LEARNING GOALS

By studying this chapter, you will learn:

The two postulates of Einstein’s
special theory of relativity, and what
motivates these postulates.

Why different observers can dis-
agree about whether two events
are simultaneous.

How relativity predicts that moving
clocks run slow, and experimental
evidence that confirms this.

How the length of an object
changes due to the object’s
motion.

How the velocity of an object
depends on the frame of reference
from which it is observed.

How the theory of relativity modi-
fies the relationship between veloc-
ity and momentum.

How to solve problems involving
work and kinetic energy for parti-
cles moving at relativistic speeds.

Some of the key concepts of Ein-
stein’s general theory of relativity.
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= At Brookhaven
National Laboratory

in New York, atomic
nuclei are accelerated
to 99.995% of the ulti-
mate speed limit of the
universe—the speed of
light. Is there also an
upper limit on the
kinetic energy of a
particle?

hen the year 1905 began, Albert Einstein was an unknown 25-year-old

s }s/ clerk in the Swiss patent office. By the end of that amazing year he

had published three papers of extraordinary importance. One was an

analysis of Brownian motion; a second (for which he was awarded the Nobel

Prize) was on the photoelectric effect. In the third, Einstein introduced his special

theory of relativity, proposing drastic revisions in the Newtonian concepts of
space and time.

The special theory of relativity has made wide-ranging changes in our under-
standing of nature, but Einstein based it on just two simple postulates. One states
that the laws of physics are the same in all inertial frames of reference; the other
states that the speed of light in vacuum is the same in all inertial frames. These
innocent-sounding propositions have far-reaching implications. Here are three:
(1) Events that are simultaneous for one observer may not be simultaneous for
another. (2) When two observers moving relative to each other measure a time
interval or a length, they may not get the same results. (3) For the conservation
principles for momentum and energy to be valid in all inertial systems, Newton’s
second law and the equations for momentum and kinetic energy have to be revised.

Relativity has important consequences in all areas of physics, including elec-
tromagnetism, atomic and nuclear physics, and high-energy physics. Although
many of the results derived in this chapter may run counter to your intuition, the
theory is in solid agreement with experimental observations.

37.1 Invariance of Physical Laws

Let’s take a look at the two postulates that make up the special theory of relativ-
ity. Both postulates describe what is seen by an observer in an inertial frame of
reference, which we introduced in Section 4.2. The theory is “special” in the
sense that it applies to observers in such special reference frames.

Einstein’s First Postulate

Einstein’s first postulate, called the principle of relativity, states: The laws of
physics are the same in every inertial frame of reference. If the laws differed,
that difference could distinguish one inertial frame from the others or make one
frame somehow more “correct” than another. Here are two examples. Suppose
you watch two children playing catch with a ball while the three of you are aboard
a train moving with constant velocity. Your observations of the motion of the ball,
no matter how carefully done, can’t tell you how fast (or whether) the train is mov-
ing. This is because Newton’s laws of motion are the same in every inertial frame.
Another example is the electromotive force (emf) induced in a coil of wire by
a nearby moving permanent magnet. In the frame of reference in which the coil is
stationary (Fig. 37.1a), the moving magnet causes a change of magnetic flux
through the coil, and this induces an emf. In a different frame of reference in
which the magnet is stationary (Fig. 37.1b), the motion of the coil through a mag-
netic field induces the emf. According to the principle of relativity, both of these
frames of reference are equally valid. Hence the same emf must be induced in
both situations shown in Fig. 37.1. As we saw in Chapter 29, this is indeed the
case, so Faraday’s law is consistent with the principle of relativity. Indeed, all of
the laws of electromagnetism are the same in every inertial frame of reference.
Equally significant is the prediction of the speed of electromagnetic radiation,
derived from Maxwell’s equations (see Section 32.2). According to this analysis,
light and all other electromagnetic waves travel in vacuum with a constant speed,
now defined to equal exactly 299,792,458 m/s. (We often use the approximate value
¢ = 3.00 X 10® m/s, which is within one part in 1000 of the exact value.) As we will
see, the speed of light in vacuum plays a central role in the theory of relativity.

Einstein’s Second Postulate

During the 19th century, most physicists believed that light traveled through a
hypothetical medium called the ether; just as sound waves travel through air. If
so, the speed of light measured by observers would depend on their motion rela-
tive to the ether and would therefore be different in different directions. The
Michelson-Morley experiment, described in Section 35.5, was an effort to detect
motion of the earth relative to the ether. Einstein’s conceptual leap was to recog-
nize that if Maxwell’s equations are valid in all inertial frames, then the speed of
light in vacuum should also be the same in all frames and in all directions. In fact,
Michelson and Morley detected no ether motion across the earth, and the ether
concept has been discarded. Although Einstein may not have known about this
negative result, it supported his bold hypothesis of the constancy of the speed of
light in vacuum.

Einstein’s second postulate states: The speed of light in vacuum is the same
in all inertial frames of reference and is independent of the motion of the source.

Let’s think about what this means. Suppose two observers measure the speed
of light in vacuum. One is at rest with respect to the light source, and the other is
moving away from it. Both are in inertial frames of reference. According to the
principle of relativity, the two observers must obtain the same result, despite the
fact that one is moving with respect to the other.

If this seems too easy, consider the following situation. A spacecraft moving
past the earth at 1000 m/s fires a missile straight ahead with a speed of 2000 m/s
(relative to the spacecraft) (Fig. 37.2). What is the missile’s speed relative to the
earth? Simple, you say; this is an elementary problem in relative velocity (see
Section 3.5). The correct answer, according to Newtonian mechanics, is 3000 m/s.
But now suppose the spacecraft turns on a searchlight, pointing in the same direc-
tion in which the missile was fired. An observer on the spacecraft measures the
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The same emf is induced in the coil

whether (a) the magnet moves relative to
the coil or (b) the coil moves relative to
the magnet.
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37.2 (a) Newtonian mechanics makes correct predictions about relatively slow-moving objects; (b) it makes incorrect predictions about
the behavior of light.

(@) A spaceship (") moves with A missile (M) is fired with (b) ) ) )

speed ugs = 1000 m/s relative  speed vy = 2000 m/s A light beam (L) is emitted

to an observer on earth (). relative to the spaceship. from the spaceship a‘t speed ¢.

goe S’ -y o Ay &

4:5:’/;,3 MissIH S N Light bemuitl)
Vg = 1000 mfs Dygls' = 2000 mfs vg)s = 1000 mfs uys = c
- \z
Upyjs = 2000 rr;/s + 1000 m/s oyjs;4e + 1000 m/s
Earth Earth

NEWTONIAN MECHANICS HOLDS: Newtonian mechanics tells us NEWTONIAN MECHANICS FAILS: Newtonian mechanics tells us
correctly that the missile moves with speed Vs = 3000 m/s relative incorrectly that the light moves at a speed greater than c relative to the
to the observer on earth. observer on earth ... which would contradict Einstein’s second postulate.

speed of light emitted by the searchlight and obtains the value c. According to
Einstein’s second postulate, the motion of the light after it has left the source cannot
depend on the motion of the source. So the observer on earth who measures the
speed of this same light must also obtain the value ¢, not ¢ + 1000 m/s. This
result contradicts our elementary notion of relative velocities, and it may not
appear to agree with common sense. But “common sense” is intuition based on
everyday experience, and this does not usually include measurements of the
speed of light.

The Ultimate Speed Limit

Einstein’s second postulate immediately implies the following result:
It is impossible for an inertial observer to travel at c, the speed of light in vacuum.

We can prove this by showing that travel at ¢ implies a logical contradiction.
Suppose that the spacecraft S in Fig. 37.2b is moving at the speed of light rela-
tive to an observer on the earth, so that vg)s = c. If the spacecraft turns on a head-
light, the second postulate now asserts that the earth observer S measures the
headlight beam to be also moving at c¢. Thus this observer measures that the head-
light beam and the spacecraft move together and are always at the same point in
space. But Einstein’s second postulate also asserts that the headlight beam moves
at a speed c relative to the spacecraft, so they cannot be at the same point in
space. This contradictory result can be avoided only if it is impossible for an iner-
tial observer, such as a passenger on the spacecraft, to move at c. As we go
through our discussion of relativity, you may find yourself asking the question
Einstein asked himself as a 16-year-old student, “What would I see if [ were trav-
eling at the speed of light?” Einstein realized only years later that his question’s
basic flaw was that he could not travel at c.

The Galilean Coordinate Transformation

Let’s restate this argument symbolically, using two inertial frames of reference,
labeled S for the observer on earth and S’ for the moving spacecraft, as shown in
Fig. 37.3. To keep things as simple as possible, we have omitted the z-axes. The
x-axes of the two frames lie along the same line, but the origin O’ of frame S’
moves relative to the origin O of frame S with constant velocity « along the com-
mon x-x’-axis. We on earth set our clocks so that the two origins coincide at time
t = 0, so their separation at a later time ¢ is ut.

S W S’
Frame S’ moves relative to J‘ X

frame S with constant velocity

u along the common x-x'-axis. [~ 7[\ ——————————— === —%P

y y'
Origins O and O’ o | Lo ‘ Y
coincide at time t = 0 = 1. ut

CAUTION  Choose your inertial frame coordinates wisely Many of the equations
derived in this chapter are true only if you define your inertial reference frames as stated in
the preceding paragraph. For instance, the positive x-direction must be the direction in
which the origin O’ moves relative to the origin O. In Fig. 37.3 this direction is to the
right; if instead O’ moves to the left relative to O, you must define the positive x-direction
to be to the left.

Now think about how we describe the motion of a particle P. This might be an
exploratory vehicle launched from the spacecraft or a pulse of light from a laser.
We can describe the position of this particle by using the earth coordinates (x, y, z)
in S or the spacecraft coordinates (x’, y’, z') in S'. Figure 37.3 shows that these
are simply related by

, , (Galilean coordinate

x=x"+ ut = =z . 371
y=J LT transformation) S

These equations, based on the familiar Newtonian notions of space and time, are
called the Galilean coordinate transformation.

If particle P moves in the x-direction, its instantaneous velocity v, as meas-
ured by an observer stationary in S is v, = dx/dt. Its velocity v/ as measured by
an observer stationary in S is v/ = dx’[dr. We can derive a relationship between
v, and v, by taking the derivative with respect to ¢ of the first of Egs. (37.1):

dx  dx'

—_— = — 4
dt dt "

Now dx]/dt is the velocity v, measured in S, and dx'[dt is the velocity v/ measured
in S, so we get the Galilean velocity transformation for one-dimensional
motion:

UV, =V, tu (Galilean velocity transformation) (37.2)

Although the notation differs, this result agrees with our discussion of relative
velocities in Section 3.5.

Now here’s the fundamental problem. Applied to the speed of light in vacuum,
Eq. (37.2) says that ¢ = ¢’ + u. Einstein’s second postulate, supported subse-
quently by a wealth of experimental evidence, says that ¢ = ¢'. This is a genuine
inconsistency, not an illusion, and it demands resolution. If we accept this postu-
late, we are forced to conclude that Eqs. (37.1) and (37.2) cannot be precisely
correct, despite our convincing derivation. These equations have to be modified
to bring them into harmony with this principle.

The resolution involves some very fundamental modifications in our kine-
matic concepts. The first idea to be changed is the seemingly obvious assumption
that the observers in frames S and S’ use the same time scale, formally stated as
t = t'. Alas, we are about to show that this everyday assumption cannot be cor-
rect; the two observers must have different time scales. We must define the veloc-
ity v’ in frame S’ as v’ = dx'[dt’, not as dx’|[dr; the two quantities are not the
same. The difficulty lies in the concept of simultaneity, which is our next topic. A
careful analysis of simultaneity will help us develop the appropriate modifica-
tions of our notions about space and time.
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37.3 The position of particle P can be
described by the coordinates x and y in
frame of reference S or by x” and y’ in
frame S’.
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37.4 An event has a definite position and
time—for instance, on the pavement
directly below the center of the Eiffel
Tower at midnight on New Year’s Eve.

Test Your Understanding of Section 37.1 As a high-speed spaceship flies past
you, it fires a strobe light that sends out a pulse of light in all directions. An observer
aboard the spaceship measures a spherical wave front that spreads away from the space-
ship with the same speed c in all directions. (a) What is the shape of the wave front that
you measure? (i) spherical; (ii) ellipsoidal, with the longest axis of the ellipsoid along the
direction of the spaceship’s motion; (iii) ellipsoidal, with the shortest axis of the ellipsoid
along the direction of the spaceship’s motion; (iv) not enough information is given to
decide. (b) Is the wave front centered on the spaceship?

37.2 Relativity of Simultaneity

Measuring times and time intervals involves the concept of simultaneity. In a
given frame of reference, an event is an occurrence that has a definite position and
time (Fig. 37.4). When you say that you awoke at seven o’clock, you mean that two
events (your awakening and your clock showing 7:00) occurred simultaneously.
The fundamental problem in measuring time intervals is this: In general, two
events that are simultaneous in one frame of reference are not simultaneous in a
second frame that is moving relative to the first, even if both are inertial frames.

A Thought Experiment in Simultaneity

This may seem to be contrary to common sense. To illustrate the point, here is a
version of one of Einstein’s thought experiments—mental experiments that follow
concepts to their logical conclusions. Imagine a train moving with a speed compa-
rable to ¢, with uniform velocity (Fig. 37.5). Two lightning bolts strike a passenger
car, one near each end. Each bolt leaves a mark on the car and one on the ground at
the instant the bolt hits. The points on the ground are labeled A and B in the figure,
and the corresponding points on the car are A’ and B’. Stanley is stationary on the
ground at O, midway between A and B. Mavis is moving with the train at O’ in the
middle of the passenger car, midway between A’ and B’. Both Stanley and Mavis
see both light flashes emitted from the points where the lightning strikes.

Suppose the two wave fronts from the lightning strikes reach Stanley at O
simultaneously. He knows that he is the same distance from B and A, so Stanley
concludes that the two bolts struck B and A simultaneously. Mavis agrees that the
two wave fronts reached Stanley at the same time, but she disagrees that the
flashes were emitted simultaneously.

Stanley and Mavis agree that the two wave fronts do not reach Mavis at the
same time. Mavis at O’ is moving to the right with the train, so she runs into the
wave front from B’ before the wave front from A’ catches up to her. However,
because she is in the middle of the passenger car equidistant from A" and B’', her
observation is that both wave fronts took the same time to reach her because both
moved the same distance at the same speed c. (Recall that the speed of each
wave front with respect to either observer is c.) Thus she concludes that the
lightning bolt at B’ struck before the one at A’. Stanley at O measures the two
events to be simultaneous, but Mavis at O’ does not! Whether or not two events
at different x-axis locations are simultaneous depends on the state of motion of
the observer.

You may want to argue that in this example the lightning bolts really are
simultaneous and that if Mavis at O’ could communicate with the distant points
without the time delay caused by the finite speed of light, she would realize this.
But that would be erroneous; the finite speed of information transmission is not
the real issue. If O’ is midway between A" and B’, then in her frame of reference
the time for a signal to travel from A’ to O’ is the same as that from B’ to O".
Two signals arrive simultaneously at O’ only if they were emitted simultaneously
at A’ and B’. In this example they do not arrive simultaneously at O', and so
Mavis must conclude that the events at A" and B’ were not simultaneous.
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Furthermore, there is no basis for saying that Stanley is right and Mavis is
wrong, or vice versa. According to the principle of relativity, no inertial frame of
reference is more correct than any other in the formulation of physical laws. Each
observer is correct in his or her own frame of reference. In other words, simul-
taneity is not an absolute concept. Whether two events are simultaneous depends
on the frame of reference. As we mentioned at the beginning of this section,
simultaneity plays an essential role in measuring time intervals. It follows that
the time interval between two events may be different in different frames of refer-
ence. So our next task is to learn how to compare time intervals in different
frames of reference.

Test Your Understanding of Section 37.2  Stanley, who works for the rail &;
system shown in Fig. 37.5, has carefully synchronized the clocks at all of the rail L)
stations. At the moment that Stanley measures all of the clocks striking noon, Mavis

is on a high-speed passenger car traveling from Ogdenville toward North Haverbrook.
According to Mavis, when the Ogdenville clock strikes noon, what time is it in North
Haverbrook? (i) noon; (ii) before noon; (iii) after noon.
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37.5 A thought experiment in simultaneity.
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17.1

Relativity of Time

CHAPTER 37 Relativity

37.3 Relativity of Time Intervals

Actlv We can derive a quantitative relationship between time intervals in different
PH));'SLiEES coordinate systems. To do this, let’s consider another thought experiment. As

before, a frame of reference S’ moves along the common x-x’'-axis with constant
speed u relative to a frame S. As discussed in Section 37.1, u must be less than the
speed of light c. Mavis, who is riding along with frame S’, measures the time
interval between two events that occur at the same point in space. Event 1 is
when a flash of light from a light source leaves O'. Event 2 is when the flash
returns to O', having been reflected from a mirror a distance d away, as shown in
Fig. 37.6a. We label the time interval At,, using the subscript zero as a reminder
that the apparatus is at rest, with zero velocity, in frame S’. The flash of light
moves a total distance 2d, so the time interval is

Aty = - (37.3)

The round-trip time measured by Stanley in frame S is a different interval Ar; in
his frame of reference the two events occur at different points in space. During
the time Az, the source moves relative to S a distance u At (Fig. 37.6b). In S’ the
round-trip distance is 2d perpendicular to the relative velocity, but the round-trip
distance in S is the longer distance 2/, where

I=\|d*+

uAr)
2

In writing this expression, we have assumed that both observers measure the
same distance d. We will justify this assumption in the next section. The speed of
light is the same for both observers, so the round-trip time measured in S is

21

2
Ar==—==1d*+ (37.4)
C C

ulr)
2

We would like to have a relationship between At and At that is independent of d.
To get this, we solve Eq. (37.3) for d and substitute the result into Eq. (37.4),

obtaining
Az \2 2
At = 2\/(C 0) + (”At) (37.5)
c 2 2

37.6 (a) Mavis, in frame of reference S’, observes a light pulse emitted from a source at O and reflected back along the same line.
(b) How Stanley (in frame of reference S) and Mavis observe the same light pulse. The positions of O’ at the times of departure and
return of the pulse are shown.

