Second Edition

Algorithm Design

/{1,2,3] Q /O XOYZOYZ B
2 3) 2 3) 5 e

= ,2.3 N ZXY 2
{ {r ZXYZS / / /
{1;2,3) {1;2,3) XY Z S y\‘ |
\\{1:2,3}/ (O~ __ __——0 YoZih ./7 ®
[s
9 O, o

Steven S. Skiena

@ Springer

The Algorithm Design Manual

Second Edition

Steven S. Skiena

The Algorithm Design Manual

Second Edition

@ Springer

Steven S. Skiena
Department of Computer Science
State University of New York

at Stony Brook
New York, USA
skiena@cs.sunysb.edu

ISBN: 978-1-84800-069-8 e-ISBN: 978-1-84800-070-4
DOI: 10.1007/978-1-84800-070-4

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008931136

(© Springer-Verlag London Limited 2008, Corrected printing 2012

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or trans-
mitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of
reprographic reproduction in accordance with the terms of licenses issued by the Copyright Licensing Agency.
Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

Preface

Most professional programmers that I've encountered are not well prepared to
tackle algorithm design problems. This is a pity, because the techniques of algorithm
design form one of the core practical technologies of computer science. Designing
correct, efficient, and implementable algorithms for real-world problems requires
access to two distinct bodies of knowledge:

o Techniques — Good algorithm designers understand several fundamental al-
gorithm design techniques, including data structures, dynamic programming,
depth-first search, backtracking, and heuristics. Perhaps the single most im-
portant design technique is modeling, the art of abstracting a messy real-world
application into a clean problem suitable for algorithmic attack.

e Resources — Good algorithm designers stand on the shoulders of giants.
Rather than laboring from scratch to produce a new algorithm for every task,
they can figure out what is known about a particular problem. Rather than
re-implementing popular algorithms from scratch, they seek existing imple-
mentations to serve as a starting point. They are familiar with many classic
algorithmic problems, which provide sufficient source material to model most
any application.

This book is intended as a manual on algorithm design, providing access to
combinatorial algorithm technology for both students and computer professionals.
It is divided into two parts: Techniques and Resources. The former is a general
guide to techniques for the design and analysis of computer algorithms. The Re-
sources section is intended for browsing and reference, and comprises the catalog
of algorithmic resources, implementations, and an extensive bibliography.

vi

PREFACE

To the Reader

I have been gratified by the warm reception the first edition of The Algorithm De-
sign Manual has received since its initial publication in 1997. It has been recognized
as a unique guide to using algorithmic techniques to solve problems that often arise
in practice. But much has changed in the world since the The Algorithm Design
Manual was first published over ten years ago. Indeed, if we date the origins of
modern algorithm design and analysis to about 1970, then roughly 30% of modern
algorithmic history has happened since the first coming of The Algorithm Design
Manual.

Three aspects of The Algorithm Design Manual have been particularly beloved:
(1) the catalog of algorithmic problems, (2) the war stories, and (3) the electronic
component of the book. These features have been preserved and strengthened in
this edition:

e The Catalog of Algorithmic Problems— Since finding out what is known about
an algorithmic problem can be a difficult task, I provide a catalog of the
75 most important problems arising in practice. By browsing through this
catalog, the student or practitioner can quickly identify what their problem is
called, what is known about it, and how they should proceed to solve it. To aid
in problem identification, we include a pair of “before” and “after” pictures for
each problem, illustrating the required input and output specifications. One
perceptive reviewer called my book “The Hitchhiker’s Guide to Algorithms”
on the strength of this catalog.

The catalog is the most important part of this book. To update the catalog
for this edition, I have solicited feedback from the world’s leading experts on
each associated problem. Particular attention has been paid to updating the
discussion of available software implementations for each problem.

e War Stories— In practice, algorithm problems do not arise at the beginning of
a large project. Rather, they typically arise as subproblems when it becomes
clear that the programmer does not know how to proceed or that the current
solution is inadequate.

To provide a better perspective on how algorithm problems arise in the real
world, we include a collection of “war stories,” or tales from our experience
with real problems. The moral of these stories is that algorithm design and
analysis is not just theory, but an important tool to be pulled out and used
as needed.

This edition retains all the original war stories (with updates as appropriate)
plus additional new war stories covering external sorting, graph algorithms,
simulated annealing, and other topics.

e FElectronic Component — Since the practical person is usually looking for a
program more than an algorithm, we provide pointers to solid implementa-
tions whenever they are available. We have collected these implementations

PREFACE

vii

at one central website site (http://www.cs.sunysb.edu/~algorith) for easy re-
trieval. We have been the number one “Algorithm” site on Google pretty
much since the initial publication of the book.

Further, we provide recommendations to make it easier to identify the correct
code for the job. With these implementations available, the critical issue
in algorithm design becomes properly modeling your application, more so
than becoming intimate with the details of the actual algorithm. This focus
permeates the entire book.

Equally important is what we do not do in this book. We do not stress the
mathematical analysis of algorithms, leaving most of the analysis as informal ar-
guments. You will not find a single theorem anywhere in this book. When more
details are needed, the reader should study the cited programs or references. The
goal of this manual is to get you going in the right direction as quickly as possible.

To the Instructor

This book covers enough material for a standard Introduction to Algorithms course.
We assume the reader has completed the equivalent of a second programming
course, typically titled Data Structures or Computer Science II.

A full set of lecture slides for teaching this course is available online at
http://www.algorist.com . Further, I make available online audio and video lectures
using these slides to teach a full-semester algorithm course. Let me help teach your
course, by the magic of the Internet!

This book stresses design over analysis. It is suitable for both traditional lecture
courses and the new “active learning” method, where the professor does not lecture
but instead guides student groups to solve real problems. The “war stories” provide
an appropriate introduction to the active learning method.

I have made several pedagogical improvements throughout the book. Textbook-
oriented features include:

e More Leisurely Discussion — The tutorial material in the first part of the book
has been doubled over the previous edition. The pages have been devoted to
more thorough and careful exposition of fundamental material, instead of
adding more specialized topics.

e False Starts — Algorithms textbooks generally present important algorithms
as a fait accompli, obscuring the ideas involved in designing them and the
subtle reasons why other approaches fail. The war stories illustrate such de-
velopment on certain applied problems, but I have expanded such coverage
into classical algorithm design material as well.

o Stop and Think — Here 1 illustrate my thought process as I solve a topic-
specific homework problem—false starts and all. T have interspersed such

viii

PREFACE

problem blocks throughout the text to increase the problem-solving activity
of my readers. Answers appear immediately following each problem.

e More and Improved Homework Problems — This edition of The Algorithm
Design Manual has twice as many homework exercises as the previous one.
Exercises that proved confusing or ambiguous have been improved or re-
placed. Degree of difficulty ratings (from 1 to 10) have been assigned to all
problems.

o Self-Motivating Fxam Design — In my algorithms courses, I promise the stu-
dents that all midterm and final exam questions will be taken directly from
homework problems in this book. This provides a “student-motivated exam,”
so students know exactly how to study to do well on the exam. I have carefully
picked the quantity, variety, and difficulty of homework exercises to make this
work; ensuring there are neither too few or too many candidate problems.

o Take-Home Lessons — Highlighted “take-home” lesson boxes scattered
throughout the text emphasize the big-picture concepts to be gained from
the chapter.

e Links to Programming Challenge Problems — Each chapter’s exercises will
contain links to 3-5 relevant “Programming Challenge” problems from
http: / /www.programming-challenges.com. These can be used to add a pro-
gramming component to paper-and-pencil algorithms courses.

e More Code, Less Pseudo-code — More algorithms in this book appear as code
(written in C) instead of pseudo-code. I believe the concreteness and relia-
bility of actual tested implementations provides a big win over less formal
presentations for simple algorithms. Full implementations are available for
study at http://www.algorist.com .

e Chapter Notes — Fach tutorial chapter concludes with a brief notes section,
pointing readers to primary sources and additional references.

Acknowledgments

Updating a book dedication after ten years focuses attention on the effects of time.
Since the first edition, Renee has become my wife and then the mother of our
two children, Bonnie and Abby. My father has left this world, but Mom and my
brothers Len and Rob remain a vital presence in my life. I dedicate this book to
my family, new and old, here and departed.

I would like to thank several people for their concrete contributions to this
new edition. Andrew Gaun and Betson Thomas helped in many ways, particularly
in building the infrastructure for the new http://www.cs.sunysb.edu/~algorith and
dealing with a variety of manuscript preparation issues. David Gries offered valu-
able feedback well beyond the call of duty. Himanshu Gupta and Bin Tang bravely

PREFACE

ix

taught courses using a manuscript version of this edition. Thanks also to my
Springer-Verlag editors, Wayne Wheeler and Allan Wylde.

A select group of algorithmic sages reviewed sections of the Hitchhiker’s guide,
sharing their wisdom and alerting me to new developments. Thanks to:

Ami Amir, Herve Bronnimann, Bernard Chazelle, Chris Chu, Scott
Cotton, Yefim Dinitz, Komei Fukuda, Michael Goodrich, Lenny Heath,
Cihat Imamoglu, Tao Jiang, David Karger, Giuseppe Liotta, Albert
Mao, Silvano Martello, Catherine McGeoch, Kurt Mehlhorn, Scott
A. Mitchell, Naceur Meskini, Gene Myers, Gonzalo Navarro, Stephen
North, Joe O’Rourke, Mike Paterson, Theo Pavlidis, Seth Pettie, Michel
Pocchiola, Bart Preneel, Tomasz Radzik, Edward Reingold, Frank
Ruskey, Peter Sanders, Joao Setubal, Jonathan Shewchuk, Robert
Skeel, Jens Stoye, Torsten Suel, Bruce Watson, and Uri Zwick.

Several exercises were originated by colleagues or inspired by other texts. Re-
constructing the original sources years later can be challenging, but credits for each
problem (to the best of my recollection) appear on the website.

It would be rude not to thank important contributors to the original edition.
Ricky Bradley and Dario Vlah built up the substantial infrastructure required for
the WWW site in a logical and extensible manner. Zhong Li drew most of the
catalog figures using xfig. Richard Crandall, Ron Danielson, Takis Metaxas, Dave
Miller, Giri Narasimhan, and Joe Zachary all reviewed preliminary versions of the
first edition; their thoughtful feedback helped to shape what you see here.

Much of what I know about algorithms I learned along with my graduate
students. Several of them (Yaw-Ling Lin, Sundaram Gopalakrishnan, Ting Chen,
Francine Evans, Harald Rau, Ricky Bradley, and Dimitris Margaritis) are the real
heroes of the war stories related within. My Stony Brook friends and algorithm
colleagues Estie Arkin, Michael Bender, Jie Gao, and Joe Mitchell have always
been a pleasure to work and be with. Finally, thanks to Michael Brochstein and
the rest of the city contingent for revealing a proper life well beyond Stony Brook.

Caveat

It is traditional for the author to magnanimously accept the blame for whatever
deficiencies remain. I don’t. Any errors, deficiencies, or problems in this book are
somebody else’s fault, but I would appreciate knowing about them so as to deter-
mine who is to blame.

Steven S. Skiena

Department of Computer Science
Stony Brook University

Stony Brook, NY 11794-4400
http://www.cs.sunysb.edu/~skiena
April 2008

Contents

I Practical Algorithm Design 1

1 Introduction to Algorithm Design 3
1.1 Robot Tour Optimization 5

1.2 Selecting the Right Jobs 9

1.3 Reasoning about Correctness 11

1.4 Modeling the Problem 19

1.5 About the War Stories 22

1.6 War Story: Psychic Modeling 23

1.7 Exercises 27

2 Algorithm Analysis 31
2.1 The RAM Model of Computation 31

2.2 The Big Oh Notation 34

2.3 Growth Rates and Dominance Relations 37

2.4 Working with the BigOh 40

2.5 Reasoning About Efficiency 41

2.6 Logarithms and Their Applications 46

2.7 Properties of Logarithms, 50

2.8 War Story: Mystery of the Pyramids 51

2.9 Advanced Analysis (*) oo 54

2.10 Exerciseso 57

3 Data Structures 65

3.1 Contiguous vs. Linked Data Structures. 66

xii

CONTENTS

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Stacks and Queues
Dictionaries L
Binary Search Trees
Priority Queues
War Story: Stripping Triangulations
Hashing and Strings
Specialized Data Structures
War Story: String 'em Up

Exercises

4 Sorting and Searching

Applications of Sorting L
Pragmatics of Sorting L
Heapsort: Fast Sorting via Data Structures
War Story: Give me a Ticket on an Airplane
Mergesort: Sorting by Divide-and-Conquer
Quicksort: Sorting by Randomization
Distribution Sort: Sorting via Bucketing
War Story: Skiena for the Defense
Binary Search and Related Algorithms
4.10 Divide-and-Conquer

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

4.11

5 Graph Traversal

5.1
5.2
5.3
5.4
9.5
5.6
9.7
5.8
5.9

5.11

Exercises

Flavors of Graphs
Data Structures for Graphs
War Story: I was a Victim of Moore’s Law
War Story: Getting the Graph.
Traversing a Graph
Breadth-First Search
Applications of Breadth-First Search
Depth-First Search
Applications of Depth-First Search
5.10 Depth-First Search on Directed Graphs

Exercises

6 Weighted Graph Algorithms

Minimum Spanning Trees
War Story: Nothing but Nets
Shortest Paths oL
War Story: Dialing for Documents
Network Flows and Bipartite Matching
Design Graphs, Not Algorithms

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Exercises

71
72
7
83
85
89
93
94
98

104
107
108
118
120
123
129
131
132
135
139

146
151
155
158
161
162
166
169
172
178
184

191
192
202
205
212
217
222
225

CONTENTS

xiii

7 Combinatorial Search and Heuristic Methods

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Backtracking o oL
Search Pruning
Sudoku
War Story: Covering Chessboards
Heuristic Search Methods
War Story: Only it is Not a Radio
War Story: Annealing Arrays
Other Heuristic Search Methods
Parallel Algorithms
7.10 War Story: Going Nowhere Fast
7.11 Exercises

8 Dynamic Programming

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Caching vs. Computation
Approximate String Matching
Longest Increasing Sequence
War Story: Evolution of the Lobster
The Partition Problem
Parsing Context-Free Grammars
Limitations of Dynamic Programming: TSP
War Story: What’s Past is Prolog
War Story: Text Compression for Bar Codes
8.10 Exercises

9 Intractable Problems and Approximation Algorithms

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9

Problems and Reductions
Reductions for Algorithms
Elementary Hardness Reductions
Satisfiability
Creative Reductions
The Art of Proving Hardness
War Story: Hard Against the Clock
War Story: And Then I Failed
Pvs. NP
9.10 Dealing with NP-complete Problems
9.11 Exercises

10 How to Design Algorithms

ITI The Hitchhiker’s Guide to Algorithms

11 A Catalog of Algorithmic Problems

..... 231
..... 238
..... 239
..... 244
..... 247
..... 260
..... 263
..... 266
..... 267
..... 268
..... 270

273

..... 274
..... 280
..... 289
..... 291
..... 294
..... 298
..... 301
..... 304
..... 307
..... 310

..... 317
..... 319
..... 323
..... 328
..... 330
..... 334
..... 337
..... 339
..... 341
..... 344
..... 350

356

361

363

xiv

CONTENTS

12 Data Structures
12.1 Dictionaries
12.2 Priority Queues
12.3 Suffix Trees and Arrays
12.4 Graph Data Structures
12.5 Set Data Structures . .
12.6 Kd-Trees

13 Numerical Problems
13.1 Solving Linear Equation
13.2 Bandwidth Reduction
13.3 Matrix Multiplication .

S

13.4 Determinants and Permanents
13.5 Constrained and Unconstrained Optimization

13.6 Linear Programming .

13.7 Random Number Generation

13.8 Factoring and Primality

Testing

13.9 Arbitrary-Precision Arithmetic

13.10 Knapsack Problem . .
13.11 Discrete Fourier Transfo

14 Combinatorial Problems
14.1 Sorting
14.2 Searching
14.3 Median and Selection .
14.4 Generating Permutation
14.5 Generating Subsets . .
14.6 Generating Partitions .
14.7 Generating Graphs . .
14.8 Calendrical Calculations
14.9 Job Scheduling
14.10 Satisfiability

TIN . . o 0 o o e e e e e e e

S

15 Graph Problems: Polynomial-Time

15.1 Connected Components
15.2 Topological Sorting . .

15.3 Minimum Spanning Tree

15.4 Shortest Path

15.5 Transitive Closure and Reduction

15.6 Matching
15.7 Eulerian Cycle/Chinese

Postman

15.8 Edge and Vertex Connectivity

15.9 Network Flow
15.10 Drawing Graphs Nicely

366
367
373
377
381
385
389

393
395
398
401
404
407
411
415
420
423
427
431

434
436
441
445
448
452
456
460
465
468
472

475
477
481
484
489
495
498
502
505
509
513

CONTENTS XV

15.11 Drawing Trees o 517
15.12 Planarity Detection and Embedding 520
16 Graph Problems: Hard Problems 523
16.1 Clique. o 525
16.2 Independent Set o 528
16.3 Vertex Cover oo v i it 530
16.4 Traveling Salesman Problem 533
16.5 Hamiltonian Cycle 538
16.6 Graph Partition 541
16.7 Vertex Coloring 544
16.8 Edge Coloring 548
16.9 Graph Isomorphism 550
16.10 Steiner Tree o 555
16.11 Feedback Edge/Vertex Set 559
17 Computational Geometry 562
17.1 Robust Geometric Primitives 564
172 Convex Hull 568
17.3 Triangulation L Lo 572
17.4 Voronoi Diagrams 576
17.5 Nearest Neighbor Search 580
176 Range Search 584
17.7 Point Location 587
17.8 Intersection Detection 591
17.9 Bin Packing o 595
17.10 Medial-Axis Transform 598
17.11 Polygon Partitioning L. 601
17.12 Simplifying Polygons 0oL 604
17.13 Shape Similarity o o 607
17.14 Motion Planning o L oo 610
17.15 Maintaining Line Arrangements 614
17.16 Minkowski Sum 617
18 Set and String Problems 620
181 Set Cover oo 621
18.2 Set Packing 625
18.3 String Matching o o o 628
18.4 Approximate String Matching L. 631
18.5 Text Compression 637
18.6 Cryptography 641
18.7 Finite State Machine Minimization 646
18.8 Longest Common Substring/Subsequence 650

18.9 Shortest Common Superstring L. 654

xvi CONTENTS

19 Algorithmic Resources 657
19.1 Software Systems L o 657

19.2 Data Sources 663

19.3 Online Bibliographic Resources 663

19.4 Professional Consulting Services. 664
Bibliography 665

Index 709

Part |

Practical Algorithm Design

1

Introduction to Algorithm Design

What is an algorithm? An algorithm is a procedure to accomplish a specific task.
An algorithm is the idea behind any reasonable computer program.

To be interesting, an algorithm must solve a general, well-specified problem. An
algorithmic problem is specified by describing the complete set of instances it must
work on and of its output after running on one of these instances. This distinction,
between a problem and an instance of a problem, is fundamental. For example, the
algorithmic problem known as sorting is defined as follows:

Problem: Sorting

Input: A sequence of n keys ay,...,a,.
Output: The permutation (reordering) of the input sequence such that af < afy <
e <ag g <y

An instance of sorting might be an array of names, like { Mike, Bob, Sally, Jill,
Jan}, or a list of numbers like {154, 245, 568, 324, 654, 324}. Determining that
you are dealing with a general problem is your first step towards solving it.

An algorithm is a procedure that takes any of the possible input instances
and transforms it to the desired output. There are many different algorithms for
solving the problem of sorting. For example, insertion sort is a method for sorting
that starts with a single element (thus forming a trivially sorted list) and then
incrementally inserts the remaining elements so that the list stays sorted. This
algorithm, implemented in C, is described below:

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_1,
(© Springer-Verlag London Limited 2008

1.

INTRODUCTION TO ALGORITHM DESIGN

INSERTIONSORT
INNSERTIONSORT
1 SORT
E SORT
E SORT
E SORT
E SORT
E SORT
EIINNORSTSORT
EIINNORSSTO

EIINNOORSST

EIINNOORRSS

EIINNOORRSSTT

Figure 1.1: Animation of insertion sort in action (time flows down)

insertion_sort(item s[], int n)

{
int i,j; /* counters */
for (i=1; i<n; i++) {
5=1;
while ((3>0) && (s[j]l < s[j-11)) {
swap (&s[j],&s[j-11);
i=i%
}
}
}

An animation of the logical flow of this algorithm on a particular instance (the
letters in the word “INSERTIONSORT”) is given in Figure 1.1

Note the generality of this algorithm. It works just as well on names as it does
on numbers, given the appropriate comparison operation (<) to test which of the
two keys should appear first in sorted order. It can be readily verified that this
algorithm correctly orders every possible input instance according to our definition
of the sorting problem.

There are three desirable properties for a good algorithm. We seek algorithms
that are correct and efficient, while being easy to implement. These goals may not
be simultaneously achievable. In industrial settings, any program that seems to
give good enough answers without slowing the application down is often acceptable,
regardless of whether a better algorithm exists. The issue of finding the best possible
answer or achieving maximum efficiency usually arises in industry only after serious
performance or legal troubles.

In this chapter, we will focus on the issues of algorithm correctness, and defer a
discussion of efficiency concerns to Chapter 2. It is seldom obvious whether a given

1.1 ROBOT TOUR OPTIMIZATION

5

Figure 1.2: A good instance for the nearest-neighbor heuristic

algorithm correctly solves a given problem. Correct algorithms usually come with
a proof of correctness, which is an explanation of why we know that the algorithm
must take every instance of the problem to the desired result. However, before we go
further we demonstrate why “it’s obvious” never suffices as a proof of correctness,
and is usually flat-out wrong.

1.1 Robot Tour Optimization

Let’s consider a problem that arises often in manufacturing, transportation, and
testing applications. Suppose we are given a robot arm equipped with a tool, say a
soldering iron. In manufacturing circuit boards, all the chips and other components
must be fastened onto the substrate. More specifically, each chip has a set of contact
points (or wires) that must be soldered to the board. To program the robot arm
for this job, we must first construct an ordering of the contact points so the robot
visits (and solders) the first contact point, then the second point, third, and so
forth until the job is done. The robot arm then proceeds back to the first contact
point to prepare for the next board, thus turning the tool-path into a closed tour,
or cycle.

Robots are expensive devices, so we want the tour that minimizes the time it
takes to assemble the circuit board. A reasonable assumption is that the robot arm
moves with fixed speed, so the time to travel between two points is proportional
to their distance. In short, we must solve the following algorithm problem:

Problem: Robot Tour Optimization
Input: A set S of n points in the plane.
Output: What is the shortest cycle tour that visits each point in the set S7

You are given the job of programming the robot arm. Stop right now and think
up an algorithm to solve this problem. I'll be happy to wait until you find one. ..

1.

INTRODUCTION TO ALGORITHM DESIGN

Several algorithms might come to mind to solve this problem. Perhaps the most
popular idea is the nearest-neighbor heuristic. Starting from some point pg, we walk
first to its nearest neighbor p;. From p;, we walk to its nearest unvisited neighbor,
thus excluding only py as a candidate. We now repeat this process until we run
out of unvisited points, after which we return to py to close off the tour. Written
in pseudo-code, the nearest-neighbor heuristic looks like this:

NearestNeighbor(P)

Pick and visit an initial point py from P

P =Do

1=0

While there are still unvisited points
i=1i+1
Select p; to be the closest unvisited point to p;_1
Visit p;

Return to pg from p,,_1

This algorithm has a lot to recommend it. It is simple to understand and imple-
ment. It makes sense to visit nearby points before we visit faraway points to reduce
the total travel time. The algorithm works perfectly on the example in Figure 1.2.
The nearest-neighbor rule is reasonably efficient, for it looks at each pair of points
(pi,pj) at most twice: once when adding p; to the tour, the other when adding p;.
Against all these positives there is only one problem. This algorithm is completely
wrong.

Wrong? How can it be wrong? The algorithm always finds a tour, but it doesn’t
necessarily find the shortest possible tour. It doesn’t necessarily even come close.
Consider the set of points in Figure 1.3, all of which lie spaced along a line. The
numbers describe the distance that each point lies to the left or right of the point
labeled ‘0’. When we start from the point ‘0’ and repeatedly walk to the nearest
unvisited neighbor, we might keep jumping left-right-left-right over ‘0’ as the algo-
rithm offers no advice on how to break ties. A much better (indeed optimal) tour
for these points starts from the leftmost point and visits each point as we walk
right before returning at the rightmost point.

Try now to imagine your boss’s delight as she watches a demo of your robot
arm hopscotching left-right-left-right during the assembly of such a simple board.

“But wait,” you might be saying. “The problem was in starting at point ‘0’.
Instead, why don’t we start the nearest-neighbor rule using the leftmost point
as the initial point py? By doing this, we will find the optimal solution on this
instance.”

That is 100% true, at least until we rotate our example 90 degrees. Now all
points are equally leftmost. If the point ‘0’ were moved just slightly to the left, it
would be picked as the starting point. Now the robot arm will hopscotch up-down-
up-down instead of left-right-left-right, but the travel time will be just as bad as
before. No matter what you do to pick the first point, the nearest-neighbor rule is
doomed to work incorrectly on certain point sets.

1.1 ROBOT TOUR OPTIMIZATION

7

ETI S0 3 11

Figure 1.3: A bad instance for the nearest-neighbor heuristic, with the optimal solution

Maybe what we need is a different approach. Always walking to the closest
point is too restrictive, since it seems to trap us into making moves we didn’t
want. A different idea might be to repeatedly connect the closest pair of endpoints
whose connection will not create a problem, such as premature termination of the
cycle. Each vertex begins as its own single vertex chain. After merging everything
together, we will end up with a single chain containing all the points in it. Con-
necting the final two endpoints gives us a cycle. At any step during the execution
of this closest-pair heuristic, we will have a set of single vertices and vertex-disjoint
chains available to merge. In pseudocode:

ClosestPair(P)

Let n be the number of points in set P.

Fort=1ton—1do
d =00
For each pair of endpoints (s,t) from distinct vertex chains

if dist(s,t) < d then s, = s, t,, = t, and d = dist(s,t)

Connect (8, tm,) by an edge

Connect the two endpoints by an edge

This closest-pair rule does the right thing in the example in Figure 1.3. It starts
by connecting ‘0’ to its immediate neighbors, the points 1 and —1. Subsequently,
the next closest pair will alternate left-right, growing the central path by one link at
a time. The closest-pair heuristic is somewhat more complicated and less efficient
than the previous one, but at least it gives the right answer in this example.

But this is not true in all examples. Consider what this algorithm does on the
point set in Figure 1.4(1). It consists of two rows of equally spaced points, with
the rows slightly closer together (distance 1 — e) than the neighboring points are
spaced within each row (distance 1 4 e). Thus the closest pairs of points stretch
across the gap, not around the boundary. After we pair off these points, the closest

1. INTRODUCTION TO ALGORITHM DESIGN

I+e I+e

J
I+e I+e

U] ()

Figure 1.4: A bad instance for the closest-pair heuristic, with the optimal solution

remaining pairs will connect these pairs alternately around the boundary. The total

path length of the closest-pair tour is 3(1 —e) +2(1 +e) + /(1 — €)% + (2 + 2¢)2.
Compared to the tour shown in Figure 1.4(r), we travel over 20% farther than

necessary when e ~ 0. Examples exist where the penalty is considerably worse

than this.

Thus this second algorithm is also wrong. Which one of these algorithms per-

forms better? You can’t tell just by looking at them. Clearly, both heuristics can

end up with very bad tours on very innocent-looking input.

At this point, you might wonder what a correct algorithm for our problem looks
like. Well, we could try enumerating all possible orderings of the set of points, and

then select the ordering that minimizes the total length:

OptimalTSP(P)
d =00
For each of the n! permutations P; of point set P
If (cost(P;) < d) then d = cost(P;) and Prin = P;
Return P,,;,

Since all possible orderings are considered, we are guaranteed to end up with
the shortest possible tour. This algorithm is correct, since we pick the best of all
the possibilities. But it is also extremely slow. The fastest computer in the world
couldn’t hope to enumerate all the 20! =2,432,902,008,176,640,000 orderings of 20

points within a day. For real circuit boards, where n ~ 1,000, forget about it.

All of the world’s computers working full time wouldn’t come close to finishing
the problem before the end of the universe, at which point it presumably becomes

moot.

The quest for an efficient algorithm to solve this problem, called the traveling

salesman problem (TSP), will take us through much of this book. If you need to

know how the story ends, check out the catalog entry for the traveling salesman

problem in Section 16.4 (page 533).

1.2 SELECTING THE RIGHT JOBS

9

Tarjan of the Jungle The Four Volume Problem
The President’s Algorist Steiner’s Tree Process Terminated
Halting State Programming Challenges
"Discrete" Mathematics Calculated Bets

Figure 1.5: An instance of the non-overlapping movie scheduling problem

Take-Home Lesson: There is a fundamental difference between algorithms,
which always produce a correct result, and heuristics, which may usually do a
good job but without providing any guarantee.

1.2 Selecting the Right Jobs

Now consider the following scheduling problem. Imagine you are a highly-in-
demand actor, who has been presented with offers to star in n different movie
projects under development. Each offer comes specified with the first and last day
of filming. To take the job, you must commit to being available throughout this
entire period. Thus you cannot simultaneously accept two jobs whose intervals
overlap.

For an artist such as yourself, the criteria for job acceptance is clear: you want
to make as much money as possible. Because each of these films pays the same fee
per film, this implies you seek the largest possible set of jobs (intervals) such that
no two of them conflict with each other.

For example, consider the available projects in Figure 1.5. We can star in at most
four films, namely “Discrete” Mathematics, Programming Challenges, Calculated
Bets, and one of either Halting State or Steiner’s Tree.

You (or your agent) must solve the following algorithmic scheduling problem:

Problem: Movie Scheduling Problem

Input: A set I of n intervals on the line.

Output: What is the largest subset of mutually non-overlapping intervals which can
be selected from 17

You are given the job of developing a scheduling algorithm for this task. Stop
right now and try to find one. Again, I'll be happy to wait.

There are several ideas that may come to mind. One is based on the notion
that it is best to work whenever work is available. This implies that you should
start with the job with the earliest start date — after all, there is no other job you
can work on, then at least during the begining of this period.

10 1. INTRODUCTION TO ALGORITHM DESIGN

War and Peace

) ®

Figure 1.6: Bad instances for the (1) earliest job first and (r) shortest job first heuristics.

EarliestJobFirst(I)
Accept the earlest starting job j from I which does not overlap any
previously accepted job, and repeat until no more such jobs remain.

This idea makes sense, at least until we realize that accepting the earliest job
might block us from taking many other jobs if that first job is long. Check out
Figure 1.6(1), where the epic “War and Peace” is both the first job available and
long enough to kill off all other prospects.

This bad example naturally suggests another idea. The problem with “War and
Peace” is that it is too long. Perhaps we should start by taking the shortest job,
and keep seeking the shortest available job at every turn. Maximizing the number
of jobs we do in a given period is clearly connected to banging them out as quickly
as possible. This yields the heuristic:

ShortestJobFirst(I)
While (I # 0) do
Accept the shortest possible job j from I.
Delete j, and any interval which intersects j from I.

Again this idea makes sense, at least until we realize that accepting the shortest
job might block us from taking two other jobs, as shown in Figure 1.6(r). While the
potential loss here seems smaller than with the previous heuristic, it can readily
limit us to half the optimal payoff.

At this point, an algorithm where we try all possibilities may start to look good,
because we can be certain it is correct. If we ignore the details of testing whether
a set of intervals are in fact disjoint, it looks something like this:

ExhaustiveScheduling ()
j=0
Smam = (Z)
For each of the 2™ subsets S; of intervals I
If (S; is mutually non-overlapping) and (size(S;) > 7)
then j = size(S;) and Sz = 5.
Return S,,,q4

But how slow is it? The key limitation is enumerating the 2™ subsets of n
things. The good news is that this is much better than enumerating all n! orders

1.3 REASONING ABOUT CORRECTNESS

11

of n things, as proposed for the robot tour optimization problem. There are only
about one million subsets when n = 20, which could be exhaustively counted
within seconds on a decent computer. However, when fed n = 100 movies, 2'%° is
much much greater than the 20! which made our robot cry “uncle” in the previous
problem.

The difference between our scheduling and robotics problems are that there is an
algorithm which solves movie scheduling both correctly and efficiently. Think about
the first job to terminate—i.e. the interval x which contains the rightmost point
which is leftmost among all intervals. This role is played by “Discrete” Mathematics
in Figure 1.5. Other jobs may well have started before x, but all of these must at
least partially overlap each other, so we can select at most one from the group. The
first of these jobs to terminate is z, so any of the overlapping jobs potentially block
out other opportunities to the right of it. Clearly we can never lose by picking x.
This suggests the following correct, efficient algorithm:

OptimalScheduling(T)
While (I # 0) do
Accept the job j from I with the earliest completion date.
Delete j, and any interval which intersects j from I.

Ensuring the optimal answer over all possible inputs is a difficult but often
achievable goal. Seeking counterexamples that break pretender algorithms is an
important part of the algorithm design process. Efficient algorithms are often lurk-
ing out there; this book seeks to develop your skills to help you find them.

Take-Home Lesson: Reasonable-looking algorithms can easily be incorrect. Al-
gorithm correctness is a property that must be carefully demonstrated.

1.3 Reasoning about Correctness

Hopefully, the previous examples have opened your eyes to the subtleties of algo-
rithm correctness. We need tools to distinguish correct algorithms from incorrect
ones, the primary one of which is called a proof.

A proper mathematical proof consists of several parts. First, there is a clear,
precise statement of what you are trying to prove. Second, there is a set of assump-
tions of things which are taken to be true and hence used as part of the proof.
Third, there is a chain of reasoning which takes you from these assumptions to the
statement you are trying to prove. Finally, there is a little square () or QED at the
bottom to denote that you have finished, representing the Latin phrase for “thus
it is demonstrated.”

This book is not going to emphasize formal proofs of correctness, because they
are very difficult to do right and quite misleading when you do them wrong. A
proof is indeed a demonstration. Proofs are useful only when they are honest; crisp
arguments explaining why an algorithm satisfies a nontrivial correctness property.

12

1.

INTRODUCTION TO ALGORITHM DESIGN

Correct algorithms require careful exposition, and efforts to show both cor-
rectness and not incorrectness. We develop tools for doing so in the subsections
below.

1.3.1 Expressing Algorithms

Reasoning about an algorithm is impossible without a careful description of the
sequence of steps to be performed. The three most common forms of algorithmic
notation are (1) English, (2) pseudocode, or (3) a real programming language.
We will use all three in this book. Pseudocode is perhaps the most mysterious of
the bunch, but it is best defined as a programming language that never complains
about syntax errors. All three methods are useful because there is a natural tradeoff
between greater ease of expression and precision. English is the most natural but
least precise programming language, while Java and C/C++ are precise but diffi-
cult to write and understand. Pseudocode is generally useful because it represents
a happy medium.

The choice of which notation is best depends upon which method you are most
comfortable with. I usually prefer to describe the ideas of an algorithm in English,
moving to a more formal, programming-language-like pseudocode or even real code
to clarify sufficiently tricky details.

A common mistake my students make is to use pseudocode to dress up an ill-
defined idea so that it looks more formal. Clarity should be the goal. For example,
the ExhaustiveScheduling algorithm on page 10 could have been better written
in English as:

ExhaustiveScheduling(I)
Test all 2" subsets of intervals from I, and return the largest subset
consisting of mutually non-overlapping intervals.

Take-Home Lesson: The heart of any algorithm is an idea. If your idea is
not clearly revealed when you express an algorithm, then you are using too
low-level a notation to describe it.

1.3.2 Problems and Properties

We need more than just an algorithm description in order to demonstrate cor-
rectness. We also need a careful description of the problem that it is intended to
solve.

Problem specifications have two parts: (1) the set of allowed input instances,
and (2) the required properties of the algorithm’s output. It is impossible to prove
the correctness of an algorithm for a fuzzily-stated problem. Put another way, ask
the wrong problem and you will get the wrong answer.

Some problem specifications allow too broad a class of input instances. Suppose
we had allowed film projects in our movie scheduling problem to have gaps in

1.3 REASONING ABOUT CORRECTNESS 13

production (i.e., filming in September and November but a hiatus in October).
Then the schedule associated with any particular film would consist of a given set
of intervals. Our star would be free to take on two interleaving but not overlapping
projects (such as the film above nested with one filming in August and October).
The earliest completion algorithm would not work for such a generalized scheduling
problem. Indeed, no efficient algorithm exists for this generalized problem.

Take-Home Lesson: An important and honorable technique in algorithm de-
sign is to narrow the set of allowable instances until there is a correct and
efficient algorithm. For example, we can restrict a graph problem from general
graphs down to trees, or a geometric problem from two dimensions down to
one.

There are two common traps in specifying the output requirements of a problem.
One is asking an ill-defined question. Asking for the best route between two places
on a map is a silly question unless you define what best means. Do you mean the
shortest route in total distance, or the fastest route, or the one minimizing the
number of turns?

The second trap is creating compound goals. The three path-planning criteria
mentioned above are all well-defined goals that lead to correct, efficient optimiza-
tion algorithms. However, you must pick a single criteria. A goal like Find the
shortest path from a to b that doesn’t use more than twice as many turns as neces-
sary is perfectly well defined, but complicated to reason and solve.

I encourage you to check out the problem statements for each of the 75 catalog
problems in the second part of this book. Finding the right formulation for your
problem is an important part of solving it. And studying the definition of all these
classic algorithm problems will help you recognize when someone else has thought
about similar problems before you.

1.3.3 Demonstrating Incorrectness

The best way to prove that an algorithm is incorrect is to produce an instance in
which it yields an incorrect answer. Such instances are called counter-ezamples.
No rational person will ever leap to the defense of an algorithm after a counter-
example has been identified. Very simple instances can instantly kill reasonable-
looking heuristics with a quick touché. Good counter-examples have two important
properties:

o Verifiability — To demonstrate that a particular instance is a counter-example
to a particular algorithm, you must be able to (1) calculate what answer your
algorithm will give in this instance, and (2) display a better answer so as to
prove the algorithm didn’t find it.

Since you must hold the given instance in your head to reason about it, an
important part of verifiability is. ..

14

1.

INTRODUCTION TO ALGORITHM DESIGN

e Simplicity — Good counter-examples have all unnecessary details boiled away.

They make clear exactly why the proposed algorithm fails. Once a counter-
example has been found, it is worth simplifying it down to its essence. For
example, the counter-example of Figure 1.6(1) could be made simpler and
better by reducing the number of overlapped segments from five to two.

Hunting for counter-examples is a skill worth developing. It bears some simi-
larity to the task of developing test sets for computer programs, but relies more on
inspiration than exhaustion. Here are some techniques to aid your quest:

e Think small — Note that the robot tour counter-examples I presented boiled

down to six points or less, and the scheduling counter-examples to only three
intervals. This is indicative of the fact that when algorithms fail, there is
usually a very simple example on which they fail. Amateur algorists tend
to draw a big messy instance and then stare at it helplessly. The pros look
carefully at several small examples, because they are easier to verify and
reason about.

Think exhaustively — There are only a small number of possibilities for the
smallest nontrivial value of n. For example, there are only three interesting
ways two intervals on the line can occur: (1) as disjoint intervals, (2) as
overlapping intervals, and (3) as properly nesting intervals, one within the
other. All cases of three intervals (including counter-examples to both movie
heuristics) can be systematically constructed by adding a third segment in
each possible way to these three instances.

Hunt for the weakness — If a proposed algorithm is of the form “always take
the biggest” (better known as the greedy algorithm), think about why that
might prove to be the wrong thing to do. In particular, ...

Go for a tie— A devious way to break a greedy heuristic is to provide instances
where everything is the same size. Suddenly the heuristic has nothing to base
its decision on, and perhaps has the freedom to return something suboptimal
as the answer.

Seek extremes — Many counter-examples are mixtures of huge and tiny, left
and right, few and many, near and far. It is usually easier to verify or rea-
son about extreme examples than more muddled ones. Consider two tightly
bunched clouds of points separated by a much larger distance d. The optimal
TSP tour will be essentially 2d regardless of the number of points, because
what happens within each cloud doesn’t really matter.

Take-Home Lesson: Searching for counterexamples is the best way to disprove
the correctness of a heuristic.

1.3 REASONING ABOUT CORRECTNESS

15

1.3.4 Induction and Recursion

Failure to find a counterexample to a given algorithm does not mean “it is obvious”
that the algorithm is correct. A proof or demonstration of correctness is needed.
Often mathematical induction is the method of choice.

When 1 first learned about mathematical induction it seemed like complete
magic. You proved a formula like > ;i = n(n + 1)/2 for some basis case like 1
or 2, then assumed it was true all the way to n — 1 before proving it was true for
general n using the assumption. That was a proof? Ridiculous!

When 1 first learned the programming technique of recursion it also seemed like
complete magic. The program tested whether the input argument was some basis
case like 1 or 2. If not, you solved the bigger case by breaking it into pieces and
calling the subprogram itself to solve these pieces. That was a program? Ridiculous!

The reason both seemed like magic is because recursion #s mathematical induc-
tion. In both, we have general and boundary conditions, with the general condition
breaking the problem into smaller and smaller pieces. The initial or boundary con-
dition terminates the recursion. Once you understand either recursion or induction,
you should be able to see why the other one also works.

I’ve heard it said that a computer scientist is a mathematician who only knows
how to prove things by induction. This is partially true because computer scientists
are lousy at proving things, but primarily because so many of the algorithms we
study are either recursive or incremental.

Consider the correctness of insertion sort, which we introduced at the beginning
of this chapter. The reason it is correct can be shown inductively:

e The basis case consists of a single element, and by definition a one-element
array is completely sorted.

e In general, we can assume that the first n — 1 elements of array A are com-
pletely sorted after n — 1 iterations of insertion sort.

e To insert one last element x to A, we find where it goes, namely the unique
spot between the biggest element less than or equal to z and the smallest
element greater than x. This is done by moving all the greater elements back
by one position, creating room for z in the desired location. i

One must be suspicious of inductive proofs, however, because very subtle rea-
soning errors can creep in. The first are boundary errors. For example, our insertion
sort, correctness proof above boldly stated that there was a unique place to insert
x between two elements, when our basis case was a single-element array. Greater
care is needed to properly deal with the special cases of inserting the minimum or
maximum elements.

The second and more common class of inductive proof errors concerns cavallier
extension claims. Adding one extra item to a given problem instance might cause
the entire optimal solution to change. This was the case in our scheduling problem
(see Figure 1.7). The optimal schedule after inserting a new segment may contain

16 1. INTRODUCTION TO ALGORITHM DESIGN

Figure 1.7: Large-scale changes in the optimal solution (boxes) after inserting a single interval
(dashed) into the instance

none of the segments of any particular optimal solution prior to insertion. Boldly
ignoring such difficulties can lead to very convincing inductive proofs of incorrect
algorithms.

Take-Home Lesson: Mathematical induction is usually the right way to verify
the correctness of a recursive or incremental insertion algorithm.

Stop and Think: Incremental Correctness

Problem: Prove the correctness of the following recursive algorithm for increment-
ing natural numbers, i.e. y — y + 1:

Increment(y)
if y = 0 then return(1) else
if (y mod 2) =1 then
return(2 - Increment(|y/2]))
else return(y + 1)

Solution: The correctness of this algorithm is certainly not obvious to me. But as
it is recursive and I am a computer scientist, my natural instinct is to try to prove
it by induction.

The basis case of y = 0 is obviously correctly handled. Clearly the value 1 is
returned, and 0+ 1 = 1.

Now assume the function works correctly for the general case of y = n—1. Given
this, we must demonstrate the truth for the case of y = n. Half of the cases are
easy, namely the even numbers (For which (y mod 2) = 0), since y + 1 is explicitly
returned.

For the odd numbers, the answer depends upon what is returned by
Increment(|y/2]). Here we want to use our inductive assumption, but it isn’t
quite right. We have assumed that increment worked correctly for y = n — 1, but
not for a value which is about half of it. We can fix this problem by strengthening
our assumption to declare that the general case holds for all y < n—1. This costs us
nothing in principle, but is necessary to establish the correctness of the algorithm.

1.3 REASONING ABOUT CORRECTNESS 17

Now, the case of odd y (i.e. y = 2m + 1 for some integer m) can be dealt with
as:
2 Increment(|(2m +1)/2]) = 2-Increment(|m+ 1/2])
= 2. Increment(m)
= 2(m+1)
= 2m+2=y+1

and the general case is resolved. |

1.3.5 Summations

Mathematical summation formulae arise often in algorithm analysis, which we will
study in Chapter 2. Further, proving the correctness of summation formulae is a
classic application of induction. Several exercises on inductive proofs of summations
appear as exercises at the end of this chapter. To make these more accessible, I
review the basics of summations here.

Summation formulae are concise expressions describing the addition of an ar-
bitrarily large set of numbers, in particular the formula

Zf(i) =)+ f2)+...+ f(n)

There are simple closed forms for summations of many algebraic functions. For
example, since n ones is n,

n
Zl =n
i=1

The sum of the first n even integers can be seen by pairing up the ith and (n—i+1)th
integers:
n TL/Q
di=>(i+n—i+1)=n(n+1)/2
i=1 i=1
Recognizing two basic classes of summation formulae will get you a long way
in algorithm analysis:

e Arithmetic progressions — We will encounter the arithmetic progression
S(n) = >"i = n(n+1)/2 in the analysis of selection sort. From the big
picture perspective, the important thing is that the sum is quadratic, not
that the constant is 1/2. In general,

S(n,p) = > i = O(*)

18

1.

INTRODUCTION TO ALGORITHM DESIGN

for p > 1. Thus the sum of squares is cubic, and the sum of cubes is quartic
(if you use such a word). The “big Theta” notation (O(z)) will be properly
explained in Section 2.2.

For p < —1, this sum always converges to a constant, even as n — oo. The
interesting case is between results in ...

Geometric series — In geometric progressions, the index of the loop effects
the exponent, i.e.

G(n,a) =Y a' = (a" —1)/(a—1)
=0

How we interpret this sum depends upon the base of the progression, i.e. a.
When a < 1, this converges to a constant even as n — oc.

This series convergence proves to be the great “free lunch” of algorithm anal-
ysis. It means that the sum of a linear number of things can be constant, not
linear. For example, 1+1/2+1/4+1/8+... < 2 no matter how many terms
we add up.

When a > 1, the sum grows rapidly with each new term, as in 1 4+ 2+ 4 +

8 + 16 + 32 = 63. Indeed, G(n,a) = O(a"*!) for a > 1.

Stop and Think: Factorial Formulae

Problem: Prove that Y. ;i x il = (n+ 1)! — 1 by induction.

Solution: The inductive paradigm is straightforward. First verify the basis case
(here we do n = 1, although n = 0 would be even more general):

1
dixil=1=(1+1)-1=2-1=1

i=1

Now assume the statement is true up to n. To prove the general case of n + 1,
observe that rolling out the largest term

n+1

Mixil=(n+1)x (n+1)+> ixil
i=1

i=1

reveals the left side of our inductive assumption. Substituting the right side gives

us

n+1
dixil = (n+1)x(n+D+n+1)-1
i=1

1.4 MODELING THE PROBLEM

19

= (n+DIx((n+1)+1)-1
= (n+2)!-1

This general trick of separating out the largest term from the summation to
reveal an instance of the inductive assumption lies at the heart of all such proofs.
|

1.4 Modeling the Problem

Modeling is the art of formulating your application in terms of precisely described,
well-understood problems. Proper modeling is the key to applying algorithmic de-
sign techniques to real-world problems. Indeed, proper modeling can eliminate the
need to design or even implement algorithms, by relating your application to what
has been done before. Proper modeling is the key to effectively using the “Hitch-
hiker’s Guide” in Part II of this book.

Real-world applications involve real-world objects. You might be working on a
system to route traffic in a network, to find the best way to schedule classrooms
in a university, or to search for patterns in a corporate database. Most algorithms,
however, are designed to work on rigorously defined abstract structures such as
permutations, graphs, and sets. To exploit the algorithms literature, you must
learn to describe your problem abstractly, in terms of procedures on fundamental
structures.

1.4.1 Combinatorial Objects

Odds are very good that others have stumbled upon your algorithmic problem
before you, perhaps in substantially different contexts. But to find out what is
known about your particular “widget optimization problem,” you can’t hope to
look in a book under widget. You must formulate widget optimization in terms of
computing properties of common structures such as:

e Permutations — which are arrangements, or orderings, of items. For example,
{1,4,3,2} and {4, 3,2, 1} are two distinct permutations of the same set of four
integers. We have already seen permutations in the robot optimization prob-
lem, and in sorting. Permutations are likely the object in question whenever
your problem seeks an “arrangement,” “tour,” “ordering,” or “sequence.”

e Subsets — which represent selections from a set of items. For example, {1, 3,4}
and {2} are two distinct subsets of the first four integers. Order does not
matter in subsets the way it does with permutations, so the subsets {1, 3,4}
and {4, 3, 1} would be considered identical. We saw subsets arise in the movie
scheduling problem. Subsets are likely the object in question whenever your
problem seeks a “cluster,” “collection,” “committee,” “group,” “packaging,”
or “selection.”

20 1. INTRODUCTION TO ALGORITHM DESIGN
Stony Brook Greenport
O Orient Point
\Rivefh/
/O\ Shelter Island
O Montauk
Steve Len Rob Richard Laurie Jim Lisa Jeff Islip Sag Harbor

Figure 1.8: Modeling real-world structures with trees and graphs

e Trees — which represent hierarchical relationships between items. Figure
1.8(a) shows part of the family tree of the Skiena clan. Trees are likely the
object in question whenever your problem seeks a “hierarchy,” “dominance
relationship,” “ancestor/descendant relationship,” or “taxonomy.”

e Graphs — which represent relationships between arbitrary pairs of objects.
Figure 1.8(b) models a network of roads as a graph, where the vertices are
cities and the edges are roads connecting pairs of cities. Graphs are likely
the object in question whenever you seek a “network,” “circuit,” “web,” or
“relationship.”

e Points — which represent locations in some geometric space. For example,
the locations of McDonald’s restaurants can be described by points on a
map/plane. Points are likely the object in question whenever your problems

work on “sites,” “positions,” “data records,” or “locations.”

e Polygons — which represent regions in some geometric spaces. For example,
the borders of a country can be described by a polygon on a map/plane.
Polygons and polyhedra are likely the object in question whenever you are
working on “shapes,” “regions,” “configurations,” or “boundaries.”

e Strings — which represent sequences of characters or patterns. For example,
the names of students in a class can be represented by strings. Strings are
likely the object in question whenever you are dealing with “text,” “charac-
ters,” “patterns,” or “labels.”

These fundamental structures all have associated algorithm problems, which are
presented in the catalog of Part II. Familiarity with these problems is important,
because they provide the language we use to model applications. To become fluent
in this vocabulary, browse through the catalog and study the input and output pic-
tures for each problem. Understanding these problems, even at a cartoon/definition
level, will enable you to know where to look later when the problem arises in your
application.

1.4 MODELING THE PROBLEM

21

\

{41,523} —> 4+{14,23} ° ® . b
® . o .. —_— . o
* e ° * e

{1279} —> 9+{1,2,7}

v
\

\

15012

— ///
- ALGORITHM_’A‘LGORITHM

Figure 1.9: Recursive decompositions of combinatorial objects. (left column) Permutations,

subsets, trees, and graphs. (right column) Point sets, polygons, and strings

Examples of successful application modeling will be presented in the war stories
spaced throughout this book. However, some words of caution are in order. The act
of modeling reduces your application to one of a small number of existing problems
and structures. Such a process is inherently constraining, and certain details might
not fit easily into the given target problem. Also, certain problems can be modeled
in several different ways, some much better than others.

Modeling is only the first step in designing an algorithm for a problem. Be alert
for how the details of your applications differ from a candidate model, but don’t
be too quick to say that your problem is unique and special. Temporarily ignoring
details that don’t fit can free the mind to ask whether they really were fundamental
in the first place.

Take-Home Lesson: Modeling your application in terms of well-defined struc-
tures and algorithms is the most important single step towards a solution.

1.4.2 Recursive Objects

Learning to think recursively is learning to look for big things that are made from
smaller things of exactly the same type as the big thing. If you think of houses as
sets of rooms, then adding or deleting a room still leaves a house behind.

Recursive structures occur everywhere in the algorithmic world. Indeed, each
of the abstract structures described above can be thought about recursively. You
just have to see how you can break them down, as shown in Figure 1.9:

e Permutations — Delete the first element of a permutation of {1,...,n} things
and you get a permutation of the remaining n — 1 things. Permutations are
recursive objects.

22

1.

INTRODUCTION TO ALGORITHM DESIGN

e Subsets — Every subset of the elements {1,...,n} contains a subset of
{1,...,n — 1} made visible by deleting element n if it is present. Subsets
are recursive objects.

e Trees — Delete the root of a tree and what do you get? A collection of smaller
trees. Delete any leaf of a tree and what do you get? A slightly smaller tree.
Trees are recursive objects.

e Graphs — Delete any vertex from a graph, and you get a smaller graph. Now
divide the vertices of a graph into two groups, left and right. Cut through
all edges which span from left to right, and what do you get? Two smaller
graphs, and a bunch of broken edges. Graphs are recursive objects.

e Points— Take a cloud of points, and separate them into two groups by drawing
a line. Now you have two smaller clouds of points. Point sets are recursive
objects.

e Polygons — Inserting any internal chord between two nonadjacent vertices of
a simple polygon on n vertices cuts it into two smaller polygons. Polygons
are recursive objects.

e Strings — Delete the first character from a string, and what do you get? A
shorter string. Strings are recursive objects.

Recursive descriptions of objects require both decomposition rules and basis
cases, namely the specification of the smallest and simplest objects where the de-
composition stops. These basis cases are usually easily defined. Permutations and
subsets of zero things presumably look like {}. The smallest interesting tree or
graph consists of a single vertex, while the smallest interesting point cloud consists
of a single point. Polygons are a little trickier; the smallest genuine simple polygon
is a triangle. Finally, the empty string has zero characters in it. The decision of
whether the basis case contains zero or one element is more a question of taste and
convenience than any fundamental principle.

Such recursive decompositions will come to define many of the algorithms we
will see in this book. Keep your eyes open for them.

