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LEARNING GOALS
By studying this chapter, you will learn:

• What it means for a force to do
work on a body, and how to calcu-
late the amount of work done.

• The definition of the kinetic energy
(energy of motion) of a body, and
what it means physically.

• How the total work done on a body
changes the body’s kinetic energy,
and how to use this principle to
solve problems in mechanics.

• How to use the relationship
between total work and change in
kinetic energy when the forces are
not constant, the body follows a
curved path, or both.

• How to solve problems involving
power (the rate of doing work).
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WORK AND 
KINETIC ENERGY

?When a shotgun fires,
the expanding gases in
the barrel push the
shell out. According to
Newton’s third law, the
shell exerts as much
force on the gases as
the gases exert on the
shell. Would it be cor-
rect to say that the shell
does work on the
gases?

Suppose you try to find the speed of an arrow that has been shot from a bow.
You apply Newton’s laws and all the problem-solving techniques that
we’ve learned, but you run across a major stumbling block: After the

archer releases the arrow, the bow string exerts a varying force that depends on
the arrow’s position. As a result, the simple methods that we’ve learned aren’t
enough to calculate the speed. Never fear; we aren’t by any means finished with
mechanics, and there are other methods for dealing with such problems.

The new method that we’re about to introduce uses the ideas of work and
energy. The importance of the energy idea stems from the principle of conserva-
tion of energy: Energy is a quantity that can be converted from one form to
another but cannot be created or destroyed. In an automobile engine, chemical
energy stored in the fuel is converted partially to the energy of the automobile’s
motion and partially to thermal energy. In a microwave oven, electromagnetic
energy obtained from your power company is converted to thermal energy of the
food being cooked. In these and all other processes, the total energy—the sum of
all energy present in all different forms—remains the same. No exception has
ever been found.

We’ll use the energy idea throughout the rest of this book to study a tremen-
dous range of physical phenomena. This idea will help you understand why a
sweater keeps you warm, how a camera’s flash unit can produce a short burst of
light, and the meaning of Einstein’s famous equation 

In this chapter, though, our concentration will be on mechanics. We’ll learn
about one important form of energy called kinetic energy, or energy of motion,
and how it relates to the concept of work. We’ll also consider power, which is the
time rate of doing work. In Chapter 7 we’ll expand the ideas of work and kinetic
energy into a deeper understanding of the concepts of energy and the conserva-
tion of energy.

E 5 mc2.
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6.1 These people are doing work as they
push on the stalled car because they exert a
force on the car as it moves. 

F

x

s

If a body moves through a
displacement s while a
constant force F acts on it 
in the same direction ...

... the work done by
the force on the
body is W 5 Fs.

S

S

S

S

6.2 The work done by a constant force
acting in the same direction as the dis-
placement. 

... the work done by the force on the
car is W 5 Fis 5 (F cos f)s 5 Fs cos f.

Only Fi does
work on
the car.

F' does no work
on the car.

F
S

f

s
S

If a car moves through a displacement s
while a constant force F acts on it at an
angle f to the displacement ....

S

S

F' 5 F sin f

Fi 5 F cos f

6.3 The work done by a constant force acting at an angle to the displacement.6.1 Work
You’d probably agree that it’s hard work to pull a heavy sofa across the room, to
lift a stack of encyclopedias from the floor to a high shelf, or to push a stalled car
off the road. Indeed, all of these examples agree with the everyday meaning of
work—any activity that requires muscular or mental effort.

In physics, work has a much more precise definition. By making use of this
definition we’ll find that in any motion, no matter how complicated, the total
work done on a particle by all forces that act on it equals the change in its kinetic
energy—a quantity that’s related to the particle’s speed. This relationship holds
even when the forces acting on the particle aren’t constant, a situation that can be
difficult or impossible to handle with the techniques you learned in Chapters 4
and 5. The ideas of work and kinetic energy enable us to solve problems in
mechanics that we could not have attempted before.

In this section we’ll see how work is defined and how to calculate work in a
variety of situations involving constant forces. Even though we already know
how to solve problems in which the forces are constant, the idea of work is still
useful in such problems. Later in this chapter we’ll relate work and kinetic energy,
and then apply these ideas to problems in which the forces are not constant.

The three examples of work described above—pulling a sofa, lifting encyclo-
pedias, and pushing a car—have something in common. In each case you do
work by exerting a force on a body while that body moves from one place to
another—that is, undergoes a displacement (Fig. 6.1). You do more work if the
force is greater (you push harder on the car) or if the displacement is greater (you
push the car farther down the road).

The physicist’s definition of work is based on these observations. Consider a
body that undergoes a displacement of magnitude s along a straight line. (For
now, we’ll assume that any body we discuss can be treated as a particle so that we
can ignore any rotation or changes in shape of the body.) While the body moves, a
constant force acts on it in the same direction as the displacement (Fig. 6.2).
We define the work W done by this constant force under these circumstances as
the product of the force magnitude F and the displacement magnitude s:

(constant force in direction of straight-line displacement) (6.1)

The work done on the body is greater if either the force F or the displacement s is
greater, in agreement with our observations above.

CAUTION Don’t confuse W (work) with w (weight). Though
the symbols are similar, work and weight are different quantities. ❚

The SI unit of work is the joule (abbreviated J, pronounced “jewel,” and named
in honor of the 19th-century English physicist James Prescott Joule). From
Eq. (6.1) we see that in any system of units, the unit of work is the unit of force
multiplied by the unit of distance. In SI units the unit of force is the newton and the
unit of distance is the meter, so 1 joule is equivalent to 1 newton-meter

In the British system the unit of force is the pound (lb), the unit of distance is the
foot (ft), and the unit of work is the foot-pound The following conver-
sions are useful:

As an illustration of Eq. (6.1), think of a person pushing a stalled car. If he
pushes the car through a displacement with a constant force in the direction of
motion, the amount of work he does on the car is given by Eq. (6.1): But
what if the person pushes at an angle with the car’s displacement (Fig. 6.3)?
Then has a component in the direction of the displacement and a
component that acts perpendicular to the displacement. (OtherF' 5 F sin f

Fi 5 F cos fF
S

f
W 5 Fs.

F
S

sS

1 J 5 0.7376 ft # lb  1 ft # lb 5 1.356 J

1  ft # lb 2 .
1 joule 5 11 newton 2  11 meter 2  or 1 J 5 1 N # m

1N # m 2 :

weight 5 wWork 5 W,

W 5 Fs

sSF
S

forces must act on the car so that it moves along not in the direction of We’re
interested only in the work that the person does, however, so we’ll consider only
the force he exerts.) In this case only the parallel component is effective in
moving the car, so we define the work as the product of this force component and
the magnitude of the displacement. Hence or

(6.2)

We are assuming that F and are constant during the displacement. If so
that and are in the same direction, then and we are back to Eq. (6.1).

Equation (6.2) has the form of the scalar product of two vectors, which we
introduced in Section 1.10: You may want to review that defi-
nition. Hence we can write Eq. (6.2) more compactly as

(6.3)

CAUTION Work is a scalar Here’s an essential point: Work is a scalar quantity, even
though it’s calculated by using two vector quantities (force and displacement). A 5-N force
toward the east acting on a body that moves 6 m to the east does exactly the same amount
of work as a 5-N force toward the north acting on a body that moves 6 m to the north. ❚

W 5 F
S # sS  (constant force, straight-line displacement)

A
S

# B
S

5 AB cos f.

cos f 5 1sSF
S

f 5 0,f

W 5 Fs cos f  (constant force, straight-line displacement)

W 5 Fis 5 1F cos f 2 s,

Fi

F
S

.sS,

Example 6.1 Work done by a constant force

(a) Steve exerts a steady force of magnitude 210 N (about 47 lb) on
the stalled car in Fig. 6.3 as he pushes it a distance of 18 m. The car
also has a flat tire, so to make the car track straight Steve must
push at an angle of to the direction of motion. How much work
does Steve do? (b) In a helpful mood, Steve pushes a second
stalled car with a steady force The dis-
placement of the car is How much work
does Steve do in this case?

SOLUTION

IDENTIFY: In both parts (a) and (b), the target variable is the work
W done by Steve. In each case the force is constant and the dis-
placement is along a straight line, so we can use Eq. (6.2) or (6.3).

SET UP: The angle between and is given explicitly in part (a),
so we can apply Eq. (6.2) directly. In part (b) the angle isn’t given,

sSF
S

sS 5 114 m 2 d̂ 1 111 m 2ê.F
S

5 1160 N 2 d̂ 2 140 N 2ê.
30°

so we’re better off calculating the scalar product in Eq. (6.3) from
the components of and as in Eq. (1.21): 

EXECUTE: (a) From Eq. (6.2),

(b) The components of are and and
the components of are and (There are no
z-components for either vector.) Hence, using Eqs. (1.21) and (6.3),

EVALUATE: In each case the work that Steve does is more than
1000 J. This shows that 1 joule is a rather small amount of work.

 5 1.8 3 103
 J

 5 1160 N 2 114 m 2 1 1240 N 2 111 m 2
 W 5 F

S # sS 5 Fx x 1 Fy y

y 5 11 m.x 5 14 msS
Fy 5 240 N,Fx 5 160 NF

S

W 5 Fs cos f 5 1210 N 2 1 18 m 2 cos 30° 5 3.3 3 103
 J

Ay  By 1 Az  Bz .
A
S # B

S

5 Ax  Bx 1sS,F
S

Work: Positive, Negative, or Zero
In Example 6.1 the work done in pushing the cars was positive. But it’s impor-
tant to understand that work can also be negative or zero. This is the essential
way in which work as defined in physics differs from the “everyday” definition of
work. When the force has a component in the same direction as the displacement

5.1 Work Calculations

O N L I N E
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F
S

... but because the
barbell is stationary (its
displacement is zero),
he does no work on it.

The weightlifter exerts
an upward force on the
barbell ...

6.5 A weightlifter does no work on a bar-
bell as long as he holds it stationary.

(a) A weightlifter lowers a barbell to the floor.

sS

(b) The barbell does positive work on the
weightlifter’s hands.

The force of the barbell on the
weightlifter’s hands is in the same
direction as the hands’ displacement.

Fbarbell on hands
S sS

(c) The weightlifter’s hands do negative work
on the barbell.

The force of the weightlifter’s hands
on the barbell is opposite to the
barbell’s desplacement.

Fhands on barbell
S

sS

6.6 This weightlifter’s hands do negative work on a barbell as the barbell does positive work on his hands. 

between zero and in Eq. (6.2) is positive and the work W is
positive (Fig. 6.4a). When the force has a component opposite to the displace-
ment is negative and the work is negative
(Fig. 6.4b). When the force is perpendicular to the displacement, and
the work done by the force is zero (Fig. 6.4c). The cases of zero work and nega-
tive work bear closer examination, so let’s look at some examples.

There are many situations in which forces act but do zero work. You might
think it’s “hard work” to hold a barbell motionless in the air for 5 minutes
(Fig. 6.5). But in fact, you aren’t doing any work at all on the barbell because
there is no displacement. You get tired because the components of muscle
fibers in your arm do work as they continually contract and relax. This is work
done by one part of the arm exerting force on another part, however, not on the
barbell. (We’ll say more in Section 6.2 about work done by one part of a body on
another part.) Even when you walk with constant velocity on a level floor while
carrying a book, you still do no work on it. The book has a displacement, but the
(vertical) supporting force that you exert on the book has no component in the
direction of the (horizontal) motion. Then in Eq. (6.2), and 
When a body slides along a surface, the work done on the body by the normal
force is zero; and when a ball on a string moves in uniform circular motion, the
work done on the ball by the tension in the string is also zero. In both cases the
work is zero because the force has no component in the direction of motion.

What does it really mean to do negative work? The answer comes from
Newton’s third law of motion. When a weightlifter lowers a barbell as in
Fig. 6.6a, his hands and the barbell move together with the same displace-
ment The barbell exerts a force on his hands in the same direction
as the hands’ displacement, so the work done by the barbell on his hands is posi-
tive. (Fig. 6.6b). But by Newton’s third law the weightlifter’s hands exert an equal
and opposite force on the barbell (Fig. 6.6c). This
force, which keeps the barbell from crashing to the floor, acts opposite to the bar-
bell’s displacement. Thus the work done by his hands on the barbell is negative.
Because the weightlifter’s hands and the barbell have the same displacement, the
work that his hands do on the barbell is just the negative of the work that the bar-
bell does on his hands. In general, when one body does negative work on a second
body, the second body does an equal amount of positive work on the first body.

CAUTION Keep track of who’s doing the work We always speak of work done on a
particular body by a specific force. Always be sure to specify exactly what force is doing the

F
S

hands on barbell 5 2F
S

barbell on hands

F
S

barbell on handssS.

cos f 5 0.f 5 90°

f 5 90°
cos f(f between 90° and 180°),

cos f90°),(f

work you are talking about. When you lift a book, you exert an upward force on the book and
the book’s displacement is upward, so the work done by the lifting force on the book is posi-
tive. But the work done by the gravitational force (weight) on a book being lifted is negative
because the downward gravitational force is opposite to the upward displacement. ❚

Total Work
How do we calculate work when several forces act on a body? One way is to use
Eq. (6.2) or (6.3) to compute the work done by each separate force. Then,
because work is a scalar quantity, the total work done on the body by all the
forces is the algebraic sum of the quantities of work done by the individual
forces. An alternative way to find the total work is to compute the vector sum
of the forces (that is, the net force) and then use this vector sum as in Eq. (6.2)
or (6.3). The following example illustrates both of these techniques.

F
S

Wtot

Wtot

F
F

F

F

s

(c)

F

s

(a)

F

s

(b)

f
f

f
f

f 5 90°

F'

F'

Fi 5 F cos f

Fi 5 F cos f

The force has a component opposite to the direction of displacement:
•  The work on the object is negative. 
•  W 5 Fis 5 1F cos f2  s
•  Mathematically, W , 0 because F cos f is negative for 90° , f , 270°.

The force is perpendicular to the direction of displacement:
•  The force does no work on the object.
•  More generally, if a force acting on an object has a component F'

   perpendicular to the object’s displacement, that component does no
   work on the object.

The force has a component in the direction of displacement:
•  The work on the object is positive.
•  W 5 Fis 5 1F cos f2  s

S

S

S

S

S

S

S

S

S

6.4 A constant force can do positive, negative, or zero work depending on the angle between and the displacement sS.F
S

F
S

? 

Example 6.2 Work done by several forces

A farmer hitches her tractor to a sled loaded with firewood and
pulls it a distance of 20 m along level ground (Fig. 6.7a). The total
weight of sled and load is 14,700 N. The tractor exerts a constant
5000-N force at an angle of above the horizontal, as shown
in Fig. 6.7b. There is a 3500-N friction force opposing the sled’s
motion. Find the work done by each force acting on the sled and
the total work done by all the forces.

SOLUTION

IDENTIFY: Each force is constant and the displacement is along a
straight line, so we can calculate the work using the ideas of this
section. We’ll find the total work in two ways: (1) by adding
together the work done on the sled by each force and (2) by finding
the amount of work done by the net force on the sled.

SET UP: Since we’re working with forces, we first draw a free-
body diagram showing all of the forces acting on the sled and we
choose a coordinate system (Fig. 6.7b). For each force—weight,
normal force, force of the tractor, and friction force—we know the
angle between the displacement (in the positive x-direction) and
the force. Hence we can calculate the work each force does using
Eq. (6.2).

As we did in Chapter 5, we’ll find the net force by adding the
components of the four forces. Newton’s second law tells us that
because the sled’s motion is purely horizontal, the net force has
only a horizontal component.

EXECUTE: The work done by the weight is zero because its
direction is perpendicular to the displacement (compare Fig. 6.4c).
For the same reason, the work done by the normal force isWn

Ww

36.9° (a)

(b) Free-body diagram for sled

f

6.7 Calculating the work done on a sled of firewood being pulled
by a tractor.

Continued
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Test Your Understanding of Section 6.1 An electron moves in a straight
line toward the east with a constant speed of It has electric, magnetic,
and gravitational forces acting on it. During a 1-m displacement, the total work
done on the electron is (i) positive; (ii) negative; (iii) zero; (iv) not enough information
given to decide.