(a) (b) Mavis observes a light pulse
emitted from a source at O" and
reflected back along the same line.

Mirror

L

e
Source L — u At |
0' Mavis measures R
Stanley measures a longer time interval Az

time interval Af,. . o ) s
The light pulse travels at same speed as in S,
Stanley observes but travels a greater distance than in §'.

the same light

pulse following a diagonal path.

Now we square this and solve for Af; the result is
At,
V1 — u?/c?

Since the quantity V1 — u?[c?is less than 1, At is greater than Az,: Thus Stanley
measures a longer round-trip time for the light pulse than does Mavis.

Ar =

Time Dilation

We may generalize this important result. In a particular frame of reference, sup-
pose that two events occur at the same point in space. The time interval between
these events, as measured by an observer at rest in this same frame (which we
call the rest frame of this observer), is Af,. Then an observer in a second frame
moving with constant speed u relative to the rest frame will measure the time
interval to be At, where

Aty . o
At = ——— (time dilation) (37.6)
1 — uZ/C2

We recall that no inertial observer can travel at u = ¢ and we note that
V1 — u?[c? is imaginary for u > c. Thus Eq. (37.6) gives sensible results only
when u < ¢. The denominator of Eq. (37.7) is always smaller than 1, so Af is
always larger than At,. Thus we call this effect time dilation.

Think of an old-fashioned pendulum clock that has one second between ticks,
as measured by Mavis in the clock’s rest frame; this is A#,. If the clock’s rest
frame is moving relative to Stanley, he measures a time between ticks Az that is
longer than one second. In brief, observers measure any clock to run slow if it
moves relative to them (Fig. 37.7). Note that this conclusion is a direct result of
the fact that the speed of light in vacuum is the same in both frames of reference.

The quantity 1/\V'1 — u?[c? in Eq. (37.6) appears so often in relativity that it
is given its own symbol vy (the Greek letter gamma):

1
YE (37.7)
1 - uz/c2

In terms of this symbol, we can express the time dilation formula, Eq. (37.6), as
At = y Aty (time dilation) (37.8)

As a further simplification, u/c is sometimes given the symbol 3 (the Greek letter
beta); theny = 1/\V1 — g%

Figure 37.8 shows a graph of vy as a function of the relative speed u of two
frames of reference. When u is very small compared to ¢, u*[c? is much smaller
than 1 and 7y is very nearly equal to 1. In that limit, Eqs. (37.6) and (37.8)
approach the Newtonian relationship At = Ag,, corresponding to the same time
interval in all frames of reference.

If the relative speed u is great enough that vy is appreciably greater than 1, the
speed is said to be relativistic; if the difference between y and 1 is negligibly
small, the speed u is called nonrelativistic. Thus u = 6.00 X 10’ m/s = 0.200¢
(for which y = 1.02) is a relativistic speed, but u = 6.00 X 10* m/s = 0.000200¢
(for which y = 1.00000002) is a nonrelativistic speed.

Proper Time

There is only one frame of reference in which a clock is at rest, and there are infi-
nitely many in which it is moving. Therefore the time interval measured between
two events (such as two ticks of the clock) that occur at the same point in a
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37.7 This image shows an exploding star,
called a supernova, within a distant galaxy.
The brightness of a typical supernova
decays at a certain rate. But supernovae
that are moving away from us at a substan-
tial fraction of the speed of light decay
more slowly, in accordance with Eq. (37.6).
The decaying supernova is a moving
“clock” that runs slow.

Galaxy

.
~——Supernova

37.8 The quantity y = 1/V'1 — u?[c? as
a function of the relative speed u of two
frames of reference.

As speed u approaches the speed of light ¢,
7y approaches infinity.
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37.9 A frame of reference pictured as a
coordinate system with a grid of synchro-
nized clocks.

y

__'_x

[ | ‘.)Ji [ [

The grid is three dimensional; identical planes
of clocks lie in front of and behind the page,
connected by grid lines perpendicular to the
page.

particular frame is a more fundamental quantity than the interval between events
at different points. We use the term proper time to describe the time interval Az,
between two events that occur at the same point.

CAUTION  Measuring time intervals It is important to note that the time interval Az
in Eq. (37.6) involves events that occur at different space points in the frame of reference S.
Note also that any differences between At and the proper time At are not caused by differ-
ences in the times required for light to travel from those space points to an observer at rest
in S. We assume that our observer is able to correct for differences in light transit times, just
as an astronomer who’s observing the sun understands that an event seen now on earth
actually occurred 500 s ago on the sun’s surface. Alternatively, we can use fwo observers,
one stationary at the location of the first event and the other at the second, each with his or
her own clock. We can synchronize these two clocks without difficulty, as long as they are
at rest in the same frame of reference. For example, we could send a light pulse simultane-
ously to the two clocks from a point midway between them. When the pulses arrive, the
observers set their clocks to a prearranged time. (But note that clocks that are synchronized
in one frame of reference are not in general synchronized in any other frame.)

In thought experiments, it’s often helpful to imagine many observers with syn-
chronized clocks at rest at various points in a particular frame of reference. We
can picture a frame of reference as a coordinate grid with lots of synchronized
clocks distributed around it, as suggested by Fig.37.9. Only when a clock is mov-
ing relative to a given frame of reference do we have to watch for ambiguities of
synchronization or simultaneity.

Throughout this chapter we will frequently use phrases like “Stanley observes
that Mavis passes the point x = 5.00 m, y = 0, z = 0 at time 2.00 s.” This means
that Stanley is using a grid of clocks in his frame of reference, like the grid shown
in Fig. 37.9, to record the time of an event. We could restate the phrase as “When
Mavis passes the point at x = 5.00 m, y = 0, z = 0, the clock at that location in
Stanley’s frame of reference reads 2.00 s.” We will avoid using phrases like
“Stanley sees that Mavis is a certain point at a certain time,” because there is a
time delay for light to travel to Stanley’s eye from the position of an event.

DB eG4 AJAN Time Dilation @’

IDENTIFY the relevant concepts: The concept of time dilation is proper time At,. The proper time is the time interval between
used whenever we compare the time intervals between events as two events in a frame of reference in which the two events

measured by observers in different inertial frames of reference.

SET UP the problem using the following steps:

1. To describe a time interval, you must first decide what two
events define the beginning and the end of the interval. You
must also identify the two frames of reference in which the

time interval is measured.
2. Determine what the target variable is.

EXECUTE the solution as follows:

occur at the same point in space. The dilated time A is the
longer time interval between the same two events as measured
in a frame of reference that has a speed u relative to the first
frame. The two events occur at different points as measured in
the second frame. You will need to decide in which frame the
time interval is Az, and in which frame it is Az.

2. Use Eq. (37.6) or (37.8) to relate Az, and At, and then solve for
the target variable.

EVALUATE your answer: Note that Az is never smaller than Az,

1. In many problems involving time dilation, the time interval and u is never greater than c. If your results suggest otherwise, you
between events as measured in one frame of reference is the need to rethink your calculation.

Time dilation at 0.990¢

High-energy subatomic particles coming from space interact with
atoms in the earth’s upper atmosphere, producing unstable parti-
cles called muons. A muon decays with a mean lifetime of
2.20 X 107% s as measured in a frame of reference in which it is at
rest. If a muon is moving at 0.990c (about 2.97 X 10% m/s) relative
to the earth, what will you (an observer on earth) measure its mean
lifetime to be?

IDENTIFY: This problem concerns the muon’s lifetime, which is
the time interval between two events: the production of the muon
and its subsequent decay. This lifetime is measured by two differ-
ent observers: one who observes the muon at rest and another
(you) who observes it moving at 0.990c.

SET UP: Let S be your frame of reference on earth, and let S” be
the muon’s frame of reference. The target variable is the interval
between these events as measured in S.

EXECUTE: The time interval between the two events as measured in
§',2.20 X 107%s, is a proper time, since the two events occur at the
same position relative to the muon. Hence Af, = 2.20 X 107 s,
The muon moves relative to the earth between the two events, so the
two events occur at different positions as measured in S and the time
interval in that frame is A (the target variable). From Eq. (37.6),
Aty 220 X 107%s
At = =
V1= V1 - (0990)2

Time dilation at jetliner speeds

An airplane flies from San Francisco to New York (about 4800 km,
or 4.80 X 10°m) at a steady speed of 300 m/s (about 670 mi/h).
How much time does the trip take, as measured by an observer on
the ground? By an observer in the plane?

IDENTIFY: Here we are interested in what our two observers
measure for the time interval between the airplane departing from
San Francisco and landing in New York.

=156 X 10°s

SET UP: The target variables are the time intervals between these
events as measured in the frame of reference of the ground S and in
the frame of reference of the airplane S’.

EXECUTE: The two events occur at different positions (San Fran-
cisco and New York) as measured in S, so the time interval meas-
ured by ground observers corresponds to Az in Eq. (37.6). To find
it, we simply divide the distance by the speed:

~4.80 X 10°m
300 m/s

In the airplane’s frame S’, San Francisco and New York passing
under the plane occur at the same point (the position of the plane).
The time interval in the airplane is a proper time, corresponding to
At, in Eq. (37.6). We have

u? (300 m/s)?

=5 = 100X 107"
¢ (3.00 X 10°m/s)?

Just when is it proper?

Mavis boards a spaceship and then zips past Stanley on earth at a
relative speed of 0.600c. At the instant she passes, both start
timers. (a) At the instant when Stanley measures that Mavis has
traveled 9.00 X 10’ m past him, what does Mavis’s timer read?
(b) At the instant when Mavis reads 0.400 s on her timer, what
does Stanley read on his?

SOLUTION

IDENTIFY: This problem involves time dilation for two different
sets of events: the starting and stopping of Mavis’s timer, and the
starting and stopping of Stanley’s timer.

SET UP: Let S be Stanley’s frame of reference, and let S’ be
Mavis’s frame of reference. The two events of interest in part (a)

= 1.60 X 10*s (about 43 hours)
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EVALUATE: Our result predicts that the mean lifetime of the muon
in the earth frame (A¢) is about seven times longer than in the
muon’s frame (At,). This prediction has been verified experimen-
tally; indeed, it was the first experimental confirmation of the time
dilation formula, Eq. (37.6).

From Eq. (37.6),

Aty = (1.60 X 10*s)V1 — 1.00 X 10712

The radical can’t be evaluated with adequate precision with an
ordinary calculator. But we can approximate it using the binomial
theorem (see Appendix B):

1
(1—-1.00x%x10"2)1?=1- (E)(I.OO X 107'12) + - -
The remaining terms are of the order of 107 or smaller and can
be discarded. The approximate result for At is

Aty = (1.60 X 10*s) (1 — 0.50 X 107'2)

The proper time A#,, measured in the airplane, is very slightly less
(by less than one part in 10'?) than the time measured on the ground.

EVALUATE: We don’t notice such effects in everyday life. But
present-day atomic clocks (see Section 1.3) can attain a precision
of about one part in 10", A cesium clock traveling a long distance
in an airliner has been used to measure this effect and thereby ver-
ify Eq. (37.6) even at speeds much less than c.

are when Mavis passes Stanley and when Stanley measures Mavis
as having traveled a distance of 9.00 X 107 m; the target variables
are the time intervals between these two events as measured in §
and in S’. The two events in part (b) are when Mavis passes
Stanley and when Mavis measures an elapsed time of 0.400 s; the
target variable is the time interval between these two events as
measured in S. As we will see, understanding this example hinges
on understanding the difference between these two pairs of events.

EXECUTE: (a) The two events, Mavis passing the earth and Mavis
reaching x = 9.00 X 107 m as measured by Stanley, occur at differ-
ent positions in Stanley’s frame but at the same position in Mavis’s
frame. Hence the time interval in Stanley’s frame S is Az, while the
time interval in Mavis’s frame S’ is the proper time Az,. As measured

Continued
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by Stanley, Mavis moves at 0.600c = 0.600(3.00 X 10® ms) =
1.80 X 10®m/s and travels the 9.00 X 10’m in a time Ar =
(9.00 X 10"m)/(1.80 X 10* m/s) = 0.500s. From Eq. (37.6),
Mavis’s timer reads an elapsed time of

Aty = At V1T — u?[c? = 0500 V1 — (0.600)% = 0.400 s

(b) It is tempting—but wrong—to answer that Stanley’s timer
reads 0.500 s. We are now considering a different pair of events,
the starting and the reading of Stanley’s timer, that both occur at
the same point in Stanley’s earth frame S. These two events occur
at different positions in Mavis’s frame S’, so the time interval of
0.400 s that she measures between these events is equal to At

(In her frame, Stanley passes her at time zero and is a distance
behind her of (1.80 X 10° m/s) (0.400's) = 7.20 X 10" m at time
0.400 s.) The time on Stanley’s timer is now the proper time:

Aty = At V1 — u?[c? = 04005V 1 — (0.600)> = 0.320s

EVALUATE: If the difference between 0.500 s and 0.320 s still trou-
bles you, consider the following: Stanley, taking proper account of
the transit time of a signal from x = 9.00 X 107 m, says that Mavis
passed that point and his timer read 0.500 s at the same instant. But
Mavis says that those two events occurred at different positions and
were not simultaneous—she passed the point at the instant his timer
read 0.320 s. This example shows the relativity of simultaneity.

Ay
Physics
172 Relativity of Length

The Twin Paradox

Equations (37.6) and (37.8) for time dilation suggest an apparent paradox called
the twin paradox. Consider identical twin astronauts named Eartha and Astrid.
Eartha remains on earth while her twin Astrid takes off on a high-speed trip
through the galaxy. Because of time dilation, Eartha observes Astrid’s heartbeat
and all other life processes proceeding more slowly than her own. Thus to Eartha,
Astrid ages more slowly; when Astrid returns to earth she is younger (has aged
less) than Eartha.

Now here is the paradox: All inertial frames are equivalent. Can’t Astrid make
exactly the same arguments to conclude that Eartha is in fact the younger? Then
each twin measures the other to be younger when they’re back together, and
that’s a paradox.

To resolve the paradox, we recognize that the twins are not identical in all
respects. While Eartha remains in an approximately inertial frame at all times,
Astrid must accelerate with respect to that inertial frame during parts of her trip in
order to leave, turn around, and return to earth. Eartha’s reference frame is always
approximately inertial; Astrid’s is often far from inertial. Thus there is a real phys-
ical difference between the circumstances of the two twins. Careful analysis
shows that Eartha is correct; when Astrid returns, she is younger than Eartha.

Test Your Understanding of Section 37.3 Samir (who is standing on the &;
ground) starts his stopwatch at the instant that Maria flies past him in her space- vg)
ship at a speed of 0.600c. At the same instant, Maria starts her stopwatch. (a) As
measured in Samir’s frame of reference, what is the reading on Maria’s stopwatch at the
instant that Samir’s stopwatch reads 10.0 s? (i) 10.0 s; (ii) less than 10.0 s; (iii) more than
10.0 s. (b) As measured in Maria’s frame of reference, what is the reading on Samir’s
stopwatch at the instant that Maria’s stopwatch reads 10.0 s? (i) 10.0 s; (ii) less than
10.0 s; (iii) more than 10.0 s.

37.4 Relativity of Length

Not only does the time interval between two events depend on the observer’s
frame of reference, but the distance between two points may also depend on the
observer’s frame of reference. The concept of simultaneity is involved. Suppose
you want to measure the length of a moving car. One way is to have two assis-
tants make marks on the pavement at the positions of the front and rear bumpers.
Then you measure the distance between the marks. But your assistants have to
make their marks at the same time. If one marks the position of the front bumper
at one time and the other marks the position of the rear bumper half a second
later, you won’t get the car’s true length. Since we’ve learned that simultaneity
isn’t an absolute concept, we have to proceed with caution.

Lengths Parallel to the Relative Motion

To develop a relationship between lengths that are measured parallel to the direc-
tion of motion in various coordinate systems, we consider another thought exper-
iment. We attach a light source to one end of a ruler and a mirror to the other end.
The ruler is at rest in reference frame S’, and its length in this frame is [,
(Fig. 37.10a). Then the time Af, required for a light pulse to make the round trip
from source to mirror and back is

Atg=""° (379)

This is a proper time interval because departure and return occur at the same
pointin S".

In reference frame S the ruler is moving to the right with speed u during this
travel of the light pulse (Fig. 37.10b). The length of the ruler in S is /, and the
time of travel from source to mirror, as measured in S, is Az,. During this interval
the ruler, with source and mirror attached, moves a distance u At¢,. The total
length of path d from source to mirror is not /, but rather

d =1+ ulr (37.10)
The light pulse travels with speed c, so it is also true that
d = ¢ Ar, (3711)
Combining Egs. (37.10) and (37.11) to eliminate d, we find
cAty, =1+ ult or

l
At = p— (37.12)

(Dividing the distance [ by ¢ — u does not mean that light travels with speed
¢ — u, but rather that the distance the pulse travels in S is greater than [.)

