GRAVITATION

= The rings of Saturn
are made of countless
individual orbiting parti-
cles. Do all the ring par-
ticles orbit at the same
speed, or do the inner
particles orbit faster or
slower than the outer
ones?

ome of the earliest investigations in physical science started with questions

that people asked about the night sky. Why doesn’t the moon fall to earth?

Why do the planets move across the sky? Why doesn’t the earth fly off into
space rather than remaining in orbit around the sun? The study of gravitation pro-
vides the answers to these and many related questions.

As we remarked in Chapter 5, gravitation is one of the four classes of interac-
tions found in nature, and it was the earliest of the four to be studied extensively.
Newton discovered in the 17th century that the same interaction that makes an
apple fall out of a tree also keeps the planets in their orbits around the sun. This
was the beginning of celestial mechanics, the study of the dynamics of objects in
space. Today, our knowledge of celestial mechanics allows us to determine how
to put a satellite into any desired orbit around the earth or to choose just the right
trajectory to send a spacecraft to another planet.

In this chapter you will learn the basic law that governs gravitational interac-
tions. This law is universal: Gravity acts in the same fundamental way between
the earth and your body, between the sun and a planet, and between a planet and
one of its moons. We’ll apply the law of gravitation to phenomena such as the
variation of weight with altitude, the orbits of satellites around the earth, and the
orbits of planets around the sun.

12.1 Newton’s Law of Gravitation

The example of gravitational attraction that’s probably most familiar to you is
your weight, the force that attracts you toward the earth. During his study of the
motions of the planets and of the moon, Newton discovered the fundamental
character of the gravitational attraction between any two bodies. Along with his

LEARNING GOALS

By studying this chapter, you will learn:

How to calculate the gravitational
forces that any two bodies exert on
each other.

How to relate the weight of an
object to the general expression
for gravitational force.

How to use and interpret the gen-
eralized expression for gravitational
potential energy.

How to relate the speed, orbital
period, and mechanical energy of a
satellite in a circular orbit.

The laws that describe the motions
of planets, and how to work with
these laws.

What black holes are, how to calcu-
late their properties, and how they
are discovered.
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12.1 The gravitational forces between two
particles of masses m; and m,.

Any two particles attract
my each other through

= gravitational forces.
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Even if the particles \
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have very different masses,

the gravitational forces they exert
on each other are equal in strength:

Fg(lonl) = Fg(Z(ml)

12.2 The gravitational effect outside any
spherically symmetric mass distribution is
the same as though all of the mass were
concentrated at its center.

(a) The gravitational (b) ... is the same as if
force between two we concentrated all the
spherically symmetric ~ mass of each sphere at
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three laws of motion, Newton published the law of gravitation in 1687. It may
be stated as follows:

Every particle of matter in the universe attracts every other particle with a force
that is directly proportional to the product of the masses of the particles and
inversely proportional to the square of the distance between them.

Translating this into an equation, we have

Gmm
. = B

5 5 (law of gravitation) (12.1)
B

where F, is the magnitude of the gravitational force on either particle, m, and m,
are their masses, r is the distance between them (Fig. 12.1), and G is a fundamen-
tal physical constant called the gravitational constant. The numerical value of G
depends on the system of units used.

Equation (12.1) tells us that the gravitational force between two particles
decreases with increasing distance r: If the distance is doubled, the force is only
one-fourth as great, and so on. Although many of the stars in the night sky are far
more massive than the sun, they are so far away that their gravitational force on
the earth is negligibly small.

CAUTION Don’t confuse g and G Because the symbols g and G are so similar, it’s
common to confuse the two very different gravitational quantities that these symbols rep-
resent. Lowercase g is the acceleration due to gravity, which relates the weight w of a
body to its mass m: w = mg. The value of g is different at different locations on the earth’s
surface and on the surfaces of different planets. By contrast, capital G relates the gravita-
tional force between any two bodies to their masses and the distance between them. We
call G a universal constant because it has the same value for any two bodies, no matter
where in space they are located. In the next section we’ll see how the values of g and G
are related.

Gravitational forces always act along the line joining the two particles, and
they form an action—reaction pair. Even when the masses of the particles are dif-
ferent, the two interaction forces have equal magnitude (Fig. 12.1). The attractive
force that your body exerts on the earth has the same magnitude as the force that
the earth exerts on you. When you fall from a diving board into a swimming
pool, the entire earth rises up to meet you! (You don’t notice this because the
earth’s mass is greater than yours by a factor of about 10%. Hence the earth’s
acceleration is only 10~ % as great as yours.)

