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LEARNING GOALS
By studying this chapter, you will learn:

• How to calculate the gravitational
forces that any two bodies exert on
each other.

• How to relate the weight of an
object to the general expression 
for gravitational force.

• How to use and interpret the gen-
eralized expression for gravitational
potential energy.

• How to relate the speed, orbital
period, and mechanical energy of a
satellite in a circular orbit.

• The laws that describe the motions
of planets, and how to work with
these laws.

• What black holes are, how to calcu-
late their properties, and how they
are discovered.
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GRAVITATION

?The rings of Saturn
are made of countless
individual orbiting parti-
cles. Do all the ring par-
ticles orbit at the same
speed, or do the inner
particles orbit faster or
slower than the outer
ones?

Some of the earliest investigations in physical science started with questions
that people asked about the night sky. Why doesn’t the moon fall to earth?
Why do the planets move across the sky? Why doesn’t the earth fly off into

space rather than remaining in orbit around the sun? The study of gravitation pro-
vides the answers to these and many related questions.

As we remarked in Chapter 5, gravitation is one of the four classes of interac-
tions found in nature, and it was the earliest of the four to be studied extensively.
Newton discovered in the 17th century that the same interaction that makes an
apple fall out of a tree also keeps the planets in their orbits around the sun. This
was the beginning of celestial mechanics, the study of the dynamics of objects in
space. Today, our knowledge of celestial mechanics allows us to determine how
to put a satellite into any desired orbit around the earth or to choose just the right
trajectory to send a spacecraft to another planet.

In this chapter you will learn the basic law that governs gravitational interac-
tions. This law is universal: Gravity acts in the same fundamental way between
the earth and your body, between the sun and a planet, and between a planet and
one of its moons. We’ll apply the law of gravitation to phenomena such as the
variation of weight with altitude, the orbits of satellites around the earth, and the
orbits of planets around the sun.

12.1 Newton’s Law of Gravitation
The example of gravitational attraction that’s probably most familiar to you is
your weight, the force that attracts you toward the earth. During his study of the
motions of the planets and of the moon, Newton discovered the fundamental
character of the gravitational attraction between any two bodies. Along with his
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Any two particles attract
each other through
gravitational forces.

Even if the particles
have very different masses,
the gravitational forces they exert
on each other are equal in strength:

Fg (1 on 2) 5 Fg (2 on 1)
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12.1 The gravitational forces between two
particles of masses and m2 .m1

three laws of motion, Newton published the law of gravitation in 1687. It may
be stated as follows:

Every particle of matter in the universe attracts every other particle with a force
that is directly proportional to the product of the masses of the particles and
inversely proportional to the square of the distance between them.

Translating this into an equation, we have

(12.1)

where is the magnitude of the gravitational force on either particle, and 
are their masses, r is the distance between them (Fig. 12.1), and G is a fundamen-
tal physical constant called the gravitational constant. The numerical value of G
depends on the system of units used.

Equation (12.1) tells us that the gravitational force between two particles
decreases with increasing distance r: If the distance is doubled, the force is only
one-fourth as great, and so on. Although many of the stars in the night sky are far
more massive than the sun, they are so far away that their gravitational force on
the earth is negligibly small.

CAUTION Don’t confuse g and G Because the symbols g and G are so similar, it’s
common to confuse the two very different gravitational quantities that these symbols rep-
resent. Lowercase g is the acceleration due to gravity, which relates the weight w of a
body to its mass The value of g is different at different locations on the earth’s
surface and on the surfaces of different planets. By contrast, capital G relates the gravita-
tional force between any two bodies to their masses and the distance between them. We
call G a universal constant because it has the same value for any two bodies, no matter
where in space they are located. In the next section we’ll see how the values of g and G
are related. ❚

Gravitational forces always act along the line joining the two particles, and
they form an action–reaction pair. Even when the masses of the particles are dif-
ferent, the two interaction forces have equal magnitude (Fig. 12.1). The attractive
force that your body exerts on the earth has the same magnitude as the force that
the earth exerts on you. When you fall from a diving board into a swimming
pool, the entire earth rises up to meet you! (You don’t notice this because the
earth’s mass is greater than yours by a factor of about Hence the earth’s
acceleration is only as great as yours.)

Gravitation and Spherically Symmetric Bodies
We have stated the law of gravitation in terms of the interaction between two
particles. It turns out that the gravitational interaction of any two bodies having
spherically symmetric mass distributions (such as solid spheres or spherical
shells) is the same as though we concentrated all the mass of each at its center, as
in Fig. 12.2. Thus, if we model the earth as a spherically symmetric body with
mass the force it exerts on a particle or a spherically symmetric body with
mass m, at a distance r between centers, is

(12.2)

provided that the body lies outside the earth. A force of the same magnitude is
exerted on the earth by the body. (We will prove these statements in Section 12.6.)

At points inside the earth the situation is different. If we could drill a hole to
the center of the earth and measure the gravitational force on a body at various
depths, we would find that toward the center of the earth the force decreases,
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(a) The gravitational
force between two
spherically symmetric
masses m1 and m2 ...

(b) ... is the same as if
we concentrated all the
mass of each sphere at
the sphere’s center.

m1

12.2 The gravitational effect outside any
spherically symmetric mass distribution is
the same as though all of the mass were
concentrated at its center.

rather than increasing as As the body enters the interior of the earth (or
other spherical body), some of the earth’s mass is on the side of the body opposite
from the center and pulls in the opposite direction. Exactly at the center, the
earth’s gravitational force on the body is zero.

Spherically symmetric bodies are an important case because moons, planets,
and stars all tend to be spherical. Since all particles in a body gravitationally
attract each other, the particles tend to move to minimize the distance between
them. As a result, the body naturally tends to assume a spherical shape, just as a
lump of clay forms into a sphere if you squeeze it with equal forces on all sides.
This effect is greatly reduced in celestial bodies of low mass, since the gravita-
tional attraction is less, and these bodies tend not to be spherical (Fig. 12.3).

Determining the Value of G
To determine the value of the gravitational constant G, we have to measure the
gravitational force between two bodies of known masses and at a known
distance r. The force is extremely small for bodies that are small enough to be
brought into the laboratory, but it can be measured with an instrument called a
torsion balance, which Sir Henry Cavendish used in 1798 to determine G.

A modern version of the Cavendish torsion balance is shown in Fig. 12.4. A
light, rigid rod shaped like an inverted T is supported by a very thin, vertical
quartz fiber. Two small spheres, each of mass are mounted at the ends of the
horizontal arms of the T. When we bring two large spheres, each of mass to
the positions shown, the attractive gravitational forces twist the T through a small
angle. To measure this angle, we shine a beam of light on a mirror fastened to the
T. The reflected beam strikes a scale, and as the T twists, the reflected beam
moves along the scale.

After calibrating the Cavendish balance, we can measure gravitational forces
and thus determine G. The presently accepted value (in SI units) is

To three significant figures, Because 
the units of G can also be expressed (in fundamental SI units) as

Gravitational forces combine vectorially. If each of two masses exerts a force
on a third, the total force on the third mass is the vector sum of the individual
forces of the first two. Example 12.3 makes use of this property, which is often
called superposition of forces.

m3/ 1kg # s2 2 .1 kg # m/s2,
1 N 5G 5 6.67 3 10211 N # m2/kg2.

G 5 6.6742 110 2 3 10211 N # m2/kg2

m2 ,
m1 ,

m2m1

1/r 2.

100 km
100,000 km

Amalthea, one of Jupiter’s small moons, has a
relatively tiny mass (7.17 3 1018 kg, only about
3.8 3 1029 the mass of Jupiter) and weak mutual
gravitation, so it has an irregular shape.

Jupiter’s mass is very large (1.90 3 1027 kg), so
the mutual gravitational attraction of its parts has
pulled it into a nearly spherical shape.

12.3 Spherical and nonspherical bodies:
the planet Jupiter and one of Jupiter’s
small moons, Amalthea.

Gravitation pulls the small masses toward the large
masses, causing the vertical quartz fiber to twist.

The small balls reach a new equilibrium position
when the elastic force exerted by the twisted
quartz fiber balances the gravitational force
between the masses.

Large mass 1m2 2
Small mass 1m1 2

Mirror
Laser beam

Quartz
fiber

m1 Fg

m2
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Fg

1

The deflection of the laser beam indicates how far
the fiber has twisted. Once the instrument is
calibrated, this result gives a value for G.

2

12.4 The principle of the Cavendish balance, used for determining the value of G. The angle of deflection has been exaggerated here
for clarity.
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Why Gravitational Forces Are Important
Comparing Examples 12.1 and 12.3 shows that gravitational forces are negligible
between ordinary household-sized objects, but very substantial between objects
that are the size of stars. Indeed, gravitation is the most important force on the
scale of planets, stars, and galaxies (Fig. 12.6). It is responsible for holding our
earth together and for keeping the planets in orbit about the sun. The mutual grav-
itational attraction between different parts of the sun compresses material at the
sun’s core to very high densities and temperatures, making it possible for nuclear
reactions to take place there. These reactions generate the sun’s energy output,
which makes it possible for life to exist on earth and for you to read these words.

The gravitational force is so important on the cosmic scale because it acts at a
distance, without any direct contact between bodies. Electric and magnetic forces
have this same remarkable property, but they are less important on astronomical
scales because large accumulations of matter are electrically neutral; that is, they
contain equal amounts of positive and negative charge. As a result, the electric
and magnetic forces between stars or planets are very small or zero. The strong
and weak interactions that we discussed in Section 5.5 also act at a distance, but
their influence is negligible at distances much greater than the diameter of an
atomic nucleus (about 

A useful way to describe forces that act at a distance is in terms of a field. One
body sets up a disturbance or field at all points in space, and the force that acts on
a second body at a particular point is its response to the first body’s field at that
point. There is a field associated with each force that acts at a distance, and so we
refer to gravitational fields, electric fields, magnetic fields, and so on. We won’t
need the field concept for our study of gravitation in this chapter, so we won’t
discuss it further here. But in later chapters we’ll find that the field concept is an
extraordinarily powerful tool for describing electric and magnetic interactions.

10214 m).

12.6 Our solar system is part of a spiral
galaxy like this one, which contains
roughly stars as well as gas, dust, and
other matter. The entire assemblage is held
together by the mutual gravitational attrac-
tion of all the matter in the galaxy.
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Example 12.1 Calculating gravitational force

The mass of one of the small spheres of a Cavendish balance is
0.0100 kg, the mass of one of the large spheres is 0.500 kg, and
the center-to-center distance between each large sphere and the
nearer small one is 0.0500 m. Find the gravitational force on
each sphere due to the nearest other sphere.

SOLUTION

IDENTIFY: Because the 0.0100-kg and 0.500-kg objects are
spherically symmetric, we can calculate the gravitational force of
one on the other by assuming that they are particles separated by
0.0500 m. Each sphere experiences the same magnitude of force
from the other sphere, even though their masses are very different.

Fg

m2

m1 SET UP: We use the law of gravitation, Eq. (12.1), to determine

EXECUTE: The magnitude of the force that one sphere exerts on
the other is

EVALUATE: This is a very small force, which is what we expect:
We don’t experience noticeable gravitational pulls from ordinary
low-mass objects in our environment. It takes a truly massive
object such as the earth to exert a substantial gravitational force.

 5 1.33 3 10210 N

 Fg 5
16.67 3 10211 N # m2/kg2 2 1 0.0100 kg 2 10.500 kg 2

10.0500 m 2 2

Fg .

Example 12.2 Acceleration due to gravitational attraction

Suppose one large sphere and one small sphere are detached from
the apparatus in Example 12.1 and placed 0.0500 m (between cen-
ters) from each other at a point in space far removed from all other
bodies. What is the magnitude of the acceleration of each, relative
to an inertial system?

SOLUTION

IDENTIFY: The gravitational forces that the two spheres exert on
each other have the same magnitude. (The system of two spheres is
so distant from other bodies that we can neglect any other forces.)
But the accelerations of the two spheres are different because their
masses are different.

SET UP: We found the magnitude of the force on each sphere in
Example 12.1. To determine the magnitude of each sphere’s accel-
eration, we’ll use Newton’s second law.

EXECUTE: The acceleration of the smaller sphere has magnitude

The acceleration of the larger sphere has magnitude

EVALUATE: The larger sphere has 50 times the mass of the smaller
one and hence has the acceleration. Note that the accelera-
tions are not constant; the gravitational forces increase as the
spheres move toward each other.

1/50

a2 5
Fg

m2
5

1.33 3 10210 N

0.500 kg
5 2.66 3 10210 m/s2

a1 5
Fg

m1
5

1.33 3 10210 N

0.0100 kg
5 1.33 3 1028 m/s2

Example 12.3 Superposition of gravitational forces

Many stars in the sky are actually systems of two or more stars
held together by their mutual gravitational attraction. Figure 12.5
shows a three-star system at an instant when the stars are at the
vertices of a right triangle. Find the magnitude and direction of
the total gravitational force exerted on the small star by the two
large ones.

SOLUTION

IDENTIFY: We use the principle of superposition: The total force
on the small star is the vector sum of the forces due to each large
star.

SET UP: We assume that the stars are spheres so that we can use
the law of gravitation for each force, as in Fig. 12.2. We first calcu-
late the magnitude of each force using Eq. (12.1) and then com-
pute the vector sum using components along the axes shown in
Fig. 12.5.

45°

8.00 3 1030 kg

8.00 3 1030 kg

2.00 3 1012 m

x
1.00 3 1030 kg

F
F1

F2

2.00 3 1012 m

u

O

y

12.5 The total gravitational force on the small star (at O) is the
vector sum of the forces exerted on it by the two larger stars. (For
comparison, the mass of the sun—a rather ordinary star—is

and the earth–sun distance is 1.50 3 1011 m.)1.99 3 1030 kg

EXECUTE: The magnitude of the force on the small star due to
the upper large one is

The magnitude of the force due to the lower large star is

The x- and y-components of these forces are

 F2y 5 0

 F2x 5 1.33 3 1026 N

 F1y 5 16.67 3 1025 N 2 1 sin 45° 2 5 4.72 3 1025 N

 F1x 5 16.67 3 1025 N 2 1 cos 45° 2 5 4.72 3 1025 N

 5 1.33 3 1026 N

 F2 5

B 16.67 3 10211 N # m2/kg2 2
3 18.00 3 1030 kg 2 1 1.00 3 1030 kg 2 R

12.00 3 1012 m 2 2

F2

 5 6.67 3 1025 N

 F1 5

B 16.67 3 10211 N # m2/kg2 2  
3 18.00 3 1030 kg 2 1 1.00 3 1030 kg 2 R
12.00 3 1012 m 2 2 1 12.00 3 1012 m 2 2

F1 The components of the total force on the small star are

The magnitude of this force is

and its direction relative to the x-axis is

EVALUATE: While the total force on the small star is tremendous,
the magnitude of the resulting acceleration is not: 

Can you show that the total force on the small star is not
directed toward the center of mass of the two large stars? (See
Problem 12.51.)

1.87 3 1024 m/s2.11.87 3 1026 N 2 / 11.00 3 1030 kg 2 5

a 5 F/m 5

u 5 arctan 

Fy

Fx

5 arctan 

4.72 3 1025 N

1.81 3 1026 N
5 14.6°

 5 1.87 3 1026 N

 F 5 "Fx 

2 1 Fy 

2 5 "11.81 3 1026 N 2 2 1 14.72 3 1025 N 2 2

 Fy 5 F1y 1 F2y 5 4.72 3 1025 N

 Fx 5 F1x 1 F2x 5 1.81 3 1026 N

Test Your Understanding of Section 12.1 The planet Saturn has about
100 times the mass of the earth and is about 10 times farther from the sun than the
earth is. Compared to the acceleration of the earth caused by the sun’s gravitational pull,
how great is the acceleration of Saturn due to the sun’s gravitation? (i) 100 times greater;
(ii) 10 times greater; (iii) the same; (iv) as great; (v) as great.

