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LEARNING GOALS
By studying this chapter, you will learn:

• The nature of capacitors, and how
to calculate a quantity that meas-
ures their ability to store charge.

• How to analyze capacitors con-
nected in a network.

• How to calculate the amount of
energy stored in a capacitor.

• What dielectrics are, and how they
make capacitors more effective.
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CAPACITANCE 
AND DIELECTRICS

?The energy used in a
camera’s flash unit is
stored in a capacitor,
which consists of two
closely spaced conduc-
tors that carry opposite
charges. If the amount
of charge on the con-
ductors is doubled, by
what factor does the
stored energy increase?

When you set an old-fashioned spring mousetrap or pull back the string
of an archer’s bow, you are storing mechanical energy as elastic poten-
tial energy. A capacitor is a device that stores electric potential energy

and electric charge. To make a capacitor, just insulate two conductors from each
other. To store energy in this device, transfer charge from one conductor to the
other so that one has a negative charge and the other has an equal amount of posi-
tive charge. Work must be done to move the charges through the resulting poten-
tial difference between the conductors, and the work done is stored as electric
potential energy.

Capacitors have a tremendous number of practical applications in devices such
as electronic flash units for photography, pulsed lasers, air bag sensors for cars,
and radio and television receivers. We’ll encounter many of these applications in
later chapters (particularly Chapter 31, in which we’ll see the crucial role played
by capacitors in the alternating-current circuits that pervade our technological
society). In this chapter, however, our emphasis is on the fundamental properties
of capacitors. For a particular capacitor, the ratio of the charge on each conductor
to the potential difference between the conductors is a constant, called the capaci-
tance. The capacitance depends on the sizes and shapes of the conductors and on
the insulating material (if any) between them. Compared to the case in which
there is only vacuum between the conductors, the capacitance increases when an
insulating material (a dielectric) is present. This happens because a redistribution
of charge, called polarization, takes place within the insulating material. Study-
ing polarization will give us added insight into the electrical properties of matter.

Capacitors also give us a new way to think about electric potential energy. The
energy stored in a charged capacitor is related to the electric field in the space
between the conductors. We will see that electric potential energy can be
regarded as being stored in the field itself. The idea that the electric field is itself a
storehouse of energy is at the heart of the theory of electromagnetic waves and
our modern understanding of the nature of light, to be discussed in Chapter 32.
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24.1 Capacitors and Capacitance
Any two conductors separated by an insulator (or a vacuum) form a capacitor
(Fig. 24.1). In most practical applications, each conductor initially has zero net
charge and electrons are transferred from one conductor to the other; this is called
charging the capacitor. Then the two conductors have charges with equal magni-
tude and opposite sign, and the net charge on the capacitor as a whole remains
zero. We will assume throughout this chapter that this is the case. When we say
that a capacitor has charge or that a charge is stored on the capacitor, we
mean that the conductor at higher potential has charge and the conductor at
lower potential has charge (assuming that is positive). Keep this in mind in
the following discussion and examples.

In circuit diagrams a capacitor is represented by either of these symbols:
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24.1 Any two conductors and insu-
lated from each another form a capacitor.
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When the separation of the plates
is small compared to their size,
the fringing of the field is slight.
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Plate b, area A

(a) Arrangement of the capacitor plates
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24.2 A charged parallel-plate capacitor.

Calculating Capacitance: Capacitors in Vacuum
We can calculate the capacitance of a given capacitor by finding the potential
difference between the conductors for a given magnitude of charge and
then using Eq. (24.1). For now we’ll consider only capacitors in vacuum; that is,
we’ll assume that the conductors that make up the capacitor are separated by
empty space.

The simplest form of capacitor consists of two parallel conducting plates, each
with area separated by a distance that is small in comparison with their
dimensions (Fig. 24.2a). When the plates are charged, the electric field is almost
completely localized in the region between the plates (Fig. 24.2b). As we dis-
cussed in Example 22.8 (Section 22.4), the field between such plates is essen-
tially uniform, and the charges on the plates are uniformly distributed over their
opposing surfaces. We call this arrangement a parallel-plate capacitor.

We worked out the electric-field magnitude for this arrangement in Exam-
ple 21.13 (Section 21.5) using the principle of superposition of electric fields and
again in Example 22.8 (Section 22.4) using Gauss’s law. It would be a good idea
to review those examples. We found that where is the magnitude
(absolute value) of the surface charge density on each plate. This is equal to the
magnitude of the total charge on each plate divided by the area of the plate,
or so the field magnitude can be expressed as

The field is uniform and the distance between the plates is so the potential dif-
ference (voltage) between the two plates is

From this we see that the capacitance of a parallel-plate capacitor in vacuum is

(capacitance of a parallel-plate 
capacitor in vacuum)

(24.2)

The capacitance depends only on the geometry of the capacitor; it is directly
proportional to the area of each plate and inversely proportional to their sepa-
ration The quantities and are constants for a given capacitor, and is a
universal constant. Thus in vacuum the capacitance is a constant independent
of the charge on the capacitor or the potential difference between the plates. If
one of the capacitor plates is flexible, the capacitance C changes as the plate
separation d changes. This is the operating principle of a condenser microphone
(Fig. 24.3).

When matter is present between the plates, its properties affect the capaci-
tance. We will return to this topic in Section 24.4. Meanwhile, we remark that if
the space contains air at atmospheric pressure instead of vacuum, the capacitance
differs from the prediction of Eq. (24.2) by less than 0.06%.

In Eq. (24.2), if is in square meters and in meters, is in farads. The units
of are so we see that

Because (energy per unit charge), this is consistent with our defini-
tion Finally, the units of can be expressed as 

so
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In either symbol the vertical lines (straight or curved) represent the conductors
and the horizontal lines represent wires connected to either conductor. One com-
mon way to charge a capacitor is to connect these two wires to opposite terminals
of a battery. Once the charges and are established on the conductors, the
battery is disconnected. This gives a fixed potential difference between the
conductors (that is, the potential of the positively charged conductor with
respect to the negatively charged conductor ) that is just equal to the voltage of
the battery.

The electric field at any point in the region between the conductors is propor-
tional to the magnitude of charge on each conductor. It follows that the poten-
tial difference between the conductors is also proportional to If we double
the magnitude of charge on each conductor, the charge density at each point dou-
bles, the electric field at each point doubles, and the potential difference between
conductors doubles; however, the ratio of charge to potential difference does not
change. This ratio is called the capacitance of the capacitor:

(definition of capacitance) (24.1)

The SI unit of capacitance is called one farad (1 F), in honor of the 19th-century
English physicist Michael Faraday. From Eq. (24.1), one farad is equal to one
coulomb per volt

CAUTION Capacitance vs. coulombs Don’t confuse the symbol for capacitance
(which is always in italics) with the abbreviation C for coulombs (which is never
italicized). ❚

The greater the capacitance of a capacitor, the greater the magnitude of
charge on either conductor for a given potential difference and hence the
greater the amount of stored energy. (Remember that potential is potential energy
per unit charge.) Thus capacitance is a measure of the ability of a capacitor to
store energy. We will see that the value of the capacitance depends only on the
shapes and sizes of the conductors and on the nature of the insulating material
between them. (The above remarks about capacitance being independent of 
and do not apply to certain special types of insulating materials. We won’t
discuss these materials in this book, however.)
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24.3 Inside a condenser microphone is a
capacitor with one rigid plate and one flex-
ible plate. The two plates are kept at a con-
stant potential difference . Sound waves
cause the flexible plate to move back and
forth, varying the capacitance and caus-
ing charge to flow to and from the capaci-
tor in accordance with the relationship

. Thus a sound wave is con-
verted to a charge flow that can be ampli-
fied and recorded digitally.

C 5 Q/Vab

C
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11.11.6 Electric Potential: Qualitative 
Introduction

11.12.1 and 11.12.3
Electric Potential, Field and, Force
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This relationship is useful in capacitance calculations, and it also helps us to ver-
ify that Eq. (24.2) is dimensionally consistent.

One farad is a very large capacitance, as the following example shows. In
many applications the most convenient units of capacitance are the microfarad

and the picofarad For example, the flash
unit in a point-and-shoot camera uses a capacitor of a few hundred microfarads
(Fig. 24.4), while capacitances in a radio tuning circuit are typically from 10 to
100 picofarads.

For any capacitor in vacuum, the capacitance depends only on the shapes,
dimensions, and separation of the conductors that make up the capacitor. If the
conductor shapes are more complex than those of the parallel-plate capacitor,
the expression for capacitance is more complicated than in Eq. (24.2). In the
following examples we show how to calculate for two other conductor
geometries.

C

C

1 1 pF 5 10212 F 2 .11 mF 5 1026 F 2

24.4 A commercial capacitor is labeled
with the value of its capacitance. For these
capacitors, 
470 mF.

C 5 2200 mF, 1000 mF, and

Example 24.1 Size of a 1-F capacitor

A parallel-plate capacitor has a capacitance of If the plates
are apart, what is the area of the plates?

SOLUTION

IDENTIFY: This problem uses the relationship among the capaci-
tance, plate separation, and plate area (our target variable) for a
parallel-plate capacitor.

SET UP: We are given the values of and for a parallel-plate
capacitor, so we use Eq. (24.2) and solve for the target variable 

EXECUTE: From Eq. (24.2), the area is

 5 1.1 3 108 m2

 A 5
Cd
P0

5
11.0 F 2 11.0 3 1023 m 2

8.85 3 10212 F/m

A

A.
dC

1.0 mm
1.0 F. EVALUATE: This corresponds to a square about (about

6 miles) on a side! This area is about a third larger than Manhattan
Island. Clearly this is not a very practical design for a capacitor.

In fact, it’s now possible to make 1-F capacitors a few centime-
ters on a side. The trick is to have an appropriate substance
between the plates rather than a vacuum. We’ll explore this further
in Section 24.4.

10 km

Example 24.2 Properties of a parallel-plate capacitor

The plates of a parallel-plate capacitor in vacuum are 
apart and in area. A potential difference of 

is applied across the capacitor. Compute (a) the capaci-
tance; (b) the charge on each plate; and (c) the magnitude of the
electric field in the space between them.

SOLUTION

IDENTIFY: We are given the plate area the plate spacing and
the potential difference for this parallel-plate capacitor. Our
target variables are the capacitance charge and electric-field
magnitude 

SET UP: We use Eq. (24.2) to calculate and then find the charge
on each plate using the given potential difference and

Eq. (24.1). Once we have we find the electric field between the
plates using the relationship 

EXECUTE: (a) From Eq. (24.2),

 5 3.54 3 1029 F 5 0.00354 mF

 C 5 P0 
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d
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5.00 3 1023 m

E 5 Q/P0 A.
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110.0 kV 2 10,000 V2.00 m2
5.00 mm (b) The charge on the capacitor is

The plate at higher potential has charge and the other
plate has charge 

(c) The electric-field magnitude is

EVALUATE: An alternative way to get the result in part (c) is to
recall that the electric field is equal in magnitude to the potential
gradient [Eq. (23.22)]. Since the field between the plates is uniform,

(Remember that the newton per coulomb and the volt per meter are
equivalent units.)
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135.4 mC

 5 3.54 3 1025 C 5 35.4 mC

 Q 5 CVab 5 13.54 3 1029 C/V 2 1 1.00 3 104 V 2

Example 24.3 A spherical capacitor

Two concentric spherical conducting shells are separated by vac-
uum. The inner shell has total charge and outer radius and
the outer shell has charge and inner radius (Fig. 24.5). (The
inner shell is attached to the outer shell by thin insulating rods that
have negligible effect on the capacitance.) Find the capacitance of
this spherical capacitor.

SOLUTION

IDENTIFY: This isn’t a parallel-plate capacitor, so we can’t use
the relationships developed for that particular geometry. Instead,
we’ll go back to the fundamental definition of capacitance: the
magnitude of the charge on either conductor divided by the poten-
tial difference between the conductors.

SET UP: We use Gauss’s law to find the electric field between the
spherical conductors. From this value we determine the potential
difference between the two conductors; we then use Eq. (24.1)
to find the capacitance 

EXECUTE: Using the same procedure as in Example 22.5 (Section
22.4), we take as our Gaussian surface a sphere with radius 
between the two spheres and concentric with them. Gauss’s law,
Eq. (22.8), states that the electric flux through this surface is equal
to the total charge enclosed within the surface, divided by 

By symmetry, is constant in magnitude and parallel to at
every point on this surface, so the integral in Gauss’s law is equal

dA
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E
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C  E
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# dA
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C 5 Q/Vab .
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rb2Q
ra ,1Q

to The total charge enclosed is so we
have

The electric field between the spheres is just that due to the charge
on the inner sphere; the outer sphere has no effect. We found in
Example 22.5 that the charge on a conducting sphere produces
zero field inside the sphere, which also tells us that the outer con-
ductor makes no contribution to the field between the conductors.

The above expression for is the same as that for a point
charge so the expression for the potential can also be taken to be
the same as for a point charge, Hence the potential
of the inner (positive) conductor at with respect to that of
the outer (negative) conductor at is

Finally, the capacitance is

As an example, if and 

EVALUATE: We can relate this result to the capacitance of a paral-
lel-plate capacitor. The quantity is intermediate between the
areas and of the two spheres; in fact, it’s the geometric
mean of these two areas, which we can denote by The dis-
tance between spheres is so we can rewrite the above
result as This is exactly the same form as for parallel
plates: The point is that if the distance between
spheres is very small in comparison to their radii, they behave like
parallel plates with the same area and spacing.
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24.5 A spherical capacitor.

Example 24.4 A cylindrical capacitor

A long cylindrical conductor has a radius and a linear charge
density It is surrounded by a coaxial cylindrical conducting
shell with inner radius and linear charge density (Fig. 24.6).
Calculate the capacitance per unit length for this capacitor, assum-
ing that there is vacuum in the space between cylinders.

SOLUTION

IDENTIFY: As in Example 24.3, we use the fundamental defini-
tion of capacitance.

