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LEARNING GOALS
By studying this chapter, you will learn:

• The various types of bonds that
hold atoms together.

• How the rotational and vibrational
dynamics of molecules are
revealed by molecular spectra.

• How and why atoms form into
crystalline structures.

• How to use the energy-band con-
cept to explain the electrical prop-
erties of solids.

• A simple model for metals that
explains many of their physical
properties.

• How the character of a semicon-
ductor can be radically transformed
by adding small amounts of an
impurity.

• Some of the technological applica-
tions of semiconductor devices.

• Why certain materials become
superconductors at low
temperature.
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MOLECULES AND 
CONDENSED MATTER

?In 2002 a 10,000-
year-old Antarctic ice
shelf the size of Rhode
Island abruptly col-
lapsed in response to
increasing summer
temperatures. What
property of carbon
dioxide molecules in
our atmosphere makes
them a potent agent for
triggering higher aver-
age temperatures
worldwide?

In Chapter 41 we discussed the structure and properties of isolated atoms. But
such atoms are the exception; usually we find atoms combined to form mole-
cules or more extended structures we call condensed matter (liquid or solid).

It’s the attractive forces between atoms, called molecular bonds, that causes them
to combine. In this chapter we’ll study several kinds of bonds as well as the
energy levels and spectra associated with diatomic molecules. We will see that
just as atoms have quantized energies determined by the quantum-mechanical
state of their electrons, so molecules have quantized energies determined by their
rotational and vibrational states.

The same physical principles behind molecular bonds also apply to the study
of condensed matter, in which various types of bonding occur. We’ll explore the
concept of energy bands and see how it helps us understand the properties of
solids. Then we’ll look more closely at the properties of a special class of solids
called semiconductors. Devices using semiconductors are found in every radio,
TV, pocket calculator, and computer used today; they have revolutionized the
entire field of electronics during the past half-century.

42.1 Types of Molecular Bonds
We can use our discussion of atomic structure in Chapters 41 as a basis for
exploring the nature of molecular bonds, the interactions that hold atoms together
to form stable structures such as molecules and solids.

Ionic Bonds
The ionic bond is an interaction between oppositely charged ionized atoms. The
most familiar example is sodium chloride (NaCl), in which the sodium atom
gives its one 3s electron to the chlorine atom, filling the vacancy in the sub-
shell of chlorine.

3p

50 km

Former ice shelf
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Let’s look at the energy balance in this transaction. Removing the electron
from a neutral sodium atom requires 5.138 eV of energy; this is called the
ionization energy or ionization potential of sodium. The neutral chlorine atom
can attract an extra electron into the vacancy in the 3p subshell, where it is
incompletely screened by the other electrons and therefore is attracted to the
nucleus. This state has 3.613 eV lower energy than a neutral chlorine atom and a
distant free electron; 3.613 eV is the magnitude of the electron affinity of chlo-
rine. Thus creating the well-separated and ions requires a net investment
of only When the two oppositely charged
ions are brought together by their mutual attraction, the magnitude of their nega-
tive potential energy is determined by how closely they can approach each other.
This in turn is limited by the exclusion principle, which forbids extensive overlap
of the electron clouds of the two ions. As the distance decreases, the exclusion
principle distorts the charge clouds, so the ions no longer interact like point
charges and the interaction eventually becomes repulsive (Fig. 42.1).

The minimum electric potential energy for NaCl turns out to be at a
separation of 0.24 nm The net energy released in creating the ions and letting
them come together to the equilibrium separation of 0.24 nm is 

Thus, if the kinetic energy of the ions is neglected, 4.2 eV is
the binding energy of the NaCl molecule, the energy that is needed to dissociate
the molecule into separate neutral atoms.

1.525 eV 5 4.2 eV.
5.7 eV 2

25.7 eV

5.138 eV 2 3.613 eV 5 1.525 eV.
Cl2Na1

3s

r

U(r)

U0

0 r0

r , r0: U decreases with
increasing separation r;
force is repulsive.

r . r0: U decreases with
decreasing separation r;
force is attractive.

42.1 When the separation r between two
oppositely charged ions is large, the poten-
tial energy is proportional to as
for point charges and the force is attrac-
tive. As r decreases, the charge clouds of
the two atoms overlap and the force
becomes less attractive. If r is less than the
equilibrium separation the force is
repulsive.

r0 ,

1/rU 1 r 2

Example 42.1 Electric potential energy of the NaCl molecule

Find the electric potential energy of and ions separated by
if they can be treated as point charges.

SOLUTION

IDENTIFY: We use the ideas from Section 23.1 about the electric
potential energy of two point charges.

SET UP: Equation (23.9) tells us that the electric potential energy
of two point charges q and separated by a distance r is

EXECUTE: The two charges are (for and 
(for and the separation is 
From Eq. (23.9),

 5 29.6 3 10219 J 5 26.0 eV

 U 5 2 

1

4pP0
 
e 2

r0
5 2 19.0 3 109 N # m2/C2 2  

11.6 3 10219 C 2 2

0.24 3 1029 m

1029 m.r 5 0.24 nm 5 0.24 3Cl2),
q0 5 2eNa1)q 5 1e

U 5 qq0/4pP0 r.
q0

0.24 nm
Cl2Na1 EVALUATE: This result agrees fairly well with the observed value

of The difference is because at the equilibrium separa-
tion the ions don’t behave exactly like point charges; at this separa-
tion the electron clouds of the two ions are overlapping.

25.7 eV.

Covalent Bonds
Ionic bonds are interactions between charge distributions that are nearly spheri-
cally symmetric; hence they are not highly directional. They can involve more than
one electron per atom. The alkaline earth elements form ionic compounds in which
an atom loses two electrons; an example is Loss of more than two
electrons is relatively rare; instead, a different kind of bond comes into operation.

The covalent bond is characterized by a more egalitarian participation of the
two atoms than occurs with the ionic bond. The simplest covalent bond is found
in the hydrogen molecule, a structure containing two protons and two electrons.
This bond is shown schematically in Fig. 42.2. As the separate atoms (Fig. 42.2a)
come together, the electron wave functions are distorted and become more con-
centrated in the region between the two protons (Fig. 42.2b). The net attraction of
the electrons for each proton more than balances the repulsion of the two protons
and of the two electrons.

Mg21 1Cl2 2 2 .

Covalent bond: the charge
clouds for the two electrons
with opposite spins
are concentrated in the
region between the
nuclei.

Individual H atoms are
usually widely separated
and do not interact.

(a) Separate hydrogen atoms

(b) H2 molecule

Nucleus (proton)

H2

H

H

42.2 Covalent bond in a hydrogen 
molecule.

The attractive interaction is then supplied by a pair of electrons, one con-
tributed by each atom, with charge clouds that are concentrated primarily in the
region between the two atoms. The energy of the covalent bond in the hydrogen
molecule is 

As we saw in Chapter 41, the exclusion principle permits two electrons to
occupy the same region of space (that is, to be in the same spatial quantum state)
only when they have opposite spins. When the spins are parallel, the exclusion
principle forbids the molecular state that would be most favorable from energy
considerations (with both electrons in the region between atoms). Opposite spins
are an essential requirement for a covalent bond, and no more than two electrons
can participate in such a bond.

However, an atom with several electrons in its outermost shell can form sev-
eral covalent bonds. The bonding of carbon and hydrogen atoms, of central
importance in organic chemistry, is an example. In the methane molecule 
the carbon atom is at the center of a regular tetrahedron, with a hydrogen atom at
each corner. The carbon atom has four electrons in its L shell, and each of these
four electrons forms a covalent bond with one of the four hydrogen atoms
(Fig. 42.3). Similar patterns occur in more complex organic molecules.

Because of the role played by the exclusion principle, covalent bonds are
highly directional. In the methane molecule the wave function for each of car-
bon’s four valence electrons is a combination of the 2s and 2p wave functions
called a hybrid wave function. The probability distribution for each one has a
lobe protruding toward a corner of a tetrahedron. This symmetrical arrangement
minimizes the overlap of wave functions for the electron pairs, minimizing their
repulsive potential energy.

Ionic and covalent bonds represent two extremes in molecular bonding, but
there is no sharp division between the two types. Often there is a partial transfer
of one or more electrons from one atom to another. As a result, many molecules
that have dissimilar atoms have electric dipole moments—that is, a preponder-
ance of positive charge at one end and of negative charge at the other. Such mol-
ecules are called polar molecules. Water molecules have large electric dipole
moments; these are responsible for the exceptionally large dielectric constant of
liquid water (see Sections 24.4 and 24.5).

van der Waals Bonds
Ionic and covalent bonds, with typical bond energies of 1 to 5 eV, are called
strong bonds. There are also two types of weaker bonds. One of these, the van
der Waals bond, is an interaction between the electric dipole moments of atoms
or molecules; typical energies are or less. The bonding of water molecules
in the liquid and solid states results partly from dipole–dipole interactions.

No atom has a permanent electric dipole moment, nor do many molecules.
However, fluctuating charge distributions can lead to fluctuating dipole moments;
these in turn can induce dipole moments in neighboring structures. Overall, the
resulting dipole–dipole interaction is attractive, giving a weak bonding of atoms
or molecules. The interaction potential energy drops off very quickly with dis-
tance r between molecules, usually as The liquefaction and solidification of
the inert gases and of molecules such as and are due to induced-dipole
van der Waals interactions. Not much thermal-agitation energy is needed to break
these weak bonds, so such substances usually exist in the liquid and solid states
only at very low temperatures.

Hydrogen Bonds
In the other type of weak bond, the hydrogen bond, a proton ion) gets
between two atoms, polarizing them and attracting them by means of the induced
dipoles. This bond is unique to hydrogen-containing compounds because only
hydrogen has a singly ionized state with no remaining electron cloud; the hydro-
gen ion is a bare proton, much smaller than any other singly ionized atom. The

(H1

N2O2 ,H2 ,
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42.3 Schematic diagram of the methane
molecule. The carbon atom is at

the center of a regular tetrahedron and
forms four covalent bonds with the hydro-
gen atoms at the corners. Each covalent
bond includes two electrons with opposite
spins, forming a charge cloud that is con-
centrated between the carbon atom and a
hydrogen atom.

1CH4 2
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bond energy is usually less than The hydrogen bond plays an essential role
in many organic molecules, including the cross-linking of polymer chains such as
polyethylene and cross-link bonding between the two strands of the double-helix
DNA molecule. Hydrogen bonding also plays a role in the structure of ice.

All these bond types hold the atoms together in solids as well as in molecules.
Indeed, a solid is in many respects a giant molecule. Still another type of bond-
ing, the metallic bond, comes into play in the structure of metallic solids. We’ll
return to this subject in Section 42.3.

0.5 eV. We introduced this quantity in Section 38.5 to accommodate the finite nuclear
mass of the hydrogen atom. In Fig. 42.4 the distances and are the distances
from the center of mass to the nuclei of the atoms. By definition of the center of
mass, and the figure also shows that Solving these
equations for and we find

(42.5)

The moment of inertia is substituting Eq. (42.5), we find

(moment of inertia of a diatomic molecule) (42.6)

The reduced mass enables us to reduce this two-body problem to an equiva-
lent one-body problem (a particle of mass moving around a circle with radius

just as we did with the hydrogen atom. Indeed, the only difference between
this problem and the hydrogen atom is the difference in the radial forces. To con-
serve angular momentum, the allowed transitions are determined by the same
selection rule as for the hydrogen atom: In allowed transitions, l must change by
exactly one unit.

r0),
mr

I 5 mrr0 

2

I 5 m1 

m2 

2

1m1 1 m2 2 2 r0 

2 1 m2 

m1 

2

1m1 1 m2 2 2 r0 

2 5
m1 m2

m1 1 m2
 r0 

2 or

I 5 m1 r1 

2 1 m2 r2 

2;

r1 5
m2

m1 1 m2
 r0   r2 5

m1

m1 1 m2
 r0

r2 ,r1

r0 5 r1 1 r2 .m1 r1 5 m2 r2 ,

r2r1

Test Your Understanding of Section 42.1 If electrons obeyed the exclu-
sion principle but did not have spin, how many electrons could participate in a
covalent bond? (i) one; (ii) two; (iii) three; (iv) more than three.

❚

42.2 Molecular Spectra
Molecules have energy levels that are associated with rotational motion of a mole-
cule as a whole and with vibrational motion of the atoms relative to each other. Just
as transitions between energy levels in atoms lead to atomic spectra, transitions
between rotational and vibrational levels in molecules lead to molecular spectra.

Rotational Energy Levels
In this discussion we’ll concentrate mostly on diatomic molecules, to keep things
as simple as possible. In Fig. 42.4 we picture a diatomic molecule as a rigid
dumbbell (two point masses and separated by a constant distance that
can rotate about axes through its center of mass, perpendicular to the line joining
them. What are the energy levels associated with this motion?

We showed in Section 10.5 that when a rigid body rotates with angular speed
about a perpendicular axis through its center of mass, the magnitude L of its

angular momentum is given by Eq. (10.28), where I is its moment of
inertia about that symmetry axis. Its kinetic energy is given by Eq. (9.17),

Combining these two equations, we find There is no poten-
tial energy U, so the kinetic energy K is equal to the total mechanical energy E:

(42.1)

Zero potential energy U means no dependence of on or But the potential-
energy function in the hydrogen atom also has no dependence on or Thus
the angular solutions to the Schrödinger equation for rigid-body rotation are the
same as for the hydrogen atom, and the angular momentum is quantized in the
same way. As in Eq. (41.4),

(42.2)

Combining Eqs. (42.1) and (42.2), we obtain the rotational energy levels:

(rotational energy levels, 
diatomic molecule)

(42.3)

Figure 42.5 is an energy-level diagram showing these rotational levels. The
ground level has zero quantum number l and zero energy E, corresponding to
zero angular momentum (no rotation). The spacing of adjacent levels increases
with increasing l.

We can express the moment of inertia I in Eqs. (42.1) and (42.3) in terms of
the reduced mass of the molecule:

(42.4)mr 5
m1 m2

m1 1 m2

mr

El 5 l 1 l 1 1 2  

U
2

2 I
  1 l 5 0, 1, 2, c 2

L2 5 l 1 l 1 1 2 U2  1 l 5 0, 1, 2 c 2

f.uU
f.uU

E 5
L2

2I

K 5 L2/2I.K 5 1
2 Iv2.

L 5 Iv,
v

r0)m2m1

×
cm m2m1

r0r1 r2

42.4 A diatomic molecule modeled as
two point masses and separated by a
distance The distances of the masses
from the center of mass are and 
where r1 1 r2 5 r0 .

r2 ,r1

r0 .
m2m1

l  5 4

l  5 3

l  5 2

l  5 1
l  5 00

10h2/I
E

6h2/I

3h2/I

h2/I

42.5 The ground level and first four
excited rotational energy levels for a
diatomic molecule. The levels are not
equally spaced.

Example 42.2 Rotational spectrum of carbon monoxide

The two nuclei in the carbon monoxide (CO) molecule are
0.1128 nm apart. The mass of the most common carbon atom is
exactly 12 u, or The mass of the most common
oxygen atom is (a) Find the ener-
gies of the lowest three rotational energy levels. Express your
results in electron volts. (b) Find the wavelength of the photon
emitted in the transition from the to the level.

SOLUTION

IDENTIFY: This problem uses the ideas developed in this section
about the rotational energy levels of molecules.

SET UP: We are given the distance between the atoms and their
masses and We calculate the reduced mass using
Eq. (42.4), the moment of inertia I of the molecule using
Eq. (42.6), and the energies of the levels using Eq. (42.3). The
energy E of the emitted photon is equal to the difference in energy
between the and levels. We determine the wavelength
using the relationship for a photon.