❚

8 3 107m/s.

Net force F
S

S

Speed v1

x1 x2

Speed v2

m m

s

x

6.9 A constant net force does work on a
moving body.

F
S

6.2 Kinetic Energy and the Work–Energy
Theorem

The total work done on a body by external forces is related to the body’s dis-
placement––that is, to changes in its position. But the total work is also related to
changes in the speed of the body. To see this, consider Fig. 6.8, which shows

If you push to the right
on the moving block,
the net force on the
block is to the right.

A block slides to the right on a frictionless surface.

• The total work done on the block during
  a displacement s is positive: Wtot � 0.
• The block speeds up.

• The total work done on the block during
  a displacement s is negative: Wtot , 0.
• The block slows down.

• The total work done on the block during
  a displacement s is zero: Wtot 5 0.
• The block’s speed stays the same.

If you push to the left
on the moving block,
the net force on the
block is to the left.

If you push straight
down on the moving
block, the net force
on the block is zero.

F

s
n

w

v

n

F

w

n

F
w

vv

S

s
S

s
S

SSS

(a) (b) (c)

6.8 The relationship between the total work done on a body and how the body’s speed changes.

also zero. So (Incidentally, can you see that the
magnitude of the normal force is less than the weight? Compare
Example 5.15 in Section 5.3, which has a very similar free-body
diagram.)

That leaves the force exerted by the tractor and the friction
force From Eq. (6.2) the work done by the tractor is

The friction force is opposite to the displacement, so for this
force and The work done by the friction
force is

The total work done on the sled by all forces is the algebraic
sum of the work done by the individual forces:

In the alternative approach, we first find the vector sum of all
the forces (the net force) and then use it to compute the total work.

 5 10 kJ

 Wtot 5 Ww 1 Wn 1 WT 1 Wf 5 0 1 0 1 80 kJ 1 1270 kJ 2
Wtot

 5 270 kJ

 Wf 5 fs cos 180° 5 13500 N 2 1 20 m 2 121 2 5 270,000 N # m

Wfcos f 5 21.f 5 180°
f
S

 5 80 kJ

 WT 5 FTs cos f 5 15000 N 2 120 m 2 1 0.800 2 5 80,000 N # m

WTf.
FT

Ww 5 Wn 5 0. The vector sum is best found by using components. From
Fig. 6.7b,

We don’t really need the second equation; we know that the y-
component of force is perpendicular to the displacement, so it does
no work. Besides, there is no y-component of acceleration, so 
has to be zero anyway. The total work is therefore the work done
by the total x-component:

EVALUATE: We get the same result for with either method, as
we should.

Note that the net force in the x-direction is not zero, and so the
sled must accelerate as it moves. In Section 6.2 we’ll return to this
example and see how to use the concept of work to explore the
sled’s motion.

Wtot

 5 10 kJ

 Wtot 5 1 aF
S 2 # sS 5 1 aFx 2 s 5 1500 N 2 1 20 m 2 5 10,000 J

gFy

 5 15000 N 2  sin 36.9° 1 n 2 14,700 N

 aFy 5 FT sin f 1 n 1 12w 2
 5 500 N

 aFx 5 FT cos f 1 12 f 2 5 15000 N 2  cos 36.9° 2 3500 N

three examples of a block sliding on a frictionless table. The forces acting on the
block are its weight the normal force and the force exerted on it by the
hand.

In Fig. 6.8a the net force on the block is in the direction of its motion. From
Newton’s second law, this means that the block speeds up; from Eq. (6.1), this
also means that the total work done on the block is positive. The total work is
negative in Fig. 6.8b because the net force opposes the displacement; in this case
the block slows down. The net force is zero in Fig. 6.8c, so the speed of the block
stays the same and the total work done on the block is zero. We can conclude that
when a particle undergoes a displacement, it speeds up if slows down if

and maintains the same speed if 
Let’s make these observations more quantitative. Consider a particle with

mass m moving along the x-axis under the action of a constant net force with
magnitude F directed along the positive x-axis (Fig. 6.9). The particle’s accelera-
tion is constant and given by Newton’s second law, Suppose the speed
changes from to while the particle undergoes a displacement 
from point to Using a constant-acceleration equation, Eq. (2.13), and
replacing by by and by s, we have

When we multiply this equation by m and equate to the net force F, we find

and
(6.4)

The product Fs is the work done by the net force F and thus is equal to the total
work done by all the forces acting on the particle. The quantity is called
the kinetic energy K of the particle:

(definition of kinetic energy) (6.5)

Like work, the kinetic energy of a particle is a scalar quantity; it depends on only
the particle’s mass and speed, not its direction of motion (Fig. 6.10). A car
(viewed as a particle) has the same kinetic energy when going north at 10 m/s as
when going east at 10 m/s. Kinetic energy can never be negative, and it is zero
only when the particle is at rest.

We can now interpret Eq. (6.4) in terms of work and kinetic energy. The first
term on the right side of Eq. (6.4) is the final kinetic energy of the
particle (that is, after the displacement). The second term is the initial kinetic
energy, and the difference between these terms is the change in
kinetic energy. So Eq. (6.4) says:

The work done by the net force on a particle equals the change in the particle’s
kinetic energy:

(work–energy theorem) (6.6)

This result is the work–energy theorem.

Wtot 5 K2 2 K1 5 DK

K1 5 1
2 mv1 

2,

K2 5 1
2 mv2 

2,

K 5
1

2
 mv2

1
2 mv2Wtot

 Fs 5
1

2
 mv2 

2 2
1

2
 mv1 

2

 F 5 max 5 m 

v2 

2 2 v1 

2

2s

max

 ax 5
v2 

2 2 v1 

2

2s

 v2 

2 5 v1 

2 1 2axs

1 x 2 x0 2v2 ,v1 , vxv0x

x2 .x1

s 5 x2 2 x1v2v1

F 5 max .

Wtot 5 0.Wtot , 0,
Wtot . 0,

Wtot

F
S

nS,wS,

m

m
vS

vS

Same mass, same speed, different directions
of motion: same kinetic energy

m 2m
vS vS

Twice the mass, same speed:
twice the kinetic energy

m m
vS 2vS

Same mass, twice the speed:
four times the kinetic energy

6.10 Comparing the kinetic energy
of different bodies.K 5 1

2 mv2
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The work–energy theorem agrees with our observations about the block in
Fig. 6.8. When is positive, the kinetic energy increases (the final kinetic
energy is greater than the initial kinetic energy ) and the particle is going
faster at the end of the displacement than at the beginning. When is negative,
the kinetic energy decreases is less than and the speed is less after the
displacement. When the kinetic energy stays the same and
the speed is unchanged. Note that the work–energy theorem by itself tells us only
about changes in speed, not velocity, since the kinetic energy doesn’t depend on
the direction of motion.

From Eq. (6.4) or (6.6), kinetic energy and work must have the same units.
Hence the joule is the SI unit of both work and kinetic energy (and, as we will see
later, of all kinds of energy). To verify this, note that in SI units the quantity

has units or we recall that so

In the British system the unit of kinetic energy and of work is

Because we used Newton’s laws in deriving the work–energy theorem, we can
use this theorem only in an inertial frame of reference. Note also that the
work–energy theorem is valid in any inertial frame, but the values of and

may differ from one inertial frame to another (because the displacement
and speed of a body may be different in different frames).

We have derived the work–energy theorem for the special case of straight-
line motion with constant forces, and in the following examples we’ll apply it to
this special case only. We’ll find in the next section that the theorem is valid in
general, even when the forces are not constant and the particle’s trajectory is
curved.

K2 2 K1

Wtot

1 ft # lb 5 1 ft # slug # ft/s2 5 1 slug # ft2/s2

1 J 5 1 N # m 5 1 1kg # m/s2 2 # m 5 1 kg # m2/s2

1 N 5 1 kg # m/s2,kg # m2/s2;kg # 1m/s 2 2K 5 1
2 mv2

1K1 5 K2 2Wtot 5 0,
K1 21K2

Wtot

K1K2

Wtot

Problem-Solving Strategy 6.1 Work and Kinetic Energy

IDENTIFY the relevant concepts: The work–energy theorem,
is extremely useful when you want to relate a

body’s speed at one point in its motion to its speed at a differ-
ent point. (It’s less useful for problems that involve the time it
takes a body to go from point 1 to point 2, because the
work–energy theorem doesn’t involve time at all. For such prob-
lems it’s usually best to use the relationships among time, position,
velocity, and acceleration described in Chapters 2 and 3.)

SET UP the problem using the following steps:
1. Choose the initial and final positions of the body, and draw a

free-body diagram showing all the forces that act on the body.
2. Choose a coordinate system. (If the motion is along a straight

line, it’s usually easiest to have both the initial and final posi-
tions lie along the x-axis.)

3. List the unknown and known quantities, and decide which
unknowns are your target variables. The target variable may be
the body’s initial or final speed, the magnitude of one of the
forces acting on the body, or the body’s displacement.

EXECUTE the solution: Calculate the work W done by each force.
If the force is constant and the displacement is a straight line, you
can use Eq. (6.2) or (6.3). (Later in this chapter we’ll see how to
handle varying forces and curved trajectories.) Be sure to check

v2v1

Wtot 5 K2 2 K1 ,
signs; W must be positive if the force has a component in the direc-
tion of the displacement, negative if the force has a component
opposite to the displacement, and zero if the force and displace-
ment are perpendicular.

Add the amounts of work done by each force to find the total
work Sometimes it’s easier to calculate the vector sum of the
forces (the net force) and then find the work done by the net force;
this value is also equal to 

Write expressions for the initial and final kinetic energies, 
and Note that kinetic energy involves mass, not weight; if you
are given the body’s weight, you’ll need to use the relationship

to find the mass.
Finally, use to solve for the target variable.

Remember that the right-hand side of this equation is the final
kinetic energy minus the initial kinetic energy, never the other way
around.

EVALUATE your answer: Check whether your answer makes
physical sense. A key point to remember is that kinetic energy

can never be negative. If you come up with a negative
value of K, perhaps you interchanged the initial and final kinetic
energies in or made a sign error in one of the work
calculations.

Wtot 5 K2 2 K1

K 5 1
2 mv2

Wtot 5 K2 2 K1

w 5 mg

K2 .
K1

Wtot .

Wtot .

Example 6.3 Using work and energy to calculate speed

Let’s look again at the sled in Fig. 6.7 and the numbers at the end
of Example 6.2. Suppose the initial speed is 2.0 m/s. What is the
speed of the sled after it moves 20 m?

SOLUTION

IDENTIFY: We’ll use the work–energy theorem, Eq. (6.6)
since we are given the initial speed and

want to find the final speed. 

SET UP: Figure 6.11 shows our sketch of the situation. The motion
is in the positive x-direction.

EXECUTE: In Example 6.2 we calculated the total work done by
all the forces: Hence the kinetic energy of the sled
and its load must increase by 10 kJ.

To write expressions for the initial and final kinetic energies,
we need the mass of the sled and load. We are given that the weight
is 14,700 N, so the mass is

Then the initial kinetic energy is

The final kinetic energy is

K2 5
1

2
 mv2 

2 5
1

2
11500 kg 2v2 

2

K2

 5 3000 J

 K1 5
1

2
 mv1 

2 5
1

2
11500 kg 2 12.0 m/s 2 2 5 3000 kg # m2/s2

K1

m 5
w

g
5

14,700 N

9.8 m/s2
5 1500 kg

Wtot 5 10 kJ.

v1 5 2.0 m/sK2 2 K1 2 ,
1Wtot 5

v1

where is the unknown speed we want to find. Equation (6.6)
gives

Setting these two expressions for equal, substituting 
and solving for we find

EVALUATE: The total work is positive, so the kinetic energy
increases and the speed increases 

This problem can also be done without the work–energy theo-
rem. We can find the acceleration from and then use the
equations of motion for constant acceleration to find Since the
acceleration is along the x-axis,

Then, using Eq. (2.13),

This is the same result we obtained with the work–energy
approach, but there we avoided the intermediate step of finding
the acceleration. You will find several other examples in this chap-
ter and the next that can be done without using energy considera-
tions but that are easier when energy methods are used. When a
problem can be done by two different methods, doing it by both
methods (as we did in this example) is a very good way to check
your work.

 v2 5 4.2 m/s
 5 17.3 m2/s2

 v2 

2 5 v1 

2 1 2as 5 12.0 m/s 2 2 1 2 10.333 m/s2 2 120 m 2

 5 0.333 m/s2

 a 5 ax 5
aFx

m
5

15000 N 2  cos 36.9° 2 3500 N

1500 kg

v2 .
gF

S

5 maS

1v2 . v1 2 .1K2 . K1 2
v2 5 4.2 m/s

v2 ,1 kg # m2/s2,
1 J 5K2

K2 5 K1 1 Wtot 5 3000 J 1 10,000 J 5 13,000 J

v2

6.11 Our sketch for this problem.

Example 6.4 Forces on a hammerhead

In a pile driver, a steel hammerhead with mass 200 kg is lifted
3.00 m above the top of a vertical I-beam being driven into the
ground (Fig. 6.12a). The hammer is then dropped, driving the I-
beam 7.4 cm farther into the ground. The vertical rails that guide
the hammerhead exert a constant 60-N friction force on the ham-
merhead. Use the work–energy theorem to find (a) the speed of
the hammerhead just as it hits the I-beam and (b) the average
force the hammerhead exerts on the I-beam. Ignore the effects of
the air.

SOLUTION

IDENTIFY: We’ll use the work–energy theorem to relate the ham-
merhead’s speed at different locations and the forces acting on it.
There are three locations of interest: point 1, where the hammer-
head starts from rest; point 2, where it first contacts the I-beam; and

point 3, where the hammerhead comes to a halt (see Fig. 6.12a).
The two unknowns are the hammerhead’s speed at point 2 and the
force the hammerhead exerts between points 2 and 3. Hence we’ll
apply the work–energy theorem twice: once for the motion from 1
to 2, and once for the motion from 2 to 3.

SET UP: Figure 6.12b shows the vertical forces on the hammer-
head as it falls from point 1 to point 2. (We can ignore any horizon-
tal forces that may be present because they do no work as the
hammerhead moves vertically.) For this part of the motion, our tar-
get variable is the hammerhead’s speed 

Figure 6.12c shows the vertical forces on the hammerhead dur-
ing the motion from point 2 to point 3. In addition to the forces
shown in Fig. 6.12b, the I-beam exerts an upward normal force of
magnitude n on the hammerhead. This force actually varies as the
hammerhead comes to a halt, but for simplicity we’ll treat n as a

v2 .

Continued
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6.12 (a) A pile driver pounds an I-beam into the ground. (b), (c) Free-body diagrams. Vector lengths are not to scale.

(a) 

3.00 m

Point 1

Point 2

Point 3
7.4 cm

(b) Free-body diagram
for falling hammerhead

(c) Free-body diagram
for hammerhead
pushing I-beam

y

x

v

f 5 60 N

w 5 mg

y

x

w 5 mg

n

f 5 60 N

constant. Hence n represents the average value of this upward
force during the motion. Our target variable for this part of the
motion is the force that the hammerhead exerts on the I-beam; it is
the reaction force to the normal force exerted by the I-beam, so by
Newton’s third law its magnitude is also n.

EXECUTE: (a) From point 1 to point 2, the vertical forces are the
downward weight and
the upward friction force Thus the net downward force
is The displacement of the hammerhead from
point 1 to point 2 is downward and equal to The
total work done on the hammerhead as it moves from point 1 to
point 2 is then

At point 1 the hammerhead is at rest, so its initial kinetic energy 
is zero. Hence the kinetic energy at point 2 equals the total work
done on the hammerhead between points 1 and 2:

This is the hammerhead’s speed at point 2, just as it hits the 
I-beam.