1.5 About the War Stories

The best way to learn how careful algorithm design can have a huge impact on per-
formance is to look at real-world case studies. By carefully studying other people’s
experiences, we learn how they might apply to our work.

Scattered throughout this text are several of my own algorithmic war stories,
presenting our successful (and occasionally unsuccessful) algorithm design efforts
on real applications. I hope that you will be able to internalize these experiences
so that they will serve as models for your own attacks on problems.

1.6 WAR STORY: PSYCHIC MODELING

23

Every one of the war stories is true. Of course, the stories improve somewhat in
the retelling, and the dialogue has been punched up to make them more interesting
to read. However, I have tried to honestly trace the process of going from a raw
problem to a solution, so you can watch how this process unfolded.

The Ozford English Dictionary defines an algorist as “one skillful in reckonings
or figuring.” In these stories, I have tried to capture some of the mindset of the
algorist in action as they attack a problem.

The various war stories usually involve at least one, and often several, problems
from the problem catalog in Part II. I reference the appropriate section of the
catalog when such a problem occurs. This emphasizes the benefits of modeling
your application in terms of standard algorithm problems. By using the catalog,
you will be able to pull out what is known about any given problem whenever it is
needed.

1.6 War Story: Psychic Modeling

The call came for me out of the blue as I sat in my office.

“Professor Skiena, I hope you can help me. I'm the President of Lotto Systems
Group Inc., and we need an algorithm for a problem arising in our latest product.”

“Sure,” I replied. After all, the dean of my engineering school is always encour-
aging our faculty to interact more with industry.

“At Lotto Systems Group, we market a program designed to improve our cus-
tomers’ psychic ability to predict winning lottery numbers.! In a standard lottery,
each ticket consists of six numbers selected from, say, 1 to 44. Thus, any given
ticket has only a very small chance of winning. However, after proper training, our
clients can visualize, say, 15 numbers out of the 44 and be certain that at least four
of them will be on the winning ticket. Are you with me so far?”

“Probably not,” I replied. But then I recalled how my dean encourages us to
interact with industry.

“Our problem is this. After the psychic has narrowed the choices down to 15
numbers and is certain that at least 4 of them will be on the winning ticket, we
must find the most efficient way to exploit this information. Suppose a cash prize
is awarded whenever you pick at least three of the correct numbers on your ticket.
We need an algorithm to construct the smallest set of tickets that we must buy in
order to guarantee that we win at least one prize.”

“Assuming the psychic is correct?”

“Yes, assuming the psychic is correct. We need a program that prints out a list
of all the tickets that the psychic should buy in order to minimize their investment.
Can you help us?”

Maybe they did have psychic ability, for they had come to the right place. Iden-
tifying the best subset of tickets to buy was very much a combinatorial algorithm

Yes, this is a true story.

24

1.

INTRODUCTION TO ALGORITHM DESIGN

Figure 1.10: Covering all pairs of {1,2,3,4,5} with tickets {1,2,3}, {1,4,5}, {2,4,5}, {3,4,5}

problem. It was going to be some type of covering problem, where each ticket we
buy was going to “cover” some of the possible 4-element subsets of the psychic’s
set. Finding the absolute smallest set of tickets to cover everything was a special
instance of the NP-complete problem set cover (discussed in Section 18.1 (page
621)), and presumably computationally intractable.

It was indeed a special instance of set cover, completely specified by only four
numbers: the size n of the candidate set S (typically n & 15), the number of slots
k for numbers on each ticket (typically k = 6), the number of psychically-promised
correct numbers j from S (say j = 4), and finally, the number of matching numbers
[necessary to win a prize (say [= 3). Figure 1.10 illustrates a covering of a smaller
instance, where n =5, j = k=3, and [= 2.

“Although it will be hard to find the exact minimum set of tickets to buy, with
heuristics I should be able to get you pretty close to the cheapest covering ticket
set,” I told him. “Will that be good enough?”

“So long as it generates better ticket sets than my competitor’s program, that
will be fine. His system doesn’t always guarantee a win. I really appreciate your
help on this, Professor Skiena.”

“One last thing. If your program can train people to pick lottery winners, why
don’t you use it to win the lottery yourself?”

“I look forward to talking to you again real soon, Professor Skiena. Thanks for
the help.”

I hung up the phone and got back to thinking. It seemed like the perfect project
to give to a bright undergraduate. After modeling it in terms of sets and subsets,
the basic components of a solution seemed fairly straightforward:

1.6 WAR STORY: PSYCHIC MODELING

25

e We needed the ability to generate all subsets of k numbers from the candidate
set S. Algorithms for generating and ranking/unranking subsets of sets are
presented in Section 14.5 (page 452).

e We needed the right formulation of what it meant to have a covering set of
purchased tickets. The obvious criteria would be to pick a small set of tickets
such that we have purchased at least one ticket containing each of the (?)

l-subsets of S that might pay off with the prize.

e We needed to keep track of which prize combinations we have thus far cov-
ered. We seek tickets to cover as many thus-far-uncovered prize combinations
as possible. The currently covered combinations are a subset of all possible
combinations. Data structures for subsets are discussed in Section 12.5 (page
385). The best candidate seemed to be a bit vector, which would answer in
constant time “is this combination already covered?”

e We needed a search mechanism to decide which ticket to buy next. For small
enough set sizes, we could do an exhaustive search over all possible sub-
sets of tickets and pick the smallest one. For larger problems, a randomized
search process like simulated annealing (see Section 7.5.3 (page 254)) would
select tickets-to-buy to cover as many uncovered combinations as possible.
By repeating this randomized procedure several times and picking the best
solution, we would be likely to come up with a good set of tickets.

Excluding the details of the search mechanism, the pseudocode for the book-
keeping looked something like this:

LottoTicketSet(n, k, 1)

Initialize the 7; -element bit-vector V to all false

While there exists a false entry in V'
Select a k-subset T of {1,...,n} as the next ticket to buy
For each of the l-subsets T; of T, V[rank(T;)] = true
Report the set of tickets bought

The bright undergraduate, Fayyaz Younas, rose to the challenge. Based on
this framework, he implemented a brute-force search algorithm and found optimal
solutions for problems with n < 5 in a reasonable time. He implemented a random
search procedure to solve larger problems, tweaking it for a while before settling on
the best variant. Finally, the day arrived when we could call Lotto Systems Group
and announce that we had solved the problem.

“Our program found an optimal solution for n = 15, k =6, j = 6, [= 3 meant
buying 28 tickets.”

“Twenty-eight tickets!” complained the president. “You must have a bug. Look,
these five tickets will suffice to cover everything twice over: {2,4,8,10, 13,14},
{4,5,7,8,12,15}, {1,2,3,6,11,13}, {3,5,6,9,10,15}, {1,7,9,11,12,14}.”

26 1. INTRODUCTION TO ALGORITHM DESIGN

35 14

24

Figure 1.11: Guaranteeing a winning pair from {1,2,3,4,5} using only tickets {1,2,3} and
{1,4,5}

We fiddled with this example for a while before admitting that he was right. We
hadn’t modeled the problem correctly! In fact, we didn’t need to explicitly cover all
possible winning combinations. Figure 1.11 illustrates the principle by giving a two-
ticket solution to our previous four-ticket example. Such unpromising outcomes as
{2,3,4} and {3,4, 5} each agree in one matching pair with tickets from Figure 1.11.
We were trying to cover too many combinations, and the penny-pinching psychics
were unwilling to pay for such extravagance.

Fortunately, this story has a happy ending. The general outline of our search-
based solution still holds for the real problem. All we must fix is which subsets
we get credit for covering with a given set of tickets. After this modification, we
obtained the kind of results they were hoping for. Lotto Systems Group gratefully
accepted our program to incorporate into their product, and hopefully hit the
jackpot with it.

The moral of this story is to make sure that you model the problem correctly
before trying to solve it. In our case, we came up with a reasonable model, but
didn’t work hard enough to validate it before we started to program. Our misin-
terpretation would have become obvious had we worked out a small example by
hand and bounced it off our sponsor before beginning work. Our success in recov-
ering from this error is a tribute to the basic correctness of our initial formulation,
and our use of well-defined abstractions for such tasks as (1) ranking/unranking
k-subsets, (2) the set data structure, and (3) combinatorial search.

1.7 EXERCISES

27

Chapter Notes

Every decent algorithm book reflects the design philosophy of its author. For stu-
dents seeking alternative presentations and viewpoints, we particularly recommend
the books of Cormen, et. al [CLRSO01], Kleinberg/Tardos [KT06], and Manber
[Man89).

Formal proofs of algorithm correctness are important, and deserve a fuller dis-
cussion than we are able to provide in this chapter. See Gries [Gri89] for a thorough
introduction to the techniques of program verification.

The movie scheduling problem represents a very special case of the general inde-
pendent set problem, which is discussed in Section 16.2 (page 528). The restriction
limits the allowable input instances to interval graphs, where the vertices of the
graph G can be represented by intervals on the line and (7,7) is an edge of G iff
the intervals overlap. Golumbic [Gol04] provides a full treatment of this interesting
and important class of graphs.

Jon Bentley’s Programming Pearls columns are probably the best known col-
lection of algorithmic “war stories.” Originally published in the Communications
of the ACM, they have been collected in two books [Ben90, Ben99]. Brooks’s The
Mythical Man Month [Bro95] is another wonderful collection of war stories, focused
more on software engineering than algorithm design, but they remain a source of
considerable wisdom. Every programmer should read all these books, for pleasure
as well as insight.

Our solution to the lotto ticket set covering problem is presented in more detail
in [YS96].

1.7 Exercises

Finding Counterexamples
1-1. /8] Show that a + b can be less than min(a, b).
1-2. /3] Show that a x b can be less than min(a, b).

1-3. [5] Design/draw a road network with two points a and b such that the fastest route
between a and b is not the shortest route.

1-4. [5] Design/draw a road network with two points a and b such that the shortest
route between a and b is not the route with the fewest turns.

1-5. [4] The knapsack problem is as follows: given a set of integers S = {s1,52,...,5n},
and a target number T, find a subset of S which adds up exactly to T'. For example,
there exists a subset within S = {1,2,5,9,10} that adds up to T = 22 but not
T =23.

Find counterexamples to each of the following algorithms for the knapsack problem.
That is, give an S and T where the algorithm does not find a solution which leaves
the knapsack completely full, even though a full-knapsack solution exists.

28 1. INTRODUCTION TO ALGORITHM DESIGN

(a) Put the elements of S in the knapsack in left to right order if they fit, i.e. the
first-fit algorithm.

(b) Put the elements of S in the knapsack from smallest to largest, i.e. the best-fit
algorithm.

(c) Put the elements of S in the knapsack from largest to smallest.

1-6. [5] The set cover problem is as follows: given a set of subsets Si,...,Sm of the
universal set U = {1,...,n}, find the smallest subset of subsets 7" C S such that
Ut;erts = U. For example, there are the following subsets, S1 = {1,3,5}, S2 =
{2,4}, Ss = {1,4}, and Ss = {2,5} The set cover would then be S; and Ss.

Find a counterexample for the following algorithm: Select the largest subset for the
cover, and then delete all its elements from the universal set. Repeat by adding the
subset containing the largest number of uncovered elements until all are covered.

Proofs of Correctness
1-7. [8] Prove the correctness of the following recursive algorithm to multiply two
natural numbers, for all integer constants ¢ > 2.
function multiply(y, z)
comment Return the product yz.
1. if z =0 then return(0) else
2. return(multiply(cy, |z/¢]) + v - (2 mod ¢))
1-8. [8] Prove the correctness of the following algorithm for evaluating a polynomial.
P(x) = anz™ + An_12" Y+ ...+ a1z + ao

function horner(A, x)

p=An

for ¢ fromn —1to 0
p=pxx—+ A;

return p

1-9. /3] Prove the correctness of the following sorting algorithm.
function bubblesort (A : list[1...n])
var int ¢, J
for i from n to 1
for j from 1toi—1
if (A[j] > Al + 1)
swap the values of A[j] and A[j + 1]

Induction

1-10. /3] Prove that > " i=n(n+ 1)/2 for n > 0, by induction.

1-11. /8] Prove that Y i*=n(n+1)(2n + 1)/6 for n > 0, by induction.
1-12. /8] Prove that > | i*=n*(n+1)?/4 for n > 0, by induction.

1-13. [3] Prove that

n

D ili+ 1)@ +2) =n(n+1)(n+2)(n +3)/4

=1

1.7 EXERCISES

29

1-14. [5] Prove by induction on n > 1 that for every a # 1,
$u-
oa-—1
i=0

1-15. [3] Prove by induction that for n > 1,

n

> G A
i(i+1) n+1

1-16. [3] Prove by induction that n® + 2n is divisible by 3 for all n > 0.
1-17. [3] Prove by induction that a tree with n vertices has exactly n — 1 edges.

1-18. /3] Prove by mathematical induction that the sum of the cubes of the first n
positive integers is equal to the square of the sum of these integers, i.e.

.3 2
D=0
=1 =1

Estimation

1-19. /3] Do all the books you own total at least one million pages? How many total
pages are stored in your school library?

1-20. /3] How many words are there in this textbook?

1-21. /3] How many hours are one million seconds? How many days? Answer these
questions by doing all arithmetic in your head.

1-22. [3] Estimate how many cities and towns there are in the United States.

1-23. [3] Estimate how many cubic miles of water flow out of the mouth of the Mississippi
River each day. Do not look up any supplemental facts. Describe all assumptions
you made in arriving at your answer.

1-24. [3] 1Is disk drive access time normally measured in milliseconds (thousandths of a
second) or microseconds (millionths of a second)? Does your RAM memory access
a word in more or less than a microsecond? How many instructions can your CPU
execute in one year if the machine is left running all the time?

1-25. [4] A sorting algorithm takes 1 second to sort 1,000 items on your local machine.
How long will it take to sort 10,000 items. ..
(a) if you believe that the algorithm takes time proportional to n?, and

(b) if you believe that the algorithm takes time roughly proportional to nlogn?

Implementation Projects

1-26. [5] Implement the two TSP heuristics of Section 1.1 (page 5). Which of them gives
better-quality solutions in practice? Can you devise a heuristic that works better
than both of them?

1-27. [5] Describe how to test whether a given set of tickets establishes sufficient coverage
in the Lotto problem of Section 1.6 (page 23). Write a program to find good ticket
sets.

30

1.

INTRODUCTION TO ALGORITHM DESIGN

Interview Problems

1-28.

1-29.

1-30.
1-31.
1-32.
1-33.
1-34.

[5] Write a function to perform integer division without using either the / or *
operators. Find a fast way to do it.

[5] There are 25 horses. At most, 5 horses can race together at a time. You must
determine the fastest, second fastest, and third fastest horses. Find the minimum
number of races in which this can be done.

[8] How many piano tuners are there in the entire world?
[8] How many gas stations are there in the United States?
[3] How much does the ice in a hockey rink weigh?

[3] How many miles of road are there in the United States?

[8] On average, how many times would you have to flip open the Manhattan phone
book at random in order to find a specific name?

Programming Challenges

These programming challenge problems with robot judging are available at
http:/ /www.programming-challenges.com or hitp://online-judge.uva.es.

1-1.
1-2.
1-3.

“The 3n + 1 Problem” — Programming Challenges 110101, UVA Judge 100.
“The Trip” — Programming Challenges 110103, UVA Judge 10137.
“Australian Voting” — Programming Challenges 110108, UVA Judge 10142.

2
Algorithm Analysis

Algorithms are the most important and durable part of computer science because
they can be studied in a language- and machine-independent way. This means that
we need techniques that enable us to compare the efficiency of algorithms without
implementing them. Our two most important tools are (1) the RAM model of
computation and (2) the asymptotic analysis of worst-case complexity.

Assessing algorithmic performance makes use of the “big Oh” notation that,
proves essential to compare algorithms and design more efficient ones. While the
hopelessly practical person may blanch at the notion of theoretical analysis, we
present the material because it really is useful in thinking about algorithms.

This method of keeping score will be the most mathematically demanding part
of this book. But once you understand the intuition behind these ideas, the for-
malism becomes a lot easier to deal with.

2.1 The RAM Model of Computation

Machine-independent algorithm design depends upon a hypothetical computer
called the Random Access Machine or RAM. Under this model of computation,
we are confronted with a computer where:

e Each simple operation (4, *, — =, if, call) takes exactly one time step.

e Loops and subroutines are not considered simple operations. Instead, they
are the composition of many single-step operations. It makes no sense for
sort to be a single-step operation, since sorting 1,000,000 items will certainly
take much longer than sorting 10 items. The time it takes to run through a
loop or execute a subprogram depends upon the number of loop iterations or
the specific nature of the subprogram.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_2,
(© Springer-Verlag London Limited 2008

32

2.

ALGORITHM ANALYSIS

e Each memory access takes exactly one time step. Further, we have as much
memory as we need. The RAM model takes no notice of whether an item is
in cache or on the disk.

Under the RAM model, we measure run time by counting up the number of
steps an algorithm takes on a given problem instance. If we assume that our RAM
executes a given number of steps per second, this operation count converts naturally
to the actual running time.

The RAM is a simple model of how computers perform. Perhaps it sounds too
simple. After all, multiplying two numbers takes more time than adding two num-
bers on most processors, which violates the first assumption of the model. Fancy
compiler loop unrolling and hyperthreading may well violate the second assump-
tion. And certainly memory access times differ greatly depending on whether data
sits in cache or on the disk. This makes us zero for three on the truth of our basic
assumptions.

And yet, despite these complaints, the RAM proves an ezcellent model for
understanding how an algorithm will perform on a real computer. It strikes a fine
balance by capturing the essential behavior of computers while being simple to
work with. We use the RAM model because it is useful in practice.

Every model has a size range over which it is useful. Take, for example, the
model that the Earth is flat. You might argue that this is a bad model, since it
has been fairly well established that the Earth is in fact round. But, when laying
the foundation of a house, the flat Earth model is sufficiently accurate that it can
be reliably used. It is so much easier to manipulate a flat-Earth model that it is
inconceivable that you would try to think spherically when you don’t have to.!

The same situation is true with the RAM model of computation. We make
an abstraction that is generally very useful. It is quite difficult to design an algo-
rithm such that the RAM model gives you substantially misleading results. The
robustness of the RAM enables us to analyze algorithms in a machine-independent
way.

Take-Home Lesson: Algorithms can be understood and studied in a language-
and machine-independent manner.

2.1.1 Best, Worst, and Average-Case Complexity

Using the RAM model of computation, we can count how many steps our algorithm
takes on any given input instance by executing it. However, to understand how good
or bad an algorithm is in general, we must know how it works over all instances.
To understand the notions of the best, worst, and average-case complexity,
think about running an algorithm over all possible instances of data that can be

IThe Earth is not completely spherical either, but a spherical Earth provides a useful model for such things

as longitude and latitude.

2.1 THE RAM MODEL OF COMPUTATION

33

Number
of Steps Worst Case

Average Case

Best Case

Problem Size

Figure 2.1: Best, worst, and average-case complexity

fed to it. For the problem of sorting, the set of possible input instances consists of
all possible arrangements of n keys, over all possible values of n. We can represent
each input instance as a point on a graph (shown in Figure 2.1) where the z-axis
represents the size of the input problem (for sorting, the number of items to sort),
and the y-axis denotes the number of steps taken by the algorithm in this instance.

These points naturally align themselves into columns, because only integers
represent possible input size (e.g., it makes no sense to sort 10.57 items). We can
define three interesting functions over the plot of these points:

e The worst-case complexity of the algorithm is the function defined by the
maximum number of steps taken in any instance of size n. This represents
the curve passing through the highest point in each column.

o The best-case complezity of the algorithm is the function defined by the min-
imum number of steps taken in any instance of size n. This represents the
curve passing through the lowest point of each column.

e The average-case complexity of the algorithm, which is the function defined
by the average number of steps over all instances of size n.

The worst-case complexity proves to be most useful of these three measures in
practice. Many people find this counterintuitive. To illustrate why, try to project
what will happen if you bring n dollars into a casino to gamble. The best case,
that you walk out owning the place, is possible but so unlikely that you should not
even think about it. The worst case, that you lose all n dollars, is easy to calculate
and distressingly likely to happen. The average case, that the typical bettor loses
87.32% of the money that he brings to the casino, is difficult to establish and its
meaning subject to debate. What exactly does average mean? Stupid people lose

34

2.

ALGORITHM ANALYSIS

more than smart people, so are you smarter or stupider than the average person,
and by how much? Card counters at blackjack do better on average than customers
who accept three or more free drinks. We avoid all these complexities and obtain
a very useful result by just considering the worst case.

The important thing to realize is that each of these time complexities define a
numerical function, representing time versus problem size. These functions are as
well defined as any other numerical function, be it y = 22 — 2z + 1 or the price
of Google stock as a function of time. But time complexities are such complicated
functions that we must simplify them to work with them. For this, we need the
“Big Oh” notation.

2.2 The Big Oh Notation

The best, worst, and average-case time complexities for any given algorithm are
numerical functions over the size of possible problem instances. However, it is very
difficult to work precisely with these functions, because they tend to:

e Have too many bumps — An algorithm such as binary search typically runs
a bit faster for arrays of size exactly n = 2¥ — 1 (where k is an integer),
because the array partitions work out nicely. This detail is not particularly
significant, but it warns us that the ezact time complexity function for any
algorithm is liable to be very complicated, with little up and down bumps as
shown in Figure 2.2.

e Require too much detail to specify precisely — Counting the exact number
of RAM instructions executed in the worst case requires the algorithm be
specified to the detail of a complete computer program. Further, the precise
answer depends upon uninteresting coding details (e.g., did he use a case
statement or nested ifs?). Performing a precise worst-case analysis like

T(n) = 12754n> + 4353n + 8341g, n + 13546

would clearly be very difficult work, but provides us little extra information
than the observation that “the time grows quadratically with n.”

It proves to be much easier to talk in terms of simple upper and lower bounds
of time-complexity functions using the Big Oh notation. The Big Oh simplifies
our analysis by ignoring levels of detail that do not impact our comparison of
algorithms.

The Big Oh notation ignores the difference between multiplicative constants.
The functions f(n) = 2n and g(n) = n are identical in Big Oh analysis. This
makes sense given our application. Suppose a given algorithm in (say) C language
ran twice as fast as one with the same algorithm written in Java. This multiplicative

2.2 THE BIG OH NOTATION

35

f(n)

‘n upper bound

lower bound

I
Ly
"
1 2 3 4 e
n

Figure 2.2: Upper and lower bounds valid for n > ng smooth out the behavior of complex

functions

factor of two tells us nothing about the algorithm itself, since both programs imple-
ment exactly the same algorithm. We ignore such constant factors when comparing
two algorithms.

The formal definitions associated with the Big Oh notation are as follows:

e f(n) = 0O(g(n)) means c- g(n) is an upper bound on f(n). Thus there exists
some constant ¢ such that f(n) is always < ¢- g(n), for large enough n (i.e.,
n > ng for some constant ng).

e f(n) = Q(g(n)) means c- g(n) is a lower bound on f(n). Thus there exists
some constant ¢ such that f(n) is always > c- g(n), for all n > ny.

e f(n) = ©(g(n)) means c¢; - g(n) is an upper bound on f(n) and ¢z - g(n) is
a lower bound on f(n), for all n > ng. Thus there exist constants ¢; and ¢y
such that f(n) <¢;-g(n) and f(n) > co-g(n). This means that g(n) provides
a nice, tight bound on f(n).

Got it? These definitions are illustrated in Figure 2.3. Each of these definitions
assumes a constant ng beyond which they are always satisfied. We are not concerned
about small values of n (i.e., anything to the left of ng). After all, we don’t really
care whether one sorting algorithm sorts six items faster than another, but seek
which algorithm proves faster when sorting 10,000 or 1,000,000 items. The Big Oh
notation enables us to ignore details and focus on the big picture.

Take-Home Lesson: The Big Oh notation and worst-case analysis are tools
that greatly simplify our ability to compare the efficiency of algorithms.

Make sure you understand this notation by working through the following ex-
amples. We choose certain constants (¢ and ng) in the explanations below because

36 2. ALGORITHM ANALYSIS

cl*g(n)
c*gn)

f(n) f(n)

f(n) c*g(n) e

@) (b) ©

Figure 2.3: Tllustrating the big (a) O, (b) ©, and (c) © notations

they work and make a point, but other pairs of constants will do exactly the same
job. You are free to choose any constants that maintain the same inequality—ideally
constants that make it obvious that the inequality holds:

3n? — 100n 4+ 6 = O(n?), because I choose ¢ = 3 and 3n? > 3n? — 100n + 6;

3n2 —100n 4 6 = O(n3), because I choose ¢ = 1 and n® > 3n2 — 100n + 6 when n > 3;

3n? — 100n + 6 # O(n), because for any c I choose ¢ X n < 3n2 when n > ¢

3n2 —100n 4 6 = Q(n?), because I choose ¢ = 2 and 2n? < 3n% — 100n + 6 when n > 100;
3n? — 100n + 6 # Q(n?’)7 because I choose ¢ = 1 and 3n? — 100n 4+ 6 < n® when n > 3;

3n? — 100n + 6 = Q(n), because for any ¢ I choose cn < 3n? — 100n + 6 when n > 100c¢;

3n? — 100n + 6 = (9(71,2)7 because both O and 2 apply;
3n? — 100n + 6 # @(ng)7 because only O applies;

3n2 — 100n 4 6 # O(n), because only 2 applies.

The Big Oh notation provides for a rough notion of equality when comparing
functions. It is somewhat jarring to see an expression like n? = O(n?), but its
meaning can always be resolved by going back to the definitions in terms of upper
and lower bounds. It is perhaps most instructive to read the “=" here as meaning
one of the functions that are. Clearly, n? is one of functions that are O(n?).

2.3 GROWTH RATES AND DOMINANCE RELATIONS

37

Stop and Think: Back to the Definition

Problem: Is 2"1 = ©(2")?

Solution: Designing novel algorithms requires cleverness and inspiration. However,
applying the Big Oh notation is best done by swallowing any creative instincts
you may have. All Big Oh problems can be correctly solved by going back to the
definition and working with that.

o [s 2"t = O(2™)? Well, f(n) = O(g(n)) iff (if and only if) there exists a
constant ¢ such that for all sufficiently large n f(n) < c¢- g(n). Is there? The
key observation is that 2t =92.97 g02.2" < ¢-2" for any ¢ > 2.

o Is 2Tl = ()(2")? Go back to the definition. f(n) = Q(g(n)) iff there exists
a constant ¢ > 0 such that for all sufficiently large n f(n) > c¢- g(n). This
would be satisfied for any 0 < ¢ < 2. Together the Big Oh and 2 bounds
imply 2"t = ©(2")

Stop and Think: Hip to the Squares?

Problem: Is (x + y)? = O(z? + y?).

Solution: Working with the Big Oh means going back to the definition at the
slightest sign of confusion. By definition, this expression is valid iff we can find
some ¢ such that (z +y)? < c(2? + y?).

My first move would be to expand the left side of the equation, i.e. (z +y)? =
22 42xy+12. If the middle 2zy term wasn’t there, the inequality would clearly hold
for any ¢ > 1. But it is there, so we need to relate the 2zy to x2+y2. What if z < y?
Then 2zy < 2y? < 2(2%+y?). What if x > y? Then 2zy < 222 < 2(22 +4?). Either
way, we now can bound this middle term by two times the right-side function. This
means that (z +y)? < 3(2% + y?), and so the result holds.

2.3 Growth Rates and Dominance Relations

With the Big Oh notation, we cavalierly discard the multiplicative constants. Thus,
the functions f(n) = 0.001n? and g(n) = 1000n? are treated identically, even
though g(n) is a million times larger than f(n) for all values of n.

38 2. ALGORITHM ANALYSIS

n f(n) Ign n nlgn n? 2m n!

10 0.003 ps 0.01 us 0.033 pus 0.1 ps 1 ps 3.63 ms
20 0.004 us 0.02 pus 0.086 ps 0.4 ps 1 ms 77.1 years
30 0.005 us | 0.03 pus | 0.147 ps | 0.9 us 1 sec 8.4 x 10'% yrs
40 0.005 ps 0.04 ps 0.213 ps 1.6 ps 18.3 min

50 0.006 ps 0.05 us 0.282 us 2.5 us 13 days

100 0.007 ps | 0.1 ps 0.644 ps | 10 ps 4 % 10T yrs

1,000 0.010 ps 1.00 ps 9.966 s 1 ms

10,000 0.013 ps 10 ps 130 ps 100 ms

100,000 0.017 ps | 0.10 ms 1.67 ms 10 sec

1,000,000 0.020 ps 1 ms 19.93 ms 16.7 min

10,000,000 0.023 us 0.01 sec 0.23 sec 1.16 days

100,000,000 0.027 us 0.10 sec 2.66 sec 115.7 days

1,000,000,000 0.030 us 1 sec 29.90 sec 31.7 years

Figure 2.4: Growth rates of common functions measured in nanoseconds

The reason why we are content with coarse Big Oh analysis is provided by
Figure 2.4, which shows the growth rate of several common time analysis functions.
In particular, it shows how long algorithms that use f(n) operations take to run
on a fast computer, where each operation takes one nanosecond (1079 seconds).
The following conclusions can be drawn from this table:

e All such algorithms take roughly the same time for n = 10.
e Any algorithm with n! running time becomes useless for n > 20.

e Algorithms whose running time is 2" have a greater operating range, but
become impractical for n > 40.

e Quadratic-time algorithms whose running time is n? remain usable up to

about n = 10,000, but quickly deteriorate with larger inputs. They are likely

to be hopeless for n > 1,000,000.

e Linear-time and nlgn algorithms remain practical on inputs of one billion
items.

e An O(lgn) algorithm hardly breaks a sweat for any imaginable value of n.

The bottom line is that even ignoring constant factors, we get an excellent idea
of whether a given algorithm is appropriate for a problem of a given size. An algo-
rithm whose running time is f(n) = n? seconds will beat one whose running time is
g(n) = 1,000,000 - n? seconds only when n < 1,000,000. Such enormous differences
in constant factors between algorithms occur far less frequently in practice than
large problems do.

2.3 GROWTH RATES AND DOMINANCE RELATIONS

39

2.3.1 Dominance Relations

The Big Oh notation groups functions into a set of classes, such that all the func-
tions in a particular class are equivalent with respect to the Big Oh. Functions
f(n) = 0.34n and g(n) = 234,234n belong in the same class, namely those that are
order ©(n). Further, when two functions f and g belong to different classes, they are
different with respect to our notation. Either f(n) = O(g(n)) or g(n) = O(f(n)),
but not both.

We say that a faster-growing function dominates a slower-growing one, just as
a faster-growing country eventually comes to dominate the laggard. When f and
g belong to different classes (i.e., f(n) # ©(g(n))), we say g dominates f when
f(n) = O(g(n)), sometimes written g > f.

The good news is that only a few function classes tend to occur in the course
of basic algorithm analysis. These suffice to cover almost all the algorithms we will
discuss in this text, and are listed in order of increasing dominance:

e Constant functions, f(n) = 1 — Such functions might measure the cost of
adding two numbers, printing out “The Star Spangled Banner,” or the growth
realized by functions such as f(n) = min(n, 100). In the big picture, there is
no dependence on the parameter n.

e Logarithmic functions, f(n) = logn — Logarithmic time-complexity shows up
in algorithms such as binary search. Such functions grow quite slowly as n
gets big, but faster than the constant function (which is standing still, after
all). Logarithms will be discussed in more detail in Section 2.6 (page 46)

e Linear functions, f(n) = n — Such functions measure the cost of looking at
each item once (or twice, or ten times) in an n-element array, say to identify
the biggest item, the smallest item, or compute the average value.

o Superlinear functions, f(n) = nlgn — This important class of functions arises
in such algorithms as Quicksort and Mergesort. They grow just a little faster
than linear (see Figure 2.4), just enough to be a different dominance class.

o Quadratic functions, f(n) = n? — Such functions measure the cost of looking
at most or all pairs of items in an n-element universe. This arises in algorithms
such as insertion sort and selection sort.

o Cubic functions, f(n) = n® — Such functions enumerate through all triples of
items in an n-element universe. These also arise in certain dynamic program-
ming algorithms developed in Chapter 8.

o Exponential functions, f(n) = c™ for a given constant ¢ > 1 — Functions like
2™ arise when enumerating all subsets of n items. As we have seen, exponential
algorithms become useless fast, but not as fast as. ..

e Factorial functions, f(n) = n! — Functions like n! arise when generating all
permutations or orderings of n items.

40 2. ALGORITHM ANALYSIS

The intricacies of dominance relations will be futher discussed in Section 2.9.2
(page 56). However, all you really need to understand is that:

n!>2" > n > n? > nlogn>>n>>logn>>1

Take-Home Lesson: Although esoteric functions arise in advanced algorithm
analysis, a small variety of time complexities suffice and account for most
algorithms that are widely used in practice.

2.4 Working with the Big Oh

You learned how to do simplifications of algebraic expressions back in high school.
Working with the Big Oh requires dusting off these tools. Most of what you learned
there still holds in working with the Big Oh, but not everything.

2.4.1 Adding Functions

The sum of two functions is governed by the dominant one, namely:
O(f(n)) + O(g(n)) — O(max(f(n),g(n)))
Q(f(n)) + Qg(n)) — Q(max(f(n),g(n)))

O(f(n)) + O(g(n)) — O(max(f(n), g(n)))

This is very useful in simplifying expressions, since it implies that n3 4+ n? 4
n+ 1= O(n3). Everything is small potatoes besides the dominant term.

The intuition is as follows. At least half the bulk of f(n) + g(n) must come
from the larger value. The dominant function will, by definition, provide the larger
value as n — oco. Thus, dropping the smaller function from consideration reduces
the value by at most a factor of 1/2, which is just a multiplicative constant. Suppose
f(n) = O(n?) and g(n) = O(n?). This implies that f(n) + g(n) = O(n?) as well.

2.4.2 Multiplying Functions

Multiplication is like repeated addition. Consider multiplication by any constant
¢ > 0, be it 1.02 or 1,000,000. Multiplying a function by a constant can not affect
its asymptotic behavior, because we can multiply the bounding constants in the
Big Oh analysis of ¢ - f(n) by 1/c¢ to give appropriate constants for the Big Oh
analysis of f(n). Thus:

O(e- f(n)) = O(f(n))
Qe f(n)) = Q(f(n))

2.5 REASONING ABOUT EFFICIENCY

41

O(c- f(n)) — ©(f(n))

Of course, ¢ must be strictly positive (i.e., ¢ > 0) to avoid any funny business,
since we can wipe out even the fastest growing function by multiplying it by zero.

On the other hand, when two functions in a product are increasing, both are

important. The function O(n!logn) dominates n! just as much as logn dominates
1. In general,

O(f(n)) * O(g(n)) — O(f(n) * g(n))
Q(f(n)) x Qg(n)) — Qf(n) x g(n))
O(f(n)) *©(g(n)) — O(f(n) * g(n))

Stop and Think: Transitive Experience

Problem: Show that Big Oh relationships are transitive. That is, if f(n) = O(g(n))
and g(n) = O(h(n)), then f(n) = O(h(n)).

Solution: We always go back to the definition when working with the Big Oh. What
we need to show here is that f(n) < esh(n) for n > ngz given that f(n) < ¢1g(n) and
g(n) < cah(n), for n > ny and n > no, respectively. Cascading these inequalities,
we get that

f(n) <cig(n) < cieoh(n)

for n > ng = max(ny, n2). |

2.5 Reasoning About Efficiency

Gross reasoning about an algorithm’s running time of is usually easy given a precise
written description of the algorithm. In this section, I will work through several
examples, perhaps in greater detail than necessary.

2.5.1 Selection Sort

Here we analyze the selection sort algorithm, which repeatedly identifies the small-
est remaining unsorted element and puts it at the end of the sorted portion of the
array. An animation of selection sort in action appears in Figure 2.5, and the code
is shown below:

42

2.

ALGORITHM ANALYSIS

LECTIONSORT
LESTIONSORT
LESTIONSORT
ELSTIONSORT
ISTLONSORT

E
E
E
E
E
E
E
E
E
E
E
E
E
E

oNeNoNoNoNoNoNoNoNoNo RO NN

moomoommmmm

TT

Figure 2.5: Animation of selection sort in action

selection_sort(int s[], int n)

{
int i,j; /* counters */
int min; /* index of minimum */
for (i=0; i<n; i++) {
min=i;
for (j=i+1; j<n; j++)
if (s[j] < s[min]) min=j;
swap (&s[i],&s[min]);
}
}

The outer loop goes around n times. The nested inner loop goes around n—i—1
times, where 4 is the index of the outer loop. The exact number of times the if
statement is executed is given by:

n—1 n—1

n—1
Sm)y=> Y 1=> n-i-1

=0 j=i+41 =0

What this sum is doing is adding up the integers in decreasing order starting from
n—1,1ie.

Stn)=n—-1)+Mn-2)+n—-3)+...+2+1

How can we reason about such a formula? We must solve the summation formula
using the techniques of Section 1.3.5 (page 17) to get an exact value. But, with
the Big Oh we are only interested in the order of the expression. One way to think

about it is that we are adding up n — 1 terms, whose average value is about n/2.
This yields S(n) = n(n —1)/2.

2.5 REASONING ABOUT EFFICIENCY

43

Another way to think about it is in terms of upper and lower bounds. We have
n terms at most, each of which is at most n—1. Thus, S(n) < n(n—1) = O(n?). We
have n/2 terms each that are bigger than n/2. Thus S(n) > (n/2) x (n/2) = Q(n?).
Together, this tells us that the running time is ©(n?), meaning that selection sort
is quadratic.

2.5.2 Insertion Sort

A basic rule of thumb in Big Oh analysis is that worst-case running time follows
from multiplying the largest number of times each nested loop can iterate. Consider
the insertion sort algorithm presented on page 4, whose inner loops are repeated
here:

for (i=1; i<n; i++) {
j=i;
while ((3j>0) && (s[jl < s[j-11)) {
swap (&s[j],&s[j-11);
j=31

3

How often does the inner while loop iterate? This is tricky because there are
two different stopping conditions: one to prevent us from running off the bounds
of the array (5 > 0) and the other to mark when the element finds its proper place
in sorted order (s[j] < s[j — 1]). Since worst-case analysis seeks an upper bound
on the running time, we ignore the early termination and assume that this loop
always goes around 4 times. In fact, we can assume it always goes around n times
since i < m. Since the outer loop goes around n times, insertion sort must be a
quadratic-time algorithm, i.e. O(n?).

This crude “round it up” analysis always does the job, in that the Big Oh
running time bound you get will always be correct. Occasionally, it might be too
generous, meaning the actual worst case time might be of a lower order than implied
by such analysis. Still, I strongly encourage this kind of reasoning as a basis for
simple algorithm analysis.

2.5.3 String Pattern Matching

Pattern matching is the most fundamental algorithmic operation on text strings.
This algorithm implements the find command available in any web browser or text
editor:

Problem: Substring Pattern Matching
Input: A text string ¢ and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

44

2.

ALGORITHM ANALYSIS

abba
aababba

Figure 2.6: Searching for the substring abba in the text aababba.

Perhaps you are interested finding where “Skiena” appears in a given news
article (well, I would be interested in such a thing). This is an instance of string
pattern matching with ¢ as the news article and p=*“Skiena.”

There is a fairly straightforward algorithm for string pattern matching that
considers the possibility that p may start at each possible position in ¢ and then
tests if this is so.

int findmatch(char *p, char *t)

{
int i,j; /* counters */
int m, n; /* string lengths */
m = strlen(p);
n = strlen(t);
for (i=0; i<=(n-m); i=i+1) {
3=0;
while ((j<m) && (t[i+jl==p[jl))
j = 3+
if (j == m) return(i);
}
return(-1);
}

What is the worst-case running time of these two nested loops? The inner while
loop goes around at most m times, and potentially far less when the pattern match
fails. This, plus two other statements, lies within the outer for loop. The outer loop
goes around at most n — m times, since no complete alignment is possible once we
get too far to the right of the text. The time complexity of nested loops multiplies,
so this gives a worst-case running time of O((n — m)(m + 2)).

We did not count the time it takes to compute the length of the strings using
the function strlen. Since the implementation of strlen is not given, we must guess
how long it should take. If we explicitly count the number of characters until we

2.5 REASONING ABOUT EFFICIENCY

45

hit the end of the string; this would take time linear in the length of the string.
This suggests that the running time should be O(n + m + (n — m)(m + 2)).

Let’s use our knowledge of the Big Oh to simplify things. Since m +2 = ©(m),
the “42” isn’t interesting, so we are left with O(n + m + (n — m)m). Multiplying
this out yields O(n + m + nm — m?), which still seems kind of ugly.

However, in any interesting problem we know that n > m, since it is impossible
to have p as a substring of ¢ for any pattern longer than the text itself. One
consequence of this is that n +m < 2n = O(n). Thus our worst-case running time
simplifies further to O(n + nm — m?).

Two more observations and we are done. First, note that n < nm, since m > 1
in any interesting pattern. Thus n + nm = ©(nm), and we can drop the additive
n, simplifying our analysis to O(nm — m?).

Finally, observe that the —m? term is negative, and thus only serves to lower
the value within. Since the Big Oh gives an upper bound, we can drop any negative
term without invalidating the upper bound. That n > m implies that mn > m?2,
so the negative term is not big enough to cancel any other term which is left. Thus
we can simply express the worst-case running time of this algorithm as O(nm).

After you get enough experience, you will be able to do such an algorithm
analysis in your head without even writing the algorithm down. After all, algorithm
design for a given task involves mentally rifling through different possibilities and
selecting the best approach. This kind of fluency comes with practice, but if you
are confused about why a given algorithm runs in O(f(n)) time, start by writing
it out carefully and then employ the reasoning we used in this section.

2.5.4 Matrix Multiplication

Nested summations often arise in the analysis of algorithms with nested loops.
Consider the problem of matrix multiplication:

Problem: Matrix Multiplication

Input: Two matrices, A (of dimension = x y) and B (dimension y X z).

Output: An x x z matrix C where C[i][j] is the dot product of the ith row of A
and the jth column of B.

Matrix multiplication is a fundamental operation in linear algebra, presented
with an example in catalog in Section 13.3 (page 401). That said, the elementary
algorithm for matrix multiplication is implemented as a tight product of three
nested loops:

for (i=1; i<=x; i++)
for (j=1; j<=z; j++) {
Clil[j] = 0O;
for (k=1; k<=y; k++)
Clil [j]1 += A[il[k] * B([k][j];

46

2.

ALGORITHM ANALYSIS

How can we analyze the time complexity of this algorithm? The number of
multiplications M (z,y, z) is given by the following summation:

S S M

i=1 j=1 k=1

Sums get evaluated from the right inward. The sum of z ones is z, so

M) =303

=1 5=1

The sum of y zs is just as simple, yz, so

Finally, the sum of = yzs is xyz.

Thus the running of this matrix multiplication algorithm is O(zyz). If we con-
sider the common case where all three dimensions are the same, this becomes
O(n3)—i.e., a cubic algorithm.

2.6 Logarithms and Their Applications

Logarithm is an anagram of algorithm, but that’s not why we need to know what
logarithms are. You've seen the button on your calculator but may have forgotten
why it is there. A logarithm is simply an inverse exponential function. Saying b* = y
is equivalent to saying that z = log, y. Further, this definition is the same as saying
plogvy =y,

Exponential functions grow at a distressingly fast rate, as anyone who has
ever tried to pay off a credit card balance understands. Thus, inverse exponen-
tial functions—i.e. logarithms—grow refreshingly slowly. Logarithms arise in any
process where things are repeatedly halved. We now look at several examples.

2.6.1 Logarithms and Binary Search

Binary search is a good example of an O(logn) algorithm. To locate a particular
person p in a telephone book containing n names, you start by comparing p against
the middle, or (n/2)nd name, say Monroe, Marilyn. Regardless of whether p belongs
before this middle name (Dean, James) or after it (Presley, Elvis), after only one
comparison you can discard one half of all the names in the book. The number of
steps the algorithm takes equals the number of times we can halve n until only one
name is left. By definition, this is exactly log, n. Thus, twenty comparisons suffice
to find any name in the million-name Manhattan phone book!

Binary search is one of the most powerful ideas in algorithm design. This power
becomes apparent if we imagine being forced to live in a world with only unsorted

2.6 LOGARITHMS AND THEIR APPLICATIONS

47

Figure 2.7: A height h tree with d children per node has d”* leaves. Here h = 2 and d = 3

telephone books. Figure 2.4 shows that O(logn) algorithms are fast enough to be
used on problem instances of essentially unlimited size.

2.6.2 Logarithms and Trees

A binary tree of height 1 can have up to 2 leaf nodes, while a tree of height two
can have up to four leaves. What is the height h of a rooted binary tree with n leaf
nodes? Note that the number of leaves doubles every time we increase the height
by one. To account for n leaves, n = 2" which implies that h = log, n.

What if we generalize to trees that have d children, where d = 2 for the case
of binary trees? A tree of height 1 can have up to d leaf nodes, while one of height
two can have up to d? leaves. The number of possible leaves multiplies by d every
time we increase the height by one, so to account for n leaves, n = d" which implies
that h = log,n, as shown in Figure 2.7.

The punch line is that very short trees can have very many leaves, which is
the main reason why binary trees prove fundamental to the design of fast data
structures.

2.6.3 Logarithms and Bits

There are two bit patterns of length 1 (0 and 1) and four of length 2 (00, 01, 10, and
11). How many bits w do we need to represent any one of n different possibilities,
be it one of n items or the integers from 1 to n?

The key observation is that there must be at least n different bit patterns of
length w. Since the number of different bit patterns doubles as you add each bit,
we need at least w bits where 2 = n—i.e., we need w = log, n bits.

2.6.4 Logarithms and Multiplication

Logarithms were particularly important in the days before pocket calculators. They
provided the easiest way to multiply big numbers by hand, either implicitly using
a slide rule or explicitly by using a book of logarithms.

48

2.

ALGORITHM ANALYSIS

Logarithms are still useful for multiplication, particularly for exponentiation.
Recall that log,(zy) = log,(x) + log,(y); i.e., the log of a product is the sum of
the logs. A direct consequence of this is

log, n’ =b-log, n

So how can we compute a’ for any a and b using the exp(x) and In(x) functions
on your calculator, where exp(z) = e* and In(x) = log, (z)? We know

a® = exp(In(a®)) = exp(blna)

so the problem is reduced to one multiplication plus one call to each of these
functions.

2.6.5 Fast Exponentiation

Suppose that we need to exactly compute the value of a™ for some reasonably
large n. Such problems occur in primality testing for cryptography, as discussed in
Section 13.8 (page 420). Issues of numerical precision prevent us from applying the
formula above.

The simplest algorithm performs n — 1 multiplications, by computing a X a X
... X a. However, we can do better by observing that n = |n/2| + [n/2]. If n is
even, then a™ = (a"/?)%. If n is odd, then a” = a(al™?)2. In either case, we have
halved the size of our exponent at the cost of, at most, two multiplications, so
O(lgn) multiplications suffice to compute the final value.

function power(a,n)
if (n = 0) return(1)
x = power(a, |n/2])
if (n is even) then return(z?)
else return(a x z?)

This simple algorithm illustrates an important principle of divide and conquer.
It always pays to divide a job as evenly as possible. This principle applies to real
life as well. When n is not a power of two, the problem cannot always be divided
perfectly evenly, but a difference of one element between the two sides cannot cause
any serious imbalance.

2.6.6 Logarithms and Summations

The Harmonic numbers arise as a special case of arithmetic progression, namely
H(n) = S(n,—1). They reflect the sum of the progression of simple reciprocals,
namely,

n

H(n) = Zl/z ~Inn

i=1

2.6 LOGARITHMS AND THEIR APPLICATIONS

49

Loss (apply the greatest) Increase in level
(A) $2,000 or less no increase
(B) More than $2,000 add 1
(C) More than $5,000 add 2
(D) More than $10,000 add 3
(E) More than $20,000 add 4
(F) More than $40,000 add 5
(G) More than $70,000 add 6
(H) More than $120,000 add 7
(I) More than $200,000 add 8
(J) More than $350,000 add 9
(K) More than $500,000 add 10
(L) More than $800,000 add 11
(M) More than $1,500,000 add 12
(N) More than $2,500,000 add 13
(O) More than $5,000,000 add 14
(P) More than $10,000,000 add 15
(Q) More than $20,000,000 add 16
(R) More than $40,000,000 add 17
(S) More than $80,000,000 add 18

Figure 2.8: The Federal Sentencing Guidelines for fraud

The Harmonic numbers prove important because they usually explain “where
the log comes from” when one magically pops out from algebraic manipulation. For
example, the key to analyzing the average case complexity of Quicksort is the sum-
mation S(n) =n)_ ., 1/i. Employing the Harmonic number identity immediately
reduces this to ©(nlogn).

2.6.7 Logarithms and Criminal Justice

Figure 2.8 will be our final example of logarithms in action. This table appears in
the Federal Sentencing Guidelines, used by courts throughout the United States.
These guidelines are an attempt to standardize criminal sentences, so that a felon
convicted of a crime before one judge receives the same sentence that they would
before a different judge. To accomplish this, the judges have prepared an intricate
point function to score the depravity of each crime and map it to time-to-serve.

Figure 2.8 gives the actual point function for fraud—a table mapping dollars
stolen to points. Notice that the punishment increases by one level each time the
amount of money stolen roughly doubles. That means that the level of punishment
(which maps roughly linearly to the amount of time served) grows logarithmically
with the amount of money stolen.

50

2.

ALGORITHM ANALYSIS

Think for a moment about the consequences of this. Many a corrupt CEO
certainly has. It means that your total sentence grows extremely slowly with the
amount of money you steal. Knocking off five liquor stores for $10,000 each will
get you more time than embezzling $1,000,000 once. The corresponding benefit of
stealing really large amounts of money is even greater. The moral of logarithmic
growth is clear: “If you are gonna do the crime, make it worth the time!”

Take-Home Lesson: Logarithms arise whenever things are repeatedly halved
or doubled.

2.7 Properties of Logarithms

As we have seen, stating b” = y is equivalent to saying that z = log, y. The b term
is known as the base of the logarithm. Three bases are of particular importance for
mathematical and historical reasons:

e Base b = 2 —The binary logarithm, usually denoted lg z, is a base 2 logarithm.
We have seen how this base arises whenever repeated halving (i.e., binary
search) or doubling (i.e., nodes in trees) occurs. Most algorithmic applications
of logarithms imply binary logarithms.

e Base b = e — The natural log, usually denoted Inz, is a base e = 2.71828. ..
logarithm. The inverse of In z is the exponential function exp(z) = €* on your
calculator. Thus, composing these functions gives us

exp(lnz) =z

e Base b = 10 — Less common today is the base-10 or common logarithm,
usually denoted as log x. This base was employed in slide rules and logarithm
books in the days before pocket calculators.

We have already seen one important property of logarithms, namely that

log, (zy) = log, () + log, (v)

The other important fact to remember is that it is easy to convert a logarithm
from one base to another. This is a consequence of the formula:
log,. b
log, b = 2080
log.a
Thus, changing the base of logb from base-a to base-c simply involves multiplying
by log.a. It is easy to convert a common log function to a natural log function,
and vice versa.
Two implications of these properties of logarithms are important to appreciate
from an algorithmic perspective:

2.8 WAR STORY: MYSTERY OF THE PYRAMIDS

51

o The base of the logarithm has no real impact on the growth rate- Compare
the following three values: log,(1,000,000) = 19.9316, logs(1,000,000) =
12.5754, and log;,(1, 000,000) = 3. A big change in the base of the logarithm
produces little difference in the value of the log. Changing the base of the
log from a to c involves dividing by log,.a. This conversion factor is lost to
the Big Oh notation whenever a and ¢ are constants. Thus we are usually
justified in ignoring the base of the logarithm when analyzing algorithms.

e Logarithms cut any function down to size- The growth rate of the logarithm
of any polynomial function is O(lgn). This follows because

log, n® =b-log, n
The power of binary search on a wide range of problems is a consequence
of this observation. Note that doing a binary search on a sorted array of

n? things requires only twice as many comparisons as a binary search on n
things.

Logarithms efficiently cut any function down to size. It is hard to do arith-
metic on factorials except for logarithms, since

n! =1I7_ ;i — logn! = Zlogi = O(nlogn)
i=1

provides another way for logarithms to pop up in algorithm analysis.
Stop and Think: Importance of an Even Split

Problem: How many queries does binary search take on the million-name Manhat-
tan phone book if each split was 1/3 to 2/3 instead of 1/2 to 1/27

Solution: When performing binary searches in a telephone book, how important
is it that each query split the book exactly in half? Not much. For the Manhattan
telephone book, we now use logs (1,000, 000) ~ 35 queries in the worst case, not
a significant change from log, (1,000, 000) a 20. The power of binary search comes
from its logarithmic complexity, not the base of the log. |

2.8 War Story: Mystery of the Pyramids

That look in his eyes should have warned me even before he started talking.
“We want to use a parallel supercomputer for a numerical calculation up to
1,000,000,000, but we need a faster algorithm to do it.”

52

2.

ALGORITHM ANALYSIS

I’d seen that distant look before. Eyes dulled from too much exposure to the raw
horsepower of supercomputers—machines so fast that brute force seemed to elim-
inate the need for clever algorithms; at least until the problems got hard enough.

“I am working with a Nobel prize winner to use a computer on a famous problem
in number theory. Are you familiar with Waring’s problem?”

I knew some number theory. “Sure. Waring’s problem asks whether every integer
can be expressed at least one way as the sum of at most four integer squares. For
example, 78 = 82 + 3% + 22 + 12 = 72 + 5% + 22 [remember proving that four
squares suffice to represent any integer in my undergraduate number theory class.
Yes, it’s a famous problem but one that got solved about 200 years ago.”

“No, we are interested in a different version of Waring’s problem. A pyramidal
number is a number of the form (m? — m)/6, for m > 2. Thus the first several
pyramidal numbers are 1, 4, 10, 20, 35, 56, 84, 120, and 165. The conjecture since
1928 is that every integer can be represented by the sum of at most five such
pyramidal numbers. We want to use a supercomputer to prove this conjecture on
all numbers from 1 to 1,000,000,000.”

“Doing a billion of anything will take a substantial amount of time,” I warned.
“The time you spend to compute the minimum representation of each number will
be critical, because you are going to do it one billion times. Have you thought
about what kind of an algorithm you are going to use?”