EXECUTE: (a) Using Eq. (42.4), we find that the reduced mass is
From Eq. (42.6),

The rotational levels are given by Eq. (42.3):

 5 l 1 l 1 1 2 13.838 3 10223 J 2 5 l 1 l 1 1 20.2395 meV

 El 5 l 1 l 1 1 2  

U
2

2I
5 l 1 l 1 1 2  

11.0546 3 10234 J # s 2 2

2 11.449 3 10246 kg # m2 2

 5 1.449 3 10246 kg # m2

 I 5 mr r0 

2 5 11.139 3 10226 kg 2 10.1128 3 1029 m 2 2

mr 5 1.139 3 10226 kg.

E 5 hc/l
l 5 1l 5 2

mrm2 .m1

r0

l 5 1l 5 2

15.995 u 5 2.656 3 10226 kg.
1.993 3 10226 kg.

Substituting 1, 2, we find

(b) The photon energy is

The photon wavelength is

EVALUATE: The difference between the first two rotational energy
levels of CO is very small (about where
compared to the difference between atomic energy levels (typi-
cally a few eV) associated with optical spectra. Hence a photon
emitted by a CO molecule in a transition from the to the

level has very low energy and a very long wavelength com-
pared to visible light. Indeed, the wavelength calculated in part (b)
is in the microwave part of the spectrum. Photon wavelengths for
rotational transitions in other molecules are also long, falling
within the microwave and far infrared regions of the spectrum.

In this example we were given the equilibrium separation
between the atoms, also called the bond length, and we used it to
calculate one of the wavelengths emitted by excited CO molecules.
In actual experiments, scientists work this problem backward: By
measuring the microwave emissions of a sample of diatomic mole-
cules, they determine the moment of inertia of the molecule and
hence the bond length.

l 5 1
l 5 2

1 meV 5 1023 eV)1
2 meV,

 5 1.29 3 1023 m 5 1.29 mm

 l 5
hc

E
5

14.136 3 10215 eV # s 2 13.00 3 108 m/s 2
0.958 3 1023 eV

E 5 E2 2 E1 5 0.958 meV

E0 5 0  E1 5 0.479 meV  E2 5 1.437 meV

l 5 0,
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Vibrational Energy Levels
Molecules are never completely rigid. In a more realistic model of a diatomic
molecule we represent the connection between atoms not as a rigid rod but as
a spring (Fig. 42.6). Then in addition to rotating, the atoms of the molecule
can vibrate about their equilibrium positions along the line joining them. For
small oscillations the restoring force can be taken as proportional to the dis-
placement from the equilibrium separation (like a spring that obeys Hooke’s
law with a force constant and the system is a harmonic oscillator. We dis-
cussed the quantum-mechanical harmonic oscillator in Section 40.4. The energy
levels are given by Eq. (40.25), with the mass m replaced with the reduced
mass

(vibrational energy levels of a diatomic molecule)

(42.7)

This represents a series of levels equally spaced in energy, with an energy separa-
tion of

(42.8)

Figure 42.7 is an energy-level diagram showing these vibrational levels. (Com-
pare Fig. 40.18.)

CAUTION Watch out for k, , and K We’re again using for the force constant,
this time to minimize confusion with Boltzmann’s constant k, the gas constant per mole-
cule (introduced in Section 18.3). Besides the quantities k and we also use the absolute
temperature unit ❚1 K 5 1 kelvin.

k r,

k rk r

DE 5 Uv 5 U Å
k r
mr

En 5 1n 1
1

2 2  Uv 5 1n 1
1

2 2  U Å
k r
mr

  1n 5 0, 1, 2, c 2

mr :

k r),
r0

When we include both rotational and vibrational energies, the energy levels
for our diatomic molecule are

(42.9)

The energy-level diagram is shown in Fig. 42.8. For each value of n there are
many values of l, forming a series of closely spaced levels.

The arrows in Fig. 42.8 show several possible transitions in which a molecule
goes from a level with to a level with by emitting a photon. Because
the photon carries angular momentum, these molecular transitions obey a
selection rule (see Section 41.3). This rule states that the angular momentum
quantum number l must either increase by 1 or decrease by 1: An addi-
tional selection rule states that if the vibrational level changes, the vibrational
quantum number n in Eq. (42.9) must increase by 1 if a photon is
absorbed or decrease by 1 if a photon is emitted.

As an illustration of these selection rules, Fig. 42.8 shows that a molecule in
the level can emit a photon and drop into the level

or the level but is
forbidden from making a transition into the 
level.

Transitions between states with various pairs of n-values give different series
of spectrum lines, and the resulting spectrum has a series of bands. Each band
corresponds to a particular vibrational transition, and each individual line in a
band represents a particular rotational transition, with the selection rule

A typical band spectrum is shown in Fig. 42.9.
All molecules can have excited states of the electrons in addition to the rota-

tional and vibrational states that we have described. In general, these lie at higher
energies than the rotational and vibrational states, and there is no simple rule
relating them. When there is a transition between electronic states, the 
selection rule for the vibrational levels no longer holds.

Dn 5 61

Dl 5 61.

l 5 4n 5 1,Dl 5 0Dn 5 21,
1Dn 5 21, Dl 5 21 2 ,l 5 3n 5 1,1Dn 5 21, Dl 5 11 2 l 5 5n 5 1,l 5 4n 5 2,

1Dn 5 21 2 1Dn 5 1 2
Dl 5 61.

n 5 1n 5 2

E nl 5 l 1 l 1 1 2  

U
2

2I
1 1n 1

1

2 2  U Å
k r
m r

×
k� m2m1

r0
cm

42.6 A diatomic molecule modeled as
two point masses and connected by
a spring with force constant k r.

m2m1

Example 42.3 Force constant of carbon monoxide

For the carbon monoxide molecule of Example 42.2, the spacing
of vibrational energy levels is found to be Find
the force constant for the interatomic force.

SOLUTION

IDENTIFY: The key idea of this problem is that the vibrational
energy levels of a diatomic molecule have a uniform spacing 
that depends on the force constant of the “spring” force that holds
the molecule together.

SET UP: We are given the value of , so we solve Eq. (42.8) for
the force constant (our target variable).k r

DE

DE

k r
DE 5 0.2690 eV.

EXECUTE: From Eq. (42.8),

EVALUATE: This corresponds to a fairly loose spring; to stretch a
macroscopic spring with this force constant by would
require a pull of 19 N (about 4 lb). Force constants for diatomic
molecules are typically about 100 to 2000 N/m.

1.0 cm

 5 1902 N/m

 k r 5 mr 1DE

U
2 2

5 11.139 3 10226 kg 2 1 0.2690 eV

6.582 3 10216 eV # s 2 2

Rotation and Vibration Combined
Visible-light photons have energies between 1.77 eV and 3.10 eV. The 0.2690-eV
energy difference in Example 42.3 corresponds to a photon in the infrared region
of the spectrum, though closer to the visible region than the photon in the
rotational transition in Example 42.2. Vibrational energy differences, while usu-
ally much smaller than those that produce atomic spectra, are usually much
larger than the rotational energy differences.

E

n 5 2

n 5 1

n 5 0

0

n 5 3hv
7
2

hv
5
2

hv
3
2

hv
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42.7 The ground level and first three
excited vibrational levels for a diatomic
molecule, assuming small oscillations. The
levels are equally spaced, with spacing
DE 5 Uv.
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42.8 Energy-level diagram for vibrational
and rotational energy levels of a diatomic
molecule. For each vibrational level 
there is a series of more closely spaced
rotational levels Several transitions
corresponding to a single band in a band
spectrum are shown. These transitions
obey the selection rule Dl 5 61.

1 l 2 .
1n 2

42.9 A typical molecular band spectrum.

Continued

Example 42.4 Vibration-rotation spectrum of carbon monoxide

Again consider the CO molecule of Examples 42.2 and 42.3. Find
the photon wavelength that is emitted when there is a change in its
vibrational energy and its rotational energy is (a) initially zero and
(b) finally zero.

SOLUTION

IDENTIFY: This problem uses the selection rules for the vibra-
tional and rotational transitions of a diatomic molecule.

SET UP: In either case the energy of the emitted photon equals the
difference between the initial and final energies of the molecule.
Since a photon is emitted as the vibrational energy changes, the
vibrational quantum number decreases by 1. For the case in part (a)
the initial value of l is zero (no rotational energy), so the selection

rule tells us that the final value of l is 1. For the case in
part (b) the final value of l is zero, so the same selection rule tells
us that the initial value of l is 1. Hence in part (a) the photon
energy E is equal to the difference between adjacent vibrational
energy levels minus the amount of rotational energy that the mole-
cule gains, while in part (b) E is equal to plus the amount of
rotational energy that the molecules loses. We use the results of
Examples 42.2 and 42.3 to tell us the rotational and vibrational
energy changes, respectively, and we use to determine
the wavelengths (our target variables).

EXECUTE: (a) From Example 42.2 the energy difference between
the and rotational levels of CO is 

and from Example 42.3 the energy difference0.000479 meV,
0.479 meV 5l 5 1l 5 0

E 5 hc/l

Uv

Uv

Dl 5 61
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average surface temperature has increased by and the earth has experienced
the hottest years ever recorded (Fig. 42.10b). If we continue to consume fossil fuels
at the same rate, by 2050 the atmospheric concentration will reach 600 parts
per million, well off the scale of Fig 42.10a. The resulting temperature increase
in the polar regions will cause massive quantities of ice to melt and run from solid
land to the sea, thus raising ocean levels worldwide and threatening the homes and
lives of hundreds of millions of people who leave near the coast. Coping with this
threat is one of the greatest challenges facing 21st-century civilization.

CO2

0.6°C

Complex Molecules
We can apply these same principles to more complex molecules. A molecule with
three or more atoms has several different kinds or modes of vibratory motion.
Each mode has its own set of energy levels, related to its frequency by Eq. (42.7).
In nearly all cases the associated radiation lies in the infrared region of the elec-
tromagnetic spectrum.

Infrared spectroscopy has proved to be an extremely valuable analytical tool.
It provides information about the strength, rigidity, and length of molecular
bonds and the structure of complex molecules. Also, because every molecule
(like every atom) has its characteristic spectrum, infrared spectroscopy can be
used to identify unknown compounds.

One molecule that can readily absorb and emit infrared radiation is carbon
dioxide which is the fourth most abundant constituent of the earth’s
atmosphere (after nitrogen, oxygen, and argon). This has important consequences
for our planet’s climate. To be in thermal equilibrium, the earth—which acts as a
blackbody (see Section 38.8)—must radiate as much energy into space as it
receives from the sun. The earth’s surface temperature is such that most of the radi-
ated energy is in the infrared part of the spectrum. However, in the atmosphere
absorbs some of this infrared radiation and re-radiates it toward the earth rather
than allowing it to escape into space. In order to maintain thermal equilibrium, the
earth’s surface must compensate by increasing its temperature T and hence its total
output of radiation (which is proportional to This means that our planet’s sur-
face temperature is higher than it would be if there were no atmospheric

Measurements of air trapped in ancient Antarctic ice shows that over the past
650,000 years has constituted less than 300 parts per million of our atmos-
phere. Since the beginning of the industrial age, however, the burning of fossil fuels
such as coal and petroleum has elevated the atmospheric concentration to
unprecedented levels (Fig. 42.10a). As a consequence, since the 1950s the global
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Highest concentration in the
650,000 years before the
industrial age: less than
300 parts per million
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42.10 (a) The concentration of atmospheric has increased by 18% since continuous measurements began in 1958. (The yearly
variations are due to increased intake of by plants in spring and summer.) (b) The increase in global average temperature since the
beginning of the industrial era is a result of the increase in concentration.CO2

CO2

CO2

Test Your Understanding of Section 42.2 A rotating diatomic molecule
emits a photon when it makes a transition from level l to level If the value
of l increases, does the wavelength of the emitted photon (i) increase, (ii) decrease, or 
(iii) remain unchanged?

❚

l 2 1.

42.3 Structure of Solids
The term condensed matter includes both solids and liquids. In both states, the
interactions between atoms or molecules are strong enough to give the material a
definite volume that changes relatively little with applied stress. In condensed
matter, adjacent atoms attract one another until their outer electron charge clouds
begin to overlap significantly. Thus the distances between adjacent atoms in con-
densed matter are about the same as the diameters of the atoms themselves, typi-
cally 0.1 to 0.5 nm. Also, when we speak of the distances between atoms, we
mean the center-to-center (nucleus-to-nucleus) distances.

Ordinarily, we think of a liquid as a material that can flow and of a solid as a
material with a definite shape. However, if you heat a horizontal glass rod in the
flame of a burner, you’ll find that the rod begins to sag (flow) more and more eas-
ily as its temperature rises. Glass has no definite transition from solid to liquid,
and no definite melting point. On this basis, we can consider glass at room temper-
ature as being an extremely viscous liquid. Tar and butter show similar behavior.

What is the microscopic difference between materials like glass or butter and
solids like ice or copper, which do have definite melting points? Ice and copper are
examples of crystalline solids in which the atoms have long-range order, a recur-
ring pattern of atomic positions that extends over many atoms. This pattern is
called the crystal structure. In contrast, glass at room temperature is an example of
an amorphous solid, one that has no long-range order, but only short-range order
(correlations between neighboring atoms or molecules). Liquids also have only
short-range order. The boundaries between crystalline solid, amorphous solid, and
liquid may be sometimes blurred. Some solids, crystalline when perfect, can form
with so many imperfections in their structure that they have almost no long-range
order. Conversely, some liquids have a fairly high degree of long-range order; a
familiar example is the type of liquid crystal illustrated in Fig. 42.11 (next page).

Nearly everything we know about crystal structure has been learned from dif-
fraction experiments, initially with x rays and later with electrons and neutrons.
A typical distance between atoms is of the order of 0.1 nm. You can show that
12.4-keV x rays, 150-eV electrons, and 0.0818-eV neutrons all have wavelengths

Crystal Lattices and Structures
A crystal lattice is a repeating pattern of mathematical points that extends
throughout space. There are 14 general types of such patterns; Fig. 42.12 (next
page) shows small portions of some common examples. The simple cubic lattice
(sc) has a lattice point at each corner of a cubic array (Fig. 42.12a). The face-
centered cubic lattice (fcc) is like the simple cubic but with an additional lattice
point at the center of each cube face (Fig. 42.12b). The body-centered cubic

l 5 0.1 nm.

? 

between adjacent vibrational levels is 0.2690 eV. Hence the energy
of this emitted photon is 
and the photon wavelength is

(b) Now the photon has from the decrease in vibra-
tional energy and from the decrease in rotational0.000479 eV

0.2690 eV

 5 4.618 3 1026 m 5 4.618 mm

 l 5
hc

E
5

14.136 3 10216 eV # s 2 12.998 3 108 m/s 2
0.2685 eV

0.2685 eV,0.2690 eV 2 0.000479 eV 5
energy for a total of for the photon. The photon’s
wavelength is then

EVALUATE: In part (b) the molecule loses more energy than it
does in part (a), so the emitted photon must have greater energy
and a shorter wavelength. This is just what our results show.

 5 4.601 3 1026 m 5 4.601 mm

 l 5
hc

E
5

14.136 3 10216 eV # s 2 12.998 3 108 m/s 2
0.2695 eV

E 5 0.2695 eV
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lattice (bcc) is like the simple cubic but with an additional point at the center of
each cube (Fig. 42.12c). The hexagonal close-packed lattice has layers of lat-
tice points in hexagonal patterns, each hexagon made up of six equilateral trian-
gles (Figs. 42.12d and 42.12e).

CAUTION A perfect crystal lattice is infinitely large Figure 42.12 shows just
enough lattice points so you can easily visualize the pattern; the lattice, a mathematical
abstraction, extends throughout space. Thus the lattice points shown repeat endlessly in all
directions. ❚

In a crystal structure, a single atom or a group of atoms is associated with each
lattice point. The group may contain the same or different kinds of atoms. This
atom or group of atoms is called a basis. Thus a complete description of a crystal
structure includes both the lattice and the basis. We initially consider perfect
crystals, or ideal single crystals, in which the crystal structure extends uninter-
rupted throughout space.

