
Chapter 9 - Statistical Mechanics

9-1: As in Example 9.1, g (ε2) = 8 and g (ε1) = 1. Then,

n (ε2)

n (ε1)
=

1

1000
= 4 e− (ε2 − ε1) /kT = 4 e3ε1/4kT ,

where ε2 = ε1/4. Using ε1 = −13.6 eV, and solving for T ,

T =

(
1

k

)
(3/4) (−ε1)

ln 4000
=

(3/4)(13.6 eV)

(8.617× 10−5 eV/K) (ln 4000)
= 1.43× 104 K.

9-3: In this situation, the “multiplicity” that is the presuperscript in the term

symbol is not the same as the number of states of a given energy. The number of

states is 2L+ 1 = 3 for a P level and 1 for an S level. The ratio of the numbers of

atoms in the states is then

(3) exp

(
−

(2.093 eV)

(8.617× 10−5 eV/K) (1200 K)

)
= 4.86× 10−9.

9-5: (a) As in Example 9.2, there are 2J +1 states with the same rotational

energy for a given rotational quantum number J . The J = 0 state has 0 energy,

and so the populations relative to J = 0 are

(2J + 1) exp

(
−
J(J + 1) h̄2

2 I k T

)

= (2J + 1)

[
exp

(
−

h̄2

2 I k T

)]J(J+1)

= (2J + 1)

[
exp

(
−

(
1.055× 10−34 J·s

)2
2 (4.64× 10−48 kg·m2) (1.381× 10−23 J/K) (300 K)

)]J(J+1)

= (2J + 1) [0.74864]
J(J+1)

.

Applying this expression to J = 0, 1, 2, 3 and 4 gives, respectively, 1 exactly, 1.68,

0.880, 0.217 and 0.275.

If more precise values for the constants h̄ and k than those given in the end-

papers are used, the answers might differ in the third figure. For instance, using

h̄ = 1.0545716×10−34 J·s gives, for J = 2, 3 and 4 the values 0.882, 0.218 and 0.277.
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(b) Introduce the dimensionless parameter x ≡ e−h̄
2/2 I kT (in part (a), with

T = 300 K, x = 0.74864). Then, for the populations of the J = 2 and J = 3 states

to be equal,

5 x6 = 7 x12, x6 =
5

7
and 6 lnx = ln

5

7
.

Using lnx = −h̄2/2 I kT and ln 5
7
= − ln 7

5
, and solving for T ,

T =
6 h̄2

2 I k ln(7/5)

=
6
(
1.055× 10−34 J·s

)2
2 (4.64× 10−48 kg·m2) (1.381× 10−23 J/K) ln(1.4)

= 1.55× 103 K.

9-7: The mean speed −v = 1
2
(1.00 m/s + 3.00 m/s) = 2.00 m/s. The root-

mean-square speed is

vrms =

√
1

2
((1.00 m/s)2 + (2.00 m/s)2) = 2.24 m/s.

9-9: For monatomic hydrogen, the kinetic energy is all translational and
−−−
KE = (3/2) kT ; solving for T with

−−−
KE = −E1,

T =
2

3

(
−
E1

k

)
=

(2/3) (13.6 eV)

(8.617× 10−5 eV/K)
= 1.05× 105 K.

9-11: For these nonrelativistic atoms, the shift in wavelengths will be between

+λ(v/c) and −λ(v/c) and the width of the doppler-broadened line will be 2λ(v/c).

Using the rms speed from
−−−
KE = (3/2) kT = (1/2)mv2, v =

√
3kT/m, and

∆λ = 2λ

√
3 kT/m

c

= 2 (656.3× 10−9 m)

√
3 (1.381× 10−23 J/K) (500 K)/ (1.6736× 10−27 kg)

(2.998× 108 m/s)

= 1.54× 10−11 m = 15.4 pm.
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9-13: The average value of
1

v
is

〈
1

v

〉
=

1

N

∫ ∞
0

1

v
n(v) dv.

With n(v) as given in Equation (9.14),〈
1

v

〉
=

1

N
4πN

( m

2π kT

)3/2 ∫ ∞
0

v e−mv2/2kT dv

= 4π
( m

2π kT

)3/2(kT
m

)
=

√
2m

π kT
,

where the improper definite integral given in the problem,∫ ∞
0

v e−a v
2
dv =

1

2a

has been used.

Note that

〈
1

v

〉
= 2

1

〈v〉
,

where the notation v = 〈v〉 has been used.

