
36 .1 Fresnel and Fraunhofer Diffraction 1235

36.1 Fresnel and Fraunhofer Diffraction
According to geometric optics, when an opaque object is placed between a
point light source and a screen, as in Fig. 36.1, the shadow of the object forms
a perfectly sharp line. No light at all strikes the screen at points within the
shadow, and the area outside the shadow is illuminated nearly uniformly. But
as we saw in Chapter 35, the wave nature of light causes effects that can’t be
understood with the simple model of geometric optics. An important class of such
effects occurs when light strikes a barrier that has an aperture or an edge. The
interference patterns formed in such a situation are grouped under the heading
diffraction.

An example of diffraction is shown in Fig. 36.2. The photograph in Fig. 36.2a
was made by placing a razor blade halfway between a pinhole, illuminated by
monochromatic light, and a photographic film. The film recorded the shadow cast
by the blade. Figure 36.2b is an enlargement of a region near the shadow of the
right edge of the blade. The position of the geometric shadow line is indicated by
arrows. The area outside the geometric shadow is bordered by alternating bright
and dark bands. There is some light in the shadow region, although this is not
very visible in the photograph. The first bright band in Fig. 36.2b, just to the right
of the geometric shadow, is considerably brighter than in the region of uniform
illumination to the extreme right. This simple experiment gives us some idea of
the richness and complexity of what might seem to be a simple idea, the casting
of a shadow by an opaque object.

We don’t often observe diffraction patterns such as Fig. 36.2 in everyday life
because most ordinary light sources are not monochromatic and are not point
sources. If we use a white frosted light bulb instead of a point source in Fig. 36.1,
each wavelength of the light from every point of the bulb forms its own diffrac-
tion pattern, but the patterns overlap to such an extent that we can’t see any indi-
vidual pattern.

Diffraction and Huygens’s Principle
Diffraction patterns can be analyzed by use of Huygens’s principle (see Sec-
tion 33.7). Let’s review that principle briefly. Every point of a wave front can be
considered the source of secondary wavelets that spread out in all directions with a
speed equal to the speed of propagation of the wave. The position of the wave front
at any later time is the envelope of the secondary waves at that time. To find the
resultant displacement at any point, we combine all the individual displacements

DIFFRACTION

?The laser used to
read a compact disc
(CD) has a wavelength
of 780 nm, while the
laser used to read a
DVD has a wavelength
of 650 nm. How does
this make it possible for
a DVD to hold more
information than a CD?

Everyone is used to the idea that sound bends around corners. If sound
didn’t behave this way, you couldn’t hear a police siren that’s out of sight
around a corner or the speech of a person whose back is turned to you.

What may surprise you (and certainly surprised many scientists of the early 19th
century) is that light can bend around corners as well. When light from a point
source falls on a straightedge and casts a shadow, the edge of the shadow is never
perfectly sharp. Some light appears in the area that we expect to be in the
shadow, and we find alternating bright and dark fringes in the illuminated area. In
general, light emerging from apertures doesn’t behave precisely according to the
predictions of the straight-line ray model of geometric optics.

The reason for these effects is that light, like sound, has wave characteristics.
In Chapter 35 we studied the interference patterns that can arise when two light
waves are combined. In this chapter we’ll investigate interference effects due to
combining many light waves. Such effects are referred to as diffraction. We’ll
find that the behavior of waves after they pass through an aperture is an example
of diffraction; each infinitesimal part of the aperture acts as a source of waves,
and the resulting pattern of light and dark is a result of interference among the
waves emanating from these sources.

Light emerging from arrays of apertures also forms patterns whose character
depends on the color of the light and the size and spacing of the apertures. Exam-
ples of this effect include the colors of iridescent butterflies and the “rainbow”
you see reflected from the surface of a compact disc. We’ll explore similar effects
with x rays that are used to study the atomic structure of solids and liquids.
Finally, we’ll look at the physics of a hologram, a special kind of interference
pattern recorded on photographic film and reproduced. When properly illumi-
nated, it forms a three-dimensional image of the original object.
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LEARNING GOALS
By studying this chapter, you will learn:

• What happens when coherent light
shines on an object with an edge
or aperture.

• How to understand the diffraction
pattern formed when coherent light
passes through a narrow slit.

• How to calculate the intensity at
various points in a single-slit diffrac-
tion pattern.

• What happens when coherent light
shines on an array of narrow,
closely spaced slits.

• How scientists use diffraction grat-
ings for precise measurements of
wavelength.

• How x-ray diffraction reveals the
arrangement of atoms in a crystal.

• How diffraction sets limits on the
smallest details that can be seen
with a telescope.

Geometric optics predicts that this situation
should produce a sharp boundary between
illumination and
solid shadow.

That’s NOT what
really happens!

Straightedge

Screen

Point
source

Area of
illumination

Geometric
shadow

DOESN’T
HAPPEN

36.1 A point source of light illuminates a
straightedge.

Position of geometric shadow

Photograph of a razor blade illuminated by
monochromatic light from a point source (a
pinhole). Notice the fringe around the
blade outline.

Enlarged view of the area outside the
geometric shadow of the blade’s edge

(a) (b)

36.2 An example of diffraction.
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produced by these secondary waves, using the superposition principle and taking
into account their amplitudes and relative phases.

In Fig. 36.1, both the point source and the screen are relatively close to the
obstacle forming the diffraction pattern. This situation is described as near-field
diffraction or Fresnel diffraction, pronounced “Freh-nell” (after the French sci-
entist Augustin Jean Fresnel, 1788–1827). If the source, obstacle, and screen are
far enough away that all lines from the source to the obstacle can be considered
parallel and all lines from the obstacle to a point in the pattern can be considered
parallel, the phenomenon is called far-field diffraction or Fraunhofer diffrac-
tion (after the German physicist Joseph von Fraunhofer, 1787–1826). We will
restrict the following discussion to Fraunhofer diffraction, which is usually sim-
pler to analyze in detail than Fresnel diffraction.

Diffraction is sometimes described as “the bending of light around an obsta-
cle.” But the process that causes diffraction is present in the propagation of every
wave. When part of the wave is cut off by some obstacle, we observe diffraction
effects that result from interference of the remaining parts of the wave fronts.
Optical instruments typically use only a limited portion of a wave; for example, a
telescope uses only the part of a wave that is admitted by its objective lens or
mirror. Thus diffraction plays a role in nearly all optical phenomena.

Finally, we emphasize that there is no fundamental distinction between interf-
erence and diffraction. In Chapter 35 we used the term interference for effects
involving waves from a small number of sources, usually two. Diffraction usu-
ally involves a continuous distribution of Huygens’s wavelets across the area of
an aperture, or a very large number of sources or apertures. But both categories of
phenomena are governed by the same basic physics of superposition and Huy-
gens’s principle.

36.2 Diffraction from a Single Slit
In this section we’ll discuss the diffraction pattern formed by plane-wave (parallel-
ray) monochromatic light when it emerges from a long, narrow slit, as shown in
Fig. 36.3. We call the narrow dimension the width, even though in this figure it is
a vertical dimension.

According to geometric optics, the transmitted beam should have the same
cross section as the slit, as in Fig. 36.3a. What is actually observed is the pattern
shown in Fig. 36.3b. The beam spreads out vertically after passing through the

slit. The diffraction pattern consists of a central bright band, which may be
much broader than the width of the slit, bordered by alternating dark and bright
bands with rapidly decreasing intensity. About 85% of the power in the trans-
mitted beam is in the central bright band, whose width is found to be inversely
proportional to the width of the slit. In general, the smaller the width of the slit,
the broader the entire diffraction pattern. (The horizontal spreading of the beam
in Fig. 36.3b is negligible because the horizontal dimension of the slit is rela-
tively large.) You can easily observe a similar diffraction pattern by looking at a
point source, such as a distant street light, through a narrow slit formed between
your two thumbs held in front of your eye; the retina of your eye corresponds to
the screen.

Single-Slit Diffraction: Locating the Dark Fringes
Figure 36.4 shows a side view of the same setup; the long sides of the slit are per-
pendicular to the figure, and plane waves are incident on the slit from the left.
According to Huygens’s principle, each element of area of the slit opening can be
considered as a source of secondary waves. In particular, imagine dividing the
slit into several narrow strips of equal width, parallel to the long edges and per-
pendicular to the page. Two such strips are shown in Fig. 36.4a. Cylindrical sec-
ondary wavelets, shown in cross section, spread out from each strip.

In Fig. 36.4b a screen is placed to the right of the slit. We can calculate the
resultant intensity at a point on the screen by adding the contributions from the
individual wavelets, taking proper account of their various phases and ampli-
tudes. It’s easiest to do this calculation if we assume that the screen is far enough
away that all the rays from various parts of the slit to a particular point on the
screen are parallel, as in Fig. 36.4c. An equivalent situation is Fig. 36.4d, in
which the rays to the lens are parallel and the lens forms a reduced image of the
same pattern that would be formed on an infinitely distant screen without the
lens. We might expect that the various light paths through the lens would intro-
duce additional phase shifts, but in fact it can be shown that all the paths have
equal phase shifts, so this is not a problem.

The situation of Fig. 36.4b is Fresnel diffraction; those in Figs. 36.4c and
36.4d, where the outgoing rays are considered parallel, are Fraunhofer diffrac-
tion. We can derive quite simply the most important characteristics of the Fraun-
hofer diffraction pattern from a single slit. First consider two narrow strips, one
just below the top edge of the drawing of the slit and one at its center, shown in
end view in Fig. 36.5. The difference in path length to point is 
where is the slit width and is the angle between the perpendicular to the slit
and a line from the center of the slit to Suppose this path difference happens to
be equal to then light from these two strips arrives at point with a half-
cycle phase difference, and cancellation occurs.

Pl/2;
P.

ua
1a/2 2  sin u,P

P

P

Parallel-ray monochromatic
light

(a) PREDICTED OUTCOME:
       Geometric optics predicts that this
       setup will produce a single bright
       band the same size as the slit.

(b) WHAT REALLY HAPPENS:
      In reality, we see a diffraction
      pattern—a set of interference
      fringes.

Width

a

Screen

a

36.3 (a) The “shadow” of a horizontal slit as incorrectly predicted by geometric optics. (b) A horizontal slit actually produces a diffrac-
tion pattern. The slit width has been greatly exaggerated.

Test Your Understanding of Section 36.1 Can sound waves undergo diffraction
around an edge?

❚

We divide the slit into
imaginary strips parallel
to the slit’s long axis.

If the screen is close,
the rays from the
different strips to a
point P on the screen
are not parallel.

If the screen is distant,
the rays to P are
approximately parallel.

A converging lens images a
Fraunhofer pattern on
a nearby screen.

Each strip is a source of
Huygens’s wavelets.

(a) A slit as a source of wavelets

Slit
width
a a

Plane waves
incident on the slit

P

Screen

(b) Fresnel (near-field) diffraction (c) Fraunhofer (far-field) diffraction

Converging
cylindrical lens

P

Screen
f

(d) Imaging Fraunhofer diffraction

36.4 Diffraction by a single rectangular slit. The long sides of the slit are perpendicular to the figure.

16.6 Single-Slit Diffraction

O N L I N E
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Similarly, light from two strips immediately below the two in the figure also
arrives at a half-cycle out of phase. In fact, the light from every strip in the top
half of the slit cancels out the light from a corresponding strip in the bottom half.
The result is complete cancellation at for the combined light from the entire
slit, giving a dark fringe in the interference pattern. That is, a dark fringe occurs
whenever

(36.1)

The plus-or-minus sign in Eq. (36.1) says that there are symmetrical dark
fringes above and below point in Fig. 36.5a. The upper fringe occurs
at a point where light from the bottom half of the slit travels farther to 
than does light from the top half; the lower fringe occurs where light
from the top half travels farther than light from the bottom half.

We may also divide the screen into quarters, sixths, and so on, and use the
above argument to show that a dark fringe occurs whenever 

and so on. Thus the condition for a dark fringe is

(36.2)

For example, if the slit width is equal to ten wavelengths dark
fringes occur at Between the dark fringes are bright
fringes. We also note that corresponds to a bright band; in this case,
light from the entire slit arrives at in phase. Thus it would be wrong to put

in Eq. (36.2). The central bright fringe is wider than the other bright
fringes, as Fig. 36.3 shows. In the small-angle approximation that we will use
below, it is exactly twice as wide.

With light, the wavelength is of the order of This is
often much smaller than the slit width a typical slit width is 

Therefore the values of in Eq. (36.2) are often so small that the approx-
imation (where is in radians) is a very good one. In that case we can
rewrite this equation as

u 5
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usin u < u
u1024 m.

1022 cm 5a;
500 nm 5 5 3 1027 m.l

m 5 0
P

sin u 5 0
6 

3
10 , c.6 

2
10 ,sin u 5 6 

1
10 ,

1a 5 10l 2 ,

(dark fringes in single-
slit diffraction)sin u 5
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For the two strips shown, the path difference to P is (a/2) sin u.
When 1a/22 sin u 5 1/2, the light cancels at P. This is true for the
whole slit, so P represents a dark fringe.

u is usually very small, so we can use the
approximations sin u 5 u and tan u 5 u.
Then the condition for a dark band is
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(b) Enlarged view of the top half of the slit
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36.5 Side view of a horizontal slit. When the distance to the screen is much greater than the slit width the rays from a distance 
apart may be considered parallel.

a/2a,x where is in radians. Also, if the distance from slit to screen is as in
Fig. 36.5a, and the vertical distance of the dark band from the center of the
pattern is then For small we may also approximate by 
(in radians), and we then find

(36.3)

Figure 36.6 is a photograph of a single-slit diffraction pattern with the
and minima labeled.

CAUTION Single-slit diffraction vs. two-slit interference Equation (36.3) has the
same form as the equation for the two-slit pattern, Eq. (35.6), except that in Eq. (36.3) we
use rather than for the distance to the screen. But Eq. (36.3) gives the positions of the
dark fringes in a single-slit pattern rather than the bright fringes in a double-slit pattern.
Also, in Eq. (36.2) is not a dark fringe. Be careful! ❚m 5 0
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36.6 Photograph of the Fraunhofer dif-
fraction pattern of a single horizontal slit.

R 5 6.0 m

32 mm

Slit width 5 ?

Screen

y

x

36.7 A single-slit diffraction experiment.

Example 36.1 Single-slit diffraction

You pass 633-nm laser light through a narrow slit and observe the
diffraction pattern on a screen 6.0 m away. You find that the dis-
tance on the screen between the centers of the first minima outside
the central bright fringe is 32 mm (Fig. 36.7). How wide is the slit?

SOLUTION

IDENTIFY: This problem involves the relationship between the
dark fringes in a single-slit diffraction pattern and the width of the
slit (our target variable).

SET UP: The distances between points on the screen are much
smaller than the distance from the slit to the screen, so the angle 
shown in Fig. 36.5a is very small. Hence we can use the approxi-
mate relationship of Eq. (36.3) to solve for the slit width (the tar-
get variable).