2lrb

1l.
ra SET UP: We first find expressions for the potential difference 

between the cylinders and the charge in a length of the cylin-
ders; we then find the capacitance of a length using Eq. (24.1).
Our target variable is this capacitance divided by 

EXECUTE: To find the potential difference between the cylinders,
we use a result that we worked out in Example 23.10
(Section 23.3). There we found that at a point outside a charged

L.
L

LQ
Vab

Continued
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Test Your Understanding of Section 24.1 A capacitor has vacuum in the
space between the conductors. If you double the amount of charge on each con-
ductor, what happens to the capacitance? (i) It increases; (ii) it decreases; (iii) it
remains the same; (iv) the answer depends on the size or shape of the conductors.

❚

24.2 Capacitors in Series and Parallel
Capacitors are manufactured with certain standard capacitances and working
voltages (Fig. 24.7). However, these standard values may not be the ones you
actually need in a particular application. You can obtain the values you need by
combining capacitors; many combinations are possible, but the simplest combi-
nations are a series connection and a parallel connection.

Capacitors in Series
Figure 24.8a is a schematic diagram of a series connection. Two capacitors are
connected in series (one after the other) by conducting wires between points 
and Both capacitors are initially uncharged. When a constant positive potential
difference is applied between points and the capacitors become charged;
the figure shows that the charge on all conducting plates has the same magnitude.
To see why, note first that the top plate of acquires a positive charge The
electric field of this positive charge pulls negative charge up to the bottom plate
of until all of the field lines that begin on the top plate end on the bottom plate.
This requires that the bottom plate have charge These negative charges had
to come from the top plate of which becomes positively charged with charge

This positive charge then pulls negative charge from the connection at2Q1Q.
C2 ,

2Q.
C1

Q.C1

b,aVab

b.
a

point onto the bottom plate of The total charge on the lower plate of and
the upper plate of together must always be zero because these plates aren’t
connected to anything except each other. Thus in a series connection the magni-
tude of charge on all plates is the same.

Referring to Fig. 24.8a, we can write the potential differences between points
and and and and as

and so

(24.3)

Following a common convention, we use the symbols and to denote the
potential differences (across the first capacitor), (across the second capac-
itor), and (across the entire combination of capacitors), respectively.

The equivalent capacitance of the series combination is defined as the
capacitance of a single capacitor for which the charge is the same as for
the combination, when the potential difference is the same. In other words,
the combination can be replaced by an equivalent capacitor of capacitance 
For such a capacitor, shown in Fig. 24.8b,

(24.4)

Combining Eqs. (24.3) and (24.4), we find

We can extend this analysis to any number of capacitors in series. We find the fol-
lowing result for the reciprocal of the equivalent capacitance:

(24.5)

The reciprocal of the equivalent capacitance of a series combination equals
the sum of the reciprocals of the individual capacitances. In a series connec-
tion the equivalent capacitance is always less than any individual capacitance.

CAUTION Capacitors in series The magnitude of charge is the same on all plates of
all the capacitors in a series combination; however, the potential differences of the individ-
ual capacitors are not the same unless their individual capacitances are the same. The
potential differences of the individual capacitors add to give the total potential difference
across the series combination: ❚

Capacitors in Parallel
The arrangement shown in Fig. 24.9a is called a parallel connection. Two
capacitors are connected in parallel between points and In this case the upper
plates of the two capacitors are connected by conducting wires to form an
equipotential surface, and the lower plates form another. Hence in a parallel con-
nection the potential difference for all individual capacitors is the same and is
equal to The charges and are not necessarily equal, however,Q2Q1Vab 5 V.

b.a
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1

Ceq
5

1

C1
1

1

C2
1

1

C3
1 c  (capacitors in series)

1

Ceq
5

1

C1
1

1

C2

Ceq 5
Q

V
 or 

1

Ceq
5

V

Q

Ceq .
V

Q
Ceq

Vab

VcbVac

VV2 ,V1 ,

V

Q
5

1

C1
1

1

C2

 Vab 5 V 5 V1 1 V2 5 Q 1 1

C1
1

1

C2
2 Vac 5 V1 5

Q

C1
  Vcb 5 V2 5

Q

C2

bab,cc,a

C2

C1C2 .b

24.7 An assortment of commercially
available capacitors.

+ + + +

– – – –

+ + + +

– – – –

+ + + +

– – – –

Charge is
the same 
as for the 
individual 
capacitors.

Equivalent capacitance
is less than the indi-
vidual capacitances:

Capacitors in series:
•  The capacitors have the same charge Q.
•  Their potential differences add:
    Vac 1 Vcb 5 Vab.

Q
V

1
Ceq

1
C1

1Q
2Q

1Q
2Q

c

C1
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Vcb 5 V2

Vac 5 V1

Vab 5 V

(a) Two capacitors in series
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a

b

V Ceq 5 

 5 
1

C2
 1 

(b) The equivalent single capacitor

24.8 A series connection of two capacitors.

cylinder a distance from the axis, the potential due to the cylin-
der is

where is the (arbitrary) radius at which We can use this
same result for the potential between the cylinders in the present
problem because, according to Gauss’s law, the charge on the outer
cylinder doesn’t contribute to the field between cylinders (see
Example 24.3). In our case, we take the radius to be the
radius of the inner surface of the outer cylinder, so that the outer
conducting cylinder is at Then the potential at the outer
surface of the inner cylinder (where is just equal to ther 5 ra 2

V 5 0.

rb ,r0

V 5 0.r0

V 5
l

2pP0
 ln 

r0

r

r

potential of the inner (positive) cylinder with respect to the
outer (negative) cylinder or

This potential difference is positive (assuming that is positive, as
in Fig. 24.6) because the inner cylinder is at higher potential than
the outer.

The total charge in a length is so from Eq. (24.1)
the capacitance of a length is

The capacitance per unit length is

Substituting we get

EVALUATE: We see that the capacitance of the coaxial cylinders is
determined entirely by the dimensions, just as for the parallel-plate
case. Ordinary coaxial cables are made like this but with an insu-
lating material instead of vacuum between the inner and outer con-
ductors. A typical cable for TV antennas and VCR connections has
a capacitance per unit length of 69 pF/m.

C

L
5

55.6 pF/m
ln 1 rb/ra 2

P0 5 8.85 3 10212 F/m 5 8.85 pF/m,

C

L
5

2pP0

ln 1 rb/ra 2

C 5
Q

Vab

5
lL

l

2pP0
 ln 

rb

ra

5
2pP0 L

ln 1 rb/ra 2
LC

Q 5 lL,LQ

l

Vab 5
l

2pP0
 ln 

rb

ra

b,
aVab

L

ra

2l
1l

rb

24.6 A long cylindrical capacitor. The linear charge density is
assumed to be positive in this figure. The magnitude of charge in a
length of either cylinder is lL.L
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Capacitors in parallel:
• The capacitors have the same potential V.
• The charge on each capacitor depends on its
   capacitance: Q1 5 C1V, Q2 5 C2V.

Charge is the sum of the
individual charges:

Equivalent capacitance:
Ceq 5 C1 1 C2

C1 C2

a

b

Vab  5  V

(a) Two capacitors in parallel

Q1 Q2

Ceq

a

b

V Q 5 Q1 1 Q2

1Q

2Q

(b) The equivalent single capacitor

24.9 A parallel connection of two
capacitors.
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since charges can reach each capacitor independently from the source (such as a
battery) of the voltage The charges are

The total charge of the combination, and thus the total charge on the equivalent
capacitor, is

so

(24.6)

The parallel combination is equivalent to a single capacitor with the same total
charge and potential difference as the combination (Fig. 24.9b).
The equivalent capacitance of the combination, is the same as the capaci-
tance of this single equivalent capacitor. So from Eq. (24.6),

In the same way we can show that for any number of capacitors in parallel,

(24.7)

The equivalent capacitance of a parallel combination equals the sum of the
individual capacitances. In a parallel connection the equivalent capacitance is
always greater than any individual capacitance.

CAUTION Capacitors in parallel The potential differences are the same for all the
capacitors in a parallel combination; however, the charges on individual capacitors are
not the same unless their individual capacitances are the same. The charges on the
individual capacitors add to give the total charge on the parallel combination:

[Compare these statements to those in the “Caution” para-
graph following Eq. (24.5).] ❚

Qtotal 5 Q1 1 Q2 1 Q3 1 c.

Ceq 5 C1 1 C2 1 C3 1 c  (capacitors in parallel)

Ceq 5 C1 1 C2

Q/V
Ceq ,

VQ 5 Q1 1 Q2

Q

V
5 C1 1 C2

Q 5 Q1 1 Q2 5 1C1 1 C2 2V
Q

Q1 5 C1V and Q2 5 C2V

Vab .

Problem-Solving Strategy 24.1 Equivalent Capacitance

IDENTIFY the relevant concepts: The concept of equivalent capac-
itance is useful whenever two or more capacitors are connected.
SET UP the problem using the following steps:
1. Make a drawing of the capacitor arrangement.
2. Identify whether the capacitors are connected in series or in par-

allel. With more complicated combinations, you can sometimes
identify parts that are simple series or parallel connections.

3. Keep in mind that when we say a capacitor has charge we
always mean that the plate at higher potential has charge 
and the other plate has charge 

EXECUTE the solution as follows:
1. When capacitors are connected in series, as in Fig. 24.8a, they

always have the same charge, assuming that they were
uncharged before they were connected. The potential differ-
ences are not equal unless the capacitances are equal. The total
potential difference across the combination is the sum of the
individual potential differences.

2Q.
1Q

Q,

2. When capacitors are connected in parallel, as in Fig. 24.9a, the
potential difference is always the same for all of the individ-
ual capacitors. The charges on the individual capacitors are not
equal unless the capacitances are equal. The total charge on the
combination is the sum of the individual charges.

3. For more complicated combinations, find the parts that are sim-
ple series or parallel connections and replace them with their
equivalent capacitances, in a step-by-step reduction. If you then
need to find the charge or potential difference for an individual
capacitor, you may have to retrace your path to the original
capacitors.

EVALUATE your answer: Check whether your result makes
sense. If the capacitors are connected in series, the equivalent
capacitance must be smaller than any of the individual capaci-
tances. By contrast, if the capacitors are connected in parallel, 
must be greater than any of the individual capacitances.

Ceq

Ceq

V

Example 24.5 Capacitors in series and in parallel

In Figs. 24.8 and 24.9, let and
Find the equivalent capacitance, and find the charge

and potential difference for each capacitor when the two capacitors
are connected (a) in series and (b) in parallel.

SOLUTION

IDENTIFY: This problem uses the ideas discussed in this section
about capacitor connections.

SET UP: In both parts, one of the target variables is the equivalent
capacitance For the series combination in part (a), it is given
by Eq. (24.5); for the parallel combination in part (b), is given
by Eq. (24.6). In each part we find the charge and potential differ-
ence using the definition of capacitance, Eq. (24.1), and the rules
outlined in the Problem-Solving Strategy 24.1.

EXECUTE: (a) Using Eq. (24.5) for the equivalent capacitance of
the series combination (Fig. 24.8a), we find

The charge on each capacitor in series is the same as the charge
on the equivalent capacitor:

The potential difference across each capacitor is inversely propor-
tional to its capacitance:

 Vcb 5 V2 5
Q

C2
5

36 mC

3.0 mF
5 12.0 V

 Vac 5 V1 5
Q

C1
5

36 mC

6.0 mF
5 6.0 V

Q 5 CeqV 5 12.0 mF 2 1 18 V 2 5 36 mC

Q

1

Ceq
5

1

C1
1

1

C2
5

1

6.0 mF
1

1

3.0 mF
  Ceq 5 2.0 mF

Ceq

Ceq .

Vab 5 18 V.
C2 5 3.0 mF,C1 5 6.0 mF, (b) To find the equivalent capacitance of the parallel combina-

tion (Fig. 24.9a), we use Eq. (24.6):

The potential difference across each of the two capacitors in paral-
lel is the same as that across the equivalent capacitor, The
charges and are directly proportional to the capacitances 
and respectively:

EVALUATE: Note that the equivalent capacitance for the series
combination in part (a) is indeed less than either or while
for the parallel combination in part (b) the equivalent capacitance
is indeed greater than either or 

It’s instructive to compare the potential differences and charges
in each part of the example. For two capacitors in series, as in
part (a), the charge is the same on either capacitor and the larger
potential difference appears across the capacitor with the smaller
capacitance. Furthermore, as it must. By
contrast, for two capacitors in parallel, as in part (b), each capaci-
tor has the same potential difference and the larger charge appears
on the capacitor with the larger capacitance. Can you show that
the total charge on the parallel combination is equal to
the charge on the equivalent capacitor?Q 5 CeqV

Q1 1 Q2

Vac 1 Vcb 5 Vab 5 18 V,

C2 .C1

C2 ,C1

Ceq

 Q2 5 C2V 5 13.0 mF 2 118 V 2 5 54 mC

 Q1 5 C1V 5 16.0 mF 2 118 V 2 5 108 mC

C2 ,
C1Q2Q1

18 V.

Ceq 5 C1 1 C2 5 6.0 mF 1 3.0 mF 5 9.0 mF

Example 24.6 A capacitor network

Find the equivalent capacitance of the combination shown in
Fig. 24.10a.

SOLUTION

IDENTIFY: The five capacitors in Fig. 24.10a are neither all in
series nor all in parallel. We can, however, identify portions of the

arrangement that are either in series or parallel, which we combine
to find the net equivalent capacitance.

SET UP: We use Eq. (24.5) to analyze portions of the network that
are series connections and Eq. (24.7) to analyze portions that are
parallel connections.

a

b

(a) a

b

(b) a

b

(c) a

b

(d)

3 mF 3 mF
6 mF

9 mF 9 mF

12 mF
11 mF 11 mF 4 mF 18 mF

9 mF

6 mF

... replace these series
capacitors by an equivalent
capacitor.

... replace these
parallel capacitors by
an equivalent capacitor ...

Replace these series capacitors
by an equivalent capacitor ...