9-15: See Figure 9.5. The curves are not normalized, in that when α is

adjusted to give the same areas under the curves, the curves will interect at a finite

energy. A fermion gas will exert the greatest pressure because the Fermi distribution

has a larger proportion of high-energy particles than the other distributions (note

that the proportion of high-energy particles is larger). A boson gas will exert the

least pressure because the Bose distribution has a larger proportion of low-energy

particles than the others.

9-17: NOTE: For convenience in this problem, the quantity g(λ) is used as

well as g(ν), even though they are different functions, with different arguments and,

as will be seen, different functional forms.

The condition that g(λ) must satisfy is

g(ν) dν = g(λ) dλ, so g(λ) = g(ν)
dν

dλ
.

The quantity
dν

dλ
is negative, so it is convenient and conventional to use instead

g(λ) = g(ν)

∣∣∣∣dνdλ
∣∣∣∣ = g(ν)

c

λ2
=

8π L3 ν2

c2 λ2
=

8π L3

λ4
,
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where Equation (9.34) has been used for g(ν).

The number of waves between 9.5 mm and 10.5 mm is then

g(λ)∆λ =
8π (1 m)3

(10 mm)4
(1.00 mm) = 2.5× 106.

(It should be noted that integrating g(λ) dλ between the frequencies and including

the variation of g(λ) with λ, instead of using g(λ) = g
(
λ
)
, as was done above, gives

the same answer to the given precision.)

Similarly, the number of waves between 99.5 mm and 100.5 mm is 2.5 × 102,

lower by a factor of 104.

9-19: The percentage difference is the percentage difference in the fourth

powers of the Kelvin temperatures; specifically,

σ T14 − σ T 42
σ T 41

=
T 41 − T 42

T 41
= 1−

(
T2

T1

)4
= 1−

(
307 K

308 K

)4
= 0.013 = 1.3%.

For temperature variations this small, the fractional variation may be approx-

imated by
∆
(
T 4
)

T 4
=

3T 3∆T

T 4
= 3

∆T

T
= 3

1 K

308 K
= 0.013

to the given precision.

9-21: See Example 9.7. Lowering the Kelvin temperature by a given fraction

will lower the radiation by a factor equal to the fourth power of the ratio of the

temperatures. Using 1.4 kW/m2 as the rate at which the sun’s energy arrives at

the surface of the earth,

(
1.4 kW/m2

)
(0.90)4 = 0.92 kW/m2.

9-23: To radiate at twice the rate, the fourth power of the Kelvin temperature

would need to double. The new temperature would be

((400 + 273) K) 21/4 = 800 K,

which is 527◦C.

9-25: From Equation (9.41), with unit emissivity for the hole in the wall,

P = σ T 4 =
(
5.670× 10−8 W/

(
m2 ·K4

))
(973 K)4

(
10× 10−4 m2

)
= 51 W.
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9-27: Using Equation (9.41) for the radiated power per unit area, the area

of the blackbody (assuming unit emissivity) is

A =
P

R
=

P

eσ T 4
=

(1.00× 103 W)

(1) (5.670× 10−8 W/ (m2 ·K4)) ((500 + 273) K)
4

= 4.94× 10−2 m2 = 494 cm2.

The radius of a sphere with this surface area is found from A = 4π r2, or

r =

√
A

4π
=

√
494 cm2

4π
= 6.27 cm.

9-29: Equation (9.38) is not integrable in terms of elementary functions;

however, approximating g(ν) by g (ν), where ν is the average frequency in the

wavelength interval (ν will be approximated by c/λ), is valid. Before using Equa-

tion (9.38), it is convenient to note that because the proportion of the radiation in

this wavelength interval is desired, division by u =
∫
u(ν) dν gives the fraction

∆u

u
= 15

(
h ν

π kT

)4
(∆ν/ν)

ehν/kT − 1
.

The quantity ∆ν/ν is approximated by ∆λ/λ (supressing the minus sign). The

dimensionless quantity hν/kT that appears in the above expression is evaluated at

the average frequency, in terms of the average wavelength, as outlined above, so

that

hν

kT
=

hc

kTλ
=

(
1.240× 10−6 eV·m

)
(8.617× 10−5 eV/K) (6000 K)(580× 10−9 m)

= 4.135,

keeping extra significant figures. The result is

∆u

u
= 15

(
4.135

π

)4
(20 nm)/(580 nm)

exp(4.135)− 1
= 0.025 = 2.5%.