(b) As the hammerhead moves downward between points 2
and 3, the net downward force acting on it is (seew 2 f 2 n

 v2 5 Å
2Wtot

m
5 Å

2 15700 J 2
200 kg

5 7.55 m/s

 Wtot 5 K2 2 K1 5 K2 2 0 5
1

2
 mv2 

2 2 0

K2

K1

Wtot 5 1w 2 f 2 s12 5 11900 N 2 13.00 m 2 5 5700 J

s12 5 3.00 m.
w 2 f 5 1900 N.

f 5 60 N.
w 5 mg 5 1200 kg 2 19.8 m/s2 2 5 1960 N

Fig. 6.12c). The total work done on the hammerhead during this
displacement is

The initial kinetic energy for this part of the motion is which
from part (a) equals 5700 J. The final kinetic energy is 
since the hammerhead ends at rest. Then, from the work–energy
theorem,

The downward force that the hammerhead exerts on the I-beam
has this same magnitude, 79,000 N (about 9 tons)—more than
40 times the weight of the hammerhead.

EVALUATE: The net change in the hammerhead’s kinetic energy
from point 1 to point 3 is zero; a relatively small net force does
positive work over a large distance, and then a much larger net
force does negative work over a much smaller distance. The same
thing happens if you speed up your car gradually and then drive it
into a brick wall. The very large force needed to reduce the kinetic
energy to zero over a short distance is what does the damage to
your car—and possibly to you.

 5 79,000 N

 5 1960 N 2 60 N 2
0 J 2 5700 J

0.074 m

 n 5 w 2 f 2
K3 2 K2

s23

 Wtot 5 1w 2 f 2 n 2 s23 5 K3 2 K2

K3 5 0,
K2 ,

Wtot 5 1w 2 f 2 n 2 s23

The Meaning of Kinetic Energy
Example 6.4 gives insight into the physical meaning of kinetic energy. The ham-
merhead is dropped from rest, and its kinetic energy when it hits the I-beam
equals the total work done on it up to that point by the net force. This result is
true in general: To accelerate a particle of mass m from rest (zero kinetic energy)

up to a speed v, the total work done on it must equal the change in kinetic energy
from zero to 

So the kinetic energy of a particle is equal to the total work that was done to
accelerate it from rest to its present speed (Fig. 6.13). The definition 
Eq. (6.5), wasn’t chosen at random; it’s the only definition that agrees with this
interpretation of kinetic energy.

In the second part of Example 6.4 the kinetic energy of the hammerhead did
work on the I-beam and drove it into the ground. This gives us another inter-
pretation of kinetic energy: The kinetic energy of a particle is equal to the total
work that particle can do in the process of being brought to rest. This is why
you pull your hand and arm backward when you catch a ball. As the ball
comes to rest, it does an amount of work (force times distance) on your hand
equal to the ball’s initial kinetic energy. By pulling your hand back, you maxi-
mize the distance over which the force acts and so minimize the force on your
hand.

K 5 1
2 mv2,

Wtot 5 K 2 0 5 K

K 5 1
2 mv2:

6.13 When a billiards player hits a cue
ball at rest, the ball’s kinetic energy after
being hit is equal to the work that was
done on it by the cue. The greater the force
exerted by the cue and the greater the dis-
tance the ball moves while in contact with
it, the greater the ball’s kinetic energy.

2m

m

F

s
Start Finish

F

6.14 A race between iceboats.

Conceptual Example 6.5 Comparing kinetic energies

Two iceboats like the one in Example 5.6 (Section 5.2) hold a race
on a frictionless horizontal lake (Fig. 6.14). The two iceboats have
masses m and 2m. Each iceboat has an identical sail, so the wind
exerts the same constant force on each iceboat. The two iceboats
start from rest and cross the finish line a distance s away. Which
iceboat crosses the finish line with greater kinetic energy?

SOLUTION

If you use the mathematical definition of kinetic energy,
Eq. (6.5), the answer to this problem isn’t immediately obvious.
The iceboat of mass 2m has greater mass, so you might guess that
the larger iceboat attains a greater kinetic energy at the finish line.
But the smaller iceboat, of mass m, crosses the finish line with a
greater speed, and you might guess that this iceboat has the greater
kinetic energy. How can we decide?

The correct way to approach this problem is to remember that
the kinetic energy of a particle is equal to the total work done to
accelerate it from rest. Both iceboats travel the same distance s,
and only the horizontal force F in the direction of motion does
work on either iceboat. Hence the total work done between the
starting line and the finish line is the same for each iceboat,

At the finish line, each iceboat has a kinetic energy equal
to the work done on it, because each iceboat started from rest.
So both iceboats have the same kinetic energy at the finish line!

Wtot

Wtot 5 Fs.

K 5 1
2 mv2,

F
S

You might think this is a “trick” question, but it isn’t. If you
really understand the physical meanings of quantities such as
kinetic energy, you can solve problems more easily and with better
insight into the physics.

Notice that we didn’t need to say anything about how much
time each iceboat took to reach the finish line. This is because the
work–energy theorem makes no direct reference to time, only to
displacement. In fact, the iceboat of mass m takes less time to
reach the finish line than does the larger iceboat of mass 2m
because it has a greater acceleration.

Work and Kinetic Energy in Composite Systems
In this section we’ve been careful to apply the work–energy theorem only to bod-
ies that we can represent as particles—that is, as moving point masses. New sub-
tleties appear for more complex systems that have to be represented as many
particles with different motions. We can’t go into these subtleties in detail in this
chapter, but here’s an example.
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x1 x2

F1x F2x

x

(b)

(c)

x

Fx

(a) Particle moving from x1 to x2 in response
to a changing force in the x-direction

Graph of force
as a function
of position

x

Fx

x1 x2
x2 2 x1

F1x

F2x

Fax

Fbx

Fcx

Fdx

Fex

Ffx
The height of each strip 
represents the average 
force for that 
interval.

x1 x2∆xa ∆xc ∆xe∆xb ∆xd ∆xf

6.16 Calculating the work done by a
varying force in the x-direction as a par-
ticle moves from to x2 .x1

Fx

Fx

O
x

x1

s 5 x2 � x1

F

x2

The rectangular area under the
graph represents the work done by
the constant force of magnitude F
during displacement s:

W 5 Fs

6.17 The work done by a constant force F
in the x-direction as a particle moves from

to x2 .x1

x

 2Fx

Fx 5 kx

6.18 The force needed to stretch an ideal
spring is proportional to the spring’s
elongation: Fx 5 kx.

The area under the graph represents the work
done on the spring as the spring is stretched
from x 5 0 to a maximum value X:

W 5    k X 21
2

Fx

O
x

k X

X

Fx 5 k x

6.19 Calculating the work done to stretch
a spring by a length X.

In the limit that the number of segments becomes very large and the width of
each becomes very small, this sum becomes the integral of from to 

(6.7)

Note that represents the area of the first vertical strip in Fig. 6.16c and
that the integral in Eq. (6.7) represents the area under the curve of Fig. 6.16b
between and On a graph of force as a function of position, the total work
done by the force is represented by the area under the curve between the initial
and final positions. An alternative interpretation of Eq. (6.7) is that the work W
equals the average force that acts over the entire displacement, multiplied by the
displacement.

In the special case that the x-component of the force, is constant, it may be
taken outside the integral in Eq. (6.7):

(constant force)

But the total displacement of the particle. So in the case of a con-
stant force F, Eq. (6.7) says that in agreement with Eq. (6.1). The inter-
pretation of work as the area under the curve of as a function of x also holds
for a constant force; is the area of a rectangle of height F and width s
(Fig. 6.17).

Now let’s apply these ideas to the stretched spring. To keep a spring stretched
beyond its unstretched length by an amount x, we have to apply a force of equal
magnitude at each end (Fig. 6.18). If the elongation x is not too great, the force
we apply to the right-hand end has an x-component directly proportional to x:

(force required to stretch a spring) (6.8)

where k is a constant called the force constant (or spring constant) of the spring.
The units of k are force divided by distance: N/m in SI units and lb/ft in British
units. A floppy toy spring such as a Slinky™ has a force constant of about 1 N/m;
for the much stiffer springs in an automobile’s suspension, k is about 
The observation that force is directly proportional to elongation for elongations
that are not too great was made by Robert Hooke in 1678 and is known as
Hooke’s law. It really shouldn’t be called a “law,” since it’s a statement about a
specific device and not a fundamental law of nature. Real springs don’t always
obey Eq. (6.8) precisely, but it’s still a useful idealized model. We’ll discuss
Hooke’s law more fully in Chapter 11.

To stretch a spring, we must do work. We apply equal and opposite forces to
the ends of the spring and gradually increase the forces. We hold the left end sta-
tionary, so the force we apply at this end does no work. The force at the moving
end does do work. Figure 6.19 is a graph of as a function of x, the elongation
of the spring. The work done by this force when the elongation goes from zero to
a maximum value X is

(6.9)

We can also obtain this result graphically. The area of the shaded triangle in
Fig. 6.19, representing the total work done by the force, is equal to half the prod-
uct of the base and altitude, or

W 5
1

2
1X 2 1 kX 2 5

1

2
 kX 2

W 5 3
X

0

Fx dx 5 3
X

0

kx dx 5
1

2
 kX 2

Fx

105 N/m.

Fx 5 kx

W 5 Fs
Fx

W 5 Fs,
x2 2 x1 5 s,

W 5 3
x2

x1

Fx dx 5 Fx 3
x2
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dx 5 Fx 1 x2 2 x1 2
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x2 .x1

Fax Dxa

(varying x-component of force,
straight-line displacement)

W 5 3
x2
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6.15 The external forces acting on a
skater pushing off a wall. The work done
by these forces is zero, but the skater’s
kinetic energy changes nonetheless.

Test Your Understanding of Section 6.2 Rank the following bodies in order
of their kinetic energy, from least to greatest. (i) a 2.0-kg body moving at 5.0 m/s;
(ii) a 1.0 kg body that initially was at rest and then had 30 J of work done on it; (iii) a
1.0-kg body that initially was moving at 4.0 m/s and then had 20 J of work done on it; (iv) a
2.0 kg body that initially was moving at 10 m/s and then did 80 J of work on another body.

❚

Suppose a boy stands on frictionless roller skates on a level surface, facing a
rigid wall (Fig. 6.15). He pushes against the wall, which makes him move to
the right. The forces acting on him are his weight the upward normal forces

and exerted by the ground on his skates, and the horizontal force
exerted on him by the wall. There is no vertical displacement, so and
do no work. Force accelerates him to the right, but the parts of his body
where that force is applied (the man’s hands) do not move while the force acts.
Thus the force also does no work. Where, then, does the boy’s kinetic energy
come from?

The explanation is that it’s not adequate to represent the boy as a single point
mass. Different parts of the boy’s body have different motions; his hands remain
stationary against the wall while his torso is moving away from the wall. The var-
ious parts of his body interact with each other, and one part can exert forces and
do work on another part. Therefore the total kinetic energy of this composite sys-
tem of body parts can change, even though no work is done by forces applied by
bodies (such as the wall) that are outside the system. In Chapter 8 we’ll consider
further the motion of a collection of particles that interact with each other. We’ll
discover that just as for the boy in this example, the total kinetic energy of such a
system can change even when no work is done on any part of the system by any-
thing outside it.

F
S

F
S

nS2wS, nS1 ,
F
S

nS2nS1

wS,

6.3 Work and Energy with Varying Forces
So far in this chapter we’ve considered work done by constant forces only. But
what happens when you stretch a spring? The more you stretch it, the harder you
have to pull, so the force you exert is not constant as the spring is stretched.
We’ve also restricted our discussion to straight-line motion. There are many situ-
ations in which a body moves along a curved path and is acted on by a force that
varies in magnitude, direction, or both. We need to be able to compute the work
done by the force in these more general cases. Fortunately, we’ll find that the
work–energy theorem holds true even when varying forces are considered and
when the body’s path is not straight.

Work Done by a Varying Force, Straight-Line Motion
To add only one complication at a time, let’s consider straight-line motion along
the x-axis with a force whose x-component may change as the body moves.
(A real-life example is driving a car along a straight road with stop signs, so the
driver has to alternately step on the gas and apply the brakes.) Suppose a particle
moves along the x-axis from point to (Fig. 6.16a). Figure 6.16b is a graph of
the x-component of force as a function of the particle’s coordinate x. To find the
work done by this force, we divide the total displacement into small segments

and so on (Fig. 6.16c). We approximate the work done by the force
during segment as the average x-component of force in that segment mul-
tiplied by the x-displacement We do this for each segment and then add the
results for all the segments. The work done by the force in the total displacement
from to is approximately

W 5 Fax 
Dxa 1 Fbx 

Dxb 1 c

x2x1

Dxa .
FaxDxa

Dxa , Dxb ,

x2x1

Fx
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6.20 Calculating the work done to stretch a
spring from one extension to a greater one.

The trapezoidal area under the graph represents
the work done on the spring to stretch it from
x 5 x1 to x 5 x2: W 5    kx2

2 2    kx1
21

2
1
2

x

x

x 5 0 x 5 x1 x 5 x2

x 5 0 x 5 x1 x 5 x2

kx1

kx2

(a) Stretching a spring from elongation x1
to elongation x2

(b) Force-versus-distance graph

Fx

This equation also says that the work is the average force multiplied by the
total displacement X. We see that the total work is proportional to the square of
the final elongation X. To stretch an ideal spring by 2 cm, you must do four times
as much work as is needed to stretch it by 1 cm.

Equation (6.9) assumes that the spring was originally unstretched. If initially
the spring is already stretched a distance the work we must do to stretch it to a
greater elongation (Fig. 6.20a) is

(6.10)

You should use your knowledge of geometry to convince yourself that the trape-
zoidal area under the graph in Fig. 6.20b is given by the expression in Eq. (6.10).

If the spring has spaces between the coils when it is unstretched, then it can
also be compressed, and Hooke’s law holds for compression as well as stretch-
ing. In this case the force and displacement are in the opposite directions from
those shown in Fig. 6.18, and so and x in Eq. (6.8) are both negative. Since
both and x are reversed, the force again is in the same direction as the dis-
placement, and the work done by is again positive. So the total work is still
given by Eq. (6.9) or (6.10), even when X is negative or either or both of and 
are negative.

CAUTION Work done on a spring vs. work done by a spring Note that Eq. (6.10)
gives the work that you must do on a spring to change its length. For example, if you
stretch a spring that’s originally relaxed, then and The force you
apply to one end of the spring is in the same direction as the displacement, and the work
you do is positive. By contrast, the work that the spring does on whatever it’s attached to is
given by the negative of Eq. (6.10). Thus, as you pull on the spring, the spring does nega-
tive work on you. Paying careful attention to the sign of work will eliminate confusion
later on! ❚

W . 0:x1 5 0, x2 . 0,
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W 5 3
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kX/2 Work–Energy Theorem for Straight-Line Motion, 
Varying Forces
In Section 6.2 we derived the work–energy theorem, for the spe-
cial case of straight-line motion with a constant net force. We can now prove that
this theorem is true even when the force varies with position. As in Section 6.2,
let’s consider a particle that undergoes a displacement x while being acted on by a
net force with x-component which we now allow to vary. Just as in Fig. 6.16,
we divide the total displacement x into a large number of small segments We
can apply the work–energy theorem, Eq. (6.6), to each segment because the value
of in each small segment is approximately constant. The change in kinetic
energy in segment is equal to the work and so on. The total change of
kinetic energy is the sum of the changes in the individual segments, and thus is
equal to the total work done on the particle during the entire displacement. So

holds for varying forces as well as for constant ones.
Here’s an alternative derivation of the work–energy theorem for a force that

may vary with position. It involves making a change of variable from x to in
the work integral. As a preliminary, we note that the acceleration a of the particle
can be expressed in various ways, using and the chain
rule for derivatives:

(6.11)

From this result, Eq. (6.7) tells us that the total work done by the net force is

(6.12)

Now is the change in velocity during the displacement dx, so in
Eq. (6.12) we can substitute for This changes the integration
variable from x to so we change the limits from and to the corresponding
x-velocities and at these points. This gives us

The integral of is just Substituting the upper and lower limits, we
finally find

(6.13)

This is the same as Eq. (6.6), so the work–energy theorem is valid even without
the assumption that the net force is constant.
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Example 6.6 Work done on a spring scale

A woman weighing 600 N steps on a bathroom scale containing a
stiff spring (Fig. 6.21). In equilibrium the spring is compressed
1.0 cm under her weight. Find the force constant of the spring and
the total work done on it during the compression.