24.10 (a) A capacitor network between points and (b) The and capacitors in series in (a) are replaced by an equivalent
capacitor. (c) The and capacitors in parallel in (b) are replaced by an equivalent capacitor. (d) Finally,

the and capacitors in series in (c) are replaced by an equivalent capacitor.6-mF9-mF18-mF
18-mF4-mF11-mF,3-mF,4-mF

6-mF12-mFb.a

Continued



24 .3 Energy Storage in Capacitors and Electric-Field Energy 825824 C HAPTE R 24 Capacitance and Dielectrics

Test Your Understanding of Section 24.2 You want to connect a
capacitor and an capacitor. (a) With which type of connection will the
capacitor have a greater potential difference across it than the capaci-

tor? (i) series; (ii) parallel; (iii) either series or parallel; (iv) neither series nor parallel.
(b) With which type of connection will the capacitor have a greater charge than the

capacitor? (i) series; (ii) parallel; (iii) either series or parallel; (iv) neither series nor
parallel.

❚

8-mF
4-mF

8-mF4-mF
8-mF4-mF

24.3 Energy Storage in Capacitors 
and Electric-Field Energy

Many of the most important applications of capacitors depend on their ability to
store energy. The electric potential energy stored in a charged capacitor is just
equal to the amount of work required to charge it—that is, to separate opposite
charges and place them on different conductors. When the capacitor is dis-
charged, this stored energy is recovered as work done by electrical forces.

We can calculate the potential energy of a charged capacitor by calculating
the work required to charge it. Suppose that when we are done charging the
capacitor, the final charge is and the final potential difference is From
Eq. (24.1) these quantities are related by

Let and be the charge and potential difference, respectively, at an intermedi-
ate stage during the charging process; then At this stage the work 
required to transfer an additional element of charge is

The total work needed to increase the capacitor charge from zero to a final
value is

(work to charge a capacitor) (24.8)

This is also equal to the total work done by the electric field on the charge when
the capacitor discharges. Then q decreases from an initial value to zero as the
elements of charge “fall” through potential differences that vary from 
down to zero.

If we define the potential energy of an uncharged capacitor to be zero, then 
in Eq. (24.8) is equal to the potential energy of the charged capacitor. The final
stored charge is so we can express (which is equal to ) as

(potential energy stored 
in a capacitor)

(24.9)U 5
Q2

2C
5

1

2
 CV 2 5

1

2
 QV

WUQ 5 CV,
U

W

Vvdq
Q

W 5 3
W

0

 dW 5
1

C
 3

Q

0

 q dq 5
Q2

2C

Q
qW

dW 5 v dq 5
q dq

C

dq
dWv 5 q/C.

vq

V 5
Q

C

V.Q
W

U

When is in coulombs, in farads (coulombs per volt), and in volts ( joules
per coulomb), is in joules.

The last form of Eq. (24.9), shows that the total work required to
charge the capacitor is equal to the total charge multiplied by the average
potential difference during the charging process.

The expression in Eq. (24.9) shows that a charged capacitor is
the electrical analog of a stretched spring with elastic potential energy 
The charge is analogous to the elongation and the reciprocal of the capaci-
tance, is analogous to the force constant The energy supplied to a capaci-
tor in the charging process is analogous to the work we do on a spring when we
stretch it.

Equations (24.8) and (24.9) tell us that capacitance measures the ability of a
capacitor to store both energy and charge. If a capacitor is charged by connecting
it to a battery or other source that provides a fixed potential difference then
increasing the value of gives a greater charge and a greater amount of
stored energy If instead the goal is to transfer a given quantity of
charge from one conductor to another, Eq. (24.8) shows that the work 
required is inversely proportional to the greater the capacitance, the easier it is
to give a capacitor a fixed amount of charge.

Applications of Capacitors: Energy Storage
Most practical applications of capacitors take advantage of their ability to
store and release energy. In electronic flash units used by photographers, the
energy stored in a capacitor (see Fig. 24.4) is released by depressing the camera’s
shutter button. This provides a conducting path from one capacitor plate to the
other through the flash tube. Once this path is established, the stored energy is
rapidly converted into a brief but intense flash of light. An extreme example of
the same principle is the Z machine at Sandia National Laboratories in New
Mexico, which is used in experiments in controlled nuclear fusion (Fig. 24.11). A
bank of charged capacitors releases more than a million joules of energy in just a
few billionths of a second. For that brief space of time, the power output of the
Z machine is W, or about 80 times the electric output of all the elec-
tric power plants on earth combined!

In other applications, the energy is released more slowly. Springs in the sus-
pension of an automobile, help smooth out the ride by absorbing the energy from
sudden jolts and releasing that energy gradually; in an analogous way, a capacitor
in an electronic circuit can smooth out unwanted variations in voltage due to
power surges. And just as the presence of a spring gives a mechanical system a
natural frequency at which it responds most strongly to an applied periodic force,
so the presence of a capacitor gives an electric circuit a natural frequency for cur-
rent oscillations. This idea is used in tuned circuits such as those in radio and tel-
evision receivers, which respond to broadcast signals at one particular frequency
and ignore signals at other frequencies. We’ll discuss these circuits in detail in
Chapter 31.

The energy-storage properties of capacitors also have some undesirable prac-
tical effects. Adjacent pins on the underside of a computer chip act like a capaci-
tor, and the property that makes capacitors useful for smoothing out voltage
variations acts to retard the rate at which the potentials of the chip’s pins can be
changed. This tendency limits how rapidly the chip can perform computations, an
effect that becomes more important as computer chips become smaller and are
pushed to operate at faster speeds.

Electric-Field Energy
We can charge a capacitor by moving electrons directly from one plate to another.
This requires doing work against the electric field between the plates. Thus we
can think of the energy as being stored in the field in the region between the

2.9 3 1014

C;
WQ

U 5 1
2 CV 2.

Q 5 CVC
V,

k.1/C,
x,Q

U 5 1
2 kx2.

U 5 1
2 1Q2/C 2

1
2 V

Q
WU 5 1

2 QV,
U

VCQ

24.11 The Z machine uses a large number
of capacitors in parallel to give a tremen-
dous equivalent capacitance (see Sec-
tion 24.2). Hence a large amount of energy

can be stored with even a mod-
est potential difference The arcs shown
here are produced when the capacitors dis-
charge their energy into a target, which is
no larger than a spool of thread. This heats
the target to a temperature higher than

K.2 3 109

V.
U 5 1

2CV 2

C
? 

EXECUTE: We first replace the and series combination
by its equivalent capacitance; calling that we use Eq. (24.5):

This gives us the equivalent combination shown in Fig. 24.10b.
Next we find the equivalent capacitance of the three capacitors in
parallel, using Eq. (24.7). Calling their equivalent capacitance 
we have

Cs 5 3 mF 1 11 mF 1 4 mF 5 18 mF

Cs,

1

C r
5

1

12 mF
1

1

6 mF
   C r 5 4 mF

C r,
6-mF12-mF This gives us the simpler equivalent combination shown in

Fig. 24.10c. Finally, we find the equivalent capacitance of
these two capacitors in series (Fig. 24.10d):

EVALUATE: The equivalent capacitance of the network is 
that is, if a potential difference is applied across the terminals
of the network, the net charge on the network is times 
How is this net charge related to the charges on the individual
capacitors in Fig. 24.10a?

Vab .6 mF
Vab

6 mF;

1

Ceq
5

1

18 mF
1

1

9 mF
   Ceq 5 6 mF

Ceq
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plates. To develop this relationship, let’s find the energy per unit volume in the
space between the plates of a parallel-plate capacitor with plate area and sepa-
ration We call this the energy density, denoted by From Eq. (24.9) the total
stored potential energy is and the volume between the plates is just 
hence the energy density is

(24.10)

From Eq. (24.2) the capacitance is given by The potential differ-
ence is related to the electric field magnitude by If we use these
expressions in Eq. (24.10), the geometric factors and cancel, and we find

(electric energy density in a vacuum) (24.11)

Although we have derived this relationship only for a parallel-plate capacitor, it
turns out to be valid for any capacitor in vacuum and indeed for any electric field
configuration in vacuum. This result has an interesting implication. We think of
vacuum as space with no matter in it, but vacuum can nevertheless have electric
fields and therefore energy. Thus “empty” space need not be truly empty after all.
We will use this idea and Eq. (24.11) in Chapter 32 in connection with the energy
transported by electromagnetic waves.

CAUTION Electrical-field energy is electric potential energy It’s a common mis-
conception that electric-field energy is a new kind of energy, different from the electric
potential energy described before. This is not the case; it is simply a different way of inter-
preting electric potential energy. We can regard the energy of a given system of charges as
being a shared property of all the charges, or we can think of the energy as being a prop-
erty of the electric field that the charges create. Either interpretation leads to the same
value of the potential energy. ❚

u 5
1

2
P0 E 2  

dA
V 5 Ed.EV

C 5 P0 A/d.C

u 5 Energy density 5
 
1
2 CV 2

Ad

Ad;1
2 CV 2

u.d.
A

Example 24.7 Transferring charge and energy between capacitors

In Fig. 24.12 we charge a capacitor of capacitance by
connecting it to a source of potential difference (not
shown in the figure). The switch is initially open. Once is
charged, the source of potential difference is disconnected.
(a) What is the charge on if switch is left open? (b) What is
the energy stored in if switch is left open? (c) The capacitor of
capacitance is initially uncharged. After we close
switch what is the potential difference across each capacitor, and
what is the charge on each capacitor? (d) What is the total energy
of the system after we close switch 

SOLUTION

IDENTIFY: Initially we have a single capacitor with a given
potential difference between its plates. After the switch is closed,
one wire connects the upper plates of the two capacitors and
another wire connects the lower plates; in other words, the capaci-
tors are connected in parallel.

SET UP: In parts (a) and (b) we find the charge and stored energy
for capacitor using Eqs. (24.1) and (24.9), respectively. In
part (c) we use the character of the parallel connection to deter-
mine how the charge is shared between the two capacitors. In
part (d) we again use Eq. (24.9) to find the energy stored in capaci-
tors and the total energy is the sum of these values.C2 ;C1

Q0

C1 

S?

S,
C2 5 4.0 mF

SC1

SC1Q0

C1S
V0 5 120 V
C1 5 8.0 mF

EXECUTE: (a) The charge on is

(b) The energy initially stored in the capacitor is

(c) When the switch is closed, the positive charge becomes
distributed over the upper plates of both capacitors and the nega-
tive charge is distributed over the lower plates of both capac-
itors. Let and be the magnitudes of the final charges on the
two capacitors. From conservation of charge,

Q1 1 Q2 5 Q0

Q2Q1

2Q0

Q0

Uinitial 5
1

2
 Q0 V0 5

1

2
1960 3 1026 C 2 1 120 V 2 5 0.058 J

Q0 5 C1V0 5 18.0 mF 2 1 120 V 2 5 960 mC

C1Q0

Q0

V0 5 120 V

C1 5 8.0 mF C2 5 4.0 mFS

+ + + +
– – – –

24.12 When the switch is closed, the charged capacitor is
connected to an uncharged capacitor The center part of the
switch is an insulating handle; charge can flow only between the
two upper terminals and between the two lower terminals.

C2 .
C1S

Example 24.8 Electric-field energy

Suppose you want to store of electric potential energy in a
volume of in vacuum. (a) What is the magnitude of the
required electric field? (b) If the field magnitude is 10 times larger,
how much energy is stored per cubic meter?

SOLUTION

IDENTIFY: We use the relationship between the electric-field
magnitude and the energy density which equals the electric-
field energy divided by the volume occupied by the field.

SET UP: In part (a) we use the given information to find then we
use Eq. (24.11) to find the required value of This same equation
gives us the relationship between changes in and the correspon-
ding changes in u.

E
E.

u,

u,E

1.00 m3
1.00 J EXECUTE: (a) The desired energy density is We

solve Eq. (24.11) for

(b) Equation (24.11) shows that is proportional to If 
increases by a factor of 10, increases by a factor of 
and the energy density is 

EVALUATE: The value of found in part (a) is sizable, correspon-
ding to a potential difference of nearly a half million volts over a
distance of 1 meter. We will see in Section 24.4 that the field mag-
nitudes in practical insulators can be as great as this or even larger.

E

100 J/m3.
102 5 100,u

EE 2.u

 5 4.75 3 105 N/C 5 4.75 3 105 V/m

 E 5 Å
2u
P0

5 Å
2 11.00 J/m3 2

8.85 3 10212 C2/N # m2

E:
u 5 1.00 J/m3.

In the final state, when the charges are no longer moving, both
upper plates are at the same potential; they are connected by a con-
ducting wire and so form a single equipotential surface. Both
lower plates are also at the same potential, different from that of
the upper plates. The final potential difference between the
plates is therefore the same for both capacitors, as we would
expect for a parallel connection. The capacitor charges are

When we combine these with the preceding equation for conserva-
tion of charge, we find

 Q1 5 640 mC  Q2 5 320 mC

 V 5
Q0

C1 1 C2
5

960 mC

8.0 mF 1 4.0 mF
5 80 V

Q1 5 C1 V  Q2 5 C2 V

V

(d) The final energy of the system is the sum of the energies
stored in each capacitor:

EVALUATE: The final energy is less than the original energy
the difference has been converted to energy of

some other form. The conductors become a little warmer because
of their resistance, and some energy is radiated as electromagnetic
waves. We’ll study the circuit behavior of capacitors in detail in
Chapters 26 and 31.

Uinitial 5 0.058 J;

 5
1

2
 1960 3 1026 C 2 180 V 2 5 0.038 J

 Ufinal 5
1

2
 Q1 V 1

1

2
 Q2 V 5

1

2
 Q0 V

Example 24.9 Two ways to calculate energy stored in a capacitor

The spherical capacitor described in Example 24.3 (Section 24.1)
has charges and on its inner and outer conductors. Find
the electric potential energy stored in the capacitor (a) by using the
capacitance found in Example 24.3 and (b) by integrating the
electric-field energy density.

SOLUTION

IDENTIFY: This problem asks us to think about the energy stored
in a capacitor, in two different ways: in terms of the work done
to put the charges on the two conductors, and in terms
of the energy in the electric field between the two conductors. Both
descriptions are equivalent, so both must give us the same answer
for 

SET UP: In Example 24.3 we found the capacitance and the field
magnitude between the conductors. We find the stored energy
in part (a) using the expression for in Eq. (24.9). In part (b) we
use the expression for in Eq. (24.11) to find the electric-field
energy density between the conductors. The field magnitude
depends on the distance from the center of the capacitor, so 
also depends on Hence we cannot find by simply multiplying

by the volume between the conductors; instead, we must inte-
grate over this volume.u
u

Ur.
ur

u
E

C
UE

C

U.