To do the integral numerically, an example of a sequence of Maple commands

that reproduce the above result, and allows similar calculations for arbitrary ranges

of wavelengths and temperatures, is:

>u:=x^3/(exp(y*x)-1);

>y:=1.24E-6/8.167E-5/6E3;

>x1:=1/590E-9; x2:=1/570E-9;

>evalf(int(u,x=x1..x2))/int(u,x=0..infinity);
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9-31: From the Wien displacement law (Equation (9.40)), the surface tem-

perature of Sirius is

T =
2.898× 10−3 m·K

290× 10−9 m
= 1.0× 104 K.

9-33: From the Wien displacement law (Equation (9.40)), the surface tem-

perature of the cloud is

T =
2.898× 10−3 m·K

10× 10−6 m
= 2.9× 102 K

(the form of the answer indicates that this result is valid to no more than two

significant figures).

Assuming unit emissivity, the radiation rate is

R = σ T 4 =
P

A
=

P

πD2
,

where D is the cloud’s diameter. Solving for D using the given power and the

temperature found above,

D =

√
P

π σ T 4
= 8.9× 1011 m,

roughly but slightly larger than the distance from the sun to Jupiter.

9-35: The total energy (denoted by uppercase U) is related to the energy

density by U = V u, where V is the volume. In terms of the temperature,

U = V u = V a T 4 = V
4σ

c
T 4.

The specific heat at constant volume is then

cV =
∂U

∂T
=

16 σ

c
T 3 V

=
16
(
5.670× 10−8 W/

(
m2 ·K4

))
(2.998× 108 m/s)

(1000 K)3
(
1.00× 10−6 m3

)
= 3.03× 10−12 J/K.
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9-37: At T = 0, all states with energy less than the Fermi energy εF are occu-

pied, and all states with energy above the Fermi energy are empty. For 0 ≤ ε ≤ εF ,

the electron energy distribution, given in Equation (9.58), is proportional to
√
ε.

The median energy is that energy for which there are as many occupied states below

the median as there are above. The median energy εM is then the energy such that∫ εM
0

√
ε dε =

1

2

∫ εF
0

√
ε dε.

Evaluating the integrals,

2

3
(εM )

3/2
=

1

3
(εF )

3/2
, or εM =

(
1

2

)3/2
εF = 0.630 εF .

9-39: (a) The average energy at T = 0, from Equation (9.59), is (3/5) εF =

3.31 eV.

(b) Setting (3/2) kT = (3/5) εF and solving for T ,

T =
2

5

εF

k
=

2

5

5.51 eV

8.617× 10−5 eV/K
= 2.56× 104 K.

(c) The speed in terms of the kinetic energy is

v =

√
2KE

m
=

√
6 εF
5m

=

√
6 (5.51 eV) (1.602× 10−19 J/eV)

5 (9.1095× 10−31 kg)
= 1.08× 106 m/s.

9-41: The denominator is not well-defined at T = 0, but the expression in

Equation (9.29) may be evaluated by taking the limit as T → 0+. If ε > εF , the

argument of the exponent is positive for positive T , and as T → 0+ the exponent

becomes unboundedly large and fFD(ε) → 0. If ε < εF , the argument of the

exponent is always negative and the exponent goes to zero as T → 0+, so the

denominator approaches 1 and fFD → 1. The interpretation of these results is that

in the limit T → 0+, states with ε > εF are unoccupied and states with ε < εF are

fully occupied.

9-43: Using Equation (9.29),

f1 = fFD (εF +∆ε) =
1

e∆ε/kT + 1
, and

f2 = fFD (εF +∆ε) =
1

e−∆ε/kT + 1
.
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From these expressions,

f1 + f2 =
1

e∆ε/kT + 1
+

1

e−∆ε/kT + 1

=
1

e∆ε/kT + 1
+

e∆ε/kT

e∆ε/kT + 1

= 1.

9-45: In using Equation (9.56) to find the Fermi energy, the proper values for

N/V , the number of free electrons per unit volume, and m∗, the effective electron

mass, must be used. From Table 7.4, zinc in its ground state has two electrons in

the 4s subshell and completely filled K, L and M shells. Thus, there are two free

electrons per atom. The number of atoms per unit volume is the ratio of the mass

density ρZn to the mass per atom mZn. Combining in Equation (9.56),

εF =
h2

2m∗

(
3 (2) ρZn
8πmZn

)2/3

=

( (
6.626× 10−34 J·s

)2
2 (0.85) (9.1095× 10−31 kg)

)(
3 (2)

(
7.13× 103 kg/m3

)
8π (65.4 u) (1.66054× 10−27 kg/u)

)2/3

= 1.78× 10−18 J = 11 eV

to two significant figures.

