
Chapter 8 - Molecules

8-1: The nuclear charge of +2e is concentrated at the nucleus, while the

electron charges’ densities are spread out in (presumably) the 1s subshell. This

means that the additional attractive force of the two protons exceeds the mutual

repulsion of the electrons to increase the binding energy.

8-3: Using 4.5 eV for the binding energy of hydrogen,

3

2
kT = 4.5 eV or T =

2

3

4.5 eV

8.617× 10−5 eV/K
= 3.5× 104 K.

8-5: The increase in bond lengths in the molecule increases its moment of

inertia and accordingly decreases the frequencies in its rotational spectrum (see

Equation (8.9)). In addition, the higher the quantum number J (and hence the

greater the angular momentum), the faster the rotation and the greater the distor-

tion, so the spectral lines are no longer evenly spaced.

Quantitatively, the parameter I (the moment of inertia of the molecule) is a

function of J , with I larger for higher J . Thus, all of the levels as given by Equa-

tion (8.11) are different, so that the spectral lines are not evenly spaced. (It should

be noted that if I depends on J , the algebraic steps that lead to Equation (8.11)

will not be valid.)

8-7: From Equation (8.11), the ratios of the frequencies will be the ratio of

the moments of inertia. For the different isotopes, the atomic separation, which

depends on the charges of the atoms, will be essentially the same. The ratio of

the moments of inertia will then be the ratio of the reduced masses. Denoting the

unknown mass number by x and the ratio of the frequencies as r, r in terms of x is

r =

x · 16

x+ 16
12 · 16

12 + 16

.

Solving for x in terms of r,

x =
48 r

7− 3 r
.

Using r = (1.153)/(1.102) in the above expression gives x = 13.007, or the integer

13 to three significant figures.
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8-9: The corresponding frequencies are, from ν =
c

λ
, and keeping an extra

significant figure, in multiples of 1012 Hz:

2.484, 3.113, 4.337, 4.947

The average spacing of these frequencies is ∆ν = 0.616× 1012 Hz. (A least-squares

fit from a spreadsheet program gives 0.6151 if c = 2.998× 108 m/s is used.) From

Equation (8.11), the spacing of the frequencies should be ∆ν =
h̄

2π I
; Solving for I

and using ∆ν as found above,

I =
h̄

2π∆ν
=

(
1.055× 10−34 J·s

)
2π (0.6151× 10−12 Hz)

= 2.73× 10−47 kg·m2.

The reduced mass of the HCl molecule is (35/36)mH , and so the distance between

the nuclei is

R =

√
I

m′
=

√
(36) (2.73× 10−47 kg·m2)

(35) (1.6736× 10−27 kg)
= 0.129 nm

(keeping extra significant figures in the intermediate calculation gives a result that

is rounded to 0.130 nm to three significant figures).

8-11: Using ν1→0 =
c

λ
and I = m′R2 in Equation (8.11) and solving for R,

R2 =
h̄λ

2πm′ c
.

For this atom, m′ = mH(200 · 35)/(200 + 35), and

R =

√
(1.055× 10−34 J·s) (4.4× 10−2 m)

2π (1.6736× 10−27 kg) (2.998× 108 m/s)

235

200 · 35
= 0.223 nm,

or 0.22 nm to two significant figures.

8-13: Equation (8.11) may be re-expressed in terms of the frequency of the

emitted photon when the molecule drops from the J rotational level to the J − 1

rotational level,

νJ→J−1 =
h̄J

2π I
.

For large J , the angular momentum of the molecule in its initial state is

L = h̄
√
J(J + 1) = h̄ J

√
1 +

1

J
≈ h̄J.

Thus, for large J ,

ν ≈
L

2π I
, or L = ω I,

the classical expression.
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8-15: The shape of the curve in Figure 8.18 will be the same for either isotope;

that is, the value of k in Equation (8.14) will be the same. HD has the greater

reduced mass, and hence the smaller frequency of vibration ν0 and the smaller zero-

point energy. HD is the more tightly bound, and has the greater binding energy

since its zero-point energy contributes less energy to the splitting of the molecule.

8-17: (a) Using m′ = (19/20)mH in Equation (8.15),

ν0 =
1

2π

√
966 N/m

(1.6736× 10−27 kg)

20

19
= 1.24× 1014 Hz.

(b) E0 = (1/2)h̄

√
k

m′
= 4.11×10−20 J. The levels are shown below, where the

vertical scale is in units of 10−20 J and the horizontal scale is in units of 10−11 m.
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8-19: From Equation (8.16), the lower energy levels are separated by ∆E =

h ν0, and ν0 = ∆E/h. Solving Equation (8.15) for k,

k = m′ (2π ν0)
2
= m′

(
∆E

h̄

)
.

Using m′ = mH(23 · 35)/(23 + 35),

k =
23 · 35

58

(
1.6736× 10−27 kg

)( (0.063 eV) (1.602× 10−19 J/eV)
(4.136× 10−15 eV·s)

)
= 213 N/m,

or 2.1× 102 N/m to the given two significant figures.

8-21: Using

∆E = h ν0 = h̄

√
k

m′
and m′ = mH

35

36
,

∆E =
(
1.055× 10−34 J·s

)√ 516 N/m

1.6736× 10−27 kg

36

35
= 5.94× 10−20 J = 0.371 eV.

At room temperature of about 300 K,

k T =
(
8.617× 10−5 eV/K

)
(300 K) = 0.026 eV.

An individual atom is not likely to be vibrating in its first excited level, but in a

large collection of atoms, it is likely that some of these atoms will be in the first

excited state.

It’s important to note that in the above calculations, the symbol “k” has been

used for both a spring constant and Boltzmann’s constant, quantities that are not

interchangeable.


