
Chapter 12 - Nuclear Transformations

In finding energy changes in nuclear transformations, accurate values of atomic

masses are needed. The Appendix in the text, like most tables, gives the masses

of neutral atoms; that is, the masses are the sum of the nuclear masses and the

electrons, and include any binding energy of the electrons in their orbits. These

electron binding energies are usually on the order of a few electronvolts and the

precision of the masses given does not depend on the electron energies. As a specific

example, the mass equivalent of the binding energy of an electron in the first Bohr

orbit in a hydrogen atom is (13.6 eV)/ (931.49 MeV/u) = 1.5× 10−8 u, a value too

small to be reflected in the given atomic masses.

For four of the five possible nuclear transformation, it is sufficient to recognize

that the initial and final states consist only of neutral atoms, and the electron masses

need not be considered. For positron emission, the extra mass of the positron, which

normally cannot exist in a netural atom, must be included.

Consider the reaction corresponding to positron emission (negative beta decay),

represented as
A

Z
X −→

A

Z − 1
Y + e+.

The change in the nuclear masses is related to the change in the neutral atomic

masses by

[
m
(
A
Z
X
)
− Zme

]
−
[
m
(

A
Z−1Y

)
− (Z − 1)me

]
=
[
m
(
A
Z
X
)
−m
(

A
Z−1Y

)]
+me,

where m
(
A
Z
X
)
and m

(
A

Z−1Y
)
are the atomic masses as tabulated in the Appendix.

However, the final state is not a neutral Y atom; there are still Z electrons and the

emitted postitron. The atom is neutral, but it contains an extra electron-positron

pair (for a short while), and this mass must be included in the final state. The

result is that for positron emission, the energy released in the nuclear reaction is

the energy of

m
(
A
Z
X
)
−m
(

A
Z−1Y

)
− 2me,

me being the common mass of the electron and positron.

The above discussion relates to Problems 12-27 and 12-62, among others.
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12-1: 25 y is twice the half-life, so the fraction of the sample remaining is

2−2 = 1/4.

12-3: The time of 1.00 s is small compared to the half-life of 37.3 min =

2232 s, and so N may be taken as a constant during this time. The probability

that a particular nucleus will undergo beta decay is then the product of the decay

constant and the time,

P = λ∆t =
ln 2

T1/2
∆t =

ln 2

2232 s
1.00 s = 3.1× 10−4.

It should be noted that for calculators with sufficient precision, the above result is

the same as

P = 1− 2−∆t/T1/2 .

12-5: The decay constant is λ = ln 2/T1/2; using this in Equation (12.5) and

solving for the time t,

t =
T1/2

ln 2
ln (N0/N) =

15.0 hr

ln 2
ln(5.0) = 34.8 hr.

12-7: Using Equation (12.3), the half-life is related to the decay constant by

T1/2 =
ln 2

λ
= ln 2

N

R
.

The number N of nuclei is the mass of the sample divided by the atomic mass.

Approximating the atomic mass by the atomic number (see the Appendix),

T1/2 = ln 2

(
1.00× 10−3 kg

)
(226 u) (1.66054× 10−27 kg/u)

1

(3.70× 1010 Bq)

= 5.0× 1010 s = 1.6× 103 y.

12-9: From Equation (12.8), the activity is R = λN and the total number

of atoms is the total mass divided by the mass of an atom, so

R = λN =
ln 2

T1/2

m

m
(
238
92U
)

=
ln 2

(4.5× 109 yr) (3.156× 107 s/y)

(
1.0× 10−3 kg

)
(238 u) (1.66054× 10−27 kg/u)

= 1.23 Bq,

keeping an extra significant figure.
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12-11: The mass needed is the number of nuclei times the mass of each

nucleus. Using Equation (12.8),

m = m
(
210
84Po

) R
λ
= m
(
210
84Po

) RT1/2

ln 2

= (210 u)
(
1.66054× 10−27 kg/u

) (3.7× 108 Bq) (138 d) (86, 400 s/d)
ln 2

= 2.22× 10−9 kg.

12-13: Solving Equation (12.2) for the product λ t gives λ t = − ln (R/R0).

Taking the time of the first measurement to be t = 0, so that the first measurement

is taken as R0, the natural logarithms of the activites as fractions of the initial

activity are

ln

(
80.5

80.5

)
= 0, ln

(
36.2

80.5

)
= −0.799, ln

(
16.3

80.5

)
= −1.597,

ln

(
7.3

80.5

)
= −2.400, ln

(
3.3

80.5

)
= −3.194.

