
Chapter 13 - Elementary Particles

13-1: (a) From the uncertainty principle, with ∆E = 2mc2, the uncertainty

in the time that such an electron-positron pair may exist is

∆t ≥
h̄/2

2mc2
=

(
6.582× 10−16 eV·s

)
4 (0.511× 106 eV)

= 3.22× 10−22 s.

(b) The strong electric field of the nucleus separates the electron and positron

sufficiently so that they cannot recombine afterward to reconstitute the photon.

13-3: A relativistic calculation, including the recoil of the Λ0 particle, is

necessary. The Λ0 particle and the photon will have momentum of magnitude

pΛ0 = pγ =
Eγ

c
.

This may be used to relate the total energy of the Λ0 particle to the photon energy,

p2Λ0c
2 = E2Λ0 −

(
mΛ0c

2
)2
= E2γ.

From conservation of energy,

mΣ0c
2 = EΛ0 + Eγ , and

E2Λ0 =
(
mΣ0c

2
)2
+E2γ − 2mΣ0c

2 Eγ .

Equating the two expressions for E2Λ0 , canceling the E
2
γ term and solving for the

photon energy,

Eγ =

(
mΣ0c

2
)2
−
(
mΛ0c

2
)2

2mΣ0c2
=
(1193 MeV)2 − (1116 MeV)2

2 (1193 MeV)
= 74.5 MeV.

The above expression for the photon energy may be expressed as

Eγ =
(
mΣ0c

2 −mΛ0c
2
)(
1−
mΣ0 −mΛ0

2mΣ0

)
,

which shows that in the nonrelativistic limit, mΣ0 � mΣ0−mΛ0 , the photon energy

is just the difference between the rest mass energies of the particles.
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106 Chapter 13

13-5: The minimum photon energy would be for the situation where all three

of the final electrons have the same momentum (no relative motion, and hence no

motion in the center of mass frame). Denote this common momentum magnitude

by p′. Assuming the initial electron to be at rest, the initial photon momentum

would be 3 p′, and the initial photon energy is Eγ = 3 p′c. From conservation of

energy,

Eγ +mec
2 = 3E′,

(
Eγ +mec

2
)2
= 9E′2 = 9

(
(p′c)

2
+
(
mec

2
)2)
,

where the common final energy of each electron is E′. Squaring the binomial and

using 9 (p′c)
2
= E2γ ,

E2γ + 2Eγmec
2 +
(
mec

2
)2
= E2γ + 9

(
mec

2
)2

2Eγmec
2 = 8

(
mec

2
)2
.

from which Eγ = 4
(
mec

2
)2
follows.

As an equivalent alternative, consider the center of mass frame (more accu-

rately, the center of momentum frame) in which the three electrons are created at

rest, and hence with zero momentum. In this frame, the initial momentum of the

photon and electron would have the same magnitude p0, and the photon would have

energy E0 = p0c. From conservation of energy,

E0 +
√
m2ec

4 + p20c
2 = 3mec

2,

√
m2ec

4 + E20 = 3mec
2 − E0.

Squaring both sides of the second relation and canceling E20 gives

m2ec
4 = 9m2ec

4 − 6mec
2E0, and E0 =

4

3
mec

2, p0 =
4

3
mec.

From Equation (1.16), then,

(v/c)√
1− (v/c)2

=
4

3
,

which is solved for (v/c) = (4/5), and this must be the speed of the center of mass

frame relative to the frame where the electron was initially at rest (the lab frame).

From Equation (1.8), the energy of the photon in the lab frame would be higher

than E0,

Eγ = E0

√
1 + (v/c)

1− (v/c)
=
4

3
mec

2
√
(9/5)/(1/5) = 4mec

2.
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13-7: Denote the initial pion momentum by pπ and the gamma-ray momen-

tum magnitude by pγ . From conservation of momentum, pπ = 2 pγ cos θ, where

θ is the half-angle between the gamma-ray paths (θ is the angle that each gamma

ray makes with respect to the initial direction of the pion’s momentum). The inital

energy of the pion in terms of its momentum is√
p2π c

2 +m2π c
4 = 2mπ c

2, so pπ =
√
3mπ c.

From conservation of energy,

KEπ +mπ c
2 = wmπ c

2 = 2 pγ c, so mπc = pγ and pπ =
√
3 pγ .

Equating the two expressions relating pπ and pγ yields cos θ =

√
3

2
, and so θ = 30◦

(giving θ in radians as π/6 might cause confusion). The angle between the two

gamma rays is 2 θ = 60◦.

13-9: (a) does not conserve baryon number. (b) can occur. (c) does not

conserve charge. (d) can occur.

13-11: The spontaneous appearance of neutron-antineutron pairs would vi-

olate conservation of energy.

13-13: The other particle must have chargeQ = 0 and muonic lepton number

Lµ = +1. The only such particle is νµ, a µ-neutrino.

13-15: The other particle must have charge Q = −e, baryon number B = +1

and strangeness S = −2. (The original negative kaon had strangeness S = +1 and

the final kaon has strangeness S = −1.) From Table 13.1, the only such particle is

the Ξ−, a negative xi particle.

13-17: Quarks are fermions, and if quarks with the same color combined to

form a hadron, the exclusion principle would be violated. If the spins of quarks

were integral instead of half-integral, the exclusion principle would not apply, and

quarks of the same color could be the constituents of a hadron.

13-19: From Table 13.4, the sum of the charges of two u quarks and an s

quark is 2 23e−
1
3e = +e, and the particle is Σ

+ as given in Table 13.3

13-21: The combination uus has strangeness S = −1 and charge Q = 2 23e−
1
3e = +e, and from Table 13.3 the particle is Σ+.
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13-23: Only the strong interaction, which affects only hadrons, can produce

such rapid decays.

13-25: Because a positron and a neutrino are emitted, the weak interaction

is involved; the weak interaction is so much feebler than the strong interaction that

the initial reaction of the proton-proton cycle has a low probability of occuring even

when the protons are energetic enough to overcome the Coulomb barrier.

13-27: (a) If the angular separation of two spots is the angle θ, in radians,

then s = r θ and
ds

dt
=
dr

dt
θ =
dr

dt

s

r
=
1

r

dr

dt
s.

where the constancy of the angular separation is used to set
dθ

dt
= 0. The radius r

and the rate of change
dr

dt
are the same for all points on the sphere at any time.

(b) The parameter H is then the factor multiplying s in the above expression

for
ds

dt
;

H =
1

r

dr

dt
,

which is sometimes expressed as

H =
d

dt
ln(r).

In this form, it is readily seen that if ln r = ln r0 + k t, H is constant and equal

to k, but if not, H is not constant. Thus, H will be constant if r = r0 e
k t. If this

is the case with k > 0, the balloon is expanding at an every-increasing rate. This

phenomenon would be like the proposed “inflationary universe” theory of the early

universe. If k < 0, the balloon is shrinking, gradually approaching zero radius. If

k = 0, H = 0 and the balloon is neither expanding or shrinking.