In the same way we can show that the time At, for the return trip from mirror
to source is

/

At, = 3713
2 ctu ( )

(a) o Mavis

Source Mirror

ly s’

a
The ruler is stationary in Mavis’s frame of reference S'.
The light pulse travels a distance / from the light source
to the mirror.

(b)

S The ruler moves at speed u in Stanley’s frame of reference S.
The light pulse travels a distance / (the length of the ruler
measured in §') plus an additional distance u Ar; from the
Stanley light source to the mirror.
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37.10 (@) Aruler is at rest in Mavis’s
frame S’. A light pulse is emitted from a
source at one end of the ruler, reflected by
a mirror at the other end, and returned to
the source position. (b) Motion of the light
pulse as measured in Stanley’s frame S.
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37.11 The speed at which electrons tra-
verse the 3-km beam line of the Stanford
Linear Accelerator Center is slower than ¢
by less than 1 cm/s. As measured in the
reference frame of such an electron, the
beam line (which extends from the top to
the bottom of this photograph) is only
about 15 cm long!

Beam line

The total time At = At + At, for the round trip, as measured in S, is
l l 21

+ —
c—u c+u (1 —u?c?)

(37.14)

We also know that Ar and Az, are related by Eq. (37.6) because At is a proper
time in S’. Thus EQ. (37.9) for the round-trip time in the rest frame S’ of the ruler
becomes

uz_%

2 (37.15)
C C

Finally, combining Eqs. (37.14) and (37.15) to eliminate Az and simplifying, we

obtain
w1
0 .
L=l |1——5= ; (Iength contraction) (37.16)
G

[We have used the quantity y = 1/\/1 — u?[c? defined in Eq. (37.7).] Thus the
length [ measured in S, in which the ruler is moving, is shorter than the length [,
measured in its rest frame S'.

CAUTION Length contraction is real This is not an optical illusion! The ruler really
is shorter in reference frame S than it is in S".

A length measured in the frame in which the body is at rest (the rest frame of
the body) is called a proper length; thus /; is a proper length in S’, and the length
measured in any other frame moving relative to S’ is less than [,. This effect is
called length contraction.

When u is very small in comparison to ¢, 7y approaches 1. Thus in the limit of
small speeds we approach the Newtonian relationship [ = [/,. This and the corre-
sponding result for time dilation show that Egs. (37.1), the Galilean coordinate
transformation, are usually sufficiently accurate for relative speeds much smaller
than ¢. If u is a reasonable fraction of ¢, however, the quantity V1 — u?/c? can
be appreciably less than 1. Then / can be substantially smaller than /), and the
effects of length contraction can be substantial (Fig. 37.11).

Lengths Perpendicular to the Relative Motion

We have derived Eq. (37.16) for lengths measured in the direction parallel to the
relative motion of the two frames of reference. Lengths that are measured perp-
endicular to the direction of motion are not contracted. To prove this, consider
two identical meter sticks. One stick is at rest in frame S and lies along the posi-
tive y-axis with one end at O, the origin of S. The other is at rest in frame S' and
lies along the positive y’-axis with one end at O’, the origin of S’. Frame S’
moves in the positive x-direction relative to frame S. Observers Stanley and
Mavis, at rest in S and S’ respectively, station themselves at the 50-cm mark of
their sticks. At the instant the two origins coincide, the two sticks lie along the
same line. At this instant, Mavis makes a mark on Stanley’s stick at the point that
coincides with her own 50-cm mark, and Stanley does the same to Mavis’s stick.

Suppose for the sake of argument that Stanley observes Mavis’s stick as
longer than his own. Then the mark Stanley makes on her stick is below its center.
In that case, Mavis will think Stanley’s stick has become shorter, since half of its
length coincides with less than half her stick’s length. So Mavis observes moving
sticks getting shorter and Stanley observes them getting longer. But this implies an
asymmetry between the two frames that contradicts the basic postulate of relativity
that tells us all inertial frames are equivalent. We conclude that consistency with the
postulates of relativity requires that both observers measure the rulers as having the
same length, even though to each observer one of them is stationary and the other is
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// . Mavis

37.12 The meter sticks are perpendicular
to the relative velocity. For any value of u,
both Stanley and Mavis measure either
meter stick to have a length of 1 meter.

Stanley

T
) i

moving (Fig. 37.12). So there is no length contraction perpendicular to the direction
of relative motion of the coordinate systems. We used this result in our derivation of
Eq. (37.6) in assuming that the distance d is the same in both frames of reference.

For example, suppose a moving rod of length /, makes an angle 6, with the
direction of relative motion (the x-axis) as measured in its rest frame. Its length
component in that frame parallel to the motion, [ cosf,, is contracted to
(Iycosby) / v. However, its length component perpendicular to the motion, /,sin 6,

remains the same.

OLEN RTINS YPE Length Contraction

IDENTIFY the relevant concepts: The concept of length contrac-
tion is used whenever we compare the length of an object as meas-
ured by observers in different inertial frames of reference.

SET UP the problem using the following steps:

1. Decide what defines the length in question. If the problem
statement describes an object such as a ruler, it is just the dis-
tance between the ends of the object. If, however, the problem
is about a distance between two points with no object between
them, it can help to envision a ruler or rod that extends from
one point to the other.

2. Determine what the target variable is.

EXECUTE the solution as follows:
1. Determine the reference frame in which the object in question
is at rest. In this frame, the length of the object is its proper

How long is the spaceship?

A spaceship flies past earth at a speed of 0.990c. A crew member
on board the spaceship measures its length, obtaining the value
400 m. What length do observers measure on earth?

IDENTIFY: This problem asks us to relate the length of the
spaceship—that is, the distance from its nose to its tail—as meas-
ured by observers in two different frames of reference: one on
board the spaceship and the other on earth.

SET UP: The length in question is along the direction of relative
motion (Fig. 37.13), so there will be length contraction as meas-
ured in one of the frames of reference. Our target variable is the
length measured in the earth frame.

EXECUTE: The 400-m length of the spaceship is the proper length
Iy because it is measured in the frame in which the spaceship is

()
length /. In a second reference frame moving at speed u rela-
tive to the first frame, the object has contracted length /.

2. Keep in mind that length contraction occurs only for lengths
parallel to the direction of relative motion of the two frames.
Any length that is perpendicular to the relative motion is the
same in both frames.

3. Use Eq. (37.16) to relate [ and [,, and then solve for the target
variable.

EVALUATE your answer:  Check that your answers make sense: [
is never larger than /,, and u is never greater than c.

37.13 Measuring the length of a moving spaceship.

lp =400 m ‘

The two observers on earth (§') must measure x, and x; simultaneously
to obtain the correct length / = x, — x; in their frame of reference.

Continued



1282 CHAPTER 37 Relativity

at rest. We want to find the length / measured by observers on
earth. From Eq. (37.16),

2

= ly[1— "5 = (400m) V1 — (0.990)?

c
= 56.4 m

EVALUATE: This answer makes sense: The spaceship is shorter in
a frame in which it is in motion than in a frame in which it is at

BElCKYEN How far apart are the observers?

The two observers mentioned in Example 37.4 are 56.4 m apart on
the earth. How far apart does the spaceship crew measure them to be?

IDENTIFY: The two sets of observers are the same as in Exam-
ple 37.4, but now the distance being measured is the separation
between the two earth observers.

SET UP: The distance between the earth observers as measured on
earth is a proper length, since the two observers are at rest in the
earth frame. (Think of a length of pipe 56.4 m long that extends
from O, to O, in Fig. 37.13. This pipe is at rest in the earth frame,
so its length is a proper length.) The earth is moving relative to the
spaceship at 0.990c, so the spaceship crew will measure a distance
shorter than 56.4 m between the two earth observers. The value
that they measure is our target variable.

EXECUTE: With [, = 56.4 m and u = 0.990c, the length [ that the
crew members measure is

2

[= 1l [1 -5 = (564m) V1~ (0.990)?

c
= 7.96 m

(O ICLITEISEIN YA Moving with a muon

As was stated in Example 37.1, a muon has, on average, a proper
lifetime of 2.20 X 107®s and a dilated lifetime of 15.6 X 107®s
in a frame in which its speed is 0.990c. Multiplying constant
speed by time to find distance gives 0.990(3.00 X 10® m/s) X
(220 X 107°s) =653m  and  0.990(3.00 X 10®m/s) X
(15.6 X 107°s) = 4630 m. Interpret these two distances.

If an average muon moves at 0.990c past observers, they will
measure it to be created at one point and then to decay
15.6 X 1076 s later at another point 4630 m away. For example,
this muon could be created level with the top of a mountain and
then move straight down to decay at its base 4630 m below.
However, an observer moving with an average muon will
say that it traveled only 653 m because it existed for only
2.20 X 107%s. To show that this answer is completely consistent,

rest. To measure the length [/, two observers with synchronized
clocks could measure the positions of the two ends of the space-
ship simultaneously in the earth’s reference frame, as shown in
Fig. 37.13. (These two measurements will not appear simultaneous
to an observer in the spaceship.)

EVALUATE: This answer does not say that the crew measures their
spaceship to be both 400 m long and 7.96 m long. The observers
on earth measure the spaceship to have a contracted length of
56.4 m because they are 56.4 m apart when they measure the posi-
tions of the ends at what they measure to be the same instant.
(Viewed from the spaceship frame, the observers do not measure
those positions simultaneously.) The crew then measures the 56.4 m
proper length to be contracted to 7.96 m. The key point is that the
measurements made in Example 37.4 (in which the earth observers
measure the distance between the ends of the spaceship) are differ-
ent from those made in this example (in which the spaceship crew
measures the distance between the earth observers).

consider the mountain. The 4630-m distance is its height, a proper
length in the direction of motion. Relative to the observer traveling
with this muon, the mountain moves up at 0.990c¢ with the 4630-m
length contracted to

2
I=ln 1~ 5= (4630m) V1 — (0.990)2
C
= 653m

Thus we see that length contraction is consistent with time dila-
tion. The same is true for an electron moving at speed « in a linear
accelerator (see Fig. 37.11). Compared to the values measured by a
physicist standing alongside the accelerator, an observer riding
along with the electron would measure the accelerator’s length and

the time to travel that length to both be shorter by a factor of
Vi— u?lc

How an Object Moving Near ¢ Would Appear

Let’s think a little about the visual appearance of a moving three-dimensional
body. If we could see the positions of all points of the body simultaneously, it
would appear to shrink only in the direction of motion. But we dont see all the
points simultaneously; light from points farther from us takes longer to reach us
than does light from points near to us, so we see the farther points at the positions
they had at earlier times.

Suppose we have a rectangular rod with its faces parallel to the coordinate
planes. When we look end-on at the center of the closest face of such a rod at rest,
we see only that face. (See the center rod in computer-generated Fig. 37.14a). But
when that rod is moving past us toward the right at an appreciable fraction of the
speed of light, we may also see its left side because of the earlier-time effect just
described. That is, we can see some points that we couldn’t see when the rod was
at rest because the rod moves out of the way of the light rays from those points to
us. Conversely, some light that can get to us when the rod is at rest is blocked by
the moving rod. Because of all this, the rods in Figs. 37.14b and 37.14c appear
rotated and distorted.

Test Your Understanding of Section 37.4 A miniature spaceship is flying @
past you, moving horizontally at a substantial fraction of the speed of light. At a v;)
certain instant, you observe that the nose and tail of the spaceship align exactly with

the two ends of a meter stick that you hold in your hands. Rank the following distances in
order from longest to shortest: (i) the proper length of the meter stick; (ii) the proper length
of the spaceship; (iii) the length of the spaceship measured in your frame of reference;
(iv) the length of the meter stick measured in the spaceship’s frame of reference.

37.5 The Lorentz Transformations

In Section 37.1 we discussed the Galilean coordinate transformation equations,
Egs. (37.1). They relate the coordinates (x, y, z) of a point in frame of reference
S to the coordinates (x’, y’, z') of the point in a second frame S’. The second
frame moves with constant speed u relative to S in the positive direction along
the common x-x'-axis. This transformation also assumes that the time scale is the
same in the two frames of reference, as expressed by the additional relationship
t = t'. This Galilean transformation, as we have seen, is valid only in the limit
when u approaches zero. We are now ready to derive more general transforma-
tions that are consistent with the principle of relativity. The more general rela-
tionships are called the Lorentz transformations.

The Lorentz Coordinate Transformation

Our first question is this: When an event occurs at point (x, y, z) at time ¢, as
observed in a frame of reference S, what are the coordinates (x’, y', z') and time
t" of the event as observed in a second frame S’ moving relative to S with con-
stant speed u in the +x-direction?

To derive the coordinate transformation, we refer to Fig. 37.15 (next page),
which is the same as Fig. 37.3. As before, we assume that the origins coincide at
the initial time r = 0 = ¢'. Then in S the distance from O to O’ at time ¢ is still
ut. The coordinate x’ is a proper length in ', so in § it is contracted by the factor
1/y =V'1 — u?[c?, as in Eq. (37.16). Thus the distance x from O to P, as seen in
S, is not simply x = ut + x’, as in the Galilean coordinate transformation, but

2

u
x=ut+x\|1—— (37.17)

C
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37.14 Computer simulation of the appear-
ance of an array of 25 rods with square
cross section. The center rod is viewed
end-on. The simulation ignores color
changes in the array caused by the Doppler
effect (see Section 37.6).

(a) Array at rest
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(b) Array moving to the right at 0.2¢
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(c) Array moving to the right at 0.9¢
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37.15 As measured in frame of reference
S, x' is contracted to x'[y, so x = ut + x'[y
and x' =y (x — ut).

y y The Lorentz coordinate
s 5 transformation relates
Frame S’ moves relative to )— x’ )— the spacetime coordinates
frame S with constant X of an event as measured
velocity u alongthe o —————————-— F————p ¢ in the two frames:
common x-x'-axis. 1\ (x, y, z, t) in frame S and
y y' .y, 7, t)in frame §'.
Origins O and O’ 0] | N o ‘ .
coincide at time t = 0 = 1. ut

Solving this equation for x’, we obtain

X — ut
X' =— (37.18)
1 — u?/c?

Equation (37.18) is part of the Lorentz coordinate transformation; another
part is the equation giving ¢’ in terms of x and 7. To obtain this, we note that
the principle of relativity requires that the form of the transformation from S
to S’ be identical to that from S’ to S. The only difference is a change in the
sign of the relative velocity component u#. Thus from Eq. (37.17) it must be

true that
’ ’ uz
x'=—ut' +x\|1 —— (37.19)
C

We now equate Eqgs. (37.18) and (37.19) to eliminate x'. This gives us an equa-
tion for ¢’ in terms of x and 7. We leave the algebraic details for you to work out;
the result is

t — ux/c?
= — (37.20)
1 — u?/c?
As we discussed previously, lengths perpendicular to the direction of relative
motion are not affected by the motion, so y’ = yand 7’ = z.
Collecting all these transformation equations, we have

X — ut ( t)
X'=—F—=vx—u
1—142/c2

y =Yy (Lorentz coordinate 3721)

S % transformation)

t — ux/c?

t' = 7# — e = y(r — ux/c?)

These equations are the Lorentz coordinate transformation, the relativistic gener-
alization of the Galilean coordinate transformation, Egs. (37.1) and ¢ = ¢'. For
values of u that approach zero, the radicals in the denominators and vy approach 1,
and the ux/c? term approaches zero. In this limit, Eqs. (37.21) become identical
to Egs. (37.1) along with # = ¢'. In general, though, both the coordinates and time
of an event in one frame depend on its coordinates and time in another frame.
Space and time have become intertwined; we can no longer say that length and
time have absolute meanings independent of the frame of reference. For this rea-
son, we refer to time and the three dimensions of space collectively as a four-
dimensional entity called spacetime, and we call (x, y, z, t) together the
spacetime coordinates of an event.

The Lorentz Velocity Transformation

We can use Eqs. (37.21) to derive the relativistic generalization of the Galilean
velocity transformation, Eq. (37.2). We consider only one-dimensional motion
along the x-axis and use the term “velocity” as being short for the “x-component
of the velocity.” Suppose that in a time dt a particle moves a distance dx, as meas-
ured in frame S. We obtain the corresponding distance dx’ and time dt’ in S" by
taking differentials of Egs. (37.21):

dx' = y(dx — udt)
dt' = y(dr — udx|c?)

We divide the first equation by the second and then divide the numerator and
denominator of the result by dt to obtain

e
' dr "
dr' u dx
1 - ==
c” dt

Now dx/dt is the velocity v, in S, and dx’/[dt" is the velocity v in S’, so we finally
obtain the relativistic generalization

v, — u
v = (Lorentz velocity transformation) (37.22)
1 - uvx/c

When u and v, are much smaller than ¢, the denominator in Eq. (37.22)
approaches 1, and we approach the nonrelativistic result v; = v, — u. The oppo-
site extreme is the case v, = c; then we find

!

R (= ufe)
Y1 = uefc? 1 —ufc

This says that anything moving with velocity v, = ¢ measured in S also has
velocity v, = ¢ measured in S’, despite the relative motion of the two frames. So
Eq. (37.22) is consistent with Einstein’s postulate that the speed of light in vac-
uum is the same in all inertial frames of reference.

The principle of relativity tells us there is no fundamental distinction between
the two frames S and S’. Thus the expression for v, in terms of v, must have the
same form as Eq. (37.22), with v, changed to v}, and vice versa, and the sign of u
reversed. Carrying out these operations with Eq. (37.22), we find

v, tu

= 1—%7’/2 (Lorentz velocity transformation) (37.23)
uv;/c

Uy

This can also be obtained algebraically by solving Eq. (37.22) for v,. Both
Egs. (37.22) and (37.23) are Lorentz velocity transformations for one-dimensional
motion.