The bcc and fcc structures are two common simple crystal structures. The
alkali metals have a bcc structure—that is, a bcc lattice with a basis of one atom
at each lattice point. Each atom in a bcc structure has eight nearest neighbors
(Fig. 42.13a). The elements Al, Ca, Cu, Ag, and Au have an fcc structure—that

is, an fcc lattice with a basis of one atom at each lattice point. Each atom in an fcc
structure has 12 nearest neighbors (Fig. 42.13b).

Figure 42.14 shows a representation of the structure of sodium chloride (NaCl,
ordinary salt). It may look like a simple cubic structure, but it isn’t. The sodium
and chloride ions each form an fcc structure, so we can think roughly of the
sodium chloride structure as being composed of two interpenetrating fcc struc-
tures. More correctly, the sodium chloride crystal structure of Fig. 42.14 has an
fcc lattice with one chloride ion at each lattice point and one sodium ion half a
cube length above it. That is, its basis consists of one chloride and one sodium ion.

Another example is the diamond structure; it’s called that because it is the
crystal structure of carbon in the diamond form (Fig. 42.15). It’s also the crystal
structure of silicon, germanium, and gray tin (all four are Group IV elements in
the periodic table). The diamond lattice is fcc; the basis consists of one atom at
each lattice point and a second identical atom displaced a quarter of a cube length
in each of the three cube-edge directions. Figure 42.16 will help you visualize
this. The shaded volume in Fig. 42.16 shows the bottom right front eighth of the
basic cube; the four atoms at alternate corners of this cube are at the corners of a
regular tetrahedron, and there is an additional atom at the center. Thus each atom
in the diamond structure is at the center of a regular tetrahedron with four nearest-
neighbor atoms at the corners.

In the diamond structure, both the purple and green spheres in Fig. 42.16 rep-
resent identical atoms—for example, both carbon or both silicon. In the cubic
zinc sulfide structure, the purple spheres represent one type of atom and the green
spheres represent a different type. For example, in zinc sulfide (ZnS) each zinc
atom (purple in Fig. 42.16) is at the center of a regular tetrahedron with four sul-
fur atoms (green in Fig. 42.16) at its corners, and vice versa. Gallium arsenide
(GaAs) and similar compounds have this same structure.

Bonding in Solids
The forces that are responsible for the regular arrangement of atoms in a crystal
are the same as those involved in molecular bonds, plus one additional type. Not
surprisingly, ionic and covalent molecular bonds are found in ionic and covalent
crystals, respectively. The most familiar ionic crystals are the alkali halides, such
as ordinary salt (NaCl). The positive sodium ions and the negative chloride ions
occupy alternate positions in a cubic arrangement (Fig. 42.14). The attractive
forces are the familiar Coulomb’s-law forces between charged particles. These
forces have no preferred direction, and the arrangement in which the material
crystallizes is partly determined by the relative sizes of the two ions. Such a
structure is stable in the sense that it has lower total energy than the separated
ions (see the following example). The negative potential energies of pairs of
opposite charges are greater in absolute value than the positive energies of pairs
of like charges because the pairs of unlike charges are closer together, on average.

(a) Simple
cubic (sc)

(b) Face-centered
cubic (fcc)

(c) Body-centered
cubic (bcc)

(d) Hexagonal
close packed (hcp)

(e) Top view, hexagonal
close packed

42.12 Portions of some common types of crystal lattices.

(a) The bcc structure (b) The fcc structure

42.13 (a) The bcc structure is composed
of a bcc lattice with a basis of one atom for
each lattice point. (b) The fcc structure is
composed of an fcc lattice with a basis of
one atom for each lattice point. These
structures repeat precisely to make up per-
fect crystals.

Face-centered cubic
structure of sodium ions

Face-centered cubic
structure of chloride ions

Na+

Cl–

42.14 Representation of part of the
sodium chloride crystal structure. The dis-
tances between ions are exaggerated.

42.15 The crystal structure of diamond is
similar to that of many other, less highly
coveted materials. What makes diamond
unique are its beautiful optical properties.
A large index of refraction makes diamond
sparkle due to total internal reflection, and
a large amount of dispersion turns white
light into a rainbow of colors.

a

a/4
42.16 The diamond structure, shown as
two interpenetrating face-centered cubic
structures with distances between atoms
exaggerated. Relative to the corresponding
green atom, each purple atom is shifted up,
back, and to the left by a distance a/4.

(b) Liquid crystal display (voltage on)

      Unpolarized light
enters the display.

      A twisted array of
molecules in the liquid
crystal rotates the polariza-
tion direction by 90°.

       Light exits through a
second polarizing filter oriented
at 90° to the first filter. The
display appears bright.

      Light passes through
a polarizing filter and
becomes polarized.

Voltage source
(off)

(a) Liquid crystal display (voltage off)

1

3 4

2 1

4

       Unpolarized light
enters the display.

       An applied voltage aligns
the molecules. The polarization
does not change as light passes
through the liquid crystal.

       Light cannot exit
through the second
polarizing filter. The
display appears dark.

       Light passes through
a polarizing filter and
becomes polarized.

Voltage source
(on)

�

�

3

2

42.11 A simple version of a liquid-crystal display (LCD). A thin layer of liquid crystal—an organic compound whose cylindrical mole-
cules tend to line up parallel to each other—is confined between two parallel glass plates and placed between two crossed polarizing fil-
ters. (a) The molecules tend to align with fine scratches on the glass plates, twisting them so that the light can pass through the second
polarizing filter. (b) Each glass plate also has a pattern of fine electrodes. When a voltage is applied between the plates, the molecules
align with the electric field and the light does not pass through the second polarizing filter. Hence switching the voltage on changes the
display from light to dark.
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Types of Crystals
Carbon, silicon, germanium, and tin in the diamond structure are simple exam-
ples of covalent crystals. These elements are in Group IV of the periodic table,
meaning that each atom has four electrons in its outermost shell. Each atom
forms a covalent bond with each of four adjacent atoms at the corners of a tetra-
hedron (Fig. 42.16). These bonds are strongly directional because of the asym-
metrical electron distributions dictated by the exclusion principle, and the result
is the tetrahedral diamond structure.

A third crystal type, less directly related to the chemical bond than are ionic or
covalent crystals, is the metallic crystal. In this structure, one or more of the out-
ermost electrons in each atom become detached from the parent atom (leaving a
positive ion) and are free to move through the crystal. These electrons are not
localized near the individual ions. The corresponding electron wave functions
extend over many atoms.

Thus we can picture a metallic crystal as an array of positive ions immersed in
a sea of freed electrons whose attraction for the positive ions holds the crystal
together (Fig. 42.17). These electrons also give metals their high electrical and
thermal conductivities. This sea of electrons has many of the properties of a gas,
and indeed we speak of the electron-gas model of metallic solids. The simplest
version of this model is the free-electron model, which ignores interactions with
the ions completely (except at the surface). We’ll return to this model in
Section 42.5.

In a metallic crystal the freed electrons are not localized but are shared among
many atoms. This gives a bonding that is neither localized nor strongly direc-
tional. The crystal structure is determined primarily by considerations of close
packing—that is, the maximum number of atoms that can fit into a given volume.
The two most common metallic crystal lattices, the face-centered cubic and the
hexagonal close-packed, are shown in Figs. 42.12b, 42.12d, and 42.12e. In struc-
tures composed of these lattices with a basis of one atom, each atom has 12 near-
est neighbors.

As we mentioned in Section 42.1, van der Waals interactions and hydrogen
bonding also play a role in the structure of some solids. In polyethylene and sim-
ilar polymers, covalent bonding of atoms forms long-chain molecules, and
hydrogen bonding forms cross-links between adjacent chains. In solid water,
both van der Waals forces and hydrogen bonds are significant in determining the
crystal structures of ice.

Our discussion has centered on perfect crystals, or ideal single crystals. Real
crystals show a variety of departures from this idealized structure. Materials are
often polycrystalline, composed of many small single crystals bonded together
at grain boundaries. There may be point defects within a single crystal:
interstitial atoms may occur in places where they do not belong, and there may
be vacancies, positions that should be occupied by an atom but are not. A point
defect of particular interest in semiconductors, which we will discuss in Section
42.6, is the substitutional impurity, a foreign atom replacing a regular atom (for
example, arsenic in a silicon crystal).

There are several basic types of extended defects called dislocations. One
type is the edge dislocation, shown schematically in Fig. 42.18, in which one
plane of atoms slips relative to another. The mechanical properties of metallic
crystals are influenced strongly by the presence of dislocations. The ductility and
malleability of some metals depend on the presence of dislocations that can
move through the crystal during plastic deformations. Solid-state physicists often
point out that the biggest extended defect of all, present in all real crystals, is the
surface of the material with its dangling bonds and abrupt change in potential
energy.

Example 42.5 Potential energy of an ionic crystal

Consider a fictitious one-dimensional ionic crystal consisting of a
very large number of alternating positive and negative ions with
charges e and with equal spacing a along a line. Prove that the
total interaction potential energy is negative.

SOLUTION

IDENTIFY: We can treat each ion as a point charge and then use
our result from Section 23.1 for the electric potential energy of a
collection of point charges.

SET UP: Equations (23.10) and (23.11) tell us to consider the elec-
tric potential energy U of each pair of charges. The total potential
energy of the system is the sum of the values of U for every possi-
ble pair.

EXECUTE: Let’s pick an ion somewhere in the middle of the string
and add up the potential energies of its interactions with all the
ions to one side of it. We get the series
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You may notice the resemblance of the series in parentheses to the
Taylor series for 

When we have the series in the parentheses, and

This is certainly a negative quantity. The atoms on the other side of
the ion that we’re considering make an equal contribution to the
potential energy. And if we include the potential energies of all
pairs of atoms, the sum is certainly negative.

EVALUATE: We conclude that this structure is stable: It has lower
energy than the zero electric potential energy that is obtained when
all the ions are infinitely separated from each other.
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42.17 In a metallic solid, one or more
electrons are detached from each atom and
are free to wander around the crystal,
forming an “electron gas.” The wave func-
tions for these electrons extend over many
atoms. The positive ions vibrate around
fixed locations in the crystal.

The irregularity is seen most easily
by viewing the figure from various
directions at a grazing angle with
the page.

42.18 An edge dislocation in two dimen-
sions. In three dimensions an edge disloca-
tion would look like an extra plane of
atoms slipped partway into the crystal.

Test Your Understanding of Section 42.3 If a is the distance in an NaCl
crystal from an ion to one of its nearest-neighbor ions, what is the dis-
tance from an ion to one of its next-to-nearest-neighbor ions? (i) 
(ii) (iii) 2a (iv) none of these.

❚
a"3;

a"2;Cl2Na1

Cl2Na1

42.4 Energy Bands
The energy-band concept, introduced in 1928 (Fig. 42.19), is a great help in
understanding several properties of solids. To introduce the idea, suppose we
have a large number N of identical atoms, far enough apart that their interactions
are negligible. Every atom has the same energy-level diagram. We can draw an
energy-level diagram for the entire system. It looks just like the diagram for a sin-
gle atom, but the exclusion principle, applied to the entire system, permits each
state to be occupied by N electrons instead of just one.

Now we begin to push the atoms uniformly closer together. Because of the
electrical interactions and the exclusion principle, the wave functions begin to
distort, especially those of the outer, or valence, electrons. The corresponding
energies also shift, some upward and some downward, by varying amounts, as
the valence electron wave functions become less localized and extend over more
and more atoms. Thus the valence states that formerly gave the system a state
with a sharp energy level that could accommodate N electrons now give a band
containing N closely spaced levels (Fig. 42.20, next page). Ordinarily, N is very
large, somewhere near the order of Avogadro’s number so we can accu-
rately treat the levels as forming a continuous distribution of energies within a
band. Between adjacent energy bands are gaps or forbidden regions where there
are no allowed energy levels. The inner electrons in an atom are affected much
less by nearby atoms than are the valence electrons, and their energy levels
remain relatively sharp.

11024 2 ,

42.19 The concept of energy bands was
first developed by the Swiss-American
physicist Felix Bloch (1905–1983) in his
doctoral thesis. Our modern understanding
of electrical conductivity stems from that
landmark work. Bloch’s work in nuclear
physics brought him (along with Edward
Purcell) the 1952 Nobel Prize in physics.
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Insulators, Semiconductors, and Conductors
The nature of the energy bands determines whether the material is an electrical
insulator, a semiconductor, or a conductor. In particular, what matters are the
extent to which the states in each band are occupied and the spacing, or energy
gap, between adjacent bands. A crucial factor is the exclusion principle (see Sec-
tion 41.4), which states that only one electron can occupy a given quantum-
mechanical state.

In an insulator at absolute zero temperature, the highest band that is com-
pletely filled, called the valence band, is also the highest band that has any
electrons in it. The next higher band, called the conduction band, is completely
empty; there are no electrons in its states (Fig. 42.21a). Imagine what happens
if an electric field is applied to a material of this kind. To move in response to
the field, an electron would have to go into a different quantum state with a
slightly different energy. It can’t do that, however, because all the neighboring
states are already occupied. The only way such an electron can move is to jump
across the energy gap into the conduction band, where there are plenty of
nearby unoccupied states. At any temperature above absolute zero there is some
probability this jump can happen, because an electron can gain energy from
thermal motion. In an insulator, however, the energy gap between the valence
and conduction bands can be 5 eV or more, and that much thermal energy is
not ordinarily available. Hence little or no current flows in response to an
applied electric field, and the electric conductivity (Section 25.2) is low. The
thermal conductivity (Section 17.7), which also depends on mobile electrons, is
likewise low.

We saw in Section 24.4 that an insulator becomes a conductor if it is subjected
to a large enough electric field; this is called dielectric breakdown. If the electric
field is of order there is a potential difference of a few volts over a dis-
tance comparable to atomic sizes. In this case the field can do enough work on a
valence electron to boost it across the energy gap and into the conduction band.
(In practice dielectric breakdown occurs for fields much less than 
because imperfections in the structure of an insulator provide some more accessi-
ble energy states within the energy gap.)

As in an insulator, a semiconductor at absolute zero has an empty conduction
band above the full valence band. The difference is that in a semiconductor the
energy gap between these bands is relatively small and electrons can more read-
ily jump into the conduction band (Fig. 42.21b). As the temperature of a semi-
conductor increases, the population in the conduction band increases very
rapidly, as does the electric conductivity. For example, in a semiconductor near
room temperature with an energy gap of 1 eV, the number of conduction elec-
trons doubles when the temperature rises by just We will use the concept of
energy bands to explore semiconductors in more depth in Section 42.6.

10°C.

1010 V/m,

1010 V/m,

In a conductor such as a metal, there are electrons in the conduction band even
at absolute zero (Fig. 42.21c). The metal sodium is an example. An analysis of
the atomic energy-level diagram for sodium (Fig. 38.10a) shows that for an iso-
lated sodium atom, the six lowest excited states (all 3p states) are about 2.1 eV
above the two 3s ground states. In solid sodium, however, the atoms are so close
together that the 3s and 3p bands spread out and overlap into a single band. Each
sodium atom contributes one electron to the band, leaving an ion behind.
Each atom also contributes eight states to that band (two 3s, six 3p), so the band
is only one-eighth occupied. We call this structure a conduction band because it is
only partially occupied. Electrons near the top of the filled portion of the band
have many adjacent unoccupied states available, and they can easily gain or lose
small amounts of energy in response to an applied electric field. Therefore these
electrons are mobile, giving solid sodium its high electrical and thermal conduc-
tivity. A similar description applies to other conducting materials.

Na1

r
O r0

E
Actual separation of
atoms in the crystal

(a) (b)

42.20 Origin of energy bands in a solid.
(a) As the distance r between atoms
decreases, the energy levels spread into
bands. The vertical line at shows the
actual atomic spacing in the crystal.
(b) Symbolic representation of energy
bands.

r0

(a) In an insulator at absolute zero, 
there are no electrons in the
conduction band.

E

Empty
conduction band

Large energy gapEg

Filled valence
band

(b) A semiconductor has the same
band structure as an insulator but
a smaller gap between the valence
and conduction bands.

Eg

Empty
conduction band

Small
energy

gap

Filled valence
band

E

(c) A conductor has a partially
filled conduction band.

