
Chapter 10 - The Solid State

10-1: The halogenic atomic numbers are Z = 9 for flourine (F), Z = 17 for

chlorine (Cl), Z = 35 for bromine (Br) and Z = 53 for iodine (I). The greater the

atomic number of a halogen atom, the larger the atom is, hence the increase in the

interatomic spacing with Z. The larger the ion spacing, the smaller the cohesive

energy, hence the lower the melting point.

10-3: (a) The cohesive energy will be the negative of the Coulombic energy

as given in Equation (10.1), minus the difference between the ionization energy of

potassium and the electron affinity of chlorine;

α
e2

4π ε0 r
− (Ei −Ea)

= (1.748)

(
8.988× 109 N·m2/C2

) (
1.602× 10−19 C

)2
(0.314× 10−9 m) (1.602× 10−19 J/eV)

− (4.34 eV − 3.61 eV)

= 7.29 eV.

(b) The difference between the observed binding energy and that found in

part (a) must be due to the repulsive energy as given in Equation (10.1). From the

observed binding energy, U0 must be given by

−U0 = 6.42 eV + (4.34 eV − 3.61 eV) = 7.15 eV.

The Coulombic energy, an intermediate calculation in part (a), is Ucoulomb =

−8.0156 eV, and so solving Equation (10.5) for n,

n =

[
1−

U0

Ucoulomb

]−1
=

[
1−

7.15 eV

8.0156 eV

]−1
= 9.26.

10-5: The heat lost by the expanding gas is equal to the work done against

the attractive van der Waals forces between the gas molecules.

10-6: Van der Waals forces are too weak to hold inert gas atoms together

against the forces exerted during collisions in the gaseous state.

10-7: (a) Van der Waals forces increase the cohesive energy because they

are attractive, and the ions in the crystals tend more to cohere. (b) Zero-point

oscillations decrease the cohesive energy because these oscillations represent a mode

of energy that is present in a solid but not in individual atoms or ions.
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10-9: The electrons that constitute the “gas” of freely moving electrons are

only those that are loosely bound to the nuclei, specifically those electrons in the

outer shells. As has been seen, the innermost electrons have binding energies that

give rise to x-ray spectra, and will not be members of the free-electron gas.

10-11: The number density n is the mass density ρAg divided by the mass

mAg of each atom,

n =
ρAg

mAg
=

(
10.5× 103 kg/m3

)
(108 u) (1.66054× 10−27 kg/u)

= 5.855× 1028 atoms/m3,

keeping an extra significant figure. With the assumption stated in the problem, this

is the same as the electron density.

Using λ = 200 d = 200n−1/3 and mvF =
√

2mεF in Equation (10.16),

ρ =
me vF

n d2
(
200n−1/3

) =

√
2me εF

200 e2 n2/3

=

√
2 (9.1095× 10−31 kg) (5.51 eV) (1.602× 10−19 J/eV)

(200) (1.602× 10−19 C)
2
(5.855× 1028 m−3)

2/3
= 1.64× 10−8 Ω·m

.

10-13: In both insulators and semiconductors, a forbidden band separates

a filled valence band from the conduction band above it. In semiconductors, the

band gap is smaller than in insulators, and the property of the gap that makes a

semiconductor a semiconductor is that in the semiconductor some valence electrons

have enough thermal energy to jump across the gap to the conduction band.

10-15: (a) Photons of visible light have energies of ∼ 1-3 eV (see the back

endpapers), which can be absorbed by free electrons in a metal without leaving

the electrons’ valence band. Hence metals are opaque. The forbidden bands in

insulators and semiconductors are too wide for valence electrons to jump across the

gaps by absorbing 1-3 eV. Hence such solids are transparent.

(b) The minimum wavelengths are given by λ = hc/Eg, where Eg is the gap

energy; light with shorter wavelengths would have energies larger than the gap

energy. For silicon,

λmin =
hc

Eg
=

1.240× 10−6 eV·m

1.1 eV
= 1.13× 10−6 m = 1.13 µm = 1130 nm,
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keeping an extra significant figure; elemental silicon is not transparent to visible

light. For diamond,

λmin =
hc

Eg
=

1.240× 10−6 eV·m

6 eV
= 2.07× 10−7 m = 207 nm,

again keeping extra significant figures. Light with this wavelength is in the ultra-

violet, but light with longer wavelengths, including the visible wavelengths, have

less energy and cannot excite an electron to jump the band, and will pass through.

Hence, diamond is transparent to visible light.

10-17: Aluminum atoms have 3 electrons in their outer shell, germanium

atoms have 4 (see Table 7.4). Replacing a germanium atom with an aluminum

atom leaves a hole, and the the result is a p-type semiconductor.

10-19: The figure on the next page shows the third Brillouin zone. The

wavevectors in this zone will be those that do not fit into the first two zones but

are not diffracted by the diagonal sets of atomic planes in Figure 10.40 that make

angles of ± arctan(1/2) = ±26.6◦ or ± arctan(2) = ±63.4◦ with the x- or y-axes.

These wavenumbers correspond to |kx|+ |ky| >
2π

a
(the condition that k not be in

the first or second zones) and

{
π

a
< |kx| <

2π

a
, 0 < |ky| >

π

a

}
OR

{
0 < |kx| <

π

a
,

π

a
< |ky| >

2π

a

}
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Figure for Solution to Problem 9-19: More text on previous page

In the figure, the darker-shaded square is the first Brillouin zone and the lighter-

shaded square is the second zone, as in Figure 10.41 (the axes and axis scales are

not shown, but are the same as in the text figure). The unshaded area is the third

Billouin zone.

10-21: (a) The radius of a Bohr orbit for a given energy level n is propor-

tional to the relative permittivity (the dielectric constant) and the mass, as given

in Equation (4.13). The radius of the first Bohr orbit, in terms of a0, would then be

r1 = a0
(ε/ε0)

(m∗/m)
=
(
5.292× 10−11 m

) 16

0.17
= 5.0 nm.
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(b) The energy of an electron in a given Bohr orbit is porportional to the

effective mass and inversely proportional to the square of the relative permittivity

(see Equation (4.15)). The ionization energy is then

E = (−E1)
(m∗/m)

(ε/ε0)
2 = (13.6 eV)

(0.17)

(16)2
= 9.0× 10−3 eV.

This is much smaller than the energy gap of 0.65 eV but comparable to the product

kT ≈ 0.025 eV.

10-23: (a) In a uniform magnetic field of magnitude B, an electron moving

with nonrelativistic speed v at right angles to the field will experience a force of

magntiude evB. The inward acceleration of a particle moving with constant speed

v in a circle of radius R has magnitude v2/R. From F = m∗a,

e v B = m∗
v2

R
, or eB = m∗ (2π νc) ,

where νc = v/(2πR) has been used. Solving for the cyclotron frequency νc,

νc =
eB

2πm∗
.

Note that the cyclotron frequency is independent of the electron’s speed, and hence

its orbit radius.

(b) From the above expression for νc, solving for m∗ gives

m∗ =
eB

2π νc
=

(
1.602× 10−19 C

)
(0.1 T)

2π (1.4× 1010 Hz)
= 1.82× 10−31 kg = 0.2me.

(c) Solving for R as a function of v and ν,

R =
v

2π v
=

(
3× 104 m/s

)
2π (1.4× 1010 Hz)

= 3.4× 10−7 m.

10-25: From Equation (10.28), the frequency is

ν =
2 (V e)

h
=

2
(
5.0× 10−6 eV

)
4.136× 10−15 eV·s

= 2.4× 109 Hz = 2.4 GHz.