CAUTION Use the correct reference frame coordinates Keep in mind that the
Lorentz transformation equations given by Eqs. (37.21), (37.22), and (37.23) assume that
frame S’ is moving in the positive x-direction with velocity u relative to frame S. You
should always set up your coordinate system to follow this convention.

When u is less than c, the Lorentz velocity transformations show us that a
body moving with a speed less than ¢ in one frame of reference always has a

37.5 The Lorentz Transformations
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speed less than ¢ in

every other frame of reference. This is one reason for con-

cluding that no material body may travel with a speed equal to or greater than
that of light in vacuum, relative to any inertial frame of reference. The relativistic
generalizations of energy and momentum, which we will explore later, give fur-
ther support to this hypothesis.

EOLEWEIVIENIEIEISRYAE Lorentz Transformations @

IDENTIFY the relevant concepts: The Lorentz coordinate trans-
formation tells you how to relate the spacetime coordinates of an
event in one inertial frame of reference to the spacetime coordi-
nates of the same event in a second inertial frame. The Lorentz
velocity transformation relates the velocity of an object in one iner-
tial frame to its velocity in a second inertial frame.

SET UP the problem using the following steps:

1. Determine what the target variable is.

2. Define the two inertial frames S and S’. Remember that S’
moves relative to S at a constant velocity u in the +x-direction.

3. If the coordinate transformation equations are needed, make a
list of spacetime coordinates in the two frames, such as x;, x|,
t,, t1, and so on. Label carefully which of these you know and
which you don’t.

4. In velocity-transformation problems, clearly identify the veloc-
ities u (the relative velocity of the two frames of reference), v,
(the velocity of the object relative to ), and v; (the velocity of
the object relative to S”).

Was it received before it was sent?

Winning an interstellar race, Mavis pilots her spaceship across a
finish line in space at a speed of 0.600c relative to that line. A
“hooray” message is sent from the back of her ship (event 2) at the
instant (in her frame of reference) that the front of her ship crosses
the line (event 1). She measures the length of her ship to be 300 m.
Stanley is at the finish line and is at rest relative to it. When and
where does he measure events 1 and 2 to occur?

IDENTIFY: This example involves the Lorentz coordinate
transformation.

SET UP: Our derivation of this transformation assumes that the
origins of frames S and S’ coincide at + = 0 = ¢'. Thus for sim-
plicity we fix the origin of S at the finish line and the origin of S" at
the front of the spaceship so that Stanley and Mavis measure event 1
tobeatx =0=x"andr =0 =1".

Mavis in S’ measures her spaceship to be 300 m long, so she
has the “hooray” sent from 300 m behind her spaceship’s front at
the instant she measures the front to cross the finish line. That is,
she measures event 2 at x’ = —300 m and ¢ = 0.

Our target variables are the coordinate x and time ¢ of event 2
that Stanley measures in S.

EXECUTE: To most easily solve for the target variables, we modify
the first and last of Egs. (37.21) to give x and ¢ as functions of x’
and ¢'. We do so by using the principle of relativity in the same
way that we obtained Eq. (37.23) from Eq. (37.22). We remove the

EXECUTE the solution as follows:

1. In a coordinate-transformation problem, use Egs. (37.21) to
solve for the spacetime coordinates of the event as measured in
S’ in terms of the corresponding values in S. (If you need to
solve for the spacetime coordinates in S in terms of the corre-
sponding values in S’, you can easily convert the expressions in
Egs. (37.21): Replace all of the primed quantities with
unprimed ones, and vice versa, and replace u with —u.)

2. In a velocity-transformation problem, use either Eq. (37.22) or
Eq. (37.23), as appropriate, to solve for the target variable.

EVALUATE your answer: Don’t be discouraged if some of your
results don’t seem to make sense or if they disagree with “common
sense.” It takes time to develop intuition about relativity; you’ll
gain it with experience. (One result that would definitely be in
error is a speed greater than c.)

primes from x" and ¢', add primes to x and 7, and replace each u
with —u. The results are

x=7y(x" +ut'") and r=vy(t' + ux'[c?)

From Eq. (37.7), y = 1.25 for u = 0.600c = 1.80 X 10® m/s.
We also substitute x’ = —300m, ¢’ = 0,¢ = 3.00 X 10°® m/s, and
u= 180X 10°m/s in the equations for x and ¢ to find
x=—375matt = —7.50 X 1077 s = —0.750 us for event 2.

EVALUATE: Mavis says that the events are simultaneous, but Stan-
ley disagrees. In fact, he says that the “hooray” was sent before
Mavis crossed the finish line. This does not mean that the effect
preceded the cause. The fastest that Mavis can send a signal the
length of her ship is 300 m/(3.00 X 10°m/s) = 1.00 us. She
cannot send a signal from the front at the instant it crosses the fin-
ish line that would cause a “hooray” to be broadcast from the back
at the same instant. She would have to send that signal from the
front at least 1.00 us before then, so she had to slightly anticipate
her success.

Note that relativity is consistent. In his frame, Stanley measures
Mavis’s ship to be lo/y = 300 m/1.25 = 240 m long with its back
at x = —375m at t = —0.750 us = —7.50 X 10" s when the
“hooray” is sent. At that instant he thus measures the front of her
240-m-long ship to be a distance of (375 —240) m = 135m
from the finish line. However, since (1.80 X 10® m/s)(7.50 X
1077 s) = 135 m, the front does cross the line at r = 0.

SR IAN Relative velocities

(a) A spaceship moving away from the earth with speed 0.900c¢
fires a robot space probe in the same direction as its motion, with
speed 0.700c relative to the spaceship. What is the probe’s velocity
relative to the earth? (b) A scoutship tries to catch up with the
spaceship by traveling at 0.950c¢ relative to the earth. What is the
velocity of the scoutship relative to the spaceship?

IDENTIFY: This example uses the Lorentz velocity transformation.

SET UP: Let the earth’s frame of reference be S, and let the space-
ship’s frame of reference be S’ (Fig. 37.16). The relative velocity
of the two frames is # = 0.700c. The target variable in part (a) is

37.16 The spaceship, robot space probe, and scoutship.

’

y

)i g
u = 0.900c /L
——
v, = 0.950c
——
v, = 0.700c¢
oFR —
Scoutship O’ Spaceship Robot space
probe
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the velocity of the probe relative to S; the target variable in part (b)
is the velocity of the scoutship relative to S'.

EXECUTE: (a) We are given the velocity of the probe relative to
the spaceship, v; = 0.700c. We use Eq. (37.23) to determine its
velocity v, relative to the earth:

v tu 0.700¢ + 0.900c¢
1+ w!fc 1+ (0.900¢)(0.700¢)/c?
(b) We are given the velocity of the scoutship relative to the

earth, v, = 0.950c. We use Eq. (37.22) to determine its velocity v}
relative to the spaceship:

= 0.982¢

Uy

) v, —u 0.950¢ — 0.900¢
vl = S = 5 = 0.345¢
1 —wvfc 1= (0.900c¢)(0.950¢)/c

EVALUATE: It’s instructive to compare our results to what we
would have obtained had we used the Galilean velocity transfor-
mation formula, Eq. (37.2). In part (a) we would have found the
probe’s velocity relative to the earth to be v, =v,+ u =
0.700c + 0.900c = 1.600c. This value is greater than the speed
of light and so must be incorrect. In part (b) we would have found
the scoutship’s velocity relative to the spaceship to be v, =
v, — u = 0.950c — 0.900c = 0.050c; the relativistically correct
value, v; = 0.345¢, is almost seven times greater than the incor-
rect Galilean value.

Test Your Understanding of Section 37.5 (a) In frame S events P; and P, occur
at the same x-, y-, and z-coordinates, but event P, occurs before event P,. In frame S’,
which event occurs first? (b) In frame S events P; and P, occur at the same time ¢ and the
same y- and z-coordinates, but event P; occurs at a less positive x-coordinate than event

P,. In frame S’, which event occurs first?

*37.6 The Doppler Effect
for Electromagnetic Waves

An additional important consequence of relativistic kinematics is the Doppler
effect for electromagnetic waves. In our previous discussion of the Doppler effect
(see Section 16.8) we quoted without proof the formula, Eq. (16.30), for the fre-
quency shift that results from motion of a source of electromagnetic waves rela-

tive to an observer. We can now derive that result.

Here’s a statement of the problem. A source of light is moving with constant
speed u toward Stanley, who is stationary in an inertial frame (Fig. 37.17). As
measured in its rest frame, the source emits light waves with frequency f, and
period Ty, = 1/f,. What is the frequency f of these waves as received by Stanley?

Moving source emits waves Source emits  Position of first wave 37.17 The Doppler effect for light. A light
of frequency f;. First wave second wave  crest at the instant that the source moving at speed u relative to Stan-
crest emitted here. crest here. second crest is emitted. ley emits a wave crest, then travels a dis-

| : & ¥

tance uT toward an observer and emits the
Stationary observer  pext crest. In Stanley’s reference frame S,
detects waves of the second crest is a distance A behind the
frequency f > f;. first crest.

uT t A ﬂ Stanley S
cT

2|
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37.18 This handheld radar gun emits a
radio beam of frequency f;, which in the
frame of reference of an approaching

car has a higher frequency f given by
Eq. (37.25). The reflected beam also has
frequency f in the car’s frame, but has an
even higher frequency f” in the police offi-
cer’s frame. The radar gun calculates the
car’s speed by comparing the frequencies
of the emitted beam and the doubly
Doppler-shifted reflected beam. (Compare
Example 16.19 in Section 16.8.)

Let T be the time interval between emission of successive wave crests as
observed in Stanley’s reference frame. Note that this is not the interval between
the arrival of successive crests at his position, because the crests are emitted at
different points in Stanley’s frame. In measuring only the frequency f he receives,
he does not take into account the difference in transit times for successive crests.
Therefore the frequency he receives is nor 1/T. What is the equation for f?

During a time T the crests ahead of the source move a distance c7, and the
source moves a shorter distance u7 in the same direction. The distance A between
successive crests—that is, the wavelength—is thus A = (¢ — u) 7, as measured
in Stanley’s frame. The frequency that he measures is ¢/A. Therefore

f= (c—icu)T (37.24)
So far we have followed a pattern similar to that for the Doppler effect for
sound from a moving source (see Section 16.8). In that discussion our next step
was to equate 7T to the time 7;, between emissions of successive wave crests by
the source. However, due to time dilation it is not relativistically correct to equate
T to T,. The time T, is measured in the rest frame of the source, so it is a proper

time. From Eq. (37.6), T;, and T are related by
TO CTO

- V1 - u?lc? - Ve —

T

or, since Ty = 1/f,

1 \/cz—uz_\/cz—u2

T CTO C

0

Remember, 1/7 is not equal to f. We must substitute this expression for 1/7 into
Eq. 37.24 to find f:

C cT —u

f= —/

cC—u c

Using ¢ — u?> = (¢ —u)(c + u) gives
_Je+tu (Doppler effect, electromagnetic (3725)
f= c — ufo waves, source approaching observer) '

This shows that when the source moves foward the observer, the observed fre-
quency f is greater than the emitted frequency f;. The difference f — f, = Af is
called the Doppler frequency shift. When u/c is much smaller than 1, the frac-
tional shift Af/ /f is also small and is approximately equal to u/ c:

A
s

When the source moves away from the observer, we change the sign of u in
Eq. 37.25 to get

u
c

c—u (Doppler effect, electromagnetic waves,

f= . (37.26)
c+u° source moving away from observer)

This agrees with Eq. (16.30), which we quoted previously, with minor notation
changes.

With light, unlike sound, there is no distinction between motion of source and
motion of observer; only the relative velocity of the two is significant. The last
four paragraphs of Section 16.8 discuss several practical applications of the
Doppler effect with light and other electromagnetic radiation; we suggest you
review those paragraphs now. Figure 37.18 shows one common application.

A jet from a black hole

A number of galaxies have supermassive black holes at their cen-
ters (see Section 12.8). As material swirls around such a black
hole, it is heated, becomes ionized, and generates strong mag-
netic fields. The resulting magnetic forces steer some of the
material into high-speed jets that blast out of the galaxy and into
intergalactic space (Figure 37.19). The blue light we observe
from the jet in Fig. 37.19 has a frequency of 6.66 X 10' Hz, but
in the frame of reference of the jet material the light has a fre-
quency of 5.55 X 103 Hz (in the infrared region of the electro-

37.19 This image shows a fast-moving jet 5000 light-years in
length emanating from the center of the galaxy M87. The light
from the jet is emitted by fast-moving electrons spiraling around
magnetic field lines (see Fig. 27.16).

37.7 Relativistic Momentum
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magnetic spectrum). At what speed is the jet material moving
toward us?

IDENTIFY: This problem involves the Doppler effect for electro-
magnetic waves.

SET UP: The frequency we observe is f = 6.66 X 10'* Hz, and
the frequency in the frame of the source is f, = 5.55 X 10"* Hz.
Since f > f,, the source is approaching us and therefore we use
Eq. (37.25) to find the target variable u.

EXECUTE: We need to solve Eq. (37.25) for u. That takes a little
algebra; we’ll leave it as an exercise for you to show that the
result is

U
i) + 1

We have flf, = (6.66 X 10" Hz)/(5.55 X 10" Hz) = 12.0, so
we find

C(120)2 -1

- 20986
(1202 +1° ¢

u

EVALUATE: Because the frequency shift is quite substantial, it
would have been erroneous to use the approximate expression
Aflf = ufc. Had you tried to do so, you would have found u =
¢ Aflfy = ¢(6.66 X 10" Hz — 5.55 X 10" Hz)[(5.55 X 10 Hz) =
11.0c. This result cannot be correct because the jet material cannot
travel faster than light.

Newton’s laws of motion have the same form in all inertial frames of reference.
When we use transformations to change from one inertial frame to another, the
laws should be invariant (unchanging). But we have just learned that the princi-
ple of relativity forces us to replace the Galilean transformations with the more
general Lorentz transformations. As we will see, this requires corresponding
generalizations in the laws of motion and the definitions of momentum and
energy.

The principle of conservation of momentum states that when two bodies inter-
act, the total momentum is constant, provided that the net external force acting on
the bodies in an inertial reference frame is zero (for example, if they form an iso-
lated system, interacting only with each other). If conservation of momentum is a
valid physical law, it must be valid in all inertial frames of reference. Now, here’s
the problem: Suppose we look at a collision in one inertial coordinate system S
and find that momentum is conserved. Then we use the Lorentz transformation to
obtain the velocities in a second inertial system S’. We find that if we use the
Newtonian definition of momentum (p = mv ), momentum is not conserved in
the second system! If we are convinced that the principle of relativity and the
Lorentz transformation are correct, the only way to save momentum conservation
is to generalize the definition of momentum.

We won’t derive the correct relativistic generalization of momentum, but
here is the result. Suppose we measure the mass of a particle to be m when it is
at rest relative to us: We often call m the rest mass. We will use the term
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37.20 Graph of the magnitude of the
momentum of a particle of rest mass m as
a function of speed v. Also shown is the
Newtonian prediction, which gives correct
results only at speeds much less than c.

Relativistic momentum becomes
infinite as v approaches c.

P
Smec -~ e > :
HAPPENS! » |!
4me :
|
3mc |
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me —X
! ! ! : : v
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Newtonian mechanics incorrectly
predicts that momentum becomes
infinite only if v becomes infinite.

material particle for a particle that has a nonzero rest mass. When such a parti-
cle has a velocity U, its relativistic momentum p is

R mu L
p=—F—7"= (relativistic momentum) (37.27)

V1 — v?Yc?

When the particle’s speed v is much less than c, this is approximately equal to the
Newtonian expression p = mv, but in general the momentum is greater in mag-
nitude than mv (Figure 37.20). In fact, as v approaches c, the momentum
approaches infinity.

Relativity, Newton’s Second Law, and Relativistic Mass

What about the relativistic generalization of Newton’s second law? In Newtonian
mechanics the most general form of the second law is
—
- d P
F=— 37.28
dr (37.28)
That is, the net force Fona particle equals the time rate of change of its momen-
tum. Experiments show that this result is still valid in relativistic mechanics, pro-
vided that we use the relativistic momentum given by Eq. 37.27. That is, the
relativistically correct generalization of Newton’s second law is

d mo

dt\/1 — v?/c?
Because momentum is no longer directly proportional to velocity, the rate of

change of momentum is no longer directly proportional to the acceleration. As a

result, constant force does not cause constant acceleration. For example, when
the net force and the velocity are both along the x-axis, Eq. 37.29 gives

F = (37.29)

_ m
- (1 - 02/62)3/2a

where a is the acceleration, also along the x-axis. Solving Eq. 37.30 for the accel-

eration a gives
F V232
a= (1 - )

F (77 and U along the same line) (37.30)

m c2

We see that as a particle’s speed increases, the acceleration caused by a given
force continuously decreases. As the speed approaches c, the acceleration
approaches zero, no matter how great a force is applied. Thus it is impossible to
accelerate a particle with nonzero rest mass to a speed equal to or greater than c.
We again see that the speed of light in vacuum represents an ultimate speed limit.

Equation (37.27) for relativistic momentum is sometimes interpreted to mean
that a rapidly moving particle undergoes an increase in mass. If the mass at zero
velocity (the rest mass) is denoted by m, then the “relativistic mass” m, is given by

m
V1= v?c?

Indeed, when we consider the motion of a system of particles (such as rapidly
moving ideal-gas molecules in a stationary container), the total rest mass of the
system is the sum of the relativistic masses of the particles, not the sum of their
rest masses.