U 5 Q2/2C,
U,

C

2Q1Q
EXECUTE: (a) From Example 24.3, the spherical capacitor has
capacitance

where and are the radii of the inner and outer conducting
spheres. From Eq. (24.9) the energy stored in this capacitor is

(b) The electric field in the volume between the two conducting
spheres has magnitude The electric field is zero
inside the inner sphere and is also zero outside the inner surface of
the outer sphere, because a Gaussian surface with radius or

encloses zero net charge. Hence the energy density is
nonzero only in the space between the spheres In
this region,

The energy density is not uniform; it decreases rapidly with
increasing distance from the center of the capacitor. To find the

u 5
1

2
P0E

2 5
1

2
P0 1 Q

4pP0 r 2 2 2

5
Q2

32p2
P0 r 4

1 ra , r , rb 2 .
r . rb

r , ra

E 5 Q/4pP0 r 2.

U 5
Q2

2C
5

Q2

8pP0
 
rb 2 ra

ra rb

rbra

C 5 4pP0 

ra rb

rb 2 ra

Continued
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Test Your Understanding of Section 24.3 You want to connect a 
capacitor and an capacitor. With which type of connection will the
capacitor have a greater amount of stored energy than the capacitor?

(i) series; (ii) parallel; (iii) either series or parallel; (iv) neither series nor parallel.
❚

8-mF4-mF
8-mF4-mF

Conductor
(metal foil)

Conductor
(metal foil) Dielectric

(plastic sheet)

24.13 A common type of capacitor uses
dielectric sheets to separate the conductors.

24.4 Dielectrics
Most capacitors have a nonconducting material, or dielectric, between their con-
ducting plates. A common type of capacitor uses long strips of metal foil for the
plates, separated by strips of plastic sheet such as Mylar. A sandwich of these
materials is rolled up, forming a unit that can provide a capacitance of several
microfarads in a compact package (Fig. 24.13).

Placing a solid dielectric between the plates of a capacitor serves three func-
tions. First, it solves the mechanical problem of maintaining two large metal
sheets at a very small separation without actual contact.

Second, using a dielectric increases the maximum possible potential differ-
ence between the capacitor plates. As we described in Section 23.3, any insulat-
ing material, when subjected to a sufficiently large electric field, experiences a
partial ionization that permits conduction through it. This is called dielectric
breakdown. Many dielectric materials can tolerate stronger electric fields with-
out breakdown than can air. Thus using a dielectric allows a capacitor to sustain a
higher potential difference and so store greater amounts of charge and energy.

Third, the capacitance of a capacitor of given dimensions is greater when
there is a dielectric material between the plates than when there is vacuum. We
can demonstrate this effect with the aid of a sensitive electrometer, a device that
measures the potential difference between two conductors without letting any
appreciable charge flow from one to the other. Figure 24.14a shows an electrom-
eter connected across a charged capacitor, with magnitude of charge on each
plate and potential difference When we insert an uncharged sheet of dielec-
tric, such as glass, paraffin, or polystyrene, between the plates, experiment shows
that the potential difference decreases to a smaller value (Fig. 24.14b). When
we remove the dielectric, the potential difference returns to its original value 
showing that the original charges on the plates have not changed.

The original capacitance is given by and the capacitance 
with the dielectric present is The charge is the same in both cases,
and is less than so we conclude that the capacitance with the dielectric
present is greater than When the space between plates is completely filled by
the dielectric, the ratio of to (equal to the ratio of to ) is called the
dielectric constant of the material, 

(24.12)K 5
C

C0
  (definition of dielectric constant)

K:
VV0C0C

C0 .
CV0 ,V

QC 5 Q/V.
CC0 5 Q/V0 ,C0

V0 ,
V

V0 .
Q

V

When the charge is constant, and In this case,
Eq. (24.12) can be rewritten as

(24.13)

With the dielectric present, the potential difference for a given charge is
reduced by a factor 

The dielectric constant is a pure number. Because is always greater than
is always greater than unity. Some representative values of are given in

Table 24.1. For vacuum, by definition. For air at ordinary temperatures
and pressures, is about 1.0006; this is so nearly equal to 1 that for most pur-
poses an air capacitor is equivalent to one in vacuum. Note that while water has a
very large value of it is usually not a very practical dielectric for use in capac-
itors. The reason is that while pure water is a very poor conductor, it is also an
excellent ionic solvent. Any ions that are dissolved in the water will cause charge
to flow between the capacitor plates, so the capacitor discharges.

K,

K
K 5 1

KKC0 ,
CK

K.
Q

V 5
V0

K
  (when Q is constant)

C/C0 5 V0/V.Q 5 C0 V0 5 CV

Table 24.1 Values of Dielectric Constant at 

Material Material

Vacuum 1 Polyvinyl chloride 3.18

Air (1 atm) 1.00059 Plexiglas 3.40

Air (100 atm) 1.0548 Glass 5–10

Teflon 2.1 Neoprene 6.70

Polyethylene 2.25 Germanium 16

Benzene 2.28 Glycerin 42.5

Mica 3–6 Water 80.4

Mylar 3.1 Strontium titanate 310

KK

20°CK

+ –

+ –

Adding the dielectric
reduces the potential
difference across the
capacitor.

V0

Q

Vacuum

Electrometer
(measures potential
difference across
plates)

(a)

2Q

V

2Q

Dielectric

Q

(b)

24.14 Effect of a dielectric between the
plates of a parallel-plate capacitor.
(a) With a given charge, the potential dif-
ference is (b) With the same charge but
with a dielectric between the plates, the
potential difference is smaller than V0 .V

V0 .

total electric-field energy, we integrate (the energy per unit vol-
ume) over the volume between the inner and outer conducting
spheres. Dividing this volume up into spherical shells of radius 
surface area thickness and volume we
have

 5
Q2

8pP0
 
rb 2 ra

ra rb

 5
Q2

8pP0
3

rb

ra

 

dr

r 2 5
Q2

8pP0
 12 1

rb
1

1
ra
2 U 5 3u dV 5 3

rb

ra

1 Q2

32p2
P0 r 4 24pr 2 dr

dV 5 4pr 2 dr,dr,4pr 2,
r,

u EVALUATE: We obtain the same result for with either approach,
as we must. We emphasize that electric potential energy can be
regarded as being associated with either the charges, as in part (a),
or the field, as in part (b); regardless of which viewpoint you
choose, the amount of stored energy is the same.

U

No real dielectric is a perfect insulator. Hence there is always some leakage
current between the charged plates of a capacitor with a dielectric. We tacitly
ignored this effect in Section 24.2 when we derived expressions for the equiva-
lent capacitances of capacitors in series, Eq. (24.5), and in parallel, Eq. (24.7).
But if a leakage current flows for a long enough time to substantially change the
charges from the values we used to derive Eqs. (24.5) and (24.7), those equations
may no longer be accurate.

Induced Charge and Polarization
When a dielectric material is inserted between the plates while the charge is kept
constant, the potential difference between the plates decreases by a factor 
Therefore the electric field between the plates must decrease by the same factor.
If is the vacuum value and is the value with the dielectric, then

(24.14)

Since the electric-field magnitude is smaller when the dielectric is present, the
surface charge density (which causes the field) must be smaller as well. The sur-
face charge on the conducting plates does not change, but an induced charge of
the opposite sign appears on each surface of the dielectric (Fig. 24.15). The
dielectric was originally electrically neutral and is still neutral; the induced sur-
face charges arise as a result of redistribution of positive and negative charge
within the dielectric material, a phenomenon called polarization. We first
encountered polarization in Section 21.2, and we suggest that you reread the dis-
cussion of Fig. 21.8. We will assume that the induced surface charge is directly
proportional to the electric-field magnitude in the material; this is indeed the
case for many common dielectrics. (This direct proportionality is analogous to

E

E 5
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K
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For a given charge density s, the induced
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electric field between the plates.
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24.15 Electric field lines with (a) vacuum
between the plates and (b) dielectric
between the plates.
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home repair workers to locate metal studs hidden behind a wall’s surface. It con-
sists of a metal plate with associated circuitry. The plate acts as one half of a
capacitor, with the wall acting as the other half. If the stud finder moves over a
metal stud, the effective dielectric constant for the capacitor changes, changing
the capacitance and triggering a signal.

Hooke’s law for a spring.) In that case, is a constant for any particular material.
When the electric field is very strong or if the dielectric is made of certain crys-
talline materials, the relationship between induced charge and the electric field
can be more complex; we won’t consider such cases here.

We can derive a relationship between this induced surface charge and the
charge on the plates. Let’s denote the magnitude of the charge per unit area
induced on the surfaces of the dielectric (the induced surface charge density) by

The magnitude of the surface charge density on the capacitor plates is as
usual. Then the net surface charge on each side of the capacitor has magnitude

as shown in Fig. 24.15b. As we found in Example 21.13
(Section 21.5) and in Example 22.8 (Section 22.4), the field between the plates is
related to the net surface charge density by Without and with the
dielectric, respectively, we have

(24.15)

Using these expressions in Eq. (24.14) and rearranging the result, we find

(24.16)

This equation shows that when is very large, is nearly as large as In this
case, nearly cancels and the field and potential difference are much smaller
than their values in vacuum.

The product is called the permittivity of the dielectric, denoted by 

(24.17)

In terms of we can express the electric field within the dielectric as

(24.18)

The capacitance when the dielectric is present is given by

(parallel-plate capacitor, 
dielectric between plates)

(24.19)

We can repeat the derivation of Eq. (24.11) for the energy density in an elec-
tric field for the case in which a dielectric is present. The result is

(24.20)

In empty space, where and Eqs. (24.19) and (24.20) reduce to
Eqs. (24.2) and (24.11), respectively, for a parallel-plate capacitor in vacuum. For
this reason, is sometimes called the “permittivity of free space” or the “permit-
tivity of vacuum.” Because is a pure number, and have the same units,

or 
Equation (24.19) shows that extremely high capacitances can be obtained with

plates that have a large surface area and are separated by a small distance by
a dielectric with a large value of In an electrolytic double-layer capacitor, tiny
carbon granules adhere to each plate: The value of is the combined surface area
of the granules, which can be tremendous. The plates with granules attached are
separated by a very thin dielectric sheet. A capacitor of this kind can have a
capacitance of 5000 farads yet fit in the palm of your hand (compare Exam-
ple 24.1 in Section 24.1).

Several practical devices make use of the way in which a capacitor responds
to a change in dielectric constant. One example is an electric stud finder, used by
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Problem-Solving Strategy 24.2 Dielectrics

IDENTIFY the relevant concepts: The relationships in this sec-
tion are useful whenever there is an electric field in a dielectric,
such as a dielectric between charged capacitor plates. Typically
you will be asked to relate the potential difference between the
plates, the electric field in the capacitor, the charge density on the
capacitor plates, and the induced charge density on the surfaces of
the capacitor.

SET UP the problem using the following steps:
1. Make a drawing of the situation.
2. Identify the target variables, and choose which of the key equa-

tions of this section will help you find those variables.

EXECUTE the solution as follows:
1. In problems such as the next example, it is easy to get lost in a

blizzard of formulas. Ask yourself at each step what kind of
quantity each symbol represents. For example, distinguish

clearly between charges and charge densities, and between
electric fields and electric potential differences.

2. As you calculate, continually check for consistency of units.
This effort is a bit more complex with electrical quantities than it
was in mechanics. Distances must always be in meters. Remem-
ber that a microfarad is and so on. Don’t confuse the
numerical value of with the value of There are several
alternative sets of units for electric-field magnitude, including

The units of are or

EVALUATE your answer: When you check numerical values,
remember that with a dielectric present, (a) the capacitance is
always greater than without a dielectric; (b) for a given amount of
charge on the capacitor, the electric field and potential difference
are less than without a dielectric; and (c) the induced surface
charge density on the dielectric is always less in magnitude than
the charge density on the capacitor plates.s

si

F/m.C2/N # m2
P0N/C and V/m.

1/4pP0 .P0

1026 farad,

Example 24.10 A capacitor with and without a dielectric

Suppose the parallel plates in Fig. 24.15 each have an area of
and are 

apart. The capacitor is connected to a power supply and charged to
a potential difference It is then discon-
nected from the power supply, and a sheet of insulating plastic
material is inserted between the plates, completely filling the space
between them. We find that the potential difference decreases to
1000 V while the charge on each capacitor plate remains constant.
Compute (a) the original capacitance (b) the magnitude of
charge on each plate; (c) the capacitance after the dielectric is
inserted; (d) the dielectric constant of the dielectric; (e) the per-
mittivity of the dielectric; (f) the magnitude of the induced
charge on each face of the dielectric; (g) the original electric
field between the plates; and (h) the electric field after the
dielectric is inserted.

SOLUTION

IDENTIFY: This problem uses most of the relationships we have
discussed for capacitors and dielectrics.

SET UP: Most of the target variables can be obtained in several
different ways. The methods used below are a representative sam-
ple; we encourage you to think of others and compare your results.

EXECUTE: (a) With vacuum between the plates, we use Eq. (24.19)
with 
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d
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K 5 1:

EE0
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1.00 cm 11.00 3 1022 m 22000 cm2 12.00 3 1021 m2 2 (b) Using the definition of capacitance, Eq. (24.1),

(c) When the dielectric is inserted, the charge remains the same
but the potential decreases to Hence from Eq. (24.1),
the new capacitance is

(d) From Eq. (24.12), the dielectric constant is

Alternatively, from Eq. (24.13),

(e) Using from part (d) in Eq. (24.17), the permittivity is

(f) Multiplying Eq. (24.15) by the area of each plate gives the
induced charge in terms of the charge on each
plate:
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Continued
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Example 24.11 Energy storage with and without a dielectric

Find the total energy stored in the electric field of the capacitor in
Example 24.10 and the energy density, both before and after the
dielectric sheet is inserted.

SOLUTION

IDENTIFY: In this problem we have to extend the analysis of
Example 24.10 to include the ideas of energy stored in a capacitor
and electric-field energy.

SET UP: We use Eq. (24.9) to find the stored energy before and
after the dielectric is inserted, and Eq. (24.20) to find the energy
density.