EXECUTE: The first minimum corresponds to in Eq. (36.3).
The distance from the central maximum to the first minimum on
either side is half the distance between the two first minima, so

Substituting these values and solving for we
find

EVALUATE: The angle is small only if the wavelength is small
compared to the slit width. Since 
and we have found our result is
consistent with this: The wavelength is 

as large as the slit width.
Can you show that the distance between the second minima on

the two sides is and so on?2 132 mm 2 5 64 mm,

12.4 3 1024 m 2 5 0.0026
16.33 3 1027 m 2 /

a 5 0.24 mm 5 2.4 3 1024 m,
l 5 633 nm 5 6.33 3 1027 m

u

 5 2.4 3 1024 m 5 0.24 mm

 a 5
xl

y1
5

16.0 m 2 1633 3 1029 m 2
132 3 1023 m 2 /2

a,y1 5 132 mm 2 /2.

y1

m 5 1

a

u

Test Your Understanding of Section 36.2 Rank the following single-slit
diffraction experiments in order of the size of the angle from the center of the dif-
fraction pattern to the first dark fringe, from largest to smallest (i) wavelength 400 nm,
slit width 0.20 mm; (ii) wavelength 600 nm, slit width 0.20 mm; (iii) wavelength 400 nm,
slit width 0.30 mm; (iv) wavelength 600 nm, slit width 0.30 mm.

❚

36.3 Intensity in the Single-Slit Pattern
We can derive an expression for the intensity distribution for the single-slit dif-
fraction pattern by the same phasor-addition method that we used in Section 35.3
to obtain Eqs. (35.10) and (35.14) for the two-slit interference pattern. We again
imagine a plane wave front at the slit subdivided into a large number of strips.
We superpose the contributions of the Huygens wavelets from all the strips at 
a point on a distant screen at an angle from the normal to the slit planeuP
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(d) As in (c), but in the limit that the slit is
subdivided into infinitely many strips

(c) Phasor diagram at a point slightly off the
center of the pattern; b 5 total phase difference
between the first and last phasors.

(b) At the center of the diffraction pattern
(point O), the phasors from all strips within the
slit are in phase.

(a) 

P

O

Distant screen

Strips within slit

Plane waves
incident on the slit

Slit
width
a

36.8 Using phasor diagrams to find the
amplitude of the field in single-slit dif-
fraction. Each phasor represents the field
from a single strip within the slit.

E
S

E
S (Fig. 36.8a). To do this, we use a phasor to represent the sinusoidally varying

field from each individual strip. The magnitude of the vector sum of the phasors
at each point is the amplitude of the total field at that point. The intensity
at is proportional to

At the point shown in Figure 36.8a, corresponding to the center of the pat-
tern where there are negligible path differences for the phasors are
all essentially in phase (that is, have the same direction). In Fig. 36.8b we draw
the phasors at time and denote the resultant amplitude at by In this
illustration we have divided the slit into 14 strips.

Now consider wavelets arriving from different strips at point in Fig. 36.8a,
at an angle from point Because of the differences in path length, there are
now phase differences between wavelets coming from adjacent strips; the corre-
sponding phasor diagram is shown in Fig. 36.8c. The vector sum of the phasors is
now part of the perimeter of a many-sided polygon, and the amplitude of the
resultant electric field at is the chord. The angle is the total phase difference
between the wave from the top strip of Fig. 36.8a and the wave from the bottom
strip; that is, is the phase of the wave received at from the top strip with
respect to the wave received at from the bottom strip.

We may imagine dividing the slit into narrower and narrower strips. In the
limit that there is an infinite number of infinitesimally narrow strips, the curved
trail of phasors becomes an arc of a circle (Fig. 36.8d), with arc length equal to
the length in Fig. 36.8b. The center of this arc is found by constructing per-
pendiculars at and From the relationship among arc length, radius, and
angle, the radius of the arc is the amplitude of the resultant electric field
at is equal to the chord which is (Note that must be in
radians!) We then have

(amplitude in single-slit diffraction) (36.4)

The intensity at each point on the screen is proportional to the square of the
amplitude given by Eq. (36.4). If is the intensity in the straight-ahead direction
where and then the intensity at any point is

(intensity in single-slit diffraction) (36.5)

We can express the phase difference in terms of geometric quantities, as we
did for the two-slit pattern. From Eq. (35.11) the phase difference is times
the path difference. Figure 36.5 shows that the path difference between the ray
from the top of the slit and the ray from the middle of the slit is The
path difference between the rays from the top of the slit and the bottom of the slit
is twice this, so

(36.6)

and Eq. (36.5) becomes

(intensity in single-slit diffraction) (36.7)

This equation expresses the intensity directly in terms of the angle In many
calculations it is easier first to calculate the phase angle using Eq. (36.6), and
then to use Eq. (36.5).

Equation (36.7) is plotted in Fig. 36.9a. Note that the central intensity peak is
much larger than any of the others. This means that most of the power in the
wave remains within an angle from the perpendicular to the slit, where

(the first diffraction minimum). You can see this easily in Fig. 36.9b,sin u 5 l/a
u

b,
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O

EP 

2.P
E
S

EPP

E
S which is a photograph of water waves undergoing single-slit diffraction. Note

also that the peak intensities in Fig. 36.9a decrease rapidly as we go away from
the center of the pattern. (Compare Fig. 36.6, which shows a single-slit diffrac-
tion pattern for light.)

The dark fringes in the pattern are the places where These occur at
points for which the numerator of Eq. (36.5) is zero so that is a multiple of 
From Eq. (36.6) this corresponds to

(36.8)

This agrees with our previous result, Eq. (36.2). Note again that (corre-
sponding to is not a minimum. Equation (36.5) is indeterminate at 
but we can evaluate the limit as using L’Hôpital’s rule. We find that at

as we should expect.

Intensity Maxima in the Single-Slit Pattern
We can also use Eq. (36.5) to calculate the positions of the peaks, or intensity
maxima, and the intensities at these peaks. This is not quite as simple as it may
appear. We might expect the peaks to occur where the sine function reaches the
value —namely, where or in general,

(36.9)

This is approximately correct, but because of the factor in the denomina-
tor of Eq. (36.5), the maxima don’t occur precisely at these points. When we take
the derivative of Eq. (36.5) with respect to and set it equal to zero to try to find
the maxima and minima, we get a transcendental equation that has to be solved
numerically. In fact there is no maximum near The first maxima on
either side of the central maximum, near actually occur at 
The second side maxima, near are actually at and so on.
The error in Eq. (36.9) vanishes in the limit of large —that is, for intensity max-
ima far from the center of the pattern.

To find the intensities at the side maxima, we substitute these values of back
into Eq. (36.5). Using the approximate expression in Eq. (36.9), we get

(36.10)

where is the intensity of the side maximum and is the intensity of the
central maximum. Equation (36.10) gives the series of intensities

and so on. As we have pointed out, this equation is only approximately correct.
The actual intensities of the side maxima turn out to be

Note that the intensities of the side maxima decrease very rapidly, as Fig. 36.9a
also shows. Even the first side maxima have less than 5% of the intensity of the
central maximum.

Width of the Single-Slit Pattern
For small angles the angular spread of the diffraction pattern is inversely propor-
tional to the slit width or, more precisely, to the ratio of to the wavelength 
Figure 36.10 shows graphs of intensity as a function of the angle for three val-
ues of the ratio a/l.
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36.9 (a) Intensity versus angle in single-
slit diffraction. The values of label
intensity minima given by Eq. (36.8). Most
of the wave power goes into the central
intensity peak (between the and

intensity minima). (b) These
water waves passing through a small aper-
ture behave exactly like light waves in sin-
gle-slit diffraction. Only the diffracted
waves within the central intensity peak are
visible; the waves at larger angles are too
faint to see.

m 5 21
m 5 1

m
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If the slit width is equal to or narrower than the
wavelength, only one broad maximum forms.

The wider the slit (or the shorter the
wavelength), the narrower and sharper
is the central peak.

(c) a 5 8l (b) a 5 5l (a) a 5 l 
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36.10 The single-slit diffraction pattern depends on the ratio of the slit width to the wavelength l.a

36.4 Multiple Slits
In Sections 35.2 and 35.3 we analyzed interference from two point sources or
from two very narrow slits; in this analysis we ignored effects due to the finite
(that is, nonzero) slit width. In Sections 36.2 and 36.3 we considered the diffrac-
tion effects that occur when light passes through a single slit of finite width.
Additional interesting effects occur when we have two slits with finite width or
when there are several very narrow slits.

Two Slits of Finite Width
Let’s take another look at the two-slit pattern in the more realistic case in which
the slits have finite width. If the slits are narrow in comparison to the wavelength,
we can assume that light from each slit spreads out uniformly in all directions to
the right of the slit. We used this assumption in Section 35.3 to calculate the inter-
ference pattern described by Eq. (35.10) or (35.15), consisting of a series of
equally spaced, equally intense maxima. However, when the slits have finite
width, the peaks in the two-slit interference pattern are modulated by the single-
slit diffraction pattern characteristic of the width of each slit.

36.11 The sound waves used in speech
have a long wavelength (about 1 m) and
can easily bend around this instructor’s
head. By contrast, light waves have very
short wavelengths and undergo very little
diffraction. Hence you can’t see around 
his head!

With light waves, the wavelength is often much smaller than the slit width
and the values of in Eqs. (36.6) and (36.7) are so small that the approxima-

tion is very good. With this approximation the position of the first
minimum beside the central maximum, corresponding to is, from
Eq. (36.7),

(36.11)

This characterizes the width (angular spread) of the central maximum, and we
see that it is inversely proportional to the slit width When the small-angle
approximation is valid, the central maximum is exactly twice as wide as each
side maximum. When is of the order of a centimeter or more, is so small that
we can consider practically all the light to be concentrated at the geometrical
focus. But when is less than the central maximum spreads over and the
fringe pattern is not seen at all.

It’s important to keep in mind that diffraction occurs for all kinds of waves,
not just light. Sound waves undergo diffraction when they pass through a slit or
aperture such as an ordinary doorway. The sound waves used in speech have
wavelengths of about a meter or greater, and a typical doorway is less than 1 m
wide; in this situation, is less than and the central intensity maximum
extends over This is why the sounds coming through an open doorway can
easily be heard by an eavesdropper hiding out of sight around the corner. In the
same way, sound waves can bend around the head of an instructor who faces the
blackboard while lecturing (Fig. 36.11). By contrast, there is essentially no dif-
fraction of visible light through such a doorway because the width is very much
greater than the wavelength (of order You can hear around cor-
ners because typical sound waves have relatively long wavelengths; you cannot
see around corners because the wavelength of visible light is very short.

5 3 1027 m).l
a

180°.
l,a

180°,l,a

u1a
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u1 5
l

a

b/2 5 p,
u1sin u 5 u

ua,
l

Example 36.2 Single-slit diffraction: Intensity I

(a) In a single-slit diffraction pattern, what is the intensity at a
point where the total phase difference between wavelets from the
top and bottom of the slit is 66 rad? (b) If this point is away
from the central maximum, how many wavelengths wide is the
slit?

SOLUTION

IDENTIFY: This problem asks us to find the intensity at a point in
a single-slit diffraction pattern where there is a specified phase dif-
ference between waves coming from the two edges of the slit
(Fig. 36.8a). It also asks us to relate phase difference, slit width,
wavelength, and the shown in Fig. 36.9a.u

7.0°

SET UP: The total phase difference between wavelets from the
two edges of the slit is the quantity we called in Fig. 36.8d.
Given we use Eq. (36.5) to find the intensity at the
point in question, and we use Eq. (36.6) to find the slit width in
terms of the wavelength 

EXECUTE: (a) Since and Eq. (36.5)
becomes

I 5 I0 S sin 133 rad 2
33 rad T 2 5 19.2 3 1024 2 I0

b/2 5 33 radb 5 66 rad,

l.
a

Ib 5 66 rad,
b

(b) We solve Eq. (36.6) for 

For example, for 550-nm light, the slit width is
or roughly 

EVALUATE: To what point in the diffraction pattern does this value
of correspond? To find out, note that Com-b 5 66 rad 5 21p.b

1
20 mm.4.7 3 1025 m 5 0.047 mm,

186 2 1550 nm 2  5a

a 5
bl

2p sin u
5

166 rad 2l
12p rad 2  sin 7.0°

5 86l

a: paring to Eq. (36.9) shows that this is approximately equal to the
value of at the tenth side maximum, well beyond the range
shown in Fig. 36.9a (which shows only the first three side max-
ima). The intensity is very much less than the intensity at the
central maximum. (The actual position of this maximum is at

or approximately midway between the
minima at and b 5 22p.)b 5 20p
b 5 65.91 rad 5 20.98p,

I0

b

Example 36.3 Single-slit diffraction: Intensity II

In the experiment described in Example 36.1 (Section 36.2), what
is the intensity at a point on the screen 3.0 mm from the center of
the pattern? The intensity at the center of the pattern is 

SOLUTION

IDENTIFY: This is similar to Example 36.2, except that we are not
given the value of the phase difference at the point in question.

SET UP: We use geometry to determine the angle for our point
and then use Eq. (36.7) to calculate the intensity (our target
variable).

EXECUTE: Referring to Fig. 36.5a, we have and
so tan u 5 y/x 5 13.0 3 1023 m 2 / 16.0 m 2 5 5.0 3x 5 6.0 m,

y 5 3.0 mm

I
u

b

I0 .

since this is so small, the values of and (in radi-
ans) are all nearly the same. Then, using Eq. (36.7), we have

EVALUATE: Examining Fig. 36.9a shows that an intensity this
large can occur only within the central intensity maximum. This
checks out; from Example 36.1, the first intensity minimum
( in Fig. 36.9a) is from the center of
the pattern, so the point in question here does, indeed, lie within
the central maximum.

132 mm 2 /2 5 16 mmm 5 1

 I 5 I0 1 sin 0.60

0.60 2 2

5 0.89I0

 
pa sin u

l
5

p 1 2.4 3 1024 m 2 1 5.0 3 1024 2
6.33 3 1027 m

5 0.60

usin u,tan u,1024;

Test Your Understanding of Section 36.3 Coherent electromagnetic radi-
ation is sent through a slit of width 0.0100 mm. For which of the following wave-
lengths will there be no points in the diffraction pattern where the intensity is
zero? (i) blue light of wavelength 500 nm; (ii) infrared light of wavelength 
(iii) microwaves of wavelength 1.00 mm; (iv) ultraviolet light of wavelength 50.0 nm.

❚

10.6 mm;
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 Calculated
intensity

“Envelope” of
intensity function

For d 5 4a, every fourth interference
maximum at the sides (mi 5 64, 68, ...)
is missing,

u

I0 

u
mi 5 28 mi 5 24 0 mi 5 4 mi 5 8

I0
I

0

(a) Single-slit diffraction pattern for a
slit width a

md 5 22 md 5 21 md 5 1 md 5 2

(b) Two-slit interference pattern for narrow
slits whose separation d is four times the
width of the slit in (a) 

I0

(c) Calculated intensity pattern for two slits
of width a and separation d 5 4a, including
both interference and diffraction effects

(d) Actual photograph of the pattern
calculated in (c)

u
0

36.12 Finding the intensity pattern for
two slits of finite width.

Maxima occur where the path difference for
adjacent slits is a whole number of wavelengths:
d sin u 5 ml.