Eg

Partially filled
conduction band

Energy gap

Filled valence
band

E

42.21 Three types of energy-band structure.

Example 42.6 Photoconductivity in germanium

Even at room temperature, pure germanium has an almost com-
pletely filled valence band separated by a gap of 0.67 eV from an
almost completely empty conduction band. It is a poor electrical
conductor, but its conductivity increases substantially when it is
irradiated with electromagnetic waves of a certain maximum
wavelength. What maximum wavelength is appropriate?

SOLUTION

IDENTIFY: The conductivity of a semiconductor increases greatly
when electrons are excited from the valence band into the conduc-
tion band. In this example, the excitation occurs when an electron
absorbs a photon with an energy of at least 

SET UP: From the relationship for photons, the maximum
wavelength corresponds to the minimum photon energy.

E 5 hc/l
Emin .

EXECUTE: An electron at the top of the valence band can absorb a
photon with energy of 0.67 eV (no less) and move to the bottom of
the conduction band, where it is a mobile charge. Thus the maxi-
mum wavelength is

EVALUATE: This wavelength is in the infrared part of the spec-
trum, so visible-light photons (which have shorter wavelength)
will also induce conductivity in germanium. As we will see in Sec-
tion 42.7, semiconductor crystals are widely used as photocells as
well as for many other applications.

 5 1.9 3 1026 m 5 1.9 mm 5 1900 nm

 lmax 5
hc

Emin
5

14.136 3 10215 eV # s 2 1 3.00 3 108 m/s 2
0.67 eV

Test Your Understanding of Section 42.4 One type of thermometer works by
measuring the temperature-dependent electrical resistivity of a sample. Which of the fol-
lowing types of material displays the greatest change in resistivity for a given tempera-
ture change? (i) insulator; (ii) semiconductor; (iii) resistor.

❚

42.5 Free-Electron Model of Metals
Studying the energy states of electrons in metals can give us a lot of insight into
their electrical and magnetic properties, the electron contributions to heat capaci-
ties, and other behavior. As we discussed in Section 42.3, one of the distinguish-
ing features of a metal is that one or more valence electrons are detached from
their home atom and can move freely within the metal, with wave functions that
extend over many atoms.

The free-electron model assumes that these electrons are completely free
inside the material, that they don’t interact at all with the ions or with each other,
but that there are infinite potential-energy barriers at the surfaces. The wave func-
tions and energy levels are then the three-dimensional versions of those for the
particle in a box that we analyzed in Section 40.1 in one dimension. Suppose the
box is a cube with side length L (Fig. 42.22). Then the possible wave functions,
analogous to Eq. (40.10), are

(42.10)c 1 x, y, z 2 5 A sin 

nxpx

L
 sin 

ny py

L
 sin 

nz pz

L

L

L L
y

x

z

O

42.22 A cubical box with rigid walls and
side length L. This is the three-dimensional
version of the infinite square well discussed
in Section 40.1. The energy levels for a par-
ticle in this box are given by Eq. (42.11).
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where is a set of three positive-integer quantum numbers that identify
the state. We invite you to verify that these functions are zero at the surfaces of
the cube, satisfying the boundary conditions. You can also substitute Eq. (42.10)
into the three-dimensional Schrödinger equation, Eq. (40.28), with to
show that the energies of the states are

(42.11)

This equation is the three-dimensional analog of Eq. (40.9) for the energy levels
of a particle in a box.

Density of States
Later we’ll need to know the number dn of quantum states that have energies in a
given range dE. The number of states per unit energy range is called the
density of states, denoted by We’ll begin by working out an expression
for Think of a three-dimensional space with coordinates 
(Fig. 42.23). The radius of a sphere centered at the origin in that space is given
by Each point with integer coordinates in that space repre-
sents one spatial quantum state. Thus each point corresponds to one unit of vol-
ume in the space, and the total number of points with integer coordinates inside a
sphere equals the volume of the sphere, Because all our n’s are positive,
we must take only one octant of the sphere, with the total volume, or

The particles are electrons, so each point corresponds to two
states with opposite spin components and the total number n of elec-
tron states corresponding to points inside the octant is twice or

(42.12)

The energy E of states at the surface of the sphere can be expressed in terms of
Equation (42.11) becomes

(42.13)

We can combine Eqs. (42.12) and (42.13) to get a relationship between E and n
that doesn’t contain We’ll leave the details as an exercise (Exercise 42.24);
the result is

(42.14)

where is the volume of the box. Equation (42.14) gives the total number
of states with energies of E or less.

To get the number of states dn in an energy interval dE, we treat n and E as
continuous variables and take differentials of both sides of Eq. (42.14). We get

(42.15)

The density of states is equal to so from Eq. (42.15) we get

(density of states, free-electron model) (42.16)

Fermi-Dirac Distribution
Now we need to know how the electrons are distributed among the various quan-
tum states at any given temperature. The Maxwell-Boltzmann distribution states
that the average number of particles in a state of energy E is proportional to
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1nx , ny , nz 2 (see Section 38.6). However, there are two very important reasons why it
wouldn’t be right to use the Maxwell-Boltzmann distribution. The first reason is
the exclusion principle. At absolute zero the Maxwell-Boltzmann function pre-
dicts that all the electrons would go into the two ground states of the system, with

and But the exclusion principle allows only one
electron in each state. At absolute zero the electrons can fill up the lowest
available states, but there’s not enough room for all of them to go into the lowest
states. Thus a reasonable guess as to the shape of the distribution would be
Fig. 42.24. At absolute zero temperature the states are filled up to some value 
and all states above this value are empty.

The second reason we can’t use the Maxwell-Boltzmann distribution is more
subtle. That distribution assumes that we are dealing with distinguishable parti-
cles. It might seem that we could put a tag on each electron and know which is
which. But overlapping electrons in a system such as a metal are indistinguishable.
Suppose we have two electrons; a state in which the first is in an energy level
and the second is in level is not distinguishable from a state in which the two
electrons are reversed, because we can’t tell which electron is which.

The statistical distribution function that emerges from the exclusion principle
and the indistinguishability requirement is called (after its inventors) the Fermi-
Dirac distribution. Because of the exclusion principle, the probability that a par-
ticular state with energy E is occupied by an electron is the same as the
fraction of states with that energy that are occupied:

(Fermi-Dirac distribution) (42.17)

The energy is called the Fermi energy or the Fermi level; we’ll discuss its
significance below. We use for its value at absolute zero and for
other temperatures. We can accurately let for metals because the Fermi
energy does not change much with temperature for solid conductors. However, it
is not safe to assume that for semiconductors, in which the Fermi
energy usually does change with temperature.

Figure 42.25 shows graphs of Eq. (42.17) for three temperatures. The trend of
this function as kT approaches zero confirms our guess. When the expo-
nent is zero and That is, the probability is that a state at the Fermi
energy contains an electron. Alternatively, at half the states are filled
(and half are empty).

For the exponent is negative, and For the exponent
is positive, and The shape depends on the ratio At 
this ratio is very large. Then for the curve very quickly approaches 1, and
for it quickly approaches zero. When T is larger, the changes are more
gradual. When T is zero, all the states up to the Fermi level are filled, and all
states above that level are empty (Fig. 42.24).

EF0

E . EF

E , EF

T V EF/kEF/kT.f 1E 2 , 1
2 .

E . EFf 1E 2 . 1
2 .E , EF

E 5 EF ,

1
2f 1EF 2 5 1

2 .
E 5 EF ,

EF 5 EF0

EF 5 EF0

EF1T 5 0 2EF0

EF

f 1E 2 5
1

e 1E2EF2/kT 1 1

f 1E 2 ,

E2

E1

EF0 ,

ms 5 6 
1
2 .nx 5 ny 5 nz 5 1

e2E/kT

ny

nx

nrs

nz

42.23 The allowed values of and 
are positive integers for the electron states
in the free-electron gas model. Including
spin, there are two states for each unit vol-
ume in n space.
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At absolute zero, all states are occupied
(occupation probability 1) at energies up
to EF0 ...

... and all states are empty (occupation
probability zero) at energies above EF0.

E
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42.24 The probability distribution for
occupation of free-electron energy states at
absolute zero.

As T increases, more and more of the electrons
are excited to states with energy E . EF.
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42.25 Graphs of the Fermi-Dirac distri-
bution function for various values of kT,
assuming that the Fermi energy is inde-
pendent of the temperature T.
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Example 42.7 Probabilities in the free-electron model

For free electrons in a solid, at what energy is the probability that a
particular state is occupied equal to (a) 0.01 and (b) 0.99?

SOLUTION

IDENTIFY: This problem asks us to explore how the Fermi-Dirac
distribution depends on temperature.

SET UP: Equation (42.17) tells us the occupation probability
for a given energy E. If we solve this equation for E, wef 1E 2

get an expression for the energy that corresponds to a given
occupation probability—which is just what we need to solve this
problem.

EXECUTE: Solving Eq. (42.17) for E, we get

E 5 EF 1 kT ln 1 1

f 1E 2 2 1 2
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Electron Concentration and Fermi Energy
Equation (42.17) gives the probability that any specific state with energy E is
occupied at a temperature T. To get the actual number of electrons in any energy
range dE, we have to multiply this probability by the number dn of states in that
range Thus the number dN of electrons with energies in the range dE is

(42.18)

The Fermi energy is determined by the total number N of electrons; at any
temperature the electron states are filled up to a point at which all electrons are
accommodated. At absolute zero there is a simple relationship between and
N. All states below are filled; in Eq. (42.14) we set n equal to the total number
of electrons N and E to the Fermi energy at absolute zero 

(42.19)

Solving for we get

(42.20)

The quantity is the number of free electrons per unit volume. It is called the
electron concentration and is usually denoted by n.

If we replace with n, Eq. (42.20) becomes

(42.21)

CAUTION Electron concentration and number of electrons Don’t confuse the
electron concentration n with any quantum number n. Furthermore, the number of states is
not in general the same as the total number of electrons N. ❚
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Example 42.8 The Fermi energy in copper

At low temperatures, copper has a free-electron concentration of
Using the free-electron model, find the Fermi

energy for solid copper, and find the speed of an electron with a
kinetic energy equal to the Fermi energy.

SOLUTION

IDENTIFY: This problem uses the relationship between Fermi
energy and free-electron concentration.

SET UP: Because copper is a solid conductor, its Fermi energy
changes very little with temperature and we can safely use the
expression for the Fermi energy at absolute zero, Eq. (42.21). We

8.45 3 1028 m23.
determine the speed that corresponds to kinetic energy using
the familiar nonrelativistic formula for kinetic energy.

EXECUTE: Using the given value of n,

To find the corresponding speed we use 
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EF 5 1
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 EF 5
32/3p4/3 11.055 3 10234 J # s 2 2 18.45 3 1028 m23 2 2/3

2 19.11 3 10231 kg 2

EFvF

Average Free-Electron Energy
We can calculate the average free-electron energy in a metal at absolute zero by
using the same ideas that we used to find From Eq. (42.18) the number dN of
electrons with energies in the range dE is The energy of these
electrons is At absolute zero we substitute 
from to and for all other energies. Therefore the total
energy of all the N electrons is

The simplest way to evaluate this expression is to compare Eqs. (42.16) and
(42.20), noting that

Substituting this expression into the integral and using we get

(42.22)

That is, at absolute zero the average free-electron energy equals of the corre-
sponding Fermi energy.
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(a) When 

A state 4.6kT above the Fermi level is occupied only 1% of the
time.

(b) When 

E 5 EF 1 kT  ln 1 1

0.99
2 1 2 5 EF 2 4.6kT

f 1E 2 5 0.99,

E 5 EF 1 kT  ln 1 1

0.01
2 1 2 5 EF 1 4.6kT

f 1E 2 5 0.01, A state 4.6kT below the Fermi level is occupied 99% of the
time.

EVALUATE: At very low temperatures, 4.6kT becomes very small.
Then levels even slightly below are nearly always full, and
levels even slightly above are nearly always empty (see
Fig. 42.25). In general, if the probability is P that a state with an
energy above is occupied, then the probability is that
a state below is occupied. We leave the proof as a problem
(Problem 42.48).

EFDE
1 2 PEFDE

EF

EF

EVALUATE: Typical Fermi energies for metals range from 1.6 to
14 eV; our value is within this range, as it should be.

The quantity is called the Fermi speed. The calculated value
of is far less than the speed of light which
justifies our use of nonrelativistic formulas. Typical Fermi speeds
for metals range from 0.8 to 

Our results show that the Fermi energy is much larger than kT
at ordinary temperatures, so it is a good approximation to take

2.2 3 106 m/s.

c 5 3.00 3 108 m/s,vF

vF

almost all the states below as completely full and almost all
those above as completely empty (see Fig. 42.24).

We can also use Eq. (42.16) to find if E and V are known.
You can show that if and is about

This huge number shows why we were justi-
fied in treating n and E as continuous variables in our density-of-
states derivation.

2 3 1022 states/eV.
g 1E 2V 5 1 cm3,E 5 7 eV

g 1E 2EF

EF

Continued

Example 42.9 Free-electron gas versus ideal gas

(a) Find the average energy of the free electrons in copper at
absolute zero (Example 42.8). (b) If the electrons behaved like an
ideal gas (see Section 18.3) at room temperature, what would be
their average kinetic energy? What would be the speed of an elec-
tron with this kinetic energy?

SOLUTION

IDENTIFY: Free electrons in a metal behave like a type of gas. In
this example we’re asked to compare this gas to the ideal gas that
we examined in Chapter 18.

SET UP: We use Eq. (42.22) to determine the average kinetic
energy of free electrons. If the electrons behaved like a classic
ideal gas with temperature T, from Eq. (18.16) the average kinetic
energy per electron would be we use this relationship
to determine the energy and the speed asked for in part (b).

EXECUTE: (a) From Example 42.8, the Fermi energy in copper is
According to Eq. (42.22), the average

energy is of this, or 6.76 3 10219 J 5 4.22 eV.3
5

1.126 3 10218 J 5 7.03 eV.

Eav 5 3
2 kT;

(b) If the electrons behaved like an ideal gas at room tempera-
ture the average kinetic energy per elec-
tron would be

The speed of an electron with this kinetic energy would be

EVALUATE: The average energy predicted by the ideal-gas model
is less than 1% of the value given (correctly) by the free-electron
model, and the corresponding speed in the ideal-gas model is only
a small fraction of the characteristic Fermi speed given by the free-
electron model (see Example 42.8). Thus temperature plays a very
small role in determining the properties of electrons in metals;
instead, their average energies are determined almost entirely by
the exclusion principle.
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42.6 Semiconductors
A semiconductor has an electrical resistivity that is intermediate between those
of good conductors and of good insulators. The tremendous importance of semi-
conductors in present-day electronics stems in part from the fact that their electri-
cal properties are very sensitive to very small concentrations of impurities. We’ll
discuss the basic concepts using the semiconductor elements silicon (Si) and ger-
manium (Ge) as examples.

Silicon and germanium are in Group IV of the periodic table. Both have four
electrons in the outermost atomic subshells for silicon, for germa-
nium), and both crystallize in the covalently bonded diamond structure discussed
in Section 42.3 (Fig. 42.16). Because all four of the outer electrons are involved
in the bonding, at absolute zero the band structure (see Section 42.4) has a com-
pletely empty conduction band (Fig. 42.21b). As we discussed in Section 42.4, at
very low temperatures electrons cannot jump from the filled valence band into
the conduction band. This property makes these materials insulators at very low
temperatures; their electrons have no nearby states available into which they can
move in response to an applied electric field.

However, the energy gap between the valence and conduction bands is
small in comparison to the gap of 5 eV or more for many insulators; room tem-
perature values are 1.12 eV for silicon and only 0.67 eV for germanium. Thus
even at room temperature a substantial number of electrons can gain enough
energy to jump the gap to the conduction band, where they are dissociated from
their parent atoms and are free to move about the crystal. The number of these
electrons increases rapidly with temperature.