Gravitation and Spherically Symmetric Bodies

We have stated the law of gravitation in terms of the interaction between two
particles. It turns out that the gravitational interaction of any two bodies having
spherically symmetric mass distributions (such as solid spheres or spherical
shells) is the same as though we concentrated all the mass of each at its center, as
in Fig. 12.2. Thus, if we model the earth as a spherically symmetric body with
mass mg, the force it exerts on a particle or a spherically symmetric body with
mass m, at a distance r between centers, is

Gmgm
F,=—2

g 7‘2

(12.2)

provided that the body lies outside the earth. A force of the same magnitude is
exerted on the earth by the body. (We will prove these statements in Section 12.6.)

At points inside the earth the situation is different. If we could drill a hole to
the center of the earth and measure the gravitational force on a body at various
depths, we would find that toward the center of the earth the force decreases,

rather than increasing as 1/r% As the body enters the interior of the earth (or
other spherical body), some of the earth’s mass is on the side of the body opposite
from the center and pulls in the opposite direction. Exactly at the center, the
earth’s gravitational force on the body is zero.

Spherically symmetric bodies are an important case because moons, planets,
and stars all tend to be spherical. Since all particles in a body gravitationally
attract each other, the particles tend to move to minimize the distance between
them. As a result, the body naturally tends to assume a spherical shape, just as a
lump of clay forms into a sphere if you squeeze it with equal forces on all sides.
This effect is greatly reduced in celestial bodies of low mass, since the gravita-
tional attraction is less, and these bodies tend not to be spherical (Fig. 12.3).

Determining the Value of G

To determine the value of the gravitational constant G, we have to measure the
gravitational force between two bodies of known masses m, and m, at a known
distance r. The force is extremely small for bodies that are small enough to be
brought into the laboratory, but it can be measured with an instrument called a
torsion balance, which Sir Henry Cavendish used in 1798 to determine G.

A modern version of the Cavendish torsion balance is shown in Fig. 12.4. A
light, rigid rod shaped like an inverted T is supported by a very thin, vertical
quartz fiber. Two small spheres, each of mass m;, are mounted at the ends of the
horizontal arms of the T. When we bring two large spheres, each of mass m,, to
the positions shown, the attractive gravitational forces twist the T through a small
angle. To measure this angle, we shine a beam of light on a mirror fastened to the
T. The reflected beam strikes a scale, and as the T twists, the reflected beam
moves along the scale.

After calibrating the Cavendish balance, we can measure gravitational forces
and thus determine G. The presently accepted value (in SI units) is

G = 6.6742(10) X 107" N - m?/kg?

To three significant figures, G = 6.67 X 10" N - m?*/kg’. Because 1 N =
1 kg - m/s% the units of G can also be expressed (in fundamental SI units) as
m*[(kg - s%).

Gravitational forces combine vectorially. If each of two masses exerts a force
on a third, the fotal force on the third mass is the vector sum of the individual
forces of the first two. Example 12.3 makes use of this property, which is often
called superposition of forces.
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12.3 Spherical and nonspherical bodies:
the planet Jupiter and one of Jupiter’s
small moons, Amalthea.

Jupiter’s mass is very large (1.90 X 10?7 kg), so
the mutual gravitational attraction of its parts has
pulled it into a nearly spherical shape.

100,000 km
—

Amalthea, one of Jupiter’s small moof]s, has a
relatively tiny mass (7.17 X 10'® kg, only about
3.8 X 107 the mass of Jupiter) and weak mutual
gravitation, so it has an irregular shape.

12.4 The principle of the Cavendish balance, used for determining the value of G. The angle of deflection has been exaggerated here

for clarity.

d) @ The deflection of the laser beam indicates how far

@ Gravitation pulls the small masses toward the large
masses, causing the vertical quartz fiber to twist.

The small balls reach a new equilibrium position

when the elastic force exerted by the twisted

quartz fiber balances the gravitational force

between the masses.

Quartz

Large mass (m,)

Laser beam

| the fiber has twisted. Once the instrument is
calibrated, this result gives a value for G.
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Calculating gravitational force

The mass m; of one of the small spheres of a Cavendish balance is
0.0100 kg, the mass m, of one of the large spheres is 0.500 kg, and
the center-to-center distance between each large sphere and the
nearer small one is 0.0500 m. Find the gravitational force F, on
each sphere due to the nearest other sphere.

IDENTIFY: Because the 0.0100-kg and 0.500-kg objects are
spherically symmetric, we can calculate the gravitational force of
one on the other by assuming that they are particles separated by
0.0500 m. Each sphere experiences the same magnitude of force
from the other sphere, even though their masses are very different.

SET UP: We use the law of gravitation, Eq. (12.1), to determine F,.