❚
1/1001/10
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12.2 Weight
We defined the weight of a body in Section 4.4 as the attractive gravitational
force exerted on it by the earth. We can now broaden our definition:

The weight of a body is the total gravitational force exerted on the body by all
other bodies in the universe.

When the body is near the surface of the earth, we can neglect all other gravita-
tional forces and consider the weight as just the earth’s gravitational attraction. At
the surface of the moon we consider a body’s weight to be the gravitational
attraction of the moon, and so on.

If we again model the earth as a spherically symmetric body with radius 
and mass the weight w of a small body of mass m at the earth’s surface (a dis-
tance from its center) is

(12.3)

But we also know from Section 4.4 that the weight w of a body is the force that
causes the acceleration g of free fall, so by Newton’s second law, 
Equating this with Eq. (12.3) and dividing by m, we find

(12.4)

The acceleration due to gravity g is independent of the mass m of the body
because m doesn’t appear in this equation. We already knew that, but we can now
see how it follows from the law of gravitation.

We can measure all the quantities in Eq. (12.4) except for so this relation-
ship allows us to compute the mass of the earth. Solving Eq. (12.4) for and
using and we find

This is very close to the currently accepted value of Once
Cavendish had measured G, he computed the mass of the earth in just this way.

At a point above the earth’s surface a distance r from the center of the earth (a
distance above the surface), the weight of a body is given by Eq. (12.3)
with replaced by r:

(12.5)

The weight of a body decreases inversely with the square of its distance from the
earth’s center (Fig. 12.7). Figure 12.8 shows how the weight varies with height
above the earth for an astronaut who weighs 700 N at the earth’s surface.

The apparent weight of a body on earth differs slightly from the earth’s gravi-
tational force because the earth rotates and is therefore not precisely an inertial
frame of reference. We have ignored this effect in our earlier discussion and have
assumed that the earth is an inertial system. We will return to the effect of the
earth’s rotation in Section 12.7.

In our discussion of weight, we’ve used the fact that the earth is an approxi-
mately spherically symmetric distribution of mass. But this does not mean that
the earth is uniform. To demonstrate that it cannot be uniform, let’s first calculate
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12.9 The density of the earth decreases
with increasing distance from its center.

5 astronaut’s weight 5 GmEm/r2w
5 astronaut’s distance from the center of the earthr
5 astronaut’s distance from the surface of the earthr 2 RE

Earth’s radius RE 5 6.38 3 106 m
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12.8 An astronaut who weighs 700 N at
the earth’s surface experiences less gravi-
tational attraction when above the surface.
The relevant distance r is from the astro-
naut to the center of the earth (not from the
astronaut to the earth’s surface).

12.7 In an airliner at high altitude, you
are farther from the center of the earth than
when on the ground and hence weigh
slightly less. Can you show that at an alti-
tude of 10 km above the surface, you
weigh 0.3% less than you do on the
ground?

the average density, or mass per unit volume, of the earth. If we assume a spheri-
cal earth, the volume is

The average density (the Greek letter rho) of the earth is the total mass divided
by the total volume:

(For comparison, the density of water is If the earth
were uniform, we would expect the density of individual rocks near the earth’s
surface to have this same value. In fact, the density of surface rocks is substan-
tially lower, ranging from about for sedimentary rocks
to about for basalt. So the earth cannot be uniform,
and the interior of the earth must be much more dense than the surface in order
that the average density be According to geophysical
models of the earth’s interior, the maximum density at the center is about

Figure 12.9 is a graph of density as a function of dis-
tance from the center.
13,000 kg/m3 5 13 g/cm3.

5500 kg/m3 5 5.5 g/cm3.

3300 kg/m3 5 3.3 g/cm3
2000 kg/m3 5 2 g/cm3

1000 kg/m3 5 1.00 g/cm3.)

 5 5500 kg/m3 5 5.5 g/cm3

 r 5
mE

VE
5

5.97 3 1024 kg

1.09 3 1021 m3

r

VE 5
4

3
 pRE 

3 5
4

3
 p 16.38 3 106 m 2 3 5 1.09 3 1021 m3

Example 12.4 Gravity on Mars

An unmanned lander is sent to the surface of the planet Mars,
which has radius and mass 

The earth weight of the Mars lander is 3920 N. Calculate
its weight and the acceleration due to the gravity of Mars:
(a) above the surface of Mars (the distance at which
the moon Phobos orbits Mars); and (b) at the surface of Mars.
Neglect the gravitational effects of the (very small) moons of
Mars.

6.0 3 106 m
gMFg

1023 kg.
mM 5 6.42 3RM 5 3.40 3 106 m

SOLUTION

IDENTIFY: We need to find the lander weight and the gravita-
tional acceleration at two different distances from the center of
Mars.

SET UP: We find the weight using Eq. (12.5) with (the mass
of the earth) replaced with (the mass of Mars). Note that themM

mEFg

gM

Fg

Continued
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directly inward toward the center of the earth, is negative. It differs from
Eq. (12.2), the magnitude of the gravitational force, by a minus sign:

(12.7)

Substituting Eq. (12.7) into Eq. (12.6), we see that is given by

(12.8)

The path doesn’t have to be a straight line; it could also be a curve like the one in
Fig. 12.10. By an argument similar to that in Section 7.1, this work depends only
on the initial and final values of r, not on the path taken. This also proves that the
gravitational force is always conservative.

We now define the corresponding potential energy U so that 
as in Eq. (7.3). Comparing this with Eq. (12.8), we see that the appropriate defini-
tion for gravitational potential energy is

(12.9)

Figure 12.11 shows how the gravitational potential energy depends on the dis-
tance r between the body of mass m and the center of the earth. When the body
moves away from the earth, r increases, the gravitational force does negative
work, and U increases (i.e., becomes less negative). When the body “falls”
toward earth, r decreases, the gravitational work is positive, and the potential
energy decreases (i.e., becomes more negative).

You may be troubled by Eq. (12.9) because it states that gravitational poten-
tial energy is always negative. But in fact you’ve seen negative values of U
before. In using the formula in Section 7.1, we found that U was neg-
ative whenever the body of mass m was at a value of y below the arbitrary
height we chose to be —that is, whenever the body and the earth were
closer together than some certain arbitrary distance. (See, for instance, Exam-
ple 7.2 in Section 7.1.) In defining U by Eq. (12.9), we have chosen U to be zero
when the body of mass m is infinitely far from the earth As the body
moves toward the earth, gravitational potential energy decreases and so becomes
negative.

If we wanted, we could make at the surface of the earth, where 
by simply adding the quantity to Eq. (12.9). This would make U posi-
tive when We won’t do this for two reasons: One, it would make the
expression for U more complicated; and two, the added term would not affect the
difference in potential energy between any two points, which is the only physi-
cally significant quantity.

CAUTION Gravitational force vs. gravitational potential energy Be careful not
to confuse the expressions for gravitational force, Eq. (12.7), and gravitational potential
energy, Eq. (12.9). The force is proportional to while potential energy U is propor-
tional to ❚

Armed with Eq. (12.9), we can now use general energy relationships for prob-
lems in which the behavior of the earth’s gravitational force has to be
included. If the gravitational force on the body is the only force that does work,
the total mechanical energy of the system is constant, or conserved. In the follow-
ing example we’ll use this principle to calculate escape speed, the speed required
for a body to escape completely from a planet.
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S

The gravitational force
is conservative: The
work done by Fg does 
not depend on the path
taken from r1 to r2.

Curved
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12.10 Calculating the work done on a
body by the gravitational force as the body
moves from radial coordinate to r2 .r1

12.3 Gravitational Potential Energy
When we first developed the concept of gravitational potential energy in Sec-
tion 7.1, we assumed that the gravitational force on a body is constant in mag-
nitude and direction. This led to the expression But we now know
that the earth’s gravitational force on a body of mass m at any point outside the
earth is given more generally by Eq. (12.2), where is the
mass of the earth and r is the distance of the body from the earth’s center. For
problems in which r changes enough that the gravitational force can’t be con-
sidered constant, we need a more general expression for gravitational potential
energy.

To find this expression, we follow the same basic sequence of steps as in Sec-
tion 7.1. We consider a body of mass m outside the earth, and first compute the
work done by the gravitational force when the body moves directly away
from or toward the center of the earth from to as in Fig. 12.10. This
work is given by

(12.6)

where is the radial component of the gravitational force —that is, the compo-
nent in the direction outward from the center of the earth. Because pointsF

S

F
S

Fr

Wgrav 5 3
r2

r1

Fr dr

r 5 r2 ,r 5 r1

Wgrav

mEFg 5 GmE m/r 2,

U 5 mgy.
RE

r

U

O

GmEm

RE
2

          U is always negative,
     but it becomes less
 negative with increasing
radial distance r.

Earth, mass mE

Astronaut, mass m

Gravitational potential

energy U 5 2 
for the system of the
earth and the astronaut.

GmEm
r

12.11 A graph of the gravitational poten-
tial energy U for the system of the earth
(mass and an astronaut (mass m) ver-
sus the astronaut’s distance r from the cen-
ter of the earth.

mE)
Test Your Understanding of Section 12.2 Rank the following hypothetical
planets in order from highest to lowest surface gravity: (i) mass times the mass
of the earth, radius times the radius of the earth; (ii) mass times the mass
of the earth, radius times the radius of the earth; (iii) mass times the mass of the
earth, radius times the radius of the earth; (iv) mass times the mass of the earth,
radius times the radius of the earth.

❚
5 4

5 25 2
5 45 4

5 45 2
5 2

value of G is the same everywhere in the universe; it is a funda-
mental physical constant. We then find the acceleration using

where m is the mass of the lander. We’re not given the
value of this mass, but we can determine it from the lander’s
weight on earth.

EXECUTE: (a) The distance r from the center of Mars is

The mass m of the lander is its earth weight w divided by the accel-
eration of gravity g on earth:

The mass is the same whether the lander is on the earth, on Mars,
or in between. From Eq. (12.5),

 5 194 N

 5
16.67 3 10211 N # m2/kg2 2 16.42 3 1023 kg 2 1 400 kg 2

19.4 3 106 m 2 2

 Fg 5
GmM m

r 2

m 5
w

g
5

3920 N

9.8 m/s2
5 400 kg

r 5 16.0 3 106 m 2 1 13.40 3 106 m 2 5 9.4 3 106 m

Fg 5 mgM ,
gM

The acceleration due to the gravity of Mars at this point is

This is also the acceleration experienced by Phobos in its orbit,
above the surface of Mars. (b) To find and at the

surface, we repeat the calculations in part (a), replacing 
with Alternatively, because 

and are inversely proportional to (at any point outside
the planet), we can multiply the results of part (a) by the factor

You should use both methods to show that at the surface 
and 

EVALUATE: The results for part (b) show that an object’s weight
and the acceleration due to gravity are roughly 40% as large on the
surface of Mars as they are on the earth’s surface. Science-fiction
films and stories set on Mars commonly describe the planet’s
lower temperatures and thinner atmosphere, but they seldom focus
on the experience of being in a low-gravity environment.

gM 5 3.7 m/s2.1500 N
Fg 5

1 9.4 3 106 m

3.40 3 106 m 2 2

1/r 2gM

FgRM 5 3.40 3 106 m.9.4 3 106 m
r 5

gMFg6.0 3 106 m

gM 5
Fg

m
5

194 N

400 kg
5 0.48 m/s2
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More on Gravitational Potential Energy
As a final note, let’s show that when we are close to the earth’s surface, Eq. (12.9)
reduces to the familiar from Chapter 7. We first rewrite Eq. (12.8) as

Wgrav 5 GmE m 

r1 2 r2

r1 r2

U 5 mgy

12.13 With a length of 13.2 m and a mass
of 11,000 kg, the Hubble Space Telescope
is among the largest satellites placed in
orbit.

Test Your Understanding of Section 12.3 Is it possible for a planet to have the
same surface gravity as the earth (that is, the same value of g at the surface) and yet have
a greater escape speed?

❚

If the body stays close to the earth, then in the denominator we may replace 
and by the earth’s radius, so

According to Eq. (12.4), so

If we replace the r’s by y’s, this is just Eq. (7.1) for the work done by a constant
gravitational force. In Section 7.1 we used this equation to derive Eq. (7.2),

so we may consider this expression for gravitational potential energy
to be a special case of the more general Eq. (12.9).
U 5 mgy,

Wgrav 5 mg 1 r1 2 r2 2
g 5 GmE/RE 

2,

Wgrav 5 GmE m 

r1 2 r2

RE 

2

RE ,r2

r1Example 12.5 “From the earth to the moon”

In Jules Verne’s 1865 story with this title, three men were sent to
the moon in a shell fired from a giant cannon sunk in the earth in
Florida. (a) Find the muzzle speed needed to shoot the shell
straight up to a height above the earth equal to the earth’s radius.
(b) Find the escape speed—that is, the muzzle speed that would
allow the shell to escape from the earth completely. Neglect air
resistance, the earth’s rotation, and the gravitational pull of the
moon. The earth’s radius is and
its mass is (see Appendix F).

SOLUTION

IDENTIFY: Once the shell leaves the muzzle of the cannon, only
the (conservative) gravitational force does work and mechanical
energy is conserved. We use this fact to find the speed at which the
shell must leave the muzzle into order to (a) come to a halt at a dis-
tance of two earth radii from the planet’s center and (b) come to a
halt at an infinite distance from earth.

SET UP: In both parts (a) and (b) we use the equation for energy
conservation, where the potential energy U
is given by Eq. (12.9). Figure 12.12 shows our sketches. Point 1 is
where the shell leaves the cannon with speed (the target vari-
able). At this point the distance from the center of the earth is

the earth’s radius. Point 2 is where the shell reaches its
maximum height; in part (a) it is at (Fig. 12.12a), and in
part (b) it is infinitely far from the earth at (Fig 12.12b). In
either case the shell is at rest at point 2, so and Let
m be the mass of the shell (with passengers).

EXECUTE: (a) We can determine from the energy-conservation
equation

Rearranging this, we find that

(b) We want the shell barely to be able to “reach” point 2 at
with no kinetic energy left over. Hence and (the
potential energy goes to zero at infinity; see Fig. 12.11). The total
energy is therefore zero, and when the shell is fired its positive

U2 5 0K2 5 0
r2 5 `,

 5 7900 m/s 15 28,400 km/h 5 17,700 mi/h 2
 5 Å

16.67 3 10211 N # m2/kg2 2 1 5.97 3 1024 kg 2
6.38 3 106 m

 v1 5 Å
GmE

RE
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2
 mv1 

2 1 12 

GmE m

RE
2 5 0 1 12 
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2RE
2 K1 1 U1 5 K2 1 U2

v1

K2 5 0.v2 5 0
r2 5 `

r2 5 2RE

r1 5 RE ,

v1

K1 1 U1 5 K2 1 U2 ,

mE 5 5.97 3 1024 kg
RE 5 6380 km 5 6.38 3 106 m,

kinetic energy and negative potential energy must also add to
zero:

EVALUATE: This result does not depend on the mass of the shell,
nor does it depend on the direction in which the shell is launched.
Modern spacecraft launched from Florida must attain essentially
the speed found in part (b) to escape the earth. A spacecraft on the
ground at Cape Canaveral is already moving at to the east
because of the earth’s rotation; by launching to the east, the space-
craft takes advantage of this “free” contribution toward escape
speed.