However, if blindly applied, the concept of relativistic mass has its pitfalls. As
Eq. (37.29) shows, the relativistic generalization of Newton’s second law is not
F = m_,d, and we will show in Section 37.8 that the relativistic kinetic energy of

M) =

a particle is not K = m,v% The use of relativistic mass has its supporters and
detractors, some quite strong in their opinions. We will mostly deal with individ-
ual particles, so we will sidestep the controversy and use Eq. (37.27) as the gen-
eralized definition of momentum with m as a constant for each particle,
independent of its state of motion.

We will use the abbreviation

1
=
V1 = v?c?

We used this abbreviation in Section 37.3 with v replaced by u, the relative speed
of two coordinate systems. Here v is the speed of a particle in a particular coordi-
nate system—that is, the speed of the particle’s rest frame with respect to that
system. In terms of y, Eqs. (37.27) and (37.30) become

P = ymv (relativistic momentum) (3731)

F = v*ma (F and ¥ along the same line) (37.32)

In linear accelerators (used in medicine as well as nuclear and elementary-
particle physics; see Fig. 37.11) the net force F and the velocity U of the acceler-
ated particle are along the same straight line. But for much of the path in most
circular accelerators the particle moves in uniform circular motion at constant
speed v. Then the net force and velocity are perpendicular, so the force can do no
work on the particle and the kinetic energy and speed remain constant. Thus the
denominator in Eq. (37.29) is constant, and we obtain

m
(1- Uz/cz)l/za
Recall from Section 3.4 that if the particle moves in a circle, the net force and
acceleration are directed inward along the radius 7, and a = v?/r.

What about the general case in which F and © are neither along the same line
nor perpendicular? Then we can resolve the net force F at any instant into com-
ponents parallel to and perpendicular to U. The resulting acceleration will have
corresponding components obtained from Eqs. (37.32) and (37.33). Because of
the different y* and y factors, the acceleration components will not be propor-
tional to the net force components. That is, unless the net force on a relativistic
particle is either along the same line as the particle’s velocity or perpendicular to
it, the net force and acceleration vectors are not parallel.

= yma (F and U perpendicular)  (37.33)

SelXYANN Relativistic dynamics of an electron
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An electron (rest mass 9.11 X 1073! kg, charge —1.60 X 107! C) eration due to a force along the same line as the velocity. In part (b)
is moving opposite to an electric field of magnitude E = the force is perpendicular to the velocity, so we use Eq. 37.33 to
5.00 X 10° N/C. All other forces are negligible in comparison to ~ determine the magnitude of acceleration.

the electric field force. (a) Find the magnitudes of momentum and
of acceleration at the instants when v = 0.010¢, 0.90c, and 0.99c.
(b) Find the corresponding accelerations if a net force of the same
magnitude is perpendicular to the velocity.

EXECUTE: (a) To find both the magnitude of momentum and the
magnitude of acceleration, we need the values of y = V1 — v?[c?
for each of the three speeds. We find y = 1.00, 2.29, and 7.09. The

values of the momentum magnitude p are

SOLUTION Py = yymw,

IDENTIFY: In addition to the expressions from this section for rel-
ativistic momentum and acceleration, we need the relationship
between electric force and electric field from Chapter 21.

SET UP: In part (a) we use Eq. 37.31 to determine the magnitude
of momentum and Eq. 37.32 to determine the magnitude of accel-

= (1.00) (9.11 X 107" kg) (0.010) (3.00 X 10°m/s)
=27 X 10 *kg-m/s atv, = 0.010c

P, = (229)(9.11 X 107" kg) (0.90) (3.00 X 10° m/s)
=5.6 X 1072 kg*m/s at v, = 0.90¢

Continued



1292 CHAPTER 37 Relativity

py = (7.09)(9.11 X 1073 kg) (0.99) (3.00 X 10°m/s)
= 1.9 X 1072 kg * m/s at vy = 0.99¢
From Chapter 21, the magnitude of the force on the electron is
F=|g|E= (160 % 107" C)(5.00 X 10°N/C)
=8.00 X 107N
From Eq. (37.32), a = F|y*m. When v = 0.010c and y = 1.00,
8.00 X 107N

= — 8.8 X 10' m/s?
(1.00)°(9.11 X 10~ kg) m/s

ap

The accelerations at the two higher speeds are smaller by factors
of y*:

a, =73 X 10°m/s?>  ay =25 X 10" m/s’

These last two accelerations are only 8.3% and 0.28%, respectively,
of the values predicted by nonrelativistig mechanics.
(b) From Eq. (37.33), a = F|ym if F and T are perpendicular.
When v = 0.010c and y = 1.00,
8.00 X 107N

= = 8.8 X 10" m/s?
T (1.00) (9.11 X 10" kg) m/s

The accelerations at the two higher speeds are smaller by a fac-
tor of y:

a, =38 X10°m/s> a3 =12 X 10"°m/s?

These accelerations are larger than the corresponding ones in part
(a) by factors of .

EVALUATE: Our results in part (a) show that at higher speeds,
the relativistic values of momentum differ more and more from
the nonrelativistic values computed using p = mv. Note that the
momentum at 0.99¢ is more than three times as great as at 0.90c¢
because of the increase in the factor 7.

Our results also show that the acceleration drops off very
quickly as v approaches c. At the Stanford Linear Accelerator Cen-
ter, an essentially constant electric force is used to accelerate elec-
trons to a speed only slightly less than c. If the acceleration were
constant as predicted by Newtonian mechanics, this speed would
be attained after the electrons had traveled a mere 1.5 cm. In fact,
because of the decrease of acceleration with speed, a path length of
3 km is needed.

Test Your Understanding of Section 37.7 According to relativistic mechanics,
when you double the speed of a particle, the magnitude of its momentum increases by
(1) a factor of 2; (ii) a factor greater than 2; (iii) a factor between 1 and 2 that depends on

the mass of the particle. -

37.8 Relativistic Work and Energy

When we developed the relationship between work and kinetic energy in
Chapter 6, we used Newton’s laws of motion. When we generalize these laws
according to the principle of relativity, we need a corresponding generalization of
the equation for kinetic energy.

Relativistic Kinetic Energy

We use the work—energy theorem, beginning with the definition of work. When
the net force and displacement are in the same direction, the work done by that
force is W = [F dx. We substitute the expression for F from Eq. (37.30), the
applicable relativistic version of Newton’s second law. In moving a particle of
rest mass m from point x; to point x,,

_ 2 . 2 ma dx
W= Fdx = m (37.34)

To derive the generalized expression for kinetic energy K as a function of speed v,
we would like to convert this to an integral on v. To do this, first remember that the
kinetic energy of a particle equals the net work done on it in moving it from rest to
the speed v: K = W. Thus we let the speeds be zero at point x; and v at point x,.
So as not to confuse the variable of integration with the final speed, we change v
tov, in Eq. 37.34. That is, v, is the varying x-component of the velocity of the par-
ticle as the net force accelerates it from rest to a speed v. We also realize that dx
and dv, are the infinitesimal changes in x and v,, respectively, in the time interval
dr. Because v, = dx/dtand a = dv [dt, we can rewrite a dx in Eq. (37.34) as

o= g = a2 _ B gy
ade=—"tdv=de b= do = vdv,

Making these substitutions gives us
[ muv.dv,
K=W= ) —(1 o) (37.35)

We can evaluate this integral by a simple change of variable; the final result is

% .. . .
mc 2 (relativistic kinetic

- 2 — _
PR e mc (v — 1)me o)

As v approaches c, the kinetic energy approaches infinity. If Eq. 37.36 is
correct, it must also approach the Newtonian expression K = %mv2 whenv =
is much smaller than ¢ (Fig. 37.21). To verify this, we expand the radical, using
the binomial theorem in the form

K = (37.36)

(1+x)"=1+nx+n(n—1)x%2+- -

In our case, n = —3 and x = —v?[c?, and we get
_ 1_07271/2_1_{_10724_21}*44_...
Y c? 2¢2 8¢t

Combining this with K = (y — 1)mc?, we find

k=14 1030
= Satea —1}me
2¢7 8¢ (37.37)
1, 3m!
=—mv* + > +
2 8

When v is much smaller than c, all the terms in the series in Eq. (37.37) except
the first are negligibly small, and we obtain the Newtonian expression 3muv>.

Rest Energy and E = mc?

Equation (37.36) for the kinetic energy of a moving particle includes a term
mc*[\V'1 — v?/c? that depends on the motion and a second energy term mc? that
is independent of the motion. It seems that the kinetic energy of a particle is the
difference between some total energy E and an energy mc” that it has even when
it is at rest. Thus we can rewrite Eq. (37.36) as

mc’ ) (total energy of

ﬁ ) a particle)

E=K+ mc?= (37.38)

For a particle at rest (K = 0), we see that E = mc”. The energy mc?* associated
with rest mass m rather than motion is called the rest energy of the particle.

There is in fact direct experimental evidence that rest energy really does
exist. The simplest example is the decay of a neutral pion. This is an unstable
subatomic particle of rest mass m; when it decays, it disappears and electro-
magnetic radiation appears. If a neutral pion has no kinetic energy before its
decay, the total energy of the radiation after its decay is found to equal exactly
m,c*. In many other fundamental particle transformations the sum of the rest
masses of the particles changes. In every case there is a corresponding energy
change, consistent with the assumption of a rest energy mc” associated with a
rest mass m.

Historically, the principles of conservation of mass and of energy devel-
oped quite independently. The theory of relativity shows that they are actually
two special cases of a single broader conservation principle, the principle of

37.8 Relativistic Work and Energy
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37.21 Graph of the kinetic energy of a
particle of rest mass m as a function of
speed v. Also shown is the Newtonian pre-
diction, which gives correct results only at
speeds much less than c.

Relativistic kinetic energy becomes
infinite as v approaches c.

HAPPENS! »

DOESN'T
HAPPEN

v

o e ——=

Newtonian mechanics incorrectly
predicts that kinetic energy becomes
infinite only if v becomes infinite.
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37.22 Although the control room of a
nuclear power plant is very complex, the
physical principle whereby such a plant
operates is a simple one: Part of the rest
energy of atomic nuclei is converted to
thermal energy, which in turn is used to
produce steam to drive electric generators.

conservation of mass and energy. In some physical phenomena, neither the sum
of the rest masses of the particles nor the total energy other than rest energy is
separately conserved, but there is a more general conservation principle: In an
isolated system, when the sum of the rest masses changes, there is always a
change in 1/c? times the total energy other than the rest energy. This change is
equal in magnitude but opposite in sign to the change in the sum of the rest
masses.

This more general mass-energy conservation law is the fundamental principle
involved in the generation of power through nuclear reactions. When a uranium
nucleus undergoes fission in a nuclear reactor, the sum of the rest masses of the
resulting fragments is less than the rest mass of the parent nucleus. An amount of
energy is released that equals the mass decrease multiplied by ¢2. Most of this
energy can be used to produce steam to operate turbines for electric power gener-
ators (Fig. 37.22).

We can also relate the total energy E of a particle (kinetic energy plus rest
energy) directly to its momentum by combining Eq. (37.27) for relativistic
momentum and Eq. (37.38) for total energy to eliminate the particle’s velocity.
The simplest procedure is to rewrite these equations in the following forms:

(152)2 S S (p) I

me?] 1 - v?[c? me) 1 - v?[c?
Subtracting the second of these from the first and rearranging, we find

(total energy, rest energy,

37.39
and momentum) (57:39)

E? = (mc*)* + (pc)?

Again we see that for a particle at rest (p = 0), E = mc>.

Equation (37.39) also suggests that a particle may have energy and momen-
tum even when it has no rest mass. In such a case, m = 0 and

E = pc (zero rest mass) (37.40)

In fact, zero rest mass particles do exist. Such particles always travel at the speed
of light in vacuum. One example is the photon, the quantum of electromagnetic
radiation (to be discussed in Chapter 38). Photons are emitted and absorbed dur-
ing changes of state of an atomic or nuclear system when the energy and momen-
tum of the system change.

2lICKYANE Energetic electrons

(a) Find the rest energy of an electron (m = 9.109 X 10*' kg,
qg=—e=—1602 X% 107" C) in joules and in electron volts.
(b) Find the speed of an electron that has been accelerated by an
electric field, from rest, through a potential increase of 20.0 kV
(typical of TV picture tubes) or of 5.00 MV (a high-voltage x-ray
machine).

SOLUTION

IDENTIFY: This problem uses the ideas of rest energy, relativistic
kinetic energy, and (from Chapter 23) electric potential energy.

SET UP: We use the relationship E = mc? to find the rest energy
and Eq. (37.38) to find the speed that gives the stated total energy.

EXECUTE: (a) The rest energy is

me? = (9.109 X 103" kg) (2.998 X 10 m/s)?>
=8.187 X 107*]

From the definition of the electron volt in Section 23.2,
1eV = 1.602 X 107" J. Using this, we find
leV
1.602 X 1077
=5.11 X 10°eV = 0.511 MeV

me? = (8.187 X 107147)

(b) In calculations such as this, it is often convenient to work
with the quantity y defined from the modified Eq. (37.7):

1
o
V1= vYc?

Solving this for v, we get

v=cV1-=(1)y)?

The total energy E of the accelerated electron is the sum of its
rest energy mc> and the kinetic energy eV, that it gains from the

work done on it by the electric field in moving from point a to
point b:
E = ymc* = mc® + eV, or
eVbﬂ

m€2

y=1+

An electron accelerated through a potential increase of
Ve = 20.0 kV gains an amount of energy 20.0 keV, so for this
electron we have

20.0 X 10°eV

0.511 X 10°eV
1.039

and

v=cV1-(1/1.039)% = 0.272¢

8.15 X 10" m/s

SEINEKYAPE A relativistic collision

Two protons (each with M = 1.67 X 10~*" kg) are initially mov-
ing with equal speeds in opposite directions. They continue to exist
after a head-on collision that also produces a neutral pion of mass
m = 2.40 X 1072 kg (Fig. 37.23). If the protons and the pion are
at rest after the collision, find the initial speed of the protons.
Energy is conserved in the collision.

IDENTIFY: This problem uses the idea of relativistic total energy,
which is conserved in the collision.

SET UP: We equate the (unknown) total energy of the two protons
before the collision to the combined rest energies of the two pro-
tons and the pion after the collision. We then use Eq. (37.38) to
solve for the speed of each proton.

EXECUTE: The total energy of each proton before the collision is
yMc*. By conservation of energy,

2(yMc?) = 2(Mc?) + mc?
m 2.40 X 1078 kg

1+ = 1.072
Y M 2(1.67 X 107 kg)

SO

v=cV1-(1]y)* = 0.360c

37.9 Newtonian Mechanics and Relativity 1295

Repeating the calculation for V,, = 5.00 MV, we find
eV /me® =9.78,y = 10.78, and v = 0.996¢.

EVALUATE: These results make sense: With V,, = 20.0 kV, the
added kinetic energy of 20.0 keV is less than 4% of the rest energy
of 0.511 MeV, and the final speed is about one-fourth of the speed
of light. With V,, = 5.00 MV, the added kinetic energy of
5.00 MeV is much greater than the rest energy and the speed is
close to c.

CAUTION Three electron energies The electron that accel-
erated from rest through a potential increase of 5.00 MV had a
kinetic energy of 5.00 MeV. By convention we call such an elec-
tron a “5.00-MeV electron.” A 5.00-MeV electron has a rest energy
of 0.511 MeV (as do all electrons), a kinetic energy of 5.00 MeV,
and a total energy of 5.51 MeV. Be careful not to confuse these dif-
ferent energies.

37.23 In this collision the kinetic energy of two protons is trans-
formed into the rest energy of a new particle, a pion.

1.67 X 1077 kg

v v
BEFORE

Proton Proton

U

AFTER @Q@

Pion (2.40 X 10~ 2 kg)

EVALUATE: The initial kinetic energy of each proton is
(y — 1)Mc* = 0.072Mc*. The rest energy of a proton is 938 MeV,
so the kinetic energy is (0.072) (938 MeV) = 67.5 MeV. (These
are “67.5-MeV protons.”) You can verify that the rest energy of the
pion is twice this, or 135 MeV. All the kinetic energy “lost” in this
completely inelastic collision is transformed into the rest energy of
the pion.

Test Your Understanding of Section 37.8 A proton is accelerated from rest by a
constant force that always points in the direction of the particle’s motion. Compared to
the amount of kinetic energy that the proton gains during the first meter of its travel, how
much kinetic energy does the proton gain during one meter of travel while it is moving at
99% of the speed of light? (i) the same amount; (ii) a greater amount; (iii) a smaller
amount.

37.9 Newtonian Mechanics and Relativity

The sweeping changes required by the principle of relativity go to the very
roots of Newtonian mechanics, including the concepts of length and time, the
equations of motion, and the conservation principles. Thus it may appear that we
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have destroyed the foundations on which Newtonian mechanics is built. In 37.25 A two-dimensional representation of curved space. We imagine the space (a plane) as being distorted as shown by a massive
one sense this is true, yet the Newtonian formulation is still accurate whenever object (the sun). Light from a distant star (solid line) follows the distorted surface on its way to the earth. The dashed line shows the direc-
tion from which the light appears to be coming. The effect is greatly exaggerated; for the sun, the maximum deviation is only 0.00048°.

speeds are small in comparison with the speed of light in vacuum. In such cases,
time dilation, length contraction, and the modifications of the laws of motion are
so small that they are unobservable. In fact, every one of the principles of
Newtonian mechanics survives as a special case of the more general relativistic
formulation.