9-47: At T = 0, the electron distribution n(ε) as given in Equation (9.58)

reduces to

n(ε) =
3N

2
(εF )

−3/2 √
ε,

as explained in the derivation of Equation (9.59) and in Problem 9-41.

At ε = (εF ) /2,

n
(εF
2

)
=

3
√
8

N

εF
.

The number of atoms is the mass divided by the mass per atom,

N =

(
1.00× 10−3 kg

)
(63.55 u) (1.66054× 10−27 kg/u)

= 9.48× 1021,

with the atomic mass of copper from the front endpapers and εF = 7.04 eV is from

Table 9.2 or Problem 9-40. The number of states per electronvolt is

n
(εF
2

)
=

3
√
8

9.48× 1021

7.04 eV
= 1.43× 1021 states/eV,

and the distribution may certainly be considered to be continuous.



Statistical Mechanics 79

9-49: Using the approximation f(ε) = Ae−ε/kT , and a factor of 4 instead

of 8 in Equation (9.47), Equation (9.57) becomes

n(ε) dε = g(ε) f(ε) dε = A 4
√
2π

V m3/2

h3
√
ε e−ε/kT dε.

Integrating over all energies,

N =

∫ ∞
0

n(ε) dε = A 4
√
2π

V m3/2

h3

∫ ∞
0

√
ε e−ε/kT dε.

The integral is that given in the problem with x = ε and a = kT ,∫ ∞
0

√
ε e−ε/kT dε =

√
π kT

2 (1/kT )
=

√
π (kT )3

2
, so that

N = A 4
√
2 π

V m3/2

h3

√
π (kT )3

2
= A

V

h3
(2πmkT )

3/2
.

Solving for A,

A =
N

V
h3 (2πmkT )

−3/2
.

Using the given numerical values,

A =




6.022× 1026 kmol−1

22.4 kg/kmol

(
6.626× 10−34 J·s

)3
×

[
2π (4.00 u)

(
1.66054× 10−27 kg/u

) (
1.381× 10−23 J/K

)
(293 K)

]−3/2



= 3.56× 10−6,

which is much less than one. In the above calculation, care must be taken in

evaluating A; in SI units, the exponent of h3 is greater than 100, and will cause

difficulty if tried on some standard calculators. A possible method of evaluation is

to find the last term first, multiply by h and then multiply by h2.

9-51: See Problem 9-49. Here, the original factor of 8 must be retained, with

the result that

A =
1

2

N

V
h3 (2πme kT )

−3/2

=


 (1/2)

(
8.48× 1028 m−3

) (
6.626× 10−34 J·s

)3
×[

2π
(
9.1095× 10−31 kg

) (
1.381× 10−23 J/K

)
(293 K)

]−3/2



= 3.50× 103,

which is much greater than one, and so the Fermi-Dirac distribution cannot be

approximated by a Maxwell-Boltzmann distribution. (See the above note for

Problem 9-49 regarding the difficulties involved in using h3 numerically.)
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9-53: The number density (Natom/V ) for either gas is the ratio of the total

mass and the mas of a single atom, divided by the volume (assumed spherical);

N

V
=

Mstar
mC

1

(4π/3)R3star

=

(
2.0× 1030 kg

)
/2

(12 u) (1.66054× 10−27 kg/u)

1

(4π/3) ((0.010)× 7.0× 108 m)
3

= 3.49× 1034 atoms/m3.

(a) The Fermi energy of the carbon nucleus gas is found with the above value

of (Natom/V ), with, of course, one nucleus per atom;

εF =
h2

2mC

(
3

8π

Natom

V

)2/3

=

(
6.626× 10−34 J·s

)2
2 (12 u) (1.66054× 10−27 kg/u)

(
3

8π

(
3.49× 1034 nuceli/m3

))2/3
= 2.85× 10−19 J = 1.78 eV.

Because there are six electrons per carbon atom, the Fermi energy of the elec-

tron gas is found with 6 times the above value of (Natom/V );

εF =
h2

2me

(
3

8π

6Natom
V

)2/3

=

(
6.626× 10−34 J·s

)2
2 (9.1095× 10−31 kg)

(
18

8π

(
3.49× 1034 nuceli/m3

))2/3
= 2.06× 10−14 J = 129 keV

(use of less precise values for the constants, or roundoff in intermediate calculations,

may lead to a result that differs in the last significant figure).

(b) For either gas, kT =
(
8.617× 10−5 eV/K

) (
107 K

)
= 862 eV. The gas of

nuclei is nondegenerate, and the gas of electrons will be mostly degenerate (the

factor kT/εF ≈ 10−2, and there will be a small fraction of the electrons above the

Fermi energy).