To generalize our result, the initial speed needed for a body
to escape from the surface of a spherical mass M with radius R
(ignoring air resistance) is

You can use this result to compute the escape speed for other bod-
ies. You will find for Mars, for
Jupiter, and for the sun.6.18 3 105 m/s

5.95 3 104 m/s5.02 3 103 m/s

v1 5 Å
2GM

R
  (escape speed)

v1

410 m/s

 5 1.12 3 104 m/s 15 40,200 km/h 5 25,000 mi/h 2
 5 Å

2 16.67 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2
6.38 3 106 m

 v1 5 Å
2GmE

RE

1

2
 mv1 

2 1 12 

GmE m

RE
2 5 0 1 0

U1K1

(a) (b)

12.12 Our sketches for this problem.

12.4 The Motion of Satellites
Artificial satellites orbiting the earth are a familiar part of modern technology
(Fig. 12.13). But how do they stay in orbit, and what determines the properties of
their orbits? We can use Newton’s laws and the law of gravitation to provide the
answers. We’ll see in the next section that the motion of planets can be analyzed
in the same way.

To begin, think back to the discussion of projectile motion in Section 3.3. In
Example 3.6 a motorcycle rider rides horizontally off the edge of a cliff, launch-
ing himself into a parabolic path that ends on the flat ground at the base of the
cliff. If he survives and repeats the experiment with increased launch speed, he
will land farther from the starting point. We can imagine him launching himself
with great enough speed that the earth’s curvature becomes significant. As he
falls, the earth curves away beneath him. If he is going fast enough, and if his
launch point is high enough that he clears the mountaintops, he may be able to go
right on around the earth without ever landing.

Figure 12.14 shows a variation on this theme. We launch a projectile from
point A in the direction AB, tangent to the earth’s surface. Trajectories 1 through
7 show the effect of increasing the initial speed. In trajectories 3 through 5 the

1
32

4

6

7

A projectile is launched
from A toward B.
Trajectories       through
      show the effect of
increasing initial speed.

1
7

5

B
A

C
RE

r

12.14 Trajectories of a projectile
launched from a great height (ignoring air
resistance). Orbits 1 and 2 would be com-
pleted as shown if the earth were a point
mass at C. (This illustration is based on
one in Isaac Newton’s Principia.)
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12.16 These space shuttle astronauts are
in a state of apparent weightlessness.
Which are right side up and which are
upside down?

projectile misses the earth and becomes a satellite. If there is no retarding force,
the projectile’s speed when it returns to point A is the same as its initial speed and
it repeats its motion indefinitely.

Trajectories 1 through 5 close on themselves and are called closed orbits. All
closed orbits are ellipses or segments of ellipses; trajectory 4 is a circle, a special
case of an ellipse. (We’ll discuss the properties of an ellipse in Section 12.5.) Tra-
jectories 6 and 7 are open orbits. For these paths the projectile never returns to
its starting point but travels ever farther away from the earth.

Satellites: Circular Orbits
A circular orbit, like trajectory 4 in Fig. 12.14, is the simplest case. It is also an
important case, since many artificial satellites have nearly circular orbits and the
orbits of the planets around the sun are also fairly circular. The only force acting
on a satellite in circular orbit around the earth is the earth’s gravitational attrac-
tion, which is directed toward the center of the earth and hence toward the center
of the orbit (Fig. 12.15). As we discussed in Section 5.4, this means that the satel-
lite is in uniform circular motion and its speed is constant. The satellite isn’t
falling toward the earth; rather, it’s constantly falling around the earth. In a circu-
lar orbit the speed is just right to keep the distance from the satellite to the center
of the earth constant.

Let’s see how to find the constant speed of a satellite in a circular orbit.
The radius of the orbit is r, measured from the center of the earth; the accel-
eration of the satellite has magnitude and is always directed toward
the center of the circle. By the law of gravitation, the net force (gravitational
force) on the satellite of mass m has magnitude and is in the 
same direction as the acceleration. Newton’s second law then tells
us that

Solving this for we find

(12.10)

This relationship shows that we can’t choose the orbit radius r and the speed 
independently; for a given radius r, the speed for a circular orbit is determined.

The satellite’s mass m doesn’t appear in Eq. (12.10), which shows that the
motion of a satellite does not depend on its mass. If we could cut a satellite in half
without changing its speed, each half would continue on with the original
motion. An astronaut on board a space shuttle is herself a satellite of the earth,
held by the earth’s gravitational attraction in the same orbit as the shuttle. The
astronaut has the same velocity and acceleration as the shuttle, so nothing is
pushing her against the floor or walls of the shuttle. She is in a state of apparent
weightlessness, as in a freely falling elevator; see the discussion following Exam-
ple 5.9 in Section 5.2. (True weightlessness would occur only if the astronaut
were infinitely far from any other masses, so that the gravitational force on her
would be zero.) Indeed, every part of her body is apparently weightless; she feels
nothing pushing her stomach against her intestines or her head against her shoul-
ders (Fig. 12.16).

Apparent weightlessness is not just a feature of circular orbits; it occurs
whenever gravity is the only force acting on a spacecraft. Hence it occurs for
orbits of any shape, including open orbits such as trajectories (6) and (7) in
Fig. 12.14.
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International Space Station
Distance from center of earth 5 6800 km (400 
      km above the surface)
Orbital speed 5 7.7 km/s
Orbital period 5 93 min

12.17 Both the International Space Station and the moon are satellites of the earth. The moon orbits much farther from the center of the
earth than does the Space Station, so it has a slower orbital speed and a longer orbital period.

Pluto Charon: large inner
satellite of Pluto

Two small outer
satellites of Pluto

12.18 The two small satellites of Pluto
were discovered in 2005. In accordance
with Eq. (12.12), the larger the satellite’s
orbit, the longer it takes to complete one
orbit around Pluto.
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The satellite is in a circular orbit: Its
acceleration a is always perpendicular to 
its velocity v, so its speed v is constant.
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12.15 The force due to the earth’s
gravitational attraction provides the cen-
tripetal acceleration that keeps a satellite in
orbit. Compare to Fig. 5.28.

F
S

g

Moon
Distance from center of earth 5 384,000 km 
Orbital speed 5 1.0 km/s
Orbital period 5 27.3 days

We can derive a relationship between the radius r of a circular orbit and the
period T, the time for one revolution. The speed is the distance traveled in
one revolution, divided by the period:

(12.11)

To get an expression for T, we solve Eq. (12.11) for T and substitute from
Eq. (12.10):

(12.12)

Equations (12.10) and (12.12) show that larger orbits correspond to slower
speeds and longer periods (Fig. 12.17).

It’s interesting to compare Eq. (12.10) to the calculation of escape speed in
Example 12.5. We see that the escape speed from a spherical body with radius R is

times greater than the speed of a satellite in a circular orbit at that radius. If
our spacecraft is in circular orbit around any planet, we have to multiply our speed
by a factor of to escape to infinity, regardless of the planet’s mass.

Since the speed in a circular orbit is determined by Eq. (12.10) for a given
orbit radius r, the total mechanical energy is determined as well.
Using Eqs. (12.9) and (12.10), we have

(12.13)

The total mechanical energy in a circular orbit is negative and equal to one-half
the potential energy. Increasing the orbit radius r means increasing the mechani-
cal energy (that is, making E less negative). If the satellite is in a relatively low
orbit that encounters the outer fringes of earth’s atmosphere, mechanical energy
decreases due to negative work done by the force of air resistance; as a result,
the orbit radius decreases until the satellite hits the ground or burns up in the
atmosphere.

We have talked mostly about earth satellites, but we can apply the same analy-
sis to the circular motion of any body under its gravitational attraction to a sta-
tionary body. Other examples include the earth’s moon and the moons of other
worlds (Fig. 12.18).
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Example 12.6 A satellite orbit

Suppose you want to place a 1000-kg weather satellite into a cir-
cular orbit 300 km above the earth’s surface. (a) What speed,
period, and radial acceleration must it have? (b) How much work
has to be done to place this satellite in orbit? (c) How much addi-
tional work would have to be done to make this satellite escape
the earth? The earth’s radius is and its mass is

SOLUTION

IDENTIFY: The satellite is in a circular orbit, so we can use the
equations derived in this section.

SET UP: In part (a), we first find the radius r of the satellite’s orbit
from its altitude. We then calculate the speed and period T using
Eqs. (12.10) and (12.12). The acceleration in a circular orbit is
given by the familiar formula from Chapter 3, In
parts (b) and (c), the work required is the difference between the
initial and final mechanical energy, which for a circular orbit is
given by Eq. (12.13).

EXECUTE: (a) The radius of the satellite’s orbit is

From Eq. (12.10), the orbital speed is

We find the orbital period from Eq. (12.12):

The radial acceleration is

 5 8.92 m/s2

 arad 5
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17720 m/s 2 2

6.68 3 106 m
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r 5 6380 km 1 300 km 5 6680 km 5 6.68 3 106 m

arad 5 v2/r.

v

mE 5 5.97 3 1024 kg.
RE 5 6380 km

This is the value of g at a height of 300 km above the earth’s sur-
face; it is somewhat less than the value of g at the surface.

(b) The work required is the difference between the total
mechanical energy when the satellite is in orbit, and the origi-
nal mechanical energy when the satellite was at rest on the launch
pad back on earth. From Eq. (12.13), the energy in orbit is

At rest on the earth’s surface the kinetic energy is zero:

and so

(c) We saw in part (b) of Example 12.5 that for a satellite to
escape to infinity, the total mechanical energy must be zero. The
total mechanical energy in the circular orbit is 

to increase this to zero, an amount of work equal to
would have to be done. This extra energy could be

supplied by rocket engines attached to the satellite.

EVALUATE: In part (b) we ignored the satellite’s initial kinetic
energy (while it was still on the launch pad) due to the rotation of
the earth. You should check to see how much difference this makes
(see Example 12.5 for useful data).
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Test Your Understanding of Section 12.4 Your personal spacecraft is in a
low-altitude circular orbit around the earth. Air resistance from the outer regions of
the atmosphere does negative work on the spacecraft, causing the orbital radius to
decrease slightly. Does the speed of the spacecraft (i) remain the same, (ii) increase, or
(iii) decrease?

❚

12.5 Kepler’s Laws and the Motion of Planets
The name planet comes from a Greek word meaning “wanderer,” and indeed the
planets continuously change their positions in the sky relative to the background
of stars. One of the great intellectual accomplishments of the 16th and 17th cen-
turies was the threefold realization that the earth is also a planet, that all planets
orbit the sun, and that the apparent motions of the planets as seen from the earth
can be used to precisely determine their orbits.

The first and second of these ideas were published by Nicolaus Copernicus in
Poland in 1543. The nature of planetary orbits was deduced between 1601 and

y

There is nothing at
the other focus.

The sun S is at one
focus of the ellipse.

A planet P follows an elliptical orbit.

AphelionPerihelion

O
x

P

ea ea

a a

S�S

12.19 Geometry of an ellipse. The sum of
the distances SP and is the same for
every point on the curve. The sizes of the
sun (S) and planet (P) are exaggerated for
clarity.

S rP
1619 by the German astronomer and mathematician Johannes Kepler, using a
voluminous set of precise data on apparent planetary motions compiled by his
mentor, the Danish astronomer Tycho Brahe. By trial and error, Kepler discov-
ered three empirical laws that accurately described the motions of the planets:

1. Each planet moves in an elliptical orbit, with the sun at one focus of the
ellipse.

2. A line from the sun to a given planet sweeps out equal areas in equal times.
3. The periods of the planets are proportional to the powers of the major axis

lengths of their orbits.

Kepler did not know why the planets moved in this way. Three generations later,
when Newton turned his attention to the motion of the planets, he discovered that
each of Kepler’s laws can be derived; they are consequences of Newton’s laws of
motion and the law of gravitation. Let’s see how each of Kepler’s laws arises.

Kepler’s First Law
First consider the elliptical orbits described in Kepler’s first law. Figure 12.19
shows the geometry of an ellipse. The longest dimension is the major axis, with
half-length a; this half-length is called the semi-major axis. The sum of the dis-
tances from S to P and from to P is the same for all points on the curve. S and

are the foci (plural of focus). The sun is at S, and the planet is at P; we think of
them both as points because the size of each is very small in comparison to the
distance between them. There is nothing at the other focus 

The distance of each focus from the center of the ellipse is ea, where e is a
dimensionless number between 0 and 1 called the eccentricity. If the
ellipse is a circle. The actual orbits of the planets are fairly circular; their eccen-
tricities range from 0.007 for Venus to 0.206 for Mercury. (The earth’s orbit has

The point in the planet’s orbit closest to the sun is the perihelion, and
the point most distant from the sun is the aphelion.

Newton was able to show that for a body acted on by an attractive force pro-
portional to the only possible closed orbits are a circle or an ellipse; he also
showed that open orbits (trajectories 6 and 7 in Fig. 12.14) must be parabolas or
hyperbolas. These results can be derived by a straightforward application of
Newton’s laws and the law of gravitation, together with a lot more differential
equations than we’re ready for.

Kepler’s Second Law
Figure 12.20 shows Kepler’s second law. In a small time interval dt, the line from
the sun S to the planet P turns through an angle The area swept out is the col-
ored triangle with height r, base length and area (Fig. 12.20b).
The rate at which area is swept out, is called the sector velocity:

(12.14)

The essence of Kepler’s second law is that the sector velocity has the same value
at all points in the orbit. When the planet is close to the sun, r is small and 
is large; when the planet is far from the sun, r is large and is small.

To see how Kepler’s second law follows from Newton’s laws, we express
in terms of the velocity vector of the planet P. The component of per-

pendicular to the radial line is From Fig. 12.20b the displacement
along the direction of during time dt is so we also have 
Using this relationship in Eq. (12.14), we find

(12.15)
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12.20 (a) The planet (P) moves about the
sun (S) in an elliptical orbit. (b) In a time
dt the line SP sweeps out an area

(c) The planet’s
speed varies so that the line SP sweeps out
the same area A in a given time t regard-
less of the planet’s position in its orbit.
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Now is the magnitude of the vector product which in turn is 
times the angular momentum of the planet with respect to the sun.
So we have

(12.16)

Thus Kepler’s second law—that sector velocity is constant—means that angular
momentum is constant!

It is easy to see why the angular momentum of the planet must be constant.
According to Eq. (10.26), the rate of change of equals the torque of the gravita-
tional force acting on the planet:

In our situation, is the vector from the sun to the planet, and the force is
directed from the planet to the sun. So these vectors always lie along the same
line, and their vector product is zero. Hence This conclusion
does not depend on the behavior of the force; angular momentum is con-
served for any force that acts always along the line joining the particle to a fixed
point. Such a force is called a central force. (Kepler’s first and third laws are
valid only for a force.)

Conservation of angular momentum also explains why the orbit lies in a
plane. The vector is always perpendicular to the plane of the vec-
tors and since is constant in magnitude and direction, and always lie in
the same plane, which is just the plane of the planet’s orbit.

Kepler’s Third Law
We have already derived Kepler’s third law for the particular case of circular
orbits. Equation (12.12) shows that the period of a satellite or planet in a circular
orbit is proportional to the power of the orbit radius. Newton was able to show
that this same relationship holds for an elliptical orbit, with the orbit radius r
replaced by the semi-major axis a:

(12.17)

Since the planet orbits the sun, not the earth, we have replaced the earth’s mass
in Eq. (12.12) with the sun’s mass Note that the period does not depend

on the eccentricity e. An asteroid in an elongated elliptical orbit with semi-major
axis a will have the same orbital period as a planet in a circular orbit of radius a.
The key difference is that the asteroid moves at different speeds at different
points in its elliptical orbit (Fig. 12.20c), while the planet’s speed is constant
around its circular orbit.
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Conceptual Example 12.7 Orbital speeds

At what point in an elliptical orbit (Fig. 12.19) does a planet have
the greatest speed?

SOLUTION

Mechanical energy is conserved as the planet moves around its
orbit. The planet’s kinetic energy is maximum when the
potential energy is minimum (that is, most nega-U 5 2GmS m/r

K 5 1
2 mv2

tive; see Fig. 12.11), which occurs when r is a minimum. Hence
the speed is maximum at perihelion.