The laws of Newtonian mechanics are not wrong, they are incomplete. They
are a limiting case of relativistic mechanics. They are approximately correct
when all speeds are small in comparison to ¢, and they become exactly correct in
the limit when all speeds approach zero. Thus relativity does not completely
destroy the laws of Newtonian mechanics but generalizes them. Newton’s laws
rest on a very solid base of experimental evidence, and it would be very strange
to advance a new theory that is inconsistent with this evidence. This is a common
pattern in the development of physical theory. Whenever a new theory is in
partial conflict with an older, established theory, the new must yield the same
predictions as the old in areas in which the old theory is supported by experi-

37.24 Without information from outside
the spaceship, the astronaut cannot distin-
guish situation (b) from situation (c).

(a) An astronaut is about to drop her watch in a
spaceship.

k?il mental evidence. Every new physical theory must pass this test, called the cor-
S respondence principle.

The General Theory of Relativity

<)
— At this point we may ask whether the special theory of relativity gives the final

word on mechanics or whether further generalizations are possible or necessary. length of light proceeding outward from a massive source. Some details of the 37.26 A GPS receiver uses radio signals

(b) In gravity-free space, the floor accelerates For example, inertial frames have occupied a privileged position in our discus- general theory are more difficult to test, but this theory has played a central role f:l(i):; ?tlse os:ilttilcl)lf ”Cl“}g icscagilrﬁtfes:?hge;fegcts
in investigations of the formation and evolution of stars, black holes, and studies P )

upward at a = g and hits the watch. sion. Can the principle of relativity be extended to noninertial frames as well? : : of relativity, the receiver must be tuned to
Here’s an example that illustrates some implications of this question. A stu- of the evolution of the UnIVerse. . a slightly higher frequency (10.23 MHz)
dent decides to go over Niagara Falls while enclosed in a large wooden box. Dur- ) Th‘_" general .theory O_f re.lanvity may seem to be an exotic bit f’f know.ledge than the frequency emitted by the satellites
ing her free fall she can float through the air inside the box. She doesn’t fall to the with little practical application. In fact, this theory plays an essential role in the  (10.22999999543 MHz).
floor because both she and the box are in free fall with a downward acceleration glol?gl positioning system (GPS), Wh_iCh makes it poss.ible to determine your
of 9.8 m/s%. But an alternative interpretation, from her point of view, is that she polsmon on the earth’s surface to within a.few meter§ using a handheld receiver
doesn’t fall to the floor because her gravitational interaction with the earth has (Fig. 37.26). The heart of the GPS system is a collection of more than two dozen
suddenly been turned off. As long as she remains in the box and it remains in free satellites in very precise orbits. Each satellite en-ntS carefully timed radlo. signals,
fall, she cannot tell whether she is indeed in free fall or whether the gravitational and a GPS receiver simultaneously detects the signals from several satellites. The
interaction has vanished. receiver then calculates the time delay between when each signal was emitted
A similar problem occurs in a space station in orbit around the earth. Objects and when it was received, and uses this information to calculate the receiver’s
in the space station seem to be weightless, but without looking outside the sta- position. To ensure the proper timing of tl.le.51gnals, it’s necessary to include cor-
tion there is no way to determine whether gravity has been turned off or whether rectlf)ns due to the.spemal theory of relativity (because the satellites are moving
the station and all its contents are accelerating toward the center of the earth. r.elatlve to the recerver on earth) as Well as the general theo.ry (because the sgtel-
Figure 37.24 makes a similar point for a spaceship that is not in free fall but may lites are higher in the earth’s gravitational field than the receiver). The corrections

. . . - . 9_ .
(€) On the earth’s surface, the watch be accelerating relative to an inertial frame or be at rest on the earth’s surface. due to relat.l\./lty are small—less than one part in 10°—but are crucial to the
accelerates downward at @ = g and hits the These considerations form the basis of Einstein’s general theory of relativity. superb precision of the GPS system.
floor. =0 [ If we cannot distinguish experimentally between a uniform gravitational field at a

particular location and a uniformly accelerated reference frame, then there cannot
be any real distinction between the two. Pursuing this concept, we may try to rep-
resent any gravitational field in terms of special characteristics of the coordinate
system. This turns out to require even more sweeping revisions of our space-time
concepts than did the special theory of relativity. In the general theory of rela-
tivity the geometric properties of space are affected by the presence of matter
(Fig. 37.25).

The general theory of relativity has passed several experimental tests, includ-
ing three proposed by Einstein. One test has to do with understanding the rotation
of the axes of the planet Mercury’s elliptical orbit, called the precession of the
perihelion. (The perihelion is the point of closest approach to the sun.) A second
test concerns the apparent bending of light rays from distant stars when they pass
near the sun. The third test is the gravitational red shift, the increase in wave-

Spaceship

e e s e ]



CHAPTER 3/ SUMMARY

Invariance of physical laws, simultaneity: All of the fundamental laws of physics have the same
form in all inertial frames of reference. The speed of light in vacuum is the same in all inertial
frames and is independent of the motion of the source. Simultaneity is not an absolute concept;
events that are simultaneous in one frame are not necessarily simultaneous in a second frame mov-

ing relative to the first.

Time dilation: If two events occur at the same space
point in a particular frame of reference, the time interval
At, between the events as measured in that frame is
called a proper time interval. If this frame moves with
constant velocity u relative to a second frame, the time
interval At between the events as observed in the second
frame is longer than A¢,. This effect is called time dila-
tion. (Examples 37.1-37.3.)

Length contraction: If two points are at rest in a partic-
ular frame of reference, the distance /, between the
points as measured in that frame is called a proper
length. If this frame moves with constant velocity u
relative to a second frame and the distances are meas-
ured parallel to the motion, the distance / between the
points as measured in the second frame is shorter than
ly. This effect is called length contraction. (See Exam-
ples 37.4-37.6.)

The Lorentz transformations: The Lorentz coordinate
transformations relate the coordinates and time of an
event in an inertial frame S to the coordinates and time
of the same event as observed in a second inertial frame
S’ moving at velocity u relative to the first. For one-
dimensional motion, a particle’s velocities v, in S and
v, in S’ are related by the Lorentz velocity transforma-
tion. (See Examples 37.7 and 37.8.)

The Doppler effect for electromagnetic waves: The
Doppler effect is the frequency shift in light from a
source due to the relative motion of source and observer.
For a source moving toward the observer with speed u,
Eq. (37.25) gives the received frequency f in terms of
the emitted frequency f,. (See Example 37.9.)

Relativistic momentum and energy: For a particle of
rest mass m moving with velocity U, the relativistic
momentum p is given by Eq. (37.27) or (37.31) and the
relativistic kinetic energy K is given by Eq. (37.36). The
total energy E is the sum of the kinetic energy and the
rest energy mc>. The total energy can also be expressed
in terms of the magnitude of momentum p and rest mass
m. (See Examples 37.10-37.12.)
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At
At= ﬁ =y Aty (376), (378)
—uc
S
Y= 1= u?lc? )

l
1=1,V1-u??= ;0 (37.16)

X — ut

x’=71 Z/ZZV(X*MI)
—u’lc
y=y =z
t — uxfc?
t' = 1/2/2 = y(t — MX/CZ) (37.21)
—u’e
v, —u
v, = ﬁv/cz (37.22)
v tu
Tt e e

ct+u
f=Al—f (37.25)
@ u

— mij —
P=—F—==ymb (3727), (3731)
1 —v¥c?
mC2
K=———=—-mc*=(y— 1)mc?
1 —v?c?
(37.36)
E:K+mc2:m7c2:—ymcz
V1 - ¥
(37.38)
E2 = (mCZ)Z —+ (pc)2 (37.39)
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Newtonian mechanics and the special and general theories of relativity: The special theory of
relativity is a generalization of Newtonian mechanics. All the principles of Newtonian mechanics
are present as limiting cases when all the speeds are small compared to ¢. Further generalization to
include noninertial frames of reference and their relationship to gravitational fields leads to the gen-

eral theory of relativity.
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Answer to Chapter Opening Question :

No. While the speed of light c is the ultimate “speed limit” for any
particle, there is no upper limit on a particle’s kinetic energy (see
Fig. 37.21). As the speed approaches ¢, a small increase in speed
corresponds to a large increase in kinetic energy.

Answers to Test Your Understanding Questions

37.1 answers: (a) (i), (b) no You, too, will measure a spherical
wave front that expands at the same speed ¢ in all directions. This
is a consequence of Einstein’s second postulate. The wave front
that you measure is not centered on the current position of the
spaceship; rather, it is centered on the point P where the spaceship
was located at the instant that it emitted the light pulse. For exam-
ple, suppose the spaceship is moving at speed ¢/2. When your
watch shows that a time 7 has elapsed since the pulse of light was
emitted, your measurements will show that the wave front is a
sphere of radius cz centered on P and that the spaceship is a dis-
tance ct/2 from P.

37.2 answer: (iii) In Mavis’s frame of reference, the two events
(the Ogdenville clock striking noon and the North Haverbrook
clock striking noon) are not simultaneous. Figure 37.5 shows that
the event toward the front of the rail car occurs first. Since the rail
car is moving toward North Haverbrook, that clock struck noon
before the one on Ogdenville. So, according to Mavis, it is after
noon in North Haverbrook.

37.3 answers: (a) (ii), (b) (ii) The statement that moving clocks
run slow refers to any clock that is moving relative to an observer.
Maria and her stopwatch are moving relative to Samir, so Samir
measures Maria’s stopwatch to be running slow and to have ticked
off fewer seconds than his own stopwatch. Samir and his stopwatch
are moving relative to Maria, so she likewise measures Samir’s
stopwatch to be running slow. Each observer’s measurement is cor-
rect for his or her own frame of reference. Both observers conclude
that a moving stopwatch runs slow. This is consistent with the prin-
ciple of relativity (see Section 37.1), which states that the laws of
physics are the same in all inertial frames of reference.

374 answer: (ii), (i) and (iii) (tie), (iv) You measure the rest
length of the stationary meter stick and the contracted length of the
moving spaceship to both be 1 meter. The rest length of the space-
ship is greater than the contracted length that you measure, and so

length contraction, /280
Lorentz transformations, /283
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relativistic momentum, /290
total energy, 1293

rest energy, 1293
correspondence principle, /1296
general theory of relativity, /1296

spacetime coordinates, /284

must be greater than 1 meter. A miniature observer on board the
spaceship would measure a contracted length for the meter stick of
less than 1 meter. Note that in your frame of reference the nose and
tail of the spaceship can simultaneously align with the two ends of
the meter stick, since in your frame of reference they have the same
length of 1 meter. In the spaceship’s frame these two alignments
cannot happen simultaneously because the meter stick is shorter
than the spaceship. Section 37.2 tells us that this shouldn’t be a sur-
prise; two events that are simultaneous to one observer may not be
simultaneous to a second observer moving relative to the first one.

37.5 answers: (a) Py, (b) Py (a) The last of Egs. (37.21) tells us
the times of the two events in S": 7' = y(#; — ux,/c?) and
ty = y(t, — ux,/c?). In frame S the two events occur at the same
x-coordinate, so x; = x,, and event P, occurs before event P,, so
t; < t,. Hence you can see that #' <t,’ and event P, happens
before P, in frame S’, too. This says that if event P, happens before
P, in a frame of reference S where the two events occur at the same
position, then P, happens before P, in any other frame moving rel-
ative to S. (b) In frame S the two events occur at different
x-coordinates such that x; < x,, and events P; and P, occur at the
same time, so #; = f,. Hence you can see that £/ = y(1; — ux;/c?)
is greater than t; = y(#, — ux,/c?), so event P, happens before P,
in frame S'. This says that even though the two events are simulta-
neous in frame S, they need not be simultaneous in a frame moving
relative to S.

37.7 answer: (ii) Equation (37.27) tells us that the magnitude
of momentum of a particle with mass m and speed v is
p = mv[\V'1 — v*[c®. If v increases by a factor of 2, the numera-
tor mv increases by a factor of 2 and the denominator V1 — v?[c?
decreases. Hence p increases by a factor greater than 2. (Note that
in order to double the speed, the initial speed must be less than c/2.
That’s because the speed of light is the ultimate speed limit.)

37.8 answer: (i) As the proton moves a distance s, the constant
force of magnitude F does work W = Fis and increases the kinetic
energy by an amount AK = W = Fs. This is true no matter what
the speed of the proton before moving this distance. Thus the con-
stant force increases the proton’s kinetic energy by the same
amount during the first meter of travel as during any subsequent
meter of travel. (It’s true that as the proton approaches the ultimate
speed limit of ¢, the increase in the proton’s speed is less and less
with each subsequent meter of travel. That’s not what the question
is asking, however.)
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PROBLEMS

Discussion Questions

Q37.1. You are standing on a train platform watching a high-speed
train pass by. A light inside one of the train cars is turned on and
then a little later it is turned off. (a) Who can measure the proper
time interval for the duration of the light: you or a passenger on the
train? (b) Who can measure the proper length of the train car, you
or a passenger on the train? (¢) Who can measure the proper length
of a sign attached to a post on the train platform, you or a passen-
ger on the train? In each case explain your answer.

Q37.2. If simultaneity is not an absolute concept, does that mean
that we must discard the concept of causality? If event A is to
cause event B, A must occur first. Is it possible that in some
frames, A appears to be the cause of B, and in others, B appears to
be the cause of A? Explain.

Q37.3. A rocket is moving to the right at 3 the speed of light rela-
tive to the earth. A light bulb in the center of a room inside the
rocket suddenly turns on. Call the light hitting the front end of the
room event A and the light hitting the back of the room event B
(Fig. 37.27). Which event occurs first, A or B or are they simulta-
neous, as viewed by (a) an astronaut riding in the rocket and (b) a
person at rest on the earth?

Figure 37.27 Question Q37.3.
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Q37.4. What do you think would be different in everyday life if the
speed of light were 10 m/s instead of 3.00 X 10° m/s?

Q37.5. The average life span in the United States is about 70 years.
Does this mean that it is impossible for an average person to
travel a distance greater than 70 light-years away from the earth?
(A light-year is the distance light travels in a year.) Explain.

Q37.6. You are holding an elliptical serving platter. How would
you need to travel for the serving platter to appear round to another
observer?

Q37.7. Two events occur at the same space point in a particular
inertial frame of reference and are simultaneous in that frame. Is it
possible that they may not be simultaneous in a different inertial
frame? Explain.

Q37.8. A high-speed train passes a train platform. Larry is a pas-
senger on the train, Adam is standing on the train platform, and
David is riding a bicycle toward the platform in the same direction
as the train is traveling. Compare the length of a train car as meas-
ured by Larry, Adam, and David.

Q37.9. The theory of relativity sets an upper limit on the speed that
a particle can have. Are there also limits on the energy and
momentum of a particle? Explain.

Q37.10. A student asserts that a material particle must always have
a speed slower than that of light, and a massless particle must
always move at exactly the speed of light. Is she correct? If so,

For instructor-assigned homework, go to www.masteringphysics.com ‘MP’

how do massless particles such as photons and neutrinos acquire
this speed? Can’t they start from rest and accelerate? Explain.
Q37.11. The speed of light relative to still water is 2.25 X 10° m/s.
If the water is moving past us, the speed of light we measure
depends on the speed of the water. Do these facts violate Einstein’s
second postulate? Explain.

Q37.12. When a monochromatic light source moves toward an
observer, its wavelength appears to be shorter than the value meas-
ured when the source is at rest. Does this contradict the hypothesis
that the speed of light is the same for all observers? Explain.
Q37.13. In principle, does a hot gas have more mass than the same
gas when it is cold? Explain. In practice, would this be a measura-
ble effect? Explain.

Q37.14. Why do you think the development of Newtonian mechan-
ics preceded the more refined relativistic mechanics by so many
years?

Exercises

Section 37.2 Relativity of Simultaneity

37.1. Suppose the two lightning bolts shown in Fig. 37.5a are
simultaneous to an observer on the train. Show that they are not
simultaneous to an observer on the ground. Which lightning strike
does the ground observer measure to come first?

Section 37.3 Relativity of Time Intervals

37.2. The positive muon (u™), an unstable particle, lives on aver-
age 2.20 X 10~®s (measured in its own frame of reference) before
decaying. (a) If such a particle is moving, with respect to the labo-
ratory, with a speed of 0.900c¢, what average lifetime is measured
in the laboratory? (b) What average distance, measured in the labo-
ratory, does the particle move before decaying?

37.3. How fast must a rocket travel relative to the earth so that
time in the rocket “slows down” to half its rate as measured by
earth-based observers? Do present-day jet planes approach such
speeds?

37.4. A spaceship flies past Mars with a speed of 0.985c¢ relative to
the surface of the planet. When the spaceship is directly overhead,
a signal light on the Martian surface blinks on and then off. An
observer on Mars measures that the signal light was on for 75.0 ws.
(a) Does the observer on Mars or the pilot on the spaceship meas-
ure the proper time? (b) What is the duration of the light pulse
measured by the pilot of the spaceship?

37.5. The negative pion (7 ) is an unstable particle with an aver-
age lifetime of 2.60 X 10~%s (measured in the rest frame of the
pion). (a) If the pion is made to travel at very high speed relative to
a laboratory, its average lifetime is measured in the laboratory to
be 4.20 X 1077 s. Calculate the speed of the pion expressed as a
fraction of c. (b) What distance, measured in the laboratory, does
the pion travel during its average lifetime?

37.6. As you pilot your space utility vehicle at a constant speed
toward the moon, a race pilot flies past you in her spaceracer at a
constant speed of 0.800c relative to you. At the instant the space-
racer passes you, both of you start timers at zero. (a) At the instant
when you measure that the spaceracer has traveled 1.20 X 10° m
past you, what does the race pilot read on her timer? (b) When the
race pilot reads the value calculated in part (a) on her timer, what
does she measure to be your distance from her? (c) At the instant

when the race pilot reads the value calculated in part (a) on her
timer, what do you read on yours?