“We have already written our program and run it on a parallel supercomputer.
It works very fast on smaller numbers. Still, it takes much too much time as soon
as we get to 100,000 or so.”

Terrific, I thought. Our supercomputer junkie had discovered asymptotic
growth. No doubt his algorithm ran in something like quadratic time, and he got
burned as soon as n got large.

“We need a faster program in order to get to one billion. Can you help us? Of
course, we can run it on our parallel supercomputer when you are ready.”

I am a sucker for this kind of challenge, finding fast algorithms to speed up
programs. I agreed to think about it and got down to work.

I started by looking at the program that the other guy had written. He had
built an array of all the ©(n'/3) pyramidal numbers from 1 to n inclusive.? To
test each number k in this range, he did a brute force test to establish whether it
was the sum of two pyramidal numbers. If not, the program tested whether it was
the sum of three of them, then four, and finally five, until it first got an answer.
About 45% of the integers are expressible as the sum of three pyramidal numbers.
Most of the remaining 55% require the sum of four, and usually each of these can
be represented in many different ways. Only 241 integers are known to require the
sum of five pyramidal numbers, the largest being 343,867. For about half of the n
numbers, this algorithm presumably went through all of the three-tests and at least

2Why n!/3? Recall that pyramidal numbers are of the form (m?® — m)/6. The largest m such that the

resulting number is at most n is roughly {/6n, so there are @(n1/3) such numbers.

2.8 WAR STORY: MYSTERY OF THE PYRAMIDS

53

some of the four-tests before terminating. Thus, the total time for this algorithm
would be at least O(n x (n1/3)3) = O(n?) time, where n = 1,000,000,000. No
wonder his program cried “Uncle.”

Anything that was going to do significantly better on a problem this large had to
avoid explicitly testing all triples. For each value of k, we were seeking the smallest
set of pyramidal numbers that add up to exactly to k. This problem is called the
knapsack problem, and is discussed in Section 13.10 (page 427). In our case, the
weights are the set of pyramidal numbers no greater than n, with an additional
constraint that the knapsack holds exactly k items.

A standard approach to solving knapsack precomputes the sum of smaller sub-
sets of the items for use in computing larger subsets. If we have a table of all sums
of two numbers and want to know whether k is expressible as the sum of three
numbers, we can ask whether k is expressible as the sum of a single number plus
a number in this two-table.

Therefore I needed a table of all integers less than n that can be expressed as
the sum of two of the 1,818 pyramidal numbers less than 1,000,000,000. There can
be at most 1,8182 = 3,305,124 of them. Actually, there are only about half this
many after we eliminate duplicates and any sum bigger than our target. Building
a sorted array storing these numbers would be no big deal. Let’s call this sorted
data structure of all pair-sums the two-table.

To find the minimum decomposition for a given k, I would first check whether
it was one of the 1,818 pyramidal numbers. If not, I would then check whether
k was in the sorted table of the sums of two pyramidal numbers. To see whether
k was expressible as the sum of three such numbers, all I had to do was check
whether k — p[i] was in the two-table for 1 < ¢ < 1,818. This could be done
quickly using binary search. To see whether k was expressible as the sum of four
pyramidal numbers, I had to check whether k — twoli] was in the two-table for any
1 <4 < |two|. However, since almost every k was expressible in many ways as the
sum of four pyramidal numbers, this test would terminate quickly, and the total
time taken would be dominated by the cost of the threes. Testing whether k was
the sum of three pyramidal numbers would take O(n'/31gn). Running this on each
of the n integers gives an O(n4/ 31gn) algorithm for the complete job. Comparing
this to his O(n?) algorithm for n = 1,000,000,000 suggested that my algorithm was
a cool 30,000 times faster than his original!

My first attempt to code this solved up to n = 1,000,000 on my ancient Sparc
ELC in about 20 minutes. From here, I experimented with different data structures
to represent the sets of numbers and different algorithms to search these tables. T
tried using hash tables and bit vectors instead of sorted arrays, and experimented
with variants of binary search such as interpolation search (see Section 14.2 (page
441)). My reward for this work was solving up to » =1,000,000 in under three
minutes, a factor of six improvement over my original program.

With the real thinking done, I worked to tweak a little more performance out of
the program. I avoided doing a sum-of-four computation on any k£ when k — 1 was

54

2.

ALGORITHM ANALYSIS

the sum-of-three, since 1 is a pyramidal number, saving about 10% of the total run
time using this trick alone. Finally, I got out my profiler and tried some low-level
tricks to squeeze a little more performance out of the code. For example, I saved
another 10% by replacing a single procedure call with in line code.

At this point, I turned the code over to the supercomputer guy. What he did
with it is a depressing tale, which is reported in Section 7.10 (page 268).

In writing up this war story, I went back to rerun my program more than
ten years later. On my desktop SunBlade 150, getting to 1,000,000 now took 27.0
seconds using the gce compiler without turning on any compiler optimization. With
Level 4 optimization, the job ran in just 14.0 seconds—quite a tribute to the quality
of the optimizer. The run time on my desktop machine improved by a factor of
about three over the four-year period prior to my first edition of this book, with
an additional 5.3 times over the last 11 years. These speedups are probably typical
for most desktops.

The primary lesson of this war story is to show the enormous potential for
algorithmic speedups, as opposed to the fairly limited speedup obtainable via more
expensive hardware. I sped his program up by about 30,000 times. His million-
dollar computer had 16 processors, each reportedly five times faster on integer
computations than the $3,000 machine on my desk. That gave a maximum potential
speedup of less than 100 times. Clearly, the algorithmic improvement was the big
winner here, as it is certain to be in any sufficiently large computation.

2.9 Advanced Analysis (*)

Ideally, each of us would be fluent in working with the mathematical techniques
of asymptotic analysis. And ideally, each of us would be rich and good looking as
well.

In this section I will survey the major techniques and functions employed in
advanced algorithm analysis. I consider this optional material—it will not be used
elsewhere in the textbook section of this book. That said, it will make some of the
complexity functions reported in the Hitchhiker’s Guide far less mysterious.

2.9.1 Esoteric Functions

The bread-and-butter classes of complexity functions were presented in Section
2.3.1 (page 39). More esoteric functions also make appearances in advanced algo-
rithm analysis. Although we will not see them much in this book, it is still good
business to know what they mean and where they come from:

o Inverse Ackermann’s function f(n) = a(n) — This function arises in the
detailed analysis of several algorithms, most notably the Union-Find data
structure discussed in Section 6.1.3 (page 198).

The exact definition of this function and why it arises will not be discussed
further. It is sufficient to think of it as geek talk for the slowest-growing

2.9 ADVANCED ANALYSIS (*)

55

complexity function. Unlike the constant function f(n) = 1, it eventually
gets to infinity as n — oo, but it certainly takes its time about it. The value
of a(n) < 5 for any value of n that can be written in this physical universe.

f(n) =loglogn — The “log log” function is just that—the logarithm of the
logarithm of n. One natural example of how it might arise is doing a binary
search on a sorted array of only lgn items.

f(n) =logn/loglogn — This function grows a little slower than logn because
it is divided by an even slower growing function.

To see where this arises, consider an n-leaf rooted tree of degree d. For binary
trees, i.e. when d = 2, the height h is given

n=2" 5 h=Ign

by taking the logarithm of both sides of the equation. Now consider the height
of such a tree when the degree d = logn. Then

n= (logn)h — h =logn/loglogn

f(n) = log® n — This is the product of log functions—i.e., (logn) x (logn). It
might arise if we wanted to count the bits looked at in doing a binary search
on n items, each of which was an integer from 1 to (say) n?. Each such integer
requires a lg(n?) = 2lgn bit representation, and we look at lgn of them, for
a total of 21g® n bits.

The “log squared” function typically arises in the design of intricate nested
data structures, where each node in (say) a binary tree represents another
data structure, perhaps ordered on a different key.

f(n) = y/n — The square root is not so esoteric, but represents the class of
“sublinear polynomials” since v/n = n'/2. Such functions arise in building
d-dimensional grids that contain n points. A \/n X y/n square has area n,
and an n'/3 x n'/3 x n'/3 cube has volume n. In general, a d-dimensional
hypercube of length n'/¢ on each side has volume d.

f(n) =n(1+9 — Epsilon (€) is the mathematical symbol to denote a constant
that can be made arbitrarily small but never quite goes away.

It arises in the following way. Suppose I design an algorithm that runs in
2¢n(1+1/¢) time, and I get to pick whichever ¢ I want. For ¢ = 2, this is 4n3/2
or O(n®/?). For ¢ = 3, this is 8n*/% or O(n*/3), which is better. Indeed, the
exponent keeps getting better the larger I make c.

The problem is that I cannot make c¢ arbitrarily large before the 2¢ term

begins to dominate. Instead, we report this algorithm as running in O(n!*¢),
and leave the best value of € to the beholder.

56

2.

ALGORITHM ANALYSIS

2.9.2 Limits and Dominance Relations

The dominance relation between functions is a consequence of the theory of lim-
its, which you may recall from Calculus. We say that f(n) dominates g(n) if
lim,, o g(n)/f(n) =0.

Let’s see this definition in action. Suppose f(n) = 2n? and g(n) = n?. Clearly
f(n) > g(n) for all n, but it does not dominate since

lim g(n)/f(n) = lim n?/2n* = lim 1/2#0

This is to be expected because both functions are in the class ©(n?). What about
f(n) =n? and g(n) = n?? Since

lim g(n)/f(n) = lim n?/n®= lim 1/n=0

n—oo n—oo n—oo
the higher-degree polynomial dominates. This is true for any two polynomials,
namely that n® dominates n® if a > b since

lim n°/n® = lim n®~* — 0

n—oo n—oo

Thus n'2 dominates n!-1999999,

Now consider two exponential functions, say f(n) = 3™ and g(n) = 2". Since
lim g(n)/f(n)=2"/3" = lim (2/3)" =0

the exponential with the higher base dominates.

Our ability to prove dominance relations from scratch depends upon our ability
to prove limits. Let’s look at one important pair of functions. Any polynomial (say
f(n) = n°) dominates logarithmic functions (say g(n) = lgn). Since n = 2!

f(n) _ (21gn)e — 2elgn
Now consider
lim g(n)/f(n) =lgn/2°8"

In fact, this does go to 0 as n — co.

Take-Home Lesson: By interleaving the functions here with those of Section
2.3.1 (page 39), we see where everything fits into the dominance pecking order:

nl>c" > nd >0 >t > nlogn >0 > Vo>
log? n > logn > logn/ loglogn > loglogn > a(n) > 1

Chapter Notes

Most other algorithm texts devote considerably more efforts to the formal analysis
of algorithms than we have here, and so we refer the theoretically-inclined reader

2.10 EXERCISES

57

elsewhere for more depth. Algorithm texts more heavily stressing analysis include
[CLRS01, KTO06].

The book Concrete Mathematics by Knuth, Graham, and Patashnik [GKP89]
offers an interesting and thorough presentation of mathematics for the analysis of
algorithms. Niven and Zuckerman [NZ80] is an nice introduction to number theory,
including Waring’s problem, discussed in the war story.

The notion of dominance also gives rise to the “Little Oh” notation. We say that
f(n) =o(g(n)) iff g(n) dominates f(n). Among other things, the Little Oh proves
useful for asking questions. Asking for an o(n?) algorithm means you want one
that is better than quadratic in the worst case—and means you would be willing
to settle for O(n'29 log® n).

2.10 Exercises

Program Analysis
2-1. [8] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using the Big Oh notation.
function mystery(n)
r:=0
fori:=1ton—1 do
forj:=1i+1ton do
fork:=1toj do
ri=r—+1
return(r)
2-2. [8] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using Big Oh notation.
function pesky(n)
r:=0
fori:=1ton do
forj:=1toi do
fork:=jtoi+j do
r=r+1
return(r)
2-3. [5] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using Big Oh notation.
function prestiferous(n)
r:=0
fori:=1ton do
forj:=1toido
fork:=jtoi+j do
forl:=1toi+j—k do

58 2. ALGORITHM ANALYSIS

ri=r+1

return(r)

2-4. [8] What value is returned by the following function? Express your answer as a
function of n. Give the worst-case running time using Big Oh notation.
function conundrum(n)
r:=0
fori:=1ton do
forj:=1i41ton do
fork:=i4+j—1ton do

r=r+1

return(r)

2-5. [5] Suppose the following algorithm is used to evaluate the polynomial
p(z) = anz" + Ano12" ' ... +aiz+ao

p = ao;

rpower = 1;

for i :=1tondo
Tpower 1= T * TPower;
p = p—+ a; * xpower

end

(a) How many multiplications are done in the worst-case? How many additions?
(b) How many multiplications are done on the average?
(c) Can you improve this algorithm?
2-6. [3] Prove that the following algorithm for computing the maximum value in an
array A[l..n] is correct.

function max(A)
m = A[l]
fori:=2ton do
if Ali] > m then m := Ali]

return (m)
Big Oh
2-7. [8] True or False?
(a) Is 2" = O(2™)?
(b) Is 22" = O(2")?

2-8. [3] For each of the following pairs of functions, either f(n) is in O(g(n)), f(n) is
in Q(g(n)), or f(n) = ©(g(n)). Determine which relationship is correct and briefly
explain why.

(a) f(n) =logn® g(n) =logn + 5

2.10 EXERCISES

59

(b) f(n) = /n; g(n) = logn?

(c) f(n) =log"n; g(n) =logn

(d) f(n) =mn; g(n) =log’n

(e) f(n) =nlogn+n; g(n) =logn
(f) f(n) =10; g(n) =log10

(g) f(n)=2"; g(n) = 100"

(h) f(n) =2"; g(n) =3"

2-9. [3] For each of the following pairs of functions f(n) and g(n), determine whether

2-10.
2-11.
2-12.

2-13.

2-14.

2-15.

2-16.

2-17.

2-18.

f(n) = O(g(n)), g(n) = O(f(n)), or both.

(a) J(n) = (0* = n)/2, g(n) = 6n

(b) f(n) = n+2ym, g(n) = n’

(¢) f(n) =nlogn, g(n) = ny/m/2

(d) f(n) =n+logn, g(n) = v

(e) F(n) =2(ogn)?, g(n) = logn + 1

(f) f(n) = dnlogn +n, g(n) = (n? — n)/2

[3] Prove that n® —3n® —n +1 = 0(n?).
[8] Prove that n? = O(2™).

[8] For each of the following pairs of functions f(n) and g(n), give an appropriate

positive constant ¢ such that f(n) < c-g(n) for all n > 1.
(a) f(n)=n*4+n+1, g(n)=2n°

(b) F(n) = nyim +n?, g(n) = n®

(©) f(n) =n? —n+1, g(n) =n?/2

f
f

[8] Prove that if fi(n) = O(g1(n)) and fa2(n) = O(g2(n)), then fi(n) + f2(n)

O(g1(n) + g2(n)).

[8] Prove that if fi(N) = Q(g1(n)) and fo(n) = Q(g2(n)), then fi(n) + f2(n)

Q(g1(n) + g2(n)).

[8] Prove that if fi(n) = O(g1(n)) and f2(n) = O(g2(n)), then fi(n) - fo(n)

O(g1(n) - g2(n))

[5] Prove for all £ > 1 and all sets of constants {a,ar_1, ...

arn® +ap_1n* P+ .+ antao = O(nk)
[5] Show that for any real constants a and b, b > 0
(n+a)’ =O(n")

,al,ao} S R,

[5] List the functions below from the lowest to the highest order. If any two or

more are of the same order, indicate which.

60

2.

ALGORITHM ANALYSIS

2-19.

2-20.

2-21.

2-22.

2-23.

n 2" nlgn Inn

n—n®+7° lgn vn e”

n?+lgn n? ot Jglgn

n® (Ign)* n! n'Te where 0 < e < 1

[5] List the functions below from the lowest to the highest order. If any two or
more are of the same order, indicate which.

vn n 2"

nlogn n—n>+7% n?+4logn
n? n® logn

ni + logn (logn)? n!

Inn logn loglogn
(1/3)" 3/2)" 6

[5] Find two functions f(n) and g(n) that satisfy the following relationship. If no
such f and g exist, write “None.”

(a) f(n)=o(g(n)) and f(n) # O(g(n))
(b) f(n) =©O(g(n)) and f(n) = o(g(n))
(¢) f(n) =6(g(n)) and f(n) # O(g(n))
(d) f(n) =Q(g(n)) and f(n) # O(g(n))

[5] True or False?

)
) v/n=O(logn)
) logn = O(y/n)
d) n?(1+ /n) = O(n’*logn)
)
)
)

[5] For each of the following pairs of functions f(n) and g(n), state whether f(n) =
(

(a) f(n) =n®+3n+4, g(n) =6n+7
(b) f(n) =nyn, g(n) =n>—n
(C) f(n) :2n7n2,g(n) :n4+n2

[3] For each of these questions, briefly explain your answer.

(a) If T prove that an algorithm takes O(n?) worst-case time, is it possible that it
takes O(n) on some inputs?

(b) If T prove that an algorithm takes O(n?) worst-case time, is it possible that it
takes O(n) on all inputs?

(c) If I prove that an algorithm takes ©(n?) worst-case time, is it possible that it
takes O(n) on some inputs?

2.10 EXERCISES

61

2-24.

2-25.

2-26.

2-27.

2-28.

2-29.

2-30.

(d) Tf T prove that an algorithm takes ©(n?) worst-case time, is it possible that it
takes O(n) on all inputs?

(e) Is the function f(n) = ©(n?), where f(n) = 100n? for even n and f(n) =
20n? — nlog, n for odd n?

[8] For each of the following, answer yes, no, or can’t tell. Explain your reasoning.
(a) Is 3" =0(2™)7

(b) Is log 3™ = O(log 2™)?

(c) Is 3" = Q(2™)7

(d) Is log 3™ = Q(log 2™)?

[5] For each of the following expressions f(n) find a simple g(n) such that f(n) =
O(g(n))-

)
HOEDYHEE
fln) = Z?:l log 4.
f(n)

[5] Place the following functions into increasing asymptotic order.

fi(n) = n*logyn, fa(n) = n(logyn)?, fa(n) =3 7 (2%, fa(n) =logy(3 7 2°).

[5] Place the following functions into increasing asymptotic order. If two or more
of the functions are of the same asymptotic order then indicate this.

fin) = Y1, Vi, fa(n) = (Vi) logm, fa(n) = ny/logn, fa(n) = 12n% +4n,

[5] For each of the following expressions f(n) find a simple g(n) such that
f(n) = ©(g(n)). (You should be able to prove your result by exhibiting the rel-
evant parameters, but this is not required for the homework.)

(a) f(n)
(

n) =>." 3i* 4+ 2i® — 19 + 20.
b) f(n

fn) =2
f(n) =371 3(4) +2(3°) — ' +20.
(c) f(n)= Z?zl 5¢ 4 3%,
[5] Which of the following are true?
(a) 50,3 =0E").
(b) 300, 8" =0(3").
(c) 32,3 =00E™).

[5] For each of the following functions f find a simple function g such that f(n) =
©(g(n)).

(a) fi(n) = (1000)2" + 4™

(b) fa(n) =n+nlogn+ /n.
() fs(n) = log(n®®) + (log).
(d) fa(n) = (0.99)™ + n'0°.

62 2. ALGORITHM ANALYSIS

2-31.

[5] For each pair of expressions (A, B) below, indicate whether A is O, o, , w, or
© of B. Note that zero, one or more of these relations may hold for a given pair;
list all correct ones.
A B

a) 100 on
b (g va

) \/’E ncos(ﬂ-n/S)
d 10" 100™
e) nlen (Ign)™

) lg(n!) nlgn

Summations

2-32.

2-33.

2-34.

2-35.

2-36.

[5] Prove that:
PP =22 4+3 424+ ()R = (D) Rk +1)/2

[5] Find an expression for the sum of the ith row of the following triangle, and
prove its correctness. Each entry is the sum of the three entries directly above it.
All non existing entries are considered 0.

- W =

1 4 10 16 19 16 10 4 1
[3] Assume that Christmas has n days. Exactly how many presents did my “true
love” send me? (Do some research if you do not understand this question.)

[5] Counsider the following code fragment.

for i=1 to n do
for j=i to 2*i do
output ‘‘foobar’’

Let T'(n) denote the number of times ‘foobar’ is printed as a function of n.
a. Express T'(n) as a summation (actually two nested summations).
b. Simplify the summation. Show your work.

[5] Consider the following code fragment.

for i=1 to n/2 do
for j=i to n-i do
for k=1 to j do
output ‘‘foobar’’

Assume n is even. Let T'(n) denote the number of times ‘foobar’ is printed as a
function of n.

(a) Express T'(n) as three nested summations.

(b) Simplify the summation. Show your work.

2.10 EXERCISES

63

2-37. [6] When you first learned to multiply numbers, you were told that x X y means
adding z a total of y times, so 5 x4 = 54+5+5+5 = 20. What is the time complexity
of multiplying two n-digit numbers in base b (people work in base 10, of course,
while computers work in base 2) using the repeated addition method, as a function
of n and b. Assume that single-digit by single-digit addition or multiplication takes
O(1) time. (Hint: how big can y be as a function of n and b7)

2-38. [6] In grade school, you learned to multiply long numbers on a digit-by-digit basis,
so that 127 x 211 = 127 x 1 + 127 x 10 + 127 x 200 = 26, 797. Analyze the time
complexity of multiplying two n-digit numbers with this method as a function of
n (assume constant base size). Assume that single-digit by single-digit addition or
multiplication takes O(1) time.

Logarithms

2-39. [5] Prove the following identities on logarithms:
(a) Prove that log,(zy) = log, « + log, y
(b

) Prove that log, ¥ = ylog, =
(c) Prove that log, z =
)

logy, x

logy, a
(d) Prove that z'°8»V = yloge®
2-40. [8] Show that [lg(n+1)] = [lgn] +1
2-41. [3] Prove that that the binary representation of n > 1 has |lg,n| + 1 bits.

2-42. [5] In one of my research papers I give a comparison-based sorting algorithm that
runs in O(nlog(y/n)). Given the existence of an Q(nlogn) lower bound for sorting,
how can this be possible?

Interview Problems

2-43. [5] You are given a set S of n numbers. You must pick a subset S’ of k numbers from
S such that the probability of each element of S occurring in S’ is equal (i.e., each
is selected with probability k/n). You may make only one pass over the numbers.
What if n is unknown?

2-44. [5] We have 1,000 data items to store on 1,000 nodes. Each node can store copies
of exactly three different items. Propose a replication scheme to minimize data loss
as nodes fail. What is the expected number of data entries that get lost when three
random nodes fail?

2-45. [5] Consider the following algorithm to find the minimum element in an array
of numbers A[0,...,n]. One extra variable tmp is allocated to hold the current
minimum value. Start from A[0]; ”tmp” is compared against A[1], A[2], ..., A[N]
in order. When A[i] < tmp, tmp = Ali]. What is the expected number of times that
the assignment operation tmp = A[i] is performed?

2-46. [5] You have a 100-story building and a couple of marbles. You must identify the
lowest floor for which a marble will break if you drop it from this floor. How fast
can you find this floor if you are given an infinite supply of marbles? What if you
have only two marbles?

64

2.

ALGORITHM ANALYSIS

2-47.

2-48.

2-49.

2-50.

2-51.

2-52.

[5] You are given 10 bags of gold coins. Nine bags contain coins that each weigh 10
grams. One bag contains all false coins that weigh one gram less. You must identify
this bag in just one weighing. You have a digital balance that reports the weight of
what is placed on it.

[5] You have eight balls all of the same size. Seven of them weigh the same, and one
of them weighs slightly more. How can you find the ball that is heavier by using a
balance and only two weighings?

[5] Suppose we start with n companies that eventually merge into one big company.
How many different ways are there for them to merge?

[5] A Ramanujan-Hardy number can be written two different ways as the sum of
two cubes—i.e., there exist distinct a, b, ¢, and d such that a® + b = ¢ + d.
Generate all Ramanujam numbers where a, b, ¢, d < n.

[7] Six pirates must divide $300 dollars among themselves. The division is to pro-
ceed as follows. The senior pirate proposes a way to divide the money. Then the
pirates vote. If the senior pirate gets at least half the votes he wins, and that divi-
sion remains. If he doesn’t, he is killed and then the next senior-most pirate gets
a chance to do the division. Now you have to tell what will happen and why (i.e.,
how many pirates survive and how the division is done)? All the pirates are intel-
ligent and the first priority is to stay alive and the next priority is to get as much
money as possible.

[7] Reconsider the pirate problem above, where only one indivisible dollar is to be
divided. Who gets the dollar and how many are killed?

Programming Challenges

These programming challenge problems with robot judging are available at
http: / /www.programming-challenges.com or hitp://online-judge.uva.es.

2-1.
2-2.
2-3.

“Primary Arithmetic” — Programming Challenges 110501, UVA Judge 10035.
“A Multiplication Game” — Programming Challenges 110505, UVA Judge 847.
“Light, More Light” — Programming Challenges 110701, UVA Judge 10110.

3

Data Structures

Changing a data structure in a slow program can work the same way an organ
transplant does in a sick patient. Important classes of abstract data types such as
containers, dictionaries, and priority queues, have many different but functionally
equivalent data structures that implement them. Changing the data structure does
not change the correctness of the program, since we presumably replace a correct
implementation with a different correct implementation. However, the new imple-
mentation of the data type realizes different tradeoffs in the time to execute various
operations, so the total performance can improve dramatically. Like a patient in
need of a transplant, only one part might need to be replaced in order to fix the
problem.

But it is better to be born with a good heart than have to wait for a replace-
ment. The maximum benefit from good data structures results from designing your
program around them in the first place. We assume that the reader has had some
previous exposure to elementary data structures and pointer manipulation. Still,
data structure (CS II) courses these days focus more on data abstraction and ob-
ject orientation than the nitty-gritty of how structures should be represented in
memory. We will review this material to make sure you have it down.

In data structures, as with most subjects, it is more important to really un-
derstand the basic material than have exposure to more advanced concepts. We
will focus on each of the three fundamental abstract data types (containers, dic-
tionaries, and priority queues) and see how they can be implemented with arrays
and lists. Detailed discussion of the tradeoffs between more sophisticated imple-
mentations is deferred to the relevant catalog entry for each of these data types.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_3,
(© Springer-Verlag London Limited 2008

66

3.

DATA STRUCTURES

3.1 Contiguous vs. Linked Data Structures

Data structures can be neatly classified as either contiguous or linked, depending
upon whether they are based on arrays or pointers:

o Contiguously-allocated structures are composed of single slabs of memory, and
include arrays, matrices, heaps, and hash tables.

e Linked data structures are composed of distinct chunks of memory bound
together by pointers, and include lists, trees, and graph adjacency lists.

In this section, we review the relative advantages of contiguous and linked data
structures. These tradeoffs are more subtle than they appear at first glance, so 1
encourage readers to stick with me here even if you may be familiar with both
types of structures.

3.1.1 Arrays

The array is the fundamental contiguously-allocated data structure. Arrays are
structures of fixed-size data records such that each element can be efficiently located
by its index or (equivalently) address.

A good analogy likens an array to a street full of houses, where each array
element is equivalent to a house, and the index is equivalent to the house number.
Assuming all the houses are equal size and numbered sequentially from 1 to n, we
can compute the exact position of each house immediately from its address.!

Advantages of contiguously-allocated arrays include:

o (Constant-time access given the index — Because the index of each element
maps directly to a particular memory address, we can access arbitrary data
items instantly provided we know the index.

e Space efficiency — Arrays consist purely of data, so no space is wasted with
links or other formatting information. Further, end-of-record information is
not needed because arrays are built from fixed-size records.

e Memory locality — A common programming idiom involves iterating through
all the elements of a data structure. Arrays are good for this because they
exhibit excellent memory locality. Physical continuity between successive data
accesses helps exploit the high-speed cache memory on modern computer
architectures.

The downside of arrays is that we cannot adjust their size in the middle of
a program’s execution. Our program will fail soon as we try to add the (n +

Houses in Japanese cities are traditionally numbered in the order they were built, not by their physical

location. This makes it extremely difficult to locate a Japanese address without a detailed map.

3.1 CONTIGUOUS VS. LINKED DATA STRUCTURES

67

1)st customer, if we only allocate room for n records. We can compensate by
allocating extremely large arrays, but this can waste space, again restricting what
our programs can do.

Actually, we can efficiently enlarge arrays as we need them, through the miracle
of dynamic arrays. Suppose we start with an array of size 1, and double its size from
m to 2m each time we run out of space. This doubling process involves allocating a
new contiguous array of size 2m, copying the contents of the old array to the lower
half of the new one, and returning the space used by the old array to the storage
allocation system.

The apparent waste in this procedure involves the recopying of the old contents
on each expansion. How many times might an element have to be recopied after a
total of n insertions? Well, the first inserted element will have been recopied when
the array expands after the first, second, fourth, eighth, ...insertions. It will take
logy n doublings until the array gets to have n positions. However, most elements
do not suffer much upheaval. Indeed, the (n/2 + 1)st through nth elements will
move at most once and might never have to move at all.

If half the elements move once, a quarter of the elements twice, and so on, the
total number of movements M is given by

Ign Ign

M=>i-n/2=n) i/2"<n) i/2'=2n
i=1 i=1 i=1

Thus, each of the n elements move only two times on average, and the total work
of managing the dynamic array is the same O(n) as it would have been if a single
array of sufficient size had been allocated in advance!

The primary thing lost using dynamic arrays is the guarantee that each array
access takes constant time in the worst case. Now all the queries will be fast, except
for those relatively few queries triggering array doubling. What we get instead is a
promise that the nth array access will be completed quickly enough that the total
effort expended so far will still be O(n). Such amortized guarantees arise frequently
in the analysis of data structures.

3.1.2 Pointers and Linked Structures

Pointers are the connections that hold the pieces of linked structures together.
Pointers represent the address of a location in memory. A variable storing a pointer
to a given data item can provide more freedom than storing a copy of the item
itself. A cell-phone number can be thought of as a pointer to its owner as they
move about the planet.

Pointer syntax and power differ significantly across programming languages, so
we begin with a quick review of pointers in C language. A pointer p is assumed to

68 3. DATA STRUCTURES

.7 Lincoln Jefferson Clinton NIL

Figure 3.1: Linked list example showing data and pointer fields

give the address in memory where a particular chunk of data is located.? Pointers
in C have types declared at compile time, denoting the data type of the items they
can point to. We use *p to denote the item that is pointed to by pointer p, and &x
to denote the address of (i.e., pointer to) of a particular variable x. A special NULL
pointer value is used to denote structure-terminating or unassigned pointers.

All linked data structures share certain properties, as revealed by the following
linked list type declaration:

typedef struct list {

item_type item; /* data item */

struct list *next; /* point to successor */
} list;

In particular:

e Each node in our data structure (here 1ist) contains one or more data fields
(here item) that retain the data that we need to store.

e Each node contains a pointer field to at least one other node (here next).
This means that much of the space used in linked data structures has to be
devoted to pointers, not data.

e Finally, we need a pointer to the head of the structure, so we know where to
access it.

The list is the simplest linked structure. The three basic operations supported
by lists are searching, insertion, and deletion. In doubly-linked lists, each node points
both to its predecessor and its successor element. This simplifies certain operations
at a cost of an extra pointer field per node.

Searching a List

Searching for item z in a linked list can be done iteratively or recursively. We opt
for recursively in the implementation below. If z is in the list, it is either the first
element or located in the smaller rest of the list. Eventually, we reduce the problem
to searching in an empty list, which clearly cannot contain x.

2C permits direct manipulation of memory addresses in ways which may horrify Java programmers, but we
will avoid doing any such tricks.

3.1 CONTIGUOUS VS. LINKED DATA STRUCTURES

69

list *search_list(list *1, item_type x)

{
if (1 == NULL) return(NULL);
if (1->item == x)
return(l);
else
return(search_list(l->next, x));
}

Insertion into a List

Insertion into a singly-linked list is a nice exercise in pointer manipulation, as shown
below. Since we have no need to maintain the list in any particular order, we might
as well insert each new item in the simplest place. Insertion at the beginning of the
list avoids any need to traverse the list, but does require us to update the pointer
(denoted 1) to the head of the data structure.

void insert_list(list *x1, item_type x)

{
list *p; /* temporary pointer */
p = malloc(sizeof(list));
p—>item = x;
p—>next = *1;
*]_=p;
}

Two C-isms to note. First, the malloc function allocates a chunk of memory
of sufficient size for a new node to contain x. Second, the funny double star (*¥*1)
denotes that 1 is a pointer to a pointer to a list node. Thus the last line, *1=p;
copies p to the place pointed to by 1, which is the external variable maintaining
access to the head of the list.

Deletion From a List

Deletion from a linked list is somewhat more complicated. First, we must find a
pointer to the predecessor of the item to be deleted. We do this recursively:

70 3. DATA STRUCTURES

list *predecessor_list(list *1, item_type x)

{
if ((1 == NULL) || (1->next == NULL)) {
//predecessor sought on null list
return(NULL) ;
}
if ((1->next)->item == x)
return(l);
else
return(predecessor_list(1->next, x));
}

The predecessor is needed because it points to the doomed node, so its next
pointer must be changed. The actual deletion operation is simple, once ruling out
the case that the to-be-deleted element does not exist. Special care must be taken
to reset the pointer to the head of the list (1) when the first element is deleted:

delete_list(list **1, item_type x)

{
list *p; /* item pointer x/
list *pred; /* predecessor pointer */
list *search_list(), *predecessor_list();
p = search_list(*1,x);
if (p != NULL) {
pred = predecessor_list(x*1,x);
if (pred == NULL) /* splice out of list */
*1 = p—>next;
else
pred->next = p->next;
free(p); /* free memory used by node */
}
}

C language requires explicit deallocation of memory, so we must free the
deleted node after we are finished with it to return the memory to the system.

3.1.3 Comparison

The relative advantages of linked lists over static arrays include:

e Overflow on linked structures can never occur unless the memory is actually

full.

3.2 STACKS AND QUEUES

71

e Insertions and deletions are simpler than for contiguous (array) lists.

e With large records, moving pointers is easier and faster than moving the
items themselves.

while the relative advantages of arrays include:
e Linked structures require extra space for storing pointer fields.
e Linked lists do not allow efficient random access to items.

e Arrays allow better memory locality and cache performance than random
pointer jumping.

Take-Home Lesson: Dynamic memory allocation provides us with flexibility
on how and where we use our limited storage resources.

One final thought about these fundamental structures is that they can be
thought of as recursive objects:

e Lists — Chopping the first element off a linked list leaves a smaller linked list.
This same argument works for strings, since removing characters from string
leaves a string. Lists are recursive objects.

e Arrays — Splitting the first k elements off of an n element array gives two
smaller arrays, of size k and n — k, respectively. Arrays are recursive objects.

This insight leads to simpler list processing, and efficient divide-and-conquer
algorithms such as quicksort and binary search.

3.2 Stacks and Queues

We use the term container to denote a data structure that permits storage and
retrieval of data items independent of content. By contrast, dictionaries are abstract
data types that retrieve based on key values or content, and will be discussed in
Section 3.3 (page 72).

Containers are distinguished by the particular retrieval order they support. In
the two most important types of containers, this retrieval order depends on the
insertion order:

e Stacks— Support retrieval by last-in, first-out (LIFO) order. Stacks are simple
to implement and very efficient. For this reason, stacks are probably the
right container to use when retrieval order doesn’t matter at all, such as
when processing batch jobs. The put and get operations for stacks are usually
called push and pop:

72

3.

DATA STRUCTURES

— Push(z,s): Insert item x at the top of stack s.
— Pop(s): Return (and remove) the top item of stack s.

LIFO order arises in many real-world contexts. People crammed into a subway
car exit in LIFO order. Food inserted into my refrigerator usually exits the
same way, despite the incentive of expiration dates. Algorithmically, LIFO
tends to happen in the course of executing recursive algorithms.

e Queues — Support retrieval in first in, first out (FIFO) order. This is surely
the fairest way to control waiting times for services. You want the container
holding jobs to be processed in FIFO order to minimize the mazimum time
spent waiting. Note that the average waiting time will be the same regardless
of whether FIFO or LIFO is used. Many computing applications involve data
items with infinite patience, which renders the question of maximum waiting
time moot.

Queues are somewhat trickier to implement than stacks and thus are most
appropriate for applications (like certain simulations) where the order is im-
portant. The put and get operations for queues are usually called enqueue
and dequeue.

— Enqueue(z,q): Insert item x at the back of queue gq.

— Dequeue(q): Return (and remove) the front item from queue gq.

We will see queues later as the fundamental data structure controlling
breadth-first searches in graphs.

Stacks and queues can be effectively implemented using either arrays or linked
lists. The key issue is whether an upper bound on the size of the container is known
in advance, thus permitting the use of a statically-allocated array.

3.3 Dictionaries

The dictionary data type permits access to data items by content. You stick an
item into a dictionary so you can find it when you need it.
The primary operations of dictionary support are:

e Search(D,k) — Given a search key k, return a pointer to the element in dic-
tionary D whose key value is k, if one exists.

e Insert(D,x) — Given a data item z, add it to the set in the dictionary D.

e Delete(D,z) — Given a pointer to a given data item x in the dictionary D,
remove it from D.

3.3 DICTIONARIES

73

Certain dictionary data structures also efficiently support other useful opera-
tions:

o Maz(D) or Min(D)— Retrieve the item with the largest (or smallest) key from
D. This enables the dictionary to serve as a priority queue, to be discussed
in Section 3.5 (page 83).

o Predecessor(D,x) or Successor(D,x) — Retrieve the item from D whose key is
immediately before (or after) x in sorted order. These enable us to iterate
through the elements of the data structure.

Many common data processing tasks can be handled using these dictionary
operations. For example, suppose we want to remove all duplicate names from a
mailing list, and print the results in sorted order. Initialize an empty dictionary
D, whose search key will be the record name. Now read through the mailing list,
and for each record search to see if the name is already in D. If not, insert it
into D. Once finished, we must extract the remaining names out of the dictionary.
By starting from the first item Min(D) and repeatedly calling Successor until we
obtain Maxz(D), we traverse all elements in sorted order.

By defining such problems in terms of abstract dictionary operations, we avoid
the details of the data structure’s representation and focus on the task at hand.

In the rest of this section, we will carefully investigate simple dictionary imple-
mentations based on arrays and linked lists. More powerful dictionary implemen-
tations such as binary search trees (see Section 3.4 (page 77)) and hash tables (see
Section 3.7 (page 89)) are also attractive options in practice. A complete discussion
of different dictionary data structures is presented in the catalog in Section 12.1
(page 367). We encourage the reader to browse through the data structures section
of the catalog to better learn what your options are.

Stop and Think: Comparing Dictionary Implementations (1)

Problem: What are the asymptotic worst-case running times for each of the seven
fundamental dictionary operations (search, insert, delete, successor, predecessor,
minimum, and maximum) when the data structure is implemented as:

e An unsorted array.

e A sorted array.

Solution: This problem (and the one following it) reveals some of the inherent
tradeoffs of data structure design. A given data representation may permit effi-
cient implementation of certain operations at the cost that other operations are
expensive.

74

3.

DATA STRUCTURES

In addition to the array in question, we will assume access to a few extra
variables such as n—the number of elements currently in the array. Note that we
must maintain the value of these variables in the operations where they change
(e.g., insert and delete), and charge these operations the cost of this maintenance.

The basic dictionary operations can be implemented with the following costs
on unsorted and sorted arrays, respectively:

Unsorted Sorted
Dictionary operation | array array
Search(L, k) O(n) O(logn)
Insert(L, x) 0(1) O(n)
Delete(L, x) o(1)* O(n)
Successor(L, x) O(n) o(1)
Predecessor(L, x) O(n) o(1)
Minimum(L) O(n) 0(1)
Maximum(L) O(n) 0(1)

We must understand the implementation of each operation to see why. First,
we discuss the operations when maintaining an unsorted array A.

e Search is implemented by testing the search key k against (potentially) each
element of an unsorted array. Thus, search takes linear time in the worst case,
which is when key k is not found in A.

e Insertion is implemented by incrementing n and then copying item z to
the nth cell in the array, A[n]. The bulk of the array is untouched, so this
operation takes constant time.

e Deletion is somewhat trickier, hence the superscript(*) in the table. The
definition states that we are given a pointer x to the element to delete, so
we need not spend any time searching for the element. But removing the zth
element from the array A leaves a hole that must be filled. We could fill the
hole by moving each of the elements A[z + 1] to A[n] up one position, but
this requires O(n) time when the first element is deleted. The following idea
is better: just write over A[z] with A[n], and decrement n. This only takes
constant time.

e The definition of the traversal operations, Predecessor and Successor, refer
to the item appearing before/after x in sorted order. Thus, the answer is
not simply A[z — 1] (or Az + 1]), because in an unsorted array an element’s
physical predecessor (successor) is not necessarily its logical predecessor (suc-
cessor). Instead, the predecessor of A[z] is the biggest element smaller than
Alz]. Similarly, the successor of Alx] is the smallest element larger than A[z].
Both require a sweep through all n elements of A to determine the winner.

o Minimum and Mazximum are similarly defined with respect to sorted order,
and so require linear sweeps to identify in an unsorted array.

3.3 DICTIONARIES

75

Implementing a dictionary using a sorted array completely reverses our notions
of what is easy and what is hard. Searches can now be done in O(logn) time, using
binary search, because we know the median element sits in A[n/2]. Since the upper
and lower portions of the array are also sorted, the search can continue recursively
on the appropriate portion. The number of halvings of n until we get to a single
element is [lgn].

The sorted order also benefits us with respect to the other dictionary retrieval
operations. The minimum and maximum elements sit in A[1] and A[n], while the
predecessor and successor to A[z] are Alx — 1] and Az + 1], respectively.

Insertion and deletion become more expensive, however, because making room
for a new item or filling a hole may require moving many items arbitrarily. Thus
both become linear-time operations. |

Take-Home Lesson: Data structure design must balance all the different op-
erations it supports. The fastest data structure to support both operations A
and B may well not be the fastest structure to support either operation A or
B.

Stop and Think: Comparing Dictionary Implementations (Il)

Problem: What is the asymptotic worst-case running times for each of the seven
fundamental dictionary operations when the data structure is implemented as

A singly-linked unsorted list.

A doubly-linked unsorted list.

A singly-linked sorted list.
A doubly-linked sorted list.

Solution: Two different issues must be considered in evaluating these implementa-
tions: singly- vs. doubly-linked lists and sorted vs. unsorted order. Subtle operations
are denoted with a superscript:

Singly Double Singly Doubly
Dictionary operation | unsorted unsorted sorted sorted
Search(L, k) O(n) O(n) O(n) O(n)
Insert(L, x) o(1) o(1) O(n) O(n)
Delete(L, x) O(n)* o(1) O(n)* 0O(1)
Successor(L, x) O(n) O(n) o) 0(1)
Predecessor(L, z) O(n) O(n) Oo(n)* 0(1)
Minimum(L) O(n) O(n) o) 01
Maximum(L) O(n) O(n) o) 0Q1)

76 3. DATA STRUCTURES

As with unsorted arrays, search operations are destined to be slow while main-
tenance operations are fast.

e Insertion/Deletion — The complication here is deletion from a singly-linked
list. The definition of the Delete operation states we are given a pointer z to
the item to be deleted. But what we really need is a pointer to the element
pointing to x in the list, because that is the node that needs to be changed.
We can do nothing without this list predecessor, and so must spend linear
time searching for it on a singly-linked list. Doubly-linked lists avoid this
problem, since we can immediately retrieve the list predecessor of x.

Deletion is faster for sorted doubly-linked lists than sorted arrays, because
splicing out the deleted element from the list is more efficient than filling
the hole by moving array elements. The predecessor pointer problem again
complicates deletion from singly-linked sorted lists.

e Search — Sorting provides less benefit for linked lists than it did for arrays. Bi-
nary search is no longer possible, because we can’t access the median element
without traversing all the elements before it. What sorted lists do provide is
quick termination of unsuccessful searches, for if we have not found Abbott by
the time we hit Costello we can deduce that he doesn’t exist. Still, searching
takes linear time in the worst case.

e Traversal operations — The predecessor pointer problem again complicates
implementing Predecessor. The logical successor is equivalent to the node
successor for both types of sorted lists, and hence can be implemented in
constant time.

o Mazimum — The maximum element sits at the tail of the list, which would
normally require O(n) time to reach in either singly- or doubly-linked lists.

However, we can maintain a separate pointer to the list tail, provided we
pay the maintenance costs for this pointer on every insertion and deletion.
The tail pointer can be updated in constant time on doubly-linked lists: on
insertion check whether last->next still equals NULL, and on deletion set
last to point to the list predecessor of last if the last element is deleted.

We have no efficient way to find this predecessor for singly-linked lists. So
why can we implement maximum in ©(1) on singly-linked lists? The trick is
to charge the cost to each deletion, which already took linear time. Adding
an extra linear sweep to update the pointer does not harm the asymptotic
complexity of Delete, while gaining us Mazimum in constant time as a reward
for clear thinking.

3.4 BINARY SEARCH TREES

7

3 3 2 1 1
2 1 3 2
1 3
1 2 2 3

Figure 3.2: The five distinct binary search trees on three nodes

3.4 Binary Search Trees

We have seen data structures that allow fast search or flexible update, but not fast
search and flexible update. Unsorted, doubly-linked lists supported insertion and
deletion in O(1) time but search took linear time in the worse case. Sorted arrays
support binary search and logarithmic query times, but at the cost of linear-time
update.

Binary search requires that we have fast access to two elements—specifically
the median elements above and below the given node. To combine these ideas, we
need a “linked list” with two pointers per node. This is the basic idea behind binary
search trees.

A rooted binary tree is recursively defined as either being (1) empty, or (2)
consisting of a node called the root, together with two rooted binary trees called
the left and right subtrees, respectively. The order among “brother” nodes matters
in rooted trees, so left is different from right. Figure 3.2 gives the shapes of the five
distinct binary trees that can be formed on three nodes.

A binary search tree labels each node in a binary tree with a single key such
that for any node labeled z, all nodes in the left subtree of x have keys < = while
all nodes in the right subtree of x have keys > x. This search tree labeling scheme
is very special. For any binary tree on n nodes, and any set of n keys, there is
exactly one labeling that makes it a binary search tree. The allowable labelings for
three-node trees are given in Figure 3.2.

3.4.1 Implementing Binary Search Trees

Binary tree nodes have left and right pointer fields, an (optional) parent pointer,
and a data field. These relationships are shown in Figure 3.3; a type declaration
for the tree structure is given below:

78 3. DATA STRUCTURES

Q
parent \
right
left

Figure 3.3: Relationships in a binary search tree (left). Finding the minimum (center) and
maximum (right) elements in a binary search tree

typedef struct tree {

item_type item; /* data item */

struct tree *parent; /* pointer to parent */
struct tree *left; /* pointer to left child =*/
struct tree *right; /* pointer to right child */

} tree;

The basic operations supported by binary trees are searching, traversal, inser-
tion, and deletion.

Searching in a Tree

The binary search tree labeling uniquely identifies where each key is located. Start
at the root. Unless it contains the query key x, proceed either left or right depending
upon whether x occurs before or after the root key. This algorithm works because
both the left and right subtrees of a binary search tree are themselves binary search
trees. This recursive structure yields the recursive search algorithm below:

tree *search_tree(tree *1, item_type x)

{
if (1 == NULL) return(NULL);

if (1->item == x) return(l);

if (x < 1->item)

return(search_tree(l->left, x));
else

return(search_tree(1->right, x));

3.4 BINARY SEARCH TREES

79

This search algorithm runs in O(h) time, where h denotes the height of the
tree.

Finding Minimum and Maximum Elements in a Tree

Implementing the find-minimum operation requires knowing where the minimum
element is in the tree. By definition, the smallest key must reside in the left subtree
of the root, since all keys in the left subtree have values less than that of the root.
Therefore, as shown in Figure 3.3, the minimum element must be the leftmost
descendent of the root. Similarly, the maximum element must be the rightmost
descendent of the root.

tree *find_minimum(tree *t)

{
tree *min; /* pointer to minimum */
if (t == NULL) return(NULL);
min = t;
while (min->left != NULL)
min = min->left;
return(min) ;
}

Traversal in a Tree

Visiting all the nodes in a rooted binary tree proves to be an important component
of many algorithms. It is a special case of traversing all the nodes and edges in a
graph, which will be the foundation of Chapter 5.

A prime application of tree traversal is listing the labels of the tree nodes.
Binary search trees make it easy to report the labels in sorted order. By definition,
all the keys smaller than the root must lie in the left subtree of the root, and all
keys bigger than the root in the right subtree. Thus, visiting the nodes recursively
in accord with such a policy produces an in-order traversal of the search tree:

void traverse_tree(tree *1)
{
if (1 !'= NULL) {
traverse_tree(l->left);
process_item(1l->item);
traverse_tree(l->right);

80

3

DATA STRUCTURES

Each item is processed once during the course of traversal, which runs in O(n)
time, where n denotes the number of nodes in the tree.

Alternate traversal orders come from changing the position of process_item
relative to the traversals of the left and right subtrees. Processing the item first
yields a pre-order traversal, while processing it last gives a post-order traversal.
These make relatively little sense with search trees, but prove useful when the
rooted tree represents arithmetic or logical expressions.

Insertion in a Tree

There is only one place to insert an item z into a binary search tree T' where we
know we can find it again. We must replace the NULL pointer found in T after an
unsuccessful query for the key k.

This implementation uses recursion to combine the search and node insertion
stages of key insertion. The three arguments to insert_tree are (1) a pointer 1 to
the pointer linking the search subtree to the rest of the tree, (2) the key x to be
inserted, and (3) a parent pointer to the parent node containing 1. The node is
allocated and linked in on hitting the NULL pointer. Note that we pass the pointer to
the appropriate left /right pointer in the node during the search, so the assignment
x1 = p; links the new node into the tree:

insert_tree(tree **1, item_type x, tree *parent)

{
tree *p; /* temporary pointer */
if (¥1 == NULL) {
p = malloc(sizeof(tree)); /* allocate new node */
p—>item = x;
p—>left = p->right = NULL;
p—>parent = parent;
x1 = p; /* link into parent’s record */
return;
}
if (x < (x1)->item)
insert_tree(&((*1)->left), x, *1);
else
insert_tree(&((*¥1)->right), x, *1);
}

Allocating the node and linking it in to the tree is a constant-time operation
after the search has been performed in O(h) time.

3.4 BINARY SEARCH TREES

81

2 2
1 7 1 7
4 8 5
3 5 3 6
initial tree delete node with zero children (3) delete node with 1 child (6) delete node with 2 children (4)

Figure 3.4: Deleting tree nodes with 0, 1, and 2 children

Deletion from a Tree

Deletion is somewhat trickier than insertion, because removing a node means ap-
propriately linking its two descendant subtrees back into the tree somewhere else.
There are three cases, illustrated in Figure 3.4. Leaf nodes have no children, and
so may be deleted by simply clearing the pointer to the given node.

The case of the doomed node having one child is also straightforward. There
is one parent and one grandchild, and we can link the grandchild directly to the
parent without violating the in-order labeling property of the tree.

But what of a to-be-deleted node with two children? Our solution is to relabel
this node with the key of its immediate successor in sorted order. This successor
must be the smallest value in the right subtree, specifically the leftmost descendant
in the right subtree. Moving this to the point of deletion results in a properly-
labeled binary search tree, and reduces our deletion problem to physically removing
a node with at most one child—a case that has been resolved above.

The full implementation has been omitted here because it looks a little ghastly,
but the code follows logically from the description above.

The worst-case complexity analysis is as follows. Every deletion requires the
cost of at most two search operations, each taking O(h) time where h is the height
of the tree, plus a constant amount of pointer manipulation.

3.4.2 How Good Are Binary Search Trees?

When implemented using binary search trees, all three dictionary operations take
O(h) time, where h is the height of the tree. The smallest height we can hope for
occurs when the tree is perfectly balanced, where h = [logn]|. This is very good,
but the tree must be perfectly balanced.

82

3.

DATA STRUCTURES

Our insertion algorithm puts each new item at a leaf node where it should have
been found. This makes the shape (and more importantly height) of the tree a
function of the order in which we insert the keys.

Unfortunately, bad things can happen when building trees through insertion.
The data structure has no control over the order of insertion. Consider what hap-
pens if the user inserts the keys in sorted order. The operations insert (a), followed
by insert(b), insert(c), insert(d), ...will produce a skinny linear height tree
where only right pointers are used.

Thus binary trees can have heights ranging from Ign to n. But how tall are
they on average? The average case analysis of algorithms can be tricky because we
must carefully specify what we mean by average. The question is well defined if we
consider each of the n! possible insertion orderings equally likely and average over
those. If so, we are in luck, because with high probability the resulting tree will
have O(logn) height. This will be shown in Section 4.6 (page 123).

This argument is an important example of the power of randomization. We can
often develop simple algorithms that offer good performance with high probabil-
ity. We will see that a similar idea underlies the fastest known sorting algorithm,
quicksort.

3.4.3 Balanced Search Trees

Random search trees are usually good. But if we get unlucky with our order of
insertion, we can end up with a linear-height tree in the worst case. This worst
case is outside of our direct control, since we must build the tree in response to the
requests given by our potentially nasty user.

What would be better is an insertion/deletion procedure which adjusts the tree a
little after each insertion, keeping it close enough to be balanced so the maximum
height is logarithmic. Sophisticated balanced binary search tree data structures
have been developed that guarantee the height of the tree always to be O(logn).
Therefore, all dictionary operations (insert, delete, query) take O(logn) time each.
Implementations of balanced tree data structures such as red-black trees and splay
trees are discussed in Section 12.1 (page 367).

From an algorithm design viewpoint, it is important to know that these trees
exist and that they can be used as black boxes to provide an efficient dictionary
implementation. When figuring the costs of dictionary operations for algorithm
analysis, we can assume the worst-case complexities of balanced binary trees to be
a fair measure.

Take-Home Lesson: Picking the wrong data structure for the job can be
disastrous in terms of performance. Identifying the very best data structure
is usually not as critical, because there can be several choices that perform
similarly.

3.5 PRIORITY QUEUES

83

Stop and Think: Exploiting Balanced Search Trees

Problem: You are given the task of reading n numbers and then printing them
out in sorted order. Suppose you have access to a balanced dictionary data struc-
ture, which supports the operations search, insert, delete, minimum, maximum,
successor, and predecessor each in O(logn) time.

