
Chapter 1 - Relativity

Problems that involve relativistic effects at speeds much smaller than the speed

of light, or the equivalence of special relativity and Newtonian mechanics at low

speeds, often require finding differences such as

1−

√
1−
v2

c2
or

1√
1−
v2

c2

− 1

when v � c.

These are both differences between quantities that are equal to 1 in the limit

as v → 0, but as the quantities are not the same for v �= 0, we are interested in how

the differences depend on v (more specifically, the ratio v/c) in the limit v � c.

There are many ways to find the functional form of these differences; four

familiar methods are explained here.

I - Binomial Theorem for Non-integral Exponents

This is the method used in Section 1.8.

A familiar form of the binomial theorem is

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 +

α(α− 1)(α− 2)

2 · 3
x3 + · · · .

If α is a nonnegative integer, the coefficients of the powers of x are the usual binomial

coefficients, and the series truncates. However, if |x| < 1, the series will converge for

other values of α, particularly negative integers or fractions. Specifially, if α = −1
2
,

(1 + x)−1/2 = 1 +

(
−
1

2

)
x+

(−1/2)(−3/2)

2
x2 +

(−1/2)(−3/2)(−5/2)

6
x3 + · · ·

= 1−
1

2
x+

3

8
x2 −

5

16
x3 + · · · .

When x = −

(
v2

c2

)
, this becomes

1√
1−
v2

c2

= 1 +
1

2

v2

c2
+
3

8

v4

c4
+
5

16

v6

c6
+ · · · .

1
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Similarly, when α = 1/2,

(1 + x)1/2 = 1 +
1

2
x−

1

8
x2 +

1

16
x3 + · · · and

√
1−
v2

c2
= 1−

1

2

v2

c2
−
1

8

v4

c4
−
1

16

v6

c6
+ · · · .

In the limit v � c, then,

1−

√
1−
v2

c2
≈
1

2

v2

c2
+
1

8

v4

c4
,

1√
1−
v2

c2

− 1 ≈
1

2

v2

c2
+
3

8

v4

c4
.

Note that the v6/c6 and higher-order terms have been neglected; in practice, the

v4/c4 terms are seldom used.

II - Algebraic

Consider the difference

1−

√
1−
v2

c2
=

(
1−

√
1−
v2

c2

)
×
1 +

√
1− v

2

c2

1 +
√
1− v

2

c2

=

1−

(√
1− v

2

c2

)2
1 +

√
1− v

2

c2

=

v2

c2

1 +
√
1− v

2

c2

.

The denominator is seen to approach 2 as v � c, and so

1−

√
1−
v2

c2
≈
1

2

v2

c2

for low speed. Similarly,

1√
1−
v2

c2

− 1 =
1−

√
1− v

2

c2√
1− v

2

c2

≈
1

2

v2

c2

for low speed, where the previous result has been used.
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Finding higher-order corrections by this method is possible, only slightly te-

dious, but fairly unenlightening. For example, for the next order, consider(
1−

1

2

v2

c2
−

√
1−
v2

c2

)
×
1− 12

v2

c2
+
√
1− v

2

c2

1− 12
v2

c2
+
√
1− v

2

c2

.

This algebraic method is equivalent to that used to find a derivative of a square

root by taking a limit.

III - Taylor Series

Letting f(x) = (1+x)−1/2, f(0) = 1 and direct calculations give f ′(0) = −1/2

and f ′′(0) = 3/4 (a generalization is not hard to do explicitly). Thus,

f(x) =
1

√
1 + x

≈ 1 +

(
−
1

2

)
x+

1

2

(
3

4

)
x2 = 1−

1

2
x+

3

8
x2.

This is seen to be identical (when higher-order terms are computed) to that found

by the binomial theorem, and letting x = −v2/c2 reproduces the previous result.

Similary,
√
1 + x = (1 + x)1/2 ≈ 1 +

1

2
x−

1

8
x4,

as before.

IV - Use the Machine

The mechanics of finding Taylor Series might often be left to mechanical de-

vices. The following Maple commands reproduce the above results easily and almost

immediately.

>g:=sqrt(1-(v/c)^2);

>series(g,v=0,8);

>series(1/g,v=0,8);

In the “series” commands above, the last argument is the order to which

the series are calculated, and may be changed as desired (default is 6). Since the

functions considered are even in v/c, the order is not the same as the number of

terms.