Eg

4s24p2(3s23p2

Test Your Understanding of Section 42.5 An ideal gas obeys the relationship
(see Section 18.1). That is, for a given volume V and a number of moles n, as

the temperature T decreases, the pressure p decreases proportionately and tends to zero as
T approaches absolute zero. Is this also true of the free-electron gas in a solid metal?

❚

pV 5 nRT

Example 42.10 Jumping the energy gap

Consider a material with the band structure described above, with
its Fermi energy in the middle of the gap (Fig. 42.26). Find the
probability that a state at the bottom of the conduction band is
occupied at a temperature of 300 K if the band gap is (a) ;
(b) 1.00 eV; (c) 5.00 eV. Repeat the calculations for a temperature
of 310 K.

SOLUTION

IDENTIFY: Figure 42.25 shows that the higher the temperature,
the larger the fraction of electrons that have energies greater than
the Fermi energy We use this idea to carry out the desired
calculations.

EF .

0.200 eV

SET UP: The Fermi-Dirac distribution function gives us the prob-
ability that a state of energy E is occupied at temperature T.
Figure 42.26 shows that the state of interest at the bottom of the
conduction band has energy so 

EXECUTE: (a) When 
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42.26 Band structure of a semiconductor. At absolute zero a
completely filled valence band is separated by a narrow energy
gap of 1 eV or so from a completely empty conduction band.
At ordinary temperatures, a number of electrons are excited to the
conduction band.

Eg

In principle, we could continue the calculation in Example 42.10 to find the
actual density of electrons in the conduction band at any temperature.
To do this, we would have to evaluate the integral from the bot-
tom of the conduction band to its top. First we would need to know the density of
states function It wouldn’t be correct to use Eq. (42.16) because the
energy-level structure and the density of states for real solids are more complex
than those for the simple free-electron model. However, there are theoretical
methods for predicting what should be near the bottom of the conduction
band, and such calculations have been carried out. Once we know n, we can
begin to determine the resistivity of the material (and its temperature depend-
ence) using the analysis of Section 25.2, which you may want to review. But next
we’ll see that the electrons in the conduction band don’t tell the whole story
about conduction in semiconductors.

Holes
When an electron is removed from a covalent bond, it leaves a vacancy behind.
An electron from a neighboring atom can move into this vacancy, leaving the
neighbor with the vacancy. In this way the vacancy, called a hole, can travel
through the material and serve as an additional current carrier. It’s like describing
the motion of a bubble in a liquid. In a pure, or intrinsic, semiconductor, valence-
band holes and conduction-band electrons are always present in equal numbers.
When an electric field is applied, they move in opposite directions (Fig. 42.27).
Thus a hole in the valence band behaves like a positively charged particle, even
though the moving charges in that band are electrons. The conductivity that we
just described for a pure semiconductor is called intrinsic conductivity. Another
kind of conductivity, to be discussed in the next subsection, is due to impurities.

An analogy helps to picture conduction in an intrinsic semiconductor. The
valence band at absolute zero is like a floor of a parking garage that’s filled bumper
to bumper with cars (which represent electrons). No cars can move because there
is nowhere for them to go. But if one car is moved to the vacant floor above, it can
move freely, just as electrons can move freely in the conduction band. Also, the
empty space that it leaves permits cars to move on the nearly filled floor, thereby
moving the empty space just as holes move in the normally filled valence band.

Impurities
Suppose we mix into melted germanium a small amount of arsenic

the next element after germanium in the periodic table. This deliber-
ate addition of impurity elements is called doping. Arsenic is in Group V; it has
1Z 5 33 2 , 1Z 5 32 2

g 1E 2
g 1E 2 .

∫g 1E 2 f 1E 2  dE
n 5 N/V

A similar analysis allows us to determine the contributions of
electrons to the heat capacities of a solid metal. If there is one con-
duction electron per atom, the principle of equipartition of energy
(see Section 18.4) would predict that the kinetic energies of these
electrons contribute to the molar heat capacity at constant
volume But when kT is much smaller than which is usually
the situation in metals, only those few electrons near the Fermi
level can find empty states and change energy appreciably when
the temperature changes. The number of such electrons is pro-
portional to so we expect that the electron molar heatkT/EF ,

EF ,CV .
3R/2

capacity at constant volume is proportional to 
A more detailed analysis shows that the actual

electron contribution to for a solid metal is
not far from our prediction. You can verify that if and

the electron contribution to is 0.018R, which
is only 1.2% of the (incorrect) prediction of the equiparti-
tion principle. Because the electronic contribution is so small,
the overall heat capacity of most solid metals is due primarily to
vibration of the atoms in the crystal structure (see Fig. 18.18 in
Section 18.4).

3R/2
CVEF 5 7.03 eV,

T 5 293 K
1p2kT/2EF 2  R,CV

13kT/2EF 2R.
1 kT/EF 2 1 3R/2 2  5 With and the exponent is 3.74 and

a 13% increase for a temperature rise of only 10K.
(b) When both exponents are five times as large

as before, 19.3 and 18.7; the values of are and
In this case the probability nearly doubles with a tem-

perature rise of 10 K.
(c) When the exponents are 96.7 and 93.6; the

values of are and The probability
increases by a factor of 23 for a 10-K temperature rise, but it is still
extremely small. Pure diamond, with a 5.47-eV band gap, has
essentially no electrons in the conduction band and is an excellent
insulator.

EVALUATE: This example illustrates two important points. First,
the probability of finding an electron in a state at the bottom of the
conduction band is extremely sensitive to the width of the band
gap. When the gap is the chance is about 2%, but when it
is the chance is a few in a thousand million, and for a
band gap of it is essentially zero. Second, for any given5.0 eV,

1.00 eV ,
0.20 eV,

2.3 3 10241.1.0 3 10242f 1E 2Eg 5 5.0 eV,

7.4 3 1029.
4.0 3 1029f 1E 2Eg 5 1.00 eV,

f 1E 2 5 0.0231,
T 5 310 K,Eg 5 0.200 eV band gap the probability is very temperature dependent, more so

for large gaps than for small.
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(and therefore its minority carriers are negative electrons). The same idea holds for an
n-type semiconductor; ordinarily, it will not have a negative charge, but its majority carri-
ers are negative electrons. ❚

We can verify the assertion that the current in n- and p-type semiconductors
really is carried by electrons and holes, respectively, by using the Hall effect (see
optional Section 27.9). The sign of the Hall emf is opposite in the two cases.
Hall-effect devices constructed from semiconductor materials are used in probes
to measure magnetic fields and the currents that cause those fields.

five valence electrons. When one of these electrons is removed, the remaining
electron structure is essentially identical to that of germanium. The only differ-
ence is that it is smaller; the arsenic nucleus has a charge of rather than

and it pulls the electrons in a little more. An arsenic atom can comfortably
take the place of a germanium atom as a substitutional impurity. Four of its five
valence electrons form the necessary nearest-neighbor covalent bonds.

The fifth valence electron is very loosely bound (Fig. 42.28a); it doesn’t par-
ticipate in the covalent bonds, and it is screened from the nuclear charge of 
by the 32 electrons, leaving a net effective charge of about We might guess
that the binding energy would be of the same order of magnitude as the energy of
the level in hydrogen—that is, In fact, it is much
smaller than this, only about 0.01 eV, because the electron probability distribu-
tion actually extends over many atomic diameters and the polarization of inter-
vening atoms provides additional screening.

The energy level of this fifth electron corresponds in the band picture to an iso-
lated energy level lying in the gap, about 0.01 eV below the bottom of the conduc-
tion band (Fig. 42.28b). This level is called a donor level, and the impurity atom
that is responsible for it is simply called a donor. All Group V elements, including
N, P, As, Sb, and Bi, can serve as donors. At room temperature, kT is about

This is substantially greater than so at ordinary temperatures,
most electrons can gain enough energy to jump from donor levels into the conduc-
tion band, where they are free to wander through the material. The remaining ion-
ized donor stays at its site in the structure and does not participate in conduction.

Example 42.10 shows that at ordinary temperatures and with a band gap of
1.0 eV, only a very small fraction (of the order of of the states at the bottom
of the conduction band in a pure semiconductor contain electrons to participate in
intrinsic conductivity. Thus we expect the conductivity of such a semiconductor
to be about as great as that of good metallic conductors, and measurements
bear out this prediction. However, a concentration of donors as small as one part
in can increase the conductivity so drastically that conduction due to impuri-
ties becomes by far the dominant mechanism. In this case the conductivity is due
almost entirely to negative charge (electron) motion. We call the material an
n-type semiconductor, with n-type impurities.

Adding atoms of an element in Group III (B, Al, Ga, In, Tl), with only three
valence electrons, has an analogous effect. An example is gallium as a
substitutional impurity in germanium, the gallium atom would like to form four
covalent bonds, but it has only three outer electrons. It can, however, steal an
electron from a neighboring germanium atom to complete the required four cova-
lent bonds (Fig. 42.29a). The resulting atom has the same electron configuration
as Ge but is somewhat larger because gallium’s nuclear charge is smaller, 
instead of 

This theft leaves the neighboring atom with a hole, or missing electron. The
hole acts as a positive charge that can move through the crystal just as with
intrinsic conductivity. The stolen electron is bound to the gallium atom in a level
called an acceptor level about 0.01 eV above the top of the valence band
(Fig. 42.29b). The gallium atom, called an acceptor, thus accepts an electron to
complete its desire for four covalent bonds. This extra electron gives the previ-
ously neutral gallium atom a net charge of The resulting gallium ion is not
free to move. In a semiconductor that is doped with acceptors, we consider the
conductivity to be almost entirely due to positive charge (hole) motion. We call
the material a p-type semiconductor, with p-type impurities. Some semiconduc-
tors are doped with both n- and p-type impurities. Such materials are called
compensated semiconductors.

CAUTION The meaning of “p-type” and “n-type” Saying that a material is a
p-type semiconductor does not mean that the material has a positive charge; ordinarily, it
would be neutral. Rather, it means that its majority carriers of current are positive holes
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(a) A donor (n-type) impurity atom has a fifth
valence electron that does not participate in
the covalent bonding and is very loosely bound.

(b) Energy-band diagram for an n-type semi-
conductor at a low temperature. One donor
electron has been excited from the donor levels
into the conduction band.
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42.28 An n-type semiconductor.

(a) An acceptor (p-type) impurity atom has only
three valence electrons, so it can borrow an
electron from a neighboring atom. The resulting
hole is free to move about the crystal.

(b) Energy-band diagram for a p-type semi-
conductor at a low temperature. One acceptor
level has accepted an electron from the valence
band, leaving a hole behind.
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42.29 A p-type semiconductor.

Test Your Understanding of Section 42.6 Would there be any advantage to
adding n-type or p-type impurities to copper?

❚

42.7 Semiconductor Devices
Semiconductor devices play an indispensable role in contemporary electronics.
In the early days of radio and television, transmitting and receiving equipment
relied on vacuum tubes, but these have been almost completely replaced in the
last four decades by solid-state devices, including transistors, diodes, integrated
circuits, and other semiconductor devices. The only surviving vacuum tubes in
consumer electronics are the picture tubes in older TV receivers and computer
monitors; these are gradually being replaced by flat-screen displays.

One simple semiconductor device is the photocell (Fig. 42.30). When a thin
slab of semiconductor is irradiated with an electromagnetic wave whose photons
have at least as much energy as the band gap between the valence and conduction
bands, an electron in the valence band can absorb a photon and jump to the con-
duction band, where it and the hole it left behind contribute to the conductivity
(see Example 42.6 in Section 42.4). The conductivity therefore increases with
wave intensity, thus increasing the current I in the photocell circuit of Fig. 42.30.
Hence the ammeter reading indicates the intensity of the light.

Detectors for charged particles operate on the same principle. An external cir-
cuit applies a voltage across a semiconductor. An energetic charged particle pass-
ing through the semiconductor collides inelastically with valence electrons,
exciting them from the valence to the conduction band and creating pairs of holes
and conduction electrons. The conductivity increases momentarily, causing a
pulse of current in the external circuit. Solid-state detectors are widely used in
nuclear and high-energy physics research; without them, many important discov-
eries could not have been made.

The p-n Junction
In many semiconductor devices the essential principle is the fact that the conduc-
tivity of the material is controlled by impurity concentrations, which can be var-
ied within wide limits from one region of a device to another. An example is the
p-n junction at the boundary between one region of a semiconductor with p-type
impurities and another region containing n-type impurities. One way of fabricat-
ing a p-n junction is to deposit some n-type material on the very clean surface of
some p-type material. (We can’t just stick p- and n-type pieces together and
expect the junction to work properly because of the impossibility of matching
their surfaces at the atomic level.)

When a p-n junction is connected to an external circuit, as in Fig. 42.31a, and
the potential difference across the junction is varied, the current I
varies as shown in Fig. 42.31b. In striking contrast to the symmetrical behavior
of resistors that obey Ohm’s law and give a straight line on an I-V graph, a p-n
junction conducts much more readily in the direction from p to n than the reverse.

Vp 2 Vn 5 V

A

Light

Photocell

+

I

42.30 A semiconductor photocell in a cir-
cuit. The more intense the light falling on
the photocell, the greater the conductivity
of the photocell and the greater the current
measured by the ammeter (A).
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Such a (mostly) one-way device is called a diode rectifier. Later we’ll discuss a
simple model of p-n junction behavior that predicts a current–voltage relation-
ship in the form

(42.23)

In the exponent, is the quantum of charge, k is Boltzmann’s
constant, and T is absolute temperature.

CAUTION Two different Uses of e In the base of the exponent also uses the
symbol e, standing for the base of the natural logarithms, This e is quite dif-
ferent from in the exponent. ❚

Equation (42.23) is valid for both positive and negative values of V; note that
V and I always have the same sign. As V becomes very negative, I approaches the
value The magnitude (always positive) is called the saturation current.IS2IS .

e 5 1.602 3 10219 C
2.71828 c.

eeV/kT

e 5 1.602 3 10219 C

I 5 IS 1 eeV/kT 2 1 2  (current through a p-n junction)

corresponding to positive V in Eq. (42.23), and the resulting electric field is in the
direction p to n. This is called the forward direction, and the positive potential
difference is called forward bias. Holes, plentiful in the p region, flow easily
across the junction into the n region, and free electrons, plentiful in the n region,
easily flow into the p region; these movements of charge constitute a forward
current. Connecting the battery with the opposite polarity gives reverse bias, and
the field tends to push electrons from p to n and holes from n to p. But there are
very few free electrons in the p region and very few holes in the n region. As a
result, the current in the reverse direction is much smaller than that with the same
potential difference in the forward direction.

Suppose you have a box with a barrier separating the left and right sides: You
fill the left side with oxygen gas and the right side with nitrogen gas. What hap-
pens if the barrier leaks? Oxygen diffuses to the right, and nitrogen diffuses to the
left. A similar diffusion occurs across a p-n junction. First consider the equilibrium
situation with no applied voltage (Fig. 42.32). The many holes in the p region act
like a hole gas that diffuses across the junction into the n region. Once there, the
holes recombine with some of the many free electrons. Similarly, electrons diffuse
from the n region to the p region and fall into some of the many holes there. The
hole and electron diffusion currents lead to a net positive charge in the n region
and a net negative charge in the p region, causing an electric field in the direction
from n to p at the junction. The potential energy associated with this field raises the
electron energy levels in the p region relative to the same levels in the n region.

There are four currents across the junction, as shown. The diffusion processes
lead to recombination currents of holes and electrons, labeled and in
Fig. 42.32. At the same time, electron–hole pairs are generated in the junction
region by thermal excitation. The electric field described above sweeps these elec-
trons and holes out of the junction; electrons are swept opposite the field to the n
side, and holes are swept in the same direction as the field to the p side. The corre-
sponding currents, called generation currents, are labeled and At equilib-
rium the magnitudes of the generation and recombination currents are equal:

(42.24)

At thermal equilibrium the Fermi energy is the same at each point across the
junction.

