4)(13)
]−1

= 276.8 K/W

The leads reduce the equivalent resistance by about 30% from the
value found before. The resistor temperature becomes

Tresistor = Tair +Q · Rtequiv = 35+ (0.1)(276.8) = 62.68 ◦C

or about 10◦C lower than before.
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Figure 4.11 A general fin of variable cross section.

Fins of variable cross section

Let us consider what is involved is the design of a fin for which A and
P are functions of x. Such a fin is shown in Fig. 4.11. We restrict our
attention to fins for which

h(A/P)
k

� 1 and
d(a/P)
d(x)

� 1

so the heat flow will be approximately one-dimensional in x.
We begin the analysis, as always, with the First Law statement:

Qnet = Qcond −Qconv = dUdt
or7

[
kA(x + δx) dT

dx

∣∣∣∣
x=δx

− kA(x) dT
dx

∣∣∣∣
x

]
︸ ︷︷ ︸

= d
dx
kA(x)

dT
dx
δx

−hP δx (T − T∞)

= ρcA(x)δxdT
dt︸ ︷︷ ︸

=0, since steady

7Note that we approximate the external area of the fin as horizontal when we write
it as P δx. The actual area is negligibly larger than this in most cases. An exception
would be the tip of the fin in Fig. 4.11.
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Figure 4.12 A two-dimensional wedge-shaped fin.

Therefore,

d
dx

[
A(x)

d(T − T∞)
dx

]
− hP
k
(T − T∞) = 0 (4.60)

IfA(x) = constant, this reduces toΘ′′−(mL)2Θ = 0, which is the straight
fin equation.

To see how eqn. (4.60) works, consider the triangular fin shown in
Fig. 4.12. In this case eqn. (4.60) becomes

d
dx

[
2δ

(
x
L

)
b
d(T − T∞)
dx

]
− 2hb

k
(T − T∞) = 0

or

ξ
d2Θ
dξ2

+ dΘ
dξ

− hL2

kδ︸ ︷︷ ︸
a kind

of (mL)2

Θ = 0 (4.61)

This second-order linear differential equation is difficult to solve because
it has a variable coefficient. Its solution is expressible in Bessel functions:

Θ =
Io
(

2
√
hLx/kδ

)

Io
(

2
√
hL2/kδ

) (4.62)
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where the modified Bessel function of the first kind, Io, can be looked up
in appropriate tables.

Rather than explore the mathematics of solving eqn. (4.60), we simply
show the result for several geometries in terms of the fin efficiency, ηf,
in Fig. 4.13. These curves were given by Schneider [4.7]. Kraus, Aziz, and
Welty [4.8] provide a very complete discussion of fins and show a great
many additional efficiency curves.

Example 4.11

A thin brass pipe, 3 cm in outside diameter, carries hot water at 85◦C.
It is proposed to place 0.8 mm thick straight circular fins on the pipe
to cool it. The fins are 8 cm in diameter and are spaced 2 cm apart. It
is determined that h will equal 20 W/m2K on the pipe and 15 W/m2K
on the fins, when they have been added. If T∞ = 22◦C, compute the
heat loss per meter of pipe before and after the fins are added.

Solution. Before the fins are added,

Q = π(0.03 m)(20 W/m2K)[(85− 22) K] = 199 W/m

where we set Twall − Twater since the pipe is thin. Notice that, since
the wall is constantly heated by the water, we should not have a root-
temperature depression problem after the fins are added. Then we
can enter Fig. 4.13a with

r2

r1
= 2.67 and mL

√
L
P
=

√
hL3

kA
=

√
15(0.04− 0.15)3

125(0.025)(0.0008)
= 0.306

and we obtain ηf = 89%. Thus, the actual heat transfer given by

Qwithout fin︸ ︷︷ ︸
119 W/m

(
0.02− 0.0008

0.02

)
︸ ︷︷ ︸

fraction of unfinned area

+ 0.89 [2π(0.042 − 0.0152)]︸ ︷︷ ︸
area per fin (both sides), m2

(
50

fins
m

)(
15

W
m2K

)
[(85− 22) K]

so

Qnet = 478 W/m = 4.02 Qwithout fins



Figure 4.13 The efficiency of several fins with variable cross section.
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Problems

4.1 Make a table listing the general solutions of all steady, unidi-
mensional constant-properties heat conduction problemns in
Cartesian, cylindrical and spherical coordinates, with and with-
out uniform heat generation. This table should prove to be a
very useful tool in future problem solving. It should include a
total of 18 solutions. State any restrictions on your solutions.
Do not include calculations.

4.2 The left side of a slab of thickness L is kept at 0◦C. The right
side is cooled by air at T∞◦C blowing on it. hRHS is known. An
exothermic reaction takes place in the slab such that heat is
generated at A(T − T∞) W/m3, where A is a constant. Find a
fully dimensionless expression for the temperature distribu-
tion in the wall.

4.3 A long, wide plate of known size, material, and thickness L is
connected across the terminals of a power supply and serves
as a resistance heater. The voltage, current and T∞ are known.
The plate is insulated on the bottom and transfers heat out
the top by convection. The temperature, Ttc, of the botton
is measured with a thermocouple. Obtain expressions for (a)
temperature distribution in the plate; (b) h at the top; (c) tem-
perature at the top. (Note that your answers must depend on
known information only.) [Ttop = Ttc − EIL2/(2k · volume)]

4.4 The heat tansfer coefficient, h, resulting from a forced flow
over a flat plate depends on the fluid velocity, viscosity, den-
sity, specific heat, and thermal conductivity, as well as on the
length of the plate. Develop the dimensionless functional equa-
tion for the heat transfer coefficient (cf. Section 6.5).

4.5 Water vapor condenses on a cold pipe and drips off the bottom
in regularly spaced nodes as sketched in Fig. 3.9. The wave-
length of these nodes, λ, depends on the liquid-vapor density
difference, ρf − ρg , the surface tension, σ , and the gravity, g.
Find how λ varies with its dependent variables.

4.6 A thick film flows down a vertical wall. The local film velocity
at any distance from the wall depends on that distance, gravity,
the liquid kinematic viscosity, and the film thickness. Obtain
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the dimensionless functional equation for the local velocity (cf.
Section 8.5).

4.7 A steam preheater consists of a thick, electrically conduct-
ing, cylindrical shell insulated on the outside, with wet stream
flowing down the middle. The inside heat transfer coefficient
is highly variable, depending on the velocity, quality, and so
on, but the flow temperature is constant. Heat is released at
q̇ J/m3s within the cylinder wall. Evaluate the temperature
within the cylinder as a function of position. Plot Θ against
ρ, where Θ is an appropriate dimensionless temperature and
ρ = r/ro. Use ρi = 2/3 and note that Bi will be the parameter
of a family of solutions. On the basis of this plot, recommend
criteria (in terms of Bi) for (a) replacing the convective bound-
ary condition on the inside with a constant temperature condi-
tion; (b) neglecting temperature variations within the cylinder.

4.8 Steam condenses on the inside of a small pipe, keeping it at
a specified temperature, Ti. The pipe is heated by electrical
resistance at a rate q̇W/m3. The outside temperature is T∞ and
there is a natural convection heat transfer coefficient, h around
the outside. (a) Derive an expression for the dimensionless
expression temperature distribution, Θ = (T − T∞)/(Ti − T∞),
as a function of the radius ratios, ρ = r/ro and ρi = ri/ro;
a heat generation number, Γ = q̇r2

o /k(Ti − T∞); and the Biot
number. (b) Plot this result for the case ρi = 2/3, Bi = 1, and
for several values of Γ . (c) Discuss any interesting aspects of
your result.

4.9 Solve Problem 2.5 if you have not already done so, putting
it in dimensionless form before you begin. Then let the Biot
numbers approach infinity in the solution. You should get the
same solution we got in Example 2.5, using b.c.’s of the first
kind. Do you?

4.10 Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31b) and eqn. (4.41).

4.11 Complete the algebra that is missing between eqns. (4.30) and
eqn. (4.31a) and eqn. (4.48).
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4.12 Obtain eqn. (4.50) from the general solution for a fin [eqn. (4.35)],
using the b.c.’s T(x = 0) = T0 and T(x = L) = T∞. Comment
on the significance of the computation.

4.13 What is the minimum length, l, of a thermometer well neces-
sary to ensure an error less than 0.5% of the difference between
the pipe wall temperature and the temperature of fluid flowing
in a pipe? Assume that the fluid is steam at 260◦C and that the
coefficient between the steam and the tube wall is 300 W/m2K.
The well consists of a tube with the end closed. It has a 2 cm
O.D. and a 1.88 cm I.D. The material is type 304 stainless steel.
[3.44 cm.]

4.14 Thin fins with a 0.002 m by 0.02 m rectangular cross section
and a thermal conductivity of 50 W/m·K protrude from a wall
and have h � 600 W/m2K and T0 = 170◦C. What is the heat
flow rate into each fin and what is the effectiveness? T∞ =
20◦C.

4.15 A thin rod is anchored at a wall at T = T0 on one end and is
insulated at the other end. Plot the dimensionless temperature
distribution in the rod as a function of dimensionless length:
(a) if the rod is exposed to an environment at T∞ through a
heat transfer coefficient; (b) if the rod is insulated but heat is
removed from the fin material at the unform rate−q̇ = hP(T0−
T∞)/A. Comment on the implications of the comparison.

4.16 A tube of outside diameter do and inside diameter di carries
fluid at T = T1 from one wall at temperature T1 to another
wall a distance L away, at Tr . Outside the tube ho is negligible,
and inside the tube hi is substantial. Treat the tube as a fin
and plot the dimensionless temperature distribution in it as a
function of dimensionless length.

4.17 (If you have had some applied mathematics beyond the usual
two years of calculus, this problem will not be difficult.) The
shape of the fin in Fig. 4.12 is changed so thatA(x) = 2δ(x/L)2b
instead of 2δ(x/L)b. Calculate the temperature distribution
and the heat flux at the base. Plot the temperature distribution
and fin thickness against x/L. Derive an expression for ηf.
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4.18 Work Problem 2.21, if you have not already done so, nondi-
mensionalizing the problem before you attempt to solve it. It
should now be much simpler.

4.19 One end of a copper rod 30 cm long is held at 200◦C, and
the other end is held at 93◦C. The heat transfer coefficient in
between is 17 W/m2K. If T∞ = 38◦C and the diameter of the
rod is 1.25 cm, what is the net heat removed by the air around
the rod? [19.13 W.]

4.20 How much error will the insulated-tip assumption give rise to
in the calculation of the heat flow into the fin in Example 4.8?

4.21 A straight cylindrical fin 0.6 cm in diameter and 6 cm long
protrudes from a magnesium block at 300◦C. Air at 35◦C is
forced past the fin so that h is 130 W/m2K. Calculate the heat
removed by the fin, considering the temperature depression of
the root.

4.22 Work Problem 4.19 considering the temperature depression in
both roots. To do this, findmL for the two fins with insulated
tips that would give the same temperature gradient at each
wall. Base the correction on these values of mL.

4.23 A fin of triangular axial section (cf. Fig. 4.12) 0.1 m in length
and 0.02 m wide at its base is used to extend the surface area
of a mild steel wall. If the wall is at 40◦C and heated gas flows
past at 200◦C (h = 230 W/m2K), compute the heat removed by
the fin per meter of breadth, b, of the fin. Neglect temperature
distortion at the root.

4.24 Consider the concrete slab in Example 2.1. Suppose that the
heat generation were to cease abruptly at time t = 0 and the
slab were to start cooling back toward Tw . Predict T = Tw as a
function of time, noting that the initial parabolic temperature
profile can be nicely approximated as a sine function. (Without
the sine approximation, this problem would require the series
methods of Chapter 5.)

4.25 Steam condenses in a 2 cm I.D. thin-walled tube of 99% alu-
minum at 10 atm pressure. There are circular fins of constant
thickness, 3.5 cm in diameter, every 0.5 cm. The fins are 0.8
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mm thick and the heat transfer coefficient h = 6 W/m2K on
the outside. What is the mass rate of condensation if the pipe
is 1.5 m in length, the ambient temperature is 18◦C, and h for
condensation is very large? [ṁcond = 0.802 kg/hr.]

4.26 How long must a copper fin, 0.4 cm in diameter, be if the tem-
perature of its insulated tip is to exceed the surrounding air
temperature by 20% of (T0 − T∞)? Tair = 20◦C and h = 28
W/m2K.

4.27 A 2 cm ice cube sits on a shelf of aluminum rods, 3 mm in
diameter, in a refrigerator at 10◦C. How rapidly, in mm/min,
does the ice cube melt through the wires if h between the wires
and the air is 10 W/m2K. (Be sure that you understand the
physical mechanism before you make the calculation.) Check
your result experimentally. hsf = 333,300 J/kg.

4.28 The highest heat flux that can be achieved in nucleate boil-
ing (called qmax—see the qualitative discussion in Section 9.1)
depends upon ρg , the saturated vapor density; hfg , the la-
tent heat vaporization; σ , the surface tension; a characteristic
length, l; and the gravity force per unit volume, g(ρf − ρg),
where ρf is the saturated liquid density. Develop the dimen-
sionless functional equation for qmax in terms of dimension-
less length.

4.29 You want to rig a handle for a door in the wall of a furnace.
The door is at 160◦C. You consider bending a 16 in. length
of ¼ in. mild steel rod into a U-shape and welding the ends to
the door. Surrounding air at 24◦C will cool the handle (h = 12
W/m2K). What is the coolest temperature of the handle? How
close to the door can you grasp it without being burned? How
might you improve the handle?

4.30 A 14 cm long by 1 cm square brass rod is supplied with 25 W at
its base. The other end is insulated. It is cooled by air at 20◦C,
with h = 68 W/m2K. Develop a dimensionless expression for
Θ as a function of εf and other known information. Calculate
the base temperature.

4.31 A cylindrical fin has a constant imposed heat flux of q1 at one
end and q2 at the other end, and it is cooled convectively along
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its length. Develop the dimensionless temperature distribu-
tion in the fin. Specialize this result for q2 = 0 and L→∞, and
compare it with eqn. (4.50).

4.32 A thin metal cylinder of radius ro serves as an electrical re-
sistance heater. The temperature along an axial line in one
side is kept at T1. Another line, θ2 radians away, is kept at
T2. Develop dimensionless expressions for the temperature
distributions in the two sections.

4.33 Heat transfer is augmented, in a particular heat exchanger,
with a field of 0.007 m diameter fins protruding 0.02 m into a
flow. The fins are arranged in a hexagonal array, with a mini-
mum spacing of 1.8 cm. The fins are bronze, and hf around

the fins is 168 W/m2K. On the wall itself, hw is only 54 W/m2K.
Calculate heff for the wall with its fins. (heff = Qwall divided by
Awall and [Twall − T∞].)

4.34 Evaluate d(tanhx)/dx.

4.35 An engineer seeks to study the effect of temperature on the
curing of concrete by controlling the temperature of curing in
the following way. A sample slab of thickness L is subjected
to a heat flux, qw , on one side, and it is cooled to temperature
T1 on the other. Derive a dimensionless expression for the
steady temperature in the slab. Plot the expression and offer
a criterion for neglecting the internal heat generation in the
slab.

4.36 Develop the dimensionless temperature distribution in a spher-
ical shell with the inside wall kept at one temperature and the
outside wall at a second temperature. Reduce your solution
to the limiting cases in which routside 	 rinside and in which
routside is very close to rinside. Discuss these limits.

4.37 Does the temperature distribution during steady heat transfer
in an object with b.c.’s of only the first kind depend on k?
Explain.

4.38 A long, 0.005 m diameter duralumin rod is wrapped with an
electrical resistor over 3 cm of its length. The resistor imparts
a surface flux of 40 kW/m2. Evaluate the temperature of the
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rod in either side of the heated section if h = 150 W/m2K
around the unheated rod, and Tambient = 27◦C.

4.39 The heat transfer coefficient between a cool surface and a satu-
rated vapor, when the vapor condenses in a film on the surface,
depends on the liquid density and specific heat, the tempera-
ture difference, the buoyant force per unit volume (g[ρf−ρg]),
the latent heat, the liquid conductivity and the kinematic vis-
cosity, and the position (x) on the cooler. Develop the dimen-
sionless functional equation for h.

4.40 A duralumin pipe through a cold room has a 4 cm I.D. and a
5 cm O.D. It carries water that sometimes sits stationary. It
is proposed to put electric heating rings around the pipe to
protect it against freezing during cold periods of −7◦C. The
heat transfer coefficient outside the pipe is 9 W/m2K. Neglect
the presence of the water in the conduction calculation, and
determine how far apart the heaters would have to be if they
brought the pipe temperature to 40◦C locally. How much heat
do they require?

4.41 The specific entropy of an ideal gas depends on its specific
heat at constant pressure, its temperature and pressure, the
ideal gas constant and reference values of the temperature and
pressure. Obtain the dimensionless functional equation for
the specific entropy and compare it with the known equation.

4.42 A large freezer’s door has a 2.5 cm thick layer of insulation
(kin = 0.04 W/m2K) covered on the inside, outside, and edges
with a continuous aluminum skin 3.2 mm thick (kAl = 165
W/m2K). The door closes against a nonconducting seal 1 cm
wide. Heat gain through the door can result from conduction
straight through the insulation and skins (normal to the plane
of the door) and from conduction in the aluminum skin only,
going from the skin outside, around the edge skin, and to the
inside skin. The heat transfer coefficients to the air inside, hi,
and outside, ho, are each 12 W/m2K. The temperature outside
the freezer is 25◦C, and the temperature inside is −15◦C.

a. If the door is 1 m wide, estimate the one-dimensional heat
gain through the door, neglecting any conduction around
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the edges of the skin. Your answer will be in watts per
meter of door height.

b. Now estimate the heat gain by conduction around the
edges of the door, assuming that the insulation is per-
fectly adiabatic so that all heat flows through the skin.
This answer will also be per meter of door height.

4.43 A thermocouple epoxied onto a high conductivity surface is in-
tended to measure the surface temperature. The thermocou-
ple consists of two each bare, 0.51 mm diameter wires. One
wire is made of Chromel (Ni-10% Cr with kcr = 17 W/m·K) and
the other of constantan (Ni-45% Cu with kcn = 23 W/m·K). The
ends of the wires are welded together to create a measuring
junction having has dimensions of Dw by 2Dw . The wires ex-
tend perpendicularly away from the surface and do not touch
one another. A layer of epoxy (kep = 0.5 W/m·K separates
the thermocouple junction from the surface by 0.2 mm. Air
at 20◦C surrounds the wires. The heat transfer coefficient be-
tween each wire and the surroundings is h = 28 W/m2K, in-
cluding both convection and radiation. If the thermocouple
reads Ttc = 40◦C, estimate the actual temperature Ts of the
surface and suggest a better arrangement of the wires.

4.44 The resistor leads in Example 4.10 were assumed to be “in-
finitely long” fins. What is the minimum length they each must
have if they are to be modelled this way? What are the effec-
tiveness, εf, and efficiency, ηf, of the wires?
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5. Transient and multidimensional
heat conduction

When I was a lad, winter was really cold. It would get so cold that if you
went outside with a cup of hot coffee it would freeze. I mean it would freeze
fast. That cup of hot coffee would freeze so fast that it would still be hot
after it froze. Now that’s cold! Old North-woods tall-tale

5.1 Introduction

James Watt, of course, did not invent the steam engine. What he did do
was to eliminate a destructive transient heating and cooling process that
wasted a great amount of energy. By 1763, the great puffing engines of
Savery and Newcomen had been used for over half a century to pump the
water out of Cornish mines and to do other tasks. In that year the young
instrument maker, Watt, was called upon to renovate the Newcomen en-
gine model at the University of Glasgow. The Glasgow engine was then
being used as a demonstration in the course on natural philosophy. Watt
did much more than just renovate the machine—he first recognized, and
eventually eliminated, its major shortcoming.

The cylinder of Newcomen’s engine was cold when steam entered it
and nudged the piston outward. A great deal of steam was wastefully
condensed on the cylinder walls until they were warm enough to accom-
modate it. When the cylinder was filled, the steam valve was closed and
jets of water were activated inside the cylinder to cool it again and con-
dense the steam. This created a powerful vacuum, which sucked the
piston back in on its working stroke. First, Watt tried to eliminate the
wasteful initial condensation of steam by insulating the cylinder. But
that simply reduced the vacuum and cut the power of the working stroke.

193
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Then he realized that, if he led the steam outside to a separate condenser,
the cylinder could stay hot while the vacuum was created.

The separate condenser was the main issue in Watt’s first patent
(1769), and it immediately doubled the thermal efficiency of steam en-
gines from a maximum of 1.1% to 2.2%. By the time Watt died in 1819, his
invention had led to efficiencies of 5.7%, and his engine had altered the
face of the world by powering the Industrial Revolution. And from 1769
until today, the steam power cycles that engineers study in their ther-
modynamics courses are accurately represented as steady flow—rather
than transient—processes.

The repeated transient heating and cooling that occurred in New-
comen’s engine was the kind of process that today’s design engineer
might still carelessly ignore, but the lesson that we learn from history
is that transient heat transfer can be of overwhelming importance. To-
day, for example, designers of food storage enclosures know that such
systems need relatively little energy to keep food cold at steady condi-
tions. The real cost of operating them results from the consumption
of energy needed to bring the food down to a low temperature and the
losses resulting from people entering and leaving the system with food.
The transient heat transfer processes are a dominant concern in the de-
sign of food storage units.

We therefore turn our attention, first, to an analysis of unsteady heat
transfer, beginning with a more detailed consideration of the lumped-
capacity system that we looked at in Section 1.3.

5.2 Lumped-capacity solutions

We begin by looking briefly at the dimensional analysis of transient con-
duction in general and of lumped-capacity systems in particular.

Dimensional analysis of transient heat conduction

We first consider a fairly representative problem of one-dimensional tran-
sient heat conduction:

∂2T
∂x2

= 1
α
∂T
∂t

with




i.c.: T(t = 0) = Ti
b.c.: T(t > 0, x = 0) = T1

b.c.: − k ∂T
∂x

∣∣∣∣
x=L

= h(T − T1)x=L
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The solution of this problem must take the form of the following dimen-
sional functional equation:

T − T1 = fn
[
(Ti − T1), x, L, t,α,h, k

]
There are eight variables in four dimensions (K, s, m, W), so we look for
8−4 = 4 pi-groups. We anticipate, from Section 4.3, that they will include

Θ ≡ (T − T1)
(Ti − T1)

, ξ ≡ x
L
, and Bi ≡ hL

k
,

and we write

Θ = fn (ξ,Bi,Π4) (5.1)

One possible candidate for Π4, which is independent of the other three,
is

Π4 ≡ Fo = αt/L2 (5.2)

where Fo is the Fourier number. Another candidate that we use later is

Π4 ≡ ζ = x√
αt

(
this is exactly

ξ√
Fo

)
(5.3)

If the problem involved only b.c.’s of the first kind, the heat transfer
coefficient, h—and hence the Biot number—would go out of the problem.
Then the dimensionless function eqn. (5.1) is

Θ = fn (ξ, Fo) (5.4)

By the same token, if the b.c.’s had introduced different values of h at
x = 0 and x = L, two Biot numbers would appear in the solution.

The lumped-capacity problem is particularly interesting from the stand-
point of dimensional analysis [see eqns. (1.19)–(1.22)]. In this case, nei-
ther k nor x enters the problem because we do not retain any features
of the internal conduction problem. Therefore, we have ρc rather than
α. Furthermore, we do not have to separate ρ and c because they only
appear as a product. Finally, we use the volume-to-external-area ratio,
V/A, as a characteristic length. Thus, for the transient lumped-capacity
problem, the dimensional equation is

T − T∞ = fn
[
(Ti − T∞) , ρc, V/A,h, t

]
(5.5)
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Figure 5.1 A simple
resistance-capacitance circuit.

With six variables in the dimensions J, K, m, and s, only two pi-groups
will appear in the dimensionless function equation.

Θ = fn

(
hAt
ρcV

)
= fn

(
t
T

)
(5.6)

This is exactly the form of the simple lumped-capacity solution, eqn. (1.22).
Notice, too, that the group t/T can be viewed as

t
T
= hk(V/A)t
ρc(V/A)2k

= h(V/A)
k

· αt
(V/A)2

= Bi Fo (5.7)

Electrical and mechanical analogies to the
lumped-thermal-capacity problem

The term capacitance is adapted from electrical circuit theory to the heat
transfer problem. Therefore, we sketch a simple resistance-capacitance
circuit in Fig. 5.1. The capacitor is initially charged to a voltage, Eo. When
the switch is suddenly opened, the capacitor discharges through the re-
sistor and the voltage drops according to the relation

dE
dt

+ E
RC

= 0 (5.8)

The solution of eqn. (5.8) with the i.c. E(t = 0) = Eo is

E = Eo e−t/RC (5.9)

and the current can be computed from Ohm’s law, once E(t) is known.

I = E
R

(5.10)

Normally, in a heat conduction problem the thermal capacitance,
ρcV , is distributed in space. But when the Biot number is small, T(t)
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is uniform in the body and we can lump the capacitance into a single
circuit element. The thermal resistance is 1/hA, and the temperature
difference (T − T∞) is analogous to E(t). Thus, the thermal response,
analogous to eqn. (5.9), is [see eqn. (1.22)]

T − T∞ = (Ti − T∞) exp

(
−hAt
ρcV

)

Notice that the electrical time constant, analogous to ρcV/hA, is RC .
Now consider a slightly more complex system. Figure 5.2 shows a

spring-mass-damper system. The well-known response equation (actu-
ally, a force balance) for this system is

m︸︷︷︸

What is the mass analogous to?

d2x
dt2

+ c︸︷︷︸

the damping coefficient is analogous to R or to ρcV

dx
dt

+ k︸︷︷︸
where k is analogous to 1/C or to hA

x = F(t) (5.11)

A term analogous to mass would arise from electrical inductance, but we

Figure 5.2 A spring-mass-damper
system with a forcing function.

did not include it in the electrical circuit. Mass has the effect of carrying
the system beyond its final equilibrium point. Thus, in an underdamped
mechanical system, we might obtain the sort of response shown in Fig. 5.3
if we specified the velocity at x = 0 and provided no forcing function.
Electrical inductance provides a similar effect. But the Second Law of
Thermodynamics does not permit temperatures to overshoot their equi-
librium values spontaneously. There are no physical elements analogous
to mass or inductance in thermal systems.
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Figure 5.3 Response of an unforced
spring-mass-damper system with an
initial velocity.

Next, consider another mechanical element that does have a ther-
mal analogy—namely, the forcing function, F . We consider a (massless)
spring-damper system with a forcing function F that probably is time-
dependent, and we ask: “What might a thermal forcing function look
like?”

Lumped-capacity solution with a variable ambient temperature

To answer the preceding question, let us suddenly immerse an object at
a temperature T = Ti, with Bi� 1, into a cool bath whose temperature is
rising as T∞(t) = Ti+bt, where Ti and b are constants. Then eqn. (1.20)
becomes

d(T − Ti)
dt

= −T − T∞
T

= −T − Ti − bt
T

where we have arbitrarily subtracted Ti under the differential. Then

d(T − Ti)
dt

+ T − Ti
T

= bt
T

(5.12)

To solve eqn. (5.12) we must first recall that the general solution of
a linear ordinary differential equation with constant coefficients is equal
to the sum of any particular integral of the complete equation and the
general solution of the homogeneous equation. We know the latter; it
is T − Ti = (constant) exp(−t/T ). A particular integral of the complete
equation can often be formed by guessing solutions and trying them in
the complete equation. Here we discover that

T − Ti = bt − bT
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satisfies eqn. (5.12). Thus, the general solution of eqn. (5.12) is

T − Ti = C1e−t/T + b(t − T ) (5.13)

The solution for arbitrary variations of T∞(t) is given in Problem 5.52
(see also Problems 5.3, 5.53, and 5.54).

Example 5.1

The flow rates of hot and cold water are regulated into a mixing cham-
ber. We measure the temperature of the water as it leaves, using a
thermometer with a time constant, T . On a particular day, the sys-
tem started with cold water at T = Ti in the mixing chamber. Then
hot water is added in such a way that the outflow temperature rises
linearly, as shown in Fig. 5.4, with Texit flow = Ti + bt. How will the
thermometer report the temperature variation?

Solution. The initial condition in eqn. (5.13), which describes this
process, is T − Ti = 0 at t = 0. Substituting eqn. (5.13) in the i.c., we
get

0 = C1 − bT so C1 = bT

and the response equation is

T − (Ti + bt) = bT
(
e−t/T − 1

)
(5.14)

This result is graphically shown in Fig. 5.4. Notice that the ther-
mometer reading reflects a transient portion, bTe−t/T , which decays
for a few time constants and then can be neglected, and a steady
portion, Ti+b(t−T ), which persists thereafter. When the steady re-
sponse is established, the thermometer follows the bath with a tem-
perature lag of bT . This constant error is reduced when either T or
the rate of temperature increase, b, is reduced.

Second-order lumped-capacity systems

Now we look at situations in which two lumped-thermal-capacity systems
are connected in series. Such an arrangement is shown in Fig. 5.5. Heat is
transferred through two slabs with an interfacial resistance, h−1

c between
them. We shall require that hcL1/k1, hcL2/k2, and hL2/k2 are all much
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Figure 5.4 Response of a thermometer to a linearly increasing
ambient temperature.

less than unity so that it will be legitimate to lump the thermal capaci-
tance of each slab. The differential equations dictating the temperature
response of each slab are then

slab 1 : −(ρcV)1dT1

dt
= hcA(T1 − T2) (5.15)

slab 2 : −(ρcV)2dT2

dt
= hA(T2 − T∞)− hcA(T1 − T2) (5.16)

and the initial conditions on the temperatures T1 and T2 are

T1(t = 0) = T2(t = 0) = Ti (5.17)

We next identify two time constants for this problem:1

T1 ≡ (ρcV)1
/
hcA and T2 ≡ (ρcV)2

/
hA

Then eqn. (5.15) becomes

T2 = T1
dT1

dt
+ T1 (5.18)

1Notice that we could also have used (ρcV)2/hcA for T2 since both hc and h act on
slab 2. The choice is arbitrary.
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Figure 5.5 Two slabs conducting in series through an interfa-
cial resistance.

which we substitute in eqn. (5.16) to get

(
T1
dT1

dt
+ T1 − T∞

)
+ hc
h
T1
dT1

dt
= T1T2

d2T1

dt2
− T2

dT1

dt

or

d2T1

dt2
+

[
1
T1
+ 1
T2
+ hc
hT2︸ ︷︷ ︸

≡b

]
dT1

dt
+ T1 − T∞

T1T2︸ ︷︷ ︸
c(T1 − T∞)

= 0 (5.19a)

if we call T1 − T∞ ≡ θ, then eqn. (5.19a) can be written as

d2θ
dt2

+ bdθ
dt

+ cθ = 0 (5.19b)

Thus we have reduced the pair of first-order equations, eqn. (5.15) and
eqn. (5.16), to a single second-order equation, eqn. (5.19b).

The general solution of eqn. (5.19b) is obtained by guessing a solution
of the form θ = C1eDt . Substitution of this guess into eqn. (5.19b) gives

D2 + bD + c = 0 (5.20)

from which we find that D = −(b/2) ±
√
(b/2)2 − c. This gives us two

values of D, from which we can get two exponential solutions. By adding
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them together, we form a general solution:

θ = C1 exp


−b

2
+

√(
b
2

)2

− c

 t + C2 exp


−b

2
−

√(
b
2

)2

− c

 t
(5.21)

To solve for the two constants we first substitute eqn. (5.21) in the
first of i.c.’s (5.17) and get

Ti − T∞ = θi = C1 + C2 (5.22)

The second i.c. can be put into terms of T1 with the help of eqn. (5.15):

−dT1

dt

∣∣∣∣
t=0

= hcA
(ρcV)1

(T1 − T2)t=0 = 0

We substitute eqn. (5.21) in this and obtain

0 =

−b

2
+

√(
b
2

)2

− c

C1 +


−b

2
−

√(
b
2

)2

− c

 C2︸ ︷︷ ︸
= θi − C1

so

C1 = −θi
[
−b/2−

√
(b/2)2 − c

2
√
(b/2)2 − c

]

and

C2 = θi
[
−b/2+

√
(b/2)2 − c

2
√
(b/2)2 − c

]

So we obtain at last:

T1 − T∞
Ti − T∞

≡ θ
θi
= b/2+

√
(b/2)2 − c

2
√
(b/2)2 − c exp


−b

2
+

√(
b
2

)2

− c

 t

+ −b/2+
√
(b/2)2 − c

2
√
(b/2)2 − c exp


−b

2
−

√(
b
2

)2

− c

 t

(5.23)

This is a pretty complicated result—all the more complicated when
we remember that b involves three algebraic terms [recall eqn. (5.19a)].
Yet there is nothing very sophisticated about it; it is easy to understand.
A system involving three capacitances in series would similarly yield a
third-order equation of correspondingly higher complexity, and so forth.
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Figure 5.6 The transient cooling of a
slab; ξ = (x/L)+ 1.

5.3 Transient conduction in a one-dimensional slab

We next extend consideration to heat flow in bodies whose internal re-
sistance is significant—to situations in which the lumped capacitance
assumption is no longer appropriate. When the temperature within, say,
a one-dimensional body varies with position as well as time, we must
solve the heat diffusion equation for T(x, t). We shall do this somewhat
complicated task for the simplest case and then look at the results of
such calculations in other situations.

A simple slab, shown in Fig. 5.6, is initially at a temperature Ti. The
temperature of the surface of the slab is suddenly changed to Ti, and we
wish to calculate the interior temperature profile as a function of time.
The heat conduction equation is

∂2T
∂x2

= 1
α
∂T
∂t

(5.24)

with the following b.c.’s and i.c.:

T(−L, t > 0) = T(L, t > 0) = T1 and T(x, t = 0) = Ti (5.25)

In fully dimensionless form, eqn. (5.24) and eqn. (5.25) are

∂2Θ
∂ξ2

= ∂Θ
∂Fo

(5.26)
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and

Θ(0, Fo) = Θ(2, Fo) = 0 and Θ(ξ,0) = 1 (5.27)

where we have nondimensionalized the problem in accordance with eqn.
(5.4), using Θ ≡ (T − T1)/(Ti − T1) and Fo ≡ αt/L2; but for convenience
in solving the equation, we have set ξ equal to (x/L)+ 1 instead of x/L.

The general solution of eqn. (5.26) may be found using the separation
of variables technique described in Sect. 4.2, leading to the dimensionless
form of eqn. (4.11):

Θ = e−λ̂2Fo [
G sin(λ̂ξ)+ E cos(λ̂ξ)

]
(5.28)

Direct nondimensionalization of eqn. (4.11) would show that λ̂ ≡ λL,
since λ had units of (length)−1. The solution therefore appears to have
introduced a fourth dimensionless group, λ̂. This needs explanation. The
number λ, which was introduced in the separation-of-variables process,
is called an eigenvalue.2 In the present problem, λ̂ = λL will turn out to
be a number—or rather a sequence of numbers—that is independent of
system parameters.

Substituting the general solution, eqn. (5.28), in the first b.c. gives

0 = e−λ̂2Fo (0+ E) so E = 0

and substituting it in the second yields

0 = e−λ̂2Fo[G sin 2λ̂
]

so either G = 0

or

2λ̂ = 2λ̂n = nπ, n = 0,1,2, . . .

In the second case, we are presented with two choices. The first,
G = 0, would give Θ ≡ 0 in all situations, so that the initial condition
could never be accommodated. (This is what mathematicians call a trivial
solution.) The second choice, λ̂n = nπ/2, actually yields a string of
solutions, each of the form

Θ = Gn e−n2π2Fo/4 sin
(
nπ
2
ξ
)

(5.29)

2The word eigenvalue is a curious hybrid of the German term eigenwert and its
English translation, characteristic value.



§5.3 Transient conduction in a one-dimensional slab 205

where Gn is the constant appropriate to the nth one of these solutions.
We still face the problem that none of eqns. (5.29) will fit the initial

condition, Θ(ξ,0) = 1. To get around this, we remember that the sum of
any number of solutions of a linear differential equation is also a solution.
Then we write

Θ =
∞∑
n=1

Gn e−n
2π2Fo/4 sin

(
n
π
2
ξ
)

(5.30)

where we drop n = 0 since it gives zero contribution to the series. And
we arrive, at last, at the problem of choosing the Gn’s so that eqn. (5.30)
will fit the initial condition.

Θ (ξ,0) =
∞∑
n=1

Gn sin
(
n
π
2
ξ
)
= 1 (5.31)

The problem of picking the values of Gn that will make this equation
true is called “making a Fourier series expansion” of the function f(ξ) =
1. We shall not pursue strategies for making Fourier series expansions
in any general way. Instead, we merely show how to accomplish the task
for the particular problem at hand. We begin with a mathematical trick.
We multiply eqn. (5.31) by sin(mπ/2), where m may or may not equal
n, and we integrate the result between ξ = 0 and 2.

∫ 2

0
sin

(
mπ

2
ξ
)
dξ =

∞∑
n=1

Gn
∫ 2

0
sin

(
mπ

2
ξ
)

sin
(
nπ
2
ξ
)
dξ (5.32)

(The interchange of summation and integration turns out to be legitimate,
although we have not proved, here, that it is.3) With the help of a table
of integrals, we find that

∫ 2

0
sin

(
mπ

2
ξ
)

sin
(
nπ
2
ξ
)
dξ =

{
0 for n ≠m
1 for n =m

Thus, when we complete the integration of eqn. (5.32), we get

− 2
mπ

cos
(
mπ

2
ξ
)∣∣∣∣∣

2

0

=
∞∑
n=1

Gn ×
{

0 for n ≠m
1 for n =m

3What is normally required is that the series in eqn. (5.31) be uniformly convergent.
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This reduces to

− 2
mπ

[
(−1)n − 1

]
= Gn

so

Gn = 4
nπ

where n is an odd number

Substituting this result into eqn. (5.30), we finally obtain the solution to
the problem:

Θ (ξ, Fo) = 4
π

∞∑
n=odd

1
n
e−(nπ/2)

2Fo sin
(
nπ
2
ξ
)

(5.33)

Equation (5.33) admits a very nice simplification for large time (or at
large Fo). Suppose that we wish to evaluate Θ at the outer center of the
slab—at x = 0 or ξ = 1. Then

Θ (0, Fo) = 4
π
×

exp

[
−

(
π
2

)2

Fo

]
︸ ︷︷ ︸
= 0.085 at Fo = 1
= 0.781 at Fo = 0.1
= 0.976 at Fo = 0.01

− 1
3

exp

[
−

(
3π
2

)2

Fo

]
︸ ︷︷ ︸

� 10−10 at Fo = 1
= 0.036 at Fo = 0.1
= 0.267 at Fo = 0.01

+ 1
5

exp

[
−

(
5π
2

)2

Fo

]
︸ ︷︷ ︸

� 10−27 at Fo = 1
= 0.0004 at Fo = 0.1
= 0.108 at Fo = 0.01

+· · ·




Thus for values of Fo somewhat greater than 0.1, only the first term in
the series need be used in the solution (except at points very close to the
boundaries). We discuss these one-term solutions in Sect. 5.5. Before we
move to this matter, let us see what happens to the preceding problem
if the slab is subjected to b.c.’s of the third kind.

Suppose that the walls of the slab had been cooled by symmetrical
convection such that the b.c.’s were

h(T∞ − T)x=−L = −k∂T∂x

∣∣∣∣
x=−L

and h(T − T∞)x=L = −k ∂T∂x

∣∣∣∣
x=L

or in dimensionless form, usingΘ ≡ (T−T∞)/(Ti−T∞) and ξ = (x/L)+1,

−Θ
∣∣∣∣
ξ=0

= − 1
Bi
∂Θ
∂ξ

∣∣∣∣∣
ξ=0

and
∂Θ
∂ξ

∣∣∣∣∣
ξ=1

= 0
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Table 5.1 Terms of series solutions for slabs, cylinders, and
spheres. J0 and J1 are Bessel functions of the first kind.

An fn Equation for λ̂n

Slab
2 sin λ̂n

λ̂n + sin λ̂n cos λ̂n
cos

(
λ̂n
x
L

)
cot λ̂n = λ̂n

BiL

Cylinder
2 J1(λ̂n)

λ̂n
[
J2

0(λ̂n)+ J2
1(λ̂n)

] J0

(
λ̂n
r
ro

)
λ̂n J1(λ̂n) = Biro J0(λ̂n)

Sphere 2
sin λ̂n − λ̂n cos λ̂n
λ̂n − sin λ̂n cos λ̂n

(
ro
λ̂n r

)
sin

(
λ̂n r
ro

)
λ̂n cot λ̂n = 1− Biro

The solution is somewhat harder to find than eqn. (5.33) was, but the
result is4

Θ =
∞∑
n=1

exp
(
−λ̂2

n Fo
)(

2 sin λ̂n cos[λ̂n(ξ − 1)]
λ̂n + sin λ̂n cos λ̂n

)
(5.34)

where the values of λ̂n are given as a function of n and Bi = hL/k by the
transcendental equation

cot λ̂n = λ̂n
Bi

(5.35)

The successive positive roots of this equation, which are λ̂n = λ̂1, λ̂2,
λ̂3, . . . , depend upon Bi. Thus, Θ = fn(ξ, Fo,Bi), as we would expect. This
result, although more complicated than the result for b.c.’s of the first
kind, still reduces to a single term for Fo � 0.2.

Similar series solutions can be constructed for cylinders and spheres
that are convectively cooled at their outer surface, r = ro. The solutions
for slab, cylinders, and spheres all have the form

Θ = T − T∞
Ti − T∞

=
∞∑
n=1

An exp
(
−λ̂2

n Fo
)
fn (5.36)

where the coefficients An, the functions fn, and the equations for the
dimensionless eigenvalues λ̂n are given in Table 5.1.

4See, for example, [5.1, §2.3.4] or [5.2, §3.4.3] for details of this calculation.
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5.4 Temperature-response charts

Figure 5.7 is a graphical presentation of eqn. (5.34) for 0 � Fo � 1.5 and
for six x-planes in the slab. (Remember that the x-coordinate goes from
zero in the center to L on the boundary, while ξ goes from 0 up to 2 in
the preceding solution.)

Notice that, with the exception of points for which 1/Bi < 0.25 on
the outside boundary, the curves are all straight lines when Fo � 0.2.
Since the coordinates are semilogarithmic, this portion of the graph cor-
responds to the lead term—the only term that retains any importance—
in eqn. (5.34). When we take the logarithm of the one-term version of
eqn. (5.34), the result is

lnΘ � ln

[
2 sin λ̂1 cos[λ̂1(ξ − 1)]
λ̂1 + sin λ̂1 cos λ̂1︸ ︷︷ ︸
Θ-intercept at Fo = 0 of
the straight portion of

the curve

]
− λ̂2

1 Fo︸ ︷︷ ︸
slope of the

straight portion
of the curve

If Fo is greater than 1.5, the following options are then available to us for
solving the problem:

• Extrapolate the given curves using a straightedge.

• EvaluateΘ using the first term of eqn. (5.34), as discussed in Sect. 5.5.

• If Bi is small, use a lumped-capacity result.

Figure 5.8 and Fig. 5.9 are similar graphs for cylinders and spheres.
Everything that we have said in general about Fig. 5.7 is also true for
these graphs. They were simply calculated from different solutions, and
the numerical values on them are somewhat different. These charts are
from [5.3, Chap. 5], although such charts are often called Heisler charts,
after a collection of related charts subsequently published by Heisler
[5.4].

Another useful kind of chart derivable from eqn. (5.34) is one that
gives heat removal from a body up to a time of interest:

∫ t
0
Qdt = −

⌠⌡ t
0

kA
∂T
∂x

∣∣∣∣
surface

dt

= −
⌠⌡ Fo

0

kA
Ti − T∞
L

∂Θ
∂ξ

∣∣∣∣∣
surface

(
L2

α

)
dFo
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Dividing this by the total energy of the body above T∞, we get a quan-
tity, Φ, which approaches unity as t →∞ and the energy is all transferred
to the surroundings:

Φ ≡

∫ t
0
Qdt

ρcV(Ti − T∞)
= −

⌠⌡ Fo

0

∂Θ
∂ξ

∣∣∣∣∣
surface

dFo (5.37)

where the volume, V = AL. Substituting the appropriate temperature
distribution [e.g., eqn. (5.34) for a slab] in eqn. (5.37), we obtain Φ(Fo,Bi)
in the form of an infinite series

Φ (Fo, Bi) = 1−
∞∑
n=1

Dn exp
(
−λ̂2

n Fo
)

(5.38)

The coefficients Dn are different functions of λ̂n — and thus of Bi — for
slabs, cylinders, and spheres (e.g., for a slab Dn = An sin λ̂n

/
λ̂n). These

functions can be used to plot Φ(Fo,Bi) once and for all. Such curves are
given in Fig. 5.10.

The quantity Φ has a close relationship to the mean temperature of
a body at any time, T(t). Specifically, the energy lost as heat by time t
determines the difference between the initial temperature and the mean
temperature at time t

∫ t
0
Qdt = [

U(0)−U(t)] = ρcV [
Ti − T(t)

]
. (5.39)

Thus, if we define Θ as follows, we find the relationship of T(t) to Φ

Θ ≡ T(t)− T∞
Ti − T∞

= 1−

∫ t
0
Q(t)dt

ρcV(Ti − T∞)
= 1− Φ. (5.40)

Example 5.2

A dozen approximately spherical apples, 10 cm in diameter are taken
from a 30◦C environment and laid out on a rack in a refrigerator at
5◦C. They have approximately the same physical properties as water,
and h is approximately 6 W/m2K as the result of natural convection.
What will be the temperature of the centers of the apples after 1 hr?
How long will it take to bring the centers to 10◦C? How much heat
will the refrigerator have to carry away to get the centers to 10◦C?



Figure 5.10 The heat removal from suddenly-cooled bodies as
a function of h and time.
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Solution. After 1 hr, or 3600 s:

Fo = αt
r2
o
=

(
k
ρc

)
20◦C

3600 s
(0.05 m)2

= (0.603 J/m·s·K)(3600 s)
(997.6 kg/m3)(4180 J/kg·K)(0.0025 m2)

= 0.208

Furthermore, Bi−1 = (hro/k)−1 = [6(0.05)/0.603]−1 = 2.01. There-
fore, we read from Fig. 5.9 in the upper left-hand corner:

Θ = 0.85

After 1 hr:

Tcenter = 0.85(30− 5)◦C+ 5◦C = 26.3◦C

To find the time required to bring the center to 10◦C, we first
calculate

Θ = 10− 5
30− 5

= 0.2

and Bi−1 is still 2.01. Then from Fig. 5.9 we read

Fo = 1.29 = αt
r2
o

so

t = 1.29(997.6)(4180)(0.0025)
0.603

= 22,300 s = 6 hr 12 min

Finally, we look up Φ at Bi = 1/2.01 and Fo = 1.29 in Fig. 5.10, for
spheres:

Φ = 0.80 =

∫ t
0
Qdt

ρc
(

4
3πr

3
0

)
(Ti − T∞)

so∫ t
0
Qdt = 997.6(4180)

(
4
3
π(0.05)3

)
(25)(0.80) = 43,668 J/apple

Therefore, for the 12 apples,

total energy removal = 12(43.67) = 524 kJ
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The temperature-response charts in Fig. 5.7 through Fig. 5.10 are with-
out doubt among the most useful available since they can be adapted to
a host of physical situations. Nevertheless, hundreds of such charts have
been formed for other situations, a number of which have been cataloged
by Schneider [5.5]. Analytical solutions are available for hundreds more
problems, and any reader who is faced with a complex heat conduction
calculation should consult the literature before trying to solve it. An ex-
cellent place to begin is Carslaw and Jaeger’s comprehensive treatise on
heat conduction [5.6].

Example 5.3

A 1 mm diameter Nichrome (20% Ni, 80% Cr) wire is simultaneously
being used as an electric resistance heater and as a resistance ther-
mometer in a liquid flow. The laboratory workers who operate it are
attempting to measure the boiling heat transfer coefficient, h, by sup-
plying an alternating current and measuring the difference between
the average temperature of the heater, Tav, and the liquid tempera-
ture, T∞. They get h = 30,000 W/m2K at a wire temperature of 100◦C
and are delighted with such a high value. Then a colleague suggests
thath is so high because the surface temperature is rapidly oscillating
as a result of the alternating current. Is this hypothesis correct?

Solution. Heat is being generated in proportion to the product of
voltage and current, or as sin2ωt, where ω is the frequency of the
current in rad/s. If the boiling action removes heat rapidly enough in
comparison with the heat capacity of the wire, the surface tempera-
ture may well vary significantly. This transient conduction problem
was first solved by Jeglic in 1962 [5.7]. It was redone in a different
form two years later by Switzer and Lienhard (see, e.g. [5.8]), who gave
response curves in the form

Tmax − Tav

Tav − T∞
= fn (Bi,ψ) (5.41)

where the left-hand side is the dimensionless range of the tempera-
ture oscillation, and ψ = ωδ2/α, where δ is a characteristic length
[see Problem 5.56]. Because this problem is common and the solu-
tion is not widely available, we include the curves for flat plates and
cylinders in Fig. 5.11 and Fig. 5.12 respectively.
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In the present case:

Bi = h radius
k

= 30,000(0.0005)
13.8

= 1.09

ωr2

α
= [2π(60)](0.0005)2

0.00000343
= 27.5

and from the chart for cylinders, Fig. 5.12, we find that

Tmax − Tav

Tav − T∞
� 0.04

A temperature fluctuation of only 4% is probably not serious. It there-
fore appears that the experiment was valid.

5.5 One-term solutions

As we have noted previously, when the Fourier number is greater than 0.2
or so, the series solutions from eqn. (5.36) may be approximated using
only their first term:

Θ ≈ A1 · f1 · exp
(
−λ̂2

1 Fo
)
. (5.42)

Likewise, the fractional heat loss, Φ, or the mean temperature Θ from
eqn. (5.40), can be approximated using just the first term of eqn. (5.38):

Θ = 1− Φ ≈ D1 exp
(
−λ̂2

1 Fo
)
. (5.43)

Table 5.2 lists the values of λ̂1, A1, and D1 for slabs, cylinders, and
spheres as a function of the Biot number. The one-term solution’s er-
ror in Θ is less than 0.1% for a sphere with Fo ≥ 0.28 and for a slab with
Fo ≥ 0.43. These errors are largest for Biot numbers near unity. If high
accuracy is not required, these one-term approximations may generally
be used whenever Fo ≥ 0.2



Table 5.2 One-term coefficients for convective cooling [5.1].

Plate Cylinder Sphere
Bi

λ̂1 A1 D1 λ̂1 A1 D1 λ̂1 A1 D1

0.01 0.09983 1.0017 1.0000 0.14124 1.0025 1.0000 0.17303 1.0030 1.0000
0.02 0.14095 1.0033 1.0000 0.19950 1.0050 1.0000 0.24446 1.0060 1.0000
0.05 0.22176 1.0082 0.9999 0.31426 1.0124 0.9999 0.38537 1.0150 1.0000

0.10 0.31105 1.0161 0.9998 0.44168 1.0246 0.9998 0.54228 1.0298 0.9998
0.15 0.37788 1.0237 0.9995 0.53761 1.0365 0.9995 0.66086 1.0445 0.9996
0.20 0.43284 1.0311 0.9992 0.61697 1.0483 0.9992 0.75931 1.0592 0.9993
0.30 0.52179 1.0450 0.9983 0.74646 1.0712 0.9983 0.92079 1.0880 0.9985
0.40 0.59324 1.0580 0.9971 0.85158 1.0931 0.9970 1.05279 1.1164 0.9974
0.50 0.65327 1.0701 0.9956 0.94077 1.1143 0.9954 1.16556 1.1441 0.9960
0.60 0.70507 1.0814 0.9940 1.01844 1.1345 0.9936 1.26440 1.1713 0.9944
0.70 0.75056 1.0918 0.9922 1.08725 1.1539 0.9916 1.35252 1.1978 0.9925
0.80 0.79103 1.1016 0.9903 1.14897 1.1724 0.9893 1.43203 1.2236 0.9904
0.90 0.82740 1.1107 0.9882 1.20484 1.1902 0.9869 1.50442 1.2488 0.9880

1.00 0.86033 1.1191 0.9861 1.25578 1.2071 0.9843 1.57080 1.2732 0.9855
1.10 0.89035 1.1270 0.9839 1.30251 1.2232 0.9815 1.63199 1.2970 0.9828
1.20 0.91785 1.1344 0.9817 1.34558 1.2387 0.9787 1.68868 1.3201 0.9800
1.30 0.94316 1.1412 0.9794 1.38543 1.2533 0.9757 1.74140 1.3424 0.9770
1.40 0.96655 1.1477 0.9771 1.42246 1.2673 0.9727 1.79058 1.3640 0.9739
1.50 0.98824 1.1537 0.9748 1.45695 1.2807 0.9696 1.83660 1.3850 0.9707
1.60 1.00842 1.1593 0.9726 1.48917 1.2934 0.9665 1.87976 1.4052 0.9674
1.80 1.04486 1.1695 0.9680 1.54769 1.3170 0.9601 1.95857 1.4436 0.9605
2.00 1.07687 1.1785 0.9635 1.59945 1.3384 0.9537 2.02876 1.4793 0.9534
2.20 1.10524 1.1864 0.9592 1.64557 1.3578 0.9472 2.09166 1.5125 0.9462
2.40 1.13056 1.1934 0.9549 1.68691 1.3754 0.9408 2.14834 1.5433 0.9389

3.00 1.19246 1.2102 0.9431 1.78866 1.4191 0.9224 2.28893 1.6227 0.9171
4.00 1.26459 1.2287 0.9264 1.90808 1.4698 0.8950 2.45564 1.7202 0.8830
5.00 1.31384 1.2402 0.9130 1.98981 1.5029 0.8721 2.57043 1.7870 0.8533
6.00 1.34955 1.2479 0.9021 2.04901 1.5253 0.8532 2.65366 1.8338 0.8281
8.00 1.39782 1.2570 0.8858 2.12864 1.5526 0.8244 2.76536 1.8920 0.7889

10.00 1.42887 1.2620 0.8743 2.17950 1.5677 0.8039 2.83630 1.9249 0.7607
20.00 1.49613 1.2699 0.8464 2.28805 1.5919 0.7542 2.98572 1.9781 0.6922
50.00 1.54001 1.2727 0.8260 2.35724 1.6002 0.7183 3.07884 1.9962 0.6434

100.00 1.55525 1.2731 0.8185 2.38090 1.6015 0.7052 3.11019 1.9990 0.6259
∞ 1.57080 1.2732 0.8106 2.40483 1.6020 0.6917 3.14159 2.0000 0.6079
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5.6 Transient heat conduction to a semi-infinite
region

Introduction

Bronowksi’s classic television series, The Ascent of Man [5.9], included
a brilliant reenactment of the ancient ceremonial procedure by which
the Japanese forged Samurai swords (see Fig. 5.13). The metal is heated,
folded, beaten, and formed, over and over, to create a blade of remarkable
toughness and flexibility. When the blade is formed to its final configu-
ration, a tapered sheath of clay is baked on the outside of it, so the cross
section is as shown in Fig. 5.13. The red-hot blade with the clay sheath is
then subjected to a rapid quenching, which cools the uninsulated cutting
edge quickly and the back part of the blade very slowly. The result is a
layer of case-hardening that is hardest at the edge and less hard at points
farther from the edge.

Figure 5.13 The ceremonial case-hardening of a Samurai sword.
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Figure 5.14 The initial cooling of a thin
sword blade. Prior to t = t4, the blade
might as well be infinitely thick insofar as
cooling is concerned.

The blade is then tough and ductile, so it will not break, but has a fine
hard outer shell that can be honed to sharpness. We need only look a
little way up the side of the clay sheath to find a cross section that was
thick enough to prevent the blade from experiencing the sudden effects
of the cooling quench. The success of the process actually relies on the
failure of the cooling to penetrate the clay very deeply in a short time.

Now we wish to ask: “How can we say whether or not the influence
of a heating or cooling process is restricted to the surface of a body?”
Or if we turn the question around: “Under what conditions can we view
the depth of a body as infinite with respect to the thickness of the region
that has felt the heat transfer process?”

Consider next the cooling process within the blade in the absence of
the clay retardant and when h is very large. Actually, our considerations
will apply initially to any finite body whose boundary suddenly changes
temperature. The temperature distribution, in this case, is sketched in
Fig. 5.14 for four sequential times. Only the fourth curve—that for which
t = t4—is noticeably influenced by the opposite wall. Up to that time,
the wall might as well have infinite depth.

Since any body subjected to a sudden change of temperature is in-
finitely large in comparison with the initial region of temperature change,
we must learn how to treat heat transfer in this period.

Solution aided by dimensional analysis

The calculation of the temperature distribution in a semi-infinite region
poses a difficulty in that we can impose a definite b.c. at only one position—
the exposed boundary. We shall be able to get around that difficulty in a
nice way with the help of dimensional analysis.
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When the one boundary of a semi-infinite region, initially at T = Ti,
is suddenly cooled (or heated) to a new temperature, T∞, as in Fig. 5.14,
the dimensional function equation is

T − T∞ = fn [t, x,α, (Ti − T∞)]

where there is no characteristic length or time. Since there are five vari-
ables in ◦C, s, and m, we should look for two dimensional groups.

T − T∞
Ti − T∞︸ ︷︷ ︸

Θ

= fn

(
x√
αt︸ ︷︷ ︸
ζ

)
(5.44)

The very important thing that we learn from this exercise in dimen-
sional analysis is that position and time collapse into one independent
variable. This means that the heat conduction equation and its b.c.s must
transform from a partial differential equation into a simpler ordinary dif-
ferential equation in the single variable, ζ = x/√αt. Thus, we transform
each side of

∂2T
∂x2

= 1
α
∂T
∂t

as follows, where we call Ti − T∞ ≡ ∆T :

∂T
∂t

= (Ti − T∞)
∂Θ
∂t

= ∆T ∂Θ
∂ζ
∂ζ
∂t

= ∆T
(
− x

2t
√
αt

)
∂Θ
∂ζ

;

∂T
∂x

= ∆T ∂Θ
∂ζ
∂ζ
∂x

= ∆T√
αt
∂Θ
∂ζ

;

and
∂2T
∂x2

= ∆T√
αt
∂2Θ
∂ζ2

∂ζ
∂x

= ∆T
αt

∂2Θ
∂ζ2

.

Substituting the first and last of these derivatives in the heat conduction
equation, we get

d2Θ
dζ2

= −ζ
2
dΘ
dζ

(5.45)

Notice that we changed from partial to total derivative notation, since
Θ now depends solely on ζ. The i.c. for eqn. (5.45) is

T(t = 0) = Ti or Θ (ζ →∞) = 1 (5.46)
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and the one known b.c. is

T(x = 0) = T∞ or Θ (ζ = 0) = 0 (5.47)

If we call dΘ/dζ ≡ χ, then eqn. (5.45) becomes the first-order equa-
tion

dχ
dζ

= −ζ
2
χ

which can be integrated once to get

χ ≡ dΘ
dζ

= C1 e−ζ
2/4 (5.48)

and we integrate this a second time to get

Θ = C1

∫ ζ
0
e−ζ

2/4 dζ + Θ(0)︸ ︷︷ ︸
= 0 according

to the b.c.

(5.49)

The b.c. is now satisfied, and we need only substitute eqn. (5.49) in the
i.c., eqn. (5.46), to solve for C1:

1 = C1

∫∞
0
e−ζ

2/4 dζ

The definite integral is given by integral tables as
√
π , so

C1 = 1√
π

Thus the solution to the problem of conduction in a semi-infinite region,
subject to a b.c. of the first kind is

Θ = 1√
π

∫ ζ
0
e−ζ

2/4 dζ = 2√
π

∫ ζ/2
0

e−s
2
ds ≡ erf(ζ/2) (5.50)

The second integral in eqn. (5.50), obtained by a change of variables,
is called the error function (erf). Its name arises from its relationship to
certain statistical problems related to the Gaussian distribution, which
describes random errors. In Table 5.3, we list values of the error function
and the complementary error function, erfc(x) ≡ 1 − erf(x). Equation
(5.50) is also plotted in Fig. 5.15.
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Table 5.3 Error function and complementary error function.

ζ
/
2 erf(ζ/2) erfc(ζ/2) ζ

/
2 erf(ζ/2) erfc(ζ/2)

0.00 0.00000 1.00000 1.10 0.88021 0.11980
0.05 0.05637 0.94363 1.20 0.91031 0.08969
0.10 0.11246 0.88754 1.30 0.93401 0.06599
0.15 0.16800 0.83200 1.40 0.95229 0.04771
0.20 0.22270 0.77730 1.50 0.96611 0.03389
0.30 0.32863 0.67137 1.60 0.97635 0.02365
0.40 0.42839 0.57161 1.70 0.98379 0.01621
0.50 0.52050 0.47950 1.80 0.98909 0.01091
0.60 0.60386 0.39614 1.8214 0.99000 0.01000
0.70 0.67780 0.32220 1.90 0.99279 0.00721
0.80 0.74210 0.25790 2.00 0.99532 0.00468
0.90 0.79691 0.20309 2.50 0.99959 0.00041
1.00 0.84270 0.15730 3.00 0.99998 0.00002

In Fig. 5.15 we see the early-time curves shown in Fig. 5.14 have col-
lapsed into a single curve. This was accomplished by the similarity trans-
formation, as we call it5: ζ/2 = x/2√αt. From the figure or from Table
5.3, we see that Θ ≥ 0.99 when

ζ
2
= x

2
√
αt

≥ 1.8214 or x ≥ δ99 ≡ 3.64
√
αt (5.51)

In other words, the local value of (T −T∞) is more than 99% of (Ti−T∞)
for positions in the slab beyond farther from the surface than δ99 =
3.64

√
αt.

Example 5.4

For what maximum time can a samurai sword be analyzed as a semi-
infinite region after it is quenched, if it has no clay coating andhexternal

� ∞?

Solution. First, we must guess the half-thickness of the sword (say,
3 mm) and its material (probably wrought iron with an average α

5The transformation is based upon the “similarity” of spatial an temporal changes
in this problem.
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Figure 5.15 Temperature distribution in
a semi-infinite region.

around 1.5 × 10−5 m2/s). The sword will be semi-infinite until δ99

equals the half-thickness. Inverting eqn. (5.51), we find

t �
δ2

99

3.642α
= (0.003 m)2

13.3(1.5)(10)−5 m2/s
= 0.045 s

Thus the quench would be felt at the centerline of the sword within
only 1/20 s. The thermal diffusivity of clay is smaller than that of steel
by a factor of about 30, so the quench time of the coated steel must
continue for over 1 s before the temperature of the steel is affected
at all, if the clay and the sword thicknesses are comparable.

Equation (5.51) provides an interesting foretaste of the notion of a
fluid boundary layer. In the context of Fig. 1.9 and Fig. 1.10, we ob-
serve that free stream flow around an object is disturbed in a thick layer
near the object because the fluid adheres to it. It turns out that the
thickness of this boundary layer of altered flow velocity increases in the
downstream direction. For flow over a flat plate, this thickness is ap-
proximately 4.92

√
νt, where t is the time required for an element of the

stream fluid to move from the leading edge of the plate to a point of inter-
est. This is quite similar to eqn. (5.51), except that the thermal diffusivity,
α, has been replaced by its counterpart, the kinematic viscosity, ν , and
the constant is a bit larger. The velocity profile will resemble Fig. 5.15.

If we repeated the problem with a boundary condition of the third
kind, we would expect to get Θ = Θ(Bi, ζ), except that there is no length,
L, upon which to build a Biot number. Therefore, we must replace L with√
αt, which has the dimension of length, so

Θ = Θ
(
ζ,
h
√
αt
k

)
≡ Θ(ζ, β) (5.52)
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The term β ≡ h√αt/k is like the product: Bi
√

Fo. The solution of this
problem (see, e.g., [5.6], §2.7) can be conveniently written in terms of the
complementary error function, erfc(x) ≡ 1− erf(x):

Θ = erf
ζ
2
+ exp

(
βζ + β2

)[
erfc

(
ζ
2
+ β

)]
(5.53)

This result is plotted in Fig. 5.16.

Example 5.5

Most of us have passed our finger through an 800◦C candle flame and
know that if we limit exposure to about 1/4 s we will not be burned.
Why not?

Solution. The short exposure to the flame causes only a very su-
perficial heating, so we consider the finger to be a semi-infinite re-
gion and go to eqn. (5.53) to calculate (Tburn−Tflame)/(Ti−Tflame). It
turns out that the burn threshold of human skin, Tburn, is about 65◦C.
(That is why 140◦F or 60◦C tap water is considered to be “scalding.”)
Therefore, we shall calculate how long it will take for the surface tem-
perature of the finger to rise from body temperature (37◦C) to 65◦C,
when it is protected by an assumed h � 100 W/m2K. We shall assume
that the thermal conductivity of human flesh equals that of its major
component—water—and that the thermal diffusivity is equal to the
known value for beef. Then

Θ = 65− 800
37− 800

= 0.963

βζ = hx
k
= 0 since x = 0 at the surface

β2 = h
2
αt
k2

= 1002(0.135× 10−6)t
0.632

= 0.0034(t s)

The situation is quite far into the corner of Fig. 5.16. We read β2 �
0.001, which corresponds with t � 0.3 s. For greater accuracy, we
must go to eqn. (5.53):

0.963 = erf 0︸ ︷︷ ︸
=0

+e0.0034t
[
erfc

(
0+

√
0.0034 t

)]



Figure 5.16 The cooling of a semi-infinite region by an envi-
ronment at T∞, through a heat transfer coefficient, h.
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By trial and error, we get t � 0.33 s. In fact, it can be shown that

Θ(ζ = 0, β) � 2√
π
(1− β) for β� 1

which can be solved directly for β = (1 − 0.963)
√
π/2 = 0.03279,

leading to the same answer.
Thus, it would require about 1/3 s to bring the skin to the burn

point.

Experiment 5.1

Immerse your hand in the subfreezing air in the freezer compartment
of your refrigerator. Next immerse your finger in a mixture of ice cubes
and water, but do not move it. Then, immerse your finger in a mixture of
ice cubes and water , swirling it around as you do so. Describe your initial
sensation in each case, and explain the differences in terms of Fig. 5.16.
What variable has changed from one case to another?

Heat transfer

Heat will be removed from the exposed surface of a semi-infinite region,
with a b.c. of either the first or the third kind, in accordance with Fourier’s
law:

q = −k ∂T
∂x

∣∣∣∣
x=0

= k(T∞ − Ti)√
αt

dΘ
dζ

∣∣∣∣∣
ζ=0

Differentiating Θ as given by eqn. (5.50), we obtain, for the b.c. of the
first kind,

q = k(T∞ − Ti)√
αt

(
1√
π
e−ζ

2/4
)
ζ=0

= k(T∞ − Ti)√
παt

(5.54)

Thus, q decreases with increasing time, as t−1/2. When the temperature
of the surface is first changed, the heat removal rate is enormous. Then
it drops off rapidly.

It often occurs that we suddenly apply a specified input heat flux,
qw , at the boundary of a semi-infinite region. In such a case, we can
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differentiate the heat diffusion equation with respect to x, so

α
∂3T
∂x3

= ∂2T
∂t∂x

When we substitute q = −k∂T/∂x in this, we obtain

α
∂2q
∂x2

= ∂q
∂t

with the b.c.’s:

q(x = 0, t > 0) = qw or
qw − q
qw

∣∣∣∣∣
x=0

= 0

q(x � 0, t = 0) = 0 or
qw − q
qw

∣∣∣∣∣
t=0

= 1

What we have done here is quite elegant. We have made the problem
of predicting the local heat flux q into exactly the same form as that of
predicting the local temperature in a semi-infinite region subjected to a
step change of wall temperature. Therefore, the solution must be the
same:

qw − q
qw

= erf
(
x

2
√
αt

)
. (5.55)

The temperature distribution is obtained by integrating Fourier’s law. At
the wall, for example: ∫ Tw

Ti
dT = −

∫ 0

∞
q
k
dx

where Ti = T(x →∞) and Tw = T(x = 0). Then

Tw = Ti +
qw
k

∫∞
0

erfc(x/2
√
αt)dx

This becomes

Tw = Ti +
qw
k

√
αt

∫∞
0

erfc(ζ/2)dζ︸ ︷︷ ︸
=2/

√
π

so

Tw(t) = Ti + 2
qw
k

√
αt
π

(5.56)
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Figure 5.17 A bubble growing in a
superheated liquid.

Example 5.6 Predicting the Growth Rate of a Vapor Bubble
in an Infinite Superheated Liquid

This prediction is relevant to a large variety of processes, ranging
from nuclear thermodynamics to the direct-contact heat exchange. It
was originally presented by Max Jakob and others in the early 1930s
(see, e.g., [5.10, Chap. I]). Jakob (pronounced Yah′-kob) was an im-
portant figure in heat transfer during the 1920s and 1930s. He left
Nazi Germany in 1936 to come to the United States. We encounter
his name again later.

Figure 5.17 shows how growth occurs. When a liquid is super-
heated to a temperature somewhat above its boiling point, a small
gas or vapor cavity in that liquid will grow. (That is what happens in
the superheated water at the bottom of a teakettle.)

This bubble grows into the surrounding liquid because its bound-
ary is kept at the saturation temperature, Tsat, by the near-equilibrium
coexistence of liquid and vapor. Therefore, heat must flow from the
superheated surroundings to the interface, where evaporation occurs.
So long as the layer of cooled liquid is thin, we should not suffer too
much error by using the one-dimensional semi-infinite region solu-
tion to predict the heat flow.
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Thus, we can write the energy balance at the bubble interface:(
−q W

m2

)(
4πR2 m2

)
︸ ︷︷ ︸

Q into bubble

=
(
ρghfg

J
m3

)(
dV
dt

m3

s

)
︸ ︷︷ ︸

rate of energy increase
of the bubble

and then substitute eqn. (5.54) for q and 4πR3/3 for the volume, V .
This gives

k(Tsup − Tsat)√
απt

= ρghfg
dR
dt

(5.57)

Integrating eqn. (5.57) from R = 0 at t = 0 up to R at t, we obtain
Jakob’s prediction:

R = 2√
π

k∆T
ρghfg

√
α

√
t (5.58)

This analysis was done without assuming the curved bubble interface
to be plane, 24 years after Jakob’s work, by Plesset and Zwick [5.11]. It
was verified in a more exact way after another 5 years by Scriven [5.12].
These calculations are more complicated, but they lead to a very similar
result:

R = 2
√

3√
π

k∆T
ρghfg

√
α

√
t =

√
3RJakob. (5.59)

Both predictions are compared with some of the data of Dergarabe-
dian [5.13] in Fig. 5.18. The data and the exact theory match almost
perfectly. The simple theory of Jakob et al. shows the correct depen-
dence on R on all its variables, but it shows growth rates that are low
by a factor of

√
3. This is because the expansion of the spherical bub-

ble causes a relative motion of liquid toward the bubble surface, which
helps to thin the region of thermal influence in the radial direction. Con-
sequently, the temperature gradient and heat transfer rate are higher
than in Jakob’s model, which neglected the liquid motion. Therefore, the
temperature profile flattens out more slowly than Jakob predicts, and the
bubble grows more rapidly.

Experiment 5.2

Touch various objects in the room around you: glass, wood, cork-
board, paper, steel, and gold or diamond, if available. Rank them in
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Figure 5.18 The growth of a vapor bubble—predictions and
measurements.

order of which feels coldest at the first instant of contact (see Problem
5.29).

The more advanced theory of heat conduction (see, e.g., [5.6]) shows
that if two semi-infinite regions at uniform temperatures T1 and T2 are
placed together suddenly, their interface temperature, Ts , is given by6

Ts − T2

T1 − T2
=

√
(kρcp)2√

(kρcp)1 +
√
(kρcp)2

If we identify one region with your body (T1 � 37◦C) and the other with
the object being touched (T2 � 20◦C), we can determine the temperature,
Ts , that the surface of your finger will reach upon contact. Compare
the ranking you obtain experimentally with the ranking given by this
equation.

Notice that your bloodstream and capillary system provide a heat

6For semi-infinite regions, initially at uniform temperatures, Ts does not vary with
time. For finite bodies, Ts will eventually change. A constant value of Ts means that
each of the two bodies independently behaves as a semi-infinite body whose surface
temperature has been changed to Ts at time zero. Consequently, our previous results—
eqns. (5.50), (5.51), and (5.54)—apply to each of these bodies while they may be treated
as semi-infinite. We need only replace T∞ by Ts in those equations.
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source in your finger, so the equation is valid only for a moment. Then
you start replacing heat lost to the objects. If you included a diamond
among the objects that you touched, you will notice that it warmed up
almost instantly. Most diamonds are quite small but are possessed of the
highest known value of α. Therefore, they can behave as a semi-infinite
region only for an instant, and they usually feel warm to the touch.

Conduction to a semi-infinite region with a harmonically
oscillating temperature at the boundary

Suppose that we approximate the annual variation of the ambient tem-
perature as sinusoidal and then ask what the influence of this variation
will be beneath the ground. We want to calculate T − T (where T is the
time-average surface temperature) as a function of: depth, x; thermal
diffusivity, α; frequency of oscillation, ω; amplitude of oscillation, ∆T ;
and time, t. There are six variables in K, m, and s, so the problem can be
represented in three dimensionless variables:

Θ ≡ T − T
∆T

; Ω ≡ωt; ξ ≡ x
√
ω
2α
.

We pose the problem as follows in these variables. The heat conduc-
tion equation is

1
2
∂2Θ
∂ξ2

= ∂Θ
∂Ω

(5.60)

and the b.c.’s are

Θ
∣∣∣
ξ=0

= cosωt and Θ
∣∣∣
ξ>0

= finite (5.61)

No i.c. is needed because, after the initial transient decays, the remaining
steady oscillation must be periodic.

The solution is given by Carslaw and Jaeger (see [5.6, §2.6] or work
Problem 5.16). It is

Θ (ξ,Ω) = e−ξ cos (Ω − ξ) (5.62)

This result is plotted in Fig. 5.19. It shows that the surface temperature
variation decays exponentially into the region and suffers a phase shift
as it does so.
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Figure 5.19 The temperature variation within a semi-infinite
region whose temperature varies harmonically at the boundary.

Example 5.7

How deep in the earth must we dig to find the temperature wave that
was launched by the coldest part of the last winter if it is now high
summer?

Solution. ω = 2π rad/yr, and Ω = ωt = 0 at the present. First,
we must find the depths at which the Ω = 0 curve reaches its lo-
cal extrema. (We pick the Ω = 0 curve because it gives the highest
temperature at t = 0.)

dΘ
dξ

∣∣∣∣∣
Ω=0

= −e−ξ cos(0− ξ)+ e−ξ sin(0− ξ) = 0

This gives

tan(0− ξ) = 1 so ξ = 3π
4
,
7π
4
, . . .

and the first minimum occurs where ξ = 3π/4 = 2.356, as we can see
in Fig. 5.19. Thus,

ξ = x
√
ω/2α = 2.356
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or, if we takeα = 0.139×10−6 m2/s (given in [5.14] for coarse, gravelly
earth),

x = 2.356

/√
2π

2
(
0.139× 10−6

) 1
365(24)(3600)

= 2.783 m

If we dug in the earth, we would find it growing older and colder until
it reached a maximum coldness at a depth of about 2.8 m. Farther
down, it would begin to warm up again, but not much. In midwinter
(Ω = π), the reverse would be true.

5.7 Steady multidimensional heat conduction

Introduction

The general equation for T(�r) during steady conduction in a region of
constant thermal conductivity, without heat sources, is called Laplace’s
equation:

∇2T = 0 (5.63)

It looks easier to solve than it is, since [recall eqn. (2.12) and eqn. (2.14)]
the Laplacian, ∇2T , is a sum of several second partial derivatives. We
solved one two-dimensional heat conduction problem in Example 4.1,
but this was not difficult because the boundary conditions were made to
order. Depending upon your mathematical background and the specific
problem, the analytical solution of multidimensional problems can be
anything from straightforward calculation to a considerable challenge.
The reader who wishes to study such analyses in depth should refer to
[5.6] or [5.15], where such calculations are discussed in detail.

Faced with a steady multidimensional problem, three routes are open
to us:

• Find out whether or not the analytical solution is already available
in a heat conduction text or in other published literature.

• Solve the problem.

(a) Analytically.

(b) Numerically.

• Obtain the solution graphically if the problem is two-dimensional.

It is to the last of these options that we give our attention next.
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Figure 5.20 The two-dimensional flow
of heat between two isothermal walls.

The flux plot

The method of flux plotting will solve all steady planar problems in which
all boundaries are held at either of two temperatures or are insulated.
With a little skill, it will provide accuracies of a few percent. This accuracy
is almost always greater than the accuracy with which the b.c.’s and k
can be specified; and it displays the physical sense of the problem very
clearly.

Figure 5.20 shows heat flowing from one isothermal wall to another
in a regime that does not conform to any convenient coordinate scheme.
We identify a series of channels, each which carries the same heat flow,
δQ W/m. We also include a set of equally spaced isotherms, δT apart,
between the walls. Since the heat fluxes in all channels are the same,∣∣∣δQ∣∣∣ = k δT

δn
δs (5.64)

Notice that if we arrange things so that δQ, δT , and k are the same
for flow through each rectangle in the flow field, then δs/δnmust be the
same for each rectangle. We therefore arbitrarily set the ratio equal to
unity, so all the elements appear as distorted squares.

The objective then is to sketch the isothermal lines and the adiabatic,7

7These are lines in the direction of heat flow. It immediately follows that there can
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or heat flow, lines which run perpendicular to them. This sketch is to be
done subject to two constraints

• Isothermal and adiabatic lines must intersect at right angles.

• They must subdivide the flow field into elements that are nearly
square—“nearly” because they have slightly curved sides.

Once the grid has been sketched, the temperature anywhere in the field
can be read directly from the sketch. And the heat flow per unit depth
into the paper is

Q W/m = NkδT δs
δn

= N
I
k∆T (5.65)

where N is the number of heat flow channels and I is the number of
temperature increments, ∆T/δT .

The first step in constructing a flux plot is to draw the boundaries of
the region accurately in ink, using either drafting software or a straight-
edge. The next is to obtain a soft pencil (such as a no. 2 grade) and a
soft eraser. We begin with an example that was executed nicely in the
influential Heat Transfer Notes [5.3] of the mid-twentieth century. This
example is shown in Fig. 5.21.

The particular example happens to have an axis of symmetry in it. We
immediately interpret this as an adiabatic boundary because heat cannot
cross it. The problem therefore reduces to the simpler one of sketching
lines in only one half of the area. We illustrate this process in four steps.
Notice the following steps and features in this plot:

• Begin by dividing the region, by sketching in either a single isother-
mal or adiabatic line.

• Fill in the lines perpendicular to the original line so as to make
squares. Allow the original line to move in such a way as to accom-
modate squares. This will always require some erasing. Therefore:

• Never make the original lines dark and firm.

• By successive subdividing of the squares, make the final grid. Do
not make the grid very fine. If you do, you will lose accuracy because
the lack of perpendicularity and squareness will be less evident to
the eye. Step IV in Fig. 5.21 is as fine a grid as should ever be made.

be no component of heat flow normal to them; they must be adiabatic.



Figure 5.21 The evolution of a flux plot.

238



§5.7 Steady multidimensional heat conduction 239

• If you have doubts about whether any large, ill-shaped regions are
correct, fill them in with an extra isotherm and adiabatic line to
be sure that they resolve into appropriate squares (see the dashed
lines in Fig. 5.21).

• Fill in the final grid, when you are sure of it, either in hard pencil or
pen, and erase any lingering background sketch lines.

• Your flow channels need not come out even. Notice that there is an
extra 1/7 of a channel in Fig. 5.21. This is simply counted as 1/7 of
a square in eqn. (5.65).

• Never allow isotherms or adiabatic lines to intersect themselves.

When the sketch is complete, we can return to eqn. (5.65) to compute
the heat flux. In this case

Q = N
I
k∆T = 2(6.14)

4
k∆T = 3.07k∆T

When the authors of [5.3] did this problem, they obtained N/I = 3.00—a
value only 2% below ours. This kind of agreement is typical when flux
plotting is done with care.

Figure 5.22 A flux plot with no axis of symmetry to guide
construction.
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One must be careful not to grasp at a false axis of symmetry. Figure
5.22 shows a shape similar to the one that we just treated, but with un-
equal legs. In this case, no lines must enter (or leave) the corners A and
B. The reason is that since there is no symmetry, we have no guidance
as to the direction of the lines at these corners. In particular, we know
that a line leaving A will no longer arrive at B.

Example 5.8

A structure consists of metal walls, 8 cm apart, with insulating ma-
terial (k = 0.12 W/m·K) between. Ribs 4 cm long protrude from one
wall every 14 cm. They can be assumed to stay at the temperature of
that wall. Find the heat flux through the wall if the first wall is at 40◦C
and the one with ribs is at 0◦C. Find the temperature in the middle of
the wall, 2 cm from a rib, as well.

Figure 5.23 Heat transfer through a wall with isothermal ribs.
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Solution. The flux plot for this configuration is shown in Fig. 5.23.
For a typical section, there are approximately 5.6 isothermal incre-
ments and 6.15 heat flow channels, so

Q = N
I
k∆T = 2(6.15)

5.6
(0.12)(40− 0) = 10.54 W/m

where the factor of 2 accounts for the fact that there are two halves
in the section. We deduce the temperature for the point of interest,
A, by a simple proportionality:

Tpoint A = 2.1
5.6
(40− 0) = 15◦C

The shape factor

A heat conduction shape factor S may be defined for steady problems
involving two isothermal surfaces as follows:

Q ≡ S k∆T . (5.66)

Thus far, every steady heat conduction problem we have done has taken
this form. For these situations, the heat flow always equals a function of
the geometric shape of the body multiplied by k∆T .

The shape factor can be obtained analytically, numerically, or through
flux plotting. For example, let us compare eqn. (5.65) and eqn. (5.66):

Q
W
m
= (S dimensionless)

(
k∆T

W
m

)
= N
I
k∆T (5.67)

This shows S to be dimensionless in a two-dimensional problem, but in
three dimensions S has units of meters:

Q W = (S m)
(
k∆T

W
m

)
. (5.68)

It also follows that the thermal resistance of a two-dimensional body is

Rt = 1
kS

where Q = ∆T
Rt

(5.69)

For a three-dimensional body, eqn. (5.69) is unchanged except that the
dimensions of Q and Rt differ.8

8Recall that we noted after eqn. (2.22) that the dimensions of Rt changed, depending
on whether or not Q was expressed in a unit-length basis.
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Figure 5.24 The shape factor for two similar bodies of differ-
ent size.

The virtue of the shape factor is that it summarizes a heat conduction
solution in a given configuration. Once S is known, it can be used again
and again. That S is nondimensional in two-dimensional configurations
means thatQ is independent of the size of the body. Thus, in Fig. 5.21, S
is always 3.07—regardless of the size of the figure—and in Example 5.8, S
is 2(6.15)/5.6 = 2.196, whether or not the wall is made larger or smaller.
When a body’s breadth is increased so as to increase Q, its thickness in
the direction of heat flow is also increased so as to decrease Q by the
same factor.

Example 5.9

Calculate the shape factor for a one-quarter section of a thick cylinder.

Solution. We already know Rt for a thick cylinder. It is given by
eqn. (2.22). From it we compute

Scyl =
1
kRt

= 2π
ln(ro/ri)

so on the case of a quarter-cylinder,

S = π
2 ln(ro/ri)

The quarter-cylinder is pictured in Fig. 5.24 for a radius ratio, ro/ri =
3, but for two different sizes. In both cases S = 1.43. (Note that the
same S is also given by the flux plot shown.)
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Figure 5.25 Heat transfer through a
thick, hollow sphere.

Example 5.10

Calculate S for a thick hollow sphere, as shown in Fig. 5.25.

Solution. The general solution of the heat diffusion equation in
spherical coordinates for purely radial heat flow is:

T = C1

r
+ C2

when T = fn(r only). The b.c.’s are

T(r = ri) = Ti and T(r = ro) = To
substituting the general solution in the b.c.’s we get

C1

ri
+ C2 = Ti and

C1

ro
+ C1 = To

Therefore,

C1 = Ti − Toro − ri
riro and C2 = Ti −

Ti − To
ro − ri

ro

Putting C1 and C2 in the general solution, and calling Ti − To ≡ ∆T ,
we get

T = Ti +∆T
[

riro
r(ro − ri)

− ro
ro − ri

]

Then

Q = −kA dT
dr

= 4π(riro)
ro − ri

k∆T

S = 4π(riro)
ro − ri

m

where S now has the dimensions of m.
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Table 5.4 includes a number of analytically derived shape factors for
use in calculating the heat flux in different configurations. Notice that
these results will not give local temperatures. To obtain that information,
one must solve the Laplace equation, ∇2T = 0, by one of the methods
listed at the beginning of this section. Notice, too, that this table is re-
stricted to bodies with isothermal and insulated boundaries.

In the two-dimensional cases, both a hot and a cold surface must be
present in order to have a steady-state solution; if only a single hot (or
cold) body is present, steady state is never reached. For example, a hot
isothermal cylinder in a cooler, infinite medium never reaches steady
state with that medium. Likewise, in situations 5, 6, and 7 in the table,
the medium far from the isothermal plane must also be at temperature
T2 in order for steady state to occur; otherwise the isothermal plane and
the medium below it would behave as an unsteady, semi-infinite body. Of
course, since no real medium is truly infinite, what this means in practice
is that steady state only occurs after the medium “at infinity” comes to
a temperature T2. Conversely, in three-dimensional situations (such as
4, 8, 12, and 13), a body can come to steady state with a surrounding
infinite or semi-infinite medium at a different temperature.

Example 5.11

A spherical heat source of 6 cm in diameter is buried 30 cm below the
surface of a very large box of soil and kept at 35◦C. The surface of
the soil is kept at 21◦C. If the steady heat transfer rate is 14 W, what
is the thermal conductivity of this sample of soil?

Solution.

Q = S k∆T =
(

4πR
1− R/2h

)
k∆T

where S is that for situation 7 in Table 5.4. Then

k = 14 W
(35− 21)K

1− (0.06/2)
/
2(0.3)

4π(0.06/2) m
= 2.545 W/m·K

Readers who desire a broader catalogue of shape factors should refer
to [5.16], [5.18], or [5.19].



Table 5.4 Conduction shape factors: Q = S k∆T .

Situation Shape factor, S Dimensions Source

1. Conduction through a slab A/L meter Example 2.2

2. Conduction through wall of a long
thick cylinder

2π
ln (ro/ri)

none Example 5.9

3. Conduction through a thick-walled
hollow sphere

4π (rori)
ro − ri

meter Example 5.10

4. The boundary of a spherical hole of
radius R conducting into an infinite
medium

4πR meter Problems 5.19
and 2.15

5. Cylinder of radius R and length L,
transferring heat to a parallel
isothermal plane; h� L

2πL
cosh−1 (h/R)

meter [5.16]

6. Same as item 5, but with L �→∞
(two-dimensional conduction)

2π
cosh−1 (h/R)

none [5.16]

7. An isothermal sphere of radius R
transfers heat to an isothermal
plane; R/h < 0.8 (see item 4)

4πR
1− R/2h meter [5.16, 5.17]
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Table 5.4 Conduction shape factors: Q = S k∆T (con’t).

Situation Shape factor, S Dimensions Source

8. An isothermal sphere of radius R,
near an insulated plane, transfers
heat to a semi-infinite medium at
T∞ (see items 4 and 7) 4πR

1+ R/2h meter [5.18]

9. Parallel cylinders exchange heat in
an infinite conducting medium

2π

cosh−1

(
L2 − R2

1 − R2
2

2R1R2

) none [5.6]

10. Same as 9, but with cylinders
widely spaced; L	 R1 and R2

2π

cosh−1
(
L

2R1

)
+ cosh−1

(
L

2R2

) none [5.16]

11. Cylinder of radius Ri surrounded
by eccentric cylinder of radius
Ro > Ri; centerlines a distance L
apart (see item 2)

2π

cosh−1

(
R2
o + R2

i − L2

2RoRi

)
none [5.6]

12. Isothermal disc of radius R on an
otherwise insulated plane conducts
heat into a semi-infinite medium at
T∞ below it

4R meter [5.6]

13. Isothermal ellipsoid of semimajor
axis b and semiminor axes a
conducts heat into an infinite
medium at T∞; b > a (see 4)

4πb
√

1− a2
/
b2

tanh−1
(√

1− a2
/
b2

) meter [5.16]
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Figure 5.26 Resistance vanishes where
two isothermal boundaries intersect.

The problem of locally vanishing resistance

Suppose that two different temperatures are specified on adjacent sides
of a square, as shown in Fig. 5.26. The shape factor in this case is

S = N
I
= ∞

4
= ∞

(It is futile to try and count channels beyond N � 10, but it is clear that
they multiply without limit in the lower left corner.) The problem is that
we have violated our rule that isotherms cannot intersect and have cre-
ated a 1/r singularity. If we actually tried to sustain such a situation,
the figure would be correct at some distance from the corner. However,
where the isotherms are close to one another, they will necessarily influ-
ence and distort one another in such a way as to avoid intersecting. And
S will never really be infinite, as it appears to be in the figure.

5.8 Transient multidimensional heat conduction—
The tactic of superposition

Consider the cooling of a stubby cylinder, such as the one shown in
Fig. 5.27a. The cylinder is initially at T = Ti, and it is suddenly sub-
jected to a common b.c. on all sides. It has a length 2L and a radius ro.
Finding the temperature field in this situation is inherently complicated.
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It requires solving the heat conduction equation for T = fn(r , z, t) with
b.c.’s of the first, second, or third kind.

However, Fig. 5.27a suggests that this can somehow be viewed as a
combination of an infinite cylinder and an infinite slab. It turns out that
the problem can be analyzed from that point of view.

If the body is subject to uniform b.c.’s of the first, second, or third
kind, and if it has a uniform initial temperature, then its temperature
response is simply the product of an infinite slab solution and an infinite
cylinder solution each having the same boundary and initial conditions.
For the case shown in Fig. 5.27a, if the cylinder begins convective cool-
ing into a medium at temperature T∞ at time t = 0, the dimensional
temperature response is

T (r , z, t)− T∞ =
[
Tslab(z, t)− T∞

]
×

[
Tcyl(r , t)− T∞

]
(5.70a)

Observe that the slab has as a characteristic length L, its half thickness,
while the cylinder has as its characteristic length R, its radius. In dimen-
sionless form, we may write eqn. (5.70a) as

Θ ≡ T(r , z, t)− T∞
Ti − T∞

=
[
Θinf slab(ξ, Fos,Bis)

] [
Θinf cyl(ρ, Foc,Bic)

]
(5.70b)

For the cylindrical component of the solution,

ρ = r
ro
, Foc = αtr2

o
, and Bic = hrok ,

while for the slab component of the solution

ξ = z
L
+ 1, Fos = αtL2

, and Bis = hLk .

The component solutions are none other than those discussed in Sec-
tions 5.3–5.5. The proof of the legitimacy of such product solutions is
given by Carlsaw and Jaeger [5.6, §1.15].

Figure 5.27b shows a point inside a one-eighth-infinite region, near the
corner. This case may be regarded as the product of three semi-infinite
bodies. To find the temperature at this point we write

Θ ≡ T(x1, x2, x3, t)− T∞
Ti − T∞

= [Θsemi(ζ1, β)] [Θsemi(ζ2, β)] [Θsemi(ζ3, β)]

(5.71)



Figure 5.27 Various solid bodies whose transient cooling can
be treated as the product of one-dimensional solutions.
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in whichΘsemi is either the semi-infinite body solution given by eqn. (5.53)
when convection is present at the boundary or the solution given by
eqn. (5.50) when the boundary temperature itself is changed at time zero.

Several other geometries can also be represented by product solu-
tions. Note that for of these solutions, the value of Θ at t = 0 is one for
each factor in the product.

Example 5.12

A very long 4 cm square iron rod at Ti = 100◦C is suddenly immersed
in a coolant at T∞ = 20◦C with h = 800 W/m2K. What is the temper-
ature on a line 1 cm from one side and 2 cm from the adjoining side,
after 10 s?

Solution. With reference to Fig. 5.27c, see that the bar may be
treated as the product of two slabs, each 4 cm thick. We first evaluate
Fo1 = Fo2 = αt/L2 = (0.0000226 m2/s)(10 s)

/
(0.04 m/2)2 = 0.565,

and Bi1 = Bi2 = hL
/
k = 800(0.04/2)/76 = 0.2105, and we then

write

Θ
[(
x
L

)
1
= 0,

(
x
L

)
2
= 1

2
, Fo1, Fo2,Bi−1

1 ,Bi−1
2

]

= Θ1

[(
x
L

)
1
= 0, Fo1 = 0.565, Bi−1

1 = 4.75
]

︸ ︷︷ ︸
= 0.93 from upper left-hand

side of Fig. 5.7

×Θ2

[(
x
L

)
2
= 1

2
, Fo2 = 0.565, Bi−1

2 = 4.75
]

︸ ︷︷ ︸
= 0.91 from interpolation

between lower lefthand side and
upper righthand side of Fig. 5.7

Thus, at the axial line of interest,

Θ = (0.93)(0.91) = 0.846

so

T − 20
100− 20

= 0.846 or T = 87.7◦C
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Product solutions can also be used to determine the mean tempera-
ture, Θ, and the total heat removal, Φ, from a multidimensional object.
For example, when two or three solutions (Θ1, Θ2, and perhaps Θ3) are
multiplied to obtain Θ, the corresponding mean temperature of the mul-
tidimensional object is simply the product of the one-dimensional mean
temperatures from eqn. (5.40)

Θ = Θ1 (Fo1,Bi1)×Θ2 (Fo2,Bi2) for two factors (5.72a)

Θ = Θ1 (Fo1,Bi1)×Θ2 (Fo2,Bi2)×Θ3 (Fo3,Bi3) for three factors.
(5.72b)

Since Φ = 1 − Θ, a simple calculation shows that Φ can found from Φ1,
Φ2, and Φ3 as follows:

Φ = Φ1 + Φ2 (1− Φ1) for two factors (5.73a)

Φ = Φ1 + Φ2 (1− Φ1)+ Φ3 (1− Φ2) (1− Φ1) for three factors. (5.73b)

Example 5.13

For the bar described in Example 5.12, what is the mean temperature
after 10 s and how much heat has been lost at that time?

Solution. For the Biot and Fourier numbers given in Example 5.12,
we find from Fig. 5.10a

Φ1 (Fo1 = 0.565,Bi1 = 0.2105) = 0.10

Φ2 (Fo2 = 0.565,Bi2 = 0.2105) = 0.10

and, with eqn. (5.73a),

Φ = Φ1 + Φ2 (1− Φ1) = 0.19

The mean temperature is

Θ = T − 20
100− 20

= 1− Φ = 0.81

so

T = 20+ 80(0.81) = 84.8◦C
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Problems

5.1 Rework Example 5.1, and replot the solution, with one change.
This time, insert the thermometer at zero time, at an initial
temperature < (Ti − bT ).

5.2 A body of known volume and surface area and temperature Ti
is suddenly immersed in a bath whose temperature is rising
as Tbath = Ti + (T0 − Ti)et/τ . Let us suppose that h is known,
that τ = 10ρcV/hA, and that t is measured from the time of
immersion. The Biot number of the body is small. Find the
temperature response of the body. Plot the response and the
bath temperature as a function of time up to t = 2τ . (Do not
use Laplace transform methods except, perhaps, as a check.)

5.3 A body of known volume and surface area is immersed in
a bath whose temperature is varying sinusoidally with a fre-
quencyω about an average value. The heat transfer coefficient
is known and the Biot number is small. Find the temperature
variation of the body after a long time has passed, and plot it
along with the bath temperature. Comment on any interesting
aspects of the solution.

A suggested program for solving this problem:

• Write the differential equation of response.

• To get the particular integral of the complete equation,
guess that T − Tmean = C1 cosωt + C2 sinωt. Substitute
this in the differential equation and find C1 and C2 values
that will make the resulting equation valid.

• Write the general solution of the complete equation. It
will have one unknown constant in it.

• Write any initial condition you wish—the simplest one you
can think of—and use it to get rid of the constant.

• Let the time be large and note which terms vanish from
the solution. Throw them away.

• Combine two trigonometric terms in the solution into a
term involving sin(ωt − β), where β = fn(ωT ) is the
phase lag of the body temperature.

5.4 A block of copper floats within a large region of well-stirred
mercury. The system is initially at a uniform temperature, Ti.
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There is a heat transfer coefficient, hm, on the inside of the thin
metal container of the mercury and another one, hc , between
the copper block and the mercury. The container is then sud-
denly subjected to a change in ambient temperature from Ti to
Ts < Ti. Predict the temperature response of the copper block,
neglecting the internal resistance of both the copper and the
mercury. Check your result by seeing that it fits both initial
conditions and that it gives the expected behavior at t →∞.

5.5 Sketch the electrical circuit that is analogous to the second-
order lumped capacity system treated in the context of Fig. 5.5
and explain it fully.

5.6 A one-inch diameter copper sphere with a thermocouple in
its center is mounted as shown in Fig. 5.28 and immersed in
water that is saturated at 211◦F. The figure shows the ther-
mocouple reading as a function of time during the quench-
ing process. If the Biot number is small, the center temper-
ature can be interpreted as the uniform temperature of the
sphere during the quench. First draw tangents to the curve,
and graphically differentiate it. Then use the resulting values
of dT/dt to construct a graph of the heat transfer coefficient
as a function of (Tsphere − Tsat). The result will give actual
values of h during boiling over the range of temperature dif-
ferences. Check to see whether or not the largest value of the
Biot number is too great to permit the use of lumped-capacity
methods.

5.7 A butt-welded 36-gage thermocouple is placed in a gas flow
whose temperature rises at the rate 20◦C/s. The thermocou-
ple steadily records a temperature 2.4◦C below the known gas
flow temperature. If ρc is 3800 kJ/m3K for the thermocouple
material, what is h on the thermocouple? [h = 1006 W/m2K.]

5.8 Check the point on Fig. 5.7 at Fo = 0.2, Bi = 10, and x/L = 0
analytically.

5.9 Prove that when Bi is large, eqn. (5.34) reduces to eqn. (5.33).

5.10 Check the point at Bi = 0.1 and Fo = 2.5 on the slab curve in
Fig. 5.10 analytically.
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Figure 5.28 Configuration and temperature response for
Problem 5.6

5.11 Sketch one of the curves in Fig. 5.7, 5.8, or 5.9 and identify:

• The region in which b.c.’s of the third kind can be replaced
with b.c.’s of the first kind.

• The region in which a lumped-capacity response can be
assumed.

• The region in which the solid can be viewed as a semi-
infinite region.

5.12 Water flows over a flat slab of Nichrome, 0.05 mm thick, which
serves as a resistance heater using AC power. The apparent
value of h is 2000 W/m2K. How much surface temperature
fluctuation will there be?
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5.13 Put Jakob’s bubble growth formula in dimensionless form, iden-
tifying a “Jakob number”, Ja ≡ cp(Tsup − Tsat)/hfg as one of
the groups. (Ja is the ratio of sensible heat to latent heat.) Be
certain that your nondimensionalization is consistent with the
Buckingham pi-theorem.