P

d sin u

d
u

u
u

36.13 Multiple-slit diffraction. Here a
lens is used to give a Fraunhofer pattern on
a nearby screen, as in Fig. 36.4d.

(a) Phasor diagram for f 5 p

f 5 p 5 180°

(b) Phasor diagram for f 5 

f 5      5 45°p
4

p
4

(c) Phasor diagram for f 5 
p
2

f 5      5 90°p
2

36.14 Phasor diagrams for light passing
through eight narrow slits. Intensity max-
ima occur when the phase difference

Between the maxima
at and are seven minima,
corresponding to 

and Can you draw pha-
sor diagrams for the other minima?

7p/4.3p/2,5p/4,
p,3p/4,p/2,f 5 p/4,

f 5 2pf 5 0
f 5 0, 2p, 4p, c.

Figure 36.12a shows the intensity in a single-slit diffraction pattern with slit
width The diffraction minima are labeled by the integer
(“d” for “diffraction”). Figure 36.12b shows the pattern formed by two very nar-
row slits with distance between slits, where is four times as great as the single-
slit width in Fig. 36.12a; that is, The interference maxima are labeled
by the integer (“i” for “interference”). We note that the spac-
ing between adjacent minima in the single-slit pattern is four times as great as in
the two-slit pattern. Now suppose we widen each of the narrow slits to the same
width as that of the single slit in Fig. 36.12a. Figure 36.12c shows the pattern
from two slits with width separated by a distance (between centers)
The effect of the finite width of the slits is to superimpose the two patterns—that
is, to multiply the two intensities at each point. The two-slit peaks are in the same
positions as before, but their intensities are modulated by the single-slit pattern,
which acts as an “envelope” for the intensity function. The expression for the
intensity shown in Fig. 36.12c is proportional to the product of the two-slit and
single-slit expressions, Eqs. (35.10) and (36.5):

(two slits of finite width) (36.12)

where, as before,

Note that in Fig. 36.12c, every fourth interference maximum at the sides is
missing because these interference maxima coincide with
diffraction minima This can also be seen in Fig. 36.12d,
which is a photograph of an actual pattern with You should be able to
convince yourself that there will be “missing” maxima whenever is an integer
multiple of 

Figures 36.12c and 36.12d show that as you move away from the central
bright maximum of the two-slit pattern, the intensity of the maxima decreases.
This is a result of the single-slit modulating pattern shown in Fig. 36.12a; mathe-
matically, the decrease in intensity arises from the factor in the denomi-
nator of Eq. (36.12). This decrease in intensity can also be seen in Fig. 35.6
(Section 35.2). The narrower the slits, the broader the single-slit pattern (as in
Fig. 36.10) and the slower the decrease in intensity from one interference maxi-
mum to the next.

Shall we call the pattern in Fig. 36.12d interference or diffraction? It’s really
both, since it results from superposition of waves coming from various parts of
the two apertures. There is no truly fundamental distinction between interference
and diffraction.

Several Slits
Next let’s consider patterns produced by several very narrow slits. As we will
see, systems of narrow slits are of tremendous practical importance in
spectroscopy, the determination of the particular wavelengths of light coming
from a source. Assume that each slit is narrow in comparison to the wavelength,
so its diffraction pattern spreads out nearly uniformly. Figure 36.13 shows an
array of eight narrow slits, with distance between adjacent slits. Constructive
interference occurs for rays at angle to the normal that arrive at point with a
path difference between adjacent slits equal to an integer number of wavelengths,

This means that reinforcement occurs when the phase difference at for light
from adjacent slits is an integer multiple of That is, the maxima in the pattern2p.

Pf

d sin u 5 ml  1m 5 0, 61, 62, c 2
Pu

d

1b/2 2 2

a.
d

d 5 4a.
1md 5 61, 62, c 2 . 1mi 5 64, 68, c 2

f 5
2pd

l
 sin u  b 5

2pa

l
 sin u

I 5 I0 cos2
 

f

2
 S sin 1b/2 2

b/2 T 2

d 5 4a.a,
a

62, c61,mi 5 0,
d 5 4a.a

dd

62, cmd 5 61,a.
occur at the same positions as for two slits with the same spacing. To this extent
the pattern resembles the two-slit pattern.

But what happens between the maxima? In the two-slit pattern, there is
exactly one intensity minimum located midway between each pair of maxima,
corresponding to angles for which the phase difference between waves from the
two sources is and so on. In the eight-slit pattern these are also min-
ima because the light from adjacent slits cancels out in pairs, corresponding to
the phasor diagram in Fig. 36.14a. But these are not the only minima in the eight-
slit pattern. For example, when the phase difference from adjacent sources is

the phasor diagram is as shown in Fig. 36.14b; the total (resultant) phasor is
zero, and the intensity is zero. When we get the phasor diagram of
Fig. 36.14c, and again both the total phasor and the intensity are zero. More gen-
erally, the intensity with eight slits is zero whenever is an integer multiple of

except when is a multiple of Thus there are seven minima for every
maximum.

Detailed calculation shows that the eight-slit pattern is as shown in
Fig. 36.15b. The large maxima, called principal maxima, are in the same posi-
tions as for the two-slit pattern of Fig. 36.15a but are much narrower. If the
phase difference between adjacent slits is slightly different from a multiple of

the waves from slits 1 and 2 will be only a little out of phase; however, the
phase difference between slits 1 and 3 will be greater, that between slits 1 and 4
will be greater still, and so on. This leads to a partial cancellation for angles that
are only slightly different from the angle for a maximum, giving the narrow max-
ima in Fig. 36.15b. The maxima are even narrower with 16 slits (Fig. 36.15c).

You should show that when there are slits, there are minima
between each pair of principal maxima and a minimum occurs whenever is an
integral multiple of (except when is an integral multiple of which
gives a principal maximum). There are small secondary intensity maxima
between the minima; these become smaller in comparison to the principal max-
ima as increases. The greater the value of the narrower the principal max-
ima become. From an energy standpoint the total power in the entire pattern is
proportional to The height of each principal maximum is proportional to 
so from energy conservation the width of each principal maximum must be pro-
portional to As we will see in the next section, the narrowness of the princi-
pal maxima in a multiple-slit pattern is of great practical importance in physics
and astronomy.

1/N.

N 2,N.

N,N

2p,f2p/N
f

1N 2 1 2N

2p,
f

2p.fp/4,
f

f 5 p/2,
p/4,

f

5p,3p,p,

(c) N 5 16: with 16 slits, the maxima are even
taller and narrower, with more intervening
minima.

m 5 21 m 5 0 m 5 1

256I0

I

u

36.15 Interference patterns for equally spaced, very narrow slits. (a) Two slits. (b) Eight slits. (c) Sixteen slits. The vertical scales
are different for each graph; is the maximum intensity for a single slit, and the maximum intensity for slits is The width of
each peak is proportional to 1/N.

N 2I0 .NI0

N

Test Your Understanding of Section 36.4 Suppose two slits, each of width 
are separated by a distance Are there any missing maxima in the interference
pattern produced by these slits? If so, which are missing? If not, why not?

❚

d 5 2.5a.
a,

(a) N 5 2: two slits produce one minimum
between adjacent maxima.

4 I0

I

m 5 �1 m 5 0 m 5 1
u

 

(b) N 5 8: eight slits produce taller, narrower
maxima in the same locations, separated by
seven minima.

m 5 21 m 5 0 m 5 1

64I0

I

u
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36.16 A portion of a transmission diffrac-
tion grating. The separation between the
centers of adjacent slits is d.

36.5 The Diffraction Grating
We have just seen that increasing the number of slits in an interference experi-
ment (while keeping the spacing of adjacent slits constant) gives interference pat-
terns in which the maxima are in the same positions, but progressively narrower,
than with two slits. Because these maxima are so narrow, their angular position,
and hence the wavelength, can be measured to very high precision. As we will
see, this effect has many important applications.

An array of a large number of parallel slits, all with the same width and spaced
equal distances between centers, is called a diffraction grating. The first one
was constructed by Fraunhofer using fine wires. Gratings can be made by using a
diamond point to scratch many equally spaced grooves on a glass or metal surface,
or by photographic reduction of a pattern of black and white stripes on paper. For
a grating, what we have been calling slits are often called rulings or lines.

In Fig. 36.16, is a cross section of a transmission grating; the slits are
perpendicular to the plane of the page, and an interference pattern is formed by
the light that is transmitted through the slits. The diagram shows only six slits; an
actual grating may contain several thousand. The spacing between centers of
adjacent slits is called the grating spacing. A plane monochromatic wave is inci-
dent normally on the grating from the left side. We assume far-field (Fraunhofer)
conditions; that is, the pattern is formed on a screen that is far enough away that
all rays emerging from the grating and going to a particular point on the screen
can be considered to be parallel.

We found in Section 36.4 that the principal intensity maxima with multiple
slits occur in the same directions as for the two-slit pattern. These are the direc-
tions for which the path difference for adjacent slits is an integer number of
wavelengths. So the positions of the maxima are once again given by

(36.13)

The intensity patterns for two, eight, and 16 slits displayed in Fig. 36.15 show the
progressive increase in sharpness of the maxima as the number of slits increases.

When a grating containing hundreds or thousands of slits is illuminated by a
beam of parallel rays of monochromatic light, the pattern is a series of very sharp
lines at angles determined by Eq. (36.13). The lines are called the first-
order lines, the lines the second-order lines, and so on. If the grating is
illuminated by white light with a continuous distribution of wavelengths, each
value of corresponds to a continuous spectrum in the pattern. The angle for
each wavelength is determined by Eq. (36.13); for a given value of long wave-
lengths (the red end of the spectrum) lie at larger angles (that is, are deviated
more from the straight-ahead direction) than do the shorter wavelengths at the
violet end of the spectrum.

As Eq. (36.13) shows, the sines of the deviation angles of the maxima are pro-
portional to the ratio For substantial deviation to occur, the grating spacing 
should be of the same order of magnitude as the wavelength Gratings for use
with visible light ( from 400 to 700 nm) usually have about 1000 slits per mil-
limeter; the value of is the reciprocal of the number of slits per unit length, so 
is of the order of 

In a reflection grating, the array of equally spaced slits shown in Fig. 36.16 is
replaced by an array of equally spaced ridges or grooves on a reflective screen.
The reflected light has maximum intensity at angles where the phase difference
between light waves reflected from adjacent ridges or grooves is an integral mul-
tiple of If light of wavelength is incident normally on a reflection grating
with a spacing between adjacent ridges or grooves, the reflected angles at
which intensity maxima occur are given by Eq. (36.13). The iridescent colors of
certain butterflies arise from microscopic ridges on the butterfly’s wings that
form a reflection grating (Fig 36.17). When the wings are viewed from different

d
l2p.

1
1000 mm 5 1000 nm.

dd
l

l.
dl/d.

m,
m

m 5 62
m 5 61

(intensity maxima,
multiple slits)d sin u 5 ml  1m 5 0, 61, 62, 63, c 2

d

GG r

d
a

angles, corresponding to varying in Eq. (36.13), the wavelength and color that
are predominantly reflected to the viewer’s eye vary as well.

The rainbow-colored reflections that you see from the surface of a compact
disc are a reflection-grating effect (Fig. 36.18). The “grooves” are tiny pits

deep in the surface of the disc, with a uniform radial spacing of
Information is coded on the CD by varying the length of the

pits; the reflection-grating aspect of the disc is merely an aesthetic side benefit.
1.60 mm 5 1600 nm.

d 50.1 mm

u

1 cm

10 mm

36.17 The millions of microscopic scales
in the wings of the tropical butterfly
Morpho peleides act as a reflection grating.
When viewed at the right angle, these
scales strongly reflect blue light. This may
be a defense mechanism: The flashes of
light from the flapping wings of a Morpho
could momentarily dazzle predators such
as lizards and birds.

Example 36.4 Width of a grating spectrum

The wavelengths of the visible spectrum are approximately
400 nm (violet) to 700 nm (red). (a) Find the angular width of the
first-order visible spectrum produced by a plane grating with
600 slits per millimeter when white light falls normally on the
grating. (b) Do the first-order and second-order spectra overlap?
What about the second-order and third-order spectra? Do your
answers depend on the grating spacing?

SOLUTION

IDENTIFY: The first-, second-, and third-order spectra correspond
to in Eq. (36.13). This problem asks us to look at
the angles spanned by the visible spectrum in each of these orders.

SET UP: We use Eq. (36.13) with to find the angular devia-
tion for 400-nm violet light and 700-nm red light in the first-
order spectrum. The difference between these is the angular width
of the first-order spectrum, our target variable in part (a). Using the
same technique for and tells us the maximum and
minimum angular deviation for these orders.

EXECUTE: (a) The grating spacing is

From Eq. (36.13), with the angular deviation of the vio-
let light (400 nm or is

The angular deviation of the red light (700 nm) is

So the angular width of the first-order visible spectrum is

24.8° 2 13.9° 5 10.9°

 ur 5 24.8°

 sin ur 5
700 3 1029 m

1.67 3 1026 m
5 0.419

ur

 uv 5 13.9°

 sin uv 5
400 3 1029 m

1.67 3 1026 m
5 0.240

400 3 1029 m)
uvm 5 1,

d 5
1

600 slits/mm
5 1.67 3 1026 m

d

m 5 3m 5 2

u
m 5 1

m 5 1, 2, and 3

(b) From Eq. (36.13), with a grating spacing of the angular
deviation of the 400-nm violet light in the -order spectrum
is given by

Similarly, the angular deviation of the 700-nm red light in the
-order spectrum is given by

The greater the value of the greater the value of (for angles
between zero and Hence our results show that for any value
of the grating spacing the largest angle (at the red end) of the

spectrum is always less than the smallest angle (at the vio-
let end) of the spectrum, so the first and second orders
never overlap. By contrast, the largest (red) angle of the 
spectrum is always greater than the smallest (violet) angle of the

spectrum, so the second and third orders always overlap.

EVALUATE: The fundamental reason the first-order and second-
order visible spectra don’t overlap is that the human eye is sensi-
tive to only a narrow range of wavelengths. Can you show that if
the eye could detect wavelengths from 400 nm to 900 nm (in the
near-infrared range), the first and second orders would overlap?

m 5 3

m 5 2
m 5 2

m 5 1
d,

90°).
usin u,

 5
2.10 3 1026 m

d
 1m 5 3 2

 5
1.40 3 1026 m

d
 1m 5 2 2

 5
7.00 3 1027 m

d
 1m 5 1 2

 sin urm 5
m 1700 3 1029 m 2

d

mth
urm

 5
1.20 3 1026 m

d
 1m 5 3 2

 5
8.00 3 1027 m

d
 1m 5 2 2

 5
4.00 3 1027 m

d
 1m 5 1 2

 sin uvm 5
m 1400 3 1029 m 2

d

mthuvm

d

36.18 Microscopic pits on the surface of
this compact disc act as a reflection grat-
ing, splitting white light into its component
colors.

16.4 The Grating: Introduction 
and Questions

16.5 The Grating: Problems

O N L I N E
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(a)

36.19 (a) A visible-light photograph of
the sun. (b) Sunlight is dispersed into a
spectrum by a diffraction grating. Specific
wavelengths are absorbed as sunlight
passes through the sun’s atmosphere, leav-
ing dark lines in the spectrum.

(b)

Grating Spectrographs
Diffraction gratings are widely used to measure the spectrum of light emitted
by a source, a process called spectroscopy or spectrometry. Light incident on a
grating of known spacing is dispersed into a spectrum. The angles of deviation
of the maxima are then measured, and Eq. (36.13) is used to compute the
wavelength. With a grating that has many slits, very sharp maxima are pro-
duced, and the angle of deviation (and hence the wavelength) can be measured
very precisely.