EXECUTE: The magnitude of the force that one sphere exerts on
the other is
(6.67 X 107" N - m?[kg?) (0.0100 kg ) (0.500 kg)
¢ (0.0500 m)?
133 X 107N

EVALUATE: This is a very small force, which is what we expect:
We don’t experience noticeable gravitational pulls from ordinary
low-mass objects in our environment. It takes a truly massive
object such as the earth to exert a substantial gravitational force.

Acceleration due to gravitational attraction

Suppose one large sphere and one small sphere are detached from
the apparatus in Example 12.1 and placed 0.0500 m (between cen-
ters) from each other at a point in space far removed from all other
bodies. What is the magnitude of the acceleration of each, relative
to an inertial system?

IDENTIFY: The gravitational forces that the two spheres exert on
each other have the same magnitude. (The system of two spheres is
so distant from other bodies that we can neglect any other forces.)
But the accelerations of the two spheres are different because their
masses are different.

SET UP: We found the magnitude of the force on each sphere in
Example 12.1. To determine the magnitude of each sphere’s accel-
eration, we’ll use Newton’s second law.

EXECUTE: The acceleration of the smaller sphere has magnitude

Fy 133X 107°N

— =133 X 10" % m/s’
m, 0.0100 kg m/s

a; =

The acceleration of the larger sphere has magnitude

F, 133%X107°N
)y = — = ———————

= = 2.66 X 1071 m/s>
, 0.500 kg m/s

EVALUATE: The larger sphere has 50 times the mass of the smaller
one and hence has 1/50 the acceleration. Note that the accelera-
tions are not constant; the gravitational forces increase as the
spheres move toward each other.

Superposition of gravitational forces

Many stars in the sky are actually systems of two or more stars
held together by their mutual gravitational attraction. Figure 12.5
shows a three-star system at an instant when the stars are at the
vertices of a 45° right triangle. Find the magnitude and direction of
the total gravitational force exerted on the small star by the two
large ones.

SOLUTION

IDENTIFY: We use the principle of superposition: The total force
on the small star is the vector sum of the forces due to each large
star.

SET UP: We assume that the stars are spheres so that we can use
the law of gravitation for each force, as in Fig. 12.2. We first calcu-
late the magnitude of each force using Eq. (12.1) and then com-
pute the vector sum using components along the axes shown in
Fig. 12.5.

12.5 The total gravitational force on the small star (at O) is the
vector sum of the forces exerted on it by the two larger stars. (For
comparison, the mass of the sun—a rather ordinary star—is

1.99 X 10* kg and the earth—sun distance is 1.50 X 10'' m.)

y
@&oo X 1030 kg
7/
7/ |
// !
7/ |
// !
L7 12,00 X 10" m
7 |
’ I
P A
1.00 X 103 kg 0]
( 6\& - J x

OL/ =
00 X 1030k
|ez.00>< 1012 m—3 8.00 % 107 ke

EXECUTE: The magnitude F; of the force on the small star due to
the upper large one is

(6.67 X 107" N - m*[kg?)
[x(&oo X 10*kg) (1.00 X 10% kg)}
(2.00 X 102 m)? + (2.00 X 10> m)?
= 6.67 X 10®° N

The magnitude F, of the force due to the lower large star is
(6.67 X 107" N - m?[kg?)
X (8.00 X 10¥kg) (1.00 X 10**kg)
(2.00 X 10"? m)?
1.33 X 10N

h =

The x- and y-components of these forces are

Fi, = (6.67 X 10° N) (cos45°) = 4.72 X 10° N
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The components of the total force on the small star are

F.=F,+ F, =181 X 10N
F,=F, + F, =472 X 10°N

The magnitude of this force is

F=\F}+F>=V(181 X 10°N)* + (472 X 10° N)?
=1.87 X 10*N

and its direction relative to the x-axis is

Fy 4.72 X 10°N
6 = arctan— = arctan—————-— = 14.6°
F, 1.81 X 10 N

EVALUATE: While the total force on the small star is tremendous,
the magnitude of the resulting acceleration is not: a = Ffm =
(1.87 X 10*N)/(1.00 X 10¥kg) = 1.87 X 10* m/s>.

Can you show that the total force on the small star is not
directed toward the center of mass of the two large stars? (See

F,, = (6.67 X 10® N) (sin45°) = 4.72 X 10® N

— 26
Fp, =133 X 10°N Problem 12.51.)
Fp, =0

Why Gravitational Forces Are Important

Comparing Examples 12.1 and 12.3 shows that gravitational forces are negligible
between ordinary household-sized objects, but very substantial between objects
that are the size of stars. Indeed, gravitation is the most important force on the
scale of planets, stars, and galaxies (Fig. 12.6). It is responsible for holding our
earth together and for keeping the planets in orbit about the sun. The mutual grav-
itational attraction between different parts of the sun compresses material at the
sun’s core to very high densities and temperatures, making it possible for nuclear
reactions to take place there. These reactions generate the sun’s energy output,
which makes it possible for life to exist on earth and for you to read these words.