Now we apply a forward bias—that is, a positive potential difference V across
the junction.Aforward bias decreases the electric field in the junction region. It also
decreases the difference between the energy levels on the p and n sides (Fig. 42.33,
next page) by an amount It becomes easier for the electrons in the n
region to climb the potential-energy hill and diffuse into the p region and for the
holes in the p region to diffuse into the n region. This effect increases both recombi-
nation currents by the Maxwell-Boltzmann factor (We don’t havee2DE/kT 5 eeV/kT.

DE 5 2eV.

0 ipg 0 5 0 ipr 0  and 0 ing 0 5 0 inr 0
ing .ipg

inripr

A

+

p n

I

V

Forward
bias

Variable emf

(a) I

Forward
bias

Reverse
bias

V
IS

(b)

O

42.31 (a) A semiconductor p-n junction
in a circuit. (b) Graph showing the asym-
metrical current–voltage relationship. The
curve is described by Eq. (42.23).

Example 42.11 Is a p-n junction diode always a one-way device?

At a temperature of 290 K, a certain p-n junction diode has a satu-
ration current Find the current at this temperature
when the voltage is 1.00 mV, 100 mV, and 

SOLUTION

IDENTIFY: This problem uses the relationship among current, satu-
ration current, voltage, and temperature for a semiconductor diode.

SET UP: We are given the values of the saturation current and
the temperature T, so we can use Eq. (42.23) to determine the cur-
rent I for various values of the voltage V.

EXECUTE: At When
From

Eq. (42.23) the current is

When 

I 5 10.500 mA 2 1 e20.0400 2 1 2 5 20.0196 mA

V 5 21.00 mV,

I 5 10.500 mA 2 1 e 0.0400 2 1 2 5 0.0204 mA

eV/kT 5 e 11.00 mV2 / 125.0 meV2 5 0.0400.V 5 1.00 mV,
kT 5 0.0250 eV 5 25.0 meV.T 5 290 K,

IS

2100 mV.21.00 mV,
IS 5 0.500 mA.

The values of I for the other two voltages are obtained in the same
way; when and when 

We summarize the data in the following table,
also calculating the resistance 

V (mV) I (mA)

49.0
51.0
3.73
204

EVALUATE: Note that at the current has nearly the
same magnitude for both directions. That is, when
(near the origin of Fig. 42.31b), the curve approaches a straight line,
and this junction diode acts more like a resistor than like a
rectifier. However, as the voltage increases, the directional asym-
metry becomes more and more pronounced. At the
negative current is nearly equal to the saturation value and has a
magnitude that is less than 2% of the positive current.

0V 0 5 100 V

50.0-V

0V 0 V kT/e
0V 0 5 1.00 mV

20.4912100
126.81100

20.019621.00
10.020411.00

R ( V )

R 5 V/I.
I 5 20.491 mA.

V 5 2100 mV,I 5 26.8 mA;V 5 100 mV,

Currents Through a p-n Junction
We can understand the behavior of a p-n junction diode qualitatively on the basis
of the mechanisms for conductivity in the two regions. Suppose, as in Fig. 42.31a,
you connect the positive terminal of the battery to the p region and the negative
terminal to the n region. Then the p region is at higher potential than the n region,

+

+

The n side has an excess
of positive charge and is
at a higher electric
potential, so negatively
charged electrons have
lower energy bands here.

The p side has an excess
of negative charge and is
at a lower electric
potential, so negatively
charged electrons have
higher energy bands here.

E

E

Hole currents

Electron currents

p side n sideJunction

ip r
ipg

inr

ing

EF

Conduction
band

Valence
band

S

42.32 A p-n junction in equilibrium, with no externally applied field or potential difference. The generation and recombination currents
exactly balance. The Fermi energy is the same on both sides of the junction. The excess positive and negative charges on the n and p
sides produce an electric field in the direction shown.E

S
EF
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to use the Fermi-Dirac distribution because most of the available states for the dif-
fusing electrons and holes are empty, so the exclusion principle has little effect.)
The generation currents don’t change appreciably, so the net hole current is

(42.25)

The net electron current is given by a similar expression, so the total current
is

(42.26)

in agreement with Eq. (42.23). This entire discussion can be repeated for reverse
bias (negative V and I) with the same result. Therefore Eq. (42.23) is valid for
both positive and negative values.

Several effects make the behavior of practical p-n junction diodes more com-
plex than this simple analysis predicts. One effect, avalanche breakdown, occurs
under large reverse bias. The electric field in the junction is so great that the car-
riers can gain enough energy between collisions to create electron–hole pairs dur-
ing inelastic collisions. The electrons and holes then gain energy and collide to
form more pairs, and so on. (A similar effect occurs in dielectric breakdown in
insulators, discussed in Section 42.4.)

A second type of breakdown begins when the reverse bias becomes large
enough that the top of the valence band in the p region is just higher in energy
than the bottom of the conduction band in the n region (Fig. 42.34). If the junc-
tion region is thin enough, the probability becomes large that electrons can tunnel
from the valence band of the p region to the conduction band of the n region. This
process is called Zener breakdown. It occurs in Zener diodes, which are widely
used for voltage regulation and protection against voltage surges.

Semiconductor Devices and Light
A light-emitting diode (LED) is a p-n junction diode that emits light. When the
junction is forward biased, many holes are pushed from their p region to the junc-
tion region, and many electrons are pushed from their n region to the junction
region. In the junction region the electrons fall into holes (recombine). In recom-
bining, the electron can emit a photon with energy approximately equal to the
band gap. This energy (and therefore the photon wavelength and the color of the
light) can be varied by using materials with different band gaps. Light-emitting
diodes are widely used for digital displays in clocks, electronic equipment, auto-
mobile instrument panels, and many other applications.

The reverse process is called the photovoltaic effect. Here the material
absorbs photons, and electron–hole pairs are created. Pairs that are created in the
p-n junction, or close enough to migrate to it without recombining, are separated

I 5 IS 1 eeV/k T 2 1 2
I 5 iptot 1 intot

intot

 5 0 ipg 0 1 eeV/kT 2 1 2
 5 0 ipg 0 eeV/kT 2 0 ipg 0

 iptot 5 ipr 2 0 ipg 0

by the electric field we described above that sweeps the electrons to the n side
and the holes to the p side. We can connect this device to an external circuit,
where it becomes a source of emf and power. Such a device is often called a solar
cell, although sunlight isn’t required. Any light with photon energies greater than
the band gap will do. You might have a calculator powered by such cells. Produc-
tion of low-cost photovoltaic cells for large-scale solar energy conversion is a
very active field of research. The same basic physics is used in charge-coupled
device (CCD) image detectors, digital cameras, and camcorders.

Transistors
A bipolar junction transistor includes two p-n junctions in a “sandwich” configu-
ration, which may be either p-n-p or n-p-n. Such a p-n-p transistor is shown in
Fig. 42.35. The three regions are called the emitter, base, and collector, as shown.
When there is no current in the left loop of the circuit, there is only a very small
current through the resistor R because the voltage across the base–collector junc-
tion is in the reverse direction. But when a forward bias is applied between emitter
and base, as shown, most of the holes traveling from emitter to base travel through
the base (which is typically both narrow and lightly doped) to the second junction,
where they come under the influence of the collector-to-base potential difference
and flow on through the collector to give an increased current to the resistor.

In this way the current in the collector circuit is controlled by the current in
the emitter circuit. Furthermore, may be considerably larger than so the
power dissipated in R may be much larger than the power supplied to the emitter
circuit by the battery Thus the device functions as a power amplifier. If the
potential drop across R is greater than it may also be a voltage amplifier.

In this configuration the base is the common element between the “input” and
“output” sides of the circuit. Another widely used arrangement is the common-
emitter circuit, shown in Fig. 42.36. In this circuit the current in the collector side
of the circuit is much larger than that in the base side, and the result is current
amplification.

The field-effect transistor (Fig. 42.37) is an important type. In one variation a
slab of p-type silicon is made with two n-type regions on the top, called the
source and the drain; a metallic conductor is fastened to each. A third electrode
called the gate is separated from the slab, source, and drain by an insulating layer
of When there is no charge on the gate and a potential difference of either
polarity is applied between the source and the drain, there is very little current
because one of the p-n junctions is reverse biased.

Now we place a positive charge on the gate. With dimensions of the order of
it takes little charge to provide a substantial electric field. Thus there is

very little current into or out of the gate. There aren’t many free electrons in the
p-type material, but there are some, and the effect of the field is to attract them
toward the positive gate. The resulting greatly enhanced concentration of electrons
near the gate (and between the two junctions) permits current to flow between the
source and the drain. The current is very sensitive to the gate charge and potential,

1026 m,

SiO2 .

Ve ,
Ve .

Ve ,Vc

 

E p side n sideJunction
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42.33 A p-n junction under forward-bias
conditions. The potential difference
between p and n regions is reduced, as is
the electric field within the junction. The
recombination currents increase but the
generation currents are nearly constant,
causing a net current from left to right.
(Compare Fig. 42.32.)

If a p-n junction under reverse bias is thin
enough, electrons can tunnel from the valence
band to the conduction band (a process called
Zener breakdown).

E
p
side

n
sideJunction

Conduction
band

Valence
band

42.34 Under reverse-bias conditions the
potential-energy difference between the p
and n sides of a junction is greater than at
equilibrium. If this difference is great
enough, the bottom of the conduction band
on the n side may actually be below the
top of the valence band on the p side.

• When Ve 5 0, the current is very
 small. 
• When a potential Ve is applied
  between emitter and base, holes
  travel from the emitter to the base.
• When Vc is sufficiently large, most
   of the holes continue into the collector.

p

Ie

Emitter

+

Ic R

+

VcVe

pn
Hole flow

Base Collector

42.35 Schematic diagram of a p-n-p tran-
sistor and circuit.

• When Vb 5 0, Ic is very small, and most of the 
  voltage Vc appears across the base–collector
  junction. 
• As Vb increases, the base–collector potential
 decreases, and more holes can diffuse into the
 collector; thus, Ic increases. Ordinarily, Ic is
 much larger than Ib.

R Ic

Collector
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42.36 A common-emitter circuit.
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42.37 A field-effect transistor. The cur-
rent from source to drain is controlled by
the potential difference between the source
and the drain and by the charge on the
gate; no current flows through the gate.
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and the device functions as an amplifier. The device just described is called an
enhancement-type MOSFET (metal-oxide-semiconductor field-effect transistor).

Integrated Circuits
A further refinement in semiconductor technology is the integrated circuit. By
successively depositing layers of material and etching patterns to define current
paths, we can combine the functions of several MOSFETs, capacitors, and resis-
tors on a single square of semiconductor material that may be only a few mil-
limeters on a side. An elaboration of this idea leads to large-scale integrated
circuits and very-large-scale integration (VLSI). The resulting integrated circuit
chips are the heart of all pocket calculators and present-day computers, large and
small. An example is shown in Fig. 42.38.

The first semiconductor devices were invented in 1947. Since then, they have
completely revolutionized the electronics industry through miniaturization, relia-
bility, speed, energy usage, and cost. They have found applications in communi-
cations, computer systems, control systems, and many other areas. In
transforming these areas, they have changed, and continue to change, human civ-
ilization itself.

42.38 An integrated circuit chip the size
of your thumb can contain millions of
transistors.

Test Your Understanding of Section 42.7 Suppose a negative charge is placed
on the gate of the MOSFET shown in Fig. 42.37. Will a substantial current flow between
the source and the drain?

❚

42.8 Superconductivity
Superconductivity is the complete disappearance of all electrical resistance at
low temperatures. We described this property at the end of Section 25.2 and the
magnetic properties of type-I and type-II superconductors in Section 29.8. In this
section we’ll relate superconductivity to the structure and energy-band model of
a solid.

Although superconductivity was discovered in 1911, it was not well under-
stood on a theoretical basis until 1957. In that year, the American physicists John
Bardeen, Leon Cooper, and Robert Schrieffer published the theory of supercon-
ductivity, now called the BCS theory, that was to earn them the Nobel Prize in
physics in 1972. (It was Bardeen’s second Nobel Prize; he shared his first for his
work on the development of the transistor.) The key to the BCS theory is an inter-
action between pairs of conduction electrons, called Cooper pairs, caused by an
interaction with the positive ions of the crystal. Here’s a rough qualitative picture
of what happens. A free electron exerts attractive forces on nearby positive ions,
pulling them slightly closer together. The resulting slight concentration of posi-
tive charge then exerts an attractive force on another free electron with momen-
tum opposite to the first. At ordinary temperatures this electron-pair interaction is
very small in comparison to energies of thermal motion, but at very low tempera-
tures it becomes significant.

Bound together this way, the pairs of electrons cannot individually gain or lose
very small amounts of energy, as they would ordinarily be able to do in a partly
filled conduction band. Their pairing gives an energy gap in the allowed electron
quantum levels, and at low temperatures there is not enough collision energy to
jump this gap. Therefore the electrons can move freely through the crystal with-
out any energy exchange through collisions—that is, with zero resistance.

Researchers have not yet reached a consensus on whether some modification
of the BCS theory can explain the properties of the superconductors that
have been discovered since 1986. There is evidence for pairing, but possibly of
holes rather than electrons. Furthermore, the original pairing mechanism of the
BCS theory seems too weak to explain the high transition temperatures and criti-
cal fields of these new superconductors.

high-TC

CHAPTER 42 SUMMARY

Molecular bonds and molecular spectra: The principal
types of molecular bonds are ionic, covalent, van der
Waals, and hydrogen bonds. In a diatomic molecule the
rotational energy levels are given by Eq. (42.3), where I
is the moment of inertia of the molecule, is its
reduced mass, and is the distance between the two
atoms. The vibrational energy levels are given by Eq.
(42.7), where is the effective force constant of the
interatomic force. (See Examples 42.1–42.4.)

k r

r0

mr

(42.3)

(42.6)
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Solids and energy bands: Interatomic bonds in solids are of the same types as in molecules plus
one additional type, the metallic bond. Associating the basis with each lattice point gives the crystal
structure. (See Example 42.5.)

When atoms are bound together in condensed matter, their outer energy levels spread out into
bands. At absolute zero, insulators and conductors have a completely filled valence band separated
by an energy gap from an empty conduction band. Conductors, including metals, have partially
filled conduction bands. (See Example 42.6.)
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Free-electron model of metals: In the free-electron
model of the behavior of conductors, the electrons are
treated as completely free particles within the con-
ductor. In this model the density of states is given by
Eq. (42.16). The probability that an energy state of
energy E is occupied is given by the Fermi-Dirac distri-
bution, Eq. (42.17), which is a consequence of the
exclusion principle. In Eq. (42.17), is the Fermi
energy. (See Examples 42.7–42.9.)

EF

(42.16)

(42.17) f 1E 2 5
1

e 1E2EF2/kT 1 1

 g 1E 2 5
12m 2 3/2V

2p2
U

3  E 1/2

Semiconductors: A semiconductor has an energy gap of about 1 eV between its valence and con-
duction bands. Its electrical properties may be drastically changed by the addition of small concen-
trations of donor impurities, giving an n-type semiconductor, or acceptor impurities, giving a p-type
semiconductor. (See Example 42.10.) + +
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Semiconductor devices: Many semiconductor devices,
including diodes, transistors, and integrated circuits, use
one or more p-n junctions. The current–voltage relation-
ship for an ideal p-n junction diode is given by
Eq. (42.23). (See Example 42.11.)

(42.23)I 5 IS 1 eeV/kT 2 1 2
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Answer to Chapter Opening Question ?
The earth must radiate energy into space at the same rate that it
receives energy in the form of sunlight. However, carbon dioxide

molecules in the atmosphere absorb infrared radiation
emitted by the earth’s surface and re-emit it toward the ground. To
compensate for this and to maintain the balance between emitted
and received energy, the earth’s surface temperature and hence the
rate of blackbody radiation from the surface both increase.