1. How can you sort in O(nlogn) time using only insert and in-order traversal?

2. How can you sort in O(nlogn) time using only minimum, successor, and
insert?

3. How can you sort in O(nlogn) time using only minimum, insert, delete?

Solution: The first problem allows us to do insertion and inorder-traversal. We can
build a search tree by inserting all n elements, then do a traversal to access the

items in sorted order:
Sort3()

initialize-tree(t)

While (not EOF)
read(x);
insert(x,t);

Sort2()
initialize-tree(t)
While (not EOF)
read(x);
insert(x,t);

Sort1()
initialize-tree(t)
While (not EOF)

read(x); . y = Minimum(t)
. y = Minimum(t) .
insert(x,t) While (y # NULL) do While (y # NU.LL) do
Traverse(t) rint(y — item) print(y—item)
P Y Delete(y,t)

y = Successor(y,t) v = Minimum(t)

The second problem allows us to use the minimum and successor operations
after constructing the tree. We can start from the minimum element, and then
repeatedly find the successor to traverse the elements in sorted order.

The third problem does not give us successor, but does allow us delete. We
can repeatedly find and delete the minimum element to once again traverse all the
elements in sorted order.

Each of these algorithms does a linear number of logarithmic-time operations,
and hence runs in O(nlogn) time. The key to exploiting balanced binary search
trees is using them as black boxes. |

3.5 Priority Queues

Many algorithms process items in a specific order. For example, suppose you must
schedule jobs according to their importance relative to other jobs. Scheduling the

84

3.

DATA STRUCTURES

jobs requires sorting them by importance, and then evaluating them in this sorted
order.

Priority queues are data structures that provide more flexibility than simple
sorting, because they allow new elements to enter a system at arbitrary intervals.
It is much more cost-effective to insert a new job into a priority queue than to
re-sort everything on each such arrival.

The basic priority queue supports three primary operations:

o Insert(Q,z)- Given an item z with key k, insert it into the priority queue Q.

o Find-Minimum(Q) or Find-Mazimum(Q)- Return a pointer to the item
whose key value is smaller (larger) than any other key in the priority queue

Q.

o Delete-Minimum(Q) or Delete-Mazimum(Q)- Remove the item from the pri-
ority queue @ whose key is minimum (maximum).

Many naturally occurring processes are accurately modeled by priority queues.
Single people maintain a priority queue of potential dating candidates—mentally
if not explicitly. One’s impression on meeting a new person maps directly to an
attractiveness or desirability score. Desirability serves as the key field for inserting
this new entry into the “little black book” priority queue data structure. Dating is
the process of extracting the most desirable person from the data structure (Find-
Maximum), spending an evening to evaluate them better, and then reinserting
them into the priority queue with a possibly revised score.

Take-Home Lesson: Building algorithms around data structures such as dictio-
naries and priority queues leads to both clean structure and good performance.

Stop and Think: Basic Priority Queue Implementations

Problem: What is the worst-case time complexity of the three basic priority queue
operations (insert, find-minimum, and delete-minimum) when the basic data struc-
ture is

e An unsorted array.
e A sorted array.

e A balanced binary search tree.

Solution: There is surprising subtlety in implementing these three operations, even
when using a data structure as simple as an unsorted array. The unsorted array

3.6 WAR STORY: STRIPPING TRIANGULATIONS

85

dictionary (discussed on page 73) implemented insertion and deletion in constant
time, and search and minimum in linear time. A linear time implementation of
delete-minimum can be composed from find-minimum followed by delete.

For sorted arrays, we can implement insert and delete in linear time, and mini-
mum in constant time. However, all priority queue deletions involve only the min-
imum element. By storing the sorted array in reverse order (largest value on top),
the minimum element will be the last one in the array. Deleting the tail element
requires no movement of any items, just decrementing the number of remaining
items n, and so delete-minimum can be implemented in constant time.

All this is fine, yet the following table claims we can implement find-minimum
in constant time for each data structure:

Unsorted Sorted Balanced

array array tree
Insert(Q, x) o(1) O(n) O(logn)
Find-Minimum(Q) o(1) 0(1) O(1)
Delete-Minimum(Q) | O(n) 0(1) O(logn)

The trick is using an extra variable to store a pointer/index to the minimum
entry in each of these structures, so we can simply return this value whenever we
are asked to find-minimum. Updating this pointer on each insertion is easy—we
update it if and only if the newly inserted value is less than the current minimum.
But what happens on a delete-minimum? We can delete the minimum entry have,
then do an honest find-minimum to restore our canned value. The honest find-
minimum takes linear time on an unsorted array and logarithmic time on a tree,
and hence can be folded into the cost of each deletion. R

Priority queues are very useful data structures. Indeed, they will be the hero of
two of our war stories, including the next one. A particularly nice priority queue
implementation (the heap) will be discussed in the context of sorting in Section 4.3
(page 108). Further, a complete set of priority queue implementations is presented
in Section 12.2 (page 373) of the catalog.

3.6 War Story: Stripping Triangulations

Geometric models used in computer graphics are commonly represented as a tri-
angulated surface, as shown in Figure 3.5(1). High-performance rendering engines
have special hardware for rendering and shading triangles. This hardware is so fast
that the bottleneck of rendering is the cost of feeding the triangulation structure
into the hardware engine.

Although each triangle can be described by specifying its three endpoints, an
alternative representation is more efficient. Instead of specifying each triangle in
isolation, suppose that we partition the triangles into strips of adjacent triangles

86

3.

DATA STRUCTURES

Figure 3.6: Partitioning a triangular mesh into strips: (a) with left-right turns (b) with the
flexibility of arbitrary turns

and walk along the strip. Since each triangle shares two vertices in common with
its neighbors, we save the cost of retransmitting the two extra vertices and any
associated information. To make the description of the triangles unambiguous, the
OpenGL triangular-mesh renderer assumes that all turns alternate from left to
right (as shown in Figure 3.6).

The task of finding a small number of strips that cover each triangle in a mesh
can be thought of as a graph problem. The graph of interest has a vertex for
every triangle of the mesh, and an edge between every pair of vertices represent-
ing adjacent triangles. This dual graph representation captures all the information
about the triangulation (see Section 15.12 (page 520)) needed to partition it into
triangular strips.

Once we had the dual graph available, the project could begin in earnest. We
sought to partition the vertices into as few paths or strips as possible. Partition-
ing it into one path implied that we had discovered a Hamiltonian path, which
by definition visits each vertex exactly once. Since finding a Hamiltonian path is
NP-complete (see Section 16.5 (page 538)), we knew not to look for an optimal
algorithm, but concentrate instead on heuristics.

The simplest heuristic for strip cover would start from an arbitrary triangle
and then do a left-right walk until the walk ends, either by hitting the boundary of

3.6 WAR STORY: STRIPPING TRIANGULATIONS

87

l top

1 2 3 4 o o o 253 254255256

! o
]

Figure 3.7: A bounded height priority queue for triangle strips

the object or a previously visited triangle. This heuristic had the advantage that
it would be fast and simple, although there is no reason why it should find the
smallest possible set of left-right strips for a given triangulation.

The greedy heuristic would be more likely to result in a small number of strips
however. Greedy heuristics always try to grab the best possible thing first. In the
case of the triangulation, the natural greedy heuristic would identify the starting
triangle that yields the longest left-right strip, and peel that one off first.

Being greedy does not guarantee you the best possible solution either, since the
first strip you peel off might break apart a lot of potential strips we might have
wanted to use later. Still, being greedy is a good rule of thumb if you want to get
rich. Since removing the longest strip would leave the fewest number of triangles
for later strips, the greedy heuristic should outperform the naive heuristic.

But how much time does it take to find the largest strip to peel off next? Let
k be the length of the walk possible from an average vertex. Using the simplest
possible implementation, we could walk from each of the n vertices to find the
largest remaining strip to report in O(kn) time. Repeating this for each of the
roughly n/k strips we extract yields an O(n?)-time implementation, which would
be hopelessly slow on a typical model of 20,000 triangles.

How could we speed this up? It seems wasteful to rewalk from each triangle
after deleting a single strip. We could maintain the lengths of all the possible
future strips in a data structure. However, whenever we peel off a strip, we must
update the lengths of all affected strips. These strips will be shortened because
they walked through a triangle that now no longer exists. There are two aspects of
such a data structure:

e Priority Queue — Since we were repeatedly identifying the longest remaining
strip, we needed a priority queue to store the strips ordered according to
length. The next strip to peel always sat at the top of the queue. Our priority
queue had to permit reducing the priority of arbitrary elements of the queue
whenever we updated the strip lengths to reflect what triangles were peeled

88

3.

DATA STRUCTURES

Model name Triangle count | Naive cost | Greedy cost | Greedy time
Diver 3,798 8,460 4,650 6.4 sec
Heads 4,157 10,588 4,749 9.9 sec
Framework 5,602 9,274 7,210 9.7 sec
Bart Simpson 9,654 24,934 11,676 20.5 sec
Enterprise 12,710 29,016 13,738 26.2 sec
Torus 20,000 40,000 20,200 272.7 sec
Jaw 75,842 104,203 95,020 136.2 sec

Figure 3.8: A comparison of the naive versus greedy heuristics for several triangular meshes

away. Because all of the strip lengths were bounded by a fairly small integer
(hardware constraints prevent any strip from having more than 256 vertices),
we used a bounded-height priority queue (an array of buckets shown in Figure
3.7 and described in Section 12.2 (page 373)). An ordinary heap would also
have worked just fine.

To update the queue entry associated with each triangle, we needed to quickly
find where it was. This meant that we also needed a ...

e Dictionary — For each triangle in the mesh, we needed to find where it was in
the queue. This meant storing a pointer to each triangle in a dictionary. By
integrating this dictionary with the priority queue, we built a data structure
capable of a wide range of operations.

Although there were various other complications, such as quickly recalculating
the length of the strips affected by the peeling, the key idea needed to obtain better
performance was to use the priority queue. Run time improved by several orders
of magnitude after employing this data structure.

How much better did the greedy heuristic do than the naive heuristic? Consider
the table in Figure 3.8. In all cases, the greedy heuristic led to a set of strips that
cost less, as measured by the total size of the strips. The savings ranged from about
10% to 50%, which is quite remarkable since the greatest possible improvement
(going from three vertices per triangle down to one) yields a savings of only 66.6%.

After implementing the greedy heuristic with our priority queue data structure,
the program ran in O(n - k) time, where n is the number of triangles and k is the
length of the average strip. Thus the torus, which consisted of a small number of
very long strips, took longer than the jaw, even though the latter contained over
three times as many triangles.

There are several lessons to be gleaned from this story. First, when working with
a large enough data set, only linear or near linear algorithms (say O(nlogn)) are
likely to be fast enough. Second, choosing the right data structure is often the key
to getting the time complexity down to this point. Finally, using smart heuristic

3.7 HASHING AND STRINGS

89

like greedy is likely to significantly improve quality over the naive approach. How
much the improvement will be can only be determined by experimentation.

3.7 Hashing and Strings

Hash tables are a very practical way to maintain a dictionary. They exploit the fact
that looking an item up in an array takes constant time once you have its index. A
hash function is a mathematical function that maps keys to integers. We will use
the value of our hash function as an index into an array, and store our item at that
position.

The first step of the hash function is usually to map each key to a big integer.
Let « be the size of the alphabet on which a given string S is written. Let char (c)
be a function that maps each symbol of the alphabet to a unique integer from 0 to
a — 1. The function

1S]—1
H(S)= Z o1 s char(s;)
i=0
maps each string to a unique (but large) integer by treating the characters of the
string as “digits” in a base-a number system.

The result is unique identifier numbers, but they are so large they will quickly
exceed the number of slots in our hash table (denoted by m). We must reduce this
number to an integer between 0 and m—1, by taking the remainder of H(S) mod m.
This works on the same principle as a roulette wheel. The ball travels a long
distance around and around the circumference-m wheel |H(S)/m| times before
settling down to a random bin. If the table size is selected with enough finesse
(ideally m is a large prime not too close to 2° — 1), the resulting hash values should
be fairly uniformly distributed.

3.7.1 Collision Resolution

No matter how good our hash function is, we had better be prepared for collisions,
because two distinct keys will occasionally hash to the same value. Chaining is the
easiest approach to collision resolution. Represent the hash table as an array of m
linked lists, as shown in Figure 3.9. The 4th list will contain all the items that hash
to the value of i. Thus search, insertion, and deletion reduce to the corresponding
problem in linked lists. If the n keys are distributed uniformly in a table, each list
will contain roughly n/m elements, making them a constant size when m = n.

Chaining is very natural, but devotes a considerable amount of memory to
pointers. This is space that could be used to make the table larger, and hence the
“lists” smaller.

The alternative is something called open addressing. The hash table is main-
tained as an array of elements (not buckets), each initialized to null, as shown in
Figure 3.10. On an insertion, we check to see if the desired position is empty. If so,

90

DATA STRUCTURES

Ll
TTLTLTETIIT

Figure 3.9: Collision resolution by chaining

1 2 3 4 5 6 7 8 9 10 11
Ll Ix D Ixdx] [x[x[[[]

Figure 3.10: Collision resolution by open addressing

we insert it. If not, we must find some other place to insert it instead. The simplest
possibility (called sequential probing) inserts the item in the next open spot in the
table. If the table is not too full, the contiguous runs of items should be fairly
small, hence this location should be only a few slots from its intended position.

Searching for a given key now involves going to the appropriate hash value and
checking to see if the item there is the one we want. If so, return it. Otherwise we
must keep checking through the length of the run.

Deletion in an open addressing scheme can get ugly, since removing one element
might break a chain of insertions, making some elements inaccessible. We have no
alternative but to reinsert all the items in the run following the new hole.

Chaining and open addressing both require O(m) to initialize an m-element
hash table to null elements prior to the first insertion. Traversing all the elements
in the table takes O(n + m) time for chaining, because we have to scan all m
buckets looking for elements, even if the actual number of inserted items is small.
This reduces to O(m) time for open addressing, since n must be at most m.

When using chaining with doubly-linked lists to resolve collisions in an m-
element hash table, the dictionary operations for n items can be implemented in
the following expected and worst case times:

Hash table Hash table
(expected) (worst case)

Search(L, k) O(n/m) O(n)
Insert(L, x) O(1) O(1)
Delete(L, x) o(1) o(1)
Successor(L,) On+m) O(m+m)
Predecessor(L,) | O(n+m) O(n+m)
Minimum(L) On+m) O(n+m)
Maximum (L) On+m) O(n+m)

3.7 HASHING AND STRINGS

91

Pragmatically, a hash table is often the best data structure to maintain a dic-
tionary. The applications of hashing go far beyond dictionaries, however, as we will
see below.

3.7.2 Efficient String Matching via Hashing

Strings are sequences of characters where the order of the characters matters, since
ALGORITHM is different than LOGARITHM. Text strings are fundamental to a
host of computing applications, from programming language parsing/compilation,
to web search engines, to biological sequence analysis.

The primary data structure for representing strings is an array of characters.
This allows us constant-time access to the ¢th character of the string. Some auxiliary
information must be maintained to mark the end of the string—either a special
end-of-string character or (perhaps more usefully) a count of the n characters in
the string.

The most fundamental operation on text strings is substring search, namely:

Problem: Substring Pattern Matching
Input: A text string ¢ and a pattern string p.
Output: Does t contain the pattern p as a substring, and if so where?

The simplest algorithm to search for the presence of pattern string p in text ¢
overlays the pattern string at every position in the text, and checks whether every
pattern character matches the corresponding text character. As demonstrated in
Section 2.5.3 (page 43), this runs in O(nm) time, where n = [t| and m = |p|.

This quadratic bound is worst-case. More complicated, worst-case linear-time
search algorithms do exist: see Section 18.3 (page 628) for a complete discussion.
But here we give a linear expected-time algorithm for string matching, called the
Rabin-Karp algorithm. It is based on hashing. Suppose we compute a given hash
function on both the pattern string p and the m-character substring starting from
the ith position of t. If these two strings are identical, clearly the resulting hash
values must be the same. If the two strings are different, the hash values will
almost certainly be different. These false positives should be so rare that we can
easily spend the O(m) time it takes to explicitly check the identity of two strings
whenever the hash values agree.

This reduces string matching to n—m+2 hash value computations (the n—m+1
windows of ¢, plus one hash of p), plus what should be a very small number of O(m)
time verification steps. The catch is that it takes O(m) time to compute a hash
function on an m-character string, and O(n) such computations seems to leave us
with an O(mn) algorithm again.

But let’s look more closely at our previously defined hash function, applied to
the m characters starting from the jth position of string S:

m—1
H(S,j) = Z ™D char(siy ;)

7=

92

3.

DATA STRUCTURES

What changes if we now try to compute H(S,j + 1)—the hash of the next
window of m characters? Note that m — 1 characters are the same in both windows,
although this differs by one in the number of times they are multiplied by a. A
little algebra reveals that

H(S,j+1)=a(H(S,j) — o™ ‘char(s;)) + char(sjim)

This means that once we know the hash value from the j position, we can find
the hash value from the (j 4+ 1)st position for the cost of two multiplications, one
addition, and one subtraction. This can be done in constant time (the value of
a™~! can be computed once and used for all hash value computations). This math
works even if we compute H(S,j) mod M, where M is a reasonably large prime
number, thus keeping the size of our hash values small (at most M) even when the
pattern string is long.

Rabin-Karp is a good example of a randomized algorithm (if we pick M in some
random way). We get no guarantee the algorithm runs in O(n+m) time, because we
may get unlucky and have the hash values regularly collide with spurious matches.
Still, the odds are heavily in our favor—if the hash function returns values uniformly
from 0 to M — 1, the probability of a false collision should be 1/M. This is quite
reasonable: if M = n, there should only be one false collision per string, and if
M =~ n* for k > 2, the odds are great we will never see any false collisions.

3.7.3 Duplicate Detection Via Hashing

The key idea of hashing is to represent a large object (be it a key, a string, or a
substring) using a single number. The goal is a representation of the large object
by an entity that can be manipulated in constant time, such that it is relatively
unlikely that two different large objects map to the same value.

Hashing has a variety of clever applications beyond just speeding up search. I
once heard Udi Manber—then Chief Scientist at Yahoo—talk about the algorithms
employed at his company. The three most important algorithms at Yahoo, he said,
were hashing, hashing, and hashing.

Consider the following problems with nice hashing solutions:

e Is a given document different from all the rest in a large corpus? — A search
engine with a huge database of n documents spiders yet another webpage.
How can it tell whether this adds something new to add to the database, or
is just a duplicate page that exists elsewhere on the Web?

Explicitly comparing the new document D to all n documents is hopelessly
inefficient for a large corpus. But we can hash D to an integer, and compare
it to the hash codes of the rest of the corpus. Only when there is a collision
is D a possible duplicate. Since we expect few spurious collisions, we can
explicitly compare the few documents sharing the exact hash code with little
effort.

3.8 SPECIALIZED DATA STRUCTURES

93

e s part of this document plagiarized from a document in a large corpus? — A
lazy student copies a portion of a Web document into their term paper. “The
Web is a big place,” he smirks. “How will anyone ever find which one?”

This is a more difficult problem than the previous application. Adding, delet-
ing, or changing even one character from a document will completely change
its hash code. Thus the hash codes produced in the previous application
cannot help for this more general problem.

However, we could build a hash table of all overlapping windows (substrings)
of length w in all the documents in the corpus. Whenever there is a match of
hash codes, there is likely a common substring of length w between the two
documents, which can then be further investigated. We should choose w to
be long enough so such a co-occurrence is very unlikely to happen by chance.

The biggest downside of this scheme is that the size of the hash table becomes
as large as the documents themselves. Retaining a small but well-chosen
subset of these hash codes (say those which are exact multiples of 100) for
each document leaves us likely to detect sufficiently long duplicate strings.

e How can I convince you that a file isn’t changed? — In a closed-bid auction,
each party submits their bid in secret before the announced deadline. If you
knew what the other parties were bidding, you could arrange to bid $1 more
than the highest opponent and walk off with the prize as cheaply as possible.
Thus the “right” auction strategy is to hack into the computer containing
the bids just prior to the deadline, read the bids, and then magically emerge
the winner.

How can this be prevented? What if everyone submits a hash code of their
actual bid prior to the deadline, and then submits the full bid after the dead-
line? The auctioneer will pick the largest full bid, but checks to make sure the
hash code matches that submitted prior to the deadline. Such cryptographic
hashing methods provide a way to ensure that the file you give me today is
the same as original, because any changes to the file will result in changing
the hash code.

Although the worst-case bounds on anything involving hashing are dismal, with
a proper hash function we can confidently expect good behavior. Hashing is a fun-
damental idea in randomized algorithms, yielding linear expected-time algorithms
for problems otherwise ©(nlogn), or ©(n?) in the worst case.

3.8 Specialized Data Structures

The basic data structures described thus far all represent an unstructured set of
items so as to facilitate retrieval operations. These data structures are well known
to most programmers. Not as well known are data structures for representing more

94

3.

DATA STRUCTURES

structured or specialized kinds of objects, such as points in space, strings, and
graphs.

The design principles of these data structures are the same as for basic objects.
There exists a set of basic operations we need to perform repeatedly. We seek a data
structure that supports these operations very efficiently. These efficient, specialized
data structures are important for efficient graph and geometric algorithms so one
should be aware of their existence. Details appear throughout the catalog.

e String data structures — Character strings are typically represented by arrays
of characters, perhaps with a special character to mark the end of the string.
Suffix trees/arrays are special data structures that preprocess strings to make
pattern matching operations faster. See Section 12.3 (page 377) for details.

o Geometric data structures — Geometric data typically consists of collections of
data points and regions. Regions in the plane can be described by polygons,
where the boundary of the polygon is given by a chain of line segments.
Polygons can be represented using an array of points (v1,...,v,,v1), such
that (v;,v;41) is a segment of the boundary. Spatial data structures such as
kd-trees organize points and regions by geometric location to support fast
search. For more details, see Section 12.6 (page 389).

e Graph data structures — Graphs are typically represented using either adja-
cency matrices or adjacency lists. The choice of representation can have a
substantial impact on the design of the resulting graph algorithms, as dis-
cussed in Chapter 6 and in the catalog in Section 12.4.

o Set data structures — Subsets of items are typically represented using a dictio-
nary to support fast membership queries. Alternately, bit vectors are boolean
arrays such that the ith bit represents true if i is in the subset. Data struc-
tures for manipulating sets is presented in the catalog in Section 12.5. The
union-find data structure for maintaining set partitions will be covered in
Section 6.1.3 (page 198).

3.9 War Story: String 'em Up

The human genome encodes all the information necessary to build a person. This
project has already had an enormous impact on medicine and molecular biology.
Algorists have become interested in the human genome project as well, for several
reasons:

e DNA sequences can be accurately represented as strings of characters on the
four-letter alphabet (A,C,T,G). Biologist’s needs have sparked new interest
in old algorithmic problems such as string matching (see Section 18.3 (page
628)) as well as creating new problems such as shortest common superstring
(see Section 18.9 (page 654)).

3.9 WAR STORY: STRING "EM UP 95

T A T C C
T T A T C
G TTAT
C GTT A
A CGTTATZCZCA

Figure 3.11: The concatenation of two fragments can be in .S only if all sub-fragments are

e DNA sequences are very long strings. The human genome is approximately
three billion base pairs (or characters) long. Such large problem size means
that asymptotic (Big-Oh) complexity analysis is usually fully justified on
biological problems.

e Enough money is being invested in genomics for computer scientists to want
to claim their piece of the action.

One of my interests in computational biology revolved around a proposed tech-
nique for DNA sequencing called sequencing by hybridization (SBH). This proce-
dure attaches a set of probes to an array, forming a sequencing chip. Each of these
probes determines whether or not the probe string occurs as a substring of the
DNA target. The target DNA can now be sequenced based on the constraints of
which strings are (and are not) substrings of the target.

We sought to identify all the strings of length 2k that are possible substrings
of an unknown string S, given the set of all length &k substrings of S. For example,
suppose we know that AC, CA, and C'C are the only length-2 substrings of S.
It is possible that ACCA is a substring of S, since the center substring is one of
our possibilities. However, CAAC cannot be a substring of S, since AA is not a
substring of S. We needed to find a fast algorithm to construct all the consistent
length-2k strings, since S could be very long.

The simplest algorithm to build the 2k strings would be to concatenate all O(n?)
pairs of k-strings together, and then test to make sure that all (k — 1) length-k
substrings spanning the boundary of the concatenation were in fact substrings, as
shown in Figure 3.11. For example, the nine possible concatenations of AC, C'A,
and CC are ACAC, ACCA, ACCC, CAAC, CACA, CACC, CCAC, CCCA,
and CCCC'. Only CAAC can be eliminated because of the absence of AA.

We needed a fast way of testing whether the & — 1 substrings straddling the
concatenation were members of our dictionary of permissible k-strings. The time
it takes to do this depends upon which dictionary data structure we use. A binary
search tree could find the correct string within O(logn) comparisons, where each

96

3.

DATA STRUCTURES

comparison involved testing which of two length-k strings appeared first in alpha-
betical order. The total time using such a binary search tree would be O(klogn).

That seemed pretty good. So my graduate student, Dimitris Margaritis, used a
binary search tree data structure for our implementation. It worked great up until
the moment we ran it.

“I’ve tried the fastest computer in our department, but our program is too slow,”
Dimitris complained. “It takes forever on string lengths of only 2,000 characters.
We will never get up to 50,000.”

We profiled our program and discovered that almost all the time was spent
searching in this data structure. This was no surprise since we did this k — 1 times
for each of the O(n?) possible concatenations. We needed a faster dictionary data
structure, since search was the innermost operation in such a deep loop.

“How about using a hash table?” I suggested. “It should take O(k) time to hash
a k-character string and look it up in our table. That should knock off a factor of
O(logn), which will mean something when n a~ 2,000.”

Dimitris went back and implemented a hash table implementation for our dic-
tionary. Again, it worked great up until the moment we ran it.

“Our program is still too slow,” Dimitris complained. “Sure, it is now about
ten times faster on strings of length 2,000. So now we can get up to about 4,000
characters. Big deal. We will never get up to 50,000.”

“We should have expected this,” T mused. “After all, 1g5(2,000) =~ 11. We need
a faster data structure to search in our dictionary of strings.”

“But what can be faster than a hash table?” Dimitris countered. “To look up
a k-character string, you must read all k characters. Our hash table already does
O(k) searching.”

“Sure, it takes k comparisons to test the first substring. But maybe we can do
better on the second test. Remember where our dictionary queries are coming from.
When we concatenate ABC'D with EFGH, we are first testing whether BCDFE
is in the dictionary, then CDEF'. These strings differ from each other by only one
character. We should be able to exploit this so each subsequent test takes constant
time to perform....”

“We can’t do that with a hash table,” Dimitris observed. “The second key is not
going to be anywhere near the first in the table. A binary search tree won’t help,
either. Since the keys ABC'D and BCDFE differ according to the first character,
the two strings will be in different parts of the tree.”

“But we can use a suffix tree to do this,” I countered. “A suffix tree is a trie
containing all the suffixes of a given set of strings. For example, the suffixes of
ACAC are {ACAC,CAC, AC,C}. Coupled with suffixes of string CACT, we get
the suffix tree of Figure 3.12. By following a pointer from ACAC to its longest
proper suffix CAC, we get to the right place to test whether CACT is in our set
of strings. One character comparison is all we need to do from there.”

Suffix trees are amazing data structures, discussed in considerably more detail
in Section 12.3 (page 377). Dimitris did some reading about them, then built a nice

3.9 WAR STORY: STRING "EM UP

97

Figure 3.12: Suffix tree on ACAC and CACT, with the pointer to the suffix of ACAC

suffix tree implementation for our dictionary. Once again, it worked great up until
the moment we ran it.

“Now our program is faster, but it runs out of memory,” Dimitris complained.
“The suffix tree builds a path of length k for each suffix of length &, so all told there
can be ©(n?) nodes in the tree. It crashes when we go beyond 2,000 characters.
We will never get up to strings with 50,000 characters.”

I wasn’t ready to give up yet. “There is a way around the space problem, by
using compressed suffix trees,” I recalled. “Instead of explicitly representing long
paths of character nodes, we can refer back to the original string.” Compressed
suffix trees always take linear space, as described in Section 12.3 (page 377).

Dimitris went back one last time and implemented the compressed suffix tree
data structure. Now it worked great! As shown in Figure 3.13, we ran our simu-
lation for strings of length n = 65,536 without incident. Our results showed that
interactive SBH could be a very efficient sequencing technique. Based on these
simulations, we were able to arouse interest in our technique from biologists. Mak-
ing the actual wet laboratory experiments feasible provided another computational
challenge, which is reported in Section 7.7 (page 263).

The take-home lessons for programmers from Figure 3.13 should be apparent.
We isolated a single operation (dictionary string search) that was being performed
repeatedly and optimized the data structure we used to support it. We started with
a simple implementation (binary search trees) in the hopes that it would suffice,
and then used profiling to reveal the trouble when it didn’t. When an improved
dictionary structure still did not suffice, we looked deeper into the kind of queries we
were performing, so that we could identify an even better data structure. Finally,
we didn’t give up until we had achieved the level of performance we needed. In
algorithms, as in life, persistence usually pays off.

98

3.

DATA STRUCTURES

String Binary Hash Suffix | Compressed
length tree table tree tree
8 0.0 0.0 0.0 0.0

16 0.0 0.0 0.0 0.0

32 0.1 0.0 0.0 0.0

64 0.3 0.4 0.3 0.0
128 2.4 1.1 0.5 0.0
256 17.1 9.4 3.8 0.2
512 31.6 67.0 6.9 1.3
1,024 1,828.9 96.6 31.5 2.7
2,048 | 11,441.7 941.7 553.6 39.0
4,096 | > 2 days 5,246.7 out of 45.4
8,192 > 2 days | memory 642.0
16,384 1,614.0
32,768 13,657.8
65,536 39,776.9

Figure 3.13: Run times (in seconds) for the SBH simulation using various data structures

Chapter Notes

Optimizing hash table performance is surprisingly complicated for such a concep-
tually simple data structure. The importance of short runs in open addressing has
led to more sophisticated schemes than sequential probing for optimal hash table
performance. For more details, see Knuth [Knu98].

Our triangle strip optimizing program, stripe, is described in [ESV96]. Hashing
techniques for plagiarism detection are discussed in [SWAOQ3].

Surveys of algorithmic issues in DNA sequencing by hybridization include
[CK94, PL94]. Our work on interactive SBH reported in the war story is reported
in [MS95a].

3.10 Exercises

Stacks, Queues, and Lists

3-1. [3] A common problem for compilers and text editors is determining whether the
parentheses in a string are balanced and properly nested. For example, the string
((0)O)() contains properly nested pairs of parentheses, which the strings)()(and
()) do not. Give an algorithm that returns true if a string contains properly nested
and balanced parentheses, and false if otherwise. For full credit, identify the position
of the first offending parenthesis if the string is not properly nested and balanced.

3.10 EXERCISES 99

3-2. [3] Write a program to reverse the direction of a given singly-linked list. In other
words, after the reversal all pointers should now point backwards. Your algorithm
should take linear time.

3-3. [5] We have seen how dynamic arrays enable arrays to grow while still achieving
constant-time amortized performance. This problem concerns extending dynamic
arrays to let them both grow and shrink on demand.

(a) Consider an underflow strategy that cuts the array size in half whenever the
array falls below half full. Give an example sequence of insertions and deletions
where this strategy gives a bad amortized cost.

(b) Then, give a better underflow strategy than that suggested above, one that
achieves constant amortized cost per deletion.

Trees and Other Dictionary Structures

3-4. [3] Design a dictionary data structure in which search, insertion, and deletion can
all be processed in O(1) time in the worst case. You may assume the set elements
are integers drawn from a finite set 1, 2, .., n, and initialization can take O(n) time.

3-5. [3] Find the overhead fraction (the ratio of data space over total space) for each
of the following binary tree implementations on n nodes:

(a) All nodes store data, two child pointers, and a parent pointer. The data field
requires four bytes and each pointer requires four bytes.

(b) Only leaf nodes store data; internal nodes store two child pointers. The data
field requires four bytes and each pointer requires two bytes.

3-6. [5] Describe how to modify any balanced tree data structure such that search,
insert, delete, minimum, and maximum still take O(logn) time each, but successor
and predecessor now take O(1) time each. Which operations have to be modified
to support this?

3-7. [5] Suppose you have access to a balanced dictionary data structure, which supports
each of the operations search, insert, delete, minimum, maximum, successor, and
predecessor in O(log n) time. Explain how to modify the insert and delete operations
so they still take O(logn) but now minimum and maximum take O(1) time. (Hint:
think in terms of using the abstract dictionary operations, instead of mucking about
with pointers and the like.)

3-8. [6] Design a data structure to support the following operations:

e insert(z,T) — Insert item z into the set T'.
o delete(k,T) — Delete the kth smallest element from 7.
e member(z,T) — Return true iff z € T.

All operations must take O(logn) time on an n-element set.

3-9. [8] A concatenate operation takes two sets S; and Sa, where every key in Sp
is smaller than any key in S2, and merges them together. Give an algorithm to
concatenate two binary search trees into one binary search tree. The worst-case
running time should be O(h), where h is the maximal height of the two trees.

100

DATA STRUCTURES

Applications of Tree Structures

3-10.

3-12.

3-13.

3-14.

[5] In the bin-packing problem, we are given n metal objects, each weighing between
zero and one kilogram. Our goal is to find the smallest number of bins that will
hold the n objects, with each bin holding one kilogram at most.

e The best-fit heuristic for bin packing is as follows. Consider the objects in the
order in which they are given. For each object, place it into the partially filled
bin with the smallest amount of extra room after the object is inserted.. If
no such bin exists, start a new bin. Design an algorithm that implements the
best-fit heuristic (taking as input the n weights w1, wa, ..., w, and outputting
the number of bins used) in O(nlogn) time.

e Repeat the above using the worst-fit heuristic, where we put the next object in
the partially filled bin with the largest amount of extra room after the object
is inserted.

. [5] Suppose that we are given a sequence of n values z1,x2,...,z, and seek to

quickly answer repeated queries of the form: given ¢ and j, find the smallest value
inxi,...,T;.

(a) Design a data structure that uses O(n?) space and answers queries in O(1)
time.

(b) Design a data structure that uses O(n) space and answers queries in O(logn)
time. For partial credit, your data structure can use O(nlogn) space and have
O(log n) query time.

[5] Suppose you are given an input set S of n numbers, and a black box that if
given any sequence of real numbers and an integer k instantly and correctly answers
whether there is a subset of input sequence whose sum is exactly k. Show how to
use the black box O(n) times to find a subset of S that adds up to k.

[5] Let A[l..n] be an array of real numbers. Design an algorithm to perform any
sequence of the following operations:

e Add(i,y) — Add the value y to the ith number.

e Partial-sum(i) — Return the sum of the first ¢ numbers, i.e. Z;Zl Alj].
There are no insertions or deletions; the only change is to the values of the numbers.

Each operation should take O(log n) steps. You may use one additional array of size
n as a work space.

[8] Extend the data structure of the previous problem to support insertions and
deletions. Each element now has both a key and a wvalue. An element is accessed
by its key. The addition operation is applied to the values, but the elements are
accessed by its key. The Partial sum operation is different.

o Add(k,y) — Add the value y to the item with key k.
o Insert(k,y) — Insert a new item with key &k and value y.

e Delete(k) — Delete the item with key k.

3.10 EXERCISES

101

3-15.

e Partial-sum(k) — Return the sum of all the elements currently in the set whose
key is less than £, i.e. sz<y Ti.

The worst case running time should still be O(nlogn) for any sequence of O(n)

operations.

[8] Design a data structure that allows one to search, insert, and delete an integer
X in O(1) time (i.e., constant time, independent of the total number of integers
stored). Assume that 1 < X <n and that there are m + n units of space available,
where m is the maximum number of integers that can be in the table at any one
time. (Hint: use two arrays A[l..n| and B[l..m].) You are not allowed to initialize
either A or B, as that would take O(m) or O(n) operations. This means the arrays
are full of random garbage to begin with, so you must be very careful.

Implementation Projects

3-16.

3-17.

[5] Implement versions of several different dictionary data structures, such as linked
lists, binary trees, balanced binary search trees, and hash tables. Conduct exper-
iments to assess the relative performance of these data structures in a simple ap-
plication that reads a large text file and reports exactly one instance of each word
that appears within it. This application can be efficiently implemented by main-
taining a dictionary of all distinct words that have appeared thus far in the text
and inserting/reporting each word that is not found. Write a brief report with your
conclusions.

[5] A Caesar shift (see Section 18.6 (page 641)) is a very simple class of ciphers for
secret messages. Unfortunately, they can be broken using statistical properties of
English. Develop a program capable of decrypting Caesar shifts of sufficiently long
texts.

Interview Problems

3-18.
3-19.

3-20.
3-21.

3-22.
3-23.
3-24.

3-25.

[3] What method would you use to look up a word in a dictionary?

[3] Imagine you have a closet full of shirts. What can you do to organize your shirts
for easy retrieval?

[4] Write a function to find the middle node of a singly-linked list.

[4] Write a function to compare whether two binary trees are identical. Identical
trees have the same key value at each position and the same structure.

[4] Write a program to convert a binary search tree into a linked list.
[4] Implement an algorithm to reverse a linked list. Now do it without recursion.

[5] What is the best data structure for maintaining URLSs that have been visited by
a Web crawler? Give an algorithm to test whether a given URL has already been
visited, optimizing both space and time.

[4] You are given a search string and a magazine. You seek to generate all the char-
acters in search string by cutting them out from the magazine. Give an algorithm
to efficiently determine whether the magazine contains all the letters in the search
string.

102

3.

DATA STRUCTURES

3-26.

3-27.

3-28.

3-29.

[4] Reverse the words in a sentence—i.e., “My name is Chris” becomes “Chris is
name My.” Optimize for time and space.

[5] Determine whether a linked list contains a loop as quickly as possible without
using any extra storage. Also, identify the location of the loop.

[5] You have an unordered array X of n integers. Find the array M containing
n elements where M; is the product of all integers in X except for X;. You may
not use division. You can use extra memory. (Hint: There are solutions faster than
O(n?).)

[6] Give an algorithm for finding an ordered word pair (e.g., “New York”) occurring
with the greatest frequency in a given webpage. Which data structures would you
use? Optimize both time and space.

Programming Challenges

These programming challenge problems with robot judging are available at
http://www.programming-challenges.com or hitp://online-judge.uva.es.

3-1.
3-2.
3-3.
3-4.

“Jolly Jumpers” — Programming Challenges 110201, UVA Judge 10038.
“Crypt Kicker” — Programming Challenges 110204, UVA Judge 843.
“Where’s Waldorf?” — Programming Challenges 110302, UVA Judge 10010.
“Crypt Kicker II” — Programming Challenges 110304, UVA Judge 850.

4
Sorting and Searching

Typical computer science students study the basic sorting algorithms at least three
times before they graduate: first in introductory programming, then in data struc-
tures, and finally in their algorithms course. Why is sorting worth so much atten-
tion? There are several reasons:

e Sorting is the basic building block that many other algorithms are built
around. By understanding sorting, we obtain an amazing amount of power
to solve other problems.

e Most of the interesting ideas used in the design of algorithms appear in the
context of sorting, such as divide-and-conquer, data structures, and random-
ized algorithms.

e Computers have historically spent more time sorting than doing anything
else. A quarter of all mainframe cycles were spent sorting data [Knu98]. Sort-
ing remains the most ubiquitous combinatorial algorithm problem in practice.

e Sorting is the most thoroughly studied problem in computer science. Liter-
ally dozens of different algorithms are known, most of which possess some
particular advantage over all other algorithms in certain situations.

In this chapter, we will discuss sorting, stressing how sorting can be applied to
solving other problems. In this sense, sorting behaves more like a data structure
than a problem in its own right. We then give detailed presentations of several
fundamental algorithms: heapsort, mergesort, quicksort, and distribution sort as
examples of important algorithm design paradigms. Sorting is also represented by
Section 14.1 (page 436) in the problem catalog.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_4,
(© Springer-Verlag London Limited 2008

104

4.

SORTING AND SEARCHING

4.1 Applications of Sorting

We will review several sorting algorithms and their complexities over the course of
this chapter. But the punch-line is this: clever sorting algorithms exist that run in
O(nlogn). This is a big improvement over naive O(n?) sorting algorithms for large
values of n. Consider the following table:

n n?/4 nlgn

10 25 33
100 2,500 664
1,000 250,000 9,965

10,000 25,000,000 132,877
100,000 2,500,000,000 1,660,960

You might still get away with using a quadratic-time algorithm even if n =
10,000, but quadratic-time sorting is clearly ridiculous once n > 100, 000.

Many important problems can be reduced to sorting, so we can use our clever
O(nlogn) algorithms to do work that might otherwise seem to require a quadratic
algorithm. An important algorithm design technique is to use sorting as a basic
building block, because many other problems become easy once a set of items is
sorted.

Consider the following applications:

e Searching — Binary search tests whether an item is in a dictionary in O(logn)
time, provided the keys are all sorted. Search preprocessing is perhaps the
single most important application of sorting.

e Closest pair — Given a set of n numbers, how do you find the pair of numbers
that have the smallest difference between them? Once the numbers are sorted,
the closest pair of numbers must lie next to each other somewhere in sorted
order. Thus, a linear-time scan through them completes the job, for a total
of O(nlogn) time including the sorting.

e Element uniqueness — Are there any duplicates in a given set of n items?
This is a special case of the closest-pair problem above, where we ask if there
is a pair separated by a gap of zero. The most efficient algorithm sorts the
numbers and then does a linear scan though checking all adjacent pairs.

o Frequency distribution — Given a set of n items, which element occurs the
largest number of times in the set? If the items are sorted, we can sweep
from left to right and count them, since all identical items will be lumped
together during sorting.

To find out how often an arbitrary element k occurs, look up k& using binary
search in a sorted array of keys. By walking to the left of this point until the
first the element is not k£ and then doing the same to the right, we can find

4.1 APPLICATIONS OF SORTING 105

Figure 4.1: The convex hull of a set of points (1), constructed by left-to-right insertion.

this count in O(logn + ¢) time, where ¢ is the number of occurrences of k.
Even better, the number of instances of k can be found in O(logn) time by
using binary search to look for the positions of both k — ¢ and k + € (where
€ is arbitrarily small) and then taking the difference of these positions.

e Selection — What is the kth largest item in an array? If the keys are placed
in sorted order, the kth largest can be found in constant time by simply
looking at the kth position of the array. In particular, the median element
(see Section 14.3 (page 445)) appears in the (n/2)nd position in sorted order.

e Convex hulls — What is the polygon of smallest area that contains a given
set of n points in two dimensions? The convex hull is like a rubber band
stretched over the points in the plane and then released. It compresses to
just cover the points, as shown in Figure 4.1(1). The convex hull gives a nice
representation of the shape of the points and is an important building block
for more sophisticated geometric algorithms, as discussed in the catalog in
Section 17.2 (page 568).

But how can we use sorting to construct the convex hull? Once you have the
points sorted by x-coordinate, the points can be inserted from left to right
into the hull. Since the right-most point is always on the boundary, we know
that it will appear in the hull. Adding this new right-most point may cause
others to be deleted, but we can quickly identify these points because they lie
inside the polygon formed by adding the new point. See the example in Figure
4.1(r). These points will be neighbors of the previous point we inserted, so
they will be easy to find and delete. The total time is linear after the sorting
has been done.

While a few of these problems (namely median and selection) can be solved in
linear time using more sophisticated algorithms, sorting provides quick and easy
solutions to all of these problems. It is a rare application where the running time

106

4.

SORTING AND SEARCHING

of sorting proves to be the bottleneck, especially a bottleneck that could have
otherwise been removed using more clever algorithmics. Never be afraid to spend
time sorting, provided you use an efficient sorting routine.

Take-Home Lesson: Sorting lies at the heart of many algorithms. Sorting the
data is one of the first things any algorithm designer should try in the quest
for efficiency.

Stop and Think: Finding the Intersection

Problem: Give an efficient algorithm to determine whether two sets (of size m and
n, respectively) are disjoint. Analyze the worst-case complexity in terms of m and
n, considering the case where m is substantially smaller than n.

Solution: At least three algorithms come to mind, all of which are variants of
sorting and searching:

e First sort the big set — The big set can be sorted in O(nlogn) time. We can
now do a binary search with each of the m elements in the second, looking
to see if it exists in the big set. The total time will be O((n + m)logn).

o First sort the small set — The small set can be sorted in O(mlogm) time. We
can now do a binary search with each of the n elements in the big set, looking
to see if it exists in the small one. The total time will be O((n + m)log m).

e Sort both sets — Observe that once the two sets are sorted, we no longer
have to do binary search to detect a common element. We can compare the
smallest elements of the two sorted sets, and discard the smaller one if they
are not identical. By repeating this idea recursively on the now smaller sets,
we can test for duplication in linear time after sorting. The total cost is
O(nlogn + mlogm + n+ m).

So, which of these is the fastest method? Clearly small-set sorting trumps big-
set sorting, since logm < logn when m < n. Similarly, (n + m)logm must be
asymptotically less than nlogn, since n +m < 2n when m < n. Thus, sorting the
small set is the best of these options. Note that this is linear when m is constant
in size.

Note that expected linear time can be achieved by hashing. Build a hash table
containing the elements of both sets, and verify that collisions in the same bucket
are in fact identical elements. In practice, this may be the best solution. J

4.2 PRAGMATICS OF SORTING

107

4.2 Pragmatics of Sorting

We have seen many algorithmic applications of sorting, and we will see several
efficient sorting algorithms. One issue stands between them: in what order do we
want our items sorted?

The answers to this basic question are application-specific. Consider the follow-
ing considerations:

e Increasing or decreasing order? — A set of keys S are sorted in ascending
order when S; < S;11 for all 1 < ¢ < n. They are in descending order when
S; > Sy for all 1 <4 < n. Different applications call for different orders.

o Sorting just the key or an entire record? — Sorting a data set involves main-
taining the integrity of complex data records. A mailing list of names, ad-
dresses, and phone numbers may be sorted by names as the key field, but it
had better retain the linkage between names and addresses. Thus, we need
to specify which field is the key field in any complex record, and understand
the full extent of each record.

o What should we do with equal keys? Elements with equal key values will all
bunch together in any total order, but sometimes the relative order among
these keys matters. Suppose an encyclopedia contains both Michael Jordan
(the basketball player) and Michael Jordan (the statistician). Which entry
should appear first? You may need to resort to secondary keys, such as article
size, to resolve ties in a meaningful way.

Sometimes it is required to leave the items in the same relative order as in
the original permutation. Sorting algorithms that automatically enforce this
requirement are called stable. Unfortunately few fast algorithms are stable.
Stability can be achieved for any sorting algorithm by adding the initial
position as a secondary key.

Of course we could make no decision about equal key order and let the ties fall
where they may. But beware, certain efficient sort algorithms (such as quick-
sort) can run into quadratic performance trouble unless explicitly engineered
to deal with large numbers of ties.

o What about non-numerical data?— Alphabetizing is the sorting of text strings.
Libraries have very complete and complicated rules concerning the relative
collating sequence of characters and punctuation. Is Skiena the same key as
skiena? Is Brown- Williams before or after Brown America, and before or after
Brown, John?

The right way to specify such matters to your sorting algorithm is with an
application-specific pairwise-element comparison function. Such a comparison func-
tion takes pointers to record items a and b and returns “<” if a < b, “>” if a > b,
or “="if a = b.

108

4.

SORTING AND SEARCHING

By abstracting the pairwise ordering decision to such a comparison function, we
can implement sorting algorithms independently of such criteria. We simply pass
the comparison function in as an argument to the sort procedure. Any reasonable
programming language has a built-in sort routine as a library function. You are
almost always better off using this than writing your own routine. For example,
the standard library for C contains the gsort function for sorting:

#include <stdlib.h>

void gsort(void *base, size_t nel, size_t width,
int (*compare) (const void *, const void *));

The key to using gsort is realizing what its arguments do. It sorts the first nel
elements of an array (pointed to by base), where each element is width-bytes long.
Thus we can sort arrays of 1-byte characters, 4-byte integers, or 100-byte records,
all by changing the value of width.

The ultimate desired order is determined by the compare function. It takes as
arguments pointers to two width-byte elements, and returns a negative number if
the first belongs before the second in sorted order, a positive number if the second
belongs before the first, or zero if they are the same. Here is a comparison function
to sort integers in increasing order:

int intcompare(int *i, int *j)

{
if (*i > *j) return (1);
if (*¥i < *j) return (-1);
return (0);

}

This comparison function can be used to sort an array a, of which the first n
elements are occupied, as follows:

gsort(a, n, sizeof(int), intcompare);

gsort suggests that quicksort is the algorithm implemented in this library func-
tion, although this is usually irrelevant to the user.

4.3 Heapsort: Fast Sorting via Data Structures

Sorting is a natural laboratory for studying algorithm design paradigms, since many
useful techniques lead to interesting sorting algorithms. The next several sections
will introduce algorithmic design techniques motivated by particular sorting algo-
rithms.

4.3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES

109

The alert reader should ask why we review the standard sorting when you
are better off not implementing them and using built-in library functions instead.
The answer is that the design techniques are very important for other algorithmic
problems you are likely to encounter.

We start with data structure design, because one of the most dramatic algo-
rithmic improvements via appropriate data structures occurs in sorting. Selection
sort is a simple-to-code algorithm that repeatedly extracts the smallest remaining
element from the unsorted part of the set:

SelectionSort(A)
For ¢ =1 ton do
Sort[i] = Find-Minimum from A
Delete-Minimum from A
Return(Sort)

A C language implementation of selection sort appeared back in Section 2.5.1
(page 41). There we partitioned the input array into sorted and unsorted regions. To
find the smallest item, we performed a linear sweep through the unsorted portion
of the array. The smallest item is then swapped with the ith item in the array
before moving on to the next iteration. Selection sort performs n iterations, where
the average iteration takes n/2 steps, for a total of O(n?) time.

But what if we improve the data structure? It takes O(1) time to remove a
particular item from an unsorted array once it has been located, but O(n) time
to find the smallest item. These are exactly the operations supported by priority
queues. So what happens if we replace the data structure with a better priority
queue implementation, either a heap or a balanced binary tree? Operations within
the loop now take O(logn) time each, instead of O(n). Using such a priority queue
implementation speeds up selection sort from O(n?) to O(nlogn).

The name typically given to this algorithm, heapsort, obscures the relationship
between them, but heapsort is nothing but an implementation of selection sort
using the right data structure.

4.3.1 Heaps

Heaps are a simple and elegant data structure for efficiently supporting the priority
queue operations insert and extract-min. They work by maintaining a partial order
on the set of elements which is weaker than the sorted order (so it can be efficient
to maintain) yet stronger than random order (so the minimum element can be
quickly identified).

Power in any hierarchically-structured organization is reflected by a tree, where
each node in the tree represents a person, and edge (x,y) implies that x directly
supervises (or dominates) y. The fellow at the root sits at the “top of the heap.”

In this spirit, a heap-labeled tree is defined to be a binary tree such that the
key labeling of each node dominates the key labeling of each of its children. In a

110 4. SORTING AND SEARCHING

1] 1492
1492 2| 1783

/ \ 3| 1776

1783 1776 4| 1804

/ \ / \ 5| 1865

6| 1945

1804 1865 1945 1963 71 1963
/ \ / 8| 1918
1918 2001 1941 9| 2001
10| 1941

Figure 4.2: A heap-labeled tree of important years from American history (1), with the corre-
sponding implicit heap representation (r)

min-heap, a node dominates its children by containing a smaller key than they do,
while in a maz-heap parent nodes dominate by being bigger. Figure 4.2(1) presents
a min-heap ordered tree of red-letter years in American history (kudos to you if
you can recall what happened each year).

The most natural implementation of this binary tree would store each key in
a node with pointers to its two children. As with binary search trees, the memory
used by the pointers can easily outweigh the size of keys, which is the data we are
really interested in.

The heap is a slick data structure that enables us to represent binary trees
without using any pointers. We will store data as an array of keys, and use the
position of the keys to implicitly satisfy the role of the pointers.

We will store the root of the tree in the first position of the array, and its left
and right children in the second and third positions, respectively. In general, we
will store the 2!=! keys of the Ith level of a complete binary tree from left-to-right
in positions 2/7! to 2! — 1, as shown in Figure 4.2(r). We assume that the array
starts with index 1 to simplify matters.

typedef struct {

item_type q[PQ_SIZE+1]; /* body of queue */

int n; /* number of queue elements */
} priority_queue;

What is especially nice about this representation is that the positions of the
parent and children of the key at position k are readily determined. The left child
of k sits in position 2k and the right child in 2k + 1, while the parent of k£ holds
court in position |k/2]. Thus we can move around the tree without any pointers.

4.3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES

111

pg_parent (int n)

{
if (n == 1) return(-1);
else return((int) n/2); /* implicitly take floor(n/2) */
}
pq_young_child(int n)
{
return(2 * n);
}

So, we can store any binary tree in an array without pointers. What is the
catch? Suppose our height h tree was sparse, meaning that the number of nodes
n < 2. All missing internal nodes still take up space in our structure, since we must
represent a full binary tree to maintain the positional mapping between parents
and children.

Space efficiency thus demands that we not allow holes in our tree—i.e., that each
level be packed as much as it can be. If so, only the last level may be incomplete.
By packing the elements of the last level as far to the left as possible, we can
represent an n-key tree using exactly n elements of the array. If we did not enforce
these structural constraints, we might need an array of size 2" to store the same
elements. Since all but the last level is always filled, the height h of an n element
heap is logarithmic because:

h
22i22lz+1_12n
=0

so h=|lgn].

This implicit representation of binary trees saves memory, but is less flexible
than using pointers. We cannot store arbitrary tree topologies without wasting
large amounts of space. We cannot move subtrees around by just changing a single
pointer, only by explicitly moving each of the elements in the subtree. This loss of
flexibility explains why we cannot use this idea to represent binary search trees,
but it works just fine for heaps.

Stop and Think: Who'’s where in the heap?

Problem: How can we efficiently search for a particular key in a heap?

Solution: We can’t. Binary search does not work because a heap is not a binary
search tree. We know almost nothing about the relative order of the n/2 leaf ele-
ments in a heap—certainly nothing that lets us avoid doing linear search through
them. 1

112

4.