An important application of this technique is to astronomy. As light generated
within the sun passes through the sun’s atmosphere, certain wavelengths are
selectively absorbed. The result is that the spectrum of sunlight produced by a
diffraction grating has dark absorption lines (Fig. 36.19). Experiments in the lab-
oratory show that different types of atoms and ions absorb light at different wave-
lengths. By comparing these laboratory results with the wavelengths of
absorption lines in the spectrum of sunlight, astronomers can deduce the chemi-
cal composition of the sun’s atmosphere. The same technique is used to make
chemical assays of galaxies that are millions of light-years away.

Figure 36.20 shows one design for a grating spectrograph used in astronomy.
A transmission grating is used in the figure; in other setups, a reflection grating is
used. In older designs a prism was used rather than a grating, and a spectrum was
formed by dispersion (see Section 33.4) rather than diffraction. However, there is
no simple relationship between wavelength and angle of deviation for a prism,
prisms absorb some of the light that passes through them, and they are less effec-
tive for many nonvisible wavelengths that are important in astronomy. For these
and other reasons, gratings are preferred in precision applications.

Resolution of a Grating Spectrograph
In spectroscopy it is often important to distinguish slightly differing wavelengths.
The minimum wavelength difference that can be distinguished by a spectro-
graph is described by the chromatic resolving power defined as

(chromatic resolving power) (36.14)R 5
l

Dl

R,
Dl

As an example, when sodium atoms are heated, they emit strongly at the yel-
low wavelengths 589.00 nm and 589.59 nm. A spectrograph that can barely distin-
guish these two lines in the spectrum of sodium light (called the sodium doublet)
has a chromatic resolving power (You
can see these wavelengths when boiling water on a gas range. If the water boils
over onto the flame, dissolved sodium from table salt emits a burst of yellow
light.)

We can derive an expression for the resolving power of a diffraction grating
used in a spectrograph. Two different wavelengths give diffraction maxima at
slightly different angles. As a reasonable (though arbitrary) criterion, let’s assume
that we can distinguish them as two separate peaks if the maximum of one coin-
cides with the first minimum of the other.

From our discussion in Section 36.4 the maximum occurs when the
phase difference for adjacent slits is The first minimum beside that
maximum occurs when where is the number of slits. The
phase difference is also given by so the angular interval 
corresponding to a small increment in the phase shift can be obtained from
the differential of this equation:

When this corresponds to the angular interval between a maxi-
mum and the first adjacent minimum. Thus is given by

CAUTION Watch out for different uses of the symbol d Don’t confuse the spac-
ing with the differential in the angular interval or in the phase shift increment

❚

Now we need to find the angular spacing between maxima for two slightly
different wavelengths. This is easy; we have so the differential of
this equation gives

According to our criterion, the limit or resolution is reached when these two
angular spacings are equal. Equating the two expressions for the quantity

we find

If is small, we can replace by and the resolving power is given sim-
ply by

(36.15)

The greater the number of slits the better the resolution; also, the higher the
order of the diffraction-pattern maximum that we use, the better the resolution.m

N,

R 5
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1d cos u du 2 ,

d cos u du 5 m dl

d sin u 5 ml,
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df!
du“d ”d

2p

N
5

2pd cos u du

l
  or  d cos u du 5
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N

du
dudf 5 2p/N,

df 5
2pd cos u du

l

df
duf 5 12pd sin u 2 /l,

Nf 5 2pm 1 2p/N,
f 5 2pm.f

mth-order

R 5 1 589.00 nm 2 / 10.59 nm 2 5 1000.

Test Your Understanding of Section 36.5 What minimum number of slits
would be required in a grating to resolve the sodium doublet in the fourth order?
(i) 250; (ii) 400; (iii) 1000; (iv) 4000.

❚

      Concave mirror
reflects light to a
focus.

       Light from telescope
is sent along fiber-optic
cables (not shown) and
emerges here.

      An electronic detector
(like the one in
a digital camera)
records the spectrum.

      Lenses direct
diffracted light onto a
second concave mirror.

Light passes through diffraction grating.

1

3

4 5

6

2        Light strikes concave
mirror and emerges as a
beam of parallel rays.

36.20 A schematic diagram of a diffrac-
tion-grating spectrograph for use in astron-
omy. Note that the light does not strike the
grating normal to its surface, so the inten-
sity maxima are given by a somewhat dif-
ferent expression than Eq. (36.13). (See
Problem 36.66).
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36.6 X-Ray Diffraction
X rays were discovered by Wilhelm Röntgen (1845–1923) in 1895, and early
experiments suggested that they were electromagnetic waves with wavelengths
of the order of At about the same time, the idea began to emerge that in
a crystalline solid the atoms are arranged in a regular repeating pattern, with
spacing between adjacent atoms also of the order of Putting these two
ideas together, Max von Laue (1879–1960) proposed in 1912 that a crystal might
serve as a kind of three-dimensional diffraction grating for x rays. That is, a beam
of x rays might be scattered (that is, absorbed and re-emitted) by the individual
atoms in a crystal, and the scattered waves might interfere just like waves from a
diffraction grating.

The first x-ray diffraction experiments were performed in 1912 by
Friederich, Knipping, and von Laue, using the experimental setup sketched in
Fig. 36.21a. The scattered x rays did form an interference pattern, which they
recorded on photographic film. Figure 36.21b is a photograph of such a pattern.
These experiments verified that x rays are waves, or at least have wavelike prop-
erties, and also that the atoms in a crystal are arranged in a regular pattern
(Fig. 36.22). Since that time, x-ray diffraction has proved to be an invaluable
research tool, both for measuring x-ray wavelengths and for studying the struc-
ture of crystals and complex molecules.

A Simple Model of X-Ray Diffraction
To better understand x-ray diffraction, we consider first a two-dimensional scat-
tering situation, as shown in Fig. 36.23a, in which a plane wave is incident on a
rectangular array of scattering centers. The situation might be a ripple tank with
an array of small posts, 3-cm microwaves striking an array of small conducting
spheres, or x rays incident on an array of atoms. In the case of electromagnetic
waves, the wave induces an oscillating electric dipole moment in each scatterer.
These dipoles act like little antennas, emitting scattered waves. The resulting
interference pattern is the superposition of all these scattered waves. The situa-
tion is different from that with a diffraction grating, in which the waves from all
the slits are emitted in phase (for a plane wave at normal incidence). Here the
scattered waves are not all in phase because their distances from the source are
different. To compute the interference pattern, we have to consider the total path
differences for the scattered waves, including the distances from source to scat-
terer and from scatterer to observer.

As Fig. 36.23b shows, the path length from source to observer is the same for all
the scatterers in a single row if the two angles and are equal. Scattered radia-urua

10210 m.

10210 m.

Some x rays are scattered as they pass
through the crystal, forming an interference
pattern on the film. (Most of the x rays pass
straight through the crystal.)

(a) Basic setup for x-ray diffraction (b) Laue diffraction pattern for a thin section of quartz crystal

X-ray beam

X-ray
tube

Lead
screen

Thin
crystal

Film in
holder

36.21 (a) An x-ray diffraction experiment. (b) Diffraction pattern (or Laue pattern) formed by directing a beam of x rays at a thin sec-
tion of quartz crystal.

Chloride
ions

Sodium
ions

36.22 Model of the arrangement of ions
in a crystal of NaCl (table salt). The spac-
ing of adjacent atoms is 0.282 nm. (The
electron clouds of the atoms actually over-
lap slightly.)

Scatterers (e.g., atoms)

Incident plane waves

(a) Scattering of waves from a rectangular array

d

a

ua ur

(b) Scattering from adjacent atoms in a row
Interference from adjacent atoms in a row is
constructive when the path lengths a cos ua
and a cos ur are equal, so that the angle of
incidence ua  equals the angle of reflection
(scattering) ur.

a cos ua a cos ur

a

uaur

(c) Scattering from atoms in adjacent rows
Interference from atoms in adjacent rows is
constructive when the path difference
2d sin u is an integral number of
wavelengths, as in Eq. (36.16).

d

d sin u d sin u 

u u

36.23 A two-dimensional model of scattering from a rectangular array. Note that the angles in (b) are measured from the surface of the
array, not from its normal.

tion from adjacent rows is also in phase if the path difference for adjacent rows is
an integer number of wavelengths. Figure 36.23c shows that this path difference is

where is the common value of and Therefore the conditions for
radiation from the entire array to reach the observer in phase are (1) the angle of
incidence must equal the angle of scattering and (2) the path difference for adjacent
rows must equal where is an integer. We can express the second condition as

(36.16)

CAUTION Scattering from an array In Eq. (36.16) the angle is measured with
respect to the surface of the crystal, rather than with respect to the normal to the plane of
an array of slits or a grating. Also, note that the path difference in Eq. (36.16) is 
not as in Eq. (36.13) for a diffraction grating. ❚

In directions for which Eq. (36.16) is satisfied, we see a strong maximum in
the interference pattern. We can describe this interference in terms of reflections
of the wave from the horizontal rows of scatterers in Fig. 36.23a. Strong reflec-
tion (constructive interference) occurs at angles such that the incident and scat-
tered angles are equal and Eq. (36.16) is satisfied. Since can never be greater
than 1, Eq. (36.16) says that to have constructive interference the quantity 
must be less than and so must be less than For example, the value of 
in an NaCl crystal (Fig. 36.22) is only 0.282 nm. Hence to have the 
maximum present in the diffraction pattern, must be less than 
that is, for for for

and so on. These are all x-ray wavelengths (see Fig. 32.4), which is why
x rays are used for studying crystal structure.

We can extend this discussion to a three-dimensional array by considering
planes of scatterers instead of rows. Figure 36.24 shows two different sets of par-
allel planes that pass through all the scatterers. Waves from all the scatterers in a

m 5 3,
l , 0.188 nmm 5 2,m 5 1, l , 0.282 nml , 0.564 nm

2 10.282 nm 2 /m;l
mth-order

d2d/m.l2d
ml

sin u

d sin u
2d sin u,

u

(Bragg condition for
constructive interference
from an array)

2d sin u 5 ml  1m 5 1, 2, 3, c 2

mml,

ur .uau2d sin u,

a

a

a

(a) Spacing of planes is d 5 a/ 2.36.24 A cubic crystal and two different
families of crystal planes. There are also
three sets of planes parallel to the cube
faces, with spacing a.

(b) Spacing of planes is d 5 a/ 3.
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given plane interfere constructively if the angles of incidence and scattering are
equal. There is also constructive interference between planes when Eq. (36.16) is
satisfied, where is now the distance between adjacent planes. Because there are
many different sets of parallel planes, there are also many values of and many
sets of angles that give constructive interference for the whole crystal lattice.
This phenomenon is called Bragg reflection, and Eq. (36.16) is called the Bragg
condition, in honor of Sir William Bragg and his son Laurence Bragg, two pio-
neers in x-ray analysis.

CAUTION Bragg reflection is really Bragg interference While we are using the
term reflection, remember that we are dealing with an interference effect. In fact, the
reflections from various planes are closely analogous to interference effects in thin films
(see Section 35.4). ❚

As Fig. 36.21b shows, in x-ray diffraction there is nearly complete cancella-
tion in all but certain very specific directions in which constructive interference
occurs and forms bright spots. Such a pattern is usually called an x-ray diffrac-
tion pattern, although interference pattern might be more appropriate.

We can determine the wavelength of x rays by examining the diffraction pat-
tern for a crystal of known structure and known spacing between atoms, just as
we determined wavelengths of visible light by measuring patterns from slits or
gratings. (The spacing between atoms in simple crystals of known structure, such
as sodium chloride, can be found from the density of the crystal and Avogadro’s
number.) Then, once we know the x-ray wavelength, we can use x-ray diffraction
to explore the structure and determine the spacing between atoms in crystals with
unknown structure.

X-ray diffraction is by far the most important experimental tool in the investi-
gation of crystal structure of solids. X-ray diffraction also plays an important role
in studies of the structures of liquids and of organic molecules. It has been one of
the chief experimental techniques in working out the double-helix structure of
DNA (Fig. 36.25) and subsequent advances in molecular genetics.

d
d

36.7 Circular Apertures and Resolving Power
We have studied in detail the diffraction patterns formed by long, thin slits or
arrays of slits. But an aperture of any shape forms a diffraction pattern. The dif-
fraction pattern formed by a circular aperture is of special interest because of its
role in limiting how well an optical instrument can resolve fine details. In princi-
ple, we could compute the intensity at any point in the diffraction pattern by
dividing the area of the aperture into small elements, finding the resulting wave
amplitude and phase at and then integrating over the aperture area to find the
resultant amplitude and intensity at In practice, the integration cannot be car-
ried out in terms of elementary functions. We will simply describe the pattern and
quote a few relevant numbers.

The diffraction pattern formed by a circular aperture consists of a central
bright spot surrounded by a series of bright and dark rings, as shown in
Fig. 36.26. We can describe the pattern in terms of the angle representing the
angular radius of each ring. If the aperture diameter is and the wavelength is 
the angular radius of the first dark ring is given by

(diffraction by a circular aperture) (36.17)

The angular radii of the next two dark rings are given by

(36.18)

Between these are bright rings with angular radii given by

(36.19)

and so on. The central bright spot is called the Airy disk, in honor of Sir George
Airy (1801–1892), Astronomer Royal of England, who first derived the expres-
sion for the intensity in the pattern. The angular radius of the Airy disk is that of
the first dark ring, given by Eq. (36.17).

The intensities in the bright rings drop off very quickly with increasing angle.
When is much larger than the wavelength the usual case for optical instru-
ments, the peak intensity in the first ring is only 1.7% of the value at the center of
the Airy disk, and the peak intensity of the second ring is only 0.4%. Most (85%)
of the light energy falls within the Airy disk. Figure 36.27 shows a diffraction
pattern from a circular aperture.

l,D

sin u 5 1.63 

l

D
 ,  2.68 
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D
 ,  3.70 
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sin u2 5 2.23 
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  sin u3 5 3.24 

l

D

sin u1 5 1.22 

l
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u1

l,D
u,

P.
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P

36.25 The British scientist Rosalind
Franklin made this groundbreaking x-ray
diffraction image of DNA in 1953. The
dark bands arranged in a cross provided
the first evidence of the helical structure of
the DNA molecule.

Example 36.5 X-ray diffraction

You direct a beam of x rays with wavelength 0.154 nm at certain
planes of a silicon crystal. As you increase the angle of incidence
from zero, you find the first strong interference maximum from
these planes when the beam makes an angle of with the
planes. (a) How far apart are the planes? (b) Will you find other
interference maxima from these planes at larger angles?

SOLUTION

IDENTIFY: This problem involves Bragg reflection of x rays from
the planes of a crystal.

SET UP: In part (a) we use the Bragg condition, Eq. (36.16), to
relate the wavelength and the angle for the interference
maximum (both of which are given) to the spacing between
planes (which is the target variable). Given the value of we use
the Bragg condition again in part (b) to find the values of for
interference maxima corresponding to other values of 

EXECUTE: (a) We solve the Bragg equation, Eq. (36.16), for and
set m 5 1:

d

m.
u

d,
d

m 5 1ul

34.5° This is the distance between adjacent planes.
(b) To calculate other angles, we solve Eq. (36.16) for 

Values of of 2 or greater give values of greater than unity,
which is impossible. Hence there are no other angles for interfer-
ence maxima for this particular set of crystal planes.

