
Chapter 7 - Many-Electron Atoms

7-1: (a) Using Equations (7.4) and (6.41), the energy difference is

∆E = 2µsz B = 2µB B = 2
(
5.788× 10−5 eV/T

)
(1.20 T) = 1.39× 10−4 eV.

(b) The wavelength of the radiation that corrsponds to this energy is

λ =
hc

∆E
=

1.240× 10−6 eV·m

1.389× 10−4 eV
= 8.93 mm.

Note that a more precise value of ∆E was needed in the intermediate calculation

to avoid roundoff error.

7-3: For an electron, s =
(√

3/2
)
h̄, sz = ±(1/2) h̄, and so the possible angles

are given by

arccos

(
±(1/2) h̄(√

3/2
)
h̄

)
= arccos

(
±

1
√
3

)
= 54.7◦, 125.3◦.

7-5: 4
2He atoms contain even numbers of spin-12 particles, which pair off to

give zero or integral spins for the atoms. Such atoms do not obey the exclusion

principle. 3
2He atoms contain odd numbers of spin-12 particles, and so have net

spins of 1
2
, 3
2
or 5
2
, and they obey the exclusion principle.

7-7: An alkali metal atom has one electron outside closed inner shells: A

halogen atom lacks one electron of having a closed outer shell: An inert gas atom

has a closed outer shell.

7-9: For and f subshell, with l = 3, the possbile values of ml are ±2, ±2, ±1

or 0, for a total of 2 l + 1 = 7 values of ml. Each state can have two electrons of

opposite spins, for a total of 14 electrons.

7-11: The number of elements would be the total number of electrons in all

of the shells. Repeated use of Equation (7.14) gives

2n2 + 2 (n− 1)2 + · · ·+ 2 (1)2 = 2 (36 + 25 + 16 + 9 + 4 + 1) = 182.

In general, using the expression for the sum of the squares of the first n integers,

the number of elements would be

2

(
1

6
n (2n+ 1) (n+ 1)

)
=

1

3
(n (2n+ 1) (n+ 1)) ,

which gives a total of 182 elements when n = 6.

63



64 Chapter 7

7-13: All of the atoms are hydrogenlike, in that there is a completely filled

subshell that screens the nuclear charge and causes the atom to “appear” to be

a single charge. The outermost electron in each of these atoms is further from

the nucleus for higher atomic number, and hence has a successively lower binding

energy.

7-15: (a) See Table 7.4. The 3d subshell is empty, and so the effective nuclear

charge is roughly +2e, and the outer electron is relatively easy to detach.

(b) Again, see Table 7.4. The completely filled K and L shells shield +10e of

the nuclear charge of = 16e; the filled 3s2 subshell will partially shield the nuclear

charge, but not to the same extent as the filled shells, so +6e is a rough estimate for

the effective nuclear charge. This outer electron is then relatively hard to detach.

7-17: Cl− ions have closed shells, whereas a Cl atom is one electron short

of having a closed shell and the relatively poorly shielded nuclear charge tends to

attract an electron from another atom to fill the shell.

Na+ ions have closed shells, whereas an Na atom has a single outer electron

that can be detached relatively easily in a chemical reaction with another atom.

7-19: The Li atom (Z = 3) is larger because the effective nuclear charge

acting on its outer electron is less than that acting on the outer electrons of the

F atom (Z = 9). The Na atom (Z = 11) is larger because it has an additional

electron shell (see Table 7.4). The Cl atom (Z = 17) atom is larger beacuse has an

additional electron shell. The Na atom is larger than the Si atom (Z = 14) for the

same reason as given for the Li atom.

7-21: The only way to produce a normal Zeeman effect is to have no net

electron spin; because the electron spin is ±12 , the total number of electrons must

be even. If the total number of electrons were odd, the net spin would be nonzero,

and the anamolous Zeeman effect would be observable.