Four significant figures are not really warranted here, but are included for the in-

termediate calculations. Rounded to the hundredths place, the natural logarithms

are 0, −0.80, −1.60, −2.40 and −3.20, and so ln (R/R0) is proportional to the time

since the measurements began. From these data, it should be clear that to two

significant figures, −λ (1.0 h) = −0.80. Using a plot to see the proportionality

confirms this.

The plot for Problem 12-13 is shown on the next page.

The slope of the line that best fits the data is −0.80 h−1, and so the experi-

mental value for λ is 0.80 h−1 The plot was generated using a spreadsheet program

that finds the slope of the best-fit line as −0.799 hr−1, the same to two significant

figures. The half-life T1/2 is

T1/2 =
ln 2

λ
=

ln 2

(0.80 h−1) (1 h/60 min)
= 52 min.
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Plot for Problem 12-13
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12-15: When the rock was formed, each nucleus that is currently a lead

nucleus ( 206Pb) was a uranium nulceus ( 238U). The original massM0 of the sample

would therefore have been

M0 =MU +MPb
238

206
= (4.00 mg)

(
1 +

(
1.00 mg

4.00 mg

)(
238

206

))
= (4.00 mg)(1.289).

The ratio of the initial number of unranium nuclei to the current number is the

same as the ratio of the masses. Solving Equation (12.5) for the time t,

t =
ln(N0/N)

λ
=
ln(M0/M)(
ln 2/T1/2

) = T1/2 ln(M0/M)

ln 2

=

(
4.47× 109 y

)
ln(1.289)

ln 2
= 1.64× 109 y.

12-17: See Example 12.5. The time since the wood was burned is

t = −
1

λ
ln

(
R

R0

)
= −

T1/2

ln 2
ln

(
R

R0

)
= −

5760 y

ln 2
ln(0.18) = 1.4× 104 y.
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12-19: With the assumption that equal amounts of the nuclides (deonted A

and B) were created, the ratio of the relative abundances as a function of time is

NA

NB
=

e−λAt

e−λBt
= e(λB − λA) t.

Solving for t,

t =
ln (NA/NB)

λA − λB
=

ln (NA/NB)

ln 2
(
(1/TB, 1/2)− (1/TA, 1/2)

) .
Using 238U (the nuclide with the longer half-life, and hence the more abundant) for

A and 235U for B,

t =
ln(99.3/0.7)

ln 2 ((7.0× 108 y)−1 − (4.5× 109 y)−1)
= 5.9× 109 y.

12-21: Each alpha decay lowers the mass number by 4, so the mass number

of the lead isotope is 238−8 (4) = 206. Each alpha decay lowers the atomic number

by 2, and each negative beta decay (electron emission) increases the atomic number

by 1, so the atomic number of the lead isotope is 92 − 8 (2) + 6 = 82 (the isotope

is given to be lead, and so the atomic number must be 82). The symbol is 20682Pb.

The energy released is the equivalent of

m
(
238
92
U
)
−m
(
206
82
Pb
)
− 8m

(
4
2
He
)
− 6me

=
[
238.050786 u− 205.974455 u− 8 (4.002603 u)− 6

(
5.84× 10−4 u

)]
× (931.49 MeV/u) = 48.64 MeV.

12-23: The kinetic energies of the alpha particle and the daughter nucleus

are related by KEα + KEd = Q. The magnitude of the momenta of the alpha

particle and the daughter nucleus must be the same, and from the nonrelativistic

expression p2 = 2M KE,

2MαKEα = 2MdKEd, or
Mα

Md
KEα = KEd.

Substituting this expression into the expression for Q,

KEα

(
1 +

Mα
Md

)
= KEα

(
1 +

4

A− 4

)
= KEα

(
A

A− 4

)
, and

KEα =
A− 4

A
Q.
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12-25: An electron leaving a nucleus is attracted by the positive nuclear

charge, which reduces the electron’s energy. A positron leaving a nucleus is repelled

by the nucleus and is accordingly accelerated outward, and so leaves the nucleus

with greater energy.

12-27: See the remarks at the beginning of this chapter regarding positron

emission.

The available energy when 7Be decays to 7Li is

m
(
7
4Be
)
−m
(
7
3Li
)
= 7.016930 u− 7.016004 u = 9.26× 10−4 u,

which is less than 2me = 1.0972 u.

12-29: See Problem 12-26 and the discussion at the beginning of this chapter

regarding proper treatment of the electron masses.