Your intuition about falling bodies is helpful here. As the planet
falls inward toward the sun, it picks up speed, and its speed is max-
imum when closest to the sun. By the same reasoning, the planet
slows down as it moves away from the sun, and its speed is mini-
mum at aphelion.

v

Example 12.8 Kepler’s third law

The asteroid Pallas has an orbital period of 4.62 years and an
orbital eccentricity of 0.233. Find the semi-major axis of its orbit.

SOLUTION

IDENTIFY: This example uses Kepler’s third law, which relates
the period T and the semi-major axis a for an object (like an aster-
oid) that orbits.

SET UP: We use Eq. (12.17) to determine a from the given value
of T. Note that we don’t need the value of the eccentricity.

EXECUTE: From Eq. (12.17), To solve for
a, we raise this expression to the power:

Since and (the
mass of the sun from Appendix F) are given in SI units, we must

mS 5 1.99 3 1030 kgG 5 6.67 3 10211 N # m2/kg2

a 5 1GmS T 2

4p2 2 1/3

2
3

a3/2 5 A"GmS TB /2p.

express the period T in seconds rather than years using a conversion
factor from Appendix E:

Using this value, we find (Plug
in the numbers yourself to check.)

EVALUATE: Our result is intermediate between the semi-major
axes of Mars and Jupiter (see Appendix F). Indeed, most known
asteroids orbit in an “asteroid belt” between the orbits of these two
planets.

As a historical note, Pallas wasn’t discovered until 1802,
almost two centuries after the publication of Kepler’s third law.
While Kepler deduced his three laws from the motions of the five
planets (other than the earth) known in his time, these laws have
proven to apply equally well to all of the planets, asteroids, and
comets subsequently discovered to be orbiting the sun.

a 5 4.15 3 1011 m.1.46 3 108 s.
T 5 14.62 yr 2 13.156 3 107 s/yr 2  5

Example 12.9 Comet Halley

Comet Halley moves in an elongated elliptical orbit around the sun
(Fig. 12.21). At perihelion, the comet is from the
sun; at aphelion, it is from the sun. Find the semi-
major axis, eccentricity, and period of the orbit.

SOLUTION

IDENTIFY: We are given the perihelion and aphelion distances,
and we are to find the semi-major axis a, eccentricity e, and orbital
period T (which is related to the semi-major axis by Kepler’s third
law).

5.26 3 109 km
8.75 3 107 km

SET UP: Figure 12.19 shows us how to find a and e from the peri-
helion and aphelion distances. Once we know the value of a, we
can find the orbital period from Eq. (12.17).

EXECUTE: From Fig. 12.19 the length of the major axis equals the
sum of the comet–sun distance at perihelion and the comet–sun
distance at aphelion. The length of the major axis is 2a, so

a 5
8.75 3 107 km 1 5.26 3 109 km

2
5 2.67 3 109 km

(b)(a)

Jupiter’s
orbitEarth’s

orbit
Saturn’s
orbit

Uranus’s
orbit

Neptune’s
orbit

Pluto’s
orbit

Comet Halley’s
position at
given date

1983

1977

1948, 2024

Mars’s
orbit

1987

1989

1996

1985

12.21 (a) The orbit of Comet Halley. (b) Comet Halley as it
appeared in 1986. At the heart of the comet is an icy body,
called the nucleus, that is about 10 km across. When the
comet’s orbit carries it close to the sun, the heat of sunlight
causes the nucleus to partially evaporate. The evaporated
material forms the tail, which can be tens of millions of kilo-
meters long.

Continued
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Planetary Motions and the Center of Mass
We have assumed that as a planet or comet orbits the sun, the sun remains
absolutely stationary. Of course, this can’t be correct; because the sun exerts a
gravitational force on the planet, the planet exerts a gravitational force on the sun
of the same magnitude but opposite direction. In fact, both the sun and the planet
orbit around their common center of mass (Fig. 12.22). We’ve made only a small
error by ignoring this effect, however; the sun’s mass is about 750 times the total
mass of all the planets combined, so the center of mass of the solar system is not
far from the center of the sun. Remarkably, astronomers have used this effect to
detect the presence of planets orbiting other stars. Sensitive telescopes are able to
detect the apparent “wobble” of a star as it orbits the common center of mass of
the star and an unseen companion planet. (The planets are too faint to observe
directly.) By analyzing these “wobbles,” astronomers have discovered planets in
orbit around more than a hundred other stars.

Newton’s analysis of planetary motions is used on a daily basis by modern-
day astronomers. But the most remarkable result of Newton’s work is that the
motions of bodies in the heavens obey the same laws of motion as do bodies on
the earth. This Newtonian synthesis, as it has come to be called, is one of the great
unifying principles of science. It has had profound effects on the way that human-
ity looks at the universe—not as a realm of impenetrable mystery, but as a direct
extension of our everyday world, subject to scientific study and calculation.

Further inspection of Fig. 12.19 shows that the comet–sun distance
at perihelion is

Since we are given that this distance is the eccen-
tricity is

e 5 12 

8.75 3 107 km
a

5 12 

8.75 3 107 km

2.67 3 109 km
5 0.967

8.75 3 107 km,

a 2 ea 5 a 11 2 e 2
The period is given by Eq. (12.17):

EVALUATE: The eccentricity is very close to 1, so the comet has a
very elongated orbit (see Fig. 12.21a). Comet Halley was at peri-
helion in early 1986; it will next reach perihelion one period later,
in 2061.

 5 2.38 3 109 s 5 75.5 years

 T 5
2pa3/2

"GmS

5
2p 12.67 3 1012 m 2 3/2

"16.67 3 10211 N # m2/kg2 2 1 1.99 3 1030 kg 2

Center of mass of the
system of star and
planet

The star is more massive than
the planet and so orbits closer
to the center of mass.

The planet and star are always on
opposite sides of the center of mass.

vP

vS

Planet’s orbit around the center of mass

Star’s orbit

StarPlanet cm

12.22 A star and its planet both orbit
about their common center of mass.

*12.6 Spherical Mass Distributions
We have stated without proof that the gravitational interaction between two
spherically symmetric mass distributions is the same as though all the mass of
each were concentrated at its center. Now we’re ready to prove this statement.
Newton searched for a proof for several years, and he delayed publication of the
law of gravitation until he found one.

Here’s our program. Rather than starting with two spherically symmetric
masses, we’ll tackle the simpler problem of a point mass m interacting with a thin
spherical shell with total mass M. We will show that when m is outside the
sphere, the potential energy associated with this gravitational interaction is the
same as though M were all concentrated at the center of the sphere. We learned in
Section 7.4 that the force is the negative derivative of the potential energy, so the
force on m is also the same as for a point mass M. Any spherically symmetric
mass distribution can be thought of as being made up of many concentric spheri-
cal shells, so our result will also hold for any spherically symmetric M.

Test Your Understanding of Section 12.5 The orbit of Comet X has a
semi-major axis that is four times larger than the semi-major axis of Comet Y.
What is the ratio of the orbital period of X to the orbital period of Y? (i) 2; (ii) 4; (iii) 8;
(iv) 16; (v) 32; (vi) 64.

❚

A Point Mass Outside a Spherical Shell
We start by considering a ring on the surface of the shell (Fig. 12.23a), centered
on the line from the center of the shell to m. We do this because all of the parti-
cles that make up the ring are the same distance s from the point mass m. From
Eq. (12.9) the potential energy of interaction between the earth (mass and a
point mass m, separated by a distance r, is By changing notation
in this expression, we see that in the situation shown in Fig. 12.23a, the potential
energy of interaction between the point mass m and a particle of mass within
the ring is given by

To find the potential energy of interaction between m and the entire ring of mass
we sum this expression for over all particles in the ring. Calling

this potential energy dU, we find

(12.18)

To proceed, we need to know the mass dM of the ring. We can find this with the
aid of a little geometry. The radius of the shell is R, so in terms of the angle 
shown in the figure, the radius of the ring is and its circumference is

The width of the ring is and its area dA is approximately equal
to its width times its circumference:

The ratio of the ring mass dM to the total mass M of the shell is equal to the ratio
of the area dA of the ring to the total area of the shell:

(12.19)

Now we solve Eq. (12.19) for dM and substitute the result into Eq. (12.18) to find
the potential energy of interaction between the point mass m and the ring:

(12.20)

The total potential energy of interaction between the point mass and the shell
is the integral of Eq. (12.20) over the whole sphere as varies from 0 to (not

and s varies from to To carry out the integration, we have to
express the integrand in terms of a single variable; we choose s. To express and

in terms of s, we have to do a little more geometry. Figure 12.23b shows that
s is the hypotenuse of a right triangle with sides and so the
Pythagorean theorem gives

(12.21)

We take differentials of both sides:

Next we divide this by 2rR and substitute the result into Eq. (12.20):

(12.22)

We can now integrate Eq. (12.22), recalling that s varies from to 

(12.23)U 5 2 
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(a) Geometry of the situation

(b) The distance s is the hypotenuse of a right
triangle with sides (r 2 R cos f) and R sin f.
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R df R sin f
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dM 5     dAM
A
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O
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s

m
P
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r

f

12.23 Calculating the gravitational poten-
tial energy of interaction between a point
mass m outside a spherical shell and a ring
on the surface of the shell.
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Finally, we have

(12.24)

This is equal to the potential energy of two point masses m and M at a distance r.
So we have proved that the gravitational potential energy of the spherical shell M
and the point mass m at any distance r is the same as though they were point
masses. Because the force is given by the force is also the same.

The Gravitational Force Between 
Spherical Mass Distributions
Any spherically symmetric mass distribution can be thought of as a combination
of concentric spherical shells. Because of the principle of superposition of forces,
what is true of one shell is also true of the combination. So we have proved half
of what we set out to prove: that the gravitational interaction between any spheri-
cally symmetric mass distribution and a point mass is the same as though all the
mass of the spherically symmetric distribution were concentrated at its center.

The other half is to prove that two spherically symmetric mass distributions
interact as though they were both points. That’s easier. In Fig. 12.23a the forces
the two bodies exert on each other are an action–reaction pair, and they obey
Newton’s third law. So we have also proved that the force that m exerts on the
sphere M is the same as though M were a point. But now if we replace m with a
spherically symmetric mass distribution centered at m’s location, the resulting
gravitational force on any part of M is the same as before, and so is the total
force. This completes our proof.

A Point Mass Inside a Spherical Shell
We assumed at the beginning that the point mass m was outside the spherical
shell, so our proof is valid only when m is outside a spherically symmetric mass
distribution. When m is inside a spherical shell, the geometry is as shown in
Fig. 12.24. The entire analysis goes just as before; Eqs. (12.18) through (12.22)
are still valid. But when we get to Eq. (12.23), the limits of integration have to be
changed to and We then have

(12.25)

and the final result is

(12.26)

Compare this result to Eq. (12.24): Instead of having r, the distance between m
and the center of M, in the denominator, we have R, the radius of the shell. This
means that U in Eq. (12.26) doesn’t depend on r and thus has the same value
everywhere inside the shell. When m moves around inside the shell, no work is
done on it, so the force on m at any point inside the shell must be zero.

More generally, at any point in the interior of any spherically symmetric mass
distribution (not necessarily a shell), at a distance r from its center, the gravita-
tional force on a point mass m is the same as though we removed all the mass at
points farther than r from the center and concentrated all the remaining mass at
the center.
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12.24 When a point mass m is inside a
uniform spherical shell of mass M, the
potential energy is the same no matter
where inside the shell the point mass is
located. The force from the masses’ mutual
gravitational interaction is zero.

Example 12.10 “Journey to the center of the earth”

Suppose we drill a hole through the earth (radius mass 
along a diameter and drop a mail pouch (mass m) down the hole.
Derive an expression for the gravitational force on the pouch as a

mE)RE , function of its distance r from the center. Assume that the density
of the earth is uniform (not a very realistic model; see Fig. 12.9).

Cross section
through earth

Spherical region
of radius rm

RE

mE

M

O

Fg r

12.25 A hole through the center of the earth (assumed to be uni-
form). When an object is a distance r from the center, only the
mass inside a sphere of radius r exerts a net gravitational force
on it.

SOLUTION

IDENTIFY: According to the statements above, the gravitational
force at a distance r from the center is determined only by the mass
M within a spherical region of radius r (Fig. 12.25). The mass out-
side this radius has no effect on the mail pouch.

SET UP: The gravitational force on the mail pouch is the same as
if all the mass M within radius r were concentrated at the center of
the earth. The mass of a uniform sphere is proportional to the vol-
ume of the sphere, which is for the sphere of radius r and

for the entire earth.

EXECUTE: The ratio of the mass M of the sphere of radius r to the
mass of the earth, is

The magnitude of the gravitational force on m is given by

EVALUATE: At points inside this uniform-density sphere, is
directly proportional to the distance r from the center, rather than

Fg

Fg 5
GMm

r 2 5
Gm

r 2 1mE 

r 3

RE 

3 2 5
GmE m

RE 

3  r

M

mE
5

4
3 pr 3

4
3 pRE 

3
5

r 3

RE 

3 ,  so  M 5 mE 

r 3

RE 

3

mE ,

4
3 pRE 

3

4
3 pr 3

proportional to as it is outside the sphere. Right at the surface,
where the above expression gives as we
should expect. In the next chapter we’ll learn how to compute the
time it would take for the mail pouch to emerge on the other side
of the earth under the assumption of uniform density.

Fg 5 GmE m/RE 

2,r 5 RE ,
1/r 2

Test Your Understanding of Section 12.6 In the classic 1913 science-fiction
novel At the Earth’s Core by Edgar Rice Burroughs, explorers discover that the earth is a
hollow sphere and that an entire civilization lives on the inside of the sphere. Would it be
possible to stand and walk on the inner surface of a hollow, nonrotating planet?

❚

*12.7 Apparent Weight 
and the Earth’s Rotation

Because the earth rotates on its axis, it is not precisely an inertial frame of refer-
ence. For this reason the apparent weight of a body on earth is not precisely equal
to the earth’s gravitational attraction, which we will call the true weight of the
body. Figure 12.26 is a cutaway view of the earth, showing three observers. Each
one holds a spring scale with a body of mass m hanging from it. Each scale
applies a tension force to the body hanging from it, and the reading on each
scale is the magnitude F of this force. If the observers are unaware of the earth’s
rotation, each one thinks that the scale reading equals the weight of the body
because he thinks the body on his spring scale is in equilibrium. So each observer
thinks that the tension must be opposed by an equal and opposite force 
which we call the apparent weight. But if the bodies are rotating with the earth,
they are not precisely in equilibrium. Our problem is to find the relationship
between the apparent weight and the true weight 

If we assume that the earth is spherically symmetric, then the true weight 
has magnitude where and are the mass and radius of the earth.
This value is the same for all points on the earth’s surface. If the center of the
earth can be taken as the origin of an inertial coordinate system, then the body at
the north pole really is in equilibrium in an inertial system, and the reading on
that observer’s spring scale is equal to But the body at the equator is moving
in a circle of radius with speed and there must be a net inward force equal to
the mass times the centripetal acceleration:

w0 2 F 5
mv2

RE

v,RE

w0 .

REmEGmE m/RE 

2,
wS0

wS0 .wS

wS,F
S

F
S

wS0
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So the magnitude of the apparent weight (equal to the magnitude of F ) is

(12.27)

If the earth were not rotating, the body when released would have a free-fall
acceleration Since the earth is rotating, the falling body’s actual
acceleration relative to the observer at the equator is Dividing
Eq. (12.27) by m and using these relationships, we find

To evaluate we note that in 86,164 s a point on the equator moves a dis-
tance equal to the earth’s circumference, (The solar
day, 86,400 s, is longer than this because in one day the earth also completes

of its orbit around the sun.) Thus we find

So for a spherically symmetric earth the acceleration due to gravity should be
about less at the equator than at the poles.