5.14 A 7 cm long vertical glass tube is filled with water that is uni-
formly at a temperature of T = 102◦C. The top is suddenly
opened to the air at 1 atm pressure. Plot the decrease of the
height of water in the tube by evaporation as a function of time
until the bottom of the tube has cooled by 0.05◦C.

5.15 A slab is cooled convectively on both sides from a known ini-
tial temperature. Compare the variation of surface tempera-
ture with time as given in Fig. 5.7 with that given by eqn. (5.53)
if Bi = 2. Discuss the meaning of your comparisons.

5.16 To obtain eqn. (5.62), assume a complex solution of the type
Θ = fn(ξ)exp(iΩ), where i ≡ √−1. This will assure that the
real part of your solution has the required periodicity and,
when you substitute it in eqn. (5.60), you will get an easy-to-
solve ordinary d.e. in fn(ξ).

5.17 A certain steel cylinder wall is subjected to a temperature os-
cillation that we approximate at T = 650◦C+ (300◦C) cosωt,
where the piston fires eight times per second. For stress de-
sign purposes, plot the amplitude of the temperature variation
in the steel as a function of depth. If the cylinder is 1 cm thick,
can we view it as having infinite depth?

5.18 A 40 cm diameter pipe at 75◦C is buried in a large block of
Portland cement. It runs parallel with a 15◦C isothermal sur-
face at a depth of 1 m. Plot the temperature distribution along
the line normal to the 15◦C surface that passes through the
center of the pipe. Compute the heat loss from the pipe both
graphically and analytically.

5.19 Derive shape factor 4 in Table 5.4.

5.20 Verify shape factor 9 in Table 5.4 with a flux plot. Use R1/R2 =
2 and R1/L = ½. (Be sure to start out with enough blank paper
surrounding the cylinders.)
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5.21 A copper block 1 in. thick and 3 in. square is held at 100◦F
on one 1 in. by 3 in. surface. The opposing 1 in. by 3 in.
surface is adiabatic for 2 in. and 90◦F for 1 inch. The re-
maining surfaces are adiabatic. Find the rate of heat transfer.
[Q = 36.8 W.]

5.22 Obtain the shape factor for any or all of the situations pic-
tured in Fig. 5.29a through j on pages 258–259. In each case,
present a well-drawn flux plot. [Sb � 1.03, Sc 	 Sd, Sg =
1.]

5.23 Two copper slabs, 3 cm thick and insulated on the outside, are
suddenly slapped tightly together. The one on the left side is
initially at 100◦C and the one on the right side at 0◦C. Deter-
mine the left-hand adiabatic boundary’s temperature after 2.3
s have elapsed. [Twall � 80.5◦C]

5.24 Estimate the time required to hard-cook an egg if:Eggs cook as their
proteins denature and
coagulate. The time to

cook depends on
whether a soft or hard

cooked egg desired.
Eggs may be cooked by

placing them (cold or
warm) into cold water

before heating starts or
by placing warm eggs

directly into simmering
water [5.20].

• The minor diameter is 45 mm.

• k for the egg is about the same as for water. No signif-
icant heat release or change of properties occurs during
cooking.

• h between the egg and the water is 140 W/m2K.

• The egg is put in boiling water when the egg is at a uni-
form temperature of 20◦C.

• The egg is done when the center reaches 75◦C.

5.25 Prove that T1 in Fig. 5.5 cannot oscillate.

5.26 Show that when isothermal and adiabatic lines are interchanged
in a two-dimenisonal body, the new shape factor is the inverse
of the original one.

5.27 A 0.5 cm diameter cylinder at 300◦C is suddenly immersed
in saturated water at 1 atm. If h = 10,000 W/m2K, find the
centerline and surface temperatures after 0.2 s:

a. If the cylinder is copper.

b. If the cylinder is Nichrome V. [Tsfc � 200◦C.]

c. If the cylinder is Nichrome V, obtain the most accurate
value of the temperatures after 0.04 s that you can.
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5.28 A large, flat electrical resistance strip heater is fastened to a
firebrick wall, unformly at 15◦C. When it is suddenly turned on,
it releases heat at the uniform rate of 4000 W/m2. Plot the tem-
perature of the brick immediately under the heater as a func-
tion of time if the other side of the heater is insulated. What
is the heat flux at a depth of 1 cm when the surface reaches
200◦C.

5.29 Do Experiment 5.2 and submit a report on the results.

5.30 An approximately spherical container, 2 cm in diameter, con-
taining electronic equipment is placed in wet mineral soil with
its center 2 m below the surface. The soil surface is kept at 0◦C.
What is the maximum rate at which energy can be released by
the equipment if the surface of the sphere is not to exceed
30◦C?

5.31 A semi-infinite slab of ice at −10◦C is exposed to air at 15◦C
through a heat transfer coefficient of 10 W/m2K. What is the
initial rate of melting of ice in kg/m2s? What is the asymp-
totic rate of melting? Describe the melting process in phys-
ical terms. (The latent heat of fusion of ice, hsf = 333,300
J/kg.)

5.32 One side of an insulating firebrick wall, 10 cm thick, initially
at 20◦C is exposed to 1000◦C flame through a heat transfer
coefficient of 230 W/m2K. How long will it be before the other
side is too hot to touch, say at 65◦C? (Estimate properties at
500◦C, and assume that h is quite low on the cool side.)

5.33 A particular lead bullet travels for 0.5 sec within a shock wave
that heats the air near the bullet to 300◦C. Approximate the
bullet as a cylinder 0.8 cm in diameter. What is its surface
temperature at impact if h = 600 W/m2K and if the bullet was
initially at 20◦C? What is its center temperature?

5.34 A loaf of bread is removed from an oven at 125◦C and set on
the (insulating) counter to cool in a kitchen at 25◦C. The loaf
is 30 cm long, 15 cm high, and 12 cm wide. If k = 0.05 W/m·K
and α = 5 × 10−7 m2/s for bread, and h = 10 W/m2K, when
will the hottest part of the loaf have cooled to 60◦C? [About 1
h 5 min.]



Figure 5.29 Configurations for Problem 5.22
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Figure 5.29 Configurations for Problem 5.22 (con’t)
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5.35 A lead cube, 50 cm on each side, is initially at 20◦C. The sur-
roundings are suddenly raised to 200◦C and h around the cube
is 272 W/m2K. Plot the cube temperature along a line from
the center to the middle of one face after 20 minutes have
elapsed.

5.36 A jet of clean water superheated to 150◦C issues from a 1/16
inch diameter sharp-edged orifice into air at 1 atm, moving at
27 m/s. The coefficient of contraction of the jet is 0.611. Evap-
oration at T = Tsat begins immediately on the outside of the jet.
Plot the centerline temperature of the jet and T(r/ro = 0.6) as
functions of distance from the orifice up to about 5 m. Neglect
any axial conduction and any dynamic interactions between
the jet and the air.

5.37 A 3 cm thick slab of aluminum (initially at 50◦C) is slapped
tightly against a 5 cm slab of copper (initially at 20◦C). The out-
sides are both insulated and the contact resistance is neglible.
What is the initial interfacial temperature? Estimate how long
the interface will keep its initial temperature.

5.38 A cylindrical underground gasoline tank, 2 m in diameter and
4 m long, is embedded in 10◦C soil with k = 0.8 W/m2K and
α = 1.3 × 10−6 m2/s. water at 27◦C is injected into the tank
to test it for leaks. It is well-stirred with a submerged ½ kW
pump. We observe the water level in a 10 cm I.D. transparent
standpipe and measure its rate of rise and fall. What rate of
change of height will occur after one hour if there is no leak-
age? Will the level rise or fall? Neglect thermal expansion and
deformation of the tank, which should be complete by the time
the tank is filled.

5.39 A 47◦C copper cylinder, 3 cm in diameter, is suddenly im-
mersed horizontally in water at 27◦C in a reduced gravity en-
vironment. Plot Tcyl as a function of time if g = 0.76 m/s2

and if h = [2.733+ 10.448(∆T ◦C)1/6 ]2 W/m2K. (Do it numer-
ically if you cannot integrate the resulting equation analyti-
cally.)

5.40 The mechanical engineers at the University of Utah end spring
semester by roasting a pig and having a picnic. The pig is
roughly cylindrical and about 26 cm in diameter. It is roasted
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over a propane flame, whose products have properties similar
to those of air, at 280◦C. The hot gas flows across the pig at
about 2 m/s. If the meat is cooked when it reaches 95◦C, and
if it is to be served at 2:00 pm, what time should cooking com-
mence? Assume Bi to be large, but note Problem 7.40. The pig
is initially at 25◦C.

5.41 People from cold northern climates know not to grasp metal
with their bare hands in subzero weather. A very slightly frosted
peice of, say, cast iron will stick to your hand like glue in, say,
−20◦C weather and might tear off patches of skin. Explain this
quantitatively.

5.42 A 4 cm diameter rod of type 304 stainless steel has a very
small hole down its center. The hole is clogged with wax that
has a melting point of 60◦C. The rod is at 20◦C. In an attempt
to free the hole, a workman swirls the end of the rod—and
about a meter of its length—in a tank of water at 80◦C. If h
is 688 W/m2K on both the end and the sides of the rod, plot
the depth of the melt front as a function of time up to say, 4
cm.

5.43 A cylindrical insulator contains a single, very thin electrical re-
sistor wire that runs along a line halfway between the center
and the outside. The wire liberates 480 W/m. The thermal con-
ductivity of the insulation is 3 W/m2K, and the outside perime-
ter is held at 20◦C. Develop a flux plot for the cross section,
considering carefully how the field should look in the neigh-
borhood of the point through which the wire passes. Evaluate
the temperature at the center of the insulation.

5.44 A long, 10 cm square copper bar is bounded by 260◦C gas flows
on two opposing sides. These flows impose heat transfer coef-
ficients of 46 W/m2K. The two intervening sides are cooled by
natural convection to water at 15◦C, with a heat transfer coef-
ficient of 30 W/m2K. What is the heat flow through the block
and the temperature at the center of the block? (This could
be a pretty complicated problem, but take the trouble to think
about Biot numbers before you begin.)

5.45 Lord Kelvin made an interesting estimate of the age of the earth
in 1864. He assumed that the earth originated as a mass of
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molten rock at 4144 K (7000◦F) and that it had been cooled
by outer space at 0 K ever since. To do this, he assumed
that Bi for the earth is very large and that cooling had thus
far penetrated through only a relatively thin (one-dimensional)
layer. Using αrock = 1.18 × 10−6 m/s2 and the measured sur-
face temperature gradient of the earth, 1

27
◦C/m, Find Kelvin’s

value of Earth’s age. (Kelvin’s result turns out to be much
less than the accepted value of 4 billion years. His calcula-
tion fails because internal heat generation by radioactive de-
cay of the material in the surface layer causes the surface
temperature gradient to be higher than it would otherwise
be.)

5.46 A pure aluminum cylinder, 4 cm diam. by 8 cm long, is ini-
tially at 300◦C. It is plunged into a liquid bath at 40◦C with
h = 500 W/m2K. Calculate the hottest and coldest tempera-
tures in the cylinder after one minute. Compare these results
with the lumped capacity calculation, and discuss the compar-
ison.

5.47 When Ivan cleaned his freezer, he accidentally put a large can
of frozen juice into the refrigerator. The juice can is 17.8 cm
tall and has an 8.9 cm I.D. The can was at −15◦C in the freezer,
but the refrigerator is at 4◦C. The can now lies on a shelf of
widely-spaced plastic rods, and air circulates freely over it.
Thermal interactions with the rods can be ignored. The ef-
fective heat transfer coefficient to the can (for simultaneous
convection and thermal radiation) is 8 W/m2K. The can has
a 1.0 mm thick cardboard skin with k = 0.2 W/m·K. The
frozen juice has approximately the same physical properties
as ice.

a. How important is the cardboard skin to the thermal re-
sponse of the juice? Justify your answer quantitatively.

b. If Ivan finds the can in the refrigerator 30 minutes after
putting it in, will the juice have begun to melt?

5.48 A cleaning crew accidentally switches off the heating system
in a warehouse one Friday night during the winter, just ahead
of the holidays. When the staff return two weeks later, the
warehouse is quite cold. In some sections, moisture that con-
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densed has formed a layer of ice 1 to 2 mm thick on the con-
crete floor. The concrete floor is 25 cm thick and sits on com-
pacted earth. Both the slab and the ground below it are now
at 20◦F. The building operator turns on the heating system,
quickly warming the air to 60◦F. If the heat transfer coefficient
between the air and the floor is 15 W/m2K, how long will it take
for the ice to start melting? Take αconcr = 7.0×10−7 m2/s and
kconcr = 1.4 W/m·K, and make justifiable approximations as
appropriate.

5.49 A thick wooden wall, initially at 25◦C, is made of fir. It is sud-
denly exposed to flames at 800◦C. If the effective heat transfer
coefficient for convection and radiation between the wall and
the flames is 80 W/m2K, how long will it take the wooden wall
to reach its ignition temperature of 430◦C?

5.50 Cold butter does not spread as well as warm butter. A small
tub of whipped butter bears a label suggesting that, before
use, it be allowed to warm up in room air for 30 minutes after
being removed from the refrigerator. The tub has a diame-
ter of 9.1 cm with a height of 5.6 cm, and the properties of
whipped butter are: k = 0.125 W/m·K, cp = 2520 J/kg·K, and
ρ = 620 kg/m3. Assume that the tub’s cardboard walls of-
fer negligible thermal resistance, that h = 10 W/m2K outside
the tub. Negligible heat is gained through the low conductivity
lip around the bottom of the tub. If the refrigerator temper-
ature was 5◦C and the tub has warmed for 30 minutes in a
room at 20◦C, find: the temperature in the center of the but-
ter tub, the temperature around the edge of the top surface of
the butter, and the total energy (in J) absorbed by the butter
tub.

5.51 A two-dimensional, 90◦ annular sector has an adiabatic inner
arc, r = ri, and an adiabatic outer arc, r = ro. The flat sur-
face along θ = 0 is isothermal at T1, and the flat surface along
θ = π/2 is isothermal at T2. Show that the shape factor is
S = (2/π) ln(ro/ri).

5.52 Suppose that T∞(t) is the time-dependent environmental tem-
perature surrounding a convectively-cooled, lumped object.
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a. Show that eqn. (1.20) leads to

d
dt
(T − T∞)+ (T − T∞)T

= −dT∞
dt

where the time constant T is defined as usual.

b. If the initial temperature of the object is Ti, use either
an integrating factor or a Laplace transform to show that
T(t) is

T(t) = T∞(t)+[Ti − T∞(0)] e−t/τ−e−t/τ
∫ t

0
es/τ

d
ds
T∞(s)ds.

5.53 Use the result of Problem 5.52 to verify eqn. (5.13).

5.54 Suppose that a thermocouple with an initial temperature Ti is
placed into an airflow for which its Bi � 1 and its time con-
stant is T . Suppose also that the temperature of the airflow
varies harmonically as T∞(t) = Ti +∆T cos (ωt).

a. Use the result of Problem 5.52 to find the temperature of
the thermocouple, Ttc(t), for t > 0. (If you wish, note

that the real part of eiωt is Re
{
eiωt

}
= cosωt and use

complex variables to do the integration.)

b. Approximate your result for t 	 T . Then determine the
value of Ttc(t) for ωT � 1 and for ωT 	 1. Explain
in physical terms the relevance of these limits to the fre-
quency response of the thermocouple.

c. If the thermocouple has a time constant of T = 0.1 sec,
estimate the highest frequency temperature variation that
it will measure accurately.

5.55 A particular tungsten lamp filament has a diameter of 100 µm
and sits inside a glass bulb filled with inert gas. The effec-
tive heat transfer coefficient for conduction and radiation is
750 W/m·K and the electrical current is at 60 Hz. How much
does the filament’s surface temperature fluctuate if the gas
temperature is 200◦C and the average wire temperature is 2900◦C?

5.56 The consider the parameter ψ in eqn. (5.41).

a. If the timescale for heat to diffuse a distance δ is δ2/α, ex-
plain the physical significance of ψ and the consequence
of large or small values of ψ.
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b. Show that the timescale for the thermal response of a wire
with Bi � 1 is ρcpδ/(2h). Then explain the meaning of
the new parameter φ = ρcpωδ/(4πh).

c. When Bi � 1, is φ or ψ a more relevant parameter?
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6. Laminar and turbulent boundary
layers

In cold weather, if the air is calm, we are not so much chilled as when there
is wind along with the cold; for in calm weather, our clothes and the air
entangled in them receive heat from our bodies; this heat. . .brings them
nearer than the surrounding air to the temperature of our skin. But in
windy weather, this heat is prevented. . .from accumulating; the cold air,
by its impulse. . .both cools our clothes faster and carries away the warm
air that was entangled in them.

notes on “The General Effects of Heat”, Joseph Black, c. 1790s

6.1 Some introductory ideas

Joseph Black’s perception about forced convection (above) represents a
very correct understanding of the way forced convective cooling works.
When cold air moves past a warm body, it constantly sweeps away warm
air that has become, as Black put it, “entangled” with the body and re-
places it with cold air. In this chapter we learn to form analytical descrip-
tions of these convective heating (or cooling) processes.

Our aim is to predict h and h, and it is clear that such predictions
must begin in the motion of fluid around the bodies that they heat or
cool. It is by predicting such motion that we will be able to find out how
much heat is removed during the replacement of hot fluid with cold, and
vice versa.

Flow boundary layer

Fluids flowing past solid bodies adhere to them, so a region of variable
velocity must be built up between the body and the free fluid stream, as

269
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Figure 6.1 A boundary layer of thickness δ.

indicated in Fig. 6.1. This region is called a boundary layer, which we will
often abbreviate as b.l. The b.l. has a thickness, δ. The boundary layer
thickness is arbitrarily defined as the distance from the wall at which
the flow velocity approaches to within 1% of u∞. The boundary layer
is normally very thin in comparison with the dimensions of the body
immersed in the flow.1

The first step that has to be taken before h can be predicted is the
mathematical description of the boundary layer. This description was
first made by Prandtl2 (see Fig. 6.2) and his students, starting in 1904,
and it depended upon simplifications that followed after he recognized
how thin the layer must be.

The dimensional functional equation for the boundary layer thickness
on a flat surface is

δ = fn(u∞, ρ, µ,x)

where x is the length along the surface and ρ and µ are the fluid density
in kg/m3 and the dynamic viscosity in kg/m·s. We have five variables in

1We qualify this remark when we treat the b.l. quantitatively.
2Prandtl was educated at the Technical University in Munich and finished his doctor-

ate there in 1900. He was given a chair in a new fluid mechanics institute at Göttingen
University in 1904—the same year that he presented his historic paper explaining the
boundary layer. His work at Göttingen, during the period up to Hitler’s regime, set the
course of modern fluid mechanics and aerodynamics and laid the foundations for the
analysis of heat convection.
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Figure 6.2 Ludwig Prandtl (1875–1953).
(Courtesy of Appl. Mech. Rev. [6.1])

kg, m, and s, so we anticipate two pi-groups:

δ
x
= fn(Rex) Rex ≡ ρu∞xµ = u∞x

ν
(6.1)

where ν is the kinematic viscosity µ/ρ and Rex is called the Reynolds
number. It characterizes the relative influences of inertial and viscous
forces in a fluid problem. The subscript on Re—x in this case—tells
what length it is based upon.

We discover shortly that the actual form of eqn. (6.1) for a flat surface,
where u∞ remains constant, is

δ
x
= 4.92√

Rex
(6.2)

which means that if the velocity is great or the viscosity is low, δ/x will
be relatively small. Heat transfer will be relatively high in such cases. If
the velocity is low, the b.l. will be relatively thick. A good deal of nearly
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Osborne Reynolds (1842 to 1912)
Reynolds was born in Ireland but he
taught at the University of Manchester.
He was a significant contributor to the
subject of fluid mechanics in the late
19th C. His original laminar-to-
turbulent flow transition experiment,
pictured below, was still being used as
a student experiment at the University
of Manchester in the 1970s.

Figure 6.3 Osborne Reynolds and his laminar–turbulent flow
transition experiment. (Detail from a portrait at the University
of Manchester.)

stagnant fluid will accumulate near the surface and be “entangled” with
the body, although in a different way than Black envisioned it to be.

The Reynolds number is named after Osborne Reynolds (see Fig. 6.3),
who discovered the laminar–turbulent transition during fluid flow in a
tube. He injected ink into a steady and undisturbed flow of water and
found that, beyond a certain average velocity, uav, the liquid streamline
marked with ink would become wobbly and then break up into increas-
ingly disorderly eddies, and it would finally be completely mixed into the
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Figure 6.4 Boundary layer on a long, flat surface with a sharp
leading edge.

water, as is suggested in the sketch.
To define the transition, we first note that (uav)crit, the transitional

value of the average velocity, must depend on the pipe diameter, D, on
µ, and on ρ—four variables in kg, m, and s. There is therefore only one
pi-group:

Recritical ≡
ρD(uav)crit

µ
(6.3)

The maximum Reynolds number for which fully developed laminar flow
in a pipe will always be stable, regardless of the level of background noise,
is 2100. In a reasonably careful experiment, laminar flow can be made
to persist up to Re = 10,000. With enormous care it can be increased
still another order of magnitude. But the value below which the flow will
always be laminar—the critical value of Re—is 2100.

Much the same sort of thing happens in a boundary layer. Figure 6.4
shows fluid flowing over a plate with a sharp leading edge. The flow is
laminar up to a transitional Reynolds number based on x:

Rexcritical =
u∞xcrit

ν
(6.4)

At larger values of x the b.l. exhibits sporadic vortexlike instabilities over
a fairly long range, and it finally settles into a fully turbulent b.l.
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For the boundary layer shown, Rexcritical = 3.5 × 105, but the actual
onset of turbulent behavior depends strongly on the amount of turbu-
lence in the flow over the plate, the precise shape of the leading edge,
the roughness of the wall, and the presence of acoustic or structural vi-
brations [6.2, §5.5]. On a flat plate, a boundary layer remains laminar
even for very large disturbances when Rex ≤ 6 × 104. With relatively
undisturbed conditions, transition occurs for Rex in the range of 3×105

to 5 × 105, and in very careful laboratory experiments, turbulent tran-
sition can be delayed until Rex ≈ 3 × 106 or so. Turbulent transition
is essentially always complete before Rex = 4 × 106 and usually much
earlier.

These specifications of the critical Re are restricted to flat surfaces. If
the surface is curved into the flow, as shown in Fig. 6.1, turbulence might
be triggered at greatly lowered values of Rex .

Thermal boundary layer

If the wall is at a temperature Tw , different from that of the free stream,
T∞, there is a thermal boundary layer thickness, δt—different from the
flow b.l. thickness, δ. A thermal b.l. is pictured in Fig. 6.5. Now, with ref-
erence to this picture, we equate the heat conducted away from the wall
by the fluid to the same heat transfer expressed in terms of a convective
heat transfer coefficient:

−kf
∂T
∂y

∣∣∣∣∣
y=0︸ ︷︷ ︸

conduction
into the fluid

= h(Tw − T∞) (6.5)

where kf is the conductivity of the fluid. Notice two things about this
result. In the first place, it is correct to express heat removal at the wall
using Fourier’s law of conduction, because there is no fluid motion in the
direction of q. The other point is that while eqn. (6.5) looks like a b.c. of
the third kind, it is not. This condition defines h within the fluid instead
of specifying it as known information on the boundary. Equation (6.5)
can be arranged in the form

∂
(
Tw − T
Tw − T∞

)
∂(y/L)

∣∣∣∣∣∣∣∣∣
y/L=0

= hL
kf

= NuL, the Nusselt number (6.5a)
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Figure 6.5 The thermal boundary layer
during the flow of cool fluid over a warm
plate.

where L is a characteristic dimension of the body under consideration—
the length of a plate, the diameter of a cylinder, or [if we write eqn. (6.5)
at a point of interest along a flat surface] Nux ≡ hx/kf . From Fig. 6.5 we
see immediately that the physical significance of Nu is given by

NuL = L
δ′t

(6.6)

In other words, the Nusselt number is inversely proportional to the thick-
ness of the thermal b.l.

The Nusselt number is named after Wilhelm Nusselt,3 whose work on
convective heat transfer was as fundamental as Prandtl’s was in analyzing
the related fluid dynamics (see Fig. 6.6).

We now turn to the detailed evaluation of h. And, as the preceding
remarks make very clear, this evaluation will have to start with a devel-
opment of the flow field in the boundary layer.

3Nusselt finished his doctorate in mechanical engineering at the Technical Univer-
sity in Munich in 1907. During an indefinite teaching appointment at Dresden (1913 to
1917) he made two of his most important contributions: He did the dimensional anal-
ysis of heat convection before he had access to Buckingham and Rayleigh’s work. In so
doing, he showed how to generalize limited data, and he set the pattern of subsequent
analysis. He also showed how to predict convective heat transfer during film conden-
sation. After moving about Germany and Switzerland from 1907 until 1925, he was
named to the important Chair of Theoretical Mechanics at Munich. During his early
years in this post, he made seminal contributions to heat exchanger design method-
ology. He held this position until 1952, during which time his, and Germany’s, great
influence in heat transfer and fluid mechanics waned. He was succeeded in the chair
by another of Germany’s heat transfer luminaries, Ernst Schmidt.
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Figure 6.6 Ernst Kraft Wilhelm Nusselt
(1882–1957). This photograph, provided
by his student, G. Lück, shows Nusselt at
the Kesselberg waterfall in 1912. He was
an avid mountain climber.

6.2 Laminar incompressible boundary layer on a flat
surface

We predict the boundary layer flow field by solving the equations that
express conservation of mass and momentum in the b.l. Thus, the first
order of business is to develop these equations.

Conservation of mass—The continuity equation

A two- or three-dimensional velocity field can be expressed in vectorial
form:

�u = �iu+ �jv + �kw
where u, v , andw are the x, y , and z components of velocity. Figure 6.7
shows a two-dimensional velocity flow field. If the flow is steady, the
paths of individual particles appear as steady streamlines. The stream-
lines can be expressed in terms of a stream function, ψ(x,y) = con-
stant, where each value of the constant identifies a separate streamline,
as shown in the figure.

The velocity, �u, is directed along the streamlines so that no flow can
cross them. Any pair of adjacent streamlines thus resembles a heat flow
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Figure 6.7 A steady, incompressible, two-dimensional flow
field represented by streamlines, or lines of constant ψ.

channel in a flux plot (Section 5.7); such channels are adiabatic—no heat
flow can cross them. Therefore, we write the equation for the conserva-
tion of mass by summing the inflow and outflow of mass on two faces of
a triangular element of unit depth, as shown in Fig. 6.7:

ρv dx − ρudy = 0 (6.7)

If the fluid is incompressible, so that ρ = constant along each streamline,
then

−v dx +udy = 0 (6.8)

But we can also differentiate the stream function along any streamline,
ψ(x,y) = constant, in Fig. 6.7:

dψ = ∂ψ
∂x

∣∣∣∣
y
dx + ∂ψ

∂y

∣∣∣∣∣
x
dy = 0 (6.9)

If we compare eqns. (6.8) and (6.9), we immediately see that the coef-
ficients of dx and dy must be the same, so

v = − ∂ψ
∂x

∣∣∣∣
y

and u = ∂ψ
∂y

∣∣∣∣∣
x

(6.10)
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Furthermore,

∂2ψ
∂y∂x

= ∂2ψ
∂x∂y

so it follows that

∂u
∂x

+ ∂v
∂y

= 0 (6.11)

This is called the two-dimensional continuity equation for incompress-
ible flow, because it expresses mathematically the fact that the flow is
continuous; it has no breaks in it. In three dimensions, the continuity
equation for an incompressible fluid is

∇ · �u = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0

Example 6.1

Fluid moves with a uniform velocity, u∞, in the x-direction. Find the
stream function and see if it gives plausible behavior (see Fig. 6.8).

Solution. u = u∞ and v = 0. Therefore, from eqns. (6.10)

u∞ = ∂ψ∂y

∣∣∣∣∣
x

and 0 = ∂ψ
∂x

∣∣∣∣
y

Integrating these equations, we get

ψ = u∞y + fn(x) and ψ = 0+ fn(y)

Comparing these equations, we get fn(x) = constant and fn(y) =
u∞y+ constant, so

ψ = u∞y + constant

This gives a series of equally spaced, horizontal streamlines, as we would
expect (see Fig. 6.8). We set the arbitrary constant equal to zero in the
figure.
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Figure 6.8 Streamlines in a uniform
horizontal flow field, ψ = u∞y .

Conservation of momentum

The momentum equation in a viscous flow is a complicated vectorial ex-
pression called the Navier-Stokes equation. Its derivation is carried out
in any advanced fluid mechanics text (see, e.g., [6.3, Chap. III]). We shall
offer a very restrictive derivation of the equation—one that applies only
to a two-dimensional incompressible b.l. flow, as shown in Fig. 6.9.

Here we see that shear stresses act upon any element such as to con-
tinuously distort and rotate it. In the lower part of the figure, one such
element is enlarged, so we can see the horizontal shear stresses4 and
the pressure forces that act upon it. They are shown as heavy arrows.
We also display, as lighter arrows, the momentum fluxes entering and
leaving the element.

Notice that both x- and y-directed momentum enters and leaves the
element. To understand this, one can envision a boxcar moving down
the railroad track with a man standing, facing its open door. A child
standing at a crossing throws him a baseball as the car passes. When
he catches the ball, its momentum will push him back, but a component
of momentum will also jar him toward the rear of the train, because
of the relative motion. Particles of fluid entering element A will likewise
influence its motion, with their x components of momentum carried into
the element by both components of flow.

The velocities must adjust themselves to satisfy the principle of con-
servation of linear momentum. Thus, we require that the sum of the
external forces in the x-direction, which act on the control volume, A,
must be balanced by the rate at which the control volume, A, forces x-

4The stress, τ , is often given two subscripts. The first one identifies the direction
normal to the plane on which it acts, and the second one identifies the line along which
it acts. Thus, if both subscripts are the same, the stress must act normal to a surface—it
must be a pressure or tension instead of a shear stress.
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Figure 6.9 Forces acting in a two-dimensional incompressible
boundary layer.

directed momentum out. The external forces, shown in Fig. 6.9, are(
τyx +

∂τyx
∂y

dy
)
dx − τyx dx + pdy −

(
p + ∂p

∂x
dx

)
dy

=
(
∂τyx
∂y

− ∂p
∂x

)
dx dy

The rate at which A loses x-directed momentum to its surroundings is(
ρu2 + ∂ρu

2

∂x
dx

)
dy − ρu2 dy +

[
u(ρv)+ ∂ρuv

∂y
dy

]
dx

− ρuv dx =
(
∂ρu2

∂x
+ ∂ρuv

∂y

)
dx dy
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We equate these results and obtain the basic statement of conserva-
tion of x-directed momentum for the b.l.:

∂τyx
∂y

dy dx − dp
dx
dx dy =

(
∂ρu2

∂x
+ ∂ρuv

∂y

)
dx dy

The shear stress in this result can be eliminated with the help of Newton’s
law of viscous shear:

τyx = µ ∂u∂y

so the momentum equation becomes

∂
∂y

(
µ
∂u
∂y

)
− dp
dx

=
(
∂ρu2

∂x
+ ∂ρuv

∂y

)

Finally, we remember that the analysis is limited to ρ � constant, and
we limit use of the equation to temperature ranges in which µ � constant.
Then

∂u2

∂x
+ ∂uv
∂y

= −1
ρ
dp
dx

+ ν ∂
2u
∂y2

(6.12)

This is one form of the steady, two-dimensional, incompressible bound-
ary layer momentum equation. Although we have taken ρ � constant, a
more complete derivation reveals that the result is valid for compress-
ible flow as well. If we multiply eqn. (6.11) by u and subtract the result
from the left-hand side of eqn. (6.12), we obtain a second form of the
momentum equation:

u
∂u
∂x

+ v ∂u
∂y

= −1
ρ
dp
dx

+ ν ∂
2u
∂y2

(6.13)

Equation (6.13) has a number of so-called boundary layer approxima-
tions built into it:

• |∂u/∂x| is generally �
∣∣∂u/∂y∣∣.

• v is generally � u.

• p ≠ fn(y)
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The Bernoulli equation for the free stream flow just above the bound-
ary layer where there is no viscous shear,

p
ρ
+ u

2∞
2
= constant

can be differentiated and used to eliminate the pressure gradient,

1
ρ
dp
dx

= −u∞du∞dx
so from eqn. (6.12):

∂u2

∂x
+ ∂(uv)

∂y
= u∞du∞dx + ν ∂

2u
∂y2

(6.14)

And if there is no pressure gradient in the flow—if p and u∞ are constant
as they would be for flow past a flat plate—then eqns. (6.12), (6.13), and
(6.14) become

∂u2

∂x
+ ∂(uv)

∂y
= u∂u

∂x
+ v ∂u

∂y
= ν ∂

2u
∂y2

(6.15)

Predicting the velocity profile in the laminar boundary layer
without a pressure gradient

Exact solution. Two strategies for solving eqn. (6.15) for the velocity
profile have long been widely used. The first was developed by Prandtl’s
student, H. Blasius,5 before World War I. It is exact, and we shall sketch it
only briefly. First we introduce the stream function, ψ, into eqn. (6.15).
This reduces the number of dependent variables from two (u and v) to
just one—namely,ψ. We do this by substituting eqns. (6.10) in eqn. (6.15):

∂ψ
∂y

∂2ψ
∂y∂x

− ∂ψ
∂x
∂2ψ
∂y2

= ν ∂
3ψ
∂y3

(6.16)

It turns out that eqn. (6.16) can be converted into an ordinary d.e.
with the following change of variables:

ψ(x,y) ≡ √u∞νx f(η) where η ≡
√
u∞
νx

y (6.17)

5Blasius achieved great fame for many accomplishments in fluid mechanics and then
gave it up. He is quoted as saying: “I decided that I had no gift for it; all of my ideas
came from Prandtl.”
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where f(η) is an as-yet-undertermined function. [This transformation is
rather similar to the one that we used to make an ordinary d.e. of the
heat conduction equation, between eqns. (5.44) and (5.45).] After some
manipulation of partial derivatives, this substitution gives (Problem 6.2)

f
d2f
dη2

+ 2
d3f
dη3

= 0 (6.18)

and

u
u∞

= df
dη

v√
u∞ν/x

= 1
2

(
η
df
dη

− f
)

(6.19)

The boundary conditions for this flow are

u(y = 0) = 0 or
df
dη

∣∣∣∣∣
η=0

= 0

u(y = ∞) = u∞ or
df
dη

∣∣∣∣∣
η=∞

= 1

v(y = 0) = 0 or f(η = 0) = 0




(6.20)

The solution of eqn. (6.18) subject to these b.c.’s must be done numeri-
cally. (See Problem 6.3.)

The solution of the Blasius problem is listed in Table 6.1, and the
dimensionless velocity components are plotted in Fig. 6.10. The u com-
ponent increases from zero at the wall (η = 0) to 99% of u∞ at η = 4.92.
Thus, the b.l. thickness is given by

4.92 = δ√
νx/u∞

or, as we anticipated earlier [eqn. (6.2)],

δ
x
= 4.92√

u∞x/ν
= 4.92√

Rex

Concept of similarity. The exact solution for u(x,y) reveals a most
useful fact—namely, that u can be expressed as a function of a single
variable, η:

u
u∞

= f ′(η) = f ′
(
y
√
u∞
νx

)
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Table 6.1 Exact velocity profile in the boundary layer on a flat
surface with no pressure gradient

y
√
u∞/νx u

/
u∞ v

√
x/νu∞

η f(η) f ′(η) (ηf ′ − f)/2 f ′′(η)

0.00 0.00000 0.00000 0.00000 0.33206
0.20 0.00664 0.06641 0.00332 0.33199
0.40 0.02656 0.13277 0.01322 0.33147
0.60 0.05974 0.19894 0.02981 0.33008
0.80 0.10611 0.26471 0.05283 0.32739
1.00 0.16557 0.32979 0.08211 0.32301
2.00 0.65003 0.62977 0.30476 0.26675
3.00 1.39682 0.84605 0.57067 0.16136
4.00 2.30576 0.95552 0.75816 0.06424
4.918 3.20169 0.99000 0.83344 0.01837
6.00 4.27964 0.99898 0.85712 0.00240
8.00 6.27923 1.00000− 0.86039 0.00001

This is called a similarity solution. To see why, we solve eqn. (6.2) for√
u∞
νx

= 4.92
δ(x)

and substitute this in f ′(y
√
u∞/νx). The result is

f ′ = u
u∞

= fn
[
y
δ(x)

]
(6.21)

The velocity profile thus has the same shape with respect to the b.l.
thickness at each x-station. We say, in other words, that the profile is
similar at each station. This is what we found to be true for conduction
into a semi-infinite region. In that case [recall eqn. (5.51)], x/

√
t always

had the same value at the outer limit of the thermally disturbed region.
Boundary layer similarity makes it especially easy to use a simple

approximate method for solving other b.l. problems. This method, called
the momentum integral method, is the subject of the next subsection.

Example 6.2

Air at 27◦C blows over a flat surface with a sharp leading edge at
1.5 m/s. Find the b.l. thickness 1

2 m from the leading edge. Check the
b.l. assumption that u	 v at the trailing edge.
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Figure 6.10 The dimensionless velocity components in a lam-
inar boundary layer.

Solution. The dynamic and kinematic viscosities are µ = 1.853 ×
10−5 kg/m·s and ν = 1.566× 10−5 m2/s. Then

Rex = u∞xν = 1.5(0.5)
1.566× 10−5

= 47,893

The Reynolds number is low enough to permit the use of a laminar
flow analysis. Then

δ = 4.92x√
Rex

= 4.92(0.5)√
47,893

= 0.01124 = 1.124 cm

(Remember that the b.l. analysis is only valid if δ/x� 1. In this case,
δ/x = 1.124/50 = 0.0225.) From Fig. 6.10 or Table 6.1, we observe
that v/u is greatest beyond the outside edge of the b.l, at large η.
Using data from Table 6.1 at η = 8, v at x = 0.5 m is

v = 0.8604√
x/νu∞

= 0.8604

√
(1.566)(10−5)(1.5)

(0.5)
= 0.00590 m/s
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or, since u/u∞ → 1 at large η

v
u
= v
u∞

= 0.00590
1.5

= 0.00393

Since v grows larger as x grows smaller, the condition v � u is not sat-
isfied very near the leading edge. There, the b.l. approximations them-
selves break down. We say more about this breakdown after eqn. (6.34).

Momentum integral method.6 A second method for solving the b.l. mo-
mentum equation is approximate and much easier to apply to a wide
range of problems than is any exact method of solution. The idea is this:
We are not really interested in the details of the velocity or temperature
profiles in the b.l., beyond learning their slopes at the wall. [These slopes
give us the shear stress at the wall, τw = µ(∂u/∂y)y=0, and the heat
flux at the wall, qw = −k(∂T/∂y)y=0.] Therefore, we integrate the b.l.
equations from the wall, y = 0, to the b.l. thickness, y = δ, to make ordi-
nary d.e.’s of them. It turns out that while these much simpler equations
do not reveal anything new about the temperature and velocity profiles,
they do give quite accurate explicit equations for τw and qw .

Let us see how this procedure works with the b.l. momentum equa-
tion. We integrate eqn. (6.15), as follows, for the case in which there is
no pressure gradient (dp/dx = 0):∫ δ

0

∂u2

∂x
dy +

∫ δ
0

∂(uv)
∂y

dy = ν
∫ δ

0

∂2u
∂y2

dy

At y = δ, u can be approximated as the free stream value, u∞, and other
quantities can also be evaluated at y = δ just as though y were infinite:

∫ δ
0

∂u2

∂x
dy +

[
(uv)y=δ︸ ︷︷ ︸
=u∞v∞

− (uv)y=0︸ ︷︷ ︸
=0

]
= ν




(
∂u
∂y

)
y=δ︸ ︷︷ ︸

�0

−
(
∂u
∂y

)
y=0




(6.22)

The continuity equation (6.11) can be integrated thus:

v∞ − vy=0︸ ︷︷ ︸
=0

= −
∫ δ

0

∂u
∂x
dy (6.23)

6This method was developed by Pohlhausen, von Kármán, and others. See the dis-
cussion in [6.3, Chap. XII].
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Multiplying this by u∞ gives

u∞v∞ = −
∫ δ

0

∂uu∞
∂x

dy

Using this result in eqn. (6.22), we obtain∫ δ
0

∂
∂x
[u(u−u∞)]dy = −ν ∂u∂y

∣∣∣∣∣
y=0

Finally, we note that µ(∂u/∂y)y=0 is the shear stress on the wall, τw =
τw (x only), so this becomes7

d
dx

∫ δ(x)
0

u(u−u∞)dy = −τwρ (6.24)

Equation (6.24) expresses the conservation of linear momentum in
integrated form. It shows that the rate of momentum loss caused by the
b.l. is balanced by the shear force on the wall. When we use it in place of
eqn. (6.15), we are said to be using an integral method. To make use of
eqn. (6.24), we first nondimensionalize it as follows:

d
dx

[
δ
∫ 1

0

u
u∞

(
u
u∞

− 1
)
d
(
y
δ

)]
= − ν

u∞δ
∂(u/u∞)
∂(y/δ)

∣∣∣∣∣
y=0

= −τw(x)
ρu2∞

≡ −1
2
Cf (x) (6.25)

where τw/(ρu2∞/2) is defined as the skin friction coefficient, Cf .
Equation (6.25) will be satisfied precisely by the exact solution (Prob-

lem 6.4) for u/u∞. However, the point is to use eqn. (6.25) to determine
u/u∞ when we do not already have an exact solution. To do this, we
recall that the exact solution exhibits similarity. First, we guess the so-
lution in the form of eqn. (6.21): u/u∞ = fn(y/δ). This guess is made
in such a way that it will fit the following four things that are true of the
velocity profile:

• u/u∞ = 0 at y/δ = 0

• u/u∞ � 1 at y/δ = 1

• d
(
u
u∞

)/
d
(
y
δ

)
� 0 at y/δ = 1




(6.26)

7The interchange of integration and differentiation is consistent with Leibnitz’s rule
for differentiation of an integral (Problem 6.14).
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• and from eqn. (6.15), we know that at y/δ = 0:

u
∂u
∂x︸︷︷︸
=0

+ v︸︷︷︸
=0

∂u
∂y

= ν ∂
2u
∂y2

∣∣∣∣∣
y=0

so

∂2(u/u∞)
∂(y/δ)2

∣∣∣∣∣
y/δ=0

= 0 (6.27)

If fn(y/δ) is written as a polynomial with four constants—a, b, c,
and d—in it,

u
u∞

= a+ by
δ
+ c

(
y
δ

)2

+ d
(
y
δ

)3

(6.28)

the four things that are known about the profile give

• 0 = a, which eliminates a immediately

• 1 = 0+ b + c + d

• 0 = b + 2c + 3d

• 0 = 2c, which eliminates c as well

Solving the middle two equations (above) for b and d, we obtain d = −1
2

and b = +3
2 , so

u
u∞

= 3
2
y
δ
− 1

2

(
y
δ

)3

(6.29)

This approximate velocity profile is compared with the exact Blasius
profile in Fig. 6.11, and they prove to be equal within a maximum error
of 8%. The only remaining problem is then that of calculating δ(x). To
do this, we substitute eqn. (6.29) in eqn. (6.25) and get, after integration
(see Problem 6.5):

− d
dx

[
δ
(

39
280

)]
= − ν

u∞δ

(
3
2

)
(6.30)

or

− 39
280

(
2
3

)(
1
2

)
dδ2

dx
= − ν

u∞
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Figure 6.11 Comparison of the third-degree polynomial fit
with the exact b.l. velocity profile. (Notice that the approximate
result has been forced to u/u∞ = 1 instead of 0.99 at y = δ.)

We integrate this using the b.c. δ2 = 0 at x = 0:

δ2 = 280
13

νx
u∞

or

δ
x
= 4.64√

Rex
(6.31)

This b.l. thickness is of the correct functional form, and the constant is
low by only 5.6%.

The skin friction coefficient

The fact that the function f(η) gives all information about flow in the b.l.
must be stressed. For example, the shear stress can be obtained from it
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by using Newton’s law of viscous shear:

τw =µ ∂u∂y

∣∣∣∣∣
y=0

= µ ∂
∂y

(
u∞f ′

)∣∣∣∣∣
y=0

= µu∞
(
df ′

dη
∂η
∂y

)
y=0

=µu∞
√
u∞√
νx

d2f
dη2

∣∣∣∣∣
η=0

But from Fig. 6.10 and Table 6.1, we see that (d2f/dη2)η=0 = 0.33206,
so

τw = 0.332
µu∞
x

√
Rex (6.32)

The integral method that we just outlined would have given 0.323 for the
constant in eqn. (6.32) instead of 0.332 (Problem 6.6).

The local skin friction coefficient, or local skin drag coefficient, is de-
fined as

Cf ≡
τw

ρu2∞/2
= 0.664√

Rex
(6.33)

The overall skin friction coefficient, Cf , is based on the average of the
shear stress, τw , over the length, L, of the plate

τw = 1
L

⌠⌡ L
0

τw dx = ρu
2∞

2L

⌠⌡ L
0

0.664√
u∞x/ν

dx = 1.328
ρu2∞

2

√
ν
u∞L

so

Cf =
1.328√

ReL
(6.34)

As a matter of interest, we note that Cf (x) approaches infinity at the
leading edge of the flat surface. This means that to stop the fluid that
first touches the front of the plate—dead in its tracks—would require
infinite shear stress right at that point. Nature, of course, will not allow
such a thing to happen; and it turns out that the boundary layer analysis
is not really valid right at the leading edge.

In fact, the range x � 5δ is too close to the edge to use this analysis
with accuracy because the b.l. is relatively thick and v is no longer � u.
With eqn. (6.2), this converts to

x > 600ν/u∞ for a boundary layer to exist
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or simply Rex � 600. In Example 6.2, this condition is satisfied for all
x’s greater than about 6 mm. This region is usually very small.

Example 6.3

Calculate the average shear stress and the overall friction coefficient
for the surface in Example 6.2 if its total length is L = 0.5 m. Com-
pare τw with τw at the trailing edge. At what point on the surface
does τw = τw? Finally, estimate what fraction of the surface can
legitimately be analyzed using boundary layer theory.

Solution.

Cf =
1.328√
Re0.5

= 1.328√
47,893

= 0.00607

and

τw =
ρu2∞

2
Cf =

1.183(1.5)2

2
0.00607 = 0.00808 kg/m·s2︸ ︷︷ ︸

N/m2

(This is very little drag. It amounts only to about 1/50 ounce/m2.)
At x = L,

τw(x)
τw

∣∣∣∣
x=L

= ρu
2∞/2

ρu2∞/2

[
0.664

/√
ReL

1.328
/√

ReL

]
= 1

2

and

τw(x) = τw where
0.664√
x

= 1.328√
0.5

so the local shear stress equals the average value, where

x = 1
8 m or

x
L
= 1

4

Thus, the shear stress, which is initially infinite, plummets to τw one-
fourth of the way from the leading edge and drops only to one-half
of τw in the remaining 75% of the plate.

The boundary layer assumptions fail when

x < 600
ν
u∞

= 600
1.566× 10−5

1.5
= 0.0063 m

Thus, the preceding analysis should be good over almost 99% of the
0.5 m length of the surface.
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6.3 The energy equation

Derivation

We now know how fluid moves in the b.l. Next, we must extend the heat
conduction equation to allow for the motion of the fluid. This equation
can be solved for the temperature field in the b.l., and its solution can be
used to calculate h, using Fourier’s law:

h = q
Tw − T∞

= − k
Tw − T∞

∂T
∂y

∣∣∣∣∣
y=0

(6.35)

To predict T , we extend the analysis done in Section 2.1. Figure 2.4
shows an element of a solid body subjected to a temperature field. We
allow this volume to contain fluid with a velocity field �u(x,y, z) in it, as
shown in Fig. 6.12. We make the following restrictive approximations:

• The fluid is incompressible. This means that ρ is constant for each
tiny parcel of fluid; we shall make the stronger approximation thatρ
is constant for all parcels of fluid. This approximation is reasonable
for most liquid flows and for gas flows moving at speeds less than
about 1/3 the speed of sound. We have seen in Sect. 6.2 that∇· �u =
0 for incompressible flow.

• Pressure variations in the flow are not large enough to affect ther-
modynamic properties. From thermodynamics, we know that the
specific internal energy, û, satisfies dû = cv dT + (∂û/∂p)T dp
and that the specific enthalpy, ĥ = û+p/ρ, satisfies dĥ = cp dT +
(∂ĥ/∂p)T dp. We shall neglect the dp contributions to both ener-
gies. We have already neglected the effect of p on ρ.

• Temperature variations in the flow are not large enough to change
k significantly; we have already neglected temperature effects on ρ.

• Potential and kinetic energy changes are negligible in comparison
to thermal energy changes. Since the kinetic energy of a fluid can
change owing to pressure gradients, this again means that pressure
variations may not be too large.

• The viscous stresses do not dissipate enough energy to warm the
fluid significantly.
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Figure 6.12 Control volume in a
heat-flow and fluid-flow field.

Just as we wrote eqn. (2.7) in Section 2.1, we now write conservation
of energy in the form

d
dt

∫
R
ρûdR︸ ︷︷ ︸

rate of internal
energy increase

in R

= −
∫
S
(ρĥ) �u · �ndS︸ ︷︷ ︸

rate of internal energy and
flow work out of R

−
∫
S
(−k∇T) · �ndS︸ ︷︷ ︸

net heat conduction
rate out of R

+
∫
R
q̇ dR︸ ︷︷ ︸

rate of heat
generation in R

(6.36)

In the third integral, �u · �ndS represents the volume flow rate through an
element dS of the control surface. The position of R is not changing in
time, so we can bring the time derivative inside the first integral. If we
then we call in Gauss’s theorem [eqn. (2.8)] to make volume integrals of
the surface integrals, eqn. (6.36) becomes∫

R

(
ρ
∂û
∂t
+ ρ∇ · (�u ĥ)−∇ · k∇T − q̇

)
dR = 0

Because the integrand must vanish identically (recall the footnote on
pg. 55 in Chap. 2) and because k depends weakly on T ,

ρ
(
∂û
∂t
+∇ · (�uĥ)︸ ︷︷ ︸

)
− k∇2T − q̇ = 0

= �u · ∇ĥ+ ĥ∇ · �u︸ ︷︷ ︸
= 0, by continuity
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Since we are neglecting pressure effects and density changes, we can
approximate changes in the internal energy by changes in the enthalpy:

dû = dĥ− d
(
p
ρ

)
≈ dĥ

Upon substituting dĥ ≈ cp dT , it follows that

ρcp

(
∂T
∂t︸ ︷︷ ︸

energy
storage

+ �u · ∇T︸ ︷︷ ︸
enthalpy

convection

)
= k∇2T︸ ︷︷ ︸

heat
conduction

+ q̇︸ ︷︷ ︸
heat

generation

(6.37)

This is the energy equation for an incompressible flow field. It is the
same as the corresponding equation (2.11) for a solid body, except for
the enthalpy transport, or convection, term, ρcp �u · ∇T .

Consider the term in parentheses in eqn. (6.37):

∂T
∂t
+ �u · ∇T = ∂T

∂t
+u∂T

∂x
+ v ∂T

∂y
+w∂T

∂z
≡ DT
Dt

(6.38)

DT/Dt is exactly the so-called material derivative, which is treated in
some detail in every fluid mechanics course. DT/Dt is the rate of change
of the temperature of a fluid particle as it moves in a flow field.

In a steady two-dimensional flow field without heat sources, eqn. (6.37)
takes the form

u
∂T
∂x

+ v ∂T
∂y

= α
(
∂2T
∂x2

+ ∂
2T
∂y2

)
(6.39)

Furthermore, in a b.l., ∂2T/∂x2 � ∂2T/∂y2, so the b.l. energy equation
is

u
∂T
∂x

+ v ∂T
∂y

= α∂
2T
∂y2

(6.40)

Heat and momentum transfer analogy

Consider a b.l. in a fluid of bulk temperature T∞, flowing over a flat sur-
face at temperature Tw . The momentum equation and its b.c.’s can be
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written as

u
∂
∂x

(
u
u∞

)
+ v ∂

∂y

(
u
u∞

)
= ν ∂2

∂y2

(
u
u∞

)



u
u∞

∣∣∣∣
y=0

= 0

u
u∞

∣∣∣∣
y=∞

= 1

∂
∂y

(
u
u∞

)
y=∞

= 0

(6.41)

And the energy equation (6.40) can be written in terms of a dimensionless
temperature, Θ = (T − Tw)/(T∞ − Tw), as

u
∂Θ
∂x

+ v ∂Θ
∂y

= α∂
2Θ
∂y2




Θ(y = 0) = 0

Θ(y = ∞) = 1

∂Θ
∂y

∣∣∣∣∣
y=∞

= 0

(6.42)

Notice that the problems of predicting u/u∞ and Θ are identical, with
one exception: eqn. (6.41) has ν in it whereas eqn. (6.42) has α. If ν and
α should happen to be equal, the temperature distribution in the b.l. is

for ν = α :
T − Tw
T∞ − Tw

= f ′(η) derivative of the Blasius function

since the two problems must have the same solution.
In this case, we can immediately calculate the heat transfer coefficient

using eqn. (6.5):

h = k
T∞ − Tw

∂(T − Tw)
∂y

∣∣∣∣∣
y=0

= k
(
∂f ′

∂η
∂η
∂y

)
η=0

but (∂2f/∂η2)η=0 = 0.33206 (see Fig. 6.10) and ∂η/∂y = √
u∞/νx, so

hx
k
= Nux = 0.33206

√
Rex for ν = α (6.43)

Normally, in using eqn. (6.43) or any other forced convection equation,
properties should be evaluated at the film temperature, Tf = (Tw+T∞)/2.
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Example 6.4

Water flows over a flat heater, 0.06 m in length, under high pressure
at 300◦C. The free stream velocity is 2 m/s and the heater is held at
315◦C. What is the average heat flux?

Solution. At Tf = (315+ 300)/2 = 307◦C:

ν = 0.124× 10−6 m2/s

α = 0.124× 10−6m2/s

Therefore, ν = α and we can use eqn. (6.43). First we must calculate
the average heat flux, q. To do this, we call Tw − T∞ ≡ ∆T and write

q = 1
L

∫ L
0
h∆T dx = k∆T

L

∫ L
0

1
x

Nux dx = 0.332
k∆T
L

∫ L
0

√
u∞
νx

dx

so

q = 2∆T
(

0.332
k
L
√

ReL

)
= 2qx=L

Thus,

h = 2hx=L = 0.664
0.520
0.06

√
2(0.06)

0.124× 10−6
= 5661 W/m2K

and

q = h∆T = 5661(315− 300) = 84,915 W/m2 = 84.9 kW/m2

Equation (6.43) is clearly a very restrictive heat transfer solution.
We now want to find how to evaluate q when ν does not equal α.

6.4 The Prandtl number and the boundary layer
thicknesses

Dimensional analysis

We must now look more closely at the implications of the similarity be-
tween the velocity and thermal boundary layers. We first ask what dimen-
sional analysis reveals about heat transfer in the laminar b.l. We know
by now that the dimensional functional equation for the heat transfer
coefficient, h, should be

h = fn(k,x, ρ, cp, µ,u∞)
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We have excluded Tw − T∞ on the basis of Newton’s original hypothesis,
borne out in eqn. (6.43), that h ≠ fn(∆T) during forced convection. This
gives seven variables in J/K, m, kg, and s, or 7 − 4 = 3 pi-groups. Note
that, as we indicated at the end of Section 4.3, there is no conversion
between heat and work so it we should not regard J as N·m, but rather
as a separate unit. The dimensionless groups are then:

Π1 = hxk ≡ Nux Π2 = ρu∞xµ ≡ Rex

and a new group:

Π3 =
µcp
k

≡ ν
α
≡ Pr, Prandtl number

Thus,

Nux = fn(Rex,Pr) (6.44)

in forced convection flow situations. Equation (6.43) was developed for
the case in which ν = α or Pr = 1; therefore, it is of the same form as
eqn. (6.44), although it does not display the Pr dependence of Nux .

To better understand the physical meaning of the Prandtl number, let
us briefly consider how to predict its value in a gas.

Kinetic theory of µ and k

Figure 6.13 shows a small neighborhood of a point of interest in a gas
in which there exists a velocity or temperature gradient. We identify the
mean free path of molecules between collisions as � and indicate planes
at y ± �/2 which bracket the average travel of those molecules found at
plane y . (Actually, these planes should be located closer to y ± � for a
variety of subtle reasons. This and other fine points of these arguments
are explained in detail in [6.4].)

The shear stress, τyx , can be expressed as the change of momentum
of all molecules that pass through the y-plane of interest, per unit area:

τyx =
(

mass flux of molecules
from y − �/2 to y + �/2

)
·
(

change in fluid
velocity

)

The mass flux from top to bottom is proportional to ρC , where C , the
mean molecular speed of the stationary fluid, is	 u or v in incompress-
ible flow. Thus,

τyx = C1

(
ρC

)(
�
du
dy

)
N

m2
and this also equals µ

du
dy

(6.45)
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Figure 6.13 Momentum and energy transfer in a gas with a
velocity or temperature gradient.

By the same token,

qy = C2

(
ρcvC

)(
�
dT
dy

)
and this also equals − kdT

dy

where cv is the specific heat at constant volume. The constants, C1 and
C2, are on the order of unity. It follows immediately that

µ = C1

(
ρC�

)
so ν = C1

(
C�

)
and

k = C2

(
ρcvC�

)
so α = C2

C�
γ

where γ ≡ cp/cv is approximately a constant on the order of unity for a
given gas. Thus, for a gas,

Pr ≡ ν
α
= a constant on the order of unity

More detailed use of the kinetic theory of gases reveals more specific
information as to the value of the Prandtl number, and these points are
borne out reasonably well experimentally, as you can determine from
Appendix A:
• For simple monatomic gases, Pr = 2

3 .
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• For diatomic gases in which vibration is unexcited (such as N2 and
O2 at room temperature), Pr = 5

7 .

• As the complexity of gas molecules increases, Pr approaches an
upper value of unity.

• Pr is most insensitive to temperature in gases made up of the sim-
plest molecules because their structure is least responsive to tem-
perature changes.

In a liquid, the physical mechanisms of molecular momentum and
energy transport are much more complicated and Pr can be far from
unity. For example (cf. Table A.3):

• For liquids composed of fairly simple molecules, excluding metals,
Pr is of the order of magnitude of 1 to 10.

• For liquid metals, Pr is of the order of magnitude of 10−2 or less.

• If the molecular structure of a liquid is very complex, Pr might reach
values on the order of 105. This is true of oils made of long-chain
hydrocarbons, for example.

Thus, while Pr can vary over almost eight orders of magnitude in
common fluids, it is still the result of analogous mechanisms of heat and
momentum transfer. The numerical values of Pr, as well as the analogy
itself, have their origins in the same basic process of molecular transport.

Boundary layer thicknesses, δ and δt , and the Prandtl number

We have seen that the exact solution of the b.l. equations gives δ = δt
for Pr = 1, and it gives dimensionless velocity and temperature profiles
that are identical on a flat surface. Two other things should be easy to
see:
• When Pr > 1, δ > δt , and when Pr < 1, δ < δt . This is true because

high viscosity leads to a thick velocity b.l., and a high thermal dif-
fusivity should give a thick thermal b.l.

• Since the exact governing equations (6.41) and (6.42) are identical
for either b.l., except for the appearance of α in one and ν in the
other, we expect that

δt
δ
= fn

(
ν
α

only
)
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Therefore, we can combine these two observations, defining δt/δ ≡ φ,
and get

φ = monotonically decreasing function of Pr only (6.46)

The exact solution of the thermal b.l. equations proves this to be precisely
true.

The fact that φ is independent of x will greatly simplify the use of
the integral method. We shall establish the correct form of eqn. (6.46) in
the following section.

6.5 Heat transfer coefficient for laminar,
incompressible flow over a flat surface

The integral method for solving the energy equation

Integrating the b.l. energy equation in the same way as the momentum
equation gives∫ δt

0
u
∂T
∂x
dy +

∫ δt
0
v
∂T
∂y
dy = α

∫ δt
0

∂2T
∂y2

dy

And the chain rule of differentiation in the form xdy ≡ dxy − ydx,
reduces this to∫ δt

0

∂uT
∂x

dy −
∫ δt

0
T
∂u
∂x
dy +

∫ δt
0

∂vT
∂y

dy −
∫ δt

0
T
∂v
∂y
dy = α∂T

∂y

∣∣∣∣∣
δt

0

or∫ δt
0

∂uT
∂x

dy + vT
∣∣∣∣δt

0︸ ︷︷ ︸
=T∞ v|y=δt−0

−
∫ δt

0
T
(
∂u
∂x

+ ∂v
∂y︸ ︷︷ ︸

= 0, eqn. (6.11)

)
dy

= α

 ∂T
∂y

∣∣∣∣∣
δt︸ ︷︷ ︸

=0

− ∂T
∂y

∣∣∣∣∣
0




We evaluate v at y = δt , using the continuity equation in the form of
eqn. (6.23), in the preceeding expression:∫ δt

0

∂
∂x
u(T − T∞)dy = 1

ρcp

(
−k ∂T

∂y

∣∣∣∣∣
0

)
= fn(x only)



§6.5 Heat transfer coefficient for laminar, incompressible flow over a flat surface 301

or

d
dx

∫ δt
0
u(T − T∞)dy = qw

ρcp
(6.47)

Equation (6.47) expresses the conservation of thermal energy in inte-
grated form. It shows that the rate thermal energy is carried away by
the b.l. flow is matched by the rate heat is transferred in at the wall.

Predicting the temperature distribution in the laminar thermal
boundary layer

We can continue to paraphrase the development of the velocity profile in
the laminar b.l., from the preceding section. We previously guessed the
velocity profile in such a way as to make it match what we know to be
true. We also know certain things to be true of the temperature profile.
The temperatures at the wall and at the outer edge of the b.l. are known.
Furthermore, the temperature distribution should be smooth as it blends
into T∞ for y > δt . This condition is imposed by setting dT/dy equal
to zero at y = δt . A fourth condition is obtained by writing eqn. (6.40)
at the wall, where u = v = 0. This gives (∂2T/∂y2)y=0 = 0. These four
conditions take the following dimensionless form:

T − T∞
Tw − T∞

= 1 at y/δt = 0

T − T∞
Tw − T∞

= 0 at y/δt = 1

d[(T − T∞)/(Tw − T∞)]
d(y/δt)

= 0 at y/δt = 1

∂2[(T − T∞)/(Tw − T∞)]
∂(y/δt)2

= 0 at y/δt = 0




(6.48)

Equations (6.48) provide enough information to approximate the tem-
perature profile with a cubic function.

T − T∞
Tw − T∞

= a+ b y
δt
+ c

(
y
δt

)2

+ d
(
y
δt

)3

(6.49)

Substituting eqn. (6.49) into eqns. (6.48), we get

a = 1 − 1 = b + c + d 0 = b + 2c + 3d 0 = 2c
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which gives

a = 1 b = −3
2 c = 0 d = 1

2

so the temperature profile is

T − T∞
Tw − T∞

= 1− 3
2
y
δt
+ 1

2

(
y
δt

)3

(6.50)

Predicting the heat flux in the laminar boundary layer

Equation (6.47) contains an as-yet-unknown quantity—the thermal b.l.
thickness, δt . To calculate δt , we substitute the temperature profile,
eqn. (6.50), and the velocity profile, eqn. (6.29), in the integral form of
the energy equation, (6.47), which we first express as

u∞(Tw − T∞) ddx

[
δt

∫ 1

0

u
u∞

(
T − T∞
Tw − T∞

)
d
(
y
δt

)]

= −α(Tw − T∞)
δt

d
(
T − T∞
Tw − T∞

)
d(y/δt)

∣∣∣∣∣∣∣∣∣
y/δt=0

(6.51)

There is no problem in completing this integration if δt < δ. However,
if δt > δ, there will be a problem because the equationu/u∞ = 1, instead
of eqn. (6.29), defines the velocity beyond y = δ. Let us proceed for the
moment in the hope that the requirement that δt � δ will be satisfied.
Introducing φ ≡ δt/δ in eqn. (6.51) and calling y/δt ≡ η, we get

δt
d
dx


δt

∫ 1

0

(
3
2
ηφ− 1

2
η3φ3

)(
1− 3

2
η+ 1

2
η3

)
dη︸ ︷︷ ︸

= 3
20φ−

3
280φ3


 = 3α

2u∞
(6.52)

Since φ is a constant for any Pr [recall eqn. (6.46)], we separate variables:

2δt
dδt
dx

= dδ
2
t

dx
= 3α/u∞(

3
20
φ− 3

280
φ3

)
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Figure 6.14 The exact and approximate Prandtl number influ-
ence on the ratio of b.l. thicknesses.

Integrating this result with respect to x and taking δt = 0 at x = 0, we
get

δt =
√

3αx
u∞

/√
3

20
φ− 3

280
φ3 (6.53)

But δ = 4.64x/
√

Rex in the integral formulation [eqn. (6.31)]. We divide
by this value of δ to be consistent and obtain

δt
δ
≡ φ = 0.9638

/√
Prφ

(
1−φ2/14

)
Rearranging this gives

δt
δ
= 1

1.025 Pr1/3
[
1− (δ2

t /14δ2)
]1/3 �

1

1.025 Pr1/3 (6.54)

The unapproximated result above is shown in Fig. 6.14, along with the
results of Pohlhausen’s precise calculation (see Schlichting [6.3, Chap. 14]).
It turns out that the exact ratio, δ/δt , is represented with great accuracy
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by

δt
δ
= Pr−1/3 0.6 � Pr � 50 (6.55)

So the integral method is accurate within 2.5% in the Prandtl number
range indicated.

Notice that Fig. 6.14 is terminated for Pr less than 0.6. The reason for
doing this is that the lowest Pr for pure gases is 0.67, and the next lower
values of Pr are on the order of 10−2 for liquid metals. For Pr = 0.67,
δt/δ = 1.143, which violates the assumption that δt � δ, but only by a
small margin. For, say, mercury at 100◦C, Pr = 0.0162 and δt/δ = 3.952,
which violates the condition by an intolerable margin. We therefore have
a theory that is acceptable for gases and all liquids except the metallic
ones.

The final step in predicting the heat flux is to write Fourier’s law:

q = −k ∂T
∂y

∣∣∣∣∣
y=0

= −k Tw − T∞
δt

∂
(
T − T∞
Tw − T∞

)
∂(y/δt)

∣∣∣∣∣∣∣∣∣
y/δt=0

(6.56)

Using the dimensionless temperature distribution given by eqn. (6.50),
we get

q = +k Tw − T∞
δt

3
2

or

h ≡ q
∆T

= 3k
2δt

= 3
2
k
δ
δ
δt

(6.57)

and substituting eqns. (6.54) and (6.31) for δ/δt and δ, we obtain

Nux ≡ hxk = 3
2

√
Rex

4.64
1.025 Pr1/3 = 0.3314 Re1/2

x Pr1/3

Considering the various approximations, this is very close to the result
of the exact calculation, which turns out to be

Nux = 0.332 Re1/2
x Pr1/3 0.6 � Pr � 50 (6.58)

This expression gives very accurate results under the assumptions on
which it is based: a laminar two-dimensional b.l. on a flat surface, with
Tw = constant and 0.6 � Pr � 50.
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Figure 6.15 A laminar b.l. in a low-Pr liquid. The velocity b.l.
is so thin that u � u∞ in the thermal b.l.

Some other laminar boundary layer heat transfer equations

High Pr. At high Pr, eqn. (6.58) is still close to correct. The exact solution
is

Nux �→ 0.339 Re1/2
x Pr1/3, Pr �→∞ (6.59)

Low Pr. Figure 6.15 shows a low-Pr liquid flowing over a flat plate. In
this caseδt 	 δ, and for all practical purposesu = u∞ everywhere within
the thermal b.l. It is as though the no-slip condition [u(y = 0) = 0] and
the influence of viscosity were removed from the problem. Thus, the
dimensional functional equation for h becomes

h = fn
(
x,k, ρcp,u∞

)
(6.60)

There are five variables in J/K, m, and s, so there are only two pi-groups.
They are

Nux = hxk and Π2 ≡ RexPr = u∞x
α

The new group, Π2, is called a Péclét number, Pex , where the subscript
identifies the length upon which it is based. It can be interpreted as
follows:

Pex ≡ u∞xα = ρcpu∞∆T
k∆T

= heat capacity rate of fluid in the b.l.
axial heat conductance of the b.l.

(6.61)
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So long as Pex is large, the b.l. assumption that ∂2T/∂x2 � ∂2T/∂y2

will be valid; but for small Pex (i.e., Pex � 100), it will be violated and a
boundary layer solution cannot be used.

The exact solution of the b.l. equations gives, in this case:

Nux = 0.565 Pe1/2
x




Pex ≥ 100 and

Pr � 1
100 or

Rex ≥ 104

(6.62)

General relationship. Churchill and Ozoe [6.5] recommend the follow-
ing empirical correlation for laminar flow on a constant-temperature flat
surface for the entire range of Pr:

Nux = 0.3387 Re1/2
x Pr1/3[

1+ (0.0468/Pr)2/3
]1/4 Pex > 100 (6.63)

This relationship proves to be quite accurate, and it approximates eqns.
(6.59) and (6.62), respectively, in the high- and low-Pr limits. The calcu-
lations of an average Nusselt number for the general case is left as an
exercise (Problem 6.10).

Boundary layer with an unheated starting length Figure 6.16 shows
a b.l. with a heated region that starts at a distance x0 from the leading
edge. The heat transfer in this instance is easily obtained using integral
methods (see Prob. 6.41).

Nux = 0.332 Re1/2
x Pr1/3[

1− (x0/x)3/4
]1/3 , x > x0 (6.64)

Average heat transfer coefficient, h. The heat transfer coefficient h, is
the ratio of two quantities, q and ∆T , either of which might vary with x.
So far, we have only dealt with the uniform wall temperature problem.
Equations (6.58), (6.59), (6.62), and (6.63), for example, can all be used to
calculate q(x) when (Tw − T∞) ≡ ∆T is a specified constant. In the next
subsection, we discuss the problem of predicting [T(x)− T∞] when q is
a specified constant. This is called the uniform wall heat flux problem.
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Figure 6.16 A b.l. with an unheated region at the leading edge.

The term h is used to designate either q/∆T in the uniform wall tem-
perature problem or q/∆T in the uniform wall heat flux problem. Thus,

uniform wall temp.: h ≡ q
∆T

= 1
∆T

[
1
L

∫ L
0
qdx

]
= 1
L

∫ L
0
h(x)dx

(6.65)

uniform heat flux: h ≡ q
∆T

= q
1
L

∫ L
0
∆T(x)dx

(6.66)

The Nusselt number based on h and a characteristic length, L, is desig-
nated NuL. This is not to be construed as an average of Nux , which would
be meaningless in either of these cases.

Thus, for a flat surface (with x0 = 0), we use eqn. (6.58) in eqn. (6.65)
to get

h = 1
L

∫ L
0
h(x)dx︸ ︷︷ ︸
k
x Nux

= 0.332kPr1/3

L

√
u∞
ν

∫ L
0

√
xdx
x

= 0.664 Re1/2
L Pr1/3

(
k
L

)
(6.67)

Thus, h = 2h(x = L) in a laminar flow, and

NuL = hLk = 0.664 Re1/2
L Pr1/3 (6.68)

Likewise for liquid metal flows:

NuL = 1.13 Pe1/2
L (6.69)
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Some final observations. The preceding results are restricted to the
two-dimensional, incompressible, laminar b.l. on a flat isothermal wall at
velocities that are not too high. These conditions are usually met if:

• Rex or ReL is not above the turbulent transition value, which is
typically a few hundred thousand.

• The Mach number of the flow, Ma ≡ u∞/(sound speed), is less than
about 0.3. (Even gaseous flows behave incompressibly at velocities
well below sonic.) A related condition is:

• The Eckert number, Ec ≡ u2∞/cp(Tw−T∞), is substantially less than
unity. (This means that heating by viscous dissipation—which we
have neglected—does not play any role in the problem. This as-
sumption was included implicitly when we treated J as an indepen-
dent unit in the dimensional analysis of this problem.)

It is worthwhile to notice how h and Nu depend on their independent
variables:

h or h∝ 1√
x

or
1√
L
,

√
u∞, ν−1/6, (ρcp)1/3, k2/3

Nux or NuL ∝
√
x or L,

√
u∞, ν−1/6, (ρcp)1/3, k−1/3

(6.70)

Thus, h �→ ∞ and Nux vanishes at the leading edge, x = 0. Of course,
an infinite value of h, like infinite shear stress, will not really occur at
the leading edge because the b.l. description will actually break down in
a small neighborhood of x = 0.

In all of the preceding considerations, the fluid properties have been
assumed constant. Actually, k, ρcp, and especially µ might all vary no-
ticeably with T within the b.l. It turns out that if properties are all eval-
uated at the average temperature of the b.l. or film temperature Tf =
(Tw + T∞)/2, the results will normally be quite accurate. It is also worth
noting that, although properties are given only at one pressure in Ap-
pendix A; µ, k, and cp change very little with pressure, especially in liq-
uids.

Example 6.5

Air at 20◦C and moving at 15 m/s is warmed by an isothermal steam-
heated plate at 110◦C, ½ m in length and ½ m in width. Find the
average heat transfer coefficient and the total heat transferred. What
are h, δt , and δ at the trailing edge?
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Solution. We evaluate properties at Tf = (110+20)/2 = 65◦C. Then

Pr = 0.707 and ReL = u∞Lν = 15(0.5)
0.0000194

= 386,600

so the flow ought to be laminar up to the trailing edge. The Nusselt
number is then

NuL = 0.664 Re1/2
L Pr1/3 = 367.8

and

h = 367.8
k
L
= 367.8(0.02885)

0.5
= 21.2 W/m2K

The value is quite low because of the low conductivity of air. The total
heat flux is then

Q = hA∆T = 21.2(0.5)2(110− 20) = 477 W

By comparing eqns. (6.58) and (6.68), we see that h(x = L) = ½h, so

h(trailing edge) = 1
2(21.2) = 10.6 W/m2K

And finally,

δ(x = L) = 4.92L
/√

ReL = 4.92(0.5)√
386,600

= 0.00396 m

= 3.96 mm

and

δt = δ
3√Pr

= 3.96
3√0.707

= 4.44 mm

The problem of uniform wall heat flux

When the heat flux at the heater wall, qw , is specified instead of the
temperature, it is Tw that we need to know. We leave the problem of
finding Nux for qw = constant as an exercise (Problem 6.11). The exact
result is

Nux = 0.453 Re1/2
x Pr1/3 for Pr � 0.6 (6.71)
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where Nux = hx/k = qwx/k(Tw − T∞). The integral method gives the
same result with a slightly lower constant (0.417).

We must be very careful in discussing average results in the constant
heat flux case. The problem now might be that of finding an average
temperature difference (cf. (6.66)):

Tw − T∞ = 1
L

∫ L
0
(Tw − T∞)dx = 1

L

∫ L
0

qwx
k(0.453

√
u∞/ν Pr1/3)

dx√
x

or

Tw − T∞ = qwL/k
0.6795 Re1/2

L Pr1/3 (6.72)

which can be put into the form NuL = 0.6795 Re1/2
L Pr1/3 (although the

Nusselt number yields an awkward nondimensionalization for Tw − T∞).
Churchill and Ozoe [6.5] have pointed out that their eqn. (6.63) will de-
scribe (Tw − T∞) with high accuracy over the full range of Pr if the con-
stants are changed as follows:

Nux = 0.4637 Re1/2
x Pr1/3[

1+ (0.02052/Pr)2/3
]1/4 Pex > 100 (6.73)

Example 6.6

Air at 15◦C flows at 1.8 m/s over a 0.6 m-long heating panel. The
panel is intended to supply 420 W/m2 to the air, but the surface can
sustain only about 105◦C without being damaged. Is it safe? What is
the average temperature of the plate?

Solution. In accordance with eqn. (6.71),

∆Tmax = ∆Tx=L = qL
kNux=L

= qL/k
0.453 Re1/2

x Pr1/3

or if we evaluate properties at (85+ 15)/2 = 50◦C, for the moment,

∆Tmax = 420(0.6)/0.0278

0.453
[
0.6(1.8)/1.794× 10−5

]1/2 (0.709)1/3
= 91.5◦C

This will give Twmax = 15 + 91.5 = 106.5◦C. This is very close to
105◦C. If 105◦C is at all conservative, q = 420 W/m2 should be safe—
particularly since it only occurs over a very small distance at the end
of the plate.
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From eqn. (6.72) we find that

∆T = 0.453
0.6795

∆Tmax = 61.0◦C

so

Tw = 15+ 61.0 = 76.0◦C

6.6 The Reynolds analogy

The analogy between heat and momentum transfer can now be general-
ized to provide a very useful result. We begin by recalling eqn. (6.25),
which is restricted to a flat surface with no pressure gradient:

d
dx

[
δ
∫ 1

0

u
u∞

(
u
u∞

− 1
)
d
(
y
δ

)]
= −Cf

2
(6.25)

and by rewriting eqns. (6.47) and (6.51), we obtain for the constant wall
temperature case:

d
dx

[
φδ

∫ 1

0

u
u∞

(
T − T∞
Tw − T∞

)
d
(
y
δt

)]
= qw
ρcpu∞(Tw − T∞)

(6.74)

But the similarity of temperature and flow boundary layers to one another
[see, e.g., eqns. (6.29) and (6.50)], suggests the following approximation,
which becomes exact only when Pr = 1:

T − T∞
Tw − T∞

δ =
(

1− u
u∞

)
δt

Substituting this result in eqn. (6.74) and comparing it to eqn. (6.25), we
get

− d
dx

[
δ
∫ 1

0

u
u∞

(
u
u∞

− 1
)
d
(
y
δ

)]
= −Cf

2
= − qw

ρcpu∞(Tw − T∞)φ2

(6.75)

Finally, we substitute eqn. (6.55) to eliminate φ from eqn. (6.75). The
result is one instance of the Reynolds-Colburn analogy :8

h
ρcpu∞

Pr2/3 = Cf
2

(6.76)

8Reynolds [6.6] developed the analogy in 1874. Colburn made important use of it in
this century. The form given is for flat plates with 0.6 ≤ Pr ≤ 50. The Prandtl number
factor is usually a little different for other flows or other ranges of Pr.
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For use in Reynolds’ analogy, Cf must be a pure skin friction coefficient.
The profile drag that results from the variation of pressure around the
body is unrelated to heat transfer. The analogy does not apply when
profile drag is included in Cf .

The dimensionless group h/ρcpu∞ is called the Stanton number. It
is defined as follows:

St, Stanton number ≡ h
ρcpu∞

= Nux
RexPr

The physical significance of the Stanton number is

St = h∆T
ρcpu∞∆T

= actual heat flux to the fluid
heat flux capacity of the fluid flow

(6.77)

The group St Pr2/3 was dealt with by the chemical engineer Colburn, who
gave it a special symbol:

j ≡ Colburn j-factor = St Pr2/3 = Nux
RexPr1/3 (6.78)

Example 6.7

Does the equation for the Nusselt number on an isothermal flat sur-
face in laminar flow satisfy the Reynolds analogy?

Solution. If we rewrite eqn. (6.58), we obtain

Nux
RexPr1/3 = St Pr2/3 = 0.332√

Rex
(6.79)

But comparison with eqn. (6.33) reveals that the left-hand side of
eqn. (6.79) is precisely Cf/2, so the analogy is satisfied perfectly. Like-
wise, from eqns. (6.68) and (6.34), we get

NuL
ReLPr1/3 ≡ St Pr

2/3 = 0.664√
ReL

= Cf
2

(6.80)

The Reynolds-Colburn analogy can be used directly to infer heat trans-
fer data from measurements of the shear stress, or vice versa. It can also
be extended to turbulent flow, which is much harder to predict analyti-
cally. We shall undertake that problem in Sect. 6.8.
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Example 6.8

How much drag force does the air flow in Example 6.5 exert on the
heat transfer surface?

Solution. From eqn. (6.80) in Example 6.7, we obtain

Cf =
2 NuL

ReL Pr1/3

From Example 6.5 we obtain NuL, ReL, and Pr1/3:

Cf =
2(367.8)

(386,600)(0.707)1/3
= 0.002135

so

τyx = (0.002135)
1
2
ρu2

∞ =
(0.002135)(1.05)(15)2

2
= 0.2522 kg/m·s2

and the force is

τyxA = 0.2522(0.5)2 = 0.06305 kg·m/s2 = 0.06305 N

= 0.23 oz

6.7 Turbulent boundary layers

Turbulence

Big whirls have little whirls,
That feed on their velocity.
Little whirls have littler whirls,
And so on, to viscosity.

This bit of doggerel by the English fluid mechanic, L. F. Richardson, tells
us a great deal about the nature of turbulence. Turbulence in a fluid can
be viewed as a spectrum of coexisting vortices in which kinetic energy
from the larger ones is dissipated to successively smaller ones until the
very smallest of these vortices (or “whirls”) are damped out by viscous
shear stresses.

The next time the weatherman shows a satellite photograph of North
America on the 10:00 p.m. news, notice the cloud patterns. There will be
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one or two enormous vortices of continental proportions. These huge
vortices, in turn, feed smaller “weather-making” vortices on the order of
hundreds of miles in diameter. These further dissipate into vortices of
cyclone and tornado proportions—sometimes with that level of violence
but more often not. These dissipate into still smaller whirls as they inter-
act with the ground and its various protrusions. The next time the wind
blows, stand behind any tree and feel the vortices. In the great plains,
where there are not many ground vortex generators (such as trees), you
will see small cyclonic eddies called “dust devils.” The process continues
right on down to millimeter or even micrometer scales. There, momen-
tum exchange is no longer identifiable as turbulence but appears simply
as viscous stretching of the fluid.

The same kind of process exists within, say, a turbulent pipe flow at
high Reynolds number. Such a flow is shown in Fig. 6.17. Turbulence
in such a case consists of coexisting vortices which vary in size from a
substantial fraction of the pipe radius down to micrometer dimensions.
The spectrum of sizes varies with location in the pipe. The size and
intensity of vortices at the wall must clearly approach zero, since the
fluid velocity goes to zero at the wall.

Figure 6.17 shows the fluctuation of a typical flow variable—namely,
velocity—both with location in the pipe and with time. This fluctuation
arises because of the turbulent motions that are superposed on the aver-
age local flow. Other flow variables, such as T or ρ, can vary in the same
manner. For any variable we can write a local time-average value as

u ≡ 1
T

∫ T

0
udt (6.81)

where T is a time that is much longer than the period of typical fluctua-
tions.9 Equation (6.81) is most useful for so-called stationary processes—
ones for which u is nearly time-independent.

If we substitute u = u+u′ in eqn. (6.81), where u is the actual local
velocity and u′ is the instantaneous magnitude of the fluctuation, we
obtain

u = 1
T

∫ T

0
udt︸ ︷︷ ︸

=u

+ 1
T

∫ T

0
u′ dt︸ ︷︷ ︸

=u′

(6.82)

9Take care not to interpret this T as the thermal time constant that we introduced
in Chapter 1; we denote time constants are as T .
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Figure 6.17 Fluctuation of u and other quantities in a turbu-
lent pipe flow.

This is consistent with the fact that

u′ or any other average fluctuation = 0 (6.83)

since the fluctuations are defined as deviations from the average.
We now want to create a measure of the size, or lengthscale, of turbu-

lent vortices. This might be done experimentally by placing two velocity-
measuring devices very close to one another in a turbulent flow field.
When the probes are close, their measurements will be very highly corre-
lated with one one another. Then, suppose that the two velocity probes
are moved apart until the measurements first become unrelated to one
another. That spacing gives an indication of the average size of the tur-
bulent motions.

Prandtl invented a slightly different (although related) measure of the
lengthscale of turbulence, called the mixing length, �. He saw � as an
average distance that a parcel of fluid moves between interactions. It
has a physical significance similar to that of the molecular mean free
path. It is harder to devise a clean experimental measure of � than of the
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correlation lengthscale of turbulence. But we can still use the concept of
� to examine the notion of a turbulent shear stress.

The shear stresses of turbulence arise from the same kind of momen-
tum exchange process that gives rise to the molecular viscosity. Recall
that, in the latter case, a kinetic calculation gave eqn. (6.45) for the lami-
nar shear stress

τyx = (constant)
(
ρC

)(
�
∂u
∂y

)
︸ ︷︷ ︸
=u′

(6.45)

where � was the molecular mean free path and u′ was the velocity differ-
ence for a molecule that had travelled a distance � in the mean velocity
gradient. In the turbulent flow case, pictured in Fig. 6.18, we can think of
Prandtl’s parcels of fluid (rather than individual molecules) as carrying
the x-momentum. Let us rewrite eqn. (6.45) in the following way:

• The shear stress τyx becomes a fluctuation in shear stress, τ′yx ,
resulting from the turbulent movement of a parcel of fluid

• � changes from the mean free path to the mixing length

• C is replaced by v = v+v′, the instantaneous vertical speed of the
fluid parcel

• The velocity fluctuation, u′, is for a fluid parcel that moves a dis-
tance � through the mean velocity gradient, ∂u/∂y . It is given by
�(∂u/∂y).

Then

τ′yx = (constant)
[
ρ
(
v + v′)]u′ (6.84)

Equation (6.84) can also be derived formally and precisely with the
help of the Navier-Stokes equation. When this is done, the constant
comes out equal to −1. The average of the fluctuating shear stress is

τ′yx = −ρ
T

∫ T

0

(
vu′ + v′u′)dt = −ρv u′︸︷︷︸

=0

−ρv′u′ (6.85)
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Figure 6.18 The shear stress, τyx , in a laminar or turbulent flow.

Notice that, while u′ = v′ = 0, averages of cross products of fluctuations
(such as u′v′ or u′2) do not generally vanish. Thus, the time average of
the fluctuating component of shear stress is

τ′yx = −ρv′u′ (6.86)

In addition to the fluctuating shear stress, the flow will have a mean shear
stress associated with the mean velocity gradient, ∂u/∂y . That stress is
µ(∂u/∂y), just as in Newton’s law of viscous shear.

It is not obvious how to calculate v′u′ (although it can be measured),
so we shall not make direct use of eqn. (6.86). Instead, we can try to model
v′u′. From the preceding discussion, we see that v′u′ should go to zero
when the velocity gradient, (∂u/∂y), is zero, and that it should increase
when the velocity gradient increases. We might therefore assume it to be
proportional to (∂u/∂y). Then the total time-average shear stress, τyx ,
can be expressed as a sum of the mean flow and turbulent contributions
that are each proportional to the mean velocity gradient. Specifically,

τyx = µ ∂u∂y − ρv
′u′ (6.87a)

τyx = µ ∂u∂y +
(

some other factor, which
reflects turbulent mixing

)
︸ ︷︷ ︸

≡ ρ · εm

∂u
∂y

(6.87b)

or

τyx = ρ (ν + εm) ∂u∂y (6.87c)
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where εm is called the eddy diffusivity for momentum. We shall use this
characterization in examining the flow field and the heat transfer.

The eddy diffusivity itself may be expressed in terms of the mixing
length. Suppose that u increases in the y-direction (i.e., ∂u/∂y > 0).
Then, when a fluid parcel moves downward into slower moving fluid,
it has u′ � �(∂u/∂y). If that parcel moves upward into faster fluid,
the sign changes. The vertical velocity fluctation, v′, is positive for an
upward moving parcel and negative for a downward motion. On average,
u′ and v′ for the eddies should be about the same size. Hence, we expect
that

ρεm
∂u
∂y

= −ρv′u′ = −ρ(constant)

(
±�

∣∣∣∣∣∂u∂y
∣∣∣∣∣
)(

∓�∂u
∂y

)
(6.88a)

= ρ(constant)�2

∣∣∣∣∣∂u∂y
∣∣∣∣∣ ∂u∂y (6.88b)

where the absolute value is needed to get the right sign when ∂u/∂y < 0.
Both ∂u/∂y and v′u′ can be measured, so we may arbitrarily set the
constant in eqn. (6.88) to unity to obtain a measurable definition of the
mixing length. We also obtain an expression for the eddy diffusivity:

εm = �2

∣∣∣∣∣∂u∂y
∣∣∣∣∣ . (6.89)

Turbulence near walls

The most important convective heat transfer issue is how flowing fluids
cool solid surfaces. Thus, we are principally interested in turbulence near
walls. In a turbulent boundary layer, the gradients are very steep near
the wall and weaker farther from the wall where the eddies are larger
and turbulent mixing is more efficient. This is in contrast to the gradual
variation of velocity and temperature in a laminar boundary layer, where
heat and momentum are transferred by molecular diffusion rather than
the vertical motion of vortices. In fact,the most important processes in
turbulent convection occur very close to walls, perhaps within only a
fraction of a millimeter. The outer part of the b.l. is less significant.

Let us consider the turbulent flow close to a wall. When the boundary
layer momentum equation is time-averaged for turbulent flow, the result
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is

u
∂u
∂x

+ v ∂u
∂y︸ ︷︷ ︸

neglect very near wall

= ∂
∂y

(
µ
∂u
∂y

− ρv′u′
)

(6.90a)

= ∂
∂y
τyx (6.90b)

= ∂
∂y

[
ρ (ν + εm) ∂u∂y

]
(6.90c)

In the innermost region of a turbulent boundary layer — y/δ � 0.2,
where δ is the b.l. thickness — the mean velocities are small enough
that the convective terms in eqn. (6.90a) can be neglected. As a result,
∂τyx/∂y � 0. The total shear stress is thus essentially constant in y and
must equal the wall shear stress:

τw � τyx = ρ (ν + εm) ∂u∂y (6.91)

Equation (6.91) shows that the near-wall velocity profile does not de-
pend directly upon x. In functional form

u = fn
(
τw,ρ, ν,y

)
(6.92)

(Note that εm does not appear because it is defined by the velocity field.)
The effect of the streamwise position is carried in τw , which varies slowly
with x. As a result, the flow field near the wall is not very sensitive
to upstream conditions, except through their effect on τw . When the
velocity profile is scaled in terms of the local value τw , essentially the
same velocity profile is obtained in every turbulent boundary layer.

Equation (6.92) involves five variables in three dimensions (kg, m, s),
so just two dimensionless groups are needed to describe the velocity
profile:

u
u∗

= fn
(
u∗y
ν

)
(6.93)

where the velocity scale u∗ ≡ √
τw/ρ is called the friction velocity. The

friction velocity is a speed characteristic of the turbulent fluctuations in
the boundary layer.
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Equation (6.91) can be integrated to find the near wall velocity profile:

∫ u
0
du︸ ︷︷ ︸

=u(y)

= τw
ρ

∫ y
0

dy
ν + εm

(6.94)

To complete the integration, an equation for εm(y) is needed. Measure-
ments show that the mixing length varies linearly with the distance from
the wall for small y

� = κy for y/δ � 0.2 (6.95)

where κ = 0.41 is called the von Kármán constant. Physically, this says
that the turbulent eddies at a location y must be no bigger that the dis-
tance to wall. That makes sense, since eddies cannot cross into the wall.

The viscous sublayer. Very near the wall, the eddies must become tiny;
� and thus εm will tend to zero, so that ν 	 εm. In other words, in
this region turbulent shear stress is negligible compared to viscous shear
stress. If we integrate eqn. (6.94) in that range, we find

u(y) = τw
ρ

∫ y
0

dy
ν
= τw
ρ
y
ν

= (u
∗)2y
ν

(6.96)

Experimentally, eqn. (6.96) is found to apply for (u∗y/ν) � 7, a thin re-
gion called the viscous sublayer. Depending upon the fluid and the shear
stress, the sublayer is on the order of tens to hundreds of micrometers
thick. Because turbulent mixing is ineffective in the sublayer, the sub-
layer is responsible for a major fraction of the thermal resistance of a
turbulent boundary layer. Even a small wall roughness can disrupt this
thin sublayer, causing a large decrease in the thermal resistance (but also
a large increase in the wall shear stress).

The log layer. Farther away from the wall, � is larger and turbulent
shear stress is dominant: εm	 ν . Then, from eqns. (6.91) and (6.89)

τw � ρεm ∂u∂y = ρ�2

∣∣∣∣∣∂u∂y
∣∣∣∣∣ ∂u∂y (6.97)
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Assuming the velocity gradient to be positive, we may take the square
root of eqn. (6.97), rearrange, and integrate it:

∫
du =

√
τw
ρ

∫
dy
�

(6.98a)

u(y) = u∗
∫
dy
κy

+ constant (6.98b)

= u
∗

κ
lny + constant (6.98c)

Experimental data may be used to fix the constant, with the result that

u(y)
u∗

= 1
κ

ln
(
u∗y
ν

)
+ B (6.99)

for B � 5.5. Equation (6.99) is sometimes called the log law. Experimen-
tally, it is found to apply for (u∗y/ν) � 30 and y/δ � 0.2.

Other regions of the turbulent b.l. For the range 7 < (u∗y/ν) < 30,
the so-called buffer layer, more complicated equations for �, εm, or u are
used to connect the viscous sublayer to the log layer [6.7, 6.8]. Here, �
actually decreases a little faster than shown by eqn. (6.95), as y3/2 [6.9].

In contrast, for the outer part of the turbulent boundary layer (y/δ �
0.2), the mixing length is approximately constant: � � 0.09δ. Gradients
in this part of the boundary layer are weak and do not directly affect
transport at the wall. This part of the b.l. is nevertheless essential to
the streamwise momentum balance that determines how τw and δ vary
along the wall. Analysis of that momentum balance [6.2] leads to the
following expressions for the boundary thickness and the skin friction
coefficient as a function of x:

δ(x)
x

= 0.16

Re1/7
x

(6.100)

Cf (x) =
0.027

Re1/7
x

(6.101)

To write these expressions, we assume that the turbulent b.l. begins at
x = 0, neglecting the initial laminar region. They are reasonably accu-
rate Reynolds numbers ranging from about 106 to 109. A more accurate
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formula for Cf , valid for all turbulent Rex , was given by White [6.10]:

Cf (x) =
0.455[

ln(0.06 Rex)
]2 (6.102)

6.8 Heat transfer in turbulent boundary layers

Like the turbulent momentum boundary layer, the turbulent thermal
boundary layer is characterized by inner and outer regions. In the in-
ner part of the thermal boundary layer, turbulent mixing is increasingly
weak; there, heat transport is controlled by heat conduction in the sub-
layer. Farther from the wall, a logarithmic temperature profile is found,
and in the outermost parts of the boundary layer, turbulent mixing is the
dominant mode of transport.

The boundary layer ends where turbulence dies out and uniform free-
stream conditions prevail, with the result that the thermal and momen-
tum boundary layer thicknesses are the same. At first, this might seem
to suggest that an absence of any Prandtl number effect on turbulent
heat transfer, but that is not the case. The effect of Prandtl number is
now found in the sublayers near the wall, where molecular viscosity and
thermal conductivity still control the transport of heat and momentum.

The Reynolds-Colburn analogy for turbulent flow

The eddy diffusivity for momentum was introduced by Boussinesq [6.11]
in 1877. It was subsequently proposed that Fourier’s law might likewise
be modified for turbulent flow as follows:

q = −k ∂T
∂y

−
(

another constant, which
reflects turbulent mixing

)
︸ ︷︷ ︸

≡ ρcp · εh

∂T
∂y

where T is the local average value of the turbulent temperature. There-
fore,

q = −ρcp (α+ εh)
∂T
∂y

(6.103)
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where εh is called the eddy diffusivity of heat. This immediately suggests
yet another definition:

turbulent Prandtl number, Prt ≡ εmεh
(6.104)

Equation (6.103) can be written in terms of ν and εm by introducing Pr
and Prt into it. Thus,

q = −ρcp
(
ν
Pr
+ εm

Prt

)
∂T
∂y

(6.105)

Before trying to build a form of the Reynolds analogy for turbulent
flow, we must note the behavior of Pr and Prt :

• Pr is a physical property of the fluid. It is both theoretically and
actually near unity for ideal gases, but for liquids it may differ from
unity by orders of magnitude.

• Prt is a property of the flow field more than of the fluid. The nu-
merical value of Prt is normally well within a factor of 2 of unity. It
varies with location in the b.l., but, for nonmetallic fluids, it is often
near 0.85.

The time-average boundary-layer energy equation is similar to the
time-average momentum equation [eqn. (6.90a)]

u
∂T
∂x

+ v ∂T
∂y︸ ︷︷ ︸

neglect very near wall

= − ∂
∂y
q = ∂

∂y

[
ρcp

(
ν
Pr
+ εm

Prt

)
∂T
∂y

]
(6.106)

and in the near wall region the convective terms are again negligible. This
means that ∂q/∂y � 0 near the wall, so that the heat flux is constant in
y and equal to the wall heat flux:

q = qw = −ρcp
(
ν
Pr
+ εm

Prt

)
∂T
∂y

(6.107)

We may integrate this equation as we did eqn. (6.91), with the result that

Tw − T(y)
qw/(ρcpu∗)

=




Pr
(
u∗y
ν

)
thermal sublayer

1
κ

ln
(
u∗y
ν

)
+A(Pr) thermal log layer

(6.108)
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The constantA depends upon the Prandtl number. It reflects the thermal
resistance of the sublayer near the wall. As was done for the constant
B in the velocity profile, experimental data or numerical simulation may
be used to determine A(Pr) [6.12, 6.13]. For Pr ≥ 0.5,

A(Pr) = 12.8 Pr0.68 − 7.3 (6.109)

To obtain the Reynolds analogy, we can subtract the dimensionless
log-law, eqn. (6.99), from its thermal counterpart, eqn. (6.108):

Tw − T(y)
qw/(ρcpu∗)

− u(y)
u∗

= A(Pr)− B (6.110a)

In the outer part of the boundary layer, T(y) � T∞ and u(y) � u∞, so

Tw − T∞
qw/(ρcpu∗)

− u∞
u∗

= A(Pr)− B (6.110b)

We can eliminate the friction velocity in favor of the skin friction coeffi-
cient by using the definitions of each:

u∗

u∞
=

√
τw
ρu2∞

=
√
Cf
2

(6.110c)

Hence,

Tw − T∞
qw/(ρcpu∞)

√
Cf
2
−

√
2
Cf

= A(Pr)− B (6.110d)

Rearrangment of the last equation gives

qw
(ρcpu∞)(Tw − T∞)

= Cf
/
2

1+ [A(Pr)− B]
√
Cf

/
2

(6.110e)

The lefthand side is simply the Stanton number, St = h/(ρcpu∞). Upon
substituting B = 5.5 and eqn. (6.109) for A(Pr), we obtain the Reynolds-
Colburn analogy for turbulent flow:

Stx =
Cf

/
2

1+ 12.8
(
Pr0.68 − 1

)√
Cf

/
2

Pr ≥ 0.5 (6.111)
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This result can be used with eqn. (6.102) for Cf , or with data for Cf ,
to calculate the local heat transfer coefficient in a turbulent boundary
layer. The equation works for either uniform Tw or uniform qw . This is
because the thin, near-wall part of the boundary layer controls most of
the thermal resistance and that thin layer is not strongly dependent on
upstream history of the flow.