EVALUATE: Our result in part (b) shows that there would be a sec-
ond interference maximum if the quantity were equal to
0.500 or less. This would be the case if the wavelength of the
x rays were less than How short would the wave-
length need to be to have three interference maxima?

2d 5 0.272 nm.

l/2d

sin um

sin u 5
ml

2d
5 m 

0.154 nm

2 10.136 nm 2 5 m 10.566 2
sin u:

d 5
ml

2 sin u
5

11 2 1 0.154 nm 2
2 sin 34.5°

5 0.136 nm

Test Your Understanding of Section 36.6 You are doing an x-ray diffraction
experiment with a crystal in which the atomic planes are 0.200 nm apart. You are using x
rays of wavelength 0.100 nm. Will the fifth-order maximum be present in the diffraction
pattern?

❚

D

u1

u1 is the angle between the center of
the pattern and the first minimum.

Airy
disk

36.26 Diffraction pattern formed by a circular aperture of diameter The pattern con-
sists of a central bright spot and alternating dark and bright rings. The angular radius of
the first dark ring is shown. (This diagram is not drawn to scale.)

u1

D.

Airy disk

36.27 Photograph of the diffraction pat-
tern formed by a circular aperture.

16.7 Circular Hole Diffraction

16.8 Resolving Power

O N L I N E
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Diffraction and Image Formation
Diffraction has far-reaching implications for image formation by lenses and mir-
rors. In our study of optical instruments in Chapter 34 we assumed that a lens
with focal length focuses a parallel beam (plane wave) to a point at a distance 
from the lens. This assumption ignored diffraction effects. We now see that what
we get is not a point but the diffraction pattern just described. If we have two
point objects, their images are not two points but two diffraction patterns. When
the objects are close together, their diffraction patterns overlap; if they are close
enough, their patterns overlap almost completely and cannot be distinguished.
The effect is shown in Fig. 36.28, which presents the patterns for four very small
“point” sources of light. In Fig. 36.28a the image of the left-hand source is well
separated from the others, but the images of the middle and right-hand sources
have merged. In Fig. 36.28b, with a larger aperture diameter and hence smaller
Airy disks, the middle and right-hand images are better resolved. In Fig. 36.28c,
with a still larger aperture, they are well resolved.

A widely used criterion for resolution of two point objects, proposed by the
English physicist Lord Rayleigh (1842–1919) and called Rayleigh’s criterion, is
that the objects are just barely resolved (that is, distinguishable) if the center of one
diffraction pattern coincides with the first minimum of the other. In that case the
angular separation of the image centers is given by Eq. (36.17). The angular sepa-
ration of the objects is the same as that of the images made by a telescope, micro-
scope, or other optical device. So two point objects are barely resolved, according
to Rayleigh’s criterion, when their angular separation is given by Eq. (36.17).

The minimum separation of two objects that can just be resolved by an optical
instrument is called the limit of resolution of the instrument. The smaller the limit
of resolution, the greater the resolution, or resolving power, of the instrument.
Diffraction sets the ultimate limits on resolution of lenses. Geometric optics may
make it seem that we can make images as large as we like. Eventually, though, we
always reach a point at which the image becomes larger but does not gain in detail.
The images in Fig. 36.28 would not become sharper with further enlargement.

CAUTION Resolving power vs. chromatic resolving power Be careful not to con-
fuse the resolving power of an optical instrument with the chromatic resolving power of a
grating (described in Section 36.5). Resolving power refers to the ability to distinguish the
images of objects that appear close to each other, when looking either through an optical
instrument or at a photograph made with the instrument. Chromatic resolving power
describes how well different wavelengths can be distinguished in a spectrum formed by a
diffraction grating. ❚

Rayleigh’s criterion combined with Eq. (36.17) shows that resolution
(resolving power) improves with larger diameter; it also improves with
shorter wavelengths. Ultraviolet microscopes have higher resolution than visi-
ble-light microscopes. In electron microscopes the resolution is limited by the
wavelengths associated with the electrons, which have wavelike aspects (to be
discussed further in Chapter 39). These wavelengths can be made 100,000 times
smaller than wavelengths of visible light, with a corresponding gain in resolu-
tion. Resolving power also explains the difference in storage capacity between
compact discs (CDs) and digital video discs (DVDs). Information is stored in
both of these in a series of tiny pits. In order not to lose information in the scan-
ning process, the scanning optics must be able to resolve two adjacent pits so
that they do not seem to blend into a single pit (see sources 3 and 4 in
Fig. 36.28). The red laser used in a DVD player has a shorter wavelength
(650 nm) and hence better resolving power than the infrared laser in a CD player
(780 nm). Hence pits can be spaced closer together in a DVD than in a CD, and
more information can be stored on a disc of the same size (4.7 gigabytes on a
DVD versus 700 megabytes, or 0.7 gigabyte, on a CD). The latest disc storage
technology uses a blue-violet laser of 405-nm wavelength; this makes it possible

ff

(a) Small aperture

36.28 Diffraction patterns of four very
small (“point”) sources of light. The pho-
tographs were made with a circular aper-
ture in front of the lens. (a) The aperture is
so small that the patterns of sources 3 and
4 overlap and are barely resolved by
Rayleigh’s criterion. Increasing the size of
the aperture decreases the size of the dif-
fraction patterns, as shown in (b) and (c).

to use an even smaller pit spacing and hence store even more data (15 to 25 giga-
bytes) on a disc of the same size as a CD or DVD.

Diffraction is an important consideration for satellite “dishes,” parabolic
reflectors designed to receive satellite transmission. Satellite dishes have to be
able to pick up transmissions from two satellites that are only a few degrees
apart, transmitting at the same frequency; the need to resolve two such transmis-
sions determines the minimum diameter of the dish. As higher frequencies are
used, the needed diameter decreases. For example, when two satellites apart
broadcast 7.5-cm microwaves, the minimum dish diameter to resolve them (by
Rayleigh’s criterion) is about 1.0 m.

One reason for building very large telescopes is to increase the aperture diam-
eter and thus minimize diffraction effects. The effective diameter of a telescope
can be increased by using arrays of smaller telescopes. The Very Large Array
(VLA) is a collection of 27 radio telescopes that can be spread out in a Y-shaped
arrangement 36 km across (Fig. 36.29a). Hence the effective aperture diameter is
36 km, giving the VLA a limit of resolution of less than This is
comparable, in the optical realm, to being able to read the bottom line of an eye
chart 7 km away! Such an arrangement is called a radio interferometer because it
makes use of the phase differences between the signals received in different tele-
scopes. The same principle can also be used to improve the resolution of visible-
light telescopes (Fig. 36.29b).

3 3 1027 rad.

5.0°

? 

(a) Radio interferometry. The Very Large Array 80 km west
of Socorro, New Mexico, consists of 27 radio dishes that can
be moved on tracks; at their greatest separation, their resolution
equals that of a single dish 36 km across.

36.29 By simultaneously observing the same object with widely separated telescopes, astronomers can obtain far better resolving
power than with a single telescope.

(b) Optical interferometry. The four 8.2-m telescopes of the
European Southern Observatory’s Very Large Telescope in Cerro
Paranal, Chile, can be combined optically in pairs. Functioning
together, the outer two telescopes have the resolution of a single
telescope 130 m across.

Example 36.6 Resolving power of a camera lens

A camera lens with focal length and maximum aper-
ture forms an image of an object 9.0 m away. (a) If the resolu-
tion is limited by diffraction, what is the minimum distance
between two points on the object that are barely resolved, and what
is the corresponding distance between image points? (b) How does
the situation change if the lens is “stopped down” to Assume
that in both cases.

SOLUTION

IDENTIFY: This example uses ideas from this section as well as
Sections 34.4 (in which we discussed image formation by a lens)
and 34.5 (in which the idea of was introduced).f-number

l 5 500 nm
f/16?

f/2
f 5 50 mm SET UP: From Eq. (34.20) the of a lens is its focal

length divided by the aperture diameter We use the informa-
tion provided to determine and then use Eq. (36.17) to find the
angular separation between two barely resolved points on the
object. We then use the geometry of image formation by a lens (see
Section 34.4) to determine the distance between those points and
the distance between the corresponding image points.

EXECUTE: (a) The aperture diameter is 
From Eq. (36.17) the150 mm 2 /2 5 25 mm 5 25 3 1023 m.

D 5 f/ 1  f-number 2  5

u
D

D.f
f-number

Continued

1 2 3 4

1 2 3 4

1 2 3 4

(b) Medium aperture

(c) Large aperture
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*36.8 Holography
Holography is a technique for recording and reproducing an image of an object
through the use of interference effects. Unlike the two-dimensional images
recorded by an ordinary photograph or television system, a holographic image is
truly three-dimensional. Such an image can be viewed from different directions
to reveal different sides and from various distances to reveal changing perspec-
tive. If you had never seen a hologram, you wouldn’t believe it was possible!

Figure 36.30a shows the basic procedure for making a hologram. We illumi-
nate the object to be holographed with monochromatic light, and we place a pho-
tographic film so that it is struck by scattered light from the object and also by
direct light from the source. In practice, the light source must be a laser, for rea-
sons we will discuss later. Interference between the direct and scattered light
leads to the formation and recording of a complex interference pattern on the film.

To form the images, we simply project light through the developed film, as
shown in Fig. 36.30b. Two images are formed: a virtual image on the side of the
film nearer the source and a real image on the opposite side.

Holography and Interference Patterns
A complete analysis of holography is beyond our scope, but we can gain some
insight into the process by looking at how a single point is holographed and
imaged. Consider the interference pattern that is formed on a sheet of photo-
graphic negative film by the superposition of an incident plane wave and a spher-
ical wave, as shown in Fig. 36.31a. The spherical wave originates at a point

angular separation of two object points that are barely resolved is
given by

Let be the separation of the object points, and let be the
separation of the corresponding image points. We know from our
thin-lens analysis in Section 34.4 that, apart from sign, 

Thus the angular separations of the object points and the cor-
responding image points are both equal to Because the object
distance is much greater than the focal length the
image distance is approximately equal to Thus

   5 0.0012 mm <
1

800
 mm

 
y r

50 mm
5 2.4 3 1025  y r 5 1.2 3 1023 mm

 
y

9.0 m
5 2.4 3 1025   y 5 2.2 3 1024 m 5 0.22 mm

f.s r
f 5 50 mm,s

u.
y r/s r.

y/s 5

y ry

 5 2.4 3 1025 rad

 u <  sin u 5 1.22 

l

D
5 1.22 

500 3 1029 m

25 3 1023 m

u (b) The aperture diameter is now or one-eighth
as large as before. The angular separation between barely resolved
points is eight times as great, and the values of and are also
eight times as great as before:

Only the best camera lenses can approach this resolving power.

EVALUATE: Many photographers use the smallest possible aper-
ture for maximum sharpness, since lens aberrations cause light
rays that are far from the optic axis to converge to a different
image point than do rays near the axis. Photographers should be
aware that, as this example shows, diffraction effects become more
significant at small apertures. One cause of fuzzy images has to be
balanced against another.

y 5 1.8 mm  y r 5 0.0096 mm 5
1

100
 mm

y ry

150 mm 2 /16,

Test Your Understanding of Section 36.7 You have been asked to compare four
different proposals for telescopes to be placed in orbit, above the blurring effects of the
earth’s atmosphere. Rank the proposed telescopes in order of their ability to resolve
small details, from best to worst. (i) a radio telescope 100 m in diameter observing at a
wavelength of 21 cm; (ii) an optical telescope 2.0 m in diameter observing at a wave-
length of 500 nm; (iii) an ultraviolet telescope 1.0 m in diameter observing at a wave-
length of 100 nm; (iv) an infrared telescope 2.0 m in diameter observing at a wavelength
of

❚
10 mm.
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image
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(b) Viewing the hologram
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Object
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(a) Recording a hologram

MirrorObject

36.30 (a) A hologram is the record on film of the interference pattern formed with light from the coherent source and light scattered
from the object. (b) Images are formed when light is projected through the hologram. The observer sees the virtual image formed behind
the hologram.

source at a distance from the film; may in fact be a small object that scat-
ters part of the incident plane wave. We assume that the two waves are mono-
chromatic and coherent and that the phase relationship is such that constructive
interference occurs at point on the diagram. Then constructive interference will
also occur at any point on the film that is farther from than is by an integer
number of wavelengths. That is, if where is an integer, then
constructive interference occurs. The points where this condition is satisfied form
circles on the film centered at with radii given by

(36.20)

Solving this for we find
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36.31 (a) Constructive interference of the plane and spherical waves occurs in the plane of the film at every point for which the dis-
tance from is greater than the distance from to by an integral number of wavelengths For the point shown, 
(b) When a plane wave strikes a transparent positive print of the developed film, the diffracted wave consists of a wave converging to 
and then diverging again and a diverging wave that appears to originate at These waves form the real and virtual images, respectively.P.

P r
m 5 2.Qml.OPb0Pbm

Q
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Ordinarily, is very much larger than so we neglect the second term in paren-
theses and obtain

(36.21)

The interference pattern consists of a series of concentric bright circular fringes
with radii given by Eq. (36.21). Between these bright fringes are dark fringes.

Now we develop the film and make a transparent positive print, so the bright-
fringe areas have the greatest transparency on the film. Then we illuminate it with
monochromatic plane-wave light of the same wavelength that we used initially.
In Fig. 36.31b, consider a point at a distance along the axis from the film.
The centers of successive bright fringes differ in their distances from by an
integer number of wavelengths, and therefore a strong maximum in the diffracted
wave occurs at That is, light converges to and then diverges from it on the
opposite side. Therefore is a real image of point 

This is not the entire diffracted wave, however. The interference of the
wavelets that spread out from all the transparent areas forms a second spherical
wave that is diverging rather than converging. When this wave is traced back
behind the film in Fig. 36.31b, it appears to be spreading out from point Thus
the total diffracted wave from the hologram is a superposition of a spherical wave
converging to form a real image at and a spherical wave that diverges as
though it had come from the virtual image point 

Because of the principle of superposition for waves, what is true for the imag-
ing of a single point is also true for the imaging of any number of points. The film
records the superposed interference pattern from the various points, and when
light is projected through the film, the various image points are reproduced
simultaneously. Thus the images of an extended object can be recorded and
reproduced just as for a single point object. Figure 36.32 shows photographs of a
holographic image from two different angles, showing the changing perspective
in this three-dimensional image.

In making a hologram, we have to overcome two practical problems. First, the
light used must be coherent over distances that are large in comparison to the
dimensions of the object and its distance from the film. Ordinary light sources do
not satisfy this requirement, for reasons that we discussed in Section 35.1. There-
fore laser light is essential for making a hologram. (Ordinary white light can be
used for viewing certain types of hologram, such as those used on credit cards.)
Second, extreme mechanical stability is needed. If any relative motion of source,
object, or film occurs during exposure, even by as much as a quarter of a wave-
length, the interference pattern on the film is blurred enough to prevent satisfac-
tory image formation. These obstacles are not insurmountable, however, and
holography has become important in research, entertainment, and a wide variety
of technological applications.

P.
P r

P.

P.P r
P rP r.