At locations intermediate between the equator and the poles, the true weight
and the centripetal acceleration are not along the same line, and we need to

write a vector equation corresponding to Eq. (12.27). From Fig. 12.26 we see that
the appropriate equation is

(12.28)

The difference in the magnitudes of g and lies between zero and
As shown in Fig. 12.26, the direction of the apparent weight differs from the

0.0339 m/s2.g0

wS 5 wS0 2 maSrad 5 mgS0 2 maSrad

wS0

0.03 m/s2

 
v2

RE
5

1465 m/s 2 2

6.38 3 106 m
5 0.0339 m/s2

 v 5
2p 16.38 3 106 m 2

86,164 s
5 465 m/s

1
365

1
365

2pRE 5 2p 1 6.38 3 106 m 2 .v2/RE ,

g 5 g0 2
v2

RE
  (at the equator)

g 5 w/m.
g0 5 w0/m.

w 5 w0 2
mv2

RE
  (at the equator)

direction toward the center of the earth by a small angle which is or
less.

Table 12.1 gives the values of g at several locations, showing variations with
latitude. There are also small additional variations due to the lack of perfect spher-
ical symmetry of the earth, local variations in density, and differences in elevation.

Apparent Weight and Apparent Weightlessness
Our discussion of apparent weight can also be applied to the phenomenon of
apparent weightlessness in orbiting spacecraft, which we described in Sec-
tion 12.4. Bodies in an orbiting spacecraft are not weightless; the earth’s gravi-
tational attraction continues to act on them just as though they were at rest rela-
tive to the earth. The apparent weight of a body in a spacecraft is again given by
Eq. (12.28):

But for a spacecraft in orbit, as well as any body inside the spacecraft, the accel-
eration toward the earth’s center is equal to the value of the acceleration of
gravity at the position of the spacecraft. Hence

and the apparent weight is

This is what we mean when we say that an astronaut or other body in the
spacecraft is apparently weightless. Note that we didn’t make any assumptions
about the shape of the orbit. As we mentioned in Section 12.4, an astronaut will
be apparently weightless no matter what the orbit (Fig. 12.27).
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12.26 Except at the poles, the reading for
an object being weighed on a scale (the
apparent weight) is less than the gravita-
tional force of attraction on the object (the
true weight). The reason is that a net force
is needed to provide a centripetal accelera-
tion as the object rotates with the earth.
For clarity, the illustration greatly exagger-
ates the angle between the true and
apparent weight vectors.

b

Table 12.1 Variations of g with Latitude and Elevation

Station North Latitude Elevation (m)

Canal Zone 0 9.78243

Jamaica 0 9.78591

Bermuda 0 9.79806

Denver, Co 1638 9.79609

Pittsburgh, PA 235 9.80118

Cambridge, MA 0 9.80398

Greenland 0 9.8253470°

42°

40.5°

40°

32°

18°

09°

g ( m/s2 )

12.27 This orbiting astronaut is acted on
by the earth’s gravity, but he feels weight-
less because his acceleration is equal to gS.

Test Your Understanding of Section 12.7 Imagine a planet that has the
same mass and radius as the earth, but that makes 10 rotations during the time the
earth makes one rotation. What would be the difference between the acceleration
due to gravity at the planet’s equator and the acceleration due to gravity at its poles?
(i) (ii) (iii) (iv)

❚
3.39 m/s2.0.339 m/s2;0.0339 m/s2;0.00339 m/s2;

12.8 Black Holes
The concept of a black hole is one of the most interesting and startling products
of modern gravitational theory, yet the basic idea can be understood on the basis
of Newtonian principles.

The Escape Speed from a Star
Think first about the properties of our own sun. Its mass 
and radius are much larger than those of any planet, but com-
pared to other stars, our sun is not exceptionally massive. You can find the sun’s

R 5 6.96 3 108 m
M 5 1.99 3 1030 kg
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average density in the same way we found the average density of the earth in
Section 12.2:

The sun’s temperatures range from 5800 K (about or at the
surface up to (about in the interior, so it surely con-
tains no solids or liquids. Yet gravitational attraction pulls the sun’s gas atoms
together until the sun is, on average, 41% denser than water and about 1200 times
as dense as the air we breathe.

Now think about the escape speed for a body at the surface of the sun. In
Example 12.5 (Section 12.3) we found that the escape speed from the surface of a
spherical mass M with radius R is We can relate this to the aver-
age density. Substituting into the expression for escape
speed gives

(12.29)

Using either form of this equation, you can show that the escape speed for a body
at the surface of our sun is (about 2.2 million or
1.4 million This value, roughly the speed of light, is independent of
the mass of the escaping body; it depends on only the mass and radius (or aver-
age density and radius) of the sun.

Now consider various stars with the same average density and different radii
R. Equation (12.29) shows that for a given value of density the escape speed 
is directly proportional to R. In 1783 the Rev. John Mitchell, an amateur
astronomer, noted that if a body with the same average density as the sun had
about 500 times the radius of the sun, its escape speed would be greater than the
speed of light c. With his statement that “all light emitted from such a body
would be made to return toward it,” Mitchell became the first person to suggest
the existence of what we now call a black hole—an object that exerts a gravita-
tional force on other bodies, but cannot emit any light of its own.

Black Holes, the Schwarzschild Radius, 
and the Event Horizon
The first expression for escape speed in Eq. (12.29) suggests that a body of mass
M will act as a black hole if its radius R is less than or equal to a certain critical
radius. How can we determine this critical radius? You might think that you can
find the answer by simply setting in Eq. (12.29). As a matter of fact, this
does give the correct result, but only because of two compensating errors. The
kinetic energy of light is not and the gravitational potential energy near a
black hole is not given by Eq. (12.9). In 1916, Karl Schwarzschild used Ein-
stein’s general theory of relativity (in part a generalization and extension of New-
tonian gravitation theory) to derive an expression for the critical radius now
called the Schwarzschild radius. The result turns out to be the same as though
we had set in Eq. (12.29), so

Solving for the Schwarzschild radius we find

(12.30)RS 5
2GM

c2   (Schwarzschild radius)
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(a) When the radius R of a body is greater than
the Schwarzschild radius RS, light can escape
from the surface of the body.

Gravity acting on the escaping light “red shifts”
it to longer wavelengths.

RS

(b) If all of the mass of the body lies inside 
radius RS, the body is a black hole: No light can
escape from it. 

12.28 (a) A body with a radius R greater
than the Schwarzschild radius (b) If
the body collapses to a radius smaller than

it is a black hole with an escape speed
greater than the speed of light. The surface
of the sphere of radius is called the
event horizon of the black hole.

RS

RS ,

RS .

If a spherical, nonrotating body with mass M has a radius less than then
nothing (not even light) can escape from the surface of the body, and the body is
a black hole (Fig. 12.28). In this case, any other body within a distance of the
center of the black hole is trapped by the gravitational attraction of the black hole
and cannot escape from it.

The surface of the sphere with radius surrounding a black hole is called the
event horizon: Since light can’t escape from within that sphere, we can’t see
events occurring inside. All that an observer outside the event horizon can know
about a black hole is its mass (from its gravitational effects on other bodies), its
electric charge (from the electric forces it exerts on other charged bodies), and its
angular momentum (because a rotating black hole tends to drag space—and
everything in that space—around with it). All other information about the body is
irretrievably lost when it collapses inside its event horizon.

RS

RS

RS ,

Example 12.11 Black hole calculations

Astrophysical theory suggests that a burned-out star will collapse
under its own gravity to form a black hole when its mass is at least
three solar masses. If it does, what is the radius of its event horizon?

SOLUTION

IDENTIFY: The radius in question is the Schwarzschild radius.

SET UP: We use Eq. (12.30) with a value of M equal to three solar
masses, or 

EXECUTE: From Eq. (12.30),

or less than 6 miles.

 5 8.9 3 103 m 5 8.9 km

 RS 5
2GM

c2 5
2 16.67 3 10211 N # m2/kg2 2 1 6.0 3 1030 kg 2

13.00 3 108 m/s 2 2

M 5 3 11.99 3 1030 kg 2 5 6.0 3 1030 kg.

EVALUATE: If the radius of such an object is just equal to the
Schwarzschild radius, the average density has the incredibly large
value

This is about times as great as the density of familiar matter
on earth and is comparable to the densities of atomic nuclei. In
fact, once the body collapses to a radius of nothing can prevent
it from collapsing further. All of the mass ends up being crushed
down to a single point called a singularity at the center of the event
horizon. This point has zero volume and so has infinite density.

RS ,

1015

 5 2.0 3 1018 kg/m3

 r 5
M

4
3 pR3

5
6.0 3 1030 kg

4
3 p 18.9 3 103 m 2 3

A Visit to a Black Hole
At points far from a black hole, its gravitational effects are the same as those of
any normal body with the same mass. If the sun collapsed to form a black hole,
the orbits of the planets would be unaffected. But things get dramatically different
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close to the black hole. If you decided to become a martyr for science and jump
into a black hole, the friends you left behind would notice several odd effects as
you moved toward the event horizon, most of them associated with effects of
general relativity.

If you carried a radio transmitter to send back your comments on what was
happening, your friends would have to retune their receiver continuously to
lower and lower frequencies, an effect called the gravitational red shift. Consis-
tent with this shift, they would observe that your clocks (electronic or biological)
would appear to run more and more slowly, an effect called time dilation. In fact,
during their lifetimes they would never see you make it to the event horizon.

In your frame of reference, you would make it to the event horizon in a rather
short time but in a rather disquieting way. As you fell feet first into the black hole,
the gravitational pull on your feet would be greater than that on your head, which
would be slightly farther away from the black hole. The differences in gravita-
tional force on different parts of your body would be great enough to stretch you
along the direction toward the black hole and compress you perpendicular to it.
These effects (called tidal forces) would rip you to atoms, and then rip your
atoms apart, before you reached the event horizon.

Detecting Black Holes
If light cannot escape from a black hole and if black holes are as small as Exam-
ple 12.11 suggests, how can we know that such things exist? The answer is that
any gas or dust near the black hole tends to be pulled into an accretion disk that
swirls around and into the black hole, rather like a whirlpool (Fig. 12.29). Friction
within the accretion disk’s material causes it to lose mechanical energy and spiral
into the black hole; as it moves inward, it is compressed together. This causes
heating of the material, just as air compressed in a bicycle pump gets hotter. Tem-
peratures in excess of can occur in the accretion disk, so hot that the disk
emits not just visible light (as do bodies that are “red-hot” or “white-hot”) but
x rays. Astronomers look for these x rays (emitted by the material before it
crosses the event horizon) to signal the presence of a black hole. Several promis-
ing candidates have been found, and astronomers now express considerable con-
fidence in the existence of black holes.

Black holes in binary star systems like the one depicted in Fig. 12.29 have
masses a few times greater than the sun’s mass. There is also mounting evidence
for the existence of much larger supermassive black holes. One example is
thought to lie at the center of our Milky Way galaxy, some 26,000 light-years
from earth in the direction of the constellation Sagittarius. High-resolution
images of the galactic center reveal stars moving at speeds greater than

about an unseen object that lies at the position of a source of radio1500 km/s

106 K

1      Matter is pulled from
the ordinary star to form
an accretion disk around
the black hole.

3      Gas in the accretion disk that
does not fall into the black hole is
ejected in two fast-moving jets.

Black hole

2      The gas in the accretion disk
is compressed and heated to
high temperatures, becoming
an intense source of x rays.

Ordinary star

12.29 A binary star system in which an
ordinary star and a black hole orbit each
other. The black hole itself cannot be seen,
but the x rays from its accretion disk can
be detected.

1014 m

12.30 This false-color image shows the
motions of stars at the center of our galaxy
over a nine-year period. Analyzing these
orbits using Kepler’s third law indicates
that the stars are moving about an unseen
object that is some times the
mass of the sun. The scale bar indicates a
length of (670 times the distance
from the earth to the sun) at the distance of
the galactic center.

1014 m

3.7 3 106

waves called Sgr A* (Fig. 12.30). By analyzing these motions, astronomers can
infer the period T and semi-major axis a of each star’s orbit. The mass of the
unseen object can then be calculated using Kepler’s third law in the form given in
Eq. (12.17), with the mass of the sun replaced by 

The conclusion is that the mysterious dark object at the galactic center has a mass
of or 3.7 million times the mass of the sun. Yet observations with
radio telescopes show that it has a radius no more than about comparable
to the distance from the earth to the sun. These observations suggest that this
massive, compact object is a black hole with a Schwarzschild radius of

Astronomers hope to improve the resolution of their observations
so that they can actually see the event horizon of this black hole.

Other lines of research suggest that even larger black holes, in excess of
times the mass of the sun, lie at the centers of other galaxies. Observational

and theoretical studies of black holes of all sizes continue to be an exciting area
of research in both physics and astronomy.
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Test Your Understanding of Section 12.8 If the sun somehow collapsed
to form a black hole, what effect would this event have on the orbit of the earth?
(i) The orbit would shrink; (ii) the orbit would expand; (iii) the orbit would remain the
same size.

❚
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CHAPTER 12 SUMMARY

Newton’s law of gravitation: Any two bodies with
masses and a distance r apart, attract each other
with forces inversely proportional to These forces
form an action–reaction pair and obey Newton’s third
law. When two or more bodies exert gravitational
forces on a particular body, the total gravitational force
on that individual body is the vector sum of the forces
exerted by the other bodies. The gravitational interac-
tion between spherical mass distributions, such as plan-
ets or stars, is the same as if all the mass of each
distribution were concentrated at the center. (See Exam-
ples 12.1–12.3 and 12.10.)

r 2.
m2 ,m1

(12.1)Fg 5
Gm1 m2

r 2

Gravitational force, weight, and gravitational potential
energy: The weight w of a body is the total gravitational
force exerted on it by all other bodies in the universe.
Near the surface of the earth (mass and radius the
weight is essentially equal to the gravitational force of
the earth alone. The gravitational potential energy U of
two masses m and separated by a distance r is
inversely proportional to r. The potential energy is never
positive; it is zero only when the two bodies are infinitely
far apart. (See Examples 12.4 and 12.5.)

mE

RE),mE

(weight at earth’s surface)
(12.3)

(acceleration due to 
(12.4)

gravity at earth’s surface)

(12.9)U 5 2 

GmE m

r

g 5
GmE

RE 

2

w 5 Fg 5
GmE m

RE 

2
RE 5 6.38 3 106 m

r 2 RE (3 10 
6 m)

r (3 106 m)

w (N)

0

0

mass m

Earth, mass mE

w 5 GmEm/r 2

Orbits: When a satellite moves in a circular orbit, the
centripetal acceleration is provided by the gravitational
attraction of the earth. Kepler’s three laws describe
the more general case: an elliptical orbit of a planet
around the sun or a satellite around a planet. (See
Examples 12.6–12.9.)

(speed in circular orbit) (12.10)

(period in circular orbit) (12.12)
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Black holes: If a nonrotating spherical mass distribu-
tion with total mass M has a radius less than its
Schwarzschild radius it is called a black hole. The
gravitational interaction prevents anything, including
light, from escaping from within a sphere with radius

(See Example 12.11.)RS .

RS , (Schwarzschild radius) (12.30)

RS 5
2GM

c2

RS

If all of the body is inside its
Schwarzschild radius RS = 2GM/c2,
the body is a black hole.
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law of gravitation, 384
gravitational constant, 384
gravitational potential energy, 391
escape speed, 391
closed orbit, 394

open orbit, 394
semi-major axis, 397
eccentricity, 397
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apparent weight, 403

black hole, 406
Schwarzschild radius, 406
event horizon, 407

Answer to Chapter Opening Question ?
The smaller the orbital radius r of a satellite, the faster its orbital
speed see [Eq. (12.10)]. Hence a particle near the inner edge of
Saturn’s rings has a faster speed than a particle near the outer edge
of the rings.