EXECUTE: Let the original energy be and let the energy with
the dielectric in place be From Eq. (24.9),

The final energy is one-third of the original energy.
The energy density without the dielectric is given by Eq. (24.20)

with 

With the dielectric in place,

The energy density with the dielectric is one-third of the original
energy density.
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EVALUATE: We can check our answer for by noting that the
volume between the plates is 

Since the electric field is uniform between the plates,
is uniform as well and the energy density is just the stored

energy divided by the volume:

which agrees with our earlier answer. You should use the same
approach to check the value for the energy density with the
dielectric.

We can generalize the results of this example. When a dielectric
is inserted into a capacitor while the charge on each plate remains
the same, the permittivity increases by a factor of (the dielectric
constant), the electric field decreases by a factor of and the
energy density decreases by a factor of Where did
the energy go? The answer lies in the fringing field at the edges of a
real parallel-plate capacitor. As Fig. 24.16 shows, that field tends to
pull the dielectric into the space between the plates, doing work on
it as it does so. We could attach a spring to the left end of the dielec-
tric in Fig. 24.16 and use this force to stretch the spring. Because
work is done by the field, the field energy density decreases.

1/K.u 5 1
2PE 2

1/K,
KP

U,

u0 5
U0

V
5

7.97 3 1024 J

0.00200 m3 5 0.398 J/m3

u0

0.00200 m3.
V 5 10.200 m 2 2 10.0100 m 2  5u0

– – – – – – – – – – – – ––

+ + + + + + + + + + + + + +

E
S

F2i
S

F1i
S

Dielectric

24.16 The fringing field at the edges of the capacitor exerts 
forces and on the negative and positive induced surface
charges of a dielectric, pulling the dielectric into the capacitor.
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Dielectric Breakdown
We mentioned earlier that when any dielectric material is subjected to a suffi-
ciently strong electric field, dielectric breakdown takes place and the dielectric
becomes a conductor (Fig. 24.17). This occurs when the electric field is so strong
that electrons are ripped loose from their molecules and crash into other mole-
cules, liberating even more electrons. This avalanche of moving charge, forming
a spark or arc discharge, often starts quite suddenly.

Because of dielectric breakdown, capacitors always have maximum voltage rat-
ings. When a capacitor is subjected to excessive voltage, an arc may form through a
layer of dielectric, burning or melting a hole in it. This arc creates a conducting path
(a short circuit) between the conductors. If a conducting path remains after the arc
is extinguished, the device is rendered permanently useless as a capacitor.

The maximum electric-field magnitude that a material can withstand without
the occurrence of breakdown is called its dielectric strength. This quantity is
affected significantly by temperature, trace impurities, small irregularities in the
metal electrodes, and other factors that are difficult to control. For this reason we
can give only approximate figures for dielectric strengths. The dielectric strength
of dry air is about Values of dielectric strength for a few com-
mon insulating materials are shown in Table 24.2. Note that the values are all
substantially greater than the value for air. For example, a layer of polycar-
bonate 0.01 mm thick (about the smallest practical thickness) has 10 times the
dielectric strength of air and can withstand a maximum voltage of about13 3 107 V/m 2 11 3 1025 m 2 5 300 V.

3 3 106 V/m.

(g) Since the electric field between the plates is uniform, its
magnitude is the potential difference divided by the plate
separation:

(h) With the new potential difference after the dielectric is
inserted,

or, from Eq. (24.17),
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or, from Eq. (24.15),

or, from Eq. (24.14),

EVALUATE: It’s always useful to check the results by finding them
in more than one way, as we did in parts (d) and (h). Our results
show that inserting the dielectric increased the capacitance by a
factor of and reduced the electric field between the
plates by a factor of It did so by developing induced
charges on the faces of the dielectric of magnitude 
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24.17 A very strong electric field caused
dielectric breakdown in a block of Plexi-
glas. The resulting flow of charge etched
this pattern into the block.

*24.5 Molecular Model of Induced Charge
In Section 24.4 we discussed induced surface charges on a dielectric in an elec-
tric field. Now let’s look at how these surface charges can arise. If the material
were a conductor, the answer would be simple. Conductors contain charge that is
free to move, and when an electric field is present, some of the charge redistrib-
utes itself on the surface so that there is no electric field inside the conductor. But
an ideal dielectric has no charges that are free to move, so how can a surface
charge occur?

To understand this, we have to look again at rearrangement of charge at the
molecular level. Some molecules, such as and have equal amounts of
positive and negative charges but a lopsided distribution, with excess positive
charge concentrated on one side of the molecule and negative charge on the
other. As we described in Section 21.7, such an arrangement is called an electric
dipole, and the molecule is called a polar molecule. When no electric field is
present in a gas or liquid with polar molecules, the molecules are oriented ran-
domly (Fig. 24.18a). When they are placed in an electric field, however, they tend

N2 O,H2 O

Test Your Understanding of Section 24.4 The space between the plates
of an isolated parallel-plate capacitor is filled by a slab of dielectric with dielec-
tric constant The two plates of the capacitor have charges and You
pull out the dielectric slab. If the charges do not change, how does the energy in the
capacitor change when you remove the slab? (i) It increases; (ii) it decreases; (iii) it
remains the same.
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an electric field,
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24.18 Polar molecules (a) without and
(b) with an applied electric field E

S

.

Table 24.2 Dielectric Constant and Dielectric Strength of Some Insulating Materials

Dielectric Dielectric Strength,
Material Constant, 

Polycarbonate 2.8
Polyester 3.3
Polypropylene 2.2
Polystyrene 2.6
Pyrex glass 4.7 1 3 107

2 3 107
7 3 107
6 3 107
3 3 107

Em ( V/m )K
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to orient themselves as in Fig. 24.18b, as a result of the electric-field torques
described in Section 21.7. Because of thermal agitation, the alignment of the
molecules with is not perfect.

Even a molecule that is not ordinarily polar becomes a dipole when it is placed
in an electric field because the field pushes the positive charges in the molecules in
the direction of the field and pushes the negative charges in the opposite direction.
This causes a redistribution of charge within the molecule (Fig. 24.19). Such
dipoles are called induced dipoles.

With either polar or nonpolar molecules, the redistribution of charge caused
by the field leads to the formation of a layer of charge on each surface of the
dielectric material (Fig. 24.20). These layers are the surface charges described in
Section 24.4; their surface charge density is denoted by The charges are not
free to move indefinitely, as they would be in a conductor, because each charge is
bound to a molecule. They are in fact called bound charges to distinguish them
from the free charges that are added to and removed from the conducting capac-
itor plates. In the interior of the material the net charge per unit volume remains
zero. As we have seen, this redistribution of charge is called polarization, and we
say that the material is polarized.

The four parts of Fig. 24.21 show the behavior of a slab of dielectric when it is
inserted in the field between a pair of oppositely charged capacitor plates.
Figure 24.21a shows the original field. Figure 24.21b is the situation after the
dielectric has been inserted but before any rearrangement of charges has occurred.

si.

E
S

Figure 24.21c shows by thinner arrows the additional field set up in the dielectric
by its induced surface charges. This field is opposite to the original field, but it is
not great enough to cancel the original field completely because the charges in the
dielectric are not free to move indefinitely. The resultant field in the dielectric,
shown in Fig. 24.21d, is therefore decreased in magnitude. In the field-line repre-
sentation, some of the field lines leaving the positive plate go through the dielec-
tric, while others terminate on the induced charges on the faces of the dielectric.

As we discussed in Section 21.2, polarization is also the reason a charged
body, such as an electrified plastic rod, can exert a force on an uncharged body
such as a bit of paper or a pith ball. Figure 24.22 shows an uncharged dielectric
sphere in the radial field of a positively charged body The induced positive
charges on experience a force toward the right, while the force on the induced
negative charges is toward the left. The negative charges are closer to and thus
are in a stronger field, than are the positive charges. The force toward the left is
stronger than that toward the right, and is attracted toward even though its
net charge is zero. The attraction occurs whether the sign of ’s charge is positive
or negative (see Fig. 21.8). Furthermore, the effect is not limited to dielectrics; an
uncharged conducting body would be attracted in the same way.
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24.20 Polarization of a dielectric in an
electric field gives rise to thin layers of
bound charges on the surfaces, creating
surface charge densities and The
sizes of the molecules are greatly exagger-
ated for clarity.
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Test Your Understanding of Section 24.5 A parallel-plate capacitor has charges
and on its two plates. A dielectric slab with is then inserted into the space

between the plates as shown in Fig. 24.21. Rank the following electric-field magnitudes
in order from largest to smallest. (i) the field before the slab is inserted; (ii) the resultant
field after the slab is inserted; (iii) the field due to the bound charges.
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24.21 (a) Electric field of magnitude between two charged plates. (b) Introduction of a
dielectric of dielectric constant (c) The induced surface charges and their field.
(d) Resultant field of magnitude E0/K.
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24.22 A neutral sphere in the radial
electric field of a positively charged sphere

is attracted to the charge because of
polarization.
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*24.6 Gauss’s Law in Dielectrics
We can extend the analysis of Section 24.4 to reformulate Gauss’s law in a form
that is particularly useful for dielectrics. Figure 24.23 is a close-up view of the
left capacitor plate and left surface of the dielectric in Fig. 24.15b. Let’s apply
Gauss’s law to the rectangular box shown in cross section by the purple line; the
surface area of the left and right sides is The left side is embedded in the con-
ductor that forms the left capacitor plate, and so the electric field everywhere on
that surface is zero. The right side is embedded in the dielectric, where the elec-
tric field has magnitude and everywhere on the other four sides. The
total charge enclosed, including both the charge on the capacitor plate and the
induced charge on the dielectric surface, is so Gauss’s law
gives

(24.21)

This equation is not very illuminating as it stands because it relates two unknown
quantities: inside the dielectric and the induced surface charge density But
now we can use Eq. (24.16), developed for this same situation, to simplify this
equation by eliminating Equation (24.16) is

Combining this with Eq. (24.21), we get

(24.22)

Equation (24.22) says that the flux of not through the Gaussian surface
in Fig. 24.23 is equal to the enclosed free charge divided by It turns outP0 .sA
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24.23 Gauss’s law with a dielectric. This
figure shows a close-up of the left-hand
capacitor plate in Fig. 24.15b. The Gauss-
ian surface is a rectangular box that lies half
in the conductor and half in the dielectric.
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Example 24.12 A spherical capacitor with dielectric

In the spherical capacitor of Example 24.3 (Section 24.1), the vol-
ume between the concentric spherical conducting shells is filled
with an insulating oil with dielectric constant Use Gauss’s law
to find the capacitance.

SOLUTION

IDENTIFY: This is essentially the same problem as Example 24.3.
The only difference is the presence of the dielectric.

SET UP: As we did in Example 24.3, we use a spherical Gaussian
surface of radius between the two spheres. Since a dielectric is
present, we use Gauss’s law in the form of Eq. (24.23).

EXECUTE: The spherical symmetry of the problem is not changed
by the presence of the dielectric, so we have
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4pPr 2
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5 CKE dA 5 KE CdA 5 1KE 2  14pr 2 2 5
Q
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where is the permittivity of the dielectric (introduced in
Section 24.4). Compared to the case in which there is vacuum
between the conducting shells, the electric field is reduced by a
factor of The potential difference between the shells is
likewise reduced by a factor of and so the capacitance

is increased by a factor of just as for a parallel-plate
capacitor when a dielectric is inserted. Using the result for the vac-
uum case in Example 24.3, we find that the capacitance with the
dielectric is

EVALUATE: In this case the dielectric completely fills the volume
between the two conductors, so the capacitance is just times the
value with no dielectric. The result is more complicated if the
dielectric only partially fills this volume (see Challenge Prob-
lem 24.76).
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Test Your Understanding of Section 24.6 A single point charge is imbedded
in a dielectric of dielectric constant At a point inside the dielectric a distance from
the point charge, what is the magnitude of the electric field? (i) (ii) 
(iii) (iv) none of these.
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that for any Gaussian surface, whenever the induced charge is proportional to the
electric field in the material, we can rewrite Gauss’s law as

(Gauss’s law in a dielectric) (24.23)

where is the total free charge (not bound charge) enclosed by the Gauss-
ian surface. The significance of these results is that the right sides contain only
the free charge on the conductor, not the bound (induced) charge. In fact,
although we have not proved it, Eq. (24.23) remains valid even when different
parts of the Gaussian surface are embedded in dielectrics having different values
of provided that the value of in each dielectric is independent of the electric
field (usually the case for electric fields that are not too strong) and that we use
the appropriate value of for each point on the Gaussian surface.K
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Capacitors and capacitance: A capacitor is any pair of
conductors separated by an insulating material. When
the capacitor is charged, there are charges of equal mag-
nitude and opposite sign on the two conductors, and
the potential of the positively charged conductor
with respect to the negatively charged conductor is pro-
portional to The capacitance is defined as the ratio
of to The SI unit of capacitance is the farad (F):

A parallel-plate capacitor consists of two parallel
conducting plates, each with area separated by a dis-
tance If they are separated by vacuum, the capaci-
tance depends only on and For other geometries,
the capacitance can be found by using the definition

(See Examples 24.1–24.4.)C 5 Q/Vab .

d.A
d.
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Q
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Capacitors in series and parallel: When capacitors
with capacitances are connected in
series, the reciprocal of the equivalent capacitance 
equals the sum of the reciprocals of the individual
capacitances. When capacitors are connected in parallel,
the equivalent capacitance equals the sum of the
individual capacitances. (See Examples 24.5 and 24.6.)
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Dielectric between plates

Energy in a capacitor: The energy required to charge
a capacitor to a potential difference and a charge 
is equal to the energy stored in the capacitor. This
energy can be thought of as residing in the electric field
between the conductors; the energy density (energy
per unit volume) is proportional to the square of the
electric-field magnitude. (See Examples 24.7–24.9.)
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Dielectrics: When the space between the conductors is
filled with a dielectric material, the capacitance increases
by a factor called the dielectric constant of the mate-
rial. The quantity is called the permittivity of the
dielectric. For a fixed amount of charge on the capacitor
plates, induced charges on the surface of the dielectric
decrease the electric field and potential difference
between the plates by the same factor The surface
charge results from polarization, a microscopic rearrange-
ment of charge in the dielectric. (See Example 24.10.)