In electron emission, 80
35
Br becomes 80

36
Kr. The difference between the masses

of the neutral atoms is

79.918528 u− 79.916375 u = 2.153× 10−3 u > 0,

so the reaction can occur. The energy released is

(
2.153× 10−3 u

)
(931.49 MeV/u) = 2.01 MeV.

In positron emission, 8035Br becomes
80
34Se. The atomic mass of the neutral

copper atom must exceed the mass of the neutral selenium atom by twice the

electron mass;

79.918528 u− 79.916520 u− 2
(
5.486× 10−4 u

)
= 9.11× 10−4 u > 0,

and so the reaction can occur. The energy released is

(
9.11× 10−4 u

)
(931.49 MeV/u) = 0.85 MeV.

In electron capture, 8035Br becomes
80
34Se, as in positron emission. The difference

between the masses of the neutral atoms is

63.929766 u− 63.927968 u = 2.008× 10−3 u.

The energy released is
(
2.008× 10−3 u

)
(931.49 MeV/u) = 1.87 MeV. Note that

this is larger than the energy released in positron emission by twice the rest energy

of an electron.
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12-31: The minimum antineutrino energy needed is the energy equivalent of

the difference between the rest masses of the final neutron and electron and the

initial proton. Using the energy equivalents directly,

(mn +me −mp) c
2 = 939.57 MeV + 0.511 MeV − 938.28 MeV = 1.80 MeV.

12-33: The thirty-ninth proton in 89Y is normally in a p1/2 state and the

next higher state available to this proton is a g9/2 state; hence a radiative transition

between the states has a low probability.

12-35: The neutron cross section decreases with increasing energy because

the likelihood that a neutron will be captured depends on how much time the

neutron spends near a particular nucleus; this time is inversely proportional to the

neutron speed. The proton cross section is smaller at smaller energies because of

the repulsive force exerted by the positive nuclear charge. See Problem 4-3 for a

quantitative consideration.

12-37: The number density n is the ratio of the mass density and the mass

of each atom,

n =

(
8.9× 103 kg/m3

)
(59 u) (1.66054× 10−27 kg/u)

= 9.08× 1028 atoms/m3.

(a) The fraction that penetrates is given by Equation (12.20),

N

N0
= exp(−nσ x)

= exp
(
−
(
9.08× 1028 atoms/m3

) (
37× 10−28 m2

) (
1.0× 10−3 m

))
= 0.71 = 71%.

(b) From Equation (12.21), the mean free path is

λ =
1

nσ
=

1

(9.08× 1028 atoms/m3) (37× 10−28 m2)
= 3.0 mm.

12-39: Using N = (1− 0.99)N0 = (0.01)N0 is Equation (12.20) and solving

for x,

x = −
ln(0.01)

nσ
=
ln(100)

nσ
.

The number density n is the mass density divided by the mass per atom,

n =

(
2.2× 103 kg/m3

)
(10 u) (1.66054× 10−27 kg/u)

= 1.32× 1029 m−3, and so

x =
ln(100)

(1.32× 1029 m−3) (4.0× 10−25 m2)
= 8.7× 10−5 m = 0.087 mm.
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12-41: In this situation the exposure time ∆t = 10.0 h is much less than the

half-life. This means that any decays of 60Co that occur while the sample is exposed

may be neglected (the correction is on the order of 2×10−3%). The number N60 of
60Co atoms after the sample has been exposed is the product of the number N59 of

the original 59Co atoms, the neutron flux S, the cross section σ and the exposure

time ∆t. The original number of 59Co atoms is the ratio of the total mass to the

mass of an atom. Combining,

N60 = N59 S σ∆t

=

(
10.0× 10−3 kg

)
(59 u) (1.66054× 10−27 kg/u)

(
5.00× 1017 neutrons/(m·s)

)
×
(
37× 10−28 m2

) (
10.0 h× 3600

s

h

)
= 6.80× 1018.

The activity of the sample after exposure is

R = λN60 =
ln 2

T1/2
N60

=
ln 2

(5.27 y) (3.156× 107 s/y)

(
6.80× 1018

)
= 2.83× 1010 Bq = 0.77 Ci.

Note that in the above, the quantity λ is a decay constant, not a mean free path.

12-43: The mass number of the unknown constituent must be 7 + 1− 6 = 2

and the atomic number must be 4 + 0− 3 = 1, and so the unknown nuclide is 21H

(a deuterium nucleus):
6

3
Li +

2

1
H −→

7

4
Be +

1

0
n.