SORTING AND SEARCHING

4.3.2 Constructing Heaps

Heaps can be constructed incrementally, by inserting each new element into the
left-most open spot in the array, namely the (n 4 1)st position of a previously
n-element heap. This ensures the desired balanced shape of the heap-labeled tree,
but does not necessarily maintain the dominance ordering of the keys. The new
key might be less than its parent in a min-heap, or greater than its parent in a
max-heap.

The solution is to swap any such dissatisfied element with its parent. The old
parent is now happy, because it is properly dominated. The other child of the old
parent is still happy, because it is now dominated by an element even more extreme
than its previous parent. The new element is now happier, but may still dominate
its new parent. We now recur at a higher level, bubbling up the new key to its
proper position in the hierarchy. Since we replace the root of a subtree by a larger
one at each step, we preserve the heap order elsewhere.

pa_insert(priority_queue *q, item_type x)

{
if (g->n >= PQ_SIZE)
printf ("Warning: priority queue overflow insert x=%d\n",x);
else {
g->n = (q->n) + 1;
g->ql g>n] = x;
bubble_up(q, gq->n);
}
}
bubble_up(priority_queue *q, int p)
{
if (pg_parent(p) == -1) return; /* at root of heap, no parent */
if (gq->qlpgq_parent(p)] > g->qlpl) {
pq_swap(q,p,pq_parent (p));
bubble_up(q, pg_parent(p));
}
}

This swap process takes constant time at each level. Since the height of an n-
element heap is |lgn], each insertion takes at most O(logn) time. Thus an initial
heap of n elements can be constructed in O(nlogn) time through n such insertions:

pg_init(priority_queue *q)
{

g->n = 0;
}

4.3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES

113

make_heap(priority_queue *q, item_type s[], int n)

{
int i; /* counter */
pq_init(q);
for (i=0; i<n; i++)
pq_insert(q, s[il);
}

4.3.3 Extracting the Minimum

The remaining priority queue operations are identifying and deleting the dominant
element. Identification is easy, since the top of the heap sits in the first position of
the array.

Removing the top element leaves a hole in the array. This can be filled by
moving the element from the right-most leaf (sitting in the mth position of the
array) into the first position.

The shape of the tree has been restored but (as after insertion) the labeling of
the root may no longer satisfy the heap property. Indeed, this new root may be
dominated by both of its children. The root of this min-heap should be the smallest
of three elements, namely the current root and its two children. If the current root
is dominant, the heap order has been restored. If not, the dominant child should
be swapped with the root and the problem pushed down to the next level.

This dissatisfied element bubbles down the heap until it dominates all its chil-
dren, perhaps by becoming a leaf node and ceasing to have any. This percolate-down
operation is also called heapify, because it merges two heaps (the subtrees below
the original root) with a new key.

item_type extract_min(priority_queue *q)
{

int min = -1; /* minimum value */

if (g->n <= 0) printf("Warning: empty priority queue.\n");

else {
min = gq->q[1];
q->q[1] = g->q[g->n 1;
q—>n = g->n - 1;
bubble_down(q,1);

}

return(min) ;

114 4. SORTING AND SEARCHING

bubble_down(priority_queue *q, int p)

{
int c; /* child index */
int 1i; /* counter x/
int min_index; /* index of lightest child */
¢ = pg_young_child(p);
min_index = p;
for (i=0; i<=1; i++)
if ((c+i) <= g->n) {
if (gq->qmin_index] > g->qlc+i]) min_index = c+i;
}
if (min_index !'= p) {
pq_swap(q,p,min_index) ;
bubble_down(q, min_index);
¥
}

We will reach a leaf after |lgn| bubble_down steps, each constant time. Thus
root deletion is completed in O(logn) time.

Exchanging the maximum element with the last element and calling heapify
repeatedly gives an O(nlogn) sorting algorithm, named Heapsort.

heapsort(item_type s[], int n)

{
int i; /* counters */
priority_queue q; /* heap for heapsort */
make_heap(&q,s,n);
for (i=0; i<n; i++)
s[i] = extract_min(&q);
}

Heapsort is a great sorting algorithm. It is simple to program; indeed, the
complete implementation has been presented above. It runs in worst-case O(n logn)
time, which is the best that can be expected from any sorting algorithm. It is an in-
place sort, meaning it uses no extra memory over the array containing the elements
to be sorted. Although other algorithms prove slightly faster in practice, you won’t
go wrong using heapsort for sorting data that sits in the computer’s main memory.

4.3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 115

Priority queues are very useful data structures. Recall they were the hero of
the war story described in Section 3.6 (page 85). A complete set of priority queue
implementations is presented in catalog Section 12.2 (page 373).

4.3.4 Faster Heap Construction (*)

As we have seen, a heap can be constructed on n elements by incremental insertion
in O(nlogn) time. Surprisingly, heaps can be constructed even faster by using our
bubble_down procedure and some clever analysis.

Suppose we pack the n keys destined for our heap into the first n elements of
our priority-queue array. The shape of our heap will be right, but the dominance
order will be all messed up. How can we restore it?

Consider the array in reverse order, starting from the last (nth) position. It
represents a leaf of the tree and so dominates its nonexistent children. The same
is the case for the last n/2 positions in the array, because all are leaves. If we
continue to walk backwards through the array we will finally encounter an internal
node with children. This element may not dominate its children, but its children
represent well-formed (if small) heaps.

This is exactly the situation the bubble_down procedure was designed to handle,
restoring the heap order of arbitrary root element sitting on top of two sub-heaps.
Thus we can create a heap by performing n/2 non-trivial calls to the bubble_down
procedure:

make_heap(priority_queue *q, item_type s[], int n)

{
int i; /* counter */
q->n = n;
for (i=0; i<mn; i++) g->ql[i+1] = s[i]l;
for (i=q->n/2; i>=1; i--) bubble_down(q,i);
}

Multiplying the number of calls to bubble_down (n) times an upper bound on
the cost of each operation (O(logn)) gives us a running time analysis of O(nlogn).
This would make it no faster than the incremental insertion algorithm described
above.

But note that it is indeed an upper bound, because only the last insertion will
actually take |lgn| steps. Recall that bubble_down takes time proportional to the
height of the heaps it is merging. Most of these heaps are extremely small. In a
full binary tree on n nodes, there are n/2 nodes that are leaves (i.e., height 0), n/4

116

4.

SORTING AND SEARCHING

nodes that are height 1, n/8 nodes that are height 2, and so on. In general, there
are at most [n/2"*1] nodes of height h, so the cost of building a heap is:

llgn| llgn|

Z [n/2" 1 h <n Z h/2" < 2n

h=0 h=0

Since this sum is not quite a geometric series, we can’t apply the usual identity
to get the sum, but rest assured that the puny contribution of the numerator (h)
is crushed by the denominator (2"). The series quickly converges to linear.

Does it matter that we can construct heaps in linear time instead of O(nlogn)?
Usually not. The construction time did not dominate the complexity of heapsort,
so improving the construction time does not improve its worst-case performance.
Still, it is an impressive display of the power of careful analysis, and the free lunch
that geometric series convergence can sometimes provide.

Stop and Think: Where in the Heap?

Problem: Given an array-based heap on n elements and a real number z, efficiently
determine whether the kth smallest element in the heap is greater than or equal
to x. Your algorithm should be O(k) in the worst-case, independent of the size of
the heap. Hint: you do not have to find the kth smallest element; you need only
determine its relationship to x.

Solution: There are at least two different ideas that lead to correct but inefficient
algorithms for this problem:

1. Call extract-min k times, and test whether all of these are less than x. This
explicitly sorts the first k elements and so gives us more information than
the desired answer, but it takes O(klogn) time to do so.

2. The kth smallest element cannot be deeper than the kth level of the heap,
since the path from it to the root must go through elements of decreasing
value. Thus we can look at all the elements on the first k levels of the heap,
and count how many of them are less than x, stopping when we either find k
of them or run out of elements. This is correct, but takes O(min(n, 2)) time,
since the top k elements have 2F elements.

An O(k) solution can look at only & elements smaller than z, plus at most O(k)
elements greater than x. Consider the following recursive procedure, called at the
root with ¢ = 1 with count = k:

4.3 HEAPSORT: FAST SORTING VIA DATA STRUCTURES 117

int heap_compare(priority_queue *q, int i, int count, int x)
{

if ((count <= 0) || (i > g->n)) return(count);

if (g->qli] < x) {
count = heap_compare(q, pg_young_child(i), count-1, x);
count = heap_compare(q, pg_young_child(i)+1, count, x);

}

return(count) ;

If the root of the min-heap is > x, then no elements in the heap can be less than
x, as by definition the root must be the smallest element. This procedure searches
the children of all nodes of weight smaller than z until either (a) we have found
k of them, when it returns 0, or (b) they are exhausted, when it returns a value
greater than zero. Thus it will find enough small elements if they exist.

But how long does it take? The only nodes whose children we look at are those
< z, and at most k of these in total. Each have at most visited two children, so we
visit at most 3k nodes, for a total time of O(k). I

4.3.5 Sorting by Incremental Insertion

Now consider a different approach to sorting via efficient data structures. Select an
arbitrary element from the unsorted set, and put it in the proper position in the
sorted set.

InsertionSort(A)
Al0] = —
fori=2ton do
j=1
while (A[j] < A[j —1]) do
swap(A[j], A[j —1])
J=j—1

A C language implementation of insertion sort appeared in Section 2.5.2 (page
43). Although insertion sort takes O(n?) in the worst case, it performs considerably
better if the data is almost sorted, since few iterations of the inner loop suffice to
sift it into the proper position.

Insertion sort is perhaps the simplest example of the incremental insertion tech-
nique, where we build up a complicated structure on n items by first building it on
n—1 items and then making the necessary changes to add the last item. Incremental
insertion proves a particularly useful technique in geometric algorithms.

118

4.

SORTING AND SEARCHING

Note that faster sorting algorithms based on incremental insertion follow from
more efficient data structures. Insertion into a balanced search tree takes O(logn)
per operation, or a total of O(nlogn) to construct the tree. An in-order traversal
reads through the elements in sorted order to complete the job in linear time.

4.4 War Story: Give me a Ticket on an Airplane

I came into this particular job seeking justice. I'd been retained by an air travel
company to help design an algorithm to find the cheapest available airfare from
city x to city y. Like most of you, I suspect, I'd been baffled at the crazy price
fluctuations of ticket prices under modern “yield management.” The price of flights
seems to soar far more efficiently than the planes themselves. The problem, it
seemed to me, was that airlines never wanted to show the true cheapest price. By
doing my job right, I could make damned sure they would show it to me next time.

“Look,” I'said at the start of the first meeting. “This can’t be so hard. Construct
a graph with vertices corresponding to airports, and add an edge between each
airport pair (u,v) which shows a direct flight from u to v. Set the weight of this
edge equal to the cost of the cheapest available ticket from u to v. Now the cheapest
fair from x to y is given by the shortest z-y path in this graph. This path/fare can
be found using Dijkstra’s shortest path algorithm. Problem solved!” I announced,
waiving my hand with a flourish.

The assembled cast of the meeting nodded thoughtfully, then burst out laugh-
ing. It was I who needed to learn something about the overwhelming complexity
of air travel pricing. There are literally millions of different fares available at any
time, with prices changing several times daily. Restrictions on the availability of a
particular fare in a particular context is enforced by a complicated set of pricing
rules. These rules are an industry-wide kludge—a complicated structure with little
in the way of consistent logical principles, which is exactly what we would need to
search efficiently for the minimum fare. My favorite rule exceptions applied only to
the country of Malawi. With a population of only 12 million and per-capita income
of $596 (179th in the world), they prove to be an unexpected powerhouse shaping
world aviation price policy. Accurately pricing any air itinerary requires at least
implicit checks to ensure the trip doesn’t take us through Malawi.

Part of the real problem is that there can easily be 100 different fares for the first
flight leg, say from Los Angeles (LAX) to Chicago (ORD), and a similar number for
each subsequent leg, say from Chicago to New York (JFK). The cheapest possible
LAX-ORD fare (maybe an AARP children’s price) might not be combinable with
the cheapest ORD-JFK fare (perhaps a pre-Ramadan special that can only be used
with subsequent connections to Mecca).

After being properly chastised for oversimplifying the problem, I got down to
work. I started by reducing the problem to the simplest interesting case. “So, you

4.4 WAR STORY: GIVE ME A TICKET ON AN AIRPLANE 119

X+Y
$150 (1,1)
X Y $160 (2,1)

— — $175 (1,2)
$100 $50 $180 (3,1)

$110 $75 $185 (2,2)
$205 (2.3)
$130 $125 $225 (1,3)

$235 (2,3)
$255 (3,3)

Figure 4.3: Sorting the pairwise sums of lists X and Y.

need to find the cheapest two-hop fare that passes your rule tests. Is there a way
to decide in advance which pairs will pass without explicitly testing them?”

“No, there is no way to tell,” they assured me. “We can only consult a
black box routine to decide whether a particular price is available for the given
itinerary /travelers.”

“So our goal is to call this black box on the fewest number of combinations.
This means evaluating all possible fare combinations in order from cheapest to
most expensive, and stopping as soon as we encounter the first legal combination.”

“Right.”

“Why not construct the m x n possible price pairs, sort them in terms of cost,
and evaluate them in sorted order? Clearly this can be done in O(nmlog(nm))
time.” !

“That is basically what we do now, but it is quite expensive to construct the
full set of m x n pairs, since the first one might be all we need.”

I caught a whiff of an interesting problem. “So what you really want is an
efficient data structure to repeatedly return the next most expensive pair without
constructing all the pairs in advance.”

This was indeed an interesting problem. Finding the largest element in a set
under insertion and deletion is exactly what priority queues are good for. The catch
here is that we could not seed the priority queue with all values in advance. We
had to insert new pairs into the queue after each evaluation.

I constructed some examples, like the one in Figure 4.3. We could represent
each fare by the list indexes of its two components. The cheapest single fare will
certainly be constructed by adding up the cheapest component from both lists,

IThe question of whether all such sums can be sorted faster than nm arbitrary integers is a notorious open
problem in algorithm theory. See [Fre76, Lam92] for more on X + Y sorting, as the problem is known.

120

4.

SORTING AND SEARCHING

described (1,1). The second cheapest fare would be made from the head of one
list and the second element of another, and hence would be either (1,2) or (2,1).
Then it gets more complicated. The third cheapest could either be the unused pair
above or (1,3) or (3,1). Indeed it would have been (3,1) in the example above if
the third fare of X had been $120.

“Tell me,” T asked. “Do we have time to sort the two respective lists of fares in
increasing order?”

“Don’t have to.” the leader replied. “They come out in sorted order from the
database.”

Good news. That meant there was a natural order to the pair values. We never
need to evaluate the pairs (i + 1,7) or (i,7 + 1) before (i, 7), because they clearly
define more expensive fares.

“Got it!,” I said. “We will keep track of index pairs in a priority queue, with the
sum of the fare costs as the key for the pair. Initially we put only pair (1,1) on the
queue. If it proves it is not feasible, we put its two successors on—namely (1,2) and
(2,1). In general, we enqueue pairs (i+1,5) and (¢, j+ 1) after evaluating/rejecting
pair (i, 7). We will get through all the pairs in the right order if we do so.”

The gang caught on quickly. “Sure. But what about duplicates? We will con-
struct pair (x,y) two different ways, both when expanding (z—1,y) and (z,y—1).”

“You are right. We need an extra data structure to guard against duplicates.
The simplest might be a hash table to tell us whether a given pair exists in the
priority queue before we insert a duplicate. In fact, we will never have more than n
active pairs in our data structure, since there can only be one pair for each distinct
value of the first coordinate.”

And so it went. Our approach naturally generalizes to itineraries with more
than two legs, (a complexity which grows with the number of legs). The best-
first evaluation inherent in our priority queue enabled the system to stop as soon
as it found the provably cheapest fare. This proved to be fast enough to provide
interactive response to the user. That said, I haven’t noticed my travel tickets
getting any cheaper.

4.5 Mergesort: Sorting by Divide-and-Conquer

Recursive algorithms reduce large problems into smaller ones. A recursive approach
to sorting involves partitioning the elements into two groups, sorting each of the
smaller problems recursively, and then interleaving the two sorted lists to totally
order the elements. This algorithm is called mergesort, recognizing the importance
of the interleaving operation:

Mergesort(A[1,n])
Merge(MergeSort(A[1, [n/2]]), MergeSort(A[|n/2| + 1,n]))

The basis case of the recursion occurs when the subarray to be sorted consists
of a single element, so no rearrangement is possible. A trace of the execution of

4.5 MERGESORT: SORTING BY DIVIDE-AND-CONQUER

121

MERGESORT

/ \
MERGE SORT
— — _— T/

M E R G E S O RT
—
wz | LS
— ~
M E R G E S O R T
~
v [
~
EMR EG oS RT
= = -
EEGMR ORST
—_— —

EEGMORRST

Figure 4.4: Animation of mergesort in action

mergesort is given in Figure 4.4. Picture the action as it happens during an in-
order traversal of the top tree, with the array-state transformations reported in
the bottom, reflected tree.

The efficiency of mergesort depends upon how efficiently we combine the two
sorted halves into a single sorted list. We could concatenate them into one list and
call heapsort or some other sorting algorithm to do it, but that would just destroy
all the work spent sorting our component lists.

Instead we can merge the two lists together. Observe that the smallest overall
item in two lists sorted in increasing order (as above) must sit at the top of one
of the two lists. This smallest element can be removed, leaving two sorted lists
behind—one slightly shorter than before. The second smallest item overall must
be atop one of these lists. Repeating this operation until both lists are empty
merges two sorted lists (with a total of n elements between them) into one, using
at most n — 1 comparisons or O(n) total work.

What is the total running time of mergesort? It helps to think about how much
work is done at each level of the execution tree. If we assume for simplicity that n
is a power of two, the kth level consists of all the 2* calls to mergesort processing
subranges of n/2% elements.

The work done on the (k = 0)th level involves merging two sorted lists, each of
size n /2, for a total of at most n — 1 comparisons. The work done on the (k = 1)th
level involves merging two pairs of sorted lists, each of size n/4, for a total of at
most n—2 comparisons. In general, the work done on the kth level involves merging
2% pairs sorted list, each of size n/2**!, for a total of at most n — 2¥ comparisons.
Linear work is done merging all the elements on each level. Each of the n elements

122

4.

SORTING AND SEARCHING

appears in exactly one subproblem on each level. The most expensive case (in terms
of comparsions) is actually the top level.

The number of elements in a subproblem gets halved at each level. Thus the
number of times we can halve n until we get to 1 is [lg, n]. Because the recursion
goes lgn levels deep, and a linear amount of work is done per level, mergesort takes
O(nlogn) time in the worst case.

Mergesort is a great algorithm for sorting linked lists, because it does not rely on
random access to elements as does heapsort or quicksort. Its primary disadvantage
is the need for an auxilliary buffer when sorting arrays. It is easy to merge two
sorted linked lists without using any extra space, by just rearranging the pointers.
However, to merge two sorted arrays (or portions of an array), we need use a third
array to store the result of the merge to avoid stepping on the component arrays.
Consider merging {4,5,6} with {1,2, 3}, packed from left to right in a single array.
Without a buffer, we would overwrite the elements of the top half during merging
and lose them.

Mergesort is a classic divide-and-conquer algorithm. We are ahead of the game
whenever we can break one large problem into two smaller problems, because the
smaller problems are easier to solve. The trick is taking advantage of the two
partial solutions to construct a solution of the full problem, as we did with the
merge operation.

Implementation
The divide-and-conquer mergesort routine follows naturally from the pseudocode:

mergesort (item_type s[], int low, int high)

{
int middle; /* index of middle element */
if (low < high) {
middle = (low+high)/2;
mergesort(s,low,middle);
mergesort(s,middle+1,high);
merge(s, low, middle, high);
}
}

More challenging turns out to be the details of how the merging is done. The
problem is that we must put our merged array somewhere. To avoid losing an
element by overwriting it in the course of the merge, we first copy each subarray
to a separate queue and merge these elements back into the array. In particular:

4.6 QUICKSORT: SORTING BY RANDOMIZATION

123

merge (item_type s[], int low, int middle, int high)
{
int i; /* counter */
queue bufferl, buffer2; /* buffers to hold elements for merging */

init_queue(&bufferl);
init_queue(&buffer?2);

for (i=low; i<=middle; i++) enqueue(&bufferl,s[i]);
for (i=middle+1; i<=high; i++) enqueue(&buffer2,s[i]);

i = low;
while (! (empty_queue(&bufferl) || empty_queue(&buffer2))) {
if (headq(&bufferl) <= headq(&buffer2))
s[i++] = dequeue(&bufferl);
else
s[i++] = dequeue(&buffer?2);
}

while (!empty_queue(&buffer1l)) s[i++] = dequeue(&bufferl);
while (!empty_queue(&buffer2)) s[i++] = dequeue(&buffer2);

4.6 Quicksort: Sorting by Randomization

Suppose we select a random item p from the n items we seek to sort. Quicksort
(shown in action in Figure 4.5) separates the n — 1 other items into two piles: a
low pile containing all the elements that appear before p in sorted order and a
high pile containing all the elements that appear after p in sorted order. Low and
high denote the array positions we place the respective piles, leaving a single slot
between them for p.

Such partitioning buys us two things. First, the pivot element p ends up in
the exact array position it will reside in the the final sorted order. Second, after
partitioning no element flops to the other side in the final sorted order. Thus we
can now sort the elements to the left and the right of the pivot independently! This
gives us a recursive sorting algorithm, since we can use the partitioning approach to
sort each subproblem. The algorithm must be correct since each element ultimately
ends up in the proper position:

124 4. SORTING AND SEARCHING

QUICKSOR[T]
Q1cksoR T
Qrck[ojrsTU

ICOQRSTU

IKOQRSTU
CIKOORSTU

Figure 4.5: Animation of quicksort in action

quicksort(item_type s[], int 1, int h)

{
int p; /* index of partition */
if ((h-1)>0) {
p = partition(s,1l,h);
quicksort(s,1l,p-1);
quicksort(s,p+1,h);
}
}

We can partition the array in one linear scan for a particular pivot element
by maintaining three sections of the array: less than the pivot (to the left of
firsthigh), greater than or equal to the pivot (between firsthigh and i), and
unexplored (to the right of i), as implemented below:

int partition(item_type s[], int 1, int h)

{
int i; /* counter */
int p; /* pivot element index */
int firsthigh; /* divider position for pivot element */
P =h;

firsthigh = 1;
for (i=1; i<h; i++)
if (s[i] < slpD) {
swap (&s[i],&s[firsthigh]);
firsthigh ++;
}
swap (&s[p] ,&s[firsthighl);

return(firsthigh);

4.6 QUICKSORT: SORTING BY RANDOMIZATION 125

— — B | |
Toad, o +
[TT1] LIT) LCLT] LT 1] L]] |

Figure 4.6: The best-case (1) and worst-case (r) recursion trees for quicksort

Since the partitioning step consists of at most n swaps, it takes linear time in the
number of keys. But how long does the entire quicksort take? As with mergesort,
quicksort builds a recursion tree of nested subranges of the n-element array. As with
mergesort, quicksort spends linear time processing (now partitioning instead of
mergeing) the elements in each subarray on each level. As with mergesort, quicksort
runs in O(n - h) time, where h is the height of the recursion tree.

The difficulty is that the height of the tree depends upon where the pivot
element ends up in each partition. If we get very lucky and happen to repeatedly
pick the median element as our pivot, the subproblems are always half the size
of the previous level. The height represents the number of times we can halve n
until we get down to 1, or at most [lg, n]. This happy situation is shown in Figure
4.6(1), and corresponds to the best case of quicksort.

Now suppose we consistently get unlucky, and our pivot element always splits
the array as unequally as possible. This implies that the pivot element is always
the biggest or smallest element in the sub-array. After this pivot settles into its
position, we are left with one subproblem of size n — 1. We spent linear work and
reduced the size of our problem by one measly element, as shown in Figure 4.6(r).
It takes a tree of height n — 1 to chop our array down to one element per level, for
a worst case time of ©(n?).

Thus, the worst case for quicksort is worse than heapsort or mergesort. To
justify its name, quicksort had better be good in the average case. Understanding
why requires some intuition about random sampling.

4.6.1 Intuition: The Expected Case for Quicksort

The expected performance of quicksort depends upon the height of the partition
tree constructed by random pivot elements at each step. Mergesort ran in O(n logn)
time because we split the keys into two equal halves, sorted them recursively, and
then merged the halves in linear time. Thus, whenever our pivot element is near
the center of the sorted array (i.e., the pivot is close to the median element), we
get a good split and realize the same performance as mergesort.

126

4.

SORTING AND SEARCHING

1 n/4 n/2 3n/4 n

Figure 4.7: Half the time, the pivot is close to the median element

I will give an intuitive explanation of why quicksort is O(nlogn) in the average
case. How likely is it that a randomly selected pivot is a good one? The best possible
selection for the pivot would be the median key, because exactly half of elements
would end up left, and half the elements right, of the pivot. Unfortunately, we only
have a probability of 1/n of randomly selecting the median as pivot, which is quite
small.

Suppose a key is a good enough pivot if it lies in the center half of the sorted
space of keys—i.e., those ranked from n/4 to 3n/4 in the space of all keys to be
sorted. Such good enough pivot elements are quite plentiful, since half the elements
lie closer to the middle than one of the two ends (see Figure 4.7). Thus, on each
selection we will pick a good enough pivot with probability of 1/2.

Can you flip a coin so it comes up tails each time? Not without cheating. If
you flip a fair coin n times, it will come out heads about half the time. Let heads
denote the chance of picking a good enough pivot.

The worst possible good enough pivot leaves the bigger half of the space partition
with 3n/4 items. What is the height h, of a quicksort partition tree constructed
repeatedly from the worst-possible good enough pivot? The deepest path through
this tree passes through partitions of size n, (3/4)n, (3/4)%n, ..., down to 1. How
many times can we multiply n by 3/4 until it gets down to 17

(3/4)"n =1 = n = (4/3)hs

0 hy = logy /3 n.

But only half of all randomly selected pivots will be good enough. The rest we
classify as bad. The worst of these bad pivots will do essentially nothing to reduce
the partition size along the deepest path. The deepest path from the root through
a typical randomly-constructed quicksort partition tree will pass through roughly
equal numbers of good-enough and bad pivots. Since the expected number of good
splits and bad splits is the same, the bad splits can only double the height of the
tree, so h a2 2h, = 2log, /3, which is clearly ©(logn).

On average, random quicksort partition trees (and by analogy, binary search
trees under random insertion) are very good. More careful analysis shows the av-
erage height after n insertions is approximately 2Inn. Since 2lnn ~ 1.3861g, n,
this is only 39% taller than a perfectly balanced binary tree. Since quicksort does
O(n) work partitioning on each level, the average time is O(nlogn). If we are ez-
tremely unlucky and our randomly selected elements always are among the largest
or smallest element in the array, quicksort turns into selection sort and runs in
O(n?). However, the odds against this are vanishingly small.

4.6 QUICKSORT: SORTING BY RANDOMIZATION

127

4.6.2 Randomized Algorithms

There is an important subtlety about the expected case O(nlogn) running time for
quicksort. Our quicksort implementation above selected the last element in each
sub-array as the pivot. Suppose this program were given a sorted array as input. If
so, at each step it would pick the worst possible pivot and run in quadratic time.

For any deterministic method of pivot selection, there exists a worst-case input
instance which will doom us to quadratic time. The analysis presented above made
no claim stronger than:

“Quicksort runs in ©(nlogn) time, with high probability, if you give
me randomly ordered data to sort.”

But now suppose we add an initial step to our algorithm where we randomly
permute the order of the n elements before we try to sort them. Such a permutation
can be constructed in O(n) time (see Section 13.7 for details). This might seem like
wasted effort, but it provides the guarantee that we can expect ©(nlogn) running
time whatever the initial input was. The worst case performance still can happen,
but it depends only upon how unlucky we are. There is no longer a well-defined
“worst case” input. We now can say

“Randomized quicksort runs in ©(nlogn) time on any input, with high
probability.”

Alternately, we could get the same guarantee by selecting a random element to be
the pivot at each step.

Randomization is a powerful tool to improve algorithms with bad worst-case
but good average-case complexity. It can be used to make algorithms more robust
to boundary cases and more efficient on highly structured input instances that
confound heuristic decisions (such as sorted input to quicksort). It often lends
itself to simple algorithms that provide randomized performance guarantees which
are otherwise obtainable only using complicated deterministic algorithms.

Proper analysis of randomized algorithms requires some knowledge of probabil-
ity theory, and is beyond the scope of this book. However, some of the approaches
to designing efficient randomized algorithms are readily explainable:

o Random sampling — Want to get an idea of the median value of n things but
don’t have either the time or space to look at them all? Select a small random
sample of the input and study those, for the results should be representative.

This is the idea behind opinion polling. Biases creep in unless you take a
truly random sample, as opposed to the first x people you happen to see. To
avoid bias, actual polling agencies typically dial random phone numbers and
hope someone answers.

o Randomized hashing — We have claimed that hashing can be used to imple-
ment dictionary operations in O(1) “expected-time.” However, for any hash

128

4.

SORTING AND SEARCHING

function there is a given worst-case set of keys that all get hashed to the same
bucket. But now suppose we randomly select our hash function from a large
family of good ones as the first step of our algorithm. We get the same type
of improved guarantee that we did with randomized quicksort.

e Randomized search — Randomization can also be used to drive search tech-
niques such as simulated annealing, as will be discussed in detail in Section
7.5.3 (page 254).

Stop and Think: Nuts and Bolts

Problem: The nuts and bolts problem is defined as follows. You are given a collection
of n bolts of different widths, and n corresponding nuts. You can test whether a
given nut and bolt fit together, from which you learn whether the nut is too large,
too small, or an exact match for the bolt. The differences in size between pairs of
nuts or bolts are too small to see by eye, so you cannot compare the sizes of two
nuts or two bolts directly. You are to match each bolt to each nut.

Give an O(n?) algorithm to solve the nuts and bolts problem. Then give a
randomized O(nlogn) expected time algorithm for the same problem.

Solution: The brute force algorithm for matching nuts and bolts starts with the
first bolt and compares it to each nut until we find a match. In the worst case, this
will require n comparisons. Repeating this for each successive bolt on all remaining
nuts yields a quadratic-comparison algorithm.

What if we pick a random bolt and try it? On average, we would expect to
get about halfway through the set of nuts before we found the match, so this
randomized algorithm would do half the work as the worst case. That counts as
some kind of improvement, although not an asymptotic one.

Randomized quicksort achieves the desired expected-case running time, so a
natural idea is to emulate it on the nuts and bolts problem. Indeed, sorting both
the nuts and bolts by size would yield a matching, since the ith largest nut must
match the ith largest bolt.

The fundamental step in quicksort is partitioning elements around a pivot. Can
we partition nuts and bolts around a randomly selected bolt b7 Certainly we can
partition the nuts into those of size less than b and greater than b. But decomposing
the problem into two halves requires partitioning the bolts as well, and we cannot
compare bolt against bolt. But once we find the matching nut to b we can use it to
partition the bolts accordingly. In 2n — 2 comparisons, we partition the nuts and
bolts, and the remaining analysis follows directly from randomized quicksort.

What is interesting about this problem is that no simple deterministic algorithm
for nut and bolt sorting is known. It illustrates how randomization makes the bad
case go away, leaving behind a simple and beautiful algorithm.

4.7 DISTRIBUTION SORT: SORTING VIA BUCKETING

129

4.6.3 Is Quicksort Really Quick?

There is a clear, asymptotic difference between an ©(nlogn) algorithm and one
that runs in ©(n?). Thus, only the most obstinate reader would doubt my claim
that mergesort, heapsort, and quicksort should all outperform insertion sort or
selection sort on large enough instances.

But how can we compare two O(nlogn) algorithms to decide which is faster?
How can we prove that quicksort is really quick? Unfortunately, the RAM model
and Big Oh analysis provide too coarse a set of tools to make that type of distinc-
tion. When faced with algorithms of the same asymptotic complexity, implemen-
tation details and system quirks such as cache performance and memory size may
well prove to be the decisive factor.

What we can say is that experiments show that when a quicksort is implemented
well, it is typically 2-3 times faster than mergesort or heapsort. The primary reason
is that the operations in the innermost loop are simpler. But I can’t argue with
you if you don’t believe me when I say quicksort is faster. It is a question whose
solution lies outside the analytical tools we are using. The best way to tell is to
implement both algorithms and experiment.

4.7 Distribution Sort: Sorting via Bucketing

We could sort sorting names for the telephone book by partitioning them according
to the first letter of the last name. This will create 26 different piles, or buckets, of
names. Observe that any name in the J pile must occur after every name in the
pile, but before any name in the K pile. Therefore, we can proceed to sort each pile
individually and just concatenate the bunch of sorted piles together at the end.

If the names are distributed evenly among the buckets, the resulting 26 sorting
problems should each be substantially smaller than the original problem. Further,
by now partitioning each pile based on the second letter of each name, we generate
smaller and smaller piles. The names will be sorted as soon as each bucket con-
tains only a single name. The resulting algorithm is commonly called bucketsort or
distribution sort.

Bucketing is a very effective idea whenever we are confident that the distribution
of data will be roughly uniform. It is the idea that underlies hash tables, kd-trees,
and a variety of other practical data structures. The downside of such techniques
is that the performance can be terrible when the data distribution is not what we
expected. Although data structures such as balanced binary trees offer guaranteed
worst-case behavior for any input distribution, no such promise exists for heuristic
data structures on unexpected input distributions.

Nonuniform distributions do occur in real life. Consider Americans with the
uncommon last name of Shifflett. When last I looked, the Manhattan telephone
directory (with over one million names) contained exactly five Shiffletts. So how
many Shiffletts should there be in a small city of 50,000 people? Figure 4.8 shows

130

4.

SORTING AND SEARCHING

N
[
-«
é
&

STHITIeT: James
Shiffiett James § 801 Stonehenge Av
Shifftett Delma SR609 cccocnnccceccncncs * Shiffiett James C Stanardsville < ...
ghmmoum a.ua cererierinenaeens gm::mgmm e
100 Gresnbrier Terseoo-veer--. Shiffiett James £ & Lols LongMeado
Shiffiett Denise Rt 627 Oyke .--.... Shiffiett Jamas £ & Vernell
Shiffiatt Dannis Stanardsville «----- Shiffiett James J 1430 Rugby Av ----
Shifflett Dennis H Stanardsville Shiffiett James K St George Av ----
mmmmsm .g.m‘ ”Mj::gm .
Shiffiett Diane 508 Bainbri Shiffiett James O Stansrdevile -.-.
Shifflett & Patricia Rt6 Shiffiett James R Oid -
Shiffiett Rt 621 9747463 Shiffiett James R Esmom «oe

Figure 4.8: A small subset of Charlottesville Shiffletts

a small portion of the two and a half pages of Shiffletts in the Charlottesville,
Virginia telephone book. The Shifflett clan is a fixture of the region, but it would
play havoc with any distribution sort program, as refining buckets from S to Sh
to Shi to Shif to ... to Shifflett results in no significant partitioning.

Take-Home Lesson: Sorting can be used to illustrate most algorithm design
paradigms. Data structure techniques, divide-and-conquer, randomization, and
incremental construction all lead to efficient sorting algorithms.

4.7.1 Lower Bounds for Sorting

One last issue on the complexity of sorting. We have seen several sorting algorithms
that run in worst-case O(nlogn) time, but none of which is linear. To sort n items
certainly requires looking at all of them, so any sorting algorithm must be Q(n) in
the worst case. Can we close this remaining ©(logn) gap?

The answer is no. An (nlogn) lower bound can be shown by observing that
any sorting algorithm must behave differently during execution on each of the dis-
tinct n! permutations of n keys. The outcome of each pairwise comparison governs
the run-time behavior of any comparison-based sorting algorithm. We can think of
the set of all possible executions of such an algorithm as a tree with n! leaves. The
minimum height tree corresponds to the fastest possible algorithm, and it happens
that lg(n!) = ©(nlogn).

This lower bound is important for several reasons. First, the idea can be ex-
tended to give lower bounds for many applications of sorting, including element
uniqueness, finding the mode, and constructing convex hulls. Sorting has one of
the few nontrivial lower bounds among algorithmic problems. We will present
an alternate approach to arguing that fast algorithms are unlikely to exist in
Chapter 9.

4.8 WAR STORY: SKIENA FOR THE DEFENSE

131

4.8 War Story: Skiena for the Defense

I lead a quiet, reasonably honest life. One reward for this is that I don’t often find
myself on the business end of surprise calls from lawyers. Thus I was astonished to
get a call from a lawyer who not only wanted to talk with me, but wanted to talk
to me about sorting algorithms.

It turned out that her firm was working on a case involving high-performance
programs for sorting, and needed an expert witness who could explain technical
issues to the jury. From the first edition of this book, they could see I knew some-
thing about algorithms, but before taking me on they demanded to see my teaching
evaluations to prove that I could explain things to people.? It proved to be a fasci-
nating opportunity to learn about how really fast sorting programs work. I figured
I could finally answer the question of which in-place sorting algorithm was fastest
in practice. Was it heapsort or quicksort? What subtle, secret algorithmics made
the difference to minimize the number of comparisons in practice?

The answer was quite humbling. Nobody cared about in-place sorting. The name
of the game was sorting huge files, much bigger than could fit in main memory. All
the important action was in getting the the data on and off a disk. Cute algorithms
for doing internal (in-memory) sorting were not particularly important because the
real problem lies in sorting gigabytes at a time.

Recall that disks have relatively long seek times, reflecting how long it takes the
desired part of the disk to rotate under the read/write head. Once the head is in the
right place, the data moves relatively quickly, and it costs about the same to read
a large data block as it does to read a single byte. Thus, the goal is minimizing the
number of blocks read/written, and coordinating these operations so the sorting
algorithm is never waiting to get the data it needs.

The disk-intensive nature of sorting is best revealed by the annual Minutesort
competition. The goal is to sort as much data in one minute as possible. The cur-
rent champion is Jim Wyllie of IBM Research, who managed to sort 116 gigabytes
of data in 58.7 seconds on his little old 40-node 80-Itanium cluster with a SAN
array of 2,520 disks. Slightly more down-to-earth is the Pennysort division, where
the goal is the maximized sorting performance per penny of hardware. The cur-
rent champ here (BSIS from China) sorted 32 gigabytes in 1,679 seconds on a
$760 PC containing four SATA drives. You can check out the current records at
http://research.microsoft.com/barc/SortBenchmark/.

That said, which algorithm is best for external sorting? It basically turns out
to be a multiway mergesort, employing a lot of engineering and special tricks.
You build a heap with members of the top block from each of k sorted lists. By
repeatedly plucking the top element off this heap, you build a sorted list merging
these k lists. Because this heap is sitting in main memory, these operations are
fast. When you have a large enough sorted run, you write it to disk and free up

20ne of my more cynical faculty colleagues said this was the first time anyone, anywhere, had ever looked

at university teaching evaluations.

132

4.

SORTING AND SEARCHING

memory for more data. Once you start to run out of elements from the top block
of one of the k sorted lists you are merging, load the next block.

It proves very hard to benchmark sorting programs/algorithms at this level
and decide which is really fastest. Is it fair to compare a commercial program
designed to handle general files with a stripped-down code optimized for integers?
The Minutesort competition employs randomly-generated 100-byte records. This is
a different world than sorting names or integers. For example, one widely employed
trick is to strip off a relatively short prefix of the key and initially sort just on that,
to avoid lugging around all those extra bytes.

What lessons can be learned from this? The most important, by far, is to
do everything you can to avoid being involved in a lawsuit as either a plaintiff
or defendant.? Courts are not instruments for resolving disputes quickly. Legal
battles have a lot in common with military battles: they escalate very quickly,
become very expensive in time, money, and soul, and usually end only when both
sides are exhausted and compromise. Wise are the parties who can work out their
problems without going to court. Properly absorbing this lesson now could save
you thousands of times the cost of this book.

On technical matters, it is important to worry about external memory perfor-
mance whenever you combine very large datasets with low-complexity algorithms
(say linear or nlogn). Constant factors of even 5 or 10 can make a big differ-
ence then between what is feasible and what is hopeless. Of course, quadratic-time
algorithms are doomed to fail on large datasets regardless of data access times.

4.9 Binary Search and Related Algorithms

Binary search is a fast algorithm for searching in a sorted array of keys S. To search
for key ¢, we compare ¢ to the middle key S[n/2]. If ¢ appears before S[n/2], it
must reside in the top half of S; if not, it must reside in the bottom half of S. By
repeating this process recursively on the correct half, we locate the key in a total
of [lgn] comparisons—a big win over the n/2 comparisons expect using sequential
search:

int binary_search(item_type s[], item_type key, int low, int high)
{
int middle; /* index of middle element */

if (low > high) return (-1); /* key not found */

middle = (low+high)/2;

31t is actually quite interesting serving as an expert witness.

4.9 BINARY SEARCH AND RELATED ALGORITHMS

133

if (s[middle] == key) return(middle);

if (s[middle] > key)

return(binary_search(s,key,low,middle-1));
else

return(binary_search(s,key,middle+1,high));

This much you probably know. What is important is to have a sense of just
how fast binary search is. Twenty questions is a popular children’s game where
one player selects a word and the other repeatedly asks true/false questions in an
attempt to guess it. If the word remains unidentified after 20 questions, the first
party wins; otherwise, the second player takes the honors. In fact, the second player
always has a winning strategy, based on binary search. Given a printed dictionary,
the player opens it in the middle, selects a word (say “move”), and asks whether the
unknown word is before “move” in alphabetical order. Since standard dictionaries
contain 50,000 to 200,000 words, we can be certain that the process will terminate
within twenty questions.

4.9.1 Counting Occurrences

Several interesting algorithms follow from simple variants of binary search. Suppose
that we want to count the number of times a given key k (say “Skiena”) occurs in
a given sorted array. Because sorting groups all the copies of k£ into a contiguous
block, the problem reduces to finding the right block and then measures its size.

The binary search routine presented above enables us to find the index of an
element of the correct block (z) in O(lgn) time. The natural way to identify the
boundaries of the block is to sequentially test elements to the left of z until we
find the first one that differs from the search key, and then repeat this search to
the right of x. The difference between the indices of the left and right boundaries
(plus one) gives the count of the number of occurrences of k.

This algorithm runs in O(Ign + s), where s is the number of occurrences of the
key. This can be as bad as linear if the entire array consists of identical keys. A
faster algorithm results by modifying binary search to search for the boundary of
the block containing k, instead of k itself. Suppose we delete the equality test

if (s[middle] == key) return(middle);

from the implementation above and return the index low instead of —1 on each
unsuccessful search. All searches will now be unsuccessful, since there is no equality
test. The search will proceed to the right half whenever the key is compared to an
identical array element, eventually terminating at the right boundary. Repeating
the search after reversing the direction of the binary comparison will lead us to the
left boundary. Each search takes O(lgn) time, so we can count the occurrences in
logarithmic time regardless of the size of the block.

134

4.

SORTING AND SEARCHING

4.9.2 One-Sided Binary Search

Now suppose we have an array A consisting of a run of 0’s, followed by an un-
bounded run of 1’s, and would like to identify the exact point of transition between
them. Binary search on the array would provide the transition point in [lgn] tests,
if we had a bound n on the number of elements in the array. In the absence of such
a bound, we can test repeatedly at larger intervals (A[1], A[2], A[4], A[8], A[16],

..) until we find a first nonzero value. Now we have a window containing the
target and can proceed with binary search. This one-sided binary search finds the
transition point p using at most 2[lgp]| comparisons, regardless of how large the
array actually is. One-sided binary search is most useful whenever we are looking
for a key that lies close to our current position.

4.9.3 Square and Other Roots

The square root of n is the number r such that 2 = n. Square root computations
are performed inside every pocket calculator, but it is instructive to develop an
efficient algorithm to compute them.

First, observe that the square root of n > 1 must be at least 1 and at most
n. Let I = 1 and r = n. Consider the midpoint of this interval, m = (I + r)/2.
How does m? compare to n? If n > m?, then the square root must be greater than
m, so the algorithm repeats with [= m. If n < m?, then the square root must
be less than m, so the algorithm repeats with » = m. Either way, we have halved
the interval using only one comparison. Therefore, after Ign rounds we will have
identified the square root to within +1.

This bisection method, as it is called in numerical analysis, can also be applied
to the more general problem of finding the roots of an equation. We say that x is
a root of the function f if f(x) = 0. Suppose that we start with values [and r such
that f(I) > 0 and f(r) < 0. If f is a continuous function, there must exist a root
between [and r. Depending upon the sign of f(m), where m = (I + r)/2, we can
cut this window containing the root in half with each test and stop soon as our
estimate becomes sufficiently accurate.

Root-finding algorithms that converge faster than binary search are known for
both of these problems. Instead of always testing the midpoint of the interval,
these algorithms interpolate to find a test point closer to the actual root. Still,
binary search is simple, robust, and works as well as possible without additional
information on the nature of the function to be computed.

Take-Home Lesson: Binary search and its variants are the quintessential
divide-and-conquer algorithms.

4.10 DIVIDE-AND-CONQUER

135

4.10 Divide-and-Conquer

One of the most powerful techniques for solving problems is to break them down
into smaller, more easily solved pieces. Smaller problems are less overwhelming, and
they permit us to focus on details that are lost when we are studying the entire
problem. A recursive algorithm starts to become apparent when we can break
the problem into smaller instances of the same type of problem. Effective parallel
processing requires decomposing jobs into at least as many tasks as processors, and
is becoming more important with the advent of cluster computing and multicore
processors.

Two important algorithm design paradigms are based on breaking problems
down into smaller problems. In Chapter 8, we will see dynamic programming,
which typically removes one element from the problem, solves the smaller problem,
and then uses the solution to this smaller problem to add back the element in the
proper way. Divide-and-conquer instead splits the problem in (say) halves, solves
each half, then stitches the pieces back together to form a full solution.

To use divide-and-conquer as an algorithm design technique, we must divide
the problem into two smaller subproblems, solve each of them recursively, and then
meld the two partial solutions into one solution to the full problem. Whenever
the merging takes less time than solving the two subproblems, we get an efficient
algorithm. Mergesort, discussed in Section 4.5 (page 120), is the classic example of
a divide-and-conquer algorithm. It takes only linear time to merge two sorted lists
of n/2 elements, each of which was obtained in O(nlgn) time.

Divide-and-conquer is a design technique with many important algorithms to
its credit, including mergesort, the fast Fourier transform, and Strassen’s matrix
multiplication algorithm. Beyond binary search and its many variants, however, I
find it to be a difficult design technique to apply in practice. Our ability to analyze
divide-and-conquer algorithms rests on our strength to solve the asymptotics of
recurrence relations governing the cost of such recursive algorithms.

4.10.1 Recurrence Relations

Many divide-and-conquer algorithms have time complexities that are naturally
modeled by recurrence relations. Evaluating such recurrences is important to un-
derstanding when divide-and-conquer algorithms perform well, and provide an im-
portant tool for analysis in general. The reader who balks at the very idea of
analysis is free to skip this section, but there are important insights into design
that come from an understanding of the behavior of recurrence relations.

What is a recurrence relation? It is an equation that is defined in terms of itself.
The Fibonacci numbers are described by the recurrence relation F,, = F,_1 + F,,_o
and discussed in Section 8.1.1. Many other natural functions are easily expressed
as recurrences. Any polynomial can be represented by a recurrence, such as the
linear function:

ap =0an_1+1l,a1=1—a,=n

136

4.

SORTING AND SEARCHING

Any exponential can be represented by a recurrence:
Qp = 20,7,,_1,0,1 =1— an = 2n71

Finally, lots of weird functions that cannot be described easily with conventional
notation can be represented by a recurrence:

an, =nap_1,a1 =1 — a, =n!

This means that recurrence relations are a very versatile way to represent functions.
The self-reference property of recurrence relations is shared with recursive pro-

grams or algorithms, as the shared roots of both terms reflect. Essentially, recur-

rence relations provide a way to analyze recursive structures, such as algorithms.

4.10.2 Divide-and-Conquer Recurrences

Divide-and-conquer algorithms tend to break a given problem into some number of
smaller pieces (say a), each of which is of size n/b. Further, they spend f(n) time
to combine these subproblem solutions into a complete result. Let T'(n) denote the
worst-case time the algorithm takes to solve a problem of size n. Then T'(n) is
given by the following recurrence relation:

T(n) = aT(n/b) + f(n)
Consider the following examples:

e Sorting — The running time behavior of mergesort is governed by the re-
currence T'(n) = 2T (n/2) + O(n), since the algorithm divides the data into
equal-sized halves and then spends linear time merging the halves after they
are sorted. In fact, this recurrence evaluates to T'(n) = O(nlgn), just as we
got by our previous analysis.

e Binary Search — The running time behavior of binary search is governed by
the recurrence T'(n) = T'(n/2) + O(1), since at each step we spend constant
time to reduce the problem to an instance half its size. In fact, this recurrence
evaluates to T'(n) = O(lgn), just as we got by our previous analysis.

e Fast Heap Construction — The bubble_down method of heap construction
(described in Section 4.3.4) built an n-element heap by constructing two n/2
element heaps and then merging them with the root in logarithmic time. This
argument reduces to the recurrence relation T'(n) = 27'(n/2) + O(lgn). In
fact, this recurrence evaluates to T'(n) = O(n), just as we got by our previous
analysis.

o Matriz Multiplication — As discussed in Section 2.5.4, the standard matrix
multiplication algorithm for two n x n matrices takes O(n3), because we
compute the dot product of n terms for each of the n? elements in the product
matrix.

4.10 DIVIDE-AND-CONQUER

137

However, Strassen [Str69] discovered a divide-and-conquer algorithm that
manipulates the products of seven n/2 x n/2 matrix products to yield the
product of two m X m matrices. This yields a time-complexity recurrence
T(n) = 7T(n/2) + O(n?). In fact, this recurrence evaluates to T(n) =
O(n?31), which seems impossible to predict without solving the recurrence.

4.10.3 Solving Divide-and-Conquer Recurrences (*)

In fact, divide-and-conquer recurrences of the form T'(n) = aT'(n/b) + f(n) are
generally easy to solve, because the solutions typically fall into one of three distinct
cases:

L. If f(n) = O(n'°& =€) for some constant € > 0, then T'(n) = ©(n'°&»).
2. If f(n) = ©(n'°#»), then T'(n) = O(n'°%: *1gn).

3. If f(n) = Q(n'°2 2+€) for some constant € > 0, and if af(n/b) < cf(n) for
some ¢ < 1, then T'(n) = ©(f(n)).

Although this looks somewhat frightening, it really isn’t difficult to apply. The
issue is identifying which case of the so-called master theorem holds for your given
recurrence. Case 1 holds for heap construction and matrix multiplication, while
Case 2 holds mergesort and binary search. Case 3 generally arises for clumsier
algorithms, where the cost of combining the subproblems dominates everything.

The master theorem can be thought of as a black-box piece of machinery, in-
voked as needed and left with its mystery intact. However, with a little study, the
reason why the master theorem works can become apparent.

Figure 4.9 shows the recursion tree associated with a typical T'(n) = aT'(n/b) +
f(n) divide-and-conquer algorithm. Each problem of size n is decomposed into a
problems of size n/b. Each subproblem of size k takes O(f(k)) time to deal with
internally, between partitioning and merging. The total time for the algorithm is
the sum of these internal costs, plus the overhead of building the recursion tree.
The height of this tree is A = log, n and the number of leaf nodes a” = a!°% ™,
which happens to simplify to n!°8 ¢ with some algebraic manipulation.

The three cases of the master theorem correspond to three different costs which
might be dominant as a function of a, b, and f(n):

o (ase 1: Too many leaves — If the number of leaf nodes outweighs the sum of
the internal evaluation cost, the total running time is O(n!°&).

e (Case 2: Equal work per level — As we move down the tree, each problem
gets smaller but there are more of them to solve. If the sum of the internal
evaluation costs at each level are equal, the total running time is the cost per
level (n!°8» @) times the number of levels (log, n), for a total running time of
O(n'°#» % 1gn).

138 4. SORTING AND SEARCHING

partition size = n
vertex degree = a

partition size = n/b

height = lo%n

partition size = n/bz

partition size = b
e o o o

partition size = /
log n 2 a
width=a ° =n °

Figure 4.9: The recursion tree resulting from decomposing each problem of size n into a
problems of size n/b

e Case 3: Too expensive a root — If the internal evaluation costs grow rapidly
enough with n, then the cost of the root evaluation may dominate. If so, the
the total running time is O(f(n)).

Chapter Notes

The most interesting sorting algorithms that have not been discussed in this section
include shellsort, which is a substantially more efficient version of insertion sort,
and radiz sort, an efficient algorithm for sorting strings. You can learn more about
these and every other sorting algorithm by browsing through Knuth [Knu98], with
hundreds of pages of interesting material on sorting. This includes external sorting,
the subject of this chapter’s legal war story.

As implemented here, mergesort copies the merged elements into an auxiliary
buffer to avoid overwriting the original elements to be sorted. Through clever but
complicated buffer manipulation, mergesort can be implemented in an array with-
out using much extra storage. Kronrod’s algorithm for in-place merging is presented
in [Knu98|.

Randomized algorithms are discussed in greater detail in the books by Mot-
wani and Raghavan [MR95] and Mitzenmacher and Upfal [MUO05]. The problem of

4.11 EXERCISES

139

nut and bolt sorting was introduced by [Raw92]. A complicated but deterministic
O(nlogn) algorithm is due to Komlos, Ma, and Szemeredi [KMS96].

Several other algorithms texts provide more substantive coverage of divide-
and-conquer algorithms, including [CLRS01, KT06, Man89]. See [CLRS01] for an
excellent overview of the master theorem.

4.11 Exercises

Applications of Sorting

4-1. [3] The Grinch is given the job of partitioning 2n players into two teams of n
players each. Each player has a numerical rating that measures how good he/she is
at the game. He seeks to divide the players as unfairly as possible, so as to create
the biggest possible talent imbalance between team A and team B. Show how the
Grinch can do the job in O(nlogn) time.

4-2. [3] For each of the following problems, give an algorithm that finds the desired
numbers within the given amount of time. To keep your answers brief, feel free to
use algorithms from the book as subroutines. For the example, S = {6, 13,19, 3, 8},
19 — 3 maximizes the difference, while 8 — 6 minimizes the difference.