Under sufficiently strong fields, dielectrics become
conductors, a situation called dielectric breakdown. The
maximum field that a material can withstand without
breakdown is called its dielectric strength.

In a dielectric, the expression for the energy density
is the same as in vacuum but with replaced by

(See Example 24.11.)
Gauss’s law in a dielectric has almost the same form

as in vacuum, with two key differences: is replaced
by and is replaced by which includes
only the free charge (not bound charge) enclosed by the
Gaussian surface. (See Example 24.12.)
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Answer to Chapter Opening Question ?
Equation (24.9) shows that the energy stored in a capacitor with
capacitance and charge is If the charge is dou-
bled, the stored energy increases by a factor of Note that if
the value of is too great, the electric-field magnitude inside the
capacitor will exceed the dielectric strength of the material
between the plates and dielectric breakdown will occur (see Sec-
tion 24.4). This puts a practical limit on the amount of energy that
can be stored.

Answers to Test Your Understanding Questions
24.1 Answer: (iii) The capacitance does not depend on the value
of the charge Q. Doubling the value of causes the potential dif-
ference to double, so the capacitance remains the
same. These statements are true no matter what the geometry of
the capacitor.
24.2 Answers: (a) (i), (b) (iv) In a series connection the two
capacitors carry the same charge but have different potential dif-
ferences the capacitor with the smaller capacitance 
has the greater potential difference. In a parallel connection the
two capacitors have the same potential difference but carry dif-
ferent charges the capacitor with the larger capacitance

has the greater charge. Hence a capacitor will have a
greater potential difference than an capacitor if the two are
connected in series. The capacitor cannot carry more charge
than the capacitor no matter how they are connected: In a
series connection they will carry the same charge, and in a parallel
connection the capacitor will carry more charge.
24.3 Answer: (i) Capacitors connected in series carry the same
charge Q. To compare the amount of energy stored, we use the

8-mF

8-mF
4-mF

8-mF
4-mFC

Q 5 CVab;
Vab

CVab 5 Q/C;
Q

C 5 Q/VabVab

Q

Q
22 5 4.

QU 5 Q2/2C.QC

expression from Eq. (24.9); it shows that the capacitor
with the smaller capacitance has more stored energy
in a series combination. By contrast, capacitors in parallel have the
same potential difference so to compare them we use 
from Eq. (24.9). It shows that in a parallel combination, the capac-
itor with the larger capacitance has more stored
energy. (If we had instead used to analyze the series
combination, we would have to account for the different potential
differences across the two capacitors. Likewise, using 
to study the parallel combination would require us to account for
the different charges on the capacitors.)
24.4 Answers: (i) Here remains the same, so we use

from Eq. (24.9) for the stored energy. Removing the
dielectric lowers the capacitance by a factor of 1/K; since is
inversely proportional to the stored energy increases by a factor
of It takes work to pull the dielectric slab out of the capacitor
because the fringing field tries to pull the slab back in (Fig. 24.16).
The work that you do goes into the energy stored in the capacitor.
24.5 Answer: (i), (iii), (ii) Equation (24.14) says that if is the
initial electric-field magnitude (before the dielectric slab is
inserted), then the resultant field magnitude after the slab is
inserted is The magnitude of the resultant field
equals the difference between the initial field magnitude and the
magnitude of the field due to the bound charges (see Fig. 24.21).
Hence and 
24.6 Answer: (iii) Equation (24.23) shows that this situation is
the same as an isolated point charge in vacuum but with replaced
by Hence at the point of interest is equal to and
so As in Example 24.12, filling the space with a
dielectric reduces the electric field by a factor of 1/K.

E 5 q/4pKP0 r 2.
q/4pP0 r 2,KEKE

S

.
E
S

Ei 5 2E0/3.E0 2 Ei 5 E0/3
Ei
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Q

U 5 Q2/2C

U 5 1
2 CV 2

1C 5 8 mF 2
U 5 1

2 CV 2V,

1C 5 4 mF 2U 5 Q2/2C

the size of the plates. (a) Is it still accurate to say that the electric
field between the plates is uniform? Why or why not? (b) In the
situation shown in Fig. 24.2, the potential difference between the
plates is If the plates are pulled apart as described
above, is more or less than this formula would indicate? Explain
your reasoning. (c) With the plates pulled apart as described above,
is the capacitance more than, less than, or the same as that given by
Eq. (24.2)? Explain your reasoning.
Q24.6. A parallel-plate capacitor is charged by being connected to a
battery and is kept connected to the battery. The separation between
the plates is then doubled. How does the electric field change? The
charge on the plates? The total energy? Explain your reasoning.
Q24.7. A parallel-plate capacitor is charged by being connected to
a battery and is then disconnected from the battery. The separation
between the plates is then doubled. How does the electric field
change? The potential difference? The total energy? Explain your
reasoning.
Q24.8. Two parallel-plate capacitors, identical except that one has
twice the plate separation of the other, are charged by the same volt-
age source. Which capacitor has a stronger electric field between
the plates? Which capacitor has a greater charge? Which has greater
energy density? Explain your reasoning.
Q24.9. The charged plates of a capacitor attract each other, so to
pull the plates farther apart requires work by some external force.
What becomes of the energy added by this work? Explain your
reasoning.
Q24.10. The two plates of a capacitor are given charges The
capacitor is then disconnected from the charging device so that the
charges on the plates can’t change, and the capacitor is immersed
in a tank of oil. Does the electric field between the plates increase,
decrease, or stay the same? Explain your reasoning. How can this
field be measured?
Q24.11. As shown in Table 24.1, water has a very large dielectric
constant Why do you think water is not commonly used
as a dielectric in capacitors?
Q24.12. Is dielectric strength the same thing as dielectric constant?
Explain any differences between the two quantities. Is there a sim-
ple relationship between dielectric strength and dielectric constant
(see Table 24.2)?
Q24.13. A capacitor made of aluminum foil strips separated by
Mylar film was subjected to excessive voltage, and the resulting
dielectric breakdown melted holes in the Mylar. After this, the
capacitance was found to be about the same as before, but the
breakdown voltage was much less. Why?
Q24.14. Suppose you bring a slab of dielectric close to the gap
between the plates of a charged capacitor, preparing to slide it
between the plates. What force will you feel? What does this force
tell you about the energy stored between the plates once the dielec-
tric is in place, compared to before the dielectric is in place?
Q24.15. The freshness of fish can be measured by placing a fish
between the plates of a capacitor and measuring the capacitance.
How does this work? (Hint: As time passes, the fish dries out. See
Table 24.1.)
Q24.16. Electrolytic capacitors use as their dielectric an extremely
thin layer of nonconducting oxide between a metal plate and a con-
ducting solution. Discuss the advantage of such a capacitor over
one constructed using a solid dielectric between the metal plates.
Q24.17. In terms of the dielectric constant what happens to the
electric flux through the Gaussian surface shown in Fig. 24.23
when the dielectric is inserted into the previously empty space
between the plates? Explain.

K,

K 5 80.4.

6Q.

Vab

Vab 5 Qd/P0 
A.

Q24.18. A parallel-plate capacitor is connected to a power supply
that maintains a fixed potential difference between the plates. (a) If
a sheet of dielectric is then slid between the plates, what happens
to (i) the electric field between the plates, (ii) the magnitude of
charge on each plate, and (iii) the energy stored in the capacitor?
(b) Now suppose that before the dielectric is inserted, the charged
capacitor is disconnected from the power supply. In this case, what
happens to (i) the electric field between the plates, (ii) the magni-
tude of charge on each plate, (iii) the energy stored in the capaci-
tor? Explain any differences between the two situations.
Q24.19. Liquid dielectrics that have polar molecules (such as
water) always have dielectric constants that decrease with increas-
ing temperature. Why?
Q24.20. A conductor is an extreme case of a dielectric, since if an
electric field is applied to a conductor, charges are free to move
within the conductor to set up “induced charges.” What is the
dielectric constant of a perfect conductor? Is it or
something in between? Explain your reasoning.

Exercises
Section 24.1 Capacitors and Capacitance
24.1. A capacitor has a capacitance of What amount of
charge must be placed on each of its plates to make the potential
difference between its plates equal to 25.0 V?
24.2. The plates of a parallel-plate capacitor are 3.28 mm apart, and
each has an area of Each plate carries a charge of magni-
tude The plates are in vacuum. (a) What is the
capacitance? (b) What is the potential difference between the plates?
(c) What is the magnitude of the electric field between the plates?
24.3. A parallel-plate air capacitor of capacitance has a
charge of magnitude on each plate. The plates are
0.328 mm apart. (a) What is the potential difference between the
plates? (b) What is the area of each plate? (c) What is the electric-
field magnitude between the plates? (d) What is the surface charge
density on each plate?
24.4. Capacitance of an Oscilloscope. Oscilloscopes have par-
allel metal plates inside them to deflect the electron beam. These
plates are called the deflecting plates. Typically, they are squares
3.0 cm on a side and separated by 5.0 mm, with vacuum in
between. What is the capacitance of these deflecting plates and
hence of the oscilloscope? (Note: This capacitance can sometimes
have an effect on the circuit you are trying to study and must be
taken into consideration in your calculations.)
24.5. A parallel-plate capacitor with circular plates is
connected to a battery. (a) What is the charge on each
plate? (b) How much charge would be on the plates if their separa-
tion were doubled while the capacitor remained connected to the
battery? (c) How much charge would be on the plates if the capac-
itor were connected to the battery after the radius of each
plate was doubled without changing their separation?
24.6. A parallel-plate capacitor is connected to a 
battery. After the capacitor is fully charged, the battery is discon-
nected without loss of any of the charge on the plates. (a) A volt-
meter is connected across the two plates without discharging them.
What does it read? (b) What would the voltmeter read if (i) the
plate separation were doubled; (ii) the radius of each plate were
doubled and, but their separation was unchanged?
24.7. How far apart would parallel pennies have to be to make a

capacitor? Does your answer suggest that you are justified
in treating these pennies as infinite sheets? Explain.
1.00-pF

12.0-V10.0-mF

12.0-V

12.0-V
10.0-mF

0.148 mC
 245 pF

4.35 3 1028 C.
12.2 cm2.

7.28 mF.

K S `,K 5 0,
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Discussion Questions
Q24.1. Equation (24.2) shows that the capacitance of a parallel-
plate capacitor becomes larger as the plate separation decreases.
However, there is a practical limit to how small can be made,
which places limits on how large can be. Explain what sets the
limit on (Hint: What happens to the magnitude of the electric
field as )
Q24.2. Suppose several different parallel-plate capacitors are
charged up by a constant-voltage source. Thinking of the actual
movement and position of the charges on an atomic level, why does
it make sense that the capacitances are proportional to the surface
areas of the plates? Why does it make sense that the capacitances
are inversely proportional to the distance between the plates?

d S 0?
d.

C
d

d
Q24.3. Suppose the two plates of a capacitor have different areas.
When the capacitor is charged by connecting it to a battery, do the
charges on the two plates have equal magnitude, or may they be
different? Explain your reasoning.
Q24.4. At the Fermi National Accelerator Laboratory (Fermilab)
in Illinois, protons are accelerated around a ring 2 km in radius to
speeds that approach that of light. The energy for this is stored in
capacitors the size of a house. When these capacitors are being
charged, they make a very loud creaking sound. What is the origin
of this sound?
Q24.5. In the parallel-plate capacitor of Fig. 24.2, suppose the
plates are pulled apart so that the separation is much larger thand
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24.8. A parallel-plate, air-filled capacitor with circular
plates is to be used in a circuit in which it will be subjected to
potentials of up to The electric field between the
plates is to be no greater than As a budding elec-
trical engineer for Live-Wire Electronics, your tasks are to
(a) design the capacitor by finding what its physical dimensions
and separation must be; (b) find the maximum charge these plates
can hold.
24.9. A capacitor is made from two hollow, coaxial, iron cylin-
ders, one inside the other. The inner cylinder is negatively
charged and the outer is positively charged; the magnitude of the
charge on each is The inner cylinder has radius

the outer one has radius and the length of
each cylinder is (a) What is the capacitance? (b) What
applied potential difference is necessary to produce these charges
on the cylinders?
24.10. A cylindrical capacitor consists of a solid inner conducting
core with radius surrounded by an outer hollow con-
ducting tube. The two conductors are separated by air, and the
length of the cylinder is The capacitance is 
(a) Calculate the inner radius of the hollow tube. (b) When the
capacitor is charged to what is the charge per unit length 
on the capacitor?
24.11. A cylindrical capacitor has an inner conductor of radius

and an outer conductor of radius The two conduc-
tors are separated by vacuum, and the entire capacitor is 
long. (a) What is the capacitance per unit length? (b) The potential
of the inner conductor is higher than that of the outer con-
ductor. Find the charge (magnitude and sign) on both conductors.
24.12. A spherical capacitor is formed from two concentric, spher-
ical, conducting shells separated by vacuum. The inner sphere has
radius and the capacitance is (a) What is the
radius of the outer sphere? (b) If the potential difference between
the two spheres is what is the magnitude of charge on
each sphere?
24.13. A spherical capacitor contains a charge of when
connected to a potential difference of 220 V. If its plates are sepa-
rated by vacuum and the inner radius of the outer shell is

calculate: (a) the capacitance; (b) the radius of the inner
sphere; (c) the electric field just outside the surface of the inner
sphere.

Section 24.2 Capacitors in Series and Parallel
24.14. For the system of capacitors shown in Fig. 24.24, find the
equivalent capacitance (a) between and and (b) between and c.ac,b

4.00 cm,

3.30 nC

220 V,

116 pF.15.0 cm

350 mV

2.8 m
3.5 mm.1.5 mm

l125 V,

36.7 pF.12.0 cm.

0.250 cm,

18.0 cm.
5.00 mm,0.50 mm,

10.0 pC.

1.00 3 104 N/C.
1.00 3 102 V.