Answers to Test Your Understanding Questions
12.1 Answer: (v) From Eq. (12.1), the gravitational force of the
sun (mass on a planet (mass a distance r away has magni-
tude Compared to the earth, Saturn has a value of

that is times greater and a value of that is also
100 times greater. Hence the force that the sun exerts on Saturn has
the same magnitude as the force that the sun exerts on earth. The
acceleration of a planet equals the net force divided by the planet’s
mass: Since Saturn has 100 times more mass than the earth, its
acceleration is as great as that of the earth.
12.2 Answer: (iii), (i), (ii), (iv) From Eq. (12.4), the acceleration
due to gravity at the surface of a planet of mass and radius is

That is, is directly proportional to the planet’s
mass and inversely proportional to the square of its radius. It fol-
lows that compared to the value of g at the earth’s surface, the value
of on each planet is (i) as great; (ii) as
great; (iii) time as great—that is, the same as on earth;
and (iv) as great.
12.3 Answer: yes This is possible because surface gravity and
escape speed depend in different ways on the planet’s mass and
radius The value of g at the surface is while the 
escape speed is For the planet Saturn, for example,

is about 100 times the earth’s mass and is about 10 times the
earth’s radius. The value of g is different than on earth by a factor

(i.e., it is the same as on earth), while the escape
speed is greater by a factor It may help to
remember that the surface gravity tells you about conditions right
next to the planet’s surface, while the escape speed (which tells

"100/10 5 3.2.
1100 2 / 110 2 2 5 1

RPmP

"2GmP  /RP .
GmP/RP 

2,RP:
mP

2/42 5 1/8
4/22 5 1

4/42 5 1/42/22 5 1/2gP

gPgP 5 GmP/RP 

2
 .

RPmP

1/100

m2102 5 100r 2
Fg 5 Gm1 m2/r 2.

m2)m1)

v

you how fast you must travel to escape to infinity) depends on con-
ditions at all points between the planet’s surface and infinity.
Because Saturn has so much more mass than the earth, its gravita-
tional effects are appreciable at much greater distances and its
escape speed is higher.
12.4 Answer: (ii) Equation (12.10) shows that in a smaller-
radius orbit, the spacecraft has a faster speed. The negative work
done by air resistance decreases the total mechanical energy

the kinetic energy K increases (becomes more posi-
tive), but the gravitational potential energy U decreases (becomes
more negative) by a greater amount.
12.5 Answer: (iii) Equation (12.17) shows that the orbital period
T is proportional to the power of the semi-major axis a. Hence
the orbital period of Comet X is longer than that of Comet Y by a
factor of 
12.6 Answer: no Our analysis shows that there is zero gravita-
tional force inside a hollow spherical shell. Hence visitors to the
interior of a hollow planet would find themselves weightless, and
they could not stand or walk on the planet’s inner surface.
12.7 Answer: (iv) The discussion following Eq. (12.27) shows
that the difference between the acceleration due to gravity at the
equator and at the poles is Since this planet has the same
radius and hence the same circumference as the earth, the speed 
at its equator must be 10 times the speed of the earth’s equator.
Hence is times greater than for the earth, or

The acceleration due to gravity at
the poles is while at the equator it is dramatically less,

You can show that if this
planet were to rotate 17.0 times faster than the earth, the accelera-
tion due to gravity at the equator would be zero and loose objects
would fly off the equator’s surface!
12.8 Answer: (iii) If the sun collapsed into a black hole (which,
according to our understanding of stars, it cannot do), it would
have the same mass but a much smaller radius. Because the gravi-
tational attraction of the sun on the earth does not depend on the
sun’s radius, the earth’s orbit would be unaffected.

9.80 m/s2 2 3.39 m/s2 5 6.41 m/s2.
9.80 m/s2,

100 10.0339 m/s2 2 5 3.39 m/s2.
102 5 100v2/RE

v
v2/RE .

43/2 5 8.

3
2

E 5 K 1 U;

Discussion Questions
Q12.1. A student wrote: “The only reason an apple falls downward
to meet the earth instead of the earth rising upward to meet the
apple is that the earth is much more massive and so exerts a much
greater pull.” Please comment.
Q12.2. A planet makes a circular orbit with period T around a star. If
it were to orbit, at the same distance, a star with three times the mass
of the original star, would the new period (in terms of T ) would be
(a) 3T, (b) (c) T, (d) or (e)
Q12.3. If all planets had the same average density, how would the
acceleration due to gravity at the surface of a planet depend on its
radius?

T/3?T/"3 ,T  "3 ,

Q12.4. Is a pound of butter on the earth the same amount as a
pound of butter on Mars? What about a kilogram of butter?
Explain.
Q12.5. Example 12.2 (Section 12.1) shows that the acceleration of
each sphere caused by the gravitational force is inversely propor-
tional to the mass of that sphere. So why does the force of gravity
give all masses the same acceleration when they are dropped near
the surface of the earth?
Q12.6. When will you attract the sun more: today at noon, or
tonight at midnight? Explain.
Q12.7. Since the moon is constantly attracted toward the earth by
the gravitational interaction, why doesn’t it crash into the earth?

Fg (1 on 2)
S

Fg (2 on 1)
S

r

Fg (1 on 2) 5 Fg (2 on 1)

m1

m2

PROBLEMS For instructor-assigned homework, go to www.masteringphysics.com
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Q12.8. A planet makes a circular orbit with period T around a star.
If the planet were to orbit at the same distance around this star, but
had three times as much mass, what would the new period (in terms
of T) would be: (a) 3T, (b) (c) T, (d) or (e)
Q12.9. The sun pulls on the moon with a force that is more than
twice the magnitude of the force with which the earth attracts the
moon. Why, then, doesn’t the sun take the moon away from the
earth?
Q12.10. As defined in Chapter 7, gravitational potential energy is

and is positive for a body of mass m above the earth’s
surface (which is at But in this chapter, gravitational
potential energy is which is negative for a body
of mass m above the earth’s surface (which is at How can
you reconcile these seemingly incompatible descriptions of gravi-
tational potential energy?
Q12.11. A planet is moving at constant speed in a circular orbit
around a star. In one complete orbit, what is the net amount of
work done on the planet by the star’s gravitational force: positive,
negative, or zero? What if the planet’s orbit is an ellipse, so that the
speed is not constant? Explain your answers.
Q12.12. Does the escape speed for an object at the earth’s surface
depend on the direction in which it is launched? Explain. Does
your answer depend on whether or not you include the effects of
air resistance?
Q12.13. If a projectile is fired straight up from the earth’s surface,
what would happen if the total mechanical energy (kinetic plus
potential) is (a) less than zero, and (b) greater than zero? In each
case, ignore air resistance and the gravitational effects of the sun,
the moon, and the other planets.
Q12.14. Discuss whether this statement is correct: “In the absence
of air resistance, the trajectory of a projectile thrown near the
earth’s surface is an ellipse, not a parabola.”
Q12.15. The earth is closer to the sun in November than in May. In
which of these months does it move faster in its orbit? Explain
why.
Q12.16. A communications firm wants to place a satellite in orbit
so that it is always directly above the earth’s 45th parallel (latitude

north). This means that the plane of the orbit will not pass
through the center of the earth. Is such an orbit possible? Why or
why not?
Q12.17. At what point in an elliptical orbit is the acceleration max-
imum? At what point is it minimum? Justify your answers.
Q12.18. Which takes more fuel: a voyage from the earth to the
moon or from the moon to the earth? Explain.
Q12.19. What would Kepler’s third law be for circular orbits if an
amendment to Newton’s law of gravitation made the gravitational
force inversely proportional to Would this change affect
Kepler’s other two laws? Explain.
Q12.20. In the elliptical orbit of Comet Halley shown in Fig. 12.21a,
the sun’s gravity is responsible for making the comet fall inward
from aphelion to perihelion. But what is responsible for making
the comet move from perihelion back outward to aphelion?
Q12.21. Many people believe that orbiting astronauts feel weight-
less because they are “beyond the pull of the earth’s gravity.”
How far from the earth would a spacecraft have to travel to be
truly beyond the earth’s gravitational influence? If a spacecraft
were really unaffected by the earth’s gravity, would it remain in
orbit? Explain. What is the real reason astronauts in orbit feel
weightless?
Q12.22. As part of their training before going into orbit, astronauts
ride in an airliner that is flown along the same parabolic trajectory
as a freely falling projectile. Explain why this gives the same expe-
rience of apparent weightlessness as being in orbit.

r 3?

45°

r 5 RE).
U 5 2GmE m/r,

y 5 0).
U 5 mgy

T/3?T/"3 ,T "3 ,

Exercises
Section 12.1 Newton’s Law of Gravitation
12.1. What is the ratio of the gravitational pull of the sun on the
moon to that of the earth on the moon? (Assume the distance of the
moon from the sun can be approximated by the distance of the earth
from the sun.) Use the data in Appendix F. Is it more accurate to
say that the moon orbits the earth, or that the moon orbits the sun?
12.2. Cavendish Experiment. In the Cavendish balance appara-
tus shown in Fig. 12.4, suppose that
and the rod connecting the pairs is 30.0 cm long. If, in each pair,

and are 12.0 cm apart center-to-center, find (a) the net force
and (b) the net torque (about the rotation axis) on the rotating part
of the apparatus. (c) Does it seem that the torque in part (b) would
be enough to easily rotate the rod? Suggest some ways to improve
the sensitivity of this experiment.
12.3. How far from a very small 100-kg ball would a particle have
to be placed so that the ball pulled on the particle just as hard as the
earth does? Is it reasonable that you could actually set up this as an
experiment? Why?
12.4. Two uniform spheres, each with mass M and radius R, touch
each other. What is the magnitude of their gravitational force of
attraction?
12.5. An interplanetary spaceship passes through the point in
space where the gravitational forces from the sun and the earth on
the ship exactly cancel. (a) How far from the center of the earth is
it? Use the data in Appendix F. (b) Once it reached the point found
in part (a), could the spaceship turn off its engines and just hover
there indefinitely? Explain.
12.6. (a) In Fig. 12.31 what are the magnitude and direction of the
net gravitational force exerted on the 0.100-kg uniform sphere by
the other two uniform spheres? The centers of all three spheres are
on the same line. (b) According to Newton’s third law, does the
0.100-kg sphere exert forces of the same magnitude as your
answer to part (a), but in the opposite direction, on each of the
other two spheres?

m2m1

m1

m1 5 1.10 kg, m2 5 25.0 kg,

5.00 kg
0.100 kg

10.0 kg

0.400 m 0.600 m

Figure 12.31 Exercise 12.6.

12.11. A particle of mass 3m is located 1.00 m from a particle of
mass m. (a) Where should you put a third mass M so that the net
gravitational force on M due to the two masses is exactly zero?
(b) Is the equilibrium of M at this point stable or unstable (i) for
points along the line connecting m and 3m, and (ii) for points
along the line passing through M and perpendicular to the line
connecting m and 3m?
12.12. The point masses m and 2m lie along the x-axis, with m at
the origin and 2m at A third point mass M is moved along
the x-axis. (a) At what point is the net gravitational force on M due
to the other two masses equal to zero? (b) Sketch the x-component
of the net force on M due to m and 2m, taking quantities to the
right as positive. Include the regions and

Be especially careful to show the behavior of the graph on
either side of and 
12.13. Two uniform spheres,
each of mass 0.260 kg, are fixed
at points A and B (Fig. 12.32).
Find the magnitude and direc-
tion of the initial acceleration of
a uniform sphere with mass
0.010 kg if released from rest at
point P and acted on only by
forces of gravitational attraction of the spheres at A and B.

Section 12.2 Weight
12.14. Use the mass and radius of the dwarf planet Pluto given in
Appendix F to calculate the acceleration due to gravity at the sur-
face of Pluto.
12.15. At what distance above the surface of the earth is the accel-
eration due to the earth’s gravity if the acceleration due
to gravity at the surface has magnitude 
12.16. The mass of Venus is 81.5% that of the earth, and its radius is
94.9% that of the earth. (a) Compute the acceleration due to gravity
on the surface of Venus from these data. (b) If a rock weighs 75.0 N
on earth, what would it weigh at the surface of Venus?
12.17. Titania, the largest moon of the planet Uranus, has the
radius of the earth and the mass of the earth. (a) What is the
acceleration due to gravity at the surface of Titania? (b) What is the
average density of Titania? (This is less than the density of rock,
which is one piece of evidence that Titania is made primarily of ice.)
12.18. Rhea, one of Saturn’s moons, has a radius of 765 km and an
acceleration due to gravity of at its surface. Calculate
its mass and average density.
12.19. Calculate the earth’s gravity force on a 75-kg astronaut who
is repairing the Hubble Space Telescope 600 km above the earth’s

0.278 m/s2

1
1700

1
8

9.80 m/s2?
0.980 m/s2

x 5 L.x 5 0
x . L.

0 , x , L,x , 0,

x 5 L.

surface, and then compare this value with his weight at the earth’s
surface. In view of your result, explain why we say astronauts are
weightless when they orbit the earth in a satellite such as a space
shuttle. Is it because the gravitational pull of the earth is negligibly
small?
12.20. Neutron stars, such as the one at the center of the Crab Neb-
ula, have about the same mass as our sun but have a much smaller
diameter. If you weigh 675 N on the earth, what would you weigh
at the surface of a neutron star that has the same mass as our sun
and a diameter of 20 km?
12.21. An experiment using the Cavendish balance to measure the
gravitational constant G found that a uniform 0.400-kg sphere
attracts another uniform 0.00300-kg sphere with a force of

when the distance between the centers of the
spheres is 0.0100 m. The acceleration due to gravity at the earth’s
surface is and the radius of the earth is 6380 km. Com-
pute the mass of the earth from these data.
12.22. Exploring Europa. There is strong evidence that Europa,
a satellite of Jupiter, has a liquid ocean beneath its icy surface.
Many scientists think we should land a vehicle there to search for
life. Before launching it, we would want to test such a lander under
the gravity conditions at the surface of Europa. One way to do this
is to put the lander at the end of a rotating arm in an orbiting earth
satellite. If the arm is 4.25 m long and pivots about one end, at
what angular speed (in rpm) should it spin so that the acceleration
of the lander is the same as the acceleration due to gravity at the
surface of Europa? The mass of Europa is and its
diameter is 3138 km.

Section 12.3 Gravitational Potential Energy
12.23. The asteroid Dactyl, discovered in 1993, has a radius of
only about 700 m and a mass of about Use the
results of Example 12.5 (Section 12.3) to calculate the escape
speed for an object at the surface of Dactyl. Could a person reach
this speed just by walking?
12.24. Mass of a Comet. On July 4, 2005, the NASA spacecraft
Deep Impact fired a projectile onto the surface of Comet Tempel 1.
This comet is about 9.0 km across. Observations of surface debris
released by the impact showed that dust with a speed as low as

was able to escape the comet. (a) Assuming a spherical
shape, what is the mass of this comet? (Hint: See Example 12.5 in
Section 12.3.) (b) How far from the comet’s center will this debris
be when it has lost (i) 90.0% of its initial kinetic energy at the sur-
face; and (ii) all of its kinetic energy at the surface?
12.25. Use the results of Example 12.5 (Section 12.3) to calculate
the escape speed for a spacecraft (a) from the surface of Mars; and
(b) from the surface of Jupiter. Use the data in Appendix F. (c) Why
is the escape speed for a spacecraft independent of the spacecraft’s
mass?
12.26. Ten days after it was launched toward Mars in December
1998, the Mars Climate Orbiter spacecraft (mass 629 kg) was

from the earth and traveling at 
relative to the earth. At this time, what were (a) the spacecraft’s
kinetic energy relative to the earth and (b) the potential energy of
the earth-spacecraft system?

Section 12.4 The Motion of Satellites
12.27. For a satellite to be in a circular orbit 780 km above the
surface of the earth, (a) what orbital speed must it be given, and
(b) what is the period of the orbit (in hours)?
12.28. Aura Mission. On July 15, 2004, NASA launched the
Aura spacecraft to study the earth’s climate and atmosphere. This
satellite was injected into an orbit 705 km above the earth’s surface,
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Figure 12.32 Exercise 12.9.