P r
b0P r

l

rm 5 "2mlb0  1m 5 1, 2, 3, c 2
l,b036.32 Two views of the same hologram

seen from different angles.

CHAPTER 36 SUMMARY

Fresnel and Fraunhofer diffraction: Diffraction occurs when light passes through an aperture or
around an edge. When the source and the observer are so far away from the obstructing surface that
the outgoing rays can be considered parallel, it is called Fraunhofer diffraction. When the source or
the observer is relatively close to the obstructing surface, it is Fresnel diffraction.

Single-slit diffraction: Monochromatic light sent
through a narrow slit of width produces a diffraction
pattern on a distant screen. Equation (36.2) gives the
condition for destructive interference (a dark fringe) at a
point in the pattern at angle Equation (36.7) gives
the intensity in the pattern as a function of 
(See Examples 36.1–36.3.)

u.
u.P

a
(36.2)

(36.7)I 5 I0 e sin 3pa 1 sin u 2 /l 4
pa 1 sin u 2 /l

f 2

sin u 5
ml

a
  1m 5 61, 62, c 2

P

Fresnel (near-field)
diffraction

Fraunhofer (far-
field) diffraction

I 5 0.0083I0
I 5 0.0165I0
I 5 0.0472I0

O

I 5 I0 u

u
m 5 3
m 5 2
m 5 1

m 5 21
m 5 22
m 5 23

m 5 21 m 5 0

N 5 16

m 5 1

256I0
I

u

Diffraction gratings: A diffraction grating consists of a
large number of thin parallel slits, spaced a distance 
apart. The condition for maximum intensity in the inter-
ference pattern is the same as for the two-source pattern,
but the maxima for the grating are very sharp and nar-
row. (See Example 36.4.)

d

X-ray diffraction: A crystal serves as a three-dimen-
sional diffraction grating for x rays with wavelengths of
the same order of magnitude as the spacing between
atoms in the crystal. For a set of crystal planes spaced a
distance apart, constructive interference occurs when
the angles of incidence and scattering (measured from
the crystal planes) are equal and when the Bragg condi-
tion [Eq. (36.16)] is satisfied. (See Example 36.5.)

d

(36.16)
2d sin u 5 ml  1m 5 1, 2, 3, c 2

d

d sin u d sin u 

u u

(36.13)1m 5 0, 61, 62, 63, c 2d sin u 5 ml

Airy disk

Circular apertures and resolving power: The diffrac-
tion pattern from a circular aperture of diameter con-
sists of a central bright spot, called the Airy disk, and a
series of concentric dark and bright rings. Equa-
tion (36.17) gives the angular radius of the first dark
ring, equal to the angular size of the Airy disk. Diffrac-
tion sets the ultimate limit on resolution (image sharp-
ness) of optical instruments. According to Rayleigh’s
criterion, two point objects are just barely resolved
when their angular separation is given by Eq. (36.17). 
(See Example 36.6.) 

u

u1

D
(36.17)sin u1 5 1.22 

l

D
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Key Terms
diffraction, 1235
Fresnel diffraction, 1236
Fraunhofer diffraction, 1236
diffraction grating, 1246
chromatic resolving power, 1248

x-ray diffraction, 1250
Bragg reflection, 1252
Bragg condition, 1252
Airy disk, 1253
Rayleigh’s criterion, 1254

limit of resolution, 1254
resolving power, 1254
holography, 1256

Answer to Chapter Opening Question ?
The shorter wavelength of a DVD scanning laser gives it superior
resolving power, so information can be more tightly packed onto a
DVD than a CD. See Section 36.7 for details.

Answers to Test Your Understanding Questions
36.1 Answer: yes When you hear the voice of someone standing
around a corner, you are hearing sound waves that underwent dif-
fraction. If there were no diffraction of sound, you could hear
sounds only from objects that were in plain view.
36.2 Answers: (ii), (i) and (iv) (tie), (iii) The angle of the first
dark fringe is given by Eq. (36.2) with The
larger the value of the ratio the larger the value of and
hence the value of The ratio in each case is (i) 

(ii) 
(iii)

(iv)

36.3 Answers: (ii) and (iii) If the slit width is less than the
wavelength there are no points in the diffraction pattern at
which the intensity is zero (see Fig. 36.10a). The slit width is

so this condition is satisfied for 
(ii) and (iii) 

but not for (i) or
(iv) 
36.4 Answers: yes; A “missing maximum”
satisfies both (the condition for an interference maxi-d sin u 5 mil

mi 5 65, 610,N
1l 5 50.0 nm 5 5.00 3 1028 m 2 .

1l 5 500 nm 5 500 3 1027 21.00 3 1023 m 2 1l 5 1.00 mm 51l 5 10.6 mm 5 10.6 3 1025 m 20.0100 mm 5 1.00 3 1025 m,

l,
a

16.0 3 1027 m 2 / 13.0 3 1024 m 2 5 2.0 3 1023.
1600 nm 2 / 10.30 mm 2  513.0 3 1024 m 2 5 1.3 3 1023;

1400 nm 2 / 10.30 mm 2 5 14.0 3 1027 m 2 /3.0 3 1023;
1600 nm 2 / 10.20 mm 2 5 16.0 3 1027 m 2 / 12.0 3 1024 m 2  5

10.20 mm 2 5 14.0 3 1027 m 2 / 12.0 3 1024 m 2 5 2.0 3 1023;
1400 nm 2 /l/au.

sin ul/a,
m 5 1, or sin u 5 l/a.

u

mum) and (the condition for a diffraction minimum).
Substituting we can combine these two conditions into
the relationship This is satisfied for and

(the fifth interference maximum is missing because it
coincides with the second diffraction minimum), and

(the tenth interference maximum is missing because it
coincides with the fourth diffraction minimum), and so on.
36.5 Answer: (i) As described in the text, the resolving power
needed is In the first order we need

slits, but in the fourth order we need only
(These numbers are only approx-

imate because of the arbitrary nature of our criterion for resolution
and because real gratings always have slight imperfections in the
shapes and spacings of the slits.)
36.6 Answer: no The angular position of the maximum is
given by Eq. (36.16), With 

and this gives 
Since the sine function

can never be greater than 1, this means that there is no solution to
this equation and the maximum does not appear.
36.7 Answer: (iii), (ii), (iv), (i) Rayleigh’s criterion combined
with Eq. (36.17) shows that the smaller the value of the ratio 
the better the resolving power of a telescope of diameter D. For the
four telescopes, this ratio is equal to (i)

(ii)
(iii)

(iv) 
5.0 3 1026.

110 mm 2 / 12.0 m 2 5 11.0 3 1025 m 2 / 12.0 m 2 5

11.0 m 2 5 11.0 3 1027 m 2 / 11.0 m 2 5 1.0 3 1027;
1100 nm 2 /15.0 3 1027 m 2 / 12.0 m 2 5 2.5 3 1027;

1500 nm 2 / 12.0 m 2  510.21 m 2 / 1100 m 2 5 2.1 3 1023;
121 cm 2 / 1100 m 2  5

l/D,

m 5 5

15 2 10.100 nm 2 / 12 2 1 0.200 nm 2 5 1.25.
sin u 5 ml/2d 5m 5 5,l 5 0.100 nm,

d 5 0.200 nm,2d sinu 5 ml.
mth

N 5 R/m 5 1000/4 5 250 slits.
1m 5 4 2N 5 1000

1m 5 1 2R 5 Nm 5 1000.

md 5 64
mi 5 610

md 5 62
mi 5 65mi 5 2.5md .

d 5 2.5a,
a sin u 5 mdl

PROBLEMS For instructor-assigned homework, go to www.masteringphysics.com

Discussion Questions
Q36.1. Why can we readily observe diffraction effects for sound
waves and water waves, but not for light? Is this because light trav-
els so much faster than these other waves? Explain.
Q36.2. What is the difference between Fresnel and Fraunhofer dif-
fraction? Are they different physical processes? Explain.
Q36.3. You use a lens of diameter and light of wavelength and
frequency to form an image of two closely spaced and distant
objects. Which of the following will increase the resolving power?
(a) Use a lens with a smaller diameter; (b) use light of higher fre-
quency; (c) use light of longer wavelength. In each case justify
your answer.
Q36.4. Light of wavelength and frequency passes through a
single slit of width . The diffraction pattern is observed on a
screen a distance from the slit. Which of the following will
decrease the width of the central maximum? (a) Decrease the slit

x
a

fl

f
lD

width; (b) decrease the frequency of the light; (c) decrease the
wavelength of the light; (d) decrease the distance of the screen
from the slit. In each case justify your answer.
Q36.5. In a diffraction experiment with waves of wavelength 
there will be no intensity minima (that is, no dark fringes) if the slit
width is small enough. What is the maximum slit width for which
this occurs? Explain your answer.
Q36.6. The predominant sound waves used in human speech have
wavelengths in the range from 1.0 to 3.0 meters. Using the ideas of
diffraction, explain how it is possible to hear a person’s voice even
when he is facing away from you.
Q36.7. In single-slit diffraction, what is when In
view of your answer, why is the single-slit intensity not equal to
zero at the center?
Q36.8. A rainbow ordinarily shows a range of colors (see Sec-
tion 33.4). But if the water droplets that form the rainbow are small

u 5 0?sin 1b/2 2

l,

xl
f

enough, the rainbow will appear white. Explain why, using diffrac-
tion ideas. How small do you think the raindrops would have to be
for this to occur?
Q36.9. Some loudspeaker horns for outdoor concerts (at which the
entire audience is seated on the ground) are wider vertically than
horizontally. Use diffraction ideas to explain why this is more effi-
cient at spreading the sound uniformly over the audience than either
a square speaker horn or a horn that is wider horizontally than verti-
cally. Would this still be the case if the audience were seated at dif-
ferent elevations, as in an amphitheater? Why or why not?
Q36.10. Figure 31.12 (Section 31.2) shows a loudspeaker system.
Low-frequency sounds are produced by the woofer, which is a
speaker with large diameter; the tweeter, a speaker with smaller
diameter, produces high-frequency sounds. Use diffraction ideas to
explain why the tweeter is more effective for distributing high-fre-
quency sounds uniformly over a room than is the woofer.
Q36.11. Information is stored on an audio compact disc, CD-ROM,
or DVD disc in a series of pits on the disc. These pits are scanned
by a laser beam. An important limitation on the amount of infor-
mation that can be stored on such a disc is the width of the laser
beam. Explain why this should be, and explain how using a
shorter-wavelength laser allows more information to be stored on a
disc of the same size.
Q36.12. With which color of light can the Hubble Space Telescope
see finer detail in a distant astronomical object: red, blue, or ultra-
violet? Explain your answer.
Q36.13. A typical telescope used by amateur astronomers has a
mirror 20 cm in diameter. With such a telescope (and a filter to cut
the intensity of sunlight to a safe level for viewing), fine details
can be seen on the surface of the sun. Explain why a radio tele-
scope would have to be much larger to “see” comparable details
on the sun.
Q36.14. Could x-ray diffraction effects with crystals be observed
by using visible light instead of x rays? Why or why not?
Q36.15. Why is a diffraction grating better than a two-slit setup for
measuring wavelengths of light?
Q36.16. One sometimes sees rows of evenly spaced radio antenna
towers. A student remarked that these act like diffraction gratings.
What did she mean? Why would one want them to act like a dif-
fraction grating?
Q36.17. If a hologram is made using 600-nm light and then viewed
with 500-nm light, how will the images look compared to those
observed when viewed with 600-nm light? Explain.
Q36.18. A hologram is made using 600-nm light and then viewed
by using white light from an incandescent bulb. What will be seen?
Explain.
Q36.19. Ordinary photographic film reverses black and white, in
the sense that the most brightly illuminated areas become blackest
upon development (hence the term negative). Suppose a hologram
negative is viewed directly, without making a positive trans-
parency. How will the resulting images differ from those obtained
with the positive? Explain.

Exercises
Section 36.2 Diffraction from a Single Slit
36.1. Monochromatic light from a distant source is incident on a
slit 0.750 mm wide. On a screen 2.00 m away, the distance from
the central maximum of the diffraction pattern to the first minimum
is measured to be 1.35 mm. Calculate the wavelength of the light.
36.2. Parallel rays of green mercury light with a wavelength of
546 nm pass through a slit covering a lens with a focal length of

60.0 cm. In the focal plane of the lens the distance from the central
maximum to the first minimum is 10.2 mm. What is the width of
the slit?
36.3. Light of wavelength 585 nm falls on a slit 0.0666 mm wide.
(a) On a very large distant screen, how many totally dark fringes
(indicating complete cancellation) will there be, including both
sides of the central bright spot? Solve this problem without calcu-
lating all the angles! (Hint: What is the largest that can be?
What does this tell you is the largest that can be?) (b) At what
angle will the dark fringe that is most distant from the central
bright fringe occur?
36.4. Light of wavelength 633 nm from a distant source is incident
on a slit 0.750 mm wide, and the resulting diffraction pattern is
observed on a screen 3.50 m away. What is the distance between
the two dark fringes on either side of the central bright fringe?
36.5. Diffraction occurs for all types of waves, including sound
waves. High-frequency sound from a distant source with wave-
length 9.00 cm passes through a narrow slit 12.0 cm wide. A
microphone is placed 40.0 cm directly in front of the center of the
slit, corresponding to point in Fig. 36.5a. The microphone is
then moved in a direction perpendicular to the line from the center
of the slit to point . At what distances from will the intensity
detected by the microphone be zero?
36.6. Tsunami! On December 26, 2004, a violent magnitude-
9.1 earthquake occurred off the coast of Sumatra. This quake trig-
gered a huge tsunami (similar to a tidal wave) that killed more
than 150,000 people. Scientists observing the wave on the open
ocean measured the time between crests to be 1.0 h and the speed
of the wave to be Computer models of the evolution of
this enormous wave showed that it bent around the continents and
spread to all the oceans of the earth. When the wave reached the
gaps between continents, it diffracted between them as through a
slit. (a) What was the wavelength of this tsunami? (b) The dis-
tance between the southern tip of Africa and northern Antarctica is
about 4500 km, while the distance between the southern end of
Australia and Antarctica is about 3700 km. As an approximation,
we can model this wave’s behavior by using Fraunhofer diffrac-
tion. Find the smallest angle away from the central maximum for
which the waves would cancel after going through each of these
continental gaps.
36.7. A series of parallel linear water wave fronts are traveling
directly toward the shore at on an otherwise placid lake.
A long concrete barrier that runs parallel to the shore at a distance
of 3.20 m away has a hole in it. You count the wave crests and
observe that 75.0 of them pass by each minute, and you also
observe that no waves reach the shore at from the point
directly opposite the hole, but waves do reach the shore every-
where within this distance. (a) How wide is the hole in the barrier?
(b) At what other angles do you find no waves hitting the shore?
36.8. Monochromatic light of wavelength 580 nm passes through
a single slit and the diffraction pattern is observed on a screen.
Both the source and screen are far enough from the slit for Fraun-
hofer diffraction to apply. (a) If the first diffraction minima are at

so the central maximum completely fills the screen, what
is the width of the slit? (b) For the width of the slit as calculated in
part (a), what is the ratio of the intensity at to the inten-
sity at 
36.9. Doorway Diffraction. Sound of frequency 1250 Hz leaves
a room through a 1.00-m-wide doorway (see Exercise 36.5). At
which angles relative to the centerline perpendicular to the door-
way will someone outside the room hear no sound? Use
for the speed of sound in air and assume that the source and listener

344 m/s

u 5 0?
u 5 45.0°

690.0°,

661.3 cm

15.0 cm/s

800 km/h.