5.00-pF, 24.15. In Fig. 24.25, each capaci-
tor has and 

Calculate (a) the charge
on each capacitor; (b) the poten-
tial difference across each capac-
itor; (c) the potential difference
between points and
24.16. In Fig. 24.8a, let 

and 
Calculate (a) the charge

on each capacitor and (b) the
potential difference across each
capacitor.
24.17. In Fig. 24.9a, let and 

Calculate (a) the charge on each capacitor and (b) the
potential difference across each capacitor.
24.18. In Fig. 24.26, 

and
The capacitor

network is connected to an
applied potential After the
charges on the capacitors have
reached their final values, the
charge on is 
(a) What are the charges on
capacitors and (b) What
is the applied voltage 
24.19. In Fig. 24.26, 
and The charge on capacitor is Calculate
the voltage across the other two capacitors.
24.20. Two parallel-plate vacuum capacitors have plate spacings

and and equal plate areas Show that when the capacitors
are connected in series, the equivalent capacitance is the same as
for a single capacitor with plate area and spacing 
24.21. Two parallel-plate vacuum capacitors have areas and 
and equal plate spacings Show that when the capacitors are con-
nected in parallel, the equivalent capacitance is the same as for a
single capacitor with plate area and spacing 
24.22. Figure 24.27 shows a
system of four capacitors, where
the potential difference across

is 50.0 V. (a) Find the equiva-
lent capacitance of this system
between and (b) How much
charge is stored by this combi-
nation of capacitors? (c) How
much charge is stored in each of
the and the
capacitors?
24.23. Suppose the capacitor in Fig. 24.10a were removed
and replaced by a different one, and that this changed the equiva-
lent capacitance between points and to What would be
the capacitance of the replacement capacitor?

Section 24.3 Energy Storage in Capacitors 
and Electric-Field Energy
24.24. A parallel-plate air capacitor has a capacitance of 
The charge on each plate is (a) What is the potential
difference between the plates? (b) If the charge is kept constant,
what will be the potential difference between the plates if the sepa-
ration is doubled? (c) How much work is required to double the
separation?
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24.25. A parallel-plate, air capacitor has a plate separa-
tion of and is charged to a potential difference of 
Calculate the energy density in the region between the plates, in
units of 
24.26. An air capacitor is made from two flat parallel plates

apart. The magnitude of charge on each plate is
when the potential difference is 200 V. (a) What is the

capacitance? (b) What is the area of each plate? (c) What maxi-
mum voltage can be applied without dielectric breakdown?
(Dielectric breakdown for air occurs at an electric-field strength of

) (d) When the charge is what total
energy is stored?
24.27. A capacitor is charged to 295 V. Then a wire is con-
nected between the plates. How many joules of thermal energy are
produced as the capacitor discharges if all of the energy that was
stored goes into heating the wire?
24.28. A capacitor of capacitance is charged to a potential dif-
ference The terminals of the charged capacitor are then con-
nected to those of an uncharged capacitor of capacitance 
Compute (a) the original charge of the system; (b) the final poten-
tial difference across each capacitor; (c) the final energy of the sys-
tem; (d) the decrease in energy when the capacitors are connected.
(e) Where did the “lost” energy go?
24.29. A parallel-plate vacuum capacitor with plate area and
separation has charges and on its plates. The capacitor is
disconnected from the source of charge, so the charge on each
plate remains fixed. (a) What is the total energy stored in the
capacitor? (b) The plates are pulled apart an additional distance 
What is the change in the stored energy? (c) If is the force with
which the plates attract each other, then the change in the stored
energy must equal the work done in pulling the plates
apart. Find an expression for (d) Explain why is not equal to

where is the electric field between the plates.
24.30. A parallel-plate vacuum capacitor has of energy
stored in it. The separation between the plates is If the
separation is decreased to what is the energy stored (a) if
the capacitor is disconnected from the potential source so the
charge on the plates remains constant, and (b) if the capacitor
remains connected to the potential source so the potential differ-
ence between the plates remains constant?
24.31. (a) How much charge does a battery have to supply to a

capacitor to create a potential difference of 1.5 V across its
plates? How much energy is stored in the capacitor in this case?
(b) How much charge would the battery have to supply to store
1.0 J of energy in the capacitor? What would be the potential
across the capacitor in that case?
24.32. For the capacitor net-
work shown in Fig. 24.28, the
potential difference across is
36 V. Find (a) the total charge
stored in this network; (b) the
charge on each capacitor; (c) the total energy stored in the net-
work; (d) the energy stored in each capacitor; (e) the potential dif-
ferences across each capacitor.
24.33. For the capacitor net-
work shown in Fig. 24.29, the
potential difference across 
is 220 V. Find (a) the total
charge stored in this network;
(b) the charge on each capaci-
tor; (c) the total energy stored
in the network; (d) the energy
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capacitor.
24.34. A 0.350-m-long cylindrical capacitor consists of a solid
conducting core with a radius of and an outer hollow
conducting tube with an inner radius of The two conduc-
tors are separated by air and charged to a potential difference of

Calculate (a) the charge per length for the capacitor;
(b) the total charge on the capacitor; (c) the capacitance; (d) the
energy stored in the capacitor when fully charged.
24.35. A cylindrical air capacitor of length stores

of energy when the potential difference between the
two conductors is 4.00 V. (a) Calculate the magnitude of the charge
on each conductor. (b) Calculate the ratio of the radii of the inner
and outer conductors.
24.36. A capacitor is formed from two concentric spherical con-
ducting shells separated by vacuum. The inner sphere has radius

and the outer sphere has radius A potential dif-
ference of is applied to the capacitor. (a) What is the energy
density at just outside the inner sphere? (b) What is
the energy density at just inside the outer sphere?
(c) For a parallel-plate capacitor the energy density is uniform in
the region between the plates, except near the edges of the plates.
Is this also true for a spherical capacitor?
24.37. You have two identical capacitors and an external potential
source. (a) Compare the total energy stored in the capacitors when
they are connected to the applied potential in series and in parallel.
(b) Compare the maximum amount of charge stored in each case.
(c) Energy storage in a capacitor can be limited by the maximum
electric field between the plates. What is the ratio of the electric
field for the series and parallel combinations?

Section 24.4 Dielectrics
24.38. A parallel-plate capacitor has capacitance 
when there is air between the plates. The separation between the
plates is (a) What is the maximum magnitude of charge

that can be placed on each plate if the electric field in the region
between the plates is not to exceed (b) A dielec-
tric with is inserted between the plates of the capacitor,
completely filling the volume between the plates. Now what is the
maximum magnitude of charge on each plate if the electric field
between the plates is not to exceed 
24.39. Two parallel plates have equal and opposite charges. When
the space between the plates is evacuated, the electric field is

When the space is filled with dielectric, the
electric field is (a) What is the charge den-
sity on each surface of the dielectric? (b) What is the dielectric
constant?
24.40. A budding electronics hobbyist wants to make a simple

capacitor for tuning her crystal radio, using two sheets of
aluminum foil as plates, with a few sheets of paper between them
as a dielectric. The paper has a dielectric constant of 3.0, and the
thickness of one sheet of it is (a) If the sheets of paper
measure 22 and she cuts the aluminum foil to the same
dimensions, how many sheets of paper should she use between her
plates to get the proper capacitance? (b) Suppose for convenience
she wants to use a single sheet of posterboard, with the same
dielectric constant but a thickness of instead of the
paper. What area of aluminum foil will she need for her plates to
get her of capacitance? (c) Suppose she goes high-tech and
finds a sheet of Teflon of the same thickness as the posterboard to
use as a dielectric. Will she need a larger or smaller area of Teflon
than of posterboard? Explain.

1.0 nF

12.0 mm,

3 28 cm
0.20 mm.

1.0-nF

E 5 2.50 3 105 V/m.
E 5 3.20 3 105 V/m.

3.00 3 104 V/m ?

K 5 2.70
3.00 3 104 V/m ?

Q
1.50 mm.

C0 5 5.00 pF

r 5 14.7 cm,
r 5 12.6 cm,
120 V

14.8 cm.12.5 cm,

3.20 3 1029 J
15.0 m

6.00 V.

2.00 mm.
1.20 mm

15 pF

11 pF9.0 pF

c

b

a

Figure 24.24 Exercise 24.14.

a

b

d

C1

C2

C3

Figure 24.26 Exercises 24.18
and 24.19.

b
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a

Figure 24.27 Exercise 24.22.
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a b
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Figure 24.28 Exercise 24.32.
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24.41. The dielectric to be used in a parallel-plate capacitor has a
dielectric constant of 3.60 and a dielectric strength of

The capacitor is to have a capacitance of
and must be able to withstand a maximum potential difference of

What is the minimum area the plates of the capacitor
may have?
24.42. Show that Eq. (24.20) holds for a parallel-plate capacitor
with a dielectric material between the plates. Use a derivation anal-
ogous to that used for Eq. (24.11).
24.43. A capacitor has parallel plates of area separated by

The space between the plates is filled with polystyrene
(see Table 24.2). (a) Find the permittivity of polystyrene. (b) Find
the maximum permissible voltage across the capacitor to avoid
dielectric breakdown. (c) When the voltage equals the value found
in part (b), find the surface charge density on each plate and the
induced surface-charge density on the surface of the dielectric.
24.44. A constant potential difference of is maintained
between the terminals of a parallel-plate, air capacitor.
(a) A sheet of Mylar is inserted between the plates of the capacitor,
completely filling the space between the plates. When this is done,
how much additional charge flows onto the positive plate of the
capacitor (see Table 24.1)? (b) What is the total induced charge on
either face of the Mylar sheet? (c) What effect does the Mylar
sheet have on the electric field between the plates? Explain how
you can reconcile this with the increase in charge on the plates,
which acts to increase the electric field.
24.45. When a 360-nF air capacitor is connected
to a power supply, the energy stored in the capacitor is

While the capacitor is kept connected to the power
supply, a slab of dielectric is inserted that completely fills the
space between the plates. This increases the stored energy by

(a) What is the potential difference between the
capacitor plates? (b) What is the dielectric constant of the slab?
24.46. A parallel-plate capacitor has capacitance 
when the volume between the plates is filled with air. The plates
are circular, with radius The capacitor is connected to a
battery and a charge of magnitude goes onto each plate.
With the capacitor still connected to the battery, a slab of dielectric
is inserted between the plates, completely filling the space between
the plates. After the dielectric has been inserted, the charge on each
plate has magnitude (a) What is the dielectric constant 
of the dielectric? (b) What is the potential difference between the
plates before and after the dielectric has been inserted? (c) What is
the electric field at a point midway between the plates before and
after the dielectric has been inserted?
24.47. A capacitor is connected to a power supply that
keeps a constant potential difference of 24.0 V across the plates. A
piece of material having a dielectric constant of 3.75 is placed
between the plates, completely filling the space between them.
(a) How much energy is stored in the capacitor before and after the
dielectric is inserted? (b) By how much did the energy change dur-
ing the insertion? Did it increase or decrease?

*Section 24.6 Gauss’s Law in Dielectrics
*24.48. A parallel-plate capacitor has plates with area 
separated by of Teflon. (a) Calculate the charge on the
plates when they are charged to a potential difference of 
(b) Use Gauss’s law (Eq. 24.23) to calculate the electric field
inside the Teflon. (c) Use Gauss’s law to calculate the electric field
if the voltage source is disconnected and the Teflon is removed.
*24.49. A parallel-plate capacitor has the volume between its
plates filled with plastic with dielectric constant The magnitudeK.

12.0 V.
1.00 mm

0.0225 m2

12.5-mF

K45.0 pC.

25.0 pC
3.00 cm.

C 5 12.5 pF

2.32 3 1025 J.

1.85 3 1025 J.

11 nF 5 1029 F 2

0.25-mF,
12 V

2.0 mm.
12 cm2

5500 V.

1.25 3 1029 F107 V/m.
1.60 3

of the charge on each plate is Each plate has area and the dis-
tance between the plates is (a) Use Gauss’s law as stated in
Eq. (24.23) to calculate the magnitude of the electric field in the
dielectric. (b) Use the electric field determined in part (a) to calcu-
late the potential difference between the two plates. (c) Use the
result of part (b) to determine the capacitance of the capacitor.
Compare your result to Eq. (24.12).

Problems
24.50. A parallel-plate air capacitor is made by using two plates

square, spaced apart. It is connected to a bat-
tery. (a) What is the capacitance? (b) What is the charge on each
plate? (c) What is the electric field between the plates? (d) What is
the energy stored in the capacitor? (e) If the battery is disconnected
and then the plates are pulled apart to a separation of what
are the answers to parts (a)–(d)?
24.51. Suppose the battery in Problem 24.50 remains connected
while the plates are pulled apart. What are the answers then to
parts (a)–(d) after the plates have been pulled apart?
24.52. Cell Membranes. Cell membranes (the walled enclosure
around a cell) are typically about 7.5 nm thick. They are partially
permeable to allow charged material to pass in and out, as needed.
Equal but opposite charge densities build up on the inside and out-
side faces of such a membrane, and these charges prevent addi-
tional charges from passing through the cell wall. We can model a
cell membrane as a parallel-plate
capacitor, with the membrane itself
containing proteins embedded in an
organic material to give the mem-
brane a dielectric constant of about
10. (See Fig. 24.30.) (a) What is the
capacitance per square centimeter
of such a cell wall? (b) In its normal
resting state, a cell has a potential
difference of 85 mV across its
membrane. What is the electric field inside this membrane?
24.53. Electronic flash units for cameras contain a capacitor for
storing the energy used to produce the flash. In one such unit, the
flash lasts for with an average light power output of

(a) If the conversion of electrical energy to light is
95% efficient (the rest of the energy goes to thermal energy), how
much energy must be stored in the capacitor for one flash? (b) The
capacitor has a potential difference between its plates of 
when the stored energy equals the value calculated in part (a).
What is the capacitance?
24.54. In one type of computer keyboard, each key holds a small
metal plate that serves as one plate of a parallel-plate, air-filled
capacitor. When the key is depressed, the plate separation
decreases and the capacitance increases. Electronic circuitry
detects the change in capacitance and thus detects that the key has
been pressed. In one particular keyboard, the area of each metal
plate is and the separation between the plates is

before the key is depressed. (a) Calculate the capaci-
tance before the key is depressed. (b) If the circuitry can detect a
change in capacitance of how far must the key be
depressed before the circuitry detects its depression?
24.55. Consider a cylindrical capacitor like that shown in Fig. 24.6.
Let be the spacing between the inner and outer
conductors. (a) Let the radii of the two conductors be only slightly
different, so that Show that the result derived in Exam-
ple 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor

d V ra .

d 5 rb 2 ra

0.250 pF,

0.700 mm
42.0 mm2,

125 V

2.70 3 105 W.