12.7. A typical adult human has a mass of about 70 kg. (a) What
force does a full moon exert on such a human when it is directly
overhead with its center 378,000 km away? (b) Compare this force
with the force exerted on the human by the earth.
12.8. An 8.00-kg point mass and a 15.0-kg point mass are held in
place 50.0 cm apart. A particle of mass m is released from a point
between the two masses 20.0 cm from the 8.00-kg mass along the
line connecting the two fixed masses. Find the magnitude and
direction of the acceleration of the particle.
12.9. Calculate the magnitude and direction of the net gravita-
tional force on the moon due to the earth and the sun when the
moon is in each of the positions shown in Fig. 12.32. (Note that the
figure is not drawn to scale. Assume that the sun is in the plane of
the earth-moon orbit, even though this is not actually the case.)
Use the data in Appendix F.
12.10. Four identical masses of 800 kg each are placed at the cor-
ners of a square whose side length is 10.0 cm. What is the net grav-
itational force (magnitude and direction) on one of the masses, due
to the other three?

Figure 12.33 Exercise 12.13.
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and we shall assume a circular orbit. (a) How many hours does it
take this satellite to make one orbit? (b) How fast (in is the
Aura spacecraft moving?
12.29. Assume that the earth’s orbit around the sun is circular. Use
the earth’s orbital radius and orbital period given in Appendix F to
calculate the mass of the sun.
12.30. International Space Station. The International Space
Station makes 15.65 revolutions per day in its orbit around the
earth. Assuming a circular orbit, how high is this satellite above
the surface of the earth?
12.31. Deimos, a moon of Mars, is about 12 km in diameter with
mass Suppose you are stranded alone on Deimos
and want to play a one-person game of baseball. You would be the
pitcher, and you would be the batter! (a) With what speed would
you have to throw a baseball so that it would go into a circular
orbit just above the surface and return to you so you could hit it?
Do you think you could actually throw it at this speed? (b) How
long (in hours) after throwing the ball should you be ready to hit
it? Would this be an action-packed baseball game?

Section 12.5 Kepler’s Laws and the Motion of Planets
12.32. Planet Vulcan. Suppose that a planet were discovered
between the sun and Mercury, with a circular orbit of radius equal
to of the average orbit radius of Mercury. What would be the
orbital period of such a planet? (Such a planet was once postulated,
in part to explain the precession of Mercury’s orbit. It was even
given the name Vulcan, although we now have no evidence that it
actually exists. Mercury’s precession has been explained by gen-
eral relativity.)
12.33. The star Cancri is 57 light-years from the earth and
has a mass 0.85 times that of our sun. A planet has been detected in
a circular orbit around Cancri with an orbital radius equal to
0.11 times the radius of the earth’s orbit around the sun. What are
(a) the orbital speed and (b) the orbital period of the planet of 
Cancri?
12.34. In March 2006, two small satellites were discovered orbiting
Pluto, one at a distance of 48,000 km and the other at 64,000 km.
Pluto already was known to have a large satellite Charon, orbiting
at 19,600 km with an orbital period of 6.39 days. Assuming that the
satellites do not affect each other, find the orbital periods of the two
small satellites without using the mass of Pluto.
12.35. (a) Use Fig. 12.19 to show that the sun-planet distance at
perihelion is the sun-planet distance at aphelion is

and therefore the sum of these two distances is 2a.
(b) When the dwarf planet Pluto was at perihelion in 1989, it was
almost 100 million km closer to the sun than Neptune. The semi-
major axes of the orbits of Pluto and Neptune are 
and respectively, and the eccentricities are 0.248
and 0.010. Find Pluto’s closest distance and Neptune’s farthest dis-
tance from the sun. (c) How many years after being at perihelion in
1989 will Pluto again be at perihelion?
12.36. Hot Jupiters. In 2004 astronomers reported the discov-
ery of a large Jupiter-sized planet orbiting very close to the star
HD 179949 (hence the term “hot Jupiter”). The orbit was just
the distance of Mercury from our sun, and it takes the planet only
3.09 days to make one orbit (assumed to be circular). (a) What is
the mass of the star? Express your answer in kilograms and as a
multiple of our sun’s mass. (b) How fast (in is this planet
moving?
12.37. The Helios B spacecraft had a speed of when it was

from the sun. (a) Prove that it was not in a circular
orbit about the sun. (b) Prove that its orbit about the sun was
closed and therefore elliptical.
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*Section 12.6 Spherical Mass Distributions
12.38. A uniform, spherical, 1000.0-kg shell has a radius of 5.00 m.
(a) Find the gravitational force this shell exerts on a 2.00-kg point
mass placed at the following distances from the center of the shell:
(i) 5.01 m, (ii) 4.99 m, (iii) 2.72 m. (b) Sketch a qualitative graph of
the magnitude of the gravitational force this sphere exerts on a
point mass m as a function of the distance r of m from the center of
the sphere. Include the region from to
12.39. A uniform, solid, 1000.0-kg sphere has a radius of 5.00 m.
(a) Find the gravitational force this sphere exerts on a 2.00-kg
point mass placed at the following distances from the center of the
sphere: (i) 5.01 m, and (ii) 2.50 m. (b) Sketch a qualitative graph of
the magnitude of the gravitational force this sphere exerts on a
point mass m as a function of the distance r of m from the center of
the sphere. Include the region from to 
12.40. A thin, uniform rod has length L and mass M. A small uni-
form sphere of mass m is placed a distance x from one end of the
rod, along the axis of the rod (Fig. 12.34). (a) Calculate the gravita-
tional potential energy of the rod–sphere system. Take the potential
energy to be zero when the rod and sphere are infinitely far apart.
Show that your answer reduces to the expected result when x is
much larger than L. (Hint: Use the power series expansion for

given in Appendix B.) (b) Use to find the
magnitude and direction of the gravitational force exerted on the
sphere by the rod (see Section 7.4). Show that your answer reduces
to the expected result when x is much larger than L.
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(a) What is the gravitational force on a 5.0-kg object at the north
pole of Neptune? (b) What is the apparent weight of this same
object at Neptune’s equator? (Note that Neptune’s “surface” is
gaseous, not solid, so it is impossible to stand on it.)

*Section 12.8 Black Holes
12.44. Mini Black Holes. Cosmologists have speculated that
black holes the size of a proton could have formed during the early
days of the Big Bang when the universe began. If we take the
diameter of a proton to be what would be the mass
of a mini black hole?
12.45. To what fraction of its current radius would the earth have
to be compressed to become a black hole?
12.46. (a) Show that a black hole attracts an object of mass m with
a force of where r is the distance between the object
and the center of the black hole. (b) Calculate the magnitude of the
gravitational force exerted by a black hole of Schwarzschild radius
14.0 mm on a 5.00-kg mass 3000 km from it. (c) What is the mass
of this black hole?
12.47. At the Galaxy’s Core. Astronomers have observed a
small, massive object at the center of our Milky Way galaxy (see
Section 12.8). A ring of material orbits this massive object; the ring
has a diameter of about 15 light-years and an orbital speed of about

(a) Determine the mass of the object at the center of the
Milky Way galaxy. Give your answer both in kilograms and in
solar masses (one solar mass is the mass of the sun). (b) Observa-
tions of stars, as well as theories of the structure of stars, suggest
that it is impossible for a single star to have a mass of more than
about 50 solar masses. Can this massive object be a single, ordi-
nary star? (c) Many astronomers believe that the massive object at
the center of the Milky Way galaxy is a black hole. If so, what
must the Schwarzschild radius of this black hole be? Would a
black hole of this size fit inside the earth’s orbit around the sun?
12.48. In 2005 astronomers announced the discovery of a large
black hole in the galaxy Markarian 766 having clumps of matter
orbiting around once every 27 hours and moving at
(a) How far are these clumps from the center of the black hole?
(b) What is the mass of this black hole, assuming circular orbits?
Express your answer in kilograms and as a multiple of our sun’s
mass. (c) What is the radius of its event horizon?

Problems
12.49. Three uniform spheres
are fixed at the positions shown
in Fig. 12.36. (a) What are the
magnitude and direction of the
force on a 0.0150-kg particle
placed at P? (b) If the spheres are
in deep outer space and a 0.0150-
kg particle is released from rest
300 m from the origin along a
line below the what
will the particle’s speed be when it reaches the origin?
12.50. A uniform sphere with mass 60.0 kg is held with its center
at the origin, and a second uniform sphere with mass 80.0 kg is
held with its center at the point (a) What are
the magnitude and direction of the net gravitational force due to
these objects on a third uniform sphere with mass 0.500 kg placed
at the point (b) Where, other than infinitely far
away, could the third sphere be placed such that the net gravita-
tional force acting on it from the other two spheres is equal to
zero?
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12.51. (a) Show that the gravitational force on the small star due to
the two large stars in Example 12.3 (Section 12.1) is not directed
toward the point midway between the two large masses. (b) Con-
sider the two large stars as making up a single, rigid body, as if
they were joined by a rod of negligible mass. Calculate the torque
exerted by the small star on the rigid body for a pivot at its center
of mass. (c) Explain how the result in part (b) shows that the center
of mass does not coincide with the center of gravity. Why is this
the case in this situation?
12.52. At a certain instant, the earth, the moon, and a stationary
1250-kg spacecraft lie at the vertices of an equilateral triangle
whose sides are in length. (a) Find the magnitude
and direction of the net gravitational force exerted on the space-
craft by the earth and moon. State the direction as an angle meas-
ured from a line connecting the earth and the spacecraft. In a
sketch, show the earth, the moon, the spacecraft, and the force vec-
tor. (b) What is the minimum amount of work that you would have
to do to move the spacecraft to a point far from the earth and
moon? You can ignore any gravitational effects due to the other
planets or the sun.
12.53. An experiment is performed in deep space with two uni-
form spheres, one with mass 25.0 kg and the other with mass
100.0 kg. They have equal radii, The spheres are
released from rest with their centers 40.0 m apart. They accelerate
toward each other because of their mutual gravitational attraction.
You can ignore all gravitational forces other than that between the
two spheres. (a) Explain why linear momentum is conserved. (b)
When their centers are 20.0 m apart, find (i) the speed of each
sphere and (ii) the magnitude of the relative velocity with which
one sphere is approaching the other. (c) How far from the initial
position of the center of the 25.0-kg sphere do the surfaces of the
two spheres collide?
12.54. Assume that the moon orbits the earth in a circular orbit.
From the observed orbital period of 27.3 days, calculate the distance
of the moon from the center of the earth. Assume that the moon’s
motion is determined solely by the gravitational force exerted on it
by the earth, and use the mass of the earth given in Appendix F.
12.55. Geosynchronous Satellites. Many satellites are moving
in a circle in the earth’s equatorial plane. They are at such a height
above the earth’s surface that they always remain above the same
point. (a) Find the altitude of these satellites above the earth’s sur-
face. (Such an orbit is said to be geosynchronous.) (b) Explain,
with a sketch, why the radio signals from these satellites cannot
directly reach receivers on earth that are north of latitude.
12.56. A landing craft with mass 12,500 kg is in a circular orbit

above the surface of a planet. The period of the orbit
is 5800 s. The astronauts in the lander measure the diameter of the
planet to be The lander sets down at the north pole
of the planet. What is the weight of a 85.6-kg astronaut as he steps
out onto the planet’s surface?
12.57. What is the escape speed from a 300-km-diameter asteroid
with a density of 
12.58. (a) Asteroids have average densities of about 
and radii from 470 km down to less than a kilometer. Assuming
that the asteroid has a spherically symmetric mass distribution,
estimate the radius of the largest asteroid from which you could
escape simply by jumping off. (Hint: You can estimate your jump
speed by relating it to the maximum height that you can jump on
earth.) (b) Europa, one of Jupiter’s four large moons, has a radius
of 1570 km. The acceleration due to gravity at its surface is

Calculate its average density.
12.59. (a) Suppose you are at the earth’s equator and observe a
satellite passing directly overhead and moving from west to east in
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Figure 12.35 Exercise 12.41 and Problem 12.83.

12.41. Consider the ring-shaped body of Fig. 12.35. A particle
with mass m is placed a distance x from the center of the ring,
along the line through the center of the ring and perpendicular to
its plane. (a) Calculate the gravitational potential energy U of this
system. Take the potential energy to be zero when the two objects
are far apart. (b) Show that your answer to part (a) reduces to the
expected result when x is much larger than the radius a of the
ring. (c) Use to find the magnitude and direction of
the force on the particle (see Section 7.4). (d) Show that your
answer to part (c) reduces to the expected result when x is much
larger than a. (e) What are the values of U and when
Explain why these results make sense.
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Figure 12.36 Problem 12.49.

*Section 12.7 Apparent Weight and the Earth’s Rotation
12.42. The weight of Santa Claus at the North Pole, as determined
by a spring balance, is 875 N. What would this spring balance read
for his weight at the equator, assuming that the earth is spherically
symmetric?
12.43. The acceleration due to gravity at the north pole of Neptune
is approximately Neptune has mass and
radius and rotates once around its axis in about 16 h.2.5 3 104 km

1.0 3 1026 kg10.7 m/s2.
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the sky. Exactly 12.0 hours later, you again observe this satellite to
be directly overhead. How far above the earth’s surface is the satel-
lite’s orbit? (b) You observe another satellite directly overhead and
traveling east to west. This satellite is again overhead in 12.0 hours.
How far is this satellite’s orbit above the surface of the earth?
12.60. Planet X rotates in the same manner as the earth, around an
axis through its north and south poles, and is perfectly spherical.
An astronaut who weighs 943.0 N on the earth weighs 915.0 N at
the north pole of Planet X and only 850.0 N at its equator. The dis-
tance from the north pole to the equator is 18,850 km, measured
along the surface of Planet X. (a) How long is the day on Planet X?
(b) If a 45,000-kg satellite is placed in a circular orbit 2000 km
above the surface of Planet X, what will be its orbital period?
12.61. There are two equations from which a change in the gravita-
tional potential energy U of the system of a mass m and the earth
can be calculated. One is (Eq. 7.2). The other is