37.7. A spacecraft flies away from the earth with a speed of
4.80 X 10° m/s relative to the earth and then returns at the same
speed. The spacecraft carries an atomic clock that has been care-
fully synchronized with an identical clock that remains at rest on
earth. The spacecraft returns to its starting point 365 days (1 year)
later, as measured by the clock that remained on earth. What is the
difference in the elapsed times on the two clocks, measured in
hours? Which clock, the one in the spacecraft or the one on earth,
shows the shortest elapsed time?

37.8. An alien spacecraft is flying overhead at a great distance as
you stand in your backyard. You see its searchlight blink on for
0.190s. The first officer on the spacecraft measures that the
searchlight is on for 12.0 ms. (a) Which of these two measured
times is the proper time? (b) What is the speed of the spacecraft
relative to the earth expressed as a fraction of the speed of light ¢?

Section 37.4 Relativity of Length

37.9. A spacecraft of the Trade Federation flies past the planet Cor-
uscant at a speed of 0.600c. A scientist on Coruscant measures the
length of the moving spacecraft to be 74.0 m. The spacecraft later
lands on Coruscant, and the same scientist measures the length of
the now stationary spacecraft. What value does she get?

37.10. A meter stick moves past you at great speed. Its motion rela-
tive to you is parallel to its long axis. If you measure the length of
the moving meter stick to be 1.00 ft (1 ft = 0.3048 m)—for
example, by comparing it to a 1-foot ruler that is at rest relative to
you—at what speed is the meter stick moving relative to you?
37.11. Why Are We Bombarded by Muons? Muons are unsta-
ble subatomic particles that decay to electrons with a mean life-
time of 2.2 us. They are produced when cosmic rays bombard the
upper atmosphere about 10 km above the earth’s surface, and they
travel very close to the speed of light. The problem we want to
address is why we see any of them at the earth’s surface. (a) What
is the greatest distance a muon could travel during its 2.2-us
lifetime? (b) According to your answer in part (a), it would seem
that muons could never make it to the ground. But the 2.2-us
lifetime is measured in the frame of the muon, and muons are mov-
ing very fast. At a speed of 0.999¢. what is the mean lifetime of a
muon as measured by an observer at rest on the earth? How far
would the muon travel in this time? Does this result explain why
we find muons in cosmic rays? (c) From the point of view of the
muon, it still lives for only 2.2 ws, so how does it make it to the
ground? What is the thickness of the 10 km of atmosphere through
which the muon must travel, as measured by the muon? It is now
clear how the muon is able to reach the ground?

37.12. An unstable particle is created in the upper atmosphere from
a cosmic ray and travels straight down toward the surface of the
earth with a speed of 0.99540c¢ relative to the earth. A scientist at
rest on the earth’s surface measures that the particle is created at an
altitude of 45.0 km. (a) As measured by the scientist, how much
time does it take the particle to travel the 45.0 km to the surface of
the earth? (b) Use the length-contraction formula to calculate the
distance from where the particle is created to the surface of the
earth as measured in the particle’s frame. (c) In the particle’s
frame, how much time does it take the particle to travel from
where it is created to the surface of the earth? Calculate this time
both by the time dilation formula and from the distance calculated
in part (b). Do the two results agree?

37.13. As measured by an observer on the earth, a spacecraft run-
way on earth has a length of 3600 m. (a) What is the length of the
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runway as measured by a pilot of a spacecraft flying past at a speed
of 4.00 X 107 m/ s relative to the earth? (b) An observer on earth
measures the time interval from when the spacecraft is directly
over one end of the runway until it is directly over the other end.
What result does she get? (c) The pilot of the spacecraft measures
the time it takes him to travel from one end of the runway to the
other end. What value does he get?

Section 37.5 The Lorentz Transformations

37.14. Solve Egs. (37.21) to obtain x and ¢ in terms of x’ and ¢,
and show that the resulting transformation has the same form as
the original one except for a change of sign for u.

37.15. Anobserver in frame S’ is moving to the right (+x-direction)
at speed u = 0.600c away from a stationary observer in frame S.
The observer in S’ measures the speed v’ of a particle moving
to the right away from her. What speed v does the observer in
S measure for the particle if (a) v’ = 0.400c; (b)v’ = 0.900c;
(©)v" =0.990c?

37.16. Space pilot Mavis zips past Stanley at a constant speed rela-
tive to him of 0.800c. Mavis and Stanley start timers at zero when
the front of Mavis’s ship is directly above Stanley. When Mavis
reads 5.00 s on her timer, she turns on a bright light under the front
of her spaceship. (a) Use the Lorentz coordinate transformation
derived in Exercise 37.14 and Example 37.7 to calculate x and ¢ as
measured by Stanley for the event of turning on the light. (b) Use
the time dilation formula, Eq. (37.6), to calculate the time interval
between the two events (the front of the spaceship passing over-
head and turning on the light) as measured by Stanley. Compare to
the value of ¢ you calculated in part (a). (c) Multiply the time inter-
val by Mavis’s speed, both as measured by Stanley, to calculate the
distance she has traveled as measured by him when the light turns
on. Compare to the value of x you calculated in part (a).

37.17. A pursuit spacecraft from the planet Tatooine is attempting
to catch up with a Trade Federation cruiser. As measured by an
observer on Tatooine, the cruiser is traveling away from the planet
with a speed of 0.600c. The pursuit ship is traveling at a speed of
0.800c relative to Tatooine, in the same direction as the cruiser.
(a) For the pursuit ship to catch the cruiser, should the speed of the
cruiser relative to the pursuit ship be positive or negative?
(b) What is the speed of the cruiser relative to the pursuit ship?
37.18. Equation 37.23 gives the transformation for only the
x-component of an object’s velocity. Suppose the object consid-
ered in the derivation also moved in the y[y’-direction. Find an
expression for u, in terms of the components of u’, v, and ¢, which
represents the transformation for the y-component of the velocity.
(Hint: Apply the Lorentz transformations and relationships like
u, = dx/dt, u! = dx'[dt', and so on, to the y-components.)

37.19. Two particles are created in a high-energy accelerator and
move off in opposite directions. The speed of one particle, as
measured in the laboratory, is 0.650c, and the speed of each parti-
cle relative to the other is 0.950c. What is the speed of the second
particle, as measured in the laboratory?

37.20. Two particles in a high-energy accelerator experiment are
approaching each other head-on, each with a speed of 0.9520c¢ as
measured in the laboratory. What is the magnitude of the velocity
of one particle relative to the other?

37.21. Two particles in a high-energy accelerator experiment
approach each other head-on with a relative speed of 0.890c. Both
particles travel at the same speed as measured in the laboratory.
What is the speed of each particle, as measured in the laboratory?
37.22. An enemy spaceship is moving toward your starfighter with
a speed, as measured in your frame, of 0.400c. The enemy ship
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fires a missile toward you at a speed of 0.700c relative to the
enemy ship (Fig. 37.28). (a) What is the speed of the missile rela-
tive to you? Express your answer in terms of the speed of light.
(b) If you measure that the enemy ship is 8.00 X 10°km away
from you when the missile is fired, how much time, measured in
your frame, will it take the missile to reach you?

Figure 37.28 Exercise 37.22.
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Enemy Starfighter

37.23. An imperial spaceship, moving at high speed relative to the
planet Arrakis, fires a rocket toward the planet with a speed of
0.920c relative to the spaceship. An observer on Arrakis measures
that the rocket is approaching with a speed of 0.360c. What is the
speed of the spaceship relative to Arrakis? Is the spaceship moving
toward or away from Arrakis?

*Section 37.6 The Doppler Effect

for Electromagnetic Waves

*37.24. Rewrite Eq. 37.25 to find the relative velocity u between
the electromagnetic source and an observer in terms of the ratio of
the observed frequency and the source frequency of light. What
relative velocity u# will produce (a) a 5.0% decrease in frequency
and (b) an increase by a factor of 5 of the observed light?

*37.25. Tell It to the Judge. (a) How fast must you be approach-
ing a red traffic light (A = 675nm) for it to appear yellow
(A = 575nm)? Express your answer in terms of the speed of
light. (b) If you used this as a reason not to get a ticket for running
a red light, how much of a fine would you get for speeding?
Assume that the fine is $1.00 for each kilometer per hour that your
speed exceeds the posted limit of 90 km/h.

*37.26. Show that when the source of electromagnetic waves
moves away from us at 0.600c, the frequency we measure is half
the value measured in the rest frame of the source.

Section 37.7 Relativistic Momentum

37.27. (a) A particle with mass m moves along a straight line under
the action of a force F directed along the same line. Evaluate the
derivative in Eq. (37.29) to show that the acceleration a = dv/dt
of the particle is given by a = (F[m) (1 — v*[¢*)*”. (b) Evaluate
the derivative in Eq. (37.29) to find the expression for the magni-
tude of the acceleration in terms of F, m, and v/c if the force is per-
pendicular to the velocity.

37.28. When Should you Use Relativity? As you have seen,
relativistic calculations usually involve the quantity y. When vy is
appreciably greater than 1, we must use relativistic formulas
instead of Newtonian ones. For what speed v (in terms of c¢) is
the value of y (a) 1.0% greater than 1; (b) 10% greater than 1;
(c) 100% greater than 1?

37.29. (a) At what speed is the momentum of a particle twice as
great as the result obtained from the nonrelativistic expression mv?
Express your answer in terms of the speed of light. (b) A force is
applied to a particle along its direction of motion. At what speed is
the magnitude of force required to produce a given acceleration
twice as great as the force required to produce the same accelera-
tion when the particle is at rest? Express your answer in terms of
the speed of light.

37.30. Relativistic Baseball. Calculate the magnitude of the
force required to give a 0.145-kg baseball an acceleration
a = 1.00 m/s? in the direction of the baseball’s initial velocity
when this velocity has a magnitude of (a) 10.0 m/ s; (b) 0.900c;
() 0.990c. (d) Repeat parts (a), (b), and (c) if the force and accel-
eration are perpendicular to the velocity.

Section 37.8 Relativistic Work and Energy

37.31. What is the speed of a particle whose kinetic energy is equal
to (a) its rest energy and (b) five times its rest energy?

37.32. Annihilation. In proton—antiproton annihilation a proton
and an antiproton (a negatively charged proton) collide and disap-
pear, producing electromagnetic radiation. If each particle has a
mass of 1.67 X 107?" kg and they are at rest just before the annihi-
lation, find the total energy of the radiation. Give your answers in
joules and in electron volts.

37.33. A proton (rest mass 1.67 X 10™?” kg) has total energy that
is 4.00 times its rest energy. What are (a) the kinetic energy of the
proton; (b) the magnitude of the momentum of the proton; (c) the
speed of the proton?

37.34. (a) How much work must be done on a particle with mass m
to accelerate it (a) from rest to a speed of 0.090c¢ and (b) from
a speed of 0.900c to a speed of 0.990c? (Express the answers
in terms of mc%) (c) How do your answers in parts (a) and (b)
compare?

37.35. (a) By what percentage does your rest mass increase when
you climb 30 m to the top of a ten-story building? Are you aware
of this increase? Explain. (b) By how many grams does the mass of
a 12.0-g spring with force constant 200 N/cm change when you
compress it by 6.0 cm? Does the mass increase or decrease? Would
you notice the change in mass if you were holding the spring?
Explain.

37.36. A 60.0-kg person is standing at rest on level ground. How
fast would she have to run to (a) double her total energy and
(b) increase her total energy by a factor of 10?

37.37. An Antimatter Reactor. When a particle meets its
antiparticle, they annihilate each other and their mass is converted
to light energy. The United States uses approximately 1.0 X 10" J
of energy per year. (a) If all this energy came from a futuristic anti-
matter reactor, how much mass of matter and antimatter fuel
would be consumed yearly? (b) If this fuel had the density of iron
(7.86 g/cm?) and were stacked in bricks to form a cubical pile,
how high would it be? (Before you get your hopes up, antimatter
reactors are a long way in the future—if they ever will be feasible.)
37.38. A (“psi”) particle has mass 5.52 X 10~%" kg. Compute the
rest energy of the ¢ particle in MeV.

37.39. A particle has rest mass 6.64 X 107%’ kg and momentum
2.10 X 10" '® kg - m/s. (a) What is the total energy (kinetic plus
rest energy) of the particle? (b) What is the kinetic energy of the
particle? (c) What is the ratio of the kinetic energy to the rest
energy of the particle?

37.40. Starting from Eq. (37.39), show that in the classical limit
(pc << mc?) the energy approaches the classical kinetic energy
Lmv? plus the rest mass energy mc>.

3741. Compute the kinetic energy of a proton (mass 1.67 X
107* kg using both the nonrelativistic and relativistic expres-
sions, and compute the ratio of the two results (relativistic
divided by nonrelativistic) for speeds of (a) 8.00 X 10" m/s and
(b) 2.85 X 10% m/s.

37.42. What is the kinetic energy of a proton moving at (a) 0.100c;
(b) 0.500c; (c) 0.900¢? How much work must be done to (d) increase

the proton’s speed from 0.100c¢ to 0.500¢ and (e) increase the pro-
ton’s speed from 0.500c¢ to 0.900c¢? (f) How do the last two results
compare to results obtained in the nonrelativistic limit?

37.43. (a) Through what potential difference does an electron have
to be accelerated, starting from rest, to achieve a speed of 0.980c¢?
(b) What is the kinetic energy of the electron at this speed?
Express your answer in joules and in electron volts.

37.44. Creating a Particle. Two protons (each with rest mass
M = 1.67 X 107?" kg) are initially moving with equal speeds in
opposite directions. The protons continue to exist after a colli-
sion that also produces an ° particle (see Chapter 44). The rest
mass of the n° is m = 9.75 X 107! kg. (a) If the two protons
and the n° are all at rest after the collision, find the initial speed
of the protons, expressed as a fraction of the speed of light.
(b) What is the kinetic energy of each proton? Express your
answer in MeV. (c) What is the rest energy of the °, expressed
in MeV? (d) Discuss the relationship between the answers to
parts (b) and (c).

37.45. Find the speed of a particle whose relativistic kinetic energy
is 50% greater than the Newtonian value for the same speed.
37.46. Energy of Fusion. In a hypothetical nuclear fusion reac-
tor, two deuterium nuclei combine or “fuse” to form one helium
nucleus. The mass of a deuterium nucleus, expressed in atomic
mass units (u), is 2.0136 u; the mass of a helium nucleus is
4.0015u (1 u = 1.6605402 X 107* kg). (a) How much energy is
released when 1.0 kg of deuterium undergoes fusion? (b) The
annual consumption of electrical energy in the United States is of
the order of 1.0 X 10" J. How much deuterium must react to pro-
duce this much energy?

37.47. The sun produces energy by nuclear fusion reactions, in
which matter is converted into energy. By measuring the amount
of energy we receive from the sun, we know that it is producing
energy at a rate of 3.8 X 10% W. (a) How many kilograms of mat-
ter does the sun lose each second? Approximately how many tons
of matter is this? (b) At this rate, how long would it take the sun to
use up all its mass?

37.48. A 0.100-ug speck of dust is accelerated from rest to a speed
of 0.900c by a constant 1.00 X 10° N force. (a) If the nonrelativis-
tic form of Newton’s second law (2 F = ma) is used, how far does
the object travel to reach its final speed? (b) Using the correct rela-
tivistic treatment of Section 37.8, how far does the object travel to
reach its final speed? (c) Which distance is greater? Why?

Problems

37.49. After being produced in a collision between elementary par-
ticles, a positive pion (77 %) must travel down a 1.20-km-long tube
to reach an experimental area. A 7" particle has an average life-
time (measured in its rest frame) of 2.60 X 107 s; the 77+ we are
considering has this lifetime. (a) How fast must the 7" travel if
it is not to decay before it reaches the end of the tube? (Since u
will be very close to ¢, write # = (1 — A)c and give your answer
in terms of A rather than u.) (b) The 7% has a rest energy of
139.6 MeV. What is the total energy of the 7 at the speed calcu-
lated in part (a)?

37.50. A cube of metal with sides of length a sits at rest in a frame
S with one edge parallel to the x-axis. Therefore, in S the cube has
volume «*. Frame S’ moves along the x-axis with a speed u. As
measured by an observer in frame S’, what is the volume of the
metal cube?

37.51. The starships of the Solar Federation are marked with
the symbol of the federation, a circle, while starships of the
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Denebian Empire are marked with the empire’s symbol, an ellipse
whose major axis is 1.40 times longer than its minor axis
(a = 1.40b in Fig. 37.29). How fast, relative to an observer, does
an empire ship have to travel for its marking to be confused with
the marking of a federation ship?