Answers to Test Your Understanding Questions
42.1 Answer: (i) The exclusion principle states that only one
electron can be in a given state. Real electrons have spin, so two
electrons (one spin-up, one spin-down) can be in a given spatial
state and hence two can participate in a given covalent bond
between two atoms. If electrons obeyed the exclusion principle but
did not have spin, that state of an electron would be completely
described by its spatial distribution and only one electron could
participate in a covalent bond. (We will learn in Chapter 44 that
this situation is wholly imaginary: There are subatomic particles
without spin, but they do not obey the exclusion principle.)
42.2 Answer: (ii) Figure 42.5 shows that the difference in energy
between adjacent rotational levels increases with increasing l.
Hence, as l increases, the energy E of the emitted photon increases
and the wavelength decreases.
42.3 Answer (ii) In Fig. 42.14 let a be the distance between adja-
cent and ions. This figure shows that the ion that is
the next nearest neighbor to a ion is on the opposite corner
of a cube of side a. The distance between these two ions is"a2 1 a2 1 a2 5 "3a2 5 a "3 .

Na1

Cl2Cl2Na1

l 5 hc/E

1CO2 2

42.4 Answer (ii) A small temperature change causes a substan-
tial increase in the population of electrons in a semiconductor’s
conduction band and a comparably substantial increase in conduc-
tivity. The conductivity of conductors and insulators varies more
gradually with temperature.
42.5 Answer: no The kinetic-molecular model of an ideal gas
(see Section 18.3) shows that the gas pressure is proportional to
the average translational kinetic energy of the particles that
make up the gas. In a classical ideal gas, is directly propor-
tional to the average temperature T, so the pressure decreases as
T decreases. In a free-electron gas, the average kinetic energy
per electron is not related simply to T; as Example 42.9 shows,
for the free-electron gas in a metal, is almost completely a
consequence of the exclusion principle at room temperature and
colder. Hence the pressure of a free-electron gas in a solid
metal does not change appreciably between room temperature and
absolute zero.
42.6 Answer: no Pure copper is already an excellent conductor
since it has a partially filled conduction band (Fig. 42.21c). Fur-
thermore, copper forms a metallic crystal (Fig. 42.17) as opposed
to the covalent crystals of silicon or germanium, so the scheme of
using an impurity to donate or accept an electron does not work for
copper. In fact, adding impurities to copper decreases the conduc-
tivity because an impurity tends to scatter electrons, impeding the
flow of current.
42.7 Answer: no A negative charge on the gate will repel, not
attract, electrons in the p-type silicon. Hence the electron concen-
tration in the region between the two p-n junctions will be made
even smaller. With so few charge carriers present in this region,
very little current will flow between the source and the drain.

Eav

Eav

Eav

PROBLEMS For instructor-assigned homework, go to www.masteringphysics.com

Discussion Questions
Q42.1. Ionic bonds result from the electrical attraction of oppo-
sitely charged particles. Are other types of molecular bonds also
electrical in nature, or is some other interaction involved? Explain.
Q42.2. In ionic bonds, an electron is transferred from one atom to
another and thus no longer “belongs” to the atom from which it
came. Are there similar transfers of ownership of electrons with
other types of molecular bonds? Explain.
Q42.3. Van der Waals bonds occur in many molecules, but hydro-
gen bonds occur only with materials that contain hydrogen. Why is
this type of bond unique to hydrogen?
Q42.4. The bonding of gallium arsenide (GaAs) is said to be
31% ionic and 69% covalent. Explain.
Q42.5. The molecule consists of two hydrogen nuclei and a
single electron. What kind of molecular bond do you think holds
this molecule together? Explain.

H2 

1

Q42.6. The moment of inertia for an axis through the center of
mass of a diatomic molecule calculated from the wavelength emit-
ted in an transition is different from the moment
of inertia calculated from the wavelength of the photon emitted in
an transition. Explain this difference. Which transi-
tion corresponds to the larger moment of inertia?
Q42.7. Analysis of the photon absorption spectrum of a diatomic
molecule shows that the vibrational energy levels for small values
of n are very nearly equally spaced but the levels for large n are not
equally spaced. Discuss the reason for this observation. Do you
expect the adjacent levels to move closer together or farther apart
as n increases? Explain.
Q42.8. Discuss the differences between the rotational and vibra-
tional energy levels of the deuterium (“heavy hydrogen”) molecule

and those of the ordinary hydrogen molecule A deuterium
atom has twice the mass of an ordinary hydrogen atom.

H2 .D2

l 5 1 S l 5 0

l 5 19 S l 5 18

Q42.9. Various organic molecules have been discovered in inter-
stellar space. Why were these discoveries made with radio tele-
scopes rather than optical telescopes?
Q42.10. The air you are breathing contains primarily nitrogen

and oxygen Many of these molecules are in excited
rotational energy levels but almost all of
them are in the vibrational ground level Explain this dif-
ference between the rotational and vibrational behaviors of the
molecules.
Q42.11. In what ways do atoms in a diatomic molecule behave as
though they were held together by a spring? In what ways is this a
poor description of the interaction between the atoms?
Q42.12. Individual atoms have discrete energy levels, but certain
solids (which are made up of only individual atoms) show energy
bands and gaps. What causes the solids to behave so differently
from the atoms of which they are composed?
Q42.13. What factors determine whether a material is a conductor
of electricity or an insulator? Explain.
Q42.14. Ionic crystals are often transparent, whereas metallic crys-
tals are always opaque. Why?
Q42.15. Speeds of molecules in a gas vary with temperature,
whereas speeds of electrons in the conduction band of a metal are
nearly independent of temperature. Why are these behaviors so
different?
Q42.16. Use the band model to explain how it is possible for some
materials to undergo a semiconductor-to-metal transition as the
temperature or pressure varies.
Q42.17. An isolated zinc atom has a ground-state electron configu-
ration of filled 1s, 2s, 2p, 3s, 3p, and 4s subshells. How can zinc be
a conductor if its valence subshell is full?
Q42.18. The assumptions of the free-electron model of metals may
seem contrary to reason, since electrons exert powerful electrical
forces on each other. Give some reasons why these assumptions
actually make physical sense.
Q42.19. Why are materials that are good thermal conductors also
good electrical conductors? What kinds of problems does this
pose for the design of appliances such as clothes irons and elec-
tric heaters? Are there materials that do not follow this general
rule?
Q42.20. What is the essential characteristic for an element to serve
as a donor impurity in a semiconductor such as Si or Ge? For it to
serve as an acceptor impurity? Explain.
Q42.21. There are several methods for removing electrons from
the surface of a semiconductor. Can holes be removed from the
surface? Explain.
Q42.22. A student asserts that silicon and germanium become
good insulators at very low temperatures and good conductors at
very high temperatures. Do you agree? Explain your reasoning.
Q42.23. The electrical conductivities of most metals decrease
gradually with increasing temperature, but the intrinsic conductiv-
ity of semiconductors always increases rapidly with increasing
temperature. What causes the difference?
Q42.24. How could you make compensated silicon that has twice
as many acceptors as donors?
Q42.25. For electronic devices such as amplifiers, what are some
advantages of transistors compared to vacuum tubes? What are
some disadvantages? Are there any situations in which vacuum
tubes cannot be replaced by solid-state devices? Explain your
reasoning.
Q42.26. Why does tunneling limit the miniaturization of MOSFETs?
Q42.27. The saturation current for a p-n junction, Eq. (42.23),
depends strongly on temperature. Explain why.
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Exercises
Section 42.1 Types of Molecular Bonds
42.1. We know from Chapter 18 that the average kinetic energy of
an ideal gas atom or molecule at Kelvin temperature T is For
what value of T does this energy correspond to (a) the bond energy
of the van der Waals bond in and (b) the
bond energy of the covalent bond in (4.48 eV)? (c) The kinetic
energy in a collision between molecules can go into dissociating
one or both molecules, provided the kinetic energy is higher than
the bond energy. At room temperature (300 K), is it likely that 
molecules will remain intact after a collision? What about mol-
ecules? Explain.
42.2. An Ionic Bond. (a) Calculate the electric potential energy
for a ion and a ion separated by a distance of 0.29 nm, the
equilibrium separation in the KBr molecule. Treat the ions as point
charges. (b) The ionization energy of the potassium atom is 4.3 eV.
Atomic bromine has an electron affinity of 3.5 eV. Use these data
and the results of part (a) to estimate the binding energy of the KBr
molecule. Do you expect the actual binding energy to be higher or
lower than your estimate? Explain your reasoning.

Section 42.2 Molecular Spectra
42.3. A hypothetical NH molecule makes a rotational-level transi-
tion from to and gives off a photon of wavelength
1.780 nm in doing so. What is the separation between the two
atoms in this molecule if we model them as point masses? The
mass of hydrogen is and the mass of nitrogen is

42.4. The water molecule has an rotational level
above the ground level. Calculate the wave-

length and frequency of the photon absorbed by water when it
undergoes a rotational-level transition from to The
magnetron oscillator in a microwave oven generates microwaves
with a frequency of 2450 MHz. Does this make sense, in view of
the frequency you calculated in this problem? Explain.
42.5. In Example 42.2 the moment of inertia for CO was calcu-
lated using Eq. (42.6). (a) In CO, how far is each atom from the
center of mass of the molecule? (b) Use to cal-
culate the moment of inertia of CO about an axis through the cen-
ter of mass and perpendicular to the line joining the centers of the
two atoms. Does your result agree with the value obtained in
Example 42.2?
42.6. Two atoms of cesium (Cs) can form a molecule. The
equilibrium distance between the nuclei in a molecule is

Calculate the moment of inertia about an axis through
the center of mass of the two nuclei and perpendicular to the line
joining them. The mass of a cesium atom is 
42.7. The rotational energy levels of CO are calculated in Exam-
ple 42.2. If the energy of the rotating molecule is described by the
classical expression for the level what are (a) the
angular speed of the rotating molecule; (b) the linear speed of each
atom (use the result of Exercise 42.5); (c) the rotational period (the
time for one rotation)?
42.8. If a sodium chloride (NaCl) molecule could undergo an

vibrational transition with no change in rotational
quantum number, a photon with wavelength would be
emitted. The mass of a sodium atom is and the
mass of a chlorine atom is Calculate the force
constant for the interatomic force in NaCl.
42.9. A lithium atom has mass and a hydrogen
atom has mass The equilibrium separation1.67 3 10227 kg.

1.17 3 10226 kg,
k r

5.81 3 10226 kg.
3.82 3 10226 kg,

20.0 mm
n S n 2 1

l 5 1K 5 1
2 Iv2,
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I 5 m1 r1 

2 1 m2 r2 

2
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l 5 01.01 3 1025 eV
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between the two nuclei in the LiH molecule is (a) What
is the difference in energy between the and rotational
levels? (b) What is the wavelength of the photon emitted in a tran-
sition from the to the level?
42.10. When a hypothetical diatomic molecule having atoms
0.8860 nm apart undergoes a rotational transition from the 
state to the next lower state, it gives up a photon having energy

When the molecule undergoes a vibrational
transition from one energy state to the next lower energy state, it
gives up 0.2560 eV. Find the force constant of this molecule.
42.11. (a) Show that the energy difference between rotational lev-
els with angular-momentum quantum numbers l and is 
(b) In terms of and I, what is the frequency of the photon emit-
ted in the pure rotation transition 
42.12. The rotational energy levels of the CO molecule are cal-
culated in Example 42.2 and the vibrational-level energy dif-
ferences are given in Example 42.3. The vibrational and
rotational energies are given by Eq. (42.9). Calculate the wave-
length of the photon absorbed by CO in each of the following
vibration–rotation transitions: (a)
(b) (c) 

42.13. The vibration frequency for the molecule HF is
The mass of a hydrogen atom is 

and the mass of a fluorine atom is (a) What is the
force constant for the interatomic force? (b) What is the spacing
between adjacent vibrational energy levels in joules and in electron
volts? (c) What is the wavelength of a photon of energy equal to
the energy difference between two adjacent vibrational levels? In
what region of the spectrum does it lie?

Section 42.3 Structure of Solids
42.14. Potassium bromide (KBr) has a density of
and the same crystal structure as NaCl. The mass of a potassium
atom is and the mass of a bromine atom is

(a) Calculate the average spacing between adja-
cent atoms in a KBr crystal. (b) How does the value calculated in
part (a) compare with the spacing in NaCl (see Exercise 42.15)? Is
the relationship between the two values qualitatively what you
would expect? Explain.
42.15. Density of NaCl. The spacing of adjacent atoms in a
crystal of sodium chloride is 0.282 nm. The mass of a sodium
atom is and the mass of a chlorine atom is

Calculate the density of sodium chloride.
42.16. Calculate the wavelengths of (a) a 6.20-keV x ray; (b) a
37.6-eV electron; (c) a 0.0205-eV neutron.

Section 42.4 Energy Bands
42.17. The maximum wavelength of light that a certain silicon pho-
tocell can detect is (a) What is the energy gap (in elec-
tron volts) between the valence and conduction bands for this
photocell? (b) Explain why pure silicon is opaque.
42.18. The gap between valence and conduction bands in diamond
is 5.47 eV. (a) What is the maximum wavelength of a photon that
can excite an electron from the top of the valence band into the
conduction band? In what region of the electromagnetic spectrum
does this photon lie? (b) Explain why pure diamond is transparent
and colorless. (c) Most gem diamonds have a yellow color.
Explain how impurities in the diamond can cause this color.
42.19. The gap between valence and conduction bands in silicon is
1.12 eV. A nickel nucleus in an excited state emits a gamma-ray
photon with wavelength How many electrons9.31 3 1024 nm.

1.11 mm.

5.89 3 10226 kg.
3.82 3 10226 kg,

1.33 3 10225 kg.
6.49 3 10226 kg,

2.75 3 103 kg/m3

k r
3.15 3 10226 kg.

1.67 3 10227 kg,1.24 3 1014 Hz.

l 5 2.
l 5 3 S n 5 1,n 5 0,l 5 1;l 5 2 S n 5 1,n 5 0,

l 5 2;l 5 1 S n 5 1,n 5 0,

l S l 2 1?
l, U,

lU2/I.l 2 1

8.841 3 1024 eV.

l 5 2

l 5 3l 5 4

l 5 4l 5 3
0.159 nm. can be excited from the top of the valence band to the bottom of

the conduction band by the absorption of this gamma ray?

Section 42.5 Free-Electron Model of Metals
42.20. What is the value of the constant A in Eq. (42.10) that
makes normalized?
42.21. Calculate the density of states for the free-electron
model of a metal if and Express your
answer in units of states per electron volt.
42.22. Calculate for free electrons with average kinetic energy

at a temperature of 300 K. How does your result compare to
the speed of an electron with a kinetic energy equal to the Fermi
energy of copper, calculated in Example 42.9? Why is there such a
difference between these speeds?
42.23. (a) Show that the wave function given in Eq. (42.10)
is a solution of the three-dimensional Schrödinger equation,
Eq. (40.29), with the energy as given by Eq. (42.11). (b) What
are the energies of the ground level and the lowest two excited lev-
els? What is the degeneracy of each of these levels? (Include the
factor of 2 in the degeneracy that is due to the two possible spin
states.)
42.24. Supply the details in the derivation of Eq. (42.14) from
Eqs. (42.13) and (42.12).
42.25. Silver has a Fermi energy of 5.48 eV. Calculate the electron
contribution to the molar heat capacity at constant volume of sil-
ver, at 300 K. Express your result (a) as a multiple of R and
(b) as a fraction of the actual value for silver, 
(c) Is the value of due principally to the electrons? If not, to
what is it due? (Hint: See Section 18.4.)
42.26. The Fermi energy of sodium is 3.23 eV. (a) Find the aver-
age energy of the electrons at absolute zero. (b) What is the
speed of an electron that has energy (c) At what Kelvin tem-
perature T is kT equal to (This is called the Fermi temperature
for the metal. It is approximately the temperature at which mole-
cules in a classical ideal gas would have the same kinetic energy as
the fastest-moving electron in the metal.)
42.27. For a solid metal having a Fermi energy of 8.500 eV, what
is the probability, at room temperature, that a state having an
energy of 8.520 eV is occupied by an electron?

