
Chapter 11 - Nuclear Structure

11-1: 6
3Li: Z = 3 protons, A− Z = 6− 3 = 3 neutrons.

22
10Ne: Z = 10 protons, A− Z = 22− 10 = 12 neutrons.
94
40Zr: Z = 40 protons, A− Z = 94− 40 = 54 neutrons.
180
72Hf: Z = 72 protons, A− Z = 180− 72 = 108 neutrons.

11-3: The radius of a gold nucleus is, from Equation (11.1),

R = R0A
1/3 =

(
1.2× 10−15 m

)
(197)1/3 = 6.98× 10−15 m.

The momentum of an electron with this wavelength is p = h/λ, and the kinetic

energy is

KE = E −mc2 =
√
(pc)2 + (mc2)

2 −mc2 =

√(
hc

λ

)2
+ (mc2)

2 −mc2

=

√(
1.240× 10−6 eV·m

6.98× 10−15 m

)2
+ (0.511 MeV)2 − (0.511 MeV)

= 177 MeV.

11-5: From Equation (11.1), the radius of such a nucleus would be

R = R0A
1/3 =

(
1.2× 10−15 m

)
(294)1/3 = 8.0× 10−15 m = 8.0 fm.

11-7: For the electron, the magnetic potential energy is

U = µB B =
(
5.788× 10−5 eV/T

)
(0.10 T) = 5.8× 10−6 eV.

For the proton, the magnetic potential energy is

U = µpB = (2.793)
(
3.152× 10−8 eV/T

)
(0.10 T) = 8.8× 10−9 eV.

86



Nuclear Structure 87

11-9: (a) The ratio

µpB

kT
=

(2.793)
(
3.152× 10−8 eV/T

)
(1.0 T)

(8.617× 10−5 eV/K) (293 K)
= 3.49× 10−6

is so small that the difference in populations of the two levels will be small. That

is, each state can be assumed to have approximately N/2 protons, with the number

of spin-up protons being (N/2)eµpB/kT and the number of spin-down protons

(N/2)e−µpB/kT . The difference is

∆N = N− −N+ =
N

2

(
eµpB/kT − e−µpB/kT

)
= N sinh

(
µpB

kT

)
=
(
106
)
sinh(3.49× 10−6) = 3.5.

In the above, the approximation sinh(x) ≈ x is certainly valid. A more rigorous

algebraic treatment, maintaining the same ratio of N− to N+ but requiring the sum

to be exactly N is possible, leading to ∆N = N tanh(µpB/kT ), but gives the same

result.

(b) Repeating the above with T = 20 K gives ∆N = N sinh(5.1× 10−5) = 51.

(c) Because the populations are so close, induced emission will nearly equal

induced absorption, so there will be very little net absorption of the radiation.

(d) This is a two-level system, and could not be used as the basis for a laser.

11-11: The strong nuclear interaction, unlike the Coulombic or gravitational

interactions, is short-range; the limited range limits the size of nuclei. (An expla-

nation of why nuclear forces are short-range is given in Section 11.7 of the text.)

11-13: The nucleus 83Li has three protons and five neutrons, and hence is

an odd-odd nucleus, and is unstable, so 7
3
Li is the more stable of the two. The

nucleus 156C has three more neutrons (9) than protons (6); for a nucleus this small

(in atomic number), that many excess neutrons do not serve to hold the nucleus

together, and 136C is more stable.

11-15: Using the values for the atomic masses and the constituent masses

from the Appendix, the binding energy per nucelon of 2010Ne is

1

20

[
10 (mH) + 10 (mn)−m

(
20
10
Ne
)]

=
1

20
[10 (1.007825 u) + 10 (1.008665 u)− 19.992439 u] (931.49 MeV/u)

= 8.03 MeV.
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For 5623Fe, the binding energy per nucleon is

1

56
[26 (1.007825 u) + 30 (1.008665 u)− 55.934939 u] (931.49 MeV/u) = 8.79 MeV.

11-17: To remove a neutron from the 42He nucleus, the energy needed is

m
(
3
3
He
)
+mn −m

(
4
2
He
)

= [3.016029 u + 1.008665 u− 4.002603 u] (931.49 MeV/u) = 20.58 MeV.

Then, to remove a proton, the energy needed is

m
(
2
1
H
)
+mH −m

(
3
2
He
)

= [2.014102 u + 1.007825 u− 3.016029 u] (931.49 MeV/u) = 5.49 MeV.

To separate the remaining proton and neutron, the energy needed is

mn +mH −m
(
2
1
H
)

= [1.008665 u + 1.007825 u− 2.014102 u] (931.49 MeV/u) = 2.24 MeV.

The sum of these energies, to three significant figures, is 28.3 MeV.

The binding energy of 4
2
He is

2mH + 2mn −m
(
4
2He
)

= [2 (1.007825 u) + 2 (1.008665 u)− 4.002603 u] (931.49 MeV/u) = 28.3 MeV,

the same as found above. Algebraically, the answers must be the same.

11-19: The electric potential energy of two protons separated by a distance

1.7 fm = 1.7× 10−15 m is

e2

4π ε0 r
=

(
8.988× 109 N·m2/C2

) (
1.602× 10−19 C

)2
(1.7× 10−15 m)

= 1.357× 10−13 J = 0.85 MeV

to the given two significant figures.