1
675 s

9.4 mm,

12-V4.7 mm16 cm

d.
A,Q. then reduces to Eq. (24.2), the equation for the capacitance of a

parallel-plate capacitor, with being the surface area of each cylin-
der. Use the result that for (b) Even
though the earth is essentially spherical, its surface appears flat to us
because its radius is so large. Use this idea to explain why the result
of part (a) makes sense from a purely geometrical standpoint.
24.56. In Fig. 24.9a, let and
Suppose the charged capacitors are disconnected from the source
and from each other, and then reconnected to each other with
plates of opposite sign together. By how much does the energy of
the system decrease?
24.57. For the capacitor network shown in Fig. 24.31, the potential
difference across is 12.0 V. Find (a) the total energy stored in
this network and (b) the energy stored in the capacitor.4.80-mF

ab

Vab 5 28 V.C2 5 4.0 mF,C1 5 9.0 mF,

0 z 0 V 1.ln 11 1 z 2 > z
A

They are then reconnected in parallel with each other, with the
positively charged plates connected together. What is the voltage
across each capacitor in the parallel combination? (d) What is the
total energy now stored in the capacitors?
24.62. Capacitance of a Thundercloud. The charge center of a
thundercloud, drifting above the earth’s surface, contains

of negative charge. Assuming the charge center has a radius
of and modeling the charge center and the earth’s surface
as parallel plates, calculate: (a) the capacitance of the system;
(b) the potential difference between charge center and ground;
(c) the average strength of the electric field between cloud and
ground; (d) the electrical energy stored in the system.
24.63. In Fig. 24.34, each
capacitance is and
each capacitance is 
(a) Compute the equivalent cap-
acitance of the network between
points and (b) Compute the
charge on each of the three
capacitors nearest and when

(c) With 
across and compute 
24.64. Each combination of
capacitors between points 
and in Fig. 24.35 is first con-
nected across a battery,
charging the combination to

These combinations are
then connected to make the cir-
cuits shown. When the switch
is thrown, a surge of charge
for the discharging capacitors
flows to trigger the signal
device. How much charge flows
through the signal device?
24.65. A parallel-plate capaci-
tor with only air between the
plates is charged by connecting
it to a battery. The capacitor is
then disconnected from the
battery, without any of the
charge leaving the plates. (a) A voltmeter reads when
placed across the capacitor. When a dielectric is inserted between
the plates, completely filling the space, the voltmeter reads 
What is the dielectric constant of this material? (b) What will the
voltmeter read if the dielectric is now pulled partway out so it fills
only one-third of the space between the plates?
24.66. An air capacitor is made by
using two flat plates, each with area 
separated by a distance Then a
metal slab having thickness (less
than ) and the same shape and size as
the plates is inserted between them,
parallel to the plates and not touching
either plate (Fig. 24.36). (a) What is
the capacitance of this arrangement?
(b) Express the capacitance as a multiple of the capacitance 
when the metal slab is not present. (c) Discuss what happens to the
capacitance in the limits and 
24.67. Capacitance of the Earth. (a) Discuss how the concept
of capacitance can also be applied to a single conductor. (Hint: In
the relationship think of the second conductor as beingC 5 Q/Vab ,

a S d.a S 0
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Figure 24.30
Problem 24.52.

a b

3.50 mF

11.8 mF6.20 mF

4.80
mF

8.60 mF

Figure 24.31 Problem 24.57.

24.58. Several capacitors are available. The voltage
across each is not to exceed You need to make a capacitor
with capacitance to be connected across a potential differ-
ence of (a) Show in a diagram how an equivalent capacitor
with the desired properties can be obtained. (b) No dielectric is a
perfect insulator that would not permit the flow of any charge
through its volume. Suppose that the dielectric in one of the capac-
itors in your diagram is a moderately good conductor. What will
happen in this case when your combination of capacitors is con-
nected across the potential difference?
24.59. In Fig. 24.32, and 

The applied potential is (a) What is the
equivalent capacitance of the network between points and
(b) Calculate the charge on each capacitor and the potential differ-
ence across each capacitor.

b?a
Vab 5 220 V.4.2 mF.

C2 5 C3 5 C4 58.4 mFC1 5 C5 5
960-V

960 V.
0.25 mF

600 V.
0.25-mF

Figure 24.32 Problem 24.59.

a

b

C1 C3

C2C5 C4

a b
S

c

d

3.00 mF6.00 mF

6.00 mF3.00 mF

Figure 24.33 Problem 24.60.

24.60. The capacitors in Fig. 24.33 are initially uncharged and are
connected, as in the diagram, with switch S open. The applied
potential difference is (a) What is the potential dif-
ference (b) What is the potential difference across each capaci-
tor after switch is closed? (c) How much charge flowed through
the switch when it was closed?
24.61. Three capacitors having capacitances of 8.4, 8.4, and 
are connected in series across a potential difference. (a) What
is the charge on the capacitor? (b) What is the total energy
stored in all three capacitors? (c) The capacitors are disconnected
from the potential difference without allowing them to discharge.

4.2-mF
36-V

4.2 mF

S
Vcd ?

Vab 51210 V.

a

b

S10.0
mF

20.0
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b

S
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�

Figure 24.35 Problem 24.64.
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Figure 24.34 Problem 24.63.
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located at infinity.) (b) Use Eq. (24.1) to show that for
a solid conducting sphere of radius (c) Use your result in
part (b) to calculate the capacitance of the earth, which is a good
conductor of radius Compare to typical capacitors used
in electronic circuits that have capacitances ranging from to

24.68. A solid conducting sphere of radius carries a charge 
Calculate the electric-field energy density at a point a distance 
from the center of the sphere for (a) and (b) (c) Cal-
culate the total electric-field energy associated with the charged
sphere. (Hint: Consider a spherical shell of radius and thickness

that has volume and find the energy stored in
this volume. Then integrate from to ) (d) Explain
why the result of part (c) can be interpreted as the amount of work
required to assemble the charge on the sphere. (e) By using
Eq. (24.9) and the result of part (c), show that the capacitance of
the sphere is as given in Problem 24.67.
24.69. Earth-Ionosphere Capacitance. The earth can be con-
sidered as a single-conductor capacitor (see Problem 24.67). It can
also be considered in combination with a charged layer of the
atmosphere, the ionosphere, as a spherical capacitor with two
plates, the surface of the earth being the negative plate. The iono-
sphere is at a level of about and the potential difference
between earth and ionosphere is about Calculate:
(a) the capacitance of this system; (b) the total charge on the
capacitor; (c) the energy stored in the system.
24.70. The inner cylinder of a long, cylindrical capacitor has
radius and linear charge density It is surrounded by a coax-
ial cylindrical conducting shell with inner radius and linear
charge density (see Fig. 24.6). (a) What is the energy density in
the region between the conductors at a distance from the axis?
(b) Integrate the energy density calculated in part (a) over the vol-
ume between the conductors in a length of the capacitor to obtain
the total electric-field energy per unit length. (c) Use Eq. (24.9)
and the capacitance per unit length calculated in Example 24.4
(Section 24.1) to calculate Does your result agree with that
obtained in part (b)?
24.71. A parallel-plate capacitor has
the space between the plates filled
with two slabs of dielectric, one with
constant and one with constant 
(Fig. 24.37). Each slab has thickness

where is the plate separation.
Show that the capacitance is

24.72. A parallel-plate capacitor has the
space between the plates filled with two
slabs of dielectric, one with constant 
and one with constant (Fig. 24.38).
The thickness of each slab is the same as
the plate separation and each slab fills
half of the volume between the plates.
Show that the capacitance is
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24.73. Capacitors in networks cannot always be grouped into sim-
ple series or parallel combinations. As an example, Fig. 24.39a
shows three capacitors and in a delta network, so called
because of its triangular shape. This network has three terminals 

and and hence cannot be transformed into a single equivalent
capacitor. It can be shown that as far as any effect on the external
circuit is concerned, a delta network is equivalent to what is called
a Y network. For example, the delta network of Fig. 24.39a can be
replaced by the Y network of Fig. 24.39b. (The name “Y network”
also refers to the shape of the network.) (a) Show that the transfor-
mation equations that give and in terms of and 
and are

(Hint: The potential difference must be the same in both cir-
cuits, as must be. Also, the charge that flows from point 
along the wire as indicated must
be the same in both circuits, as
must Obtain a relationship
for as a function of and 
and the capacitances for each
network, and obtain a separate
relationship for as a function
of the charges for each network.
The coefficients of correspon-
ding charges in corresponding
equations must be the same for
both networks.) (b) For the net-
work shown in Fig. 24.39c,
determine the equivalent capaci-
tance between the terminals at
the left end of the network. (Hint:
Use the delta-Y transformation
derived in part (a). Use points

and to form the delta, and
transform the delta into a The
capacitors can then be combined
using the relationships for series
and parallel combinations of
capacitors.) (c) Determine the
charges of, and the potential dif-
ferences across, each capacitor in
Fig. 24.39c.
24.74. The parallel-plate air capacitor in Fig. 24.40 consists of two
horizontal conducting plates of equal area The bottom plate
rests on a fixed support, and the top plate is suspended by four

A.

Y.
cb,

a,

Vbc

q2q1Vac

q2 .

aq1Vbc

Vac

C3 5 1Cx Cy 1 Cy Cz 1 Cz Cx 2 /Cz

C2 5 1Cx Cy 1 Cy Cz 1 Cz Cx 2 /Cy

C1 5 1Cx Cy 1 Cy Cz 1 Cz Cx 2 /Cx

Cz

Cy ,Cx ,C3C2 ,C1,

cb,
a,

CzCy ,Cx ,

springs with spring constant positioned at each of the four cor-
ners of the top plate as shown in the figure. When uncharged, the
plates are separated by a distance A battery is connected to the
plates and produces a potential difference between them. This
causes the plate separation to decrease to Neglect any fringing
effects. (a) Show that the electrostatic force between the charged
plates has a magnitude (Hint: See Exercise 24.29.)
(b) Obtain an expression that relates the plate separation to the
potential difference The resulting equation will be cubic in 
(c) Given the values 
and find the two values of for which the top plate
will be in equilibrium. (Hint: You can solve the cubic equation by
plugging a trial value of into the equation and then adjusting your
guess until the equation is satisfied to three significant figures.
Locating the roots of the cubic equation graphically can help you
pick starting values of for this trial-and-error procedure. One root
of the cubic equation has a nonphysical negative value.) (d) For
each of the two values of found in part (c), is the equilibrium sta-
ble or unstable? For stable equilibrium a small displacement of the
object will give rise to a net force tending to return the object to the
equilibrium position. For unstable equilibrium a small displace-
ment gives rise to a net force that takes the object farther away
from equilibrium.
24.75. Two square conducting plates
with sides of length are separated
by a distance A dielectric slab with
constant with dimensions

is inserted a distance 
into the space between the plates, as
shown in Fig. 24.41. (a) Find the
capacitance of this system (see
Problem 24.72). (b) Suppose that the
capacitor is connected to a battery
that maintains a constant potential
difference between the plates. If
the dielectric slab is inserted an addi-
tional distance into the space
between the plates, show that the
change in stored energy is

(c) Suppose that before the slab is moved by the plates are dis-
connected from the battery, so that the charges on the plates remain
constant. Determine the magnitude of the charge on each plate, and
then show that when the slab is moved farther into the space
between the plates, the stored energy changes by an amount that is
the negative of the expression for given in part (b). (d) If is
the force exerted on the slab by the charges on the plates, then 
should equal the work done against this force to move the slab a
distance Thus Show that applying this expres-
sion to the result of part (b) suggests that the electric force on the
slab pushes it out of the capacitor, while the result of part (c) sug-
gests that the force pulls the slab into the capacitor. (e) Fig-
ure 24.16 shows that the force in fact pulls the slab into the
capacitor. Explain why the result of part (b) gives an incorrect
answer for the direction of this force, and calculate the magnitude
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z
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V
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k, of the force. (This method does not require knowledge of the
nature of the fringing field.)
24.76. An isolated spherical capacitor
has charge on its inner conductor
(radius ) and charge on its outer
conductor (radius ). Half of the vol-
ume between the two conductors is
then filled with a liquid dielectric of
constant as shown in cross section
in Fig. 24.42. (a) Find the capacitance
of the half-filled capacitor. (b) Find the
magnitude of in the volume between
the two conductors as a function of the
distance from the center of the capac-
itor. Give answers for both the upper
and lower halves of this volume. (c) Find the surface density of free
charge on the upper and lower halves of the inner and outer conduc-
tors. (d) Find the surface density of bound charge on the inner

and outer surfaces of the dielectric. (e) What is
the surface density of bound charge on the flat surface of the dielec-
tric? Explain.
24.77. Three square metal plates and each on a
side and thick, are arranged as in Fig. 24.43. The plates
are separated by sheets of paper thick and with dielectric
constant 4.2. The outer plates are connected together and connected
to point The inner plate is connected to point (a) Copy the dia-
gram and show by plus and minus signs the charge distribution on
the plates when point is maintained at a positive potential relative
to point (b) What is the capacitance between points and ?bab.

a

a.b.

0.45 mm
1.50 mm

12.0 cmC,B,A,

1 r 5 rb 21 r 5 ra 2

r

E
S

K,
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24.78. A fuel gauge uses a capac-
itor to determine the height of the
fuel in a tank. The effective
dielectric constant changes
from a value of 1 when the tank is
empty to a value of the dielec-
tric constant of the fuel, when
the tank is full. The appropriate
electronic circuitry can determine
the effective dielectric constant
of the combined air and fuel
between the capacitor plates.
Each of the two rectangular
plates has a width and a length

(Fig. 24.44). The height of the fuel between the plates is You
can ignore any fringing effects. (a) Derive an expression for
as a function of (b) What is the effective dielectric constant for
a tank full, full, and full if the fuel is gasoline
(c) Repeat part (b) for methanol (d) For which fuel is
this fuel gauge more practical?
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