Equation (6.111) is valid for smooth walls with a mild or a zero pres-
sure gradient. The factor 12.8 (Pr0.68 − 1) in the denominator accounts
for the thermal resistance of the sublayer. If the walls are rough, the
sublayer will be disrupted and that term must be replaced by one that
takes account of the roughness (see Sect. 7.3).

Other equations for heat transfer in the turbulent b.l.

Although eqn. (6.111) gives an excellent prediction of the local value of h
in a turbulent boundary layer, a number of simplified approximations to
it have been suggested in the literature. For example, for Prandtl numbers
not too far from unity and Reynolds numbers not too far above transition,
the laminar flow Reynolds-Colburn analogy can be used

Stx =
(
Cf
2

)
Pr−2/3 for Pr near 1 (6.76)

The best exponent for the Prandtl number in such an equation actually
depends upon the Reynolds and Prandtl numbers. For gases, an exponent
of −0.4 gives somewhat better results.

A more wide-ranging approximation can be obtained after introduc-
ing a simplifed expression forCf . For example, Schlichting [6.3, Chap. XXI]
shows that, for turbulent flow over a smooth flat plate in the low-Re range,

Cf �
0.0592

Re1/5
x

, 5× 105 � Rex � 107 (6.112)

With this Reynolds number dependence, Žukauskas and coworkers [6.14,
6.15] found that

Stx =
(
Cf
2

)
Pr−0.57, 0.7 ≤ Pr ≤ 380 (6.113)

so that when eqn. (6.112) is used to eliminate Cf

Nux = 0.0296 Re0.8
x Pr0.43 (6.114)
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Somewhat better agreement with data, for 2 × 105 � Rex � 5 × 106, is
obtained by adjusting the constant [6.15]:

Nux = 0.032 Re0.8
x Pr0.43 (6.115)

The average Nusselt number for uniform Tw is obtained from eqn.
(6.114) as follows:

NuL = Lk h =
0.0296 Pr0.43 L

k

[
k
L

∫ L
0

(
1
x

Re0.8
x

)
dx

]

where we ignore the fact that there is a laminar region at the front of the
plate. Thus,

NuL = 0.0370 Re0.8
L Pr0.43 (6.116)

This equation may be used for either uniform Tw or uniform qw , and for
ReL up to about 3× 107 [6.14, 6.15].

A flat heater with a turbulent b.l. on it actually has a laminar b.l. be-
tween x = 0 and x = xtrans, as is indicated in Fig. 6.4. The obvious way
to calculate h in this case is to write

h = 1
L∆T

∫ L
0
qdx

= 1
L

[∫ xtrans

0
hlaminar dx +

∫ L
xtrans

hturbulent dx
] (6.117)

wherextrans = (ν/u∞)Retrans. Thus, we substitute eqns. (6.58) and (6.114)
in eqn. (6.117) and obtain, for 0.6 � Pr � 50,

NuL = 0.037 Pr0.43
{
Re0.8
L −

[
Re0.8

trans − 17.95 Pr0.097 (Retrans)1/2
]}
(6.118)

If ReL	 Retrans, this result reduces to eqn. (6.116).
Whitaker [6.16] suggested setting Pr0.097 ≈ 1 and Retrans ≈ 200,000

in eqn. (6.118):

NuL = 0.037 Pr0.43
(
Re0.8
L − 9200

)(
µ∞
µw

)1/4

0.6 ≤ Pr ≤ 380

(6.119)
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This expression has been corrected to account for the variability of liquid
viscosity with the factor (µ∞/µw)1/4, where µ∞ is the viscosity at the free-
stream temperature, T∞, and µw is that at the wall temperature, Tw ; other
physical properties should be evaluated at T∞. If eqn. (6.119) is used
to predict heat transfer to a gaseous flow, the viscosity-ratio correction
term should not be used and properties should be evaluated at the film
temperature. This is because the viscosity of a gas rises with temperature
instead of dropping, and the correction will be incorrect.

Finally, it is important to remember that eqns. (6.118) and (6.119)
should be used only when ReL is substantially above the transitional
value.

A correlation for laminar, transitional, and turbulent flow

A problem with the two preceding relations is that they do not really
deal with the question of heat transfer in the rather lengthy transition
region. Both eqns. (6.118) and (6.119) are based on the assumption that
flow abruptly passes from laminar to turbulent at a critical value of x,
and we have noted in the context of Fig. 6.4 that this is not what occurs.
The location of the transition depends upon such variables as surface
roughness and the turbulence, or lack of it, in the stream approaching
the heater.

Churchill [6.17] suggests correlating any particular set of data with

Nux = 0.45+
(
0.3387φ1/2

)
1+ (φ/2,600)3/5[

1+ (φu/φ)7/2
]2/5




1/2

(6.120a)

where

φ ≡ RexPr2/3
[

1+
(

0.0468
Pr

)2/3
]−1/2

(6.120b)

and φu is a number between about 105 and 107. The actual value of φu
must be fit to the particular set of data. In a very “clean” system, φu
will be larger; in a very “noisy” one, it will be smaller. If the Reynolds
number at the end of the turbulent transition region is Reu, an estimate
is φu ≈ φ(Rex = Reu).

The equation is for uniform Tw , but it may be used for uniform qw
if the constants 0.3387 and 0.0468 are replaced by 0.4637 and 0.02052,
respectively.
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Churchill also gave an expression for the average Nusselt number:

NuL = 0.45+
(
0.6774φ1/2

)
1+ (φ/12,500)3/5[

1+ (φum/φ)7/2
]2/5




1/2

(6.120c)

where φ is defined as in eqn. (6.120b), using ReL in place of Rex , and
φum ≈ 1.875φ(ReL = Reu). This equation may be used for either uni-
form Tw or uniform qw .

The advantage of eqns. (6.120a) or (6.120c) is that, once φu or φum is
known, they will predict heat transfer from the laminar region, through
the transition regime, and into the turbulent regime.

Example 6.9

After loading its passengers, a ship sails out of the mouth of a river,
where the water temperature is 24◦C, into 10◦C ocean water. The
forward end of the ship’s hull is sharp and relatively flat. If the ship
travels at 5 knots, find Cf and h at a distance of 1 m from the forward
edge of the hull.

Solution. If we assume that the hull’s heat capacity holds it at the
river temperature for a time, we can take the properties of water at
Tf = (10+24)/2 = 17◦C: ν = 1.085×10−6 m2/s, k = 0.5927 W/m·K,
ρ = 998.8 kg/m3, cp = 4187 J/kg·K, and Pr = 7.66.

One knot equals 0.5144 m/s, so u∞ = 5(0.5144) = 2.572 m/s.
Then, Rex = (2.572)(1)/(1.085×10−6) = 2.371×106, indicating that
the flow is turbulent at this location.

We have given several different equations for Cf in a turbulent
boundary layer, but the most accurate of these is eqn. (6.102):

Cf (x) =
0.455[

ln(0.06 Rex)
]2

= 0.455{
ln[0.06(2.371× 106)]

}2 = 0.003232
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For the heat transfer coefficient, we can use either eqn. (6.115)

h(x) = k
x
· 0.032 Re0.8

x Pr0.43

= (0.5927)(0.032)(2.371× 106)0.8(7.66)0.43

(1.0)
= 5,729 W/m2K

or its more complex counterpart, eqn. (6.111):

h(x) = ρcpu∞ ·
Cf

/
2

1+ 12.8
(
Pr0.68 − 1

)√
Cf

/
2

= 998.8(4187)(2.572)(0.003232/2)
1+ 12.8

[
(7.66)0.68 − 1

]√
0.003232/2

= 6,843 W/m2K

The two values of h differ by about 18%, which is within the uncer-
tainty of eqn. (6.115).

Example 6.10

In a wind tunnel experiment, an aluminum plate 2.0 m in length is
electrically heated at a power density of 1 kW/m2. The air in the
wind tunnel has a temperature of 290 K and is at 1 atm pressure,
and the Reynolds number at the end of turbulent transition regime
is observed to be 400,000. Estimate the average temperature of the
plate for an airspeed of 10 m/s.

Solution. For this low heat flux, we expect the plate temperature
to be near the air temperature, so we evaluate properties at 300 K:
ν = 1.578 × 10−5 m2/s, k = 0.02623 W/m·K, and Pr = 0.713. At
10 m/s, the plate Reynolds number is ReL = (10)(2)/(1.578×10−5) =
1.267× 106. From eqn. (6.118), we get

NuL = 0.037(0.713)0.43
{
(1.267× 106)0.8

−
[
(400,000)0.8 − 17.95(0.713)0.097(400,000)1/2

]}
= 1,821

so

h = 1821k
L

= 1821(0.02623)
2.0

= 23.88 W/m2K
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It follows that the average plate temperature is

Tw = 290 K + 103 W/m2

23.88 W/m2K
= 332 K.

The film temperature is (332+290)/2 = 311 K; if we recalculate using
properties at 311 K, the h changes by less than 4%, and T by 1.3◦C.

To take better account of the transition regime, we can use Churchill’s
equation, (6.120c). First, we evaluate φ:

φ = (1.267× 106)(0.713)2/3[
1+ (0.0468/0.713)2/3

]1/2 = 9.38× 105

We then estimate

φum = 1.875 ·φ(ReL = 400,000)

= (1.875)(400,000)(0.713)2/3[
1+ (0.0468/0.713)2/3

]1/2 = 5.55× 105

Finally,

NuL = 0.45+ (0.6774)
(
9.38× 105

)1/2

×


1+

(
9.38× 105/12,500

)3/5[
1+ (5.55× 105/9.38× 105)7/2

]2/5




1/2

= 2,418

which leads to

h = 2418k
L

= 2418(0.02623)
2.0

= 31.71 W/m2K

and

Tw = 290 K + 103 W/m2

31.71 W/m2K
= 322 K.

Thus, in this case, the average heat transfer coefficient is 33% higher
when the transition regime is included.
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A word about the analysis of turbulent boundary layers

The preceding discussion has circumvented serious analysis of heat trans-
fer in turbulent boundary layers. In the past, boundary layer heat trans-
fer has been analyzed in many flows (with and without pressure gradi-
ents, dp/dx) using sophisticated integral methods. In recent decades,
however, computational techniques have largely replaced integral analy-
ses. Various computational schemes, particularly those based on turbu-
lent kinetic energy and viscous dissipation (so-called k-ε methods), are
widely-used and have been implemented in a variety of commercial fluid-
dynamics codes. These methods are described in the technical literature
and in monographs on turbulence [6.18, 6.19].

We have found our way around analysis by presenting some corre-
lations for the simple plane surface. In the next chapter, we deal with
more complicated configurations. A few of these configurations will be
amenable to elementary analyses, but for others we shall only be able to
present the best data correlations available.

Problems

6.1 Verify that eqn. (6.13) follows from eqns. (6.11) and (6.12).

6.2 The student with some analytical ability (or some assistance
from the instructor) should complete the algebra between eqns.
(6.16) and (6.20).

6.3 Use a computer to solve eqn. (6.18) subject to b.c.’s (6.20). To
do this you need all three b.c.’s at η = 0, but one is presently
at η = ∞. There are three ways to get around this:

• Start out by guessing a value of ∂f ′/∂η at η = 0—say,
∂f ′/∂η = 1. When η is large—say, 6 or 10—∂f ′/∂η will
asymptotically approach a constant. If the constant > 1,
go back and guess a lower value of ∂f ′/∂η, or vice versa,
until the constant converges on unity. (There are many
ways to automate the successive guesses.)

• The correct value of df ′/dη is approximately 0.33206 at
η = 0. You might cheat and begin with it.

• There exists a clever way to map df/dη = 1 at η = ∞
back into the origin. (Consult your instructor.)
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6.4 Verify that the Blasius solution (Table 6.1) satisfies eqn. (6.25).
To do this, carry out the required integration.

6.5 Verify eqn. (6.30).

6.6 Obtain the counterpart of eqn. (6.32) based on the velocity pro-
file given by the integral method.

6.7 Assume a laminar b.l. velocity profile of the simple formu/u∞ =
y/δ and calculate δ and Cf on the basis of this very rough es-
timate, using the momentum integral method. How accurate
is each? [Cf is about 13% low.]

6.8 In a certain flow of water at 40◦C over a flat plate δ = 0.005
√
x,

for δ and x measured in meters. Plot to scale on a common
graph (with an appropriately expanded y-scale):

• δ and δt for the water.

• δ and δt for air at the same temperature and velocity.

6.9 A thin film of liquid with a constant thickness, δ0, falls down
a vertical plate. It has reached its terminal velocity so that
viscous shear and weight are in balance and the flow is steady.
The b.l. equation for such a flow is the same as eqn. (6.13),
except that it has a gravity force in it. Thus,

u
∂u
∂x

+ v ∂u
∂y

= −1
ρ
dp
dx

+ g + ν ∂
2u
∂y2

where x increases in the downward direction and y is normal
to the wall. Assume that the surrounding air density � 0, so
there is no hydrostatic pressure gradient in the surrounding
air. Then:

• Simplify the equation to describe this situation.

• Write the b.c.’s for the equation, neglecting any air drag
on the film.

• Solve for the velocity distribution in the film, assuming
that you know δ0 (cf. Chap. 8).

(This solution is the starting point in the study of many process
heat and mass transfer problems.)
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6.10 Develop an equation for NuL that is valid over the entire range
of Pr for a laminar b.l. over a flat, isothermal surface.

6.11 Use an integral method to develop a prediction of Nux for a
laminar b.l. over a uniform heat flux surface. Compare your
result with eqn. (6.71). What is the temperature difference at
the leading edge of the surface?

6.12 Verify eqn. (6.118).

6.13 It is known from flow measurements that the transition to tur-
bulence occurs when the Reynolds number based on mean ve-
locity and diameter exceeds 4000 in a certain pipe. Use the fact
that the laminar boundary layer on a flat plate grows according
to the relation

δ
x
= 4.92

√
ν

umaxx

to find an equivalent value for the Reynolds number of transi-
tion based on distance from the leading edge of the plate and
umax. (Note that umax = 2uav during laminar flow in a pipe.)

6.14 Execute the differentiation in eqn. (6.24) with the help of Leib-
nitz’s rule for the differentiation of an integral and show that
the equation preceding it results.

6.15 Liquid at 23◦C flows at 2 m/s over a smooth, sharp-edged,
flat surface 12 cm in length which is kept at 57◦C. Calculate
h at the trailing edge (a) if the fluid is water; (b) if the fluid is
glycerin (h = 346 W/m2K). (c) Compare the drag forces in the
two cases. [There is 23.4 times as much drag in the glycerin.]

6.16 Air at −10◦C flows over a smooth, sharp-edged, almost-flat,
aerodynamic surface at 240 km/hr. The surface is at 10◦C.
Find (a) the approximate location of the laminar turbulent tran-
sition; (b) the overall h for a 2 m chord; (c) h at the trailing edge
for a 2 m chord; (d) δ and h at the beginning of the transition
region. [δxt = 0.54 mm.]

6.17 Find h in Example 6.10 using eqn. (6.120c) with Reu = 105 and
2× 105. Discuss the results.
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6.18 For system described in Example 6.10, plot the local value of
h over the whole length of the plate using eqn. (6.120c). On
the same graph, plot h from eqn. (6.71) for Rex < 400,000 and
from eqn. (6.115) for Rex > 200,000. Discuss the results.

6.19 Mercury at 25◦C flows at 0.7 m/s over a 4 cm-long flat heater
at 60◦C. Find h, τw , h(x = 0.04 m), and δ(x = 0.04 m).

6.20 A large plate is at rest in water at 15◦C. The plate is suddenly
translated parallel to itself, at 1.5 m/s. The resulting fluid
movement is not exactly like that in a b.l. because the veloc-
ity profile builds up uniformly, all over, instead of from an
edge. The governing transient momentum equation, Du/Dt =
ν(∂2u/∂y2), takes the form

1
ν
∂u
∂t

= ∂
2u
∂y2

Determine u at 0.015 m from the plate for t = 1, 10, and
1000 s. Do this by first posing the problem fully and then
comparing it with the solution in Section 5.6. [u � 0.003 m/s
after 10 s.]

6.21 Notice that, when Pr is large, the velocity b.l. on an isother-
mal, flat heater is much larger than δt . The small part of the
velocity b.l. inside the thermal b.l. is approximately u/u∞ =
3
2y/δ =

3
2φ(y/δt). Derive Nux for this case based on this

velocity profile.

6.22 Plot the ratio of h(x)laminar to h(x)turbulent against Rex in the
range of Rex that might be either laminar or turbulent. What
does the plot suggest about heat transfer design?

6.23 Water at 7◦C flows at 0.38 m/s across the top of a 0.207 m-long,
thin copper plate. Methanol at 87◦C flows across the bottom of
the same plate, at the same speed but in the opposite direction.
Make the obvious first guess as to the temperature at which to
evaluate physical properties. Then plot the plate temperature
as a function of position. (Do not bother to correct the physical
properties in this problem, but note Problem 6.24.)

6.24 Work Problem 6.23 taking full account of property variations.
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6.25 If the wall temperature in Example 6.6 (with a uniform qw =
420 W/m2) were instead fixed at its average value of 76◦C, what
would the average wall heat flux be?

6.26 A cold, 20 mph westerly wind at 20◦F cools a rectangular build-
ing, 35 ft by 35 ft by 22 ft high, with a flat roof. The outer walls
are at 27◦F. Find the heat loss, conservatively assuming that
the east and west faces have the same h as the north, south,
and top faces. Estimate U for the walls.

6.27 A 2 ft-square slab of mild steel leaves a forging operation
0.25 in. thick at 1000◦C. It is laid flat on an insulating bed and
27◦C air is blown over it at 30 m/s. How long will it take to cool
to 200◦C. (State your assumptions about property evaluation.)

6.28 Do Problem 6.27 numerically, recalculating properties at suc-
cessive points. If you did Problem 6.27, compare results.

6.29 Plot Tw against x for the situation described in Example 6.10.

6.30 Consider the plate in Example 6.10. Suppose that instead of
specifying qw = 1000 W/m2, we specified Tw = 200◦C. Plot
qw against x for this case.

6.31 A thin metal sheet separates air at 44◦C, flowing at 48 m/s,
from water at 4◦C, flowing at 0.2 m/s. Both fluids start at a
leading edge and move in the same direction. Plot Tplate and q
as a function of x up to x = 0.1 m.

6.32 A mixture of 60% glycerin and 40% water flows over a 1-m-
long flat plate. The glycerin is at 20◦C and the plate is at 40◦.
A thermocouple 1 mm above the trailing edge records 35◦C.
What is u∞, and what is u at the thermocouple?

6.33 What is the maximum h that can be achieved in laminar flow
over a 5 m plate, based on data from Table A.3? What physical
circumstances give this result?

6.34 A 17◦C sheet of water, ∆1 m thick and moving at a constant
speed u∞ m/s, impacts a horizontal plate at 45◦, turns, and
flows along it. Develop a dimensionless equation for the thick-
ness ∆2 at a distance L from the point of impact. Assume that
δ� ∆2. Evaluate the result for u∞ = 1 m/s, ∆1 = 0.01 m, and
L = 0.1 m, in water at 27◦C.
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6.35 A good approximation to the temperature dependence of µ in
gases is given by the Sutherland formula:

µ
µref

=
(
T
Tref

)1.5 Tref + S
T + S ,

where the reference state can be chosen anywhere. Use data
for air at two points to evaluate S for air. Use this value to
predict a third point. (T and Tref are expressed in kelvin.)

6.36 We have derived a steady-state continuity equation in Section 6.3.
Now derive the time-dependent, compressible, three-dimensional
version of the equation:

∂ρ
∂t
+∇ · (ρ�u) = 0

To do this, paraphrase the development of equation (2.10), re-
quiring that mass be conserved instead of energy.

6.37 Various considerations show that the smallest-scale motions
in a turbulent flow have no preferred spatial orientation at
large enough values of Re. Moreover, these small eddies are
responsible for most of the viscous dissipation of kinetic en-
ergy. The dissipation rate, ε (W/kg), may be regarded as given
information about the small-scale motion, since it is set by the
larger-scale motion. Both ε and ν are governing parameters of
the small-scale motion.

a. Find the characteristic length and velocity scales of the
small-scale motion. These are called theKolmogorov scales
of the flow.

b. Compute Re for the small-scale motion and interpret the
result.

c. The Kolmogorov length scale characterizes the smallest
motions found in a turbulent flow. If ε is 10 W/kg and
the mean free path is 7 × 10−8 m, show that turbulent
motion is a continuum phenomenon and thus is properly
governed by the equations of this chapter.

6.38 The temperature outside is 35◦F, but with the wind chill it’s
−15◦F. And you forgot your hat. If you go outdoors for long,
are you in danger of freezing your ears?
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6.39 To heat the airflow in a wind tunnel, an experimenter uses an
array of electrically heated, horizontal Nichrome V strips. The
strips are perpendicular to the flow. They are 20 cm long, very
thin, 2.54 cm wide (in the flow direction), with the flat sides
parallel to the flow. They are spaced vertically, each 1 cm above
the next. Air at 1 atm and 20◦C passes over them at 10 m/s.

a. How much power must each strip deliver to raise the mean
temperature of the airstream to 30◦C?

b. What is the heat flux if the electrical heating in the strips
is uniformly distributed?

c. What are the average and maximum temperatures of the
strips?

6.40 An airflow sensor consists of a 5 cm long, heated copper slug
that is smoothly embedded 10 cm from the leading edge of
a flat plate. The overall length of the plate is 15 cm, and the
width of the plate and the slug are both 10 cm. The slug is
electrically heated by an internal heating element, but, owing
to its high thermal conductivity, the slug has an essentially
uniform temperature along its airside surface. The heater’s
controller adjusts its power to keep the slug surface at a fixed
temperature. The air velocity is found from measurements
of the slug temperature, the air temperature, and the heating
power needed to hold the slug at the set temperature.

a. If the air is at 280 K, the slug is at 300 K, and the heater
power is 5.0 W, find the airspeed assuming the flow is
laminar. Hint: For x1/x0 = 1.5∫ x1

x0

x−1/2
[
1− (x0/x)3/4

]−1/3
dx = 1.0035

√
x0

b. Suppose that a disturbance trips the boundary layer near
the leading edge, causing it to become turbulent over the
whole plate. The air speed, air temperature, and the slug’s
set-point temperature remain the same. Make a very rough
estimate of the heater power that the controller now de-
livers, without doing a lot of analysis.

6.41 Equation (6.64) gives Nux for a flat plate with an unheated
starting length. This equation may be derived using the in-
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tegral energy equation [eqn. (6.47)], modelling the velocity and
temperature profiles with eqns. (6.29) and (6.50), respectively,
and taking δ(x) from eqn. (6.31). Equation (6.52) is again ob-
tained; however, in this case, φ = δt/δ is a function of x for
x > x0. Derive eqn. (6.64) by starting with eqn. (6.52), neglect-
ing the term 3φ3/280, and replacing δt by φδ. After some
manipulation, you will obtain

x
4
3
d
dx
φ3 +φ3 = 13

14 Pr

Show that its solution is

φ = Cx−3/4 + 13
14 Pr

for an unknown constant C . Then apply an appropriate initial
condition and the definition of qw and Nux to obtain eqn. (6.64).

References

[6.1] S. Juhasz. Notes on Applied Mechanics Reviews – Referativnyi
Zhurnal Mekhanika exhibit at XIII IUTAM, Moscow 1972. Appl.
Mech. Rev., 26(2):145–160, 1973.

[6.2] F.M. White. Viscous Fluid Flow. McGraw-Hill, Inc., New York, 2nd
edition, 1991.

[6.3] H. Schlichting. Boundary-Layer Theory. (trans. J. Kestin). McGraw-
Hill Book Company, New York, 6th edition, 1968.

[6.4] C. L. Tien and J. H. Lienhard. Statistical Thermodynamics. Hemi-
sphere Publishing Corp., Washington, D.C., rev. edition, 1978.

[6.5] S. W. Churchill and H. Ozoe. Correlations for laminar forced con-
vection in flow over an isothermal flat plate and in developing and
fully developed flow in an isothermal tube. J. Heat Trans., Trans.
ASME, Ser. C, 95:78, 1973.

[6.6] O. Reynolds. On the extent and action of the heating surface for
steam boilers. Proc. Manchester Lit. Phil. Soc., 14:7–12, 1874.



References 339

[6.7] J.A. Schetz. Foundations of Boundary Layer Theory for Momentum,
Heat, and Mass Transfer. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1984.

[6.8] P. S. Granville. A modified Van Driest formula for the mixing length
of turbulent boundary layers in pressure gradients. J. Fluids Engr.,
111(1):94–97, 1989.

[6.9] P. S. Granville. A near-wall eddy viscosity formula for turbulent
boundary layers in pressure gradients suitable for momentum,
heat, or mass transfer. J. Fluids Engr., 112(2):240–243, 1990.

[6.10] F. M. White. A new integral method for analyzing the turbulent
boundary layer with arbitrary pressure gradient. J. Basic Engr., 91:
371–378, 1969.

[6.11] J. Boussinesq. Théorie de l’écoulement tourbillant. Mem. Pres.
Acad. Sci., (Paris), 23:46, 1877.

[6.12] F. M. White. Viscous Fluid Flow. McGraw-Hill Book Company, New
York, 1974.

[6.13] B. S. Petukhov. Heat transfer and friction in turbulent pipe flow
with variable physical properties. In T.F. Irvine, Jr. and J. P. Hart-
nett, editors, Advances in Heat Transfer, volume 6, pages 504–564.
Academic Press, Inc., New York, 1970.

[6.14] A. A. Žukauskas and A. B. Ambrazyavichyus. Heat transfer from
a plate in a liquid flow. Int. J. Heat Mass Transfer, 3(4):305–309,
1961.

[6.15] A. Žukauskas and A. Šlanciauskas. Heat Transfer in Turbulent
Fluid Flows. Hemisphere Publishing Corp., Washington, 1987.

[6.16] S. Whitaker. Forced convection heat transfer correlation for flow
in pipes past flat plates, single cylinders, single spheres, and for
flow in packed beds and tube bundles. AIChE J., 18:361, 1972.

[6.17] S. W. Churchill. A comprehensive correlating equation for forced
convection from flat plates. AIChE J., 22:264–268, 1976.

[6.18] S. B. Pope. Turbulent Flows. Cambridge University Press, Cam-
bridge, 2000.



340 Chapter 6: Laminar and turbulent boundary layers

[6.19] P. A. Libby. Introduction to Turbulence. Taylor & Francis, Washing-
ton D.C., 1996.



7. Forced convection in a variety of
configurations

The bed was soft enough to suit me. . .But I soon found that there came
such a draught of cold air over me from the sill of the window that this
plan would never do at all, especially as another current from the rickety
door met the one from the window and both together formed a series of
small whirlwinds in the immediate vicinity of the spot where I had thought
to spend the night. Moby Dick, H. Melville

7.1 Introduction

Consider for a moment the fluid flow pattern within a shell-and-tube heat
exchanger, such as that shown in Fig. 3.5. The shell-pass flow moves up
and down across the tube bundle from one baffle to the next. The flow
around each pipe is determined by the complexities of the one before it,
and the direction of the mean flow relative to each pipe can vary. Yet
the problem of determining the heat transfer in this situation, however
difficult it appears to be, is a task that must be undertaken.

The flow within the tubes of the exchanger is somewhat more tractable,
but it, too, brings with it several problems that do not arise in the flow of
fluids over a flat surface. Heat exchangers thus present a kind of micro-
cosm of internal and external forced convection problems. Other such
problems arise everywhere that energy is delivered, controlled, utilized,
or produced. They arise in the complex flow of water through nuclear
heating elements or in the liquid heating tubes of a solar collector—in
the flow of a cryogenic liquid coolant in certain digital computers or in
the circulation of refrigerant in the spacesuit of a lunar astronaut.

We dealt with the simple configuration of flow over a flat surface in

341
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Chapter 6. This situation has considerable importance in its own right,
and it also reveals a number of analytical methods that apply to other
configurations. Now we wish to undertake a sequence of progressively
harder problems of forced convection heat transfer in more complicated
flow configurations.

Incompressible forced convection heat transfer problems normally
admit an extremely important simplification: the fluid flow problem can
be solved without reference to the temperature distribution in the fluid.
Thus, we can first find the velocity distribution and then put it in the
energy equation as known information and solve for the temperature
distribution. Two things can impede this procedure, however:

• If the fluid properties (especially µ and ρ) vary significantly with
temperature, we cannot predict the velocity without knowing the
temperature, and vice versa. The problems of predicting velocity
and temperature become intertwined and harder to solve. We en-
counter such a situation later in the study of natural convection,
where the fluid is driven by thermally induced density changes.

• Either the fluid flow solution or the temperature solution can, itself,
become prohibitively hard to find. When that happens, we resort to
the correlation of experimental data with the help of dimensional
analysis.

Our aim in this chapter is to present the analysis of a few simple
problems and to show the progression toward increasingly empirical so-
lutions as the problems become progressively more unwieldy. We begin
this undertaking with one of the simplest problems: that of predicting
laminar convection in a pipe.

7.2 Heat transfer to and from laminar flows in pipes

Not many industrial pipe flows are laminar, but laminar heating and cool-
ing does occur in an increasing variety of modern instruments and equip-
ment: micro-electro-mechanical systems (MEMS), laser coolant lines, and
many compact heat exchangers, for example. As in any forced convection
problem, we first describe the flow field. This description will include a
number of ideas that apply to turbulent as well as laminar flow.
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Figure 7.1 The development of a laminar velocity profile in a pipe.

Development of a laminar flow

Figure 7.1 shows the evolution of a laminar velocity profile from the en-
trance of a pipe. Throughout the length of the pipe, the mass flow rate,
ṁ (kg/s), is constant, of course, and the average, or bulk, velocity uav is
also constant:

ṁ =
∫
Ac
ρudAc = ρuavAc (7.1)

where Ac is the cross-sectional area of the pipe. The velocity profile, on
the other hand, changes greatly near the inlet to the pipe. A b.l. builds
up from the front, generally accelerating the otherwise undisturbed core.
The b.l. eventually occupies the entire flow area and defines a velocity pro-
file that changes very little thereafter. We call such a flow fully developed.
A flow is fully developed from the hydrodynamic standpoint when

∂u
∂x

= 0 or v = 0 (7.2)

at each radial location in the cross section. An attribute of a dynamically
fully developed flow is that the streamlines are all parallel to one another.

The concept of a fully developed flow, from the thermal standpoint,
is a little more complicated. We must first understand the notion of the
mixing-cup, or bulk, enthalpy and temperature, ĥb and Tb. The enthalpy
is of interest because we use it in writing the First Law of Thermodynam-
ics when calculating the inflow of thermal energy and flow work to open
control volumes. The bulk enthalpy is an average enthalpy for the fluid
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flowing through a cross section of the pipe:

ṁ ĥb ≡
∫
Ac
ρuĥdAc (7.3)

If we assume that fluid pressure variations in the pipe are too small to
affect the thermodynamic state much (see Sect. 6.3) and if we assume a
constant value of cp, then ĥ = cp(T − Tref) and

ṁ cp (Tb − Tref) =
∫
Ac
ρcpu(T − Tref) dAc (7.4)

or simply

Tb =

∫
Ac
ρcpuT dAc

ṁcp
(7.5)

In words, then,

Tb ≡
rate of flow of enthalpy through a cross section

rate of flow of heat capacity through a cross section

Thus, if the pipe were broken at any x-station and allowed to discharge
into a mixing cup, the enthalpy of the mixed fluid in the cup would equal
the average enthalpy of the fluid flowing through the cross section, and
the temperature of the fluid in the cup would be Tb. This definition of Tb
is perfectly general and applies to either laminar or turbulent flow. For
a circular pipe, with dAc = 2πr dr , eqn. (7.5) becomes

Tb =

∫ R
0
ρcpuT 2πr dr∫ R

0
ρcpu2πr dr

(7.6)

A fully developed flow, from the thermal standpoint, is one for which
the relative shape of the temperature profile does not change with x. We
state this mathematically as

∂
∂x

(
Tw − T
Tw − Tb

)
= 0 (7.7)

where T generally depends on x and r . This means that the profile can
be scaled up or down with Tw − Tb. Of course, a flow must be hydrody-
namically developed if it is to be thermally developed.
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Figure 7.2 The thermal development of flows in tubes with
a uniform wall heat flux and with a uniform wall temperature
(the entrance region).

Figures 7.2 and 7.3 show the development of two flows and their sub-
sequent behavior. The two flows are subjected to either a uniform wall
heat flux or a uniform wall temperature. In Fig. 7.2 we see each flow de-
velop until its temperature profile achieves a shape which, except for a
linear stretching, it will retain thereafter. If we consider a small length of
pipe, dx long with perimeter P , then its surface area is P dx (e.g., 2πRdx
for a circular pipe) and an energy balance on it is1

dQ = qw Pdx = ṁdĥb (7.8)

= ṁcp dTb (7.9)

so that

dTb
dx

= qwP
ṁcp

(7.10)

1Here we make the same approximations as were made in deriving the energy equa-
tion in Sect. 6.3.
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Figure 7.3 The thermal behavior of flows in tubes with a uni-
form wall heat flux and with a uniform temperature (the ther-
mally developed region).

This result is also valid for the bulk temperature in a turbulent flow.

In Fig. 7.3 we see the fully developed variation of the temperature
profile. If the flow is fully developed, the boundary layers are no longer
growing thicker, and we expect that h will become constant. When qw is
constant, then Tw − Tb will be constant in fully developed flow, so that
the temperature profile will retain the same shape while the temperature
rises at a constant rate at all values of r . Thus, at any radial position,

∂T
∂x

= dTb
dx

= qwP
ṁcp

= constant (7.11)

In the uniform wall temperature case, the temperature profile keeps
the same shape, but its amplitude decreases with x, as does qw . The
lower right-hand corner of Fig. 7.3 has been drawn to conform with this
requirement, as expressed in eqn. (7.7).
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The velocity profile in laminar tube flows

The Buckingham pi-theorem tells us that if the hydrodynamic entry length,
xe, required to establish a fully developed velocity profile depends on
uav, µ, ρ, and D in three dimensions (kg, m, and s), then we expect to
find two pi-groups:

xe
D
= fn (ReD)

where ReD ≡ uavD/ν . The matter of entry length is discussed by White
[7.1, Chap. 4], who quotes

xe
D
� 0.03 ReD (7.12)

The constant, 0.03, guarantees that the laminar shear stress on the pipe
wall will be within 5% of the value for fully developed flow when x >
xe. The number 0.05 can be used, instead, if a deviation of just 1.4% is
desired. The thermal entry length, xet , turns out to be different from xe.
We deal with it shortly.

The hydrodynamic entry length for a pipe carrying fluid at speeds
near the transitional Reynolds number (2100) will extend beyond 100 di-
ameters. Since heat transfer in pipes shorter than this is very often im-
portant, we will eventually have to deal with the entry region.

The velocity profile for a fully developed laminar incompressible pipe
flow can be derived from the momentum equation for an axisymmetric
flow. It turns out that the b.l. assumptions all happen to be valid for a
fully developed pipe flow:

• The pressure is constant across any section.

• ∂2u
/
∂x2 is exactly zero.

• The radial velocity is not just small, but it is zero.

• The term ∂u
/
∂x is not just small, but it is zero.

The boundary layer equation for cylindrically symmetrical flows is quite
similar to that for a flat surface, eqn. (6.13):

u
∂u
∂x

+ v ∂u
∂r

= −1
ρ
dp
dx

+ ν
r
∂
∂r

(
r
∂u
∂r

)
(7.13)
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For fully developed flows, we go beyond the b.l. assumptions and set
v and ∂u/∂x equal to zero as well, so eqn. (7.13) becomes

1
r
d
dr

(
r
du
dr

)
= 1
µ
dp
dx

We integrate this twice and get

u =
(

1
4µ
dp
dx

)
r2 + C1 ln r + C2

The two b.c.’s on u express the no-slip (or zero-velocity) condition at the
wall and the fact that u must be symmetrical in r :

u(r = R) = 0 and
du
dr

∣∣∣∣
r=0

= 0

They give C1 = 0 and C2 = (−dp/dx)R2/4µ, so

u = R
2

4µ

(
−dp
dx

)[
1−

(
r
R

)2
]

(7.14)

This is the familiar Hagen-Poiseuille2 parabolic velocity profile. We can
identify the lead constant (−dp/dx)R2

/
4µ as the maximum centerline

velocity, umax. In accordance with the conservation of mass (see Prob-
lem 7.1), 2uav = umax, so

u
uav

= 2

[
1−

(
r
R

)2
]

(7.15)

Thermal behavior of a flow with a uniform heat flux at the wall

The b.l. energy equation for a fully developed laminar incompressible
flow, eqn. (6.40), takes the following simple form in a pipe flow where
the radial velocity is equal to zero:

u
∂T
∂x

= α1
r
∂
∂r

(
r
∂T
∂r

)
(7.16)

2The German scientist G. Hagen showed experimentally howu varied with r , dp/dx,
µ, and R, in 1839. J. Poiseuille (pronounced Pwa-zói or, more precisely, Pwä-z´eē) did
the same thing, almost simultaneously (1840), in France. Poiseuille was a physician
interested in blood flow, and we find today that if medical students know nothing else
about fluid flow, they know “Poiseuille’s law.”
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For a fully developed flow with qw = constant, Tw and Tb increase linearly
with x. In particular, by integrating eqn. (7.10), we find

Tb(x)− Tbin =
∫ x

0

qwP
ṁcp

dx = qwPx
ṁcp

(7.17)

Then, from eqns. (7.11) and (7.1), we get

∂T
∂x

= dTb
dx

= qwP
ṁcp

= qw(2πR)
ρcpuav(πR2)

= 2qwα
uavRk

Using this result and eqn. (7.15) in eqn. (7.16), we obtain

4

[
1−

(
r
R

)2
]
qw
Rk

= 1
r
d
dr

(
r
dT
dr

)
(7.18)

This ordinary d.e. in r can be integrated twice to obtain

T = 4qw
Rk

(
r2

4
− r4

16R2

)
+ C1 ln r + C2 (7.19)

The first b.c. on this equation is the symmetry condition, ∂T/∂r = 0
at r = 0, and it gives C1 = 0. The second b.c. is the definition of the
mixing-cup temperature, eqn. (7.6). Substituting eqn. (7.19) with C1 = 0
into eqn. (7.6) and carrying out the indicated integrations, we get

C2 = Tb −
7
24
qwR
k

so

T − Tb =
qwR
k

[(
r
R

)2

− 1
4

(
r
R

)4

− 7
24

]
(7.20)

and at r = R, eqn. (7.20) gives

Tw − Tb =
11
24
qwR
k

= 11
48
qwD
k

(7.21)

so the local NuD for fully developed flow, based on h(x) = qw
/
[Tw(x)−

Tb(x)], is

NuD ≡ qwD
(Tw − Tb)k

= 48
11

= 4.364 (7.22)
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Equation (7.22) is surprisingly simple. Indeed, the fact that there is
only one dimensionless group in it is predictable by dimensional analysis.
In this case the dimensional functional equation is merely

h = fn (D, k)

We exclude∆T , becauseh should be independent of∆T in forced convec-
tion; µ, because the flow is parallel regardless of the viscosity; and ρu2

av,
because there is no influence of momentum in a laminar incompressible
flow that never changes direction. This gives three variables, effectively
in only two dimensions, W/K and m, resulting in just one dimensionless
group, NuD, which must therefore be a constant.

Example 7.1

Water at 20◦C flows through a small-bore tube 1 mm in diameter at
a uniform speed of 0.2 m/s. The flow is fully developed at a point
beyond which a constant heat flux of 6000 W/m2 is imposed. How
much farther down the tube will the water reach 74◦C at its hottest
point?

Solution. As a fairly rough approximation, we evaluate properties
at (74 + 20)/2 = 47◦C: k = 0.6367 W/m·K, α = 1.541 × 10−7, and
ν = 0.556×10−6 m2/s. Therefore, ReD = (0.001 m)(0.2 m/s)/0.556×
10−6 m2/s = 360, and the flow is laminar. Then, noting that T is
greatest at the wall and setting x = L at the point where Twall = 74◦C,
eqn. (7.17) gives:

Tb(x = L) = 20+ qwP
ṁcp

L = 20+ 4qwα
uavDk

L

And eqn. (7.21) gives

74 = Tb(x = L)+
11
48
qwD
k

= 20+ 4qwα
uavDk

L+ 11
48
qwD
k

so

L
D
=

(
54− 11

48
qwD
k

)
uavk
4qwα

or

L
D
=

[
54− 11

48
6000(0.001)

0.6367

]
0.2(0.6367)

4(6000)1.541(10)−7
= 1785
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so the wall temperature reaches the limiting temperature of 74◦C at

L = 1785(0.001 m) = 1.785 m

While we did not evaluate the thermal entry length here, it may be
shown to be much, much less than 1785 diameters.

In the preceding example, the heat transfer coefficient is actually
rather large

h = NuD
k
D
= 4.364

0.6367
0.001

= 2,778 W/m2K

The high h is a direct result of the small tube diameter, which limits the
thermal boundary layer to a small thickness and keeps the thermal resis-
tance low. This trend leads directly to the notion of a microchannel heat
exchanger. Using small scale fabrication technologies, such as have been
developed in the semiconductor industry, it is possible to create chan-
nels whose characteristic diameter is in the range of 100 µm, resulting in
heat transfer coefficients in the range of 104 W/m2K for water [7.2]. If,
instead, liquid sodium (k ≈ 80 W/m·K) is used as the working fluid, the
laminar flow heat transfer coefficient is on the order of 106 W/m2K — a
range that is usually associated with boiling processes!

Thermal behavior of the flow in an isothermal pipe

The dimensional analysis that showed NuD = constant for flow with a
uniform heat flux at the wall is unchanged when the pipe wall is isother-
mal. Thus, NuD should still be constant. But this time (see, e.g., [7.3,
Chap. 8]) the constant changes to

NuD = 3.657, Tw = constant (7.23)

for fully developed flow. The behavior of the bulk temperature is dis-
cussed in Sect. 7.4.

The thermal entrance region

The thermal entrance region is of great importance in laminar flow be-
cause the thermally undeveloped region becomes extremely long for higher-
Pr fluids. The entry-length equation (7.12) takes the following form for
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the thermal entry region3, where the velocity profile is assumed to be
fully developed before heat transfer starts at x = 0:

xet
D
� 0.034 ReDPr (7.24)

Thus, the thermal entry length for the flow of cold water (Pr � 10) can be
over 600 diameters in length near the transitional Reynolds number, and
oil flows (Pr on the order of 104) practically never achieve fully developed
temperature profiles.

A complete analysis of the heat transfer rate in the thermal entry re-
gion becomes quite complicated. The reader interested in details should
look at [7.3, Chap. 8]. Dimensional analysis of the entry problem shows
that the local value of h depends on uav, µ, ρ, D, cp, k, and x—eight
variables in m, s, kg, and J

/
K. This means that we should anticipate four

pi-groups:

NuD = fn (ReD,Pr, x/D) (7.25)

In other words, to the already familiar NuD, ReD, and Pr, we add a new
length parameter, x/D. The solution of the constant wall temperature
problem, originally formulated by Graetz in 1885 [7.6] and solved in con-
venient form by Sellars, Tribus, and Klein in 1956 [7.7], includes an ar-
rangement of these dimensionless groups, called the Graetz number:

Graetz number, Gz ≡ ReDPrD
x

(7.26)

Figure 7.4 shows values of NuD ≡ hD/k for both the uniform wall
temperature and uniform wall heat flux cases. The independent variable
in the figure is a dimensionless length equal to 2/Gz. The figure also
presents an average Nusselt number, NuD for the isothermal wall case:

NuD ≡ hDk = D
k

(
1
L

∫ L
0
hdx

)
= 1
L

∫ L
0

NuD dx (7.27)

3The Nusselt number will be within 5% of the fully developed value if xet �
0.034 ReDPrD for Tw = constant. The error decreases to 1.4% if the coefficient is raised
from 0.034 to 0.05 [Compare this with eqn. (7.12) and its context.]. For other situations,
the coefficient changes. With qw = constant, it is 0.043 at a 5% error level; when the ve-
locity and temperature profiles develop simultaneously, the coefficient ranges between
about 0.028 and 0.053 depending upon the Prandtl number and the wall boundary con-
dition [7.4, 7.5].
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Figure 7.4 Local and average Nusselt numbers for the ther-
mal entry region in a hydrodynamically developed laminar pipe
flow.

where, since h = q(x)/[Tw−Tb(x)], it is not possible to average just q or
∆T . We show how to find the change in Tb using h for an isothermal wall
in Sect. 7.4. For a fixed heat flux, the change in Tb is given by eqn. (7.17),
and a value of h is not needed.

For an isothermal wall, the following curve fits are available for the
Nusselt number in thermally developing flow [7.4]:

NuD = 3.657+ 0.0018 Gz1/3(
0.04+ Gz−2/3)2 (7.28)

NuD = 3.657+ 0.0668 Gz1/3

0.04+ Gz−2/3 (7.29)

The error is less than 14% for Gz > 1000 and less than 7% for Gz < 1000.
For fixed qw , a more complicated formula reproduces the exact result
for local Nusselt number to within 1%:

NuD =




1.302 Gz1/3 − 1 for 2× 104 ≤ Gz

1.302 Gz1/3 − 0.5 for 667 ≤ Gz ≤ 2× 104

4.364+ 0.263 Gz0.506 e−41/Gz for 0 ≤ Gz ≤ 667

(7.30)
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Example 7.2

A fully developed flow of air at 27◦C moves at 2 m/s in a 1 cm I.D. pipe.
An electric resistance heater surrounds the last 20 cm of the pipe and
supplies a constant heat flux to bring the air out at Tb = 40◦C. What
power input is needed to do this? What will be the wall temperature
at the exit?

Solution. This is a case in which the wall heat flux is uniform along
the pipe. We first must compute Gz20 cm, evaluating properties at
(27+ 40)

/
2 � 34◦C.

Gz20 cm = ReDPrD
x

=
(2 m/s)(0.01 m)
16.4× 10−6 m2/s

(0.711)(0.01 m)

0.2 m
= 43.38

From eqn. 7.30, we compute NuD = 5.05, so

Twexit − Tb =
qwD
5.05k

Notice that we still have two unknowns, qw and Tw . The bulk
temperature is specified as 40◦C, and qw is obtained from this number
by a simple energy balance:

qw(2πRx) = ρcpuav(Tb − Tentry)πR2

so

qw = 1.159
kg
m3

· 1004
J

kg·K · 2
m
s
· (40− 27)◦C · R

2x︸︷︷︸
1/80

= 378 W/m2

Then

Twexit = 40◦C+ (378 W/m2)(0.01 m)
5.05(0.0266 W/m·K) = 68.1◦C
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7.3 Turbulent pipe flow

Turbulent entry length

The entry lengths xe and xet are generally shorter in turbulent flow than
in laminar flow. Table 7.1 gives the thermal entry length for various
values of Pr and ReD, based on NuD lying within 5% of its fully developed
value. These results are based upon a uniform wall heat flux is imposed
on a hydrodynamically fully developed flow.

For Prandtl numbers typical of gases and nonmetallic liquids, the en-
try length is not strongly sensitive to the Reynolds number. For Pr > 1 in
particular, the entry length is just a few diameters. This is because the
heat transfer rate is controlled by the thin thermal sublayer on the wall,
which develop very quickly. Similar results are obtained when the wall
temperature, rather than heat flux, is changed.

Only liquid metals give fairly long thermal entrance lengths, and, for
these fluids, xet depends on both Re and Pr in a complicated way. Since
liquid metals have very high thermal conductivities, the heat transfer
rate is also more strongly affected by the temperature distribution in the
center of the pipe. We discusss liquid metals in more detail at the end of
this section.

When heat transfer begins at the inlet to a pipe, the velocity and tem-
perature profiles develop simultaneously. The entry length is then very
strongly affected by the shape of the inlet. For example, an inlet that in-
duces vortices in the pipe, such as a sharp bend or contraction, can create

Table 7.1 Thermal entry lengths, xet/D, for which NuD will be
no more than 5% above its fully developed value in turbulent
flow

Pr
ReD

20,000 100,000 500,000

0.01 7 22 32

0.7 10 12 14

3.0 4 3 3
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Table 7.2 Constants for the gas-flow simultaneous entry
length correlation, eqn. (7.31), for various inlet configurations

Inlet configuration C n

Long, straight pipe 0.9756 0.760

Square-edged inlet 2.4254 0.676

180◦ circular bend 0.9759 0.700

90◦ circular bend 1.0517 0.629

90◦ sharp elbow 2.0152 0.614

a much longer entry length than occurs for a thermally developing flow.
These vortices may require 20 to 40 diameters to die out. For various
types of inlets, Bhatti and Shah [7.8] provide the following correlation
for NuD with L/D > 3 for air (or other fluids with Pr ≈ 0.7)

NuD
Nu∞

= 1+ C
(L/D)n

for Pr = 0.7 (7.31)

where Nu∞ is the fully developed value of the Nusselt number, and C and
n depend on the inlet configuration as shown in Table 7.2.

Whereas the entry effect on the local Nusselt number is confined to
a few ten’s of diameters, the effect on the average Nusselt number may
persist for a hundred diameters. This is because much additional length
is needed to average out the higher heat transfer rates near the entry.

The discussion that follows deals almost entirely with fully developed
turbulent pipe flows.

Illustrative experiment

Figure 7.5 shows average heat transfer data given by Kreith [7.9, Chap. 8]
for air flowing in a 1 in. I.D. isothermal pipe 60 in. in length. Let us see
how these data compare with what we know about pipe flows thus far.

The data are plotted for a single Prandtl number on NuD vs. ReD
coordinates. This format is consistent with eqn. (7.25) in the fully devel-
oped range, but the actual pipe incorporates a significant entry region.
Therefore, the data will reflect entry behavior.

For laminar flow, NuD � 3.66 at ReD = 750. This is the correct value
for an isothermal pipe. However, the pipe is too short for flow to be fully
developed over much, if any, of its length. Therefore NuD is not constant
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Figure 7.5 Heat transfer to air flowing in
a 1 in. I.D., 60 in. long pipe (after
Kreith [7.9]).

in the laminar range. The rate of rise of NuD with ReD becomes very great
in the transitional range, which lies between ReD = 2100 and about 5000
in this case. Above ReD � 5000, the flow is turbulent and it turns out
that NuD � Re0.8

D .

The Reynolds analogy and heat transfer

A form of the Reynolds analogy appropriate to fully developed turbulent
pipe flow can be derived from eqn. (6.111)

Stx = h
ρcpu∞

= Cf (x)
/
2

1+ 12.8
(
Pr0.68 − 1

)√
Cf (x)

/
2

(6.111)

where h, in a pipe flow, is defined as qw/(Tw − Tb). We merely replace
u∞ with uav and Cf (x) with the friction coefficient for fully developed
pipe flow, Cf (which is constant), to get

St = h
ρcpuav

= Cf
/
2

1+ 12.8
(
Pr0.68 − 1

)√
Cf

/
2

(7.32)

This should not be used at very low Pr’s, but it can be used in either
uniform qw or uniform Tw situations. It applies only to smooth walls.
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The frictional resistance to flow in a pipe is normally expressed in
terms of the Darcy-Weisbach friction factor, f [recall eqn. (3.24)]:

f ≡ head loss(
pipe length

D
u2

av

2

) = ∆p(
L
D
ρu2

av

2

) (7.33)

where ∆p is the pressure drop in a pipe of length L. However,

τw = frictional force on liquid
surface area of pipe

= ∆p
[
(π/4)D2

]
πDL

= ∆pD
4L

so

f = τw
ρu2

av/8
= 4Cf (7.34)

Substituting eqn. (7.34) in eqn. (7.32) and rearranging the result, we
obtain, for fully developed flow,

NuD =
(
f
/
8
)
ReD Pr

1+ 12.8
(
Pr0.68 − 1

)√
f
/
8

(7.35)

The friction factor is given graphically in Fig. 7.6 as a function of ReD and
the relative roughness, ε/D, where ε is the root-mean-square roughness
of the pipe wall. Equation (7.35) can be used directly along with Fig. 7.6
to calculate the Nusselt number for smooth-walled pipes.

Historical formulations. A number of the earliest equations for the
Nusselt number in turbulent pipe flow were based on Reynolds analogy
in the form of eqn. (6.76), which for a pipe flow becomes

St = Cf
2

Pr−2/3 = f
8

Pr−2/3 (7.36)

or

NuD = ReD Pr1/3(f/8) (7.37)

For smooth pipes, the curve ε/D = 0 in Fig. 7.6 is approximately given
by this equation:

f
4
= Cf =

0.046

Re0.2
D

(7.38)
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in the range 20,000 < ReD < 300,000, so eqn. (7.37) becomes

NuD = 0.023 Pr1/3 Re0.8
D

for smooth pipes. This result was given by Colburn [7.10] in 1933. Actu-
ally, it is quite similar to an earlier result developed by Dittus and Boelter
in 1930 (see [7.11, pg. 552]) for smooth pipes.

NuD = 0.0243 Pr0.4 Re0.8
D (7.39)

These equations are intended for reasonably low temperature differ-
ences under which properties can be evaluated at a mean temperature
(Tb+Tw)/2. In 1936, a study by Sieder and Tate [7.12] showed that when
|Tw−Tb| is large enough to cause serious changes of µ, the Colburn equa-
tion can be modified in the following way for liquids:

NuD = 0.023 Re0.8
D Pr1/3

(
µb
µw

)0.14

(7.40)

where all properties are evaluated at the local bulk temperature except
µw , which is the viscosity evaluated at the wall temperature.

These early relations proved to be reasonably accurate. They gave
maximum errors of +25% and −40% in the range 0.67 � Pr < 100 and
usually were considerably more accurate than this. However, subsequent
research has provided far more data, and better theoretical and physical
understanding of how to represent them accurately.

Modern formulations. During the 1950s and 1960s, B. S. Petukhov and
his co-workers at the Moscow Institute for High Temperature developed
a vastly improved description of forced convection heat transfer in pipes.
Much of this work is described in a 1970 survey article by Petukhov [7.13].

Petukhov recommends the following equation, which is built from
eqn. (7.35), for the local Nusselt number in fully developed flow in smooth
pipes where all properties are evaluated at Tb.

NuD = (f/8) ReD Pr

1.07+ 12.7
√
f/8

(
Pr2/3 − 1

) (7.41)

where

104 < ReD < 5× 106

0.5 < Pr < 200 for 6% accuracy

200 � Pr < 2000 for 10% accuracy
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and where the friction factor for smooth pipes is given by

f = 1(
1.82 log10 ReD − 1.64

)2 (7.42)

Gnielinski [7.14] later showed that the range of validity could be extended
down to the transition Reynolds number by making a small adjustment
to eqn. (7.41):

NuD = (f/8) (ReD − 1000) Pr

1+ 12.7
√
f/8

(
Pr2/3 − 1

) (7.43)

for 2300 ≤ ReD ≤ 5× 106.

Variations in physical properties. Sieder and Tate’s work on property
variations was also refined in later years [7.13]. The effect of variable
physical properties is dealt with differently for liquids and gases. In both
cases, the Nusselt number is first calculated with all properties evaluated
at Tb using eqn. (7.41) or (7.43). For liquids, one then corrects by multi-
plying with a viscosity ratio. Over the interval 0.025 ≤ (µb/µw) ≤ 12.5,

NuD = NuD
∣∣∣
Tb

(
µb
µw

)n
where n =


0.11 for Tw > Tb

0.25 for Tw < Tb
(7.44)

For gases a ratio of temperatures in kelvins is used, with 0.27 ≤ (Tb/Tw) ≤
2.7,

NuD = NuD
∣∣∣
Tb

(
Tb
Tw

)n
where n =


0.47 for Tw > Tb

0.36 for Tw < Tb
(7.45)

After eqn. (7.42) is used to calculate NuD, it should also be corrected
for the effect of variable viscosity. For liquids, with 0.5 ≤ (µb/µw) ≤ 3

f = f
∣∣∣
Tb
×K where K =



(7− µb/µw)/6 for Tw > Tb

(µb/µw)−0.24 for Tw < Tb
(7.46)

For gases, with 0.27 ≤ (Tb/Tw) ≤ 2.7

f = f
∣∣∣
Tb

(
Tb
Tw

)m
where m =


0.52 for Tw > Tb

0.38 for Tw < Tb
(7.47)
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Example 7.3

A 21.5 kg/s flow of water is dynamically and thermally developed in
a 12 cm I.D. pipe. The pipe is held at 90◦C and ε/D = 0. Find h and
f where the bulk temperature of the fluid has reached 50◦C.

Solution.

uav = ṁ
ρAc

= 21.5
977π(0.06)2

= 1.946 m/s

so

ReD = uavD
ν

= 1.946(0.12)
4.07× 10−7

= 573,700

and

Pr = 2.47,
µb
µw

= 5.38× 10−4

3.10× 10−4
= 1.74

From eqn. (7.42), f = 0.0128 at Tb, and since Tw > Tb, n = 0.11 in
eqn. (7.44). Thus, with eqn. (7.41) we have

NuD = (0.0128/8)(5.74× 105)(2.47)
1.07+ 12.7

√
0.0128/8

(
2.472/3 − 1

)(1.74)0.11 = 1617

or

h = NuD
k
D
= 1617

0.661
0.12

= 8,907 W/m2K

The corrected friction factor, with eqn. (7.46), is

f = (0.0128) (7− 1.74)/6 = 0.0122

Rough-walled pipes. Roughness on a pipe wall can disrupt the viscous
and thermal sublayers if it is sufficiently large. Figure 7.6 shows the effect
of increasing root-mean-square roughness height ε on the friction factor,
f . As the Reynolds number increases, the viscous sublayer becomes
thinner and smaller levels of roughness influence f . Some typical pipe
roughnesses are given in Table 7.3.

The importance of a given level of roughness on friction and heat
transfer can determined by comparing ε to the sublayer thickness. We
saw in Sect. 6.7 that the thickness of the sublayer is around 30 times
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Table 7.3 Typical wall roughness of commercially available
pipes when new.

Pipe ε (µm) Pipe ε (µm)

Glass 0.31 Asphalted cast iron 120.
Drawn tubing 1.5 Galvanized iron 150.

Steel or wrought iron 46. Cast iron 260.

ν/u∗, where u∗ = √
τw/ρ was the friction velocity. We can define the

ratio of ε and ν/u∗ as the roughness Reynolds number, Reε

Reε ≡ u
∗ε
ν

= ReD
ε
D

√
f
8

(7.48)

where the second equality follows from the definitions of u∗ and f (and
a little algebra). Experimental data then show that the smooth, transi-
tional, and fully rough regions seen in Fig. 7.6 correspond to the following
ranges of Reε:

Reε < 5 hydraulically smooth

5 ≤ Reε ≤ 70 transitionally rough

70 < Reε fully rough

In the fully rough regime, Bhatti and Shah [7.8] provide the following
correlation for the local Nusselt number

NuD = (f/8) ReD Pr

1+
√
f/8

(
4.5 Re0.2

ε Pr0.5 − 8.48
) (7.49)

which applies for the ranges

104 � ReD, 0.5 � Pr � 10, and 0.002 �
ε
D
� 0.05

The corresponding friction factor may be computed from Haaland’s equa-
tion [7.15]:

f = 1{
1.8 log10

[
6.9
ReD

+
(
ε/D
3.7

)1.11
]}2 (7.50)
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The heat transfer coefficient on a rough wall can be several times
that for a smooth wall at the same Reynolds number. The friction fac-
tor, and thus the pressure drop and pumping power, will also be higher.
Nevertheless, designers sometimes deliberately roughen tube walls so as
to raise h and reduce the surface area needed for heat transfer. Sev-
eral manufacturers offer tubing that has had some pattern of roughness
impressed upon its interior surface. Periodic ribs are one common con-
figuration. Specialized correlations have been developed for a number
of such configurations [7.16, 7.17].

Example 7.4

Repeat Example 7.3, now assuming the pipe to be cast iron with a wall
roughness of ε = 260 µm.

Solution. The Reynolds number and physical properties are un-
changed. From eqn. (7.50)

f =

1.8 log10


 6.9

573,700
+

(
260× 10−6

/
0.12

3.7

)1.11




−2

=0.02424

The roughness Reynolds number is then

Reε = (573,700)
260× 10−6

0.12

√
0.02424

8
= 68.4

This corresponds to fully rough flow. With eqn. (7.49) we have

NuD = (0.02424/8)(5.74× 105)(2.47)
1+ √

0.02424/8
[
4.5(68.4)0.2(2.47)0.5 − 8.48

]
= 2,985

so

h = 2985
0.661
0.12

= 16.4 kW/m2K

In this case, wall roughness causes a factor of 1.8 increase in h and a
factor of 2.0 increase in f and the pumping power. We have omitted
the variable properties corrections here because they were developed
for smooth-walled pipes.
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Figure 7.7 Velocity and temperature profiles during fully de-
veloped turbulent flow in a pipe.

Heat transfer to fully developed liquid-metal flows in tubes

A dimensional analysis of the forced convection flow of a liquid metal
over a flat surface [recall eqn. (6.60) et seq.] showed that

Nu = fn(Pe) (7.51)

because viscous influences were confined to a region very close to the
wall. Thus, the thermal b.l., which extends far beyond δ, is hardly influ-
enced by the dynamic b.l. or by viscosity. During heat transfer to liquid
metals in pipes, the same thing occurs as is illustrated in Fig. 7.7. The re-
gion of thermal influence extends far beyond the laminar sublayer, when
Pr � 1, and the temperature profile is not influenced by the sublayer.
Conversely, if Pr 	 1, the temperature profile is largely shaped within
the laminar sublayer. At high or even moderate Pr’s, ν is therefore very
important, but at low Pr’s it vanishes from the functional equation. Equa-
tion (7.51) thus applies to pipe flows as well as to flow over a flat surface.

Numerous measured values of NuD for liquid metals flowing in pipes
with a constant wall heat flux, qw , were assembled by Lubarsky and Kauf-
man [7.18]. They are included in Fig. 7.8. It is clear that while most of the
data correlate fairly well on NuD vs. Pe coordinates, certain sets of data
are badly scattered. This occurs in part because liquid metal experiments
are hard to carry out. Temperature differences are small and must often
be measured at high temperatures. Some of the very low data might pos-
sibly result from a failure of the metals to wet the inner surface of the
pipe.

Another problem that besets liquid metal heat transfer measurements
is the very great difficulty involved in keeping such liquids pure. Most
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Figure 7.8 Comparison of measured and predicted Nusselt
numbers for liquid metals heated in long tubes with uniform
wall heat flux, qw . (See NACA TN 336, 1955, for details and
data source references.)

impurities tend to result in lower values of h. Thus, most of the Nus-
selt numbers in Fig. 7.8 have probably been lowered by impurities in the
liquids; the few high values are probably the more correct ones for pure
liquids.

There is a body of theory for turbulent liquid metal heat transfer that
yields a prediction of the form

NuD = C1 + C2 Pe0.8
D (7.52)

where the Péclét number is defined as PeD = uavD/α. The constants are
normally in the ranges 2 � C1 � 7 and 0.0185 � C2 � 0.386 according
to the test circumstances. Using the few reliable data sets available for
uniform wall temperature conditions, Reed [7.19] recommends

NuD = 3.3+ 0.02 Pe0.8
D (7.53)

(Earlier work by Seban and Shimazaki [7.20] had suggested C1 = 4.8 and
C2 = 0.025.) For uniform wall heat flux, many more data are available,
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and Lyon [7.21] recommends the following equation, shown in Fig. 7.8:

NuD = 7+ 0.025 Pe0.8
D (7.54)

In both these equations, properties should be evaluated at the average
of the inlet and outlet bulk temperatures and the pipe flow should have
L/D > 60 and PeD > 100. For lower PeD, axial heat conduction in the
liquid metal may become significant.

Although eqns. (7.53) and (7.54) are probably correct for pure liquids,
we cannot overlook the fact that the liquid metals in actual use are seldom
pure. Lubarsky and Kaufman [7.18] put the following line through the
bulk of the data in Fig. 7.8:

NuD = 0.625 Pe0.4
D (7.55)

The use of eqn. (7.55) for qw = constant is far less optimistic than the
use of eqn. (7.54). It should probably be used if it is safer to err on the
low side.

7.4 Heat transfer surface viewed as a heat exchanger

Let us reconsider the problem of a fluid flowing through a pipe with a
uniform wall temperature. By now we can predict h for a pretty wide
range of conditions. Suppose that we need to know the net heat transfer
to a pipe of known length once h is known. This problem is complicated
by the fact that the bulk temperature, Tb, is varying along its length.

However, we need only recognize that such a section of pipe is a heat
exchanger whose overall heat transfer coefficient, U (between the wall
and the bulk), is just h. Thus, if we wish to know how much pipe surface
area is needed to raise the bulk temperature from Tbin to Tbout , we can
calculate it as follows:

Q = (ṁcp)b
(
Tbout − Tbin

) = hA(LMTD)

or

A = (ṁcp)b
(
Tbout − Tbin

)
h

ln

(
Tbout − Tw
Tbin − Tw

)
(
Tbout − Tw

)− (
Tbin − Tw

) (7.56)

By the same token, heat transfer in a duct can be analyzed with the ef-
fectiveness method (Sect. 3.3) if the exiting fluid temperature is unknown.
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Suppose that we do not know Tbout in the example above. Then we can
write an energy balance at any cross section, as we did in eqn. (7.8):

dQ = qwP dx = hP (Tw − Tb) dx = ṁcP dTb

Integration can be done from Tb(x = 0) = Tbin to Tb(x = L) = Tbout

∫ L
0

hP
ṁcp

dx = −
∫ Tbout

Tbin

d(Tw − Tb)
(Tw − Tb)

P
ṁcp

∫ L
0
hdx = − ln

(
Tw − Tbout

Tw − Tbin

)

We recognize in this the definition of h from eqn. (7.27). Hence,

hPL
ṁcp

= − ln

(
Tw − Tbout

Tw − Tbin

)

which can be rearranged as

Tbout − Tbin

Tw − Tbin

= 1− exp

(
−hPL
ṁcp

)
(7.57)

This equation can be used in either laminar or turbulent flow to com-
pute the variation of bulk temperature if Tbout is replaced by Tb(x), L is
replaced by x, and h is adjusted accordingly.

The left-hand side of eqn. (7.57) is the heat exchanger effectiveness.
On the right-hand side we replace U with h; we note that PL = A, the
exchanger surface area; and we write Cmin = ṁcp. Since Tw is uniform,
the stream that it represents must have a very large capacity rate, so that
Cmin/Cmax = 0. Under these substitutions, we identify the argument of
the exponential as NTU = UA/Cmin, and eqn. (7.57) becomes

ε = 1− exp (−NTU) (7.58)

which we could have obtained directly, from either eqn. (3.20) or (3.21),
by setting Cmin/Cmax = 0. A heat exchanger for which one stream is
isothermal, so that Cmin/Cmax = 0, is sometimes called a single-stream
heat exchanger.

Equation 7.57 applies to ducts of any cross-sectional shape. We can
cast it in terms of the hydraulic diameter, Dh = 4Ac/P , by substituting
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ṁ = ρuavAc :

Tbout − Tbin

Tw − Tbin

= 1− exp

(
− hPL
ρuavcpAc

)

= 1− exp

(
− h
ρuavcp

4L
Dh

)
(7.59)

For a circular tube, withAc = πD2/4 and P = πD,Dh = 4(πD2/4)
/
(πD)

= D. To use eqn. (7.59) for a noncircular duct, of course, we will need
the value of h for its more complex geometry. We consider this issue in
the next section.

Example 7.5

Air at 20◦C is fully thermally developed as it flows in a 1 cm I.D. pipe.
The average velocity is 0.7 m/s. If the pipe wall is at 60◦C , what is
the temperature 0.25 m farther downstream?

Solution.

ReD = uavD
ν

= (0.7)(0.01)
1.70× 10−5

= 412

The flow is therefore laminar, so

NuD = hDk = 3.658

Thus,

h = 3.658(0.0271)
0.01

= 9.91 W/m2K

Then

ε = 1− exp

(
− h
ρcpuav

4L
D

)
= 1− exp

[
− 9.91

1.14(1004)(0.7)
4(0.25)

0.01

]

so that

Tb − 20
60− 20

= 0.698 or Tb = 47.9◦C
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7.5 Heat transfer coefficients for noncircular ducts

So far, we have focused on flows within circular tubes, which are by far the
most common configuration. Nevertheless, other cross-sectional shapes
often occur. For example, the fins of a heat exchanger may form a rect-
angular passage through which air flows. Sometimes, the passage cross-
section is very irregular, as might happen when fluid passes through a
clearance between other objects. In situations like these, all the qual-
itative ideas that we developed in Sections 7.1–7.3 still apply, but the
Nusselt numbers for circular tubes cannot be used in calculating heat
transfer rates.

The hydraulic diameter, which was introduced in connection with
eqn. (7.59), provides a basis for approximating heat transfer coefficients
in noncircular ducts. Recall that the hydraulic diameter is defined as

Dh ≡
4Ac
P

(7.60)

whereAc is the cross-sectional area and P is the passage’s wetted perime-
ter (Fig. 7.9). The hydraulic diameter measures the fluid area per unit
length of wall. In turbulent flow, where most of the convection resis-
tance is in the sublayer on the wall, this ratio determines the heat trans-
fer coefficient to within about ±20% across a broad range of duct shapes.
In fully-developed laminar flow, where the thermal resistance extends
into the core of the duct, the heat transfer coefficient depends on the
details of the duct shape, and Dh alone cannot define the heat transfer
coefficient. Nevertheless, the hydraulic diameter provides an appropriate
characteristic length for cataloging laminar Nusselt numbers.

The factor of four in the definition of Dh ensures that it gives the
actual diameter of a circular tube. We noted in the preceding section

Figure 7.9 Flow in a noncircular duct.

P

. 
m

Ac

Dh =
4Ac

P
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that, for a circular tube of diameter D, Dh = D. Some other important
cases include:

a rectangular duct of
width a and height b

Dh =
4ab

2a+ 2b
= 2ab
a+ b (7.61a)

an annular duct of
inner diameter Di and

outer diameter Do

Dh =
4
(
πD2

o
/
4−πD2

i
/
4
)

π (Do +Di)
= (Do −Di) (7.61b)

and, for very wide parallel plates, eqn. (7.61a) with a	 b gives

two parallel plates
a distance b apart

Dh = 2b (7.61c)

Turbulent flow in noncircular ducts

With some caution, we may use Dh directly in place of the circular tube
diameter when calculating turbulent heat transfer coefficients and bulk
temperature changes. Specifically, Dh replaces D in the Reynolds num-
ber, which is then used to calculate f and NuDh from the circular tube
formulas. The mass flow rate and the bulk velocity must be based on
the true cross-sectional area, which does not usually equal πD2

h/4 (see
Problem 7.46). The following example illustrates the procedure.

Example 7.6

An air duct carries chilled air at an inlet bulk temperature of Tbin =
17◦C and a speed of 1 m/s. The duct is made of thin galvanized steel,
has a square cross-section of 0.3 m by 0.3 m, and is not insulated.
A length of the duct 15 m long runs outdoors through warm air at
T∞ = 37◦C. The heat transfer coefficient on the outside surface, due
to natural convection and thermal radiation, is 5 W/m2K. Find the
bulk temperature change of the air over this length.

Solution. The hydraulic diameter, from eqn. (7.61a) with a = b, is
simply

Dh = a = 0.3 m

Using properties of air at the inlet temperature (290 K), the Reynolds
number is

ReDh =
uavDh
ν

= (1)(0.3)
(1.578× 10−5)

= 19,011
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The Reynolds number for turbulent transition in a noncircular duct
is typically approximated by the circular tube value of about 2300, so
this flow is turbulent. The friction factor is obtained from eqn. (7.42)

f = [
1.82 log10(19,011)− 1.64

]−2 = 0.02646

and the Nusselt number is found with Gnielinski’s equation, (7.43)

NuDh =
(0.02646/8)(19,011− 1,000)(0.713)
1+ 12.7

√
0.02646/8

[
(0.713)2/3 − 1

] = 49.82

The heat transfer coefficient is

h = NuDh
k
Dh

= (49.82)(0.02623)
0.3

= 4.371 W/m2K

The remaining problem is to find the bulk temperature change.
The thin metal duct wall offers little thermal resistance, but convec-
tion must be considered. Heat travels first from the air at T∞ through
the outside heat transfer coefficient to the duct wall, and then through
the inside heat transfer coefficient to the flowing air — effectively
through two resistances in series from the fixed temperature T∞ to
the rising temperature Tb. We have seen in Section 2.4 that an overall
heat transfer coefficient may be used to describe such series resis-
tances. Here,

U =
(

1
hinside

+ 1
houtside

)−1

=
(

1
4.371

+ 1
5

)−1

= 2.332 W/m2K

We may then adapt eqn. (7.59) to our situation by replacing h by U
and Tw by T∞:

Tbout − Tbin

T∞ − Tbin

= 1− exp

(
− U
ρuavcp

4L
Dh

)

= 1− exp
[
− 2.332
(1.217)(1)(1007)

4(15)
0.3

]
= 0.3165

The outlet bulk temperature is therefore

Tbout = [17+ (37− 17)(0.3165)] ◦C = 23.3 ◦C
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The accuracy of the procedure just outlined is generally within ±20%
and often within±10%. Worse results are obtained for duct cross-sections
having sharp corners, such as an acute triangle. Specialized equations
for “effective” hydraulic diameters have been developed in the literature
and can improve the accuracy of predictions to 5 or 10% [7.8].

When only a portion of the duct cross-section is heated — one wall of
a rectangle, for example — the procedure is the same. The hydraulic di-
ameter is based upon the entire wetted perimeter, not simply the heated
part. One situation in which one-sided or unequal heating often occurs
is an annular duct, for which the inner tube might be a heating element.
The hydraulic diameter procedure will typically predict the heat transfer
coefficient on the outer tube to within ±10%, irrespective of the heating
configuration. The heat transfer coefficient on the inner surface, how-
ever, is sensitive to both the diameter ratio and the heating configuration.
For that surface, the hydraulic diameter approach is not very accurate,
especially if Di� Do; other methods have been developed to accurately
predict heat transfer in annular ducts. (see [7.3] or [7.8]).

Laminar flow in noncircular ducts

Laminar velocity profiles in noncircular ducts develop in essentially the
same way as for circular tubes, and the fully developed velocity profiles
are generally paraboloidal in shape. For example, for fully developed flow
between parallel plates located at y = b/2 and y = −b/2, the velocity
profile is

u
uav

= 3
2

[
1− 4

(
y
b

)2
]

(7.62)

for uav the bulk velocity. This should be compared to eqn. (7.15) for a
circular tube. The constants and coordinates differ, but the equations
are otherwise identical. Likewise, an analysis of the temperature profiles
between parallel plates leads to constant Nusselt numbers, which may
be expressed in terms of the hydraulic diameter for various boundary
conditions:

NuDh =
hDh
k

=




7.541 for fixed plate temperatures

8.235 for fixed flux at both plates

5.385 one plate fixed flux, one adiabatic

(7.63)

Some other cases are summarized in Table 7.4. Many more have been
considered in the literature (see, especially, [7.5]). The latter include
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Table 7.4 Laminar, fully developed Nusselt numbers based on
hydraulic diameters given in eqn. (7.61)

Cross-section Tw fixed qw fixed

Circular 3.657 4.364

Square 2.976 3.608

Rectangular
a = 2b 3.391 4.123

a = 4b 4.439 5.331

a = 8b 5.597 6.490

Parallel plates 7.541 8.235

different wall boundary conditions and a wide variety cross-sectional
shapes, both practical and ridiculous: triangles, circular sectors, trape-
zoids, rhomboids, hexagons, limaçons, and even crescent moons! The
boundary conditions, in particular, should be considered when the duct
is small (so that h will be large): if the conduction resistance of the tube
wall is comparable to the convective resistance within the duct, then tem-
perature or flux variations around the tube perimeter must be expected.
This will significantly affect the laminar Nusselt number. The rectangu-
lar duct values in Table 7.4 for fixed wall flux, for example, assume a
uniform temperature around the perimeter of the tube, as if the wall has
no conduction resistance around its perimeter. This might be true for a
copper duct heated at a fixed rate in watts per meter of duct length.

Laminar entry length formulæ for noncircular ducts are also given by
Shah and London [7.5].

7.6 Heat transfer during cross flow over cylinders

Fluid flow pattern

It will help us to understand the complexity of heat transfer from bodies
in a cross flow if we first look in detail at the fluid flow patterns that occur
in one cross-flow configuration—a cylinder with fluid flowing normal to
it. Figure 7.10 shows how the flow develops as Re ≡ u∞D/ν is increased
from below 5 to near 107. An interesting feature of this evolving flow
pattern is the fairly continuous way in which one flow transition follows
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Figure 7.10 Regimes of fluid flow across circular cylinders [7.22].
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Figure 7.11 The Strouhal–Reynolds number relationship for
circular cylinders, as defined by existing data [7.22].

another. The flow field degenerates to greater and greater degrees of
disorder with each successive transition until, rather strangely, it regains
order at the highest values of ReD.

An important reflection of the complexity of the flow field is the
vortex-shedding frequency, fv . Dimensional analysis shows that a di-
mensionless frequency called the Strouhal number, Str, depends on the
Reynolds number of the flow:

Str ≡ fvD
u∞

= fn (ReD) (7.64)

Figure 7.11 defines this relationship experimentally on the basis of about
550 of the best data available (see [7.22]). The Strouhal numbers stay a
little over 0.2 over most of the range of ReD. This means that behind
a given object, the vortex-shedding frequency rises almost linearly with
velocity.

Experiment 7.1

When there is a gentle breeze blowing outdoors, go out and locate a
large tree with a straight trunk or the shaft of a water tower. Wet your
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Figure 7.12 Giedt’s local measurements
of heat transfer around a cylinder in a
normal cross flow of air.

finger and place it in the wake a couple of diameters downstream and
about one radius off center. Estimate the vortex-shedding frequency and
use Str � 0.21 to estimate u∞. Is your value of u∞ reasonable?

Heat transfer

The action of vortex shedding greatly complicates the heat removal pro-
cess. Giedt’s data [7.23] in Fig. 7.12 show how the heat removal changes
as the constantly fluctuating motion of the fluid to the rear of the cylin-
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der changes with ReD. Notice, for example, that NuD is near its minimum
at 110◦ when ReD = 71,000, but it maximizes at the same place when
ReD = 140,000. Direct prediction by the sort of b.l. methods that we
discussed in Chapter 6 is out of the question. However, a great deal can
be done with the data using relations of the form

NuD = fn (ReD,Pr)

The broad study of Churchill and Bernstein [7.24] probably brings
the correlation of heat transfer data from cylinders about as far as it is
possible. For the entire range of the available data, they offer

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[

1+ (0.4/Pr)2/3
]1/4

[
1+

(
ReD

282,000

)5/8
]4/5

(7.65)

This expression underpredicts most of the data by about 20% in the range
20,000 < ReD < 400,000 but is quite good at other Reynolds numbers
above PeD ≡ ReDPr = 0.2. This is evident in Fig. 7.13, where eqn. (7.65)
is compared with data.

Greater accuracy and, in most cases, greater convenience results from
breaking the correlation into component equations:

• Below ReD = 4000, the bracketed term [1 + (ReD/282,000)5/8]4/5

is � 1, so

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[

1+ (0.4/Pr)2/3
]1/4 (7.66)

• Below Pe = 0.2, the Nakai-Okazaki [7.25] relation

NuD = 1

0.8237− ln
(
Pe1/2) (7.67)

should be used.

• In the range 20,000 < ReD < 400,000, somewhat better results are
given by

NuD = 0.3+ 0.62 Re1/2
D Pr1/3[

1+ (0.4/Pr)2/3
]1/4

[
1+

(
ReD

282,000

)1/2
]

(7.68)

than by eqn. (7.65).
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Figure 7.13 Comparison of Churchill and Bernstein’s correla-
tion with data by many workers from several countries for heat
transfer during cross flow over a cylinder. (See [7.24] for data
sources.) Fluids include air, water, and sodium, with both qw
and Tw constant.

All properties in eqns. (7.65) to (7.68) are to be evaluated at a film tem-
perature Tf = (Tw + T∞)

/
2.

Example 7.7

An electric resistance wire heater 0.0001 m in diameter is placed per-
pendicular to an air flow. It holds a temperature of 40◦C in a 20◦C air
flow while it dissipates 17.8 W/m of heat to the flow. How fast is the
air flowing?

Solution. h = (17.8 W/m)
/
[π(0.0001 m)(40 − 20) K] = 2833

W/m2K. Therefore, NuD = 2833(0.0001)/0.0264 = 10.75, where we
have evaluated k = 0.0264 at T = 30◦C. We now want to find the ReD
for which NuD is 10.75. From Fig. 7.13 we see that ReD is around 300
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when the ordinate is on the order of 10. This means that we can solve
eqn. (7.66) to get an accurate value of ReD:

ReD =

(NuD − 0.3)


1+

(
0.4
Pr

)2/3
]1/4/

0.62 Pr1/3




2

but Pr = 0.71, so

ReD =

(10.75− 0.3)


1+

(
0.40
0.71

)2/3
]1/4/

0.62(0.71)1/3



2

= 463

Then

u∞ = νD ReD =
(

1.596× 10−5

10−4

)
463 = 73.9 m/s

The data scatter in ReD is quite small—less than 10%, it would
appear—in Fig. 7.13. Therefore, this method can be used to measure
local velocities with good accuracy. If the device is calibrated, its
accuracy is improved further. Such an air speed indicator is called a
hot-wire anemometer, as discussed further in Problem 7.45.

Heat transfer during flow across tube bundles

A rod or tube bundle is an arrangement of parallel cylinders that heat, or
are being heated by, a fluid that might flow normal to them, parallel with
them, or at some angle in between. The flow of coolant through the fuel
elements of all nuclear reactors being used in this country is parallel to
the heating rods. The flow on the shell side of most shell-and-tube heat
exchangers is generally normal to the tube bundles.

Figure 7.14 shows the two basic configurations of a tube bundle in
a cross flow. In one, the tubes are in a line with the flow; in the other,
the tubes are staggered in alternating rows. For either of these configura-
tions, heat transfer data can be correlated reasonably well with power-law
relations of the form

NuD = C RenD Pr1/3 (7.69)

but in which the Reynolds number is based on the maximum velocity,

umax = uav in the narrowest transverse area of the passage
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Figure 7.14 Aligned and staggered tube rows in tube bundles.

Thus, the Nusselt number based on the average heat transfer coefficient
over any particular isothermal tube is

NuD = hDk and ReD = umaxD
ν

Žukauskas at the Lithuanian Academy of Sciences Institute in Vilnius
has written two comprehensive review articles on tube-bundle heat trans-
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fer [7.26, 7.27]. In these he summarizes his work and that of other Soviet
workers, together with earlier work from the West. He was able to corre-
late data over very large ranges of Pr, ReD, ST/D, and SL/D (see Fig. 7.14)
with an expression of the form

NuD = Pr0.36 (Pr/Prw)n fn (ReD) with n =

0 for gases

1
4 for liquids

(7.70)

where properties are to be evaluated at the local fluid bulk temperature,
except for Prw , which is evaluated at the uniform tube wall temperature,
Tw .

The function fn(ReD) takes the following form for the various circum-
stances of flow and tube configuration:

100 � ReD � 103 :

aligned rows: fn (ReD) = 0.52 Re0.5
D (7.71a)

staggered rows: fn (ReD) = 0.71 Re0.5
D (7.71b)

103 � ReD � 2× 105 :

aligned rows: fn (ReD) = 0.27 Re0.63
D , ST /SL � 0.7

(7.71c)

For ST/SL < 0.7, heat exchange is much less effective.
Therefore, aligned tube bundles are not designed in this
range and no correlation is given.

staggered rows: fn (ReD) = 0.35 (ST /SL)0.2 Re0.6
D ,

ST /SL � 2 (7.71d)

fn (ReD) = 0.40 Re0.6
D , ST /SL > 2 (7.71e)

ReD > 2× 105 :

aligned rows: fn (ReD) = 0.033 Re0.8
D (7.71f)

staggered rows: fn (ReD) = 0.031 (ST /SL)0.2 Re0.8
D ,

Pr > 1 (7.71g)

NuD = 0.027 (ST /SL)0.2 Re0.8
D ,

Pr = 0.7 (7.71h)

All of the preceding relations apply to the inner rows of tube bundles.
The heat transfer coefficient is smaller in the rows at the front of a bundle,
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Figure 7.15 Correction for the heat
transfer coefficients in the front rows of a
tube bundle [7.26].

facing the oncoming flow. The heat transfer coefficient can be corrected
so that it will apply to any of the front rows using Fig. 7.15.

Early in this chapter we alluded to the problem of predicting the heat
transfer coefficient during the flow of a fluid at an angle other than 90◦

to the axes of the tubes in a bundle. Žukauskas provides the empirical
corrections in Fig. 7.16 to account for this problem.

The work of Žukauskas does not extend to liquid metals. However,
Kalish and Dwyer [7.28] present the results of an experimental study of
heat transfer to the liquid eutectic mixture of 77.2% potassium and 22.8%
sodium (called NaK). NaK is a fairly popular low-melting-point metallic
coolant which has received a good deal of attention for its potential use in
certain kinds of nuclear reactors. For isothermal tubes in an equilateral
triangular array, as shown in Fig. 7.17, Kalish and Dwyer give

NuD =
(
5.44+ 0.228 Pe0.614

)√√√√C P −D
P

(
sinφ+ sin2φ

1+ sin2φ

)
(7.72)

Figure 7.16 Correction for the heat
transfer coefficient in flows that are not
perfectly perpendicular to heat exchanger
tubes [7.26].
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Figure 7.17 Geometric correction for
the Kalish-Dwyer equation (7.72).

where

• φ is the angle between the flow direction and the rod axis.

• P is the “pitch” of the tube array, as shown in Fig. 7.17, and D is
the tube diameter.

• C is the constant given in Fig. 7.17.

• PeD is the Péclét number based on the mean flow velocity through
the narrowest opening between the tubes.

• For the same uniform heat flux around each tube, the constants in
eqn. (7.72) change as follows: 5.44 becomes 4.60; 0.228 becomes
0.193.

7.7 Other configurations

At the outset, we noted that this chapter would move further and further
beyond the reach of analysis in the heat convection problems that it dealt
with. However, we must not forget that even the most completely em-
pirical relations in Section 7.6 were devised by people who were keenly
aware of the theoretical framework into which these relations had to fit.
Notice, for example, that eqn. (7.66) reduces to NuD ∝

√
PeD as Pr be-

comes small. That sort of theoretical requirement did not just pop out
of a data plot. Instead, it was a consideration that led the authors to
select an empirical equation that agreed with theory at low Pr.

Thus, the theoretical considerations in Chapter 6 guide us in correlat-
ing limited data in situations that cannot be analyzed. Such correlations
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can be found for all kinds of situations, but all must be viewed critically.
Many are based on limited data, and many incorporate systematic errors
of one kind or another.

In the face of a heat transfer situation that has to be predicted, one
can often find a correlation of data from similar systems. This might in-
volve flow in or across noncircular ducts; axial flow through tube or rod
bundles; flow over such bluff bodies as spheres, cubes, or cones; or flow
in circular and noncircular annuli. The Handbook of Heat Transfer [7.29],
the shelf of heat transfer texts in your library, or the journals referred
to by the Engineering Index are among the first places to look for a cor-
relation curve or equation. When you find a correlation, there are many
questions that you should ask yourself:

• Is my case included within the range of dimensionless parameters
upon which the correlation is based, or must I extrapolate to reach
my case?

• What geometric differences exist between the situation represented
in the correlation and the one I am dealing with? (Such elements as
these might differ:

(a) inlet flow conditions;

(b) small but important differences in hardware, mounting brack-
ets, and so on;

(c) minor aspect ratio or other geometric nonsimilarities

• Does the form of the correlating equation that represents the data,
if there is one, have any basis in theory? (If it is only a curve fit to
the existing data, one might be unjustified in using it for more than
interpolation of those data.)

• What nuisance variables might make our systems different? For
example:

(a) surface roughness;

(b) fluid purity;

(c) problems of surface wetting

• To what extend do the data scatter around the correlation line? Are
error limits reported? Can I actually see the data points? (In this
regard, you must notice whether you are looking at a correlation
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on linear or logarithmic coordinates. Errors usually appear smaller
than they really are on logarithmic coordinates. Compare, for ex-
ample, the data of Figs. 8.3 and 8.10.)

• Are the ranges of physical variables large enough to guarantee that
I can rely on the correlation for the full range of dimensionless
groups that it purports to embrace?

• Am I looking at a primary or secondary source (i.e., is this the au-
thor’s original presentation or someone’s report of the original)? If
it is a secondary source, have I been given enough information to
question it?

• Has the correlation been signed by the persons who formulated it?
(If not, why haven’t the authors taken responsibility for the work?)
Has it been subjected to critical review by independent experts in
the field?

Problems

7.1 Prove that in fully developed laminar pipe flow, (−dp/dx)R2
/
4µ

is twice the average velocity in the pipe. To do this, set the
mass flow rate through the pipe equal to (ρuav)(area).

7.2 A flow of air at 27◦C and 1 atm is hydrodynamically fully de-
veloped in a 1 cm I.D. pipe with uav = 2 m/s. Plot (to scale) Tw ,
qw , and Tb as a function of the distance x after Tw is changed
or qw is imposed:

a. In the case for which Tw = 68.4◦C = constant.

b. In the case for which qw = 378 W/m2 = constant.

Indicate xet on your graphs.

7.3 Prove that Cf is 16/ReD in fully developed laminar pipe flow.

7.4 Air at 200◦C flows at 4 m/s over a 3 cm O.D. pipe that is kept
at 240◦C. (a) Find h. (b) If the flow were pressurized water at
200◦C, what velocities would give the same h, the same NuD,
and the same ReD? (c) If someone asked if you could model
the water flow with an air experiment, how would you answer?
[u∞ = 0.0156 m/s for same NuD.]
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7.5 Compare the h value calculated in Example 7.3 with those
calculated from the Dittus-Boelter, Colburn, and Sieder-Tate
equations. Comment on the comparison.

7.6 Water at Tblocal = 10◦C flows in a 3 cm I.D. pipe at 1 m/s. The
pipe walls are kept at 70◦C and the flow is fully developed.
Evaluate h and the local value of dTb/dx at the point of inter-
est. The relative roughness is 0.001.

7.7 Water at 10◦C flows over a 3 cm O.D. cylinder at 70◦C. The
velocity is 1 m/s. Evaluate h.

7.8 Consider the hot wire anemometer in Example 7.7. Suppose
that 17.8 W/m is the constant heat input, and plot u∞ vs. Twire

over a reasonable range of variables. Must you deal with any
changes in the flow regime over the range of interest?

7.9 Water at 20◦C flows at 2 m/s over a 2 m length of pipe, 10 cm in
diameter, at 60◦C. Compare h for flow normal to the pipe with
that for flow parallel to the pipe. What does the comparison
suggest about baffling in a heat exchanger?

7.10 A thermally fully developed flow of NaK in a 5 cm I.D. pipe
moves at uav = 8 m/s. If Tb = 395◦C and Tw is constant at
403◦C, what is the local heat transfer coefficient? Is the flow
laminar or turbulent?

7.11 Water enters a 7 cm I.D. pipe at 5◦C and moves through it at an
average speed of 0.86 m/s. The pipe wall is kept at 73◦C. Plot
Tb against the position in the pipe until (Tw − Tb)/68 = 0.01.
Neglect the entry problem and consider property variations.

7.12 Air at 20◦C flows over a very large bank of 2 cm O.D. tubes
that are kept at 100◦C. The air approaches at an angle 15◦ off
normal to the tubes. The tube array is staggered, with SL =
3.5 cm and ST = 2.8 cm. Find h on the first tubes and on the
tubes deep in the array if the air velocity is 4.3 m/s before it
enters the array. [hdeep = 118 W/m2K.]

7.13 Rework Problem 7.11 using a single value of h evaluated at
3(73 − 5)/4 = 51◦C and treating the pipe as a heat exchan-
ger. At what length would you judge that the pipe is no longer
efficient as an exchanger? Explain.
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7.14 Go to the periodical engineering literature in your library. Find
a correlation of heat transfer data. Evaluate the applicability of
the correlation according to the criteria outlined in Section 7.7.

7.15 Water at 24◦C flows at 0.8 m/s in a smooth, 1.5 cm I.D. tube
that is kept at 27◦C. The system is extremely clean and quiet,
and the flow stays laminar until a noisy air compressor is turned
on in the laboratory. Then it suddenly goes turbulent. Calcu-
late the ratio of the turbulent h to the laminar h. [hturb =
4429 W/m2K.]

7.16 Laboratory observations of heat transfer during the forced flow
of air at 27◦C over a bluff body, 12 cm wide, kept at 77◦C yield
q = 646 W/m2 when the air moves 2 m/s and q = 3590 W/m2

when it moves 18 m/s. In another test, everything else is the
same, but now 17◦C water flowing 0.4 m/s yields 131,000 W/m2.
The correlations in Chapter 7 suggest that, with such limited
data, we can probably create a fairly good correlation in the
form: NuL = CReaPrb. Estimate the constants C , a, and b by
cross-plotting the data on log-log paper.

7.17 Air at 200 psia flows at 12 m/s in an 11 cm I.D. duct. Its bulk
temperature is 40◦C and the pipe wall is at 268◦C. Evaluate h
if ε/D = 0.00006.

7.18 How does h during cross flow over a cylindrical heat vary with
the diameter when ReD is very large?

7.19 Air enters a 0.8 cm I.D. tube at 20◦C with an average velocity
of 0.8 m/s. The tube wall is kept at 40◦C. Plot Tb(x) until it
reaches 39◦C. Use properties evaluated at [(20+ 40)/2]◦C for
the whole problem, but report the local error in h at the end
to get a sense of the error incurred by the simplification.

7.20 Write ReD in terms of ṁ in pipe flow and explain why this rep-
resentation could be particularly useful in dealing with com-
pressible pipe flows.

7.21 NaK at 394◦C flows at 0.57 m/s across a 1.82 m length of
0.036 m O.D. tube. The tube is kept at 404◦C. Find h and the
heat removal rate from the tube.

7.22 Verify the value of h specified in Problem 3.22.
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7.23 Check the value of h given in Example 7.3 by using Reynolds’s
analogy directly to calculate it. Which h do you deem to be in
error, and by what percent?

7.24 A homemade heat exchanger consists of a copper plate, 0.5 m
square, with 201.5 cm I.D. copper tubes soldered to it. The
ten tubes on top are evenly spaced across the top and parallel
with two sides. The ten on the bottom are also evenly spaced,
but they run at 90◦ to the top tubes. The exchanger is used to
cool methanol flowing at 0.48 m/s in the tubes from an initial
temperature of 73◦C, using water flowing at 0.91 m/s and en-
tering at 7◦C. What is the temperature of the methanol when
it is mixed in a header on the outlet side? Make a judgement
of the heat exchanger.

7.25 Given that NuD = 12.7 at (2/Gz) = 0.004, evaluate NuD at
(2/Gz) = 0.02 numerically, using Fig. 7.4. Compare the result
with the value you read from the figure.

7.26 Report the maximum percent scatter of data in Fig. 7.13. What
is happening in the fluid flow when the scatter is worst?

7.27 Water at 27◦C flows at 2.2 m/s in a 0.04 m I.D. thin-walled
pipe. Air at 227◦C flows across it at 7.6 m/s. Find the pipe
wall temperature.

7.28 Freshly painted aluminum rods, 0.02 m in diameter, are with-
drawn from a drying oven at 150◦C and cooled in a 3 m/s cross
flow of air at 23◦C. How long will it take to cool them to 50◦C
so that they can be handled?

7.29 At what speed, u∞, must 20◦C air flow across an insulated
tube before the insulation on it will do any good? The tube is
at 60◦C and is 6 mm in diameter. The insulation is 12 mm in
diameter, with k = 0.08 W/m·K. (Notice that we do not ask for
the u∞ for which the insulation will do the most harm.)

7.30 Water at 37◦C flows at 3 m/s across at 6 cm O.D. tube that is
held at 97◦C. In a second configuration, 37◦C water flows at an
average velocity of 3 m/s through a bundle of 6 cm O.D. tubes
that are held at 97◦C. The bundle is staggered, with ST/SL = 2.
Compare the heat transfer coefficients for the two situations.
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7.31 It is proposed to cool 64◦C air as it flows, fully developed,
in a 1 m length of 8 cm I.D. smooth, thin-walled tubing. The
coolant is Freon 12 flowing, fully developed, in the opposite di-
rection, in eight smooth 1 cm I.D. tubes equally spaced around
the periphery of the large tube. The Freon enters at −15◦C and
is fully developed over almost the entire length. The average
speeds are 30 m/s for the air and 0.5 m/s for the Freon. De-
termine the exiting air temperature, assuming that soldering
provides perfect thermal contact between the entire surface of
the small tubes and the surface of the large tube. Criticize the
heat exchanger design and propose some design improvement.

7.32 Evaluate NuD using Giedt’s data for air flowing over a cylinder
at ReD = 140,000. Compare your result with the appropriate
correlation and with Fig. 7.13.

7.33 A 25 mph wind blows across a 0.25 in. telephone line. What is
the pitch of the hum that it emits?

7.34 A large Nichrome V slab, 0.2 m thick, has two parallel 1 cm I.D.
holes drilled through it. Their centers are 8 cm apart. One
carries liquid CO2 at 1.2 m/s from a −13◦C reservoir below.
The other carries methanol at 1.9 m/s from a 47◦C reservoir
above. Take account of the intervening Nichrome and compute
the heat transfer. Need we worry about the CO2 being warmed
up by the methanol?

7.35 Consider the situation described in Problem 4.38 but suppose
that you do not know h. Suppose, instead, that you know there
is a 10 m/s cross flow of 27◦C air over the rod. Then rework
the problem.

7.36 A liquid whose properties are not known flows across a 40 cm
O.D. tube at 20 m/s. The measured heat transfer coefficient is
8000 W/m2K. We can be fairly confident that ReD is very large
indeed. What would h be if D were 53 cm? What would h be
if u∞ were 28 m/s?

7.37 Water flows at 4 m/s, at a temperature of 100◦C, in a 6 cm I.D.
thin-walled tube with a 2 cm layer of 85% magnesia insulation
on it. The outside heat transfer coefficient is 6 W/m2K, and the
outside temperature is 20◦C. Find: (a) U based on the inside
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area, (b) Q W/m, and (c) the temperature on either side of the
insulation.

7.38 Glycerin is added to water in a mixing tank at 20◦C. The mix-
ture discharges through a 4 m length of 0.04 m I.D. tubing
under a constant 3 m head. Plot the discharge rate in m3/hr
as a function of composition.