(a) Let S be an unsorted array of n integers. Give an algorithm that finds the pair
x,y € S that mazimizes |x — y|. Your algorithm must run in O(n) worst-case time.
(b) Let S be a sorted array of n integers. Give an algorithm that finds the pair
z,y € S that mazimizes |z — y|. Your algorithm must run in O(1) worst-case time.
(c) Let S be an unsorted array of n integers. Give an algorithm that finds the pair
z,y € S that minimizes |z — y|, for # y. Your algorithm must run in O(nlogn)
worst-case time.

(d) Let S be a sorted array of n integers. Give an algorithm that finds the pair
z,y € S that minimizes |z — y|, for © # y. Your algorithm must run in O(n)
worst-case time.

4-3. [3] Take a sequence of 2n real numbers as input. Design an O(n logn) algorithm that
partitions the numbers into n pairs, with the property that the partition minimizes
the maximum sum of a pair. For example, say we are given the numbers (1,3,5,9).
The possible partitions are ((1,3),(5,9)), ((1,5),(3,9)), and ((1,9),(3,5)). The pair
sums for these partitions are (4,14), (6,12), and (10,8). Thus the third partition has
10 as its maximum sum, which is the minimum over the three partitions.

4-4. [3] Assume that we are given n pairs of items as input, where the first item is a
number and the second item is one of three colors (red, blue, or yellow). Further
assume that the items are sorted by number. Give an O(n) algorithm to sort the
items by color (all reds before all blues before all yellows) such that the numbers
for identical colors stay sorted.

For example: (1,blue), (3,red), (4,blue), (6,yellow), (9,red) should become (3,red),
(9,red), (1,blue), (4,blue), (6,yellow).

4-5. [3] The mode of a set of numbers is the number that occurs most frequently in the
set. The set (4,6,2,4,3,1) has a mode of 4. Give an efficient and correct algorithm
to compute the mode of a set of n numbers.

140

4.

SORTING AND SEARCHING

4-6.

4-7.

4-8.

4-9.

4-10.

4-11.

[3] Given two sets S1 and Sz (each of size n), and a number z, describe an O(nlogn)
algorithm for finding whether there exists a pair of elements, one from S; and one
from So, that add up to x. (For partial credit, give a ©(n?) algorithm for this
problem.)

[8] Outline a reasonable method of solving each of the following problems. Give
the order of the worst-case complexity of your methods.

(a) You are given a pile of thousands of telephone bills and thousands of checks
sent in to pay the bills. Find out who did not pay.

(b) You are given a list containing the title, author, call number and publisher of
all the books in a school library and another list of 30 publishers. Find out
how many of the books in the library were published by each company.

(¢) You are given all the book checkout cards used in the campus library during

the past year, each of which contains the name of the person who took out
the book. Determine how many distinct people checked out at least one book.

[4] Given a set of S containing n real numbers, and a real number x. We seek an

algorithm to determine whether two elements of S exist whose sum is exactly x.
(a) Assume that S is unsorted. Give an O(nlogn) algorithm for the problem.
(b) Assume that S is sorted. Give an O(n) algorithm for the problem.

[4] Give an efficient algorithm to compute the union of sets A and B, where

n = max(|A|,|B]|). The output should be an array of distinct elements that form
the union of the sets, such that they appear exactly once in the union.

(a) Assume that A and B are unsorted. Give an O(nlogn) algorithm for the
problem.
(b) Assume that A and B are sorted. Give an O(n) algorithm for the problem.
/5] Given a set S of n integers and an integer T, give an O(n*~!logn) algorithm
to test whether k of the integers in S add up to T'.

[6] Design an O(n) algorithm that, given a list of n elements, finds all the elements
that appear more than n/2 times in the list. Then, design an O(n) algorithm that,
given a list of n elements, finds all the elements that appear more than n/4 times.

Heaps

4-12.

4-13.

[3] Devise an algorithm for finding the k smallest elements of an unsorted set of n
integers in O(n + klogn).

[5] You wish to store a set of n numbers in either a max-heap or a sorted array.
For each application below, state which data structure is better, or if it does not
matter. Explain your answers.

(a) Want to find the maximum element quickly.
(b)
(c) Want to be able to form the structure quickly.
(d)

Want to be able to delete an element quickly.

Want to find the minimum element quickly.

4.11 EXERCISES

141

4-14. [5] Give an O(nlogk)-time algorithm that merges k sorted lists with a total of n
elements into one sorted list. (Hint: use a heap to speed up the elementary O(kn)-
time algorithm).

4-15. [5] (a) Give an efficient algorithm to find the second-largest key among n keys.
You can do better than 2n — 3 comparisons.

(b) Then, give an efficient algorithm to find the third-largest key among n keys.
How many key comparisons does your algorithm do in the worst case? Must your
algorithm determine which key is largest and second-largest in the process?

Quicksort

4-16. [3] Use the partitioning idea of quicksort to give an algorithm that finds the median
element of an array of n integers in expected O(n) time. (Hint: must you look at
both sides of the partition?)

4-17. [3] The median of a set of n values is the [n/2]th smallest value.

(a) Suppose quicksort always pivoted on the median of the current sub-array. How
many comparisons would Quicksort make then in the worst case?

(b) Suppose quicksort were always to pivot on the [n/3]th smallest value of the
current sub-array. How many comparisons would be made then in the worst
case?

4-18. [5] Suppose an array A consists of n elements, each of which is red, white, or blue.
We seek to sort the elements so that all the reds come before all the whites, which
come before all the blues The only operation permitted on the keys are

e Ezamine(A,i) — report the color of the ith element of A.

e Swap(A,i,j) — swap the ith element of A with the jth element.
Find a correct and efficient algorithm for red-white-blue sorting. There is a linear-
time solution.

4-19. [5] An inversion of a permutation is a pair of elements that are out of order.

(a) Show that a permutation of n items has at most n(n —1)/2 inversions. Which
permutation(s) have exactly n(n — 1)/2 inversions?

(b) Let P be a permutation and P" be the reversal of this permutation. Show
that P and P" have a total of exactly n(n — 1)/2 inversions.

(c) Use the previous result to argue that the expected number of inversions in a
random permutation is n(n — 1)/4.

4-20. [3] Give an efficient algorithm to rearrange an array of n keys so that all the

negative keys precede all the nonnegative keys. Your algorithm must be in-place,
meaning you cannot allocate another array to temporarily hold the items. How fast
is your algorithm?

Other Sorting Algorithms

4-21.

[5] Stable sorting algorithms leave equal-key items in the same relative order as in
the original permutation. Explain what must be done to ensure that mergesort is
a stable sorting algorithm.

142

4.

SORTING AND SEARCHING

4-22.

4-23.

4-24.

4-25.

4-26.

4-27.

[8] Show that n positive integers in the range 1 to k can be sorted in O(nlogk)
time. The interesting case is when k£ << n.

[5] We seek to sort a sequence S of n integers with many duplications, such that
the number of distinct integers in S is O(logn). Give an O(nloglogn) worst-case
time algorithm to sort such sequences.

[5] Let A[l..n] be an array such that the first n — \/n elements are already sorted
(though we know nothing about the remaining elements). Give an algorithm that
sorts A in substantially better than nlogn steps.

/5] Assume that the array A[1..n] only has numbers from {1,...,n%} but that at
most loglogn of these numbers ever appear. Devise an algorithm that sorts A in
substantially less than O(nlogn).

[5] Consider the problem of sorting a sequence of n 0’s and 1’s using comparisons.
For each comparison of two values z and y, the algorithm learns which of = < y,
x =1y, or x > y holds.

(a) Give an algorithm to sort in n — 1 comparisons in the worst case. Show that
your algorithm is optimal.

(b) Give an algorithm to sort in 2n/3 comparisons in the average case (assuming
each of the n inputs is 0 or 1 with equal probability). Show that your algorithm
is optimal.

[6] Let P be a simple, but not necessarily convex, polygon and ¢ an arbitrary
point not necessarily in P. Design an efficient algorithm to find a line segment
originating from ¢ that intersects the maximum number of edges of P. In other
words, if standing at point ¢, in what direction should you aim a gun so the bullet
will go through the largest number of walls. A bullet through a vertex of P gets
credit for only one wall. An O(nlogn) algorithm is possible.

Lower Bounds

4-28.

4-29.

[5] In one of my research papers [Ski88], I discovered a comparison-based sorting
algorithm that runs in O(nlog(y/n)). Given the existence of an Q(nlogn) lower
bound for sorting, how can this be possible?

[5] Mr. B. C. Dull claims to have developed a new data structure for priority queues
that supports the operations Insert, Mazimum, and Extract-Maz—all in O(1) worst-
case time. Prove that he is mistaken. (Hint: the argument does not involve a lot of
gory details—just think about what this would imply about the Q(nlogn) lower
bound for sorting.)

Searching

4-30.

[8] A company database consists of 10,000 sorted names, 40% of whom are known as
good customers and who together account for 60% of the accesses to the database.
There are two data structure options to consider for representing the database:

e Put all the names in a single array and use binary search.

e Put the good customers in one array and the rest of them in a second array.
Only if we do not find the query name on a binary search of the first array do
we do a binary search of the second array.

4.11 EXERCISES

143

4-31.

4-32.

4-33.

4-34.

4-35.

Demonstrate which option gives better expected performance. Does this change
if linear search on an unsorted array is used instead of binary search for both
options?

[8] Suppose you are given an array A of n sorted numbers that has been circularly
shifted k positions to the right. For example, {35,42,5,15,27,29} is a sorted array
that has been circularly shifted k = 2 positions, while {27, 29, 35,42, 5,15} has been
shifted k = 4 positions.

e Suppose you know what k is. Give an O(1) algorithm to find the largest
number in A.

e Suppose you do not know what k is. Give an O(lgn) algorithm to find the
largest number in A. For partial credit, you may give an O(n) algorithm.

[3] Consider the numerical 20 Questions game. In this game, Player 1 thinks of a
number in the range 1 to n. Player 2 has to figure out this number by asking the
fewest number of true/false questions. Assume that nobody cheats.

(a) What is an optimal strategy if n in known?

(b) What is a good strategy is n is not known?

[5] Suppose that you are given a sorted sequence of distinct integers {a1, az,...,an}.
Give an O(lgn) algorithm to determine whether there exists an 4 index such as
a; = i. For example, in {—10,-3,3,5,7}, as = 3. In {2,3,4,5,6,7}, there is no
such 1.

[5] Suppose that you are given a sorted sequence of distinct integers {a1, az,...,an},
drawn from 1 to m where n < m. Give an O(lgn) algorithm to find an integer < m
that is not present in a. For full credit, find the smallest such integer.

[5] Let M be an n X m integer matrix in which the entries of each row are sorted in
increasing order (from left to right) and the entries in each column are in increasing
order (from top to bottom). Give an efficient algorithm to find the position of an
integer x in M, or to determine that x is not there. How many comparisons of x
with matrix entries does your algorithm use in worst case?

Implementation Challenges

4-36.

4-37.

[5] Consider an n X n array A containing integer elements (positive, negative, and
zero). Assume that the elements in each row of A are in strictly increasing order,
and the elements of each column of A are in strictly decreasing order. (Hence there
cannot be two zeroes in the same row or the same column.) Describe an efficient
algorithm that counts the number of occurrences of the element 0 in A. Analyze its
running time.

[6] Implement versions of several different sorting algorithms, such as selection sort,
insertion sort, heapsort, mergesort, and quicksort. Conduct experiments to assess
the relative performance of these algorithms in a simple application that reads a
large text file and reports exactly one instance of each word that appears within it.
This application can be efficiently implemented by sorting all the words that occur
in the text and then passing through the sorted sequence to identify one instance
of each distinct word. Write a brief report with your conclusions.

144

4.

SORTING AND SEARCHING

4-38.

4-39.

[5] Implement an external sort, which uses intermediate files to sort files bigger
than main memory. Mergesort is a good algorithm to base such an implementation
on. Test your program both on files with small records and on files with large
records.

[8] Design and implement a parallel sorting algorithm that distributes data across
several processors. An appropriate variation of mergesort is a likely candidate. Mea-
sure the speedup of this algorithm as the number of processors increases. Later,
compare the execution time to that of a purely sequential mergesort implementa-
tion. What are your experiences?

Interview Problems

4-40.

4-41.
4-42.

4-43.

4-44.

4-45.

4-46.

[3] If you are given a million integers to sort, what algorithm would you use to sort
them? How much time and memory would that consume?

[3] Describe advantages and disadvantages of the most popular sorting algorithms.

mplement an algorithm that takes an input array and returns only the unique
3] Impl t lgorithm that tak i t d ret ly th i
elements in it.

[5] You have a computer with only 2Mb of main memory. How do you use it to sort
a large file of 500 Mb that is on disk?

[5] Design a stack that supports push, pop, and retrieving the minimum element
in constant time. Can you do this?

[5] Given a search string of three words, find the smallest snippet of the document
that contains all three of the search words—i.e., the snippet with smallest number
of words in it. You are given the index positions where these words occur in the
document, such as wordl: (1, 4, 5), word2: (3, 9, 10), and word3: (2, 6, 15). Each
of the lists are in sorted order, as above.

[6] You are given 12 coins. One of them is heavier or lighter than the rest. Identify
this coin in just three weighings.

Programming Challenges

These programming challenge problems with robot judging are available at
http:/ /www.programming-challenges.com or hitp://online-judge.uva.es.

4-1.
4-2.
4-3.
4-4.
4-5.

“Vito’s Family” — Programming Challenges 110401, UVA Judge 10041.

“Stacks of Flapjacks” — Programming Challenges 110402, UVA Judge 120.
“Bridge” — Programming Challenges 110403, UVA Judge 10037.

“ShoeMaker’s Problem” — Programming Challenges 110405, UVA Judge 10026.
“ShellSort” — Programming Challenges 110407, UVA Judge 10152.

5

Graph Traversal

Graphs are one of the unifying themes of computer science—an abstract repre-
sentation that describes the organization of transportation systems, human inter-
actions, and telecommunication networks. That so many different structures can
be modeled using a single formalism is a source of great power to the educated
programmer.

More precisely, a graph G = (V, E) cousists of a set of vertices V together with
a set F of vertex pairs or edges. Graphs are important because they can be used to
represent essentially any relationship. For example, graphs can model a network of
roads, with cities as vertices and roads between cities as edges, as shown in Figure
5.1. Electronic circuits can also be modeled as graphs, with junctions as vertices
and components as edges.

Stony Brook Green Port

— o

Riverhead

O

Orient Point

|;] N Shelter Island

Montauk

O

. o
Islip Sag Harbor

Figure 5.1: Modeling road networks and electronic circuits as graphs

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_5,
(© Springer-Verlag London Limited 2008

146

5.

GRAPH TRAVERSAL

The key to solving many algorithmic problems is to think of them in terms
of graphs. Graph theory provides a language for talking about the properties of
relationships, and it is amazing how often messy applied problems have a simple
description and solution in terms of classical graph properties.

Designing truly novel graph algorithms is a very difficult task. The key to using
graph algorithms effectively in applications lies in correctly modeling your problem
so you can take advantage of existing algorithms. Becoming familiar with many
different algorithmic graph problems is more important than understanding the
details of particular graph algorithms, particularly since Part IT of this book will
point you to an implementation as soon as you know the name of your problem.

Here we present basic data structures and traversal operations for graphs, which
will enable you to cobble together solutions for basic graph problems. Chapter 6
will present more advanced graph algorithms that find minimum spanning trees,
shortest paths, and network flows, but we stress the primary importance of correctly
modeling your problem. Time spent browsing through the catalog now will leave
you better informed of your options when a real job arises.

5.1 Flavors of Graphs

A graph G = (V, E) is defined on a set of vertices V', and contains a set of edges E
of ordered or unordered pairs of vertices from V. In modeling a road network, the
vertices may represent the cities or junctions, certain pairs of which are connected
by roads/edges. In analyzing the source code of a computer program, the vertices
may represent lines of code, with an edge connecting lines z and y if y is the next
statement executed after x. In analyzing human interactions, the vertices typically
represent people, with edges connecting pairs of related souls.

Several fundamental properties of graphs impact the choice of the data struc-
tures used to represent them and algorithms available to analyze them. The first
step in any graph problem is determining the flavors of graphs you are dealing
with:

o Undirected vs. Directed — A graph G = (V, E) is undirected if edge (x,y) € E
implies that (y,) is also in E. If not, we say that the graph is directed. Road
networks between cities are typically undirected, since any large road has
lanes going in both directions. Street networks within cities are almost always
directed, because there are at least a few one-way streets lurking somewhere.
Program-flow graphs are typically directed, because the execution flows from
one line into the next and changes direction only at branches. Most graphs
of graph-theoretic interest are undirected.

o Weighted vs. Unweighted — Each edge (or vertex) in a weighted graph G is as-
signed a numerical value, or weight. The edges of a road network graph might
be weighted with their length, drive-time, or speed limit, depending upon the

5.1 FLAVORS OF GRAPHS 147

&

undirected

~7

directed

unweighted weighted

&
&

simple

)

non-simple

sparse dense

4
&

cyclic

~7

acyclic

embedded topological

Iy

explicit

implicit § :

unlabeled labeled

Figure 5.2: Important properties / flavors of graphs

application. In unweighted graphs, there is no cost distinction between various
edges and vertices.

The difference between weighted and unweighted graphs becomes particularly
apparent in finding the shortest path between two vertices. For unweighted
graphs, the shortest path must have the fewest number of edges, and can
be found using a breadth-first search as discussed in this chapter. Shortest
paths in weighted graphs requires more sophisticated algorithms, as discussed
in Chapter 6.

o Simple vs. Non-simple — Certain types of edges complicate the task of working

with graphs. A self-loop is an edge (z,x) involving only one vertex. An edge
(z,y) is a multiedge if it occurs more than once in the graph.

Both of these structures require special care in implementing graph algo-
rithms. Hence any graph that avoids them is called simple.

148

5.

GRAPH TRAVERSAL

e Sparse vs. Dense: Graphs are sparse when only a small fraction of the possible

vertex pairs ((Z) for a simple, undirected graph on n vertices) actually have

edges defined between them. Graphs where a large fraction of the vertex pairs
define edges are called dense. There is no official boundary between what is
called sparse and what is called dense, but typically dense graphs have a
quadratic number of edges, while sparse graphs are linear in size.

Sparse graphs are usually sparse for application-specific reasons. Road net-
works must be sparse graphs because of road junctions. The most ghastly
intersection I've ever heard of was the endpoint of only seven different roads.
Junctions of electrical components are similarly limited to the number of
wires that can meet at a point, perhaps except for power and ground.

Cyclic vs. Acyclic — An acyclic graph does not contain any cycles. Trees
are connected, acyclic undirected graphs. Trees are the simplest interest-
ing graphs, and are inherently recursive structures because cutting any edge
leaves two smaller trees.

Directed acyclic graphs are called DAGs. They arise naturally in scheduling
problems, where a directed edge (x,y) indicates that activity = must occur
before y. An operation called topological sorting orders the vertices of a DAG
to respect these precedence constraints. Topological sorting is typically the
first step of any algorithm on a DAG, as will be discussed in Section 5.10.1
(page 179).

Embedded vs. Topological — A graph is embedded if the vertices and edges are
assigned geometric positions. Thus, any drawing of a graph is an embedding,
which may or may not have algorithmic significance.

Occasionally, the structure of a graph is completely defined by the geometry
of its embedding. For example, if we are given a collection of points in the
plane, and seek the minimum cost tour visiting all of them (i.e., the traveling
salesman problem), the underlying topology is the complete graph connecting
each pair of vertices. The weights are typically defined by the Euclidean
distance between each pair of points.

Grids of points are another example of topology from geometry. Many prob-
lems on an n x m grid involve walking between neighboring points, so the
edges are implicitly defined from the geometry.

Implicit vs. Fxplicit — Certain graphs are not explicitly constructed and then
traversed, but built as we use them. A good example is in backtrack search.
The vertices of this implicit search graph are the states of the search vector,
while edges link pairs of states that can be directly generated from each other.
Because you do not have to store the entire graph, it is often easier to work
with an implicit graph than explicitly construct it prior to analysis.

5.1 FLAVORS OF GRAPHS

149

Bill Clinton O Hillary Clinton

George Bush O John McCain

O

Saddam Hussein

Figure 5.3: A portion of the friendship graph

o Labeled vs. Unlabeled — Each vertex is assigned a unique name or identifier in
a labeled graph to distinguish it from all other vertices. In unlabeled graphs,
no such distinctions have been made.

Graphs arising in applications are often naturally and meaningfully labeled,
such as city names in a transportation network. A common problem is that of
isomorphism testing—determining whether the topological structure of two
graphs are identical if we ignore any labels. Such problems are typically solved
using backtracking, by trying to assign each vertex in each graph a label such
that the structures are identical.

5.1.1 The Friendship Graph

To demonstrate the importance of proper modeling, let us consider a graph where
the vertices are people, and there is an edge between two people if and only if they
are friends. Such graphs are called social networks and are well defined on any set
of people—be they the people in your neighborhood, at your school/business, or
even spanning the entire world. An entire science analyzing social networks has
sprung up in recent years, because many interesting aspects of people and their
behavior are best understood as properties of this friendship graph.

Most of the graphs that one encounters in real life are sparse. The friendship
graph is good example. Even the most gregarious person on earth knows an in-
significant fraction of the world’s population.

We use this opportunity to demonstrate the graph theory terminology described
above. “Talking the talk” proves to be an important part of “walking the walk”:

e If I am your friend, does that mean you are my friend? — This question
really asks whether the graph is directed. A graph is undirected if edge (x,y)
always implies (y,). Otherwise, the graph is said to be directed. The “heard-
of” graph is directed, since I have heard of many famous people who have
never heard of me! The “had-sex-with” graph is presumably undirected, since
the critical operation always requires a partner. I'd like to think that the
“friendship” graph is also an undirected graph.

150

5.

GRAPH TRAVERSAL

e How close a friend are you? — In weighted graphs, each edge has an associated

numerical attribute. We could model the strength of a friendship by associ-
ating each edge with an appropriate value, perhaps from -10 (enemies) to 10
(blood brothers). The edges of a road network graph might be weighted with
their length, drive-time, or speed limit, depending upon the application. A
graph is said to be unweighted if all edges are assumed to be of equal weight.

Am I my own friend? — This question addresses whether the graph is simple,
meaning it contains no loops and no multiple edges. An edge of the form
(z,z) is said to be a loop. Sometimes people are friends in several different
ways. Perhaps « and y were college classmates and now work together at the
same company. We can model such relationships using multiedges—multiple
edges (x,y) perhaps distinguished by different labels.

Simple graphs really are often simpler to work with in practice. Therefore,
we might be better off declaring that no one is their own friend.

Who has the most friends? — The degree of a vertex is the number of edges
adjacent to it. The most popular person defines the vertex of highest degree in
the friendship graph. Remote hermits are associated with degree-zero vertices.

In dense graphs, most vertices have high degrees, as opposed to sparse graphs
with relatively few edges. In a regular graph, each vertex has exactly the same
degree. A regular friendship graph is truly the ultimate in social-ism.

Do my friends live near me? — Social networks are not divorced from geogra-
phy. Many of your friends are your friends only because they happen to live
near you (e.g., neighbors) or used to live near you (e.g., college roommates).

Thus, a full understanding of social networks requires an embedded graph,
where each vertex is associated with the point on this world where they live.
This geographic information may not be explicitly encoded, but the fact that
the graph is inherently embedded in the plane shapes our interpretation of
any analysis.

Oh, you also know her? — Social networking services such as Myspace and
LinkedIn are built on the premise of explicitly defining the links between
members and their member-friends. Such graphs consist of directed edges
from person/vertex z professing his friendship to person/vertex y.

That said, the complete friendship graph of the world is represented implicitly.
Each person knows who their friends are, but cannot find out about other
people’s friendships except by asking them. The “six degrees of separation”
theory argues that there is a short path linking every two people in the world
(e.g., Skiena and the President) but offers us no help in actually finding this
path. The shortest such path I know of contains three hops (Steven Skiena
— Bob McGrath — John Marberger — George W. Bush), but there could

5.2 DATA STRUCTURES FOR GRAPHS 151

1 2 3 45

1o 10 0 1 c e I

20 1 0 1 1 1 2 B A
3/ 01 0 1 0 o 3

4 0 1 1 0 1 4 G

5 11 0 1 0 e ° 5

Figure 5.4: The adjacency matrix and adjacency list of a given graph

be a shorter one (say, if he went to college with my dentist). The friendship
graph is stored implicitly, so I have no way of easily checking.

o Are you truly an individual, or just one of the faceless crowd? — This question
boils down to whether the friendship graph is labeled or unlabeled. Does each
vertex have a name/label which reflects its identify, and is this label important
for our analysis?

Much of the study of social networks is unconcerned with labels on graphs.
Often the index number given a vertex in the graph data structure serves
as its label, perhaps for convenience or the need for anonymity. You may
assert that you are a name, not a number—but try protesting to the guy
who implements the algorithm. Someone studying how an infectious disease
spreads through a graph may label each vertex with whether the person is
healthy or sick, it being irrelevant what their name is.

Take-Home Lesson: Graphs can be used to model a wide variety of structures
and relationships. Graph-theoretic terminology gives us a language to talk
about them.

5.2 Data Structures for Graphs

Selecting the right graph data structure can have an enormous impact on perfor-
mance. Your two basic choices are adjacency matrices and adjacency lists, illus-
trated in Figure 5.4. We assume the graph G = (V| E) contains n vertices and m
edges.

o Adjacency Matriz: We can represent G using an n X n matrix M, where
element M[i,j] = 11if (¢,7) is an edge of G, and 0 if it isn’t. This allows fast
answers to the question “is (¢,7) in G?”, and rapid updates for edge insertion
and deletion. It may use excessive space for graphs with many vertices and
relatively few edges, however.

152

5.

GRAPH TRAVERSAL

Comparison \ Winner ‘
Faster to test if (z,y) is in graph? adjacency matrices
Faster to find the degree of a vertex? adjacency lists
Less memory on small graphs? adjacency lists (m + n) vs. (n?)

Less memory on big graphs?
Edge insertion or deletion?

Faster to traverse the graph? adjacency lists ©(m +n) vs. ©(n?)
Better for most problems? adjacency lists

adjacency matrices (a small win)
adjacency matrices O(1) vs. O(d)

Figure 5.5: Relative advantages of adjacency lists and matrices.

Consider a graph that represents the street map of Manhattan in New York
City. Every junction of two streets will be a vertex of the graph. Neighbor-
ing junctions are connected by edges. How big is this graph? Manhattan is
basically a grid of 15 avenues each crossing roughly 200 streets. This gives us
about 3,000 vertices and 6,000 edges, since each vertex neighbors four other
vertices and each edge is shared between two vertices. This modest amount
of data should easily and efficiently be stored, yet an adjacency matrix would
have 3,000 x 3,000 = 9,000,000 cells, almost all of them empty!

There is some potential to save space by packing multiple bits per word
or simulating a triangular matrix on undirected graphs. But these methods
lose the simplicity that makes adjacency matrices so appealing and, more
critically, remain inherently quadratic on sparse graphs.

Adjacency Lists: We can more efficiently represent sparse graphs by using
linked lists to store the neighbors adjacent to each vertex. Adjacency lists
require pointers but are not frightening once you have experience with linked
structures.

Adjacency lists make it harder to verify whether a given edge (4,7) is in G,
since we must search through the appropriate list to find the edge. However,
it is surprisingly easy to design graph algorithms that avoid any need for
such queries. Typically, we sweep through all the edges of the graph in one
pass via a breadth-first or depth-first traversal, and update the implications
of the current edge as we visit it. Table 5.5 summarizes the tradeoffs between
adjacency lists and matrices.

Take-Home Lesson: Adjacency lists are the right data structure for most
applications of graphs.

We will use adjacency lists as our primary data structure to represent graphs.
We represent a graph using the following data type. For each graph, we keep a

5.2 DATA STRUCTURES FOR GRAPHS

153

count of the number of vertices, and assign each vertex a unique identification
number from 1 to nvertices. We represent the edges using an array of linked lists:

#define MAXV 1000 /*

typedef struct {

int y; /*
int weight; /*
struct edgenode *next; /*

} edgenode;

typedef struct {
edgenode *edges[MAXV+1]; /x

int degree[MAXV+1]; /%
int nvertices; /*
int nedges; /*
bool directed; /*

} graph;

maximum number of vertices */

adjacency info */
edge weight, if any */
next edge in list */

adjacency info */

outdegree of each vertex */
number of vertices in graph */
number of edges in graph */
is the graph directed? */

We represent directed edge (z,y) by an edgenode y in z’s adjacency list. The de-
gree field of the graph counts the number of meaningful entries for the given vertex.
An undirected edge (z,y) appears twice in any adjacency-based graph structure,
once as y in x’s list, and once as z in y’s list. The boolean flag directed identifies
whether the given graph is to be interpreted as directed or undirected.

To demonstrate the use of this data structure, we show how to read a graph
from a file. A typical graph format consists of an initial line featuring the number
of vertices and edges in the graph, followed by a listing of the edges at one vertex

pair per line.

initialize_graph(graph *g, bool directed)

/* counter */

{

int i;

g —-> nvertices = 0;

g —> nedges = 0;

g —> directed = directed;

for (i=1; i<=MAXV; i++) g->degreel[i] = 0;

for (i=1; i<=MAXV; i++) g->edges[i] = NULL;
}

Actually reading the graph requires inserting each edge into this structure:

154 5. GRAPH TRAVERSAL

read_graph(graph *g, bool directed)

{

int i; /* counter */
int m; /* number of edges */
int x, y; /* vertices in edge (x,y) */

initialize_graph(g, directed);
scanf ("%d %d",&(g->nvertices),&m);
for (i=1; i<=m; i++) {

scanf ("%d %d",&x,&y);
insert_edge(g,x,y,directed);

The critical routine is insert_edge. The new edgenode is inserted at the begin-

ning of the appropriate adjacency list, since order doesn’t matter. We parameterize
our insertion with the directed Boolean flag, to identify whether we need to insert
two copies of each edge or only one. Note the use of recursion to solve this problem:

insert_edge(graph *g, int x, int y, bool directed)

{

edgenode *p; /* temporary pointer */

p = malloc(sizeof (edgenode)); /* allocate edgenode storage */
p->weight = NULL;

P>y = 7;

p—>next = g->edges[x];

g—>edges[x] = p; /* insert at head of list */

g->degree[x] ++;

if (directed == FALSE)

insert_edge(g,y,x,TRUE) ;

else

g—>nedges ++;

Printing the associated graph is just a matter of two nested loops, one through

vertices, the other through adjacent edges:

5.3 WAR STORY: I WAS A VICTIM OF MOORE’S LAW

155

print_graph(graph *g)

{
int i; /* counter */
edgenode *p; /* temporary pointer */
for (i=1; i<=g->nvertices; i++) {
printf("%d: ",i);
p = g—>edgesl[il;
while (p != NULL) {
printf (" %d",p->y);
p = p—>next;
}
printf ("\n");
}
}

It is a good idea to use a well-designed graph data type as a model for building
your own, or even better as the foundation for your application. We recommend
LEDA (see Section 19.1.1 (page 658)) or Boost (see Section 19.1.3 (page 659)) as
the best-designed general-purpose graph data structures currently available. They
may be more powerful (and hence somewhat slower/larger) than you need, but
they do so many things right that you are likely to lose most of the potential
do-it-yourself benefits through clumsiness.

5.3 War Story: | was a Victim of Moore’s Law

I am the author of a popular library of graph algorithms called Combinatorica (see
www. combinatorica.com), which runs under the computer algebra system Mathe-
matica. Efficiency is a great challenge in Mathematica, due to its applicative model
of computation (it does not support constant-time write operations to arrays) and
the overhead of interpretation (as opposed to compilation). Mathematica code is
typically 1,000 to 5,000 times slower than C code.

Such slow downs can be a tremendous performance hit. Even worse, Mathemat-
ica was a memory hog, needing a then-outrageous 4MB of main memory to run
effectively when I completed Combinatorica in 1990. Any computation on large
structures was doomed to thrash in virtual memory. In such an environment, my
graph package could only hope to work effectively on very small graphs.

One design decision I made as a result was to use adjacency matrices as the
basic Combinatorica graph data structure instead of lists. This may sound peculiar.
If pressed for memory, wouldn’t it pay to use adjacency lists and conserve every last
byte? Yes, but the answer is not so simple for very small graphs. An adjacency list
representation of a weighted n-vertex, m-edge graph should use about n+2m words
to represent; the 2m comes from storing the endpoint and weight components of

156 5. GRAPH TRAVERSAL

Figure 5.6: Representative Combinatorica graphs: edge-disjoint paths (left), Hamiltonian cycle
in a hypercube (center), animated depth-first search tree traversal (right)

each edge. Thus, the space advantages of adjacency lists kick in when n + 2m is
substantially smaller than n?. The adjacency matrix is still manageable in size for
n < 100 and, of course, half the size of adjacency lists on dense graphs.

My more immediate concern was dealing with the overhead of using a slow
interpreted language. Check out the benchmarks reported in Table 5.1. Two par-
ticularly complex but polynomial-time problems on 9 and 16 vertex graphs took
several minutes to complete on my desktop machine in 1990! The quadratic-sized
data structure certainly could not have had much impact on these running times,
since 9 X 9 equals only 81. From experience, I knew the Mathematica programming
language handled regular structures like adjacency matrices better than irregular-
sized adjacency lists.

Still, Combinatorica proved to be a very good thing despite these performance
problems. Thousands of people have used my package to do all kinds of interesting
things with graphs. Combinatorica was never intended to be a high-performance
algorithms library. Most users quickly realized that computations on large graphs
were out of the question, but were eager to take advantage of Combinatorica as a
mathematical research tool and prototyping environment. Everyone was happy.

But over the years, my users started asking why it took so long to do a modest-
sized graph computation. The mystery wasn’t that my program was slow, because
it had always been slow. The question was why did it take so many years for people
to figure this out?

5.3 WAR STORY: I WAS A VICTIM OF MOORE’S L

AW

157

Approximate year 1990 1991 1998 2000 2004
command/machine Sun-3 Sun-4 Sun-5 Ultra5 SunBlade
PlanarQ[GridGraph[4,4]] 234.10 69.65 27.50 3.60 0.40
Length[Partitions[30]] 280.85 73.20 24.40 3.44 1.58
VertexConnectivity[GridGraph[3,3]] | 239.67 47.76 14.70 2.00 0.91
RandomPartition[1000] 831.68 267.5 22.05 3.12 0.87

Table 5.1: Old Combinatorica benchmarks on low-end Sun workstations, from 1990 to today,

(running time in seconds)

The reason is that computers keep doubling in speed every two years or so.
People’s expectation of how long something should take moves in concert with
these technology improvements. Partially because of Combinatorica’s dependence
on a quadratic-size graph data structure, it didn’t scale as well as it should on
sparse graphs.

As the years rolled on, user demands become more insistent. Combinatorica
needed to be updated. My collaborator, Sriram Pemmaraju, rose to the challenge.
We (mostly he) completely rewrote Combinatorica to take advantage of faster graph
data structures ten years after the initial version.

The new Combinatorica uses a list of edges data structure for graphs, largely
motivated by increased efficiency. Edge lists are linear in the size of the graph (edges
plus vertices), just like adjacency lists. This makes a huge difference on most graph
related functions—for large enough graphs. The improvement is most dramatic
in “fast” graph algorithms—those that run in linear or near linear-time, such as
graph traversal, topological sort, and finding connected /biconnected components.
The implications of this change is felt throughout the package in running time
improvements and memory savings. Combinatorica can now work with graphs that
are about 50-100 times larger than graphs that the old package could deal with.

Figure 5.7(1) plots the running time of the MinimumSpanningTree functions for
both Combinatorica versions. The test graphs were sparse (grid graphs), designed
to highlight the difference between the two data structures. Yes, the new version is
much faster, but note that the difference only becomes important for graphs larger
than the old Combinatorica was designed for. However, the relative difference in
run time keeps growing with increasing n. Figure 5.7(r) plots the ratio of the
running times as a function of graph size. The difference between linear size and
quadratic size is asymptotic, so the consequences become ever more important as
n gets larger.

What is the weird bump in running times that occurs around n ~ 2507 This
likely reflects a transition between levels of the memory hierarchy. Such bumps
are not uncommon in today’s complex computer systems. Cache performance in
data structure design should be an important but not overriding consideration.

158 5. GRAPH TRAVERSAL

Running Time of Minimum Spanning Tree in Old and New Combinatorica Ratio of Running Times for Mininum Spanning Tree in Old and New Combinatorica

T T
New Combinatorica —+— Run time ratio —+—

T T T
Old Combinatorica ---x--3,
40 i 6l

Running Time in Seconds
Ratio
>
T

2 .
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Vertices in Graph Vertices in Graph

Figure 5.7: Performance comparison between old and new Combinatorica: absolute running
times (1), and the ratio of these times (r).

The asymptotic gains due to adjacency lists more than trumped any impact of the
cache.

Two main lessons can be taken away from our experience developing Combina-
torica:

e To make a program run faster, just wait — Sophisticated hardware eventually
slithers down to everybody. We observe a speedup of more than 200-fold for
the original version of Combinatorica as a consequence of 15 years of faster
hardware. In this context, the further speedups we obtained from upgrading
the package become particularly dramatic.

o Asymptotics eventually do matter— It was my mistake not to anticipate future
developments in technology. While no one has a crystal ball, it is fairly safe
to say that future computers will have more memory and run faster than
today’s. This gives an edge to asymptotically more efficient algorithms/data
structures, even if their performance is close on today’s instances. If the
implementation complexity is not substantially greater, play it safe and go
with the better algorithm.

5.4 War Story: Getting the Graph

“It takes five minutes just to read the data. We will never have time to make it do
something interesting.”

The young graduate student was bright and eager, but green to the power of
data structures. She would soon come to appreciate their power.

5.4 WAR STORY: GETTING THE GRAPH

159

s

Figure 5.8: The dual graph (dashed lines) of a triangulation

As described in a previous war story (see Section 3.6 (page 85)), we were ex-
perimenting with algorithms to extract triangular strips for the fast rendering of
triangulated surfaces. The task of finding a small number of strips that cover each
triangle in a mesh could be modeled as a graph problem. The graph has a vertex for
every triangle of the mesh, with an edge between every pair of vertices representing
adjacent triangles. This dual graph representation (see Figure 5.8) captures all the
information needed to partition the triangulation into triangle strips.

The first step in crafting a program that constructs a good set of strips was to
build the dual graph of the triangulation. This I sent the student off to do. A few
days later, she came back and announced that it took over five CPU minutes just
to construct this dual graph of a few thousand triangles.

“Nonsense!” I proclaimed. “You must be doing something very wasteful in build-
ing the graph. What format is the data in?”

“Well, it starts out with a list of the 3D coordinates of the vertices used in the
model and then follows with a list of triangles. Each triangle is described by a list
of three indices into the vertex coordinates. Here is a small example:”

VERTICES 4

0.000000 240.000000 0.000000
204.000000 240.000000 0.000000
204.000000 0.000000 0.000000
0.000000 0.000000 0.000000
TRIANGLES 2

013

123

“I see. So the first triangle uses all but the third point, since all the indices
start from zero. The two triangles must share an edge formed by points 1 and 3.”
“Yeah, that’s right,” she confirmed.

160

5.

GRAPH TRAVERSAL

“OK. Now tell me how you built your dual graph from this file.”

“Well, I can ignore the vertex information once I know how many vertices there
are. The geometric position of the points doesn’t affect the structure of the graph.
My dual graph is going to have as many vertices as the number of triangles. I set
up an adjacency list data structure with that many vertices. As I read in each
triangle, I compare it to each of the others to check whether it has two end points
in common. If it does, I add an edge from the new triangle to this one.”

I started to sputter. “But that’s your problem right there! You are comparing
each triangle against every other triangle, so that constructing the dual graph will
be quadratic in the number of triangles. Reading the input graph should take linear
time!”

“I’'m not comparing every triangle against every other triangle. On average, it
only tests against half or a third of the triangles.”

“Swell. But that still leaves us with an O(n?) algorithm. That is much too
slow.”

She stood her ground. “Well, don’t just complain. Help me fix it!”

Fair enough. I started to think. We needed some quick method to screen away
most of the triangles that would not be adjacent to the new triangle (i, j, k). What
we really needed was a separate list of all the triangles that go through each of
the points i, j, and k. By Euler’s formula for planar graphs, the average point is
incident on less than six triangles. This would compare each new triangle against
fewer than twenty others, instead of most of them.

“We are going to need a data structure consisting of an array with one element
for every vertex in the original data set. This element is going to be a list of all the
triangles that pass through that vertex. When we read in a new triangle, we will
look up the three relevant lists in the array and compare each of these against the
new triangle. Actually, only two of the three lists need be tested, since any adjacent
triangles will share two points in common. We will add an adjacency to our graph
for every triangle-pair sharing two vertices. Finally, we will add our new triangle to
each of the three affected lists, so they will be updated for the next triangle read.”

She thought about this for a while and smiled. “Got it, Chief. I'll let you know
what happens.”

The next day she reported that the graph could be built in seconds, even for
much larger models. From here, she went on to build a successful program for
extracting triangle strips, as reported in Section 3.6 (page 85).

The take-home lesson is that even elementary problems like initializing data
structures can prove to be bottlenecks in algorithm development. Most programs
working with large amounts of data have to run in linear or almost linear time.
Such tight performance demands leave no room to be sloppy. Once you focus on
the need for linear-time performance, an appropriate algorithm or heuristic can
usually be found to do the job.

5.5 TRAVERSING A GRAPH

161

5.5 Traversing a Graph

Perhaps the most fundamental graph problem is to visit every edge and vertex in a
graph in a systematic way. Indeed, all the basic bookkeeping operations on graphs
(such printing or copying graphs, and converting between alternate representations)
are applications of graph traversal.

Mazes are naturally represented by graphs, where each graph vertex denotes a
junction of the maze, and each graph edge denotes a hallway in the maze. Thus, any
graph traversal algorithm must be powerful enough to get us out of an arbitrary
maze. For efficiency, we must make sure we don’t get trapped in the maze and visit
the same place repeatedly. For correctness, we must do the traversal in a systematic
way to guarantee that we get out of the maze. Our search must take us through
every edge and vertex in the graph.

The key idea behind graph traversal is to mark each vertex when we first visit
it and keep track of what we have not yet completely explored. Although bread
crumbs or unraveled threads have been used to mark visited places in fairy-tale
mazes, we will rely on Boolean flags or enumerated types.

Each vertex will exist in one of three states:

e undiscovered — the vertex is in its initial, virgin state.

e discovered — the vertex has been found, but we have not yet checked out all
its incident edges.

e processed — the vertex after we have visited all its incident edges.

Obviously, a vertex cannot be processed until after we discover it, so the state
of each vertex progresses over the course of the traversal from wundiscovered to
discovered to processed.

We must also maintain a structure containing the vertices that we have dis-
covered but not yet completely processed. Initially, only the single start vertex is
considered to be discovered. To completely explore a vertex v, we must evaluate
each edge leaving v. If an edge goes to an undiscovered vertex x, we mark x dis-
covered and add it to the list of work to do. We ignore an edge that goes to a
processed vertex, because further contemplation will tell us nothing new about the
graph. We can also ignore any edge going to a discovered but not processed vertex,
because the destination already resides on the list of vertices to process.

Each undirected edge will be considered exactly twice, once when each of its
endpoints is explored. Directed edges will be considered only once, when exploring
the source vertex. Every edge and vertex in the connected component must eventu-
ally be visited. Why? Suppose that there exists a vertex u that remains unvisited,
whose neighbor v was visited. This neighbor v will eventually be explored, after
which we will certainly visit u. Thus, we must find everything that is there to be
found.

We describe the mechanics of these traversal algorithms and the significance of
the traversal order below.

162 5. GRAPH TRAVERSAL

6

Figure 5.9: An undirected graph and its breadth-first search tree

5.6 Breadth-First Search

The basic breadth-first search algorithm is given below. At some point during the
course of a traversal, every node in the graph changes state from undiscovered to
discovered. In a breadth-first search of an undirected graph, we assign a direction
to each edge, from the discoverer u to the discovered v. We thus denote u to be the
parent of v. Since each node has exactly one parent, except for the root, this defines
a tree on the vertices of the graph. This tree, illustrated in Figure 5.9, defines a
shortest path from the root to every other node in the tree. This property makes
breadth-first search very useful in shortest path problems.

BFS(G, s)
for each vertex u € V[G] — {s} do
state[u] = “undiscovered”
plu] = nil, i.e. no parent is in the BFS tree
state[s] = “discovered”
p[s] = nil
Q = {s}
while Q # 0 do
u = dequeue[Q]

process vertex u as desired
for each v € Adj[u] do
process edge (u,v) as desired

if state[v] = “undiscovered” then
state[v] = “discovered”
plv] =u
enqueue|Q, v]
state[u] = “processed”

The graph edges that do not appear in the breadth-first search tree also have
special properties. For undirected graphs, nontree edges can point only to vertices
on the same level as the parent vertex, or to vertices on the level directly below

5.6 BREADTH-FIRST SEARCH

163

the parent. These properties follow easily from the fact that each path in the tree
must be the shortest path in the graph. For a directed graph, a back-pointing edge
(u,v) can exist whenever v lies closer to the root than u does.

Implementation

Our breadth-first search implementation bfs uses two Boolean arrays to maintain
our knowledge about each vertex in the graph. A vertex is discovered the first time
we visit it. A vertex is considered processed after we have traversed all outgoing
edges from it. Thus, each vertex passes from undiscovered to discovered to processed
over the course of the search. This information could have been maintained using
one enumerated type variable, but we used two Boolean variables instead.

bool processed[MAXV+1]; /* which vertices have been processed */
bool discovered[MAXV+1]; /* which vertices have been found */
int parent [MAXV+1]; /* discovery relation */

Each vertex is initialized as undiscovered:

initialize_search(graph *g)

{
int i; /* counter */
for (i=1; i<=g->nvertices; i++) {
processed[i] = discovered[i] = FALSE;
parent[i] = -1;
}
}

Once a vertex is discovered, it is placed on a queue. Since we process these
vertices in first-in, first-out order, the oldest vertices are expanded first, which are
exactly those closest to the root:

bfs(graph *g, int start)

{
queue q; /* queue of vertices to visit */
int v; /* current vertex */
int y; /* successor vertex */
edgenode *p; /* temporary pointer */

init_queue(&q);
enqueue (&q,start) ;
discovered[start] = TRUE;

164

5

GRAPH TRAVERSAL

while (empty_queue(&q) == FALSE) {
v = dequeue (&q) ;
process_vertex_early(v);
processed[v] = TRUE;
p = g—>edges[v];
while (p != NULL) {
y = P72V
if ((processed[y] == FALSE) || g->directed)
process_edge(v,y);
if (discovered[y] == FALSE) {
enqueue (&q,y) ;
discovered[y] = TRUE;
parent[y] = v;

b
P = p—>next;
¥

process_vertex_late(v);

5.6.1 Exploiting Traversal

The exact behavior of bfs depends upon the functions process_vertex_early(),
process_vertex_late(), and process_edge(). Through these functions, we can
customize what the traversal does as it makes its official visit to each edge
and each vertex. Initially, we will do all of vertex processing on entry, so
process_vertex_late() returns without action:

process_vertex_late(int v)
{
}

By setting the active functions to

process_vertex_early(int v)
{
printf ("processed vertex J%d\n",v);

}

process_edge(int x, int y)
{

printf ("processed edge (%d,%d)\n",x,y);
}

5.6 BREADTH-FIRST SEARCH

165

we print each vertex and edge exactly once. If we instead set process_edge to

process_edge(int x, int y)
{
nedges = nedges + 1;

}

we get an accurate count of the number of edges. Different algorithms perform
different actions on vertices or edges as they are encountered. These functions give
us the freedom to easily customize our response.

5.6.2 Finding Paths

The parent array set within bfs() is very useful for finding interesting paths
through a graph. The vertex that discovered vertex ¢ is defined as parent[i].
Every vertex is discovered during the course of traversal, so except for the root
every node has a parent. The parent relation defines a tree of discovery with the
initial search node as the root of the tree.

Because vertices are discovered in order of increasing distance from the root,
this tree has a very important property. The unique tree path from the root to
each node x € V uses the smallest number of edges (or equivalently, intermediate
nodes) possible on any root-to-z path in the graph.

We can reconstruct this path by following the chain of ancestors from x to the
root. Note that we have to work backward. We cannot find the path from the root
to z, since that does not follow the direction of the parent pointers. Instead, we
must find the path from x to the root. Since this is the reverse of how we normally
want the path, we can either (1) store it and then explicitly reverse it using a stack,
or (2) let recursion reverse it for us, as follows:

find_path(int start, int end, int parents[])

{
if ((start == end) || (end == -1))
printf ("\n%d",start);
else {
find_path(start,parents[end] ,parents);
printf (" %d",end);
}
}

On our breadth-first search graph example (Figure 5.9) our algorithm generated
the following parent relation:

Vertex‘l 2 3 4 5 6
parent | -1 1 2 5 1 1

166

5.

GRAPH TRAVERSAL

For the shortest path from 1 to 4, upper-right corner, this parent relation yields
the path {1,5,4}.

There are two points to remember when using breadth-first search to find a
shortest path from x to y: First, the shortest path tree is only useful if BFS was
performed with x as the root of the search. Second, BFS gives the shortest path
only if the graph is unweighted. We will present algorithms for finding shortest
paths in weighted graphs in Section 6.3.1 (page 206).

5.7 Applications of Breadth-First Search

Most elementary graph algorithms make one or two traversals of the graph while
we update our knowledge of the graph. Properly implemented using adjacency lists,
any such algorithm is destined to be linear, since BFS runs in O(n + m) time on
both directed and undirected graphs. This is optimal, since it is as fast as one can
hope to read any n-vertex, m-edge graph.

The trick is seeing when traversal approaches are destined to work. We present
several examples below.

5.7.1 Connected Components

The “six degrees of separation” theory argues that there is always a short path
linking every two people in the world. We say that a graph is connected if there
is a path between any two vertices. If the theory is true, it means the friendship
graph must be connected.

A connected component of an undirected graph is a maximal set of vertices such
that there is a path between every pair of vertices. The components are separate
“pieces” of the graph such that there is no connection between the pieces. If we
envision tribes in remote parts of the world that have yet not been encountered,
each such tribe would form a separate connected component in the friendship graph.
A remote hermit, or extremely unpleasant fellow, would represent a connected
component of one vertex.

An amazing number of seemingly complicated problems reduce to finding or
counting connected components. For example, testing whether a puzzle such as
Rubik’s cube or the 15-puzzle can be solved from any position is really asking
whether the graph of legal configurations is connected.

Connected components can be found using breadth-first search, since the vertex
order does not matter. We start from the first vertex. Anything we discover during
this search must be part of the same connected component. We then repeat the
search from any undiscovered vertex (if one exists) to define the next component,
and so on until all vertices have been found:

5.7 APPLICATIONS OF BREADTH-FIRST SEARCH

167

connected_components (graph *g)

{
int c; /* component number */
int i; /* counter */
initialize_search(g);
c = 0;
for (i=1; i<=g->nvertices; i++)
if (discovered[i] == FALSE) {
c = ct+l;
printf ("Component %d:",c);
bfs(g,i);
printf ("\n");
}
}

process_vertex_early(int v)
{

printf (" %d",v);
}

process_edge(int x, int y)
{
}

Observe how we increment a counter ¢ denoting the current component number
with each call to bfs. We could have explicitly bound each vertex to its component
number (instead of printing the vertices in each component) by changing the action
of process_vertex.

There are two distinct notions of connectivity for directed graphs, leading to
algorithms for finding both weakly connected and strongly connected components.
Both of these can be found in O(n + m) time, as discussed in Section 15.1 (page
477).

5.7.2 Two-Coloring Graphs

The wvertez-coloring problem seeks to assign a label (or color) to each vertex of a
graph such that no edge links any two vertices of the same color. We can easily
avoid all conflicts by assigning each vertex a unique color. However, the goal is to
use as few colors as possible. Vertex coloring problems often arise in scheduling
applications, such as register allocation in compilers. See Section 16.7 (page 544)
for a full treatment of vertex-coloring algorithms and applications.

168

5.

GRAPH TRAVERSAL

A graph is bipartite if it can be colored without conflicts while using only two
colors. Bipartite graphs are important because they arise naturally in many appli-
cations. Consider the “had-sex-with” graph in a heterosexual world. Men have sex
only with women, and vice versa. Thus, gender defines a legal two-coloring, in this
simple model.

But how can we find an appropriate two-coloring of a graph, thus separating
the men from the women? Suppose we assume that the starting vertex is male.
All vertices adjacent to this man must be female, assuming the graph is indeed
bipartite.

We can augment breadth-first search so that whenever we discover a new vertex,
we color it the opposite of its parent. We check whether any nondiscovery edge links
two vertices of the same color. Such a conflict means that the graph cannot be two-
colored. Otherwise, we will have constructed a proper two-coloring whenever we
terminate without conflict.

twocolor (graph *g)

{
int i; /* counter */
for (i=1; i<=(g->nvertices); i++)
color[i] = UNCOLORED;
bipartite = TRUE;
initialize_search(&g);
for (i=1; i<=(g->nvertices); i++)
if (discovered[i] == FALSE) {
color[i] = WHITE;
bfs(g,i);
}
}

process_edge(int x, int y)
{
if (color[x] == color[yl) {
bipartite = FALSE;
printf ("Warning: not bipartite due to (%d,%d)\n",x,y);
}

color[y] = complement(color([x]);

5.8 DEPTH-FIRST SEARCH

169

complement (int color)

{
if (color == WHITE) return(BLACK);
if (color == BLACK) return(WHITE);
return (UNCOLORED) ;

}

We can assign the first vertex in any connected component to be whatever
color/sex we wish. BFS can separate the men from the women, but we can’t tell
them apart just by using the graph structure.

Take-Home Lesson: Breadth-first and depth-first searches provide mechanisms
to visit each edge and vertex of the graph. They prove the basis of most simple,
efficient graph algorithms.

5.8 Depth-First Search

There are two primary graph traversal algorithms: breadth-first search (BFS) and
depth-first search (DFS). For certain problems, it makes absolutely no difference
which you use, but in others the distinction is crucial.