The gravitational force is so important on the cosmic scale because it acts at a
distance, without any direct contact between bodies. Electric and magnetic forces
have this same remarkable property, but they are less important on astronomical
scales because large accumulations of matter are electrically neutral; that is, they
contain equal amounts of positive and negative charge. As a result, the electric
and magnetic forces between stars or planets are very small or zero. The strong
and weak interactions that we discussed in Section 5.5 also act at a distance, but
their influence is negligible at distances much greater than the diameter of an
atomic nucleus (about 107 m).

A useful way to describe forces that act at a distance is in terms of a field. One
body sets up a disturbance or field at all points in space, and the force that acts on
a second body at a particular point is its response to the first body’s field at that
point. There is a field associated with each force that acts at a distance, and so we
refer to gravitational fields, electric fields, magnetic fields, and so on. We won’t
need the field concept for our study of gravitation in this chapter, so we won’t
discuss it further here. But in later chapters we’ll find that the field concept is an
extraordinarily powerful tool for describing electric and magnetic interactions.

Test Your Understanding of Section 12.1 The planet Saturn has about @
100 times the mass of the earth and is about 10 times farther from the sun than the

earth is. Compared to the acceleration of the earth caused by the sun’s gravitational pull,
how great is the acceleration of Saturn due to the sun’s gravitation? (i) 100 times greater;

(i) 10 times greater; (iii) the same; (iv) 1/ 10 g5 great; (v) 1/ 100 g great. -

12.6 Our solar system is part of a spiral
galaxy like this one, which contains
roughly 10! stars as well as gas, dust, and
other matter. The entire assemblage is held
together by the mutual gravitational attrac-
tion of all the matter in the galaxy.
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- 34,,, Earth 12.8 An astronaut who weighs 700 N at
] 2 2 welght o 3 At mass g the earth’s surface experiences less gravi-
w(N) tational attraction when above the surface.

We defined the weight of a body in Section 4.4 as the attractive gravitational

force exerted on it by the earth. We can now broaden our definition: Earth’s radius R = 6.38 X 10°m

naut to the center of the earth (not from the

m The relevant distance r is from the astro-
astronaut to the earth’s surface).

3 q A Astronaut, mass m
The weight of a body is the total gravitational force exerted on the body by all

other bodies in the universe.

astronaut’s weight = Gmpm/r?
astronaut’s distance from the center of the earth

When the body is near the surface of the earth, we can neglect all other gravita- 400 1\ e ,
. astronaut’s distance from the surface of the earth

tional forces and consider the weight as just the earth’s gravitational attraction. At

!
. . L L i
the surface of the moon we consider a body’s weight to be the gravitational 300 A
attraction of the moon, and so on. 200 - !
If we again model the earth as a spherically symmetric body with radius Ry i !
and mass mg, the weight w of a small body of mass m at the earth’s surface (a dis- 100 i
tance Ry, from its center) is L R S ! . I 6
0 5,10 5 0s 20 25 30 r(x10°m) .
— : , ' —— 7 — Ry (X 10°m)
W= F = Gmgm (weight of a body of mass m (12.3) 0 > 10 15 20 » :
& Ry at the earth’s surface) '
But we also know from Section 4.4 that the weight w of a body is the force that
causes the acceleration g of free fall, so by Newton’s second law, w = mg. the average density, or mass per unit volume, of the earth. If we assume a spheri-  12.9 The density of the earth decreases
Equating this with Eq. (12.3) and dividing by m, we find cal earth, the volume is with increasing distance from its center.
4 o3 4 6.3 21 3
Gmg Ve =—mRy = —m(6.38 X 10°m)* = 1.09 X 10*' m
g = (acceleration due to gravity at the earth’s surface) (12.4) 3 3

The average density p (the Greek letter rho) of the earth is the total mass divided

. . .. by the total volume:
The acceleration due to gravity g is independent of the mass m of the body

because m doesn’t appear in this equation. We already knew that, but we can now mg 597 X 10% kg

see how it follows from the law of gravitation. P = T T 0w 123
Lo . . Ve 1.09 X 10° m