7-23: See Example 7.6. Expressing the difference in energy levels as

∆E = 2µB B = hc

(
1

λ1
−

1

λ2

)
; solving for B,

B =
hc

2µB

(
1

λ1
−

1

λ2

)

=

(
1.240× 10−6 eV·m

)
2 (5.788× 10−5 eV/T)

(
1

589.0× 10−9 m
−

1

589.6× 10−9 m

)
= 18.5 T.
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7-25: The possible values of l are j + 1
2 = 3 and j − 12 = 2.

7-27: For the ground state to be a singlet state with no net angular momen-

tum, all of the subshells must be filled.

7-29: For this doublet state, L = 0, S = J = 1
2
. There are no other allowed

states. This state has the lowest possible values of L and J, and is the only possible

ground state.

7-31: The two 3s electrons have no orbital angular momentum, and their

spins are aligned oppositely to give no net angular momentum. The 3p electron has

l = 1, so L = 1, and in the ground state J = 1
2 . The term symbol is 2P1/2.

7-33: A D state has L = 2; for a 22D3/2 state, n = 2 but L must always be

strictly less than n, and so this state cannot exist.

7-35: (a) From Equation (7.17), j = l ± 12 =
5
2 ,
7
2 .

(b) Also from Equation (7.17), the corresponding angular momenta are

√
35

2
h̄

and

√
63

2
h̄.

(c) The values of L and S are
√
12 h̄ and

√
3

2
h̄. The law of cosines is

cos θ =
J2 − L2 − S2

2LS
,

where θ is the angle between L and S; then the angles are,

arccos

(
(35/4)− 12− (3/4)

2
√
12
(
(
√
3)/2

)
)

= arccos

(
−
2

3

)
= 132.0◦

and

arccos

(
(63/4)− 12− (3/4)

2
√
12
(
(
√
3)/2

)
)

= arccos

(
1

2

)
= 60.0◦.

(d) The multiplicity is 2
(
1
2

)
+ 1 = 2, the state is an f state because the total

angular momentum is provided by the f electron, and so the terms symbols are
2F5/2 and

2F7/2.
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7-37: (a) In Figure 7.15, let the angle between J and S be α and the angle

between J and L be β. Then, the product µJ h̄ has magnitude

2µB |S| cosα+ µB |L| cosβ = µB |J|+ µB |S| cosα = µB |J|

(
1 +
|S|

|J|
cosα

)
.

In the above, the factor of 2 in 2µB relating the electron spin magnetic moment to

the Bohr magneton is from Equation (7.3). The middle term is obtained by using

|S| cosα+|L| cosβ = |J|. The above expression is equal to the product µJ h̄ because

in this form, the magnitudes of the angular momenta include factors of h̄.

From the law of cosines,

cosα =
|L|2 − |J|2 − |S|2

−2 |J| |S|
,

and so

|S|

|J|
cosα =

|L|2 − |J|2 − |S|2

2 |J|2
=
J (J+ 1)− L (L+ 1) + S (S+ 1)

2 J (J+ 1)
,

and the expression for µJ in terms of the quantum numbers is

µJ h̄ = |J| gJ µB, or µJ = J (J+ 1) gJ µB, where

gJ = 1 +
J (J+ 1)− L (L+ 1) + S (S+ 1)

2 J (J+ 1)
.

(b) There will be one substate for each value of MJ , where MJ = −J . . . J, for

a total of 2J+ 1 substates. The difference in energy between the substates is

∆E = gJ µBMJ B.

7-39: The transitions that give rise to x-ray spectra are the same in all ele-

ments since the transitions involve only inner, closed-shell electrons. Optical spec-

tra, however, depend upon the possible states of the outermost electrons, which,

together with the transitions permitted for them, are different for atoms of different

atomic number.

7-41: From either of Equations (7.21) or (7.22),

E = (10.2 eV) (Z − 1)2 = (10.2 eV) (144) = 1.47 keV.

The wavelength is

λ =
hc

E
=

1.240× 10−6 eV·m

14.7× 103 eV
= 8.44× 10−10 m = 0.844 nm.

7-43: In a singlet state, the spins of the outer electrons are antiparallel. In

a triplet state, they are parallel.