SOLUTION

IDENTIFY: In equilibrium the upward force exerted by the spring
balances the downward force of the woman’s weight. We’ll use
this principle and Eq. (6.8) to determine the force constant k, and

we’ll use Eq. (6.10) to calculate the work W that the woman does
on the spring to compress it.

SET UP: We take positive values of x to correspond to elongation
(upward in Fig. 6.21), so that the displacement of the spring (x)
and the x-component of the force that the woman exerts on it 
are both negative.

EXECUTE: The top of the spring is displaced by 
and the woman exerts a force on the

spring. From Eq. (6.8) the force constant is

Then, using and in Eq. (6.10),

EVALUATE: The applied force and the displacement of the end of
the spring were in the same direction, so the work done must have
been positive—just as we found. Our arbitrary choice of the posi-
tive direction has no effect on the answer for W. (You can test this
by taking the positive x-direction to be downward, corresponding
to compression. You’ll get the same values for k and W.)

 5
1

2
16.0 3 104 N/m 2 120.010 m 2 2 2 0 5 3.0 J

 W 5
1

2
 kx2 

2 2
1

2
 kx1 

2

x2 5 20.010 mx1 5 0

k 5
Fx

x
5

2600 N

20.010 m
5 6.0 3 104 N/m

Fx 5 2600 N20.010 m,
x 5 21.0 cm 5

1Fx 2

Because of our choice of axis, both the
force component and displacement are
negative. The work on the spring is positive.

 21.0 cm

 1x

Fx , 0

6.21 Compressing a spring in a bathroom scale.

An air-track glider of mass 0.100 kg is attached to the end of a
horizontal air track by a spring with force constant 20.0 N/m
(Fig. 6.22a). Initially the spring is unstretched and the glider is
moving at 1.50 m/s to the right. Find the maximum distance d that
the glider moves to the right (a) if the air track is turned on so that
there is no friction, and (b) if the air is turned off so that there is
kinetic friction with coefficient 

SOLUTION

IDENTIFY: The force exerted by the spring is not constant, so we
cannot use the constant-acceleration formulas of Chapter 2 to

mk 5 0.47.

solve this problem. Instead, we’ll use the work–energy theorem,
which involves the distance moved (our target variable) through
the formula for work.

SET UP: In Figs. 6.22b and 6.22c we chose the positive x-direction
to be to the right (in the direction of the glider’s motion). We take

at the glider’s initial position (where the spring is
unstretched) and (the target variable) at the position where
the glider stops. The motion is purely horizontal, so only the hori-
zontal forces do work. Note that Eq. (6.10) gives the work done on
the spring as it stretches, but to use the work–energy theorem we

x 5 d
x 5 0

Example 6.7 Motion with a varying force

Continued
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where is the component of in the direction parallel to 
(Fig. 6.23b). The total work done by on the particle as it moves from to is
then

(6.14)

We can now show that the work–energy theorem, Eq. (6.6), holds true even
with varying forces and a displacement along a curved path. The force is essen-
tially constant over any given infinitesimal segment of the path, so we can
apply the work–energy theorem for straight-line motion to that segment. Thus the
change in the particle’s kinetic energy K over that segment equals the work

done on the particle. Adding up these infinitesimal quanti-
ties of work from all the segments along the whole path gives the total work done,
Eq. (6.14), which equals the total change in kinetic energy over the whole path.
So is true in general, no matter what the path and no mat-
ter what the character of the forces. This can be proved more rigorously by using
steps like those in Eqs. (6.11) through (6.13) (see Challenge Problem 6.104).

Note that only the component of the net force parallel to the path, does
work on the particle, so only this component can change the speed and kinetic
energy of the particle. The component perpendicular to the path, 
has no effect on the particle’s speed; it acts only to change the particle’s direction.

The integral in Eq. (6.14) is called a line integral. To evaluate this integral in a
specific problem, we need some sort of detailed description of the path and of the
way in which varies along the path. We usually express the line integral in
terms of some scalar variable, as in the following example.

F
S

F' 5 F sin f,

Fi  ,

Wtot 5 DK 5 K2 2 K1

dW 5 Fi dl 5 F
S # d l

S

d l
S

F
S

(work done on
a curved path)W 5 3

P2

P1

F cos f dl 5 3
P2

P1

Fi dl 5 3
P2

P1

F
S # d l

S

P2P1F
S

d l
S

F
S

Fi 5 F cos f
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Work–Energy Theorem for Motion Along a Curve
We can generalize our definition of work further to include a force that varies in
direction as well as magnitude, and a displacement that lies along a curved
path. Suppose a particle moves from point to along a curve, as shown in
Fig. 6.23a. We divide the portion of the curve between these points into many
infinitesimal vector displacements, and we call a typical one of these Each

is tangent to the path at its position. Let be the force at a typical point along
the path, and let be the angle between and at this point. Then the small
element of work dW done on the particle during the displacement may be
written as

dW 5 F cos f dl 5 Fi dl 5 F
S # d l

S

d l
S

d l
S

F
S

f
F
S

d l
S

d l
S

.

P2P1

F

During an infinitesimal displacement dl,
the force F does work dW on the particle:

P1

P2

(a)

f

F
S

S

S

Only the component of F parallel to the
displacement, F  5 F cos f, contributes
to the work done by F. 

S

S

dW 5 F # dl 5 F cos f dl
S S

dl
S

F  5 F cos f

(b)

P1

P2

f

F
S

dl
S

6.23 A particle moves along a curved
path from point to acted on by a
force that varies in magnitude and 
direction.

F
S

P2 ,P1

(a)

k
m

v1

(b) Free-body diagram for
the glider without friction

(c) Free-body diagram for
the glider with kinetic friction

6.22 (a) A glider attached to an air track by a spring. (b), (c) Our
free-body diagrams. 

 d 5
2 10.461 N 2 6 "10.461 N 2 2 2 4 110.0 N/m 2 120.113 N # m 2

2 110.0 N/m 2

We have used d as the symbol for a positive displacement, so only
the positive value of d makes sense. Thus with friction the glider
moves a distance

EVALUATE: With friction present, the glider goes a shorter dis-
tance and the spring stretches less, as you might expect. Again the
glider stops instantaneously, and again the spring force pulls the
glider to the left; whether it moves or not depends on how great
the static friction force is. How large would the coefficient of
static friction have to be to keep the glider from springing back
to the left?

ms

d 5 0.086 m 5 8.6 cm

5 0.086 m  or  20.132 m

need the work done by the spring on the glider—which is the nega-
tive of Eq. (6.10).

EXECUTE: (a) As the glider moves from to it does
an amount of work on the spring given by Eq. (6.10): 

The amount of work that the spring does
on the glider is the negative of this value, or The spring
stretches until the glider comes instantaneously to rest, so the final
kinetic energy is zero. The initial kinetic energy is where

is the glider’s initial speed. Using the work–energy
theorem, we find

We solve for the distance d the glider moves:

 5 0.106 m 5 10.6 cm

 d 5 v1 Å
m

k
5 11.50 m/s 2Å

0.100 kg

20.0 N/m

2 

1

2
 kd 2 5 0 2

1

2
 mv1 

2

v1 5 1.50 m/s
1
2 mv1 

2,K2

2 
1
2kd 2.

1
2 kd 2 2 1

2 k 10 2 2 5 1
2 kd 2.

W 5
x2 5 d,x1 5 0

The stretched spring subsequently pulls the glider back to the left,
so the glider is at rest only instantaneously.

(b) If the air is turned off, we must also include the work done
by the constant force of kinetic friction. The normal force n is
equal in magnitude to the weight of the glider, since the track is
horizontal and there are no other vertical forces. Hence the magni-
tude of the kinetic friction force is The friction
force is directed opposite to the displacement, so the work done by
friction is

The total work is the sum of and the work done by the spring,
The work–energy theorem then says that

This is a quadratic equation for d. The solutions are

 110.0 N/m 2d 2 1 10.461 N 2d 2 10.113 N # m 2 5 0

 5 2 

1

2
10.100 kg 2 11.50 m/s 2 2

2 10.47 2 1 0.100 kg 2 1 9.8 m/s2 2d 2
1

2
120.0 N/m 2d 2

 2mk mgd 2
1

2
 kd 2 5 0 2

1

2
 mv1 

2

2 
1
2 kd 2.

Wfric

Wfric 5 fk d cos 180° 5 2fk d 5 2mk mgd

fk 5 mk n 5 mk mg.

s

(a)

R

(b) Free-body diagram for
Throckmorton (neglecting the
weight of the chains and seat)

u

uF
S dl

S

6.24 (a) Pushing cousin Throckmorton in a swing. (b) Our free-
body diagram.

Example 6.8 Motion on a curved path I

At a family picnic you are appointed to push your obnoxious
cousin Throckmorton in a swing (Fig. 6.24a). His weight is w, the
length of the chains is R, and you push Throcky until the chains
make an angle with the vertical. To do this, you exert a varying
horizontal force that starts at zero and gradually increases just
enough so that Throcky and the swing move very slowly and
remain very nearly in equilibrium. What is the total work done on
Throcky by all forces? What is the work done by the tension T in
the chains? What is the work you do by exerting the force 
(Neglect the weight of the chains and seat.)

SOLUTION

IDENTIFY: The motion is along a curve, so we will use Eq. (6.14)
to calculate the work done by the net force, by the tension force,
and by the force 

SET UP: Figure 6.24b shows our free-body diagram and coordi-
nate system. We have replaced the tensions in the two chains with
a single tension T.

EXECUTE: There are two ways to find the total work done during
the motion: (1) by calculating the work done by each force and
then adding the quantities of work together, and (2) by calculating
the work done by the net force. The second approach is far easier
in this situation because Throcky is in equilibrium at every point.
Hence the net force on him is zero, the integral of the net force in

F
S

.

F
S

?

F
S

u0

Eq. (6.14) is zero, and the total work done on him by all forces is
zero.

It’s also easy to find the work done by the chain tension on
Throcky because this force is perpendicular to the direction of
motion at all points along the path. Hence at all points the angle
between the chain tension and the displacement vector is 
and the scalar product in Eq. (6.14) is zero. Thus the chain tension
does zero work.

90°d l
S

Continued
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6.4 Power
The definition of work makes no reference to the passage of time. If you lift a
barbell weighing 100 N through a vertical distance of 1.0 m at constant velocity,
you do of work whether it takes you 1 second, 1 hour,
or 1 year to do it. But often we need to know how quickly work is done. We
describe this in terms of power. In ordinary conversation the word “power” is
often synonymous with “energy” or “force.” In physics we use a much more pre-
cise definition: Power is the time rate at which work is done. Like work and
energy, power is a scalar quantity.

When a quantity of work is done during a time interval the average
work done per unit time or average power is defined to be

(average power) (6.15)

The rate at which work is done might not be constant. We can define
instantaneous power P as the quotient in Eq. (6.15) as approaches zero:

(instantaneous power) (6.16)

The SI unit of power is the watt (W), named for the English inventor James
Watt. One watt equals 1 joule per second: (Fig. 6.25). The kilowatt

and the megawatt are also commonly used.
In the British system, work is expressed in foot-pounds, and the unit of power is
the foot-pound per second. A larger unit called the horsepower (hp) is also used
(Fig. 6.26):

That is, a 1-hp motor running at full load does of work every
minute. A useful conversion factor is

The watt is a familiar unit of electrical power; a 100-W light bulb converts
100 J of electrical energy into light and heat each second. But there’s nothing
inherently electrical about a watt. A light bulb could be rated in horsepower, and
an engine can be rated in kilowatts.

The kilowatt-hour is the usual commercial unit of electrical energy.
One kilowatt-hour is the total work done in 1 hour (3600 s) when the power is
1 kilowatt so

The kilowatt-hour is a unit of work or energy, not power.
In mechanics we can also express power in terms of force and velocity. Sup-

pose that a force acts on a body while it undergoes a vector displacement If
is the component of tangent to the path (parallel to ), then the work done

by the force is The average power is

(6.17)

Instantaneous power P is the limit of this expression as 

(6.18)P 5 Fi  v

Dt S 0:

Pav 5
FiDs

Dt
5 Fi  

Ds

Dt
5 Fi  vav

DW 5 Fi Ds.
D sSF

S

Fi

D sS.F
S

1 kW # h 5 1103 J/s 2  13600 s 2 5 3.6 3 106
 J 5 3.6 MJ

1103 J/s 2 ,
1kW # h 2

1 hp 5 746 W 5 0.746 kW

33,000 ft # lb

1 hp 5 550 ft # lb/s 5 33,000 ft # lb/min

11 MW 5 106 W 21 1 kW 5 103 W 2 1 W 5 1 J/s

P 5 lim
DtS0

 

DW

Dt
5

dW

dt

Dt

Pav 5
DW

Dt

Pav

Dt,DW

1100 N 2 11.0 m 2 5 100 J

To compute the work done by we need to know how this
force varies with the angle The net force on Throcky is zero, so

and From Fig. 6.24b, we get

By eliminating T from these two equations, we obtain

The point where is applied swings through the arc s. The arc
length s equals the radius R of the circular path multiplied by the
length (in radians), so Therefore the displacement 
corresponding to a small change of angle has a magnitude

The work done by is

W 5 3F
S # d l

S

5 3F cos u ds

F
S

dl 5 ds 5 R du.
du

d l
S

s 5 Ru.u

F
S

F 5 w tan u

 aFy 5 T cos u 1 12w 2 5 0

 aFx 5 F 1 12T sin u 2 5 0

gFy 5 0.gFx 5 0
u.

F
S

, Now we express everything in terms of the angle whose value
increases from 0 to 

EVALUATE: If there is no displacement; then 
and as we should expect. If then and

In that case the work you do is the same as if you had
lifted Throcky straight up a distance R with a force equal to his
weight w. In fact, the quantity is the increase in his
height above the ground during the displacement, so for any value
of the work done by the force is the change in height multi-
plied by the weight. This is an example of a more general result
that we’ll prove in Section 7.1.

F
S

u0

R 11 2 cos u0 2
W 5 wR.

cos u0 5 0u0 5 90°,W 5 0,
cos u0 5 1u0 5 0,

 5 wR 11 2 cos u0 2
 W 5 3

u0

0

1w tan u 2  cos u 1R du 2 5 wR3
u0

0

sin u du

u0 :
u,

Example 6.9 Motion on a curved path II

In Example 6.8 the infinitesimal displacement (Fig. 6.24a) has
a magnitude of ds, an x-component of and a y-component
of Hence Use this expression
and Eq. (6.14) to calculate the work done during the motion by the
chain tension, by the force of gravity, and by the force 

SOLUTION

IDENTIFY: We again use Eq. (6.14), but now we’ll use Eq. (1.21)
to find the scalar product in terms of components.

SET UP: We use the same free-body diagram, Fig. 6.24b, as in
Example 6.8. 

EXECUTE: From Fig. 6.24b, we can write the three forces in terms
of unit vectors:

To use Eq. (6.14), we must calculate the scalar product of each of
these forces with Using Eq. (1.21),

F
S # d l

S

5 F 1ds cos u 2 5 F cos u ds

wS # d l
S

5 12w 2 1ds sin u 2 5 2w sin u ds

T
S # d l

S

5 12T sin u 2 1 ds cos u 2 1 1T cos u 2 1 ds sin u 2 5 0

d l
S

.