We can measure all the quantities in Eq. (12.4) except for mg, so this relation- ; ;
ship allows us to compute the mass of the earth. Solving Eq. (12.4) for mg and 5500 kg/m® = 5.5 g/cm

using R = 6380 km = 6.38 X 10°m and g = 9.80 m/s?, we find

(For comparison, the density of water is 1000 kg/m® = 1.00 g/cm®.) If the earth

12.7 In an airliner at high altitude, you 2 were uniform, we would expect the density of individual rocks near the earth’s P / AN
g y gRy p y 1Solid | | I

are farther from the center of the earth than mg == 5.98 X 10* kg surface to have this same value. In fact, the density of surface rocks is substan- inner! ! !
when on the ground and hence weigh tially lower, ranging from about 2000 kg/m* = 2 gf/cm® for sedimentary rocks ~_|core! Molten 1 |
slightly less. Can you show that at an alti- L 24 3 _ 3 . = 16 |- I outer ! |
tude of 10 km above the surface, you This is very close to the currently accepted value of 5.974 X 10**kg. Once to about 3300 kg/m’ = 3.3 gfem’ for basalt. So the earth cannot be uniform, = D eore | :
weigh 0.3% less than you do on the Cavendish had measured G, he computed the mass of the earth in just this way. and the interior of the earth must be m;lch more den3$e than the surface in order § 12 I !
ground? At a point above the earth’s surface a distance r from the center of the earth (a that the average density be 5500 kg/m’ = 5.5 g/em’. According to geophysical ~ 8 :

distance r — Ry above the surface), the weight of a body is given by Eq. (12.3) models of the earth’s interior, the maximum density at the center is about  x !

with Ry replaced by r: 13,000 kg/m3 =13 g/cm3. Figure 12.9 is a graph of density as a function of dis- <4

tance from the center. I !
g Gmgm 0 1 2 3 4 5 6Rg
w=F=— (12.5) r(X 106 m)

The weight of a body decreases inversely with the square of its distance from the

earth’s center (Fig. 12.7). Figure 12.8 shows how the weight varies with height SELLIIRVRE Gravity on Mars

above the earth for an astronaut who weighs 700 N at the earth’s surface.

The apparent weight of a body on earth differs slightly from the earth’s gravi- An unmanned lander is sent to the surface of the planet Mars, SOLUTION

tational force because the earth rotates and is therefore not precisely an inertial which has radius Ry = 3.40 X 10°m and mass my = 6.42 X ] ) i

frame of reference. We have ignored this effect in our earlier discussion and have 102 kg. The earth weight of the Mars lander is 3920 N. Calculate P ENTIFY: We need to find the lander weight £, and the gravita-

assumed that the earth is an inertial system. We will return to the effect of the its weight F, and the acceleration gy due to the gravity of Mars: ;,? nal acceleration gy at two different distances from the center of

ars.

(a) 6.0 X 10° m above the surface of Mars (the distance at which
the moon Phobos orbits Mars); and (b) at the surface of Mars.  SET UP: We find the weight F, using Eq. (12.5) with my, (the mass

In our discussion of weight, we’ve used the fact that the earth is an approxi- . .
. e - . Neglect the gravitational effects of the (very small) moons of of the earth) replaced with my, (the mass of Mars). Note that the
mately spherically symmetric distribution of mass. But this does not mean that Mars

the earth is uniform. To demonstrate that it cannot be uniform, let’s first calculate Continued

earth’s rotation in Section 12.7.
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value of G is the same everywhere in the universe; it is a funda-
mental physical constant. We then find the acceleration g using
F, = mgy, where m is the mass of the lander. We’re not given the
value of this mass, but we can determine it from the lander’s

The acceleration due to the gravity of Mars at this point is

F, 194N

BT T 400 kg

= 0.48 m/s>

weight on earth.

EXECUTE: (a) The distance r from the center of Mars is

r= (60X 10°m) + (340 X 10°m) = 9.4 X 10°m

This is also the acceleration experienced by Phobos in its orbit,
6.0 X 10° m above the surface of Mars. (b) To find F, and g\ at the
surface, we repeat the calculations in part (a), replacing r =
9.4 X 10°m with Ry = 3.40 X 10°m. Alternatively, because F,
and g are inversely proportional to 1/r2 (at any point outside

The mass m of the lander is its earth weight w divided by the accel-  the planet), we can multiply the results of part (a) by the factor

eration of gravity g on earth:

w  3920N

m=—=——">=400kg

g 98 m/s?

The mass is the same whether the lander is on the earth, on Mars,

or in between. From Eq. (12.5),

Gmym
Fy = 2
r

(6.67 X 107" N - m?[kg?) (6.42 X 10 kg) (400 kg)

( 94 X 10°m )2
3.40 X 10°m

You should use both methods to show that at the surface F,=
1500 N and gy = 3.7 m/s2.

EVALUATE: The results for part (b) show that an object’s weight
and the acceleration due to gravity are roughly 40% as large on the
surface of Mars as they are on the earth’s surface. Science-fiction
films and stories set on Mars commonly describe the planet’s

(9.4 X 10°m)?
= 194N

12.10 Calculating the work done on a
body by the gravitational force as the body
moves from radial coordinate r, to r,.

Straight
path

The gravitational force
is conservative: The
work done by ﬁg does
not depend on the path
taken from rq to r,.

lower temperatures and thinner atmosphere, but they seldom focus
on the experience of being in a low-gravity environment.