1-1: All else being the same, including the rates of the chemical reactions that

govern our brains and bodies, relativisitic phenomena would be more conspicuous

if the speed of light were smaller. If we could attain the absolute speeds obtainable

to us in the universe as it is, but with the speed of light being smaller, we would

be able to move at speeds that would correspond to larger fractions of the speed of

light, and in such instances relativistic effects would be more conspicuous.
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1-3: Even if the judges would allow it, the observers in the moving spaceship

would measure a longer time, since they would see the runners being timed by clocks

that appear to run slowly compared to the ship’s clocks. Actually, when the effects

of length contraction are included (discussed in Section 1.4 and Appendix I), the

runner’s speed may be greater than, less than, or the same as that measured by an

observer on the ground.

1-5: Note that the nonrelativistic approximation is not valid, as v/c = 2/3.

(a) See Example 1.1. In Equation (1.3), with t representing both the time

measured by A and the time as measured in A’s frame for the clock in B’s frame

to advance by t0, we need

t− t0 = t

(
1−

√
1−
v2

c2

)
= t


1−

√
1−

(
2

3

)2 = t (0.255) = 1.00 s,
from which t = 3.93 s.

(b) A moving clock always seems to run slower. In this problem, the time t is

the time that observer A measures as the time that B’s clock takes to record a time

change of t0.

1-7: From Equation (1.3), for the time t on the earth to correspond to twice

the time t0 elapsed on the ship’s clock,

√
1−
v2

c2
=
1

2
, so

v =

√
3

2
c =

√
3

2
(2.998× 108 m/s) = 2.60× 108 m/s,

retaining three significant figures.

1-9: The lifetime of the particle is t0, and the distance the particle will travel

is, from Equation (1.3),

v t =
v t0√
1− v

2

c2

=
(0.99)(2.998× 108 m/s)(1.00× 10−7 s)√

1− (0.99)2
= 210 m

to two significant figures.
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1-11: See Example 1.3; for the intermediate calculations, note that

λ =
c

ν
=
c

ν0

ν0
ν
= λ0

√
1− v/c

1 + v/c
,

where the sign convention for v is that of Equation (1.8), with v positve for an

approaching source and v negative for a receding source.

For this problem,

v

c
= −

(1.50× 104 km/s)(103 m/km)

(2.998× 108 m/s)
= −0.0500,

so that

λ = λ0

√
1− v/c

1 + v/c
= (550 nm)

√
1 + 0.0500

1− 0.0500
= 578 nm.

1-13: This problem may be done in several ways, all of which need to use

the fact that when the frequencies due to the classical and relativistic effects are

found, those frequencies, while differing by 1 Hz, will both be sufficiently close to

ν0 = 10
9 Hz so that ν0 could be used for an approximation to either.

In Equation (1.4), we have v = 0 and V = −u, where u is the speed of the

spacecraft, moving away from the earth (V < 0). In Equation (1.6), we have v = u

(or v = −u in Equation (1.8)). The classical and relativistic frequencies, νc and νr

respectively, are

νc =
ν0

1 + (u/c)
, νr = ν0

√
1− (u/c)

1 + (u/c)
= ν0

√
1− (u2/c2)

1 + (u/c)
.

The last expression for νr is motivated by the derivation of Equation (1.6), which

essentially incorporates the classical result (counting the number of ticks), and

allows expression of the ratio

νc
νr
=

1√
1− (u2/c2)

.

Use of the above forms for the frequencies allows the calculation of the ratio

∆ν

ν0
=
νc − νr
ν0

=
1−

√
1− (u2/c2)

1 + (u/c)
=

1 Hz

109 Hz
= 10−9.

Attempts to solve this equation exactly are not likely to be met with success,

and even numerical solutions would require a higher precision than is commonly
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available. However, recognizing that the numerator 1 −
√
1− (u2/c2) is of the

form that can be approximated using the methods outlined at the beginning of this

chapter, we can use 1 −
√
1− (u2/c2) ≈ (1/2)(u2/c2). The denominator will be

indistinguishable from 1 at low speed, with the result

1

2

u2

c2
= 10−9,

which is solved for

u =
√
2× 10−9 c = 1.34× 104 m/s = 13.4 km/s.

Similar to what was done at the beginning of this chapter, the Taylor series

for the desired function of u can be found by a computer. The Maple commands

would be

>f:=(1-sqrt(1-u^2))/(1+u);

>series(f,u=0);

(note that for these commands, “u” represents the ratio of the recessional speed to

the speed of light).

Mention had been made above of the limited possibility of a numerical solution.