F
S

5 d̂F

wS 5 ê 12w 2
T
S

5 d̂ 12T sin u 2 1 êT cos u

F
S

.

d l
S

5 d̂ ds cos u 1 ê ds sin u.ds sin u.
ds cos u,

d l
S

Since the integral of this quantity is zero and the work
done by the chain tension is zero (just as we found in Exam-
ple 6.8). Using as in Example 6.8, we find the work
done by the force of gravity is

The work done by gravity is negative because gravity pulls down
while Throcky moves upward. Finally, the work done by the force

is the integral which we calculated in
Example 6.8; the answer is 

EVALUATE: As a check on our answers, note that the sum of all
three quantities of work is zero. This is just what we concluded in
Example 6.8 using the work–energy theorem.

The method of components is often the most convenient way to
calculate scalar products. Use it when it makes your life easier!

1wR 11 2 cos u0 2 .∫ F
S # d l

S

5 ∫F cos u ds,F
S

 5 2wR 11 2 cos u0 2
 3wS # d l

S

5 3 12w sin u 2  R du 5 2wR3
u0

0

 sin u du

ds 5 R du

T
S # d l

S

5 0,

t 5 5 s

t 5 0

t 5 0

Work you do on the box
to lift it in 5 s:

W 5 100 J

20 W

Your power output:

P 5  5  5 
W
t

100 J
5 s

t 5 1 s

Work you do on the same
box to lift it the same
distance in 1 s:

W 5 100 J

100 W

Your power output:

P 5  5  5 
W
t

100 J
1 s

6.25 The same amount of work is done in
both of these situations, but the power (the
rate at which work is done) is different.

Test Your Understanding of Section 6.3 In Example 5.21 (Section 5.4)
we examined a conical pendulum. The speed of the pendulum bob remains con-
stant as it travels around the circle shown in Fig. 5.32a. (a) Over one complete cir-
cle, how much work does the tension force F do on the bob? (i) a positive amount; (ii) a
negative amount; (iii) zero. (b) Over one complete circle, how much work does the
weight do on the bob? (i) a positive amount; (ii) a negative amount; (iii) zero.

❚

6.26 The value of the horsepower 
derives from experiments by James Watt,
who measured that a horse could do
33,000 foot-pounds of work per minute 
in lifting coal from a coal pit.
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where is the magnitude of the instantaneous velocity. We can also express
Eq. (6.18) in terms of the scalar product:

(instantaneous rate at which
force does work on a particle)

(6.19)
F
SP 5 F

S # vS

v

Example 6.10 Force and power

Each of the two jet engines in a Boeing 767 airliner develops a
thrust (a forward force on the airplane) of 197,000 N (44,300 lb).
When the airplane is flying at 250 m/s (900 km/h, or roughly
560 mi/h), what horsepower does each engine develop?

SOLUTION

IDENTIFY: Our target variable is the instantaneous power P,
which is the rate at which the thrust does work.

SET UP: We use Eq. (6.18). The thrust is in the direction of
motion, so is just equal to the thrust.

EXECUTE: At the power developed by each engine is

EVALUATE: The speed of modern airliners is directly related to the
power of their engines (Fig. 6.27). The largest propeller-driven air-
liners of the 1950s had engines that developed about 3400 hp

giving them maximum speeds of about 600 km/h
(370 mi/h). Each engine in a Boeing 767 develops nearly 20 times
more power, enabling it to fly at about 900 km/h (560 mi/h) and to
carry a much heavier load.

If the engines are at maximum thrust while the airliner is at rest
on the ground so that the engines develop zero power.
Force and power are not the same thing!

v 5 0,

12.5 3 106 W 2 ,

 5 14.93 3 107 W 2 1 hp

746 W
5 66,000 hp

 P 5 Fi  v 5 11.97 3 105 N 2 1 250 m/s 2 5 4.93 3 107 W

v 5 250 m/s,

Fi

(a)

(b)

6.27 (a) Propeller-driven and (b) jet airliners.

Example 6.11 A “power climb”

A 50.0-kg marathon runner runs up the stairs to the top of Chicago’s
443-m-tall Sears Tower, the tallest building in the United States
(Fig. 6.28). To lift herself to the top in 15.0 minutes, what must be
her average power output in watts? In kilowatts? In horsepower?

SOLUTION

IDENTIFY: We’ll treat the runner as a particle of mass m. Her
average power output must be enough to lift her at constant
speed against gravity.

SET UP: We can find in two ways: (1) by first determining how
much work she must do and then dividing it by the elapsed time, as
in Eq. (6.15), or (2) by calculating the average upward force she
must exert (in the direction of the climb) and then multiplying it by
her upward velocity, as in Eq. (6.17).

EXECUTE: As in Example 6.8, lifting a mass m against gravity
requires an amount of work equal to the weight mg multiplied by
the height h it is lifted. Hence the work she must do is

 5 2.17 3 105
 J

 W 5 mgh 5 150.0 kg 2 1 9.80 m/s2 2 1 443 m 2

Pav

Pav

6.28 How much power is required to run up the stairs of
Chicago’s Sears Tower in 15 minutes?

Test Your Understanding of Section 6.4 The air surrounding an airplane
in flight exerts a drag force that acts opposite to the airplane’s motion. When the
Boeing 767 in Example 6.10 is flying in a straight line at a constant altitude at a
constant 250 m/s, what is the rate at which the drag force does work on it? (i) 132,000 hp;
(ii) 66,000 hp; (iii) 0; (iv) (v) 

❚
2132,000 hp.266,000 hp;

The time is so from Eq. (6.15) the average
power is

Let’s try the calculation again using Eq. (6.17). The force
exerted is vertical, and the average vertical component of velocity
is so the average power is

which is the same result as before.

 5 150.0 kg 2 19.80 m/s2 2 1 0.492 m/s 2 5 241 W

 Pav 5 Fi  vav 5 1mg 2vav

1443 m 2 / 1900 s 2 5 0.492 m/s,

Pav 5
2.17 3 105

 J

900 s
5 241 W 5 0.241 kW 5 0.323 hp

15.0 min 5 900 s, EVALUATE: The runner’s total power output will be several times
greater than 241 W. The reason is that the runner isn’t really a par-
ticle but a collection of parts that exert forces on each other and do
work, such as the work done to inhale and exhale and to make her
arms and legs swing. What we’ve calculated is only the part of her
power output that lifts her to the top of the building.
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work, 182
joule, 182
kinetic energy, 187
work–energy theorem, 187

Answer to Chapter Opening Question ?
It is indeed true that the shell does work on the gases. However,
because the shell exerts a backward force on the gases as the gases
and shell move forward through the barrel, the work done by the
shell is negative (see Section 6.1).

Answers to Test Your Understanding Questions
6.1 Answer: (iii) The electron has constant velocity, so its accel-
eration is zero and (by Newton’s second law) the net force on the
electron is also zero. Therefore the total work done by all the
forces (equal to the work done by the net force) must be zero as
well. The individual forces may do nonzero work, but that’s not
what the question asks.
6.2 Answer: (iv), (i), (iii), (ii) Body (i) has kinetic energy

Body (ii) had zero
kinetic energy initially and then had 30 J of work done it, so its final
kinetic energy is Body (iii) had
initial kinetic energy
and then had 20 J of work done on it, so its final kinetic energy is

Body (iv) had initial kineticK2 5 K1 1 W 5 8.0 J 1 20 J 5 28 J.

8.0 JK1 5 1
2 mv1 

2 5 1
2 11.0 kg 2 14.0 m/s 2 2 5

K2 5 K1 1 W 5 0 1 30 J 5 30 J.

K 5 1
2 mv2 5 1

2 12.0 kg 2 15.0 m/s 2 2 5 25 J.

energy when it did
of work on another body, the other body did of work

on body (iv), so the final kinetic energy of body (iv) is  

6.3 Answers:(a) (iii), (b) (iii) At any point during the pendulum
bob’s motion, the tension force and the weight both act perpendi-
cular to the motion—that is, perpendicular to an infinitesimal dis-
placement of the bob. (In Fig. 5.32b, the displacement 
would be directed outward from the plane of the free-body dia-
gram.) Hence for either force the scalar product inside the integral
in Eq. (6.14) is and the work done along any part of
the circular path (including a complete circle) is 
6.4 Answer: (v) The airliner has a constant horizontal velocity,
so the net horizontal force on it must be zero. Hence the backward
drag force must have the same magnitude as the forward force due
to the combined thrust of the two engines. This means that the drag
force must do negative work on the airplane at the same rate that
the combined thrust force does positive work. The combined thrust
does work at a rate of so the drag
force must do work at a rate of 2132,000 hp.

2 166,000 hp 2 5 132,000 hp,

W 5 ∫F
S # d l

S

5 0.
F
S # d l

S

5 0,

d l
S

d l
S

K1 1 W 5 100 J 1 1280 J 2 5 20 J.
K2 5

280 J80 J
K1 5 1

2 mv1 

2 5 1
2 12.0 kg 2 1 10 m/s 2 2 5 100 J;

Key Terms

CHAPTER 6 SUMMARY

W 5 Fis
    5 (F cosf)s

F

f

F'

Fi 5 F cosf

S

Kinetic energy: The kinetic energy K of a particle
equals the amount of work required to accelerate the
particle from rest to speed It is also equal to the
amount of work the particle can do in the process of
being brought to rest. Kinetic energy is a scalar that has
no direction in space; it is always positive or zero. Its
units are the same as the units of work:
1 J 5 1 N # m 5 1 kg # m2/s2.

v.

The work–energy theorem: When forces act on a parti-
cle while it undergoes a displacement, the particle’s
kinetic energy changes by an amount equal to the total
work done on the particle by all the forces. This rela-
tionship, called the work–energy theorem, is valid
whether the forces are constant or varying and whether
the particle moves along a straight or curved path. It is
applicable only to bodies that can be treated as a parti-
cle. (See Examples 6.3–6.5)

Work done by a varying force or on a curved path:
When a force varies during a straight-line displacement,
the work done by the force is given by an integral,
Eq. (6.7). (See Examples 6.6 and 6.7.) When a particle
follows a curved path, the work done on it by a force 
is given by an integral that involves the angle between
the force and the displacement. This expression is valid
even if the force magnitude and the angle vary during
the displacement. (See Examples 6.8 and 6.9.)

f

f
F
S

(6.5)K 5
1

2
 mv2

(6.6)Wtot 5 K2 2 K1 5 DK.
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m m
vS 2vS
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Wtot 5 total work done on
particle along path

K2 5    mv2
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1
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2
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v1
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Area 5 work done by
force during dis-
placement
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O

Power: Power is the time rate of doing work. The aver-
age power is the amount of work done in time

divided by that time. The instantaneous power is the
limit of the average power as goes to zero. When a
force acts on a particle moving with velocity the
instantaneous power (the rate at which the force does
work) is the scalar product of and Like work and
kinetic energy, power is a scalar quantity. The SI unit of
power is (See
Examples 6.10 and 6.11.)

1 watt 5 1 joule/second 11 W 5 1 J/s 2 .
vS.F

S

vS,F
S

Dt
Dt

DWPav
(6.15)

(6.16)

(6.19)P 5 F
S # vS

P 5 lim
DtS0

DW

Dt
5

dW

dt

Pav 5
DW

Dt
t 5 5 s

t 5 0

Work you do on the
box to lift it in 5 s:

W 5 100 J
Your power output:

20 W

P 5  5 

 5 

W
t

100 J
5 s

Work done by a force: When a constant force acts on
a particle that undergoes a straight-line displacement 
the work done by the force on the particle is defined to
be the scalar product of and The unit of work in 
SI units is 
Work is a scalar quantity; it can be positive or nega-
tive, but it has no direction in space. (See Examples 6.1
and 6.2.)

1 joule 5 1 newton-meter 11 J 5 1 N # m 2 .sS.F
S

sS,
F
S

(6.2), (6.3)
f 5 angle between F

S

 and sS
W 5 F

S # sS 5 Fs cos f

force constant, 193
Hooke’s law, 193
power, 199
average power, 199

instantaneous power, 199
watt, 199
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Discussion Questions
Q6.1. The sign of many physical quantities depends on the choice
of coordinates. For example, g can be negative or positive, depend-
ing on whether we choose upward or downward as positive. Is the
same thing true of work? In other words, can we make positive
work negative by a different choice of coordinates? Explain.
Q6.2. An elevator is hoisted by its cables at constant speed. Is the
total work done on the elevator positive, negative, or zero?
Explain.
Q6.3. A rope tied to a body is pulled, causing the body to acceler-
ate. But according to Newton’s third law, the body pulls back on
the rope with an equal and opposite force. Is the total work done
then zero? If so, how can the body’s kinetic energy change?
Explain.
Q6.4. If it takes total work W to give an object a speed and
kinetic energy K, starting from rest, what will be the object’s speed
(in terms of ) and kinetic energy (in terms of K) if we do twice as
much work on it, again starting from rest? 
Q6.5. If there is a net nonzero force on a moving object, is it possi-
ble for the total work done on the object to be zero? Explain, with
an example that illustrates your answer.
Q6.6. In Example 5.5 (Section 5.1), how does the work done on
the bucket by the tension in the cable compare to the work done on
the cart by the tension in the cable?
Q6.7. In the conical pendulum in Example 5.21 (Section 5.4),
which of the forces do work on the bob while it is swinging?

v

v

Q6.8. For the cases shown in Fig. 6.29,
the object is released from rest at the top
and feels no friction or air resistance. In
which (if any) cases will the mass have
(i) the greatest speed at the bottom and
(ii) the most work done on it by the time it
reaches the bottom?
Q6.9. A force is in the x-direction and
has a magnitude that depends on x. Sketch
a possible graph of F versus x such that the
force does zero work on an object that
moves from to even though the force
magnitude is not zero at all x in this range.
Q6.10. Does the kinetic energy of a car
change more when it speeds up from 10
to or from 15 to Explain.
Q6.11. A falling brick has a mass of
1.5 kg and is moving straight downward
with a speed of A 1.5-kg physics
book is sliding across the floor with a speed of A 1.5-kg
melon is traveling with a horizontal velocity component to
the right and a vertical component upward. Do these
objects all have the same velocity? Do these objects all have the
same kinetic energy? For each question, give the reasoning behind
your answer.

4.0 m/s
3.0 m/s

5.0 m/s.
5.0 m/s.

20 m/s?15 m/s

x2 ,x1

F
S

m

h

(a)

m

h

(b)

2m

h

(c)

Figure 6.29
Question Q6.8.
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Section 6.2 Kinetic Energy and the 
Work–Energy Theorem
6.10. (a) How many joules of kinetic energy does a 750-kg auto-
mobile traveling at a typical highway speed of have?
(b) By what factor would its kinetic energy decrease if the car trav-
eled half as fast? (c) How fast would the car have to
travel to have half as much kinetic energy as in part (a)? 
6.11. Meteor Crater. About 50,000 years ago, a meteor crashed
into the earth near present-day Flagstaff, Arizona. Recent (2005)
measurements estimate that this meteor had a mass of about

kg (around 150,000 tons) and hit the ground at 
(a) How much kinetic energy did this meteor deliver to the
ground? (b) How does this energy compare to the energy released
by a 1.0-megaton nuclear bomb? (A megaton bomb releases the
same energy as a million tons of TNT, and 1.0 ton of TNT releases

J of energy.)
6.12. Some Typical Kinetic Energies. (a) How many joules of
kinetic energy does a 75-kg person have when walking and when
running? (b) In the Bohr model of the atom, the ground-state elec-
tron in hydrogen has an orbital speed of What is its
kinetic energy? (Consult Appendix F.) (c) If you drop a 1.0-kg
weight (about 2 lb) from shoulder height, how many joules of
kinetic energy will it have when it reaches the ground? (d) Is it rea-
sonable that a 30-kg child could run fast enough to have 100 J of
kinetic energy?
6.13. The mass of a proton is 1836 times the mass of an electron.
(a) A proton is traveling at speed V. At what speed (in terms of V )
would an electron have the same kinetic energy as the proton?
(b) An electron has kinetic energy K. If a proton has the same
speed as the electron, what is its kinetic energy (in terms of K )?
6.14. A 4.80-kg watermelon is dropped from rest from the roof of a
25.0-m-tall building and feels no appreciable air resistance. (a) Cal-
culate the work done by gravity on the watermelon during its dis-
placement from the roof to the ground. (b) Just before it strikes the
ground, what is the watermelon’s (i) kinetic energy and (ii) speed?
(c) Which of the answers in parts (a) and (b) would be different if
there were appreciable air resistance?
6.15. Use the work–energy theorem to solve each of these prob-
lems. You can use Newton’s laws to check your answers. Neglect
air resistance in all cases. (a) A branch falls from the top of a
95.0-m-tall redwood tree, starting from rest. How fast is it moving
when it reaches the ground? (b) A volcano ejects a boulder directly
upward 525 m into the air. How fast was the boulder moving just
as it left the volcano? (c) A skier moving at encounters a
long, rough horizontal patch of snow having coefficient of kinetic
friction 0.220 with her skis. How far does she travel on this patch
before stopping? (d) Suppose the rough patch in part (c) was only
2.90 m long? How fast would the skier be moving when she
reached the end of the patch? (e) At the base of a frictionless icy
hill that rises at above the horizontal, a toboggan has a speed
of toward the hill. How high vertically above the base
will it go before stopping?
6.16. You throw a 20-N rock vertically into the air from ground
level. You observe that when it is 15.0 m above the ground, it is
traveling at upward. Use the work–energy theorem to
find (a) the rock’s speed just as it left the ground and (b) its maxi-
mum height.
6.17. You are a member of an Alpine Rescue Team. You must proj-
ect a box of supplies up an incline of constant slope angle so that
it reaches a stranded skier who is a vertical distance h above the
bottom of the incline. The incline is slippery, but there is some

a

25.0 m/s

12.0 m/s
25.0°

5.00 m/s

2190 km/s.