Test Your Understanding of Section 12.2  Rank the following hypothetical (1)
planets in order from highest to lowest surface gravity: (i) mass = 2 times the mass n)
of the earth, radius = 2 times the radius of the earth; (ii) mass = 4 times the mass

of the earth, radius = 4 times the radius of the earth; (iii) mass = 4 times the mass of the

earth, radius = 2 times the radius of the earth; (iv) mass = 2 times the mass of the earth,

radius = 4 times the radius of the earth. -

12.3 Gravitational Potential Energy

When we first developed the concept of gravitational potential energy in Sec-
tion 7.1, we assumed that the gravitational force on a body is constant in mag-
nitude and direction. This led to the expression U = mgy. But we now know
that the earth’s gravitational force on a body of mass m at any point outside the
earth is given more generally by Eq. (12.2), F, = Gmgm/[r?, where my is the
mass of the earth and r is the distance of the body from the earth’s center. For
problems in which r changes enough that the gravitational force can’t be con-
sidered constant, we need a more general expression for gravitational potential
energy.

To find this expression, we follow the same basic sequence of steps as in Sec-
tion 7.1. We consider a body of mass m outside the earth, and first compute the
work W, done by the gravitational force when the body moves directly away
from or toward the center of the earth from r = r| to r = r,, as in Fig. 12.10. This
work is given by

Woray = f MF, dr (12.6)

n

where F, is the radial component of the gravitational force F—that s, the compo-
nent in the direction outward from the center of the earth. Because F points

directly inward toward the center of the earth, F, is negative. It differs from
Eq. (12.2), the magnitude of the gravitational force, by a minus sign:

Gmgm
F,=—-—— (12.7)
r
Substituting Eq. (12.7) into Eq. (12.6), we see that W,,, is given by
“dr  Gmgm  Gmgm
Woray = —Gmgm | — = - (12.8)
r r r

T

The path doesn’t have to be a straight line; it could also be a curve like the one in
Fig. 12.10. By an argument similar to that in Section 7.1, this work depends only
on the initial and final values of r, not on the path taken. This also proves that the
gravitational force is always conservative.

We now define the corresponding potential energy U so that W,,,, = U; — U,,
as in Eq. (7.3). Comparing this with Eq. (12.8), we see that the appropriate defini-
tion for gravitational potential energy is

Gmgm L .
U=- p (gravitational potential energy) (12.9)

Figure 12.11 shows how the gravitational potential energy depends on the dis-
tance r between the body of mass m and the center of the earth. When the body
moves away from the earth, r increases, the gravitational force does negative
work, and U increases (i.e., becomes less negative). When the body “falls”
toward earth, r decreases, the gravitational work is positive, and the potential
energy decreases (i.e., becomes more negative).

You may be troubled by Eq. (12.9) because it states that gravitational poten-
tial energy is always negative. But in fact you've seen negative values of U
before. In using the formula U = mgy in Section 7.1, we found that U was neg-
ative whenever the body of mass m was at a value of y below the arbitrary
height we chose to be y = 0—that is, whenever the body and the earth were
closer together than some certain arbitrary distance. (See, for instance, Exam-
ple 7.2 in Section 7.1.) In defining U by Eq. (12.9), we have chosen U to be zero
when the body of mass m is infinitely far from the earth (r = ). As the body
moves toward the earth, gravitational potential energy decreases and so becomes
negative.

If we wanted, we could make U = 0 at the surface of the earth, where r = R,
by simply adding the quantity Gmgm/Ry to Eq. (12.9). This would make U posi-
tive when » > Rg. We won’t do this for two reasons: One, it would make the
expression for U more complicated; and two, the added term would not affect the
difference in potential energy between any two points, which is the only physi-
cally significant quantity.

CAUTION Gravitational force vs. gravitational potential energy Be careful not
to confuse the expressions for gravitational force, Eq. (12.7), and gravitational potential
energy, Eq. (12.9). The force F, is proportional to 1/r2, while potential energy U is propor-
tional to 1/r.

Armed with Eq. (12.9), we can now use general energy relationships for prob-
lems in which the 1/r? behavior of the earth’s gravitational force has to be
included. If the gravitational force on the body is the only force that does work,
the total mechanical energy of the system is constant, or conserved. In the follow-
ing example we’ll use this principle to calculate escape speed, the speed required
for a body to escape completely from a planet.
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12.11 A graph of the gravitational poten-
tial energy U for the system of the earth
(mass mg) and an astronaut (mass m) ver-
sus the astronaut’s distance r from the cen-
ter of the earth.