Depending on which release of Maple is used, a numerical solution is indeed possible.

Maple 7 will solve the given equation with the command

>solve(f=1E-9);

with the results .00004472235955, −.00004472035955 for u/c (Maple will give both

positive and negative roots, and we need to recognize which we want, as well as the

limitation on precision).

1-15: The transverse Doppler effect corresponds to a direction of motion

of the light source that is perpendicular to the direction from it to the observer;

the angle θ = ±π
2
(or ±90◦), so cos θ = 0, and ν = ν0

√
1− v2/c2, which is

Equation (1.5).

For a receding source, θ = π (or 180◦), and cos θ = −1. The given expression

becomes

ν = ν0

√
1−
v2

c2

1 +
v

c

= ν0

√
1−
v

c√
1 +
v

c

√
1 +
v

c√
1 +
v

c

= ν0

√
1− v/c

1 + v/c
,

which is Equation (1.6).
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For an approaching source, θ = 0, cos θ = 1, and the given expression becomes

ν = ν0

√
1−
v2

c2

1−
v

c

= ν0

√
1 +
v

c√
1−
v

c

√
1−
v

c√
1−
v

c

= ν0

√
1 + v/c

1− v/c
,

which is Equation (1.7).

1-17: The astronaut’s proper length (height) is 6 ft, and this is what any

observer in the spacecraft will measure. From Equation (1.9), an observer on the

earth would measure

L = L0

√
1−
v2

c2
= (6 ft)

√
1− (0.90)2 = 2.6 ft.

1-19: The time will be the length as measured by the observer divided by

the speed, or

t =
L

v
=
L0

√
1−
v2

c2

v
=
(1.00 m)

√
1− (0.100)2

(0.100)(2.998× 108 m/s)
= 3.32× 10−8 s.

1-21: If the antenna has a length L′ as measured by an observer on the

spacecraft (L′ is not either L or L0 in Equation (1.9)), the projection of the antenna

onto the spacecraft will have a length L′ cos(10◦), and the projection onto an axis

perpendicular to the spacecraft’s axis will have a length L′ sin(10◦). To an observer

on the earth, the length in the direction of the spacecraft’s axis will be contracted

as described by Equation (1.9), while the length perpendicular to the spacecraft’s

motion will appear unchanged. The angle as seen from the earth will then be

arctan


 L′ sin(10◦)

L′ cos(10◦)

√
1−
v2

c2


 = arctan

[
tan(10◦)√
1− (0.70)2

]
= 14◦.

The generalization of the above is that if the angle is θ0 as measured by an

observer on the spacecraft, an observer on the earth would measure an angle θ

given by

tan θ =
tan θ0√
1−
v2

c2

.
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1-23: The age difference will be the difference in the times that each measures

the round trip to take, or

∆t = 2
L0

v

(
1−

√
1−
v2

c2

)
= 2

4 yr

0.9

(
1−

√
1− (0.9)2

)
= 5 yr.

1-25: It is convenient to maintain the relationship from Newtonian mechan-

ics, in that a force on an object changes the object’s momentum; symbolically,

F =
dp

dt
should still be valid. In the absence of forces, momentum should be con-

served in any inertial frame, and the conserved quantity is p = γmv, not mv.

1-27: For a given mass M , the ratio of the mass liberated to the mass en-

ergy is
M × (5.4× 106 J/kg)

M × (2.998× 108 m/s)2
= 6.0× 10−11.

1-29: If the kinetic energy KE = E0 = mc
2, then E = 2mc2 and Equa-

tion (23) reduces to
1√
1−
v2

c2

= 2

(γ = 2 in the notation of Section 1.7). Solving for v,

v =

√
3

2
c = 2.60× 108 m/s.

1-31: Classically,

v =

√
2KE

me
=

√
2(0.100 MeV)(1.602× 10−19 J/eV)

(9.1095× 10−31 kg)
= 1.88× 108 m/s.

Relativistically, solving Equation (1.23) for v as a function of KE,

v = c

√
1−

(
me c2

E

)2
= c

√
1−

(
me c2

me c2 +KE

)2

= c

√
1−

(
1

1 + (KE/(me c2))

)2
.

With KE/(me c
2) = (0.100 MeV)/(0.511 MeV) = 0.100/0.511,

v = (2.998× 108 m/s)

√
1−

(
1

1 + (0.100/0.511)

)2
= 1.64× 108 m/s.