4.184 3 109

12 km/s.1.4 3 108

1 in mi/h 2
65 mi/h
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Figure 6.30 Exercise 6.7.

Q6.12. Can the total work done on an object during a displacement
be negative? Explain. If the total work is negative, can its magni-
tude be larger than the initial kinetic energy of the object? Explain.
Q6.13. A net force acts on an object and accelerates it from rest to a
speed In doing so, the force does an amount of work By what
factor must the work done on the object be increased to produce
three times the final speed, with the object again starting from rest?
Q6.14. A truck speeding down the highway has a lot of kinetic
energy relative to a stopped state trooper, but no kinetic energy rel-
ative to the truck driver. In these two frames of reference, is the
same amount of work required to stop the truck? Explain.
Q6.15. You are holding a briefcase by the handle, with your arm
straight down by your side. Does the force your hand exerts do
work on the briefcase when (a) you walk at a constant speed down
a horizontal hallway and (b) you ride an escalator from the first to
second floor of a building? In each case justify your answer.
Q6.16. When a book slides along a tabletop, the force of friction
does negative work on it. Can friction ever do positive work?
Explain. (Hint: Think of a box in the back of an accelerating
truck.)
Q6.17. Time yourself while running up a flight of steps, and com-
pute the average rate at which you do work against the force of
gravity. Express your answer in watts and in horsepower.
Q6.18. Fractured Physics. Many terms from physics are badly
misused in everyday language. In each case, explain the errors
involved. (a) A strong person is called powerful. What is wrong
with this use of power? (b) When a worker carries a bag of con-
crete along a level construction site, people say he did a lot of
work. Did he?
Q6.19. An advertisement for a portable electrical generating unit
claims that the unit’s diesel engine produces 28,000 hp to drive an
electrical generator that produces 30 MW of electrical power. Is
this possible? Explain.
Q6.20. A car speeds up while the engine delivers constant power.
Is the acceleration greater at the beginning of this process or at the
end? Explain.
Q6.21. Consider a graph of instantaneous power versus time, with
the vertical P axis starting at What is the physical signifi-
cance of the area under the P versus t curve between vertical lines
at and How could you find the average power from the graph?
Draw a P versus t curve that consists of two straight-line sections
and for which the peak power is equal to twice the average power.
Q6.22. A nonzero net force acts on an object. Is it possible for any
of the following quantities to be constant: (a) the particle’s speed;
(b) the particle’s velocity; (c) the particle’s kinetic energy.
Q6.23. When a certain force is applied to an ideal spring, the spring
stretches a distance x from its unstretched length and does work W.
If instead twice the force is applied, what distance (in terms of x)
does the spring stretch from its unstretched length, and how much
work (in terms of W) is required to stretch it this distance?
Q6.24. If work W is required to stretch a spring a distance x from
its unstretched length, what work (in terms of W ) is required to
stretch the spring an additional distance x?

Exercises
Section 6.1 Work
6.1. An old oaken bucket of mass 6.75 kg hangs in a well at the
end of a rope. The rope passes over a frictionless pulley at the top
of the well, and you pull horizontally on the end of the rope to
raise the bucket slowly a distance of 4.00 m. (a) How much work

t2 ?t1

P 5 0.

W1 .v1 .

friction present, with kinetic friction coefficient Use the
work–energy theorem to calculate the minimum speed you must
give the box at the bottom of the incline so that it will reach the
skier. Express your answer in terms of g, h, and 
6.18. A mass m slides down a smooth inclined plane from an initial
vertical height h, making an angle with the horizontal. (a) The
work done by a force is the sum of the work done by the compo-
nents of the force. Consider the components of gravity parallel and
perpendicular to the surface of the plane. Calculate the work done
on the mass by each of the components, and use these results to
show that the work done by gravity is exactly the same as if the
mass had fallen straight down through the air from a height h.
(b) Use the work–energy theorem to prove that the speed of the
mass at the bottom of the incline is the same as if it had been
dropped from height h, independent of the angle of the incline.
Explain how this speed can be independent of the slope angle.
(c) Use the results of part (b) to find the speed of a rock that slides
down an icy frictionless hill, starting from rest 15.0 m above the
bottom.
6.19. A car is stopped in a distance D by a constant friction force
that is independent of the car’s speed. What is the stopping dis-
tance (in terms of D) (a) if the car’s initial speed is tripled, and
(b) if the speed is the same as it originally was but the friction
force is tripled? (Solve using the work–energy theorem.)
6.20. A moving electron has kinetic energy After a net amount
of work W has been done on it, the electron is moving one-quarter
as fast in the opposite direction. (a) Find W in terms of 
(b) Does your answer depend on the final direction of the elec-
tron’s motion?
6.21. A sled with mass 8.00 kg moves in a straight line on a fric-
tionless horizontal surface. At one point in its path, its speed is

after it has traveled 2.50 m beyond this point, its speed is
Use the work–energy theorem to find the force acting on

the sled, assuming that this force is constant and that it acts in the
direction of the sled’s motion.
6.22. A soccer ball with mass 0.420 kg is initially moving with
speed A soccer player kicks the ball, exerting a constant
force of magnitude 40.0 N in the same direction as the ball’s
motion. Over what distance must the player’s foot be in contact
with the ball to increase the ball’s speed to 
6.23. A 12-pack of Omni-Cola (mass 4.30 kg) is initially at rest on
a horizontal floor. It is then pushed in a straight line for 1.20 m by a
trained dog that exerts a horizontal force with magnitude 36.0 N.
Use the work–energy theorem to find the final speed of the
12-pack if (a) there is no friction between the 12-pack and the
floor, and (b) the coefficient of kinetic friction between the 12-pack
and the floor is 0.30.
6.24. A batter hits a baseball with mass 0.145 kg straight upward
with an initial speed of (a) How much work has gravity
done on the baseball when it reaches a height of 20.0 m above the
bat? (b) Use the work–energy theorem to calculate the speed of the
baseball at a height of 20.0 m above the bat. You can ignore air
resistance. (c) Does the answer to part (b) depend on whether the
baseball is moving upward or downward at a height of 20.0 m?
Explain.
6.25. A little red wagon with mass 7.00 kg moves in a straight line
on a frictionless horizontal surface. It has an initial speed of

and then is pushed 3.0 m in the direction of the initial
velocity by a force with a magnitude of 10.0 N. (a) Use the work–
energy theorem to calculate the wagon’s final speed. (b) Calculate
the acceleration produced by the force. Use this acceleration in the

4.00 m/s

25.0 m/s.

6.00 m/s?

2.00 m/s.

6.00 m/s.
4.00 m/s;

K1 .

K1 .

a

a

a.mk ,

mk .do you do on the bucket in pulling it up? (b) How much work does
gravity do on the bucket? (c) What is the total work done on the
bucket?
6.2. A tow truck pulls a car 5.00 km along a horizontal roadway
using a cable having a tension of 850 N. (a) How much work does
the cable do on the car if it pulls horizontally? If it pulls at 
above the horizontal? (b) How much work does the cable do on the
tow truck in both cases of part (a)? (c) How much work does grav-
ity do on the car in part (a)?
6.3. A factory worker pushes a 30.0-kg crate a distance of 4.5 m
along a level floor at constant velocity by pushing horizontally on
it. The coefficient of kinetic friction between the crate and the floor
is 0.25. (a) What magnitude of force must the worker apply?
(b) How much work is done on the crate by this force? (c) How
much work is done on the crate by friction? (d) How much work is
done on the crate by the normal force? By gravity? (e) What is the
total work done on the crate?
6.4. Suppose the worker in Exercise 6.3 pushes downward at an
angle of below the horizontal. (a) What magnitude of force
must the worker apply to move the crate at constant velocity?
(b) How much work is done on the crate by this force when the
crate is pushed a distance of 4.5 m? (c) How much work is done on
the crate by friction during this displacement? (d) How much work
is done on the crate by the normal force? By gravity? (e) What is
the total work done on the crate?
6.5. A 75.0-kg painter climbs a ladder that is 2.75 m long leaning
against a vertical wall. The ladder makes an angle with the
wall. (a) How much work does gravity do on the painter? (b) Does
the answer to part (a) depend on whether the painter climbs at con-
stant speed or accelerates up the ladder?
6.6. Two tugboats pull a disabled supertanker. Each tug exerts a
constant force of one west of north and the
other east of north, as they pull the tanker 0.75 km toward the
north. What is the total work they do on the supertanker?
6.7. Two blocks are connected by a very light string passing over a
massless and frictionless pulley (Figure 6.30). Traveling at con-
stant speed, the 20.0-N block moves 75.0 cm to the right and the
12.0-N block moves 75.0 cm downward. During this process, how
much work is done (a) on the 12.0-N block by (i) gravity and
(ii) the tension in the string? (b) On the 20.0-N block by (i) gravity,
(ii) the tension in the string, (iii) friction, and (iv) the normal
force? (c) Find the total work done on each block.

14°
14°1.80 3 106 N,

30.0°

30°

35.0°

6.8. A loaded grocery cart is rolling across a parking lot in a strong
wind. You apply a constant force to the
cart as it undergoes a displacement
How much work does the force you apply do on the grocery cart?
6.9. A 0.800-kg ball is tied to the end of a string 1.60 m long and
swung in a vertical circle. (a) During one complete circle, starting
anywhere, calculate the total work done on the ball by (i) the tension
in the string and (ii) gravity. (b) Repeat part (a) for motion along the
semicircle from the lowest to the highest point on the path.

sS 5 129.0 m 2  d̂ 2 13.0 m 2  ê.
F
S

5 130 N 2 d̂ 2 140 N 2  ê
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Figure 6.32 Exercises 6.37 and 6.38.

kinematic relationships of Chapter 2 to calculate the wagon’s final
speed. Compare this result to that calculated in part (a).
6.26. A block of ice with mass 2.00 kg slides 0.750 m down an
inclined plane that slopes downward at an angle of below the
horizontal. If the block of ice starts from rest, what is its final
speed? You can ignore friction.
6.27. Stopping Distance. A car is traveling on a level road with
speed at the instant when the brakes lock, so that the tires slide
rather than roll. (a) Use the work–energy theorem to calculate the
minimum stopping distance of the car in terms of g, and the
coefficient of kinetic friction between the tires and the road.
(b) By what factor would the minimum stopping distance change if
(i) the coefficient of kinetic friction were doubled, or (ii) the initial
speed were doubled, or (iii) both the coefficient of kinetic friction
and the initial speed were doubled?

Section 6.3 Work and Energy with Varying Forces
6.28. To stretch a spring 3.00 cm from its unstretched length,
12.0 J of work must be done. (a) What is the force constant of this
spring? (b) What magnitude force is needed to stretch the spring
3.00 cm from its unstretched length? (c) How much work must be
done to compress this spring 4.00 cm from its unstretched length,
and what force is needed to stretch it this distance?
6.29. A force of 160 N stretches a spring 0.050 m beyond its
unstretched length. (a) What magnitude of force is required to
stretch the spring 0.015 m beyond its unstretched length? To com-
press the spring 0.020 m? (b) How much work must be done to
stretch the spring 0.015 m beyond its unstretched length? To com-
press the spring 0.020 m from its unstretched length?
6.30. A child applies a force
parallel to the x-axis to a 10.0-kg
sled moving on the frozen sur-
face of a small pond. As the
child controls the speed of the
sled, the x-component of the
force she applies varies with the
x-coordinate of the sled as
shown in Fig. 6.31. Calculate
the work done by the force
when the sled moves (a) from

to (b) from
to (c) from to 

6.31. Suppose the sled in Exercise 6.30 is initially at rest at 
Use the work–energy theorem to find the speed of the sled at
(a) and (b) You can ignore friction between
the sled and the surface of the pond.
6.32. A balky cow is leaving the barn as you try harder and harder
to push her back in. In coordinates with the origin at the barn door,
the cow walks from to as you apply a force with
x-component How much work
does the force you apply do on the cow during this displacement?
6.33. A 6.0-kg box moving at on a horizontal, frictionless
surface runs into a light spring of force constant Use the
work–energy theorem to find the maximum compression of the
spring.
6.34. Leg Presses. As part of your daily workout, you lie on
your back and push with your feet against a platform attached to
two stiff springs arranged side by side so that they are parallel to
each other. When you push the platform, you compress the springs.
You do 80.0 J of work when you compress the springs 0.200 m
from their uncompressed length. (a) What magnitude of force must
you apply to hold the platform in this position? (b) How much

75 N/cm.
3.0 m/s

Fx 5 2 320.0 N 1 13.0 N/m 2 x 4.x 5 6.9 mx 5 0

x 5 12.0 m.x 5 8.0 m

x 5 0.
12.0 m.x 5 0x 5 12.0 m;x 5 8.0 m

x 5 8.0 m;x 5 0

F
S

F
S

mk

v0,

v0

36.9°

additional work must you do to move the platform 0.200 m far-
ther, and what maximum force must you apply?
6.35. (a) In Example 6.7 (Section 6.3) it was calculated that with
the air track turned off, the glider travels 8.6 cm before it stops
instantaneously. How large would the coefficient of static friction

have to be to keep the glider from springing back to the left?
(b) If the coefficient of static friction between the glider and the
track is what is the maximum initial speed that the
glider can be given and still remain at rest after it stops instanta-
neously? With the air track turned off, the coefficient of kinetic
friction is 
6.36. A 4.00-kg block of ice is placed against a horizontal spring
that has force constant and is compressed 0.025 m.
The spring is released and accelerates the block along a horizontal
surface. You can ignore friction and the mass of the spring. (a) Cal-
culate the work done on the block by the spring during the motion
of the block from its initial position to where the spring has
returned to its uncompressed length. (b) What is the speed of the
block after it leaves the spring?
6.37. A force is applied to a 2.0-kg radio-controlled model car
parallel to the x-axis as it moves along a straight track. The
x-component of the force varies with the x-coordinate of the car as
shown in Fig. 6.32. Calculate the work done by the force when
the car moves from (a) to (b) to

(c) to (d) to 
(e) to x 5 2.0 m.x 5 7.0 m

x 5 7.0 m;x 5 0x 5 7.0 m;x 5 4.0 mx 5 4.0 m;
x 5 3.0 mx 5 3.0 m;x 5 0

F
S

F
S

k 5 200 N/m

mk 5 0.47.

v1ms 5 0.60,

ms

mum distance, the glider loses contact with the spring. (a) What
distance was the spring originally compressed? (b) When the
glider has traveled along the air track 0.80 m from its initial posi-
tion against the compressed spring, is it still in contact with the
spring? What is the kinetic energy of the glider at this point?
6.42. An ingenious bricklayer builds a device for shooting bricks
up to the top of the wall where he is working. He places a brick on
a vertical compressed spring with force constant and
negligible mass. When the spring is released, the brick is propelled
upward. If the brick has mass 1.80 kg and is to reach a maximum
height of 3.6 m above its initial position on the compressed spring,
what distance must the bricklayer compress the spring initially?
(The brick loses contact with the spring when the spring returns to
its uncompressed length. Why?)