OO

O

m
sin u
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are both far enough from the doorway for Fraunhofer diffraction to
apply. You can ignore effects of reflections.
36.10. Light waves, for which the electric field is given by

pass through a slit
and produce the first dark bands at from the center of the
diffraction pattern. (a) What is the frequency of this light? (b) How
wide is the slit? (c) At which angles will other dark bands occur?
36.11. Parallel rays of light with wavelength 620 nm pass through
a slit covering a lens with a focal length of 40.0 cm. The diffraction
pattern is observed in the focal plane of the lens, and the distance
from the center of the central maximum to the first minimum is
36.5 cm. What is the width of the slit? (Note: The angle that
locates the first minimum is not small.)
36.12. Monochromatic electromagnetic radiation with wavelength

from a distant source passes through a slit. The diffraction pat-
tern is observed on a screen 2.50 m from the slit. If the width of the
central maximum is 6.00 mm, what is the slit width if the wave-
length is (a) 500 nm (visible light); (b) (infrared radia-
tion); (c) 0.500 nm (x rays)?
36.13. Red light of wavelength 633 nm from a helium–neon laser
passes through a slit 0.350 mm wide. The diffraction pattern is
observed on a screen 3.00 m away. Define the width of a bright
fringe as the distance between the minima on either side. (a) What
is the width of the central bright fringe? (b) What is the width of
the first bright fringe on either side of the central one?

Section 36.3 Intensity in the Single-Slit Pattern
36.14. Monochromatic light of wavelength from a
distant source passes through a slit 0.450 mm wide. The diffrac-
tion pattern is observed on a screen 3.00 m from the slit. In terms
of the intensity at the peak of the central maximum, what is the
intensity of the light at the screen the following distances from
the center of the central maximum: (a) 1.00 mm; (b) 3.00 mm;
(c) 5.00 mm?
36.15. A slit 0.240 mm wide is illuminated by parallel light rays of
wavelength 540 nm. The diffraction pattern is observed on a
screen that is 3.00 m from the slit. The intensity at the center of the
central maximum is (a) What is the
distance on the screen from the center of the central maximum to
the first minimum? (b) What is the intensity at a point on the
screen midway between the center of the central maximum and the
first minimum?
36.16. Laser light of wavelength 632.8 nm falls normally on a slit
that is 0.0250 mm wide. The transmitted light is viewed on a dis-
tant screen where the intensity at the center of the central bright
fringe is (a) Find the maximum number of totally dark
fringes on the screen, assuming the screen is large enough to show
them all. (b) At what angle does the dark fringe that is most distant
from the center occur? (c) What is the maximum intensity of the
bright fringe that occurs immediately before the dark fringe in part
(b)? Approximate the angle at which this fringe occurs by assum-
ing it is midway between the angles to the dark fringes on either
side of it.
36.17. A single-slit diffraction pattern is formed by monochro-
matic electromagnetic radiation from a distant source passing
through a slit 0.105 mm wide. At the point in the pattern
from the center of the central maximum, the total phase difference
between wavelets from the top and bottom of the slit is 56.0 rad.
(a) What is the wavelength of the radiation? (b) What is the inten-
sity at this point, if the intensity at the center of the central maxi-
mum is I0 ?

3.25°

8.50 W/m2.

6.00 3 1026 W/m2.1 u 5 0° 2

I0

l 5 620 nm

50.0 mm
a

l

628.6°
Ey 1 x, t 2 5 Emax sin 3 11.20 3 107 m21 2 x 2 vt 4,

36.18. Consider a single-slit diffraction experiment in which the
amplitude of the wave at point in Fig. 36.5a is For each of
the following cases, draw a phasor diagram like that in Fig. 36.8c
and determine graphically the amplitude of the wave at the point
in question. (Hint: Use Eq. (36.6) to determine the value of for
each case.) Compute the intensity and compare to Eq. (36.5).
(a) (b) (c) 
36.19. Public Radio station KXPR-FM in Sacramento broadcasts
at 88.9 MHz. The radio waves pass between two tall skyscrapers
that are 15.0 m apart along their closest walls. (a) At what horizon-
tal angles, relative to the original direction of the waves, will a
distant antenna not receive any signal from this station? (b) If the
maximum intensity is at the antenna, what is the inten-
sity at from the center of the central maximum at the dis-
tant antenna?

Section 36.4 Multiple Slits
36.20. Diffraction and Interference Combined. Consider the
interference pattern produced by two parallel slits of width and
separation , in which The slits are illuminated by nor-
mally incident light of wavelength (a) First we ignore diffrac-
tion effects due to the slit width. At what angles from the central
maximum will the next four maxima in the two-slit interference
pattern occur? Your answer will be in terms of and . (b) Now
we include the effects of diffraction. If the intensity at is 
what is the intensity at each of the angles in part (a)? (c) Which
double-slit interference maxima are missing in the pattern?
(d) Compare your results to those illustrated in Fig. 36.12c. In
what ways is your result different? 
36.21. Number of Fringes in a Diffraction Maximum. In
Fig. 36.12c the central diffraction maximum contains exactly
seven interference fringes, and in this case (a) What must
the ratio be if the central maximum contains exactly five
fringes? (b) In the case considered in part (a), how many fringes
are contained within the first diffraction maximum on one side of
the central maximum?
36.22. An interference pattern is produced by eight parallel and
equally spaced, narrow slits. There is an interference minimum
when the phase difference between light from adjacent slits is

The phasor diagram is given in Fig. 36.14b. For which pairs
of slits is there totally destructive interference?
36.23. An interference pattern is produced by light of wavelength
580 nm from a distant source incident on two identical parallel
slits separated by a distance (between centers) of 0.530 mm. (a) If
the slits are very narrow, what would be the angular positions of
the first-order and second-order, two-slit, interference maxima?
(b) Let the slits have width 0.320 mm. In terms of the intensity at
the center of the central maximum, what is the intensity at each of
the angular positions in part (a)?
36.24. Monochromatic light illuminates a pair of thin parallel slits
at normal incidence, producing an interference pattern on a distant
screen. The width of each slit is the center-to-center distance
between the slits. (a) Which interference maxima are missing in
the pattern on the screen? (b) Does the answer to part (a) depend
on the wavelength of the light used? Does the location of the miss-
ing maxima depend on the wavelength? 
36.25. An interference pattern is produced by four parallel and
equally spaced, narrow slits. By drawing appropriate phasor dia-
grams, show that there is an interference minimum when the phase
difference from adjacent slits is (a) (b) (c) In each
case, for which pairs of slits is there totally destructive interference?

3p/2.p;p/2;f
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7

I0

p/4.
f

d/a
d/a 5 4.

I0 ,u 5 0
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u
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d 5 3a.d
a

65.00°
3.50 W/m2

sin u 5 3l/2a.sin u 5 l/a;sin u 5 l/2a;

b

E0 .O

1.53 mm

Figure 36.33 Exercise 36.26

36.26. A diffraction experiment involving two thin parallel slits
yields the pattern of closely spaced bright and dark fringes shown
in Fig. 36.33. Only the central portion of the pattern is shown in
the figure. The bright spots are equally spaced at 1.53 mm center to
center (except for the missing spots) on a screen 2.50 m from the
slits. The light source was a He-Ne laser producing a wavelength
of 632.8 nm. (a) How far apart are the two slits? (b) How wide is
each one?

36.35. Plane monochromatic waves with wavelength 520 nm 
are incident normally on a plane transmission grating having

Find the angles of deviation in the first, second, and
third orders.
36.36. Identifying Isotopes by Spectra. Different isotopes of
the same element emit light at slightly different wavelengths. A
wavelength in the emission spectrum of a hydrogen atom is
656.45 nm; for deuterium, the corresponding wavelength is
656.27 nm. (a) What minimum number of slits is required to
resolve these two wavelengths in second order? (b) If the grating
has find the angles and angular separation of
these two wavelengths in the second order.
36.37. A typical laboratory diffraction grating has 

and these lines are contained in a 3.50-cm width of
grating. (a) What is the chromatic resolving power of such a grat-
ing in the first order? (b) Could this grating resolve the lines of the
sodium doublet (see Section 36.5) in the first order? (c) While
doing spectral analysis of a star, you are using this grating in the
second order to resolve spectral lines that are very close to the
587.8002-nm spectral line of iron. (i) For wavelengths longer than
the iron line, what is the shortest wavelength you could distinguish
from the iron line? (ii) For wavelengths shorter than the iron line,
what is the longest wavelength you could distinguish from the iron
line? (iii) What is the range of wavelengths you could not distin-
guish from the iron line?
36.38. The light from an iron arc includes many different 
wavelengths. Two of these are at and 

You wish to resolve these spectral lines in first order
using a grating 1.20 cm in length. What minimum number of slits
per centimeter must the grating have?

Section 36.6 X-Ray Diffraction
36.39. X rays of wavelength 0.0850 nm are scattered from the
atoms of a crystal. The second-order maximum in the Bragg reflec-
tion occurs when the angle in Fig. 36.23 is What is the
spacing between adjacent atomic planes in the crystal?
36.40. If the planes of a crystal are 3.50 Å (1 Å
1 Ångstrom unit) apart, (a) what wavelength of electromagnetic
waves is needed so that the first strong interference maximum in
the Bragg reflection occurs when the waves strike the planes at an
angle of and in what part of the electromagnetic spectrum
do these waves lie? (See Fig. 32.4.) (b) At what other angles will
strong interference maxima occur?

Section 36.7 Circular Apertures and Resolving Power
36.41. Due to blurring caused by atmospheric distortion, the best
resolution that can be obtained by a normal, earth-based, visible-
light telescope is about 0.3 arcsecond (there are 60 arcminutes in a
degree and 60 arcseconds in an arcminute). (a) Using Rayleigh’s
criterion, calculate the diameter of an earth-based telescope that
gives this resolution with 550-nm light. (b) Increasing the tele-
scope diameter beyond the value found in part (a) will increase the
light-gathering power of the telescope, allowing more distant and
dimmer astronomical objects to be studied, but it will not improve
the resolution. In what ways are the Keck telescopes (each of 10-m
diameter) atop Mauna Kea in Hawaii superior to the Hale Tele-
scope (5-m diameter) on Palomar Mountain in California? In what
ways are they not superior? Explain.
36.42. If you can read the bottom row of your doctor’s eye chart,
your eye has a resolving power of 1 arcminute, equal to degree.
If this resolving power is diffraction limited, to what effective

1
60

15.0°,

5 10210 m 5

21.5°.u

587.8002 nm.
l 5l 5 587.9782 nm

103 lines/cm,
5.00 3

500.00 slits/mm,

350 slits/mm.

36.27. Laser light of wavelength 500.0 nm illuminates two identi-
cal slits, producing an interference pattern on a screen 90.0 cm
from the slits. The bright bands are 1.00 cm apart, and the third
bright bands on either side of the central maximum are missing in
the pattern. Find the width and the separation of the two slits.

Section 36.5 The Diffraction Grating
36.28. Monochromatic light is at normal incidence on a plane
transmission grating. The first-order maximum in the interference
pattern is at an angle of . What is the angular position of the
fourth-order maximum?
36.29. If a diffraction grating produces its third-order bright band
at an angle of for light of wavelength 681 nm, find (a) the
number of slits per centimeter for the grating and (b) the angular
location of the first-order and second-order bright bands. (c) Will
there be a fourth-order bright band? Explain.
36.30. If a diffraction grating produces a third-order bright spot for
red light (of wavelength 700 nm) at from the central maxi-
mum, at what angle will the second-order bright spot be for violet
light (of wavelength 400 nm)?
36.31. Visible light passes through a diffraction grating that has

and the interference pattern is observed on a screen
that is 2.50 m from the grating. (a) Is the angular position of the
first-order spectrum small enough for to be a good
approximation? (b) In the first-order spectrum, the maxima for two
different wavelengths are separated on the screen by 3.00 mm.
What is the difference in these wavelengths?
36.32. The wavelength range of the visible spectrum is approxi-
mately 400–700 nm. White light falls at normal incidence on a dif-
fraction grating that has Find the angular width of
the visible spectrum in (a) the first order and (b) the third order.
(Note: An advantage of working in higher orders is the greater
angular spread and better resolution. A disadvantage is the overlap-
ping of different orders, as shown in Example 36.4.)
36.33. Measuring Wavelengths with a CD. A laser beam of
wavelength shines at normal incidence on the
reflective side of a compact disc. The tracks of tiny pits in which
information is coded onto the CD are apart. For what
angles of reflection (measured from the normal) will the intensity
of light be maximum?
36.34. (a) What is the wavelength of light that is deviated in the
first order through an angle of by a transmission grating hav-
ing (b) What is the second-order deviation of this
wavelength? Assume normal incidence.
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diameter of your eye’s optical system does this correspond? Use
Rayleigh’s criterion and assume 
36.43. Two satellites at an altitude of 1200 km are separated by
28 km. If they broadcast 3.6-cm microwaves, what minimum
receiving-dish diameter is needed to resolve (by Rayleigh’s crite-
rion) the two transmissions?
36.44. The Very Long Baseline Array can resolve (by Rayleigh’s
criterion) signals from sources separated by If the
effective diameter of the receiver is 8000 km, what is the wave-
length of these signals?
36.45. Monochromatic light with wavelength 620 nm passes
through a circular aperture with diameter The resulting
diffraction pattern is observed on a screen that is 4.5 m from the
aperture. What is the diameter of the Airy disk on the screen?
36.46. Photography. A wildlife photographer uses a moderate
telephoto lens of focal length 135 mm and maximum aperture

to photograph a bear that is 11.5 m away. Assume the wave-
length is 550 nm. (a) What is the width of the smallest feature on
the bear that this lens can resolve if it is opened to its maximum
aperture? (b) If, to gain depth of field, the photographer stops the
lens down to what would be the width of the smallest
resolvable feature on the bear?
36.47. Observing Jupiter. You are asked to design a space tele-
scope for earth orbit. When Jupiter is away (its
closest approach to the earth), the telescope is to resolve, by
Rayleigh’s criterion, features on Jupiter that are 250 km apart.
What minimum-diameter mirror is required? Assume a wave-
length of 500 nm.
36.48. A converging lens 7.20 cm in diameter has a focal length of
300 mm. If the resolution is diffraction limited, how far away can
an object be if points on it 4.00 mm apart are to be resolved
(according to Rayleigh’s criterion)? Use 
36.49. Hubble Versus Arecibo. The Hubble Space Telescope
has an aperture of 2.4 m and focuses visible light (400–700 nm).
The Arecibo radio telescope in Puerto Rico is 305 m (1000 ft) in
diameter (it is built in a mountain valley) and focuses radio waves
of wavelength 75 cm. (a) Under optimal viewing conditions, what
is the smallest crater that each of these telescopes could resolve on
our moon? (b) If the Hubble Space Telescope were to be con-
verted to surveillance use, what is the highest orbit above the sur-
face of the earth it could have and still be able to resolve the
license plate (not the letters, just the plate) of a car on the ground?
Assume optimal viewing conditions, so that the resolution is dif-
fraction limited.
36.50. Searching for Starspots. The Hale Telescope on Palo-
mar Mountain in California has a mirror 200 in. (5.08 m) in diame-
ter and it focuses visible light. Given that a large sunspot is about
10,000 mi in diameter, what is the most distant star on which this
telescope could resolve a sunspot to see whether other stars have
them? (Assume optimal viewing conditions, so that the resolution
is diffraction limited.) Are there any stars this close to us, besides
our sun?
36.51. Searching for Planets. The Keck Telescopes, on Mauna
Kea, Hawaii have a 10.0-m-diameter mirror. Could these tele-
scopes resolve Jupiter-sized planets about our nearest star, Alpha
Centauri, which is 4.28 light-years away?