7.39 Plot h as a function of composition for the discharge pipe in
Problem 7.38. Assume a small temperature difference.

7.40 Rework Problem 5.40 without assuming the Bi number to be
very large.

7.41 Water enters a 0.5 cm I.D. pipe at 24◦C. The pipe walls are held
at 30◦C. Plot Tb against distance from entry if uav is 0.27 m/s,
neglecting entry behavior in your calculation. (Indicate the en-
try region on your graph, however.)

7.42 Devise a numerical method to find the velocity distribution
and friction factor for laminar flow in a square duct of side
length a. Set up a square grid of size N by N and solve the
difference equations by hand for N = 2, 3, and 4. Hint : First
show that the velocity distribution is given by the solution to
the equation

∂2u
∂x2 +

∂2u
∂y2 = 1

where u = 0 on the sides of the square and we define u =
u
/
[(a2/µ)(dp/dz)], x = (x/a), and y = (y/a). Then show

that the friction factor, f [eqn. (7.34)], is given by

f = − 2
ρuava
µ

B
udxdy

Note that the area integral can be evaluated as
∑
u/N2.

7.43 Chilled air at 15◦C enters a horizontal duct at a speed of 1 m/s.
The duct is made of thin galvanized steel and is not insulated.
A 30 m section of the duct runs outdoors through humid air
at 30◦C. Condensation of moisture on the outside of the duct
is undesirable, but it will occur if the duct wall is at or below
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the dew point temperature of 20◦C. For this problem, assume
that condensation rates are so low that their thermal effects
can be ignored.

a. Suppose that the duct’s square cross-section is 0.3 m by
0.3 m and the effective outside heat transfer coefficient
is 5 W/m2K in still air. Determine whether condensation
occurs.

b. The single duct is replaced by four circular horizontal
ducts, each 0.17 m in diameter. The ducts are parallel
to one another in a vertical plane with a center-to-center
separation of 0.5 m. Each duct is wrapped with a layer
of fiberglass insulation 6 cm thick (ki = 0.04 W/m·K) and
carries air at the same inlet temperature and speed as be-
fore. If a 15 m/s wind blows perpendicular to the plane
of the circular ducts, find the bulk temperature of the air
exiting the ducts.

7.44 An x-ray “monochrometer” is a mirror that reflects only a sin-
gle wavelength from a broadband beam of x-rays. Over 99%
of the beam’s energy arrives on other wavelengths and is ab-
sorbed creating a high heat flux on part of the surface of the
monochrometer. Consider a monochrometer made from a sil-
icon block 10 mm long and 3 mm by 3 mm in cross-section
which absorbs a flux of 12.5 W/mm2 over an area of 6 mm2 on
one face (a heat load of 75 W). To control the temperature, it
is proposed to pump liquid nitrogen through a circular chan-
nel bored down the center of the silicon block. The channel is
10 mm long and 1 mm in diameter. LN2 enters the channel at
80 K and a pressure of 1.6 MPa (Tsat = 111.5 K). The entry to
this channel is a long, straight, unheated passage of the same
diameter.

a. For what range of mass flow rates will the LN2 have a bulk
temperature rise of less than a 1.5 K over the length of the
channel?

b. At your minimum flow rate, estimate the maximum wall
temperature in the channel. As a first approximation, as-
sume that the silicon conducts heat well enough to dis-
tribute the 75 W heat load uniformly over the channel
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surface. Could boiling occur in the channel? Discuss the
influence of entry length and variable property effects.

7.45 Turbulent fluid velocities are sometimes measured with a con-
stant temperature hot-wire anemometer, which consists of a
long, fine wire (typically platinum, 4µm in diameter and 1.25
mm long) supported between two much larger needles. The
needles are connected to an electronic bridge circuit which
electrically heats the wire while adjusting the heating voltage,
Vw , so that the wire’s temperature — and thus its resistance,
Rw — stays constant. The electrical power dissipated in the
wire, V2

w/Rw , is convected away at the surface of the wire. An-
alyze the heat loss from the wire to show

V2
w = (Twire − Tflow)

(
A+ Bu1/2

)

where u is the instantaneous flow speed perpendicular to the
wire. Assume that u is between 2 and 100 m/s and that the
fluid is an isothermal gas. The constants A and B depend on
properties, dimensions, and resistance; they are usually found
by calibration of the anemometer. This result is called King’s
law.

7.46 (a) Show that the Reynolds number for a circular tube may be
written in terms of the mass flow rate as ReD = 4ṁ

/
πµD.

(b) Show that this result does not apply to a noncircular tube,
specifically ReDh ≠ 4ṁ

/
πµDh.
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8. Natural convection in single-
phase fluids and during film
condensation

There is a natural place for everything to seek, as:
Heavy things go downward, fire upward, and rivers to the sea.

The Anatomy of Melancholy, R. Burton, 1621

8.1 Scope

The remaining convection mechanisms that we deal with are to a large
degree gravity-driven. Unlike forced convection, in which the driving
force is external to the fluid, these so-called natural convection processes
are driven by body forces exerted directly within the fluid as the result
of heating or cooling. Two such mechanisms that are rather alike are:

• Natural convection. When we speak of natural convection without
any qualifying words, we mean natural convection in a single-phase
fluid.

• Film condensation. This natural convection process has much in
common with single-phase natural convection.

We therefore deal with both mechanisms in this chapter. The govern-
ing equations are developed side by side in two brief opening sections.
Then each mechanism is developed independently in Sections 8.3 and
8.4 and in Section 8.5, respectively.

Chapter 9 deals with other natural convection heat transfer processes
that involve phase change—for example:

397



398 Natural convection in single-phase fluids and during film condensation §8.2

• Nucleate boiling. This heat transfer process is highly disordered as
opposed to the processes described in Chapter 8.

• Film boiling. This is so similar to film condensation that it is usually
treated by simply modifying film condensation predictions.

• Dropwise condensation. This bears some similarity to nucleate boil-
ing.

8.2 The nature of the problems of film condensation
and of natural convection

Description

The natural convection problem is sketched in its simplest form on the
left-hand side of Fig. 8.1. Here we see a vertical isothermal plate that
cools the fluid adjacent to it. The cooled fluid sinks downward to form a
b.l. The figure would be inverted if the plate were warmer than the fluid
next to it. Then the fluid would buoy upward.

On the right-hand side of Fig. 8.1 is the corresponding film conden-
sation problem in its simplest form. An isothermal vertical plate cools
an adjacent vapor, which condenses and forms a liquid film on the wall.1

The film is normally very thin and it flows off, rather like a b.l., as the
figure suggests. While natural convection can carry fluid either upward
or downward, a condensate film can only move downward. The temper-
ature in the film rises from Tw at the cool wall to Tsat at the outer edge
of the film.

In both problems, but particularly in film condensation, the b.l. and
the film are normally thin enough to accommodate the b.l. assumptions
[recall the discussion following eqn. (6.13)]. A second idiosyncrasy of
both problems is that δ and δt are closely related. In the condensing
film they are equal, since the edge of the condensate film forms the edge
of both b.l.’s. In natural convection, δ and δt are approximately equal
when Pr is on the order of unity or less, because all cooled (or heated)
fluid must buoy downward (or upward). When Pr is large, the cooled (or
heated) fluid will fall (or rise) and, although it is all very close to the wall,
this fluid, with its high viscosity, will also drag unheated liquid with it.

1It might instead condense into individual droplets, which roll of without forming
into a film. This process, called dropwise condensation, is dealt with in Section 9.9.
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Figure 8.1 The convective boundary layers for natural con-
vection and film condensation. In both sketches, but particu-
larly in that for film condensation, the y-coordinate has been
stretched.

In this case, δ can exceed δt . We deal with cases for which δ � δt in the
subsequent analysis.

Governing equations

To describe laminar film condensation and laminar natural convection,
we must add a gravity term to the momentum equation. The dimensions
of the terms in the momentum equation should be examined before we
do this. Equation (6.13) can be written as(
u
∂u
∂x

+ v ∂u
∂y

)
m
s2︸ ︷︷ ︸

= kg·m
kg·s2 = N

kg

= −1
ρ
dp
dx

m3

kg
N

m2 ·m︸ ︷︷ ︸
= N

kg

+ ν ∂
2u
∂y2

m2

s
m

s ·m2︸ ︷︷ ︸
= m

s2 = N
kg

where ∂p/∂x � dp/dx in the b.l. and where µ � constant. Thus, every
term in the equation has units of acceleration or (equivalently) force per
unit mass. The component of gravity in the x-direction therefore enters
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the momentum balance as (+g). This is because x and g point in the
same direction. Gravity would enter as −g if it acted opposite the x-
direction.

u
∂u
∂x

+ v ∂u
∂y

= −1
ρ
dp
dx

+ g + ν ∂
2u
∂y2

(8.1)

In the two problems at hand, the pressure gradient is the hydrostatic
gradient outside the b.l. Thus,

dp
dx

= ρ∞g︸ ︷︷ ︸
natural

convection

dp
dx

= ρgg︸ ︷︷ ︸
film

condensation

(8.2)

where ρ∞ is the density of the undisturbed fluid and ρg (and ρf below)
are the saturated vapor and liquid densities. Equation (8.1) then becomes

u
∂u
∂x

+ v ∂u
∂y

=
(

1− ρ∞
ρ

)
g + ν ∂

2u
∂y2

for natural convection (8.3)

u
∂u
∂x

+ v ∂u
∂y

=
(

1− ρg
ρf

)
g + ν ∂

2u
∂y2

for film condensation (8.4)

Two boundary conditions, which apply to both problems, are

u
(
y = 0

) = 0 the no-slip condition

v
(
y = 0

) = 0 no flow into the wall

}
(8.5a)

The third b.c. is different for the film condensation and natural convec-
tion problems:

∂u
∂y

∣∣∣∣∣
y=δ

= 0
condensation:
no shear at the edge of the film

u
(
y = δ) = 0 natural convection:

undisturbed fluid outside the b.l.




(8.5b)

The energy equation for either of the two cases is eqn. (6.40):

u
∂T
∂x

+ v ∂T
∂y

= α∂
2T
∂y2

We leave the identification of the b.c.’s for temperature until later.
The crucial thing we must recognize about the momentum equation

at the moment is that it is coupled to the energy equation. Let us consider
how that occurs:
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In natural convection: The velocity, u, is driven by buoyancy, which is
reflected in the term (1−ρ∞/ρ)g in the momentum equation. The
density, ρ = ρ(T), varies with T , so it is impossible to solve the
momentum and energy equations independently of one another.

In film condensation: The third boundary condition (8.5b) for the mo-
mentum equation involves the film thickness, δ. But to calculate δ
we must make an energy balance on the film to find out how much
latent heat—and thus how much condensate—it has absorbed. This
will bring (Tsat−Tw) into the solution of the momentum equation.

Recall that the boundary layer on a flat surface, during forced convec-
tion, was easy to analyze because the momentum equation could be
solved completely before any consideration of the energy equation was
attempted. We do not have that advantage in predicting natural convec-
tion or film condensation.

8.3 Laminar natural convection on a vertical
isothermal surface

Dimensional analysis and experimental data

Before we attempt a dimensional analysis of the natural convection prob-
lem, let us simplify the buoyancy term, (ρ − ρ∞)g

/
ρ, in the momentum

equation (8.3). The equation was derived for incompressible flow, but we
modified it by admitting a small variation of density with temperature in
this term only. Now we wish to eliminate (ρ − ρ∞) in favor of (T − T∞)
with the help of the coefficient of thermal expansion, β:

β ≡ 1
v
∂v
∂T

∣∣∣∣
p
= −1

ρ
∂ρ
∂T

∣∣∣∣
p
� −1

ρ
ρ − ρ∞
T − T∞

= −
(
1− ρ∞

/
ρ
)

T − T∞
(8.6)

where v designates the specific volume here, not a velocity component.
Figure 8.2 shows natural convection from a vertical surface that is

hotter than its surroundings. In either this case or on the cold plate
shown in Fig. 8.1, we replace (1 − ρ∞/ρ)g with −gβ(T − T∞). The sign
(see Fig. 8.2) is the same in either case. Then

u
∂u
∂x

+ v ∂u
∂y

= −gβ(T − T∞)+ ν ∂
2u
∂y2

(8.7)
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Figure 8.2 Natural convection from a
vertical heated plate.

where the minus sign corresponds to plate orientation in Fig. 8.1a. This
conveniently removes ρ from the equation and makes the coupling of
the momentum and energy equations very clear.

The functional equation for the heat transfer coefficient, h, in natural
convection is therefore (cf. Section 6.4)

h or h = fn
(
k, |Tw − T∞| , x or L, ν,α,g, β

)
where L is a length that must be specified for a given problem. Notice that
while h was assumed to be independent of ∆T in the forced convection
problem (Section 6.4), the explicit appearance of (T − T∞) in eqn. (8.7)
suggests that we cannot make that assumption here. There are thus eight
variables in W, m, s, and ◦C (where we again regard J as a unit independent
of N and m); so we look for 8−4 = 4 pi-groups. For h and a characteristic
length, L, the groups may be chosen as

NuL ≡ hLk , Pr ≡ ν
α
, Π3 ≡ L

3

ν2

∣∣g∣∣ , Π4 ≡ β |Tw − T∞| = β∆T

where we set ∆T ≡ |Tw − T∞|. Two of these groups are new to us:

• Π3 ≡ gL3/ν2: This characterizes the importance of buoyant forces
relative to viscous forces.2

2Note that gL is dimensionally the same as a velocity squared—say, u2. Then
√
Π3

can be interpreted as a Reynolds number: uL/ν . In a laminar b.l. we recall that Nu ∝
Re1/2; so here we expect that Nu ∝ Π1/4

3 .



§8.3 Laminar natural convection on a vertical isothermal surface 403

• Π4 ≡ β∆T : This characterizes the thermal expansion of the fluid.
For an ideal gas,

β = 1
v
∂
∂T

(
RT
p

)
p
= 1
T∞

where R is the gas constant. Therefore, for ideal gases

β∆T = ∆T
T∞

(8.8)

It turns out that Π3 and Π4 (which do not bear the names of famous
people) usually appear as a product. This product is called the Grashof
(pronounced Gráhs-hoff) number,3 GrL, where the subscript designates
the length on which it is based:

Π3Π4 ≡ GrL = gβ∆TL
3

ν2
(8.9)

Two exceptions in which Π3 and Π4 appear independently are rotating
systems (where Coriolis forces are part of the body force) and situations
in which β∆T is no longer � 1 but instead approaches unity. We there-
fore expect to correlate data in most other situations with functional
equations of the form

Nu = fn(Gr,Pr) (8.10)

Another attribute of the dimensionless functional equation is that the
primary independent variable is usually the product of Gr and Pr. This
is called the Rayleigh number, RaL, where the subscript designates the
length on which it is based:

RaL ≡ GrLPr = gβ∆TL
3

αν
(8.11)

3Nu, Pr, Π3, Π4, and Gr were all suggested by Nusselt in his pioneering paper on
convective heat transfer [8.1]. Grashof was a notable nineteenth-century mechanical
engineering professor who was simply given the honor of having a dimensionless group
named after him posthumously (see, e.g., [8.2]). He did not work with natural convec-
tion.
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Figure 8.3 The correlation of h data for vertical isothermal
surfaces by Churchill and Chu [8.3], using NuL = fn(RaL,Pr).
(Applies to full range of Pr.)

Thus, most (but not all) analyses and correlations of natural convection
yield

Nu = fn
(
Ra︸︷︷︸

primary (or most important)
independent variable

, Pr︸︷︷︸
secondary parameter

)
(8.12)

Figure 8.3 is a careful selection of the best data available for natural
convection from vertical isothermal surfaces. These data were organized
by Churchill and Chu [8.3] and they span 13 orders of magnitude of the
Rayleigh number. The correlation of these data in the coordinates of
Fig. 8.2 is exactly in the form of eqn. (8.12), and it brings to light the
dominant influence of RaL, while any influence of Pr is small.

The data correlate on these coordinates within a few percent up to
RaL

/
[1+(0.492/Pr9/16)]16/9 � 108. That is about where the b.l. starts ex-

hibiting turbulent behavior. Beyond that point, the overall Nusselt num-
ber, NuL, rises more sharply, and the data scatter increases somewhat
because the heat transfer mechanisms change.
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Prediction of h in natural convection on a vertical surface

The analysis of natural convection using an integral method was done
independently by Squire (see [8.4]) and by Eckert [8.5] in the 1930s. We
shall refer to this important development as the Squire-Eckert formula-
tion.

The analysis begins with the integrated momentum and energy equa-
tions. We assume δ = δt and integrate both equations to the same value
of δ:

d
dx

∫ δ
0

(
u2 − uu∞︸ ︷︷ ︸

= 0, since
u∞ = 0

)
dy = −ν ∂u

∂y

∣∣∣∣∣
y=0

+ gβ
∫ δ

0
(T − T∞)dy (8.13)

and [eqn. (6.47)]

d
dx

∫ δ
0
u(T − T∞)dy = qw

ρcp
= −α ∂T

∂y

∣∣∣∣∣
y=0

The integrated momentum equation is the same as eqn. (6.24) except
that it includes the buoyancy term, which was added to the differential
momentum equation in eqn. (8.7).

We now must estimate the temperature and velocity profiles for use in
eqns. (8.13) and (6.47). This is done here in much the same way as it was
done in Sections 6.2 and 6.3 for forced convection. We write down a set
of known facts about the profiles and then use these things to evaluate
the constants in power-series expressions for u and T .

Since the temperature profile has a fairly simple shape, a simple quad-
ratic expression can be used:

T − T∞
Tw − T∞

= a+ b
(
y
δ

)
+ c

(
y
δ

)2

(8.14)

Notice that the thermal boundary layer thickness, δt , is assumed equal to
δ in eqn. (8.14). This would seemingly limit the results to Prandtl num-
bers not too much larger than unity. Actually, the analysis will also prove
useful for large Pr’s because the velocity profile exerts diminishing influ-
ence on the temperature profile as Pr increases. We require the following
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things to be true of this profile:

• T
(
y = 0

) = Tw or
T − T∞
Tw − T∞

∣∣∣∣
y/δ=0

= 1 = a

• T
(
y = δ) = T∞ or

T − T∞
Tw − T∞

∣∣∣∣
y/δ=1

= 0 = 1+ b + c

• ∂T
∂y

∣∣∣∣∣
y=δ

= 0 or
d

d(y/δ)

(
T − T∞
Tw − T∞

)
y/δ=1

= 0 = b + 2c

so a = 1, b = −2, and c = 1. This gives the following dimensionless
temperature profile:

T − T∞
Tw − T∞

= 1− 2
(
y
δ

)
+

(
y
δ

)2

=
(

1− y
δ

)2

(8.15)

We anticipate a somewhat complicated velocity profile (recall Fig. 8.1)
and seek to represent it with a cubic function:

u = uc(x)
[(
y
δ

)
+ c

(
y
δ

)2

+ d
(
y
δ

)3
]

(8.16)

where, since there is no obvious characteristic velocity in the problem,
we writeuc as an as-yet-unknown function. (uc will have to increase with
x, since u must increase with x.) We know three things about u:

• u(y = 0) = 0
{

we have already satisfied this condition by
writing eqn. (8.16) with no lead constant

• u(y = δ) = 0 or
u
uc

= 0 = (1+ c + d)

• ∂u
∂y

∣∣∣∣∣
y=δ

= 0 or
∂u

∂(y/δ)

∣∣∣∣∣
y/δ=1

= 0 = (1+ 2c + 3d)uc

These give c = −2 and d = 1, so

u
uc(x)

= y
δ

(
1− y

δ

)2

(8.17)

We could also have written the momentum equation (8.7) at the wall,
where u = v = 0, and created a fourth condition:

∂2u
∂y2

∣∣∣∣∣
y=0

= −gβ(Tw − T∞)
ν
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Figure 8.4 The temperature and velocity profiles for air (Pr =
0.7) in a laminar convection b.l.

and then we could have evaluated uc(x) as βg|Tw−T∞|δ2
/
4ν . A correct

expression for uc will eventually depend upon these variables, but we
will not attempt to make uc fit this particular condition. Doing so would
yield two equations, (8.13) and (6.47), in a single unknown, δ(x). It would
be impossible to satisfy both of them. Instead, we shall allow the velocity
profile to violate this condition slightly and write

uc(x) = C1
βg |Tw − T∞|

ν
δ2(x) (8.18)

Then we shall solve the two integrated conservation equations for the
two unknowns, C1 (which should �¼) and δ(x).

The dimensionless temperature and velocity profiles are plotted in
Fig. 8.4. With them are included Schmidt and Beckmann’s exact calcula-
tion for air (Pr = 0.7), as presented in [8.4]. Notice that the integral ap-
proximation to the temperature profile is better than the approximation
to the velocity profile. That is fortunate, since the temperature profile
exerts the major influence in the heat transfer solution.

When we substitute eqns. (8.15) and (8.17) in the momentum equa-
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tion (8.13), using eqn. (8.18) for uc(x), we get

C2
1

(
gβ |Tw − T∞|

ν

)2 d
dx

[
δ5

∫ 1

0

(
y
δ

)2 (
1− y

δ

)4

d
(
y
δ

)
︸ ︷︷ ︸

= 1
105

]

= gβ |Tw − T∞|δ
∫ 1

0

(
1− y

δ

)2

d
(
y
δ

)
︸ ︷︷ ︸

= 1
3

− C1gβ |Tw − T∞|δ(x) ∂
∂
(
y
/
δ
)
[
y
δ

(
1− y

δ

)2
]
y
δ=0︸ ︷︷ ︸

=1

(8.19)

where we change the sign of the terms on the left by replacing (Tw −T∞)
with its absolute value. Equation (8.19) then becomes(

1
21
C2

1
gβ |Tw − T∞|

ν2

)
δ3 dδ
dx

= 1
3
− C1

or

dδ4

dx
=

84
(

1
3
− C1

)

C2
1
gβ |Tw − T∞|

ν2

Integrating this with the b.c., δ(x = 0) = 0, gives

δ4 =
84

(
1
3
− C1

)

C2
1
gβ |Tw − T∞|

ν2
x

(8.20)

Substituting eqns. (8.15), (8.17), and (8.18) in eqn. (6.47) likewise gives

(Tw − T∞)C1
gβ |Tw − T∞|

ν
d
dx

[
δ3

∫ 1

0

y
δ

(
1− y

δ

)4

d
(
y
δ

)
︸ ︷︷ ︸

= 1
30

= −α Tw − T∞
δ

d
d(y/δ)

[(
1− y

δ

)2
]
y/δ=0︸ ︷︷ ︸

=−2
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or

3
C1

30
δ3 dδ
dx

= C1

40
dδ4

dx
= 2

Pr
gβ |Tw − T∞|

ν2

Integrating this with the b.c., δ(x = 0) = 0, we get

δ4 = 80

C1Pr
gβ|Tw − T∞|

ν2

x (8.21)

Equating eqns. (8.20) and (8.21) for δ4, we then obtain

21
20

1
3
− C1

C1
gβ |Tw − T∞|

ν2

x = 1

Pr
gβ |Tw − T∞|

ν2

x

or

C1 =
Pr

3
(

20
21
+ Pr

) (8.22)

Then, from eqn. (8.21):

δ4 =
240

(
20
21
+ Pr

)

Pr2gβ |Tw − T∞|
ν2

x

or

δ
x
= 3.936

(
0.952+ Pr

Pr2

)1/4 1

Gr1/4
x

(8.23)

Equation (8.23) can be combined with the known temperature profile,
eqn. (8.15), and substituted in Fourier’s law to find q:

q = −k ∂T
∂y

∣∣∣∣∣
y=0

= −k(Tw − T∞)
δ

d
(
T − T∞
Tw − T∞

)

d
(
y
δ

)
∣∣∣∣∣∣∣∣∣
y/δ=0︸ ︷︷ ︸

=−2

= 2
k∆T
δ

(8.24)
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so, writing h = q/|Tw − T∞| ≡ q/∆T , we obtain4

Nux ≡ qx
∆Tk

= 2
x
δ
= 2

3.936
(PrGrx)1/4

(
Pr

0.952+ Pr

)1/4

or

Nux = 0.508 Ra1/4
x

(
Pr

0.952+ Pr

)1/4
(8.25)

This is the Squire-Eckert result for the local heat transfer from a vertical
isothermal wall during laminar natural convection. It applies for either
Tw > T∞ or Tw < T∞.

The average heat transfer coefficient can be obtained from

h =

∫ L
0
q(x)dx

L∆T
=

∫ L
0
h(x)dx

L

Thus,

NuL = hLk = 1
k

∫ L
0

k
x

Nux dx = 4
3

Nux

∣∣∣∣
x=L

or

NuL = 0.678 Ra1/4
L

(
Pr

0.952+ Pr

)1/4
(8.26)

All properties in eqn. (8.26) and the preceding equations should be eval-
uated at T = (Tw + T∞)

/
2 except in gases, where β should be evaluated

at T∞.
Example 8.1

A thin-walled metal tank containing fluid at 40◦C cools in air at 14◦C;
h is very large inside the tank. If the sides are 0.4 m high, compute
h, q, and δ at the top. Are the b.l. assumptions reasonable?

Solution.

βair = 1
/
T∞ = 1

/
(273+ 14) = 0.00348 K−1. Then

RaL = gβ∆TL
3

να
= 9.8(0.00348)(40− 14)(0.4)3(

1.566× 10−5
) (

2.203× 10−5
) = 1.645× 108

4Recall that, in footnote 2, we anticipated that Nu would vary as Gr1/4. We now see
that this is the case.
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and Pr = 0.711, where the properties are evaluated at 300 K = 27◦C.
Then, from eqn. (8.26),

NuL = 0.678
(
1.645× 108

)1/4
(

0.711
0.952+ 0.711

)1/4
= 62.1

so

h = 62.1k
L

= 62.1(0.02614)
0.4

= 4.06 W/m2K

and

q = h∆T = 4.06(40− 14) = 105.5 W/m2

The b.l. thickness at the top of the tank is given by eqn. (8.23) at
x = L:

δ
L
= 3.936

(
0.952+ 0.711

0.7112

)1/4 1(
RaL

/
Pr

)1/4 = 0.0430

Thus, the b.l. thickness at the end of the plate is only 4% of the height,
or 1.72 cm thick. This is thicker than typical forced convection b.l.’s,
but it is still reasonably thin.

Example 8.2

Large thin metal sheets of length L are dipped in an electroplating
bath in the vertical position. Their average temperature is initially
cooler than the liquid in the bath. How rapidly will they come up to
bath temperature?

Solution. We can probably take Bi � 1 and use the lumped-capacity
response equation (1.20). We obtain h for use in eqn. (1.20) from
eqn. (8.26):

h = 0.678
k
L

(
Pr

0.952+ Pr

)1/4
(
gβL3

αν

)1/4

︸ ︷︷ ︸
call this B

∆T 1/4

Since h∝ ∆T 1/4, eqn. (1.20) becomes

d(T − Tb)
dt

= − BA
ρcV

(T − Tb)5/4
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where V/A = the half-thickness of the plate, w. Integrating this be-
tween the initial temperature of the plate, Ti, and the temperature at
time t, we get ∫ T

Ti

d(T − Tb)
(T − Tb)5/4

= −
∫ t

0

B
ρcw

dt

so

T − Tb =
[

1

(Ti − Tb)1/4
+ B

4ρcw
t
]−4

(Before we use this result, we should check Bi = Bw∆T 1/4/k to be
certain that it is, in fact, less than unity.) The temperature can be put
in dimensionless form as

T − Tb
Ti − Tb

=
[

1+ B (Ti − Tb)
1/4

4ρcw
t
]−4

where the coefficient of t is a kind of inverse time constant of the
response. Thus, the temperature dependence of h in natural convec-
tion leads to a solution quite different from the exponential response
that resulted from a constant h [eqn. (1.22)].

Comparison of analysis and correlations with experimental data

Churchill and Chu [8.3] have proposed two equations for the data corre-
lated in Fig. 8.3. The simpler of the two is shown in the figure. It is

NuL = 0.68+ 0.67 Ra1/4
L

[
1+

(
0.492

Pr

)9/16
]−4/9

(8.27)

which applies for all Pr and for the range of Ra shown in the figure. The
Squire–Eckert prediction is within 1.2% of this correlation for high Pr and
high RaL, and it differs by only 5.5% if the fluid is a gas and RaL > 105.
Typical Rayleigh numbers usually exceed 105, so we conclude that the
Squire–Eckert prediction is remarkably accurate in the range of practical
interest, despite the approximations upon which it is built. The additive
constant of 0.68 in eqn. (8.27) is a correction for low RaL, where the b.l.
assumptions are inaccurate and NuL is no longer proportional to Ra1/4

L .
At low Prandtl numbers, the Squire-Eckert prediction fails and eqn.

(8.27) has to be used. In the turbulent regime, Gr � 109 [8.6], eqn. (8.27)
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predicts a lower bound on the data (see Fig. 8.3), although it is really
intended only for laminar boundary layers. In this correlation, as in
eqn. (8.26), the thermal properties should all be evaluated at a film tem-
perature, Tf = (T∞ + Tw)/2, except for β, which is to be evaluated at T∞
if the fluid is a gas.

Example 8.3

Verify the first heat transfer coefficient in Table 1.1. It is for air at
20◦C next to a 0.3 m high wall at 50◦C.

Solution. At T = 35◦C = 308 K, we find Pr = 0.71, ν = 16.45 ×
10−6 m2/s,α = 2.318×10−5 m2/s, andβ = 1

/
(273+20) = 0.00341 K−1.

Then

RaL = gβ∆TL
3

αν
= 9.8(0.00341)(30)(0.3)3

(16.45)(0.2318)10−10
= 7.10× 107

The Squire-Eckert prediction gives

NuL = 0.678
(
7.10× 107

)1/4
(

0.71
0.952+ 0.71

)1/4
= 50.3

so

h = 50.3
k
L
= 50.3

(
0.0267

0.3

)
= 4.48 W/m2K.

And the Churchill-Chu correlation gives

NuL = 0.68+ 0.67

(
7.10× 107

)1/4[
1+ (0.492/0.71)9/16

]4/9 = 47.88

so

h = 47.88
(

0.0267
0.3

)
= 4.26 W/m2K

The prediction is therefore within 5% of the correlation. We should
use the latter result in preference to the theoretical one, although the
difference is slight.
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Variable-properties problem

Sparrow and Gregg [8.7] provide an extended discussion of the influence
of physical property variations on predicted values of Nu. They found
that while β for gases should be evaluated at T∞, all other properties
should be evaluated at Tr , where

Tr = Tw − C (Tw − T∞) (8.28)

and where C = 0.38 for gases. Most books recommend that a simple
mean between Tw and T∞ (or C = 0.50) be used. A simple mean seldom
differs much from the more precise result above, of course.

It has also been shown by Barrow and Sitharamarao [8.8] that when
β∆T is no longer � 1, the Squire-Eckert formula should be corrected as
follows:

Nu = Nusq−Ek

[
1+ 3

5β∆T +O(β∆T)2
]1/4

(8.29)

This same correction can be applied to the Churchill-Chu correlation or
to other expressions for Nu. Since β = 1

/
T∞ for an ideal gas, eqn. (8.29)

gives only about a 1.5% correction for a 330 K plate heating 300 K air.

Note on the validity of the boundary layer approximations

The boundary layer approximations are sometimes put to a rather se-
vere test in natural convection problems. Thermal b.l. thicknesses are
often fairly large, and the usual analyses that take the b.l. to be thin can
be significantly in error. This is particularly true as Gr becomes small.
Figure 8.5 includes three pictures that illustrate this. These pictures are
interferograms (or in the case of Fig. 8.5c, data deduced from interfer-
ograms). An interferogram is a photograph made in a kind of lighting
that causes regions of uniform density to appear as alternating light and
dark bands.

Figure 8.5a was made at the University of Kentucky by G.S. Wang and
R. Eichhorn. The Grashof number based on the radius of the leading
edge is 2250 in this case. This is low enough to result in a b.l. that is
larger than the radius near the leading edge. Figure 8.5b and c are from
Kraus’s classic study of natural convection visualization methods [8.9].
Figure 8.5c shows that, at Gr = 585, the b.l. assumptions are quite unrea-
sonable since the cylinder is small in comparison with the large region
of thermal disturbance.



a. A 1.34 cm wide flat plate with a
rounded leading edge in air. Tw =
46.5◦C, ∆T = 17.0◦C, Grradius � 2250

b. A square cylinder with a fairly low
value of Gr. (Rendering of an interfer-
ogram shown in [8.9].)

c. Measured isotherms around a cylinder
in airwhen GrD ≈ 585 (from [8.9]).

Figure 8.5 The thickening of the b.l. during natural con-
vection at low Gr, as illustrated by interferograms made on
two-dimensional bodies. (The dark lines in the pictures are
isotherms.)

415
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The analysis of free convection becomes a far more complicated prob-
lem at low Gr’s, since the b.l. equations can no longer be used. We shall
not discuss any of the numerical solutions of the full Navier-Stokes equa-
tions that have been carried out in this regime. We shall instead note that
correlations of data using functional equations of the form

Nu = fn(Ra,Pr)

will be the first thing that we resort to in such cases. Indeed, Fig. 8.3 re-
veals that Churchill and Chu’s equation (8.27) already serves this purpose
in the case of the vertical isothermal plate, at low values of Ra ≡ Gr Pr.

8.4 Natural convection in other situations

Natural convection from horizontal isothermal cylinders

Churchill and Chu [8.10] provide yet another comprehensive correlation
of existing data. For horizontal isothermal cylinders, they find that an
equation with the same form as eqn. (8.27) correlates the data for hor-
izontal cylinders as well. Horizontal cylinder data from a variety of
sources, over about 24 orders of magnitude of the Rayleigh number based
on the diameter, RaD, are shown in Fig. 8.6. The equation that correlates
them is

NuD = 0.36+ 0.518 Ra1/4
D[

1+ (0.559/Pr)9/16
]4/9 (8.30)

They recommend that eqn. (8.30) be used in the range 10−6 � RaD � 109.
When RaD is greater than 109, the flow becomes turbulent. The fol-

lowing equation is a little more complex, but it gives comparable accuracy
over a larger range:

NuD =


0.60+ 0.387


 RaD[

1+ (0.559/Pr)9/16
]16/9


1/6




2

(8.31)

The recommended range of applicability of eqn. (8.31) is

10−6 � RaD
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Figure 8.6 The data of many investigators for heat transfer
from isothermal horizontal cylinders during natural convec-
tion, as correlated by Churchill and Chu [8.10].

Example 8.4

Space vehicles are subject to a “g-jitter,” or background variation of
acceleration, on the order of 10−6 or 10−5 earth gravities. Brief pe-
riods of gravity up to 10−4 or 10−2 earth gravities can be exerted
by accelerating the whole vehicle. A certain line carrying hot oil is
½ cm in diameter and it is at 127◦C. How does Q vary with g-level if
T∞ = 27◦C in the air around the tube?

Solution. The average b.l. temperature is 350 K. We evaluate prop-
erties at this temperature and write g as ge× (g-level), where ge is g
at the earth’s surface and the g-level is the fraction of ge in the space
vehicle.

RaD = g
(
∆T

/
T∞

)
D3

να
=

9.8
(

400− 300
300

)
(0.005)3

2.062(10)−52.92(10)−5

(
g-level

)
= (678.2)

(
g-level

)
From eqn. (8.31), with Pr = 0.706, we compute

NuD =

0.6+ 0.387

[
678.2[

1+ (0.559/0.706)9/16
]16/9

]1/6

︸ ︷︷ ︸
=0.952

(g-level)1/6



2

so
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g-level NuD h = NuD

(
0.0297
0.005

)
Q = πDh∆T

10−6 0.483 2.87 W/m2K 4.51 W/m of tube
10−5 0.547 3.25 W/m2K 5.10 W/m of tube
10−4 0.648 3.85 W/m2K 6.05 W/m of tube
10−2 1.086 6.45 W/m2K 10.1 W/m of tube

The numbers in the rightmost column are quite low. Cooling is clearly
inefficient at these low gravities.

Natural convection from vertical cylinders

The heat transfer from the wall of a cylinder with its axis running verti-
cally is the same as that from a vertical plate, so long as the thermal b.l. is
thin. However, if the b.l. is thick, as is indicated in Fig. 8.7, heat transfer
will be enhanced by the curvature of the thermal b.l. This correction was
first considered some years ago by Sparrow and Gregg, and the analysis
was subsequently extended with the help of more powerful numerical
methods by Cebeci [8.11].

Figure 8.7 includes the corrections to the vertical plate results that
were calculated for many Pr’s by Cebeci. The left-hand graph gives a
correction that must be multiplied by the local flat-plate Nusselt number
to get the vertical cylinder result. Notice that the correction increases
when the Grashof number decreases. The right-hand curve gives a similar
correction for the overall Nusselt number on a cylinder of height L. Notice
that in either situation, the correction for all but liquid metals is less than
1% if D/(x or L) < 0.02 Gr1/4

x or L.

Heat transfer from general submerged bodies

Spheres. The sphere is an interesting case because it has a clearly speci-
fiable value of NuD as RaD → 0. We look first at this limit. When the
buoyancy forces approach zero by virtue of:

• low gravity, • very high viscosity,

• small diameter, • a very small value of β,

then heated fluid will no longer be buoyed away convectively. In that case,
only conduction will serve to remove heat. Using shape factor number 4
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Figure 8.7 Corrections for h and h on vertical isother-
mal plates to make them apply to vertical isothermal cylin-
ders [8.11].

in Table 5.4, we compute in this case

lim
RaD→0

NuD = Q
A∆T

D
k
= k∆T(S)D

4π(D/2)2∆Tk
= 4π(D/2)

4π(D/4)
= 2 (8.32)

Every proper correlation of data for heat transfer from spheres there-
fore has the lead constant, 2, in it.5 A typical example is that of Yuge [8.12]
for spheres immersed in gases:

NuD = 2+ 0.43 Ra1/4
D , RaD < 105 (8.33)

A more complex expression [8.13] encompasses other Prandtl numbers:

NuD = 2+ 0.589 Ra1/4
D[

1+ (0.492/Pr)9/16
]4/9 RaD < 1012 (8.34)

This result has an estimated uncertainty of 5% in air and an rms error of
about 10% at higher Prandtl numbers.

5It is important to note that while NuD for spheres approaches a limiting value at
small RaD , no such limit exists for cylinders or vertical surfaces. The constants in
eqns. (8.27) and (8.30) are not valid at extremely low values of RaD .
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Rough estimate of Nu for other bodies. In 1973 Lienhard [8.14] noted
that, for laminar convection in which the b.l. does not separate, the ex-
pression

Nuτ � 0.52 Ra1/4
τ (8.35)

would predict heat transfer from any submerged body within about 10%
if Pr is not � 1. The characteristic dimension in eqn. (8.35) is the length
of travel, τ , of fluid in the unseparated b.l.

In the case of spheres without separation, for example, τ = πD/2, the
distance from the bottom to the top around the circumference. Thus, for
spheres, eqn. (8.35) becomes

hπD
2k

= 0.52

[
gβ∆T(πD/2)3

να

]1/4

or

hD
k
= 0.52

(
2
π

)(
π
2

)3/4
[
gβ∆TD3

να

]1/4

or

NuD = 0.465 Ra1/4
D

This is within 8% of Yuge’s correlation if RaD remains fairly large.

Laminar heat transfer from inclined and horizontal plates

In 1953, Rich [8.15] showed that heat transfer from inclined plates could
be predicted by vertical plate formulas if the component of the gravity
vector along the surface of the plate was used in the calculation of the
Grashof number. Thus, the heat transfer rate decreases as (cosθ)1/4,
where θ is the angle of inclination measured from the vertical, as shown
in Fig. 8.8.

Subsequent studies have shown that Rich’s result is substantially cor-
rect for the lower surface of a heated plate or the upper surface of a
cooled plate. For the upper surface of a heated plate or the lower surface
of a cooled plate, the boundary layer becomes unstable and separates at
a relatively low value of Gr. Experimental observations of such instabil-
ity have been reported by Fujii and Imura [8.16], Vliet [8.17], Pera and
Gebhart [8.18], and Al-Arabi and El-Riedy [8.19], among others.
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Figure 8.8 Natural convection b.l.’s on some inclined and hor-
izontal surfaces. The b.l. separation, shown here for the unsta-
ble cases in (a) and (b), occurs only at sufficiently large values
of Gr.

In the limit θ = 90◦ — a horizontal plate — the fluid flow above a hot
plate or below a cold plate must form one or more plumes, as shown in
Fig. 8.8c and d. In such cases, the b.l. is unstable for all but small Rayleigh
numbers, and even then a plume must leave the center of the plate. The
unstable cases can only be represented with empirical correlations.

Theoretical considerations, and experiments, show that the Nusselt
number for laminar b.l.s on horizontal and slightly inclined plates varies
as Ra1/5 [8.20, 8.21]. For the unstable cases, when the Rayleigh number
exceeds 104 or so, the experimental variation is as Ra1/4, and once the
flow is fully turbulent, for Rayleigh numbers above about 107, experi-
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ments show a Ra1/3 variation of the Nusselt number [8.22, 8.23]. In the
latter case, both NuL and Ra1/3

L are proportional to L, so that the heat
transfer coefficient is independent of L. Moreover, the flow field in these
situations is driven mainly by the component of gravity normal to the
plate.

Unstable Cases: For the lower side of cold plates and the upper side
of hot plates, the boundary layer becomes increasingly unstable as Ra is
increased.

• For inclinations θ � 45◦ and 105 � RaL � 109, replaceg withg cosθ
in eqn. (8.27).

• For horizontal plates with Rayleigh numbers above 107, nearly iden-
tical results have been obtained by many investigators. From these
results, Raithby and Hollands propose [8.13]:

NuL = 0.14 Ra1/3
L

(
1+ 0.0107 Pr
1+ 0.01 Pr

)
, 0.024 � Pr � 2000 (8.36)

This formula is consistent with available data up to RaL = 2×1011,
and probably goes higher. As noted before, the choice of length-
scale L is immaterial. Fujii and Imura’s results support using the
above for 60◦ � θ � 90◦ with g in the Rayleigh number.

For high Ra in gases, temperature differences and variable proper-
ties effects can be large. From experiments on upward facing plates,
Clausing and Berton [8.23] suggest evaluating all gas properties at
a reference temperature, in kelvin, of

Tref = Tw − 0.83 (Tw − T∞) for 1 � Tw/T∞ � 3.

• For horizontal plates of area A and perimeter P at lower Rayleigh
numbers, Raithby and Hollands suggest [8.13]

NuL∗ =
0.560 Ra1/4

L∗[
1+ (0.492/Pr)9/16

]4/9 (8.37a)

where, following Lloyd and Moran [8.22], a characteristic length-
scale L∗ = A/P , is used in the Rayleigh and Nusselt numbers. If



§8.4 Natural convection in other situations 423

NuL∗ � 10, the b.l.s will be thick, and they suggest correcting the
result to

Nucorrected =
1.4

ln
(
1+ 1.4

/
NuL∗

) (8.37b)

These equations are recommended6 for 1 < RaL∗ < 107.

• In general, for inclined plates in the unstable cases, Raithby and
Hollands [8.13] recommend that the heat flow be computed first
using the formula for a vertical plate with g cosθ and then using
the formula for a horizontal plate with g sinθ (i.e., the component
of gravity normal to the plate) and that the larger value of the heat
flow be taken.

Stable Cases: For the upper side of cold plates and the lower side of hot
plates, the flow is generally stable. The following results assume that the
flow is not obstructed at the edges of the plate; a surrounding adiabatic
surface, for example, will lower h [8.24, 8.25].

• For θ < 88◦ and 105 � RaL � 1011, eqn. (8.27) is still valid for the
upper side of cold plates and the lower side of hot plates when g
is replaced with g cosθ in the Rayleigh number [8.16].

• For downward-facing hot plates and upward-facing cold plates of
width L with very slight inclinations, Fujii and Imura give:

NuL = 0.58 Ra1/5
L (8.38)

This is valid for 106 < RaL < 109 if 87◦ � θ � 90◦ and for 109 �
RaL < 1011 if 89◦ � θ � 90◦ . RaL is based on g (not g cosθ).
Fujii and Imura’s results are for two-dimensional plates—ones in
which infinite breadth has been approximated by suppression of
end effects.

For circular plates of diameter D in the stable horizontal configu-
rations, the data of Kadambi and Drake [8.26] suggest that

NuD = 0.82 Ra1/5
D Pr0.034 (8.39)

6 Raithby and Hollands also suggest using a blending formula for 1 < RaL∗ < 1010

Nublended,L∗ =
[(

Nucorrected
)10 + (

Nuturb
)10

]1/10
(8.37c)

in which Nuturb is calculated from eqn. (8.36) using L∗. The formula is useful for
numerical progamming, but its effect on h is usually small.
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Natural convection with uniform heat flux

When qw is specified instead of ∆T ≡ (Tw − T∞), ∆T becomes the un-
known dependent variable. Because h ≡ qw/∆T , the dependent variable
appears in the Nusselt number; however, for natural convection, it also
appears in the Rayleigh number. Thus, the situation is more complicated
than in forced convection.

Since Nu often varies as Ra1/4, we may write

Nux = qw∆T
x
k
∝ Ra1/4

x ∝ ∆T 1/4x3/4

The relationship between x and ∆T is then

∆T = C x1/5 (8.40)

where the constant of proportionality C involves qw and the relevant
physical properties. The average of ∆T over a heater of length L is

∆T = 1
L

∫ L
0
C x1/5 dx = 5

6
C (8.41)

We plot ∆T/C against x/L in Fig. 8.9. Here, ∆T and ∆T(x/L = ½) are
within 4% of each other. This suggests that, if we are interested in average
values of ∆T , we can use ∆T evaluated at the midpoint of the plate in
both the Rayleigh number, RaL, and the average Nusselt number, NuL =
qwL/k∆T . Churchill and Chu, for example, show that their vertical plate
correlation, eqn. (8.27), represents qw = constant data exceptionally well
in the range RaL > 1 when RaL is based on ∆T at the middle of the plate.
This approach eliminates the variation of∆T with x from the calculation,
but the temperature difference at the middle of the plate must still be
found by iteration.

To avoid iterating, we need to eliminate∆T from the Rayleigh number.
We can do this by introducing a modified Rayleigh number, Ra∗x , defined
as

Ra∗x ≡ RaxNux ≡ gβ∆Tx
3

να
qwx
∆Tk

= gβqwx
4

kνα
(8.42)

For example, in eqn. (8.27), we replace RaL with Ra∗L
/
NuL. The result is

NuL = 0.68+ 0.67
(
Ra∗L

)1/4
/

Nu
1/4
L

[
1+

(
0.492

Pr

)9/16
]4/9
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Figure 8.9 The mean value of ∆T ≡ Tw − T∞ during natural
convection.

which may be rearranged as

Nu
1/4
L

(
NuL − 0.68

) = 0.67
(
Ra∗L

)1/4[
1+ (0.492/Pr)9/16

]4/9 (8.43a)

When NuL � 5, the term 0.68 may be neglected, with the result

NuL =
0.73

(
Ra∗L

)1/5[
1+ (0.492/Pr)9/16

]16/45 (8.43b)

Raithby and Hollands [8.13] give the following, somewhat simpler corre-
lations for laminar natural convection from vertical plates with a uniform
wall heat flux:

Nux = 0.630

(
Ra∗x Pr

4+ 9
√

Pr+ 10 Pr

)1/5

(8.44a)

NuL = 6
5

(
Ra∗L Pr

4+ 9
√

Pr+ 10 Pr

)1/5

(8.44b)

These equations apply for all Pr and for Nu � 5 (equations for lower Nu
or Ra∗ are given in [8.13]).
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Some other natural convection problems

There are many natural convection situations that are beyond the scope
of this book but which arise in practice.

Natural convection in enclosures. When a natural convection process
occurs within a confined space, the heated fluid buoys up and then fol-
lows the contours of the container, releasing heat and in some way re-
turning to the heater. This recirculation process normally enhances heat
transfer beyond that which would occur by conduction through the sta-
tionary fluid. These processes are of importance to energy conserva-
tion processes in buildings (as in multiply glazed windows, uninsulated
walls, and attics), to crystal growth and solidification processes, to hot
or cold liquid storage systems, and to countless other configurations.
Survey articles on natural convection in enclosures have been written by
Yang [8.27], Raithby and Hollands [8.13], and Catton [8.28].

Combined natural and forced convection. When forced convection along,
say, a vertical wall occurs at a relatively low velocity but at a relatively
high heating rate, the resulting density changes can give rise to a super-
imposed natural convection process. We saw in footnote 2 on page 402
that Gr1/2

L plays the role of of a natural convection Reynolds number, it
follows that we can estimate of the relative importance of natural and
forced convection can be gained by considering the ratio

GrL
Re2
L
= strength of natural convection flow

strength of forced convection flow
(8.45)

where ReL is for the forced convection along the wall. If this ratio is small
compared to one, the flow is essentially that due to forced convection,
whereas if it is large compared to one, we have natural convection. When
GrL

/
Re2
L is on the order of one, we have a mixed convection process.

It should be clear that the relative orientation of the forced flow and
the natural convection flow matters. For example, compare cool air flow-
ing downward past a hot wall to cool air flowing upward along a hot wall.
The former situation is called opposing flow and the latter is called as-
sisting flow. Opposing flow may lead to boundary layer separation and
degraded heat transfer.

Churchill [8.29] has provided an extensive discussion of both the con-
ditions that give rise to mixed convection and the prediction of heat trans-
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fer for it. Review articles on the subject have been written by Chen and
Armaly [8.30] and by Aung [8.31].

Example 8.5

A horizontal circular disk heater of diameter 0.17 m faces downward
in air at 27◦C. If it delivers 15 W, estimate its average surface temper-
ature.

Solution. We have no formula for this situation, so the problem
calls for some judicious guesswork. Following the lead of Churchill
and Chu, we replace RaD with Ra∗D/NuD in eqn. (8.39):

(
NuD

)6/5 =
(
qwD
∆Tk

)6/5
= 0.82

(
Ra∗D

)1/5 Pr0.034

so

∆T = 1.18
qwD

/
k(

gβqwD4

kνα

)1/6

Pr0.028

= 1.18

(
15

π(0.085)2

)
0.17

0.02614[
9.8[15/π(0.085)2]0.174

300(0.02164)(1.566)(2.203)10−10

]1/6

(0.711)0.028

= 140 K

In the preceding computation, all properties were evaluated at T∞.
Now we must return the calculation, reevaluating all properties except
β at 27+ (140/2) = 97◦C:

∆T corrected = 1.18
661(0.17)/0.03104[

9.8[15/π(0.085)2]0.174

300(0.03104)(3.231)(2.277)10−10

]1/6

(0.99)

= 142 K

so the surface temperature is 27+ 142 = 169◦C.
That is rather hot. Obviously, the cooling process is quite ineffec-

tive in this case.
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8.5 Film condensation

Dimensional analysis and experimental data

The dimensional functional equation for h (or h) during film condensa-
tion is7

h or h = fn
[
cp, ρf ,hfg, g

(
ρf − ρg

)
, k, µ, (Tsat − Tw) , L or x

]
where hfg is the latent heat of vaporization. It does not appear in the
differential equations (8.4) and (6.40); however, it is used in the calcula-
tion of δ [which enters in the b.c.’s (8.5)]. The film thickness, δ, depends
heavily on the latent heat and slightly on the sensible heat, cp∆T , which
the film must absorb to condense. Notice, too, that g(ρf−ρg) is included
as a product, because gravity only enters the problem as it acts upon the
density difference [cf. eqn. (8.4)].

The problem is therefore expressed nine variables in J, kg, m, s, and
◦C (where we once more avoid resolving J into N ·m since heat is not
being converted into work in this situation). It follows that we look for
9− 5 = 4 pi-groups. The ones we choose are

Π1 = NuL ≡ hLk Π2 = Pr ≡ ν
α

Π3 = Ja ≡ cp(Tsat − Tw)
hfg

Π4 ≡
ρf (ρf − ρg)ghfgL3

µk(Tsat − Tw)

Two of these groups are new to us. The group Π3 is called the Jakob
number, Ja, to honor Max Jakob’s important pioneering work during the
1930s on problems of phase change. It compares the maximum sensible
heat absorbed by the liquid to the latent heat absorbed. The group Π4

does not normally bear anyone’s name, but, if it is multiplied by Ja, it
may be regarded as a Rayleigh number for the condensate film.

Notice that if we condensed water at 1 atm on a wall 10◦C below
Tsat, then Ja would equal 4.174(10/2257) = 0.0185. Although 10◦C is a
fairly large temperature difference in a condensation process, it gives a
maximum sensible heat that is less than 2% of the latent heat. The Jakob
number is accordingly small in most cases of practical interest, and it
turns out that sensible heat can often be neglected. (There are important

7Note that, throughout this section, k, µ, cp , and Pr refer to properties of the liquid,
rather than the vapor.
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exceptions to this.) The same is true of the role of the Prandtl number.
Therefore, during film condensation

NuL = fn


 ρf (ρf − ρg)ghfgL3

µk(Tsat − Tw)︸ ︷︷ ︸

primary independent variable, Π4

,Pr, Ja︸ ︷︷ ︸
secondary independent
variables


 (8.46)

Equation (8.46) is not restricted to any geometrical configuration,
since the same variables govern h during film condensation on any body.
Figure 8.10, for example, shows laminar film condensation data given
for spheres by Dhir8 [8.32]. They have been correlated according to
eqn. (8.12). The data are for only one value of Pr but for a range of
Π4 and Ja. They generally correlate well within ±10%, despite a broad
variation of the not-very-influential variable, Ja. A predictive curve [8.32]
is included in Fig. 8.10 for future reference.

Laminar film condensation on a vertical plate

Consider the following feature of film condensation. The latent heat of
a liquid is normally a very large number. Therefore, even a high rate of
heat transfer will typically result in only very thin films. These films move
relatively slowly, so it is safe to ignore the inertia terms in the momentum
equation (8.4):

u
∂u
∂x

+ v ∂v
∂y︸ ︷︷ ︸

�0

=
(

1− ρg
ρf

)
g + ν ∂

2u
∂y2︸ ︷︷ ︸
� d2u
dy2

This result will give u = u(y,δ) (where δ is the local b.l. thickness)
when it is integrated. We recognize that δ = δ(x), so thatu is not strictly
dependent on y alone. However, the y-dependence is predominant, and
it is reasonable to use the approximate momentum equation

d2u
dy2

= −ρf − ρg
ρf

g
ν

(8.47)

8Professor Dhir very kindly recalculated his data into the form shown in Fig. 8.10
for use here.
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Figure 8.10 Correlation of the data of Dhir [8.32] for laminar
film condensation on spheres at one value of Pr and for a range
of Π4 and Ja, with properties evaluated at (Tsat + Tw)/2. Ana-
lytical prediction from [8.33].

This simplification was made by Nusselt in 1916 when he set down the
original analysis of film condensation [8.34]. He also eliminated the con-
vective terms from the energy equation (6.40):

u
∂T
∂x

+ v ∂T
∂y︸ ︷︷ ︸

�0

= α ∂
2T
∂y2



§8.5 Film condensation 431

on the same basis. The integration of eqn. (8.47) subject to the b.c.’s

u
(
y = 0

) = 0 and
∂u
∂y

∣∣∣∣∣
y=δ

= 0

gives the parabolic velocity profile:

u = (ρf − ρg)gδ
2

2µ

[
2
(
y
δ

)
−

(
y
δ

)2
]

(8.48)

And integration of the energy equation subject to the b.c.’s

T
(
y = 0

) = Tw and T
(
y = δ) = Tsat

gives the linear temperature profile:

T = Tw + (Tsat − Tw) yδ (8.49)

To complete the analysis, we must calculate δ. This can be done in
two steps. First, we express the mass flow rate per unit width of film, ṁ,
in terms of δ, with the help of eqn. (8.48):

ṁ =
∫ δ

0
ρfudy =

ρf (ρf − ρg)
3µ

gδ3 (8.50)

Second, we neglect the sensible heat absorbed by that part of the film
cooled below Tsat and express the local heat flux in terms of the rate of
change of ṁ (see Fig. 8.11):

∣∣q∣∣ = k ∂T
∂y

∣∣∣∣∣
y=0

= k Tsat − Tw
δ

= hfg
dṁ
dx

(8.51)

Substituting eqn. (8.50) in eqn. (8.51), we obtain a first-order differen-
tial equation for δ:

k
Tsat − Tw

δ
= hfgρf (ρf − ρg)

µ
gδ2 dδ

dx
(8.52)

This can be integrated directly, subject to the b.c., δ(x = 0) = 0. The
result is

δ =
[

4k(Tsat − Tw)µx
ρf (ρf − ρg)ghfg

]1/4

(8.53)
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Figure 8.11 Heat and mass flow in an element of a condensing film.

Both Nusselt and, subsequently, Rohsenow [8.35] showed how to cor-
rect the film thickness calculation for the sensible heat that is needed to
cool the inner parts of the film below Tsat. Rohsenow’s calculation was, in
part, an assessment of Nusselt’s linear-temperature-profile assumption,
and it led to a corrected latent heat—designated h′fg—which accounted
for subcooling in the liquid film when Pr is large. Rohsenow’s result,
which we show below to be strictly true only for large Pr, was

h′fg = hfg

 1+ 0.68

cp(Tsat − Tw)
hfg︸ ︷︷ ︸

≡ Ja, Jakob number


 (8.54)

Thus, we simply replace hfg with h′fg wherever it appears explicitly in
the analysis, beginning with eqn. (8.51).

Finally, the heat transfer coefficient is obtained from

h ≡ q
Tsat − Tw

= 1
Tsat − Tw

[
k(Tsat − Tw)

δ

]
= k
δ

(8.55)

so

Nux = hxk = x
δ

(8.56)

Thus, with the help of eqn. (8.54), we substitute eqn. (8.53) in eqn. (8.56)
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and get

Nux = 0.707


ρf (ρf − ρg)gh′fgx3

µk(Tsat − Tw)


1/4

(8.57)

This equation carries out the functional dependence that we antici-
pated in eqn. (8.46):

Nux = fn
(
Π4︸︷︷︸

this is clearly the dominant variable

, Ja︸︷︷︸

this is carried implicitly in h′fg

, Pr︸︷︷︸
eliminated in so far as we
neglected convective terms
in the energy equation

)

The physical properties in Π4, Ja, and Pr (with the exception of hfg)
are to be evaluated at the mean film temperature. However, if Tsat − Tw
is small—and it often is—one might approximate them at Tsat.

At this point we should ask just how great the missing influence of
Pr is and what degree of approximation is involved in representing the
influence of Ja with the use of h′fg . Sparrow and Gregg [8.36] answered
these questions with a complete b.l. analysis of film condensation. They
did not introduce Ja in a corrected latent heat but instead showed its
influence directly.

Figure 8.12 displays two figures from the Sparrow and Gregg paper.
The first shows heat transfer results plotted in the form

Nux
4
√
Π4

= fn (Ja,Pr) �→ constant as Ja �→ 0 (8.58)

Notice that the calculation approaches Nusselt’s simple result for all
Pr as Ja → 0. It also approaches Nusselt’s result, even for fairly large
values of Ja, if Pr is not small. The second figure shows how the tem-
perature deviates from the linear profile that we assumed to exist in the
film in developing eqn. (8.49). If we remember that a Jakob number of
0.02 is about as large as we normally find in laminar condensation, it is
clear that the linear temperature profile is a very sound assumption for
nonmetallic liquids.
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Figure 8.12 Results of the exact b.l. analysis of laminar film
condensation on a vertical plate [8.36].

Sadasivan and Lienhard [8.37] have shown that the Sparrow-Gregg for-
mulation can be expressed with high accuracy, for Pr � 0.6, by including
Pr in the latent heat correction. Thus they wrote

h′fg = hfg
[
1+ (

0.683− 0.228
/
Pr

)
Ja

]
(8.59)

which includes eqn. (8.54) for Pr →∞ as we anticipated.
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The Sparrow and Gregg analysis proves that Nusselt’s analysis is quite
accurate for all Prandtl numbers above the liquid-metal range. The very
high Ja flows, for which Nusselt’s theory requires some correction, usu-
ally result in thicker films, which become turbulent so the exact analysis
no longer applies.

The average heat transfer coefficient is calculated in the usual way for
Twall = constant:

h = 1
L

∫ L
0
h(x)dx = 4

3 h(L)

so

NuL = 0.9428


ρf (ρf − ρg)gh′fgL3

µk(Tsat − Tw)


1/4

(8.60)

Example 8.6

Water at atmospheric pressure condenses on a strip 30 cm in height
that is held at 90◦C. Calculate the overall heat transfer per meter, the
film thickness at the bottom, and the mass rate of condensation per
meter.

Solution.

δ =

4k(Tsat − Tw)νx
(ρf − ρg)gh′fg


1/4

where we have replaced hfg with h′fg :

h′fg = 2257
[

1+
(

0.683− 0.228
1.72

)
4.216(10)

2257

]
= 2280 kJ/kg

so

δ =
[

4(0.681)(10)(0.290)10−6 x
(957.2− 0.6)(9.8)(2280)(10)3

]1/4

= 0.000138x1/4

Then

δ(L) = 0.000102 m = 0.102 mm
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Notice how thin the film is. Finally, we use eqns. (8.56) and (8.59) to
compute

NuL = 4
3
L
δ
= 4(0.3)

3(0.000102)
= 3903

so

q = NuL k∆T
L

= 3903(0.681)(10)
0.3

= 88,602 W/m2

(This is a heat flow of over 88.6 kW on an area about half the size of a
desk top. That is very high for such a small temperature difference.)
Then

Q = 88,602(0.3) = 26,581 W/m = 26.5 kW/m

The rate of condensate flow, ṁ is

ṁ = Q
h′fg

= 26.5
2291

= 0.0116 kg/m·s

Condensation on other bodies

Nusselt himself extended his prediction to certain other bodies but was
restricted by the lack of a digital computer from evaluating as many cases
as he might have. In 1971 Dhir and Lienhard [8.33] showed how Nusselt’s
method could be readily extended to a large class of problems. They
showed that one need only to replace the gravity, g, with an effective
gravity, geff:

geff ≡
x
(
gR

)4/3∫ x
0
g1/3R4/3 dx

(8.61)

in eqns. (8.53) and (8.57), to predict δ and Nux for a variety of bodies.
The terms in eqn. (8.61) are (see Fig. 8.13):

• x is the distance along the liquid film measured from the upper
stagnation point.

• g = g(x), the component of gravity (or other body force) along x;
g can vary from point to point as it does in Fig. 8.13b and c.



Figure 8.13 Condensation on various bodies. g(x) is the com-
ponent of gravity or other body force in the x-direction.

437
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• R(x) is a radius of curvature about the vertical axis. In Fig. 8.13a, it
is a constant that factors out of eqn. (8.61). In Fig. 8.13c, R is infinite.
Since it appears to the same power in both the numerator and the
denominator, it again can be factored out of eqn. (8.61). Only in
axisymmetric bodies, where R varies with x, need it be included.
When it can be factored out,

geff reduces to
xg4/3∫ x

0
g1/3 dx

(8.62)

• ge is earth-normal gravity. We introduce ge at this point to distin-
guish it from g(x).

Example 8.7

Find Nux for laminar film condensation on the top of a flat surface
sloping at θ◦ from the vertical plane.

Solution. In this case g = ge cosθ and R = ∞. Therefore, eqn. (8.61)
or (8.62) reduces to

geff =
xg4/3

e (cosθ)4/3

g1/3
e (cosθ)1/3

∫ x
0
dx

= ge cosθ

as we might expect. Then, for a slanting plate,

Nux = 0.707


ρf (ρf − ρg)(ge cosθ)h′fgx

3

µk(Tsat − Tw)


1/4

(8.63)

Example 8.8

Find the overall Nusselt number for a horizontal cylinder.

Solution. There is an important conceptual hurdle here. The radius
R(x) is infinity, as shown in Fig. 8.13c—it is not the radius of the cylin-
der. It is also very easy to show that g(x) is equal to ge sin(2x/D),
where D is the diameter of the cylinder. Then

geff =
xg4/3

e (sin 2x/D)4/3

g1/3
e

∫ x
0
(sin 2x/D)1/3 dx
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and, with h(x) from eqn. (8.57),

h = 2
πD

⌠⌡
πD/2

0

1√
2

k
x



ρf

(
ρf − ρg

)
h′fgx

3

µk (Tsat − Tw)
xge(sin 2x/D)4/3∫ x
0
(sin 2x/D)1/3 dx




1/4

dx

This integral can be evaulated in terms of gamma functions. The
result, when it is put back in the form of a Nusselt number, is

NuD = 0.728


ρf

(
ρf − ρg

)
geh′fgD

3

µk (Tsat − Tw)


1/4

(8.64)

for a horizontal cylinder. (Nusselt got 0.725 for the lead constant, but
he had to approximate the integral with a hand calculation.)

Some other results of this calculation include the following cases.
Sphere of diameter D:

NuD = 0.828


ρf

(
ρf − ρg

)
geh′fgD

3

µk (Tsat − Tw)


1/4

(8.65)

This result9 has already been compared with the experimental data in
Fig. 8.10.

Vertical cone with the apex on top, the bottom insulated, and a cone
angle of α◦:

Nux = 0.874 [cos(α/2)]1/4

ρf

(
ρf − ρg

)
geh′fgx

3

µk (Tsat − Tw)


1/4

(8.66)

Rotating horizontal disk10: In this case, g = ω2x, where x is the
distance from the center and ω is the speed of rotation. The Nusselt
number, based on L = (µ/ρfω)1/2, is

Nu = 0.9034


 µ

(
ρf − ρg

)
h′fg

ρfk (Tsat − Tw)


1/4

= constant (8.67)

9There is an error in [8.33]: the constant given there is 0.785. The value of 0.828
given here is correct.

10This problem was originally solved by Sparrow and Gregg [8.38].
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This result might seem strange at first glance. It says that Nu ≠ fn(x or ω).
The reason is that δ just happens to be independent of x in this config-
uration.

The Nusselt solution can thus be bent to fit many complicated geo-
metric figures. One of the most complicated ones that have been dealt
with is the reflux condenser shown in Fig. 8.14. In such a configuration,
cooling water flows through a helically wound tube and vapor condenses
on the outside, running downward along the tube. As the condensate
flows, centripetal forces sling the liquid outward at a downward angle.
This complicated flow was analyzed by Karimi [8.39], who found that

Nu ≡ hd cosα
k

=


(
ρf − ρg

)
ρfh′fgg(d cosα)3

µk∆T


1/4

fn
(
d
D
,B

)
(8.68)

where B is a centripetal parameter:

B ≡ ρf − ρg
ρf

cp∆T
h′fg

tan2α
Pr

andα is the helix angle (see Fig. 8.14). The function on the righthand side
of eqn. (8.68) was a complicated one that must be evaluated numerically.
Karimi’s result is plotted in Fig. 8.14.

Laminar–turbulent transition

The mass flow rate of condensate per unit width of film, ṁ, is more com-
monly designated as Γc (kg/m · s). Its calculation in eqn. (8.50) involved
substituting eqn. (8.48) in

ṁ or Γc = ρf
∫ δ

0
udy

Equation (8.48) givesu(y) independently of any geometric features. [The
geometry is characterized by δ(x).] Thus, the resulting equation for the
mass flow rate is still

Γc =
ρf

(
ρf − ρg

)
gδ3

3µ
(8.50a)

This expression is valid for any location along any film, regardless of the
geometry of the body. The configuration will lead to variations of g(x)
and δ(x), but eqn. (8.50a) still applies.



§8.5 Film condensation 441

Figure 8.14 Fully developed film condensation heat transfer
on a helical reflux condenser [8.39].

It is useful to define a Reynolds number in terms of Γc . This is easy
to do, because Γc is equal to ρuavδ.

Rec = Γcµ =
ρf (ρf − ρg)gδ3

3µ2
(8.69)

It turns out that the Reynolds number dictates the onset of film insta-
bility, just as it dictates the instability of a b.l. or of a pipe flow.11 When
Rec � 7, scallop-shaped ripples become visible on the condensate film.
When Rec reaches about 400, a full-scale laminar-to-turbulent transition
occurs.

Gregorig, Kern, and Turek [8.40] reviewed many data for the film
condensation of water and added their own measurements. Figure 8.15
shows these data in comparison with Nusselt’s theory, eqn. (8.60). The
comparison is almost perfect up to Rec � 7. Then the data start yielding
somewhat higher heat transfer rates than the prediction. This is because

11Two Reynolds numbers are defined for film condensation: Γc/µ and 4Γc/µ. The
latter one, which is simply four times as large as the one we use, is more common in
the American literature.
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Figure 8.15 Film condensation on vertical plates. Data are for
water [8.40].

the ripples improve heat transfer—just a little at first and by about 20%
when the full laminar-to-turbulent transition occurs at Rec = 400.

Above Rec = 400, NuL begins to rise with Rec . The Nusselt number
begins to exhibit an increasingly strong dependence on the Prandtl num-
ber in this turbulent regime. Therefore, one can use Fig. 8.15, directly as
a data correlation, to predict the heat transfer coefficient for steam con-
densating at 1 atm. But for other fluids with different Prandtl numbers,
one should consult [8.41] or [8.42].

Two final issues in natural convection film condensation

• Condensation in tube bundles. Nusselt showed that if n horizontal
tubes are arrayed over one another, and if the condensate leaves
each one and flows directly onto the one below it without splashing,
then

NuDfor n tubes =
NuD1 tube

n1/4 (8.70)

This is a fairly optimistic extension of the theory, of course. In
addition, the effects of vapor shear stress on the condensate and of
pressure losses on the saturation temperature are often important
in tube bundles. These effects are discussed by Rose et al. [8.42]
and Marto [8.41].
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• Condensation in the presence of noncondensable gases. When the
condensing vapor is mixed with noncondensable air, uncondensed
air must constantly diffuse away from the condensing film and va-
por must diffuse inward toward the film. This coupled diffusion
process can considerably slow condensation. The resulting h can
easily be cut by a factor of five if there is as little as 5% by mass
of air mixed into the steam. This effect was first analyzed in detail
by Sparrow and Lin [8.43]. More recent studies of this problem are
reviewed in [8.41, 8.42].

Problems

8.1 Show that Π4 in the film condensation problem can properly
be interpreted as Pr Re2

/
Ja.

8.2 A 20 cm high vertical plate is kept at 34◦C in a 20◦C room.
Plot (to scale) δ and h vs. height and the actual temperature
and velocity vs. y at the top.

8.3 Redo the Squire-Eckert analysis, neglecting inertia, to get a
high-Pr approximation to Nux . Compare your result with the
Squire-Eckert formula.

8.4 Assume a linear temperature profile and a simple triangular
velocity profile, as shown in Fig. 8.16, for natural convection
on a vertical isothermal plate. Derive Nux = fn(Pr,Grx), com-
pare your result with the Squire-Eckert result, and discuss the
comparison.

8.5 A horizontal cylindrical duct of diamond-shaped cross section
(Fig. 8.17) carries air at 35◦C. Since almost all thermal resis-
tance is in the natural convection b.l. on the outside, take Tw
to be approximately 35◦C. T∞ = 25◦C. Estimate the heat loss
per meter of duct if the duct is uninsulated. [Q = 24.0 W/m.]

8.6 The heat flux from a 3 m high electrically heated panel in a
wall is 75 W/m2 in an 18◦C room. What is the average temper-
ature of the panel? What is the temperature at the top? at the
bottom?
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Figure 8.16 Configuration for Problem 8.4.

Figure 8.17 Configuration for
Problem 8.5.

8.7 Find pipe diameters and wall temperatures for which the film
condensation heat transfer coefficients given in Table 1.1 are
valid.

8.8 Consider Example 8.6. What value of wall temperature (if any),
or what height of the plate, would result in a laminar-to-turbulent
transition at the bottom in this example?

8.9 A plate spins, as shown in Fig. 8.18, in a vapor that rotates syn-
chronously with it. Neglect earth-normal gravity and calculate
NuL as a result of film condensation.

8.10 A laminar liquid film of temperature Tsat flows down a vertical
wall that is also at Tsat. Flow is fully developed and the film
thickness is δo. Along a particular horizontal line, the wall
temperature has a lower value, Tw , and it is kept at that tem-
perature everywhere below that position. Call the line where
the wall temperature changes x = 0. If the whole system is
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Figure 8.18 Configuration for
Problem 8.9.

immersed in saturated vapor of the flowing liquid, calculate
δ(x), Nux , and NuL, where x = L is the bottom edge of the
wall. (Neglect any transition behavior in the neighborhood of
x = 0.)

8.11 Prepare a table of formulas of the form

h(W/m2K) = C [∆T ◦C/L m]1/4

for natural convection at normal gravity in air and in water
at T∞ = 27◦C. Assume that Tw is close to 27◦C. Your table
should include results for vertical plates, horizontal cylinders,
spheres, and possibly additional geometries. Do not include
your calculations.

8.12 For what value of Pr is the condition

∂2u
∂y2

∣∣∣∣∣
y=0

= gβ(Tw − T∞)
ν

satisfied exactly in the Squire-Eckert b.l. solution? [Pr = 2.86.]

8.13 The overall heat transfer coefficient on the side of a particular
house 10 m in height is 2.5 W/m2K, excluding exterior convec-
tion. It is a cold, still winter night with Toutside = −30◦C and
Tinside air = 25◦C. What is h on the outside of the house? Is
external convection laminar or turbulent?

8.14 Consider Example 8.2. The sheets are mild steel, 2 m long and
6 mm thick. The bath is basically water at 60◦C, and the sheets
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are put in it at 18◦C. (a) Plot the sheet temperature as a function
of time. (b) Approximate h at ∆T = [(60+ 18)/2− 18]◦C and
plot the conventional exponential response on the same graph.

8.15 A vertical heater 0.15 m in height is immersed in water at 7◦C.
Plot h against (Tw − T∞)1/4, where Tw is the heater tempera-
ture, in the range 0 < (Tw − T∞) < 100◦C. Comment on the
result. should the line be straight?

8.16 A 77◦C vertical wall heats 27◦C air. Evaluate δtop/L,RaL, and
L where the line in Fig. 8.3 ceases to be straight. Comment on
the implications of your results. [δtop/L � 0.6.]

8.17 A horizontal 8 cm O.D. pipe carries steam at 150◦C through
a room at 17◦C. The pipe has a 1.5 cm layer of 85% magnesia
insulation on it. Evaluate the heat loss per meter of pipe. [Q =
97.3 W/m.]

8.18 What heat rate (in W/m) must be supplied to a 0.01 mm hori-
zontal wire to keep it 30◦C above the 10◦C water around it?

8.19 A vertical run of copper tubing, 5 mm in diameter and 20 cm
long, carries condensation vapor at 60◦C through 27◦C air.
What is the total heat loss?

8.20 A body consists of two cones joined at their bases. The di-
ameter is 10 cm and the overall length of the joined cones is
25 cm. The axis of the body is vertical, and the body is kept
at 27◦C in 7◦C air. What is the rate of heat removal from the
body? [Q = 3.38 W.]

8.21 Consider the plate dealt with in Example 8.3. Plot h as a func-
tion of the angle of inclination of the plate as the hot side is
tilted both upward and downward. Note that you must make
do with discontinuous formulas in different ranges of θ.

8.22 You have been asked to design a vertical wall panel heater,
1.5 m high, for a dwelling. What should the heat flux be if no
part of the wall should exceed 33◦C? How much heat will be
added to the room if the panel is 7 m in width?

8.23 A 14 cm high vertical surface is heated by condensing steam
at 1 atm. If the wall is kept at 30◦C, how would the average
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heat transfer coefficient change if ammonia, R22, methanol,
or acetone were used instead of steam to heat it? How would
the heat flux change? (Data for methanol and acetone must be
obtained from sources outside this book.)

8.24 A 1 cm diameter tube extends 27 cm horizontally through a
region of saturated steam at 1 atm. The outside of the tube can
be maintained at any temperature between 50◦C and 150◦C.
Plot the total heat transfer as a function of tube temperature.

8.25 A 2 m high vertical plate condenses steam at 1 atm. Below what
temperature will Nusselt’s prediction of h be in error? Below
what temperature will the condensing film be turbulent?

8.26 A reflux condenser is made of copper tubing 0.8 cm in diameter
with a wall temperature of 30◦C. It condenses steam at 1 atm.
Find h if α = 18◦ and the coil diameter is 7 cm.

8.27 The coil diameter of a helical condenser is 5 cm and the tube
diameter is 5 mm. The condenser carries water at 15◦C and is
in a bath of saturated steam at 1 atm. Specify the number of
coils and a reasonable helix angle if 6 kg/hr of steam is to be
condensed. hinside = 600 W/m2K.

8.28 A schedule 40 type 304 stainless steam pipe with a 4 in. nom-
inal diameter carries saturated steam at 150 psia in a process-
ing plant. Calculate the heat loss per unit length of pipe if it is
bare and the surrounding air is still at 68◦F. How much would
this heat loss be reduced if the pipe were insulated with a 1 in.
layer of 85% magnesia insulation? [Qsaved � 127 W/m.]

8.29 What is the maximum speed of air in the natural convection
b.l. in Example 8.1?

8.30 All of the uniform-Tw , natural convection formulas for Nu take
the same form, within a constant, at high Pr and Ra. What is
that form? (Exclude any equation that includes turbulence.)

8.31 A large industrial process requires that water be heated by a
large horizontal cylinder using natural convection. The water
is at 27◦C. The diameter of the cylinder is 5 m, and it is kept at
67◦C. First, find h. Then suppose that D is increased to 10 m.
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What is the new h? Explain the similarity of these answers in
the turbulent natural convection regime.

8.32 A vertical jet of liquid of diameter d and moving at velocity u∞
impinges on a horizontal disk rotating ω rad/s. There is no
heat transfer in the system. Develop an expression for δ(r),
where r is the radial coordinate on the disk. Contrast the r
dependence of δ with that of a condensing film on a rotating
disk and explain the difference qualitatively.

8.33 We have seen that if properties are constant, h ∝ ∆T 1/4 in
natural convection. If we consider the variation of properties
as Tw is increased over T∞, will h depend more or less strongly
on ∆T in air? in water?

8.34 A film of liquid falls along a vertical plate. It is initially satu-
rated and it is surrounded by saturated vapor. The film thick-
ness is δo. If the wall temperature below a certain point on
the wall (call it x = 0) is raised to a value of Tw , slightly above
Tsat, derive expressions for δ(x), Nux , and xf—the distance at
which the plate becomes dry. Calculate xf if the fluid is water
at 1 atm, if Tw = 105◦C and δo = 0.1 mm.

8.35 In a particular solar collector, dyed water runs down a vertical
plate in a laminar film with thickness δo at the top. The sun’s
rays pass through parallel glass plates (see Section 10.6) and
deposit qs W/m2 in the film. Assume the water to be saturated
at the inlet and the plate behind it to be insulated. Develop an
expression for δ(x) as the water evaporates. Develop an ex-
pression for the maximum length of wetted plate, and provide
a criterion for the laminar solution to be valid.

8.36 What heat removal flux can be achieved at the surface of a
horizontal 0.01 mm diameter electrical resistance wire in still
27◦C air if its melting point is 927◦C? Neglect radiation.

8.37 A 0.03 m O.D. vertical pipe, 3 m in length, carries refrigerant
through a 24◦C room. How much heat does it absorb from the
room if the pipe wall is at 10◦C?

8.38 A 1 cm O.D. tube at 50◦C runs horizontally in 20◦C air. What is
the critical radius of 85% magnesium insulation on the tube?
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8.39 A 1 in. cube of ice is suspended in 20◦C air. Estimate the drip
rate in gm/min. (Neglect ∆T through the departing water film.
hsf = 333,300 J/kg.)

8.40 A horizontal electrical resistance heater, 1 mm in diameter,
releases 100 W/m in water at 17◦C. What is the wire tempera-
ture?

8.41 Solve Problem 5.39 using the correct formula for the heat trans-
fer coefficient.

8.42 A red-hot vertical rod, 0.02 m in length and 0.005 m in diame-
ter, is used to shunt an electrical current in air at room temper-
ature. How much power can it dissipate if it melts at 1200◦C?
Note all assumptions and corrections. Include radiation using
Frod-room = 0.064.

8.43 A 0.25 mm diameter platinum wire, 0.2 m long, is to be held
horizontally at 1035◦C. It is black. How much electric power is
needed? Is it legitimate to treat it as a constant-wall-temperature
heater in calculating the convective part of the heat transfer?
The surroundings are at 20◦C and the surrounding room is
virtually black.

8.44 A vertical plate, 11.6 m long, condenses saturated steam at
1 atm. We want to be sure that the film stays laminar. What is
the lowest allowable plate temperature, and what is q at this
temperature?

8.45 A straight horizontal fin exchanges heat by laminar natural
convection with the surrounding air.

a. Show that

d2θ
dξ2

=m2L2θ5/4

where m is based on ho ≡ h(T = To).
b. Develop an iterative numerical method to solve this equa-

tion for T(x = 0) = To and an insulated tip. (Hint : lin-
earize the right side by writing it as (m2L2θ1/4)θ, and
evaluate the term in parenthesis at the previous iteration
step.)
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c. Solve the resulting difference equations for m2L2 values
ranging from 10−3 to 103. Use Gauss elimination or the
tridiagonal algorithm. Express the results as η/ηo where
η is the fin efficiency and ηo is the efficiency that would
result ifho were the uniform heat transfer coefficient over
the entire fin.

8.46 A 2.5 cm black sphere (F = 1) is in radiation-convection equi-
librium with air at 20◦C. The surroundings are at 1000 K. What
is the temperature of the sphere?

8.47 Develop expressions for h(D) and NuD during condensation
on a vertical circular plate.

8.48 A cold copper plate is surrounded by a 5 mm high ridge which
forms a shallow container. It is surrounded by saturated water
vapor at 100◦C. Estimate the steady heat flux and the rate of
condensation.

a. When the plate is perfectly horizontal and filled to over-
flowing with condensate.

b. When the plate is in the vertical position.

c. Did you have to make any idealizations? Would they re-
sult in under- or over-estimation of the condensation?

8.49 A proposed design for a nuclear power plant uses molten lead
to remove heat from the reactor core. The heated lead is then
used to boil water that drives a steam turbine. Water at 5 atm
pressure (Tsat = 152◦C) enters a heated section of a pipe at
60◦C with a mass flow rate of ṁ = 2 kg/s. The pipe is stainless
steel (ks = 15 W/m·K) with a wall thickness of 12 mm and an
outside diameter of 6.2 cm. The outside surface of the pipe
is surrounded by an almost-stationary pool of molten lead at
477◦C.

a. At point where the liquid water has a bulk temperature
of Tb = 80◦C, estimate the inside and outside wall tem-
peratures of the pipe, Twi and Two , to within about 5◦C.
Neglect entry length and variable properties effects and
take β ≈ 0.000118 K−1 for lead. Hint: Guess an outside
wall temperature above 370◦C when computing h for the
lead.
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b. At what distance from the inlet will the inside wall of the
pipe reach Tsat? What redesign may be needed?

8.50 A flat plate 10 cm long and 40 cm wide is inclined at 30◦ from
the vertical. It is held at a uniform temperature of 250 K. Sat-
urated HCFC-22 vapor at 260 K condenses onto the plate. De-
termine the following:

a. The ratio h′fg/hfg .

b. The average heat transfer coefficient, h, and the rate at
which the plate must be cooled, Q (watts).

c. The film thickness, δ (µm), at the bottom of the plate, and
the plate’s rate of condensation in g/s.

8.51 One component in a particular automotive air-conditioning sys-
tem is a “receiver”, a small vertical cylindrical tank that con-
tains a pool of liquid refrigerant, HFC-134a, with vapor above
it. The receiver stores extra refrigerant for the system and
helps to regulate the pressure. The receiver is at equilibrium
with surroundings at 330 K. A 5 mm diameter, spherical ther-
mistor inside the receiver monitors the liquid level. The ther-
mistor is a temperature-sensing resistor driven by a small elec-
tric current; it dissipates a power of 0.1 W. When the system
is fully charged with refrigerant, the thermistor sits below the
liquid surface. When refrigerant leaks from the system, the liq-
uid level drops and the thermistor eventually sits in vapor. The
thermistor is small compared to the receiver, and its power is
too low to affect the bulk temperature in the receiver.

a. If the system is fully charged, determine the temperature
of the thermistor.

b. If enough refrigerant has leaked that the thermistor sits in
vapor, find the thermistor’s temperature. Neglect thermal
radiation.

8.52 Ammonia vapor at 300 K and 1.062 MPa pressure condenses
onto the outside of a horizontal tube. The tube has an O.D. of
1.91 cm.

a. Suppose that the outside of the tube has a uniform tem-
perature of 290 K. Determine the average condensation
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heat transfer cofficient of the tube.

b. The tube is cooled by cold water flowing through it and
the thin wall of the copper tube offers negligible thermal
resistance. If the bulk temperature of the water is 275 K
at a location where the outside surface of the tube is at
290 K, what is the heat transfer coefficient inside the tube?

c. Using the heat transfer coefficients you just found, esti-
mate the largest wall thickness for which the thermal re-
sistance of the tube could be neglected. Discuss the varia-
tion the tube wall temperature around the circumference
and along the length of the tube.

8.53 An inclined plate in a piece of process equipment is tilted 30◦

above the horizontal and is 20 cm long and 25 cm wide (in the
horizontal direction). The plate is held at 280 K by a stream of
liquid flowing past its bottom side; the liquid in turn is cooled
by a refrigeration system capable of removing 12 watts from
it. If the heat transfer from the plate to the stream exceeds 12
watts, the temperature of both the liquid and the plate will
begin to rise. The upper surface of the plate is in contact
with gaseous ammonia vapor at 300 K and a varying pressure.
An engineer suggests that any rise in the bulk temperature of
the liquid will signal that the pressure has exceeded a level of
about pcrit = 551 kPa.

a. Explain why the gas’s pressure will affect the heat transfer
to the coolant.

b. Suppose that the pressure is 255.3 kPa. What is the heat
transfer (in watts) from gas to the plate, if the plate tem-
perature is Tw = 280 K? Will the coolant temperature rise?
Data for ammonia are given in App. A.

c. Suppose that the pressure rises to 1062 kPa. What is the
heat transfer to the plate if the plate is still at Tw = 280 K?
Will the coolant temperature rise?
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9. Heat transfer in boiling and
other phase-change
configurations

For a charm of powerful trouble,
like a Hell-broth boil and bubble.. . .

. . .Cool it with a baboon’s blood,
then the charm is firm and good.

Macbeth, Wm. Shakespeare

“A watched pot never boils”—the water in a teakettle takes a long time
to get hot enough to boil because natural convection initially warms it
rather slowly. Once boiling begins, the water is heated the rest of the way
to the saturation point very quickly. Boiling is of interest to us because
it is remarkably effective in carrying heat from a heater into a liquid. The
heater in question might be a red-hot horseshoe quenched in a bucket or
the core of a nuclear reactor with coolant flowing through it. Our aim is to
learn enough about the boiling process to design systems that use boiling
for cooling. We begin by considering pool boiling—the boiling that occurs
when a stationary heater transfers heat to an otherwise stationary liquid.

9.1 Nukiyama’s experiment and the pool boiling curve

Hysteresis in the q vs. ∆T relation for pool boiling

In 1934, Nukiyama [9.1] did the experiment described in Fig. 9.1. He
boiled saturated water on a horizontal wire that functioned both as an
electric resistance heater and as a resistance thermometer. By calibrating
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Figure 9.1 Nukiyama’s boiling hysteresis loop.

the resistance of a Nichrome wire as a function of temperature before the
experiment, he was able to obtain both the heat flux and the temperature
using the observed current and voltage. He found that, as he increased
the power input to the wire, the temperature of the wire rose sharply
but the heat flux increased relatively little. Suddenly, at a particular high
value of the heat flux, the wire abruptly melted. Nukiyama then obtained
a platinum wire and tried again. This time the wire reached the same
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limiting heat flux, but then it turned almost white-hot without melting.
As he reduced the power input to the white-hot wire, the temperature

dropped in a continuous way, as shown in Fig. 9.1, until the heat flux was
far below the value where the first temperature jump occurred. Then
the temperature dropped abruptly to the original q vs. ∆T = (Twire −
Tsat) curve, as shown. Nukiyama suspected that the hysteresis would not
occur if ∆T could be specified as the independent controlled variable. He
conjectured that such an experiment would result in the connecting line
shown between the points where the temperatures jumped.

In 1937, Drew and Mueller [9.2] succeeded in making ∆T the inde-
pendent variable by boiling organic liquids outside a tube. Steam was
allowed to condense inside the tube at an elevated pressure. The steam
saturation temperature—and hence the tube-wall temperature—was var-
ied by controlling the steam pressure. This permitted them to obtain a
few scattered data that seemed to bear out Nukiyama’s conjecture. Mea-
surements of this kind are inherently hard to make accurately. For the
next forty years, the relatively few nucleate boiling data that people ob-
tained were usually—and sometimes imaginatively—interpreted as veri-
fying Nukiyama’s suggestion that this part of the boiling curve is contin-
uous.

Figure 9.2 is a completed boiling curve for saturated water at atmo-
spheric pressure on a particular flat horizontal heater. It displays the
behavior shown in Fig. 9.1, but it has been rotated to place the indepen-
dent variable, ∆T , on the abscissa. (We represent Nukiyama’s connecting
region as two unconnected extensions of the neighboring regions for rea-
sons that we explain subsequently.)

Modes of pool boiling

The boiling curve in Fig. 9.2 has been divided into five regimes of behav-
ior. These regimes, and the transitions that divide them, are discussed
next.

Natural convection. Water that is not in contact with its own vapor does
not boil at the so-called normal boiling point,1 Tsat. Instead, it continues
to rise in temperature until bubbles finally to begin to form. On conven-
tional machined metal surfaces, this occurs when the surface is a few
degrees above Tsat. Below the bubble inception point, heat is removed
by natural convection, and it can be predicted by the methods laid out in
Chapter 8.

1This notion might be new to some readers. It is explained in Section 9.2.



460 Heat transfer in boiling and other phase-change configurations §9.1

Figure 9.2 Typical boiling curve and
regimes of boiling for an unspecified
heater surface.

Nucleate boiling. The nucleate boiling regime embraces the two distinct
regimes that lie between bubble inception and Nukiyama’s first transition
point:

1. The region of isolated bubbles. In this range, bubbles rise from iso-
lated nucleation sites, more or less as they are sketched in Fig. 9.1.
As q and ∆T increase, more and more sites are activated. Fig-
ure 9.3a is a photograph of this regime as it appears on a horizontal
plate.

2. The region of slugs and columns. When the active sites become
very numerous, the bubbles start to merge into one another, and an
entirely different kind of vapor escape path comes into play. Vapor
formed at the surface merges immediately into jets that feed into
large overhead bubbles or “slugs” of vapor. This process is shown
as it occurs on a horizontal cylinder in Fig. 9.3b.
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Peak heat flux. Clearly, it is very desirable to be able to operate heat
exchange equipment at the upper end of the region of slugs and columns.
Here the temperature difference is low while the heat flux is very high.
Heat transfer coefficients in this range are enormous. However, it is very
dangerous to run equipment near qmax in systems for which q is the
independent variable (as in nuclear reactors). If q is raised beyond the
upper limit of the nucleate boiling regime, such a system will suffer a
sudden and damaging increase of temperature. This transition2 is known
by a variety of names: the burnout point (although a complete burning
up or melting away does not always accompany it); the peak heat flux (a
modest descriptive term); the boiling crisis (a Russian term); the DNB, or
departure from nucleate boiling, and the CHF, or critical heat flux (terms
more often used in flow boiling); and the first boiling transition (which
term ignores previous transitions). We designate the peak heat flux as
qmax.

Transitional boiling regime. It is a curious fact that the heat flux ac-
tually diminishes with ∆T after qmax is reached. In this regime the ef-
fectiveness of the vapor escape process becomes worse and worse. Fur-
thermore, the hot surface becomes completely blanketed in vapor and q
reaches a minimum heat flux which we call qmin. Figure 9.3c shows two
typical instances of transitional boiling just beyond the peak heat flux.

Film boiling. Once a stable vapor blanket is established, q again in-
creases with increasing ∆T . The mechanics of the heat removal process
during film boiling, and the regular removal of bubbles, has a great deal
in common with film condensation, but the heat transfer coefficients are
much lower because heat must be conducted through a vapor film instead
of through a liquid film. We see an instance of film boiling in Fig. 9.3d.

Experiment 9.1

Set an open pan of cold tap water on your stove to boil. Observe the
following stages as you watch:

• At first nothing appears to happen; then you notice that numerous
small, stationary bubbles have formed over the bottom of the pan.

2We defer a proper physical explanation of the transition to Section 9.3.
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These bubbles have nothing to do with boiling—they contain air
that was driven out of solution as the temperature rose.

• Suddenly the pan will begin to “sing.” There will be a somewhat
high-pitched buzzing-humming sound as the first vapor bubbles
are triggered. They grow at the heated surface and condense very
suddenly when their tops encounter the still-cold water above them.
This cavitation collapse is accompanied by a small “ping” or “click,”
over and over, as the process is repeated at a fairly high frequency.

• As the temperature of the liquid bulk rises, the singing is increas-
ingly muted. You may then look in the pan and see a number
of points on the bottom where a feathery blur appears to be af-
fixed. These blurred images are bubble columns emanating scores
of bubbles per second. The bubbles in these columns condense
completely at some distance above the surface. Notice that the air
bubbles are all gradually being swept away.

• The “singing” finally gives way to a full rolling boil, accompanied
by a gentle burbling sound. Bubbles no longer condense but now
reach the surface, where they break.

• A full rolling-boil process, in which the liquid bulk is saturated, is
a kind of isolated-bubble process, as plotted in Fig. 9.2. No kitchen
stove supplies energy fast enough to boil water in the slugs-and-
columns regime. You might, therefore, reflect on the relative inten-
sity of the slugs-and-columns process.

Experiment 9.2

Repeat Experiment 9.1 with a glass beaker instead of a kitchen pan.
Place a strobe light, blinking about 6 to 10 times per second, behind the
beaker with a piece of frosted glass or tissue paper between it and the
beaker. You can now see the evolution of bubble columns from the first
singing mode up to the rolling boil. You will also be able to see natural
convection in the refraction of the light before boiling begins.
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Figure 9.4 Enlarged sketch of a typical metal surface.

9.2 Nucleate boiling

Inception of boiling

Figure 9.4 shows a highly enlarged sketch of a heater surface. Most metal-
finishing operations score tiny grooves on the surface, but they also typ-
ically involve some chattering or bouncing action, which hammers small
holes into the surface. When a surface is wetted, liquid is prevented by
surface tension from entering these holes, so small gas or vapor pockets
are formed. These little pockets are the sites at which bubble nucleation
occurs.

To see why vapor pockets serve as nucleation sites, consider Fig. 9.5.
Here we see the problem in highly idealized form. Suppose that a spher-
ical bubble of pure saturated steam is at equilibrium with an infinite
superheated liquid. To determine the size of such a bubble, we impose
the conditions of mechanical and thermal equilibrium.

The bubble will be in mechanical equilibrium when the pressure dif-
ference between the inside and the outside of the bubble is balanced by
the forces of surface tension, σ , as indicated in the cutaway sketch in
Fig. 9.5. Since thermal equilibrium requires that the temperature must
be the same inside and outside the bubble, and since the vapor inside
must be saturated at Tsup because it is in contact with its liquid, the
force balance takes the form

Rb =
2σ(

psat at Tsup
)− pambient

(9.1)

The p–v diagram in Fig. 9.5 shows the state points of the internal
vapor and external liquid for a bubble at equilibrium. Notice that the
external liquid is superheated to (Tsup−Tsat) K above its boiling point at
the ambient pressure; but the vapor inside, being held at just the right
elevated pressure by surface tension, is just saturated.
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Figure 9.5 The conditions required for simultaneous mechan-
ical and thermal equilibrium of a vapor bubble.

Physical Digression 9.1

The surface tension of water in contact with its vapor is given with
great accuracy by [9.3]:

σwater = 235.8
(

1− Tsat

Tc

)1.256 [
1− 0.625

(
1− Tsat

Tc

)]
mN
m

(9.2a)

where both Tsat and the thermodynamical critical temperature, Tc =
647.096 K, are expressed in K. The units of σ are millinewtons (mN)
per meter. Table 9.1 gives additional values of σ for several substances.

Equation 9.2a is a specialized refinement of a simple, but quite ac-
curate and widely-used, semi-empirical equation for correlating surface



Table 9.1 Surface tension of various substances from the
collection of Jasper [9.4]a and other sources.

Temperature σ = a− bT (◦C)
Substance

Range (◦C)
σ (mN/m)

a(mN/m) b (mN/m·◦C)

Acetone 25 to 50 26.26 0.112
Ammonia −70 42.39

−60 40.25
−50 37.91
−40 35.38

Aniline 15 to 90 44.83 0.1085
Benzene 10 30.21

30 27.56
50 24.96
70 22.40

Butyl alcohol 10 to 100 27.18 0.08983
Carbon tetrachloride 15 to 105 29.49 0.1224
Cyclohexanol 20 to 100 35.33 0.0966
Ethyl alcohol 10 to 100 24.05 0.0832
Ethylene glycol 20 to 140 50.21 0.089
Hydrogen −258 2.80

−255 2.29
−253 1.95

Isopropyl alcohol 10 to 100 22.90 0.0789
Mercury 5 to 200 490.6 0.2049
Methane 90 18.877

100 16.328
115 12.371

Methyl alcohol 10 to 60 24.00 0.0773
Naphthalene 100 to 200 42.84 0.1107
Nicotine −40 to 90 41.07 0.1112
Nitrogen −195 to −183 26.42 0.2265
Octane 10 to 120 23.52 0.09509
Oxygen −202 to −184 −33.72 −0.2561
Pentane 10 to 30 18.25 0.11021
Toluene 10 to 100 30.90 0.1189
Water 10 to 100 75.83 0.1477

Temperature σ = σo [1− T (K)/Tc]n
Substance

Range (◦C) σo (mN/m) Tc (K) n

Carbon dioxide −56 to 31 75.00 304.26 1.25

CFC-12 (R12) [9.5] −148 to 112 56.52 385.01 1.27

HCFC-22 (R22) [9.5] −158 to 96 61.23 369.32 1.23

HFC-134a (R134a) [9.6] −30 to 101 59.69 374.18 1.266

Propane [9.7] −173 to 96 53.13 369.85 1.242

a The function σ = σ(T) is not really linear, but Jasper was able to linearize it over
modest ranges of temperature [e.g., compare the water equation above with eqn. (9.2a)].
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tension:

σ = σo
(
1− Tsat

/
Tc

)11/9
(9.2b)

We include correlating equations of this form for CO2, propane, and some
refrigerants at the bottom of Table 9.1. Equations of this general form
are discussed in Reference [9.8].

It is easy to see that the equilibrium bubble, whose radius is described
by eqn. (9.1), is unstable. If its radius is less than this value, surface
tension will overbalance [psat(Tsup) − pambient]. Thus, vapor inside will
condense at this higher pressure and the bubble will collapse. If the
bubble radius is slightly larger than the equation specifies, liquid at the
interface will evaporate and the bubble will begin to grow.