Section 6.4 Power
6.43. How many joules of energy does a 100-watt light bulb use
per hour? How fast would a 70-kg person have to run to have that
amount of kinetic energy?
6.44. The total consumption of electrical energy in the United
States is about per year. (a) What is the average rate
of electrical energy consumption in watts? (b) The population of
the United States is about 300 million people. What is the average
rate of electrical energy consumption per person? (c) The sun
transfers energy to the earth by radiation at a rate of approximately
1.0 kW per square meter of surface. If this energy could be col-
lected and converted to electrical energy with 40% efficiency, how
great an area (in square kilometers) would be required to collect
the electrical energy used in the United States?
6.45. Magnetar. On December 27, 2004, astronomers observed
the greatest flash of light ever recorded from outside the solar sys-
tem. It came from the highly magnetic neutron star SGR 1806-20
(a magnetar). During 0.20 s, this star released as much energy as
our sun does in 250,000 years. If P is the average power output of
our sun, what was the average power output (in terms of P) of this
magnetar?
6.46. A 20.0-kg rock is sliding on a rough, horizontal surface at

and eventually stops due to friction. The coefficient of
kinetic friction between the rock and the surface is 0.200. What
average power is produced by friction as the rock stops?
6.47. A tandem (two-person) bicycle team must overcome a force
of 165 N to maintain a speed of Find the power required
per rider, assuming that each contributes equally. Express your
answer in watts and in horsepower.
6.48. When its 75-kW (100-hp) engine is generating full power, a
small single-engine airplane with mass 700 kg gains altitude at a
rate of What fraction of the
engine power is being used to make the airplane climb? (The
remainder is used to overcome the effects of air resistance and of
inefficiencies in the propeller and engine.)
6.49. Working Like a Horse. Your job is to lift 30-kg crates a
vertical distance of 0.90 m from the ground onto the bed of a truck.
(a) How many crates would you have to load onto the truck in
1 minute for the average power output you use to lift the crates to
equal 0.50 hp? (b) How many crates for an average power output
of 100 W?
6.50. An elevator has mass 600 kg, not including passengers. The
elevator is designed to ascend, at constant speed, a vertical dis-
tance of 20.0 m (five floors) in 16.0 s, and it is driven by a motor
that can provide up to 40 hp to the elevator. What is the maximum
number of passengers that can ride in the elevator? Assume that an
average passenger has mass 65.0 kg.

2.5 m/s 1150 m/min, or 500 ft/min 2 .

9.00 m/s.

8.00 m/s

1.0 3 1019 J

k 5 450 N/m

6.51. Automotive Power. It is not unusual for a 1000-kg car to
get when traveling at on a level road. If this car
makes a 200-km trip, (a) how many joules of energy does it con-
sume, and (b) what is the average rate of energy consumption dur-
ing the trip? Note that 1.0 gal of gasoline yields 
(although this can vary). Consult Appendix E. 
6.52. The aircraft carrier John F. Kennedy has mass
When its engines are developing their full power of 280,000 hp,
the John F. Kennedy travels at its top speed of 35 knots
If 70% of the power output of the engines is applied to pushing the
ship through the water, what is the magnitude of the force of water
resistance that opposes the carrier’s motion at this speed?
6.53. A ski tow operates on a slope of length 300 m. The
rope moves at and provides power for 50 riders at one
time, with an average mass per rider of 70.0 kg. Estimate the
power required to operate the tow.
6.54. A typical flying insect applies an average force equal to
twice its weight during each downward stroke while hovering.
Take the mass of the insect to be 10 g, and assume the wings move
an average downward distance of 1.0 cm during each stroke.
Assuming 100 downward strokes per second, estimate the average
power output of the insect.

Problems
6.55. Rotating Bar. A thin, uniform 12.0-kg bar that is 2.00 m
long rotates uniformly about a pivot at one end, making 5.00 com-
plete revolutions every 3.00 seconds. What is the kinetic energy of
this bar? (Hint: Different points in the bar have different speeds.
Break the bar up into infinitesimal segments of mass dm and inte-
grate to add up the kinetic energy of all these segments.)
6.56. A Near-Earth Asteroid. On April 13, 2029 (Friday the
13th!), the asteroid 99942 Apophis will pass within 18,600 mi of
the earth—about the distance to the moon! It has a density
of can be modeled as a sphere 320 m in diameter,
and will be traveling at (a) If, due to a small distur-
bance in its orbit, the asteroid were to hit the earth, how much
kinetic energy would it deliver? (b) The largest nuclear bomb ever
tested by the United States was the “Castle/Bravo” bomb, having
a yield of 15 megatons of TNT. (A megaton of TNT releases

of energy.) How many Castle/Bravo bombs would
be equivalent to the energy of Apophis?
6.57. A luggage handler pulls a 20.0-kg suitcase up a ramp
inclined at above the horizontal by a force of magnitude
140 N that acts parallel to the ramp. The coefficient of kinetic fric-
tion between the ramp and the incline is If the suit-
case travels 3.80 m along the ramp, calculate (a) the work done on
the suitcase by the force (b) the work done on the suitcase by
the gravitational force; (c) the work done on the suitcase by the
normal force; (d) the work done on the suitcase by the friction
force; (e) the total work done on the suitcase. (f ) If the speed of the
suitcase is zero at the bottom of the ramp, what is its speed after it
has traveled 3.80 m along the ramp?
6.58. Chin-Ups. While doing a chin-up, a man lifts his body
0.40 m. (a) How much work must the man do per kilogram of
body mass? (b) The muscles involved in doing a chin-up can gen-
erate about 70 J of work per kilogram of muscle mass. If the man
can just barely do a 0.40-m chin-up, what percentage of his
body’s mass do these muscles constitute? (For comparison, the
total percentage of muscle in a typical 70-kg man with 14% body
fat is about 43%.) (c) Repeat part (b) for the man’s young son,
who has arms half as long as his father’s but whose muscles can
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Figure 6.31 Exercises 6.30
and 6.31.

6.38. Suppose the 2.0-kg model car in Exercise 6.37 is initially
at rest at and is the net force acting on it. Use the
work–energy theorem to find the speed of the car at (a) 
(b) (c) 
6.39. At a waterpark, sleds with riders are sent along a slippery,
horizontal surface by the release of a large compressed spring. The
spring with force constant and negligible mass
rests on the frictionless horizontal surface. One end is in contact
with a stationary wall. A sled and rider with total mass 70.0 kg are
pushed against the other end, compressing the spring 0.375 m. The
sled is then released with zero initial velocity. What is the sled’s
speed when the spring (a) returns to its uncompressed length and
(b) is still compressed 0.200 m?
6.40. Half of a Spring. (a) Suppose you cut a massless ideal
spring in half. If the full spring had a force constant k, what is the
force constant of each half, in terms of k? (Hint: Think of the orig-
inal spring as two equal halves, each producing the same force as
the entire spring. Do you see why the forces must be equal?) (b) If
you cut the spring into three equal segments instead, what is the
force constant of each one, in terms of k?
6.41. A small glider is placed against a compressed spring at the
bottom of an air track that slopes upward at an angle of 
above the horizontal. The glider has mass 0.0900 kg. The spring
has and negligible mass. When the spring is
released, the glider travels a maximum distance of 1.80 m along
the air track before sliding back down. Before reaching this maxi-

k 5 640 N/m

40.0°

k 5 40.0 N/cm

x 5 7.0 m.x 5 4.0 m;
x 5 3.0 m;

F
S

x 5 0
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also generate 70 J of work per kilogram of muscle mass. (d) Adults
and children have about the same percentage of muscle in their
bodies. Explain why children can commonly do chin-ups more
easily than their fathers.
6.59. Simple Machines. Ramps for the disabled are used
because a large weight w can be raised by a relatively small force
equal to plus the small friction force. Such inclined planes
are an example of a class of devices called simple machines. An
input force is applied to the system and results in an output
force applied to the object that is moved. For a simple machine
the ratio of these forces, is called the actual mechanical
advantage (AMA). The inverse ratio of the distances that the
points of application of these forces move through during the
motion of the object, is called the ideal mechanical advan-
tage (IMA). (a) Find the IMA for an inclined plane. (b) What can
we say about the relationship between the work supplied to the
machine, and the work output of the machine, if 

(c) Sketch a single pulley arranged to give (d) We
define the efficiency e of a simple machine to equal the ratio of
the output work to the input work, Show that

6.60. Consider the blocks in Exercise 6.7 as they move 75.0 cm.
Find the total work done on each one (a) if there is no friction
between the table and the 20.0-N block, and (b) if and

between the table and the 20.0-N block. 
6.61. The space shuttle Endeavour, with mass 86,400 kg, is in a
circular orbit of radius around the earth. It takes
90.1 min for the shuttle to complete each orbit. On a repair mis-
sion, the shuttle is cautiously moving 1.00 m closer to a disabled
satellite every 3.00 s. Calculate the shuttle’s kinetic energy (a) rel-
ative to the earth and (b) relative to the satellite.
6.62. A 5.00-kg package slides 1.50 m down a long ramp that is
inclined at below the horizontal. The coefficient of kinetic
friction between the package and the ramp is Calcu-
late (a) the work done on the package by friction; (b) the work
done on the package by gravity; (c) the work done on the package
by the normal force; (d) the total work done on the package. (e) If
the package has a speed of at the top of the ramp, what is
its speed after sliding 1.50 m down the ramp?
6.63. Springs in Parallel. Two springs are in
parallel if they are parallel to each other and are
connected at their ends (Figure 6.33). We can
think of this combination as being equivalent to
a single spring. The force constant of the equiv-
alent single spring is called the effective force
constant, of the combination. (a) Show that
the effective force constant of this combination
is (b) Generalize this result for
N springs in parallel.
6.64. Springs in Series. Two massless
springs are connected in series when they are
attached one after the other, head to tail.
(a) Show that the effective force constant (see
Problem 6.63) of a series combination is given

by (Hint: For a given force, the total distance  

stretched by the equivalent single spring is the sum of the distances
stretched by the springs in combination. Also, each spring must
exert the same force. Do you see why?) (b) Generalize this result
for N springs in series.
6.65. An object is attracted toward the origin with a force given by

(Gravitational and electrical forces have this distanceFx 5 2k/x2.
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AMA 5Wout ,Win ,
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Fout/Fin ,
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w sin a

dependence.) (a) Calculate the work done by the force when the
object moves in the x-direction from to If is the
work done by positive or negative? (b) The only other force
acting on the object is a force that you exert with your hand to
move the object slowly from to How much work do you do?
If is the work you do positive or negative? (c) Explain
the similarities and differences between your answers to parts (a)
and (b).
6.66. The gravitational pull of the earth on an object is inversely
proportional to the square of the distance of the object from the
center of the earth. At the earth’s surface this force is equal to the
object’s normal weight mg, where and at large dis-
tances, the force is zero. If a 20,000-kg asteroid falls to earth from
a very great distance away, what will be its minimum speed as it
strikes the earth’s surface, and how much kinetic energy will it
impart to our planet? You can ignore the effects of the earth’s
atmosphere.
6.67. Varying Coefficient of Friction. A box is sliding with a
speed of on a horizontal surface when, at point P, it
encounters a rough section. On the rough section, the coefficient of
friction is not constant, but starts at 0.100 at P and increases lin-
early with distance past P, reaching a value of 0.600 at 12.5 m past
point P. (a) Use the work–energy theorem to find how far this box
slides before stopping. (b) What is the coefficient of friction at the
stopping point? (c) How far would the box have slid if the friction
coefficient didn’t increase but instead had the constant value of
0.100?
6.68. Consider a spring that does not obey Hooke’s law very
faithfully. One end of the spring is fixed. To keep the spring
stretched or compressed an amount x, a force along the x-axis with
x-component must be applied to the free
end. Here and 
Note that when the spring is stretched and when it is
compressed. (a) How much work must be done to stretch this
spring by 0.050 m from its unstretched length? (b) How much
work must be done to compress this spring by 0.050 m from its
unstretched length? (c) Is it easier to stretch or compress this
spring? Explain why in terms of the dependence of on x. (Many
real springs behave qualitatively in the same way.)
6.69. A small block with a
mass of 0.120 kg is attached to
a cord passing through a hole
in a frictionless, horizontal sur-
face (Fig. 6.34). The block is
originally revolving at a dis-
tance of 0.40 m from the hole
with a speed of The
cord is then pulled from below,
shortening the radius of the cir-
cle in which the block revolves
to 0.10 m. At this new distance, the speed of the block is observed to
be (a) What is the tension in the cord in the original situa-
tion when the block has speed (b) What is the ten-
sion in the cord in the final situation when the block has speed

(c) How much work was done by the person who
pulled on the cord?
6.70. Proton Bombardment. A proton with mass 

is propelled at an initial speed of directly
toward a uranium nucleus 5.00 m away. The proton is repelled
by the uranium nucleus with a force of magnitude
where x is the separation between the two objects and 

Assume that the uranium nucleus remains at rest.10226 N # m2.
a 5 2.12 3

F 5 a/x2,

3.00 3 105 m/s10227 kg
1.67  3

v 5 2.80 m/s?

v 5 0.70 m/s?
2.80 m/s.

0.70 m/s.

Fx

x , 0x . 0
c 5 12,000 N/m3.b 5 700 N/m2,k 5 100 N/m,

Fx 5 kx 2 bx2 1 cx3

4.50 m/s

g 5 9.8 m/s2,

x2 . x1 ,
x2 .x1

Fx

x2 . x1 ,x2 .x1

Fx (a) What is the speed of the proton when it is from
the uranium nucleus? (b) As the proton approaches the uranium
nucleus, the repulsive force slows down the proton until it comes
momentarily to rest, after which the proton moves away from the
uranium nucleus. How close to the uranium nucleus does the pro-
ton get? (c) What is the speed of the proton when it is again 5.00 m
away from the uranium nucleus?
6.71. A block of ice with mass 6.00 kg is initially at rest on a fric-
tionless, horizontal surface. A worker then applies a horizontal
force to it. As a result, the block moves along the x-axis such that
its position as a function of time is given by 
where and (a) Calculate the
velocity of the object when (b) Calculate the magnitude
of when (c) Calculate the work done by the force 
during the first 4.00 s of the motion.
6.72. The Genesis Crash. When the 210-kg Genesis Mission
capsule crashed (see Exercise 5.17 in Chapter 5) with a speed of

it buried itself 81.0 cm deep in the desert floor. Assum-
ing constant acceleration during the crash, at what average rate did
the capsule do work on the desert?
6.73. You and your bicycle have combined mass 80.0 kg. When
you reach the base of a bridge, you are traveling along the road at

(Fig. 6.35). At the top of the bridge, you have climbed
a vertical distance of 5.20 m and have slowed to You
can ignore work done by friction and any inefficiency in the bike
or your legs. (a) What is the total work done on you and your
bicycle when you go from the base to the top of the bridge?
(b) How much work have you done with the force you apply to
the pedals?