Section 42.6 Semiconductors
42.28. Pure germanium has a band gap of 0.67 eV. The Fermi
energy is in the middle of the gap. (a) For temperatures of 250 K,
300 K, and 350 K, calculate the probability that a state at the
bottom of the conduction band is occupied. (b) For each tempera-
ture in part (a), calculate the probability that a state at the top of the
valence band is empty.
42.29. Germanium has a band gap of 0.67 eV. Doping with arsenic
adds donor levels in the gap 0.01 eV below the bottom of the
conduction band. At a temperature of 300 K, the probability is

that an electron state is occupied at the bottom of the
conduction band. Where is the Fermi level relative to the conduc-
tion band in this case?

Section 42.7 Semiconductor Devices
42.30. For a certain p-n junction diode, the saturation current
at room temperature is 0.750 mA. What is the resist-
ance of this diode when the voltage across it is (a) 85.0 mV
(b)
42.31. (a) A forward-bias voltage of 15.0 mV produces a posi-
tive current of 9.25 mA through a p-n junction at 300 K. What
does the positive current become if the forward-bias voltage is

250.0 mV?
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reduced to 10.0 mV? (b) For reverse-bias voltages of 
and what is the reverse-bias negative current?
42.32. A p-n junction has a saturation current of 3.60 mA. (a) At a
temperature of 300 K, what voltage is needed to produce a positive
current of 40.0 mA? (b) For a voltage equal to the negative of the
value calculated in part (a), what is the negative current?

Problems
42.33. A hypothetical diatomic molecule of oxygen

and hydrogen 
emits a photon of wavelength when it makes a transition
from one vibrational state to the next lower state. If we model this
molecule as two point masses at opposite ends of a massless
spring, (a) what is the force constant of this spring, and (b) how
many vibrations per second is the molecule making?
42.34. When a diatomic molecule undergoes a transition from the

to the rotational state, a photon with wavelength
is emitted. What is the moment of inertia of the molecule

for an axis through its center of mass and perpendicular to the line
connecting the nuclei?
42.35. (a) The equilibrium separation of the two nuclei in an
NaCl molecule is 0.24 nm If the molecule is modeled as charges

and separated by 0.24 nm, what is the electric dipole
moment of the molecule (see Section 21.7)? (b) The measured
electric dipole moment of an NaCl molecule is 
If this dipole moment arises from point charges and sepa-
rated by 0.24 nm, what is q? (c) A definition of the fractional ionic
character of the bond is If the sodium atom has charge and
the chlorine atom has charge the fractional ionic character
would be equal to 1. What is the actual fractional ionic character
for the bond in NaCl? (d) The equilibrium distance between nuclei
in the hydrogen iodide (HI) molecule is 0.16 nm, and the measured
electric dipole moment of the molecule is What
is the fractional ionic character for the bond in HI? How does your
answer compare to that for NaCl calculated in part (c)? Discuss
reasons for the difference in these results.
42.36. The binding energy of a potassium chloride molecule (KCl)
is 4.43 eV. The ionization energy of a potassium atom is 4.3 eV,
and the electron affinity of chlorine is 3.6 eV. Use these data to
estimate the equilibrium separation between the two atoms in the
KCl molecule. Explain why your result is only an estimate and not
a precise value.
42.37. (a) For the sodium chloride molecule (NaCl) discussed at
the beginning of Section 42.1, what is the maximum separation
of the ions for stability if they may be regarded as point charges?
That is, what is the largest separation for which the energy of an

ion and a ion, calculated in this model, is lower than the
energy of the two separate atoms Na and Cl? (b) Calculate this
distance for the potassium bromide molecule, described in Exer-
cise 42.2.
42.38. The rotational spectrum of HCl contains the following wave-
lengths (among others): 
and Use this spectrum to find the moment of inertia of
the HCl molecule about an axis through the center of mass and
perpendicular to the line joining the two nuclei.
42.39. (a) Use the result of Problem 42.38 to calculate the equilib-
rium separation of the atoms in HCl molecule. The mass of a
chlorine atom is and the mass of a hydrogen
atom is (b) The value of l changes by in
rotational transitions. What is the value of l for the upper level of

611.67 3 10227 kg.
5.81 3 10226 kg,

120.4 mm.
96.4 mm,80.4 mm,69.0 mm,60.4 mm,
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210.0 mV,
215.0 mV the transition that gives rise to each of the wavelengths listed in

Problem 42.38? (c) What is the longest-wavelength line in the
rotational spectrum of HCl? (d) Calculate the wavelengths of the
emitted light for the corresponding transitions in the deuterium
chloride (DCl) molecule. In this molecule the hydrogen atom in
HCl is replaced by an atom of deuterium, an isotope of hydrogen
with a mass of Assume that the equilibrium sepa-
ration between the atoms is the same as for HCl.
42.40. When a NaF molecule makes a transition from the to
the rotational level with no change in vibrational quantum
number or electronic state, a photon with wavelength 3.83 mm is
emitted. A sodium atom has mass and a fluorine
atom has mass Calculate the equilibrium separa-
tion between the nuclei in a NaF molecule. How does your answer
compare with the value for NaCl given in Section 42.1? Is this
result reasonable? Explain.
42.41. Consider a gas of diatomic molecules (moment of inertia I)
at an absolute temperature T. If is a ground-state energy and 
is the energy of an excited state, then the Maxwell-Boltzmann dis-
tribution (see Section 38.6) predicts that the ratio of the numbers
of molecules in the two states is

(a) Explain why the ratio of the number of molecules in the lth
rotational energy level to the number of molecules in the ground

rotational level is

(Hint: For each value of l, how many states are there with different
values of (b) Determine the ratio for a gas of CO mole-
cules at 300 K for the cases (i) (ii) (iii) 
(iv) (v) The moment of inertia of the CO molecule
is given in Example 42.2 (Section 42.2). (c) Your results in part (b)
show that as l is increased, the ratio first increases and then
decreases. Explain why.
42.42. Our galaxy contains numerous molecular clouds, regions
many light-years in extent in which the density is high enough and
the temperature low enough for atoms to form into molecules.
Most of the molecules are but a small fraction of the molecules
are carbon monoxide (CO). Such a molecular cloud in the constel-
lation Orion is shown in Fig. 42.39. The left-hand image was made
with an ordinary visible-light telescope; the right-hand image
shows the molecular cloud in Orion as imaged with a radio tele-
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42.49. Compute the Fermi energy of potassium by making the
simple approximation that each atom contributes one free electron.
The density of potassium is and the mass of a single
potassium atom is 
42.50. Hydrogen is found in two naturally occurring isotopes; nor-
mal hydrogen (containing a single proton in its nucleus) and deu-
terium (having a proton and a neutron). Assuming that both
molecules are the same size and that the proton and neutron have the
same mass (which is almost the case), find the ratio of (a) the energy
of any given rotational state in a diatomic hydrogen molecule to the
energy of the same state in a diatomic deuterium molecule and
(b) the energy of any given vibrational state in hydrogen to the same
state in deuterium (assuming that the force constant is the same for
both molecules). Why is it physically reasonable that the force con-
stant would be the same for hydrogen and deuterium molecules?
42.51. Metallic lithium has a bcc crystal structure. Each unit cell is
a cube of side length (a) For a bcc lattice, what is the
number of atoms per unit volume? Give your answer in terms of a.
(Hint: How many atoms are there per unit cell?) (b) Use the result
of part (a) to calculate the zero-temperature Fermi energy for
metallic lithium. Assume there is one free electron per atom.
42.52. The one-dimensional calculation of Example 42.5 (Sec-
tion 42.3) can be extended to three dimensions. For the three-
dimensional fcc NaCl lattice, the result for the potential energy of
a pair of and ions due to the electrostatic interaction with
all of the ions in the crystal is where 
is the Madelung constant. Another contribution to the potential
energy is a repulsive interaction at small ionic separation r due to
overlap of the electron clouds. This contribution can be repre-
sented by where A is a positive constant, so the expression
for the total potential energy is

(a) Let be the value of the ionic separation r for which is a
minimum. Use this definition to find an equation that relates and
A, and use this to write in terms of For NaCl,

Obtain a numerical value (in electron volts) of 
for NaCl. (b) The quantity is the energy required to remove a

ion and a ion from the crystal. Forming a pair of neutral
atoms from this pair of ions involves the release of 5.14 eV (the
ionization energy of Na) and the expenditure of 3.61 eV (the elec-
tron affinity of Cl). Use the result of part (a) to calculate the energy
required to remove a pair of neutral Na and Cl atoms from the
crystal. The experimental value for this quantity is 6.39 eV; how
well does your calculation agree?
42.53. Consider a system of N free electrons within a volume V.
Even at absolute zero, such a system exerts a pressure p on its sur-
roundings due to the motion of the electrons. To calculate this
pressure, imagine that the volume increases by a small amount dV.
The electrons will do an amount of work pdV on their surround-
ings, which means that the total energy of the electrons will
change by an amount Hence 
(a) Show that the pressure of the electrons at absolute zero is

(b) Evaluate this pressure for copper, which has a free-electron
concentration of Express your result in pascals
and in atmospheres. (c) The pressure you found in part (b) is

8.45 3 1028 m23.
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scope tuned to a wavelength emitted by CO in a rotational transi-
tion. The different colors in the radio image indicate regions of the
cloud that are moving either toward us (blue) or away from us
(red) relative to the motion of the cloud as a whole, as determined
by the Doppler shift of the radiation. (Since a molecular cloud has
about 10,000 hydrogen molecules for each CO molecule, it might
seem more reasonable to tune a radio telescope to emissions from

than to emissions from CO. Unfortunately, it turns out that the
molecules in molecular clouds do not radiate in either the radio

or visible portions of the electromagnetic spectrum.) (a) Using
the data in Example 42.2 (Section 42.2), calculate the energy
and wavelength of the photon emitted by a CO molecule in an

rotational transition. (b) As a rule, molecules in
a gas at temperature T will be found in a certain excited rota-
tional energy level provided the energy of that level is no higher
than kT (see Problem 42.41). Use this rule to explain why
astronomers can detect radiation from CO in molecular clouds
even though the typical temperature of a molecular cloud is a very
low 20 K.
42.43. Spectral Lines from Isotopes. The equilibrium separa-
tion for NaCl is The mass of a sodium atom is

Chlorine has two stable isotopes, and
that have different masses but identical chemical properties.

The atomic mass of is and the atomic
mass of is (a) Calculate the wavelength of
the photon emitted in the and tran-
sitions for (b) Repeat part (a) for What are the dif-
ferences in the wavelengths for the two isotopes?
42.44. When an OH molecule undergoes a transition from the

to the vibrational level, its internal vibrational energy
increases by Calculate the frequency of vibration and
the force constant for the interatomic force. (The mass of an oxy-
gen atom is and the mass of a hydrogen atom is

42.45. The force constant for the internuclear force in a hydrogen
molecule is A hydrogen atom has mass

Calculate the zero-point vibrational energy for
(that is, the vibrational energy the molecule has in the 

ground vibrational level). How does this energy compare in mag-
nitude with the bond energy of 
42.46. Suppose the hydrogen atom in HF (see Exercise 42.13) is
replaced by an atom of deuterium, an isotope of hydrogen with a
mass of The force constant is determined by the
electron configuration, so it is the same as for the normal HF mole-
cule. (a) What is the vibrational frequency of this molecule?
(b) What wavelength of light corresponds to the energy difference
between the and levels? In what region of the spec-
trum does this wavelength lie?
42.47. The hydrogen iodide (HI) molecule has equilibrium separa-
tion 0.160 nm and vibrational frequency The
mass of a hydrogen atom is and the mass of an
iodine atom is (a) Calculate the moment of
inertia of HI about a perpendicular axis through its center of
mass. (b) Calculate the wavelength of the photon emitted in
each of the following vibration–rotation transitions: (i) 

(ii)
(iii) 
42.48. Prove this statement: For free electrons in a solid, if a state
that is at an energy above has probability P of being occu-
pied, then the probability is that a state at an energy 
below is occupied.EF

DE1 2 P
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extremely high. Why, then, don’t the electrons in a piece of copper
simply explode out of the metal?
42.54. When the pressure p on a material increases by an amount

the volume of the material will change from V to 
where is negative. The bulk modulus B of the material is
defined to be the ratio of the pressure change to the absolute
value of the fractional volume change. The greater the
bulk modulus, the greater the pressure increase required for a
given fractional volume change, and the more incompressible the
material (see Section 11.4). Since the bulk modulus can
be written as In the limit that the pressure
and volume changes are very small, this becomes

(a) Use the result of Problem 42.53 to show that the bulk modu-
lus for a system of N free electrons in a volume V at low temper-
atures is (Hint: The quantity p in the expression

is the external pressure on the system. Can you
explain why this is equal to the internal pressure of the system
itself, as found in Problem 42.53?) (b) Evaluate the bulk modulus
for the electrons in copper, which has a free-electron concentration
of Express your result in pascals. (c) The actual
bulk modulus of copper is Based on your result in
part (b), what fraction of this is due to the free electrons in copper?
(This result shows that the free electrons in a metal play a major
role in making the metal resistant to compression.) What do you
think is responsible for the remaining fraction of the bulk modulus?
42.55. In the discussion of free electrons in Section 42.5, we
assumed that we could ignore the effects of relativity. This is not a
safe assumption if the Fermi energy is greater than about 
(that is, more than about 1% of the rest energy of an electron).
(a) Assume that the Fermi energy at absolute zero, as given by
Eq. (42.20), is equal to Show that the electron concentra-
tion is

and determine the numerical value of (b) Is it a good approx-
imation to ignore relativistic effects for electrons in a metal such as
copper, for which the electron concentration is 
Explain. (c) A white dwarf star is what is left behind by a star like
the sun after it has ceased to produce energy by nuclear reactions.
(Our own sun will become a white dwarf star in another 
years or so.) A typical white dwarf has mass (compa-
rable to the sun) and radius 6000 km (comparable to that of the
earth). The gravitational attraction of different parts of the white
dwarf for each other tends to compress the star; what prevents it
from compressing is the pressure of free electrons within the star
(see Problem 42.53). Estimate the electron concentration within a
typical white dwarf star using the following assumptions: (i) the
white dwarf star is made of carbon, which has a mass per atom of
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and (ii) all six of the electrons from each carbon
atom are able to move freely throughout the star. (d) Is it a good
approximation to ignore relativistic effects in the structure of a
white dwarf star? Explain.
42.56. A variable DC battery is connected in series with a 
resistor and a p-n junction diode that has a saturation current of
0.625 mA at room temperature When a voltmeter across
the resistor reads 35.0 V, what are (a) the voltage across the
diode and (b) the resistance of the diode?

Challenge Problems
42.57. Van der Waals bonds arise from the interaction between two
permanent or induced electric dipole moments in a pair of atoms or
molecules. (a) Consider two identical dipoles, each consisting of
charges and separated by a distance d and oriented as
shown in Fig. 42.40a. Calculate the electric potential energy,
expressed in terms of the electric dipole moment for the
situation where Is the interaction attractive or repulsive,
and how does this potential energy vary with r, the separation
between the centers of the two dipoles? (b) Repeat part (a) for the
orientation of the dipoles shown in Fig. 42.40b. The dipole interac-
tion is more complicated when we have to average over the rela-
tive orientations of the two dipoles due to thermal motion or when
the dipoles are induced rather than permanent.
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Figure 42.40 Challenge Problem 42.57. 

42.58. (a) Consider the hydrogen molecule to be a simple
harmonic oscillator with an equilibrium spacing of and
estimate the vibrational energy-level spacing for The mass of a
hydrogen atom is (Hint: Estimate the force con-
stant by equating the change in Coulomb repulsion of the protons,
when the atoms move slightly closer together than to the
“spring” force. That is, assume that the chemical binding force
remains approximately constant as r is decreased slightly from 
(b) Use the results of part (a) to calculate the vibrational energy-
level spacing for the deuterium molecule, Assume that the
spring constant is the same for as for The mass of a deu-
terium atom is 3.34 3 10227 kg.
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