Problems
36.52. Suppose the entire apparatus (slit, screen, and space in
between) in Exercise 36.4 is immersed in water Then
what is the distance between the two dark fringes?

1n 5 1.33 2 .

l 5 550 nm.

5.93 3 108 km

f/22.0,

f/4.00

7.4 mm.

1.0 3 1028 rad.

l 5 550 nm.
36.53. Consider a single-slit diffraction pattern. The center of the
central maximum, where the intensity is is located at 
(a) Let and be the two angles on either side of for
which is called the full width at half
maximum, or FWHM, of the central diffraction maximum. Solve
for when the ratio between slit width and wavelength is
(i) (ii) (iii) (Hint: Your equation for

or cannot be solved analytically. You must use trial and error
or solve it graphically.) (b) The width of the central maximum can
alternatively be defined as where is the angle that locates
the minimum on one side of the central maximum. Calculate 
for each case considered in part (a), and compare to 
36.54. A loudspeaker having a diaphragm that vibrates at 1250 Hz
is traveling at directly toward a pair of holes in a very
large wall in a region for which the speed of sound is You
observe that the sound coming through the openings first cancels at

with respect to the original direction of the speaker when
observed far from the wall. (a) How far apart are the two open-
ings? (b) At what angles would the sound first cancel if the source
stopped moving?
36.55. Measuring Refractive Index. A thin slit illuminated by
light of frequency produces its first dark band at in air.
When the entire apparatus (slit, screen, and space in between) is
immersed in an unknown transparent liquid, the slit’s first dark
bands occur instead at Find the refractive index of the
liquid.
36.56. Grating Design. Your boss asks you to design a diffrac-
tion grating that will disperse the first-order visible spectrum
through an angular range of (see Example 36.4 in Sec-
tion 36.5). (a) What must the number of slits per centimeter be for
this grating? (b) At what angles will the first-order visible spec-
trum begin and end?
36.57. A slit 0.360 mm wide is illuminated by parallel rays of light
that have a wavelength of 540 nm. The diffraction pattern is
observed on a screen that is 1.20 m from the slit. The intensity at
the center of the central maximum is (a) What is the
distance on the screen from the center of the central maximum to
the first minimum? (b) What is the distance on the screen from the
center of the central maximum to the point where the intensity has
fallen to (See Problem 36.53, part (a), for a hint about how to
solve for the phase angle 
36.58. The intensity of light in the Fraunhofer diffraction pattern
of a single slit is

where

(a) Show that the equation for the values of at which is a maxi-
mum is (b) Determine the three smallest positive values
of that are solutions of this equation. (Hint: You can use a trial-
and-error procedure. Guess a value of and adjust your guess to
bring closer to A graphical solution of the equation is very
helpful in locating the solutions approximately, to get good initial
guesses.)
36.59. Angular Width of a Principal Maximum. Consider 
evenly spaced, narrow slits. Use the small-angle approximation

(for in radians) to prove the following: For an intensity
maximum that occurs at an angle the intensity minima immedi-u,
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ately adjacent to this maximum are at angles and

so that the angular width of the principal maximum is
This is proportional to as we concluded in Sec-

tion 36.4 on the basis of energy conservation.
36.60. The Expanding Universe. A cosmologist who is study-
ing the light from a galaxy has identified the spectrum of hydrogen
but finds that the wavelengths are somewhat shifted from those
found in the laboratory. In the lab, the line has a wavelength of
656.3 nm. The cosmologist is using a transmission diffraction grat-
ing having in the first order and finds that the first
bright fringe for the line occurs at from the central
spot. How fast is the galaxy moving? Express your answer in 
and as a percentage of the speed of light. Is it moving toward us or
away from us? (Hint: See Section 16.8.)
36.61. Phasor Diagram for Eight Slits. An interference pattern
is produced by eight equally spaced, narrow slits. Figure 36.14
shows phasor diagrams for the cases in which the phase difference

between light from adjacent slits is and
Each of these cases gives an intensity minimum. The

caption for Fig. 36.14 also claims that minima occur for
and (a) Draw the phasor dia-

gram for each of these four cases, and explain why each diagram
proves that there is in fact a minimum. (Note: You may find it help-
ful to use a different colored pencil for each slit!) (b) For each of the
four cases and for
which pairs of slits is there totally destructive interference?
36.62. X-Ray Diffraction of Salt. X rays with a wavelength of
0.125 nm are scattered from a cubic array (of a sodium chloride
crystal), for which the spacing of adjacent atoms is 
(a) If diffraction from planes parallel to a cube face is considered,
at what angles of the incoming beam relative to the crystal planes
will maxima be observed? (b) Repeat part (a) for diffraction pro-
duced by the planes shown in Fig. 36.24a, which are separated by

36.63. At the end of Section 36.4, the following statements were
made about an array of slits. Explain, using phasor diagrams,
why each statement is true. (a) A minimum occurs whenever is
an integral multiple of except when is an integral multiple
of (which gives a principal maximum). (b) There are 
minima between each pair of principal maxima.
36.64. In Eq. (36.12), consider the case in which In a
sketch, show that in this case the two slits reduce to a single slit
with width Then show that Eq. (36.12) reduces to Eq. (36.5)
with slit width 
36.65. What is the longest wavelength that can be observed in the
third order for a transmission grating having 
Assume normal incidence.
36.66. (a) Figure 36.16 shows plane waves of light incident
normally on a diffraction grating. If instead the light strikes the grat-
ing at an angle of incidence (measured from the normal), show
that the condition for an intensity maximum is not Eq. (36.13), but
rather

(b) For the grating described in Example (Section 36.5), with
find the angles of the maxima corresponding to

1, and with red light for the cases
(normal incidence) and 

36.67. A diffraction grating has What is the highest
order that contains the entire visible spectrum? (The wavelength
range of the visible spectrum is approximately 400–700 nm.)
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u 1 l/Nd 36.68. Quasars, an abbreviation for quasi-stellar radio sources,
are distant objects that look like stars through a telescope but that
emit far more electromagnetic radiation than an entire normal
galaxy of stars. An example is the bright object below and to the
left of center in Fig. 36.34; the other elongated objects in this
image are normal galaxies. The leading model for the structure of a
quasar is a galaxy with a supermassive black hole at its center. In
this model, the radiation is emitted by interstellar gas and dust
within the galaxy as this material falls toward the black hole. The
radiation is thought to emanate from a region just a few light-years
in diameter. (The diffuse glow surrounding the bright quasar
shown in Fig. 36.34 is thought to be this quasar’s host galaxy.) To
investigate this model of quasars and to study other exotic astro-
nomical objects, the Russian Space Agency plans to place a radio
telescope in an orbit that extends to 77,000 km from the earth.
When the signals from this telescope are combined with signals
from the ground-based telescopes of the VLBA, the resolution will
be that of a single radio telescope 77,000 km in diameter. What is
the size of the smallest detail that this arrangement could resolve in
quasar 3C 405, which is light-years from earth, using
radio waves at a frequency of 1665 MHz? (Hint: Use Rayleigh’s
criterion.) Give your answer in light-years and in kilometers.

7.2 3 108

Figure 36.34 Problem 36.68

36.69. Phased-Array Radar. In one common type of radar
installation, a rotating antenna sweeps a radio beam around the sky.
But in a phased-array radar system, the antennas remain stationary
and the beam is swept electronically. To see how this is done, con-
sider an array of antennas that are arranged along the horizontal

at (The number is
odd.) Each antenna emits radiation uniformly in all directions in
the horizontal The antennas all emit radiation coherently,
with the same amplitude and the same wavelength The rela-
tive phase of the emission from adjacent antennas can be varied,
however. If the antenna at emits a signal that is given by

as measured at a point next to the antenna, the antenna at
emits a signal given by as measured at a

point next to that antenna. The corresponding quantity for the
E0 cos 1vt 1 d 2 ,x 5 d

E0 cos vt,
x 5 0

d
l.E0

xy-plane.

N6 1N 2 1 2d/2.62d, c,6d,x 5 0,x-axis
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antenna at is for the antennas at
it is and so on. (a) If the inter-

ference pattern at a distance from the antennas is large compared
to and has a principal maximum at (that is, in the

perpendicular to the line of the antennas). Show that
if this is the only principal interference maximum in the
angular range Hence this principal maximum
describes a beam emitted in the direction As described in
Section 36.4, if is large, the beam will have a large intensity and
be quite narrow. (b) If show that the principal intensity
maximum described in part (a) is located at

where is measured in radians. Thus, by varying from positive
to negative values and back again, which can easily be done elec-
tronically, the beam can be made to sweep back and forth around

(c) A weather radar unit to be installed on an airplane emits
radio waves at 8800 MHz. The unit uses 15 antennas in an array
28.0 cm long (from the antenna at one end of the array to the
antenna at the other end). What must the maximum and minimum
values of be (that is, the most positive and most negative values)
if the radar beam is to sweep to the left or right of the air-
plane’s direction of flight? Give your answer in radians.
36.70. Underwater Photography. An underwater camera has a
lens of focal length 35.0 mm and a maximum aperture of 
The film it uses has an emulsion that is sensitive to light of fre-
quency If the photographer takes a picture of an
object 2.75 m in front of the camera with the lens wide open, what
is the width of the smallest resolvable detail on the subject if the
object is (a) a fish underwater with the camera in the water and
(b) a person on the beach, with the camera out of the water? 
36.71. An astronaut in orbit can just resolve two point sources on
the earth that are 75.0 m apart. Assume that the resolution is dif-
fraction limited, and use Rayleigh’s criterion. What is the astro-
naut’s altitude above the earth? Treat her eye as a circular aperture
with a diameter of 4.00 mm (the diameter of her pupil), and take
the wavelength of the light to be 500 nm.
36.72. Observing Planets Beyond Our Solar System. NASA is
considering a project called Planet Imager that would give
astronomers the ability to see details on planets orbiting other
stars. Using the same principle as the Very Large Array (see Sec-
tion 36.7), Planet Imager will use an array of infrared telescopes
spread over thousands of kilometers of space. (Visible light would
give even better resolution. Unfortunately, at visible wavelengths,
stars are so bright that a planet would be lost in the glare. This is
less of a problem at infrared wavelengths.) (a) If Planet Imager
has an effective diameter of 6000 km and observes infrared radia-
tion at a wavelength of what is the greatest distance at
which it would be able to observe details as small as 250 km
across (about the size of the greater Los Angeles area) on a planet?
Give your answer in light-years (see Appendix E). (Hint: Use
Rayleigh’s criterion.) (b) For comparison, consider the resolution
of a single infrared telescope in space that has a diameter of 1.0 m
and that observes radiation. What is the size of the smallest
details that such a telescope could resolve at the distance of the
nearest star to the sun, Proxima Centauri, which is 4.22 light-years
distant? How does this compare to the diameter of the earth

To the average distance from the earth to the
sun Would a single telescope of this kind be
able to detect the presence of a planet like the earth, in an orbit the
size of the earth’s orbit, around any other star? Explain. (c) Sup-
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E0 cos 1vt 2 d 2 ;x 5 2d pose Planet Imager is used to observe a planet orbiting the star

70 Virginis, which is 59 light-years from our solar system. A
planet (though not an earthlike one) has in fact been detected
orbiting this star, not by imaging it directly but by observing the
slight “wobble” of the star as both it and the planet orbit their
common center of mass. What is the size of the smallest details
that Planet Imager could hope to resolve on the planet of 70 Virgi-
nis? How does this compare to the diameter of the planet, assumed
to be comparable to that of Jupiter (Although
the planet of 70 Virginis is thought to be at least 6.6 times more
massive than Jupiter, its radius is probably not too different from
that of Jupiter. The reason is that such large planets are thought to
be composed primarily of gases, not rocky material, and hence can
be greatly compressed by the mutual gravitational attraction of
different parts of the planet.)

Challenge Problems
36.73. It is possible to calculate the intensity in the single-slit
Fraunhofer diffraction pattern without using the phasor method of
Section 36.3. Let represent the position of a point within the slit
of width in Fig. 36.5a, with at the center of the slit so
that the slit extends from to We imagine
dividing the slit up into infinitesimal strips of width each of
which acts as a source of secondary wavelets. (a) The amplitude
of the total wave at the point on the distant screen in Fig. 36.5a
is Explain why the amplitude of the wavelet from each infini-
tesimal strip within the slit is so that the electric field
of the wavelet a distance from the infinitesimal strip is

(b) Explain why the wavelet from
each strip as detected at point in Fig. 36.5a can be expressed as

where is the distance from the center of the slit to point and
(c) By integrating the contributions from all parts of

the slit, show that the total wave detected at point is

(The trigonometric identities in Appendix B will be useful.) Show
that at corresponding to point in Fig. 36.5a, the wave is

and has amplitude as stated in part (a).
(d) Use the result of part (c) to show that if the intensity at point 
is then the intensity at a point is given by Eq. (36.7).
36.74. Intensity Pattern of Slits. (a) Consider an arrange-
ment of slits with a distance between adjacent slits. The slits
emit coherently and in phase at wavelength Show that at a time

the electric field at a distant point is

where is the amplitude at of the electric field due to an indi-
vidual slit, is the angle of the rays reaching

(as measured from the perpendicular bisector of the slit arrange-
ment), and is the distance from to the most distant slit. In this
problem, assume that is much larger than . (b) To carry outdR
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the sum in part (a), it is convenient to use the complex-number
relationship

where In this expression, is the real part of the
complex number and is its imaginary part. Show that the
electric field is equal to the real part of the complex quantity

(c) Using the properties of the exponential function that
and show that the sum in part (b) can

be written as

Then, using the relationship show that the
(real) electric field at point is

The quantity in the first square brackets in this expression is the
amplitude of the electric field at . (d) Use the result for theP
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electric-field amplitude in part (c) to show that the intensity at an
angle is

where is the maximum intensity for an individual slit. (e) Check
the result in part (d) for the case It will help to recall
that Explain why your result differs from
Eq. (35.10), the expression for the intensity in two-source interfer-
ence, by a factor of 4. (Hint: Is defined in the same way in both
expressions?)
36.75. Intensity Pattern of N Slits, Continued. Part (d) of Chal-
lenge Problem 36.74 gives an expression for the intensity in the
interference pattern of identical slits. Use this result to verify the
following statements. (a) The maximum intensity in the pattern is

(b) The principal maximum at the center of the pattern
extends from to so its width is inversely
proportional to (c) A minimum occurs whenever is an inte-
gral multiple of except when is an integral multiple of 
(which gives a principal maximum). (d) There are min-
ima between each pair of principal maxima. (e) Halfway between
two principal maxima, the intensity can be no greater than that
is, it can be no greater than times the intensity at a principal
maximum.
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