Thus, as the heater surface temperature is increased, higher and higher
values of [psat(Tsup)−pambient]will result and the equilibrium radius, Rb,
will decrease in accordance with eqn. (9.1). It follows that smaller and
smaller vapor pockets will be triggered into active bubble growth as the
temperature is increased. As an approximation, we can use eqn. (9.1)
to specify the radius of those vapor pockets that become active nucle-
ation sites. More accurate estimates can be made using Hsu’s [9.9] bub-
ble inception theory, the subsequent work by Rohsenow and others (see,
e.g., [9.10]), or the still more recent technical literature.

Example 9.1

Estimate the approximate size of active nucleation sites in water at
1 atm on a wall superheated by 8 K and by 16 K. This is roughly in
the regime of isolated bubbles indicated in Fig. 9.2.

Solution. psat = 1.203× 105 N/m2 at 108◦C and 1.769× 105 N/m2

at 116◦C, and σ is given as 57.36 mN/m at Tsat = 108◦C and as
55.78 mN/m at Tsat = 116◦C by eqn. (9.2a). Then, at 108◦C, Rb from
eqn. (9.1) is

Rb =
2(57.36× 10−3) N/m(

1.203× 105 − 1.013× 105
)

N/m2

and similarly for 116◦C, so the radius of active nucleation sites is on
the order of

Rb = 0.0060 mm at T = 108◦C or 0.0015 mm at 116◦C
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This means that active nucleation sites would be holes with diameters
very roughly on the order of magnitude of 0.005 mm or 5µm—at least
on the heater represented by Fig. 9.2. That is within the range of
roughness of commercially finished surfaces.

Region of isolated bubbles

The mechanism of heat transfer enhancement in the isolated bubble
regime was hotly argued in the years following World War II. A few con-
clusions have emerged from that debate, and we shall attempt to identify
them. There is little doubt that bubbles act in some way as small pumps
that keep replacing liquid heated at the wall with cool liquid. The ques-
tion is that of specifying the correct mechanism. Figure 9.6 shows the
way bubbles probably act to remove hot liquid from the wall and intro-
duce cold liquid to be heated.

It is apparent that the number of active nucleation sites generating
bubbles will strongly influence q. On the basis of his experiments, Yam-
agata showed in 1955 (see, e.g., [9.11]) that

q ∝ ∆Tanb (9.3)

where ∆T ≡ Tw −Tsat and n is the site density or number of active sites
per square meter. A great deal of subsequent work has been done to
fix the constant of proportionality and the constant exponents, a and b.
The exponents turn out to be approximately a = 1.2 and b = 1

3 .
The problem with eqn. (9.3) is that it introduces what engineers call

a nuisance variable. A nuisance variable is one that varies from system
to system and cannot easily be evaluated—the site density, n, in this
case. Normally, n increases with ∆T in some way, but how? If all sites
were identical in size, all sites would be activated simultaneously, and q
would be a discontinuous function of ∆T . When the sites have a typical
distribution of sizes, n (and hence q) can increase very strongly with ∆T .

It is a lucky fact that for a large class of factory-finished materials, n
varies approximately as ∆T 5 or 6, so q varies roughly as ∆T 3. This has
made it possible for various authors to correlate q approximately for a
large variety of materials. One of the first and most useful correlations
for nucleate boiling was that of Rohsenow [9.12] in 1952. It is

cp (Tw − Tsat)
hfg Prs

= Csf

[
q
µhfg

√
σ

g
(
ρf − ρg

)
]0.33

(9.4)
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A bubble growing and departing in saturated liquid.
The bubble grows, absorbing heat from the
superheated liquid on its periphery. As it leaves, it
entrains cold liquid onto the plate which then warms
up until nucleation occurs and the cycle repeats.

A bubble growing in subcooled liquid.
When the bubble protrudes into cold
liquid, steam can condense on the top
while evaporation continues on the
bottom. This provides a short-circuit for
cooling the wall. Then, when the bubble
caves in, cold liquid is brought to the wall.

Figure 9.6 Heat removal by bubble action during boiling. Dark
regions denote locally superheated liquid.

where all properties, unless otherwise noted, are for liquid at Tsat. The
constant Csf is an empirical correction for typical surface conditions.
Table 9.2 includes a set of values of Csf for common surfaces (taken
from [9.12]) as well as the Prandtl number exponent, s. A more extensive
compilation of these constants was published by Pioro in 1999 [9.13].

We noted, initially, that there are two nucleate boiling regimes, and
the Yamagata equation (9.3) applies only to the first of them. Rohsenow’s
equation is frankly empirical and does not depend on the rational anal-
ysis of either nucleate boiling process. It turns out that it represents
q(∆T) in both regimes, but it is not terribly accurate in either one. Fig-
ure 9.7 shows Rohsenow’s original comparison of eqn. (9.4) with data for
water over a large range of conditions. It shows typical errors in heat
flux of 100% and typical errors in ∆T of about 25%.

Thus, our ability to predict the nucleate pool boiling heat flux is poor.
Our ability to predict ∆T is better because, with q ∝ ∆T 3, a large error
in q gives a much smaller error in ∆T . It appears that any substantial
improvement in this situation will have to wait until someone has man-
aged to deal realistically with the nuisance variable, n. Current research
efforts are dealing with this matter, and we can simply hope that such
work will eventually produce a method for achieving reliable heat trans-
fer design relationships for nucleate boiling.
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Table 9.2 Selected values of the surface correction factor for
use with eqn. (9.4) [9.12]

Surface–Fluid Combination Csf s

Water–nickel 0.006 1.0
Water–platinum 0.013 1.0
Water–copper 0.013 1.0
Water–brass 0.006 1.0
CCl4–copper 0.013 1.7
Benzene–chromium 0.010 1.7
n-Pentane–chromium 0.015 1.7
Ethyl alcohol–chromium 0.0027 1.7
Isopropyl alcohol–copper 0.0025 1.7
35% K2CO3–copper 0.0054 1.7
50% K2CO3–copper 0.0027 1.7
n-Butyl alcohol–copper 0.0030 1.7

It is indeed fortunate that we do not often have to calculate q, given
∆T , in the nucleate boiling regime. More often, the major problem is
to avoid exceeding qmax. We turn our attention in the next section to
predicting this limit.

Example 9.2

What is Csf for the heater surface in Fig. 9.2?

Solution. From eqn. (9.4) we obtain

q
∆T 3

C3
sf =

µc3
p

h2
fgPr3

√
g
(
ρf − ρg

)
σ

where, since the liquid is water, we take s to be 1.0. Then, for water at
Tsat = 100◦C: cp = 4.22 kJ/kg·K, Pr = 1.75, (ρf − ρg) = 958 kg/m3,
σ = 0.0589 N/m or kg/s2, hfg = 2257 kJ/kg, µ = 0.000282 kg/m·s.
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Figure 9.7 Illustration of
Rohsenow’s [9.12] correlation applied to
data for water boiling on
0.61 mm diameter platinum wire.

Thus,

q
∆T 3

C3
sf = 3.10× 10−7 kW

m2K3

At q = 800 kW/m2, we read ∆T = 22 K from Fig. 9.2. This gives

Csf =
[

3.10× 10−7(22)3

800

]1/3

= 0.016

This value compares favorably with Csf for a platinum or copper sur-
face under water.
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9.3 Peak pool boiling heat flux

Transitional boiling regime and Taylor instability

It will help us to understand the peak heat flux if we first consider the
process that connects the peak and the minimum heat fluxes. During
high heat flux transitional boiling, a large amount of vapor is glutted
about the heater. It wants to buoy upward, but it has no clearly defined
escape route. The jets that carry vapor away from the heater in the re-
gion of slugs and columns are unstable and cannot serve that function in
this regime. Therefore, vapor buoys up in big slugs—then liquid falls in,
touches the surface briefly, and a new slug begins to form. Figure 9.3c
shows part of this process.

The high and low heat flux transitional boiling regimes are different
in character. The low heat flux region does not look like Fig. 9.2c but is al-
most indistinguishable from the film boiling shown in Fig. 9.2d. However,
both processes display a common conceptual key: In both, the heater is
almost completely blanketed with vapor. In both, we must contend with
the unstable configuration of a liquid on top of a vapor.

Figure 9.8 shows two commonplace examples of such behavior. In
either an inverted honey jar or the water condensing from a cold water
pipe, we have seen how a heavy fluid falls into a light one (water or honey,
in this case, collapses into air). The heavy phase falls down at one node
of a wave and the light fluid rises into the other node.

The collapse process is called Taylor instability after G. I. Taylor, who
first predicted it. The so-called Taylor wavelength, λd, is the length of
the wave that grows fastest and therefore predominates during the col-
lapse of an infinite plane horizontal interface. It can be predicted using
dimensional analysis. The dimensional functional equation for λd is

λd = fn
[
σ,g

(
ρf − ρg

)]
(9.5)

since the wave is formed as a result of the balancing forces of surface
tension against inertia and gravity. There are three variables involving m
and kg/s2, so we look for just one dimensionless group:

λd

√
g
(
ρf − ρg

)
σ

= constant

This relationship was derived analytically by Bellman and Pennington [9.14]
for one-dimensional waves and by Sernas [9.15] for the two-dimensional
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a. Taylor instability in the surface of the honey
in an inverted honey jar

b. Taylor instability in the interface of the water condensing on
the underside of a small cold water pipe.

Figure 9.8 Two examples of Taylor instabilities that one might
commonly experience.

waves that actually occur in a plane horizontal interface. The results
were

λd

√
g
(
ρf − ρg

)
σ

=
{

2π
√

3 for one-dimensional waves

2π
√

6 for two-dimensional waves
(9.6)
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Experiment 9.3

Hang a metal rod in the horizontal position by threads at both ends.
The rod should be about 30 cm in length and perhaps 1 to 2 cm in diam-
eter. Pour motor oil or glycerin in a narrow cake pan and lift the pan up
under the rod until it is submerged. Then lower the pan and watch the
liquid drain into it. Take note of the wave action on the underside of the
rod. The same thing can be done in an even more satisfactory way by
running cold water through a horizontal copper tube above a beaker of
boiling water. The condensing liquid will also come off in a Taylor wave
such as is shown in Fig. 9.8. In either case, the waves will approximate
λd1 (the length of a one-dimensional wave, since they are arrayed on a
line), but the wavelength will be influenced by the curvature of the rod.

Throughout the transitional boiling regime, vapor rises into liquid on
the nodes of Taylor waves, and at qmax this rising vapor forms into jets.
These jets arrange themselves on a staggered square grid, as shown in
Fig. 9.9. The basic spacing of the grid is λd2 (the two-dimensional Taylor
wavelength). Since

λd2 =
√

2λd1 (9.7)

[recall eqn. (9.6)], the spacing of the most basic module of jets is actually
λd1 , as shown in Fig. 9.9.

Next we must consider how the jets become unstable at the peak, to
bring about burnout.

Helmholtz instability of vapor jets

Figure 9.10 shows a commonplace example of what is called Helmholtz
instability. This is the phenomenon that causes the vapor jets to cave in
when the vapor velocity in them reaches a critical value. Any flag in a
breeze will constantly be in a state of collapse as the result of relatively
high pressures where the velocity is low and relatively low pressures
where the velocity is high, as is indicated in the top view.

This same instability is shown as it occurs in a vapor jet wall in
Fig. 9.11. This situation differs from the flag in one important partic-
ular. There is surface tension in the jet walls, which tends to balance the
flow-induced pressure forces that bring about collapse. Thus, while the
flag is unstable in any breeze, the vapor velocity in the jet must reach a
limiting value, ug , before the jet becomes unstable.



a. Plan view of bubbles rising from surface

b. Waveform underneath the bubbles shown in a.

Figure 9.9 The array of vapor jets as seen on an infinite hori-
zontal heater surface.

475
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Figure 9.10 The flapping of a flag due to Helmholtz instability.

Lamb [9.16] gives the following relation between the vapor flow ug ,
shown in Fig. 9.11, and the wavelength of a disturbance in the jet wall,
λH :

ug =
√

2πσ
ρgλH

(9.8)

[This result, like eqn. (9.6), can be predicted within a constant using
dimensional analysis. See Problem 9.19.] A real liquid–vapor interface
will usually be irregular, and therefore it can be viewed as containing all
possible sinusoidal wavelengths superposed on one another. One prob-
lem we face is that of guessing whether or not one of those wavelengths
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Figure 9.11 Helmholtz instability of vapor jets.

will be better developed than the others and therefore more liable to
collapse.

Example 9.3

Saturated water at 1 atm flows down the periphery of the inside of a
10 cm I.D. vertical tube. Steam flows upward in the center. The wall of
the pipe has circumferential corrugations in it, with a 4 cm wavelength
in the axial direction. Neglect problems raised by curvature and the
finite thickness of the liquid, and estimate the steam velocity required
to destabilize the liquid flow over these corrugations, assuming that
the liquid moves slowly.

Solution. The flow will be Helmholtz-stable until the steam velocity
reaches the value given by eqn. (9.8):

ug =
√

2π(0.0589)
0.577(0.04 m)

Thus, the maximum stable steam velocity would be ug = 4 m/s.
Beyond that, the liquid will form whitecaps and be blown back
upward.
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Example 9.4

Capillary forces hold mercury in place between two parallel steel plates
with a lid across the top. The plates are slowly pulled apart until the
mercury interface collapses. Approximately what is the maximum
spacing?

Solution. The mercury is most susceptible to Taylor instability
when the spacing reaches the wavelength given by eqn. (9.6):

λd1 = 2π
√

3

√
σ

g(ρf − ρg)
= 2π

√
3

√
0.487

9.8(13600)
= 0.021 m = 2.1 cm

(Actually, this spacing would give the maximum rate of collapse. It
can be shown that collapse would begin at 1

/√
3 times this value, or

at 1.2 cm.)

Prediction of qmax

General expression for qmax The heat flux must be balanced by the
latent heat carried away in the jets when the liquid is saturated. Thus,
we can write immediately

qmax = ρghfgug
(Aj
Ah

)
(9.9)

where Aj is the cross-sectional area of a jet and Ah is the heater area that
supplies each jet.

For any heater configuration, two things must be determined. One
is the length of the particular disturbance in the jet wall, λH , which will
trigger Helmholtz instability and fix ug in eqn. (9.8) for use in eqn. (9.9).
The other is the ratio Aj

/
Ah. The prediction of qmax in any pool boiling

configuration always comes down to these two problems.

qmax on an infinite horizontal plate. The original analysis of this type
was done by Zuber in his doctoral dissertation at UCLA in 1958 (see [9.17]).
He first guessed that the jet radius was λd1

/
4. This guess has received

corroboration by subsequent investigators, and (with reference to Fig. 9.9)
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it gives

Aj
Ah

= cross-sectional area of circular jet
area of the square portion of the heater that feeds the jet

= π(λd1/4)2

(λd1)2
= π

16
(9.10)

Lienhard and Dhir ([9.18, 9.19, 9.20]) guessed that the Helmholtz-unstable
wavelength might be equal to λd1 , so eqn. (9.9) became

qmax = ρghfg

√√√√2πσ
ρg

1

2π
√

3

√
g(ρf − ρg)

σ
× π

16

or3

qmax = 0.149 ρ1/2
g hfg 4

√
g(ρf − ρg)σ (9.11)

Equation (9.11) is compared with available data for large flat heaters,
with vertical sidewalls to prevent any liquid sideflow, in Fig. 9.12. So
long as the diameter or width of the heater is more than about 3λd1 , the
prediction is quite accurate. When the width or diameter is less than
this, there is a small integral number of jets on a plate which may be
larger or smaller in area than 16/π per jet. When this is the case, the
actual qmax may be larger or smaller than that predicted by eqn. (9.11)
(see Problem 9.13).

The form of the preceding prediction is usually credited to Kutate-
ladze [9.21] and Zuber [9.17]. Kutateladze (then working in Leningrad
and later director of the Heat Transfer Laboratory near Novosibirsk, Sib-
eria) recognized that burnout resembled the flooding of a distillation
column. At any level in a distillation column, alcohol-rich vapor (for ex-
ample) rises while water-rich liquid flows downward in counterflow. If
the process is driven too far, the flows become Helmholtz-unstable and
the process collapses. The liquid then cannot move downward and the
column is said to “flood.”

Kutateladze did the dimensional analysis of qmax based on the flood-
ing mechanism and obtained the following relationship, which, lacking a
characteristic length and being of the same form as eqn. (9.11), is really
valid only for an infinite horizontal plate:

qmax = C ρ1/2
g hfg 4

√
g
(
ρf − ρg

)
σ

3Readers are reminded that n√x ≡ x1/n.
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Figure 9.12 Comparison of the qmax prediction for infinite
horizontal heaters with data reported in [9.18].

He then suggested that C was equal to 0.131 on the basis of data from
configurations other than infinite flat plates (horizontal cylinders, for ex-
ample). Zuber’s analysis yielded C = π/24 = 0.1309, which was quite
close to Kutateladze’s value but lower by 14% than eqn. (9.11). We there-
fore designate the Zuber-Kutateladze prediction as qmaxz . However, we
shall not use it directly, since it does not predict any actual physical con-
figuration.

qmaxz ≡ 0.131 ρ1/2
g hfg 4

√
g
(
ρf − ρg

)
σ (9.12)

It is very interesting that C. F. Bonilla, whose qmax experiments in the
early 1940s are included in Fig. 9.12, also suggested that qmax should
be compared with the column-flooding mechanism. He presented these
ideas in a paper, but A. P. Colburn wrote to him: “A correlation [of the
flooding velocity plots with] boiling data would not serve any great pur-
pose and would perhaps be very misleading.” And T. H. Chilton—another
eminent chemical engineer of that period—wrote to him: “I venture to
suggest that you delete from the manuscript…the relationship between
boiling rates and loading velocities in packed towers.” Thus, the technical
conservativism of the period prevented the idea from gaining acceptance
for another decade.
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Example 9.5

Predict the peak heat flux for Fig. 9.2.

Solution. We use eqn. (9.11) to evaluate qmax for water at 100◦C on
an infinite flat plate:

qmax = 0.149 ρ1/2
g hfg 4

√
g(ρf − ρg)σ

= 0.149(0.597)1/2(2,257,000) 4
√

9.8(958.2− 0.6)(0.0589)

= 1.260× 106 W/m2

= 1.260 MW/m2

Figure 9.2 shows qmax � 1.160 MW/m2, which is less by only about
8%.

Example 9.6

What is qmax in mercury on a large flat plate at 1 atm?

Solution. The normal boiling point of mercury is 355◦C. At this tem-
perature, hfg = 292,500 J/kg, ρf = 13,400 kg/m3, ρg = 4.0 kg/m3,
and σ � 0.418 kg/s2, so

qmax = 0.149(4.0)1/2(292,500) 4
√

9.8(13,400− 4)(0.418)

= 1.334 MW/m2

The result is very close to that for water. The increases in density and
surface tension have been compensated by a much lower latent heat.

Peak heat flux in other pool boiling configurations

The prediction of qmax in configurations other than an infinite flat heater
will involve a characteristic length, L. Thus, the dimensional functional
equation for qmax becomes

qmax = fn
[
ρg,hfg,σ , g

(
ρf − ρg

)
, L

]
which involves six variables and four dimensions: J, m, s, and kg, where,
once more in accordance with Section 4.3, we note that no significant
conversion from work to heat is occurring so that J must be retained
as a separate unit. There are thus two pi-groups. The first group can
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arbitrarily be multiplied by 24/π to give

Π1 = qmax

(π/24)ρ1/2
g hfg 4

√
σg(ρf − ρg)

= qmax

qmaxz
(9.13)

Notice that the factor of 24/π has served to make the denominator equal
to qmaxz (Zuber’s expression for qmax). Thus, for qmax on a flat plate, Π1

equals 0.149/0.131, or 1.14. The second pi-group is

Π2 = L√
σ
/
g(ρf − ρg)

= 2π
√

3
L
λd1

≡ L′ (9.14)

The latter group, Π2, is the square root of the Bond number, Bo, which is
used to compare buoyant force with capillary forces.

Predictions and correlations of qmax have been made for several finite
geometries in the form

qmax

qmaxz
= fn

(
L′

)
(9.15)

The dimensionless characteristic length in eqn. (9.15) might be a dimen-
sionless radius (R′), a dimensionless diameter (D′), or a dimensionless
height (H′). The graphs in Fig. 9.13 are comparisons of several of the
existing predictions and correlations with experimental data. These pre-
dictions and others are listed in Table 9.3. Notice that the last three items
in Table 9.3 (10, 11, and 12) are general expressions from which several
of the preceding expressions in the table can be obtained.

The equations in Table 9.3 are all valid within ±15% or 20%, which is
very little more than the inherent scatter of qmax data. However, they are
subject to the following conditions:

• The bulk liquid is saturated.

• There are no pathological surface imperfections.

• There is no forced convection.

Another limitation on all the equations in Table 9.3 is that neither the
size of the heater nor the relative force of gravity can be too small. When
L′ < 0.15 in most configurations, the Bond number is

Bo ≡ L′2 = g(ρf − ρg)L
3

σL
= buoyant force

capillary force
<

1
44

In this case, the process becomes completely dominated by surface ten-
sion and the Taylor-Helmholtz wave mechanisms no longer operate. As
L′ is reduced, the peak and minimum heat fluxes cease to occur and the



Figure 9.13 The peak pool boiling heat flux on several heaters.
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boiling curve becomes monotonic. When nucleation occurs on a very
small wire, the wire is immediately enveloped in vapor and the mech-
anism of heat removal passes directly from natural convection to film
boiling.

Example 9.7

A spheroidal metallic body of surface area 400 cm2 and volume 600
cm3 is quenched in saturated water at 1 atm. What is the most rapid
rate of heat removal during the quench?

Solution. As the cooling process progresses, it goes through the
boiling curve from film boiling, through qmin, up the transitional boil-
ing regime, through qmax, and down the nucleate boiling curve. Cool-
ing is finally completed by natural convection. One who has watched
the quenching of a red-hot horseshoe will recall the great gush of
bubbling that occurs as qmax is reached. We therefore calculate the
required heat flow as Q = qmaxAspheroid, where qmax is given by eqn.
(9.25) in Table 9.3:

qmax = 0.9 qmaxz = 0.9(0.131)ρ1/2
g hfg 4

√
gσ(ρf − ρg)

so

Q =
[

0.9(0.131)(0.597)1/2(2,257,000) 4
√

9.8(0.0589)(958) W/m2
]

×
(
400× 10−4 m2

)
or

Q = 39,900 W or 39.9 kW

This is a startingly large rate of energy removal for such a small object.
To complete the calculation, it is necessary to check whether or

not R′ is large enough to justify the use of eqn. (9.25):

R′ = V/A√
σ/g(ρf − ρg)

= 0.0006
0.04

√
9.8(958)
0.0589

= 6.0

This is larger than the specified lower bound of about 4.
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9.4 Film boiling

Film boiling bears an uncanny similarity to film condensation. The simi-
larity is so great that in 1950, Bromley [9.24] was able to use the eqn. (8.64)
for condensation on cylinders—almost directly—to predict film boiling
from cylinders. He observed that the boundary condition (∂u/∂y)y=δ =
0 at the liquid–vapor interface in film condensation would have to change
to something in between (∂u/∂y)y=δ = 0 and u(y = δ) = 0 during film
boiling. The reason is that the external liquid is not so easily set into
motion. He then redid the film condensation analysis, merely changing
k and ν from liquid to vapor properties. The change of boundary con-
ditions gave eqn. (8.64) with the constant changed from 0.729 to 0.512
and with k and ν changed to vapor values. By comparing the equation
with experimental data, he fixed the constant at the intermediate value
of 0.62. Thus, NuD based on kg became

NuD = 0.62


(ρf − ρg)gh′fgD3

νgkg(Tw − Tsat)


1/4

(9.28)

where vapor and liquid properties should be evaluated at Tsat + ∆T/2
and at Tsat, respectively. The latent heat correction in this case is similar
in form to that for film condensation, but with different constants in it.
Sadasivan and Lienhard [9.25] have shown it to be

h′fg = hfg
[
1+

(
0.968− 0.163

/
Prg

)
Jag

]
(9.29)

for Prg ≥ 0.6, where Jag = cpg(Tw − Tsat)
/
hfg .

Dhir and Lienhard [9.26] did the same thing for spheres, as Bromley
did for cylinders, 20 years later. Their result [cf. eqn. (8.65)] was

NuD = 0.67


(ρf − ρg)gh′fgD3

νgkg(Tw − Tsat)


1/4

(9.30)

The preceding expressions are based on heat transfer by convection
through the vapor film, alone. However, when film boiling occurs much
beyond qmin in water, the heater glows dull cherry-red to white-hot. Ra-
diation in such cases can be enormous. One’s first temptation might
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be simply to add a radiation heat transfer coefficient, hrad to hboiling as
obtained from eqn. (9.28) or (9.30), where

hrad =
qrad

Tw − Tsat
=
εσ

(
T 4
w − T 4

sat

)
Tw − Tsat

and where ε is a surface radiation property of the heater called the emit-
tance (see Section 10.1).

Unfortunately, such addition is not correct, because the additional
radiative heat transfer will increase the vapor blanket thickness, reducing
the convective contribution. Bromley [9.24] suggested for cylinders the
approximate relation

htotal = hboiling + 3
4 hrad, hrad < hboiling (9.31)

More accurate corrections that have subsequently been offered are con-
siderably more complex than this [9.10]. One of the most comprehensive
is that of Pitschmann and Grigull [9.27]. Their correlation, which is fairly
intricate, brings together an enormous range of heat transfer data for
cylinders, within 20%. It is worth noting that radiation is seldom impor-
tant when the heater temperature is less than 300◦C.

The use of the analogy between film condensation and film boiling is
somewhat questionable during film boiling on a vertical surface. In this
case, the liquid–vapor interface becomes Helmholtz-unstable at a short
distance from the leading edge. However, Leonard, Sun, and Dix [9.28]
have shown that by using λd1

/√
3 in place of D in eqn. (9.28), one obtains

a very satisfactory prediction of h for rather tall vertical plates.
The analogy between film condensation and film boiling also deteri-

orates when it is applied to small curved bodies. The reason is that the
thickness of the vapor film in boiling is far greater than the liquid film
during condensation. Consequently, a curvature correction, which could
be ignored in film condensation, must be included during film boiling
from small cylinders, spheres, and other curved bodies. The first curva-
ture correction to be made was an empirical one given by Westwater and
Breen [9.29] in 1962. They showed that the equation

NuD =
[(

0.715+ 0.263
R′

)(
R′

)1/4
]

NuDBromley (9.32)

applies when R′ < 1.86. Otherwise, Bromley’s equation should be used
directly.
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9.5 Minimum heat flux

Zuber [9.17] also provided a prediction of the minimum heat flux, qmin,
along with his prediction of qmax. He assumed that as Tw − Tsat is re-
duced in the film boiling regime, the rate of vapor generation eventually
becomes too small to sustain the Taylor wave action that characterizes
film boiling. Zuber’s qmin prediction, based on this assumption, has to
include an arbitrary constant. The result for flat horizontal heaters is

qmin = C ρghfg 4

√√√√σg(ρf − ρg)
(ρf + ρg)2

(9.33)

Zuber guessed a value of C which Berenson [9.30] subsequently corrected
on the basis of experimental data. Berenson used measured values of
qmin on horizontal heaters to get

qminBerenson = 0.09 ρghfg 4

√√√√σg(ρf − ρg)
(ρf + ρg)2

(9.34)

Lienhard and Wong [9.31] did the parallel prediction for horizontal wires
and found that

qmin = 0.515
[

18
R′2(2R′2 + 1)

]1/4
qmin Berenson (9.35)

The problem with all of these expressions is that some contact fre-
quently occurs between the liquid and the heater wall at film boiling heat
fluxes higher than the minimum. When this happens, the boiling curve
deviates above the film boiling curve and finds a higher minimum than
those reported above. The values of the constants shown above should
therefore be viewed as practical lower limits of qmin. We return to this
matter subsequently.

Example 9.8

Check the value of qmin shown in Fig. 9.2.

Solution. The heater is a flat surface, so we use eqn. (9.34) and the
physical properties given in Example 9.5.

qmin = 0.09(0.597)(2,257,000) 4

√
9.8(0.0589)(958)

(959)2
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or

qmin = 18,990 W/m2

From Fig. 9.2 we read 20,000 W/m2, which is the same, within the
accuracy of the graph.

9.6 Transition boiling and system influences

Many system features influence the pool boiling behavior we have dis-
cussed thus far. These include forced convection, subcooling, gravity,
surface roughness and surface chemistry, and the heater configuration,
among others. To understand one of the most serious of these—the influ-
ence of surface roughness and surface chemistry—we begin by thinking
about transition boiling, which is extremely sensitive to both.

Surface condition and transition boiling

Less is known about transition boiling than about any other mode of
boiling. Data are limited, and there is no comprehensive body of theory.
The first systematic sets of accurate measurements of transition boiling
were reported by Berenson [9.30] in 1960. Figure 9.14 shows two sets of
his data.

The upper set of curves shows the typical influence of surface chem-
istry on transition boiling. It makes it clear that a change in the surface
chemistry has little effect on the boiling curve except in the transition
boiling region and the low heat flux film boiling region. The oxidation of
the surface has the effect of changing the contact angle dramatically—
making it far easier for the liquid to wet the surface when it touches it.
Transition boiling is more susceptible than any other mode to such a
change.

The bottom set of curves shows the influence of surface roughness on
boiling. In this case, nucleate boiling is far more susceptible to roughness
than any other mode of boiling except, perhaps, the very lowest end of the
film boiling range. That is because as roughness increases the number
of active nucleation sites, the heat transfer rises in accordance with the
Yamagata relation, eqn. (9.3).

It is important to recognize that neither roughness nor surface chem-
istry affects film boiling, because the liquid does not touch the heater.



Figure 9.14 Typical data from Berenson’s [9.30] study of the
influence of surface condition on the boiling curve.
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Figure 9.15 The transition boiling regime.

The fact that both effects appear to influence the lower film boiling range
means that they actually cause film boiling to break down by initiating
liquid–solid contact at low heat fluxes.

Figure 9.15 shows what an actual boiling curve looks like under the
influence of a wetting (or even slightly wetting) contact angle. This figure
is based on the work of Witte and Lienhard ([9.32] and [9.33]). On it are
identified a nucleate-transition and a film-transition boiling region. These
are continuations of nucleate boiling behavior with decreasing liquid–
solid contact (as shown in Fig. 9.3c) and of film boiling behavior with
increasing liquid–solid contact, respectively.

These two regions of transition boiling are often connected by abrupt
jumps. However, no one has yet seen how to predict where such jumps
take place. Reference [9.33] is a full discussion of the hydrodynamic
theory of boiling, which includes an extended discussion of the transition
boiling problem and a correlation for the transition-film boiling heat flux
by Ramilison and Lienhard [9.34].
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Figure 9.14 also indicates fairly accurately the influence of roughness
and surface chemistry on qmax. It suggests that these influences nor-
mally can cause significant variations in qmax that are not predicted in
the hydrodynamic theory. Ramilison et al. [9.35] correlated these effects
for large flat-plate heaters using the rms surface roughness, r in µm,
and the receding contact angle for the liquid on the heater material, βr
in radians:

qmax

qmaxZ
= 0.0336 (π − βr )3.0 r0.0125 (9.36)

This correlation collapses the data to ±6%. Uncorrected, variations from
the predictions of hydrodynamic theory reached 40% as a result of rough-
ness and finish. Equivalent results are needed for other geometries.

Subcooling

A stationary pool will normally not remain below its saturation temper-
ature over an extended period of time. When heat is transferred to the
pool, the liquid soon becomes saturated—as it does in a teakettle (recall
Experiment 9.1). However, before a liquid comes up to temperature, or if
a very small rate of forced convection continuously replaces warm liquid
with cool liquid, we can justly ask what the effect of a cool liquid bulk
might be.

Figure 9.16 shows how a typical boiling curve might be changed if
Tbulk < Tsat: We know, for example, that in laminar natural convection,
q will increase as (Tw − Tbulk)5/4 or as [(Tw − Tsat) + ∆Tsub]5/4, where
∆Tsub ≡ Tsat−Tbulk. During nucleate boiling, the influence of subcooling
on q is known to be small. The peak and minimum heat fluxes are known
to increase linearly with ∆Tsub. These increases are quite significant.
The film boiling heat flux increases rather strongly, especially at lower
heat fluxes. The influence of ∆Tsub on transitional boiling is not well
documented.

Gravity

The influence of gravity (or any other such body force) is of concern be-
cause boiling processes frequently take place in rotating or accelerating
systems. The reduction of gravity has a significant impact on boiling
processes aboard space vehicles. Since g appears explicitly in the equa-
tions for qmax, qmin, and qfilm boiling, we know what its influence is. Both
qmax and qmin increase directly as g1/4 in finite bodies, and there is an
additional gravitational influence through the parameter L′. However,
when gravity is small enough to reduce R′ below about 0.15, the hydrody-
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Figure 9.16 The influence of subcooling on the boiling curve.

namic transitions deteriorate and eventually vanish altogether. Although
Rohsenow’s equation suggests that q is proportional to g1/2 in the nucle-
ate boiling regime, other evidence suggests that the influence of gravity
on the nucleate boiling curve is very slight, apart from an indirect effect
on the onset of boiling.

Forced convection

The influence of superposed flow on the pool boiling curve for a given
heater (e.g., Fig. 9.2) is generally to improve heat transfer everywhere. But
flow is particularly effective in raising qmax. Let us look at the influence
of flow on the different regimes of boiling.
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Influences of forced convection on nucleate boiling. Figure 9.17 shows
nucleate boiling during the forced convection of water over a flat plate.
Bergles and Rohsenow [9.36] offer an empirical strategy for predicting
the heat flux during nucleate flow boiling when the net vapor generation
is still relatively small. (The photograph in Fig. 9.17 shows how a sub-
stantial buildup of vapor can radically alter flow boiling behavior.) They
suggest that

q = qFC

√√√√1+
[
qB
qFC

(
1− qi

qB

)]2

(9.37)

where

• qFC is the single-phase forced convection heat transfer for the heater,
as one might calculate using the methods of Chapters 6 and 7.

• qB is the pool boiling heat flux for that liquid and that heater from
eqn. (9.4).

• qi is the heat flux from the pool boiling curve evaluated at the value
of (Tw−Tsat)where boiling begins during flow boiling (see Fig. 9.17).
An estimate of (Tw − Tsat)onset can be made by intersecting the
forced convection equation q = hFC(Tw − Tb) with the following
equation [9.37]:

(Tw − Tsat)onset =
(

8σTsatq
ρghfgkf

)1/2

(9.38)

Equation (9.37) will provide a first approximation in most boiling con-
figurations, but it is restricted to subcooled flows or other situations in
which vapor generation is not too great.

Peak heat flux in external flows. The peak heat flux on a submerged
body is strongly augmented by an external flow around it. Although
knowledge of this area is still evolving, we do know from dimensional
analysis that

qmax

ρghfgu∞
= fn

(
WeD,ρf

/
ρg

)
(9.39)
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Figure 9.17 Forced convection boiling on an external surface.

where the Weber number, We, is

WeL ≡
ρgu2∞L
σ

= inertia force
/
L

surface force
/
L

and where L is any characteristic length.

Kheyrandish and Lienhard [9.38] suggest fairly complex expressions
of this form for qmax on horizontal cylinders in cross flows. For a cylin-
drical liquid jet impinging on a heated disk of diameter D, Sharan and
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Lienhard [9.39] obtained

qmax

ρghfgujet
=

(
0.21+ 0.0017ρf

/
ρg

)(
djet

D

)1/3 (
1000ρg/ρf

WeD

)
A (9.40)

where, if we call ρf /ρg ≡ r ,

A = 0.486+ 0.06052 ln r − 0.0378 (ln r)2 + 0.00362 (ln r)3 (9.41)

This correlation represents all the existing data within ±20% over the full
range of the data.

The influence of fluid flow on film boiling. Bromley et al. [9.40] showed
that the film boiling heat flux during forced flow normal to a cylinder
should take the form

q = constant

(
kgρgh′fg∆Tu∞

D

)1/2

(9.42)

for u2∞/(gD) ≥ 4 with h′fg from eqn. (9.29). Their data fixed the constant
at 2.70. Witte [9.41] obtained the same relationship for flow over a sphere
and recommended a value of 2.98 for the constant.

Additional work in the literature deals with forced film boiling on
plane surfaces and combined forced and subcooled film boiling in a vari-
ety of geometries [9.42]. Although these studies are beyond our present
scope, it is worth noting that one may attain very high cooling rates using
film boiling with both forced convection and subcooling.

9.7 Forced convection boiling in tubes

Flowing fluids undergo boiling or condensation in many of the cases in
which we transfer heat to fluids moving through tubes. For example,
such phase change occurs in all vapor-compression power cycles and
refrigerators. When we use the terms boiler, condenser, steam generator,
or evaporator we usually refer to equipment that involves heat transfer
within tubes. The prediction of heat transfer coefficients in these systems
is often essential to determining U and sizing the equipment. So let us
consider the problem of predicting boiling heat transfer to liquids flowing
through tubes.



Figure 9.18 The development of a two-phase flow in a vertical
tube with a uniform wall heat flux (not to scale).
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Relationship between heat transfer and temperature difference

Forced convection boiling in a tube or duct is a process that becomes very
hard to delineate because it takes so many forms. In addition to the usual
system variables that must be considered in pool boiling, the formation
of many regimes of boiling requires that we understand several boiling
mechanisms and the transitions between them, as well.

Collier and Thome’s excellent book, Convective Boiling and Condensa-
tion [9.43], provides a comprehensive discussion of the issues involved
in forced convection boiling. Figure 9.18 is their representation of the
fairly simple case of flow of liquid in a uniform wall heat flux tube in
which body forces can be neglected. This situation is representative of a
fairly low heat flux at the wall. The vapor fraction, or quality, of the flow
increases steadily until the wall “dries out.” Then the wall temperature
rises rapidly. With a very high wall heat flux, the pipe could burn out
before dryout occurs.

Figure 9.19, also provided by Collier, shows how the regimes shown in
Fig. 9.18 are distributed in heat flux and in position along the tube. Notice
that, at high enough heat fluxes, burnout can be made to occur at any sta-
tion in the pipe. In the subcooled nucleate boiling regime (B in Fig. 9.18)
and the low quality saturated regime (C), the heat transfer can be pre-
dicted using eqn. (9.37) in Section 9.6. But in the subsequent regimes
of slug flow and annular flow (D, E, and F ) the heat transfer mechanism
changes substantially. Nucleation is increasingly suppressed, and vapor-
ization takes place mainly at the free surface of the liquid film on the
tube wall.

Most efforts to model flow boiling differentiate between nucleate-
boiling-controlled heat transfer and convective boiling heat transfer. In
those regimes where fully developed nucleate boiling occurs (the later
parts of C), the heat transfer coefficient is essentially unaffected by the
mass flow rate and the flow quality. Locally, conditions are similar to pool
boiling. In convective boiling, on the other hand, vaporization occurs
away from the wall, with a liquid-phase convection process dominating
at the wall. For example, in the annular regions E and F , heat is convected
from the wall by the liquid film, and vaporization occurs at the interface
of the film with the vapor in the core of the tube. Convective boiling
can also dominate at low heat fluxes or high mass flow rates, where wall
nucleate is again suppressed. Vaporization then occurs mainly on en-
trained bubbles in the core of the tube. In convective boiling, the heat
transfer coefficient is essentially independent of the heat flux, but it is
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Figure 9.19 The influence of heat flux on two-phase flow behavior.

strongly affected by the mass flow rate and quality.

Building a model to capture these complicated and competing trends
has presented a challenge to researchers for several decades. One early
effort by Chen [9.44] used a weighted sum of a nucleate boiling heat trans-
fer coefficient and a convective boiling coefficient, where the weighting
depended on local flow conditions. This model represents water data to
an accuracy of about ±30% [9.45], but it does not work well with most
other fluids. Chen’s mechanistic approach was substantially improved
in a more complex version due to Steiner and Taborek [9.46]. Many other
investigators have instead pursued correlations built from dimensional
analysis and physical reasoning.

To proceed with a dimensional analysis, we first note that the liquid
and vapor phases may have different velocities. Thus, we avoid intro-
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ducing a flow speed and instead rely on the the superficial mass flux, G,
through the pipe:

G ≡ ṁ
Apipe

(kg/m2s) (9.43)

This mass flow per unit area is constant along the duct if the flow is
steady. From this, we can define a “liquid only” Reynolds number

Relo ≡
GD
µf

(9.44)

which would be the Reynolds number if all the flowing mass were in
the liquid state. Then we may use Relo to compute a liquid-only heat
transfer cofficient, hlo from Gnielinski’s equation, eqn. (7.43), using liquid
properties at Tsat.

Physical arguments then suggest that the dimensional functional equa-
tion for the flow boiling heat transfer coefficient, hfb, should take the
following form for saturated flow in vertical tubes:

hfb = fn
(
hlo, G,x,hfg, qw, ρf , ρg,D

)
(9.45)

It should be noted that other liquid properties, such as viscosity and con-
ductivity, are represented indirectly through hlo. This functional equa-
tion has eight dimensional variables (and one dimensionless variable, x)
in five dimensions (m, kg, s, J, K). We thus obtain three more dimension-
less groups to go with x, specifically

hfb

hlo
= fn

(
x,

qw
Ghfg

,
ρg
ρf

)
(9.46)

In fact, the situation is even a bit simpler than this, since arguments
related to the pressure gradient show that the quality and the density
ratio can be combined into a single group, called the convection number :

Co ≡
(

1− x
x

)0.8
(
ρg
ρf

)0.5

(9.47)

The other dimensionless group in eqn. (9.46) is called the boiling number :

Bo ≡ qw
Ghfg

(9.48)
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Table 9.4 Fluid-dependent parameter F in the Kandlikar cor-
relation for copper tubing. Additional values are given in [9.47].

Fluid F Fluid F

Water 1.0 R-124 1.90
Propane 2.15 R-125 1.10
R-12 1.50 R-134a 1.63
R-22 2.20 R-152a 1.10
R-32 1.20 R-410a 1.72

so that

hfb

hlo
= fn (Bo,Co) (9.49)

When the convection number is large (Co � 1), as for low quality,
nucleate boiling dominates. In this range, hfb/hlo rises with increasing Bo
and is approximately independent of Co. When the convection number
is smaller, as at higher quality, the effect of the boiling number declines
and hfb/hlo increases with decreasing Co.

Correlations having the general form of eqn. (9.49) were developed
by Schrock and Grossman [9.48], Shah [9.49], and Gungor and Winter-
ton [9.50]. Kandlikar [9.45, 9.47, 9.51] refined this approach further,
obtaining good accuracy and better capturing the parametric trends. His
method is to calculatehfb/hlo from each of the following two correlations
and to choose the larger value:

hfb

hlo

∣∣∣∣
nbd

= (1− x)0.8
[
0.6683 Co−0.2fo + 1058 Bo0.7F

]
(9.50a)

hfb

hlo

∣∣∣∣
cbd

= (1− x)0.8
[
1.136 Co−0.9fo + 667.2 Bo0.7F

]
(9.50b)

where “nbd” means “nucleate boiling dominant” and “cbd” means “con-
vective boiling dominant”.

In these equations, the orientation factor, fo, is set to unity for ver-
tical tubes4 and F is a fluid-dependent parameter whose value is given

4The value for horizontal tubes is given in eqn. (9.52).
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in Table 9.4. The parameter F arises here for the same reason that fluid-
dependent parameters appear in nucleate boiling correlations: surface
tension, contact angles, and other fluid-dependent variables influence
nucleation and bubble growth. The values in Table 9.4 are for commer-
cial grades of copper tubing. For stainless steel tubing, Kandlikar recom-
mends F = 1 for all fluids. Equations (9.50) are applicable for the satu-
rated boiling regimes (C through F ) with quality in the range 0 < x ≤ 0.8.
For subcooled conditions, see Problem 9.21.

Example 9.9

0.6 kg/s of saturated H2O at Tb = 207◦C flows in a 5 cm diameter ver-
tical tube heated at a rate of 184,000 W/m2. Find the wall temperature
at a point where the quality x is 20%.

Solution. Data for water are taken from Tables A.3–A.5. We first
compute hlo.

G = ṁ
Apipe

= 0.6
0.001964

= 305.6 kg/m2s

and

Relo =
GD
µf

= (305.6)(0.05)
1.297× 10−4

= 1.178× 105

From eqns. (7.42) and (7.43):

f = 1(
1.82 log10(1.178× 105)− 1.64

)2 = 0.01736

NuD = (0.01736/8)
(
1.178× 105 − 1000

)
(0.892)

1+ 12.7
√

0.01736/8
[
(0.892)2/3 − 1

] = 236.3

Hence,

hlo =
kf
D

NuD = 0.6590
0.05

236.3 = 3,115 W/m2K

Next, we find the parameters for eqns. (9.50). From Table 9.4, F = 1
for water, and for a vertical tube, fo = 1. Also,

Co =
(

1− x
x

)0.8
(
ρg
ρf

)0.5

=
(

1− 0.20
0.2

)0.8 (
9.014
856.5

)0.5
= 0.3110

Bo = qw
Ghfg

= 184,000
(305.6)(1,913,000)

= 3.147× 10−4
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Substituting into eqns. (9.50):

hfb

∣∣∣
nbd

= (3,115)(1− 0.2)0.8
[
0.6683 (0.3110)−0.2(1)

+ 1058 (3.147× 10−4)0.7(1)
]
= 11,950 W/m2K

hfb

∣∣∣
cbd

= (3,115)(1− 0.2)0.8
[
1.136 (0.3110)−0.9(1)

+ 667.2 (3.147× 10−4)0.7(1)
]
= 14,620 W/m2K

Since the second value is larger, we use it: hfb = 14,620 W/m2K.
Then,

Tw = Tb +
qw
hfb

= 207+ 184,000
14,620

= 220◦C

The Kandlikar correlation leads to mean deviations of 16% for water
and 19% for the various refrigerants. The Gungor and Winterton corre-
lation [9.50], which is popular for its simplicity, does not contain fluid-
specific coefficients, but it is somewhat less accurate than either the Kan-
dlikar equations or the more complex Steiner and Taborek method [9.45,
9.46]. These three approaches, however, are among the best available.

Two-phase flow and heat transfer in horizontal tubes

The preceding discussion of flow boiling in tubes is largely restricted to
vertical tubes. Several of the flow regimes in Fig. 9.18 will be altered
as shown in Fig. 9.20 if the tube is oriented horizontally. The reason is
that, especially at low quality, liquid will tend to flow along the bottom of
the pipe and vapor along the top. The patterns shown in Fig. 9.20, by the
way, will also be observed during the reverse process—condensation—or
during adiabatic two-phase flow.

Which flow pattern actually occurs depends on several parameters
in a fairly complex way. While many methods have been suggested to
predict what flow pattern will result for a given set of conditions in the
pipe, one of the best is that developed by Dukler, Taitel, and their co-
workers. Their two-phase flow-regime maps are summarized in [9.52]
and [9.53].

For the prediction of heat transfer, the most important additional
parameter is the Froude number, Frlo, which characterizes the strength
of the flow’s inertia (or momentum) relative to the gravitational forces
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Figure 9.20 The discernible flow
regimes during boiling, condensation, or
adiabatic flow from left to right in
horizontal tubes.

that drive the separation of the liquid and vapor phases:

Frlo ≡
G2

ρ2
f gD

(9.51)

When Frlo < 0.04, the top of the tube becomes relatively dry and hfb/hlo

begins to decline as the Froude number decreases further.
Kandlikar found that he could modify his correlation to account for

gravitational effects in horizontal tubes by changing the value of fo in
eqns. (9.50):

fo =

1 for Frlo ≥ 0.04

(25 Frlo)0.3 for Frlo < 0.04
(9.52)

Peak heat flux

We have seen that there are two limiting heat fluxes in flow boiling in a
tube: dryout and burnout. The latter is the more dangerous of the two
since it occurs at higher heat fluxes and gives rise to more catastrophic
temperature rises. Collier and Thome provide an extensive discussion of
the subject [9.43], as does Hewitt [9.54].
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One effective set of empirical formulas was developed by Katto [9.55].
He used dimensional analysis to show that

qmax

Ghfg
= fn

(
ρg
ρf
,
σρf
G2L

,
L
D

)

where L is the length of the tube and D its diameter. Since G2L
/
σρf

is a Weber number, we can see that this equation is of the same form
as eqn. (9.39). Katto identifies several regimes of flow boiling with both
saturated and subcooled liquid entering the pipe. For each of these re-
gions, he and Ohne [9.56] later fit a successful correlation of this form to
existing data.

Pressure gradients in flow boiling

Pressure gradients in flow boiling interact with the flow pattern and the
void fraction, and they can change the local saturation temperature of the
fluid. Gravity, flow acceleration, and friction all contribute to pressure
change, and friction can be particularly hard to predict. In particular, the
frictional pressure gradient can increase greatly as the flow quality rises
from the pure liquid state to the pure vapor state; the change can amount
to more than two orders of magnitude at low pressures. Data correlations
are usually used to estimate the frictional pressure loss, but they are,
at best, accurate to within about ±30%. Whalley [9.57] provides a nice
introduction such methods. Certain complex models, designed for use
in computer codes, can be used to make more accurate predictions [9.58].

9.8 Forced convective condensation heat transfer

When vapor is blown or forced past a cool wall, it exerts a shear stress
on the condensate film. If the direction of forced flow is downward, it
will drag the condensate film along, thinning it out and enhancing heat
transfer. It is not hard to show (see Problem 9.22) that

4µk(Tsat − Tw)x
gh′fgρf (ρf − ρg)

= δ4 + 4
3

[
τδδ3

(ρf − ρg)g

]
(9.53)

where τδ is the shear stress exerted by the vapor flow on the condensate
film.

Equation (9.53) is the starting point for any analysis of forced convec-
tion condensation on an external surface. Notice that if τδ is negative—if
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the shear opposes the direction of gravity—then it will have the effect of
thickening δ and reducing heat transfer. Indeed, if for any value of δ,

τδ = −
3g(ρf − ρg)

4
δ, (9.54)

the shear stress will have the effect of halting the flow of condensate
completely for a moment until δ grows to a larger value.

Heat transfer solutions based on eqn. (9.53) are complex because they
require that one solve the boundary layer problem in the vapor in order
to evaluate τδ; and this solution must be matched with the velocity at
the outside surface of the condensate film. Collier and Thome [9.43,
§10.5] discuss such solutions in some detail. One explicit result has been
obtained in this way for condensation on the outside of a horizontal
cylinder by Shekriladze and Gomelauri [9.59]:

NuD = 0.64


ρfu∞Dµf


1+

(
1+ 1.69

gh′fgµfD

u2∞kf (Tsat − Tw)

)1/2



1/2

(9.55)

where u∞ is the free stream velocity and NuD is based on the liquid
conductivity. Equation (9.55) is valid up to ReD ≡ ρfu∞D

/
µf = 106.

Notice, too, that under appropriate flow conditions (large values of u∞,
for example), gravity becomes unimportant and

NuD �→ 0.64
√

2ReD (9.56)

The prediction of heat transfer during forced convective condensa-
tion in tubes becomes a different problem for each of the many possible
flow regimes. The reader is referred to [9.43, §10.5] or [9.60] for details.

9.9 Dropwise condensation

An automobile windshield normally is covered with droplets during a
light rainfall. They are hard to see through, and one must keep the wind-
shield wiper moving constantly to achieve any kind of visibility. A glass
windshield is normally quite clean and is free of any natural oxides, so
the water forms a contact angle on it and any film will be unstable. The
water tends to pull into droplets, which intersect the surface at the con-
tact angle. Visibility can be improved by mixing a surfactant chemical
into the window-washing water to reduce surface tension. It can also be
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improved by preparing the surface with a “wetting agent” to reduce the
contact angle.5

Such behavior can also occur on a metallic condensing surface, but
there is an important difference: Such surfaces are generally wetting.
Wetting can be temporarily suppressed, and dropwise condensation can
be encouraged, by treating an otherwise clean surface (or the vapor) with
oil, kerosene, or a fatty acid. But these contaminants wash away fairly
quickly. More permanent solutions have proven very elusive, with the
result the liquid condensed in heat exchangers almost always forms a
film.

It is regrettable that this is the case, because what is called drop-
wise condensation is an extremely effective heat removal mechanism.
Figure 9.21 shows how it works. Droplets grow from active nucleation
sites on the surface, and in this sense there is a great similarity between
nucleate boiling and dropwise condensation. The similarity persists as
the droplets grow, touch, and merge with one another until one is large
enough to be pulled away from its position by gravity. It then slides off,
wiping away the smaller droplets in its path and leaving a dry swathe in
its wake. New droplets immediately begin to grow at the nucleation sites
in the path.

The repeated re-creation of the early droplet growth cycle creates a
very efficient heat removal mechanism. It is typically ten times more
effective than film condensation under the same temperature difference.
Indeed, condensing heat transfer coefficients as high as 200,000 W/m2K
can be obtained with water at 1 atm. Were it possible to sustain dropwise
condensation, we would certainly design equipment in such a way as to
make use of it.

Unfortunately, laboratory experiments on dropwise condensation are
almost always done on surfaces that have been prepared with oleic, stearic,
or other fatty acids, or, more recently, with dioctadecyl disulphide. These
nonwetting agents, or promoters as they are called, are discussed in
[9.60, 9.61]. While promoters are normally impractical for industrial use,
since they either wash away or oxidize, experienced plant engineers have
sometimes added rancid butter through the cup valves of commercial
condensers to get at least temporary dropwise condensation.

Finally, we note that the obvious tactic of coating the surface with a

5A way in which one can accomplish these ends is by wiping the wet window with
a cigarette. It is hard to tell which of the two effects the many nasty chemicals in the
cigarette achieve.



a. The process of liquid removal during dropwise con-
densation.

b. Typical photograph of dropwise condensation pro-
vided by Professor Borivoje B. Mikíc. Notice the dry paths
on the left and in the wake of the middle droplet.

Figure 9.21 Dropwise condensation.

508



§9.10 The heat pipe 509

thin, nonwetting, polymer film (such as PTFE, or Teflon) adds just enough
conduction resistance to reduce the overall heat transfer coefficient to a
value similar to film condensation, fully defeating its purpose! (Suffi-
ciently thin polymer layers have not been found to be durable.) Noble
metals, such as gold, platinum, and palladium, can also be used as non-
wetting coating, and they have sufficiently high thermal conductivity to
avoid the problem encountered with polymeric coatings. For gold, how-
ever, the minimum effective coating thickness is about 0.2 µm, or about
1/8 Troy ounce per square meter [9.62]. Such coatings are far too expen-
sive for the vast majority of technical applications.

9.10 The heat pipe

A heat pipe is a device that combines the high efficiencies of boiling and
condensation. It is aptly named because it literally pipes heat from a hot
region to a cold one.

The operation of a heat pipe is shown in Fig. 9.22. The pipe is a tube
that can be bent or turned in any way that is convenient. The inside of
the tube is lined with a layer of wicking material. The wick is wetted with
an appropriate liquid. One end of the tube is exposed to a heat source
that evaporates the liquid from the wick. The vapor then flows from the
hot end of the tube to the cold end, where it is condensed. Capillary
action moves the condensed liquid axially along the wick, back to the
evaporator where it is again vaporized.

Placing a heat pipe between a hot region and a cold one is thus sim-
ilar to connecting the regions with a material of extremely high thermal
conductivity—potentially orders of magnitude higher than any solid ma-
terial. Such devices are used not only for achieving high heat transfer
rates between a source and a sink but for a variety of less obvious pur-
poses. They are used, for example, to level out temperatures in systems,
since they function almost isothermally and offer very little thermal re-
sistance.

Design considerations in matching a heat pipe to a given application
center on the following issues.

• Selection of the right liquid. The intended operating temperature of
the heat pipe can be met only with a fluid whose saturation tem-
peratures cover the design temperature range. Depending on the
temperature range needed, the liquid can be a cryogen, an organic
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Figure 9.22 A typical heat pipe configuration.

liquid, water, a liquid metal, or, in principle, almost any fluid. How-
ever, the following characteristics will serve to limit the vapor mass
flow per watt, provide good capillary action in the wick, and control
the temperature rise between the wall and the wick:

i) High latent heat

ii) High surface tension

iii) Low liquid viscosities

iv) High thermal conductivity

Two liquids that meet these four criteria admirably are water and
mercury, although toxicity and wetting problems discourage the
use of the latter. Ammonia is useful at temperatures that are a
bit too low for water. At high temperatures, sodium and lithium
have good characteristics, while nitrogen is good for cryogenic tem-
peratures. Fluids can be compared using the merit number, M =
hfgσ/νf (see Problem 9.36).

• Selection of the tube material. The tube material must be compatible
with the working fluid. Gas generation and corrosion are particular
considerations. Copper tubes are widely used with water, methanol,
and acetone, but they cannot be used with ammonia. Stainless steel



§9.10 The heat pipe 511

tubes can be used with ammonia and many liquid metals, but are
not suitable for long term service with water. In some aerospace
applications, aluminum is used for its low weight; however, it is
compatible with working fluids other than ammonia.

• Selection and installation of the wick. Like the tube material, the
wick material must be compatible with the working fluid. In ad-
dition, the working fluid must be able to wet the wick. Wicks can
be fabricated from a metallic mesh, from a layer of sintered beads,
or simply by scoring grooves along the inside surface of the tube.
Many ingenious schemes have been created for bonding the wick to
the inside of the pipe and keeping it at optimum porosity.

• Operating limits of the heat pipe. The heat transfer through a heat
pipe is restricted by

i) Viscous drag in the wick at low temperature

ii) The sonic, or choking, speed of the vapor

iii) Drag of the vapor on the counterflowing liquid in the wick

iv) Ability of capillary forces in the wick to pump the liquid through
the pressure rise between evaporator and condenser

v) The boiling burnout heat flux in the evaporator section.

These items much each be dealt with in detail during the design of
a new heat pipe [9.63].

• Control of the pipe performance. Often a given heat pipe will be
called upon to function over a range of conditions—under varying
evaporator heat loads, for example. One way to vary its perfor-
mance is through the introduction of a non-condensible gas in the
pipe. This gas will collect at the condenser, limiting the area of
the condenser that vapor can reach. By varying the amount of gas,
the thermal resistance of the heat pipe can be controlled. In the
absence of active control of the gas, an increase in the heat load
at the evaporator will raise the pressure in the pipe, compressing
the noncondensible gas and lowering the thermal resistance of the
pipe. The result is that the temperature at the evaporator remains
essentially constant even as the heat load rises as falls.

Heat pipes have proven useful in cooling high power-density elec-
tronic devices. The evaporator is located on a small electronic component
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Figure 9.23 A heat sink for cooling a microprocessor. Cour-
tesy of Dr. A. B. Patel, Aavid Thermalloy LLC.

to be cooled, perhaps a microprocessor, and the condenser is finned and
cooled by a forced air flow (in a desktop or mainframe computer) or is
unfinned and cooled by conduction into the exterior casing or structural
frame (in a laptop computer). These applications rely on having a heat
pipe with much larger condenser area than evaporator area. Thus, the
heat fluxes on the condenser are kept relatively low. This facilitates such
uncomplicated means for the ultimate heat disposal as using a small fan
to blow air over the condenser.

One heat-pipe-based electronics heat sink is shown in Fig. 9.23. The
copper block at center is attached to a microprocessor, and the evapora-
tor sections of four heat pipes are embedded in the block. The condenser
sections of the pipes have copper fins pressed along their length. A pair
of spring clips holds the unit in place. These particular heat pipes have
copper tubes with water as the working fluid.

The reader interested in designing or selecting a heat pipe will find a
broad discussion of such devices in the book by Dunn and Reay [9.63].
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Problems

9.1 A large square tank with insulated sides has a copper base
1.27 cm thick. The base is heated to 650◦C and saturated water
is suddenly poured in the tank. Plot the temperature of the
base as a function of time on the basis of Fig. 9.2 if the bottom
of the base is insulated. In your graph, indicate the regimes
of boiling and note the temperature at which cooling is most
rapid.

9.2 Predict qmax for the two heaters in Fig. 9.3b. At what percent-
age of qmax is each one operating?

9.3 A very clean glass container of water at 70◦C is depressurized
until it is subcooled 30◦C. Then it suddenly and explosively
“flashes” (or boils). What is the pressure at which this hap-
pens? Approximately what diameter of gas bubble, or other
disturbance in the liquid, caused it to flash?

9.4 Plot the unstable bubble radius as a function of liquid super-
heat for water at 1 atm. Comment on the significance of your
curve.

9.5 In chemistry class you have probably witnessed the phenomenon
of “bumping” in a test tube (the explosive boiling that blows
the contents of the tube all over the ceiling). Yet you have
never seen this happen in a kitchen pot. Explain why not.

9.6 Use van der Waal’s equation of state to approximate the high-
est reduced temperature to which water can be superheated at
low pressure. How many degrees of superheat does this sug-
gest that water can sustain at the low pressure of 1 atm? (It
turns out that this calculation is accurate within about 10%.)
What would Rb be at this superheat?

9.7 Use Yamagata’s equation, (9.3), to determine how nucleation
site density increases with∆T for Berenson’s curves in Fig. 9.14.
(That is, find c in the relation n = constant ∆Tc .)

9.8 Suppose that Csf for a given surface is high by 50%. What will
be the percentage error in q calculated for a given value of ∆T?
[Low by 70%.]
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9.9 Water at 100 atm boils on a nickel heater whose temperature
is 6◦C above Tsat. Find h and q.

9.10 Water boils on a large flat plate at 1 atm. Calculate qmax if the
plate is operated on the surface of the moon (at 1

6 ofgearth−normal).
What would qmax be in a space vehicle experiencing 10−4 of
gearth−normal?

9.11 Water boils on a 0.002 m diameter horizontal copper wire. Plot,
to scale, as much of the boiling curve on logq vs. log∆T coor-
dinates as you can. The system is at 1 atm.

9.12 Redo Problem 9.11 for a 0.03 m diameter sphere in water at
10 atm.

9.13 Verify eqn. (9.17).

9.14 Make a sketch of the q vs. (Tw−Tsat) relation for a pool boiling
process, and invent a graphical method for locating the points
where h is maximum and minimum.

9.15 A 2 mm diameter jet of methanol is directed normal to the
center of a 1.5 cm diameter disk heater at 1 m/s. How many
watts can safely be supplied by the heater?

9.16 Saturated water at 1 atm boils on a ½ cm diameter platinum
rod. Estimate the temperature of the rod at burnout.

9.17 Plot (Tw − Tsat) and the quality x as a function of position x
for the conditions in Example 9.9. Set x = 0 where x = 0 and
end the plot where the quality reaches 80%.

9.18 Plot (Tw − Tsat) and the quality x as a function of position in
an 8 cm I.D. pipe if 0.3 kg/s of water at 100◦C passes through
it and qw = 200,000 W/m2.

9.19 Use dimensional analysis to verify the form of eqn. (9.8).

9.20 Compare the peak heat flux calculated from the data given in
Problem 5.6 with the appropriate prediction. [The prediction
is within 11%.]
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9.21 The Kandlikar correlation, eqn. (9.50a), can be adapted sub-
cooled flow boiling, with x = 0 (region B in Fig. 9.19). Noting
that qw = hfb(Tw − Tsat), show that

qw =
[
1058hloF(Ghfg)−0.7(Tw − Tsat)

]1/0.3

in subcooled flow boiling [9.47].

9.22 Verify eqn. (9.53) by repeating the analysis following eqn. (8.47)
but using the b.c. (∂u/∂y)y=δ = τδ

/
µ in place of (∂u/∂y)y=δ

= 0. Verify the statement involving eqn. (9.54).

9.23 A cool-water-carrying pipe 7 cm in outside diameter has an
outside temperature of 40◦C. Saturated steam at 80◦C flows
across it. Plot hcondensation over the range of Reynolds numbers
0 � ReD � 106. Do you get the value at ReD = 0 that you would
anticipate from Chapter 8?

9.24 (a) Suppose that you have pits of roughly 0.002 mm diame-
ter in a metallic heater surface. At about what temperature
might you expect water to boil on that surface if the pressure
is 20 atm. (b) Measurements have shown that water at atmo-
spheric pressure can be superheated about 200◦C above its
normal boiling point. Roughly how large an embryonic bubble
would be needed to trigger nucleation in water in such a state.

9.25 Obtain the dimensionless functional form of the pool boiling
qmax equation and the qmax equation for flow boiling on exter-
nal surfaces, using dimensional analysis.

9.26 A chemist produces a nondegradable additive that will increase
σ by a factor of ten for water at 1 atm. By what factor will the
additive improve qmax during pool boiling on (a) infinite flat
plates and (b) small horizontal cylinders? By what factor will
it improve burnout in the flow of jet on a disk?

9.27 Steam at 1 atm is blown at 26 m/s over a 1 cm O.D. cylinder at
90◦C. What is h? Can you suggest any physical process within
the cylinder that could sustain this temperature in this flow?

9.28 The water shown in Fig. 9.17 is at 1 atm, and the Nichrome
heater can be approximated as nickel. What is Tw − Tsat?
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9.29 For film boiling on horizontal cylinders, eqn. (9.6) is modified
to

λd = 2π
√

3

[
g(ρf − ρg)

σ
+ 2
(diam.)2

]−1/2

.

If ρf is 748 kg/m3 for saturated acetone, compare this λd, and
the flat plate value, with Fig. 9.3d.

9.30 Water at 47◦C flows through a 13 cm diameter thin-walled tube
at 8 m/s. Saturated water vapor, at 1 atm, flows across the tube
at 50 m/s. Evaluate Ttube, U , and q.

9.31 A 1 cm diameter thin-walled tube carries liquid metal through
saturated water at 1 atm. The throughflow of metal is in-
creased until burnout occurs. At that point the metal tem-
perature is 250◦C and h inside the tube is 9600 W/m2K. What
is the wall temperature at burnout?

9.32 At about what velocity of liquid metal flow does burnout occur
in Problem 9.31 if the metal is mercury?

9.33 Explain, in physical terms, why eqns. (9.23) and (9.24), instead
of differing by a factor of two, are almost equal. How do these
equations change when H′ is large?

9.34 A liquid enters the heated section of a pipe at a location z = 0
with a specific enthalpy ĥin. If the wall heat flux is qw and the
pipe diameter is D, show that the enthalpy a distance z = L
downstream is

ĥ = ĥin + πDṁ
∫ L

0
qw dz.

Since the quality may be defined as x ≡ (ĥ− ĥf ,sat)
/
hfg , show

that for constant qw

x = ĥin − ĥf ,sat

hfg
+ 4qwL
GD

9.35 Consider again the x-ray monochrometer described in Problem
7.44. Suppose now that the mass flow rate of liquid nitrogen
is 0.023 kg/s, that the nitrogen is saturated at 110 K when
it enters the heated section, and that the passage horizontal.
Estimate the quality and the wall temperature at end of the
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heated section if F = 4.70 for nitrogen in eqns. (9.50). As
before, assume the silicon to conduct well enough that the heat
load is distributed uniformly over the surface of the passage.

9.36 Use data from Appendix A and Sect. 9.1 to calculate the merit
number, M , for the following potential heat-pipe working flu-
ids over the range 200 K to 600 K in 100 K increments: water,
mercury, methanol, ammonia, and HCFC-22. If data are un-
available for a fluid in some range, indicate so. What fluids are
best suited for particular temperature ranges?
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10. Radiative heat transfer

The sun that shines from Heaven shines but warm,
And, lo, I lie between that sun and thee:
The heat I have from thence doth little harm,
Thine eye darts forth the fire that burneth me:

And were I not immortal, life were done
Between this heavenly and earthly sun.

Venus and Adonis, Wm. Shakespeare

10.1 The problem of radiative exchange

Chapter 1 described the elementary mechanisms of heat radiation. Be-
fore we proceed, you should reflect upon what you remember about the
following key ideas from Chapter 1:

• Electromagnetic wave spectrum • The Stefan-Boltzmann law
• Heat radiation & infrared radiation • Wien’s law & Planck’s law
• Black body • Radiant heat exchange
• Absorptance, α • Configuration factor, F1–2

• Reflectance, ρ • Emittance, ε
• Transmittance, τ • Transfer factor, F1–2

• α+ ρ + τ = 1 • Radiation shielding
• e(T) and eλ(T) for black bodies

The additional concept of a radiation heat transfer coefficient was devel-
oped in Section 2.3. We presume that all these concepts are understood.

The heat exchange problem

Figure 10.1 shows two arbitrary surfaces radiating energy to one another.
The net heat exchange, Qnet, from the hotter surface (1) to the cooler
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Figure 10.1 Thermal radiation between two arbitrary surfaces.

surface (2) depends on the following influences:

• T1 and T2.

• The areas of (1) and (2), A1 and A2.

• The shape, orientation, and spacing of (1) and (2).

• The radiative properties of the surfaces.

• Additional surfaces in the environment, whose radiation may be
reflected by one surface to the other.

• The medium between (1) and (2) if it absorbs, emits, or “reflects”
radiation. (When the medium is air, we can usually neglect these
effects.)

If surfaces (1) and (2) are black, if they are surrounded by air, and if
no heat flows between them by conduction or convection, then only the
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first three considerations are involved in determiningQnet. We saw some
elementary examples of how this could be done in Chapter 1, leading to

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
(10.1)

The last three considerations complicate the problem considerably. In
Chapter 1, we saw that these nonideal factors are sometimes included in
a transfer factor F1–2, such that

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
(10.2)

Before we undertake the problem of evaluating heat exchange among real
bodies, we need several definitions.

Some definitions

Emittance. A real body at temperature T does not emit with the black
body emissive power eb = σT 4 but rather with some fraction, ε, of eb.
The same is true of the monochromatic emissive power, eλ(T), which is
always lower for a real body than the black body value given by Planck’s
law, eqn. (1.30). Thus, we define either the monochromatic emittance, ελ:

ελ ≡
eλ(λ, T)
eλb(λ, T)

(10.3)

or the total emittance, ε:

ε ≡ e(T)
eb(T)

=

∫∞
0
eλ(λ, T) dλ

σT 4
=

∫∞
0
ελ eλb(λ, T) dλ

σT 4
(10.4)

For real bodies, both ε and ελ are greater than zero and less than one;
for black bodies, ε = ελ = 1. The emittance is determined entirely by the
properties of the surface of the particular body and its temperature. It
is independent of the environment of the body.

Table 10.1 lists typical values of the total emittance for a variety of
substances. Notice that most metals have quite low emittances, unless
they are oxidized. Most nonmetals have emittances that are quite high—
approaching the black body limit of unity.

One particular kind of surface behavior is that for which ελ is indepen-
dent of λ. We call such a surface a gray body. The monochromatic emis-
sive power, eλ(T), for a gray body is a constant fraction, ε, of ebλ(T), as
indicated in the inset of Fig. 10.2. In other words, for a gray body, ελ = ε.



Table 10.1 Total emittances for a variety of surfaces [10.1]

Metals Nonmetals

Surface Temp. (◦C) ε Surface Temp. (◦C) ε

Aluminum Asbestos 40 0.93–0.97
Polished, 98% pure 200−600 0.04–0.06 Brick
Commercial sheet 90 0.09 Red, rough 40 0.93
Heavily oxidized 90−540 0.20–0.33 Silica 980 0.80–0.85

Brass Fireclay 980 0.75
Highly polished 260 0.03 Ordinary refractory 1090 0.59
Dull plate 40−260 0.22 Magnesite refractory 980 0.38
Oxidized 40−260 0.46–0.56 White refractory 1090 0.29

Copper Carbon
Highly polished electrolytic 90 0.02 Filament 1040−1430 0.53
Slightly polished to dull 40 0.12–0.15 Lampsoot 40 0.95
Black oxidized 40 0.76 Concrete, rough 40 0.94

Gold: pure, polished 90−600 0.02–0.035 Glass
Iron and steel Smooth 40 0.94

Mild steel, polished 150−480 0.14–0.32 Quartz glass (2 mm) 260−540 0.96–0.66
Steel, polished 40−260 0.07–0.10 Pyrex 260−540 0.94–0.74
Sheet steel, rolled 40 0.66 Gypsum 40 0.80–0.90
Sheet steel, strong 40 0.80 Ice 0 0.97–0.98

rough oxide
Cast iron, oxidized 40−260 0.57–0.66 Limestone 400−260 0.95–0.83
Iron, rusted 40 0.61–0.85 Marble 40 0.93–0.95
Wrought iron, smooth 40 0.35 Mica 40 0.75
Wrought iron, dull oxidized 20−360 0.94 Paints
Stainless, polished 40 0.07–0.17 Black gloss 40 0.90

Stainless, after repeated 230−900 0.50–0.70 White paint 40 0.89–0.97
heating Lacquer 40 0.80–0.95

Lead Various oil paints 40 0.92–0.96
Polished 40−260 0.05–0.08 Red lead 90 0.93
Oxidized 40−200 0.63 Paper

Mercury: pure, clean 40−90 0.10–0.12 White 40 0.95–0.98
Platinum Other colors 40 0.92–0.94

Pure, polished plate 200−590 0.05–0.10 Roofing 40 0.91
Oxidized at 590◦C 260−590 0.07–0.11 Plaster, rough lime 40−260 0.92
Drawn wire and strips 40−1370 0.04–0.19 Quartz 100−1000 0.89–0.58

Silver 200 0.01–0.04 Rubber 40 0.86–0.94
Tin 40−90 0.05 Snow 10−20 0.82
Tungsten Water, thickness ≥0.1 mm 40 0.96

Filament 540−1090 0.11–0.16 Wood 40 0.80–0.90
Filament 2760 0.39 Oak, planed 20 0.90
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Figure 10.2 Comparison of the sun’s energy as typically seen
through the earth’s atmosphere with that of a black body hav-
ing the same mean temperature, size, and distance from the
earth. (Notice that eλ, just outside the earth’s atmosphere, is
far less than on the surface of the sun because the radiation
has spread out over a much greater area.)

No real body is gray, but many exhibit approximately gray behavior. We
see in Fig. 10.2, for example, that the sun appears to us on earth as an
approximately gray body with an emittance of approximately 0.6. Some
materials—for example, copper, aluminum oxide, and certain paints—are
actually pretty close to being gray surfaces at normal temperatures.

Yet the emittance of most common materials and coatings varies with
wavelength in the thermal range. The total emittance accounts for this
behavior at a particular temperature. By using it, we can write the emis-
sive power as if the body were gray, without integrating over wavelength:

e(T) = ε σT 4 (10.5)

We shall use this type of “gray body approximation” often in this chapter.
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Specular or mirror-like
reflection of incoming ray.

Reflection which is
between diffuse and
specular (a real surface).

Diffuse radiation in which
directions of departure are
uninfluenced by incoming
ray angle, θ.

Figure 10.3 Specular and diffuse reflection of radiation.
(Arrows indicate magnitude of the heat flux in the directions
indicated.)

In situations where surfaces at very different temperatures are in-
volved, the wavelength dependence of ελ must be dealt with explicitly.
This occurs, for example, when sunlight heats objects here on earth. So-
lar radiation (from a high temperature source) is on visible wavelengths,
whereas radiation from low temperature objects on earth is mainly in the
infrared range. We look at this issue further in the next section.

Diffuse and specular emittance and reflection. The energy emitted by
a non-black surface, together with that portion of an incoming ray of
energy that is reflected by the surface, may leave the body diffusely or
specularly, as shown in Fig. 10.3. That energy may also be emitted or
reflected in a way that lies between these limits. A mirror reflects visible
radiation in an almost perfectly specular fashion. (The “reflection” of a
billiard ball as it rebounds from the side of a pool table is also specular.)
When reflection or emission is diffuse, there is no preferred direction for
outgoing rays. Black body emission is always diffuse.

The character of the emittance or reflectance of a surface will nor-
mally change with the wavelength of the radiation. If we take account of
both directional and spectral characteristics, then properties like emit-
tance and reflectance depend on wavelength, temperature, and angles
of incidence and/or departure. In this chapter, we shall assume diffuse
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behavior for most surfaces. This approximation works well for many
problems in engineering, in part because most tabulated spectral and to-
tal emittances have been averaged over all angles (in which case they are
properly called hemispherical properties).

Experiment 10.1

Obtain a flashlight with as narrow a spot focus as you can find. Direct
it at an angle onto a mirror, onto the surface of a bowl filled with sugar,
and onto a variety of other surfaces, all in a darkened room. In each case,
move the palm of your hand around the surface of an imaginary hemi-
sphere centered on the point where the spot touches the surface. Notice
how your palm is illuminated, and categorize the kind of reflectance of
each surface—at least in the range of visible wavelengths.

Intensity of radiation. To account for the effects of geometry on radi-
ant exchange, we must think about how angles of orientation affect the
radiation between surfaces. Consider radiation from a circular surface
element, dA, as shown at the top of Fig. 10.4. If the element is black,
the radiation that it emits is indistinguishable from that which would be
emitted from a black cavity at the same temperature, and that radiation
is diffuse — the same in all directions. If it were non-black but diffuse,
the heat flux leaving the surface would again be independent of direc-
tion. Thus, the rate at which energy is emitted in any direction from this
diffuse element is proportional to the projected area of dA normal to the
direction of view, as shown in the upper right side of Fig. 10.4.

If an aperture of area dAa is placed at a radius r and angle θ from
dA and is normal to the radius, it will see dA as having an area cosθ dA.
The energy dAa receives will depend on the solid angle,1 dω, it sub-
tends. Radiation that leaves dA within the solid angle dω stays within
dω as it travels to dAa. Hence, we define a quantity called the intensity
of radiation, i (W/m2·steradian) using an energy conservation statement:

dQoutgoing = (idω)(cosθ dA) =
{

radiant energy from dA
that is intercepted by dAa (10.6)

1The unit of solid angle is the steradian. One steradian is the solid angle subtended
by a spherical segment whose area equals the square of its radius. A full sphere there-
fore subtends 4πr 2/r 2 = 4π steradians. The aperture dAa subtends dω = dAa

/
r 2.
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Figure 10.4 Radiation intensity through a unit sphere.

Notice that while the heat flux from dA decreases with θ (as indicated
on the right side of Fig. 10.4), the intensity of radiation from a diffuse
surface is uniform in all directions.

Finally, we compute i in terms of the heat flux from dA by dividing
eqn. (10.6) by dA and integrating over the entire hemisphere. For conve-
nience we set r = 1, and we note (see Fig. 10.4) that dω = sinθ dθdφ.

qoutgoing =
∫ 2π

φ=0

∫ π/2
θ=0

i cosθ (sinθ dθdφ) = πi (10.7a)
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In the particular case of a black body,

ib =
eb
π
= σT

4

π
= fn (T only) (10.7b)

For a given wavelength, we likewise define the monochromatic intensity

iλ =
eλ
π
= fn (T , λ) (10.7c)

10.2 Kirchhoff’s law

The problem of predicting α

The total emittance, ε, of a surface is determined only by the phys-
ical properties and temperature of that surface, as can be seen from
eqn. (10.4). The total absorptance, α, on the other hand, depends on
the source from which the surface absorbs radiation, as well as the sur-
face’s own characteristics. This happens because the surface may absorb
some wavelengths better than others. Thus, the total absorptance will
depend on the way that incoming radiation is distributed in wavelength.
And that distribution, in turn, depends on the temperature and physical
properties of the surface or surfaces from which radiation is absorbed.

The total absorptance α thus depends on the physical properties and
temperatures of all bodies involved in the heat exchange process. Kirch-
hoff’s law2 is an expression that allows α to be determined under certain
restrictions.

Kirchhoff’s law

Kirchhoff’s law is a relationship between the monochromatic, directional
emittance and the monochromatic, directional absorptance for a surface
that is in thermodynamic equilibrium with its surroundings

ελ (T , θ,φ) = αλ (T , θ,φ) exact form of
Kirchhoff’s law

(10.8a)

Kirchhoff’s law states that a body in thermodynamic equilibrium emits
as much energy as it absorbs in each direction and at each wavelength. If

2Gustav Robert Kirchhoff (1824–1887) developed important new ideas in electrical
circuit theory, thermal physics, spectroscopy, and astronomy. He formulated this par-
ticular “Kirchhoff’s Law” when he was only 25. He and Robert Bunsen (inventor of the
Bunsen burner) subsequently went on to do significant work on radiation from gases.
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this were not so, for example, a body might absorb more energy than it
emits in one direction, θ1, and might also emit more than it absorbs in an-
other direction, θ2. The body would thus pump heat out of its surround-
ings from the first direction, θ1, and into its surroundings in the second
direction, θ2. Since whatever matter lies in the first direction would be
refrigerated without any work input, the Second Law of Thermodynam-
ics would be violated. Similar arguments can be built for the wavelength
dependence. In essence, then, Kirchhoff’s law is a consequence of the
laws of thermodynamics.

For a diffuse body, the emittance and absorptance do not depend on
the angles, and Kirchhoff’s law becomes

ελ (T) = αλ (T) diffuse form of
Kirchhoff’s law

(10.8b)

If, in addition, the body is gray, Kirchhoff’s law is further simplified

ε (T) = α(T) diffuse, gray form
of Kirchhoff’s law

(10.8c)

Equation (10.8c) is the most widely used form of Kirchhoff’s law. Yet, it
is a somewhat dangerous result, since many surfaces are not even ap-
proximately gray. If radiation is emitted on wavelengths much different
from those that are absorbed, then a non-gray surface’s variation of ελ
and αλ with wavelength will matter, as we discuss next.

Total absorptance during radiant exchange

Let us restrict our attention to diffuse surfaces, so that eqn. (10.8b) is
the appropriate form of Kirchhoff’s law. Consider two plates as shown
in Fig. 10.5. Let the plate at T1 be non-black and that at T2 be black. Then
net heat transfer from plate 1 to plate 2 is the difference between what
plate 1 emits and what it absorbs. Since all the radiation reaching plate
1 comes from a black source at T2, we may write

qnet =
∫∞

0
ελ1(T1) eλb(T1)dλ︸ ︷︷ ︸
emitted by plate 1

−
∫∞

0
αλ1(T1) eλb(T2)dλ︸ ︷︷ ︸

radiation from plate 2
absorbed by plate 1

(10.9)

From eqn. (10.4), we may write the first integral in terms of total emit-
tance, as ε1σT 4

1 . We define the total absorptance, α1(T1, T2), as the sec-



§10.2 Kirchhoff’s law 535

Figure 10.5 Heat transfer between two
infinite parallel plates.

ond integral divided by σT 4
2 . Hence,

qnet = ε1(T1)σT 4
1︸ ︷︷ ︸

emitted by plate 1

− α1(T1, T2)σT 4
2︸ ︷︷ ︸

absorbed by plate 1

(10.10)

We see that the total absorptance depends on T2, as well as T1.
Why does total absorptance depend on both temperatures? The de-

pendence on T1 is simply because αλ1 is a property of plate 1 that may
be temperature dependent. The dependence on T2 is because the spec-
trum of radiation from plate 2 depends on the temperature of plate 2
according to Planck’s law, as was shown in Fig. 1.15.

As a typical example, consider solar radiation incident on a warm
roof, painted black. From Table 10.1, we see that ε is on the order of
0.94. It turns out that α is just about the same. If we repaint the roof
white, ε will not change noticeably. However, much of the energy ar-
riving from the sun is carried in visible wavelengths, owing to the sun’s
very high temperature (about 5800 K).3 Our eyes tell us that white paint
reflects sunlight very strongly in these wavelengths, and indeed this is
the case — 80 to 90% of the sunlight is reflected. The absorptance of

3Ninety percent of the sun’s energy is on wavelengths between 0.33 and 2.2 µm (see
Figure 10.2). For a black object at 300 K, 90% of the radiant energy is between 6.3 and
42 µm, in the infrared.
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white paint to energy from the sun is only 0.1 to 0.2 — much less than
ε for the energy it emits, which is mainly at infrared wavelengths. For
both paints, eqn. (10.8b) applies. However, in this situation, eqn. (10.8c)
is only accurate for the black paint.

The gray body approximation

Let us consider our facing plates again. If plate 1 is painted with white
paint, and plate 2 is at a temperature near plate 1 (say T1 = 400 K and
T2 = 300 K, to be specific), then the incoming radiation from plate 2 has
a wavelength distribution not too dissimilar to plate 1. We might be very
comfortable approximating ε1 � α1. The net heat flux between the plates
can be expressed very simply

qnet = ε1σT 4
1 −α1(T1, T2)σT 4

2

� ε1σT 4
1 − ε1σT 4

2

= ε1σ
(
T 4

1 − T 4
2

)
(10.11)

In effect, we are approximating plate 1 as a gray body.
In general, the simplest first estimate for total absorptance is the dif-

fuse, gray body approximation, eqn. (10.8c). It will be accurate either if
the monochromatic emittance does not vary strongly with wavelength or
if the bodies exchanging radiation are at similar absolute temperatures.
More advanced texts describe techniques for calculating total absorp-
tance (by integration) in other situations [10.2, 10.3].

One situation in which eqn. (10.8c) should always be mistrusted is
when solar radiation is absorbed by a low temperature object — a space
vehicle or something on earth’s surface, say. In this case, the best first ap-
proximation is to set total absorptance to a value for visible wavelengths
of radiation (near 0.5 µm). Total emittance may be taken at the object’s
actual temperature, typically for infrared wavelengths. We return to solar
absorptance in Section 10.6.

10.3 Radiant heat exchange between two finite
black bodies

Let us now return to the purely geometric problem of evaluating the view
factor, F1–2. Although the evaluation of F1–2 is also used in the calculation
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Figure 10.6 Some configurations for which the value of the
view factor is immediately apparent.

of heat exchange among diffuse, nonblack bodies, it is the only correction
of the Stefan-Boltzmann law that we need for black bodies.

Some evident results. Figure 10.6 shows three elementary situations in
which the value of F1–2 is evident using just the definition:

F1–2 ≡ fraction of field of view of (1) occupied by (2).

When the surfaces are each isothermal and diffuse, this corresponds to

F1–2 = fraction of energy leaving (1) that reaches (2)

A second apparent result in regard to the view factor is that all the
energy leaving a body (1) reaches something else. Thus, conservation of
energy requires

1 = F1–1 + F1–2 + F1–3 + · · · + F1–n (10.12)

where (2), (3),…,(n) are all of the bodies in the neighborhood of (1).
Figure 10.7 shows a representative situation in which a body (1) is sur-
rounded by three other bodies. It sees all three bodies, but it also views
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Figure 10.7 A body (1) that views three other bodies and itself
as well.

itself, in part. This accounts for the inclusion of the view factor, F1–1 in
eqn. (10.12).

By the same token, it should also be apparent from Fig. 10.7 that the
kind of sum expressed by eqn. (10.12) would also be true for any subset
of the bodies seen by surface 1. Thus,

F1–(2+3) = F1–2 + F1–3

Of course, such a sum makes sense only when all the view factors are
based on the same viewing surface (surface 1 in this case). One might be
tempted to write this sort of sum in the opposite direction, but it would
clearly be untrue,

F(2+3)–1 ≠ F2–1 + F3–1,

since each view factor is for a different viewing surface—(2+ 3), 2, and
3, in this case.

View factor reciprocity. So far, we have referred to the net radiation
from black surface (1) to black surface (2) as Qnet. Let us refine our
notation a bit, and call this Qnet1–2 :

Qnet1–2 = A1F1–2σ
(
T 4

1 − T 4
2

)
(10.13)

Likewise, the net radiation from (2) to (1) is

Qnet2–1 = A2F2–1σ
(
T 4

2 − T 4
1

)
(10.14)
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Of course, Qnet1–2 = −Qnet2–1 . It follows that

A1F1–2σ
(
T 4

1 − T 4
2

)
= −A2F2–1σ

(
T 4

2 − T 4
1

)
or

A1F1–2 = A2F2–1 (10.15)

This result, called view factor reciprocity, is very useful in calculations.

Example 10.1

A jet of liquid metal at 2000◦C pours from a crucible. It is 3 mm in di-
ameter. A long cylindrical radiation shield, 5 cm diameter, surrounds
the jet through an angle of 330◦, but there is a 30◦ slit in it. The jet
and the shield radiate as black bodies. They sit in a room at 30◦C, and
the shield has a temperature of 700◦C. Calculate the net heat transfer:
from the jet to the room through the slit; from the jet to the shield;
and from the inside of the shield to the room.

Solution. By inspection, we see that Fjet–room = 30/360 = 0.08333
and Fjet–shield = 330/360 = 0.9167. Thus,

Qnetjet–room = AjetFjet–roomσ
(
T 4

jet − T 4
room

)

=
[
π(0.003) m2

m length

]
(0.08333)(5.67× 10−8)

(
22734 − 3034

)
= 1,188 W/m

Likewise,

Qnetjet–shield = AjetFjet–shield σ
(
T 4

jet − T 4
shield

)

=
[
π(0.003) m2

m length

]
(0.9167)(5.67× 10−8)

(
22734 − 9734

)
= 12,637 W/m

The heat absorbed by the shield leaves it by radiation and convection
to the room. (A balance of these effects can be used to calculate the
shield temperature given here.)

To find the radiation from the inside of the shield to the room, we
need Fshield–room. Since any radiation passing out of the slit goes to the
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room, we can find this view factor equating view factors to the room
with view factors to the slit. The slit’s area isAslit = π(0.05)30/360 =
0.01309 m2/m length. Hence, using our reciprocity and summation
rules, eqns. (10.12) and (10.15),

Fslit–jet =
Ajet

Aslit
Fjet–room = π(0.003)

0.01309
(0.0833) = 0.0600

Fslit–shield = 1− Fslit–jet − Fslit–slit︸ ︷︷ ︸
�0

= 1− 0.0600− 0 = 0.940

Fshield–room =
Aslit

Ashield
Fslit–shield

= 0.01309
π(0.05)(330)/(360)

(0.940) = 0.08545

Hence, for heat transfer from the inside of the shield only,

Qnetshield–room = AshieldFshield–roomσ
(
T 4

shield − T 4
room

)
=

[
π(0.05)330

360

]
(0.08545)(5.67× 10−8)

(
9734 − 3034

)
= 619 W/m

Both the jet and the inside of the shield have relatively small view
factors to the room, so that comparatively little heat is lost through
the slit.

Calculation of the black-body view factor, F1–2. Consider two elements,
dA1 and dA2, of larger black bodies (1) and (2), as shown in Fig. 10.8.
Body (1) and body (2) are each isothermal. Since element dA2 subtends
a solid angle dω1, we use eqn. (10.6) to write

dQ1 to 2 = (i1dω1)(cosβ1 dA1)

But from eqn. (10.7b),

i1 =
σT 4

1

π
Note that because black bodies radiate diffusely, i1 does not vary with
angle; and because these bodies are isothermal, it does not vary with
position. The element of solid angle is given by

dω1 = cosβ2 dA2

s2
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Figure 10.8 Radiant exchange between two black elements
that are part of the bodies (1) and (2).

where s is the distance from (1) to (2) and cosβ2 enters because dA2 is
not necessarily normal to s. Thus,

dQ1 to 2 =
σT 4

1

π

(
cosβ1 cosβ2 dA1dA2

s2

)
By the same token,

dQ2 to 1 =
σT 4

2

π

(
cosβ2 cosβ1 dA2dA1

s2

)
Then

Qnet1–2 = σ
(
T 4

1 − T 4
2

)∫
A1

∫
A2

cosβ1 cosβ2

πs2
dA1dA2 (10.16)

The view factors F1–2 and F2–1 are immediately obtainable from eqn.
(10.16). If we compare this result with Qnet1–2 = A1F1–2σ(T 4

1 − T 4
2 ), we

get

F1–2 = 1
A1

∫
A1

∫
A2

cosβ1 cosβ2

πs2
dA1dA2 (10.17a)
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From the inherent symmetry of the problem, we can also write

F2–1 = 1
A2

∫
A2

∫
A1

cosβ2 cosβ1

πs2
dA2dA1 (10.17b)

You can easily see that eqns. (10.17a) and (10.17b) are consistent with
the reciprocity relation, eqn. (10.15).

The direct evaluation of F1–2 from eqn. (10.17a) becomes fairly in-
volved, even for the simplest configurations. Siegel and Howell [10.4]
provide a comprehensive discussion of such calculations and a large cat-
alog of their results. Howell [10.5] gives an even more extensive tabula-
tion of view factor equations, which is now available on the World Wide
Web. At present, no other reference is as complete.

We list some typical expressions for view factors in Tables 10.2 and
10.3. Table 10.2 gives calculated values of F1–2 for two-dimensional
bodies—various configurations of cylinders and strips that approach in-
finite length. Table 10.3 gives F1–2 for some three-dimensional configu-
rations.

Many view factors have been evaluated numerically and presented
in graphical form for easy reference. Figure 10.9, for example, includes
graphs for configurations 1, 2, and 3 from Table 10.3. The reader should
study these results and be sure that the trends they show make sense.
Is it clear, for example, that F1–2 �→ constant, which is < 1 in each case,
as the abscissa becomes large? Can you locate the configuration on the
right-hand side of Fig. 10.6 in Fig. 10.9? And so forth.

Figure 10.10 shows view factors for another kind of configuration—
one in which one area is very small in comparison with the other one.
Many solutions like this exist because they are a bit less difficult to cal-
culate, and they can often be very useful in practice.

Example 10.2

A heater (h) as shown in Fig. 10.11 radiates to the partially conical
shield (s) that surrounds it. If the heater and shield are black, calcu-
late the net heat transfer from the heater to the shield.

Solution. First imagine a plane (i) laid across the open top of the
shield:

Fh−s + Fh−i = 1

But Fh−i can be obtained from Fig. 10.9 or case 3 of Table 10.3,



Table 10.2 View factors for a variety of two-dimensional con-
figurations (infinite in extent normal to the paper)

Configuration Equation

1.
F1–2 = F2–1 =

√
1+

(
h
w

)2

−
(
h
w

)

2.

F1–2 = F2–1 = 1− sin(α/2)

3.
F1–2 = 1

2


1+ h

w
−

√
1+

(
h
w

)2



4.

F1–2 = (A1 +A2 −A3)
/
2A1

5.

F1–2 = r
b − a

[
tan−1 b

c
− tan−1 a

c

]

6.
Let X = 1+ s/D. Then:

F1–2 = F2–1 = 1
π

[√
X2 − 1+ sin−1 1

X
−X

]

7.

F1–2 = 1, F2–1 = r1

r2
, and

F2–2 = 1− F2–1 = 1− r1

r2
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Table 10.3 View factors for some three-dimensional configurations

Configuration Equation

1. Let X = a/c and Y = b/c. Then:

F1–2 = 2
πXY


ln

[
(1+X2)(1+ Y 2)

1+X2 + Y 2

]1/2

−X tan−1X − Y tan−1 Y

+X
√

1+ Y 2 tan−1 X√
1+ Y 2

+ Y
√

1+X2 tan−1 Y√
1+X2




2. Let H = h/� and W = w/�. Then:

F1–2 = 1
πW


W tan−1 1

W
−

√
H2 +W 2 tan−1

(
H2 +W 2

)−1/2

+H tan−1 1
H
+ 1

4
ln



[
(1+W 2)(1+H2)

1+W 2 +H2

]

×
[
W 2(1+W 2 +H2)
(1+W 2)(W 2 +H2)

]W2 [
H2(1+H2 +W 2)
(1+H2)(H2 +W 2)

]H2




3.

Let R1 = r1/h, R2 = r2/h, and X = 1+
(
1+ R2

2

)/
R2

1 . Then:

F1–2 = 1
2

[
X −

√
X2 − 4(R2/R1)2

]

4.

Concentric spheres:

F1–2 = 1, F2–1 = (r1/r2)2, F2–2 = 1− (r1/r2)2
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Figure 10.10 The view factor for three very small surfaces
“looking at” three large surfaces (A1 � A2).
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Figure 10.11 Heat transfer from a disc heater to its radiation shield.

for R1 = r1/h = 5/20 = 0.25 and R2 = r2/h = 10/20 = 0.5. The
result is Fh−i = 0.192. Then

Fh−s = 1− 0.192 = 0.808

Thus,

Qneth−s = AhFh−s σ
(
T 4
h − T 4

s

)
= π

4
(0.1)2(0.808)(5.67× 10−8)

[
(1200+ 273)4 − 3734

]
= 1687 W

Example 10.3

Suppose that the shield in Example 10.2 were heating the region where
the heater is presently located. What would Fs−h be?

Solution. From eqn. (10.15) we have

AsFs−h = AhFh−s
But the frustrum-shaped shield has an area of

As = π(r1 + r2)
√
h2 + (r2 − r1)2

= π(0.05+ 0.1)
√

0.22 + 0.052 = 0.09715 m2



548 Radiative heat transfer §10.3

and

Ah =
π
4
(0.1)2 = 0.007854 m2

so

Fs−h =
0.007854
0.09715

(0.808) = 0.0653

Example 10.4

Find F1–2 for the configuration of two offset squares of area A, as
shown in Fig. 10.12.

Solution. Consider two fictitious areas 3 and 4 as indicated by the
dotted lines. The view factor between the combined areas, (1+3) and
(2+4), can be obtained from Fig. 10.9. In addition, we can write that
view factor in terms of the unknown F1–2 and other known view fac-
tors:

(2A)F(1+3)–(4+2) = AF1–4 +AF1–2 +AF3–4 +AF3–2

2F(1+3)–(4+2) = 2F1–4 + 2F1–2

F1–2 = F(1+3)–(4+2) − F1–4

And F(1+3)–(4+2) can be read from Fig. 10.9 (at φ = 90, w/� = 1/2,
and h/� = 1/2) as 0.245 and F1–4 as 0.20. Thus,

F1–2 = (0.245− 0.20) = 0.045

Figure 10.12 Radiation between two
offset perpendicular squares.
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10.4 Heat transfer among gray bodies

Electrical analogy for gray body heat exchange

An electric circuit analogy for heat exchange among diffuse gray bodies
was developed by Oppenheim [10.6] in 1956. It begins with the definition
of two new quantities:

H (W/m2) ≡ irradiance =
{

flux of energy that irradiates the
surface

and

B (W/m2) ≡ radiosity =
{

total flux of radiative energy
away from the surface

The radiosity can be expressed as the sum of the irradiated energy that
is reflected by the surface and the radiation emitted by it. Thus,

B = ρH + εeb (10.18)

We can immediately write the net heat flux leaving any particular sur-
face as the difference between B and H for that surface. Then, with the
help of eqn. (10.18), we get

qnet = B −H = B − B − εebρ
(10.19)

This can be rearranged as

qnet = ερ eb −
1− ρ
ρ

B (10.20)

If the surface is opaque (τ = 0), 1− ρ = α, and if it is gray, α = ε. Then,
eqn. (10.20) gives

qnetA = Qnet = eb − Bρ/εA
= eb − B
(1− ε)/εA (10.21)

Equation (10.21) is a form of Ohm’s law, which tells us that (eb − B) can
be viewed as a driving potential for transferring heat away from a surface
through an effective surface resistance, (1− ε)/εA.

Now consider heat transfer from one infinite gray plate to another
parallel to it. Radiant energy flows past an imaginary surface, parallel
to the first infinite plate and quite close to it, as shown as a dotted line
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Figure 10.13 The electrical circuit analogy for radiation be-
tween two gray infinite plates.

in Fig. 10.13. If the gray plate is diffuse, its radiation has the same geo-
metrical distribution as that from a black body, and it will travel to other
objects in the same way that black body radiation would. Therefore, we
can treat the radiation leaving the imaginary surface — the radiosity, that
is — as though it were black body radiation travelling to an imaginary
surface above the other plate. Thus, by analogy to eqn. (10.13),

Qnet1–2 = A1F1–2 (B1 − B2) =
B1 − B2(

1

A1F1–2

) (10.22)

where the final fraction shows that this is also a form of Ohm’s law:
the radiosity difference (B1 − B2), can be said to drive heat through the
geometrical resistance, 1/A1F1–2, that describes the field of view between
the two surfaces.