Earth, mass my

Astronaut, mass m

Gravitational potential
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U is always negative,

but it becomes less

- ———" negative with increasing
radial distance r.
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“From the earth to the moon”

In Jules Verne’s 1865 story with this title, three men were sent to
the moon in a shell fired from a giant cannon sunk in the earth in
Florida. (a) Find the muzzle speed needed to shoot the shell
straight up to a height above the earth equal to the earth’s radius.
(b) Find the escape speed—that is, the muzzle speed that would
allow the shell to escape from the earth completely. Neglect air
resistance, the earth’s rotation, and the gravitational pull of the
moon. The earth’s radius is Rz = 6380 km = 6.38 X 10°m, and
its mass is my = 5.97 X 10* kg (see Appendix F).

SOLUTION

IDENTIFY: Once the shell leaves the muzzle of the cannon, only
the (conservative) gravitational force does work and mechanical
energy is conserved. We use this fact to find the speed at which the
shell must leave the muzzle into order to (a) come to a halt at a dis-
tance of two earth radii from the planet’s center and (b) come to a
halt at an infinite distance from earth.

SET UP: In both parts (a) and (b) we use the equation for energy
conservation, K; + U, = K, + U,, where the potential energy U
is given by Eq. (12.9). Figure 12.12 shows our sketches. Point 1 is
where the shell leaves the cannon with speed v, (the target vari-
able). At this point the distance from the center of the earth is
r; = Rg, the earth’s radius. Point 2 is where the shell reaches its
maximum height; in part (a) it is at r, = 2Ry (Fig. 12.12a), and in
part (b) it is infinitely far from the earth at r, = o (Fig 12.12b). In
either case the shell is at rest at point 2, so v, = 0 and K, = 0. Let
m be the mass of the shell (with passengers).

EXECUTE: (a) We can determine v, from the energy-conservation
equation

Kl + U] = Kz + U2

Gmgm Gm
— =0+ |- e
Rg 2Ry

1
Emvlz + (—
Rearranging this, we find that
[Gmyg
v, =
Ry
B J(e.m X 107N - m*/kg?) (5.97 X 10* kg)

6.38 X 10°m
= 7900 m/s(= 28,400 km/h = 17,700 mi/h)

(b) We want the shell barely to be able to “reach” point 2 at , = o0,
with no kinetic energy left over. Hence K, = 0 and U, = 0 (the
potential energy goes to zero at infinity; see Fig. 12.11). The total
energy is therefore zero, and when the shell is fired its positive

12.12 Our sketches for this problem.
(@ (b

2 A Projectile, mass m 2 A Projectile, mass m

Earth, mass meg

Earth, mass meg

kinetic energy K, and negative potential energy U, must also add to
Zero:

( Gmgm

—mv? + )=0+0

2

2Gmy
"Nk
E

\/2(6.67 X 107" N - m?[kg?) (5.97 X 10*kg)
6.38 X 10°m
1.12 X 10* m/s(= 40,200 km/h = 25,000 mi/h)

EVALUATE: This result does not depend on the mass of the shell,
nor does it depend on the direction in which the shell is launched.
Modern spacecraft launched from Florida must attain essentially
the speed found in part (b) to escape the earth. A spacecraft on the
ground at Cape Canaveral is already moving at 410 m/s to the east
because of the earth’s rotation; by launching to the east, the space-
craft takes advantage of this “free” contribution toward escape
speed.

To generalize our result, the initial speed v, needed for a body
to escape from the surface of a spherical mass M with radius R
(ignoring air resistance) is

2GM
v, = R (escape speed)

You can use this result to compute the escape speed for other bod-
ies. You will find 5.02 X 10°m/s for Mars, 5.95 X 10*m/s for
Jupiter, and 6.18 X 10° m/s for the sun.

E

More on Gravitational Potential Energy

As a final note, let’s show that when we are close to the earth’s surface, Eq. (12.9)
reduces to the familiar U = mgy from Chapter 7. We first rewrite Eq. (12.8) as

rl_rz

Weray = Gmgm
rr

If the body stays close to the earth, then in the denominator we may replace r,
and r, by Rg, the earth’s radius, so
r1 - I"2
Wearay = Gmgm——7—
Rg

According to Eq. (12.4), g = Gmg/[R, so

Wgrav = mg(rl - r2)

If we replace the r’s by y’s, this is just Eq. (7.1) for the work done by a constant
gravitational force. In Section 7.1 we used this equation to derive Eq. (7.2),
U = mgy, so we may consider this expression for gravitational potential energy
to be a special case of the more general Eq. (12.9).