The mass number of the unknown constituent must be 32 + 4 − 35 = 1 and

the atomic number must be 16 + 2 − 17 = 1, and so the unknown nuclide is 1
1
H

(a proton):
35

17
Li +

1

1
H −→

32

16
Be +

4

2
He.

The mass number of the unknown constituent must be 9 + 4 − 3 (4) = 1 and

the atomic number must be 4 + 2 − 3 (2) = 0, and so the unknown nuclide is 10n

(a neutron):
9

4
LBe +

4

2
He −→ 3

4

2
He +

1

0
n.
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The mass number of the unknown constituent must be 79+ 2− 2 (1) = 79 and

the atomic number must be 35+1 = 36, and so the unknown nuclide is 7936Kr (a rare

isotope of krypton):
79

35
Be +

2

1
H −→

79

36
Kr + 2

1

0
n.

12-45: From Equation (12.26), with mA = mp = 1 u and mB = md = 2 u,

KE lab =
3

2
KE cm =

3

2
(2.22 MeV) = 3.33 MeV.

12-47: Using Equation (12.24) with mA = 4 u and mB = 16 u, the speed of

the center of mass of the system is (using a nonrelativistic calculation)

V =
4

20
v =

1

5

√
2KE lab

m
=
1

5

√
2 (5.0 MeV)

(4 u) (931.49 MeV/u c2)
= 0.014 c = 3.1×106 m/s.

From Equation (12.16), the kinetic energy relative to the center of mass is

KE cm =
4

5
KE lab = 4 MeV.

12-49: There are many possible ways to approach this problem; two are given

here. Both methods must assume nonrelativistic motion.

Method (I): Let the original direction of the alpha particle be the x-direction,

and let the plane of the interaction be the x-y plane. The original alpha particle

has initial speed v0 and final speed v′. The target nucleus has mass M and final

speed V .

Conservation of momentum in both the x- and y-directions gives

mα v0 = mα v
′ cos 60◦ +M V cos 30◦

0 = mα v
′ sin 60◦ −M V sin 30◦.

Multiplying the first equation by sin 30◦ and the second by cos 30◦ and adding,

mα v0 sin 30
◦ = mαv

′ (cos 60◦ sin 30◦ + sin 30◦ cos 60◦) = mαv
′ sin 90◦ = mα v

′,

and so v′ = v0 sin 30
◦ = v0/2.

Multiplying the first of the above equations by sin 60◦ and the second by cos 60◦

and subtracting,

mα v0 sin 60
◦ =M V (cos 30◦ sin 60◦ + sin 30◦ cos◦) =M V sin 90◦ =M V,
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and so M V = mα v0 sin 60
◦.

For an elastic collision, kinetic energy is conserved;

1

2
mα v

2
0 =

1

2
mα v

′2 +
1

2
M V 2, or

mα v
2
0 = mα (v0 sin 30

◦)
2
+
(mα v0 sin 60

◦)
2

M
= mα v

2
0

1

4
+mα v

2
0

3

4

mα
M

.

This is solved for M = mα, and so the target has a mass number of 4.

In the above calculation, if the angle 60◦ is replaced by an arbitrary angle θ

the result is

M = mα
sin2 θ

1− sin2 (90◦ − θ)
= mα

sin2 θ

cos2 (90◦ − θ)
= mα,

suggesting perhaps an equivalent and more direct method of solution.

Method (II): Vector algebra may be used together with the fact that the particles

move in perpendicular directions after the collision. Denote the initial momentum

of the alpha particle by pα, its final momentum by p′α, and the final momentum of

the target nucleus as P. Then

pα = p
′
α +P.

Taking the dot product of each side of the above equation with itself,

pα ·pα = (p
′
α +P) · (p

′
α +P) = p

′
α ·p

′
α +P ·P+ 2p

′
α ·P.

Because p′α and P are given as perpendicular, the last term on the right above

vanishes, and so

p2 = p′2 + P 2.

For energy to be conserved,

p2

2mα
=

p′2

2mα
+

P 2

2M
,

and comparison with the expression obtained from conservation of momentum gives

the result M = mα.
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12-51: (a) The excitation energy will be the kinetic energy of particle A in

the center of mass frame, plus the Q value,

E∗ =

(
mB

mA +mB

)
KEA +Q =

(
mC −mA

mC

)
KEA +Q =

(
1−

mA

mC

)
KEA +Q.

In this expression, the approximation mc ≈ mA +mB , valid when Q � mCc
2, has

been made.

(b) The Q value for this reaction is[
m
(
15
7N
)
+mp −m

(
16
8O
)]
c2

= [15.000109 u + 1.007825 u− 15.994915 u] (931.49 MeV/u)

= 12.13 MeV.