Figure 37.29 Problem 37.51.
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37.52. A space probe is sent to the vicinity of the star Capella,
which is 42.2 light-years from the earth. (A light-year is the dis-
tance light travels in a year.) The probe travels with a speed of
0.9910c. An astronaut recruit on board is 19 years old when the
probe leaves the earth. What is her biological age when the probe
reaches Capella?
37.53. A particle is said to be extremely relativistic when its kinetic
energy is much greater than its rest energy. (a) What is the speed of
a particle (expressed as a fraction of ¢) such that the total energy is
ten times the rest energy? (b) What is the percentage difference
between the left and right sides of Eq. (37.39) if (mc?)? is neg-
lected for a particle with the speed calculated in part (a)?
37.54. Everyday Time Dilation. Two atomic clocks are care-
fully synchronized. One remains in New York, and the other is
loaded on an airliner that travels at an average speed of 250 m/s
and then returns to New York. When the plane returns, the elapsed
time on the clock that stayed behind is 4.00 h. By how much will
the readings of the two clocks differ, and which clock will show
the shorter elapsed time? (Hint: Since u << ¢, you can simplify
1 — u?*/c? by a binomial expansion.)
3755. The Large Hadron Collider (LHC). Physicists and
engineers from around the world have come together to build the
largest accelerator in the world, the Large Hadron Collider (LHC)
at the CERN Laboratory in Geneva, Switzerland. The machine will
accelerate protons to kinetic energies of 7 TeV in an underground
ring 27 km in circumference. (For the latest news and more infor-
mation on the LHC, visit www.cern.ch.) (a) What speed v will pro-
tons reach in the LHC? (Since v is very close to ¢, write
v = (1 — A)c and give your answer in terms of A.) (b) Find the
relativistic mass, m,, of the accelerated protons in terms of their
rest mass.
37.56. A nuclear bomb containing 8.00 kg of plutonium explodes.
The sum of the rest masses of the products of the explosion is less
than the original rest mass by one part in 10*. (a) How much
energy is released in the explosion? (b) If the explosion takes place
in 4.00 us, what is the average power developed by the bomb?
(c) What mass of water could the released energy lift to a height of
1.00 km?
3757. Cerenkov Radiation. The Russian physicist P. A. Cerenkov
discovered that a charged particle traveling in a solid with a speed
exceeding the speed of light in that material radiates electromag-
netic radiation. (This is analogous to the sonic boom produced by
an aircraft moving faster than the speed of sound in air; see
Section 16.9. Cerenkov shared the 1958 Nobel Prize for this dis-
covery.) What is the minimum kinetic energy (in electron volts)
that an electron must have while traveling inside a slab of crown
glass (n = 1.52) in order to create this Cerenkov radiation?
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37.58. A photon with energy E is emitted by an atom with mass 1,
which recoils in the opposite direction. (a) Assuming that the
motion of the atom can be treated nonrelativistically, compute the
recoil speed of the atom. (b) From the result of part (a), show that
the recoil speed is much less than ¢ whenever E is much less than
the rest energy mc” of the atom.

37.59. In an experiment, two protons are shot directly toward each
other, each moving at half the speed of light relative to the labora-
tory. (a) What speed does one proton measure for the other proton?
(b) What would be the answer to part (a) if we used only nonrela-
tivistic Newtonian mechanics? (c) What is the kinetic energy of
each proton as measured by (i) an observer at rest in the laboratory
and (ii) an observer riding along with one of the protons? (d) What
would be the answers to part (c) if we used only nonrelativistic
Newtonian mechanics?

37.60. For the protons in Problem 37.59, suppose that their speed
is such that each proton measures a speed of half the speed of light
for the other proton. (a) What does an observer in the laboratory
measure for the speeds of these protons? (b) What is the kinetic
energy of each proton as measured by (i) an observer in the lab and
(ii) the other proton?

37.61. Frame S’ has an x-component of velocity u relative to frame
S, and at t = t' = 0 the two frames coincide (see Fig. 37.3). A
light pulse with a spherical wave front is emitted at the origin of S’
at time ' = 0. Its distance x’ from the origin after a time ¢’ is
given by x'* = ¢*'% Use the Lorentz coordinate transformation to
transform this equation to an equation in x and ¢, and show that the
result is x> = ¢%?; that is, the motion appears exactly the same in
frame of reference S as it does in S’; the wave front is observed to
be spherical in both frames.

37.62. In certain radioactive beta decay processes, the beta particle
(an electron) leaves the atomic nucleus with a speed of 99.95% the
speed of light relative to the decaying nucleus. If this nucleus is
moving at 75.00% the speed of light, find the speed of the emitted
electron relative to the laboratory reference frame if the electron is
emitted (a) in the same direction that the nucleus is moving and
(b) in the opposite direction from the nucleus’s velocity. (c) In
each case in parts (a) and (b), find the kinetic energy of the electron
as measured in (i) the laboratory frame and (ii) the reference frame
of the decaying nucleus.

37.63. A particle with mass m accelerated from rest by a constant
force F will, according to Newtonian mechanics, continue to accel-
erate without bound; that is, as t — o, v — . Show that accord-
ing to relativistic mechanics, the particle’s speed approaches ¢ as
t — . [Note: Auseful integralis [ (1 — x2) P dx = x[V1 — x2.]
37.64. Two events are observed in a frame of reference S to occur
at the same space point, the second occurring 1.80 s after the first.
In a second frame S’ moving relative to S, the second event is
observed to occur 2.35 s after the first. What is the difference
between the positions of the two events as measured in S'?

37.65. Two events observed in a frame of reference S have positions
and times given by (x,, #;) and (x,, t,), respectively. (a) Frame S’
moves along the x-axis just fast enough that the two events occur at
the same position in S’. Show that in S’, the time interval A¢’
between the two events is given by

At =\ [(Ar)* — (%)2

where Ax =x, — x; and Ar=1t, —t,. Hence show that if
Ax > ¢ At, there is no frame S’ in which the two events occur at

the same point. The interval Az’ is sometimes called the proper
time interval for the events. Is this term appropriate? (b) Show that
if Ax > ¢ At, there is a different frame of reference S’ in which the
two events occur simultaneously. Find the distance between the
two events in S'; express your answer in terms of Ax, Az, and c.
This distance is sometimes called a proper length. Is this term
appropriate? (c) Two events are observed in a frame of reference
S’ to occur simultaneously at points separated by a distance of
2.50 m. In a second frame S moving relative to S along the line
joining the two points in S’, the two events appear to be separated
by 5.00 m. What is the time interval between the events as meas-
ured in S? [Hint: Apply the result obtained in part (b).]

37.66. Albert in Wonderland. FEinstein and Lorentz, being avid
tennis players, play a fast-paced game on a court where they stand
20.0 m from each other. Being very skilled players, they play with-
out a net. The tennis ball has mass 0.0580 kg. You can ignore grav-
ity and assume that the ball travels parallel to the ground as it
travels between the two players. Unless otherwise specified, all
measurements are made by the two men. (a) Lorentz serves the
ball at 80.0 m/s. What is the ball’s kinetic energy? (b) Einstein
slams a return at 1.80 X 10°m/s. What is the ball’s kinetic
energy? (c) During Einstein’s return of the ball in part (a), a white
rabbit runs beside the court in the direction from Einstein to
Lorentz. The rabbit has a speed of 2.20 X 10° m/s relative to the
two men. What is the speed of the rabbit relative to the ball?
(d) What does the rabbit measure as the distance from Einstein to
Lorentz? (e) How much time does it take for the rabbit to run
20.0 m, according to the players? (f) The white rabbit carries a
pocket watch. He uses this watch to measure the time (as he sees
it) for the distance from Einstein to Lorentz to pass by under him.
What time does he measure?

*37.67. One of the wavelengths of light emitted by hydrogen atoms
under normal laboratory conditions is A = 656.3 nm, in the red
portion of the electromagnetic spectrum. In the light emitted from
a distant galaxy this same spectral line is observed to be Doppler-
shifted to A = 953.4 nm, in the infrared portion of the spectrum.
How fast are the emitting atoms moving relative to the earth? Are
they approaching the earth or receding from it?

*37.68. Measuring Speed by Radar. A baseball coach uses a
radar device to measure the speed of an approaching pitched
baseball. This device sends out electromagnetic waves with fre-
quency f, and then measures the shift in frequency Af of the
waves reflected from the moving baseball. If the fractional fre-
quency shift produced by a baseball is Af/ If, = 2.86 X 1077, what
is the baseball’s speed in km/h? (Hint: Are the waves Doppler-
shifted a second time when reflected off the ball?)

37.69. Space Travel? Travel to the stars requires hundreds or
thousands of years, even at the speed of light. Some people have
suggested that we can get around this difficulty by accelerating the
rocket (and its astronauts) to very high speeds so that they will age
less due to time dilation. The fly in this ointment is that it takes a
great deal of energy to do this. Suppose you want to go to the
immense red giant Betelgeuse, which is about 500 light-years
away. (A light-year is the distance that light travels in a year.) You
plan to travel at constant speed in a 1000-kg rocket ship (a little
over a ton), which, in reality, is far too small for this purpose. In
each case that follows, calculate the time for the trip, as measured
by people on earth and by astronauts in the rocket ship, the energy
needed in joules, and the energy needed as a percentage of
U.S. yearly use (which is 1.0 X 10" J). For comparison, arrange

your results in a table showing v, uee teartms trockerr £ (0 J), and E

(as % of U.S. use). The rocket ship’s speed is (a) 0.50c; (b) 0.99c;
() 0.9999c. On the basis of your results, does it seem likely that
any government will invest in such high-speed space travel any
time soon?

*37.70. A spaceship moving at constant speed u relative to us
broadcasts a radio signal at constant frequency f;,. As the spaceship
approaches us, we receive a higher frequency f; after it has passed,
we receive a lower frequency. (a) As the spaceship passes by, so it
is instantaneously moving neither toward nor away from us, show
that the frequency we receive is not f;, and derive an expression
for the frequency we do receive. Is the frequency we receive
higher or lower than f,? (Hint: In this case, successive wave crests
move the same distance to the observer and so they have the
same transit time. Thus f equals 1/T. Use the time dilation for-
mula to relate the periods in the stationary and moving frames.)
(b) A spaceship emits electromagnetic waves of frequency
fo = 345 MHz as measured in a frame moving with the ship. The
spaceship is moving at a constant speed 0.758¢ relative to us. What
frequency f do we receive when the spaceship is approaching us?
When it is moving away? In each case what is the shift in fre-
quency, f — f,? (c) Use the result of part (a) to calculate the fre-
quency f and the frequency shift ( f — f;) we receive at the instant
that the ship passes by us. How does the shift in frequency calcu-
lated here compare to the shifts calculated in part (b)?

*37.71. The Pole and Barn Paradox. Suppose a very fast runner
(v = 0.600c¢) holding a long, horizontal pole runs through a barn
open at both ends. The length of the pole (in its rest frame) is
6.00 m, and the length of the barn (in its rest frame) is 5.00 m. In
the barn’s reference frame, the pole will undergo length contrac-
tion and can all fit inside the barn at the same time. But in the run-
ner’s reference frame, the barn will undergo length contraction
and the entire pole can never be entirely within the barn at any
time! Explain the resolution of this paradox.

37.72. The French physicist Armand Fizeau was the first to meas-
ure the speed of light accurately. He also found experimentally that
the speed, relative to the lab frame, of light traveling in a tank of
water that is itself moving at a speed V relative to the lab frame is

v=£+kV
n

where n = 1.333 is the index of refraction of water. Fizeau called
k the dragging coefficient and obtained an experimental value
of k= 0.44. What value of k£ do you calculate from relativistic
transformations?

Challenge Problems

37.73. Lorentz Transformation for Acceleration. Using a
method analogous to the one in the text to find the Lorentz trans-
formation formula for velocity, we can find the Lorentz transfor-
mation for acceleration. Let frame S’ have a constant x-component
of velocity u relative to frame S. An object moves relative to frame
S along the x-axis with instantaneous velocity v, and instantaneous
acceleration a,. (a) Show that its instantaneous acceleration in

frame S’ is
, (1 uz)3/2(1 va)ﬂ
al =all —— —
x x 2 2

[Hint: Express the acceleration in S’ as a/ = dv’[dt’. Then use
Eq. (37.21) to express dt' in terms of dt and dx, and use
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Eq. (37.22) to express dv, in terms of u and dv,. The velocity of
the object in S is v, = dx/dt.] (b) Show that the acceleration in
frame S can be expressed as

s
a. =a - —
X X Cz C2

where v/ = dx'[dt’ is the velocity of the object in frame §'.

37.74. A Realistic Version of the Twin Paradox. A rocket ship
leaves the earth on January 1, 2100. Stella, one of a pair of twins
born in the year 2075, pilots the rocket (reference frame S'); the
other twin, Terra, stays on the earth (reference frame S). The rocket
ship has an acceleration of constant magnitude g in its own refer-
ence frame (this makes the pilot feel at home, since it simulates the
earth’s gravity). The path of the rocket ship is a straight line in the
+x-direction in frame S. (a) Using the results of Challenge Prob-
lem 37.73, show that in Terra’s earth frame S, the rocket’s acceler-
ation is

- 1
8 2

du u2\32
dt

where u is the rocket’s instantaneous velocity in frame S. (b) Write
the result of part (a) in the form dt = f(u) du, where f(u) is a
function of u, and integrate both sides. (Hint: Use the integral
given in Problem 37.63.) Show that in Terra’s frame, the time
when Stella attains a velocity v, is

Uiy
8V 1 - Ul)(z/c2

(¢) Use the time dilation formula to relate dr and dt' (infinitesimal
time intervals measured in frames S and S’, respectively). Com-
bine this result with the result of part (a) and integrate as in part
(b) to show the following: When Stella attains a velocity v, rela-
tive to Terra, the time 7| that has elapsed in frame S’ is

=

C Uy,
t = farctanh(i)
8 ¢

Here arctanh is the inverse hyperbolic tangent. (Hint: Use the inte-
gral given in Challenge Problem 5.124.) (d) Combine the results of
parts (b) and (c) to find #, in terms of 7{, g, and ¢ alone. (e) Stella
accelerates in a straight-line path for five years (by her clock),
slows down at the same rate for five years, turns around, acceler-
ates for five years, slows down for five years, and lands back on
the earth. According to Stella’s clock, the date is January 1, 2120.
What is the date according to Terra’s clock?

*31.75. Determining the Masses of Stars. Many of the stars in
the sky are actually binary stars, in which two stars orbit about
their common center of mass. If the orbital speeds of the stars are
high enough, the motion of the stars can be detected by the
Doppler shifts of the light they emit. Stars for which this is the case
are called spectroscopic binary stars. Figure 37.30 (next page)
shows the simplest case of a spectroscopic binary star: two identi-
cal stars, each with mass m, orbiting their center of mass in a circle
of radius R. The plane of the stars’ orbits is edge-on to the line
of sight of an observer on the earth. (a) The light produced by
heated hydrogen gas in a laboratory on the earth has a frequency of
4.568110 X 10' Hz. In the light received from the stars by a tele-
scope on the earth, hydrogen light is observed to vary in frequency
between 4.567710 X 10'* Hz and 4.568910 X 10'* Hz. Determine
whether the binary star system as a whole is moving toward or
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Figure 37.30 Challenge Problem 37.75.

away from the earth, the speed of this motion, and the orbital
speeds of the stars. (Hint: The speeds involved are much less than
¢, so you may use the approximate result Af/f = u/c given in Sec-
tion 37.6.) (b) The light from each star in the binary system varies
from its maximum frequency to its minimum frequency and back
again in 11.0 days. Determine the orbital radius R and the mass m
of each star. Give your answer for m in kilograms and as a multiple
of the mass of the sun, 1.99 X 10* kg. Compare the value of R to
the distance from the earth to the sun, 1.50 X 10'! m. (This tech-
nique is actually used in astronomy to determine the masses of
stars. In practice, the problem is more complicated because the two
stars in a binary system are usually not identical, the orbits are usu-
ally not circular, and the plane of the orbits is usually tilted with
respect to the line of sight from the earth.)

37.76. Relativity and the Wave Equation. (a) Consider the
Galilean transformation along the x-direction: x" = x — vt and
t'" = t. In frame S the wave equation for electromagnetic waves in
a vacuum is

’E(x, 1) 1 0’E(x, 1) —0

dx? c? ar?

where E represents the electric field in the wave. Show that by
using the Galilean transformation the wave equation in frame S’ is
found to be

(1 v2) ’E(x’, 1)

axr2 CZ

2w PEW, 1) 1 PE(X, 1) 0

ax'ot’ ¢t a”?

C2

This has a different form than the wave equation in S. Hence the
Galilean transformation violates the first relativity postulate that
all physical laws have the same form in all inertial reference
frames. (Hint: Express the derivatives d/dx and 9/dr in terms of
a/ox" and 0/0t' by use of the chain rule.) (b) Repeat the analysis of
part (a), but use the Lorentz coordinate transformations,
Eqgs. (37.21), and show that in frame S’ the wave equation has the
same form as in frame S:

’E(x’,t") 1 E(x',t") _

ax? c? ar’?

0

Explain why this shows that the speed of light in vacuum is ¢ in
both frames S and S'.

37.77. Kaon Production. In high-energy physics, new particles
can be created by collisions of fast-moving projectile particles
with stationary particles. Some of the kinetic energy of the incident
particle is used to create the mass of the new particle. A
proton—proton collision can result in the creation of a negative
kaon (K~ and a positive kaon (K*):

p+p—op+p+K +K'

(a) Calculate the minimum kinetic energy of the incident proton
that will allow this reaction to occur if the second (target) proton is
initially at rest. The rest energy of each kaon is 493.7 MeV, and the
rest energy of each proton is 938.3 MeV. (Hint: It is useful here to
work in the frame in which the total momentum is zero. See Prob-
lem 8.100, but note that here the Lorentz transformation must be
used to relate the velocities in the laboratory frame to those in the
zero-total-momentum frame.) (b) How does this calculated mini-
mum kinetic energy compare with the total rest mass energy of the
created kaons? (c) Suppose that instead the two protons are both in
motion with velocities of equal magnitude and opposite direction.
Find the minimum combined kinetic energy of the two protons that
will allow the reaction to occur. How does this calculated mini-
mum Kkinetic energy compare with the total rest mass energy of the
created kaons? (This example shows that when colliding beams of
particles are used instead of a stationary target, the energy require-
ments for producing new particles are reduced substantially.)