When two gray surfaces exchange heat by thermal radiation, we have
a surface resistance for each surface and a geometric resistance due to
their configuration. The electrical circuit shown in Fig. 10.13 expresses
the analogy and gives us means for calculating Qnet1–2 from Ohm’s law.
Recalling that eb = σT 4, we obtain

Qnet1–2 =
eb1 − eb2∑
resistances

= σ
(
T 4

1 − T 4
2

)
(

1− ε
εA

)
1

+ 1

A1F1–2
+

(
1− ε
εA

)
2

(10.23)

For the particular case of infinite parallel plates, F1–2 = 1 and A1 = A2
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(Fig. 10.6), and, with qnet1–2 = Qnet1–2/A1, we find

qnet1–2 =
1(

1

ε1
+ 1

ε2
− 1

) σ(
T 4

1 − T 4
2

)
(10.24)

Comparing eqn. (10.24) with eqn. (10.2), we may identify

F1–2 = 1(
1
ε1
+ 1
ε2
− 1

) (10.25)

for infinite parallel plates. Notice, too, that if the plates are both black
(ε1 = ε2 = 1), then both surface resistances are zero and

F1–2 = 1 = F1–2

which, of course, is what we would have expected.

Example 10.5 One gray body enclosed by another

Evaluate the heat transfer and the transfer factor for one gray body
enclosed by another, as shown in Fig. 10.14.

Solution. The electrical circuit analogy is exactly the same as that
shown in Fig. 10.13, and F1–2 is still unity. Therefore, with eqn. (10.23),

Qnet1–2 = A1qnet1–2 =
σ
(
T 4

1 − T 4
2

)
(

1− ε1

ε1A1
+ 1

A1
+ 1− ε2

ε2A2

) (10.26)

Figure 10.14 Heat transfer between an
enclosed body and the body surrounding
it.



552 Radiative heat transfer §10.4

The transfer factor may again be identified by comparison to eqn. (10.2):

Qnet1–2 = A1
1

1
ε1
+ A1

A2

(
1
ε2
− 1

)
︸ ︷︷ ︸

=F1–2

σ
(
T 4

1 − T 4
2

)
(10.27)

This calculation assumes that body (1) does not view itself.

Example 10.6 Transfer factor reciprocity

Derive F2–1 for the enclosed bodies shown in Fig. 10.14.

Solution.

Qnet1–2 = −Qnet2–1

A1F1–2σ
(
T 4

1 − T 4
2

)
= −A2F2–1σ

(
T 4

2 − T 4
1

)
from which we obtain the reciprocity relationship for transfer factors:

A1F1–2 = A2F2–1 (10.28)

Hence, with the result of Example 10.5, we have

F2–1 = A1

A2
F1–2 = 1

1
ε1

A2

A1
+

(
1
ε2
− 1

) (10.29)

Example 10.7 Small gray object in a large environment

Derive F1–2 for a small gray object (1) in a large isothermal environ-
ment (2), the result that was given as eqn. (1.35).

Solution. We may use eqn. (10.27) with A1/A2 � 1:

F1–2 = 1
1
ε1
+ A1

A2︸︷︷︸
�1

(
1
ε2
− 1

) � ε1 (10.30)

Note that the same result is obtained for any value of A1/A2 if the
enclosure is black (ε2 = 1). A large enclosure does not reflect much ra-
diation back to the small object, and therefore becomes like a perfect
absorber of the small object’s radiation — a black body.
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Additional two-body exchange problems

Radiation shields. A radiation shield is a surface, usually of high re-
flectance, that is placed between a high-temperature source and its cooler
environment. Earlier examples in this chapter and in Chapter 1 show how
such a surface can reduce heat exchange. Let us now examine the role
of reflectance (or emittance: ε = 1−ρ) in the performance of a radiation
shield.

Consider a gray body (1) surrounded by another gray body (2), as
discussed in Example 10.5. Suppose now that a thin sheet of reflective
material is placed between bodies (1) and (2) as a radiation shield. The
sheet will reflect radiation arriving from body (1) back toward body (1);
likewise, owing to its low emittance, it will radiate little energy to body
(2). The radiation from body (1) to the inside of the shield and from the
outside of the shield to body (2) are each two-body exchange problems,
coupled by the shield temperature. We may put the various radiation
resistances in series to find (see Problem 10.46)

Qnet1–2 =
σ
(
T 4

1 − T 4
2

)
(

1− ε1

ε1A1
+ 1

A1
+ 1− ε2

ε2A2

)
+ 2

(
1− εs
εsAs

)
+ 1

As︸ ︷︷ ︸
added by shield

(10.31)

assuming F1–s = Fs–2 = 1. Note that the radiation shield reduces Qnet1–2

more if its emittance is smaller, i.e., if it is highly reflective.

Specular Surfaces. The electrical circuit analogy that we have devel-
oped is for diffuse surfaces. If the surface reflection or emission has di-
rectional characteristics, different methods of analysis must be used [10.2].

One important special case deserves to be mentioned. If the two gray
surfaces in Fig. 10.14 are diffuse emitters but are perfectly specular re-
flectors — that is, if they each have only mirror-like reflections — then
the transfer factor becomes

F1–2 =
1(

1
ε1
+ 1
ε2
− 1

) for specularly
reflecting bodies (10.32)

This result is interestingly identical to eqn. (10.25) for parallel plates.
Since parallel plates are a special case of the situation in Fig. 10.14, it
follows that eqn. (10.25) is true for either specular or diffuse reflection.
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Example 10.8

A physics experiment uses liquid nitrogen as a coolant. Saturated
liquid nitrogen at 80 K flows through 6.35 mm O.D. stainless steel
line (εl = 0.2) inside a vacuum chamber. The chamber walls are at
Tc = 230 K and are at some distance from the line. Determine the
heat gain of the line per unit length. If a second stainless steel tube,
12.7 mm in diameter, is placed around the line to act as radiation
shield, to what rate is the heat gain reduced? Find the temperature
of the shield.

Solution. The nitrogen coolant will hold the surface of the line at
essentially 80 K, since the thermal resistances of the tube wall and the
internal convection or boiling process are small. Without the shield,
we can model the line as a small object in a large enclosure, as in
Example 10.7:

Qgain = (πDl)εlσ
(
T 4
c − T 4

l
)

= π(0.00635)(0.2)(5.67× 10−8)(2304 − 804) = 0.624 W/m

With the shield, eqn. (10.31) applies. Assuming that the chamber area
is large compared to the shielded line (Ac 	 Al),

Qgain =
σ
(
T 4
c − T 4

l
)

(
1− εl
εlAl

+ 1

Al
+ 1− εc
ε2Ac︸ ︷︷ ︸
neglect

)
+ 2

(
1− εs
εsAs

)
+ 1

As

= π(0.00635)(5.67× 10−8)(2304 − 804)(
1− 0.2

0.2
+ 1

)
+ 0.00635

0.0127

[
2

(
1− 0.2

0.2

)
+ 1

]

= 0.328 W/m

The radiation shield would cut the heat gain by 47%.
The temperature of the shield, Ts , may be found using the heat

loss and considering the heat flow from the chamber to the shield,
with the shield now acting as a small object in a large enclosure:

Qgain = (πDs)εsσ
(
T 4
c − T 4

s
)

0.328 W/m = π(0.0127)(0.2)(5.67× 10−8)
(
2304 − T 4

s
)

Solving, we find Ts = 213 K.
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The electrical circuit analogy when more than two gray bodies
are involved in heat exchange

Let us first consider a three-body transaction, as pictured in at the bot-
tom and left-hand sides of Fig. 10.15. The triangular circuit for three
bodies is not so easy to analyze as the in-line circuits obtained in two-
body problems. The basic approach is to apply energy conservation at
each radiosity node in the circuit, setting the net heat transfer from any
one of the surfaces (which we designate as i)

Qneti =
ebi − Bi
1− εi
εiAi

(10.33a)

equal to the sum of the net radiation to each of the other surfaces (call
them j)

Qneti =
∑
j


 Bi − Bj

1
/
AiFi−j


 (10.33b)

For the three body situation shown in Fig. 10.15, this leads to three equa-
tions

Qnet1 , at node B1 :
eb1 − B1

1− ε1

ε1A1

= B1 − B2

1
A1F1–2

+ B1 − B3

1
A1F1–3

(10.34a)

Qnet2 , at node B2 :
eb2 − B2

1− ε2

ε2A2

= B2 − B1

1
A1F1–2

+ B2 − B3

1
A2F2–3

(10.34b)

Qnet3 , at node B3 :
eb3 − B3

1− ε3

ε3A3

= B3 − B1

1
A1F1–3

+ B3 − B2

1
A2F2–3

(10.34c)

If the temperatures T1, T2, and T3 are known (so that eb1 , eb2 , eb3 are
known), these equations can be solved simultaneously for the three un-
knowns, B1, B2, and B3. After they are solved, one can compute the net
heat transfer to or from any body (i) from either of eqns. (10.33).

Thus far, we have considered only cases in which the surface temper-
ature is known for each body involved in the heat exchange process. Let
us consider two other possibilities.
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Figure 10.15 The electrical circuit analogy for radiation
among three gray surfaces.

An insulated wall. If a wall is adiabatic, Qnet = 0 at that wall. For
example, if wall (3) in Fig. 10.15 is insulated, then eqn. (10.33b) shows
that eb3 = B3. We can eliminate one leg of the circuit, as shown on the
right-hand side of Fig. 10.15; likewise, the left-hand side of eqn. (10.34c)
equals zero. This means that all radiation absorbed by an adiabatic wall
is immediately reemitted. Such walls are sometimes called “refractory
surfaces” in discussing thermal radiation.

The circuit for an insulated wall can be treated as a series-parallel
circuit, since all the heat from body (1) flows to body (2), even if it does
so by travelling first to body (3). Then

Qnet1 =
eb1 − eb2

1− ε1

ε1A1
+ 1

1

1 /(A1F1–3) + 1 /(A2F2–3)
+ 1

1 /(A1F1–2)

+ 1− ε2

ε2A2

(10.35)
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A specified wall heat flux. The heat flux leaving a surface may be known,
if, say, it is an electrically powered radiant heater. In this case, the left-
hand side of one of eqns. (10.34) can be replaced with the surface’s known
Qnet, via eqn. (10.33b).

For the adiabatic wall case just considered, if surface (1) had a speci-
fied heat flux, then eqn. (10.35) could be solved for eb1 and the unknown
temperature T1.

Example 10.9

Two very long strips 1 m wide and 2.40 m apart face each other, as
shown in Fig. 10.16. (a) Find Qnet1–2 (W/m) if the surroundings are
black and at 250 K. (b) Find Qnet1–2 (W/m) if they are connected by
an insulated diffuse reflector between the edges on both sides. Also
evaluate the temperature of the reflector in part (b).

Solution. From Table 10.2, case 1, we find F1–2 = 0.2 = F2–1. In
addition, F2–3 = 1 − F2–1 = 0.8, irrespective of whether surface (3)
represents the surroundings or the insulated shield.

In case (a), the two nodal equations (10.34a) and (10.34b) become

1451− B1

2.333
= B1 − B2

1/0.2
+ B1 − B3

1/0.8

459.3− B2

1
= B2 − B1

1/0.2
+ B2 − B3

1/0.8

Equation (10.34c) cannot be used directly for black surroundings,
since ε3 = 1 and the surface resistance in the left-hand side denom-
inator would be zero. But the numerator is also zero in this case,
since eb3 = B3 for black surroundings. And since we now know
B3 = σT 4

3 = 221.5 W/m2K, we can use it directly in the two equa-
tions above.

Figure 10.16 Illustration for
Example 10.9.
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Thus,

B1− 0.14B2−0.56(221.5) = 435.6
−B1+10.00B2−4.00(221.5) = 2296.5

or

B1 − 0.14B2 = 559.6
−B1 + 10.00B2 = 3182.5

}
so

{
B1 = 612.1 W/m2

B2 = 379.5 W/m2

Thus, the net flow from (1) to (2) is quite small:

Qnet1–2 =
B1 − B2

1 /(A1F1–2)
= 46.53 W/m

Since each strip also loses heat to the surroundings, Qnet1 ≠ Qnet2 ≠
Qnet1–2 .

For case (b), with the adiabatic shield in place, eqn. (10.34c) can
be combined with the other two nodal equations:

0 = B3 − B1

1/0.8
+ B3 − B2

1/0.8

The three equations can be solved manually, by the use of determi-
nants, or with a computerized matrix algebra package. The result
is

B1 = 987.7 W/m2 B2 = 657.4 W/m2 B3 = 822.6 W/m2

In this case, because surface (3) is adiabatic, all net heat transfer from
surface (1) is to surface (2): Qnet1 = Qnet1–2 . Then, from eqn. (10.33a),
we get

Qnet1–2 =
[

987.7− 657.4
1/(1)(0.2)

+ 987.7− 822.6
1/(1)(0.8)

]
= 198 W/m

Of course, because node (3) is insulated, it is much easier to use
eqn. (10.35) to get Qnet1–2 :

Qnet1–2 =
5.67× 10−8

(
4004 − 3004

)
0.7
0.3

+ 1

1

1/0.8+ 1/0.8
+ 0.2

+ 0.5
0.5

= 198 W/m
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The result, of course, is the same. We note that the presence of the
reflector increases the net heat flow from (1) to (2).

The temperature of the reflector (3) is obtained from eqn. (10.33b)
with Qnet3 = 0:

0 = eb3 − B3 = 5.67× 10−8T 4
3 − 822.6

so

T3 = 347 K

Algebraic solution of multisurface enclosure problems

An enclosure can consist of any number of surfaces that exchange radi-
ation with one another. The evaluation of radiant heat transfer among
these surfaces proceeds in essentially the same way as for three surfaces.
For multisurface problems, however, the electrical circuit approach is
less convenient than a formulation based on matrices. The matrix equa-
tions are usually solved on a computer.

An enclosure formed by n surfaces is shown in Fig. 10.17. As before,
we will assume that:

• Each surface is diffuse, gray, and opaque, so that ε = α andρ = 1−ε.

• The temperature and net heat flux are uniform over each surface
(more precisely, the radiosity must be uniform and the other prop-
erties are averages for each surface). Either temperature or flux
must be specified on every surface.

• The view factor, Fi−j , between any two surfaces i and j is known.

• Conduction and convection within the enclosure can be neglected,
and any fluid in the enclosure is transparent and nonradiating.

We are interested in determining the heat fluxes at the surfaces where
temperatures are specified, and vice versa.

The rate of heat loss from the ith surface of the enclosure can con-
veniently be written in terms of the radiosity, Bi, and the irradiation, Hi,
from eqns. (10.19) and (10.21)

qneti = Bi −Hi =
εi

1− εi
(
σT 4

i − Bi
)

(10.36)
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Figure 10.17 An enclosure composed of n diffuse, gray surfaces.

where

Bi = ρiHi + εiebi = (1− εi)Hi + εi σT 4
i (10.37)

However, AiHi, the irradiating heat transfer incident on surface i, is the
sum of energies reaching i from all other surfaces, including itself

AiHi =
n∑
j=1

AjBjFj−i =
n∑
j=1

BjAiFi−j

where we have used the reciprocity rule, AjFj−i = AiFi−j . Thus

Hi =
n∑
j=1

BjFi−j (10.38)

It follows from eqns. (10.37) and (10.38) that

Bi = (1− εi)
n∑
j=1

BjFi−j + εi σT 4
i (10.39)

This equation applies to every surface, i = 1, . . . , n. When all the sur-
face temperatures are specified, the result is a set of n linear equations
for the n unknown radiosities. For numerical purposes, it is sometimes
convenient to introduce the Kronecker delta,

δij =

1 for i = j

0 for i ≠ j
(10.40)
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and to rearrange eqn. (10.39) as

n∑
j=1

[
δij − (1− εi)Fi−j

]
︸ ︷︷ ︸

≡Cij

Bj = εi σT 4
i for i = 1, . . . , n (10.41)

The radiosities are then found by inverting the matrix Cij . The rate of
heat loss from the ith surface, Qneti = Aiqneti , can be obtained from
eqn. (10.36).

For those surfaces where heat fluxes are prescribed, we can eliminate
the εiσT 4

i term in eqn. (10.39) or (10.41) using eqn. (10.36). We again ob-
tain a matrix equation that can be solved for the Bi’s. Finally, eqn. (10.36)
is solved for the unknown temperature of surface in question.

In many cases, the radiosities themselves are of no particular interest.
The heat flows are what is really desired. With a bit more algebra (see
Problem 10.45), one can formulate a matrix equation for the n unknown
values of Qneti :

n∑
j=1

[
δij
εi
− (1− εj)

εjAj
AiFi−j

]
Qnetj =

n∑
j=1

AiFi−j
(
σT 4

i − σT 4
j

)
(10.42)

Example 10.10

Two sides of a long triangular duct, as shown in Fig. 10.18, are made
of stainless steel (ε = 0.5) and are maintained at 500◦C. The third
side is of copper (ε = 0.15) and has a uniform temperature of 100◦C.
Calculate the rate of heat transfer to the copper base per meter of
length of the duct.

Solution. Assume the duct walls to be gray and diffuse and that
convection is negligible. The view factors can be calculated from con-
figuration 4 of Table 10.2:

F1–2 = A1 +A2 −A3

2A1
= 0.5+ 0.3− 0.4

1.0
= 0.4

Similarly, F2–1 = 0.67, F1–3 = 0.6, F3–1 = 0.75, F2–3 = 0.33, and F3–2 =
0.25. The surfaces cannot “see” themselves, so F1–1 = F2–2 = F3–3 =
0. Equation (10.39) leads to three algebraic equations for the three
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Figure 10.18 Illustration for Example 10.10.

unknowns, B1, B2, and B3.

B1 =
(
1− ε1︸ ︷︷ ︸

0.85

)(
F1–1︸ ︷︷ ︸

0

B1 + F1–2︸ ︷︷ ︸
0.4

B2 + F1–3︸ ︷︷ ︸
0.6

B3

)
+ ε1︸︷︷︸

0.15

σT 4
1

B2 =
(
1− ε2︸ ︷︷ ︸

0.5

)(
F2–1︸ ︷︷ ︸
0.67

B1 + F2–2︸ ︷︷ ︸
0

B2 + F2–3︸ ︷︷ ︸
0.33

B3

)
+ ε2︸︷︷︸

0.5

σT 4
2

B3 =
(
1− ε3︸ ︷︷ ︸

0.5

)(
F3–1︸ ︷︷ ︸
0.75

B1 + F3–2︸ ︷︷ ︸
0.25

B2 + F3–3︸ ︷︷ ︸
0

B3

)
+ ε3︸︷︷︸

0.5

σT 4
3

It would be easy to solve this system numerically using matrix
methods. Alternatively, we can substitute the third equation into the
first two to eliminate B3, and then use the second equation to elimi-
nate B2 from the first. The result is

B1 = 0.232σT 4
1 − 0.319σT 4

2 + 0.447σT 4
3

Equation (10.36) gives the rate of heat loss by surface (1) as

Qnet1 = A1
ε1

1− ε1

(
σT 4

1 − B1

)
= A1

ε1

1− ε1
σ

(
T 4

1 − 0.232T 4
1 + 0.319T 4

2 − 0.447T 4
3

)
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= (0.5)
(

0.15
0.85

)
(5.67× 10−8)

×
[
(373)4 − 0.232(373)4 + 0.319(773)4 − 0.447(773)4

]
W/m

= −154.3 W/m

The negative sign indicates that the copper base is gaining heat.

Enclosures with nonisothermal, nongray, or nondiffuse surfaces

The representation of enclosure heat exchange by eqn. (10.41) or (10.42)
is actually quite powerful. For example, if the primary surfaces in an en-
closure are not isothermal, they may be subdivided into a larger number
of smaller surfaces, each of which is approximately isothermal. Then ei-
ther equation may be used to calculate the heat exchange among the set
of smaller surfaces.

For those cases in which the gray surface approximation, eqn. (10.8c),
cannot be applied (owing to very different temperatures or strong wave-
length dependence in ελ), eqns. (10.41) and (10.42) may be applied on
a monochromatic basis, since the monochromatic form of Kirchhoff’s
law, eqn. (10.8b), remains valid. The results must, of course, be in-
tegrated over wavelength to get the heat exchange. The calculation is
usually simplified by breaking the wavelength spectrum into a few dis-
crete bands within which radiative properties are approximately con-
stant [10.2, Chpt. 7].

When the surfaces are not diffuse — when emission or reflection vary
with angle — a variety of other methods can be applied. Among them,
the Monte Carlo technique is probably the most widely used. The Monte
Carlo technique tracks emissions and reflections through various angles
among the surfaces and estimates the probability of absorption or re-
reflection [10.4, 10.7]. This method allows complex situations to be nu-
merically computed with relative ease, provided that one is careful to
obtain statistical convergence.

10.5 Gaseous radiation

We have treated every radiation problem thus far as though radiant heat
flow in the space separating the surfaces of interest were completely
unobstructed by any fluid in between. However, all gases interact with
photons to some extent, by absorbing or deflecting them, and they can
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even emit additional photons. The result is that fluids can play a role in
the thermal radiation to the the surfaces that surround them.

We have ignored this effect so far because it is generally very small,
especially in air and if the distance between the surfaces is on the or-
der of meters or less. When other gases are involved, especially at high
temperatures, as in furnaces, or when long distances are involved, as in
the atmosphere, gas radiation can become an important part in the heat
exchange process.

How gases interact with photons

The photons of radiant energy passing through a gaseous region can be
impeded in two ways. Some can be “scattered,” or deflected, in various
directions, and some can be absorbed into the molecules. Scattering is
a fairly minor influence in most gases unless they contain foreign par-
ticles, such as dust or fog. In cloudless air, for example, we are aware
of the scattering of sunlight only when it passes through many miles of
the atmosphere. Then the shorter wavelengths of sunlight are scattered
(short wavelengths, as it happens, are far more susceptible to scattering
by gas molecules than longer wavelengths, through a process known as
Rayleigh scattering). That scattered light gives the sky its blue hues.

At sunset, sunlight passes through the atmosphere at a shallow angle
for hundreds of miles. Radiation in the blue wavelengths has all been
scattered out before it can be seen. Thus, we see only the unscattered
red hues, just before dark.

When particles suspended in a gas have diameters near the wave-
length of light, a more complex type of scattering can occur, known as
Mie scattering. Such scattering occurs from the water droplets in clouds
(often making them a brilliant white color). It also occurs gases that con-
tain soot or in pulverized coal combustion. Mie scattering has a strong
angular variation that changes with wavelength and particle size [10.8].

The absorption or emission of radiation by molecules, rather than
particles, will be our principal focus. The interaction of molecules with
radiation — photons, that is — is governed by quantum mechanics. It’s
helpful at this point to recall a few facts from molecular physics. Each
photon has an energy hco/λ, where h is Planck’s constant, co is the speed
of light, and λ is the wavelength of light. Thus, photons of shorter wave-
lengths have higher energies: ultraviolet photons are more energetic than
visible photons, which are in turn more energetic than infrared photons.
It is not surprising that hotter objects emit more visible photons.
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Figure 10.19 Vibrational modes of carbon dioxide and water.

Molecules can store energy by rotation, by vibration (Fig. 10.19), or in
their electrons. Whereas the possible energy of a photon varies smoothly
with wavelength, the energies of molecules are constrained by quantum
mechanics to change only in discrete steps between the molecule’s allow-
able “energy levels.” The available energy levels depend on the molecule’s
chemical structure.

When a molecule emits a photon, its energy drops in a discrete step
from a higher energy level to a lower one. The energy given up is car-
ried away by the photon. As a result, the wavelength of that photon is
determined by the specific change in molecular energy level that caused
it to be emitted. Just the opposite happens when a photon is absorbed:
the photon’s wavelength must match a specific energy level change avail-
able to that particular molecule. As a result, each molecular species can
absorb only photons at, or very close to, particular wavelengths! Often,
these wavelengths are tightly grouped into so-called absorption bands,
outside of which the gas is essentially transparent to photons.

The fact that a molecule’s structure determines how it absorbs and
emits light has been used extensively by chemists as a tool for deducing



566 Radiative heat transfer §10.5

molecular structure. A knowledge of the energy levels in a molecule, in
conjunction with quantum theory, allows specific atoms and bonds to be
identified. This is called spectroscopy (see [10.9, Chpt. 18 & 19] for an
introduction; see [10.10] to go overboard).

At the wavelengths that correspond to thermal radiation at typical
temperatures, it happens that transitions in the vibrational and rotation
modes of molecules have the greatest influence on radiative absorptance.
Such transitions can be driven by photons only when the molecule has
some asymmetry.4 Thus, for all practical purposes, monatomic and sym-
metrical diatomic molecules are transparent to thermal radiation. The
major components of air—N2 and O2—are therefore nonabsorbing; so,
too, are H2 and such monatomic gases as argon.

Asymmetrical molecules like CO2, H2O, CH4, O3, NH3, N2O, and SO2,
on the other hand, each absorb thermal radiation of certain wavelengths.
The first two of these, CO2 and H2O, are always present in air. To under-
stand how the interaction works, consider the possible vibrations of CO2

and H2O shown in Fig. 10.19. For CO2, the topmost mode of vibration
is symmetrical and has no interaction with thermal radiation at normal
pressures. The other three modes produce asymmetries in the molecule
when they occur; each is important to thermal radiation.

The primary absorption wavelength for the two middle modes of CO2

is 15 µm, which lies in the thermal infrared. The wavelength for the bot-
tommost mode is 4.3 µm. For H2O, middle mode of vibration interacts
strongly with thermal radiation at 6.3 µm. The other two both affect
2.7 µm radiation, although the bottom one does so more strongly. In ad-
dition, H2O has a rotational mode that absorbs thermal radiation having
wavelengths of 14 µm or more. Both of these molecules show additional
absorption lines at shorter wavelengths, which result from the superpo-
sition of two or more vibrations and their harmonics (e.g., at 2.7 µm for
CO2 and at 1.9 and 1.4 µm for H2O). Additional absorption bands can
appear at high temperature or high pressure.

Absorptance, transmittance, and emittance

Figure 10.20 shows radiant energy passing through an absorbing gas with
a monochromatic intensity iλ. As it passes through an element of thick-

4The asymmetry required is in the distribution of electric charge — the dipole mo-
ment. A vibration of the molecule must create a fluctuating dipole moment in order
to interact with photons. A rotation interacts with photons only if the molecule has a
permanent dipole moment.
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Figure 10.20 The attenuation of
radiation through an absorbing (and/or
scattering) gas.

ness dx, the intensity will be reduced by an amount diλ:

diλ = −ρκλiλ dx (10.43)

where ρ is the gas density and κλ is called the monochromatic absorp-
tion coefficient. If the gas scatters radiation, we replace κλ with γλ, the
monochromatic scattering coefficient. If it both absorbs and scatters ra-
diation, we replace κλ with βλ ≡ κλ + γλ, the monochromatic extinction
coefficient.5 The dimensions of κλ, βλ, and γλ are all m2/kg.

If ρκλ is constant through the gas, eqn. (10.43) can be integrated from
an initial intensity iλ0 at x = 0 to obtain

iλ(x) = iλ0 e
−ρκλx (10.44)

This result is called Beer’s law (pronounced “Bayr’s” law). For a gas layer
of a given depth x = L, the ratio of final to initial intensity defines that
layer’s monochromatic transmittance, τλ:

τλ ≡
iλ(L)
iλ0

= e−ρκλL (10.45)

Further, since gases do not reflect radiant energy, τλ+αλ = 1. Thus, the
monochromatic absorptance, αλ, is

αλ = 1− e−ρκλL (10.46)

Both τλ and αλ depend on the density and thickness of the gas layer.
The product ρκλL is sometimes called the optical depth of the gas. For
very small values of ρκλL, the gas is transparent to the wavelength λ.

5All three coefficients, κλ, γλ, and βλ, are expressed on a mass basis. They could,
alternatively, have been expressed on a volumetric basis.
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Figure 10.21 The monochromatic absorptance of a 1.09 m
thick layer of steam at 127◦C.

The dependence of αλ on λ is normally very strong. As we have seen,
a given molecule will absorb radiation in certain wavelength bands, while
allowing radiation with somewhat higher or lower wavelengths to pass
almost unhindered. Figure 10.21 shows the absorptance of water vapor
as a function of wavelength for a fixed depth. We can see the absorption
bands at wavelengths of 6.3, 2.7, 1.9, and 1.4 µm that were mentioned
before.

A comparison of Fig. 10.21 with Fig. 10.2 readily shows why radia-
tion from the sun, as viewed from the earth’s surface, shows a number
of spikey indentations at certain wavelengths. Several of those indenta-
tions occur in bands where atmospheric water vapor absorbs incoming
solar radiation, in accordance with Fig. 10.21. The other indentations in
Fig. 10.2 occur where ozone and CO2 absorb radiation. The sun itself
does not have these regions of low emittance; it is just that much of the
radiation in these bands is absorbed by gases in the atmosphere before
it can reach the ground.

Just as αλ and ελ are equal to one another for a diffuse solid surface,
they are equal for a gas. We may demonstrate this by considering an
isothermal gas that is in thermal equilibrium with a black enclosure that
contains it. The radiant intensity within the enclosure is that of a black
body, iλb , at the temperature of the gas and enclosure. Equation (10.43)
shows that a small section of gas absorbs radiation, reducing the inten-
sity by an amount ρκλiλb dx. To maintain equilibrium, the gas must
therefore emit an equal amount of radiation:

diλ = ρκλiλb dx (10.47)

Now, if radiation from some other source is transmitted through
a nonscattering isothermal gas, we can combine the absorption from



§10.5 Gaseous radiation 569

eqn. (10.43) with the emission from eqn. (10.47) to form an energy bal-
ance called the equation of transfer

diλ
dx

= −ρκλiλ + ρκλiλb (10.48)

Integration of this equation yields a result similar to eqn. (10.44):

iλ(L) = iλ0 e
−ρκλL︸ ︷︷ ︸
=τλ

+iλb
(
1− e−ρκλL

)
︸ ︷︷ ︸

≡ελ

(10.49)

The first righthand term represents the transmission of the incoming
intensity, as in eqn. (10.44), and the second is the radiation emitted by
the gas itself. The coefficient of the second righthand term defines the
monochromatic emittance, ελ, of the gas layer. Finally, comparison to
eqn. (10.46) shows that

ελ = αλ = 1− e−ρκλL (10.50)

Again, we see that for very small ρκλL the gas will neither absorb nor
emit radiation of wavelength λ.

Heat transfer from gases to walls

We now see that predicting the total emissivity, εg , of a gas layer will be
complex. We have to take account of the gases’ absorption bands as well
as the layer’s thickness and density. Such predictions can be done [10.11],
but they are laborious. For making simpler (but less accurate) estimates,
correlations of εg have been developed.

Such correlations are based on the following model: An isothermal
gas of temperature Tg and thickness L, is bounded by walls at the single
temperature Tw . The gas consists of a small fraction of an absorbing
species (say CO2) mixed into a nonabsorbing species (say N2). If the ab-
sorbing gas has a partial pressure pa and the mixture has a total pressure
p, the correlation takes this form:

εg = fn
(
paL,p, Tg

)
(10.51)

The parameter paL is a measure of the layer’s optical depth; p and Tg
account for changes in the absorption bands with pressure and temper-
ature.
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Hottel and Sarofim [10.12] provide such correlations for CO2 and H2O,
built from research by Hottel and others before 1960. The correlations
take the form

εg
(
paL,p, Tg

)
= f1

(
paL, Tg

)
× f2

(
p,pa,paL

)
(10.52)

where the experimental functions f1 and f2 are plotted in Figs. 10.22 and
10.23 for CO2 and H2O, respectively. The first function, f1, is a correla-
tion for a total pressure of p = 1 atm with a very small partial pressure
of the absorbing species. The second function, f2, is a correction factor
to account for other values of pa or p. Additional corrections must be
applied if both CO2 and H2O are present in the same mixture.

To find the net heat transfer between the gas and the walls, we must
also find the total absorptance, αg , of the gas. Despite the equality of the
monochromatic emittance and absorptance, ελ and αλ, the total values,
εg and αg , will not generally be equal. This is because the absorbed
radiation may come from, say, a wall having a much different temperature
than the gas with a correspondingly different wavelength distribution.
Hottel and Sarofim show that αg may be estimated from the correlation
for εg as follows:6

αg =
( Tg
Tw

)1/2
· ε

(
paL

Tw
Tg
,p, Tw

)
(10.53)

Finally, we need to determine an appropriate value of L for a given
enclosure. The correlations just given for εg and αg assume L to be
a one-dimensional path through the gas. Even for a pair of flat plates
a distance L apart, this won’t be appropriate since radiation can travel
much farther if it follows a path that is not perpendicular to the plates.

For enclosures that have black walls at a uniform temperature, we can
use an effective path length, L0, called the geometrical mean beam length,
to represent both the size and the configuration of a gaseous region. The
geometrical mean beam length is defined as

L0 ≡ 4 (volume of gas)
boundary area that is irradiated

(10.54)

Thus, for two infinite parallel plates a distance � apart, L0 = 4A�/2A =
2�. Some other values of L0 for gas volumes exchanging heat with all
points on their boundaries are as follow:

6Hottel originally recommended replacing the exponent 1/2 by 0.65 for CO2 and
0.45 for H2O. Theory, and more recent work, both suggest using the value 1/2 [10.13].



Figure 10.22 Functions used to predict εg = f1f2 for water
vapor in air.
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Figure 10.23 Functions used to predict εg = f1f2 for CO2 in
air. All pressures in atmospheres.
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• For a sphere of diameter D, L0 = 2D/3

• For an infinite cylinder of diameter D, L0 = D

• For a cube of side L, L0 = 2L/3

• For a cylinder with height = D, L0 = 2D/3

For cases where the gas is strongly absorbing, better accuracy can be
obtained by replacing the constant 4 in eqn. (10.54) by 3.5, lowering the
mean beam length about 12%.

We are now in position to treat a problem in which hot gases (say
the products of combustion) radiate to a black container. Consider an
example:

Example 10.11

A long cylindrical combustor 40 cm in diameter contains a gas at
1200◦C consisting of 0.8 atm N2 and 0.2 atm CO2. What is the net
heat radiated to the walls if they are at 300◦C?

Solution. Let us first obtain εg . We have L0 = D = 0.40 m, a total
pressure of 1.0 atm, pCO2 = 0.2 atm, and T = 1200◦C = 2651◦R.
Then Fig. 10.23a gives f1 as 0.098 and Fig. 10.23b gives f2 � 1, so
εg = 0.098. Next, we use eqn. (10.53) to obtain αg , with Tw = 1031◦R,
pH2OLTw/Tg = 0.031:

αg =
(

1200+ 273
300+ 273

)0.5
(0.074) = 0.12

Now we can calculate Qnetg-w . For these problems with one wall
surrounding one gas, the use of the mean beam length in finding
εg and αg accounts for all geometrical effects, and no view factor is
required. The net heat transfer is calculated using the surface area of
the wall:

Qnetg-w = Aw
(
εgσT 4

g −αgσT 4
w

)
= π(0.4)(5.67× 10−8)

[
(0.098)(1473)4 − (0.12)(573)4

]
= 32 kW/m

Total emissivity charts and the mean beam length provide a simple,
but crude, tool for dealing with gas radiation. Since the introduction
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of these ideas in the mid-twentieth century, major advances have been
made in our knowledge of the radiative properties of gases and in the
tools available for solving gas radiation problems. In particular, band
models of gas radiation, and better measurements, have led to better
procedures for dealing with the total radiative properties of gases (see,
in particular, References [10.11] and [10.13]). Tools for dealing with ra-
diation in complex enclosures have also improved. The most versitile of
these is the previously-mentioned Monte Carlo method [10.4, 10.7], which
can deal with nongray, diffuse and nonisothermal walls with nongray,
scattering, and nonisothermal gases. An extensive literature also deals
with approximate analytical techniques, many of which are based on the
idea of a “gray gas” — one for which ελ and αλ are independent of wave-
length. However, as we have pointed out, the gray gas model is not even
a qualitative approximation to the properties of real gases.7

Finally, it is worth noting that gaseous radiation is frequently less
important than one might imagine. Consider, for example, two flames: a
bright orange candle flame and a “cold-blue” hydrogen flame. Both have
a great deal of water vapor in them, as a result of oxidizing H2. But the
candle will warm your hands if you place them near it and the hydrogen
flame will not. Yet the temperature in the hydrogen flame is higher. It
turns out that what is radiating both heat and light from the candle is soot
— small solid particles of almost thermally black carbon. The CO2 and
H2O in the candle flame actually contribute relatively little to radiation.

10.6 Solar energy

The sun

The sun continually irradiates the earth at a rate of about 1.74×1014 kW.
If we imagine this energy to be distributed over a circular disk with the
earth’s diameter, the solar irradiation is about 1367 W/m2, as measured
by satellites above the atmosphere. Much of this energy reaches the
ground, where it sustains the processes of life.

The temperature of the sun varies from tens of millions of kelvin in its

7Edwards [10.11] describes the gray gas as a “myth.” He notes, however, that spectral
variations may be overlooked for a gas containing spray droplets or particles [in a
range of sizes] or for some gases that have wide, weak absorption bands within the
spectral range of interest [10.3]. Some accommodation of molecular properties can be
achieved using the weighted sum of gray gases concept [10.12], which treats a real gas
as superposition of gray gases having different properties.
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core to between 4000 and 6000 K at its surface, where most of the sun’s
thermal radiation originates. The wavelength distribution of the sun’s
energy is not quite that of a black body, but it may be approximated as
such. A straightforward calculation (see Problem 10.49) shows that a
black body of the sun’s size and distance from the earth would produce
the same irradiation as the sun if its temperature were 5777 K.

The solar radiation reaching the earth’s surface is always less than
that above the atmosphere owing to atmospheric absorption and the
earth’s curvature and rotation. Solar radiation usually arrives at an angle
of less than 90◦ to the surface because the sun is rarely directly overhead.
We have seen that a radiant heat flux arriving at an angle less than 90◦

is reduced by the cosine of that angle (Fig. 10.4). The sun’s angle varies
with latitude, time of day, and day of year. Trigonometry and data for
the earth’s rotation can be used to find the appropriate angle.

Figure 10.2 shows the reduction of solar radiation by atmospheric ab-
sorption for one particular set of atmospheric conditions. In fact, when
the sun passes through the atmosphere at a low angle (near the hori-
zon), the path of radiation through the atmosphere is longer, providing
relatively more opportunity for atmospheric absorption and scattering.
Additional moisture in the air can increase the absorption by H2O, and,
of course, clouds can dramatically reduce the solar radiation reaching
the ground. The consequence of these various effects is that the solar
radiation received on the ground is almost never more than 1200 W/m2

and is often only a few hundred W/m2. Extensive data are available for
estimating the ground level solar irradiation at a given location, time, and
date [10.14, 10.15].

The distribution of the Sun’s energy and atmospheric
irradiation

Figure 10.24 shows what becomes of the solar energy that impinges on
the earth if we average it over the year and the globe, taking account of
all kinds of weather. Only 45% of the sun’s energy actually reaches the
earth’s surface. The mean energy received is about 235 W/m2 if averaged
over the surface and the year. The lower left-hand portion of the figure
shows how this energy is, in turn, all returned to the atmosphere and to
space.

The solar radiation reaching the earth’s surface includes direct radi-
ation that has passed through the atmosphere and diffuse radiation that
has been scattered, but not absorbed, by the atmosphere. Atmospheric



576 Radiative heat transfer §10.6

45% reaches 
the earth’s 
surface

45% is  
transmitted  
to the earth  
directly and  
by diffuse  
radiation

33% is  
reflected  
back to  
space

22% is absorbed  
in the  
atmosphere

Sensible heat  
transfer to  
atmosphere

EvaporationNet  
radiation 
from  
surface

Radiation that reaches the outer  
atmosphere from the sun

The flow of energy from  
the earth's surface back to -  
and through - the earth's  
atmosphere

Figure 10.24 The approximate distribution of the flow of the
sun’s energy to and from the earth’s surface [10.16].

gases also irradiate the surface. This irradiation is quite important to the
maintaining the temperature of objects on the surface.

In Section 10.5, saw that the energy radiated by a gas depends upon
the depth of the gas, its temperature, and the molecules present in it.
The emissivity of the atmosphere has been characterized in detail [10.16,
10.17, 10.18]. For practical calculations, however, it is often convenient
to treat the sky as a black radiator having some appropriate temperature.
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This effective sky temperature is usually between 5 and 30◦C lower that
the ground level air temperature. The sky temperature decreases as the
amount of water vapor in the air goes down. For cloudless skies, the sky
temperature may be estimated using the dew-point temperature, Tdp, and
the hour past midnight, t:

Tsky = Tair

[
0.711+ 0.0056Tdp

+ 7.3× 10−5 T 2
dp + 0.013 cos(2πt/24)

]1/4
(10.55)

where Tsky and Tair are in kelvin and Tdp is in ◦C. This equation applies
for dew points from −20◦C to 30◦C [10.19].

It is fortunate that sky temperatures are relatively warm. In the ab-
sence of an atmosphere, we would exchange radiation directly with the
bitter cold of outer space. Our planet would be uninhabitably cold.

Selective emitters, absorbers, and transmitters

We have noted that most of the sun’s energy lies at wavelengths near
the visible region of the electromagnetic spectrum and that most of the
radiation from objects at temperatures typical of the earth’s surface is
on much longer, infrared wavelengths (see pg. 535). One result is that
materials may be chosen or designed to be selectively good emitters or
reflectors of both solar and infrared radiation.

Table 10.4 shows the infrared emittance and solar absorptance for
several materials. Among these, we identify several particularly selective
solar absorbers and solar reflectors. The selective absorbers have a high
absorptance for solar radiation and a low emittance for infrared radia-
tion. Consequently, they do not strongly reradiate the solar energy that
they absorb. The selective solar reflectors, on the other hand, reflect so-
lar energy strongly and also radiate heat efficiently in the infrared. Solar
reflectors stay much cooler than solar absorbers in bright sunlight.

Example 10.12

In Section 10.2, we discussed white paint on a roof as a selective
solar absorber. Consider now a barn roof under a sunlit sky. The
solar radiation on the plane of the roof is 600 W/m2, the air temper-
ature is 35◦C, and a light breeze produces a convective heat transfer
coefficient of h = 8 W/m2K. The sky temperature is 18◦C. Find the
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Table 10.4 Solar absorptance and infrared emittance for sev-
eral surfaces near 300 K [10.4, 10.15].

Surface αsolar εIR

Aluminum, pure 0.09 0.1
Carbon black in acrylic binder 0.94 0.83

Copper, polished 0.3 0.04

Selective Solar absorbers
Black Cr on Ni plate 0.95 0.09

CuO on Cu (Ebanol C) 0.90 0.16

Nickel black on steel 0.81 0.17

Sputtered cermet on steel 0.96 0.16

Selective Solar Reflectors
Magnesium oxide 0.7 0.14

Snow 0.2–0.35 0.82

White paint

Acrylic 0.26 0.90

Zinc Oxide 0.12–0.18 0.93

temperature of the roof if it is painted with either white acrylic paint
or a non-selective black paint having ε = 0.9.

Solution. Heat loss from the roof to the inside of the barn will lower
the roof temperature. Since we don’t have enough information to eval-
uate that loss, we can make an upper bound on the roof temperature
by assuming that no heat is transferred to the interior. Then, an en-
ergy balance on the roof must account for radiation absorbed from
the sun and the sky and for heat lost by convection and reradiation:

αsolarqsolar + εIRσT 4
sky = h(Troof − Tair)+ εIRσT 4

roof

Rearranging and substituting the given numbers,

8 [Troof − (273+ 35)]+ εIR(5.67× 10−8)
[
T 4

roof − (273+ 18)4
]

= αsolar(600)

For the non-selective black paint, αsolar = εIR = 0.90. Solving by
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iteration, we find

Troof = 338 K = 65◦C

For white acrylic paint, from Table 10.4, αsolar = 0.26 and εIR = 0.90.
We find

Troof = 312 K = 39◦C

The white painted roof is only a few degrees warmer than the air.

Ordinary window glass is a very selective transmitter of solar radia-
tion. Glass is nearly transparent to wavelengths below 2.7 µm or so, pass-
ing more than 90% of the incident solar energy. At longer wavelengths,
in the infrared, glass is virtually opaque to radiation. A consequence of
this fact is that solar energy passing through a window cannot pass back
out as infrared reradiation. This is precisely why we make greenhouses
out of glass. A greenhouse is a structure in which we use glass trap solar
energy in a lower temperature space.

The atmospheric greenhouse effect and global warming

The atmosphere creates a greenhouse effect on the earth’s surface that
is very similar to that caused by a pane of glass. Solar energy passes
through the atmosphere, arriving mainly on wavelengths between about
0.3 and 3 µm. The earth’s surface, having a mean temperature of 15 ◦C
or so, radiates mainly on infrared wavelengths longer than 5 µm. Certain
atmospheric gases have strong absorption bands at these longer wave-
lengths. Those gases absorb energy radiated from the surface, and then
reemit it toward both the surface and outer space. The result is that the
surface remains some 30 K warmer than the atmosphere. In effect, the
atmosphere functions as a radiation shield against infrared heat loss to
space.

The gases mainly responsible for the the atmospheric greenhouse ef-
fect are CO2, H2O, CH4, N2O, O3, and some chlorofluorcarbons [10.20]. If
the concentration of these gases rises or falls, the strength of the green-
house effect will change and the surface temperature will also rise or fall.
With the exception of the chlorofluorocarbons, each of these gases is cre-
ated, in part, by natural processes: H2O by evaporation, CO2 by animal
respiration, CH4 through plant decay and digestion by livestock, and so
on. Human activities, however, have significantly increased the concen-
trations of all of the gases. Fossil fuel combustion increased the CO2
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Figure 10.25 Global surface temperature change relative to
the mean temperature from 1950–1980 (Courtesy of the NASA
Goddard Institute for Space Studies [10.21]).

concentration by more than 30% during the twentieth century. Methane
concentrations have risen through the transportation and leakage of hy-
drocarbon fuels. Ground level ozone concentrations have risen as a result
of photochemical interactions of other pollutants. Chlorofluorocarbons
are human-made chemicals.

In parallel to the rising concentrations of these gases, the surface
temperature of the earth has risen significantly. Over the course of the
twentieth century, a rise of 0.6–0.7 K occurred, with 0.4–0.5 K of that
rise coming after 1950 (see Fig. 10.25). The data showing this rise are
extensive, are derived from multiple sources, and have been the subject
of detailed scrutiny: there is relatively little doubt that surface temper-
atures have increased [10.21, 10.22]. The question of how much of the
rise should be attributed to anthropogenic greenhouse gases, however,
was a subject of intense debate throughout the 1990’s.

Many factors must be considered in examining the causes of global
warming. Carbon dioxide, for example, is present in such high concentra-
tions that adding more of it increases absorption less rapidly than might
be expected. Other gases that are present in smaller concentrations, such
as methane, have far stronger effects per additional kilogram. The con-
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centration of water vapor in the atmosphere rises with increasing surface
temperature, amplifying any warming trend. Increased cloud cover has
both warming and cooling effects. The melting of polar ice caps as tem-
peratures rise reduces the planet’s reflectivity, or albedo, allowing more
solar energy to be absorbed. Small temperature rises that have been
observed in the oceans store enormous amounts of energy that must
accounted. Atmospheric aerosols (two-thirds of which are produced by
sulfate and carbon pollution from fossil fuels) also tend to reduce the
greenhouse effect. All of these factors must be built into an accurate
climate model (see, for example, [10.23]).

The current consensus among mainstream researchers is that the
global warming seen during the last half of the twentieth century is
mainly attributable to human activity, principally through the combus-
tion of fossil fuels [10.22]. Numerical models have been used to project
a continuing temperature rise in the twenty-first century, subject to var-
ious assumptions about the use of fossil fuels and government policies
for reducing greenhouse gas emissions. Regrettably, the outlook is not
very positive, with predictions of twenty-first century warming ranging
from 1.4–5.8 K.

The potential for solar power

One alternative to the continuing use of fossil fuels is solar energy. With
so much solar energy falling upon all parts of the world, and with the
apparent safety, reliability, and cleanliness of most schemes for utiliz-
ing solar energy, one might ask why we do not generally use solar power
already. The reason is that solar power involves many serious heat trans-
fer and thermodynamics design problems and may pose environmental
threats of its own. We shall discuss the problems qualitatively and refer
the reader to [10.15], [10.24], or [10.25] for detailed discussions of the
design of solar energy systems.

Solar energy reaches the earth with very low intensity. We began this
discussion in Chapter 1 by noting that human beings can interface with
only a few hundred watts of energy. We could not live on earth if the sun
were not relatively gentle. It follows that any large solar power source
must concentrate the energy that falls on a huge area. By way of illus-
tration, suppose that we sought to photovoltaically convert 615 W/m2

of solar energy into electric power with a 15% efficiency (which is not
pessimistic) during 8 hr of each day. This would correspond to a daily
average of 31 W/m2, and we would need almost 26 square kilometers (10
square miles) of collector area to match the steady output of an 800 MW
power plant.
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Other forms of solar energy conversion require similarly large areas.
Hydroelectric power — the result of evaporation under the sun’s warming
influence — requires a large reservoir, and watershed, behind the dam.
The burning of organic matter, as wood or grain-based ethanol, requires
a large cornfield or forest to be fed by the sun, and so forth. Any energy
supply that is served by the sun must draw from a large area of the
earth’s surface. Thus, they introduce their own kinds of environmental
complications.

A second problem stems from the intermittent nature of solar devices.
To provide steady power—day and night, rain or shine—requires thermal
storage systems, which add both complication and cost.

These problems are minimal when one uses solar energy merely to
heat air or water to moderate temperatures (50 to 90◦C). In this case the
efficiency will improve from just a few percent to as high as 70%. Such
heating can be used for industrial processes (crop drying, for example),
or it can be used on a small scale for domestic heating of air or water.

Figure 10.26 shows a typical configuration of a domestic solar collec-
tor of the flat-plate type. Solar radiation passes through one or more glass
plates and impinges on a plate that absorbs the solar wavelengths. The
absorber plate would be a selective solar absorber, perhaps blackened
copper or nickel. The glass plates might be treated with anti-reflective
coatings, raising their solar transmissivity to 98% or more. Once the en-
ergy is absorbed, it is reemitted as long-wavelength infrared radiation.
Glass is almost opaque in this range, and energy is retained in the collec-
tor by a greenhouse effect. Multiple layers of glass serve to reduce both
reradiative and convective losses from the absorber plate.

Water flowing through tubes, which may be brazed to the absorber
plate, carries the energy away for use. The flow rate is adjusted to give
an appropriate temperature rise.

If the working fluid is to be brought to a fairly high temperature, the
direct radiation from the sun must be focused from a large area down to
a very small region, using reflecting mirrors. Collectors equipped with a
small parabolic reflector, focused on a water or air pipe, can raise the fluid
to between 100 and 200◦C. In any scheme intended to produce electrical
power with a conventional thermal cycle, energy must be focused in an
area ratio on the order of 1000 : 1 to achieve a practical cycle efficiency.

It is instructive to compare our energy consumption to the renewable
energy that the earth receives from the sun. Of the 1.74×1014 kW arriv-
ing from the sun, 33% is simply reflected back into outer space. If we
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Figure 10.26 A typical flat-plate solar collector.

were able to collect and use the remainder, 1.16×1014 kW, before it too
was reradiated to space, each of the 6 billion or so people on the planet
could each expect to use 19 kW. (This figure, of course, ignores all other
forms of life.) In the USA, total energy consumption in 2002 averages
roughly 3.2 × 109 kW, and, dividing this value into a population of 280
million people, one finds a per capita consumption of more than 11 kW.
While this is still below the 19 kW “renewable limit”, it should be noted
that only a tiny fraction of this energy comes from renewable sources and
that technology does not currently exist that would allow even a major
fraction of the renewable limit to be collected without massive environ-
mental damage.

There is little doubt that our short-term needs—during the next cen-
tury or so—can be met by our fossil fuel reserves. The continued use
of those fossil fuels is widely expected to amplify the well-documented
trend of global warming. Our long-term hope for an adequate energy
supply may be partially met using solar power. Nuclear fission remains
a promising option, if the difficult problems posed by nuclear waste can
be met. Nuclear fusion—the process by which we might manage to cre-
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ate mini-suns upon the earth—may also be a hope for the future. Under
almost any scenario, however, we will surely be forced to limit the con-
tinuing growth in our energy consumption.

Problems

10.1 What will ελ of the sun appear to be to an observer on the
earth’s surface at λ = 0.2 µm and 0.65 µm? How do these
emittances compare with the real emittances of the sun? [At
0.65 µm, ελ � 0.77.]

10.2 Plot eλb against λ for T = 300 K and 10,000 K with the help
of eqn. (1.30). About what fraction of energy from each black
body is visible?

10.3 A 0.6 mm diameter wire is drawn out through a mandril at
950◦C. Its emittance is 0.85. It then passes through a long
cylindrical shield of commercial aluminum sheet, 7 cm in di-
ameter. The shield is horizontal in still air at 25◦C. What is the
temperature of the shield? Is it reasonable to neglect natural
convection inside and radiation outside? [Tshield = 153◦C.]

10.4 A 1 ft2 shallow pan with adiabatic sides is filled to the brim with
water at 32◦F. It radiates to a night sky whose temperature is
360◦R, while a 50◦F breeze blows over it at 1.5 ft/s. Will the
water freeze or warm up?

10.5 A thermometer is held vertically in a room with air at 10◦C and
walls at 27◦C. What temperature will the thermometer read if
everything can be considered black? State your assumptions.

10.6 Rework Problem 10.5, taking the room to be wall-papered and
considering the thermometer to be nonblack.

10.7 Two thin aluminum plates, the first polished and the second
painted black, are placed horizontally outdoors, where they are
cooled by air at 10◦C. The heat transfer coefficient is 5 W/m2K
on both the top and the bottom. The top is irradiated with
750 W/m2 and it radiates to the sky at 170 K. The earth below
the plates is black at 10◦C. Find the equilibrium temperature
of each plate.
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10.8 A sample holder of 99% pure aluminum, 1 cm in diameter and
16 cm in length, protrudes from a small housing on an or-
bital space vehicle. The holder “sees” almost nothing but outer
space at an effective temperature of 30 K. The base of the hold-
ers is 0◦C and you must find the temperature of the sample at
its tip. It will help if you note that aluminum is used, so that
the temperature of the tip stays quite close to that of the root.
[Tend = −0.7◦C.]

10.9 There is a radiant heater in the bottom of the box shown in
Fig. 10.27. What percentage of the heat goes out the top? What
fraction impinges on each of the four sides? (Remember that
the percentages must add up to 100.)

Figure 10.27 Configuration for
Prob. 10.9.

10.10 With reference to Fig. 10.12, find F1–(2+4) and F(2+4)–1.

10.11 Find F2–4 for the surfaces shown in Fig. 10.28. [0.315.]

Figure 10.28 Configuration for
Prob. 10.11.

10.12 What is F1–2 for the squares shown in Fig. 10.29?
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Figure 10.29 Configuration for
Prob. 10.12.

10.13 A particular internal combustion engine has an exhaust mani-
fold at 600◦C running parallel to a water cooling line at 20◦C.
If both the manifold and the cooling line are 4 cm in diame-
ter, their centers are 7 cm apart, and both are approximately
black, how much heat will be transferred to the cooling line by
radiation? [383 W/m.]

10.14 Prove that F1–2 for any pair of two-dimensional plane surfaces,
as shown in Fig. 10.30, is equal to [(a + b) − (c + d)]/2L1.
This is called the string rule because we can imagine that the
numerator equals the difference between the lengths of a set
of crossed strings (a and b) and a set of uncrossed strings (c
and d).

Figure 10.30 Configuration for
Prob. 10.14.

10.15 Find F1–5 for the surfaces shown in Fig. 10.31.

10.16 Find F1–(2+3+4) for the surfaces shown in Fig. 10.32.

10.17 A cubic box 1 m on the side is black except for one side, which
has an emittance of 0.2 and is kept at 300◦C. An adjacent side
is kept at 500◦C. The other sides are insulated. FindQnet inside
the box. [2494 W.]

10.18 Rework Problem 10.17, but this time set the emittance of the
insulated walls equal to 0.6. Compare the insulated wall tem-
perature with the value you would get if the walls were black.

10.19 An insulated black cylinder, 10 cm in length and with an inside
diameter of 5 cm, has a black cap on one end and a cap with
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Figure 10.31 Configuration for
Prob. 10.15.

Figure 10.32 Configuration for
Prob. 10.16.

an emittance of 0.1 on the other. The black end is kept at
100◦C and the reflecting end is kept at 0◦C. Find Qnet inside
the cylinder and Tcylinder.

10.20 Rework Example 10.2 if the shield has an inside emittance of
0.34 and the room is at 20◦C. How much cooling must be pro-
vided to keep the shield at 100◦C?

10.21 A 0.8 m long cylindrical burning chamber is 0.2 m in diameter.
The hot gases within it are at a temperature of 1500◦C and a
pressure of 1 atm, and the absorbing components consist of
12% by volume of CO2 and 18% H2O. Neglect end effects and
determine how much cooling must be provided the walls to
hold them at 750◦C if they are black.
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10.22 A 30 ft by 40 ft house has a conventional 30◦ sloping roof with
a peak running in the 40 ft direction. Calculate the temper-
ature of the roof in 20◦C still air when the sun is overhead
(a) if the roofing is of wooden shingles and (b) if it is commer-
cial aluminum sheet. The incident solar energy is 670 W/m2,
Kirchhoff’s law applies for both roofs, and the effective sky
temperature is 22◦C.

10.23 Calculate the radiant heat transfer from a 0.2 m diameter stain-
less steel hemisphere (εss = 0.4) to a copper floor (εCu = 0.15)
that forms its base. The hemisphere is kept at 300◦C and the
base at 100◦C. Use the algebraic method. [21.24 W.]

10.24 A hemispherical indentation in a smooth wrought-iron plate
has an 0.008 m radius. How much heat radiates from the 40◦C
dent to the −20◦C surroundings?

10.25 A conical hole in a block of metal for which ε = 0.5 is 5 cm in
diameter at the surface and 5 cm deep. By what factor will the
radiation from the area of the hole be changed by the presence
of the hole? (This problem can be done to a close approxima-
tion using the methods in this chapter if the cone does not
become very deep and slender. If it does, then the fact that
the apex is receiving far less radiation makes it incorrect to
use the network analogy.)

10.26 A single-pane window in a large room is 4 ft wide and 6 ft high.
The room is kept at 70◦F, but the pane is at 67◦F owing to heat
loss to the colder outdoor air. Find (a) the heat transfer by
radiation to the window; (b) the heat transfer by natural con-
vection to the window; and (c) the fraction of heat transferred
to the window by radiation.

10.27 Suppose that the windowpane temperature is unknown in Prob-
lem 10.26. The outdoor air is at 40◦F and h is 62 W/m2K on the
outside of the window. It is nighttime and the effective tem-
perature of the sky is 15◦F. Assume Fwindow−sky = 0.5. Take
the rest of the surroundings to be at 40◦F. Find Twindow and
draw the analogous electrical circuit, giving numerical values
for all thermal resistances. Discuss the circuit. (It will simplify
your calculation to note that the window is opaque to infrared
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radiation but that it offers very little resistance to conduction.
Thus, the window temperature is almost uniform.)

10.28 A very effective low-temperature insulation is made by evacu-
ating the space between parallel metal sheets. Convection is
eliminated, conduction occurs only at spacers, and radiation
is responsible for what little heat transfer occurs. Calculate
q between 150 K and 100 K for three cases: (a) two sheets of
highly polished aluminum, (b) three sheets of highly polished
aluminum, and (c) three sheets of rolled sheet steel.

10.29 Three parallel black walls, 1 m wide, form an equilateral trian-
gle. One wall is held at 400 K, one is at 300 K, and the third is
insulated. Find Q W/m and the temperature of the third wall.

10.30 Two 1 cm diameter rods run parallel, with centers 4 cm apart.
One is at 1500 K and black. The other is unheated, and ε =
0.66. They are both encircled by a cylindrical black radiation
shield at 400 K. Evaluate Q W/m and the temperature of the
unheated rod.

10.31 A small-diameter heater is centered in a large cylindrical radi-
ation shield. Discuss the relative importance of the emittance
of the shield during specular and diffuse radiation.

10.32 Two 1 m wide commercial aluminum sheets are joined at a
120◦ angle along one edge. The back (or 240◦ angle) side is
insulated. The plates are both held at 120◦C. The 20◦C sur-
roundings are distant. What is the net radiant heat transfer
from the left-hand plate: to the right-hand side, and to the
surroundings?

10.33 Two parallel discs of 0.5 m diameter are separated by an infi-
nite parallel plate, midway between them, with a 0.2 m diame-
ter hole in it. The discs are centered on the hole. What is the
view factor between the two discs if they are 0.6 m apart?

10.34 An evacuated spherical cavity, 0.3 m in diameter in a zero-
gravity environment, is kept at 300◦C. Saturated steam at 1 atm
is then placed in the cavity. (a) What is the initial flux of radiant
heat transfer to the steam? (b) Determine how long it will take
for qconduction to become less than qradiation. (Correct for the
rising steam temperature if it is necessary to do so.)
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10.35 Verify cases (1), (2), and (3) in Table 10.2 using the string
method described in Problem 10.14.

10.36 Two long parallel heaters consist of 120◦ segments of 10 cm di-
ameter parallel cylinders whose centers are 20 cm apart. The
segments are those nearest each other, symmetrically placed
on the plane connecting their centers. Find F1–2 using the
string method described in Problem 10.14.)

10.37 Two long parallel strips of rolled sheet steel lie along sides of
an imaginary 1 m equilateral triangular cylinder. One piece is
1 m wide and kept at 20◦C. The other is 1

2 m wide, centered
in an adjacent leg, and kept at 400◦C. The surroundings are
distant and they are insulated. Find Qnet. (You will need a
shape factor; it can be found using the method described in
Problem 10.14.)

10.38 Find the shape factor from the hot to the cold strip in Prob-
lem 10.37 using Table 10.2, not the string method. If your
instructor asks you to do so, complete Problem 10.37 when
you have F1–2.

10.39 Prove that, as the figure becomes very long, the view factor
for the second case in Table 10.3 reduces to that given for the
third case in Table 10.2.

10.40 Show that F1–2 for the first case in Table 10.3 reduces to the
expected result when plates 1 and 2 are extended to infinity.

10.41 In Problem 2.26 you were asked to neglect radiation in showing
that q was equal to 8227 W/m2 as the result of conduction
alone. Discuss the validity of the assumption quantitatively.

10.42 A 100◦C sphere with ε = 0.86 is centered within a second
sphere at 300◦C with ε = 0.47. The outer diameter is 0.3 m
and the inner diameter is 0.1 m. What is the radiant heat flux?

10.43 Verify F1–2 for case 4 in Table 10.2. (Hint: This can be done
without integration.)

10.44 Consider the approximation made in eqn. (10.30) for a small
gray object in a large isothermal enclosure. How small must
A1/A2 be in order to introduce less than 10% error in F1–2 if
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the small object has an emittance of ε1 = 0.5 and the enclo-
sure is: a) commerical aluminum sheet; b) rolled sheet steel;
c) rough red brick; d) oxidized cast iron; or e) polished elec-
trolytic copper. Assume both the object and its environment
have temperatures of 40 to 90◦C.

10.45 Derive eqn. (10.42), starting with eqns. (10.36–10.38).

10.46 (a) Derive eqn. (10.31), which is for a single radiation shield
between two bodies. Include a sketch of the radiation net-
work. (b) Repeat the calculation in the case when two radia-
tion shields lie between body (1) and body (2), with the second
shield just outside the first.

10.47 Use eqn. (10.32) to find the net heat transfer from between two
specularly reflecting bodies that are separated by a specularly
reflecting radiation shield. Compare the result to eqn. (10.31).
Does specular reflection reduce the heat transfer?

10.48 Some values of the monochromatic absorption coefficient for
liquid water, as ρκλ (cm−1), are listed below [10.4]. For each
wavelength, find the thickness of a layer of water for which
the transmittance is 10%. On this basis, discuss the colors one
might see underwater and water’s infrared emittance.

λ (µm) ρκλ (cm−1) Color

0.3 0.0067
0.4 0.00058 violet
0.5 0.00025 green
0.6 0.0023 orange
0.8 0.0196
1.0 0.363
2.0 69.1

2.6–10.0 > 100.

10.49 The sun has a diameter of 1.391 × 106 km. The earth has a
diameter of 12,740 km and lies at a mean distance of 1.496×
108 km from the center of the sun. (a) If the earth is treated as a
flat disk normal to the radius from sun to earth, determine the
view factor Fsun–earth. (b) Use this view factor and the measured
solar irradiation of 1367 W/m2 to show that the effective black
body temperature of the sun is 5777 K.
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11. An introduction to mass transfer

The edge of a colossal jungle, so dark-green as to be almost black, fringed
with white surf, ran straight, like a ruled line, far, far away along a blue
sea whose glitter was blurred by a creeping mist. The sun was fierce, the
land seemed to glisten and drip with steam.

Heart of Darkness, Joseph Conrad, 1902

11.1 Introduction

We have, so far, dealt with heat transfer by convection, radiation, and
diffusion (which we have been calling conduction). We have dealt only
with situations in which heat passes through, or is carried by, a single
medium. Many heat transfer processes, however, occur in mixtures of
more than one substance. A wall exposed to a hot air stream may be
cooled evaporatively by bleeding water through its surface. Water vapor
may condense out of damp air onto cool surfaces. Heat will flow through
an air-water mixture in these situations, but water vapor will diffuse or
convect through air as well.

This sort of transport of one substance relative to another is called
mass transfer ; it did not occur in the single-component processes of the
preceding chapters. In this chapter, we study mass transfer phenomena
with an eye toward predicting heat and mass transfer rates in situations
like those just mentioned.

During mass transfer processes, an individual chemical species trav-
els from regions where it has a high concentration to regions where it has
a low concentration. When liquid water is exposed to a dry air stream, its
vapor pressure may produce a comparatively high concentration of wa-
ter vapor in the air near the water surface. The concentration difference
between the water vapor near the surface and that in the air stream will
drive the diffusion of vapor into the air stream. We call this evaporation.

597
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Figure 11.1 Schematic diagram of a natural-draft cooling
tower at the Rancho Seco nuclear power plant. (From [11.1],
courtesy of W. C. Reynolds.)

In this and other respects, mass transfer is analogous to heat trans-
fer. Just as thermal energy diffuses from regions of high temperature
to regions of low temperature (following the temperature gradient), the
mass of one species diffuses from regions high concentration to regions
of low concentration (following its concentration gradient.) Just as the
diffusional (or conductive) heat flux is directly proportional to a temper-
ature gradient, so the diffusional mass flux of a species is often directly
proportional to its concentration gradient; this is called Fick’s law of dif-
fusion. Just as conservation of energy and Fourier’s law lead to equations
for the convection and diffusion of heat, conservation of mass and Fick’s
law lead to equations for the convection and diffusion of species in a
mixture.

The great similarity of the equations of heat convection and diffusion
to those of mass convection and diffusion extends to the use of con-
vective mass transfer coefficients, which, like heat transfer coefficients,
relate convective fluxes to concentration differences. In fact, with sim-
ple modifications, the heat transfer coefficients of previous chapters may
often be applied to mass transfer calculations.
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Figure 11.2 A mechanical-draft cooling tower. The fans are
located within the cylindrical housings at the top. Air is drawn
in through the louvres on the side.

Mass transfer, by its very nature, is intimately concerned with mix-
tures of chemical species. We begin this chapter by learning how to quan-
tify the concentration of chemical species and by defining rates of move-
ment of species. We make frequent reference to an arbitrary “species i,”
the ith component of a mixture of N different species. These definitions
may remind you of your first course in chemistry. We also spend some
time, in Section 11.4, discussing how to calculate the transport properties
of mixtures, such as diffusion coefficients and viscosities.

Consider a typical technology that is dominated by mass transfer pro-
cesses. Figure 11.1 shows a huge cooling tower used to cool the water
leaving power plant condensers or other large heat exchangers. It is es-
sentially an empty shell, at the bottom of which are arrays of cement
boards or plastic louvres over which is sprayed the hot water to be cooled.
The hot water runs down this packing, and a small portion of it evapo-
rates into cool air that enters the tower from below. The remaining water,
having been cooled by the evaporation, falls to the bottom, where it is
collected and recirculated.

The temperature of the air rises as it absorbs the warm vapor and, in
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the natural-draft form of cooling tower shown, the upper portion of the
tower acts as an enormous chimney through which the warm, moist air
buoys, pulling in cool air at the base. In a mechanical-draft cooling tower,
fans are used to pull air through the packing. Mechanical-draft towers
are much shorter and can sometimes be seen on the roofs of buildings
(Fig. 11.2).

The working mass transfer process in a cooling tower is the evapora-
tion of water into air. The rate of evaporation depends on the tempera-
ture and humidity of the incoming air, the feed-water temperature, and
the air-flow characteristics of the tower and the packing. When the air
flow is buoyancy-driven, the flow rates are directly coupled. Thus, mass
transfer lies at the core of the complex design of a cooling tower.

11.2 Mixture compositions and species fluxes

The composition of mixtures

A mixture of various chemical species displays its own density, molecular
weight, and other overall thermodynamic properties. These properties
depend on the types and relative amounts of the component substances,
which may vary from point to point in the mixture. To determine the
local properties of a mixture, we must identify the local proportion of
each species composing the mixture.

One way to describe the amount of a particular species in a mixture is
by the mass of that species per unit volume, known as the partial density.
The mass of species i in a small volume of mixture, in kg, divided by that
volume, in m3, is the partial density, ρi, for that species, in kg of i per
m3. The composition of the mixture may be describe by stating the partial
density of each of its components. The mass density of the mixture itself,
ρ, is the total mass of all species per unit volume; therefore,

ρ =
∑
i
ρi (11.1)

The relative amount of species i in the mixture may be described by
the mass of i per unit mass of the mixture, which is simply ρi/ρ. This
ratio is called the mass fraction, mi:

mi ≡
ρi
ρ
= mass of species i

mass of mixture
(11.2)
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This definition leads to the following two results:∑
i
mi =

∑
i
ρi/ρ = 1 and 0 �mi � 1 (11.3)

The molar concentration of species i in kmol/m3, ci, expresses con-
centration in terms of moles rather than mass. If Mi is the molecular
weight of species i in kg/kmol, then

ci ≡
ρi
Mi

= moles of i
volume

(11.4)

The molar concentration of the mixture, c, is the total number of moles
for all species per unit volume; thus,

c =
∑
i
ci. (11.5)

The mole fraction of species i, xi, is the number of moles of i per mole
of mixture:

xi ≡
ci
c
= moles of i

mole of mixture
(11.6)

Just as for the mass fraction, it follows for mole fraction that∑
i
xi =

∑
i
ci/c = 1 and 0 � xi � 1 (11.7)

The molecular weight of the mixture is the number of kg of mixture
per kmol of mixture: M ≡ ρ/c. By using eqns. (11.1), (11.4), and (11.6)
and (11.5), (11.4), and (11.2), respectively, M may be written in terms of
either mole or mass fraction

M =
∑
i
xiMi or

1
M
=

∑
i

mi
Mi

(11.8)

Mole fraction may be converted to mass fraction using the following re-
lations (derived in Problem 11.1):

mi =
xiMi
M

= xiMi∑
k xkMk

and xi =
Mmi
Mi

= mi/Mi∑
kmk/Mk

(11.9)

In some circumstances, such as kinetic theory calculations, one works
directly with the number of molecules of i per unit volume. This number
density, Ni, is given by

Ni = NAci (11.10)

where NA is Avogadro’s number, 6.02214× 1026 molecules/kmol.
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Ideal gases

The relations we have developed so far involve densities and concentra-
tions that vary in as yet unknown ways with temperature or pressure. To
get a more useful, though more restrictive, set of results, we now com-
bine the preceding relations with the ideal gas law. For any individual
component, i, we may write the partial pressure, pi, exterted by i as:

pi = ρiRiT (11.11)

In eqn. (11.11), Ri is the ideal gas constant for species i:

Ri ≡
R◦

Mi
(11.12)

whereR◦ is the universal gas constant, 8314.472 J/kmol·K. Equation (11.11)
may alternatively be written in terms of ci:

pi = ρiRiT = (Mici)
(
R◦

Mi

)
T

= ci R◦T (11.13)

Equations (11.5) and (11.13) can be used to relate c to p and T

c =
∑
i
ci =

∑
i

pi
R◦T

= p
R◦T

(11.14)

Multiplying the last two parts of eqn. (11.14) by R◦T yields Dalton’s law
of partial pressures,1

p =
∑
i
pi (11.15)

Finally, we combine eqns. (11.6), (11.13), and (11.15) to obtain a very
useful relationship between xi and pi:

xi =
ci
c
= pi
c R◦T

= pi
p

(11.16)

in which the last two equalities are restricted to ideal gases.

1Dalton’s law (1801) is an empirical principle (not a deduced result) in classical
thermodynamics. It can be deduced from molecular principles, however. We built the
appropriate molecular principles into our development when we assumed eqn. (11.11)
to be true. The reason that eqn. (11.11) is true is that ideal gas molecules occupy a
mixture without influencing one another.
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Example 11.1

The most important mixture that we deal with is air. It has the fol-
lowing composition:

Species Mass Fraction

N2 0.7556
O2 0.2315
Ar 0.01289
trace gases < 0.01

Determine xO2, pO2, cO2, and ρO2 for air at 1 atm.

Solution. To make these calcuations, we need the molecular weights,
which are given in Table 11.2 on page 616. We can start by checking
the value of Mair, using the second of eqns. (11.8):

Mair =
(
mN2

MN2

+ mO2

MO2

+ mAr

MAr

)−1

=
(

0.7556
28.02 kg/kmol

+ 0.2315
32.00 kg/kmol

+ 0.01289
39.95 kg/kmol

)−1

= 28.97 kg/kmol

We may calculate the mole fraction using the second of eqns. (11.9)

xO2 =
mO2M
MO2

= (0.2315)(28.97 kg/kmol)
32.00 kg/kmol

= 0.2095

The partial pressure of oxygen in air at 1 atm is [eqn. (11.16)]

pO2 = xO2 p = (0.2095)(101,325 Pa) = 2.123× 104 Pa

We may now obtain cO2 from eqn. (11.13):

cO2 =
pO2

R◦T
= (2.123× 104 Pa)

/
(300 K)(8314.5 J/kmol·K)

= 0.008510 kmol/m3

Finally, eqn. (11.4) gives the partial density

ρO2 = cO2MO2 = (0.008510 kmol/m3)(32.00 kg/kmol)

= 0.2723 kg/m3
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Velocities and fluxes

Each species in a mixture undergoing a mass transfer process will have
an species-average velocity, �vi, which can be different for each species in
the mixture, as suggested by Fig. 11.3. We may obtain the mass-average
velocity,2 �v , for the entire mixture from the species average velocities
using the formula

ρ�v =
∑
i
ρi �vi. (11.17)

This equation is essentially a local calculation of the mixture’s net mo-
mentum per unit volume. We refer to ρ�v as the mixture’s mass flux, �n,
and we call its scalar magnitude ṁ′′; each has units of kg/m2·s. Likewise,
the mass flux of species i is

�ni = ρi�vi (11.18)

and, from eqn. (11.17), we see that the mixture’s mass flux equals the
sum of all species’ mass fluxes

�n =
∑
i
�ni = ρ�v (11.19)

Since each species diffusing through a mixture has some velocity rel-
ative to the mixture’s mass-average velocity, the diffusional mass flux, �ji,
of a species relative to the mixture’s mean flow may be identified:

�ji = ρi
(
�vi − �v

)
. (11.20)

The total mass flux of the ith species, �ni, includes both this diffusional
mass flux and bulk convection by the mean flow, as is easily shown:

�ni = ρi�vi = ρi�v + ρi
(
�vi − �v

)
= ρi�v + �ji
= mi�n︸ ︷︷ ︸

convection

+ �ji︸ ︷︷ ︸
diffusion

(11.21)

2The mass average velocity, �v , given by eqn. (11.17) is identical to the fluid velocity,
�u, used in previous chapters. This is apparent if one applies eqn. (11.17) to a “mix-
ture” composed of only one species. We use the symbol �v here because �v is the more
common notation in the mass transfer literature.
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Figure 11.3 Molecules of different
species in a mixture moving with
different average velocities. The velocity
�vi is the average over all molecules of
species i.

Although the convective transport contribution is fully determined as
soon as we know the velocity field and partial densities, the causes of
diffusion need further discussion, which we defer to Section 11.3.

Combining eqns. (11.19) and (11.21), we find that

�n =
∑
i
�ni =

∑
i
ρi �v +

∑
i

�ji = ρ�v +
∑
i

�ji = �n+
∑
i

�ji

Hence ∑
i

�ji = 0 (11.22)

Diffusional mass fluxes must sum to zero because they are each defined
relative to the mean mass flux.

Velocities may also be stated in molar terms. The mole flux of the
ith species, �Ni, is ci �vi, in kmol/m2 · s. The mixture’s mole flux, �N , is
obtained by summing over all species

�N =
∑
i

�Ni =
∑
i
ci �vi = c�v∗ (11.23)

where we define the mole-average velocity, �v∗, as shown. The last flux

we define is the diffusional mole flux, �Ji
∗

:

�J∗i = ci
(
�vi − �v∗

)
(11.24)
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It may be shown, using these definitions, that

�Ni = xi �N + �J∗i (11.25)

Substitution of eqn. (11.25) into eqn. (11.23) gives

�N =
∑
i

�Ni = �N
∑
i
xi +

∑
i

�J∗i = �N +
∑
i

�J∗i

so that ∑
i

�J∗i = 0. (11.26)

Thus, both the �J∗i ’s and the �ji’s sum to zero.

Example 11.2

At low temperatures, carbon oxidizes (burns) in air through the sur-
face reaction: C+O2 �→ CO2. Figure 11.4 shows the carbon-air in-
terface in a coordinate system that moves into the stationary carbon
at the same speed that the carbon burns away—as though the ob-
server were seated on the moving interface. Oxygen flows toward
the carbon surface and carbon dioxide flows away, with a net flow
of carbon through the interface. If the system is at steady state and,
if a separate analysis shows that carbon is consumed at the rate of
0.00241 kg/m2·s, find the mass and mole fluxes through an imagi-
nary surface, s, that stays close to the gas side of the interface. For
this case, concentrations at the s-surface turn out to bemO2,s = 0.20,
mCO2,s = 0.052, and ρs = 0.29 kg/m3.

Solution. The mass balance for the reaction is

12.0 kg C+ 32.0 kg O2 �→ 44.0 kg CO2

Since carbon flows through a second imaginary surface, u, moving
through the stationary carbon just below the interface, the mass fluxes
are related by

nC,u = −12
32
nO2,s =

12
44
nCO2,s

The minus sign arises because the O2 flow is opposite the C and CO2

flows, as shown in Figure 11.4. In steady state, if we apply mass
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Figure 11.4 Low-temperature carbon
oxidation.

conservation to the control volume between the u and s surfaces, we
find that the total mass flux entering theu-surface equals that leaving
the s-surface

nC,u = nCO2,s +nO2,s = 0.00241 kg/m2·s
Hence,

nO2,s = −32
12
(0.00241 kg/m2·s) = −0.00643 kg/m2·s

nCO2,s =
44
12
(0.00241 kg/m2·s) = 0.00884 kg/m2·s

To get the diffusional mass flux, we need species and mass average
speeds from eqns. (11.18) and (11.19):

vO2,s = nO2,s

ρO2,s
= −0.00643 kg/m2·s

0.2 (0.29 kg/m3)
= −0.111 m/s

vCO2,s =
nCO2,s

ρCO2,s
= 0.00884 kg/m2·s

0.052 (0.29 kg/m3)
= 0.586 m/s

vs = 1
ρs

∑
i
ni =

(0.00884− 0.00643) kg/m2·s
0.29 kg/m3

= 0.00831 m/s

Thus, from eqn. (11.20),

ji,s = ρi,s
(
vi,s − vs

) =

−0.00691 kg/m2·s for O2

0.00871 kg/m2·s for CO2
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The diffusional mass fluxes, ji,s , are very nearly equal to the species
mass fluxes, ni,s . That is because the mass-average speed, vs , ismuch
less than the species speeds, vi,s , in this case. Thus, the convective
contribution to ni,s is much smaller than the diffusive contribution,
and mass transfer occurs primarily by diffusion. Note that jO2,s and
jCO2,s do not sum to zero because the other, nonreacting species in
air must diffuse against the small convective velocity, vs (see Sec-
tion 11.7).

One mole of carbon surface reacts with one mole of O2 to form
one mole of CO2. Thus, the mole fluxes of each species have the same
magnitude at the interface:

NCO2,s = −NO2,s = NC,u =
nC,u

MC
= 0.000201 kmol/m2·s

The mole average velocity at the s-surface, v∗s , is identically zero by
eqn. (11.23), since NCO2,s +NO2,s = 0. The diffusional mole fluxes are

J∗i,s = ci,s
(
vi,s − v∗s︸︷︷︸

=0

) = Ni,s =

−0.000201 kmol/m2·s for O2

0.000201 kmol/m2·s for CO2

These two diffusional mole fluxes sum to zero themselves because
there is no convective mole flux for other species to diffuse against
(i.e., for the other species J∗i,s = 0).

The reader may calculate the velocity of the interface from nc,u.
That calculation would show the interface to be receding so slowly
that the velocities we calculate are almost equal to those that would
be seen by a stationary observer.

11.3 Diffusion fluxes and Fick’s law

When the composition of a mixture is nonuniform, the concentration
gradient in any species, i, of the mixture provides a driving potential for
the diffusion of that species. It flows from regions of high concentration
to regions of low concentration—similar to the diffusion of heat from
regions of high temperature to regions of low temperature. We have
already noted in Section 2.1 that mass diffusion obeys Fick’s law

�ji = −ρDim∇mi (11.27)
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which is analogous to Fourier’s law.

The constant of proportionality, ρDim, between the local diffusive
mass flux of species i and the local concentration gradient of i involves
a physical property called the diffusion coefficient, Dim, for species i dif-
fusing in the mixturem. Like the thermal diffusivity, α, or the kinematic
viscosity (a momentum diffusivity), ν , the mass diffusivity Dim has the
units of m2/s. These three diffusivities can form three dimensionless
groups, among which is the Prandtl number:

The Prandtl number, Pr ≡ ν/α
The Schmidt number,3 Sc ≡ ν/Dim (11.28)

The Lewis number,4 Le ≡ α/Dim = Sc/Pr

Each of these groups compares the relative strength of two different dif-
fusive processes. We make considerable use of the Schmidt number later
in this chapter.

When diffusion occurs in mixtures of only two species—so-called bi-
nary mixtures—Dim reduces to the binary diffusion coefficient, D12. In
fact, the best-known kinetic models are for binary diffusion.5 In binary
diffusion, species 1 has the same diffusivity through species 2 as does
species 2 through species 1 (see Problem 11.5); in other words,

D12 = D21 (11.29)

3Ernst Schmidt (1892–1975) served successively as the professor of thermodynam-
ics at the Technical Universities of Danzig, Braunschweig, and Munich (Chapter 6, foot-
note 3). His many contributions to heat and mass transfer include the introduction of
aluminum foil as radiation shielding, the first measurements of velocity and temper-
ature fields in a natural convection boundary layer, and a once widely-used graphical
procedure for solving unsteady heat conduction problems. He was among the first to
develop the analogy between heat and mass transfer.

4Warren K. Lewis (1882–1975) was a professor of chemical engineering at M.I.T. from
1910 to 1975 and headed the department throughout the 1920s. He defined the original
paradigm of chemical engineering, that of “unit operations”, and, through his textbook
with Walker and McAdams, Principles of Chemical Engineering, he laid the foundations
of the discipline. He was a prolific inventor in the area of industrial chemistry, holding
more than 80 patents. He also did important early work on simultaneous heat and
mass transfer in connection with evaporation problems.

5Actually, Fick’s Law is strictly valid only for binary mixtures. It can, however, of-
ten be applied to multicomponent mixtures with an appropriate choice of Dim (see
Section 11.4).
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A kinetic model of diffusion

Diffusion coefficients depend upon composition, temperature, and pres-
sure. Equations that predict D12 and Dim are given in Section 11.4. For
now, let us see how Fick’s law arises from the same sort of elementary
molecular kinetics that gave Fourier’s and Newton’s laws in Section 6.4.

We consider a two-component dilute gas (one with a low density) in
which the moleculesA of one species are very similar to the moleculesA′

of a second species (as though some of the molecules of a pure gas had
merely been labeled without changing their properties.) The resulting
process is called self-diffusion.

If we have a one-dimensional concentration distribution, as shown in
Fig. 11.5, molecules of A diffuse down their concentration gradient in
the x-direction. This process is entirely analogous to the transport of
energy and momentum shown in Fig. 6.13. We take the temperature and
pressure of the mixture (and thus its number density) to be uniform and
the mass-average velocity to be zero.

Individual molecules move at a speed C , which varies randomly from
molecule to molecule and is called the thermal or peculiar speed. The
average speed of the molecules is C . The average rate at which molecules
cross the plane x = x0 in either direction is proportional to NC , where
N is the number density (molecules/m3). Prior to crossing the x0-plane,
the molecules travel a distance close to one mean free path, �—call it a�,
where a is a number on the order of one.

The molecular flux travelling rightward across x0, from its plane of
origin at x0−a�, then has a fraction of molecules of A equal to the value
of NA/N at x0 − a�. The leftward flux, from x0 + a�, has a fraction
equal to the value of NA/N at x0 +a�. Since the mass of a molecule of
A is MA/NA (where NA is Avogadro’s number), the net mass flux in the
x-direction is then

jA
∣∣∣
x0
= η

(
NC

)(
MA
NA

)(
NA

N

∣∣∣∣
x0−a�

− NA

N

∣∣∣∣
x0+a�

)
(11.30)

where η is a constant of proportionality. SinceNA/N changes little in a
distance of two mean free paths (in most real situations), we can expand
the right side of eqn. (11.30) in a two-term Taylor series expansion about
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Figure 11.5 One-dimensional diffusion.

x0 and obtain Fick’s law:

jA
∣∣∣
x0
= η

(
NC

)(
MA
NA

)(
−2a�

d(NA/N )
dx

∣∣∣∣
x0

)

= −2ηa(C�)ρ
dmA

dx

∣∣∣∣
x0

(11.31)

(for details, see Problem 11.6). Thus, we identify

DAA′ = (2ηa)C� (11.32)

and Fick’s law takes the form

jA = −ρDAA′ dmA

dx
(11.33)

The constant, ηa, in eqn. (11.32) can be fixed only with the help of a more
detailed kinetic theory calculation [11.2], the result of which is given in
Section 11.4.

The choice of ji andmi for the description of diffusion is really some-
what arbitrary. The molar diffusion flux, J∗i , and the mole fraction, xi,
are often used instead, in which case Fick’s law reads

�Ji
∗ = −cDim∇xi (11.34)

Obtaining eqn. (11.34) from eqn. (11.27) for a binary mixture is left as an
exercise (Problem 11.4).



612 An introduction to mass transfer §11.3

Typical values of the diffusion coefficient

Fick’s law works well in low density gases and in dilute liquid and solid
solutions, but for concetrated liquid and solid solutions the diffusion co-
efficient is found to vary with the concentration of the diffusing species.
In part, the concentration dependence of those diffusion coefficients re-
flects the inadequacy of the concentration gradient in representing the
driving force for diffusion in nondilute solutions. Gradients in the chem-
ical potential actually drive diffusion. In concentrated liquid or solid
solutions, chemical potential gradients are not always equivalent to con-
centration gradients [11.3, 11.4, 11.5].

Table 11.1 lists some experimental values of the diffusion coefficient
in binary gas mixtures and dilute liquid solutions. For gases, the diffu-
sion coefficient is typically on the order of 10−5 m2/s near room tem-
perature. For liquids, the diffusion coefficient is much smaller, on the
order of 10−9 m2/s near room temperature. For both liquids and gases,
the diffusion coefficient rises with increasing temperature. Typical dif-
fusion coefficients in solids (not listed) may range from about 10−20 to
about 10−9 m2/s, depending upon what substances are involved and the
temperature [11.6].

The diffusion of water vapor through air is of particular technical
importance, and it is therefore useful to have an empirical correlation
specifically for that mixture:

DH2O,air = 1.87× 10−10

(
T 2.072

p

)
for 282 K ≤ T ≤ 450 K (11.35)

whereDH2O,air is in m2/s, T is in kelvin, and p is in atm [11.7]. The scatter
of the available data around this equation is about 10%.

Coupled diffusion phenomena

Mass diffusion can be driven by factors other than concentration gradi-
ents, although the latter are of primary importance. For example, tem-
perature gradients can induce mass diffusion in a process known as ther-
mal diffusion or the Soret effect. The diffusional mass flux resulting from
both temperature and concentration gradients in a binary gas mixture is
then [11.2]

�ji = −ρD12

[
∇m1 + M1M2

M2
kT∇ ln(T)

]
(11.36)
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Table 11.1 Typical diffusion coefficients for binary gas mix-
tures at 1 atm and dilute liquid solutions [11.4].

Gas mixture T (K) D12 (m2/s)

air-carbon dioxide 276 1.42×10−5

air-ethanol 313 1.45

air-helium 276 6.24

air-napthalene 303 0.86

air-water 313 2.88

argon-helium 295 8.3
628 32.1

1068 81.0

(dilute solute, 1)-(liquid solvent, 2) T (K) D12 (m2/s)

ethanol-benzene 288 2.25×10−9

benzene-ethanol 298 1.81

water-ethanol 298 1.24

carbon dioxide-water 298 2.00

ethanol-water 288 1.00

methane-water 275 0.85
333 3.55

pyridene-water 288 0.58

where kT is called the thermal diffusion ratio and is generally quite small.
Thermal diffusion is occasionally used in chemical separation processes.
Pressure gradients and body forces acting unequally on the different
species can also cause diffusion. Again, these effects are normally small.
A related phenomenon is the generation of a heat flux by a concentration
gradient (as distinct from heat convected by diffusing mass), called the
diffusion-thermo or Dufour effect.

In this chapter, we deal only with mass transfer produced by concen-
tration gradients.
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11.4 Transport properties of mixtures6

Direct measurements of mixture transport properties are not always avail-
able for the temperature, pressure, or composition of interest. Thus, we
must often rely upon theoretical predictions or experimental correlations
for estimating mixture properties. In this section, we discuss methods
for computing Dim, k, and µ in gas mixtures using equations from ki-
netic theory—particularly the Chapman-Enskog theory [11.2, 11.8, 11.9].
We also consider some methods for computingD12 in dilute liquid solu-
tions.

The diffusion coefficient for binary gas mixtures

As a starting point, we return to our simple model for the self-diffusion
coefficient of a dilute gas, eqn. (11.32). We can approximate the average
molecular speed, C , by Maxwell’s equilibrium formula (see, e.g., [11.9]):

C =
(

8kBNAT
πM

)1/2
(11.37)

where kB = R◦/NA is Boltzmann’s constant. If we assume the molecules
to be rigid and spherical, then the mean free path turns out to be

� = 1

π
√

2Nd2
= kBT
π
√

2d2p
(11.38)

where d is the effective molecular diameter. Substituting these values
of C and � in eqn. (11.32) and applying a kinetic theory calculation that
shows 2ηa = 1/2, we find

DAA′ = (2ηa)C�

= (kB/π)3/2

d2

(
NA
M

)1/2 T 3/2

p
(11.39)

The diffusion coefficient varies as p−1 and T 3/2, based on the simple
model for self-diffusion.

To get a more accurate result, we must take account of the fact that
molecules are not really hard spheres. We also have to allow for differ-
ences in the molecular sizes of different species and for nonuniformities

6This section may be omitted without loss of continuity. The property predictions
of this section are used only in Examples 11.11, 11.14, and 11.16, and in some of the
end-of-chapter problems.
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Figure 11.6 The Lennard-Jones
potential.

in the bulk properties of the gas. The Chapman-Enskog kinetic theory
takes all these factors into account [11.8], resulting in the following for-
mula for DAB :

DAB = (1.8583× 10−7)T 3/2

pΩABD (T)

√
1
MA

+ 1
MB

where the units of p, T , and DAB are atm, K, and m2/s, respectively. The
function ΩABD (T) describes the collisions between molecules of A and B.
It depends, in general, on the specific type of molecules involved and the
temperature.

The type of molecule matters because of the intermolecular forces
of attraction and repulsion that arise when molecules collide. A good
approximation to those forces is given by the Lennard-Jones intermolec-
ular potential (see Fig. 11.6.) This potential is based on two parameters,
a molecular diameter, σ , and a potential well depth, ε. The potential well
depth is the energy required to separate two molecules from one another.
Both constants can be inferred from physical property data. Some values
are given in Table 11.2 together with the associated molecular weights
(from [11.10], with values for calculating the diffusion coefficients of wa-
ter from [11.11]).
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Table 11.2 Lennard-Jones constants and molecular weights of
selected species.

Species σ(Å) ε/kB(K) M
(

kg
kmol

)
Species σ(Å) ε/kB(K) M

(
kg

kmol

)

Al 2.655 2750 26.98 H2 2.827 59.7 2.016
Air 3.711 78.6 28.96 H2O 2.655a 363a 18.02
Ar 3.542 93.3 39.95 H2O 2.641b 809.1b

Br2 4.296 507.9 159.8 H2O2 4.196 289.3 34.01
C 3.385 30.6 12.01 H2S 3.623 301.1 34.08
CCl2F2 5.25 253 120.9 He 2.551 10.22 4.003
CCl4 5.947 322.7 153.8 Hg 2.969 750 200.6
CH3OH 3.626 481.8 32.04 I2 5.160 474.2 253.8
CH4 3.758 148.6 16.04 Kr 3.655 178.9 83.80
CN 3.856 75.0 26.02 Mg 2.926 1614 24.31
CO 3.690 91.7 28.01 NH3 2.900 558.3 17.03
CO2 3.941 195.2 44.01 N2 3.798 71.4 28.01
C2H6 4.443 215.7 30.07 N2O 3.828 232.4 44.01
C2H5OH 4.530 362.6 46.07 Ne 2.820 32.8 20.18
CH3COCH3 4.600 560.2 58.08 O2 3.467 106.7 32.00
C6H6 5.349 412.3 78.11 SO2 4.112 335.4 64.06
Cl2 4.217 316.0 70.91 Xe 4.047 231.0 131.3
F2 3.357 112.6 38.00

a Based on mass diffusion data.
b Based on viscosity and thermal conductivity data.

An accurate approximation to ΩABD (T) can be obtained using the Len-
nard-Jones potential function. The result is

ΩABD (T) = σ2
AB ΩD

(
kBT

/
εAB

)
where, the collision diameter, σAB , may be viewed as an effective molecu-
lar diameter for collisions ofA and B. If σA and σB are the cross-sectional
diameters of A and B, in Å,7 then

σAB = (σA + σB)
/
2 (11.40)

The collision integral, ΩD is a result of kinetic theory calculations calcu-
lations based on the Lennard-Jones potential. Table 11.3 gives values of

7One Ångström (1 Å) is equal to 0.1 nm.
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ΩD from [11.12]. The effective potential well depth for collisions of A
and B is

εAB =
√
εAεB (11.41)

Hence, we may calculate the binary diffusion coefficient from

DAB = (1.8583× 10−7)T 3/2

pσ2
ABΩD

√
1
MA

+ 1
MB

(11.42)

where, again, the units of p, T , and DAB are atm, K, and m2/s, respec-
tively, and σAB is in Å.

Equation (11.42) indicates that the diffusivity varies as p−1 and is in-
dependent of mixture concentrations, just as the simple model indicated
that it should. The temperature dependence of ΩD, however, increases
the overall temperature dependence of DAB from T 3/2, as suggested by
eqn. (11.39), to approximately T 7/4.

Air, by the way, can be treated as a single substance in Table 11.2
owing to the similarity of its two main constituents, N2 and O2.

Example 11.3

ComputeDAB for the diffusion of hydrogen in air at 276 K and 1 atm.

Solution. Let air be species A and H2 be species B. Then we read
from Table 11.2

σA = 3.711 Å, σB = 2.827 Å,
εA
kB
= 78.6 K,

εB
kB
= 59.7 K

and calculate these values

σAB = (3.711+ 2.827)/2 = 3.269 Å

εAB
/
kB =

√
(78.6)(59.7) = 68.5 K

Hence, kBT/εAB = 4.029, and ΩD = 0.8822 from Table 11.3. Then

DAB = (1.8583× 10−7)(276)3/2

(1)(3.269)2(0.8822)

√
1

2.016
+ 1

28.97
m2/s

= 6.58× 10−5 m2/s

An experimental value from Table 11.1 is 6.34 × 10−5 m2/s, so the
prediction is high by 5%.



Table 11.3 Collision integrals for diffusivity, viscosity, and
thermal conductivity based on the Lennard-Jones potential.

kBT/ε ΩD Ωµ = Ωk kBT/ε ΩD Ωµ = Ωk

0.30 2.662 2.785 2.70 0.9770 1.069
0.35 2.476 2.628 2.80 0.9672 1.058
0.40 2.318 2.492 2.90 0.9576 1.048
0.45 2.184 2.368 3.00 0.9490 1.039
0.50 2.066 2.257 3.10 0.9406 1.030
0.55 1.966 2.156 3.20 0.9328 1.022
0.60 1.877 2.065 3.30 0.9256 1.014
0.65 1.798 1.982 3.40 0.9186 1.007
0.70 1.729 1.908 3.50 0.9120 0.9999
0.75 1.667 1.841 3.60 0.9058 0.9932
0.80 1.612 1.780 3.70 0.8998 0.9870
0.85 1.562 1.725 3.80 0.8942 0.9811
0.90 1.517 1.675 3.90 0.8888 0.9755
0.95 1.476 1.629 4.00 0.8836 0.9700
1.00 1.439 1.587 4.10 0.8788 0.9649
1.05 1.406 1.549 4.20 0.8740 0.9600
1.10 1.375 1.514 4.30 0.8694 0.9553
1.15 1.346 1.482 4.40 0.8652 0.9507
1.20 1.320 1.452 4.50 0.8610 0.9464
1.25 1.296 1.424 4.60 0.8568 0.9422
1.30 1.273 1.399 4.70 0.8530 0.9382
1.35 1.253 1.375 4.80 0.8492 0.9343
1.40 1.233 1.353 4.90 0.8456 0.9305
1.45 1.215 1.333 5.00 0.8422 0.9269
1.50 1.198 1.314 6.00 0.8124 0.8963
1.55 1.182 1.296 7.0 0.7896 0.8727
1.60 1.167 1.279 8.0 0.7712 0.8538
1.65 1.153 1.264 9.0 0.7556 0.8379
1.70 1.140 1.248 10.0 0.7424 0.8242
1.75 1.128 1.234 20.0 0.6640 0.7432
1.80 1.116 1.221 30.0 0.6232 0.7005
1.85 1.105 1.209 40.0 0.5960 0.6718
1.90 1.094 1.197 50.0 0.5756 0.6504
1.95 1.084 1.186 60.0 0.5596 0.6335
2.00 1.075 1.175 70.0 0.5464 0.6194
2.10 1.057 1.156 80.0 0.5352 0.6076
2.20 1.041 1.138 90.0 0.5256 0.5973
2.30 1.026 1.122 100.0 0.5170 0.5882
2.40 1.012 1.107 200.0 0.4644 0.5320
2.50 0.9996 1.093 300.0 0.4360 0.5016
2.60 0.9878 1.081 400.0 0.4172 0.4811

618
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Limitations of the diffusion coefficient prediction. Equation (11.42) is
not valid for all gas mixtures. We have already noted that concentration
gradients cannot be too steep; thus, it cannot be applied in, say, the
interior of a shock wave when the Mach number is significantly greater
than unity. Furthermore, the gas must be dilute, and its molecules should
be, in theory, nonpolar and approximately spherically symmetric.