(Eq. 12.9). As shown in Section 12.3, the first
equation is correct only if the gravitational force is a constant over
the change in height The second is always correct. Actually,
the gravitational force is never exactly constant over any change in
height, but if the variation is small, we can ignore it. Consider the
difference in U between a mass at the earth’s surface and a distance
h above it using both equations, and find the value of h for which
Eq. (7.2) is in error by 1%. Express this value of h as a fraction of
the earth’s radius, and also obtain a numerical value for it.
12.62. Your starship, the Aimless Wanderer, lands on the mysteri-
ous planet Mongo. As chief scientist-engineer, you make the fol-
lowing measurements: A 2.50-kg stone thrown upward from the
ground at returns to the ground in 8.00 s; the circumfer-
ence of Mongo at the equator is and there is no
appreciable atmosphere on Mongo. The starship commander, Cap-
tain Confusion, asks for the following information: (a) What is the
mass of Mongo? (b) If the Aimless Wanderer goes into a circular
orbit 30,000 km above the surface of Mongo, how many hours will
it take the ship to complete one orbit?
12.63. Calculate the percent difference between your weight in
Sacramento, near sea level, and at the top of Mount Everest, which
is 8800 m above sea level.
12.64. In Example 12.5 (Section 12.3) we ignored the gravitational
effects of the moon on a spacecraft en route from the earth to the
moon. In fact, we must include the gravitational potential energy
due to the moon as well. For this problem, you can ignore the
motion of the earth and moon. (a) If the moon has radius and the
distance between the centers of the earth and the moon is find
the total gravitational potential energy of the particle-earth and par-
ticle-moon systems when a particle with mass m is between the
earth and the moon, and a distance r from the center of the earth.
Take the gravitational potential energy to be zero when the objects
are far from each other. (b) There is a point along a line between the
earth and the moon where the net gravitational force is zero. Use the
expression derived in part (a) and numerical values from Appendix F
to find the distance of this point from the center of the earth. With
what speed must a spacecraft be launched from the surface of the
earth just barely to reach this point? (c) If a spacecraft were
launched from the earth’s surface toward the moon with an initial
speed of with what speed would it impact the moon?
12.65. An unmanned spacecraft is in a circular orbit around the
moon, observing the lunar surface from an altitude of 50.0 km (see
Appendix F). To the dismay of scientists on earth, an electrical
fault causes an on-board thruster to fire, decreasing the speed of
the spacecraft by If nothing is done to correct its orbit,
with what speed (in will the spacecraft crash into the lunar
surface?
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*12.66. What would be the length of a day (that is, the time
required for one rotation of the earth on its axis) if the rate of rota-
tion of the earth were such that at the equator?
12.67. Falling Hammer. A hammer with mass m is dropped
from rest from a height h above the earth’s surface. This height is
not necessarily small compared with the radius of the earth. If
you ignore air resistance, derive an expression for the speed of
the hammer when it reaches the surface of the earth. Your expres-
sion should involve h, and the mass of the earth.
12.68. (a) Calculate how much work is required to launch a space-
craft of mass m from the surface of the earth (mass radius 
and place it in a circular low earth orbit—that is, an orbit whose
altitude above the earth’s surface is much less than (As an
example, the International Space Station is in low earth orbit at an
altitude of about 400 km, much less than You can
ignore the kinetic energy that the spacecraft has on the ground due
to the earth’s rotation. (b) Calculate the minimum amount of addi-
tional work required to move the spacecraft from low earth orbit to
a very great distance from the earth. You can ignore the gravita-
tional effects of the sun, the moon, and the other planets. (c) Justify
the statement: “In terms of energy, low earth orbit is halfway to the
edge of the universe.”
12.69. A spacecraft is to be
launched from the surface of
the earth so that it will escape
from the solar system alto-
gether. (a) Find the speed rela-
tive to the center of the earth
with which the spacecraft must
be launched. Take into consid-
eration the gravitational effects
of both the earth and the sun,
and include the effects of the earth’s orbital speed, but ignore air
resistance. (b) The rotation of the earth can help this spacecraft
achieve escape speed. Find the speed that the spacecraft must
have relative to the earth’s surface if the spacecraft is launched
from Florida at the point shown in Fig. 12.37. The rotation and
orbital motions of the earth are in the same direction. The launch
facilities in Florida are north of the equator. (c) The Euro-
pean Space Agency (ESA) uses launch facilities in French Guiana
(immediately north of Brazil), north of the equator. What
speed relative to the earth’s surface would a spacecraft need to
escape the solar system if launched from French Guiana?
*12.70. Gravity Inside the Earth. Find the gravitational force
that the earth exerts on a 10.0-kg mass if it is placed at the follow-
ing locations. Consult Fig. 12.9, and assume a constant density
through each of the interior regions (mantle, outer core, inner core),
but not the same density in each of these regions. Use the graph to
estimate the average density for each region. (a) at the surface of
the earth; (b) at the outer surface of the molten outer core; (c) at the
surface of the solid inner core; (d) at the center of the earth.
12.71. Kirkwood Gaps. Hundreds of thousands of asteroids
orbit the sun within the asteroid belt, which extends from about

to about from the sun. (a) Find the orbital
period (in years) of (i) an asteroid at the inside of the belt and (ii) an
asteroid at the outside of the belt. Assume circular orbits. (b) In
1867 the American astronomer Daniel Kirkwood pointed out that
several gaps exist in the asteroid belt where relatively few asteroids
are found. It is now understood that these Kirkwood gaps are
caused by the gravitational attraction of Jupiter, the largest planet,
which orbits the sun once every 11.86 years. As an example, if an
asteroid has an orbital period half that of Jupiter, or 5.93 years, on
every other orbit this asteroid would be at its closest to Jupiter and
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feel a strong attraction toward the planet. This attraction, acting
over and over on successive orbits, could sweep asteroids out of the
Kirkwood gap. Use this hypothesis to determine the orbital radius
for this Kirkwood gap. (c) One of several other Kirkwood gaps
appears at a distance from the sun where the orbital period is 0.400
that of Jupiter. Explain why this happens, and find the orbital radius
for this Kirkwood gap.
12.72. If a satellite is in a sufficiently low orbit, it will encounter
air drag from the earth’s atmosphere. Since air drag does negative
work (the force of air drag is directed opposite the motion), the
mechanical energy will decrease. According to Eq. (12.13), if E
decreases (becomes more negative), the radius r of the orbit will
decrease. If air drag is relatively small, the satellite can be consid-
ered to be in a circular orbit of continually decreasing radius. (a)
According to Eq. (12.10), if the radius of a satellite’s circular orbit
decreases, the satellite’s orbital speed increases. How can you
reconcile this with the statement that the mechanical energy
decreases? (Hint: Is air drag the only force that does work on the
satellite as the orbital radius decreases?) (b) Due to air drag, the
radius of a satellite’s circular orbit decreases from r to 
where the positive quantity is much less than r. The mass of the
satellite is m. Show that the increase in orbital speed is

that the change in kinetic energy is
that the change in gravitational potential

energy is and that the amount
of work done by the force of air drag is 
Interpret these results in light of your comments in part (a). (c) A
satellite with mass 3000 kg is initially in a circular orbit 300 km
above the earth’s surface. Due to air drag, the satellite’s altitude
decreases to 250 km. Calculate the initial orbital speed; the
increase in orbital speed; the initial mechanical energy; the change
in kinetic energy; the change in gravitational potential energy; the
change in mechanical energy; and the work done by the force of
air drag. (d) Eventually a satellite will descend to a low enough
altitude in the atmosphere that the satellite burns up and the debris
falls to the earth. What becomes of the initial mechanical energy?
12.73. Binary Star—Equal Masses. Two identical stars with
mass M orbit around their center of mass. Each orbit is circular and
has radius R, so that the two stars are always on opposite sides of
the circle. (a) Find the gravitational force of one star on the other.
(b) Find the orbital speed of each star and the period of the orbit.
(c) How much energy would be required to separate the two stars
to infinity?
12.74. Binary Star—Different Masses. Two stars, with masses

and are in circular orbits around their center of mass. The
star with mass has an orbit of radius the star with mass 
has an orbit of radius (a) Show that the ratio of the orbital radii
of the two stars equals the reciprocal of the ratio of their masses,
that is, (b) Explain why the two stars have the
same orbital period, and show that the period T is given by

(c) The two stars in a cer-
tain binary star system move in circular orbits. The first star,
Alpha, has an orbital speed of The second star, Beta,
has an orbital speed of The orbital period is 137 d.
What are the masses of each of the two stars? (d) One of the best
candidates for a black hole is found in the binary system called
A0620-0090. The two objects in the binary system are an orange
star, V616 Monocerotis, and a compact object believed to be a black
hole (Fig. 12.22). The orbital period of A0620-0090 is 7.75 hours,
the mass of V616 Monocerotis is estimated to be 0.67 times the
mass of the sun, and the mass of the black hole is estimated to be
3.8 times the mass of the sun. Assuming that the orbits are circular,
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find the radius of each object’s orbit and the orbital speed of each
object. Compare these answers to the orbital radius and orbital
speed of the earth in its orbit around the sun.
12.75. Comets travel around the sun in elliptical orbits with large
eccentricities. If a comet has speed when at a dis-
tance of from the center of the sun, what is its speed
when at a distance of 
12.76. As Mars orbits the sun in its elliptical orbit, its distance of
closest approach to the center of the sun (at perihelion) is

and its maximum distance from the center of the
sun (at aphelion) is If the orbital speed of Mars at
aphelion is what is its orbital speed at perihe-
lion? (You can ignore the influence of the other planets.)
12.77. Consider a spacecraft in an elliptical orbit around the earth.
At the low point, or perigee, of its orbit, it is 400 km above the
earth’s surface; at the high point, or apogee, it is 4000 km above
the earth’s surface. (a) What is the period of the spacecraft’s orbit?
(b) Using conservation of angular momentum, find the ratio of the
spacecraft’s speed at perigee to its speed at apogee. (c) Using con-
servation of energy, find the speed at perigee and the speed at
apogee. (d) It is necessary to have the spacecraft escape from the
earth completely. If the spacecraft’s rockets are fired at perigee, by
how much would the speed have to be increased to achieve this?
What if the rockets were fired at apogee? Which point in the orbit
is more efficient to use?
12.78. The planet Uranus has a radius of 25,560 km and a surface
acceleration due to gravity of at its poles. Its moon
Miranda (discovered by Kuiper in 1948) is in a circular orbit about
Uranus at an altitude of 104,000 km above the planet’s surface.
Miranda has a mass of and a radius of 235 km.
(a) Calculate the mass of Uranus from the given data. (b) Calculate
the magnitude of Miranda’s acceleration due to its orbital motion
about Uranus. (c) Calculate the acceleration due to Miranda’s grav-
ity at the surface of Miranda. (d) Do the answers to parts (b) and
(c) mean that an object released 1 m above Miranda’s surface on
the side toward Uranus will fall up relative to Miranda? Explain.
12.79. A 3000-kg spacecraft is in a circular orbit 2000 km above
the surface of Mars. How much work must the spacecraft engines
perform to move the spacecraft to a circular orbit that is 4000 km
above the surface?
12.80. One of the brightest comets of the 20th century was Comet
Hyakutake, which passed close to the sun in early 1996. The
orbital period of this comet is estimated to be about 30,000 years.
Find the semi-major axis of this comet’s orbit. Compare it to the
average sun-Pluto distance and to the distance to Alpha Centauri,
the nearest star to the sun, which is 4.3 light-years distant.
12.81. Planets are not uniform inside. Normally, they are densest at
the center and have decreasing density outward toward the surface.
Model a spherically symmetric planet, with the same radius as the
earth, as having a density that decreases linearly with distance
from the center. Let the density be at the center
and at the surface. What is the acceleration due to
gravity at the surface of this planet?
12.82. A uniform wire with mass M and length L is bent into a
semicircle. Find the magnitude and direction of the gravitational
force this wire exerts on a point with mass m placed at the center of
curvature of the semicircle.
*12.83. An object in the shape of a thin ring has radius a and
mass M. A uniform sphere with mass m and radius R is placed with
its center at a distance x to the right of the center of the ring, along
a line through the center of the ring, and perpendicular to its plane
(Fig. 12.35). What is the gravitational force that the sphere exerts

2.0 3 103 kg/m3
15.0 3 103 kg/m3

6.6 3 1019 kg

11.1 m/s2

2.198 3 104 m/s,
2.492 3 1011 m.

2.067 3 1011 m,

5.0 3 1010 m?
2.5 3 1011 m

2.0 3 104 m/s

Figure 12.37 Problem 12.69.
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Figure 12.38 Challenge Problem 12.87.

on the ring-shaped object? Show that your result reduces to the
expected result when x is much larger than a.
*12.84. A thin, uniform rod has length L and mass M. Calculate the
magnitude of the gravitational force the rod exerts on a particle
with mass m that is at a point along the axis of the rod a distance x
from one end (Fig. 12.34). Show that your result reduces to the
expected result when x is much larger than L.
*12.85. A shaft is drilled from the surface to the center of the earth
(Fig. 12.25). As in Example 12.10 (Section 12.6), make the unreal-
istic assumption that the density of the earth is uniform. With this
approximation, the gravitational force on an object with mass m,
that is inside the earth at a distance r from the center, has magnitude

(as shown in Example 12.10) and points toward
the center of the earth. (a) Derive an expression for the gravitational
potential energy of the object–earth system as a function of
the object’s distance from the center of the earth. Take the potential
energy to be zero when the object is at the center of the earth. (b) If
an object is released in the shaft at the earth’s surface, what speed
will it have when it reaches the center of the earth?

Challenge Problems
12.86. (a) When an object is in a circular orbit of radius r around
the earth (mass the period of the orbit is T, given by Eq.
(12.12), and the orbital speed is given by Eq. (12.10). Show that
when the object is moved into a circular orbit of slightly larger
radius where its new period is and its
new orbital speed is where and are all posi-
tive quantities and

(Hint: Use the expression valid for 
(b) The International Space Station (ISS) is in a nearly circular
orbit at an altitude of 398.00 km above the surface of the earth. A
maintenance crew is about to arrive on the space shuttle that is also
in a circular orbit in the same orbital plane as the ISS, but with an
altitude of 398.10 km. The crew has come to remove a faulty 125-
m electrical cable, one end of which is attached to the ISS and the
other end of which is floating free in space. The plan is for the
shuttle to snag the free end just at the moment that the shuttle, the
ISS, and the center of the earth all lie along the same line. The
cable will then break free from the ISS when it becomes taut. How
long after the free end is caught by the space shuttle will it detach
from the ISS? Give your answer in minutes. (c) If the shuttle
misses catching the cable, show that the crew must wait a time

before they have a second chance. Find the numerical
value of t and explain whether it would be worth the wait.
12.87. Interplanetary Navigation. The most efficient way to
send a spacecraft from the earth to another planet is by using a
Hohmann transfer orbit (Fig. 12.38). If the orbits of the departure
and destination planets are circular, the Hohmann transfer orbit is
an elliptical orbit whose perihelion and aphelion are tangent to the
orbits of the two planets. The rockets are fired briefly at the depar-
ture planet to put the spacecraft into the transfer orbit; the space-
craft then coasts until it reaches the destination planet. The rockets
are then fired again to put the spacecraft into the same orbit about
the sun as the destination planet. (a) For a flight from earth to
Mars, in what direction must the rockets be fired at the earth and at
Mars: in the direction of motion, or opposite the direction of
motion? What about from a flight from Mars to the earth? (b) How
long does a one-way trip from the the earth to Mars take, between
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the firings of the rockets? (c) To reach Mars from the earth, the
launch must be timed so that Mars will be at the right spot when
the spacecraft reaches Mars’s orbit around the sun. At launch, what
must the angle between a sun-Mars line and a sun-earth line be?
Use data from Appendix F.

12.88. Tidal Forces near a Black Hole. An astronaut inside a
spacecraft, which protects her from harmful radiation, is orbiting a
black hole at a distance of 120 km from its center. The black hole
is 5.00 times the mass of the sun and has a Schwarzschild radius of
15.0 km. The astronaut is positioned inside the spaceship such that
one of her 0.030-kg ears is 6.0 cm farther from the black hole than
the center of mass of the spacecraft and the other ear is 6.0 cm
closer. (a) What is the tension between her ears? Would the astro-
naut find it difficult to keep from being torn apart by the gravita-
tional forces? (Since her whole body orbits with the same angular
velocity, one ear is moving too slowly for the radius of its orbit and
the other is moving too fast. Hence her head must exert forces on
her ears to keep them in their orbits.) (b) Is the center of gravity of
her head at the same point as the center of mass? Explain.
*12.89. Mass M is distributed
uniformly over a disk of radius
a. Find the gravitational force
(magnitude and direction) be-
tween this disk-shaped mass
and a particle with mass m
located a distance x above the
center of the disk (Fig. 12.39).
Does your result reduce to the
correct expression as x becomes
very large? (Hint: Divide the
disk into infinitesimally thin
concentric rings, use the expression derived in Exercise 12.41 for
the gravitational force due to each ring, and integrate to find the
total force.)
*12.90. Mass M is distributed
uniformly along a line of length
2L. A particle with mass m is at
a point that is a distance a above
the center of the line on its per-
pendicular bisector (point P in
Fig. 12.40). For the gravita-
tional force that the line exerts
on the particle, calculate the
components perpendicular and
parallel to the line. Does your result reduce to the correct expres-
sion as a becomes very large?
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Figure 12.39 Challenge Prob-
lem 12.89.
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Figure 12.40 Challenge
Problem 12.90.