The two speeds are comparable, but not the same; for larger values of the ratio of

the kinetic and rest energies, larger discrepancies would be found.
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1-33: Using Equation (1.22) in Equation (1.23) and solving for
v

c
,

v

c
=

√
1−

(
E0
E

)2
=

[
1−

(
E0
E

)2]1/2
.

With E = 21E0, that is, E = E0 + (20)E0,

v = c

√
1−

(
1

21

)2
= 0.9989 c.

(This is consistent with the expression derived in Problem 1-32.)

1-35: The difference in energies will be, from Equation (1.23),

me c
2

[
1√

1− (v2/c)2
−

1√
1− (v1/c)2

]

= (0.511 MeV)

[
1√

1− (2.4/3.0)2
−

1√
1− (1.2/3.0)2

]
= 0.294 MeV,

to three significant figures.

1-37: Using the expression in Equation (1).20 for the kinetic energy, the ratio

of the two quantities is

1
2
γ mv2

KE
=
1

2

v2

c2

(
γ

γ − 1

)
=
1

2

v2

c2


 1

1−

√
1−
v2

c2


 .

Algebraically, this quantity is not equal to 1 except at v = 0. For low speeds,

v � c, the quantity in square brackets is approximately
1

2

v2

c2
(see the text at the

end of Section 1.8 or the beginning of this chapter), reflecting the fact that the

classical and relativistic kinetic energies have the same form in the nonrelativistic

limit. However, as v → c (or γ →∞), the expressions are not the same, even though

both 12γ mv
2 and KE = (γ − 1)mc2 become infinitely large. To see this explicitly,

note that the ratio

(
γ

γ − 1

)
→ 1 as γ → ∞, so that the expression approaches 12

as v → c. This is consistent with setting v = c in the last expression on the right

above.
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1-39: Measured from the original center of the box, so that the original po-

sition of the center of mass is 0, the final position of the center of mass is

(
M

2
−m

)(
L

2
+ S

)
−

(
M

2
+m

)(
L

2
− S

)
= 0.

Expanding the products and cancelling similar terms (M2
L
2 , mS), the result MS =

mL is obtained. The distance S is the product v t, where, as shown in the problem

statement, v ≈ E/Mc (approximate in the nonrelativistic limit M � E/c2) and

t ≈ L/c. Then,

m =
MS

L
=
M

L

E

Mc

L

c
=
E

c2
.

1-41: To cross the galaxy in a matter of minutes, the proton must be highly

relativistic, with v ≈ c (but v < c, of course). The energy of the proton will be

E = E0 γ, where E0 is the proton’s rest energy and γ = 1/

√
1−
v2

c2
. However,

γ, from Equation (1.9), is the same as the ratio L0/L, where L is the diameter of

the galaxy in the proton’s frame of reference, and for the highly-relativistic proton

L ≈ c t, where t is the time in the proton’s frame that it takes to cross the galaxy.

Combining,

E = E0 γ = E0
L0
L
≈ E0

L0
c t
≈ (109 eV)

(105 ly)

c (300 s)
× (3× 107 s/yr) = 1019 eV.

1-43: Taking magnitudes in Equation (1.16),

p =
me v√
1−
v2

c2

=
(0.511 MeV/c2)(0.600 c)√

1− (0.600)2
= 0.383 MeV/c.

1-45: When the kinetic energy of an electron is equal to its rest energy, the

total energy is twice the rest energy, and Equation (1.24) becomes

4m2ec
4 = m2ec

4 + p2c2, or p =
√
3
(
me c

2
)
/c =

√
3 (511 keV/c) = 885 keV/c.

The result of Problem 1-29 could be used directly; γ = 2, v = (
√
3/2)c, and

Equation (1.17) gives p =
√
3me c, as above.
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1-47: Solving Equation (1.23) for the speed v in terms of the rest energy E0

and the total energy E,

v = c

√
1−

(
E0
E

)
= c

√
1−

(
0.938

3.500

)2
= 0.963 c,

numerically 2.888× 108 m/s. (The result of Problem 1-32 does not give an answer

accurate to three significant figures.) The value of the speed may be substituted

into Equation (1.16) (or the result of Problem 1-46), or Equation (1.24) may be

solved for the magnitude of the momentum,

p =
√
(E/c)2 − (E0/c)2 =

√
(3.500 GeV/c)2 − (0.93828 GeV/c)2 = 3.372 GeV/c.

(Although the final result is not affected, a more precise value for the proton rest

mass, taken from the front endpapers, was used in the last calculation.)