Reid et al. [11.4] compared values ofD12 calculated using eqn. (11.42)
with data for binary mixtures of monatomic, polyatomic, nonpolar, and
polar gases of the sort appearing in Table 11.2. They reported an average
absolute error of 7.3 percent. Better results can be obtained by using
values of σAB and εAB that have been fit specifically to the pair of gases
involved, rather than using eqns. (11.40) and (11.41), or by constructing
a mixture-specific equation for ΩABD (T) [11.13, Chap. 11].

The density of the gas also affects the accuracy of kinetic theory pre-
dictions, which require the gas to be dilute in the sense that its molecules
interact with one another only during brief two-molecule collisions. Childs
and Hanley [11.14] have suggested that the transport properties of gases
are within 1% of the dilute values if the gas densities do not exceed the
following limiting value

ρmax = 22.93M
/
(σ3Ωµ) (11.43)

Here, σ (the collision diameter of the gas) and ρ are expressed in Å and
kg/m3, and Ωµ—a second collision integral for viscosity—is included in
Table 11.3. Equation (11.43) normally gives ρmax values that correspond
to pressures substantially above 1 atm.

At higher gas densities, transport properties can be estimated by a
variety of techniques, such as corresponding states theories, absolute
reaction-rate theories, or modified Enskog theories [11.13, Chap. 6] (also
see [11.4, 11.8]). Conversely, if the gas density is so very low that the
mean free path is on the order of the dimensions of the system, we have
what is called free molecule flow, and the present kinetic models are again
invalid (see, e.g., [11.15]).

Diffusion coefficients for multicomponent gases

We have already noted that an effective binary diffusivity, Dim, can be
used to represent the diffusion of species i into a mixture m. The pre-
ceding equations for the diffusion coefficient, however, are strictly appli-
cable only when one pure substance diffuses through another. Different
equations are needed when there are three or more species present.
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If a low concentration of species i diffuses into a homogeneous mix-

ture of n species, then �Jj
∗ � 0 for j ≠ i, and one may show (Prob-

lem 11.14) that

D−1
im =

n∑
j=1
j≠i

xj
Dij

(11.44)

where Dij is the binary diffusion coefficient for species i and j alone.
This rule is sometimes called Blanc’s law [11.4].

If a mixture is dominantly composed of one species, A, and includes
only small traces of several other species, then the diffusion coefficient
of each trace gas is approximately the same as it would be if the other
trace gases were not present. In other words, for any particular trace
species i,

Dim � DiA (11.45)

Finally, if the binary diffusion coefficient has the same value for each
pair of species in a mixture, then one may show (Problem 11.14) that
Dim = Dij , as one might expect.

Diffusion coefficients for binary liquid mixtures

Each molecule in a liquid is always in contact with several neighboring
molecules, and a kinetic theory like that used in gases, which relies on
detailed descriptions of two-molecule collisions, is no longer feasible.
Instead, a less precise theory can be developed and used to correlate
experimental measurements.

For a dilute solution of substance A in liquid B, the so-called hydro-
dynamic model has met some success. Suppose that, when a force per
molecule of FA is applied to molecules of A, they reach an average steady
speed of vA relative to the liquid B. The ratio vA/FA is called the mobil-
ity of A. If there is no applied force, then the molecules of A diffuse
as a result of random molecular motions (which we call Brownian mo-
tion). Kinetic and thermodynamic arguments, such as those given by
Einstein [11.16] and Sutherland [11.17], lead to an expression for the dif-
fusion coefficient of A in B as a result of Brownian motion:

DAB = kBT (vA/FA) (11.46)

Equation (11.46) is usually called the Nernst-Einstein equation.
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To evaluate the mobility of a molecular (or particulate) solute, we
may make the rather bold approximation that Stokes’ law [11.18] applies,
even though it is really a drag law for spheres at low Reynolds number
(ReD < 1)

FA = 6πµBvARA

(
1+ 2µB/βRA
1+ 3µB/βRA

)
(11.47)

Here, RA is the radius of sphere A and β is a coefficient of “sliding”
friction, for a friction force proportional to the velocity. Substituting
eqn. (11.47) in eqn. (11.46), we get

DABµB
T

= kB

6πRA

(
1+ 3µB/βRA
1+ 2µB/βRA

)
(11.48)

This model is valid if the concentration of solute A is so low that the
molecules of A do not interact with one another.

For viscous liquids one usually assumes that no slip occurs between
the liquid and a solid surface that it touches; but, for particles whose size
is on the order of the molecular spacing of the solvent molecules, some
slip may very well occur. This is the reason for the unfamiliar factor in
parentheses on the right side of eqn. (11.47). For large solute particles,
there should be no slip, so β �→ ∞ and the factor in parentheses tends
to one, as expected. Equation (11.48) then reduces to8

DABµB
T

= kB

6πRA
(11.49a)

For smaller molecules—close in size to those of the solvent—we expect
that β �→ 0, leading to [11.19]

DABµB
T

= kB

4πRA
(11.49b)

The most important feature of eqns. (11.48), (11.49a), and (11.49b)
is that, so long as the solute is dilute, the primary determinant of the
groupDµ/T is the size of the diffusing species, with a secondary depen-
dence on intermolecular forces (i.e., on β). More complex theories, such

8Equation (11.49a) was first presented by Einstein in May 1905. The more general
form, eqn. (11.48), was presented independently by Sutherland in June 1905. Equa-
tions (11.48) and (11.49a) are commonly called the Stokes-Einstein equation, although
Stokes had no hand in applying eqn. (11.47) to diffusion. It might therefore be argued
that eqn. (11.48) should be called the Sutherland-Einstein equation.
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Table 11.4 Molal specific volumes and latent heats of vapor-
ization for selected substances at their normal boiling points.

Substance Vm (m3/kmol) hfg(MJ/kmol)

Methanol 0.042 35.53
Ethanol 0.064 39.33
n-Propanol 0.081 41.97
Isopropanol 0.072 40.71
n-Butanol 0.103 43.76
tert -Butanol 0.103 40.63
n-Pentane 0.118 25.61
Cyclopentane 0.100 27.32
Isopentane 0.118 24.73
Neopentane 0.118 22.72
n-Hexane 0.141 28.85
Cyclohexane 0.117 33.03
n-Heptane 0.163 31.69
n-Octane 0.185 34.14
n-Nonane 0.207 36.53
n-Decane 0.229 39.33
Acetone 0.074 28.90
Benzene 0.096 30.76
Carbon tetrachloride 0.102 29.93
Ethyl bromide 0.075 27.41
Nitromethane 0.056 25.44
Water 0.0187 40.62

as the absolute reaction-rate theory of Eyring [11.20], lead to the same
dependence. Moreover, experimental studies of dilute solutions verify
that the group Dµ/T is essentially temperature-independent for a given
solute-solvent pair, with the only exception occuring in very high viscos-
ity solutions. Thus, most correlations of experimental data have used
some form of eqn. (11.48) as a starting point.

Many such correlations have been developed. One fairly successful
correlation is due to King et al. [11.21]. They expressed the molecular size
in terms of molal volumes at the normal boiling point, Vm,A and Vm,B , and
accounted for intermolecular association forces using the latent heats of
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Figure 11.7 Comparison of liquid diffusion coefficients pre-
dicted by eqn. (11.50) with experimental values for assorted
substances from [11.4].

vaporization at the normal boiling point, hfg,A and hfg,B . They obtained

DABµB
T

= (4.4× 10−15)
(
Vm,B
Vm,A

)1/6 (
hfg,B
hfg,A

)1/2

(11.50)

which has an rms error of 19.5% and for which the units ofDABµB/T are
kg·m/K·s2. Values of hfg and Vm are given for various substances in Ta-
ble 11.4. Equation (11.50) is valid for nonelectrolytes at high dilution, and
it appears to be satisfactory for both polar and nonpolar substances. The
difficulties with polar solvents of high viscosity led the authors to limit
eqn. (11.50) to values ofDµ/T < 1.5×10−14 kg·m/K·s2. The predictions
of eqn. (11.50) are compared with experimental data in Fig. 11.7. Reid et
al. [11.4] review several other liquid-phase correlations and provide an
assessment of their accuracies.
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The thermal conductivity and viscosity of dilute gases

In any convective mass transfer problem, we must know the viscosity of
the fluid and, if heat is also being transferred, we must also know its
thermal conductivity. Accordingly, we now consider the calculation of µ
and k for mixtures of gases.

Two of the most important results of the kinetic theory of gases are
the predictions of µ and k for a pure, monatomic gas of species A:

µA =
(
2.6693× 10−6

) √
MAT
σ2
AΩµ

(11.51)

and

kA = 0.083228

σ2
AΩk

√
T
MA

(11.52)

where Ωµ and Ωk are collision integrals for the viscosity and thermal
conductivity. In fact, Ωµ and Ωk are equal to one another, but they are
different from ΩD. In these equations µ is in kg/m·s, k is in W/m·K, T is
in kelvin, and σA again has units of Å.

The equation for µA applies equally well to polyatomic gases, but
kA must be corrected to account for internal modes of energy storage—
chiefly molecular rotation and vibration. Eucken (see, e.g., [11.9]) gave a
simple analysis showing that this correction was

k =
(

9γ − 5
4γ

)
µcp (11.53)

for an ideal gas, where γ ≡ cp/cv . You may recall from your thermo-
dynamics courses that γ is 5/3 for monatomic gases, 7/5 for diatomic
gases at modest temperatures, and approaches unity for very complex
molecules. Equation (11.53) should be used with tabulated data for cp;
on average, it will underpredict k by perhaps 10 to 20% [11.4].

An approximate formula for µ for multicomponent gas mixtures was
developed by Wilke [11.22], based on the kinetic theory of gases. He in-
troduced certain simplifying assumptions and obtained, for the mixture
viscosity,

µm =
n∑
i=1

xiµi
n∑
j=1
xjφij

(11.54)
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where

φij =
[
1+ (µi/µj)1/2(Mj/Mi)1/4

]2

2
√

2
[
1+ (Mi/Mj)

]1/2

The analogous equation for the thermal conductivity of mixtures was
developed by Mason and Saxena [11.23]:

km =
n∑
i=1

xiki
n∑
j=1
xjφij

(11.55)

(We have followed [11.4] in omitting a minor empirical correction factor
proposed by Mason and Saxena.)

Equation (11.54) is accurate to about 2 % and eqn. (11.55) to about 4%
for mixtures of nonpolar gases. For higher accuracy or for mixtures with
polar components, refer to [11.4] and [11.13].

Example 11.4

Compute the transport properties of normal air at 300 K.

Solution. The mass composition of air was given in Example 11.1.
Using the methods of Example 11.1, we obtain the mole fractions as
xN2 = 0.7808, xO2 = 0.2095, and xAr = 0.0093.

We first compute µ and k for the three species to illustrate the use
of eqns. (11.51) to (11.53), although we could simply use tabled data
in eqns. (11.54) and (11.55). From Tables 11.2 and 11.3, we obtain

Species σ(Å) ε/kB(K) M Ωµ

N2 3.798 71.4 28.02 0.9599
O2 3.467 106.7 32.00 1.057
Ar 3.542 93.3 39.95 1.021

Substitution of these values into eqn. (11.51) yields
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Species µcalc(kg/m·s) µdata(kg/m·s)
N2 1.767× 10−5 1.80× 10−5

O2 2.059× 10−5 2.07× 10−5

Ar 2.281× 10−5 2.29× 10−5

where we show data from Appendix A (Table A.6) for comparison. We
then read cp from Appendix A and use eqn. (11.52) and (11.53) to get
the thermal conductivities of the components:

Species cp(J/kg·K) kcalc(W/m·K) kdata(W/m·K)
N2 1041. 0.02500 0.0260
O2 919.9 0.02569 0.02615
Ar 521.5 0.01782 0.01787

The predictions thus agree with the data to within about 2% for µ and
within about 4% for k.

To compute µm and km, we use eqns. (11.54) and (11.55) and the
tabulated values of µ and k. Identifying N2, O2, and Ar as species 1,
2, and 3, we get

φ12 = 0.9894, φ21 = 1.010

φ13 = 1.043, φ31 = 0.9445

φ23 = 1.058, φ32 = 0.9391

and φii = 1. The sums appearing in the denominators are

∑
xjφij =




0.9978 for i = 1

1.008 for i = 2

0.9435 for i = 3

When they are substituted in eqns. (11.54) and (11.55), these values
give

µm,calc = 1.861× 10−5 kg/m·s, µm,data = 1.857× 10−5 kg/m·s
km,calc = 0.02596 W/m·K, km,data = 0.02623 W/m·K

so the mixture values are also predicted within 0.3 and 1.0%, respec-
tively.
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Finally, we need cpm to compute the Prandtl number of the mix-
ture. This is merely the mass weighted average of cp, or

∑
i micpi ,

and it is equal to 1006 J/kg·K. Then

Pr = (µcp/k)m = (1.861× 10−5)(1006)/0.02596 = 0.721.

This is 1% above the tabled value of 0.713. The reader may wish to
compare these values with those obtained directly using the values
for air in Table 11.2 or to explore the effects of neglecting argon in
the preceding calculations.

11.5 The equation of species conservation

Conservation of species

Just as we formed an equation of energy conservation in Chapter 6, we
now form an equation of species conservation that applies to each sub-
stance in a mixture. In addition to accounting for the convection and
diffusion of each species, we must allow the possibility that a species
may be created or destroyed by chemical reactions occuring in the bulk
medium (so-called homogeneous reactions). Reactions on surfaces sur-
rounding the medium (heterogeneous reactions) must be accounted for
in the boundary conditions.

We consider, in the usual way, an arbitrary control volume, R, with a
boundary, S, as shown in Fig. 11.8. The control volume is fixed in space,
with fluid moving through it. Species imay accumulate in R, it may travel
in and out of R by bulk convection or by diffusion, and it may be created
within R by homogeneous reactions. The rate of creation of species i is
denoted as ṙi(kg/m3·s); and, because chemical reactions conserve mass,
the net mass creation is ṙ = ∑

ṙi = 0. The rate of change of the mass of
species i in R is then described by the following balance:

d
dt

∫
R
ρi dR︸ ︷︷ ︸

rate of increase
of i in R

= −
∫
S
�ni · d�S +

∫
R
ṙi dR

= −
∫
S
ρi �v · d�S︸ ︷︷ ︸

rate of convection
of i out of R

−
∫
S
�ji · d�S︸ ︷︷ ︸

diffusion of i
out of R

+
∫
R
ṙi dR︸ ︷︷ ︸

rate of creation
of i in R

(11.56)
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Figure 11.8 Control volume in a
fluid-flow and mass-diffusion field.

This species conservation statement is identical to our energy conserva-
tion statement, eqn. (6.36) on page 293, except that mass of species i has
taken the place of energy and heat.

We may convert the surface integrals to volume integrals using Gauss’s
theorem [eqn. (2.8)] and rearrange the result to find:∫

R

[
∂ρi
∂t

+∇ · (ρi �v)+∇ · �ji − ṙi
]
dR = 0 (11.57)

Since the control volume is selected arbitrarily, the integrand must be
identically zero. Thus, we obtain the general form of the species conser-
vation equation:

∂ρi
∂t

+∇ · (ρi �v) = −∇ · �ji + ṙi (11.58)

We may obtain a mass conservation equation for the entire mixture by
summing eqn. (11.58) over all species and applying eqns. (11.1), (11.17),
and (11.22) and the requirement that there be no net creation of mass:

∑
i

[
∂ρi
∂t

+∇ · (ρi �v)
]
=

∑
i
(−∇ · �ji + ṙi)

so that

∂ρ
∂t
+∇ · (ρ�v) = 0 (11.59)
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This equation applies to any mixture, including those with varying den-
sity (see Problem 6.36).

Incompressible mixtures. For an incompressible mixture, ∇ · �v = 0
(see Sect. 6.2 or Problem 11.22), and the second term in eqn. (11.58) may
therefore be rewritten as

∇ · (ρi �v) = �v · ∇ρi + ρi ∇ · �v︸ ︷︷ ︸
=0

= �v · ∇ρi (11.60)

We may compare the resulting, incompressible species equation to the
incompressible energy equation, eqn. (6.37)

Dρi
Dt

= ∂ρi
∂t

+ �v · ∇ρi = −∇ · �ji + ṙi (11.61)

ρcp
DT
Dt

=ρcp
(
∂T
∂t
+ �v · ∇T

)
= −∇ · �q + q̇ (6.37)

In these equations: the reaction term, ṙi, is analogous to the heat gener-
ation term, q̇; the diffusional mass flux, �ji, is analogous to the heat flux,
�q; and dρi is analogous to ρcpdT .

We can use Fick’s law to eliminate �ji in eqn. (11.61). The result-
ing equation may be written in different forms, depending upon what
is assumed about the variation of the physical properties. If the prod-
uct ρDim is independent of (x,y, z)—if it is spatially uniform—then
eqn. (11.61) becomes

D
Dt
mi = Dim∇2mi + ṙi/ρ (11.62)

where the material derivative, D/Dt, is defined in eqn. (6.38). If, instead,
ρ and Dim are both spatially uniform, then

Dρi
Dt

= Dim∇2ρi + ṙi (11.63)

The equation of species conservation and its particular forms may
also be stated in molar variables, using ci or xi, Ni, and J∗i (see Prob-
lem 11.24.) Molar analysis sometimes has advantages over mass-based
analysis, as we discover in Section 11.7.
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Figure 11.9 Absorption of ammonia into water.

Interfacial boundary conditions

We are already familiar with the general issue of boundary conditions
from our study of the heat equation. To find a temperature distribution,
we specified temperatures or heat fluxes at the boundaries of the domain
of interest. Likewise, to find a concentration distribution, we must spec-
ify the concentration or flux of species i at the boundaries of the medium
of interest.

Temperature and concentration behave differently at interfaces. At
an interface, temperature is the same in both media as a result of the
Zeroth Law of Thermodynamics. Concentration, on the other hand, need
not be continuous across an interface, even in a state of thermodynamic
equilibrium. Water in a drinking glass, for example, shows discontinous
changes in the concentration of water at both the glass-water interface on
the sides and the air-water interface above. In another example, gaseous
ammonia is absorbed into water in some types of refrigeration cycles. A
gas mixture containing some particular mass fraction of ammonia will
produce a different mass fraction of ammonia just inside an adjacent
body of water, as shown in Fig. 11.9.

To characterize the conditions at an interface, we introduce imagi-
nary surfaces, s and u, very close to either side of the interface. In the
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ammonia absorption process, then, we have a mass fraction mNH3,s on
the gas side of the interface and a different mass fractionmNH3,u on the
liquid side.

In many mass transfer problems, we must find the concentration dis-
tribution of a species in one medium given only its concentration at the
interface in the adjacent medium. We might wish to find the distribu-
tion of ammonia in the body of water knowing only the concentration of
ammonia on the gas side of the interface. We would need to findmNH3,u
frommNH3,s and the interfacial temperature and pressure, sincemNH3,u
is the appropriate boundary condition for the species conservation equa-
tion in the water.

Thus, for the general mass transfer boundary condition, we must
specify not only the concentration of species i in the medium adjacent
to the medium of interest but also the solubility of species i from one
medium to the other. Although a detailed study of solubility and phase
equilibria is far beyond our scope (see, for example, [11.5, 11.24]), we
illustrate these concepts with the following simple solubility relations.

Gas-liquid interfaces. For a gas mixture in contact with a liquid mixture,
two simplified rules dictate the vapor composition. When the liquid is
rich in species i, the partial pressure of species i in the gas phase, pi,
can be characterized approximately with Raoult’s law, which says that

pi = psat,i xi for xi ≈ 1 (11.64)

where psat,i is the saturation pressure of pure i at the interface temper-
ature and xi is the mole fraction of i in the liquid. When the species i is
dilute in the liquid, Henry’s law applies. It says that

pi = H xi for xi� 1 (11.65)

whereH is a temperature-dependent empirical constant that is tabulated
in the literature. Figure 11.10 shows how the vapor pressure varies over
a liquid mixture of species i and another species, and it indicates the
regions of validity of Raoult’s and Henry’s laws. For example, when xi is
near one, Raoult’s law applies to species i; when xi is near zero, Raoult’s
law applies to the other species.

If the vapor pressure were to obey Raoult’s law over the entire range of
liquid composition, we would have what is called an ideal solution. When
xi is much below unity, the ideal solution approximation is usually very
poor.
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Figure 11.10 Typical partial and total
vapor-pressure plot for the vapor in
contact with a liquid solution, illustrating
the regions of validity of Raoult’s and
Henry’s laws.

Example 11.5

A cup of tea sits in air at 1 atm total pressure. It starts at 100◦C
and cools toward room temperature. What is the mass fraction of
water vapor above the surface of the tea as a function of the surface
temperature?

Solution. We’ll approximate tea as having the properties of pure
water. Raoult’s law applies almost exactly in this situation, since it
happens that the concentration of air in water is virtually nil. Thus, by
eqn. (11.64), pH2O,s = psat,H2O(T). We can read the saturation pres-
sure of water for several temperatures from a steam table or from
Table A.5 on pg. 713. From the vapor pressure, pH2O,s , we can com-
pute the mole fraction with eqn. (11.16),

xH2O,s = pH2O,s
/
patm = psat,H2O(T)

/
(101,325 Pa) (11.66)

The mass fraction can be calculated from eqn. (11.9), noting that
xair = 1 − xH2O and substituting MH2O = 18.02 kg/kmol and Mair =
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Figure 11.11 Mass fraction of water vapor in air above liquid
water surface as a function of surface temperature (1 atm total
pressure).

28.96 kg/kmol

mH2O,s =
(xH2O,s)(18.02)

[(xH2O,s)(18.02)+ (1− xH2O,s)(28.96)]
(11.67)

The result is plotted in Fig. 11.11. Note that the mass fraction is less
than 10% if the surface temperature is below about 54◦C.

Gas-solid interfaces. When a solid is exposed to a gas, some amount
of it will vaporize. This process is quite visible, for example, when dry
ice (solid CO2) is placed in air. For other materials and temperatures, the
vaporization rate may be indetectably tiny. We call a direct solid-to-vapor
phase transition sublimation.

The solubility of most gases in most solids is so small that solids
are often treated as pure substances when finding their concentration in
an adjacent vapor phase. Most data for the solubility of solids into the
gas phase is written in the form of the vapor pressure of the solid as a
function of surface temperature. Many such relationships are available
in the literature (see, e.g., [11.25]).
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Although only small amounts of gas are absorbed into most inorganic
solids, the consequences can be quite significant, altering the material
properties, say, or allowing gases to leak through pressure vessel walls.
The process of absorption may include dissociation of the gas on the
solid surface prior to its absorption into the bulk material. For example,
when molecular hydrogen gas, H2, is absorbed into iron, it first dissoci-
ates into two hydrogen atoms, 2H. At low temperatures, the dissociation
reaction may be so slow that equilibrium conditions cannot be estab-
lished between the bulk and the gas. Solubility relationships for gases
entering solids are thus somewhat complex, and they will not be covered
here (see [11.26]).

One important technical application of gas absorption into solids is
the case-hardening of low-carbon steel by a process called carburization.
The steel is exposed to a hot carbon-rich gas, such as CO or CO2, which
causes carbon to be absorbed on the surface of the metal. The elevated
concentration of carbon within the surface causes carbon to diffuse in-
ward. A typical goal is to raise the carbon mass fraction to 0.8% over a
depth of about 2 mm (see Problem 11.27).

Example 11.6

Ice at −10◦C is exposed to 1 atm air. What is the mass fraction of
water vapor above the surface of the ice?

Solution. To begin, we need the vapor pressure, pv , of water above
ice. A typical local curve-fit is

lnpv (kPa) = 21.99− 6141
/
(T K) for 243 K ≤ T ≤ 273 K

At T = −10◦C = 263.15 K this yields pv = 0.260 kPa. The remainder
of the calculation follows exactly the approach of Example 11.5.

xH2O,s = 0.260/101.325 = 0.00257

mH2O,s = (0.00257)(18.02)
[(0.00257)(18.02)+ (1− 0.00257)(28.96)]

= 0.00160
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11.6 Mass transfer at low rates

We have seen that mass transfer processes generate flow in mixtures.
When the mass transfer rates are sufficiently low, the velocities caused
by mass transfer are negligible. Thus, a stationary medium will remain at
rest and a flowing fluid will have the same velocity field as if there were
no mass transfer. More generally, when the diffusing species is dilute,
its total mass flux is principally carried by diffusion.

In this section, we examine diffusive and convective mass transfer of
dilute species at low rates. These problems have a direct correspondence
to the heat transfer problems that we considered Chapters 1 through 8.
We refer to this correspondence as the analogy between heat and mass
transfer. We will focus our attention on nonreacting systems, for which
ṙi = 0 in the species conservation equation.

Steady mass diffusion in stationary media

Equations (11.58) and (11.21) show that steady mass transfer without
reactions is described by the equation

∇ · (ρi �v)+∇ · �ji = ∇ · �ni = 0 (11.68)

or, in one dimension,

dni
dx

= d
dx

(
ρiv + ji

) = d
dx

(
min+ ji

) = 0 (11.69)

that is, the mass flux of species i, ni, is independent of x.
When the convective mass flux of i, ρiv =min, is small, the transport

of i is mainly by the diffusional flux, ji. The following pair of examples
show how this situation might arise.

Example 11.7

A thin slab, made of species 1, separates two volumes of gas. On
one side, the pressure of species 2 is high, and on the other it is low.
Species 2 two is soluble in the slab material and thus has different
concentrations at each inside face of the slab, as shown in Fig. 11.12.
What is the mass transfer rate of species 2 through the slab if the
concentration of species 2 is low?
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Figure 11.12 One-dimensional, steady
diffusion in a slab.

Solution. The mass transfer rate through the slab satisfies eqn. (11.69)

dn2

dx
= 0

If species 2 is dilute, with m2 � 1, the convective transport will be
small

n2 =m2n+ j2 � j2

With Fick’s law, we have

dn2

dx
� dj2
dx

= d
dx

(
−ρD21

dm2

dx

)
= 0

If ρD21 � constant, the mass fraction satisfies

d2m2

dx2
= 0

Integrating and applying the boundary conditions,m2(x = 0) =m2,0
and m2(x = L) =m2,L, we obtain the concentration distribution:

m2(x) =m2,0 +
(
m2,L −m2,0

)(x
L

)
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The mass flux is then

n2 � j2 = −ρD21
dm2

dx
= −ρD21

L
(
m2,L −m2,0

)
(11.70)

This, in essence, is the same calculation we made in Example 2.2 in
Chapter 2.

Example 11.8

Suppose that the concentration of species 2 in the slab were not small
in the preceding example. How would the total mass flux of species 1
differ from the diffusional flux?

Solution. As before, the total mass flux each species would be con-
stant in the steady state, and if the slab material is not transferred
into the gas its mass flux is zero

n1 = 0 = ρ1v + j1
Therefore, the mass-average velocity in the slab is

v = − j1
ρ1
= j2
ρ1

since j1 + j2 = 0. The mass flux for species 2 is

n2 = ρ2v + j2

= j2
(
ρ2

ρ1
+ 1

)

= j2
(
m2

m1
+ 1

)
= j2

(
1

1−m2

)

since m1 +m2 = 1.
When m2 � 1, the diffusional flux will approximate n2. On the

other hand, if, say,m2 = 0.5, then n2 = 2j2! In that case, the convec-
tive transport ρ2v is equal to the diffusive transport j2.

In the second example, we see that the stationary material of the slab
had a diffusion velocity, j1. In order for the slab to remain at rest, the
opposing velocity v must be present. For this reason, an induced velocity
of this sort is sometimes called a counterdiffusion velocity.

From these two examples, we see that steady mass diffusion is di-
rectly analogous to heat conduction only if the convective transport is
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negligible. That can generally be ensured if the transferred species is
dilute. When the transferred species has a high concentration, nonnegli-
gible convective transport can occur, even in a solid medium.

Unsteady mass diffusion in stationary media

Similar conclusions apply to unsteady mass diffusion. Consider a medium
at rest through which a dilute species i diffuses. From eqn. (11.58) with
ri = 0,

∂ρi
∂t

= −∇ ·
(
ρi�v + �ji

)
= −∇ ·

(
mi�n+ �ji

)
(11.71)

If mi � 1, only diffusion contributes significantly to the mass flux of i,
and we may neglect min

∂ρi
∂t

≈ −∇ · �ji = ∇ · (ρDim∇mi)

With small mi, the density ρ and the diffusion coefficient Dim will not
vary much, and we can factor ρ through the equation

∂mi
∂t

= Dim∇2mi (11.72)

This is called the mass diffusion equation. It has the same form as the
equation of heat conduction. Solutions for the unsteady diffusion of a
dilute species in a stationary medium are thus entirely analogous to those
for heat conduction when the boundary conditions are the same.

Example 11.9

A semi-infinite stationary medium (medium 1) has an initially uniform
concentration,mi,0 of species i. From time t = 0 onward, we place the
end plane at x = 0 in contact with a second medium (medium 2) with
a concentration mi,s . What is the resulting distribution of species in
medium 1 if species 1 remains dilute?

Solution. Once mi,s and the solubility data are known, the mass
fraction just inside the solid surface, mi,u, can be determined (see
Fig. 11.13). This concentration provides the boundary condition at
x = 0 for t > 0. Our mathematical problem then becomes

∂mi
∂t

= Dim1

∂2mi
∂x2

(11.73)
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Figure 11.13 Mass diffusion into a
semi-infinite stationary medium.

with

mi =mi,0 for t = 0 (all x)
mi =mi,u for x = 0 (t > 0)
mi →mi,0 for x→∞ (t > 0)

This math problem is identical to that for transient heat conduction
into a semi-infinite region (Section 5.6), and its solution is completely
analogous to eqn. (5.50):

mi −mi,u

mi,0 −mi,u
= erf


 x

2
√
Dim1t




The reader can solve all sorts of unsteady mass diffusion problems
by direct analogy to the methods of Chapters 4 and 5 when the concen-
tration of the diffusing species is low. At higher concentrations of the
diffusing species, however, counterdiffusion velocities can be induced,
as in Example 11.8. Counterdiffusion may be significant in concentrated
metallic alloys, as, for example, during annealing of a butt-welded junc-
tion between two dissimilar metals. In those situations, eqn. (11.72) is
sometimes modified to use a concentration-dependent, spatially varying
interdiffusion coefficient (see [11.6]).
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Figure 11.14 Concentration boundary layer on a flat plate.

Convective mass transfer at low rates

Convective mass transfer is analogous to convective heat transfer when
two conditions apply:

1. The mass flux normal to the surface, ni,s , must be essentially equal
to the diffusional mass flux, ji,s from the surface. In general, this
requires that the concentration of the diffusing species,mi, be low.9

2. The diffusional mass flux must be low enough that it does not affect
the imposed velocity field.

The first condition ensures that mass flow from the wall is diffusional,
as is the heat flow in a convective heat transfer problem. The second
condition ensures that the flow field will be the same as for the heat
transfer problem.

As a concrete example, consider a laminar flat-plate boundary layer in
which species i is transferred from the wall to the free stream, as shown
in Fig. 11.14. Free stream values, at the edge of the b.l., are labeled with
the subscript e, and values at the wall (the s-surface) are labeled with
the subscript s. The mass fraction of species i varies from mi,s to mi,e
across a concentration boundary layer on the wall. If the mass fraction
of species i at the wall,mi,s , is small, then ni,s ≈ ji,s , as we saw earlier in
this section. Mass transfer from the wall will be essentially diffusional.
This is the first condition.

In regard to the second condition, when the concentration difference,
mi,s −mi,e, is small, then the diffusional mass flux of species i through
the wall, ji,s , will be small compared to the bulk mass flow in the stream-

9In a few situations, such as catalysis, there is no net mass flow through the wall,
and convective transport will be identically zero irrespective of the concentration (see
Problems 11.9 and 11.44).
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wise direction, and it will have little influence on the velocity field. Hence,
we would expect that �v is essentially that for the Blasius boundary layer.

These two conditions can be combined into a single requirement for
low-rate mass transfer, as will be described in Section 11.8. Specifically,
low-rate mass transfer can be assumed if

Bm,i ≡
(
mi,s −mi,e

1−mi,s

)
� 0.2

condition for low-rate
mass transfer

(11.74)

The quantity Bm,i is called the mass transfer driving force. It is writ-
ten here in the form that applies when only one species is transferred
through the s-surface. The evaporation of water into air is typical exam-
ple of single-species transfer: only water vapor crosses the s-surface.

The mass transfer coefficient. In convective heat transfer problems,
we have found it useful to express the heat flux from a surface, q, as
the product of a heat transfer coefficient, h, and a driving force for heat
transfer, ∆T . Thus, in the notation of Fig. 11.14,

qs = h(Ts − Te) (1.17)

In convective mass transfer problems, we would therefore like to ex-
press the diffusional mass flux from a surface, ji,s , as the product of a
mass transfer coefficient and the concentration difference between the
s-surface and the free stream. Hence, we define the mass transfer coeffi-
cient for species i, gm,i (kg/m2·s), as follows:

ji,s ≡ gm,i
(
mi,s −mi,e

)
(11.75)

We expect gm,i, like h, to be determined mainly by the flow field, fluid,
and geometry of the problem.

The analogy to convective heat transfer. We saw in Sect. 11.5 that
the equation of species conservation and the energy equation were quite
similar in an incompressible flow. If there are no reactions and no heat
generation, then eqns. (11.61) and (6.37) can be written as

∂ρi
∂t

+ �v · ∇ρi = −∇ · �ji (11.61)

ρcp
(
∂T
∂t
+ �v · ∇T

)
= −∇ · �q (6.37)
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These conservation equations describe changes in, respectively, the amount
of mass or energy per unit volume that results from convection by a given
velocity field and from diffusion under either Fick’s or Fourier’s law.

We may identify the analogous quantities in these equations. For the
capacity of mass or heat per unit volume, we see that

dρi is analogous to ρcpdT (11.76a)

or, in terms of the mass fraction,

ρ dmi is analogous to ρcpdT (11.76b)

The flux laws may be rewritten to show the capacities explicitly

�ji = −ρDim∇mi = −Dim
(
ρ∇mi

)
�q = −k∇T = − k

ρcp

(
ρcp∇T

)

Hence, we find the analogy of the diffusivities:

Dim is analogous to
k
ρcp

= α (11.76c)

It follows that the Schmidt number and the Prandtl number are directly
analogous:

Sc = ν
Dim

is analogous to Pr = ν
α
= µcp

k
(11.76d)

Thus, a high Schmidt number signals a thin concentration boundary
layer, just as a high Prandtl number signals a thin thermal boundary
layer. Finally, we may write the transfer coefficients in terms of the ca-
pacities

ji,s = gm,i
(
mi,s −mi,e

) =
(
gm,i
ρ

)
ρ
(
mi,s −mi,e

)

qs = h(Ts − Te) =
(
h
ρcp

)
ρcp (Ts − Te)

from which we see that

gm,i is analogous to
h
cp

(11.76e)
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From these comparisons, we conclude that the solution of a heat convec-
tion problem becomes the solution of a low-rate mass convection prob-
lem upon replacing the variables in the heat transfer problem with the
analogous mass transfer variables given by eqns. (11.76).

Convective heat transfer coefficients are usually expressed in terms
of the Nusselt number as a function of Reynolds and Prandtl number

Nux = hxk = (h/cp)x
ρ(k/ρcp)

= fn (Rex,Pr) (11.77)

For convective mass transfer problems, we expect the same functional de-
pendence after we make the substitutions indicated above. Specifically,
if we replace h/cp by gm,i, k/ρcp by Di,m, and Pr by Sc, we obtain

Num,x ≡
gm,ix
ρDim

= fn (Rex, Sc) (11.78)

where Num,x , the Nusselt number for mass transfer, is defined as indi-
cated. Num is sometimes called the Sherwood number10, Sh.

Example 11.10

A napthalene model of a printed circuit board (PCB) is placed in a
wind tunnel. The napthalene sublimates slowly as a result of forced
convective mass transfer. If the first 5 cm of the napthalene model
is a flat plate, calculate the average rate of loss of napthalene from
that part of the model. Assume that conditions are isothermal at
303 K and that the air speed is 5 m/s. Also, explain how napthalene
sublimation might be used to determine heat transfer coefficients .

Solution. Let us first find the mass fraction of napthalene just
above the model surface. A relationship for the vapor pressure of
napthalene (in mmHg) is log10 pv = 11.450−3729.3

/
(T K). At 303 K,

this gives pv = 0.1387 mmHg = 18.49 Pa. The mole fraction of
napthalene is thus xnap,s = 18.49/101325 = 1.825 × 10−4, and with

10Thomas K. Sherwood (1903–1976) obtained his doctoral degree at M.I.T. under War-
ren K. Lewis in 1929 and was a professor of Chemical Engineering there from 1930 to
1969. He served as Dean of Engineering from 1946 to 1952. His research dealt with
mass transfer and related industrial processes. Sherwood was also the author of very
influential textbooks on mass transfer.
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eqn. (11.9), the mass fraction is, with Mnap = 128.2 kg/kmol,

mnap,s = (1.825× 10−4)(128.2)
(1.825× 10−4)(128.2)+ (1− 1.825× 10−4)(28.96)

= 8.074× 10−4

The mass fraction of napthalene in the free stream, mnap,s , is zero.
With these numbers, we can check to see if the mass transfer rate
is low enough to use the analogy of heat and mass transfer, with
eqn. (11.74):

Bm,nap =
(

8.074× 10−4 − 0
1− 8.074× 10−4

)
= 8.081× 10−4 � 0.2

The analogy therefore applies.
The convective heat transfer coefficient for this situation is that

for a flat plate boundary layer. The Reynolds number is

ReL = u∞Lν = (5)(0.05)
1.867× 10−5

= 1.339× 104

where we have used the viscosity of pure air, since the concentration
of napthalene is very low. The flow is laminar, so the applicable heat
transfer relationship is eqn. (6.68)

NuL = hLk = 0.664 Re1/2
L Pr1/3 (6.68)

Under the analogy, the Nusselt number for mass transfer is

Num,L =
gm,i L
ρDim

= 0.664 Re1/2
L Sc1/3

The diffusion coefficient for napthalene in air, from Table 11.1, is
Dnap,air = 0.86×10−5 m/s, and thus Sc = 0.86×10−5/1.867×10−5 =
0.461. Hence,

Num,L = 0.664 (1.339× 104)1/2 (0.461)1/3 = 59.4

and, using the density of pure air,

gm,nap =
ρDnap,air

L
Num,L

= (1.166)(0.86× 10−5)
0.05

(59.4) = 0.0119 kg/m2s
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The average mass flux from this part of the model is then

nnap,s = gm,nap
(
mnap,s −mnap,e

)
= (0.0119)(8.074× 10−4 − 0)

= 9.61× 10−6 kg/m2s = 34.6 g/m2h

Napthalene sublimation can be used to infer heat transfer coeffi-
cients by measuring the loss of napthalene from a model over some
length of time. Experiments are run at several Reynolds numbers.
The lost mass fixes the sublimation rate and the mass transfer coeffi-
cient. The mass transfer coefficient is then substituted in the analogy
to heat transfer to determine a heat transfer Nusselt number at each
Reynolds number. Since the Schmidt number of napthalene is not
generally equal to the Prandtl number under the conditions of inter-
est, some assumption about the dependence of the Nusselt number
on the Prandtl number must usually be introduced.

Boundary conditions. When we apply the analogy between heat trans-
fer and mass transfer to calculate gm,i, we must consider the boundary
condition at the wall. We have dealt with two common types of wall con-
dition in the study of heat transfer: uniform temperature and uniform
heat flux. The analogous mass transfer wall conditions are uniform con-
centration and uniform mass flux. We used the mass transfer analog of
the uniform wall temperature solution in the preceding example, since
the mass fraction of napthalene was uniform over the entire model. Had
the mass flux been uniform at the wall, we would have used the analog
of a uniform heat flux solution.

Natural convection in mass transfer. In Chapter 8, we saw that the
density differences produced by temperature variations can lead to flow
and convection in a fluid. Variations in fluid composition can also pro-
duce density variations that result in natural convection mass transfer.
This type of natural convection flow is still governed by eqn. (8.3),

u
∂u
∂x

+ v ∂u
∂y

= (1− ρ∞/ρ)g + ν ∂
2u
∂y2

(8.3)

but the species equation is now used in place of the energy equation in
determining the variation of density. Rather than solving eqn. (8.3) and
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the species equation for specific mass transfer problems, we again turn
to the analogy between heat and mass transfer.

In analyzing natural convection heat transfer, we eliminated ρ from
eqn. (8.3) using (1 − ρ∞/ρ) = β(T − T∞), and the resulting Grashof and
Rayleigh numbers came out in terms of an appropriate β∆T instead of
∆ρ/ρ. These groups could just as well have been written for the heat
transfer problem as

GrL = g∆ρL
3

ρν2
and RaL = g∆ρL

3

ραν
= g∆ρL

3

µα
(11.79)

although ∆ρ would still have had to have been evaluated from ∆T .
With Gr and Pr expressed in terms of density differences instead of

temperature differences, the analogy between heat transfer and low-rate
mass transfer may be used directly to adapt natural convection heat
transfer predictions to natural convection mass transfer. As before, we
replace Nu by Num and Pr by Sc. But this time we also write

RaL = GrLSc = g∆ρL
3

µD12
(11.80)

or calculate GrL as in eqn. (11.79). The densities must now be calculated
from the concentrations.

Example 11.11

Helium is bled through a porous vertical wall, 40 cm high, into sur-
rounding air at a rate of 87.0 mg/m2·s. Both the helium and the air
are at 300 K, and the environment is at 1 atm. What is the average
concentration of helium at the wall, mHe,s ?

Solution. This is a uniform flux natural convection problem. Here
gm,He and ∆ρ depend on mHe,s , so the calculation is not as straight-
forward as it was for thermally driven natural convection.

To begin, let us assume that the concentration of helium at the wall
will be small enough that the mass transfer rate is low. SincemHe,e =
0, if mHe,s � 1, then mHe,s −mHe,e � 1 as well. Both conditions for
the analogy to heat transfer will be met.

The mass flux of helium at the wall, nHe,s , is known, and because
low rates prevail,

nHe,s ≈ jHe,s = gm,He
(
mHe,s −mHe,e

)
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Hence,

Num,L =
gm,He L
ρDHe,air

= nHe,s L
ρDHe,air

(
mHe,s −mHe,e

)
The appropriate Nusselt number is obtained from the mass trans-

fer analog of eqn. (8.44b):

Num,L = 6
5

(
Ra∗L Sc

4+ 9
√

Sc+ 10 Sc

)1/5

with

Ra∗L = RaLNum,L =
g∆ρnHe,s L4

µρD2
He,air

(
mHe,s −mHe,e

)
The Rayleigh number cannot easily be evaluated without assuming a
value of the mass fraction of helium at the wall. As a first guess, we
pick mHe,s = 0.010. Then the film composition is

mHe,f = (0.010+ 0)/2 = 0.005

From eqn. (11.8) and the ideal gas law, we obtain estimates for the
film density (at the film composition) and the wall density

ρf = 1.141 kg/m3 and ρs = 1.107 kg/m3

From eqn. (11.42) the diffusion coefficient is

DHe,air = 7.119× 10−5 m2/s.

At this low concentration of helium, we expect the film viscosity to
be close to that of pure air. From Appendix A, for air at 300 K

µf � µair = 1.857× 10−5 kg/m·s.

The corresponding Schmidt number is Sc = (µf /ρf )
/DHe,air = 0.2286.

Furthermore,
ρe = ρair = 1.177 kg/m3

From these values,

Ra∗L =
9.806(1.177− 1.107)(87.0× 10−6)(0.40)4

(1.857× 10−5)(1.141)(7.119× 10−5)2(0.010)

= 1.424× 109
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We may now evaluate the mass transfer Nusselt number

Num,L = 6
[
(1.424× 109)(0.2286)

]1/5

5
[
4+ 9

√
0.2286+ 10(0.2286)

]1/5 = 37.73

From this we calculate

(
mHe,s −mHe,e

) = nHe,s L
ρDHe,airNum,L

= (87.0× 10−6)(0.40)
(1.141)(7.119× 10−5)(37.73)

= 0.01136

We have already noted that
(
mHe,s −mHe,e

) =mHe,s , so we have ob-
tained an average wall concentration 14% higher than our initial guess
of 0.010.

Using mHe,s = 0.01136 as our second guess, we repeat the pre-
ceding calculations with revised values of the densities to obtain

mHe,s = 0.01142

Since this result is within 0.5% of our second guess, a third iteration
is not needed.

In the preceding example, concentration variations alone gave rise
to buoyancy. If both temperature and density vary in a natural convec-
tion problem, the appropriate Gr or Ra may be calculated using density
differences based on both the local mi and the local T , provided that
the Prandtl and Schmidt numbers are approximately equal (that is, if the
Lewis number � 1). This is usually true in gases.

If the Lewis number is far from unity, the analogy between heat and
mass transfer breaks down in those natural convection problems that in-
volve both heat and mass transfer, because the concentration and ther-
mal boundary layers may take on very different thicknesses, complicating
the density distributions that drive the velocity field.

11.7 Steady mass transfer with counterdiffusion

In 1874, Josef Stefan presented his solution for evaporation from a liquid
pool at the bottom of a vertical tube over which a gas flows (Fig. 11.15).
This configuration, often called a Stefan tube, is has often been used to
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Figure 11.15 The Stefan tube.

measure diffusion coefficients. Vapor leaving the liquid surface diffuses
through the gas in the tube and is carried away by the gas flow across
top of the tube. If the gas stream itself has a low concentration of the
vapor, then diffusion is driven by the higher concentration of vapor over
the liquid pool that arises from the vapor pressure of the liquid.

A typical Stefan tube is 5 to 10 mm in diameter and 10 to 20 cm long.
If the air flow at the top is not too vigorous, and if density variations
in the tube do not give rise to natural convection, then the transport of
vapor from the liquid pool to the top of the tube will be a one-dimensional
upflow.

The other gas in the tube is stationary if it is not being absorbed by the
liquid (e.g., if it is insoluble in the liquid or if the liquid is saturated with
it). Yet, because there is a concentration gradient of vapor, there must
also be an opposing concentration gradient of gas and an associated dif-
fusional mass flux of gas, similar to what we found in Example 11.8. For
the gas in the tube to have a net diffusion flux when it is stationary,
there must be an induced upward convective velocity — a counterdiffu-
sion velocity — against which the gas diffuses. As in Example 11.8, the
counterdiffusion velocity can be found in terms of the diffusional mass
fluxes:

v = −jgas
/
ρgas = jvapor

/
ρgas
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Figure 11.16 Mass flow across a
one-dimensional layer.

In this section, we determine the mass transfer rate and concentra-
tion profiles in the tube, treating it as the one-dimensional layer shown
in Fig. 11.16. The s-surface lies above the liquid and the e-surface lies
at the top end of the tube. We allow for the possibility that the coun-
terdiffusion velocity may not be negligible, so that both diffusion and
vertical convection may occur. We also allow for the possibility that the
gas passes through the liquid surface (N2,s ≠ 0). The results obtained
here form an important prototype for our subsequent analyses of con-
vective mass transfer at high rates.

The solution of the mass transfer problem begins with an appropriate
form of the equation of species conservation. Since the mixture compo-
sition varies along the length of the tube, the density may vary as well.
If the temperature and pressure are constant, however, the molar con-
centration of the mixture does not change through the tube [cf. (11.14)].
The system is therefore most accurately analyzed using the molar form
of species conservation.

For one-dimensional steady mass transfer, the mole fluxes N1 and N2

have only vertical components and depend only on the vertical coordi-
nate, y . Using eqn. (11.69), we get, with ni = MiNi,

dN1

dy
= dN2

dy
= 0

so thatN1 andN2 are constant throughout the layer. They have s-surface
values,N1,s andN2,s , everywhere. These constants will be positive for up-
ward mass flow. (For the orientations in Fig. 11.16,N1,s > 0 andN2,s < 0.)
These results are a straightforward consequence of steady-state species
conservation.

Recalling the general expression for Ni, eqn. (11.25), and introducing
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Fick’s law, eqn. (11.34), we write

N1 = x1N − cD12
dx1

dy
= N1,s (11.81)

The term xN1 represents vertical convective transport induced by mass
transfer. The total mole flux, N , must also be constant at its s-surface
value; by eqn. (11.23), this is

N = N1,s +N2,s = Ns (11.82)

Substituting this result into eqn. (11.81), we obtain a differential equation
for x1:

cD12
dx1

dy
= Nsx1 −N1,s (11.83)

In this equation, x1 is a function ofy , theN ’s are constants, and cD12

depends on temperature and pressure. If the temperature and pressure
are constant, so too is cD12. Integration then yields

Nsy
cD12

= ln
(
Nsx1 −N1,s

)+ constant (11.84)

We need to fix the constant and the two mole fluxes, N1,s and Ns . To
do this, we apply the boundary conditions at either end of the layer. The
first boundary condition is the mole fraction of species 1 at the bottom
of the layer

x1 = x1,s at y = 0

and it requires that

constant = − ln(Nsx1,s −N1,s) (11.85)

so

Nsy
cD12

= ln

(
Nsx1 −N1,s

Nsx1,s −N1,s

)
(11.86)

The second boundary condition is the mole fraction at the top of the
layer

x1 = x1,e at y = L
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which yields

NsL
cD12

= ln

(
x1,e −N1,s/Ns
x1,s −N1,s/Ns

)
(11.87)

or

Ns = cD12

L
ln

(
1+ x1,e − x1,s

x1,s −N1,s/Ns

)
(11.88)

The last boundary condition is the value of N1,s/Ns . Since we have
allowed for the possiblity that species 2 passes through the bottom of
the layer, N1,s/Ns may not equal unity. The ratio depends on the specific
problem at hand, as shown in the two following examples.

Example 11.12

Find an equation for the evaporation rate of the liquid in the Stefan
tube described at the beginning of this section.

Solution. Species 1 is the evaporating vapor, and species 2 be the
stationary gas. Only vapor is transferred through the s-surface, since
the gas is not significantly absorbed into the already gas-saturated
liquid. Thus, N2,s = 0, and Ns = N1,s = Nvapor,s is simply the evapora-
tion rate of the liquid. The s-surface is just above the surface of the
liquid. The mole fraction of the evaporating liquid can be determined
from solubility data; for example, if the gas is more-or-less insoluble
in the liquid, Raoult’s law, eqn. (11.64), may be used. The e-surface is
at the mouth of the tube. The gas flow over the top may contain some
concentration of the vapor, although it should generally be near zero.
The ratio N1,s/Ns is unity, and the rate of evaporation is

Ns = Nvapor,s = cD12

L
ln

(
1+ x1,e − x1,s

x1,s − 1

)
(11.89)

Example 11.13

What is the evaporation rate in the Stefan tube if the gas is bubbled
up to the liquid surface at some fixed rate, Ngas?

Solution. Again, N1,s = Nvapor,s is the evaporation rate. However,
the total mole flux is

Ns = Ngas +N1,s
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Thus,

Ngas +N1,s = cD12

L
ln

[
1+ x1,e − x1,s

x1,s −N1,s/(N1,s +Ngas)

]
(11.90)

This equation fixes N1,s , but it must be solved iteratively.

Once we have found the mole fluxes, we may compute the concentra-
tion distribution, x1(y), using eqn. (11.86):

x1(y) =
N1,s

Ns
+ (
x1,s −N1,s

/
Ns

)
exp(Nsy/cD12) (11.91)

Alternatively, we may eliminate Ns between eqns. (11.86) and (11.87) to
obtain the concentration distribution in a form that depends only on the
ratio N1,s/Ns :

x1 −N1,s/Ns
x1,s −N1,s/Ns

=
(
x1,e −N1,s/Ns
x1,s −N1,s/Ns

)y/L
(11.92)

Example 11.14

Find the concentration distribution of water vapor in a helium–water
Stefan tube at 325 K and 1 atm. The tube is 20 cm in length. Assume
the helium stream at the top of the tube to have a mole fraction of
water of 0.01.

Solution. Let water be species 1 and helium be species 2. The
vapor pressure of the liquid water is approximately the saturation
pressure at the water temperature. Using the steam tables, we get
pv = 1.341× 104 Pa and, from eqn. (11.16),

x1,s = 1.341× 104 Pa
101,325 Pa

= 0.1323

We use eqn. (11.14) to evaluate the mole concentration in the tube:

c = 101,325
8314.5(325)

= 0.03750 kmol/m3

From eqn. (11.42) we obtain D12(325 K,1 atm) = 1.067× 10−4 m2/s.
Then eqn. (11.89) gives the molar evaporation rate:

N1,s = 0.03750(1.067× 10−4)
0.20

ln
(

1+ 0.01− 0.1323
0.1323− 1

)
= 2.638× 10−6 kmol/m2·s
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This corresponds to a mass evaporation rate:

n1,s = 4.754× 10−5 kg/m2·s

The concentration distribution of water vapor [eqn. (11.91)] is

x1(y) = 1− 0.8677 exp(0.6593y)

where y is expressed in meters.

Stefan tubes have been widely used to measure mass transfer coeffi-
cients, by observing the change in liquid level over a long period of time
and solving eqn. (11.89) for D12. These measurements are subject to a
variety of experimental errors, however. For example, the latent heat of
vaporization may tend to cool the gas mixture near the interface, caus-
ing a temperature gradient in the tube. Vortices near the top of the tube,
where it meets the gas stream, may cause additional mixing, and density
gradients may cause buoyant circulation. Additional sources of error
and alternative measurement techniques are described by Marrero and
Mason [11.7].

The problem dealt with in this section can alternatively be solved on
a mass basis, assuming a constant value of ρD12 (see Problem 11.33 and
Problem 11.34). The mass-based solution of this problem provides an
important approximation in our analysis of high-rate convective mass
transfer in the next section.

11.8 Mass transfer coefficients at high rates of mass
transfer

In Section 11.6, we developed an analogy between heat and mass transfer
that allowed us to calculate mass transfer coefficients when the rate of
mass transfer was low. This analogy required that the velocity field be
unaffected by mass transfer and that the transferred species be dilute.

When those conditions are not met, the mass transfer coefficient will
be different than the value given by the analogy. The difference can be
either an increase or a decrease and can range from a few percent to an
order of magnitude or more, depending upon the concentrations of the
diffusing species. In addition to the diffusive transport represented by
the mass transfer coefficient, convective transport can contribute sub-
stantially to the total mass flux.
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Figure 11.17 The mass concentration
boundary layer.

In this section, we model mass convection when the transferred species
affects the velocity field and is not necessarily dilute. First, we define the
mass transfer driving force, which governs the total mass flux from the
wall. Then, we relate the mass transfer coefficient at high mass transfer
rates to that at low mass transfer rates.

The mass transfer driving force

Figure 11.17 shows a boundary layer over a wall through which there is
a net mass transfer, ns ≡ ṁ′′, of the various species in the direction
normal to the wall.11 In particular, we will focus on species i. In the free
stream, i has a concentrationmi,e; at the wall, it has a concentrationmi,s .

The mass flux of i leaving the wall is obtained from eqn. (11.21):

ni,s =mi,sṁ′′ + ji,s (11.93)

We seek to obtain ṁ′′ in terms of the concentrationsmi,s andmi,e. As be-
fore, we define the mass transfer coefficient for species i, gm,i (kg/m2·s),
as

gm,i = ji,s
/ (
mi,s −mi,e

)
(11.94)

Thus,

ni,s =mi,sṁ′′ + gm,i
(
mi,s −mi,e

)
(11.95)

The mass transfer coefficient is again based on the diffusive transfer from
the wall; however, it may now differ considerably from the value for low-
rate transport.

11In this context, we denote the total mass flux through the wall as ṁ′′, rather than
ns , so as to be consistent with other literature on the subject.
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Equation (11.95) may be rearranged as

ṁ′′ = gm,i
(

mi,e −mi,s

mi,s −ni,s/ṁ′′

)
(11.96)

which express the total mass flux of all species through the wall, ṁ′′, as
the product of the mass transfer coefficient and a ratio of concentrations.
This ratio is called the mass transfer driving force for species i:

Bm,i ≡
(

mi,e −mi,s

mi,s −ni,s/ṁ′′

)
(11.97)

The ratio of mass fluxes in the denominator is called the mass fraction
in the transferred state, denoted as mi,t :

mi,t ≡ ni,s/ṁ′′ (11.98)

The mass fraction in the transferred state is simply the fraction of the
total mass flux, ṁ′′, which is made up of species i. It is not really a mass
fraction in the sense of Section 11.2 because it can have any value from
−∞ to +∞, depending on the relative magnitudes of ṁ′′ and ni,s . If, for
example, n1,s � −n2,s in a binary mixture, then ṁ′′ is very small and
both m1,t and m2,t are very large.

Equations (11.96), (11.97), and (11.98) provide a formulation of mass
transfer problems in terms of the mass transfer coefficient, gm,i, and the
driving force for mass transfer, Bm,i:

ṁ′′ = gm,iBm,i (11.99)

where

Bm,i =
(
mi,e −mi,s

mi,s −mi,t

)
, mi,t = ni,s/ṁ′′ (11.100)

These relations are based on an arbitrary species, i. The mass trans-
fer rate may equally well be calculated using any species in a mixture;
one obtains the same result for each. This is well illustrated in a binary
mixture for which one may show that (Problem 11.36)

gm,1 = gm,2 and Bm,1 = Bm,2



§11.8 Mass transfer coefficients at high rates of mass transfer 657

In many situations, only one species is transferred through the wall.
If species i is the only one passing through the s-surface, then ni,s = ṁ′′,
so that mt,i = 1. The mass transfer driving force is simply

Bm,i =
(
mi,e −mi,s

mi,s − 1

)
one species
transferred

(11.101)

In all the cases described in Section 11.6, only one species is transferred.

Example 11.15

A pan of hot water with a surface temperature of 75◦C is placed in
an air stream that has a mass fraction of water equal to 0.05. If the
average mass transfer coefficient for water over the pan is gm,H2O =
0.0170 kg/m2·s and the pan has a surface area of 0.04 m2, what is
the evaporation rate?

Solution. Only water vapor passes through the liquid surface, since
air is not strongly absorbed into water under normal conditions. Thus,
we use eqn. (11.101) for the mass transfer driving force. Reference to
a steam table shows the saturation pressure of water to be 38.58 kPa
at 75◦C, so

xH2O,s = 38.58/101.325 = 0.381

Putting this value into eqn. (11.67), we obtain

mH2O,s = 0.277

so that

Bm,H2O = 0.05− 0.277
0.277− 1.0

= 0.314

Thus,

ṁH2O = gm,H2O Bm,H2O(0.04 m2)

= (0.0170 kg/m2·s)(0.314)(0.04 m2)
= 0.000214 kg/s = 769 g/hr
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Figure 11.18 A stagnant film.

The effect of mass transfer rates on the mass transfer
coefficient

We still face the task of finding the mass transfer coefficient, gm,i. The
most obvious way to do this would be to apply the same methods we used
to find the heat transfer coefficient in Chapters 6 through 8—solution of
the momentum and species equations or through correlation of mass
transfer data. These approaches are often used, but they are more com-
plicated than the analogous heat transfer problems, owing to the cou-
pling of the flow field and the mass transfer rate. Simple solutions are
not so readily available for mass transfer problems. We instead employ
a widely used approximate method that allows us to calculate gm,i from
the low-rate mass transfer coefficient by applying a correction for the
effect of finite mass transfer rates.

To isolate the effect of ṁ′′ on the mass transfer coefficient, we first
define the mass transfer coefficient at zero net mass transfer, g∗m,i:

g∗m,i ≡ lim
ṁ′′ �→0

gm,i

The value g∗m,i is simply the mass transfer coefficient for low rates that
would be obtained from the analogy between heat and mass transfer, as
described in Section 11.6. Although gm,i depends directly on the rate of
mass transfer, g∗m,i does not: it is determined only by flow configuration
and physical properties.

In a boundary layer, the fluid near the wall is slowed by the no-slip
condition. One way of modeling high-rate mass transfer effects on gm,i
is to approximate the boundary layer as a stagnant film—a stationary
layer of fluid with no horizontal gradients in it, as shown in Fig. 11.18.
The film thickness, δc , is an effective local concentration boundary layer
thickness.

The presence of a finite mass transfer rate across the film means that
vertical convection—counterdiffusion effects—will be present. In fact,
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the stagnant film shown in Fig. 11.18 is identical to the configuration
dealt with in the previous section (i.e., Fig. 11.16). Thus, the solution ob-
tained in the previous section—eqn. (11.88)—also gives the rate of mass
transfer across the stagnant film, taking account of vertical convective
transport.

In the present mass-based analysis, it is convenient to use the mass-
based analog of the mole-based eqn. (11.88). This analog can be shown
to be (Problem 11.33)

ṁ′′ = ρDim
δc

ln

(
1+ mi,e −mi,s

mi,s −ni,s/ṁ′′

)

which we may recast in the following, more suggestive form

ṁ′′ = ρDim
δc

[
ln(1+ Bm,i)

Bm,i

]
Bm,i (11.102)

Comparing this equation with eqn. (11.99), we see that

gm,i =
ρDim
δc

[
ln(1+ Bm,i)

Bm,i

]

and when ṁ′′ approaches zero,

g∗m,i = lim
ṁ′′ �→0

gm,i = lim
Bm,i �→0

gm,i =
ρDim
δc

(11.103)

Hence,

gm,i = g∗m,i
[

ln(1+ Bm,i)
Bm,i

]
(11.104)

The appropriate value g∗m,i (or δc) may be found from the solution of
corresponding low-rate mass transfer problem, using the analogy of heat
and mass transfer. (The value of g∗m,i, in turn, defines the effective con-
centration b.l. thickness, δc .)

The group [ln(1+Bm,i)]/Bm,i is called the blowing factor. It accounts
the effect of mass transfer on the velocity field. When Bm,i > 0, we have
mass flow away from the wall (or blowing.) In this case, the blowing
factor is always a positive number less than unity, so blowing reduces
gm,i. When Bm,i < 0, we have mass flow toward the wall (or suction), and
the blowing factor is always a positive number greater than unity. Thus,
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gm,i is increased by suction. These trends may be better understood if
we note that wall suction removes the slow fluid at the wall and thins the
boundary layer. The thinner b.l. offers less resistance to mass transfer.
Likewise, blowing tends to thicken the b.l., increasing the resistance to
mass transfer.

The stagnant film b.l. model ignores details of the flow in the b.l.
and focuses on the balance of mass fluxes across it. It is equally valid
for both laminar and turbulent flows. Analogous stagnant film analyses
of heat and momentum transport may also be made, as discussed in
Problem 11.37.

Example 11.16

Calculate the mass transfer coefficient for Example 11.15 if the air
speed is 5 m/s, the length of the pan in the flow direction is 20 cm,
and the air temperature is 25◦C. Assume that the air flow does not
generate waves on the water surface.

Solution. The water surface is essentially a flat plate, as shown in
Fig. 11.19. To find the appropriate equation for the Nusselt number,
we must first compute ReL.

The properties are evaluated at the film temperature, Tf = (75+
25)/2 = 50◦C, and the film composition,

mf,H2O = (0.050+ 0.277)/2 = 0.164

For these conditions, we find the mixture molecular weight from eqn.
(11.8) as Mf = 26.34 kg/kmol. Thus, from the ideal gas law,

ρf = (101,325)(26.34)
/
(8314.5)(323.15) = 0.993 kg/m3

From Appendix A, we get µair = 1.949×10−5 kg/m·s and µwater vapor =
1.062 × 10−5 kg/m·s. Then eqn. (11.54), with xH2O,f = 0.240 and
xair,f = 0.760, yields

µf = 1.75× 10−5 kg/m·s so νf = (µ/ρ)f = 1.76× 10−5 m2/s

We compute ReL = 5(0.2)/(1.76 × 10−5) = 56,800, so the flow is
laminar.

The appropriate Nusselt number is obtained from the mass trans-
fer version of eqn. (6.68):

Num,L = 0.664 Re1/2
L Sc1/3
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Figure 11.19 Evaporation from a tray of water.

Equation (11.35) yields DH2O,air = 2.96× 10−5 m2/s, so

Sc = 1.76/2.96 = 0.595

and

Num,L = 133

Hence,

g∗m,H2O = Num,L(ρDH2O,air/L) = 0.0195 kg/m2·s

Finally,

gm,H2O = g∗m,H2O

[
ln(1+ Bm,H2O)

/
Bm,H2O

]
= 0.0195 ln(1.314)/0.314 = 0.0170 kg/m2·s

In this case, the blowing factor is 0.870. Thus, mild blowing has
reduced the mass transfer coefficient by about 13%.

Conditions for low-rate mass transfer. When the mass transfer driving
force is small enough, the low-rate mass transfer coefficient itself is an
adequate approximation to the actual mass transfer coefficient. This is
because the blowing factor tends toward unity as Bm,i �→ 0:

lim
Bm,i �→0

ln(1+ Bm,i)
Bm,i

= 1

Thus, for small values of Bm,i, gm,i � g∗m,i.
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The calculation of mass transfer proceeds in one of two ways for
low rates of mass transfer, depending upon how the limit of small ṁ′′

is reached. The first situation is when the ratio ni,s/ṁ′′ is fixed at a
nonzero value while ṁ′′ �→ 0. This would be the case when only one
species is transferred, since ni,s/ṁ′′ = 1. Then the mass flux at low
rates is

ṁ′′ � g∗m,iBm,i (11.105)

In this case, convective and diffusive contributions toni,s are of the same
order of magnitude, in general. To reach conditions for which the analogy
of heat and mass transfer applies, it is also necessary that mi,s � 1, so
that convective effects will be negligible, as discussed in Section 11.6.
When that condition also applies, and if only one species is transferred,
we have

ṁ′′ = ni,s � g∗m,iBm,i

= g∗m,i
(
mi,e −mi,s

mi,s − 1

)

� g∗m,i(mi,s −mi,e)

In the second situation, ni,s remains finite while ṁ′′ �→ 0. Then,
from eqn. (11.93),

ni,s � ji,s � g∗m,i(mi,s −mi,e) (11.106)

The transport in this case is purely diffusive, irrespective of the size of
mi,s . This situation arises is catalysis, where two species flow to a wall
and react, creating a third species that flows away from the wall. Since
the reaction conserves mass, the net mass flow through the s-surface is
zero, even though ni,s is not (see Problem 11.44).

An estimate of the blowing factor can be used to determine whether
Bm,i is small enough to justify using the simpler low-rate theory. If, for
example, Bm,i = 0.20, then [ln(1+Bm,i)]/Bm,i = 0.91 and an error of only
9 percent is introduced by assuming low rates. This level of accuracy is
adequate for many engineering calculations.
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11.9 Simultaneous heat and mass transfer

Many important engineering mass transfer processes occur simultane-
ously with heat transfer. Cooling towers, dryers, and combustors are
just a few examples of equipment that intimately couple heat and mass
transfer.

Coupling can arise when temperature-dependent mass transfer pro-
cesses cause heat to be released or absorbed at a surface. For example,
during evaporation, latent heat is absorbed at a liquid surface when vapor
is created. This tends to cool the surface, lowering the vapor pressure and
reducing the evaporation rate. Similarly, in the carbon oxidation prob-
lem discussed in Example 11.2, heat is released when carbon is oxidized,
and the rate of oxidation is a function of temperature. The balance be-
tween convective cooling and the rate of reaction determines the surface
temperature of the burning carbon.

Simultaneous heat and mass transfer processes may be classified as
low-rate or high-rate. At low rates of mass transfer, mass transfer has
only a negligible influence on the velocity field, and heat transfer rates
may be calculated as if mass transfer were not occurring. At high rates
of mass transfer, the heat transfer coefficient must be corrected for the
effect of counterdiffusion. In this section, we consider these two possi-
bilities in turn.

Heat transfer at low rates of mass transfer

One very common case of low-rate heat and mass transfer is the evapora-
tion of water into air at low or moderate temperatures. An archetypical
example of such a process is provided by a sling psychrometer, which is
a device used to measure the humidity of air.

In a sling psychrometer, a wet cloth is wrapped about the bulb of a
thermometer, as shown in Fig. 11.20. This so-called wet-bulb thermome-
ter is mounted, along with a second dry-bulb thermometer, on a swivel
handle, and the pair are “slung” in a rotary motion until they reach steady
state.

The wet-bulb thermometer is cooled, as the latent heat of the vapor-
ized water is given up, until it reaches the temperature at which the rate
of cooling by evaporation just balances the rate of convective heating
by the warmer air. This temperature, which is called the wet-bulb tem-
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Figure 11.20 The wet bulb of a sling psychrometer.

perature, is directly related to the amount of water in the surrounding
air.12

The highest ambient air temperatures we normally encounter are fairly
low, so the rate of mass transfer should be small. We can test this sug-
gestion by computing an upper bound on Bm,H2O, under conditions that
should maximize the evaporation rate: using the highest likely air tem-
perature and the lowest humidity. Let us set those values, say, at 120◦F
(49◦C) and zero humidity (mH2O,e = 0).

We know that the vapor pressure on the wet bulb will be less than the
saturation pressure at 120◦F, since evaporation will keep the bulb at a
lower temperature:

xH2O,s � psat(120◦F)/patm = (11,671 Pa)/(101,325 Pa) = 0.115

12The wet-bulb temperature for air–water systems is very nearly the adiabatic satu-
ration temperature of the air–water mixture — the temperature reached by a mixture
if it is brought to saturation with water by adding water vapor without adding heat. It
is a thermodynamic property of an air–water combination.
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so, with eqn. (11.67),

mH2O,s � 0.0750

Thus, our criterion for low-rate mass transfer, eqn. (11.74), is met:

Bm,H2O =
(
mH2O,s −mH2O,e

1−mH2O,s

)
� 0.0811

Alternatively, in terms of the blowing factor, eqn. (11.104),

ln(1+ Bm,H2O)
Bm,H2O

� 0.962

This means that under the worst normal circumstances, the low-rate the-
ory should deviate by only 4 percent from the actual rate of evaporation.

We may form an energy balance on the wick by considering the u, s,
and e surfaces shown in Fig. 11.20. At the steady temperature, no heat is
conducted past the u-surface (into the wet bulb), but liquid water flows
through it to the surface of the wick where it evaporates. An energy
balance on the region between the u and s surfaces gives

nH2O,sĥH2O,s︸ ︷︷ ︸
enthalpy of water

vapor leaving

− qs︸ ︷︷ ︸
heat convected
to the wet bulb

= nH2O,uĥH2O,u︸ ︷︷ ︸
enthalpy of liquid

water arriving

Since mass is conserved, nH2O,s = nH2O,u, and because the enthalpy
change results from vaporization, ĥH2O,s − ĥH2O,u = hfg . Hence,

nH2O,s hfg
∣∣
Twet-bulb

= h(Te − Twet-bulb)

For low-rate mass transfer, nH2O,s � jH2O,s , and this equation can be
written in terms of the mass transfer coefficient

gm,H2O
(
mH2O,s −mH2O,e

)
hfg

∣∣
Twet-bulb

= h(Te − Twet-bulb) (11.107)

The heat and mass transfer coefficients depend on the geometry and
flow rates of the psychrometer, so it would appear that Twet-bulb should
depend on the device used to measure it. The two coefficients are not in-
dependent, however, owing to the analogy between heat and mass trans-
fer. For forced convection in cross flow, we saw in Chapter 7 that the
heat transfer coefficient had the general form

hD
k
= C ReaPrb
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where C is a constant, and typical values of a and b are a � 1/2 and
b � 1/3. From the analogy,

gmD
ρD12

= C ReaScb

Dividing the second expression into the first, we find

h
gmcp

D12

α
=

(
Pr
Sc

)b

Both α/D12 and Sc/Pr are equal to the Lewis number, Le. Hence,

h
gmcp

= Le1−b � Le2/3 (11.108)

The Lewis number for air–water systems is about 0.847. Eqn. (11.108)
shows that the ratio of h to gm depends primarily on the physical prop-
erties of the mixture, rather than the geometry or flow rate.

This type of relationship between h and gm was first developed by
W. K. Lewis in 1922 for the case in which Le = 1 [11.27]. (Lewis’s pri-
mary interest was in air–water systems, so the approximation was not
too bad.) The more general form, eqn. (11.108), is another Reynolds-
Colburn type of analogy, similar to eqn. (6.76). It was given by Chilton
and Colburn [11.28] in 1934.

Equation (11.107) may now be written as

Te − Twet-bulb =
(
hfg

∣∣
Twet-bulb

cp Le2/3

)(
mH2O,s −mH2O,e

)
(11.109)

This expression can be solved iteratively with a steam table to obtain the
wet-bulb temperature as a function of the dry-bulb temperature, Te, and
the humidity of the ambient air,mH2O,e. The psychrometric charts found
in engineering handbooks and thermodynamics texts can be generated in
this way. We ask the reader to make such calculations in Problem 11.49.

The wet-bulb temperature is a helpful concept in many phase-change
processes. When a small body without internal heat sources evaporates
or sublimes, it cools to a steady “wet-bulb” temperature at which con-
vective heating is balanced by latent heat removal. The body will stay at
that temperature until the phase-change process is complete. Thus, the
wet-bulb temperature appears in the evaporation of water droplets, the
sublimation of dry ice, the combustion of fuel sprays, and so on. If the
body is massive, however, steady state may not be reached very quickly.
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Stagnant film model of heat transfer at high mass transfer rates

The multicomponent energy equation. Each species in a mixture car-
ries its own enthalpy, ĥi. In a flow with mass transfer, different species
move with different velocities, so that enthalpy transport by individ-
ual species must enter the energy equation along with heat conduction
through the fluid mixture. For steady, low-speed flow without internal
heat generation or chemical reactions, we may rewrite the energy balance,
eqn. (6.36), as

−
∫
S
(−k∇T) · d�S −

∫
S


∑
i
ρiĥi �vi


 · d�S = 0

where the second term accounts for the enthalpy transport by each species
in the mixture. The usual procedure of applying Gauss’s theorem and re-
quiring the integrand to vanish identically gives

∇ ·

−k∇T +∑

i
ρiĥi �vi


 = 0 (11.110)

This equation shows that the total energy flux—the sum of heat conduc-
tion and enthalpy transport—is conserved in steady flow.13

The stagnant film model. Let us restrict attention to the transport of a
single species, i, across a boundary layer. We again use the stagnant film
model for the thermal boundary layer and consider the one-dimensional
flow of energy through it (see Fig. 11.21). Equation (11.110) simplifies to

d
dy

(
−kdT
dy

+ ρiĥivi
)
= 0 (11.111)

From eqn. (11.69) for steady, one-dimensional mass conservation

ni = constant in y = ni,s
13The multicomponent energy equation becomes substantially more complex when

kinetic energy, body forces, and thermal or pressure diffusion are taken into account.
The complexities are such that most published derivations of the multicomponent
energy equation are incorrect, as shown by Mills in 1998 [11.29]. The main source
of error has been the assignment of an independent kinetic energy to the ordinary
diffusion velocity. This leads to such inconsistencies as a mechanical work term in the
thermal energy equation.
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Figure 11.21 Energy transport in a stagnant film.

If we neglect pressure variations and assume a constant specific heat
capacity (as in Sect. 6.3), the enthalpy may be written as ĥi = cp,i(T−Tref),
and eqn. (11.111) becomes

d
dy

(
−kdT
dy

+ni,scp,iT
)
= 0

Integrating twice and applying the boundary conditions

T(y = 0) = Ts and T(y = δt) = Te

we obtain the temperature profile of the stagnant film:

T − Ts
Te − Ts

=
exp

(ni,scp,i
k

y
)
− 1

exp
(ni,scp,i

k
δt

)
− 1

(11.112)

The temperature distribution may be used to find the heat transfer
coefficient according to its definition [eqn. (6.5)]:

h ≡
−kdT
dy

∣∣∣∣∣
s

Ts − Te
= ni,scp,i

exp
(ni,scp,i

k
δt

)
− 1

(11.113)

We define the heat transfer coefficient in the limit of zero mass transfer,
h∗, as

h∗ ≡ lim
ni,s→0

h = k
δt

(11.114)
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Substitution of eqn. (11.114) into eqn. (11.113) yields

h = ni,scp,i
exp(ni,scp,i/h∗)− 1

(11.115)

To use this result, one first calculates the heat transfer coefficient as if
there were no mass transfer, using the methods of Chapters 6 through 8.
The value obtained is h∗, which is then placed in eqn. (11.115) to de-
termine h in the presence of mass transfer. Note that h∗ defines the
effective film thickness δt through eqn. (11.114).

Equation (11.115) shows the primary effects of mass transfer on h.
When ni,s is large and positive—the blowing case—h becomes smaller
than h∗. Thus, blowing decreases the heat transfer coefficient, just as it
decreases the mass transfer coefficient. Likewise, when ni,s is large and
negative—the suction case—h becomes very large relative to h∗: suc-
tion increases the heat transfer coefficient just as it increases the mass
transfer coefficient.

Condition for the low-rate approximation. When the rate of mass trans-
fer is small, we may approximate h by h∗, just as we approximated gm
by g∗m at low mass transfer rates. The approximation h = h∗ may be
tested by considering the ratio ni,scp,i/h∗ in eqn. (11.115). For example,
if ni,scp,i/h∗ = 0.2, then h/h∗ = 0.90, and h = h∗ within an error of
only 10 percent. This is within the uncertainty to which h∗ can be pre-
dicted in most flows. In gases, if Bm,i is small, ni,scp,i/h∗ will usually be
small as well.

Property reference state. In Section 11.8, we calculated g∗m,i (and thus
gm,i) at the film temperature and film composition, as though mass
transfer were occurring at the mean mixture composition and tempera-
ture. We may evaluate h∗ and g∗m,i in the same way when heat and mass
transfer occur simultaneously. If composition variations are not large,
as in many low-rate problems, it may be adequate to use the freestream
composition and film temperature. When large properties variations are
present, other schemes may be required [11.30].
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Figure 11.22 Transpiration cooling.

Energy balances in simultaneous heat and mass transfer

Transpiration cooling. To calculate simultaneous heat and mass trans-
fer rates, one must generally look at the energy balance below the wall as
well as those at the surface and across the boundary layer. Consider, for
example, the process of transpiration cooling, shown in Fig. 11.22. Here a
wall exposed to high temperature gases is protected by injecting a cooler
gas into the flow through a porous section of the surface. A portion of
the heat transfer to the wall is taken up in raising the temperature of the
transpired gas. Blowing serves to thicken the boundary layer and reduce
h, as well. This process is frequently used to cool turbine blades and
combustion chamber walls.

Let us construct an energy balance for a steady state in which the wall
has reached a temperature Ts . The enthalpy and heat fluxes are as shown
in Fig. 11.22. We take the coolant reservoir to be far enough back from
the surface that temperature gradients at the r -surface are negligible and
the conductive heat flux, qr , is zero. An energy balance between the r -
and u-surfaces gives

ni,r ĥi.r = ni,uĥi,u − qu (11.116)

and between the u- and s-surfaces,

ni,uĥi,u − qu = ni,sĥi,s − qs (11.117)
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Since there is no change in the enthalpy of the transpired species when
it passes out of the wall,

ĥi,u = ĥi,s (11.118)

and, because the process is steady, conservation of mass gives

ni,r = ni,u = ni,s (11.119)

Thus, eqn. (11.117) reduces to

qs = qu (11.120)

The flux qu is the conductive heat flux into the wall, while qs is the con-
vective heat transfer from the gas stream,

qs = h(Te − Ts) (11.121)

Combining eqns. (11.116) through (11.121), we find

ni,s
(
ĥi,s − ĥi,r

)
= h(Te − Ts) (11.122)

This equation shows that, at steady state, the heat convection to the
wall is absorbed by the enthalpy rise of the transpired gas. Writing the
enthalpy as ĥi = cp,i(Ts − Tref), we obtain

ni,scp,i(Ts − Tr ) = h(Te − Ts) (11.123)

or

Ts =
hTe +ni,scp,iTr
h+ni,scp,i

(11.124)

It is left as an exercise (Problem 11.47) to show that

Ts = Tr + (Te − Tr ) exp(−ni,scp,i/h∗) (11.125)

The wall temperature decreases exponentially to Tr as the mass flux of
the transpired gas increases. Transpiration cooling may be enhanced by
injecting a gas with a high specific heat.
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Sweat Cooling. A common variation on transpiration cooling is sweat
cooling, in which a liquid is bled through a porous wall. The liquid is
vaporized by convective heat flow to the wall, and the latent heat of
vaporization acts as a sink. Figure 11.22 also represents this process.
The balances, eqns. (11.116) and (11.117), as well as mass conservation,
eqn. (11.119), still apply, but the enthalpies at the interface now differ by
the latent heat of vaporization:

ĥi,u + hfg = ĥi,s (11.126)

Thus, eqn. (11.120) becomes

qs = qu + hfgni,s
and eqn. (11.122) takes the form

ni,s
[
hfg + cp,if (Ts − Tr )

]
= h(Te − Ts) (11.127)

where cp,if is the specific heat of liquid i. Since the latent heat is generally
much larger than the sensible heat, a comparison of eqn. (11.127) to
eqn. (11.123) exposes the greater efficiency per unit mass flow of sweat
cooling relative to transpiration cooling.

Thermal radiation. When thermal radiation falls on the surface through
which mass is transferred, the additional heat flux must enter the energy
balances. For example, suppose that thermal radiation were present dur-
ing transpiration cooling. Radiant heat flux, qrad,e, originating above the
e-surface would be absorbed below the u-surface.14 Thus, eqn. (11.116)
becomes

ni,r ĥi,r = ni,uĥi,u − qu −αqrad,e (11.128)

where α is the radiation absorptance. Equation (11.117) is unchanged.
Similarly, thermal radiation emitted by the wall is taken to originate be-
low the u-surface, so eqn. (11.128) is now

ni,r ĥi,r = ni,uĥi,u − qu −αqrad,e + qrad,u (11.129)

or, in terms of radiosity and irradiation (see Section 10.4)

ni,r ĥi,r = ni,uĥi,u − qu − (H − B) (11.130)

for an opaque surface.
14Remember that the s- and u-surfaces are fictitious elements of the enthalpy bal-

ances at the phase interface. The apparent space between them need be only a few
molecules thick. Thermal radiation therefore passes through the u-surface and is ab-
sorbed below it.
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Chemical Reactions. The heat and mass transfer analyses in this sec-
tion and Section 11.8 assume that the transferred species undergo no
homogeneous reactions. If reactions do occur, the mass balances of Sec-
tion 11.8 are invalid, because the mass flux of a reacting species will vary
across the region of reaction. Likewise, the energy balance of this section
will fail because it does not include the heat of reaction.

For heterogeneous reactions, the complications are not so severe. Re-
actions at the boundaries release the heat of reaction released between
the s- and u-surfaces, altering the boundary conditions. The proper sto-
ichiometry of the mole fluxes to and from the surface must be taken into
account, and the heat transfer coefficient [eqn. (11.115)] must be modi-
fied to account for the transfer of more than one species [11.30].

Problems

11.1 Derive: (a) eqns. (11.8); (b) eqns. (11.9).

11.2 A 1000 liter cylinder at 300 K contains a gaseous mixture com-
posed of 0.10 kmol of NH3, 0.04 kmol of CO2, and 0.06 kmol of
He. (a) Find the mass fraction for each species and the pressure
in the cylinder. (b) After the cylinder is heated to 600 K, what
are the new mole fractions, mass fractions, and molar concen-
trations? (c) The cylinder is now compressed isothermally to a
volume of 600 liters. What are the molar concentrations, mass
fractions, and partial densities? (d) If 0.40 kg of gaseous N2

is injected into the cylinder while the temperature remains at
600 K, find the mole fractions, mass fractions, and molar con-
centrations. [(a) mCO2 = 0.475; (c) cCO2 = 0.0667 kmol/m3;
(d) xCO2 = 0.187.]

11.3 Planetary atmospheres show significant variations of temper-
ature and pressure in the vertical direction. Observations sug-
gest that the atmosphere of Jupiter has the following compo-
sition at the tropopause level:

number density of H2 = 5.7× 1021 (molecules/m3)

number density of He = 7.2× 1020 (molecules/m3)

number density of CH4 = 6.5× 1018 (molecules/m3)

number density of NH3 = 1.3× 1018 (molecules/m3)
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Find the mole fraction and partial density of each species at
this level if p = 0.1 atm and T = 113 K. Estimate the num-
ber densities at the level where p = 10 atm and T = 400 K,
deeper within the Jovian troposphere. (Deeper in the Jupiter’s
atmosphere, the pressure may exceed 105 atm.)

11.4 Using the definitions of the fluxes, velocities, and concentra-
tions, derive eqn. (11.34) from eqn. (11.27) for binary diffusion.

11.5 Show that D12 = D21 in a binary mixture.

11.6 Fill in the details involved in obtaining eqn. (11.31) from eqn.
(11.30).

11.7 Batteries commonly contain an aqueous solution of sulfuric
acid with lead plates as electrodes. Current is generated by
the reaction of the electrolyte with the electrode material. At
the negative electrode, the reaction is

Pb(s)+ SO2−
4 � PbSO4(s)+ 2e−

where the (s) denotes a solid phase component and the charge
of an electron is −1.609×10−19 coulombs. If the current den-
sity at such an electrode is J = 5 milliamperes/cm2, what is
the mole flux of SO2−

4 to the electrode? (1 amp =1 coulomb/s.)
What is the mass flux of SO2−

4 ? At what mass rate is PbSO4

produced? If the electrolyte is to remain electrically neutral,
at what rate does H+ flow toward the electrode? Hydrogen
does not react at the negative electrode. [ṁ′′

PbSO4
= 7.83 ×

10−5 kg/m2·s.]

11.8 The salt concentration in the ocean increases with increasing
depth, z. A model for the concentration distribution in the
upper ocean is

S = 33.25+ 0.75 tanh(0.026z − 3.7)

where S is the salinity in grams of salt per kilogram of ocean
water and z is the distance below the surface in meters. (a) Plot
the mass fraction of salt as a function of z. (The region of rapid
transition of msalt(z) is called the halocline.) (b) Ignoring the
effects of waves or currents, compute jsalt(z). Use a value of
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Dsalt,water = 1.5 × 10−5 cm2/s. Indicate the position of maxi-
mum diffusion on your plot of the salt concentration. (c) The
upper region of the ocean is well mixed by wind-driven waves
and turbulence, while the lower region and halocline tend to
be calmer. Using jsalt(z) from part (b), make a simple estimate
of the amount of salt carried upward in one week in a 5 km2

horizontal area of the sea.

11.9 In catalysis, one gaseous species reacts with another on a pas-
sive surface (the catalyst) to form a gaseous product. For ex-
ample, butane reacts with hydrogen on the surface of a nickel
catalyst to form methane and propane. This heterogeneous
reaction, referred to as hydrogenolysis, is

C4H10 +H2
Ni
�→ C3H8 + CH4

The molar rate of consumption of C4H10 per unit area in the
reaction is ṘC4H10 = A(e−∆E/R

◦T )pC4H10p
−2.4
H2

, where A = 6.3×
1010 kmol/m2·s, ∆E = 1.9 × 108 J/kmol, and p is in atm.
(a) If pC4H10,s = pC3H8,s = 0.2 atm, pCH4,s = 0.17 atm, and
pH2,s = 0.3 atm at a nickel surface with conditions of 440◦C
and 0.87 atm total pressure, what is the rate of consumption of
butane? (b) What are the mole fluxes of butane and hydrogen
to the surface? What are the mass fluxes of propane and ethane
away from the surface? (c) What is ṁ′′? What are v , v∗, and
vC4H10? (d) What is the diffusional mole flux of butane? What
is the diffusional mass flux of propane? What is the flux of Ni?
[(b) nCH4,s = 0.0441 kg/m2·s; (d) jC3H8 = 0.121 kg/m2·s.]

11.10 Consider two chambers held at temperatures T1 and T2, re-
spectively, and joined by a small insulated tube. The chambers
are filled with a binary gas mixture, with the tube open, and
allowed to come to steady state. If the Soret effect is taken
into account, what is the concentration difference between the
two chambers? Assume that an effective mean value of the
thermal diffusion ratio is known.

11.11 Compute D12 for oxygen gas diffusing through nitrogen gas
at p = 1 atm, using eqns. (11.39) and (11.42), for T = 200 K,
500 K, and 1000 K. Observe that eqn. (11.39) shows large de-
viations from eqn. (11.42), even for such simple and similar
molecules.
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11.12 (a) Compute the binary diffusivity of each of the noble gases
when they are individually mixed with nitrogen gas at 1 atm
and 300 K. Plot the results as a function of the molecular
weight of the noble gas. What do you conclude? (b) Consider
the addition of a small amount of helium (xHe = 0.04) to a mix-
ture of nitrogen (xN2 = 0.48) and argon (xAr = 0.48). Com-
pute DHe,m and compare it with DAr,m. Note that the higher
concentration of argon does not improve its ability to diffuse
through the mixture.

11.13 (a) One particular correlation shows that gas phase diffusion
coefficients vary as T 1.81 and p−1. If an experimental value of
D12 is known at T1 and p1, develop an equation to predictD12

at T2 and p2. (b) The diffusivity of water vapor (1) in air (2) was
measured to be 2.39× 10−5 m2/s at 8◦C and 1 atm. Provide a
formula for D12(T ,p).

11.14 Kinetic arguments lead to the Stefan-Maxwell equation for a
dilute-gas mixture:

∇xi =
n∑
j=1

cicj
c2Dij


 �J∗j
cj
−
�J∗i
ci




(a) Derive eqn. (11.44) from this, making the appropriate as-
sumptions. (b) Show that if Dij has the same value for each
pair of species, then Dim = Dij .

11.15 Compute the diffusivity of methane in air using (a) eqn. (11.42)
and (b) Blanc’s law. For part (b), treat air as a mixture of oxygen
and nitrogen, ignoring argon. Let xmethane = 0.05, T = 420◦F,
and p = 10 psia. [(a)DCH4,air = 7.66×10−5 m2/s; (b)DCH4,air =
8.13× 10−5 m2/s.]

11.16 Diffusion of solutes in liquids is driven by the chemical poten-
tial, µ. Work is required to move a mole of solute A from a
region of low chemical potential to a region of high chemical
potential; that is,

dW = dµA = dµAdx dx
under isothermal, isobaric conditions. For an ideal (very dilute)
solute, µA is given by

µA = µ0 + R◦T ln(cA)
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where µ0 is a constant. Using an elementary principle of me-
chanics, derive the Nernst-Einstein equation. Note that the so-
lution must be assumed to be very dilute.

11.17 A dilute aqueous solution at 300 K contains potassium ions,
K+. If the velocity of aqueous K+ ions is 6.61× 10−4 cm2/s·V
per unit electric field (1 V/cm), estimate the effective radius of
K+ ions in an aqueous solution. Criticize this estimate. (The
charge of an electron is −1.609× 10−19 coulomb and a volt =
1J/coulomb.)

11.18 (a) Obtain diffusion coefficients for: (1) dilute CCl4 diffusing
through liquid methanol at 340 K; (2) dilute benzene diffus-
ing through water at 290 K; (3) dilute ethyl alcohol diffus-
ing through water at 350 K; and (4) dilute acetone diffusing
through methanol at 370 K. (b) Estimate the effective radius of
a methanol molecule in a dilute aqueous solution.
[(a) Dacetone,methanol = 6.8× 10−9 m2/s.]

11.19 If possible, calculate values of the viscosity, µ, for methane,
hydrogen sulfide, and nitrous oxide, under the following con-
ditions: 250 K and 1 atm, 500 K and 1 atm, 250 K and 2 atm,
250 K and 12 atm, 500 K and 12 atm.

11.20 (a) Show that k = (5/2)µcv for a monatomic gas. (b) Obtain
Eucken’s formula for the Prandtl number of a dilute gas:

Pr = 4γ
/
(9γ − 5)

(c) Recall that for an ideal gas, γ � (D + 2)/D, where D is the
number of modes of energy storage of its molecules. Obtain
an expression for Pr as a function of D and describe what it
means. (d) Use Eucken’s formula to compute Pr for gaseous
Ar, N2, and H2O. Compare the result to data in Appendix A
over the range of temperatures. Explain the results obtained
for steam as opposed to Ar and N2. (Note that for each mode
of vibration, there are two modes of energy storage but that
vibration is normally inactive until T is very high.)

11.21 A student is studying the combustion of a premixed gaseous
fuel with the following molar composition: 10.3% methane,
15.4% ethane, and 74.3% oxygen. She passes 0.006 ft3/s of the
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mixture (at 70◦F and 18 psia) through a smooth 3/8 inch I.D.
tube, 47 inches long. (a) What is the pressure drop? (b) The
student’s advisor recommends preheating the fuel mixture, us-
ing a Nichrome strip heater wrapped around the last 5 inches
of the duct. If the heater produces 0.8 W/inch, what is the wall
temperature at the outlet of the duct? Let cp,CH4 = 2280 J/kg·K,
γCH4 = 1.3, cp,C2H6 = 1730 J/kg·K, and γC2H6 = 1.2, and evalu-
ate the properties at the inlet conditions.

11.22 (a) Work Problem 6.36. (b) A fluid is said to be incompressible if
the density of a fluid particle does not change as it moves about
in the flow (i.e., if Dρ/Dt = 0). Show that an incompressible
flow satisfies ∇ · �u = 0. (c) How does the condition of incom-
pressibility differ from that of “constant density”? Describe a
flow that is incompressible but that does not have “constant
density.”

11.23 Carefully derive eqns. (11.62) and (11.63). Note that ρ is not
assumed constant in eqn. (11.62).

11.24 Derive the equation of species conservation on a molar basis,
using ci rather than ρi. Also obtain an equation in ci alone,
similar to eqn. (11.63) but without the assumption of incom-
pressibility. What assumptions must be made to obtain the
latter result?

11.25 Find the following concentrations: (a) the mole fraction of air
in solution with water at 5◦C and 1 atm, exposed to air at the
same conditions, H = 4.88 × 104 atm; (b) the mole fraction
of ammonia in air above an aqueous solution, with xNH3 =
0.05 at 0.9 atm and 40◦C and H = 1522 mm Hg; (c) the mole
fraction of SO2 in an aqueous solution at 15◦C and 1 atm, if
pSO2 = 28.0 mm Hg and H = 1.42 × 104 mm Hg; and (d) the
partial pressure of ethylene over an aqueous solution at 25◦C
and 1 atm, with xC2H4 = 1.75× 10−5 and H = 11.4× 103 atm.

11.26 Use a steam table to estimate (a) the mass fraction of water
vapor in air over water at 1 atm and 20◦C, 50◦C, 70◦C, and
90◦C; (b) the partial pressure of water over a 3 percent-by-
weight aqueous solution of HCl at 50◦C; (c) the boiling point
at 1 atm of salt water with a mass fraction mNaCl = 0.18.
[(c) TB.P. = 101.8◦C.]
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11.27 Suppose that a steel fitting with a carbon mass fraction of 0.2%
is put into contact with carburizing gases at 940◦C, and that
these gases produce a steady mass fraction of 1.0% carbon at
the surface of the metal. The diffusion coefficient of carbon in
this steel is

DC,Fe =
(
1.50×10−5 m2/s

)
exp

[
−(1.42× 108 J/kmol)

/
(R◦T)

]
for T in kelvin. How long does it take to produce a carbon
concentration of 0.6% by mass at a depth of 0.5 mm? How
much less time would it take if the temperature were 980◦C?

11.28 (a) Write eqn. (11.62) in its boundary layer form. (b) Write this
concentration boundary layer equation and its b.c.’s in terms
of a nondimensional mass fraction,ψ, analogous to the dimen-
sionless temperature in eqn. (6.42). (c) For ν = Dim, relate ψ
to the Blasius function, f , for flow over a flat plate. (d) Note the
similar roles of Pr and Sc in the two boundary layer transport
processes. Infer the mass concentration analog of eqn. (6.55)
and sketch the concentration and momentum b.l. profiles for
Sc = 1 and Sc 	 1.

11.29 When Sc is large, momentum diffuses more easily than mass,
and the concentration b.l. thickness, δc , is much less than the
momentum b.l. thickness, δ. On a flat plate, the small part
of the velocity profile within the concentration b.l. is approxi-
mately u/Ue = 3y/2δ. Compute Num,x based on this velocity
profile, assuming a constant wall concentration. (Hint : Use the
mass transfer analogs of eqn. (6.47) and (6.50) and note that
qw/ρcp becomes ji,s/ρ.).

11.30 Consider a one-dimensional, binary gaseous diffusion process
in which species 1 and 2 diffuse in opposite directions along
the z-axis at equal molar rates. This process is known as
equimolar counter-diffusion. (a) What are the relations between
N1, N2, J∗1 , and J∗2 ? (b) If steady state prevails and condi-
tions are isothermal and isobaric, what is the concentration of
species 1 as a function of z? (c) Write the mole flux in terms
of the difference in partial pressure of species 1 between loca-
tions z1 and z2.

11.31 Consider steady mass diffusion from a small sphere. When
convection is negligible, the mass flux in the radial direction is
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nr,i = jr ,i = −ρDimdmi/dr . If the concentration is mi,∞ far
from the sphere andmi,s at its surface, use a mass balance to
obtain the surface mass flux in terms of the overall concentra-
tion difference (assuming that ρDim is constant). Then apply
the definition eqns. (11.94) and (11.78) to show that Num,D = 2
for this situation.

11.32 An experimental Stefan tube is 1 cm in diameter and 10 cm
from the liquid surface to the top. It is held at 10◦C and 8.0×
104 Pa. Pure argon flows over the top and liquid CCl4 is at
the bottom. The pool level is maintained while 0.086 ml of
liquid CCl4 evaporates during a period of 12 hours. What is the
diffusivity of carbon tetrachloride in argon measured under
these conditions? The specific gravity of liquid CCl4 is 1.59
and its vapor pressure is log10 pv = 8.004−1771/T , where pv
is expressed in mm Hg and T in K.

11.33 Repeat the analysis given in Section 11.7 on the basis of mass
fluxes, assuming that ρDim is constant and neglecting any
buoyancy-driven convection. Obtain the analog of eqn. (11.88).