The difference in binding energies is

[
2mH +mn −m

(
3
2He
)]
−
[
mH + 2mn −m

(
3
1H
)]

= mH−mn−m
(
3
2He
)
+m
(
3
1H
)
.

Using the atomic masses from the Appendix,

∆E = [1.007825 u− 1.008665 u− 3.016029 u + 3.016050 u] (931.49 MeV/u)

= −0.763 MeV,
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or −0.76 MeV to two significant figures, with the minus sign indicating that the

tritium nucleus 31H is more tightly bound than the 32He nucleus. The magnitudes

of the binding energy and the electric potential energy of the protons in 3
2He are

roughly the same, indicating that the most important contribution to the difference

in binding energies is the mutual repulsion of the protons, an effect that is not

present in 3
1H. The closeness of magnitudes of the energies found is an indication

that the nuclear forces must be very nearly independent of charge.

11-21: Using A = 40 and Z = 20 in Equation (11.18) (which makes the

asymmetry term vanish) and the + sign (even-even) for the pairing term, the pre-

dicted binding energy is

Eb = (14.1 MeV) (40)− (13.0 MeV) (40)2/3 − (0.595 MeV)
(20)(19)

(40)1/3
+

(33.5 MeV)

(40)3/4

= 347.95 MeV.

The actual binding energy is

20mH + 20mn −m
(
40
20
Ca
)

= [20 (1.007825 u) + 20 (1.008665 u)− 39.962591 u] (931.49 MeV/u)

= 342.05 MeV,

and the discrepancy is

347.95 MeV − 342.05 MeV

342.05 MeV
= 0.017 = 17%.

11-23: (a) For mirror isobars of the form 2Z+1
Z
X and 2Z+1

Z+1Y, the difference

in binding energy is (apart from a factor of c2)

EZ+1 −EZ = [(Z + 1)mH + Z mn −MZ+1]− [Z mH + (Z + 1)mn −MZ ]

= −∆M −∆m,

where ∆M is the difference between the atomic masses of 2Z+1
Z
X and 2Z+1

Z+1Y, and

∆m = mn −mH.

The difference between the coulomb energies is

∆Ec =
3

5

e2

4π ε0R
[(Z + 1)Z − Z(Z − 1)] =

3

5

e2

4π ε0R
2Z =

3Z e2

10π ε0R
.
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If this difference is equal to the negative of the difference in binding energies,

(∆M +∆m) c2 =
3

10

Z e2

πε0R
.

Solving for R,

R =
3

10

Z e2

πε0

1

(∆M +∆m) c2
.

(b) For the mirror isobars 157N and 158O, Z = 7 and

(∆M +∆m) c2

= [15.003065 u− 15.000109 u + 1.008665 u− 1.007825 u] (931.49 MeV/u)

= 3.536 MeV = 5.665× 10−13 J.

Using this in the expression for R found in part (a),

R =
3

10

(7)
(
1.602× 10−19 C

)2
π (8.854× 10−12 C2/ (N·m2))

1

5.665× 10−13 J
= 3.42 fm.

11-25: (a) Removing a neutron from an isotope of krypton leaves an isotope

of krypton with mass number one less than that of the original isotope. For the

given isotopes, the energy equivalents are

mn +m
(
80
36
Kr
)
−m
(
81
36
Kr
)

= [1.008665 u + 79.916375 u− 80.916578 u] (931.49 MeV/u) = 7.88 MeV

mn +m
(
81
36Kr

)
−m
(
82
36Kr

)
= [1.008665 u + 80.916578 u− 81.913483 u] (931.49 MeV/u) = 10.95 MeV

mn +m
(
82
36Kr

)
−m
(
83
36Kr

)
= [1.008665 u + 81.913483 u− 82.914134 u] (931.49 MeV/u) = 7.46 MeV.

(b) 8236Kr has 36 protons and 46 neutrons, and so the neutrons are paired;

the tendency of neutrons to pair together means removing a neutron from a 82
36
Kr

nucleus requires more energy.

11-27: In Equation (11.18), with A = 127 for each isobar, the coulomb en-

ergy term and the assymetry term will be different for the two nuclei. For 12753 I,

Z(Z − 1) = (53)(52) = 2756 and (A−2Z)2 = 441. For 12752Te, Z(Z−1) = (52)(51) =
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2652 and (A−2Z)2 = 529. The difference in binding energies predicted by the liquid

drop model is

∆E = E
(
127
53
I
)
−
(
127
52
Te
)
= −

a3

A1/3
(2756− 2652)−

a4

A
(361− 529)

= −
(0.595 MeV)(104)

(127)1/3
−

(19.0 MeV)(−88)

(127)

= 0.855 MeV,

and so 127
53
I is more stable, and 127

52
Te decays into 127

53
I by negative beta decay

(electron emission).

11-29: A nucleon confined to a region of size ∆x = 2 fm will have an un-

certainty in momentum at least as large as
h̄

2∆x
= 2.63 × 10−20 kg·m/s. The

minimum kinetic energy a nucleon with this momentum would have is

(∆p)
2

2m
=

(
2.63× 10−20 kg·m/s

)2
2 (1.6736× 10−27 kg)

= 2.1× 10−13 J = 1.3 MeV,

which is consistent with a potential well 35 MeV deep. Note that the nonrelativistic

expression for kinetic energy is sufficient, and that the result is not changed if the

mass of a neutron is used instead of the mass of a hydrogen atom.