Solving the above expression for KEA,

KEA = (E
∗ −Q)

mC

mC −mA
= (16.2 MeV − 12.13 MeV)

16

15
= 4.43 MeV.

12-53: The neutron to proton ratio required for stability decreeases with

decreasing mass number A, hence there is an excess of neutrons when fission occurs.

Some of the excess neutrons are released directly, and the others change to protons

by beta decay in the fission fragments.

12-55: Using Equation (11.1) for the nuclear radii, the centers of the nuclei

are separated by R0

(
A
1/3
1 + A

1/3
2

)
, and the electrostatic potential energy is

U =
Q1Q2

4π ε0R0

(
A
1/3
1 + A

1/3
2

)

=
(
8.988× 109 N·m2/C2

) (38)(54)
(
1.602× 10−19 C

)2
(1.2× 10−15 m)

(
941/3 + 1401/3

)
= 4.05× 10−11 J = 253 MeV.

12-57: The 11H nuclei in ordinary water are protons, which readily capture

neutrons to form 2
1
H (deuterium) nuclei. The neutrons cannot contribute to the

chain recation in a reactor, so a reactor using ordinary water as a moderator needs

enriched unranium with a greater content of the fissionable 235U isotope to function.

Deuterium nuclei are less likely to capture neutrons than are protons; hence a reactor

moderated with heavy water can operate with ordinary uranium as fuel.
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12-59: Let the initial speed of the particle with mass m1 be v1 and the final

speeds by v′1 and v′2.

(a) Conservation of momentum gives

m1 v1 +m2 v2 = m1 v
′
1 +m2 v

′
2 or m1 (v1 − v′1) = m2 v

′
2

and conservation of kinetic energy gives

1

2
m1 v

2
1 =

1

2
m1 v

′2
1 +

1

2
m2 v

′2
2 or m1

(
v21 − v′21

)
= m2 v

′2
2 .

If v′1 = v1, there is no collision. If there is a collision, dividing the equation obtained

from conservation of kinetic energy by the equation obtained from conservation of

momentum, and using v21 − v′21 = (v1 − v′1) (v1 + v′1) gives

v1 + v′1 = v′2, or v1 = v′2 − v′1.

This standard result from classical mechanics is often interpreted as the relative

speeds of the particles being the same before and after the collision, a result that

holds even if the second particle is moving initially; that is, the relative speed is

independent of the frame of the observer if the observer and the particles are not

moving relativistically.

The two equations

m1 v1 = m1 v
′
1 +m2 v

′
2 and v1 = v′2 − v′1

are solved for

v′2 =
2m1

m1 +m2
v1.

The desired ratio of kinetic energies is

KE′2
KE1

=
(1/2)m2 v

′2
2

(1/2)m1 v
2
1

=
4m1m2

(m1 +m2)
2 = 4

(m2/m1)

(1 + (m2/m1))
2 .

(b) Virtually all of the neutron’s kinetic energy will be transferred to the proton,

as the masses are almost indentical (use of the actual masses gives 1−2×10−7). For

a collision with a deuteron, the ratiom2/m1 is essentially 2, and 4(2)/(3)
2 = 0.89 =

89%. For a collision with a 12C nucleus, m2/m1 = 12 and 4(12)/(13)2 = 0.28 =

28%. For a collision with a 238U nucleus, m2/m1 = 238, and 4(238)/(239)2 =

0.017 = 1.7%.
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12-61: The minimum kinetic energy the proton must have is the electrostatic

potential energy of the proton-nucleus combination when the proton is at the nuclear

surface. Using Equation (1.11) to give the radius of the nucleus and using R0 for

the radius of the proton,

U =
Z e2

4π ε0R0
(
1 + A1/3

) = (8.988× 109 N·m2/C2) (6)
(
1.602× 10−19 C

)2
(1.2× 10−15 m)

(
1 + 121/3

)
= 3.51× 10−10 J = 2.19 MeV.

12-63: (a) The electrostatic energy of the deuterons separated by the given

distance is

U =
e2

4π ε0r
=
(
8.988× 109 N·m2/C2

) (1.602× 10−19 C)2
(5× 10−15 m)

= 4.6× 10−14 J = 2.9× 105 eV.

For the average translational kinetic energy (3/2)kT = U ,

T =
2

3

U

k
=
2

3

2.9× 105 eV

8.617× 10−5 eV/K
= 2.2× 109 K.

(b) This temperature corresponds to the average deuteron energy, but many

deuterons have considerably higher energies than the average. Also, quantum-

mechanical tunneling through the potential barrier can occur, permitting deuterons

to react despite having insufficient energy to come together classically.