The difference between BFS and DFS results is in the order in which they
explore vertices. This order depends completely upon the container data structure
used to store the discovered but not processed vertices.

e Queue — By storing the vertices in a first-in, first-out (FIFO) queue, we
explore the oldest unexplored vertices first. Thus our explorations radiate
out slowly from the starting vertex, defining a breadth-first search.

e Stack — By storing the vertices in a last-in, first-out (LIFO) stack, we explore
the vertices by lurching along a path, visiting a new neighbor if one is avail-
able, and backing up only when we are surrounded by previously discovered
vertices. Thus, our explorations quickly wander away from our starting point,
defining a depth-first search.

Our implementation of dfs maintains a notion of traversal time for each vertex.
Our time clock ticks each time we enter or exit any vertex. We keep track of the
entry and exit times for each vertex.

Depth-first search has a neat recursive implementation, which eliminates the
need to explicitly use a stack:

DFS(G, u)
state[u] = “discovered”
process vertex u if desired

170 5. GRAPH TRAVERSAL

time = time + 1
entry[u] = time
for each v € Adj[u] do
process edge (u,v) if desired

if state[v] = “undiscovered” then
plv] =u
DFS(G,v)
state[u] = “processed”

exitlu] = time
time = time + 1

The time intervals have interesting and useful properties with respect to depth-
first search:

e Who is an ancestor? — Suppose that x is an ancestor of y in the DFS tree.
This implies that we must enter x before y, since there is no way we can be
born before our own father or grandfather! We also must exit y before we
exit x, because the mechanics of DFS ensure we cannot exit x until after we
have backed up from the search of all its descendants. Thus the time interval
of y must be properly nested within ancestor x.

e How many descendants? — The difference between the exit and entry times
for v tells us how many descendents v has in the DFS tree. The clock gets
incremented on each vertex entry and vertex exit, so half the time difference
denotes the number of descendents of v.

We will use these entry and exit times in several applications of depth-first
search, particularly topological sorting and biconnected/strongly-connected com-
ponents. We need to be able to take separate actions on each entry and exit,
thus motivating distinct process_vertex_early and process_vertex_late rou-
tines called from dfs.

The other important property of a depth-first search is that it partitions the
edges of an undirected graph into exactly two classes: tree edges and back edges. The
tree edges discover new vertices, and are those encoded in the parent relation. Back
edges are those whose other endpoint is an ancestor of the vertex being expanded,
so they point back into the tree.

An amazing property of depth-first search is that all edges fall into these two
classes. Why can’t an edge go to a brother or cousin node instead of an ancestor?
All nodes reachable from a given vertex v are expanded before we finish with the
traversal from v, so such topologies are impossible for undirected graphs. This edge
classification proves fundamental to the correctness of DFS-based algorithms.

5.8 DEPTH-FIRST SEARCH

171

2 /%\@

74

Figure 5.10: An undirected graph and its depth-first search tree

Implementation

A depth-first search can be thought of as a breadth-first search with a stack instead
of a queue. The beauty of implementing dfs recursively is that recursion eliminates
the need to keep an explicit stack:

dfs(graph *g, int v)

{
edgenode *p; /* temporary pointer */
int y; /* successor vertex */
if (finished) return; /* allow for search termination */
discovered([v] = TRUE;
time = time + 1;
entry_time[v] = time;

process_vertex_early(v);

p = g—>edges([v];
while (p != NULL) {
¥ = p>y;
if (discovered[y] == FALSE) {
parent[y] = v;
process_edge(v,y);
dfs(g,y);
}
else if ((!processed[y] && (parent[v]! = y)) || (g->directed))
process_edge(v,y);

172

5.

GRAPH TRAVERSAL

if (finished) return;

P = p—>next;

process_vertex_late(v);

time = time + 1;
exit_time[v] = time;

processed[v] = TRUE;

Depth-first search use essentially the same idea as backtracking, which we study
in Section 7.1 (page 231). Both involve exhaustively searching all possibilities by ad-
vancing if it is possible, and backing up as soon as there is no unexplored possibility
for further advancement. Both are most easily understood as recursive algorithms.

Take-Home Lesson: DFS organizes vertices by entry/exit times, and edges
into tree and back edges. This organization is what gives DFS its real power.

5.9 Applications of Depth-First Search

As algorithm design paradigms go, a depth-first search isn’t particularly intimidat-
ing. It is surprisingly subtle, however meaning that its correctness requires getting
details right.

The correctness of a DFS-based algorithm depends upon specifics of exactly
when we process the edges and vertices. We can process vertex v either before we
have traversed any of the outgoing edges from v (process_vertex_early()) or after
we have finished processing all of them (process_vertex_late()). Sometimes we
will take special actions at both times, say process_vertex_early() to initialize a
vertex-specific data structure, which will be modified on edge-processing operations
and then analyzed afterwards using process_vertex_late().

In undirected graphs, each edge (x,y) sits in the adjacency lists of vertex x
and y. Thus there are two potential times to process each edge (z,y), namely when
exploring x and when exploring y. The labeling of edges as tree edges or back edges
occurs during the first time the edge is explored. This first time we see an edge is
usually a logical time to do edge-specific processing. Sometimes, we may want to
take different action the second time we see an edge.

But when we encounter edge (x,y) from z, how can we tell if we have previously
traversed the edge from y? The issue is easy if vertex y is undiscovered: (z,y)

5.9 APPLICATIONS OF DEPTH-FIRST SEARCH

173

NN

Figure 5.11: An articulation vertex is the weakest point in the graph

becomes a tree edge so this must be the first time. The issue is also easy if y
has been completely processed; since we explored the edge when we explored y
this must be the second time. But what if y is an ancestor of x, and thus in a
discovered state? Careful reflection will convince you that this must be our first
traversal unless y is the immediate ancestor of x—i.e., (y,z) is a tree edge. This
can be established by testing if y == parent [x].

I find that the subtlety of depth-first search-based algorithms kicks me in the
head whenever I try to implement one. I encourage you to analyze these implemen-
tations carefully to see where the problematic cases arise and why.

5.9.1 Finding Cycles

Back edges are the key to finding a cycle in an undirected graph. If there is no
back edge, all edges are tree edges, and no cycle exists in a tree. But any back edge
going from z to an ancestor y creates a cycle with the tree path from y to x. Such
a cycle is easy to find using dfs:

process_edge(int x, int y)

{
if (discovered[y] && (parent[x] != y)) { /% found back edge! */
printf("Cycle from %d to %d:",y,x);
find_path(y,x,parent) ;
printf ("\n\n");
finished = TRUE;
}
}

The correctness of this cycle detection algorithm depends upon processing each
undirected edge exactly once. Otherwise, a spurious two-vertex cycle (z,y, z) could
be composed from the two traversals of any single undirected edge. We use the
finished flag to terminate after finding the first cycle.

5.9.2 Articulation Vertices

Suppose you are a vandal seeking to disrupt the telephone network. Which station
in Figure 5.11 should you choose to blow up to cause the maximum amount of

174 5. GRAPH TRAVERSAL

Figure 5.12: DFS tree of a graph containing two articulation vertices (namely 1 and 2). Back
edge (5,2) keeps vertices 3 and 4 from being cut-nodes. Vertices 5 and 6 escape as leaves of
the DFS tree

damage? Observe that there is a single point of failure—a single vertex whose
deletion disconnects a connected component of the graph. Such a vertex is called
an articulation vertex or cut-node. Any graph that contains an articulation vertex
is inherently fragile, because deleting that single vertex causes a loss of connectivity
between other nodes.

We presented a breadth-first search-based connected components algorithm in
Section 5.7.1 (page 166). In general, the connectivity of a graph is the smallest
number of vertices whose deletion will disconnect the graph. The connectivity is
one if the graph has an articulation vertex. More robust graphs without such a
vertex are said to be biconnected. Connectivity will be further discussed in the
catalog in Section 15.8 (page 505).

Testing for articulation vertices by brute force is easy. Temporarily delete each
vertex v, and then do a BFS or DFS traversal of the remaining graph to establish
whether it is still connected. The total time for n such traversals is O(n(m + n)).
There is a clever linear-time algorithm, however, that tests all the vertices of a
connected graph using a single depth-first search.

What might the depth-first search tree tell us about articulation vertices? This
tree connects all the vertices of the graph. If the DFS tree represented the entirety of
the graph, all internal (nonleaf) nodes would be articulation vertices, since deleting
any one of them would separate a leaf from the root. Blowing up a leaf (such as
vertices 5 and 6 in Figure 5.12) cannot disconnect the tree, since it connects no
one but itself to the main trunk.

5.9 APPLICATIONS OF DEPTH-FIRST SEARCH

175

The root of the search tree is a special case. If it has only one child, it functions
as a leaf. But if the root has two or more children, its deletion disconnects them,
making the root an articulation vertex.

General graphs are more complex than trees. But a depth-first search of a
general graph partitions the edges into tree edges and back edges. Think of these
back edges as security cables linking a vertex back to one of its ancestors. The
security cable from z back to y ensures that none of the vertices on the tree path
between x and y can be articulation vertices. Delete any of these vertices, and the
security cable will still hold all of them to the rest of the tree.

Finding articulation vertices requires maintaining the extent to which back
edges (i.e., security cables) link chunks of the DFS tree back to ancestor nodes.
Let reachable_ancestor[v] denote the earliest reachable ancestor of vertex v,
meaning the oldest ancestor of v that we can reach from a descendant of v by using
a back edge. Initially, reachable_ancestor[v] = v:

int reachable_ancestor [MAXV+1]; /* earliest reachable ancestor of v */
int tree_out_degree[MAXV+1]; /* DFS tree outdegree of v */

process_vertex_early(int v)
{
reachable_ancestor[v] = v;

}

We update reachable_ancestor[v] whenever we encounter a back edge that
takes us to an earlier ancestor than we have previously seen. The relative age/rank
of our ancestors can be determined from their entry_time’s:

process_edge(int x, int y)

{
int class; /* edge class */
class = edge_classification(x,y);
if (class == TREE)
tree_out_degree[x] = tree_out_degree[x] + 1;
if ((class == BACK) && (parent[x] != y)) {
if (entry_time[y] < entry_time[reachable_ancestor([x]])
reachable_ancestor[x] = y;
}
}

The key issue is determining how the reachability relation impacts whether
vertex v is an articulation vertex. There are three cases, as shown in Figure 5.13:

176 5. GRAPH TRAVERSAL

root cutnode

bridge cutnode g 4 parent cutnode (of v)

bridge cutnode €

/\

Figure 5.13: The three cases of articulation vertices: root, bridge, and parent cut-nodes

e Root cut-nodes — If the root of the DF'S tree has two or more children, it must
be an articulation vertex. No edges from the subtree of the second child can
possibly connect to the subtree of the first child.

e Bridge cut-nodes — If the earliest reachable vertex from v is v, then deleting
the single edge (parent[v],v) disconnects the graph. Clearly parent[v] must
be an articulation vertex, since it cuts v from the graph. Vertex v is also an
articulation vertex unless it is a leaf of the DFS tree. For any leaf, nothing
falls off when you cut it.

e Parent cut-nodes — If the earliest reachable vertex from v is the parent of v,
then deleting the parent must sever v from the tree unless the parent is the
root.

The routine below systematically evaluates each of the three conditions as we
back up from the vertex after traversing all outgoing edges. We use entry_time [v]
to represent the age of vertex v. The reachability time time_v calculated below
denotes the oldest vertex that can be reached using back edges. Getting back to
an ancestor above v rules out the possibility of v being a cut-node:

5.9 APPLICATIONS OF DEPTH-FIRST SEARCH

177

process_vertex_late(int v)

{

bool root; /* is the vertex the root of the DFS tree? *x/
int time_v; /* earliest reachable time for v */
int time_parent; /* earliest reachable time for parent[v] */

if (parent[v] < 1) { /* test if v is the root */
if (tree_out_degreel[v] > 1)
printf("root articulation vertex: %d \n",v);
return;

root = (parent[parent[v]] < 1); /* test if parent[v] is root */

if (lroot){
if (reachable_ancestor[v] == parent[v]){
printf ("parent articulation vertex: %d \n",parent([v]);
}
if (reachable_ancestor([v] == v) {
printf ("bridge articulation vertex: %d \n",parent[v]);
if (tree_out_degreel[v] > 0) /* test if v is not a leaf */
printf("bridge articulation vertex: %d \n",v);
}

}
time_v = entry_time[reachable_ancestor[v]];
time_parent = entry_time[reachable_ancestor[parent[v]]];

if (time_v < time_parent)
reachable_ancestor [parent[v]] = reachable_ancestor[v];

The last lines of this routine govern when we back up a node’s highest reachable
ancestor to its parent, namely whenever it is higher than the parent’s earliest
ancestor to date.

We can alternately talk about reliability in terms of edge failures instead of
vertex failures. Perhaps our vandal would find it easier to cut a cable instead of
blowing up a switching station. A single edge whose deletion disconnects the graph
is called a bridge; any graph without such an edge is said to be edge-biconnected.

Identifying whether a given edge (x,y) is a bridge is easily done in linear time
by deleting the edge and testing whether the resulting graph is connected. In fact
all bridges can be identified in the same O(n+m) time. Edge (z,y) is a bridge if (1)
it is a tree edge, and (2) no back edge connects from y or below to 2 or above. This
can be computed with an appropriate modification of the process_vertex_late
function.

178

5.

GRAPH TRAVERSAL

LAA R

Tree Edges Forward Edge Back Edge Cross Edges

Figure 5.14: Possible edge cases for BFS/DFS traversal

5.10 Depth-First Search on Directed Graphs

Depth-first search on an undirected graph proves useful because it organizes the
edges of the graph in a very precise way, as shown in Figure 5.10.

When traversing undirected graphs, every edge is either in the depth-first search
tree or a back edge to an ancestor in the tree. Let us review why. Suppose we
encountered a “forward edge” (z,y) directed toward a descendant vertex. In this
case, we would have discovered (z,y) while exploring y, making it a back edge.
Suppose we encounter a “cross edge” (z,y), linking two unrelated vertices. Again,
we would have discovered this edge when we explored y, making it a tree edge.

For directed graphs, depth-first search labelings can take on a wider range of
possibilities. Indeed, all four of the edge cases in Figure 5.14 can occur in traversing
directed graphs. Still, this classification proves useful in organizing algorithms on
directed graphs. We typically take a different action on edges from each different
case.

The correct labeling of each edge can be readily determined from the state,
discovery time, and parent of each vertex, as encoded in the following function:

int edge_classification(int x, int y)

{

if (parentl[y] == x) return(TREE);

if (discovered[y] && !processed[y]) return(BACK);

if (processed[y] && (entry_timel[y]>entry_time[x])) return(FORWARD);
if (processed[y] && (entry_time[y]l<entry_time[x])) return(CROSS);

printf("Warning: unclassified edge (%d,%d)\n",x,y);

5.10 DEPTH-FIRST SEARCH ON DIRECTED GRAPHS

179

B D

G F

Figure 5.15: A DAG with only one topological sort (G, A, B,C, F, E, D)

As with BFS, this implementation of the depth-first search algorithm includes
places to optionally process each vertex and edge—say to copy them, print them, or
count them. Both algorithms will traverse all edges in the same connected compo-
nent as the starting point. Since we need to start with a vertex in each component
to traverse a disconnected graph, we must start from any vertex remaining undis-
covered after a component search. With the proper initialization, this completes
the traversal algorithm:

DFS-graph(G)
for each vertex u € V]G] do
state[u] = “undiscovered”
for each vertex u € V[G] do
if state[u] = “undiscovered” then
initialize new component, if desired

DFS(G,u)

I encourage the reader to convince themselves of the correctness of these four
conditions. What I said earlier about the subtlety of depth-first search goes double
for directed graphs.

5.10.1 Topological Sorting

Topological sorting is the most important operation on directed acyclic graphs
(DAGsS). It orders the vertices on a line such that all directed edges go from left to
right. Such an ordering cannot exist if the graph contains a directed cycle, because
there is no way you can keep going right on a line and still return back to where
you started from!

Each DAG has at least one topological sort. The importance of topological
sorting is that it gives us an ordering to process each vertex before any of its
successors. Suppose the edges represented precedence constraints, such that edge

180

5.

GRAPH TRAVERSAL

(z,y) means job x must be done before job y. Then, any topological sort defines a
legal schedule. Indeed, there can be many such orderings for a given DAG.

But the applications go deeper. Suppose we seek the shortest (or longest) path
from z to y in a DAG. No vertex appearing after y in the topological order can
contribute to any such path, because there will be no way to get back to y. We
can appropriately process all the vertices from left to right in topological order,
considering the impact of their outgoing edges, and know that we will have looked
at everything we need before we need it. Topological sorting proves very useful in
essentially any algorithmic problem on directed graphs, as discussed in the catalog
in Section 15.2 (page 481).

Topological sorting can be performed efficiently using depth-first searching. A
directed graph is a DAG if and only if no back edges are encountered. Labeling
the vertices in the reverse order that they are marked processed finds a topological
sort of a DAG. Why? Consider what happens to each directed edge {z,y} as we
encounter it exploring vertex x:

e If y is currently undiscovered, then we start a DFS of y before we can continue
with z. Thus y is marked completed before x is, and = appears before y in
the topological order, as it must.

e If y is discovered but not completed, then {z,y} is a back edge, which is
forbidden in a DAG.

o If y is processed, then it will have been so labeled before z. Therefore, x
appears before y in the topological order, as it must.

Study the following implementation:

process_vertex_late(int v)
{

push(&sorted,v) ;
}

process_edge(int x, int y)
{

int class; /* edge class */
class = edge_classification(x,y);

if (class == BACK)
printf ("Warning: directed cycle found, not a DAG\n");

5.10 DEPTH-FIRST SEARCH ON DIRECTED GRAPHS

181

topsort(graph *g)

{

int i; /* counter x*/

init_stack(&sorted) ;

for (i=1; i<=g->nvertices; i++)

if (discovered[i] == FALSE)
dfs(g,1);

print_stack(&sorted); /* report topological order */

}

We push each vertex on a stack as soon as we have evaluated all outgoing edges.
The top vertex on the stack always has no incoming edges from any vertex on the
stack. Repeatedly popping them off yields a topological ordering.

5.10.2 Strongly Connected Components

We are often concerned with strongly connected components—that is, partitioning
a graph into chunks such that directed paths exist between all pairs of vertices
within a given chunk. A directed graph is strongly connected if there is a directed
path between any two vertices. Road networks should be strongly connected, or
else there will be places you can drive to but not drive home from without violating
one-way signs.

It is straightforward to use graph traversal to test whether a graph G = (V, E)
is strongly connected in linear time. First, do a traversal from some arbitrary vertex
v. Every vertex in the graph had better be reachable from v (and hence discovered
on the BFS or DFS starting from v), otherwise G cannot possibly be strongly
connected. Now construct a graph G’ = (V, E’) with the same vertex and edge
set as G but with all edges reversed—i.e., directed edge (z,y) € F iff (y,z) € E'.
Thus, any path from v to z in G’ corresponds to a path from z to v in G. By doing
a DFS from v in G’, we find all vertices with paths to v in G. The graph is strongly
connected iff all vertices in G can (1) reach v and (2) are reachable from wv.

Graphs that are not strongly connected can be partitioned into strongly con-
nected components, as shown in Figure 5.16 (left). The set of such components
and the weakly-connecting edges that link them together can be determined using
DFS. The algorithm is based on the observation that it is easy to find a directed
cycle using a depth-first search, since any back edge plus the down path in the
DFS tree gives such a cycle. All vertices in this cycle must be in the same strongly
connected component. Thus, we can shrink (contract) the vertices on this cycle
down to a single vertex representing the component, and then repeat. This process
terminates when no directed cycle remains, and each vertex represents a different
strongly connected component.

182 5. GRAPH TRAVERSAL

5

Figure 5.16: The strongly-connected components of a graph, with the associated DFS tree

Our approach to implementing this idea is reminiscent of finding biconnected
components in Section 5.9.2 (page 173). We update our notion of the oldest reach-
able vertex in response to (1) nontree edges and (2) backing up from a vertex.
Because we are working on a directed graph, we also must contend with forward
edges (from a vertex to a descendant) and cross edges (from a vertex back to an
nonancestor but previously discovered vertex). Our algorithm will peel one strong
component off the tree at a time, and assign each of its vertices the number of the
component it is in:

strong_components(graph *g)
{

int i; /* counter */

for (i=1; i<=(g->nvertices); i++) {
low[i] = i;
sccl[i] = -1;
}
components_found = 0O;
init_stack(&active);
initialize_search(&g);

for (i=1; i<=(g->nvertices); i++)
if (discovered[i] == FALSE) {
dfs(g,i);
}

5.10 DEPTH-FIRST SEARCH ON DIRECTED GRAPHS

183

Define low[v] to be the oldest vertex known to be in the same strongly con-
nected component as v. This vertex is not necessarily an ancestor, but may also
be a distant cousin of v because of cross edges. Cross edges that point vertices
from previous strongly connected components of the graph cannot help us, because
there can be no way back from them to v, but otherwise cross edges are fair game.
Forward edges have no impact on reachability over the depth-first tree edges, and
hence can be disregarded:

int low[MAXV+1]; /* oldest vertex surely in component of v */
int scc[MAXV+1]; /* strong component number for each vertex */

process_edge(int x, int y)

{
int class; /* edge class */
class = edge_classification(x,y);
if (class == BACK) {
if (entry_time[y] < entry_time[low[x]])
low[x] = y;
}
if (class == CROSS) {
if (sccly] == -1) /* component not yet assigned */
if (entry_time[y] < entry_time[low[x]])
low([x] = y;
}
}

A new strongly connected component is found whenever the lowest reachable
vertex from v is v. If so, we can clear the stack of this component. Otherwise, we
give our parent the benefit of the oldest ancestor we can reach and backtrack:

process_vertex_early(int v)
{
push(&active,v);

}

184 5. GRAPH TRAVERSAL

process_vertex_late(int v)

{

if (Qowlv] == v) { /* edge (parent([v],v) cuts off scc */

pop_component (v) ;
}
if (parent[v] > 0) /* only if v is not the root */
if (entry_time[low[v]] < entry_time[low[parent[v]]])
low[parent[v]] = lowl[v];

}

pop_component (int v)

{
int t; /* vertex placeholder */
components_found = components_found + 1;
scc[v] = components_found;
while ((t = pop(&active)) != v) {
scc[t] = components_found;
}
}

Chapter Notes

Our treatment of graph traversal represents an expanded version of material from
Chapter 9 of [SR03]. The Combinatorica graph library discussed in the war story
is best described in the old [Ski90]. and new editions [PS03] of the associated book.
Accessible introductions to the science of social networks include Barabasi [Bar03]
and Watts [Wat04].

5.11 Exercises

Simulating Graph Algorithms

5-1. [3] For the following graphs G (left) and G2 (right):

5.11 EXERCISES

185

(a) Report the order of the vertices encountered on a breadth-first search starting
from vertex A. Break all ties by picking the vertices in alphabetical order (i.e.,
A before Z).

(b) Report the order of the vertices encountered on a depth-first search starting
from vertex A. Break all ties by picking the vertices in alphabetical order (i.e.,
A before Z).

5-2. [3] Do a topological sort of the following graph G:
C

A B

Traversal

5-3. [8] Prove by induction that there is a unique path between any pair of vertices in
a tree.

5-4. [3] Prove that in a breadth-first search on a undirected graph G, every edge is
either a tree edge or a cross edge, where z is neither an ancestor nor descendant of
Yy, in cross edge (x,y).

5-5. [8] Give a linear algorithm to compute the chromatic number of graphs where each
vertex has degree at most 2. Must such graphs be bipartite?

5-6. [5] In breadth-first and depth-first search, an undiscovered node is marked discov-
ered when it is first encountered, and marked processed when it has been completely

186

5.

GRAPH TRAVERSAL

Figure 5.17: Expression 2 +3 %4 4 (3%4)/5 as a tree and a DAG

5-7.

5-8.

5-10.

searched. At any given moment, several nodes might be simultaneously in the dis-
covered state.

(a) Describe a graph on n vertices and a particular starting vertex v such that
O(n) nodes are simultaneously in the discovered state during a breadth-first search
starting from v.

(b) Describe a graph on n vertices and a particular starting vertex v such that ©(n)
nodes are simultaneously in the discovered state during a depth-first search starting
from v.

(c) Describe a graph on n vertices and a particular starting vertex v such that at
some point ©(n) nodes remain undiscovered, while ©(n) nodes have been processed
during a depth-first search starting from v. (Note, there may also be discovered
nodes.)

[4] Given pre-order and in-order traversals of a binary tree, is it possible to recon-
struct the tree? If so, sketch an algorithm to do it. If not, give a counterexample.
Repeat the problem if you are given the pre-order and post-order traversals.

[3] Present correct and efficient algorithms to convert an undirected graph G be-
tween the following graph data structures. You must give the time complexity of
each algorithm, assuming n vertices and m edges.

(a) Convert from an adjacency matrix to adjacency lists.

(b) Convert from an adjacency list to an incidence matrix. An incidence matrix
M has a row for each vertex and a column for each edge, such that M[i, j] =1
if vertex ¢ is part of edge j, otherwise M[i, 5] = 0.

(¢) Convert from an incidence matrix to adjacency lists.

. [8] Suppose an arithmetic expression is given as a tree. Each leaf is an integer and

each internal node is one of the standard arithmetical operations (4, —, *, /). For
example, the expression 2 + 3 x4 4+ (3 % 4)/5 is represented by the tree in Figure
5.17(a). Give an O(n) algorithm for evaluating such an expression, where there are
n nodes in the tree.

[5] Suppose an arithmetic expression is given as a DAG (directed acyclic graph)
with common subexpressions removed. Each leaf is an integer and each internal

5.11 EXERCISES

187

node is one of the standard arithmetical operations (+, —, *, /). For example, the
expression 2 + 3 x4 + (3 x4)/5 is represented by the DAG in Figure 5.17(b). Give
an O(n + m) algorithm for evaluating such a DAG, where there are n nodes and
m edges in the DAG. Hint: modify an algorithm for the tree case to achieve the
desired efficiency.

5-11. /8] The war story of Section 5.4 (page 158) describes an algorithm for constructing

the dual graph of the triangulation efficiently, although it does not guarantee linear
time. Give a worst-case linear algorithm for the problem.

Algorithm Design

5-12. [5] The square of a directed graph G = (V, E) is the graph G* = (V, E?) such that
(u,w) € E? iff there exists v € V such that (u,v) € E and (v,w) € E; i.e., there is
a path of exactly two edges from u to w.
Give efficient algorithms for both adjacency lists and matrices.

5-13. [5] A wertex cover of a graph G = (V, E) is a subset of vertices V' such that each
edge in F is incident on at least one vertex of V.

(a) Give an efficient algorithm to find a minimum-size vertex cover if G is a tree.

(b) Let G = (V, E) be a tree such that the weight of each vertex is equal to the
degree of that vertex. Give an efficient algorithm to find a minimum-weight
vertex cover of G.

(c) Let G = (V, E) be a tree with arbitrary weights associated with the vertices.
Give an efficient algorithm to find a minimum-weight vertex cover of G.

5-14. [3] A wvertex cover of a graph G = (V, E) is a subset of vertices V' € V such that
every edge in F contains at least one vertex from V'. Delete all the leaves from any
depth-first search tree of G. Must the remaining vertices form a vertex cover of G?
Give a proof or a counterexample.

5-15. [5] A wertex cover of a graph G = (V, E) is a subset of vertices V' € V such that
every edge in E contains at least one vertex from V'. An independent set of graph
G = (V,E) is a subset of vertices V' € V such that no edge in E contains both
vertices from V.
An independent vertex cover is a subset of vertices that is both an independent set
and a vertex cover of G. Give an efficient algorithm for testing whether G contains
an independent vertex cover. What classical graph problem does this reduce to?

5-16. [5] An independent set of an undirected graph G = (V, E) is a set of vertices U
such that no edge in F is incident on two vertices of U.

(a) Give an efficient algorithm to find a maximum-size independent set if G is a
tree.

(b) Let G = (V, E) be a tree with weights associated with the vertices such that
the weight of each vertex is equal to the degree of that vertex. Give an efficient
algorithm to find a maximum independent set of G.

(c) Let G = (V, E) be a tree with arbitrary weights associated with the vertices.
Give an efficient algorithm to find a maximum independent set of G.

188

5.

GRAPH TRAVERSAL

5-17.

5-18.

5-19.

5-20.

5-21.

5-22.

[5] Consider the problem of determining whether a given undirected graph G =
(V, E) contains a triangle or cycle of length 3.

(a) Give an O(]V]?) to find a triangle if one exists.
(b) Improve your algorithm to run in time O(|V|-|E]). You may assume |V| < |E|.

Observe that these bounds gives you time to convert between the adjacency matrix
and adjacency list representations of G.

[5] Consider a set of movies M1, Ma, ..., M. There is a set of customers, each one
of which indicates the two movies they would like to see this weekend. Movies are
shown on Saturday evening and Sunday evening. Multiple movies may be screened
at the same time.

You must decide which movies should be televised on Saturday and which on Sun-
day, so that every customer gets to see the two movies they desire. Is there a
schedule where each movie is shown at most once? Design an efficient algorithm to
find such a schedule if one exists.

[5] The diameter of a tree T' = (V, E) is given by

max §(u,v)

u,veV
(where §(u, v) is the number of edges on the path from u to v). Describe an efficient
algorithm to compute the diameter of a tree, and show the correctness and analyze
the running time of your algorithm.

[5] Given an undirected graph G with n vertices and m edges, and an integer k,
give an O(m + n) algorithm that finds the maximum induced subgraph H of G
such that each vertex in H has degree > k, or prove that no such graph exists. An
induced subgraph F' = (U, R) of a graph G = (V, E) is a subset of U of the vertices
V of G, and all edges R of G such that both vertices of each edge are in U.

[6] Let v and w be two vertices in a directed graph G = (V, E). Design a linear-
time algorithm to find the number of different shortest paths (not necessarily vertex
disjoint) between v and w. Note: the edges in G are unweighted.

[6] Design a linear-time algorithm to eliminate each vertex v of degree 2 from
a graph by replacing edges (u,v) and (v,w) by an edge (u,w). We also seek to
eliminate multiple copies of edges by replacing them with a single edge. Note that
removing multiple copies of an edge may create a new vertex of degree 2, which has
to be removed, and that removing a vertex of degree 2 may create multiple edges,
which also must be removed.

Directed Graphs

5-23.

[5] Your job is to arrange n ill-behaved children in a straight line, facing front. You
are given a list of m statements of the form “i hates j”. If ¢ hates j, then you do not
want put ¢ somewhere behind j, because then i is capable of throwing something
at j.

(a) Give an algorithm that orders the line, (or says that it is not possible) in
O(m + n) time.

5.11 EXERCISES

189

5-24.

5-25.

5-26.

5-27.

(b) Suppose instead you want to arrange the children in rows such that if ¢ hates
7, then ¢ must be in a lower numbered row than j. Give an efficient algorithm
to find the minimum number of rows needed, if it is possible.

[8] Adding a single directed edge to a directed graph can reduce the number of
weakly connected components, but by at most how many components? What about
the number of strongly connected components?

[5] An arborescence of a directed graph G is a rooted tree such that there is a
directed path from the root to every other vertex in the graph. Give an efficient
and correct algorithm to test whether G contains an arborescence, and its time
complexity.

[5] A mother vertex in a directed graph G = (V, E) is a vertex v such that all other
vertices G can be reached by a directed path from v.

(a) Give an O(n + m) algorithm to test whether a given vertex v is a mother of
G, where n = |V| and m = |E]|.

(b) Give an O(n+m) algorithm to test whether graph G contains a mother vertex.

[9] A tournament is a directed graph formed by taking the complete undirected
graph and assigning arbitrary directions on the edges—i.e., a graph G = (V, E)
such that for all u,v € V, exactly one of (u,v) or (v,u) is in E. Show that every
tournament has a Hamiltonian path—that is, a path that visits every vertex exactly
once. Give an algorithm to find this path.

Articulation Vertices

5-28.

5-29.

5-30.

[5] An articulation vertex of a graph G is a vertex whose deletion disconnects G.
Let G be a graph with n vertices and m edges. Give a simple O(n + m) algorithm
for finding a vertex of GG that is not an articulation vertex—i.e., whose deletion does
not disconnect G.

[5] Following up on the previous problem, give an O(n + m) algorithm that finds a
deletion order for the n vertices such that no deletion disconnects the graph. (Hint:
think DFS/BFS.)

[3] Suppose G is a connected undirected graph. An edge e whose removal disconnects
the graph is called a bridge. Must every bridge e be an edge in a depth-first search
tree of G7? Give a proof or a counterexample.

Interview Problems

5-31.
5-32.

[8] Which data structures are used in depth-first and breath-first search?

[4] Write a function to traverse binary search tree and return the ith node in sorted
order.

Programming Challenges

These programming challenge problems with robot judging are available at
http:/ /www.programming-challenges.com or hitp://online-judge.wva.es.

5-1.

“Bicoloring” — Programming Challenges 110901, UVA Judge 10004.

190 5. GRAPH TRAVERSAL

5-2. “Playing with Wheels” — Programming Challenges 110902, UVA Judge 10067.
5-3. “The Tourist Guide” — Programming Challenges 110903, UVA Judge 10099.
5-4. “Edit Step Ladders” — Programming Challenges 110905, UVA Judge 10029.
5-5. “Tower of Cubes” — Programming Challenges 110906, UVA Judge 10051.

6
Weighted Graph Algorithms

The data structures and traversal algorithms of Chapter 5 provide the basic build-
ing blocks for any computation on graphs. However, all the algorithms presented
there dealt with unweighted graphs—i.e., graphs where each edge has identical
value or weight.

There is an alternate universe of problems for weighted graphs. The edges of
road networks are naturally bound to numerical values such as construction cost,
traversal time, length, or speed limit. Identifying the shortest path in such graphs
proves more complicated than breadth-first search in unweighted graphs, but opens
the door to a wide range of applications.

The graph data structure from Chapter 5 quietly supported edge-weighted
graphs, but here we make this explicit. Our adjacency list structure consists of
an array of linked lists, such that the outgoing edges from vertex = appear in the
list edges[x]:

typedef struct {
edgenode *edges[MAXV+1]; /* adjacency info */

int degree[MAXV+1]; /* outdegree of each vertex */
int nvertices; /* number of vertices in graph */
int nedges; /* number of edges in graph */
int directed; /* is the graph directed? */

} graph;

Each edgenode is a record containing three fields, the first describing the second
endpoint of the edge (y), the second enabling us to annotate the edge with a weight
(weight), and the third pointing to the next edge in the list (next):

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_6,
(© Springer-Verlag London Limited 2008

192

6.

WEIGHTED GRAPH ALGORITHMS

typedef struct {

int y; /* adjacency info */
int weight; /* edge weight, if any */
struct edgenode *next; /* next edge in list */

} edgenode;

We now describe several sophisticated algorithms using this data structure,
including minimum spanning trees, shortest paths, and maximum flows. That these
optimization problems can be solved efficiently is quite worthy of our respect. Recall
that no such algorithm exists for the first weighted graph problem we encountered,
namely the traveling salesman problem.

6.1 Minimum Spanning Trees

A spanning tree of a graph G = (V, E) is a subset of edges from FE forming a
tree connecting all vertices of V. For edge-weighted graphs, we are particularly
interested in the minimum spanning tree—the spanning tree whose sum of edge
weights is as small as possible.

Minimum spanning trees are the answer whenever we need to connect a set
of points (representing cities, homes, junctions, or other locations) by the smallest
amount of roadway, wire, or pipe. Any tree is the smallest possible connected graph
in terms of number of edges, while the minimum spanning tree is the smallest
connected graph in terms of edge weight. In geometric problems, the point set
P1,...,Pn defines a complete graph, with edge (v;,v;) assigned a weight equal to
the distance from p; to p;. An example of a geometric minimum spanning tree is
illustrated in Figure 6.1. Additional applications of minimum spanning trees are
discussed in Section 15.3 (page 484).

A minimum spanning tree minimizes the total length over all possible spanning
trees. However, there can be more than one minimum spanning tree in a graph.
Indeed, all spanning trees of an unweighted (or equally weighted) graph G are
minimum spanning trees, since each contains exactly n — 1 equal-weight edges.
Such a spanning tree can be found using depth-first or breadth-first search. Finding
a minimum spanning tree is more difficult for general weighted graphs, however
two different algorithms are presented below. Both demonstrate the optimality of
certain greedy heuristics.

6.1.1 Prim’s Algorithm

Prim’s minimum spanning tree algorithm starts from one vertex and grows the rest
of the tree one edge at a time until all vertices are included.

Greedy algorithms make the decision of what to do next by selecting the best
local option from all available choices without regard to the global structure. Since
we seek the tree of minimum weight, the natural greedy algorithm for minimum

6.1 MINIMUM SPANNING TREES 193

@ (b) ©

Figure 6.1: (a) Two spanning trees of point set; (b) the minimum spanning tree, and (c) the
shortest path from center tree

spanning tree repeatedly selects the smallest weight edge that will enlarge the
number of vertices in the tree.

Prim-MST(G)
Select an arbitrary vertex s to start the tree from.
While (there are still nontree vertices)
Select the edge of minimum weight between a tree and nontree vertex
Add the selected edge and vertex to the tree Tppim-

Prim’s algorithm clearly creates a spanning tree, because no cycle can be in-
troduced by adding edges between tree and nontree vertices. However, why should
it be of minimum weight over all spanning trees? We have seen ample evidence of
other natural greedy heuristics that do not yield a global optimum. Therefore, we
must be particularly careful to demonstrate any such claim.

We use proof by contradiction. Suppose that there existed a graph G for which
Prim’s algorithm did not return a minimum spanning tree. Since we are building the
tree incrementally, this means that there must have been some particular instant
where we went wrong. Before we inserted edge (z,y), Tprim consisted of a set of
edges that was a subtree of some minimum spanning tree T},;,, but choosing edge
(x,y) fatally took us away from a minimum spanning tree (see Figure 6.2(a)).

But how could we have gone wrong? There must be a path p from z to y in
Tnin, as shown in Figure 6.2(b). This path must use an edge (v1,v2), where vy
is in Tprim, but v is not. This edge (vi,v2) must have weight at least that of
(z,y), or Prim’s algorithm would have selected it before (z,y) when it had the
chance. Inserting (z,y) and deleting (vy,v2) from T, leaves a spanning tree no
larger than before, meaning that Prim’s algorithm did not make a fatal mistake in
selecting edge (x,y). Therefore, by contradiction, Prim’s algorithm must construct
a minimum spanning tree.

194

6.

WEIGHTED GRAPH ALGORITHMS

y y
e e
° °
) L] :
[} V2o @
o ® o ®
(a) (b)

Figure 6.2: Where Prim’s algorithm goes bad? No, because d(vy,vs) > d(z,y)

Implementation

Prim’s algorithm grows the minimum spanning tree in stages, starting from a given
vertex. At each iteration, we add one new vertex into the spanning tree. A greedy
algorithm suffices for correctness: we always add the lowest-weight edge linking a
vertex in the tree to a vertex on the outside. The simplest implementation of this
idea would assign each vertex a Boolean variable denoting whether it is already in
the tree (the array intree in the code below), and then searches all edges at each
iteration to find the minimum weight edge with exactly one intree vertex.

Our implementation is somewhat smarter. It keeps track of the cheapest edge
linking every nontree vertex in the tree. The cheapest such edge over all remaining
non-tree vertices gets added in each iteration. We must update the costs of getting
to the non-tree vertices after each insertion. However, since the most recently in-
serted vertex is the only change in the tree, all possible edge-weight updates must
come from its outgoing edges:

prim(graph *g, int start)

{

int i; /* counter */

edgenode *p; /* temporary pointer */

bool intree[MAXV+1]; /* is the vertex in the tree yet? */
int distance[MAXV+1]; /* cost of adding to tree */

int v; /* current vertex to process */

int w; /* candidate next vertex */

int weight; /* edge weight */

int dist; /* best current distance from start */

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;

6.1 MINIMUM SPANNING TREES

195

distance[i] = MAXINT;
parent[i] = -1;
}

distance[start] = 0;
v = start;

while (intree[v] == FALSE) {
intree[v] = TRUE;
p = g—>edges[v];
while (p != NULL) {
W = p->y;
weight = p->weight;
if ((distancel[w] > weight) && (intreel[w] == FALSE)) {
distance[w] = weight;
parent[w] = v;
}
p

= p—>next;

v =1;
dist = MAXINT;
for (i=1; i<=g->nvertices; i++)
if ((intree[i] == FALSE) && (dist > distancel[i])) {
dist = distancelil;
v = 1i;

Analysis

Prim’s algorithm is correct, but how efficient is it? This depends on which data
structures are used to implement it. In the pseudocode, Prim’s algorithm makes
n iterations sweeping through all m edges on each iteration—yielding an O(mn)
algorithm.

But our implementation avoids the need to test all m edges on each pass. It
only considers the < n cheapest known edges represented in the parent array
and the < n edges out of new tree vertex v to update parent. By maintaining a
Boolean flag along with each vertex to denote whether it is in the tree or not, we
test whether the current edge joins a tree with a non-tree vertex in constant time.

The result is an O(n?) implementation of Prim’s algorithm, and a good illustra-
tion of power of data structures to speed up algorithms. In fact, more sophisticated

196 6. WEIGHTED GRAPH ALGORITHMS

G Prim(G,A) Kruskal(G)

Figure 6.3: A graph G (1) with minimum spanning trees produced by Prim’s (m) and Kruskal’s
(r) algorithms. The numbers on the trees denote the order of insertion; ties are broken arbi-
trarily

priority-queue data structures lead to an O(m+nlgn) implementation, by making
it faster to find the minimum cost edge to expand the tree at each iteration.

The minimum spanning tree itself or its cost can be reconstructed in two dif-
ferent ways. The simplest method would be to augment this procedure with state-
ments that print the edges as they are found or totals the weight of all selected
edges. Alternately, the tree topology is encoded by the parent array, so it plus the
original graph describe everything about the minimum spanning tree.

6.1.2 Kruskal’s Algorithm

Kruskal’s algorithm is an alternate approach to finding minimum spanning trees
that proves more efficient on sparse graphs. Like Prim’s, Kruskal’s algorithm is
greedy. Unlike Prim’s, it does not start with a particular vertex.

Kruskal’s algorithm builds up connected components of vertices, culminating in
the minimum spanning tree. Initially, each vertex forms its own separate component
in the tree-to-be. The algorithm repeatedly considers the lightest remaining edge
and tests whether its two endpoints lie within the same connected component. If
so, this edge will be discarded, because adding it would create a cycle in the tree-
to-be. If the endpoints are in different components, we insert the edge and merge
the two components into one. Since each connected component is always a tree, we
need never explicitly test for cycles.

Kruskal-MST(G)
Put the edges in a priority queue ordered by weight.
count =0
while (count <n — 1) do
get next edge (v, w)
if (component (v) # component(w))
add to Tkruskal
merge component(v) and component(w)

6.1 MINIMUM SPANNING TREES

197

(a) (b)

Figure 6.4: Where Kruskal’s algorithm goes bad? No, because d(v1,vs) > d(z,y)

This algorithm adds n — 1 edges without creating a cycle, so it clearly creates a
spanning tree for any connected graph. But why must this be a minimum spanning
tree? Suppose it wasn’t. As with the correctness proof of Prim’s algorithm, there
must be some graph on which it fails. In particular, there must a single edge (z,y)
whose insertion first prevented the tree Ti,yskq; from being a minimum spanning
tree Thin. Inserting this edge (z,y) into Ty, will create a cycle with the path
from z to y. Since x and y were in different components at the time of inserting
(z,y), at least one edge (say (vi,v2)) on this path would have been evaluated by
Kruskal’s algorithm later than (z,y). But this means that w(vy,ve) > w(z,y), so
exchanging the two edges yields a tree of weight at most 7T},,;,. Therefore, we could
not have made a fatal mistake in selecting (z,y), and the correctness follows.

What is the time complexity of Kruskal’s algorithm? Sorting the m edges takes
O(mlgm) time. The for loop makes m iterations, each testing the connectivity
of two trees plus an edge. In the most simple-minded approach, this can be im-
plemented by breadth-first or depth-first search in a sparse graph with at most n
edges and n vertices, thus yielding an O(mn) algorithm.

However, a faster implementation results if we can implement the component
test in faster than O(n) time. In fact, a clever data structure called union-find, can
support such queries in O(lgn) time. Union-find is discussed in the next section.
With this data structure, Kruskal’s algorithm runs in O(mlgm) time, which is
faster than Prim’s for sparse graphs. Observe again the impact that the right data
structure can have when implementing a straightforward algorithm.

Implementation

The implementation of the main routine follows fairly directly from the psuedocode:

198

6.

WEIGHTED GRAPH ALGORITHMS

kruskal (graph *g)

{
int i; /* counter */
set_union s; /* set union data structure */
edge_pair e[MAXV+1]; /* array of edges data structure */
bool weight_compare();

set_union_init(&s, g->nvertices);

to_edge_array(g, e); /* sort edges by increasing cost */
gsort (&e,g->nedges,sizeof (edge_pair) ,weight_compare) ;

for (i=0; i<(g->nedges); i++) {
if (!same_component(s,e[il.x,e[i].y)) {
printf("edge (%d,%d) in MST\n",eli].x,el[i].y);
union_sets(&s,eli] .x,e[i].y);

6.1.3 The Union-Find Data Structure

A set partition is a partitioning of the elements of some universal set (say the
integers 1 to n) into a collection of disjointed subsets. Thus, each element must
be in exactly one subset. Set partitions naturally arise in graph problems such
as connected components (each vertex is in exactly one connected component)
and vertex coloring (a person may be male or female, but not both or neither).
Section 14.6 (page 456) presents algorithms for generating set partitions and related
objects.

The connected components in a graph can be represented as a set partition.
For Kruskal’s algorithm to run efficiently, we need a data structure that efficiently
supports the following operations:

e Same component(vy,vs)— Do vertices v1 and vy occur in the same connected
component of the current graph?

e Merge components(Cy,Cs) — Merge the given pair of connected components
into one component in response to an edge between them.

The two obvious data structures for this task each support only one of these
operations efficiently. Explicitly labeling each element with its component number
enables the same component test to be performed in constant time, but updating
the component numbers after a merger would require linear time. Alternately, we
can treat the merge components operation as inserting an edge in a graph, but

6.1 MINIMUM SPANNING TREES

199

3 1 2 3 4 5 6 7
1@ 6 2 1434342

@ 69}

Figure 6.5: Union-find example: structure represented as trees (1) and array (r)

then we must run a full graph traversal to identify the connected components on
demand.

The union-find data structure represents each subset as a “backwards” tree,
with pointers from a node to its parent. Each node of this tree contains a set
element, and the name of the set is taken from the key at the root. For reasons
that will become clear, we will also maintain the number of elements in the subtree
rooted in each vertex v:

typedef struct {

int p[SET_SIZE+1]; /* parent element */
int size[SET_SIZE+1]; /* number of elements in subtree i */
int n; /* number of elements in set */

} set_union;

We implement our desired component operations in terms of two simpler oper-
ations, union and find:

e Find(i) — Find the root of tree containing element ¢, by walking up the parent
pointers until there is nowhere to go. Return the label of the root.

e Union(i,j) — Link the root of one of the trees (say containing i) to the root
of the tree containing the other (say j) so find(i) now equals find(j).

We seek to minimize the time it takes to execute any sequence of unions and
finds. Tree structures can be very unbalanced, so we must limit the height of
our trees. Our most obvious means of control is the decision of which of the two
component roots becomes the root of the combined component on each union.

To minimize the tree height, it is better to make the smaller tree the subtree
of the bigger one. Why? The height of all the nodes in the root subtree stay the
same, while the height of the nodes merged into this tree all increase by one. Thus,
merging in the smaller tree leaves the height unchanged on the larger set of vertices.

200

6.

WEIGHTED GRAPH ALGORITHMS

Implementation

The implementation details are as follows:

set_union_init(set_union *s, int n)
{

int 1i;

for (i=1; i<=n; i++) {
s—>pli] = 1i;
s->sizel[i] = 1;

int find(set_union *s, int x)
{
if (s—>plx] == x)
return(x) ;

/* counter */

/* roots of sets *x/

/* already in same set */

s->sizel[rl] = s->sizelrl] + s->size[r2];

s->sizel[r2] = s->sizel[rl] + s->sizel[r2];

else
return(find(s,s->pl[x]));
}
int union_sets(set_union *s, int sl1, int s2)
{
int r1, r2;
rl = find(s,sl);
r2 = find(s,s2);
if (rl1 == r2) return;
if (s->sizelr1] >= s->sizel[r2]) {
s—>pl r2] = ri1;
}
else {
s—>pl r1 1 = r2;
+
}

bool same_component(set_union *s, int sl, int s2)

{

return (find(s,sl1l) == find(s,s2));

}

6.1 MINIMUM SPANNING TREES

201

Analysis

On each union, the tree with fewer nodes becomes the child. But how tall can such a
tree get as a function of the number of nodes in it? Consider the smallest possible
tree of height h. Single-node trees have height 1. The smallest tree of height-2
has two nodes; from the union of two single-node trees. When do we increase the
height? Merging in single-node trees won’t do it, since they just become children
of the rooted tree of height-2. Only when we merge two height-2 trees together do
we get a tree of height-3, now with four nodes.

See the pattern? We must double the number of nodes in the tree to get an
extra unit of height. How many doublings can we do before we use up all n nodes?
At most, lg, n doublings can be performed. Thus, we can do both unions and finds
in O(logn), good enough for Kruskal’s algorithm. In fact, union-find can be done
even faster, as discussed in Section 12.5 (page 385).

6.1.4 Variations on Minimum Spanning Trees

This minimum spanning tree algorithm has several interesting properties that help
solve several closely related problems:

o Mazimum Spanning Trees — Suppose an evil telephone company is contracted
to connect a bunch of houses together; they will be paid a price proportional
to the amount of wire they install. Naturally, they will build the most expen-
sive spanning tree possible. The mazimum spanning tree of any graph can be
found by simply negating the weights of all edges and running Prim’s algo-
rithm. The most negative tree in the negated graph is the maximum spanning
tree in the original.

Most graph algorithms do not adapt so easily to negative numbers. Indeed,
shortest path algorithms have trouble with negative numbers, and certainly
do not generate the longest possible path using this technique.

o Minimum Product Spanning Trees — Suppose we seek the spanning tree that
minimizes the product of edge weights, assuming all edge weights are positive.
Since 1g(a - b) = 1g(a) + 1g(b), the minimum spanning tree on a graph whose
edge weights are replaced with their logarithms gives the minimum product
spanning tree on the original graph.

o Minimum Bottleneck Spanning Tree — Sometimes we seek a spanning tree
that minimizes the maximum edge weight over all such trees. In fact, every
minimum spanning tree has this property. The proof follows directly from
the correctness of Kruskal’s algorithm.

Such bottleneck spanning trees have interesting applications when the edge
weights are interpreted as costs, capacities, or strengths. A less efficient

202

6.

WEIGHTED GRAPH ALGORITHMS

but conceptually simpler way to solve such problems might be to delete all
“heavy” edges from the graph and ask whether the result is still connected.
These kind of tests can be done with simple BFS/DFS.

The minimum spanning tree of a graph is unique if all m edge weights in the
graph are distinct. Otherwise the order in which Prim’s/Kruskal’s algorithm breaks
ties determines which minimum spanning tree is returned.

There are two important variants of a minimum spanning tree that are not
solvable with these techniques.

e Steiner Tree — Suppose we want to wire a bunch of houses together, but have
the freedom to add extra intermediate vertices to serve as a shared junction.
This problem is known as a minimum Steiner tree, and is discussed in the
catalog in Section 16.10.

e Low-degree Spanning Tree — Alternately, what if we want to find the mini-
mum spanning tree where the highest degree node in the tree is small? The
lowest max-degree tree possible would be a simple path, and have n — 2
nodes of degree 2 with two endpoints of degree 1. A path that visits each
vertex once is called a Hamiltonian path, and is discussed in the catalog in
Section 16.5.

6.2 War Story: Nothing but Nets

I’d been tipped off about a small printed-circuit board testing company nearby in
need of some algorithmic consulting. And so I found myself inside a nondescript
building in a nondescript industrial park, talking with the president of Integri-Test
and one of his lead technical people.

“We're leaders in robotic printed-circuit board testing devices. Our customers
have very high reliability requirements for their PC-boards. They must check that
each and every board has no wire breaks before filling it with components. This
means testing that each and every pair of points on the board that are supposed
to be connected are connected.”

“How do you do the testing?” I asked.

“We have a robot with two arms, each with electric probes. The arms simultane-
ously contact both of the points to test whether two points are properly connected.
If they are properly connected, then the probes will complete a circuit. For each
net, we hold one arm fixed at one point and move the other to cover the rest of
the points.”

“Wait!” T cried. “What is a net?”

6.2 WAR STORY: NOTHING BUT NETS

203

(a) (b) (© (d)

Figure 6.6: An example net showing (a) the metal connection layer, (b) the contact points, (c)

their minimum spanning tree, and (d) the points partitioned into clusters

“Circuit boards are certain sets of points that are all connected together with
a metal layer. This is what we mean by a net. Sometimes a net consists of two
points—i.e., an isolated wire. Sometimes a net can have 100 to 200 points, like all
the connections to power or ground.”

“I see. So you have a list of all the connections between pairs of points on the
circuit board, and you want to trace out these wires.”

He shook his head. “Not quite. The input for our testing program consists only
of the net contact points, as shown in Figure 6.6(b). We don’t know where the
actual wires are, but we don’t have to. All we must do is verify that all the points
in a net are connected together. We do this by putting the left robot arm on the
leftmost point in the net, and then have the right arm move around to all the other
points in the net to test if they are all connected to the left point. So they must
all be connected to each other.”

I thought for a moment about what this meant. “OK. So your right arm has to
visit all the other points in the net. How do you choose the order to visit them?”

The technical guy spoke up. “Well, we sort the points from left to right and
then go in that order. Is that a good thing to do?”

“Have you ever heard of the traveling salesman problem?” I asked.

He was an electrical engineer, not a computer scientist. “No, what’s that?”

“Traveling salesman is the name of the problem that you are trying to solve.
Given a set of points to visit, how do you order them to minimize the travel time.
Algorithms for the traveling salesman problem have been extensively studied. For
small nets, you will be able to find the optimal tour by doing an exhaustive search.
For big nets, there are heuristics that will get you very close to the optimal tour.” 1
would have pointed them to Section 16.4 (page 533) if I had had this book handy.

204

6.