1.50 m/s.
5.00 m/s

311 km/h,

F
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t 5 4.00 s.
b 5 0.0200 m/s3.a 5 0.200 m/s2

x 1 t 2 5 at 2 1 bt 3,
F
S

8.00 3 10210 m pelled out the barrel of the gun. The barrel is 6.00 cm long, so the
ball leaves the barrel at the same point that it loses contact with the
spring. The gun is held so the barrel is horizontal. (a) Calculate the
speed with which the ball leaves the barrel if you can ignore fric-
tion. (b) Calculate the speed of the ball as it leaves the barrel if a
constant resisting force of 6.00 N acts on the ball as it moves along
the barrel. (c) For the situation in part (b), at what position along
the barrel does the ball have the greatest speed, and what is that
speed? (In this case, the maximum speed does not occur at the end
of the barrel.)
6.77. A 2.50-kg textbook is forced against a horizontal spring of
negligible mass and force constant compressing the
spring a distance of 0.250 m. When released, the textbook slides
on a horizontal tabletop with coefficient of kinetic friction 

Use the work–energy theorem to find how far the textbook
moves from its initial position before coming to rest.
6.78. Pushing a Cat. Your cat “Ms.” (mass 7.00 kg) is trying to
make it to the top of a frictionless ramp 2.00 m long and inclined
upward at above the horizontal. Since the poor cat can’t get
any traction on the ramp, you push her up the entire length of the
ramp by exerting a constant 100-N force parallel to the ramp. If
Ms. takes a running start so that she is moving at at the
bottom of the ramp, what is her speed when she reaches the top of
the incline? Use the work–energy theorem.
6.79. Crash Barrier. A student proposes a design for an auto-
mobile crash barrier in which a 1700-kg sport utility vehicle mov-
ing at crashes into a spring of negligible mass that slows
it to a stop. So that the passengers are not injured, the acceleration
of the vehicle as it slows can be no greater than 5.00g. (a) Find the
required spring constant k, and find the distance the spring will
compress in slowing the vehicle to a stop. In your calculation, dis-
regard any deformation or crumpling of the vehicle and the friction
between the vehicle and the ground. (b) What disadvantages are
there to this design?
6.80. A physics professor is pushed up a ramp inclined upward at

above the horizontal as he sits in his desk chair that slides on
frictionless rollers. The combined mass of the professor and chair
is 85.0 kg. He is pushed 2.50 m along the incline by a group of stu-
dents who together exert a constant horizontal force of 600 N. The
professor’s speed at the bottom of the ramp is Use the
work–energy theorem to find his speed at the top of the ramp.
6.81. A 5.00-kg block is mov-
ing at along a
frictionless, horizontal surface
toward a spring with force 
constant that is
attached to a wall (Fig. 6.36).
The spring has negligible mass.
(a) Find the maximum distance the spring will be compressed. (b)
If the spring is to compress by no more than 0.150 m, what should
be the maximum value of 
6.82. Consider the system shown
in Fig. 6.37. The rope and pulley
have negligible mass, and the
pulley is frictionless. The coeffi-
cient of kinetic friction between
the 8.00-kg block and the table-
top is The blocks
are released from rest. Use
energy methods to calculate the
speed of the 6.00-kg block after
it has descended 1.50 m.

mk 5 0.250.

v0 ?

k 5 500 N/m

v0 5 6.00 m/s

2.00 m/s.

30.0°

20.0 m/s
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30.0°

0.30.
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250 N/m,

Figure 6.34 Problem 6.69.

k1 k2

Figure 6.33
Problem 6.63.

m 5 80.0 kg

5.20 m

Figure 6.35 Problem 6.73.

6.74. A force in the has magnitude where
b and n are constants. (a) For calculate the work done on a
particle by this force when the particle moves along the x-axis
from to infinity. (b) Show that for even though
F becomes zero as x becomes very large, an infinite amount of
work is done by F when the particle moves from to infinity.
6.75. You are asked to design spring bumpers for the walls of a
parking garage. A freely rolling 1200-kg car moving at is
to compress the spring no more than 0.070 m before stopping.
What should be the force constant of the spring? Assume that the
spring has negligible mass.
6.76. The spring of a spring gun has force constant 
and negligible mass. The spring is compressed 6.00 cm, and a ball
with mass 0.0300 kg is placed in the horizontal barrel against the
compressed spring. The spring is then released, and the ball is pro-

k 5 400 N/m

0.65 m/s

x 5 x0

0 , n , 1,x 5 x0

n . 1,
F 5 b/xn,1x-direction

v0 5 6.00 m/s
k 5 500 N/m

5.00
kg

Figure 6.36 Problem 6.81.

8.00 kg

6.00 kg

Figure 6.37 Problems 6.82
and 6.83.
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6.83. Consider the system shown in Fig. 6.37. The rope and pul-
ley have negligible mass, and the pulley is frictionless. Initially
the 6.00-kg block is moving downward and the 8.00-kg block is
moving to the right, both with a speed of The blocks
come to rest after moving 2.00 m. Use the work–energy theorem
to calculate the coefficient of kinetic friction between the 8.00-kg
block and the tabletop.
6.84. Bow and Arrow. Fig-
ure 6.38 shows how the force
exerted by the string of a com-
pound bow on an arrow varies as
a function of how far back the
arrow is pulled (the draw length).
Assume that the same force is
exerted on the arrow as it moves
forward after being released. Full
draw for this bow is at a draw
length of 75.0 cm. If the bow
shoots a 0.0250-kg arrow from full draw, what is the speed of the
arrow as it leaves the bow?
6.85. On an essentially frictionless, horizontal ice rink, a skater
moving at encounters a rough patch that reduces her speed
by 45% due to a friction force that is 25% of her weight. Use the
work–energy theorem to find the length of this rough patch.
6.86. Rescue. Your friend (mass 65.0 kg) is standing on the ice
in the middle of a frozen pond. There is very little friction
between her feet and the ice, so she is unable to walk. Fortu-
nately, a light rope is tied around her waist and you stand on the
bank holding the other end. You pull on the rope for 3.00 s and
accelerate your friend from rest to a speed of while you
remain at rest. What is the average power supplied by the force
you applied?
6.87. A pump is required to lift 800 kg of water (about 210 gal-
lons) per minute from a well 14.0 m deep and eject it with a speed
of (a) How much work is done per minute in lifting the
water? (b) How much work is done in giving the water the kinetic
energy it has when ejected? (c) What must be the power output of
the pump?
6.88. Find the power output of the worker in Problem 6.71 as a
function of time. What is the numerical value of the power (in
watts) at 
6.89. A physics student spends part of her day walking between
classes or for recreation, during which time she expends energy at
an average rate of 280 W. The remainder of the day she is sitting in
class, studying, or resting; during these activities, she expends
energy at an average rate of 100 W. If she expends a total of

of energy in a 24-hour day, how much of the day did
she spend walking?
6.90. All birds, independent of their size, must maintain a power
output of 10–25 watts per kilogram of body mass in order to fly
by flapping their wings. (a) The Andean giant hummingbird
(Patagona gigas) has mass 70 g and flaps its wings 10 times per
second while hovering. Estimate the amount of work done by such
a hummingbird in each wingbeat. (b) A 70-kg athlete can maintain
a power output of 1.4 kW for no more than a few seconds; the
steady power output of a typical athlete is only 500 W or so. Is it
possible for a human-powered aircraft to fly for extended periods
by flapping its wings? Explain.
6.91. The Grand Coulee Dam is 1270 m long and 170 m high. The
electrical power output from generators at its base is approxi-
mately 2000 MW. How many cubic meters of water must flow

1.1 3 107 J

t 5 4.00 s?

18.0 m/s.

6.00 m/s

3.0 m/s

0.900 m/s.

from the top of the dam per second to produce this amount of
power if 92% of the work done on the water by gravity is con-
verted to electrical energy? (Each cubic meter of water has a mass
of 1000 kg.)
6.92. The engine of a car with mass m supplies a constant power P
to the wheels to accelerate the car. You can ignore rolling friction
and air resistance. The car is initially at rest. (a) Show that the
speed of the car is given as a function of time by 
(b) Show that the acceleration of the car is not constant but is
given as a function of time by (c) Show that the
displacement as a function of time is given by 

6.93. Power of the Human Heart. The human heart is a power-
ful and extremely reliable pump. Each day it takes in and dis-
charges about 7500 L of blood. Assume that the work done by the
heart is equal to the work required to lift this amount of blood a
height equal to that of the average American woman (1.63 m). The
density (mass per unit volume) of blood is 
(a) How much work does the heart do in a day? (b) What is the
heart’s power output in watts?
6.94. Six diesel units in series can provide 13.4 MW of power to
the lead car of a freight train. The diesel units have total mass

The average car in the train has mass 
and requires a horizontal pull of 2.8 kN to move at a constant

on level tracks. (a) How many cars can be in the train under
these conditions? (b) This would leave no power for accelerating
or climbing hills. Show that the extra force needed to accelerate
the train is about the same for a acceleration or a 1.0%
slope (slope angle ). (c) With the 1.0% slope,
show that an extra 2.9 MW of power is needed to maintain the

speed of the diesel units. (d) With 2.9 MW less power
available, how many cars can the six diesel units pull up a 1.0%
slope at a constant 
6.95. It takes a force of 53 kN on the lead car of a 16-car passenger
train with mass to pull it at a constant 

on level tracks. (a) What power must the locomotive
provide to the lead car? (b) How much more power to the lead car
than calculated in part (a) would be needed to give the train an
acceleration of at the instant that the train has a speed of

on level tracks? (c) How much more power to the lead car
than that calculated in part (a) would be needed to move the train
up a 1.5% grade (slope angle ) at a constant

6.96. An object has several forces acting on it. One of these forces
is a force in the x-direction whose magnitude depends
on the position of the object, with Calculate the
work done on the object by this force for the following displace-
ments of the object: (a) The object starts at the point 

and moves parallel to the x-axis to the point 
(b) The object starts at the point 

and moves in the y-direction to the point 
(c) The object starts at the origin and moves on the

line to the point 
6.97. Cycling. For a touring bicyclist the drag coefficient

is 1.00, the frontal area A is and the
coefficient of rolling friction is 0.0045. The rider has mass 50.0 kg,
and her bike has mass 12.0 kg. (a) To maintain a speed of

on a level road, what must the rider’s
power output to the rear wheel be? (b) For racing, the same rider
uses a different bike with coefficient of rolling friction 0.0030 and
mass 9.00 kg. She also crouches down, reducing her drag coeffi-
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45 m/s?
a 5 arctan 0.015

45 m/s
1.5 m/s2,

1101 mi/h 2
45 m/s9.1 3 105 kg

27-m/s?

27-m/s

a 5 arctan 0.010
0.10-m/s2

27 m/s

8.2 3 104 kg1.10 3 106 kg.

1.05 3 103 kg/m3.

18P/9m 2 1/2 t 3/2.
x 2 x0 5

a 5 1P/2mt 2 1/2.

v 5 12Pt/m 2 1/2.

cient to 0.88 and reducing her frontal area to What
must her power output to the rear wheel be then to maintain a
speed of (c) For the situation in part (b), what power
output is required to maintain a speed of Note the great
drop in power requirement when the speed is only halved. (For
more on aerodynamic speed limitations for a wide variety of
human-powered vehicles, see “The Aerodynamics of Human-
Powered Land Vehicles,” Scientific American, December 1983.)
6.98. Automotive Power I. A truck engine transmits 28.0 kW
(37.5 hp) to the driving wheels when the truck is traveling at a
constant velocity of magnitude on a level
road. (a) What is the resisting force acting on the truck?
(b) Assume that 65% of the resisting force is due to rolling friction
and the remainder is due to air resistance. If the force of rolling
friction is independent of speed, and the force of air resistance is
proportional to the square of the speed, what power will drive the
truck at At Give your answers in kilo-
watts and in horsepower.
6.99. Automotive Power II. (a) If 8.00 hp are required to drive
a 1800-kg automobile at on a level road, what is the
total retarding force due to friction, air resistance, and so on?
(b) What power is necessary to drive the car at up a
10.0% grade (a hill rising 10.0 m vertically in 100.0 m horizon-
tally)? (c) What power is necessary to drive the car at 
down a 1.00% grade? (d) Down what percent grade would the car
coast at 

Challenge Problems
6.100. On a winter’s day in Maine, a warehouse worker is shov-
ing boxes up a rough plank inclined at an angle above the hori-
zontal. The plank is partially covered with ice, with more ice near
the bottom of the plank than near the top, so that the coefficient
of friction increases with the distance x along the plank:
where A is a positive constant and the bottom of the plank is at

(For this plank the coefficients of kinetic and static fric-
tion are equal: ) The worker shoves a box up the
plank so that it leaves the bottom of the plank moving at speed

Show that when the box first comes to rest, it will remain at
rest if

6.101. A Spring with Mass. We usually ignore the kinetic
energy of the moving coils of a spring, but let’s try to get a reason-
able approximation to this. Consider a spring of mass M,
equilibrium length and spring constant k. The work done to
stretch or compress the spring by a distance L is where

(a) Consider a spring, as described above, that has
one end fixed and the other end moving with speed Assume that
the speed of points along the length of the spring varies linearly
with distance l from the fixed end. Assume also that the mass M of
the spring is distributed uniformly along the length of the spring.
Calculate the kinetic energy of the spring in terms of M and 
(Hint: Divide the spring into pieces of length dl; find the speed of
each piece in terms of l, and L; find the mass of each piece in
terms of dl, M, and L; and integrate from 0 to L. The result is not

since not all of the spring moves with the same speed.) In a
spring gun, a spring of mass 0.243 kg and force constant

is compressed 2.50 cm from its unstretched length.3200 N/m
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0.366 m2. When the trigger is pulled, the spring pushes horizontally on a
0.053-kg ball. The work done by friction is negligible. Calculate
the ball’s speed when the spring reaches its uncompressed length
(b) ignoring the mass of the spring and (c) including, using the
results of part (a), the mass of the spring. (d) In part (c), what is the
final kinetic energy of the ball and of the spring?
6.102. An airplane in flight is subject to an air resistance force pro-
portional to the square of its speed But there is an additional
resistive force because the airplane has wings. Air flowing over the
wings is pushed down and slightly forward, so from Newton’s
third law the air exerts a force on the wings and airplane that is up
and slightly backward (Fig. 6.39). The upward force is the lift
force that keeps the airplane aloft, and the backward force is called
induced drag. At flying speeds, induced drag is inversely propor-
tional to so that the total air resistance force can be expressed
by where and are positive constants that
depend on the shape and size of the airplane and the density of the
air. For a Cessna 150, a small single-engine airplane, 

and In steady flight, the
engine must provide a forward force that exactly balances the air
resistance force. (a) Calculate the speed (in ) at which this
airplane will have the maximum range (that is, travel the greatest
distance) for a given quantity of fuel. (b) Calculate the speed (in

) for which the airplane will have the maximum endurance
(that is, remain in the air the longest time).
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6.103. Figure 6.40 shows the oxygen consumption rate of men
walking and running at different speeds. The vertical axis shows
the volume of oxygen that a man consumes per kilogram1 in cm3 2
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of body mass per minute. Note the transition from walking to run-
ning that occurs naturally at about The metabolism of

of oxygen releases about 20 J of energy. Using the data in
the graph, calculate the energy required for a 70-kg man to travel
1 km on foot at (a) (walking); (b) (running);
(c) (running). (d) Which speed is the most efficient—that
is, requires the least energy to travel 1 km?
6.104. General Proof of the Work–Energy Theorem. Consider
a particle that moves along a curved path in space from 
to At the initial point, the particle has velocity

The path that the particle follows may be
divided into infinitesimal segments As thed l

S

5 dxd̂ 1 dyê 1 dz k̂.
vS 5 v1xd̂ 1 v1yê 1 v1z k̂.

1 x2 , y2 , z2 2 .
1 x1 , y1 , z1 2

15 km/h
10 km/h5 km/h

1 cm3
9 km/h.

particle moves, it is acted on by a net force 
The force components and are in general functions of
position. By the same sequence of steps used in Eqs. (6.11)
through (6.13), prove the work–energy theorem for this general
case. That is, prove that

where

Wtot 5 3
1x2 , y2 , z22
1x1, y1 , z12

F
S # d l

S

5 3
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F
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5 Fx î 1 Fyê 1 Fz k̂.