Test Your Understanding of Section 12.3 Is it possible for a planet to have the
same surface gravity as the earth (that is, the same value of g at the surface) and yet have

a greater escape speed?
-1

12.4 The Motion of Satellites

Artificial satellites orbiting the earth are a familiar part of modern technology
(Fig. 12.13). But how do they stay in orbit, and what determines the properties of
their orbits? We can use Newton’s laws and the law of gravitation to provide the
answers. We’ll see in the next section that the motion of planets can be analyzed
in the same way.

To begin, think back to the discussion of projectile motion in Section 3.3. In
Example 3.6 a motorcycle rider rides horizontally off the edge of a cliff, launch-
ing himself into a parabolic path that ends on the flat ground at the base of the
cliff. If he survives and repeats the experiment with increased launch speed, he
will land farther from the starting point. We can imagine him launching himself
with great enough speed that the earth’s curvature becomes significant. As he
falls, the earth curves away beneath him. If he is going fast enough, and if his
launch point is high enough that he clears the mountaintops, he may be able to go
right on around the earth without ever landing.

Figure 12.14 shows a variation on this theme. We launch a projectile from
point A in the direction AB, tangent to the earth’s surface. Trajectories 1 through
7 show the effect of increasing the initial speed. In trajectories 3 through 5 the

A projectile is launched
from A toward B.
Trajectories @ through
show the effect of
increasing initial speed.
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12.13 With a length of 13.2 m and a mass
of 11,000 kg, the Hubble Space Telescope
is among the largest satellites placed in
orbit.

12.14 Trajectories of a projectile
launched from a great height (ignoring air
resistance). Orbits 1 and 2 would be com-
pleted as shown if the earth were a point
mass at C. (This illustration is based on
one in Isaac Newton’s Principia.)
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4.6  Satellites Orbit

12.15 The force ﬁg due to the earth’s
gravitational attraction provides the cen-
tripetal acceleration that keeps a satellite in
orbit. Compare to Fig. 5.28.

The satellite is in a circular orbit: Its
acceleration d is always perpendicular to
its velocity U, so its speed v is constant.

12.16 These space shuttle astronauts are
in a state of apparent weightlessness.
Which are right side up and which are
upside down?

projectile misses the earth and becomes a satellite. If there is no retarding force,
the projectile’s speed when it returns to point A is the same as its initial speed and
it repeats its motion indefinitely.

Trajectories 1 through 5 close on themselves and are called closed orbits. All
closed orbits are ellipses or segments of ellipses; trajectory 4 is a circle, a special
case of an ellipse. (We’ll discuss the properties of an ellipse in Section 12.5.) Tra-
jectories 6 and 7 are open orbits. For these paths the projectile never returns to
its starting point but travels ever farther away from the earth.

Satellites: Circular Orbits

A circular orbit, like trajectory 4 in Fig. 12.14, is the simplest case. It is also an
important case, since many artificial satellites have nearly circular orbits and the
orbits of the planets around the sun are also fairly circular. The only force acting
on a satellite in circular orbit around the earth is the earth’s gravitational attrac-
tion, which is directed toward the center of the earth and hence toward the center
of the orbit (Fig. 12.15). As we discussed in Section 5.4, this means that the satel-
lite is in uniform circular motion and its speed is constant. The satellite isn’t
falling foward the earth; rather, it’s constantly falling around the earth. In a circu-
lar orbit the speed is just right to keep the distance from the satellite to the center
of the earth constant.
Let’s see how to find the constant speed v of a satellite in a circular orbit.

The radius of the orbit is r, measured from the center of the earth; the accel- =
eration of the satellite has magnitude a,,, = v*[r and is always directed toward
the center of the circle. By the law of gravitation, the net force (gravitational
force) on the satellite of mass m has magnitude F, = GmELn/r2 and is in the
same direction as the acceleration. Newton’s second law ( X F = mad ) then tells
us that

Gmgm  mv*
r? r

Solving this for v, we find

Gmyg . .
v = — (circular orbit) (12.10)

This relationship shows that we can’t choose the orbit radius r and the speed v
independently; for a given radius r, the speed v for a circular orbit is determined.

The satellite’s mass m doesn’t appear in Eq. (12.10), which shows that the
motion of a satellite does not depend on its mass. If we could cut a satellite in half
without changing its speed, each half would continue on with the original
motion. An astronaut on board a space shuttle is herself a satellite of the earth,
held by the earth’s gravitational attraction in the same orbit as the shuttle. The
astronaut has the same velocity and acceleration as the shuttle, so nothing is
pushing her against the floor or walls of the shuttle. She is in a state of apparent
weightlessness, as in a freely falling elevator; see the discussion following Exam-
ple 5.9 in Section 5.2. (True weightlessness 