11.34 In Sections 11.5 and 11.7, it was assumed at points that cD12

or ρD12 was independent of position. (a) If the mixture compo-
sition (e.g., x1) varies in space, this assumption may be poor.
Using eqn. (11.42) and the definitions from Section 11.2, ex-
amine the composition dependence of these two groups. For
what type of mixture is ρD12 most sensitive to composition?
What does this indicate about molar versus mass-based analy-
sis? (b) How do each of these groups depend on pressure and
temperature? Is the analysis of Section 11.7 really limited to
isobaric conditions? (c) Do the Prandtl and Schmidt numbers
depend on composition, temperature, or pressure?

11.35 A Stefan tube contains liquid bromine at 320 K and 1.2 atm.
Carbon dioxide flows over the top and is also bubbled up through
the liquid at the rate of 4.4 ml/hr. If the distance from the liq-
uid surface to the top is 16 cm and the diameter is 1 cm, what
is the evaporation rate of Br2? (psat,Br2 = 0.680 bar at 320 K.)
[NBr2,s = 1.90× 10−6 kmol/m2·s.]

11.36 Show that gm,1 = gm,2 and Bm,1 = Bm,2 in a binary mixture.
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11.37 Demonstrate that stagnant film models of the momentum and
thermal boundary layers reproduce the proper dependence of
Cf,x and Nux on Rex and Pr. Using eqns. (6.31) and (6.55)
to obtain the dependence of δ and δt on Rex and Pr, show
that stagnant film models gives eqns. (6.33) and (6.58) within
a constant on the order of unity. [The constants in these re-
sults will differ from the exact results because the effective b.l.
thicknesses of the stagnant film model are not the same as the
exact values—see eqn. (6.57).]

11.38 (a) What is the largest value of the mass transfer driving force
when one species is transferred? What is the smallest value?
(b) Plot the blowing factor as a function of Bm,i for one species
transferred. Indicate on your graph the regions of blowing,
suction, and low-rate mass transfer. (c) Verify the two limits
used to show that g∗m,i = ρDim/δc .

11.39 Nitrous oxide is bled through the surface of a porous 3/8 in.
O.D. tube at 0.025 liter/s per meter of tube length. Air flows
over the tube at 25 ft/s. Both the air and the tube are at 18◦C,
and the ambient pressure is 1 atm. Estimate the mean concen-
tration of N2O at the tube surface. (Hint : First estimate the
concentration using properties of pure air; then correct the
properties if necessary.)

11.40 Film absorbtion is a process whereby gases are absorbed into
a falling liquid film. Typically, a thin film of liquid runs down
the inside of a vertical tube through which the gas flows. An-
alyze this process under the following assumptions: The film
flow is laminar and of constant thickness, δ0, with a velocity
profile given by eqn. (8.48); the gas is only slightly soluble in
the liquid, so that it does not penetrate far beyond the liq-
uid surface and so that liquid properties are unaffected by it;
and, the gas concentration at the s- and u-surfaces (above and
below the liquid-vapor interface, respectively) does not vary
along the length of the tube. The inlet concentration of gas in
the liquid is m1,0. Show that the mass transfer is given by

Num,x =
(
u0x
πD12

)1/2
with u0 =

(ρf − ρg)gδ2
0

2µf
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The mass transfer coefficient here is based on the concentra-
tion difference between the u-surface and the bulk liquid at
m1,0. (Hint : The small penetration assumption can be used to
reduce the species equation for the film to the diffusion equa-
tion, eqn. 11.72.)

11.41 Benzene vapor flows through a 3 cm I.D. vertical tube. A thin
film of initially pure water runs down the inside wall of the tube
at a flow rate of 0.3 liter/s. If the tube is 0.5 m long and 40◦C,
estimate the rate (in kg/s) at which benzene is absorbed into
water over the entire length of the tube. The mass fraction of
benzene at the u-surface is 0.206. (Hint : Use the result stated
in Problem 11.40. Obtain δ0 from the results in Chapter 8.)

11.42 A mothball consists of a 2.5 cm diameter sphere of naphtha-
lene (C10H8) that is hung by a wire in a closet. The solid naph-
thalene slowly sublimates to vapor, which drives off the moths.
The latent heat of sublimation and evaporation rate are low
enough that the wet-bulb temperature is essentially the am-
bient temperature. Estimate the lifetime of this mothball in
a closet with a mean temperature of 20◦C. Use the following
data:

σ = 6.18 Å, ε/kB = 561.5 K for C10H8,

and, for solid naphthalene,

ρC10H8 = 1145 kg/m3 at 20◦C

The vapor pressure (in mmHg) of solid naphthalene near room
temperature is given approximately by log10 pv = 11.450 −
3729.3/(T K). The integral you obtain can be evaluated nu-
merically.

11.43 In contrast to the napthalene mothball described in Prob. 11.42,
other mothballs are made from paradichlorobenzene (PDB). Es-
timate the lifetime of a 2.5 cm diameter PDB mothball using
the following room temperature property data:

σ = 5.76 Å ε/kB = 578.9 K MPDB = 147.0 kg/kmol

log10
(
pv mmHg

) = 11.985− 3570/(T K)

ρPDB = 1248 kg/m3
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11.44 Consider the process of catalysis as described in Problem 11.9.
The mass transfer process involved is the diffusion of the re-
actants to the surface and diffusion of products away from it.
(a) What is ṁ′′ in catalysis? (b) Reaction rates in catalysis are
of the form:

Ṙreactant = Ae−∆E/R◦T (preactant)n(pproduct)m kmol/m2·s
for the rate of consumption of a reactant per unit surface
area. The p’s are partial pressures and A, ∆E, n, and m are
constants. Suppose that n = 1 and m = 0 for the reaction
B + C �→ D. Approximate the reaction rate, in terms of mass,
as

ṙB = A′e−∆E/R◦TρB,s kg/m2·s
and find the rate of consumption of B in terms ofmB,e and the
mass transfer coefficient for the geometry in question. (c) The
ratio Da ≡ ρA′e−∆E/R◦T /g∗m is called the Damkohler number.
Explain its significance in catalysis. What features dominate
the process when Da approaches 0 or ∞? What temperature
range characterizes each?

11.45 One typical kind of mass exchanger is a fixed-bed catalytic re-
actor. A flow chamber of length L is packed with a catalyst
bed. A gas mixture containing some species i to be consumed
by the catalytic reaction flows through the bed at a rate ṁ. The
effectiveness of such a exchanger (cf. Chapter 3) is

ε = 1− e−NTU, where NTU = gm,oaPL/ṁ

where gm,oa is the overall mass transfer coefficient for the cat-
alytic packing, P is the surface area per unit length, and ε is
defined in terms of mass fractions. In testing a 0.5 m catalytic
reactor for the removal of ethane, it is found that the ethane
concentration drops from a mass fraction of 0.36 to 0.05 at a
flow rate of 0.05 kg/s. The packing is known to have a surface
area of 11 m2. What is the exchanger effectiveness? What is
the overall mass transfer coefficient in this bed?

11.46 (a) Perform the integration to obtain eqn. (11.112). Then take
the derivative and the limit needed to get eqns. (11.113) and
(11.114). (b) What is the general form of eqn. (11.115) when
more than one species is transferred?
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11.47 (a) Derive eqn. (11.125) from eqn. (11.124). (b) Suppose that
1.5 m2 of the wing of a spacecraft re-entering the earth’s atmo-
sphere is to be cooled by transpiration; 900 kg of the vehicle’s
weight is allocated for this purpose. The low-rate heat transfer
coefficient is about 1800 W/m2·K in the region of interest, and
the hottest portion of re-entry is expected to last 3 minutes. If
the air behind the shock wave ahead of the wing is at 2500◦C
and the reservior is at 5◦C , which of these gases—H2, He, and
N2—keeps the surface coolest? (Of course, the result for H2 is
invalidated by the fact that H2 would burn under these condi-
tions.)

11.48 Dry ice (solid CO2) is used to cool medical supplies transported
by a small plane to a remote village in Alaska. A roughly spher-
ical chunk of dry ice, 5 cm in diameter, falls from the plane
through air at 5◦C with a terminal velocity of 15 m/s. If steady
state is reached quickly, what are the temperature and sub-
limation rate of the dry ice? The latent heat of sublimation
is 574 kJ/kg and log10(pv mmHg) = 9.9082 − 1367.3/(T K).
The temperature will be well below the “sublimation point” of
CO2 (solid-to-vapor saturation temperature), which is −78.6◦C
at 1 atm. Use the heat transfer relation for spheres in a lam-
inar flow, NuD = 2 + 0.3 Re0.6

D Pr1/3. (Hint : first estimate the
surface temperature using properties for pure air; then correct
the properties if necessary.)

11.49 The following data were taken at a weather station over a pe-
riod of several months:

Date Tdry-bulb Twet-bulb

3/15 15.5◦C 11.0◦C
4/21 22.0 16.8
5/13 27.3 25.8
5/31 32.7 20.0
7/4 39.0 31.2

Use eqn. (11.109) to find the mass fraction of water in the air
at each date. Compare these values to values obtained using a
psychrometric chart.

11.50 Biff Harwell has taken Deb sailing. Deb, and Biff’s towel, fall
into the harbor. Biff rescues them both from a passing dolphin
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and then spreads his wet towel out to dry on the fiberglas fore-
deck of the boat. The incident solar radiation is 1050 W/m2;
the ambient air is at 31◦C, withmH2O = 0.017; the wind speed
is 8 knots relative to the boat (1 knot = 1.151 mph); εtowel �
αtowel � 1; and the sky has the properties of a black body at
280 K. The towel is 3 ft long in the windward direction and 2 ft
wide. Help Biff figure out how rapidly (in kg/s) water evapo-
rates from the towel.

11.51 Steam condenses on a 25 cm high, cold vertical wall in a low-
pressure condenser unit. The wall is isothermal at 25◦C, and
the ambient pressure is 8000 Pa. Air has leaked into the unit
and has reached a mass fraction of 0.04. The steam–air mix-
ture is at 45◦C and is blown downward past the wall at 8 m/s.
(a) Estimate the rate of condensation on the wall. (Hint : The
surface of the condensate film is not at the mixture or wall tem-
perature.) (b) Compare the result of part (a) to condensation
without air in the steam. What do you conclude?

11.52 As part of a coating process, a thin film of ethanol is wiped
onto a thick flat plate, 0.1 m by 0.1 m. The initial thickness
of the liquid film is 0.1 mm, and the initial temperature of
both the plate and the film is 303 K. The air above the film
moves at 10 m/s and has a temperature of 303 K. (a) Assume
that the plate is a poor conductor, so that heat loss into it
can be neglected. After a short initial transient, the liquid
film reaches a steady temperature. Find this temperature and
calculate the time required for the film to evaporate. (b) Dis-
cuss what happens when the plate is a very good conductor
of heat, and estimate the shortest time required for evapora-
tion. Properties of ethanol are as follow: log10(pv mmHg) =
9.4432 − 2287.8/(T K); hfg = 9.3 × 105 J/kg; liquid density,
ρeth = 789 kg/m3; Sc = 1.30 for ethanol vapor in air; vapor
specific heat capacity, cpeth = 1420 J/kg·K.
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A. Some thermophysical properties
of selected materials

A primary source of thermophysical properties is a document in which
the experimentalist who obtained the data reports the details and results
of his or her measurements. The term secondary source generally refers
to a document, based on primary sources, that presents other peoples’
data and does so critically. This appendix is neither a primary nor a sec-
ondary source, since it has been assembled from a variety of secondary
and even tertiary sources.

We attempted to cross-check the data against different sources, and
this often led to contradictory values. Such contradictions are usually
the result of differences between the experimental samples that are re-
ported or of differences in the accuracy of experiments themselves. We
resolved such differences by judging the source, by reducing the num-
ber of significant figures to accommodate the conflict, or by omitting the
substance from the table. The resulting numbers will suffice for most
calculations. However, the reader who needs high accuracy should be
sure of the physical constitution of the material and then should seek
out one of the relevant secondary data sources.

The format of these tables is quite close to that established by R. M.
Drake, Jr., in his excellent appendix on thermophysical data [A.1]. How-
ever, although we use a few of Drake’s numbers directly in Table A.6,
many of his other values have been superseded by more recent measure-
ments. One secondary source from which many of the data here were
obtained was the Purdue University series Thermophysical Properties of
Matter [A.2]. The Purdue series is the result of an enormous property-
gathering effort carried out under the direction of Y. S. Touloukian and
several coworkers. The various volumes in the series are dated since

691
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1970, and addenda were issued throughout the following decade. In
more recent years, IUPAC, NIST, and other agencies have been developing
critically reviewed, standard reference data for various substances, some
of which are contained in [A.3, A.4, A.5, A.6, A.7, A.8, A.9, A.10, A.11].
We have taken many data for fluids from those publications. A third
secondary source that we have used is the G. E. Heat Transfer Data
Book [A.12].

Numbers that did not come directly from [A.1], [A.2], [A.12] or the
sources of standard reference data were obtained from a variety of man-
ufacturers’ tables, handbooks, and other technical literature. While we
have not documented all these diverse sources and the various compro-
mises that were made in quoting them, specific citations are given below
for the bulk of the data in these tables.

Table A.1 gives the density, specific heat, thermal conductivity, and
thermal diffusivity for various metallic solids. These values were ob-
tained from volumes 1 and 4 of [A.2] or from [A.3] whenever it was pos-
sible to find them there. Most thermal conductivity values in the table
have been rounded off to two significant figures. The reason is that k
is sensitive to very minor variations in physical structure that cannot be
detailed fully here. Notice, for example, the significant differences be-
tween pure silver and 99.9% pure silver, or between pure aluminum and
99% pure aluminum. Additional information on the characteristics and
use of these metals can be found in the ASM Metals Handbook [A.13].

The effect of temperature on thermal conductivity is shown for most
of the metals in Table A.1. The specific heat capacity is shown only at
20◦C. For most materials, the heat capacity is much lower at cryogenic
temperatures. For example, cp for alumimum, iron, molydenum, and ti-
tanium decreases by two orders of magnitude as temperature decreases
from 200 K to 20 K. On the other hand, for most of these metals, cp
changes more gradually for temperatures between 300 K and 800 K, vary-
ing by tens of percent to a factor of two. At still higher temperatures,
some of these metals (iron and titanium) show substantial spikes in cp,
which are associated with solid-to-solid phase transitions.

Table A.2 gives the same properties as Table A.1 (where they are avail-
able) but for nonmetallic substances. Volumes 2 and 5 of [A.2] and also
[A.3] provided many of the data here, and they revealed even greater vari-
ations in k than the metallic data did. For the various sands reported,
k varied by a factor of 500, and for the various graphites by a factor of
50, for example. The sensitivity of k to small variations in the packing of
fibrous materials or to the water content of hygroscopic materials forced
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us to restrict many of the k values to a single significant figure. The ef-
fect of water content is illustrated for soils. Additional data for many
building materials can be found in [A.14].

The data for polymers come mainly from their manufacturers’ data
and are substantially less reliable than, say, those given in Table A.1
for metals. The values quoted are mainly those for room temperature.
In processing operations, however, most of these materials are taken
to temperatures of several hundred degrees Celsius, at which they flow
more easily. The specific heat capacity may double from room tempera-
ture to such temperatures. These polymers are also produced in a variety
of modified forms; and in many applications they may be loaded with
significant portions of reinforcing fillers (e.g., 10 to 40% by weight glass
fiber). The fillers, in particular, can have a significant effect on thermal
properties.

Table A.3 gives ρ, cp, k, α, ν , Pr, and β for several liquids. Data
for water are from [A.4] and [A.15]; they are in agreement with IAPWS
recommendations through 1998. Data for ammonia are from [A.5, A.16,
A.17], data for carbon dioxide are from [A.6, A.7, A.8], and data for oxygen
are from [A.9, A.10]. Data for HFC-134a, HCFC-22, and nitrogen are from
[A.11] and [A.18]. For these liquids, ρ has uncertainties less than 0.2%, cp
has uncertainties of 1–2%, while µ and k have typical uncertainties of 2–
5%. Uncertainties may be higher near the critical point. Thermodynamic
data for methanol follow [A.19], while most viscosity data follow [A.20].
Data for mercury follow [A.3] and [A.21]. Sources of olive oil data include
[A.20, A.22, A.23], and those for Freon 12 include [A.14]. Volumes 3, 6,
10, and 11 of [A.2] gave many of the other values of cp, k, and µ = ρν ,
and occasional independently measured values of α. Additional values
came from [A.24]. Values of α that disagreed only slightly with k/ρcp
were allowed to stand. Densities for other substances came from [A.24]
and a variety of other sources. A few values of ρ and cp were taken
from [A.25].

Table A.5 provides thermophysical data for saturated vapors. The
sources and the uncertainties are as described for gases in the next para-
graph.

Table A.6 gives thermophysical properties for gases at 1 atmosphere
pressure. The values were drawn from a variety of sources: air data
are from [A.26, A.27], except for ρ and cp above 850 K which came
from [A.28]; argon data are from [A.29, A.30, A.31]; ammonia data were
taken from [A.5, A.16, A.17]; carbon dioxide properties are from [A.6,
A.7, A.8]; carbon monoxide properties are from [A.18]; helium data are
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from [A.32, A.33, A.34]; nitrogen data came from [A.35]; oxygen data
are from [A.9, A.10]; water data were taken from [A.4] and [A.15] (in
agreement with IAPWS recommendations through 1998); and a few high-
temperature hydrogen data are from [A.24] with the remainding hydro-
gen data drawn from [A.1]. Uncertainties in these data vary among the
gases; typically, ρ has uncertainties of 0.02–0.2%, cp has uncertainties of
0.2–2%, µ has uncertainties of 0.3–3%, and k has uncertainties of 2–5%.
The uncertainties are generally lower in the dilute gas region and higher
near the saturation line or the critical point. The values for hydrogen and
for low temperature helium have somewhat larger uncertainties.

Table A.7 lists values for some fundamental physical constants, as
given in [A.36]. Table A.8 points out physical data that are listed in other
parts of this book.
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700 Appendix A: Some thermophysical properties of selected materials

Table A.2 Properties of nonmetallic solids

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Aluminum oxide (Al2O3)
plasma sprayed coating 20 ≈ 4
HVOF sprayed coating 20 ≈ 14
polycrystalline (98% dense) 0 725 40

27 3900 779 36 1.19× 10−5

127 940 26
577 1200 10

1077 1270 6.1
1577 1350 5.6

single crystal (sapphire) 0 725 52
27 3980 779 46 1.48× 10−5

127 940 32
577 1180 13

Asbestos
Cement board 20 1920 0.6
Fiber, densely packed 20 1930 0.8
Fiber, loosely packed 20 980 0.14

Asphalt 20–25 0.75
Beef (lean, fresh) 25 1070 3400 0.48 1.35× 10−7

Brick
B & W, K-28 insulating 300 0.3

1000 0.4
Cement 10 720 0.34
Common 0–1000 0.7
Chrome 100 1.9
Facing 20 1.3
Firebrick, insulating 300 2000 960 0.1 5.4× 10−8

1000 0.2
Butter 20 920 2520 0.22 9.5× 10−6

Carbon
Diamond (type IIb) 20 ≈3250 510 1350.0 8.1× 10−4

Graphites 20 ≈1730 ≈710 k varies with structure
AGOT graphite
⊥ to extrusion axis 0 141

27 1700 800 138
500 1600 59.1

‖ to extrusion axis 0 230
27 1700 800 220

500 1600 93.6
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Pyrolitic graphite
⊥ to layer planes 0 10.6

27 2200 710 9.5
227 5.4

1027 1.9
‖ to layer planes 0 2230

27 2200 710 2000
227 1130

1027 400
Cardboard 0–20 790 0.14
Cement, Portland 34 2010 0.7
Clay

Fireclay 500–750 1.0
Sandy clay 20 1780 0.9

Coal
Anthracite 900 ≈1500 ≈0.2
Brown coal 900 ≈0.1
Bituminous in situ ≈1300 0.5–0.7 3 to 4× 10−7

Concrete
Limestone gravel 20 1850 0.6
Sand : cement (3 : 1) 230 0.1
Sand and gravel 24 2400 1.4–2.9

24 2240 900 1.3–2.6
24 2080 1.0–1.9

Corkboard (medium ρ) 30 170 0.04
Egg white 20 3400 0.56 1.37× 10−7

Glass
Lead 36 3040 1.2
Plate 20 2500 1.3
Pyrex (borosilicate) 60–100 2210 753 1.3 7.8× 10−7

Soda 20 2590 0.7
Window 46 2490 1.3

Glass wool 20 64–160 0.04
Ice 0 917 2100 2.215 1.15× 10−6

Ivory 80 0.5
Kapok 30 0.035
Lunar surface dust 250 1500±300 ≈600 ≈0.0006 ≈7× 10−10

(high vacuum)
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Magnesia, 85% (insulation) 38 ≈200 0.067
93 0.071

150 0.074
204 0.08

Magnesium oxide
polycrystalline (98% dense) 27 3500 900 48 1.5× 10−5

single crystal 27 3580 900 60 1.9× 10−5

Polymers
acetyl (POM, Delrin) −18–100 1420 1470 0.30–0.37
acrylic (PMMA, Plexiglas) 25 1180 0.17
acrylonitrile butadiene

styrene (ABS) 1060 0.14–0.31
epoxy,

bisphenol A (EP), cast 24–55 1200 ≈ 0.22
epoxy/glass-cloth

laminate (G-10, FR4) 1800 ≈1600 0.29 ≈1.0× 10−7

polyamide (PA)
nylon 6,6 0–49 1120 1470 0.25 1.5× 10−7

nylon 6,12 0–49 1060 1680 0.22 1.2× 10−7

polycarbonate
(PC, Lexan) 23 1200 1250 0.29 1.9× 10−7

polyethylene (PE)
HDPE 960 2260 0.33 1.5× 10−7

LDPE 920 ≈2100 0.33 ≈1.7× 10−7

polyimide (PI) 1430 1130 0.35 2.2× 10−7

polypropylene (PP) 905 1900 0.17–0.20
polystyrene (PS) 1040 ≈ 1350 0.10–0.16

expanded (EPS) 4–55 13–30 0.035
polytetrafluoroethylene

(PTFE, Teflon) 20 2200 1050 0.25 ≈ 1.1× 10−7

polyvinylchloride (PVC) 25 1600 0.16
Rock wool −5 ≈130 0.03

93 0.05
Rubber (hard) 0 1200 2010 0.15 6.2× 10−8

Silica aerogel 0 140 0.024
120 136 0.022

Silo-cel (diatomaceous earth) 0 320 0.061
Silicon dioxide

Fused silica glass 0 703 1.33
27 2200 745 1.38 8.4× 10−7

227 988 1.62
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Table A.2…continued.

Temperature Density Specific Thermal Thermal
Range Heat Conductivity Diffusivity

Material (◦C) ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s)

Single crystal (quartz)
⊥ to c-axis 0 709 6.84

27 2640 743 6.21
227 989 3.88

‖ to c-axis 0 709 11.6
27 2640 743 10.8

227 989 6.00
Soil (mineral)

Dry 15 1500 1840 1. 4× 10−7

Wet 15 1930 2.
Soil (k dry to wet, by type)

Clays 1.1–1.6
Loams 0.95–2.2
Sands 0.78–2.2
Silts 1.6–2.2

Stone
Granite (NTS) 20 ≈2640 ≈820 1.6 ≈7.4× 10−7

Limestone (Indiana) 100 2300 ≈900 1.1 ≈5.3× 10−7

Sandstone (Berea) 25 ≈3
Slate 100 1.5

Wood (perpendicular to grain)
Ash 15 740 0.15–0.3
Balsa 15 100 0.05
Cedar 15 480 0.11
Fir 15 600 2720 0.12 7.4× 10−8

Mahogany 20 700 0.16
Oak 20 600 2390 0.1–0.4
Particle board (medium ρ) 24 800 1300 0.14 1.3× 10−7

Pitch pine 20 450 0.14
Plywood, Douglas fir 24 550 1200 0.12 1.8× 10−7

Sawdust (dry) 17 128 0.05
Sawdust (dry) 17 224 0.07
Spruce 20 410 0.11

Wool (sheep) 20 145 0.05
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Table A.3 Thermophysical properties of saturated liquids

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Ammonia

200 −73 728 4227 0.803 2.61× 10−7 6.967×10−7 2.67 0.00147

220 −53 706 4342 0.733 2.39 4.912 2.05 0.00165

240 −33 682 4488 0.665 2.19 3.738 1.70 0.00182

260 −13 656 4548 0.600 2.01 3.007 1.50 0.00201

280 7 629 4656 0.539 1.84 2.514 1.37 0.00225

300 27 600 4800 0.480 1.67 2.156 1.29 0.00258

320 47 568 5018 0.425 1.49 1.882 1.26 0.00306

340 67 532 5385 0.372 1.30 1.663 1.28 0.00387

360 87 490 6082 0.319 1.07 1.485 1.39 0.00542

380 107 436 7818 0.267 0.782 1.337 1.71 0.00952

400 127 345 22728 0.216 0.276 1.214 4.40 0.04862

Carbon dioxide

220 −53 1166 1962 0.176 7.70× 10−8 2.075×10−7 2.70 0.00318

230 −43 1129 1997 0.163 7.24 1.809 2.50 0.00350

240 −33 1089 2051 0.151 6.75 1.588 2.35 0.00392

250 −23 1046 2132 0.139 6.21 1.402 2.26 0.00451

260 −13 999 2255 0.127 5.61 1.245 2.22 0.00538

270 −3 946 2453 0.115 4.92 1.110 2.26 0.00677

280 7 884 2814 0.102 4.10 0.993 2.42 0.00934

290 17 805 3676 0.0895 3.03 0.887 2.93 0.0157

300 27 679 8698 0.0806 1.36 0.782 5.73 0.0570

302 29 634 15787 0.0845 0.844 0.756 8.96 0.119

Freon 12 (dichlorodifluoromethane)

180 −93 1664 834 0.124 8.935×10−8

200 −73 1610 856 0.1148 8.33

220 −53 1552 860 0.0972 7.28 3.02×10−7 4.15 0.00263

240 −33 1496 879 0.0895 6.80 2.49 3.66

260 −13 1437 906 0.0820 6.30 2.07 3.28

280 7 1373 941 0.0747 5.78 1.74 3.01

300 27 1303 988 0.0674 5.23 1.49 2.85

320 47 1226 1056 0.0603 4.66 1.31 2.81

340 67 1134 1168 0.0534 4.03 1.19 2.94
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Glycerin (or glycerol)

273 0 1276 2200 0.282 1.00× 10−7 0.0083 83,000

293 20 1261 2350 0.285 0.962 0.001120 11,630 0.00048

303 30 1255 2400 0.285 0.946 0.000488 5,161 0.00049

313 40 1249 2460 0.285 0.928 0.000227 2,451 0.00049

323 50 1243 2520 0.285 0.910 0.000114 1,254 0.00050

20% glycerin, 80% water

293 20 1047 3860 0.519 1.28× 10−7 1.681×10−6 13.1 0.00031

303 30 1043 3860 0.532 1.32 1.294 9.8 0.00036

313 40 1039 3915 0.540 1.33 1.030 7.7 0.00041

323 50 1035 3970 0.553 1.35 0.849 6.3 0.00046

40% glycerin, 60% water

293 20 1099 3480 0.448 1.20× 10−7 3.385×10−6 28.9 0.00041

303 30 1095 3480 0.452 1.22 2.484 20.4 0.00045

313 40 1090 3570 0.461 1.18 1.900 16.1 0.00048

323 50 1085 3620 0.469 1.19 1.493 12.5 0.00051

60% glycerin, 40% water

293 20 1154 3180 0.381 1.04× 10−7 9.36×10−6 90.0 0.00048

303 30 1148 3180 0.381 1.04 6.89 66.3 0.00050

313 40 1143 3240 0.385 1.04 4.44 42.7 0.00052

323 50 1137 3300 0.389 1.04 3.31 31.8 0.00053

80% glycerin, 20% water

293 20 1209 2730 0.327 0.99× 10−7 4.97×10−5 502 0.00051

303 30 1203 2750 0.327 0.99 2.82 282 0.00052

313 40 1197 2800 0.327 0.98 1.74 178 0.00053

323 50 1191 2860 0.331 0.97 1.14 118 0.00053

Helium I and Helium II

• k for He I is about 0.020 W/m·K near the λ-transition (≈ 2.17 K).
• k for He II below the λ-transition is hard to measure. It appears to be about
80,000 W/m·K between 1.4 and 1.75 K and it might go as high as 340,000 W/m·K at
1.92 K. These are the highest conductivities known (cf. copper, silver, and diamond).
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

HCFC-22 (R22)

160 −113 1605 1061 0.1504 8.82× 10−8 7.10×10−7 8.05 0.00163

180 −93 1553 1061 0.1395 8.46 4.77 5.63 0.00170

200 −73 1499 1064 0.1291 8.09 3.55 4.38 0.00181

220 −53 1444 1076 0.1193 7.67 2.79 3.64 0.00196

240 −33 1386 1100 0.1099 7.21 2.28 3.16 0.00216

260 −13 1324 1136 0.1008 6.69 1.90 2.84 0.00245

280 7 1257 1189 0.0918 6.14 1.61 2.62 0.00286

300 27 1183 1265 0.0828 5.53 1.37 2.48 0.00351

320 47 1097 1390 0.0737 4.83 1.17 2.42 0.00469

340 67 990.1 1665 0.0644 3.91 0.981 2.51 0.00756

360 87 823.4 3001 0.0575 2.33 0.786 3.38 0.02388

Heavy water (D2O)

589 316 740 2034 0.0509 0.978×10−7 1.23×10−7 1.257

HFC-134a (R134a)

180 −93 1564 1187 0.1391 7.49× 10−8 9.45×10−7 12.62 0.00170

200 −73 1510 1205 0.1277 7.01 5.74 8.18 0.00180

220 −53 1455 1233 0.1172 6.53 4.03 6.17 0.00193

240 −33 1397 1266 0.1073 6.06 3.05 5.03 0.00211

260 −13 1337 1308 0.0979 5.60 2.41 4.30 0.00236

280 7 1271 1360 0.0890 5.14 1.95 3.80 0.00273

300 27 1199 1432 0.0803 4.67 1.61 3.45 0.00330

320 47 1116 1542 0.0718 4.17 1.34 3.21 0.00433

340 67 1015 1750 0.0631 3.55 1.10 3.11 0.00657

360 87 870.1 2436 0.0541 2.55 0.883 3.46 0.0154

Lead

644 371 10,540 159 16.1 1.084×10−5 2.276×10−7 0.024

755 482 10,442 155 15.6 1.223 1.85 0.017

811 538 10,348 145 15.3 1.02 1.68 0.017
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Mercury

234 −39 141.5 6.97 3.62× 10−6 1.5× 10−7 0.041

250 −23 140.5 7.32 3.83 1.4 0.037

300 27 13,529 139.3 8.34 4.43 1.12 0.0253 0.000181

350 77 13,407 137.7 9.15 4.96 0.974 0.0196 0.000181

400 127 13,286 136.6 9.84 5.42 0.88 0.016 0.000181

500 227 13,048 135.3 11.0 6.23 0.73 0.012 0.000183

600 327 12,809 135.5 12.0 6.91 0.71 0.010 0.000187

700 427 12,567 136.9 12.7 7.38 0.67 0.0091 0.000195

800 527 12,318 139.8 12.8 7.43 0.64 0.0086 0.000207

Methyl alcohol (methanol)

260 −13 823 2336 0.2164 1.126×10−7 1.21×10−6 10.8 0.00113

280 7 804 2423 0.2078 1.021 0.883 8.65 0.00119

300 27 785 2534 0.2022 1.016 0.675 6.65 0.00120

320 47 767 2672 0.1965 0.959 0.537 5.60 0.00123

340 67 748 2856 0.1908 0.893 0.442 4.94 0.00135

360 87 729 3036 0.1851 0.836 0.36 4.3 0.00144

380 107 710 3265 0.1794 0.774 0.30 3.9 0.00164

NaK (eutectic mixture of sodium and potassium)

366 93 849 946 24.4 3.05× 10−5 5.8× 10−7 0.019

672 399 775 879 26.7 3.92 2.67 0.0068

811 538 743 872 27.7 4.27 2.24 0.0053

1033 760 690 883 2.12

Nitrogen

70 −203 838.5 2014 0.162 9.58× 10−8 2.62×10−7 2.74 0.00513

77 −196 807.7 2040 0.147 8.90 2.02 2.27 0.00564

80 −193 793.9 2055 0.140 8.59 1.83 2.13 0.00591

90 −183 745.0 2140 0.120 7.52 1.38 1.83 0.00711

100 −173 689.4 2318 0.101 6.29 1.09 1.74 0.00927

110 −163 621.5 2743 0.0818 4.80 0.894 1.86 0.0142

120 −153 523.4 4507 0.0633 2.68 0.730 2.72 0.0359
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Oils (some approximate viscosities)

273 0 MS-20 0.0076 100,000

339 66 California crude (heavy) 0.00008

289 16 California crude (light) 0.00005

339 66 California crude (light) 0.000010

289 16 Light machine oil (ρ = 907) 0.00016

339 66 Light machine oil (ρ = 907) 0.000013

289 16 SAE 30 0.00044 ≈ 5,000

339 66 SAE 30 0.00003

289 16 SAE 30 (Eastern) 0.00011

339 66 SAE 30 (Eastern) 0.00001

289 16 Spindle oil (ρ = 885) 0.00005

339 66 Spindle oil (ρ = 885) 0.000007

Olive Oil (1 atm, not saturated)

283 10 920 14.9 ×10−5

293 20 913 1800 0.24 1.46× 10−7 9.02 620 0.000728

303 30 906 5.76

313 40 900 3.84

323 50 893 2.67

333 60 886 1.91

343 70 880 1.41

Oxygen

60 −213 1282 1673 0.195 9.09× 10−8 4.50×10−7 4.94 0.00343

70 −203 1237 1678 0.181 8.72 2.84 3.26 0.00370

80 −193 1190 1682 0.167 8.33 2.08 2.49 0.00398

90 −183 1142 1699 0.153 7.88 1.63 2.07 0.00436

100 −173 1091 1738 0.139 7.33 1.34 1.83 0.00492

110 −163 1036 1807 0.125 6.67 1.13 1.70 0.00575

120 −153 973.9 1927 0.111 5.89 0.974 1.65 0.00708

130 −143 902.5 2153 0.0960 4.94 0.848 1.72 0.00953

140 −133 813.2 2691 0.0806 3.67 0.741 2.01 0.0155

150 −123 675.5 5464 0.0643 1.74 0.639 3.67 0.0495
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Table A.3: saturated liquids…continued

Temperature

K ◦C ρ (kg/m3) cp (J/kg·K) k (W/m·K) α (m2/s) ν (m2/s) Pr β (K−1)

Water

273.16 0.01 999.8 4220 0.5610 1.330×10−7 17.91×10−7 13.47 −6.80× 10−5

275 2 999.9 4214 0.5645 1.340 16.82 12.55 −3.55× 10−5

280 7 999.9 4201 0.5740 1.366 14.34 10.63 4.36× 10−5

285 12 999.5 4193 0.5835 1.392 12.40 8.91 0.000112

290 17 998.8 4187 0.5927 1.417 10.85 7.66 0.000172

295 22 997.8 4183 0.6017 1.442 9.600 6.66 0.000226

300 27 996.5 4181 0.6103 1.465 8.568 5.85 0.000275

305 32 995.0 4180 0.6184 1.487 7.708 5.18 0.000319

310 37 993.3 4179 0.6260 1.508 6.982 4.63 0.000361

320 47 989.3 4181 0.6396 1.546 5.832 3.77 0.000436

340 67 979.5 4189 0.6605 1.610 4.308 2.68 0.000565

360 87 967.4 4202 0.6737 1.657 3.371 2.03 0.000679

373.15 100.0 958.3 4216 0.6791 1.681 2.940 1.75 0.000751

400 127 937.5 4256 0.6836 1.713 2.332 1.36 0.000895

420 147 919.9 4299 0.6825 1.726 2.030 1.18 0.001008

440 167 900.5 4357 0.6780 1.728 1.808 1.05 0.001132

460 187 879.5 4433 0.6702 1.719 1.641 0.955 0.001273

480 207 856.5 4533 0.6590 1.697 1.514 0.892 0.001440

500 227 831.3 4664 0.6439 1.660 1.416 0.853 0.001645

520 247 803.6 4838 0.6246 1.607 1.339 0.833 0.001909

540 267 772.8 5077 0.6001 1.530 1.278 0.835 0.002266

560 287 738.0 5423 0.5701 1.425 1.231 0.864 0.002783

580 307 697.6 5969 0.5346 1.284 1.195 0.931 0.003607

600 327 649.4 6953 0.4953 1.097 1.166 1.06 0.005141

620 347 586.9 9354 0.4541 0.8272 1.146 1.39 0.009092

640 367 481.5 25,940 0.4149 0.3322 1.148 3.46 0.03971

642 369 463.7 34,930 0.4180 0.2581 1.151 4.46 0.05679

644 371 440.7 58,910 0.4357 0.1678 1.156 6.89 0.1030

646 373 403.0 204,600 0.5280 0.06404 1.192 18.6 0.3952

647.0 374 357.3 3,905,000 1.323 0.00948 1.313 138. 7.735
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Table A.4 Some latent heats of vaporization, hfg (kJ/kg), with
temperatures at triple point, Ttp (K), and critical point, Tc (K).

T(K) Water Ammonia CO2 HCFC-22 HFC-134a Mercury Methanol Nitrogen Oxygen

60 238.4

70 208.1 230.5

80 195.7 222.3

90 180.5 213.2

100 161.0 202.6

110 134.3 189.7

120 300.4 92.0 173.7

130 294.0 153.1

140 287.9 125.2

150 281.8 79.2

160 275.9
180 264.3 257.4
200 1474 252.9 245.7 1310

220 1424 344.9 241.3 233.9 1269

230 1397 328.0 235.2 227.8 1258

240 1369 309.6 228.9 221.5 1247

250 1339 289.3 222.2 215.0 1235

260 1307 266.5 215.1 208.2 1222

270 1273 240.1 207.5 201.0 1209

273 2501 1263 230.9 205.0 198.6 306.8 1205

280 2485 1237 208.6 199.4 193.3 306.6 1196

290 2462 1199 168.1 190.5 185.0 306.2 1181

300 2438 1158 103.7 180.9 176.1 305.8 1166

310 2414 1114 170.2 166.3 305.5 1168

320 2390 1066 158.3 155.5 305.1 1150

330 2365 1015 144.7 143.3 304.8 1116

340 2341 957.9 128.7 129.3 304.4 1096

350 2315 895.2 109.0 112.5 304.1 1078

360 2290 824.8 81.8 91.0 303.8 1054

373 2257 717.0 303.3 1022

400 2183 346.9 302.4 945

500 1828 299.2 391

600 1173 295.9
700 292.3

Ttp 273.16 195.5 216.6 115.7 169.9 234.2 175.5 63.2 54.3

Tc 674.1 405.4 304.3 369.3 374.2 512.5 126.2 154.6
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Table A.5 Thermophysical properties of saturated vapors (p ≠ 1 atm).

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

Ammonia

200 0.008651 0.08908 2076 0.0197 6.952×10−6 0.733 0.005141

220 0.03379 0.3188 2160 0.0201 7.485 0.803 0.004847

240 0.1022 0.8969 2298 0.0210 8.059 0.883 0.004724

260 0.2553 2.115 2503 0.0223 8.656 0.973 0.004781

280 0.5509 4.382 2788 0.0240 9.266 1.08 0.005042

300 1.062 8.251 3177 0.0264 9.894 1.19 0.005560

320 1.873 14.51 3718 0.0296 10.56 1.33 0.006462

340 3.080 24.40 4530 0.0339 11.33 1.51 0.008053

360 4.793 40.19 5955 0.0408 12.35 1.80 0.01121

380 7.140 67.37 9395 0.0546 14.02 2.42 0.01957

400 10.30 131.1 34924 0.114 18.53 5.70 0.08664

Carbon dioxide

220 0.5991 15.82 930.3 0.0113 1.114×10−5 0.917 0.006223

230 0.8929 23.27 1005. 0.0122 1.169 0.962 0.006615

240 1.283 33.30 1103. 0.0133 1.227 1.02 0.007223

250 1.785 46.64 1237. 0.0146 1.290 1.09 0.008154

260 2.419 64.42 1430. 0.0163 1.361 1.19 0.009611

270 3.203 88.37 1731. 0.0187 1.447 1.34 0.01203

280 4.161 121.7 2277. 0.0225 1.560 1.58 0.01662

290 5.318 172.0 3614. 0.0298 1.736 2.10 0.02811

300 6.713 268.6 11921. 0.0537 2.131 4.73 0.09949

302 7.027 308.2 23800. 0.0710 2.321 7.78 0.2010

HCFC-22 (R22)

160 0.0005236 0.03406 479.2 0.00398 6.69× 10−6 0.807 0.006266

180 0.003701 0.2145 507.1 0.00472 7.54 0.810 0.005622

200 0.01667 0.8752 539.1 0.00554 8.39 0.816 0.005185

220 0.05473 2.649 577.8 0.00644 9.23 0.828 0.004947

240 0.1432 6.501 626.2 0.00744 10.1 0.847 0.004919

260 0.3169 13.76 688.0 0.00858 10.9 0.877 0.005131

280 0.6186 26.23 769.8 0.00990 11.8 0.918 0.005661

300 1.097 46.54 885.1 0.0116 12.8 0.977 0.006704

320 1.806 79.19 1071. 0.0140 14.0 1.07 0.008801

340 2.808 133.9 1470. 0.0181 15.7 1.27 0.01402

360 4.184 246.7 3469. 0.0298 19.3 2.24 0.04233
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Table A.5: saturated vapors (p ≠ 1 atm)…continued.

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

HFC-134a (R134a)

180 0.001128 0.07702 609.7 0.00389 6.90× 10−6 1.08 0.005617

200 0.006313 0.3898 658.6 0.00550 7.75 0.929 0.005150

220 0.02443 1.385 710.9 0.00711 8.59 0.859 0.004870

240 0.07248 3.837 770.5 0.00873 9.40 0.829 0.004796

260 0.1768 8.905 841.8 0.0104 10.2 0.826 0.004959

280 0.3727 18.23 929.6 0.0121 11.0 0.845 0.005421

300 0.7028 34.19 1044. 0.0140 11.9 0.886 0.006335

320 1.217 60.71 1211. 0.0163 12.9 0.961 0.008126

340 1.972 105.7 1524. 0.0197 14.4 1.11 0.01227

360 3.040 193.6 2606. 0.0274 17.0 1.62 0.02863

Nitrogen

70 0.03854 1.896 1082. 0.00680 4.88× 10−6 0.776 0.01525

77 0.09715 4.437 1121. 0.00747 5.41 0.812 0.01475

80 0.1369 6.089 1145. 0.00778 5.64 0.830 0.01472

90 0.3605 15.08 1266. 0.00902 6.46 0.906 0.01553

100 0.7783 31.96 1503. 0.0109 7.39 1.02 0.01842

110 1.466 62.58 2062. 0.0144 8.58 1.23 0.02646

120 2.511 125.1 4631. 0.0235 10.6 2.09 0.06454

Oxygen

60 0.0007258 0.04659 947.5 0.00486 3.89× 10−6 0.757 0.01688

70 0.006262 0.3457 978.0 0.00598 4.78 0.781 0.01471

80 0.03012 1.468 974.3 0.00711 5.66 0.776 0.01314

90 0.09935 4.387 970.5 0.00826 6.54 0.769 0.01223

100 0.2540 10.42 1006. 0.00949 7.44 0.789 0.01207

110 0.5434 21.28 1101. 0.0109 8.36 0.847 0.01277

120 1.022 39.31 1276. 0.0126 9.35 0.951 0.01462

130 1.749 68.37 1600. 0.0149 10.5 1.13 0.01868

140 2.788 116.8 2370. 0.0190 12.1 1.51 0.02919

150 4.219 214.9 6625. 0.0318 15.2 3.17 0.08865
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Table A.5: saturated vapors (p ≠ 1 atm)…continued.

T (K) p (MPa) ρ (kg/m3) cp (J/kg·K) k (W/m·K) µ (kg/m·s) Pr β(K−1)

Water vapor

273.16 0.0006177 0.004855 1884 0.01707 0.9216×10−5 1.02 0.003681

275.0 0.0006985 0.005507 1886 0.01717 0.9260 1.02 0.003657

280.0 0.0009918 0.007681 1891 0.01744 0.9382 1.02 0.003596

285.0 0.001389 0.01057 1897 0.01773 0.9509 1.02 0.003538

290.0 0.001920 0.01436 1902 0.01803 0.9641 1.02 0.003481

295.0 0.002621 0.01928 1908 0.01835 0.9778 1.02 0.003428

300.0 0.003537 0.02559 1914 0.01867 0.9920 1.02 0.003376

305.0 0.004719 0.03360 1920 0.01901 1.006 1.02 0.003328

310.0 0.006231 0.04366 1927 0.01937 1.021 1.02 0.003281

320.0 0.01055 0.07166 1942 0.02012 1.052 1.02 0.003195

340.0 0.02719 0.1744 1979 0.02178 1.116 1.01 0.003052

360.0 0.06219 0.3786 2033 0.02369 1.182 1.01 0.002948

373.15 0.1014 0.5982 2080 0.02510 1.227 1.02 0.002902

380.0 0.1289 0.7483 2110 0.02587 1.250 1.02 0.002887

400.0 0.2458 1.369 2218 0.02835 1.319 1.03 0.002874

420.0 0.4373 2.352 2367 0.03113 1.388 1.06 0.002914

440.0 0.7337 3.833 2560 0.03423 1.457 1.09 0.003014

460.0 1.171 5.983 2801 0.03766 1.526 1.13 0.003181

480.0 1.790 9.014 3098 0.04145 1.595 1.19 0.003428

500.0 2.639 13.20 3463 0.04567 1.665 1.26 0.003778

520.0 3.769 18.90 3926 0.05044 1.738 1.35 0.004274

540.0 5.237 26.63 4540 0.05610 1.815 1.47 0.004994

560.0 7.106 37.15 5410 0.06334 1.901 1.62 0.006091

580.0 9.448 51.74 6760 0.07372 2.002 1.84 0.007904

600.0 12.34 72.84 9181 0.09105 2.135 2.15 0.01135

620.0 15.90 106.3 14,940 0.1267 2.337 2.76 0.02000

640.0 20.27 177.1 52,590 0.2500 2.794 5.88 0.07995

642.0 20.76 191.5 737,900 0.2897 2.894 7.37 0.1144

644.0 21.26 211.0 1,253,000 0.3596 3.034 10.6 0.1988

646.0 21.77 243.5 3,852,000 0.5561 3.325 23.0 0.6329

647.0 22.04 286.5 53,340,000 1.573 3.972 135. 9.274
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Table A.6 Thermophysical properties of gases at atmospheric
pressure (101325 Pa)

T (K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Air

100 3.605 1039 0.711×10−5 0.197×10−5 0.00941 0.251× 10−5 0.784

150 2.368 1012 1.035 0.437 0.01406 0.587 0.745

200 1.769 1007 1.333 0.754 0.01836 1.031 0.731

250 1.412 1006 1.606 1.137 0.02241 1.578 0.721

260 1.358 1006 1.649 1.214 0.02329 1.705 0.712

270 1.308 1006 1.699 1.299 0.02400 1.824 0.712

280 1.261 1006 1.747 1.385 0.02473 1.879 0.711

290 1.217 1006 1.795 1.475 0.02544 2.078 0.710

300 1.177 1007 1.857 1.578 0.02623 2.213 0.713

310 1.139 1007 1.889 1.659 0.02684 2.340 0.709

320 1.103 1008 1.935 1.754 0.02753 2.476 0.708

330 1.070 1008 1.981 1.851 0.02821 2.616 0.708

340 1.038 1009 2.025 1.951 0.02888 2.821 0.707

350 1.008 1009 2.090 2.073 0.02984 2.931 0.707

400 0.8821 1014 2.310 2.619 0.03328 3.721 0.704

450 0.7840 1021 2.517 3.210 0.03656 4.567 0.703

500 0.7056 1030 2.713 3.845 0.03971 5.464 0.704

550 0.6414 1040 2.902 4.524 0.04277 6.412 0.706

600 0.5880 1051 3.082 5.242 0.04573 7.400 0.708

650 0.5427 1063 3.257 6.001 0.04863 8.430 0.712

700 0.5040 1075 3.425 6.796 0.05146 9.498 0.715

750 0.4704 1087 3.588 7.623 0.05425 10.61 0.719

800 0.4410 1099 3.747 8.497 0.05699 11.76 0.723

850 0.4150 1110 3.901 9.400 0.05969 12.96 0.725

900 0.3920 1121 4.052 10.34 0.06237 14.19 0.728

950 0.3716 1131 4.199 11.30 0.06501 15.47 0.731

1000 0.3528 1142 4.343 12.31 0.06763 16.79 0.733

1100 0.3207 1159 4.622 14.41 0.07281 19.59 0.736

1200 0.2940 1175 4.891 16.64 0.07792 22.56 0.738

1300 0.2714 1189 5.151 18.98 0.08297 25.71 0.738

1400 0.2520 1201 5.403 21.44 0.08798 29.05 0.738

1500 0.2352 1211 5.648 23.99 0.09296 32.64 0.735
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Argon

100 4.982 547.4 0.799×10−5 0.160×10−5 0.00632 0.232× 10−5 0.692

150 3.269 527.7 1.20 0.366 0.00939 0.544 0.673

200 2.441 523.7 1.59 0.652 0.01245 0.974 0.669

250 1.950 522.2 1.95 1.00 0.01527 1.50 0.668

300 1.624 521.5 2.29 1.41 0.01787 2.11 0.667

350 1.391 521.2 2.59 1.86 0.02029 2.80 0.666

400 1.217 520.9 2.88 2.37 0.02256 3.56 0.666

450 1.082 520.8 3.16 2.92 0.02470 4.39 0.666

500 0.9735 520.7 3.42 3.51 0.02675 5.28 0.666

550 0.8850 520.6 3.67 4.14 0.02870 6.23 0.665

600 0.8112 520.6 3.91 4.82 0.03057 7.24 0.665

650 0.7488 520.5 4.14 5.52 0.03238 8.31 0.665

700 0.6953 520.5 4.36 6.27 0.03412 9.43 0.665

Ammonia

240 0.8888 2296 8.06×10−6 0.907×10−5 0.0210 0.1028× 10−4 0.882

273 0.7719 2180 9.19 1.19 0.0229 0.1361 0.874

323 0.6475 2176 11.01 1.70 0.0274 0.1943 0.876

373 0.5589 2238 12.92 2.31 0.0334 0.2671 0.866

423 0.4920 2326 14.87 3.01 0.0407 0.3554 0.850

473 0.4396 2425 16.82 3.82 0.0487 0.4565 0.838

Carbon dioxide

220 2.4733 783 11.06×10−6 4.472×10−6 0.01090 0.05628×10−4 0.795

250 2.1657 804 12.57 5.804 0.01295 0.07437 0.780

300 1.7973 853 15.02 8.357 0.01677 0.1094 0.764

350 1.5362 900 17.40 11.33 0.02092 0.1513 0.749

400 1.3424 942 19.70 14.68 0.02515 0.1989 0.738

450 1.1918 980 21.88 18.36 0.02938 0.2516 0.730

500 1.0732 1013 24.02 22.38 0.03354 0.3085 0.725

550 0.9739 1047 26.05 26.75 0.03761 0.3688 0.725

600 0.8938 1076 28.00 31.33 0.04159 0.4325 0.724
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Carbon monoxide

250 1.367 1042 1.54×10−5 1.13×10−5 0.02306 1.62× 10−5 0.697

300 1.138 1040 1.77 1.56 0.02656 2.24 0.694

350 0.975 1040 1.99 2.04 0.02981 2.94 0.693

400 0.853 1039 2.19 2.56 0.03285 3.70 0.692

450 0.758 1039 2.38 3.13 0.03571 4.53 0.691

500 0.682 1040 2.55 3.74 0.03844 5.42 0.691

600 0.5687 1041 2.89 5.08 0.04357 7.36 0.690

700 0.4874 1043 3.20 6.56 0.04838 9.52 0.689

800 0.4265 1046 3.49 8.18 0.05297 11.9 0.689

900 0.3791 1049 3.77 9.94 0.05738 14.4 0.689

1000 0.3412 1052 4.04 11.8 0.06164 17.2 0.689

Helium

50 0.9732 5201 0.607×10−5 0.0624×10−4 0.0476 0.0940× 10−4 0.663

100 0.4871 5194 0.953 0.196 0.0746 0.295 0.664

150 0.3249 5193 1.25 0.385 0.0976 0.578 0.665

200 0.2437 5193 1.51 0.621 0.118 0.932 0.667

250 0.1950 5193 1.76 0.903 0.138 1.36 0.665

300 0.1625 5193 1.99 1.23 0.156 1.85 0.664

350 0.1393 5193 2.22 1.59 0.174 2.40 0.663

400 0.1219 5193 2.43 1.99 0.190 3.01 0.663

450 0.1084 5193 2.64 2.43 0.207 3.67 0.663

500 0.09753 5193 2.84 2.91 0.222 4.39 0.663

600 0.08128 5193 3.22 3.96 0.252 5.98 0.663

700 0.06967 5193 3.59 5.15 0.281 7.77 0.663

800 0.06096 5193 3.94 6.47 0.309 9.75 0.664

900 0.05419 5193 4.28 7.91 0.335 11.9 0.664

1000 0.04877 5193 4.62 9.46 0.361 14.2 0.665

1100 0.04434 5193 4.95 11.2 0.387 16.8 0.664

1200 0.04065 5193 5.27 13.0 0.412 19.5 0.664

1300 0.03752 5193 5.59 14.9 0.437 22.4 0.664

1400 0.03484 5193 5.90 16.9 0.461 25.5 0.665

1500 0.03252 5193 6.21 19.1 0.485 28.7 0.665



Appendix A: Some thermophysical properties of selected materials 717

Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Hydrogen

30 0.8472 10840 1.606×10−6 1.805×10−6 0.0228 0.0249× 10−4 0.759

50 0.5096 10501 2.516 4.880 0.0362 0.0676 0.721

100 0.2457 11229 4.212 17.14 0.0665 0.2408 0.712

150 0.1637 12602 5.595 34.18 0.0981 0.475 0.718

200 0.1227 13540 6.813 55.53 0.1282 0.772 0.719

250 0.09819 14059 7.919 80.64 0.1561 1.130 0.713

300 0.08185 14314 8.963 109.5 0.182 1.554 0.706

350 0.07016 14436 9.954 141.9 0.206 2.031 0.697

400 0.06135 14491 10.86 177.1 0.228 2.568 0.690

450 0.05462 14499 11.78 215.6 0.251 3.164 0.682

500 0.04918 14507 12.64 257.0 0.272 3.817 0.675

600 0.04085 14537 14.29 349.7 0.315 5.306 0.664

700 0.03492 14574 15.89 455.1 0.351 6.903 0.659

800 0.03060 14675 17.40 569 0.384 8.563 0.664

900 0.02723 14821 18.78 690 0.412 10.21 0.675

1000 0.02451 14968 20.16 822 0.445 12.13 0.678

1100 0.02227 15165 21.46 965 0.488 14.45 0.668

1200 0.02050 15366 22.75 1107 0.528 16.76 0.661

1300 0.01890 15575 24.08 1273 0.568 19.3 0.660

Nitrogen

100 3.484 1072 6.80×10−6 1.95×10−6 0.00988 0.0265× 10−4 0.738

200 1.711 1043 12.9 7.54 0.0187 0.105 0.720

300 1.138 1041 18.0 15.8 0.0260 0.219 0.721

400 0.8533 1044 22.2 26.0 0.0326 0.366 0.711

500 0.6826 1055 26.1 38.2 0.0388 0.539 0.709

600 0.5688 1074 29.5 51.9 0.0448 0.733 0.708

700 0.4876 1096 32.8 67.3 0.0508 0.951 0.708

800 0.4266 1120 35.8 83.9 0.0567 1.19 0.707

900 0.3792 1143 38.7 102. 0.0624 1.44 0.709

1000 0.3413 1165 41.5 122. 0.0680 1.71 0.711

1100 0.3103 1184 44.2 142. 0.0735 2.00 0.712

1200 0.2844 1201 46.7 164. 0.0788 2.31 0.712

1400 0.2438 1229 51.7 212. 0.0889 2.97 0.715

1600 0.2133 1250 56.3 264. 0.0984 3.69 0.715
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Table A.6: gases at 1 atm…continued.

T(K) ρ (kg/m3) cp (J/kg·K) µ (kg/m·s) ν (m2/s) k (W/m·K) α (m2/s) Pr

Oxygen

100 3.995 935.6 0.738×10−5 0.185×10−5 0.00930 0.249× 10−5 0.743

150 2.619 919.8 1.13 0.431 0.01415 0.587 0.733

200 1.956 914.6 1.47 0.754 0.01848 1.03 0.730

250 1.562 915.0 1.79 1.145 0.02244 1.57 0.729

300 1.301 919.9 2.07 1.595 0.02615 2.19 0.730

350 1.114 929.1 2.34 2.101 0.02974 2.87 0.731

400 0.9749 941.7 2.59 2.657 0.03324 3.62 0.734

450 0.8665 956.4 2.83 3.261 0.03670 4.43 0.737

500 0.7798 972.2 3.05 3.911 0.04010 5.29 0.739

600 0.6498 1003 3.47 5.340 0.04673 7.17 0.745

700 0.5569 1031 3.86 6.930 0.05309 9.24 0.750

800 0.4873 1054 4.23 8.673 0.05915 11.5 0.753

900 0.4332 1073 4.57 10.56 0.06493 14.0 0.757

1000 0.3899 1089 4.91 12.59 0.07046 16.6 0.759

Steam (H2O vapor)

373.15 0.5976 2080 12.28×10−6 20.55×10−6 0.02509 2.019× 10−5 1.018

393.15 0.5652 2021 13.04 23.07 0.02650 2.320 0.994

413.15 0.5365 1994 13.81 25.74 0.02805 2.622 0.982

433.15 0.5108 1980 14.59 28.56 0.02970 2.937 0.973

453.15 0.4875 1976 15.38 31.55 0.03145 3.265 0.966

473.15 0.4665 1976 16.18 34.68 0.03328 3.610 0.961

493.15 0.4472 1980 17.00 38.01 0.03519 3.974 0.956

513.15 0.4295 1986 17.81 41.47 0.03716 4.357 0.952

533.15 0.4131 1994 18.63 45.10 0.03919 4.758 0.948

553.15 0.3980 2003 19.46 48.89 0.04128 5.178 0.944

573.15 0.3840 2013 20.29 52.84 0.04341 5.616 0.941

593.15 0.3709 2023 21.12 56.94 0.04560 6.077 0.937

613.15 0.3587 2034 21.95 61.19 0.04784 6.554 0.934

673.15 0.3266 2070 24.45 74.86 0.05476 8.100 0.924

773.15 0.2842 2134 28.57 100.5 0.06698 11.04 0.910

873.15 0.2516 2203 32.62 129.7 0.07990 14.42 0.899

973.15 0.2257 2273 36.55 161.9 0.09338 18.20 0.890

1073.15 0.2046 2343 40.38 197.4 0.1073 22.38 0.882
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Table A.7 Physical constants from 1998 CODATA. The 1σ
uncertainties of the last two digits are stated in parentheses.

Avogadro’s number, NA 6.02214199 (47) ×1026 molecules/kmol

Boltzmann’s constant, kB 1.3806503 (24) ×10−23 J/K

Universal gas constant, R◦ 8314.472 (15) J/kmol·K
Speed of light in vacuum, c 299,792,458 (0) m/s

Standard acceleration of gravity, g 9.80665 (0) m/s2

Stefan-Boltzmann constant, σ 5.670400 (40) ×10−8 W/m2K4

Table A.8 Additional physical property data in the text

Page no. Data

28 Electromagnetic wave spectrum

52, 53 Additional thermal conductivities of metals, liquids, and gases

465, 466 Surface tension

528 Total emittances

616 Lennard-Jones constants and molecular weights

618 Collision integrals

622 Molal specific volumes and latent heats





B. Units and conversion factors

The reader is certainly familiar with the Système International d’ Unités
(the “S.I. System”) and will probably make primary use of it in later work.
But the need to deal with English units will remain with us for many
years to come. We therefore list some conversion factors from English
units to S.I. units in this appendix. Many more conversion factors and
an extensive discussion of the S.I. system and may be found in [B.1]. The
dimensions that are used consistently in the subject of heat transfer are
length, mass, force, energy, temperature, and time. We generally avoid
using both force and mass dimensions in the same equation, since force
is always expressible in dimensions of mass, length, and time, and vice
versa. We do not make a practice of eliminating energy in terms of force
times length because the accounting of work and heat is often kept sep-
arate in heat transfer problems. The text makes occasional reference to
electrical units; however, these are conventional and do not have coun-
terparts in the English system, so no electrical units are discussed here.

We present conversion factors in the form of multipliers that may
be applied to English units so as to obtain S.I units. For example, the
relationship between Btu and J is

1 Btu = 1055.04 J. (B.1)

Thus, a given number of Btu may be multiplied by 1055.04 to obtain the
equivalent number of joules. We denote this in our tabulation as

J = 1055.04× Btu. (B.2)

although the meaning of the multiplier is clearer if we rearrange eqn. (B.1)
to display a conversion factor whose numerical worth is unity:

1 = 1055.04
J

Btu

721
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Table B.1 SI Multiplying Factors

Multiple Prefix Symbol Multiple Prefix Symbol

1024 yotta Y 10−24 yocto y

1021 zetta Z 10−21 zepto z

1018 exa E 10−18 atto a

1015 peta P 10−15 femto f

1012 tera T 10−12 pico p

109 giga G 10−9 nano n

106 mega M 10−6 micro µ

103 kilo k 10−3 milli m

102 hecto h 10−2 centi c

101 deka da 10−1 deci d

The latter form is quite useful in changing units within more complex
equations. For example, the conversion factor

1 = 0.0001663
m/s

furlong/fortnight

could be multiplied by a velocity, on just one side of an equation, to
convert it from furlongs per fortnight1 to meters per second.

Note that the S.I. units may have prefixes placed in front of them to
indicate multiplication by various powers of ten. For example, the prefix
“k” denotes multiplication by 1000 (e.g., 1 km = 1000 m). The complete
set of S.I. prefixes is given in Table B.1.

Table B.2 provides multipliers for a selection of common units.

References

[B.1] B. N. Taylor. Guide to the Use of the International System of Units
(SI). National Institute of Standards and Technology, Gaithersburg,
MD, 1995. NIST Special Publication 811. May be downloaded from
NIST’s web pages.

1Shortly after World War II, a group of staff physicists at Boeing Airplane Co. an-
swered angry demands by engineers that calculations be presented in English units
with a report translated entirely into such dimensions as these.
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Table B.2 Selected Conversion Factors

Dimension SI = multiplier × other unit

Density kg/m3 = 16.018 × lbm/ft3

kg/m3 = 103 × g/cm3

Diffusivity (α, ν , D) m2/s = 0.092903 × ft2/s

m2/s = 10−6 × centistokes

Energy J = 1055.04 × Btua

J = 4.1868 × calb

J = 10−7 × erg

Energy per unit mass J = 2326.0 × Btu/lbm

J = 4186.8 × cal/g

Flow rate m3/s = 6.3090×10−5 × gal/min (gpm)

m3/s = 4.7195×10−4 × ft3/min (cfm)

m3/s = 10−3 × L/s

Force N = 10−5 × dyne

N = 4.4482 × lbf

Heat flux W/m2 = 3.154 × Btu/hr·ft2

W/m2 = 104 × W/cm2

Heat transfer coefficient W/m2K = 5.6786 × Btu/hr·ft2◦F

Length m = 10−10 × ångströms (Å)

m = 0.0254 × inches

m = 0.3048 × feet

m = 201.168 × furlongs

m = 1609.34 × miles

m = 3.0857× 1016 × parsecs

Mass kg = 0.45359 × lbm

kg = 14.594 × slug



724 Appendix B: Units and conversion factors

Table B.2…continued.

Dimension SI = multiplier × other unit

Power W = 0.022597 × ft·lbf/min

W = 0.29307 × Btu/hr

W = 745.700 × hp

Pressure Pa = 133.32 × mmHg (@0◦C)

Pa = 248.84 × inH2O (@60◦F)

Pa = 3376.9 × inHg (@60◦F)

Pa = 6894.8 × psi

Pa = 105 × bar

Pa = 101325 × atm

Specific heat capacity J/kg·K = 4186.8 × Btu/lbm·◦F
J/kg·K = 4186.8 × cal/g·◦C

Temperature K = 5/9 × ◦R

K = ◦C + 273.15

K = (◦F + 459.67)/1.8

Thermal conductivity W/m·K = 0.14413 × Btu·in/hr·ft2◦F

W/m·K = 1.7307 × Btu/hr·ft◦F
W/m·K = 418.68 × cal/s·cm◦C

Viscosity (dynamic) Pa·s = 10−3 × centipoise

Pa·s = 1.4881 × lbm/ft·s
Pa·s = 47.880 × lbf·s/ft2

Volume m3 = 10−3 × L

m3 = 3.7854× 10−3 × gallons

m3 = 0.028317 × ft3

a The British thermal unit, originally defined as the heat that raises 1 lbm of water 1◦F,
has several values that depend mainly on the initial temperature of the water warmed.
The above is the International Table (i.e., steam table) Btu. A “mean” Btu of 1055.87 J
is also common. Related quantities are: 1 therm = 105 Btu; 1 quad = 1015 Btu ≈ 1 EJ; 1
ton of refrigeration = 12,000 Btu/hr absorbed.

bThe calorie represents the heat that raises 1 g of water 1◦C. Like the Btu, the calorie
has several values that depend on the initial temperature of the water warmed. The
above is the International Table calorie, or IT calorie. A “thermochemical” calorie of
4.184 J has also been in common use. The dietitian’s “Calorie” is actually 1 kilocalorie.



C. Nomenclature

Count every day one letter of my name;
Before you reach the end, dear,
Will come to lead you to my palace halls
A guide whom I shall send, dear.

Abhijña
¯

na S
¯

akuntala
¯

, Ka
¯
lida

¯
sa, 5th C

Arbitrary constants, coefficients, and functions introduced in context
are not included here; neither are most geometrical dimensions. Dimen-
sions of symbols are given in S.I. units in parenthesis after the definition.
Symbols without dimensions are noted with (–), where it is not obvious.

A,Ac,Ah,Aj
area (m2) or function defined
in eqn. (9.41); cross-sectional
area (m2); area of heater (m2);
jet cross-sectional area (m2)

B radiosity (W/m2), or the
function defined in Fig. 8.14.

Bm,i mass transfer driving force,
eqn. (11.97) (–)

b.c. boundary condition

b.l. boundary layer

C,Cc, Ch heat capacity rate (W/K) or
electrical capacitance (s/ohm)
or correction factor in
Fig. 7.17; heat capacity rate
for hot and cold fluids (W/K)

C average thermal molecular
speed

Cf skin friction coefficient (–)
[eqn. (6.33)]

Csf surface roughness factor (–).
(see Table 9.2)

c, cp, cv specific heat, specific heat at
constant pressure, specific
heat at constant
volume (J/kg·K)

c molar concentration of a
mixture (kmol/m3) or
damping coefficient (N·s/m)

c partial molar concentration of
a species i (kmol/m3)

co speed of light,
2.99792458× 108 m/s

D or d diameter (m)

Dh hydraulic diameter, 4Ac/P (m)

D12,Dim binary diffusion coefficient
for species 1 diffusing in
species 2, effective binary
diffusion coefficient for
species i diffusing in mixture
m (m2/s)
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E, E0 voltage, initial voltage (V)

e, eλ emissive power of a black
body (W/m2) or energy
equivalent of mass (J);
monochromatic emissive
power (W/m2·µm)

F LMTD correction factor (–) or
fluid parameter from
Table 9.4 (–)

F(t) time-dependent driving
force (N)

F1-2 radiation view factor for
surface (1) seeing surface (2)

F1-2 gray-body transfer factor
from surface (1) to surface (2)

f Darcy-Weisbach friction
factor(–) [eqn. (3.24)] or
Blasius function of η (–)

fo orientation factor for
eqns. (9.50)

fv frequency of vibration (Hz)

G superficial mass flux
= ṁ/Apipe

g,geff gravitational body force
(m/s2), effective g defined in
eqn. (8.61) (m/s2)

gm,i mass transfer coefficient for
species i, (kg/m2·s)

H height of ribbon (m), head (m),
irradiance (W/m2), or Henry’s
law constant (N/m2)

h,h,hrad local heat transfer coefficient
(W/m2K), or enthalpy (J/kg),
or height (m), or Planck’s
constant
(6.6260755× 10−34 J·s);
average heat transfer
coefficient (W/m2K); radiation
heat transfer coefficient
(W/m2K).

ĥ specific enthalpy (J/kg)

hc interfacial conductance
(W/m2K)

hfg , hsf , hsg
latent heat of vaporization
(J/kg), latent heat of fusion
(J/kg), latent heat of
sublimation (J/kg)

h′fg latent heat corrected for
sensible heat

ĥi specific enthalpy of species i
(J/kg)

h∗ heat transfer coefficient at
zero mass transfer, in
Chpt. 11 only (W/m2K)

I electric current (amperes) or
number of isothermal
increments (–)

�i, �j, �k unit vectors in the x,y, z
directions

i intensity of radiation (W/m2·
steradian)

I0(x) modified Bessel function of
the first kind of order zero

i.c. initial condition

J0(x), J1(x)
Bessel function of the first
kind of order zero, of order
one

�ji diffusional mass flux of
species i (kg/m2·s)

�J electric current density
(amperes/m2)

�J∗i diffusional mole flux of
species i (kmol/m2·s)

k thermal conductivity (W/m2K)

kB Boltzmann’s constant,
1.3806503× 10−23 J/K

kT thermal diffusion ratio (–)

L any characteristic length (m)

L0 geometrical mean beam
length (m)
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LMTD logarithmic mean
temperature difference

� an axial length or length into
the paper or mean free
molecular path (m or Å) or
mixing length (m)

M molecular weight (of mixture
if not subscripted) (kg/kmol)
or merit number of heat pipe
working fluid, hfgσ/νf .

m fin parameter,
√
hP/kA (m−1)

m0 rest mass (kg)

ṁ mass flow rate (kg/s) or mass
flux per unit width (kg/m · s)

mi mass fraction of species i (–)

ṁ′′ scalar mass flux of a mixture
(kg/m2·s)

N number of adiabatic channels
(–) or number of rows in a rod
bundle (–)

�N mole flux (of mixture if not
subscripted) (kmol/m2·s)

NA Avogadro’s number,
6.02214199× 1026

molecules/kmol

N number density (of mixture if
not subscripted)
(molecules/m3)

�n mass flux (of mixture if not
subscripted) (kg/m2·s), unit
normal vector

n summation index (–) or
nucleation site density
(sites/m2)

P factor (–) defined in
eqn. (3.14) or pitch of a tube
bundle (m) or perimeter (m)

p pressure (N/m2)

pi partial pressure of species i
(N/m2)

Q rate of heat transfer (W)

q, �q heat flux (W/m2)

qb, qFC, qi
defined in context of
eqn. (9.37)

qmax or qburnout

peak boiling heat flux (W/m2)

qmin minimum boiling heat flux
(W/m2)

q̇ volumetric heat generation
(W/m3)

R factor defined in eqn. (3.14)
(–), radius (m), electrical
resistance (ohm), or region
(m3)

R ideal gas constant per unit
mass, R◦/M (for mixture if
not subscripted) (J/kg·K)

R◦ ideal gas constant, 8314.472
(J/kmol·K)

Rt, Rf thermal resistance (K/W or
m2·K/W), fouling resistance
(m2·K/W)

r , �r radial coordinate (m), position
vector (m)

rcrit critical radius of insulation
(m)

ṙi volume rate of creation of
mass of species i (kg/m3·s)

S entropy (J/K), or surface
(m2), or shape factor (N/I)

SL, ST rod bundle spacings (m). See
Fig. 7.14

s specific entropy (J/kg·K)
T , Tc, Tf , Tm

temperature (◦C, K);
thermodynamic critical
temperature (K); film
temperature (◦C, K); mean
temperature for radiation
exchange (K)

T time constant, ρcV/hA (s)
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T a long time over which
properties are averaged (s)

t time (s)

U overall heat transfer
coefficient (W/m2K); internal
thermodynamic energy (J);
characteristic velocity (m/s)

u, �u local x-direction fluid velocity
(m/s) or specific energy (J/kg);
vectorial velocity (m/s)

uav, u,uc,ug
average velocity over an area
(m/s); local time-averaged
velocity (m/s); characteristic
velocity (m/s) [eqn. (8.18)];
Helmholtz-unstable velocity
(m/s)

û specific internal energy (J/kg)

V volume (m3); voltage (V)

Vm molal specific volume
(m3/kmol)

v local y-direction fluid velocity
(m/s)

�v mass-average velocity, in
Chapter 11 only (m/s)

�vi average velocity of species i
(m/s)

�v∗ mole average velocity (m/s)

Wk rate of doing work (W)

w z-direction velocity (m/s) or
width (m)

x,y, z Cartesian coordinates (m); x
is also used to denote any
unknown quantity

xi mole fraction of species i (–)

x quality of two-phase flow

Greek symbols

α thermal diffusivity, k/ρcp
(m2/s), or helix angle (rad.)

α,αg absorptance (–); gaseous
absorptance (–)

β coefficient of thermal
expansion (K−1), or relaxation
factor (–), or h

√
αt/k, or

coefficient of viscous friction
(–)

βλ monochromatic extinction
coefficient (m2/kg)

Γ , Γc ġL2/k∆T , mass flow rate in
film (kg/m·s)

γ cp/cv ; electrical conductivity
(V/ohm·m2)

γλ monochromatic scattering
coefficient (m2/kg)

∆E Activation energy of reaction
(J/kmol)

∆p pressure drop in any system
(N/m2)

∆T any temperature difference;
various values are defined in
context.

δ,δc, δt, δ′t
flow boundary layer thickness
(m) or condensate film
thickness (m); concentration
boundary layer thickness (m);
thermal boundary layer
thickness (m); h/k (m).

ε emittance (–); heat exchanger
effectiveness (–); roughness
(m)

εA, εAB potential well depth for
molecules of A, for collisions
of A and B (J)

εf fin effectiveness (–)

εg gaseous emittance (–)

εm, εh eddy diffusivity of mass (–), of
heat (–)

η independent variable of
Blasius function, y

√
u∞/νx

(–)
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ηf fin efficiency

Θ a ratio of two temperature
differences (–)

θ (T − T∞) (K) or angular
coordinate (rad)

ζ x
/√
αt

κλ monochromatic absorption
coefficient (m2/kg)

λ, λc, λH wavelength (m) or eigenvalue
(m−1); critical Taylor
wavelength (m);
Helmholtz-unstable
wavelength (m)

λd, λd1 , λd2

most dangerous
Taylor-unstable wavelength
(m); subscripts denote one-
and two-dimensional values

λ̂ dimensionless eigenvalue (–)

µ dynamic viscosity (kg/m·s)
or chemical potential (J/mol)

ν kinematic viscosity, µ/ρ
(m2/s)

ξ x/L or x
√
ω/2α; also

(x/L+ 1) or x/L (–)

ρ mass density (kg/m3) or
reflectance (–)

ρi partial density of ith species
(kg/m3)

σ surface tension (N/m) or
Stefan-Boltzmann constant
5.670400× 10−8 (W/m2·K4)

σA,σAB collision diameter of
molecules ofA, for collisions of
A with B (Å)

τ transmissivity (–) or
dimensionless time (T/T ) or
shear stress (N/m2) or length
of travel in b.l. (m)

τw, τyx shear stress on a wall (N/m2),
shear stress in the x-direction
on the plane normal to the

y-direction (N/m2)

τδ shear stress exerted by liquid
film (N/m2)

Φ ∆T
/
(q̇L2/k) or fraction of

total heat removed (see
Fig. 5.10) (–)

φ angular coordinate (rad), or
δt/δ (–), or factor defined in
context of eqn. (6.120c) (–)

φij weighting functions for
mixture viscosity or thermal
conductivity (–)

χ dΘ/dζ

ψ ωL2
/
α

Ω ωt

ΩD,Ωk,Ωµ
collision integral for
diffusivity, thermal
conductivity, or dynamic
viscosity (–)

ω frequency of a wave or of
rotation (rad/s) or solid angle
(sr)

General subscripts

av, avg denoting bulk or average
values

b, body denoting any body

b denoting a black body

c denoting the critical state

cbd denoting a convective boiling
dominated value

D denoting a value based on D

e, et denoting a dynamical entry
length or a free stream
variable; denoting a thermal
entry length

f ,g denoting saturated liquid and
saturated vapor states

fb denoting a value for flow
boiling
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i denoting initial or inside
value, or a value that changes
with the index i, or values for
the ith species in a mixture

in denoting a value at the inlet

L denoting a value based on L
or at the left-hand side

lo denoting a value computed as
if all fluid were in liquid state

m denoting values for mixtures

max, min denoting maximum or
minimum values

n denoting a value that changes
with the index n

nbd denoting a nucleate boiling
dominated value

o denoting outside, in most
cases

out denoting a value at the outlet

R denoting a value based on R
or at the right-hand side

s denoting values above an
interface

sfc denoting conditions at a
surface

sup, sat, sub
denoting superheated,
saturated, or subcooled states

w denoting conditions at a wall

u denoting values below an
interface

x denoting a local value at a
given value of x

∞ denoting conditions in a fluid
far from a surface

λ denoting radiative properties
evaluated at a particular
wavelength

General superscript

* denoting values for zero net
mass transfer (in Chpt. 11
only)

Dimensionless parameters

Bi Biot number, hL/kbody

Bo Bond number,
L2g(ρf − ρg)/σ , or Boiling
number, qw/Ghfg

Co Convection number,
[(1− x)/x]0.8(ρg/ρf )0.5

Da Damkohler number,
ρA′ exp(−∆E/R◦T)/g∗m

Ec Eckert number, u2/(cp∆T)

Fo Fourier number, αt/L2

Fr Froude number, U2/(gL)

GrL Grashof number, gβ∆TL3/ν2

(for heat transfer), or
g(∆ρ/ρ)L3/ν2

Gz Graetz number, RePrD/x

H′ L′ based on L ≡ H
Ja Jakob number, cp∆T/hfg
j Colburn j-factor, St Pr2/3

Ku Kutateladze number,
(π/24)(qmax/qmaxz )

L′ L
√
g(ρf − ρg)/σ

Le Lewis number, Sc/Pr = α/Dim
Ma Mach number,

u/(sound speed)

NTU number of transfer units,
UA/Cmin

NuL Nusselt number, hL/kfluid

Num,L Nusselt number for mass
transfer (or Sherwood
number) g∗m,iL/(ρDim)

PeL Péclét number, UL/α = Re Pr
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Pr, Prt Prandtl number,
µcp/k = ν/α; turbulent
Prandtl number, εm/εh

RaL, Rayleigh number,
Gr Pr = gβ∆TL3/(να) for
heat transfer;
g(∆ρ/ρ)L3/(νD12) for mass
transfer

Ra∗L RaLNuL = gβqwL4
/
(kνα)

ReL,Rec,Ref ,Relo

Reynolds number, UL/ν ;
condensation Re equal to

Γc/µ; Re for liquid; liquid-only
Reynolds number, GD/µf

Sc Schmidt number for species i
in mixture m, ν/Dim

ShL Sherwood number,
g∗m,iL/(ρDim)

St Stanton number,
Nu/(Re Pr) = h/(ρcpu)

Str Strouhal number, fvD/u∞

WeL Weber number, ρgU2
∞L/σ

Π any dimensionless group
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convection, Heat transfer
coefficient, or Natural
convection

Convection number, 500
Conversion factors, 721–725

example of development, 14
Cooling towers, 599–600
Correlations, critically evaluating,

384–386
Counterdiffusion velocity, 637, 649
Critical heat flux (CHF), see Peak heat

flux
Cross flow, 374–384

cylinders
flow field, 374–377
heat transfer, 377–380

tube bundles, 380–384

D
Dalton’s law of partial pressures, 602
Damkohler number, 683
Darcy-Weisbach friction factor, 127,

358, 361, 363
Departure from nucleate boiling

(DNB), see Peak Heat Flux
Diffusion coefficient, 64, 608–623

binary gas mixtures, 614–619
dilute liquid solutions, 620–623

hydrodynamic model for liquid
solutions, 620–623

kinetic theory model for gases,
610–613

multicomponent gas mixtures,
619–620

Diffusional mass flux, 604
Fick’s law for, 608–613

Diffusional mole flux, 605
Fick’s law for, 611

Diffusivity, see Thermal diffusivity
Dilute gas, 610, 619
Dimensional analysis, 150–163
Dirichlet conditions, 142
Dittus-Boelter equation, 360
Dry ice, 684
Dufour effect, 613

E
Earth, age of, Kelvin’s estimate, 261
Eckert number, 308
Eddy diffusivity

for heat, 323
for momentum, 318

Effectiveness, see Heat exchangers or
Fins

Eigenvalue, 204
Einstein, A., 155, 621
Electromagnetic spectrum, 28
Emittance, 33, 527–530

diffuse and specular, 530–531
gaseous, 563–574
hemispherical, 531
monochromatic, 527

Energy equation, 292–294
analogy to momentum equation,

294–296
for boundary layers, 294
for pipe flow, 345
with mass transfer, 667

Entropy production, 9
for lumped capacity system, 24

Entry length, see Internal flow
Equimolar counter-diffusion, 679
Error function, 223
Evaporation, 663–666, 672
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F
Falling liquid films, 332, 429–431,

440–442
Fick’s law, 63, 598, 608–613
Film absorption, 681
Film boiling, see Boiling
Film coefficient, see Heat transfer

coefficient
Film composition, 647, 660, 669
Film condensation, see Condensation
Film temperature, 295, 308, 414, 669
Fins, 163–181

condition for one-dimensionality,
165–166

design considerations, 176–177
effectiveness, 176
efficiency, 176
purpose of, 163
root temperature, 174–176
thermal resistance of, 177–178
variable cross-section, 179–181
very long fins, 173
with tip heat transfer, 171–173
without tip heat transfer,

168–171
First law of thermodynamics, 7–8
Flux, see Heat flux or Mass flux
Flux plot, 236–241
Forced convection, 20

boiling, see Boiling, forced
convection

boundary layers, see Boundary
layers

condensation, see Condensation
cross flow, see Cross flow
cylinders, 378–379
flat plates

laminar, uniform qw , 309–311
laminar, uniform Tw , 304–307
turbulent, 324–328
unheated starting length, 306
variable property effects, 308,

327
spheres, 684
tube bundles, 381–384
within tubes, see Internal flow

Fourier number, 195

Fourier series conduction solutions,
203–207

one-term approximations, 218
Fourier’s law, 10–17, 50–51
Fourier, J.B.J., 10

The Analytical Theory of Heat, 3,
10, 141

Free convection, see Natural
convection

Free molecule flow, 619
Friction coefficient, see

Darcy-Weisbach friction
factor or Skin friction
coefficient

Froude number, 157, 503
Fully developed flow, see Internal flow
Functional replacement method, 150

G
Gardon gage, 95
Gaseous radiation, 563–574

absorption, scattering, and
extinction coefficients, 567

Beer’s law, 567
equation of transfer, 569
flames, 35, 574
mean beam length, 570

Gauss’s theorem, 55, 293, 628, 667
Gnielinski equation, 361
Graetz number, 352
Grashof number, 403

for mass transfer, 646
Grashof, F., 403
Gravity

effect on boiling, 492
g-jitter, 417
geff for condensation, 436
standard acceleration of, 719

Gray body, 527–529, 534–536,
549–563

electrical analogy for heat
exchange, 549–559

transfer factor, see Transfer
factor

Greenhouse effect, 579–581
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H
Hagan, G., 348
Hagan-Poiseuille flow, 348
Halocline, 674
Heat, 3
Heat capacity, see Specific heat

capacity
Heat conduction, see Conduction
Heat convection, see Convection
Heat diffusion equation

multidimensional, 49–56
one-dimensional, 17–19

Heat exchangers, 99–129
counterflow, 99, 108, 123
cross-flow, 100, 118, 124
design of, 126–129
effectiveness-NTU method,

120–126
function and configuration,

99–103
logarithmic mean temperature

difference, see Logarithmic
mean temperature difference

mean temperature difference in,
103–113

microchannel, 351
parallel flow, 99, 108, 123
relationship to isothermal pipe

flow, 367–369
shell-and-tube, 100, 118, 124
single-stream limit, 125–126, 368
with variable U , 114

Heat flux, defined, 10–13
Heat pipes, 509–512

merit number, 510
Heat transfer, 3

modes of, 10–35
Heat transfer coefficient, 20–21

average, 20, 306–307
effect of mass transfer, 663–669
overall, 78–85

Heisler charts, 208
Helmholtz instability, 474–477
Henry’s law, 631
Hohlraum, 29
Hot-wire anemometer, 380, 393
Hydraulic diameter, 368, 370–373
Hydrodynamic theory of CHF, see Peak

Heat Flux

I
Ideal gas law for mixtures, 602
Ideal solution, 631
Incompressible flow, 277–278, 292,

629, 678
Indices, method of, 150
Initial condition, 142
Insulation

critical radius of, 72–74
superinsulation, 16

Integral conservation equations
for energy, 300–304
for momentum, 286–289

Intensity of radiation, 531–533
Interdiffusion coefficient, 639
Interfacial boundary conditions,

630–634
Internal flow

bulk energy equation, 345
bulk enthalpy, 343
bulk temperature, 343–346

for uniform qw , 349
for uniform Tw , 367–369

bulk velocity, 343
entry length

laminar hydrodynamic, 347
laminar thermal, 351–352
turbulent, 355–356

friction factor
laminar flow, 359
turbulent flow, 358–364

fully developed
hydrodynamically, 343,

347–348
thermally, 343–346

hydraulic diameter, 368
laminar heat transfer

developing flow, 351–354
uniform qw , fully developed,

348–351
uniform Tw , fully developed,

351
laminar temperature profiles,

345–346
laminar velocity profile

developing flow, 343
fully developed, 347–348

noncircular ducts, 370–374
turbulent, 355–367
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Internal flow (con’t )
turbulent heat transfer, 357–367

Gnielinski equation, 361
liquid metals, 365–367
rough walls, 362–364
variable property effects, 361

turbulent transition, 273
Irradiance, 549

J
Jakob number, 428
Jakob, M., 230, 428
Jupiter, atmosphere of, 673

K
Ka

¯
lida

¯
sa

Abhijña
¯

na S
¯

akuntala
¯

, 725
Kinetic theory of gases

average molecular speed, 614
Chapman-Enskog theory, 615
diffusion coefficient

elementary model, 610–611
exact, 615–617

limitations of, 619
mean free path, 297, 614
thermal conductivity

elementary model, 297–298
gas mixtures, 625
monatomic gas, 624

viscosity
elementary model, 297–298
gas mixtures, 624
monatomic gas, 624

Kirchhoff’s law, 533–536
Kirchhoff, G.R., 533
Kolmogorov scales of turbulence, 336

L
L’Hospital’s rule, 112
Laplace’s equation, 235
Laplacian, 56, 235
Lardner, D.

The Steam Engine Familiarly
Explained and Illustrated, 99

Leibnitz’s rule, 287

Lennard-Jones intermolecular
potential, 615–617

Lewis number, 609
Lewis, W.K., 609, 643, 666
Liquid metal heat transfer

effect of Pr, 299–300
in tube bundles, 383–384
in tubes, 365–367
laminar boundary layer, 305–307

Logarithmic mean temperature
difference (LMTD), 103–120

correction factors, 114–120
defined, 111
limitations on, 113–114

Lummer, O.R., 31
Lumped capacity solutions, 22–26,

194–202
dimensional analysis of, 195–196
electrical/mechanical analogies,

196–198
in natural convection, 411–412
second order, 199–202
with heat generation, 145
with variable ambient

temperature, 198–199, 263

M
Mach number, 308
Mass average velocity, 604
Mass conservation, see Conservation

of mass
Mass diffusion equation, 638
Mass exchangers, 683
Mass flux, 604
Mass fraction, 600

in the transferred state, 656
Mass transfer, 597–673

analogy to heat transfer, 63,
635–648

evaporation, 663–666, 672
forced convective, 640–645,

654–662
natural convective, 645–648
through a stagnant layer,

648–654
mass-based solution, 659

with simultaneous heat transfer,
663–673
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Mass transfer coefficients, 640–648,
654–662

at low rates, 640–648
analogy of heat and mass

transfer, 641–648
defined, 641
effect of mass transfer rate on,

658–660
variable property effects, 669

Mass transfer driving force, 655–657
at low rates, 661–662
one species transferred, 641, 657

Material derivative, 294
Mean beam length, 570
Mean free path, 297

rigid sphere molecules, 614
Melville, H.

Moby Dick, 341
Microchannel heat exchanger, 351
Mixed convection, 426
Mixing-cup temperature, see Bulk

temperature
Mixtures

binary, 609
composition of, 600–603
molecular weight of, 601
of ideal gases, 602–603
specific heat of, 627
transport properties, 614–627

gas diffusion coefficients,
614–620

liquid diffusion coefficients,
620–623

thermal conductivity of gas
mixtures, 624–627

viscosity of gas mixtures,
624–627

velocities and fluxes in, 604–608
Mobility, 620
Molar concentration, 601
Mole flux, 605
Mole fraction, 601
Mole-average velocity, 605
Molecular weight, 601, 616
Momentum equation, 279–282
Momentum integral method, see

Integral conservation
equations

Moody diagram, 359

Mothballs, 682

N
Natural convection, 20, 397–427

dimensional analysis, 401–404
governing equations, 399–402
horizontal cylinders, 416–418
in enclosures, 426
in mass transfer, 645–648
inclined and horizontal plates,

420–423
spheres, 418–420
subermerged bodies, 420
turbulent, 404, 413, 421
validity of b.l. approximations,

414–416
variable-property effects, 414,

422
vertical cylinders, 418
vertical plates, 401–413

analysis compared to data,
412–413

Squire-Eckert analysis, 405–410
wide-range correlation, 412

with forced convection, 426
with uniform heat flux, 424–425

Navier-Stokes equation, 279
Nernst-Einstein equation, 620, 677
Neumann conditions, 142
Newcomen’s engine, 193
Newton’s law of cooling, 20
Newton’s law of viscous shear, 281
Newton, Isaac, 19
Nomenclature, 725–731
NTU, number of transfer units, 121
Nucleate boiling, see Boiling
Nukiyama, S., 457–459
Number density, 601
Nusselt number, defined, 275

average, 307, 310
for developing internal flow,

352–353
for fully developed internal flow,

349
for mass transfer, 643

Nusselt, E.K.W., 121, 275, 403, 430,
436, 442
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O
Ocean, salt concentration in, 674
Ohm’s law, 63

gray body radiation analogy,
549–559

thermal resistance analogy, see
Thermal resistance

Overall heat transfer coefficient, 78–85
typical values, 82

P
Péclét number, 366
Partial density, 600
Partial pressure, 602
Peak heat flux, 462, 472–485

external flows, 494–496
general expression for, 478
horizontal plate, 478–481
internal flows, 504–505
various configurations, 481–485
very small objects, 482
Zuber-Kutateladze prediction,

480
Petukhov equation, 360
Physical constants, 719
Pi-theorem, see Buckingham

pi-theorem
Pipe flow, see Internal flow
Planck’s constant, 32
Planck’s law, 32
Planck, M., 31
Pohlhausen, K., 286, 303
Poiseuille’s law, 348
Poiseuille, J., 348
Prandtl number, 296–299

Eucken formula, 677
relation to b.l. thickness,

299–300, 304
turbulent Prandtl number, 323

Prandtl, L., 270, 271, 282, 315
Pringsheim, E., 31
Properties of substances, see

Thermophysical property
data

Property reference state, see Film
temperature or Film
composition

Psychrometer, sling, 663
Pumping power, 126

Q
Quenching, 485

R
Radiation, see Thermal radiation
Radiation heat transfer coefficient, 74
Radiation shield, 34–35, 539, 553
Radiosity, 549
Raoult’s law, 631
Rayleigh number, 403

for mass transfer, 646
for uniform wall heat flux, 424

Rayleigh, Lord (J.W. Strutt), 151
Reactions

heterogeneous, 606, 627,
673–675, 683

homogeneous, 627, 673
Reflectance, 29

diffuse and specular, 530–531
Relativity, theory of, 156
Resistance, see Thermal resistance
Resistance thermometer, 457
Reversibility and heat transfer, 8
Reynolds number, 271
Reynolds, O., 272, 311
Reynolds-Colburn analogy

for laminar flow, 311–313
for mass transfer, 666
for turbulent flow, 322–325

Richardson, L.F., 313
Roughness, see Surface roughness

effects

S
S.I. System, 14, 721–725
Samurai sword, 220–221
Savery’s engine, 193
Scattering, 564
Schmidt number, 609
Schmidt, E., 275, 609
Second law of thermodynamics, 8–10
Self-diffusion, 610, 614
Separation of variables solutions,

146–150
Shakespeare, Wm.

Macbeth, 457
Venus and Adonis, 525

Sherwood number, 643
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Sherwood, T.K., 643
Sieder-Tate equation, 360
Similarity transformations, 224,

282–284
Simultaneous heat and mass transfer,

663–673
energy balances for, 670–673

Skin drag, see Skin friction coefficient
Skin friction coefficient, 287

for laminar flow, 290
for turbulent flow, 322, 325
for turbulent pipe flow, 358–364
versus profile drag, 312

Solar energy, 574–582
solar collectors, 582
wavelength distribution, 529

Solubility, 631
Soret effect, 612, 675
Species conservation, 627–648

boundary conditions for, 630–634
equation of, 627–629

for stationary media, 635–639
for steady state, 635–638
for unsteady diffusion,

638–639
Species-average velocity, 604
Specific heat capacity, 18, 292

for mixtures, 627
Specific heat ratio, 624
Speed of light in vacuum, 32, 719
Stagnant film model, 658–659, 681
Stanton number, 312
Stefan tube, 648
Stefan, J., 648
Stefan-Boltzmann constant, 30, 719
Stefan-Boltzmann law, 30
Stefan-Maxwell equation, 676
Stegosaurus, 163
Steradian, defined, 531
Stokes’ law, 621
Stokes, G.G., 621
Stokes-Einstein equation, 621
Stream function, 276–278
Streamlines, 276
String rule, 586
Strouhal number, 376
Sublimation, 633, 643, 666, 682, 684
Suction, 659
Surface roughness effects

on friction factor, 358, 362–364

on nucleation, 467–468
on pool boiling, 489–492
on turbulent forced convection,

362–364
on turbulent transition, 327

Surface tension, 465–467
Sutherland, W., 621
Sweat cooling, 672

T
Taylor instability, 472–474
Taylor, G.I., 472
Temperature gradient, defined, 50
Temperature response charts,

208–218
Thermal conductivity, 10–16, 51

equations for gases, 624–627
Eucken correction, 624
simple kinetic theory model,

297–298
temperature dependence, 50–51

Thermal diffusion, 612
Thermal diffusivity, 19
Thermal expansion, coefficient of, 401

for an ideal gas, 403
Thermal radiation, 26–35, 525–583

black body, 28–32
black body exchange, 536–548
diffuse and specular, 530–531
enclosures

gray, algebraic solutions,
559–563

nonisothermal, nongray, or
nondiffuse, 563

gaseous, see Gaseous radiation
gray body, 527
gray body exchange, 534–536

electrical analogy, 549–559
with a specified wall flux, 556
with an adiabatic surface, 556

infrared radiation, 28–29
intensity, 531–533
Kirchhoff’s law, 533–536
monochromatic emissive power,

30
Monte Carlo method, 563, 574
Planck’s law, 32
radiant exchange described,

32–35
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Thermal Radiation (con’t )
radiation heat transfer

coefficient, 74
radiation shield, 34–35, 539, 553
small object in large

environment, 34, 552
solar, 574–583
Stefan-Boltzmann law, 30
transfer factor, see Transfer

factor
view factor, see View factor
wavelength distribution, 28–32,

527–530
Wien’s law, 31

Thermal resistance, 62–66
contact resistance, 64–66
defined, 62
for a cylinder, 69
for a fin, 177–178
for a slab, 62
for convection, 72
for thermal radiation, 74–78
fouling resistance, 83–85
in parallel, 75–78, 80–81
in series, 72, 73, 78, 79
Ohm’s law analogy, 62–63

Thermophysical property data, 691
accuracy of, 691–694
density, 698–718
diffusion coefficient, 613

air-water, 612
dynamic viscosity, 714–718
emittance

gases, 564–574
surfaces, 528

gases at 1 atm pressure, 714–718
kinematic viscosity, 704–718
latent heat of vaporization,

710–711
liquid metals, 704–709
metallic solids, 698–700
mixtures, see Mixtures
molecular weights, 616
nonmetallic solids, 700–703
Prandtl number, 704–718
saturated liquids, 704–709
saturated vapors, 711–713

specific heat capacity, 698–718
surface tension, 465–467
thermal conductivity, 15, 52, 53,

698–718
thermal diffusivity, 698–718
thermal expansion coefficient,

704–713
vapor pressure, 711–713

CCl4(l), 680
CO2(s), 684
ethanol, 685
H2O(s), 634
napthalene, 643, 682
paradichlorobenzene, 682

Time constant, 23, 196, 200
Transfer factor, 33, 527

parallel plates, 551
two diffuse gray bodies, 552
two specular gray bodies, 553

Transmittance, 29
Transpiration cooling, 670–671
Transport laws, 8
Tube bundles, 380–384
Tube flow, see Internal flow
Turbulence, 313–331

eddy diffusivities, 317–323
friction velocity, 319
internal flow, 355–367
lengthscales of, 315–316, 336
log law, 321
mixing length, 315–321
Reynolds-Colburn analogy,

322–325
transition to, 272–274
viscous sublayer, 320

Two-phase flow
heat transfer

boiling, 496–505
condensing, 505–506

regimes
for horizontal tubes, 503–504
without gravity force, 498–499

U
Units, 721–725
Universal gas constant, 602, 719
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V
Verne, J.

Around the World in 80 Days, 5
View factor, 32, 536–548

between small and large objects,
546

examples of view factor algebra,
537–548

general integral for, 540–542
reciprocity relation, 539
some three-dimensional

configurations, 544, 545
some two-dimensional

configurations, 543
summation rule, 537

View factors
string rule, 586

Viscosity
correction for temperature

dependence of, 327, 361
dynamic, 270
gas mixtures, 624
kinematic, 271
monatomic gas, 624
Newton’s law of viscous shear,

281
simple kinetic theory model,

297–298
Sutherland formula for gases, 336

von Kármán constant, 320
von Kármán, T., 286
Vortex shedding, 374–377

W
Watt, James, 193
Weber number, 495
Wet-bulb temperature, 663–666
Wetting agent, 507
Wien’s law, 31

Y
Yamagata equation, 468
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