1-49: From E = mc2 +KE and Equation (1.24),(
mc2 +KE

)2
= m2 c4 + p2 c2.

Expanding the binomial, cancelling the m2 c4 term, and solving for m,

m =
(p c)2 −KE2

2 c2KE
=
(335 MeV)2 − (62 MeV)2

2 c2 (62 MeV)
= 874 MeV/c2.

The particle’s speed may be found any number of ways; a very convenient result is

that of Problem 1-46, giving

v = c2
p

E
= c

p c

m c2 +KE
= c

335 MeV

874 MeV + 62 MeV
= 0.36 c.

There’s a neat algebraic “trick” that may be used in this and many similar

problems. (In what follows, factors of c will not be included.) Essentially, the

problem reduces mathematically to solving the two equations

E = m+KE, E2 = m2 + p2

for E and m, given known values for p and KE. Rewrite the two equations as

E −m = KE, E2 −m2 = (E −m)(E +m) = p2

and substitute the first into the second to obtain E +m =
p2

KE
(the KE = 0 case is

trivial). Adding this to E −m = KE, and then subtracting the same relation gives

E =
p2 +KE2

2KE
, m =

p2 −KE2

2KE
,

as obtained above.
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1-51: The given observation that the two explosions occur at the same place

to the second observer means that x′ = 0 in Equation (1.41), and so the second

observer is moving at a speed

v =
x

t
=
1.00× 105 m

2.00× 10−3 s
= 5.00× 107 m/s

with respect to the first observer. Inserting this into Equation (1.44),

t′ =
t−
x2

t c2√
1− (x/c t)2

= t
1−

x2

c2 t2√
1−

x2

c2 t2

= t

√
1−

(x/t)2

c2

= (2.00 ms)

√
1−

(5.00× 107 m/s)2

(2.998× 108 m/s)2
= 1.97 ms.

(For this calculation, the approximation

√
1− (x/c t)2 ≈ 1− (x2/2 c2 t2) is valid to

three significant figures.)

An equally valid method, and a good check, is to note that when the relative

speed of the observers (5.00 × 107 m/s) has been determined, the time interval

that the second observer measures should be that given by Equation (1.3) (but be

careful of which time it t, which is t0). Algebraically and numerically, the different

methods give the same result.

1-53: (a) A convenient choice for the origins of both the unprimed and primed

coordinate systems is the point, in both space and time, where the ship receives

the signal. Then, in the unprimed frame (given here as the frame of the fixed stars,

one of which may be the source), the signal was sent at a time t = −r/c, where r

is the distance from the source to the place where the ship receives the signal, and

the minus sign merely indicates that the signal was sent before it was received.

Take the direction of the ship’s motion (assumed parallel to its axis) to be the

positive x-direction, so that in the frame of the fixed stars (the unprimed frame),

the signal arrives at an angle θ with respect to the positive x-direction. In the

unprimed frame, x = r cos θ and y = r sin θ. From Equation (1.41),

x′ =
x− v t√
1−
v2

c2

=
r cos θ − (−r/c)√

1−
v2

c2

= r
cos θ + (v/c)√

1−
v2

c2

,
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and y′ = y = r sin θ. Then,

tan θ′ =
y′

x′
=

sin θ

(cos θ + (v/c))

/√
1−
v2

c2

, and

θ′ = arctan



sin θ

√
1−
v2

c2

cos θ + (v/c)


 .

(b) From the form of the result of part (a), it can be seen that the numerator of

the term in square brackets is less than sin θ, and the denominator is greater than

cos θ, and so tan θ′ < tan θ and θ′ < θ when v �= 0. Looking out of a porthole, the

sources, including the stars, will appear to be in directions closer to the direction of

the ship’s motion than they would for a ship with v = 0. As v → c, θ′ → 0, and all

stars appear to be almost on the ship’s axis (farther forward in the field of view).

1-55: (a) If the man on the moon sees A approaching with speed v = 0.800 c,

then the observer on A will see the man in the moon approaching with speed

v = 0.800 c. The relative velocities will have opposite directions, but the relative

speeds will be the same. The speed with which B is seen to approach A, to an

observer in A, is then
0.800 + 0.900

1 + (0.800)(0.900)
c = 0.988 c.

(b) Similarly, the observer on B will see the man on the moon approaching

with speed 0.900 c, and the apparent speed of A, to an observer on B, will be

0.900 + 0.800

1 + (0.900)(0.800)
c = 0.988 c.

(Note that Equation (1.49) is unchanged if V ′x and v are interchanged.)