WEIGHTED GRAPH ALGORITHMS

The president scribbled down some notes and then frowned. “Fine. Maybe you
can order the points in a net better for us. But that’s not our real problem. When
you watch our robot in action, the right arm sometimes has to run all the way to
the right side of the board on a given net, while the left arm just sits there. It seems
we would benefit by breaking nets into smaller pieces to balance things out.”

I sat down and thought. The left and right arms each have interlocking TSP
problems to solve. The left arm would move between the leftmost points of each
net, while the right arm to visits all the other points in each net as ordered by
the left TSP tour. By breaking each net into smaller nets we would avoid making
the right arm cross all the way across the board. Further, a lot of little nets meant
there would be more points in the left TSP, so each left-arm movement was likely
to be short, too.

“You are right. We should win if we can break big nets into small nets. We
want the nets to be small, both in the number of points and in physical area. But
we must be sure that if we validate the connectivity of each small net, we will
have confirmed that the big net is connected. One point in common between two
little nets is sufficient to show that the bigger net formed by the two little nets is
connected, since current can flow between any pair of points.”

Now we had to break each net into overlapping pieces, where each piece was
small. This is a clustering problem. Minimum spanning trees are often used for
clustering, as discussed in Section 15.3 (page 484). In fact, that was the answer!
We could find the minimum spanning tree of the net points and break it into little
clusters whenever a spanning tree edge got too long. As shown in Figure 6.6(d),
each cluster would share exactly one point in common with another cluster, with
connectivity ensured because we are covering the edges of a spanning tree. The
shape of the clusters will reflect the points in the net. If the points lay along a line
across the board, the minimum spanning tree would be a path, and the clusters
would be pairs of points. If the points all fell in a tight region, there would be one
nice fat cluster for the right arm to scoot around.

So I explained the idea of constructing the minimum spanning tree of a graph.
The boss listened, scribbled more notes, and frowned again.

“I like your clustering idea. But minimum spanning trees are defined on graphs.
All you’ve got are points. Where do the weights of the edges come from?”

“Oh, we can think of it as a complete graph, where every pair of points are
connected. The weight of the edge is defined as the distance between the two
points. Or is it...?”

I went back to thinking. The edge cost should reflect the travel time between
between two points. While distance is related to travel time, it wasn’t necessarily
the same thing.

“Hey. I have a question about your robot. Does it take the same amount of
time to move the arm left-right as it does up-down?”

They thought a minute. “Yeah, it does. We use the same type of motor to
control horizontal and vertical movements. Since the two motors for each arm are

6.3 SHORTEST PATHS

205

independent, we can simultaneously move each arm both horizontally and verti-
cally.”

“So the time to move both one foot left and one foot up is exactly the same as
just moving one foot left? This means that the weight for each edge should not be
the Euclidean distance between the two points, but the biggest difference between
either the z— or y-coordinate. This is something we call the L, metric, but we can
capture it by changing the edge weights in the graph. Anything else funny about
your robots?” I asked.

“Well, it takes some time for the robot to come up to speed. We should probably
also factor in acceleration and deceleration of the arms.”

“Darn right. The more accurately you can model the time your arm takes to
move between two points, the better our solution will be. But now we have a very
clean formulation. Let’s code it up and let’s see how well it works!”

They were somewhat skeptical whether this approach would do any good, but
agreed to think about it. A few weeks later they called me back and reported
that the new algorithm reduced the distance traveled by about 30% over their
previous approach, at a cost of a little more computational preprocessing. However,
since their testing machine cost $200,000 a pop and a PC cost $2,000, this was an
excellent tradeoff. It is particularly advantageous since the preprocessing need only
be done once when testing multiple instances of a particular board design.

The key idea leading to the successful solution was modeling the job in terms
of classical algorithmic graph problems. I smelled TSP the instant they started
talking about minimizing robot motion. Once I realized that they were implicitly
forming a star-shaped spanning tree to ensure connectivity, it was natural to ask
whether the minimum spanning tree would perform any better. This idea led to
clustering, and thus partitioning each net into smaller nets. Finally, by carefully
designing our distance metric to accurately model the costs of the robot itself, we
could incorporate such complicated properties (as acceleration) without changing
our fundamental graph model or algorithm design.

Take-Home Lesson: Most applications of graphs can be reduced to standard
graph properties where well-known algorithms can be used. These include min-
imum spanning trees, shortest paths, and other problems presented in the
catalog.

6.3 Shortest Paths

A path is a sequence of edges connecting two vertices. Since movie director Mel
Brooks (“The Producers”) is my father’s sister’s husband’s cousin, there is a path
in the friendship graph between me and him, shown in Figure 6.7—even though
the two of us have never met. But if I were trying to impress how tight I am with
Cousin Mel, I would be much better off saying that my Uncle Lenny grew up with
him. I have a friendship path of length 2 to Cousin Mel through Uncle Lenny, while

206

6.

WEIGHTED GRAPH ALGORITHMS

o/ N o/ O

Steve Dad Aunt Eve Uncle Lenny ~ Cousin Mel

Figure 6.7: Mel Brooks is my father’s sister’s husband’s cousin

Figure 6.8: The shortest path from s to ¢ may pass through many intermediate vertices

the path is of length 4 by blood and marriage. This multiplicity of paths hints at
why finding the shortest path between two nodes is important and instructive, even
in nontransportation applications.

The shortest path from s to ¢ in an unweighted graph can be constructed using a
breadth-first search from s. The minimum-link path is recorded in the breadth-first
search tree, and it provides the shortest path when all edges have equal weight.

However, BFS does not suffice to find shortest paths in weighted graphs. The
shortest weighted path might use a large number of edges, just as the shortest route
(timewise) from home to office may involve complicated shortcuts using backroads,
as shown in Figure 6.8.

In this section, we will present two distinct algorithms for finding the shortest
paths in weighted graphs.

6.3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is the method of choice for finding shortest paths in an edge-
and/or vertex-weighted graph. Given a particular start vertex s, it finds the shortest
path from s to every other vertex in the graph, including your desired destination
t.

Suppose the shortest path from s to ¢ in graph G passes through a particular
intermediate vertex x. Clearly, this path must contain the shortest path from s to
x as its prefix, because if not, we could shorten our s-to-t path by using the shorter

6.3 SHORTEST PATHS

207

s-to-x prefix. Thus, we must compute the shortest path from s to x before we find
the path from s to t.

Dijkstra’s algorithm proceeds in a series of rounds, where each round establishes
the shortest path from s to some new vertex. Specifically, = is the vertex that
minimizes dist(s,v;) + w(v;, x) over all unfinished 1 < i < n, where w(i,j) is the
length of the edge from ¢ to j, and dist(i,7) is the length of the shortest path
between them.

This suggests a dynamic programming-like strategy. The shortest path from s
to itself is trivial unless there are negative weight edges, so dist(s,s) = 0. If (s,y)
is the lightest edge incident to s, then this implies that dist(s,y) = w(s,y). Once
we determine the shortest path to a node x, we check all the outgoing edges of =
to see whether there is a better path from s to some unknown vertex through z.

ShortestPath-Dijkstra(G, s, t)

known = {s}

for i =1 to n, dist[i] = 0

for each edge (s,v), dist[v] = w(s,v)

last = s

while (last # t)
select Upept, the unknown vertex minimizing dist|[v)
for each edge (Unest,), dist[z] = min[dist[z], dist[vnezt] + W(Vnext, T)]
last = Vpept
known = known U {veqt }

The basic idea is very similar to Prim’s algorithm. In each iteration, we add
exactly one vertex to the tree of vertices for which we know the shortest path from
s. As in Prim’s, we keep track of the best path seen to date for all vertices outside
the tree, and insert them in order of increasing cost.

The difference between Dijkstra’s and Prim’s algorithms is how they rate the
desirability of each outside vertex. In the minimum spanning tree problem, all we
cared about was the weight of the next potential tree edge. In shortest path, we
want to include the closest outside vertex (in shortest-path distance) to s. This is
a function of both the new edge weight and the distance from s to the tree vertex
it is adjacent to.

Implementation

The pseudocode actually obscures how similar the two algorithms are. In fact, the
change is very minor. Below, we give an implementation of Dijkstra’s algorithm
based on changing exactly three lines from our Prim’s implementation—one of
which is simply the name of the function!

208 6. WEIGHTED GRAPH ALGORITHMS

dijkstra(graph *g, int start) /* WAS prim(g,start) */
{
int i; /* counter */
edgenode *p; /* temporary pointer */
bool intree[MAXV+1]; /* is the vertex in the tree yet? */
int distance[MAXV+1]; /* distance vertex is from start */
int v; /* current vertex to process */
int w; /* candidate next vertex */
int weight; /* edge weight */
int dist; /* best current distance from start */

for (i=1; i<=g->nvertices; i++) {
intree[i] = FALSE;
distance[i] = MAXINT;
parent[i] = -1;

}

distance[start] = 0;
v = start;

while (intreel[v] == FALSE) {
intree[v] = TRUE;
p = g—>edges[v];
while (p '= NULL) {

w = p->y;
weight = p->weight;
/* CHANGED */ if (distancel[w] > (distancel[v]+weight)) {
/* CHANGED x/ distance[w] = distancel[v]+weight;
/* CHANGED */ parent[w] = v;
}
P = p—>next;
}
v =1;

dist = MAXINT;
for (i=1; i<=g->nvertices; i++)
if ((intree[i] == FALSE) && (dist > distance[i])) {
dist = distancel[i];
v = 1i;

6.3 SHORTEST PATHS

209

This algorithm finds more than just the shortest path from s to ¢. It finds the
shortest path from s to all other vertices. This defines a shortest path spanning
tree rooted in s. For unweighted graphs, this would be the breadth-first search tree,
but in general it provides the shortest path from s to all other vertices.

Analysis

What is the running time of Dijkstra’s algorithm? As implemented here, the com-
plexity is O(n?). This is the same running time as a proper version of Prim’s
algorithm; except for the extension condition it is the same algorithm as Prim’s.

The length of the shortest path from start to a given vertex t is exactly the
value of distance[t]. How do we use dijkstra to find the actual path? We follow
the backward parent pointers from ¢ until we hit start (or -1 if no such path
exists), exactly as was done in the find path() routine of Section 5.6.2 (page
165).

Dijkstra works correctly only on graphs without negative-cost edges. The reason
is that midway through the execution we may encounter an edge with weight so
negative that it changes the cheapest way to get from s to some other vertex
already in the tree. Indeed, the most cost-effective way to get from your house
to your next-door neighbor would be repeatedly through the lobby of any bank
offering you enough money to make the detour worthwhile.

Most applications do not feature negative-weight edges, making this discus-
sion academic. Floyd’s algorithm, discussed below, works correctly unless there are
negative cost cycles, which grossly distort the shortest-path structure. Unless that
bank limits its reward to one per customer, you might so benefit by making an
infinite number of trips through the lobby that you would never decide to actually
reach your destination!

Stop and Think: Shortest Path with Node Costs

Problem: Suppose we are given a graph whose weights are on the vertices, instead
of the edges. Thus, the cost of a path from x to y is the sum of the weights of all
vertices on the path.

Give an efficient algorithm for finding shortest paths on vertex-weighted graphs.

Solution: A natural idea would be to adapt the algorithm we have for edge-weighted
graphs (Dijkstra’s) to the new vertex-weighted domain. It should be clear that we
can do it. We replace any reference to the weight of an edge with the weight of
the destination vertex. This can be looked up as needed from an array of vertex
weights.

However, my preferred approach would leave Dijkstra’s algorithm intact and
instead concentrate on constructing an edge-weighted graph on which Dijkstra’s

210

6.

WEIGHTED GRAPH ALGORITHMS

algorithm will give the desired answer. Set the weight of each directed edge (i, 7)
in the input graph to the cost of vertex j. Dijkstra’s algorithm now does the job.

This technique can be extended to a variety of different domains, such as when
there are costs on both vertices and edges. |

6.3.2 All-Pairs Shortest Path

Suppose you want to find the “center” vertex in a graph—the one that minimizes
the longest or average distance to all the other nodes. This might be the best place
to start a new business. Or perhaps you need to know a graph’s diameter—the
longest shortest-path distance over all pairs of vertices. This might correspond to
the longest possible time it takes a letter or network packet to be delivered. These
and other applications require computing the shortest path between all pairs of
vertices in a given graph.

We could solve all-pairs shortest path by calling Dijkstra’s algorithm from each
of the n possible starting vertices. But Floyd’s all-pairs shortest-path algorithm is
a slick way to construct this n x n distance matrix from the original weight matrix
of the graph.

Floyd’s algorithm is best employed on an adjacency matrix data structure,
which is no extravagance since we must store all n? pairwise distances anyway.
Our adjacency matrix type allocates space for the largest possible matrix, and
keeps track of how many vertices are in the graph:

typedef struct {

int weight [MAXV+1] [MAXV+1]; /* adjacency/weight info */

int nvertices; /* number of vertices in graph */
} adjacency_matrix;

The critical issue in an adjacency matrix implementation is how we denote the
edges absent from the graph. A common convention for unweighted graphs denotes
graph edges by 1 and non-edges by 0. This gives exactly the wrong interpretation
if the numbers denote edge weights, for the non-edges get interpreted as a free ride
between vertices. Instead, we should initialize each non-edge to MAXINT. This way
we can both test whether it is present and automatically ignore it in shortest-path
computations, since only real edges will be used, provided MAXINT is greater than
the diameter of your graph.

There are several ways to characterize the shortest path between two nodes
in a graph. The Floyd-Warshall algorithm starts by numbering the vertices of the
graph from 1 to n. We use these numbers not to label the vertices, but to order
them. Define Wi, j]* to be the length of the shortest path from i to j using only
vertices numbered from 1,2, ..., k as possible intermediate vertices.

What does this mean? When k& = 0, we are allowed no intermediate vertices,
so the only allowed paths are the original edges in the graph. Thus the initial

6.3 SHORTEST PATHS

211

all-pairs shortest-path matrix consists of the initial adjacency matrix. We will per-
form n iterations, where the kth iteration allows only the first k vertices as possible
intermediate steps on the path between each pair of vertices x and y.

At each iteration, we allow a richer set of possible shortest paths by adding a
new vertex as a possible intermediary. Allowing the kth vertex as a stop helps only
if there is a short path that goes through &, so

Wi, j]% = min(WTi, /)*~1, W[i, k]*~1 + W[k, 5"~ 1)

The correctness of this is somewhat subtle, and I encourage you to convince
yourself of it. But there is nothing subtle about how simple the implementation is:

floyd(adjacency_matrix *g)

{
int i,j; /* dimension counters */
int k; /* intermediate vertex counter */
int through_k; /* distance through vertex k */
for (k=1; k<=g->nvertices; k++)
for (i=1; i<=g->nvertices; i++)
for (j=1; j<=g->nvertices; j++) {
through_k = g->weight[i] [k]+g->weight [k] [j];
if (through_k < g->weight[i] [j])
g->weight [i] [j] = through_k;
}
¥

The Floyd-Warshall all-pairs shortest path runs in O(n?3) time, which is asymp-
totically no better than n calls to Dijkstra’s algorithm. However, the loops are so
tight and the program so short that it runs better in practice. It is notable as one of
the rare graph algorithms that work better on adjacency matrices than adjacency
lists.

The output of Floyd’s algorithm, as it is written, does not enable one to recon-
struct the actual shortest path between any given pair of vertices. These paths can
be recovered if we retain a parent matrix P of our choice of the last intermediate
vertex used for each vertex pair (x,y). Say this value is k. The shortest path from
x to y is the concatenation of the shortest path from x to k with the shortest
path from k to y, which can be reconstructed recursively given the matrix P. Note,
however, that most all-pairs applications need only the resulting distance matrix.
These jobs are what Floyd’s algorithm was designed for.

212

6.

WEIGHTED GRAPH ALGORITHMS

6.3.3 Transitive Closure

Floyd’s algorithm has another important application, that of computing transitive
closure. In analyzing a directed graph, we are often interested in which vertices are
reachable from a given node.

As an example, consider the blackmail graph, where there is a directed edge
(i,4) if person 4 has sensitive-enough private information on person j so that i can
get j to do whatever he wants. You wish to hire one of these n people to be your
personal representative. Who has the most power in terms of blackmail potential?

A simplistic answer would be the vertex of highest degree, but an even better
representative would be the person who has blackmail chains leading to the most
other parties. Steve might only be able to blackmail Miguel directly, but if Miguel
can blackmail everyone else then Steve is the man you want to hire.

The vertices reachable from any single node can be computed using breadth-
first or depth-first searches. But the whole batch can be computed using an all-pairs
shortest-path. If the shortest path from ¢ to j remains MAXINT after running Floyd’s
algorithm, you can be sure no directed path exists from i to j. Any vertex pair
of weight less than MAXINT must be reachable, both in the graph-theoretic and
blackmail senses of the word.

Transitive closure is discussed in more detail in the catalog in Section 15.5.

6.4 War Story: Dialing for Documents

I was part of a group visiting Periphonics, which was then an industry leader in
building telephone voice-response systems. These are more advanced versions of
the Press 1 for more options, Press 2 if you didn’t press 1 telephone systems that
blight everyone’s lives. We were being given the standard tour when someone from
our group asked, “Why don’t you guys use voice recognition for data entry. It
would be a lot less annoying than typing things out on the keypad.”

The tour guide reacted smoothly. “Our customers have the option of incor-
porating speech recognition into our products, but very few of them do. User-
independent, connected-speech recognition is not accurate enough for most appli-
cations. Our customers prefer building systems around typing text on the telephone
keyboards.”

“Prefer typing, my pupik!” came a voice from the rear of our group. “I hate
typing on a telephone. Whenever I call my brokerage house to get stock quotes
some machine tells me to type in the three letter code. To make things worse, I
have to hit two buttons to type in one letter, in order to distinguish between the
three letters printed on each key of the telephone. I hit the 2 key and it says Press
1 for A, Press 2 for B, Press 3 for C. Pain in the neck if you ask me.”

“Maybe you don’t have to hit two keys for each letter!” I chimed in. “Maybe
the system could figure out the correct letter from context!”

6.4 WAR STORY: DIALING FOR DOCUMENTS

213

“There isn’t a whole lot of context when you type in three letters of stock
market code.”

“Sure, but there would be plenty of context if we typed in English sentences.
I’ll bet that we could reconstruct English text correctly if they were typed in a
telephone at one keystroke per letter.”

The guy from Periphonics gave me a disinterested look, then continued the
tour. But when I got back to the office, I decided to give it a try.

Not all letters are equally likely to be typed on a telephone. In fact, not all letters
can be typed, since Q and Z are not labeled on a standard American telephone.
Therefore, we adopted the convention that Q, Z, and “space” all sat on the * key.
We could take advantage of the uneven distribution of letter frequencies to help
us decode the text. For example, if you hit the 3 key while typing English, you
more likely meant to type an E than either a D or F. By taking into account the
frequencies of a window of three characters (trigrams), we could predict the typed
text. This is what happened when I tried it on the Gettysburg Address:

enurraore ane reten yeasr ain our ectherr arotght eosti on ugis aootinent a oey oation
aoncdivee in licesty ane eedicatee un uhe rrorosition uiat all oen are arectee e ual

ony ye are enichde in a irect aitil yar uestini yhethes uiat oatioo or aoy oation ro aoncdivee
ane ro eedicatee aan loni eneure ye are oet on a irect aattlediele oe uiat yar ye iate aone
un eedicate a rostion oe uiat eiele ar a einal restini rlace eor uiore yin iere iate uhdis lives
uiat uhe oation ogght live it is aluniethes eittini ane rrores uiat ye rioule en ugir

att in a laries reore ye aan oou eedicate ye aan oou aoorearate ye aan oou ialloy ugis
iroune the arate oen litini ane eeae yin rustgilee iere iate aoorearatee it ear aante our
roor rowes un ade or eeuraat the yople yill little oote oor loni renences yiat ye ray iere
att it aan oetes eosiet yiat uhfy eie iere it is eor ur uhe litini rathes un ae eedicatee iere
un uhe undiniside yopl yhici uhfy yin entght iere iate uiur ear ro onaky aetancde it is
rathes eor ur un ae iere eedicatee un uhe irect uarl rencinini adeore ur uiat eron uhere
ioooree eeae ye uale inarearee eeuotion uo tiat aaure eor yhici uhfy iere iate uhe lart eull
oearure oe eeuotioo tiat ye iere iggily rerolue uiat uhere eeae riall oou iate eide io

The trigram statistics did a decent job of translating it into Greek, but a terri-
ble job of transcribing English. One reason was clear. This algorithm knew nothing
about English words. If we coupled it with a dictionary, we might be onto some-
thing. But two words in the dictionary are often represented by the exact same
string of phone codes. For an extreme example, the code string “22737” collides
with eleven distinct English words, including cases, cares, cards, capes, caper, and
bases. For our next attempt, we reported the unambiguous characters of any words
that collided in the dictionary, and used trigrams to fill in the rest of the characters.
We were rewarded with:

eourscore and seven yearr ain our eatherr brought forth on this continent azoey nation
conceivee in liberty and dedicatee uo uhe proposition that all men are createe equal

ony ye are engagee in azipeat civil yar uestioi whether that nation or aoy nation ro
conceivee and ro dedicatee aan long endure ye are oet on azipeat battlefield oe that yar
ye iate aone uo dedicate a rostion oe that field ar a final perthni place for those yin here
iate their lives that uhe nation oight live it is altogether fittinizane proper that ye should
en this

aut in a larges sense ye aan oou dedicate ye aan oou consecrate ye aan oou hallow this
ground the arate men litioi and deae yin strugglee here iate consecratee it ear above
our roor power uo ade or detract the world will little oote oor long remember what ye

214

6.

WEIGHTED GRAPH ALGORITHMS

ray here aut it aan meter forget what uhfy die here it is for ur uhe litioi rather uo ae
dedicatee here uo uhe toeioisgee york which uhfy yin fought here iate thus ear ro mocky
advancee it is rather for ur uo ae here dedicatee uo uhe great task renagogoi adfore ur
that from there honoree deae ye uale increasee devotion uo that aause for which uhfy
here iate uhe last eull measure oe devotion that ye here highky resolve that there deae
shall oou iate fide io vain that this nation under ioe shall iate azoey birth oe freedom
and that ioternmenu oe uhe people ay uhe people for uhe people shall oou perish from
uhe earth

If you were a student of American history, maybe you could recognize it, but you
certainly couldn’t read it. Somehow, we had to distinguish between the different
dictionary words that got hashed to the same code. We could factor in the relative
popularity of each word, but this still made too many mistakes.

At this point, I started working with Harald Rau on the project, who proved
to be a great collaborator. First, he was a bright and persistent graduate student.
Second, as a native German speaker, he believed every lie I told him about English
grammar.

Harald built up a phone code reconstruction program along the lines of Figure
6.9. It worked on the input one sentence at a time, identifying dictionary words that
matched each code string. The key problem was how to incorporate grammatical
constraints.

“We can get good word-use frequencies and grammatical information from a big
text database called the Brown Corpus. It contains thousands of typical English
sentences, each parsed according to parts of speech. But how do we factor it all
in?” Harald asked.

“Let’s think about it as a graph problem,” T suggested.

“Graph problem? What graph problem? Where is there even a graph?”

“Think of a sentence as a series of phone tokens, each representing a word in
the sentence. Each phone token has a list of words from the dictionary that match
it. How can we choose which one is right? Each possible sentence interpretation
can be thought of as a path in a graph. The vertices of this graph are the complete
set of possible word choices. There will be an edge from each possible choice for the
ith word to each possible choice for the (i + 1)st word. The cheapest path across
this graph defines the best interpretation of the sentence.”

“But all the paths look the same. They have the same number of edges. Wait.
Now I see! We have to add weight to the edges to make the paths different.”

“Exactly! The cost of an edge will reflect how likely it is that we will travel
through the given pair of words. Perhaps we can count how often that pair of
words occurred together in previous texts. Or we can weigh them by the part of
speech of each word. Maybe nouns don’t like to be next to nouns as much as they
like being next to verbs.”

“It will be hard to keep track of word-pair statistics, since there are so many of
them. But we certainly know the frequency of each word. How can we factor that
into things?”

6.4 WAR STORY: DIALING FOR DOCUMENTS 215

INPUT Lo HA4483%x63x2xT7464H# ...
¥
Blank Recognition
Token Token Token Token
©4483” “63” “2” “7464”
— v o [
v D ° D D
Candidate Construction

Token Token Token Token

“4483” f “63” J—> 27 J—>“7464"
*— *— *— °

y sing

e I e e,

sing

Sentence Disambiguating

Y

OUTPUT GIVE ME A RING.

Figure 6.9: The phases of the telephone code reconstruction process

“We can pay a cost for walking through a particular vertex that depends upon
the frequency of the word. Our best sentence will be given by the shortest path
across the graph.”

“But how do we figure out the relative weights of these factors?”

“First try what seems natural to you and then we can experiment with it.”

Harald incorporated this shortest-path algorithm. With proper grammatical
and statistical constraints, the system performed great. Look at the Gettysburg
Address now, with all the reconstruction errors highlighted:

FOURSCORE AND SEVEN YEARS AGO OUR FATHERS BROUGHT FORTH ON
THIS CONTINENT A NEW NATION CONCEIVED IN LIBERTY AND DEDICATED
TO THE PROPOSITION THAT ALL MEN ARE CREATED EQUAL. NOW WE ARE

216

6. WEIGHTED GRAPH ALGORITHMS

Code C, Code C, Code C;

{ P(W/)C)

P(

P(W, /)

P(W,}#)

P(W,/#)

Figure 6.10: The minimum-cost path defines the best interpretation for a sentence

Text

characters | non-blanks | words | time per
characters correct correct correct | character

Clinton Speeches | 1,073,593 99.04% 98.86% 97.67% | 0.97ms

Herland 278,670 98.24% 97.89% 97.02% 0.97ms
Moby Dick 1,123,581 96.85% 96.25% 94.75% 1.14ms
Bible 3,961,684 96.20% 95.39% 95.39% 1.33ms
Shakespeare 4,558,202 95.20% 94.21% 92.86% | 0.99ms

Figure 6.11: Telephone-code reconstruction applied to several text samples

ENGAGED IN A GREAT CIVIL WAR TESTING WHETHER THAT NATION OR
ANY NATION SO CONCEIVED AND SO DEDICATED CAN LONG ENDURE. WE
ARE MET ON A GREAT BATTLEFIELD OF THAT WAS. WE HAVE COME TO
DEDICATE A PORTION OF THAT FIELD AS A FINAL SERVING PLACE FOR
THOSE WHO HERE HAVE THEIR LIVES THAT THE NATION MIGHT LIVE. IT
IS ALTOGETHER FITTING AND PROPER THAT WE SHOULD DO THIS. BUT IN
A LARGER SENSE WE CAN NOT DEDICATE WE CAN NOT CONSECRATE WE
CAN NOT HALLOW THIS GROUND. THE BRAVE MEN LIVING AND DEAD WHO
STRUGGLED HERE HAVE CONSECRATED IT FAR ABOVE OUR POOR POWER
TO ADD OR DETRACT. THE WORLD WILL LITTLE NOTE NOR LONG REMEM-
BER WHAT WE SAY HERE BUT IT CAN NEVER FORGET WHAT THEY DID
HERE. IT IS FOR US THE LIVING RATHER TO BE DEDICATED HERE TO THE
UNFINISHED WORK WHICH THEY WHO FOUGHT HERE HAVE THUS FAR SO
NOBLY ADVANCED. IT IS RATHER FOR US TO BE HERE DEDICATED TO THE
GREAT TASK REMAINING BEFORE US THAT FROM THESE HONORED DEAD
WE TAKE INCREASED DEVOTION TO THAT CAUSE FOR WHICH THEY HERE
HAVE THE LAST FULL MEASURE OF DEVOTION THAT WE HERE HIGHLY
RESOLVE THAT THESE DEAD SHALL NOT HAVE DIED IN VAIN THAT THIS
NATION UNDER GOD SHALL HAVE A NEW BIRTH OF FREEDOM AND THAT
GOVERNMENT OF THE PEOPLE BY THE PEOPLE FOR THE PEOPLE SHALL
NOT PERISH FROM THE EARTH.

6.5 NETWORK FLOWS AND BIPARTITE MATCHING

217

Figure 6.12: Bipartite graph with a maximum matching highlighted (on left). The correspond-

ing network flow instance highlighting the maximum s — ¢ flow (on right).

While we still made a few mistakes, the results are clearly good enough for many
applications. Periphonics certainly thought so, for they licensed our program to
incorporate into their products. Figure 6.11 shows that we were able to reconstruct
correctly over 99% of the characters in a megabyte of President Clinton’s speeches,
so if Bill had phoned them in, we would certainly be able to understand what he
was saying. The reconstruction time is fast enough, indeed faster than you can type
it in on the phone keypad.

The constraints for many pattern recognition problems can be naturally for-
mulated as shortest path problems in graphs. In fact, there is a particularly con-
venient dynamic programming solution for these problems (the Viterbi algorithm)
that is widely used in speech and handwriting recognition systems. Despite the
fancy name, the Viterbi algorithm is basically solving a shortest path problem on a
DAG. Hunting for a graph formulation to solve any given problem is often a good
idea.

6.5 Network Flows and Bipartite Matching

Edge-weighted graphs can be interpreted as a network of pipes, where the weight
of edge (i,7) determines the capacity of the pipe. Capacities can be thought of as a
function of the cross-sectional area of the pipe. A wide pipe might be able to carry
10 units of flow in a given time, where as a narrower pipe might only carry 5 units.
The network flow problem asks for the maximum amount of flow which can be sent
from vertices s to ¢ in a given weighted graph G while respecting the maximum
capacities of each pipe.

218

6.

WEIGHTED GRAPH ALGORITHMS

6.5.1 Bipartite Matching

While the network flow problem is of independent interest, its primary importance
is in to solving other important graph problems. A classic example is bipartite
matching. A matching in a graph G = (V, E) is a subset of edges E’ C E such that
no two edges of E’ share a vertex. A matching pairs off certain vertices such that
every vertex is in, at most, one such pair, as shown in Figure 6.12.

Graph G is bipartite or two-colorable if the vertices can be divided into two
sets, L and R, such that all edges in G have one vertex in L and one vertex in
R. Many naturally defined graphs are bipartite. For example, certain vertices may
represent jobs to be done and the remaining vertices represent people who can
potentially do them. The existence of edge (j,p) means that job j can be done by
person p. Or let certain vertices represent boys and certain vertices represent girls,
with edges representing compatible pairs. Matchings in these graphs have natural
interpretations as job assignments or as marriages, and are the focus of Section
15.6 (page 498).

The largest bipartite matching can be readily found using network flow. Create
a source node s that is connected to every vertex in L by an edge of weight 1.
Create a sink node ¢t and connect it to every vertex in R by an edge of weight 1.
Finally, assign each edge in the bipartite graph G a weight of 1. Now, the maximum
possible flow from s to ¢ defines the largest matching in G. Certainly we can find a
flow as large as the matching by using only the matching edges and their source-
to-sink connections. Further, there can be no greater possible flow. How can we
ever hope to get more than one flow unit through any vertex?

6.5.2 Computing Network Flows

Traditional network flow algorithms are based on the idea of augmenting paths,
and repeatedly finding a path of positive capacity from s to ¢t and adding it to the
flow. It can be shown that the flow through a network is optimal if and only if it
contains no augmenting path. Since each augmentation adds to the flow, we must
eventually find the global maximum.

The key structure is the residual flow graph, denoted as R(G, f), where G is
the input graph and f is the current flow through G. This directed, edge-weighted
R(G, f) contains the same vertices as G. For each edge (¢,7) in G with capacity
¢(i,j) and flow f(4,7), R(G, f) may contain two edges:

(i) an edge (i, 7j) with weight ¢(i, j) — f(4,4), if ¢(i,5) — f(4,4) > 0 and
(ii) an edge (j,i) with weight (i, 7), if f(4,4) > 0.

The presence of edge (i,7) in the residual graph indicates that positive flow can
be pushed from ¢ to j. The weight of the edge gives the exact amount that can be
pushed. A path in the residual flow graph from s to ¢ implies that more flow can be
pushed from s to ¢ and the minimum edge weight on this path defines the amount
of extra flow that can be pushed.

6.5 NETWORK FLOWS AND BIPARTITE MATCHING 219

[\

G

Figure 6.13: Maximum s — ¢ flow in a graph G (on left) showing the associated residual graph
R(G) and minimum s — ¢ cut (dotted line near t)

Figure 6.13 illustrates this idea. The maximum s — ¢ flow in graph G is 7. Such
a flow is revealed by the two directed t to s paths in the residual graph R(G)
of capacities 2 + 5, respectively. These flows completely saturate the capacity of
the two edges incident to vertex ¢, so no augmenting path remains. Thus the flow
is optimal. A set of edges whose deletion separates s from ¢ (like the two edges
incident to t) is called an s-t cut. Clearly, no s to t flow can exceed the weight of
the minimum such cut. In fact, a flow equal to the minimum cut is always possible.

Take-Home Lesson: The maximum flow from s to ¢t always equals the weight
of the minimum s-¢t cut. Thus, flow algorithms can be used to solve general
edge and vertex connectivity problems in graphs.

Implementation

We cannot do full justice to the theory of network flows here. However, it is instruc-
tive to see how augmenting paths can be identified and the optimal flow computed.

For each edge in the residual flow graph, we must keep track of both the amount
of flow currently going through the edge, as well as its remaining residual capacity.
Thus, we must modify our edge structure to accommodate the extra fields:

typedef struct {

int v; /*
int capacity; /*
int flow; /*
int residual; /*
struct edgenode *next; /*

} edgenode;

neighboring vertex */
capacity of edge */

flow through edge */
residual capacity of edge */
next edge in list */

220

6.

WEIGHTED GRAPH ALGORITHMS

We use a breadth-first search to look for any path from source to sink that
increases the total flow, and use it to augment the total. We terminate with the
optimal flow when no such augmenting path exists.

netflow(flow_graph *g, int source, int sink)

{
int volume; /* weight of the augmenting path */
add_residual_edges(g);
initialize_search(g);
bfs(g,source) ;
volume = path_volume(g, source, sink, parent);
while (volume > 0) {
augment_path(g,source,sink,parent,Volume);
initialize_search(g);
bfs(g,source);
volume = path_volume(g, source, sink, parent);
}
}

Any augmenting path from source to sink increases the flow, so we can use bfs
to find such a path in the appropriate graph. We only consider network edges that
have remaining capacity or, in other words, positive residual flow. The predicate
below helps bfs distinguish between saturated and unsaturated edges:

bool valid_edge(edgenode *e)

{
if (e->residual > 0) return (TRUE);
else return(FALSE);

Augmenting a path transfers the maximum possible volume from the residual
capacity into positive flow. This amount is limited by the path-edge with the small-
est amount of residual capacity, just as the rate at which traffic can flow is limited
by the most congested point.

6.5 NETWORK FLOWS AND BIPARTITE MATCHING

221

int path_volume(flow_graph *g, int start, int end, int parents[])
{
edgenode *e; /* edge in question */
edgenode *find_edge();

if (parents[end] == -1) return(0);

e = find_edge(g,parents[end],end);

if (start == parents[end])
return(e->residual) ;

else

return(min(path_volume(g,start,parents[end],parents),
e->residual));

edgenode *find_edge(flow_graph *g, int x, int y)

{
edgenode *p; /* temporary pointer */
p = g—>edges[x];
while (p != NULL) {
if (p->v == y) return(p);
p = p—>next;
}
return(NULL) ;
}

Sending an additional unit of flow along directed edge (i, j) reduces the residual
capacity of edge (i,7) but increases the residual capacity of edge (j,4). Thus, the
act of augmenting a path requires modifying both forward and reverse edges for
each link on the path.

222

6.

WEIGHTED GRAPH ALGORITHMS

augment_path(flow_graph *g, int start, int end, int parents[], int volume)
{
edgenode *e; /* edge in question */
edgenode *find_edge();

if (start == end) return;

e = find_edge(g,parents[end],end) ;
e->flow += volume;
e->residual -= volume;

e = find_edge(g,end,parents[end]);
e->residual += volume;

augment_path(g,start,parents[end] ,parents,volume) ;

Initializing the flow graph requires creating directed flow edges (4, j) and (j,1)
for each network edge e = (i, 7). Initial flows are all set to 0. The initial residual
flow of (4, 7) is set to the capacity of e, while the initial residual flow of (j,4) is set
to 0.

Analysis

The augmenting path algorithm above eventually converges on the the optimal
solution. However, each augmenting path may add only a little to the total flow,
so, in principle, the algorithm might take an arbitrarily long time to converge.

However, Edmonds and Karp [EK72] proved that always selecting a shortest
unweighted augmenting path guarantees that O(n?®) augmentations suffice for op-
timization. In fact, the Edmonds-Karp algorithm is what is implemented above,
since a breadth-first search from the source is used to find the next augmenting
path.

6.6 Design Graphs, Not Algorithms

Proper modeling is the key to making effective use of graph algorithms. We have
defined several graph properties, and developed algorithms for computing them.
All told, about two dozen different graph problems are presented in the catalog,
mostly in Sections 15 and 16. These classical graph problems provide a framework
for modeling most applications.

The secret is learning to design graphs, not algorithms. We have already seen
a few instances of this idea:

6.6 DESIGN GRAPHS, NOT ALGORITHMS

223

e The mazimum spanning tree can be found by negating the edge weights of the
input graph G and using a minimum spanning tree algorithm on the result.
The most negative weight spanning tree will define the maximum weight tree
in G.

e To solve bipartite matching, we constructed a special network flow graph such
that the maximum flow corresponds to a maximum cardinality matching.

The applications below demonstrate the power of proper modeling. Each arose
in a real-world application, and each can be modeled as a graph problem. Some
of the modelings are quite clever, but they illustrate the versatility of graphs in
representing relationships. As you read a problem, try to devise an appropriate
graph representation before peeking to see how we did it.

Stop and Think: The Pink Panther’s Passport to Peril

Problem: “I'm looking for an algorithm to design natural routes for video-game
characters to follow through an obstacle-filled room. How should I do it?”

Solution: Presumably the desired route should look like a path that an intelligent
being would choose. Since intelligent beings are either lazy or efficient, this should
be modeled as a shortest path problem.

But what is the graph? One approach might be to lay a grid of points in the
room. Create a vertex for each grid point that is a valid place for the character
to stand; i.e., that does not lie within an obstacle. There will be an edge between
any pair of nearby vertices, weighted proportionally to the distance between them.
Although direct geometric methods are known for shortest paths (see Section 15.4
(page 489)), it is easier to model this discretely as a graph. |

Stop and Think: Ordering the Sequence

Problem: “A DNA sequencing project generates experimental data consisting of
small fragments. For each given fragment f, we know certain other fragments are
forced to lie to the left of f, and certain other fragments are forced to be to the
right of f. How can we find a consistent ordering of the fragments from left to right
that satisfies all the constraints?”

Solution: Create a directed graph, where each fragment is assigned a unique vertex.

Insert a directed edge (I, f) from any fragment [that is forced to be to the left

224

6.

WEIGHTED GRAPH ALGORITHMS

of f, and a directed edge (f,r) to any fragment r forced to be to the right of f.
We seek an ordering of the vertices such that all the edges go from left to right.
This is a topological sort of the resulting directed acyclic graph. The graph must
be acyclic, because cycles make finding a consistent ordering impossible. |

Stop and Think: Bucketing Rectangles

Problem: “In my graphics work I need to solve the following problem. Given an
arbitrary set of rectangles in the plane, how can I distribute them into a minimum
number of buckets such that no subset of rectangles in any given bucket inter-
sects another? In other words, there can not be any overlapping area between two
rectangles in the same bucket.”

Solution: We formulate a graph where each vertex is a rectangle, and there is an
edge if two rectangles intersect. Each bucket corresponds to an independent set of
rectangles, so there is no overlap between any two. A vertex coloring of a graph is a
partition of the vertices into independent sets, so minimizing the number of colors
is exactly what you want. J

Stop and Think: Names in Collision

Problem: “In porting code from UNIX to DOS, I have to shorten several hundred
file names down to at most 8 characters each. I can’t just use the first eight charac-
ters from each name, because “filenamel” and “filename2” would be assigned the
exact same name. How can I meaningfully shorten the names while ensuring that
they do not collide?”

Solution: Construct a bipartite graph with vertices corresponding to each original
file name f; for 1 < i < n, as well as a collection of acceptable shortenings for each
name f;1,..., fir- Add an edge between each original and shortened name. We now
seek a set of n edges that have no vertices in common, so each file name is mapped
to a distinct acceptable substitute. Bipartite matching, discussed in Section 15.6
(page 498), is exactly this problem of finding an independent set of edges in a

graph. i

6.7 EXERCISES

225

Stop and Think: Separate the Text

Problem: “We need a way to separate the lines of text in the optical character-
recognition system that we are building. Although there is some white space be-
tween the lines, problems like noise and the tilt of the page makes it hard to find.
How can we do line segmentation?

Solution: Consider the following graph formulation. Treat each pixel in the im-
age as a vertex in the graph, with an edge between two neighboring pixels. The
weight of this edge should be proportional to how dark the pixels are. A segmen-
tation between two lines is a path in this graph from the left to right side of the
page. We seek a relatively straight path that avoids as much blackness as possible.
This suggests that the shortest path in the pixel graph will likely find a good line
segmentation. [J

Take-Home Lesson: Designing novel graph algorithms is very hard, so don’t
do it. Instead, try to design graphs that enable you to use classical algorithms
to model your problem.

Chapter Notes

Network flows are an advanced algorithmic technique, and recognizing whether a
particular problem can be solved by network flow requires experience. We point
the reader to books by Cook and Cunningham [CC97] and Ahuja, Magnanti, and
Orlin [AMO93] for more detailed treatments of the subject.

The augmenting path method for network flows is due to Ford and Fulkerson
[FF62]. Edmonds and Karp [EK72] proved that always selecting a shortest geodesic
augmenting path guarantees that O(n®) augmentations suffice for optimization.

The phone code reconstruction system that was the subject of the war story is
described in more technical detail in [RS96].

6.7 Exercises

Simulating Graph Algorithms
6-1. /3] For the graphs in Problem 5-1:
(a) Draw the spanning forest after every iteration of the main loop in Kruskal’s
algorithm.

(b) Draw the spanning forest after every iteration of the main loop in Prim’s
algorithm.

226

6.

WEIGHTED GRAPH ALGORITHMS

(¢) Find the shortest path spanning tree rooted in A.

(d) Compute the maximum flow from A to H.

Minimum Spanning Trees

6-2.

6-3.

6-4.

6-5.

6-6.

6-7.

6-9.

[8] Is the path between two vertices in a minimum spanning tree necessarily a
shortest path between the two vertices in the full graph? Give a proof or a coun-
terexample.

[3] Assume that all edges in the graph have distinct edge weights (i.e., no pair of
edges have the same weight). Is the path between a pair of vertices in a minimum
spanning tree necessarily a shortest path between the two vertices in the full graph?
Give a proof or a counterexample.

[3] Can Prim’s and Kruskal’s algorithm yield different minimum spanning trees?
Explain why or why not.

[3] Does either Prim’s and Kruskal’s algorithm work if there are negative edge
weights? Explain why or why not.

[5] Suppose we are given the minimum spanning tree T of a given graph G (with n
vertices and m edges) and a new edge e = (u,v) of weight w that we will add to G.
Give an efficient algorithm to find the minimum spanning tree of the graph G + e.
Your algorithm should run in O(n) time to receive full credit.

[5] (a) Let T be a minimum spanning tree of a weighted graph G. Construct a new
graph G’ by adding a weight of k to every edge of G. Do the edges of T form a
minimum spanning tree of G’? Prove the statement or give a counterexample.

(b) Let P = {s,...,t} describe a shortest weighted path between vertices s and t
of a weighted graph G. Construct a new graph G’ by adding a weight of k to every
edge of G. Does P describe a shortest path from s to ¢t in G’? Prove the statement
or give a counterexample.

. [5] Devise and analyze an algorithm that takes a weighted graph G and finds the

smallest change in the cost to a non-MST edge that would cause a change in the
minimum spanning tree of G. Your algorithm must be correct and run in polynomial
time.

[4] Consider the problem of finding a minimum weight connected subset T" of edges
from a weighted connected graph G. The weight of T' is the sum of all the edge
weights in T

(a) Why is this problem not just the minimum spanning tree problem? Hint: think
negative weight edges.

(b) Give an efficient algorithm to compute the minimum weight connected subset
T.

. [4] Let G = (V,E) be an undirected graph. A set F' C E of edges is called a

feedback-edge set if every cycle of G has at least one edge in F.

(a) Suppose that G is unweighted. Design an efficient algorithm to find a
minimum-size feedback-edge set.

6.7 EXERCISES

227

(b) Suppose that G is a weighted undirected graph with positive edge weights.
Design an efficient algorithm to find a minimum-weight feedback-edge set.

6-11. /5] Modify Prim’s algorithm so that it runs in time O(m +nlogk) on a graph that
has only k different edges costs.

Union-Find
6-12. [5] Devise an efficient data structure to handle the following operations on a
weighted directed graph:

(a) Merge two given components.
(b) Locate which component contains a given vertex v.

(c) Retrieve a minimum edge from a given component.

6-13. [5] Design a data structure that can perform a sequence of, m union and find
operations on a universal set of n elements, consisting of a sequence of all unions
followed by a sequence of all finds, in time O(m + n).

Shortest Paths

6-14. [3] The single-destination shortest path problem for a directed graph seeks the
shortest path from every vertex to a specified vertex v. Give an efficient algorithm
to solve the single-destination shortest paths problem.

6-15. [3] Let G = (V, E) be an undirected weighted graph, and let T' be the shortest-path
spanning tree rooted at a vertex v. Suppose now that all the edge weights in G are
increased by a constant number k. Is T still the shortest-path spanning tree from
v?

6-16. [3] Answer all of the following:

(a) Give an example of a weighted connected graph G = (V, E) and a vertex v,
such that the minimum spanning tree of GG is the same as the shortest-path
spanning tree rooted at v.

(b) Give an example of a weighted connected directed graph G = (V, E) and a
vertex v, such that the minimum-cost spanning tree of G is very different from
the shortest-path spanning tree rooted at v.

(c) Can the two trees be completely disjointed?
6-17. [3] Either prove the following or give a counterexample:

(a) Is the path between a pair of vertices in a minimum spanning tree of an
undirected graph necessarily the shortest (minimum weight) path?

(b) Suppose that the minimum spanning tree of the graph is unique. Is the path
between a pair of vertices in a minimum spanning tree of an undirected graph
necessarily the shortest (minimum weight) path?

6-18. [5] In certain graph problems, vertices have can have weights instead of or in addi-
tion to the weights of edges. Let C., be the cost of vertex v, and C(,) the cost of
the edge (x,y). This problem is concerned with finding the cheapest path between
vertices a and b in a graph G. The cost of a path is the sum of the costs of the
edges and vertices encountered on the path.

228

6.

WEIGHTED GRAPH ALGORITHMS

6-19.

6-20.

6-21.

6-22.

6-23.

(a) Suppose that each edge in the graph has a weight of zero (while non-edges
have a cost of c0). Assume that C, = 1 for all vertices 1 < v < n (i.e., all
vertices have the same cost). Give an efficient algorithm to find the cheapest
path from a to b and its time complexity.

(b) Now suppose that the vertex costs are not constant (but are all positive)
and the edge costs remain as above. Give an efficient algorithm to find the
cheapest path from a to b and its time complexity.

(c) Now suppose that both the edge and vertex costs are not constant (but are
all positive). Give an efficient algorithm to find the cheapest path from a to
b and its time complexity.

[5] Let G be a weighted directed graph with n vertices and m edges, where all edges
have positive weight. A directed cycle is a directed path that starts and ends at
the same vertex and contains at least one edge. Give an O(n®) algorithm to find
a directed cycle in G of minimum total weight. Partial credit will be given for an
O(n?*m) algorithm.

[5] Can we modify Dijkstra’s algorithm to solve the single-source longest path prob-
lem by changing minimum to mazimum? If so, then prove your algorithm correct.
If not, then provide a counterexample.

[5] Let G = (V, E) be a weighted acyclic directed graph with possibly negative edge
weights. Design a linear-time algorithm to solve the single-source shortest-path
problem from a given source v.

[5] Let G = (V,E) be a directed weighted graph such that all the weights are
positive. Let v and w be two vertices in G and k < |V| be an integer. Design an
algorithm to find the shortest path from v to w that contains exactly k edges. Note
that the path need not be simple.

[5] Arbitrage is the use of discrepancies in currency-exchange rates to make a profit.
For example, there may be a small window of time during which 1 U.S. dollar buys
0.75 British pounds, 1 British pound buys 2 Australian dollars, and 1 Australian
dollar buys 0.70 U.S. dollars. At such a time, a smart trader can trade one U.S.
dollar and end up with 0.75 x 2 x 0.7 = 1.05 U.S. dollars—a profit of 5%. Suppose
that there are n currencies c1, ...,¢, and an n X n table R of exchange rates, such
that one unit of currency ¢; buys RJ[i, j] units of currency c¢;. Devise and analyze
an algorithm to determine the maximum value of

Rlci, 1] - Rlcit, ci2] - - - R[cik—1, cik] - R[cik, c1]

Hint: think all-pairs shortest path.

Network Flow and Matching

6-24.

6-25.

[8] A matching in a graph is a set of disjoint edges—i.e., edges that do not share
any vertices in common. Give a linear-time algorithm to find a maximum matching
in a tree.

[5] An edge cover of an undirected graph G = (V, E) is a set of edges such that each
vertex in the graph is incident to at least one edge from the set. Give an efficient
algorithm, based on matching, to find the minimum-size edge cover for G.

6.7 EXERCISES

229

Programming Challenges

These programming challenge problems with robot judging are available at
http:/ /www.programming-challenges.com or hitp://online-judge.uva.es.

6-1.
6-2.
6-3.
6-4.
6-5.

“Freckles” — Programming Challenges 111001, UVA Judge 10034.
“Necklace” — Programming Challenges 111002, UVA Judge 10054.
“Railroads” — Programming Challenges 111004, UVA Judge 10039.

“Tourist Guide” — Programming Challenges 111006, UVA Judge 10199.
“The Grand Dinner” — Programming Challenges 111007, UVA Judge 10249.

v

Combinatorial Search and Heuristic

Methods

We can solve many problems to optimality using exhaustive search techniques,
although the time complexity can be enormous. For certain applications, it may
pay to spend extra time to be certain of the optimal solution. A good example
occurs in testing a circuit or a program on all possible inputs. You can prove the
correctness of the device by trying all possible inputs and verifying that they give
the correct answer. Verifying correctness is a property to be proud of. However,
claiming that it works correctly on all the inputs you tried is worth much less.

Modern computers have clock rates of a few gigahertz, meaning billions of op-
erations per second. Since doing something interesting takes a few hundred in-
structions, you can hope to search millions of items per second on contemporary
machines.

It is important to realize how big (or how small) one million is. One million
permutations means all arrangements of roughly 10 or 11 objects, but not more.
One million subsets means all combinations of roughly 20 items, but not more.
Solving significantly larger problems requires carefully pruning the search space to
ensure we look at only the elements that really matter.

In this section, we introduce backtracking as a technique for listing all possible
solutions for a combinatorial algorithm problem. We illustrate the power of clever
pruning techniques to speed up real search applications. For problems that are too
large to contemplate using brute-force combinatorial search, we introduce heuris-
tic methods such as simulated annealing. Such heuristic methods are important
weapons in any practical algorist’s arsenal.

S.S. Skiena, The Algorithm Design Manual, 2nd ed., DOI: 10.1007/978-1-84800-070-4_7,
(© Springer-Verlag London Limited 2008

7.1 BACKTRACKING

231

7.1 Backtracking

Backtracking is a systematic way to iterate through all the possible configurations
of a search space. These configurations may represent all possible arrangements
of objects (permutations) or all possible ways of building a collection of them
(subsets). Other situations may demand enumerating all spanning trees of a graph,
all paths between two vertices, or all possible ways to partition vertices into color
classes.

What these problems have in common is that we must generate each one pos-
sible configuration exactly once. Avoiding both repetitions and missing configura-
tions means that we must define a systematic generation order. We will model our
combinatorial search solution as a vector a = (a1, as, ..., a,), where each element a;
is selected from a finite ordered set .S;. Such a vector might represent an arrange-
ment where a; contains the ith element of the permutation. Or, the vector might
represent a given subset S, where a; is true if and only if the ith element of the
universe is in S. The vector can even represent a sequence of moves in a game or
a path in a graph, where a; contains the ith event in the sequence.

At each step in the backtracking algorithm, we try to extend a given partial
solution a = (a1, as, ...,a) by adding another element at the end. After extending
it, we must test whether what we now have is a solution: if so, we should print it
or count it. If not, we must check whether the partial solution is still potentially
extendible to some complete solution.

Backtracking constructs a tree of partial solutions, where each vertex represents
a partial solution. There is an edge from x to y if node y was created by advancing
from z. This tree of partial solutions provides an alternative way to think about
backtracking, for the process of constructing the solutions corresponds exactly to
doing a depth-first traversal of the backtrack tree. Viewing backtracking as a depth-
first search on an implicit graph yields a natural recursive implementation of the
basic algorithm.

Backtrack-DFS(A4, k)
if A= (ay,as,...,ax) is a solution, report it.
else
k=k+1
compute S
while Sy, # 0 do
ar = an element in Sy,
Sk = Sk — Qg
Backtrack-DFS(A, k)

Although a breadth-first search could also be used to enumerate solutions, a
depth-first search is greatly preferred because it uses much less space. The current
state of a search is completely represented by the path from the root to the current
search depth-first node. This requires space proportional to the height of the tree.
In breadth-first search, the queue stores all the nodes at the current level, which

232 7. COMBINATORIAL SEARCH AND HEURISTIC METHODS

is proportional to the width of the search tree. For most interesting problems, the
width of the tree grows exponentially in its height.

Implementation

The honest working backtrack code is given below:
bool finished = FALSE; /* found all solutions yet? */

backtrack(int a[], int k, data input)

{
int c¢[MAXCANDIDATES]; /* candidates for next position */
int ncandidates; /* next position candidate count */
int i; /* counter */
if (is_a_solution(a,k,input))
process_solution(a,k,input);
else {
k = k+1;
construct_candidates(a,k,input,c,&ncandidates);
for (i=0; i<ncandidates; i++) {
alk] = clil;
make_move (a,k,input) ;
backtrack(a,k,input);
unmake_move (a,k,input);
if (finished) return; /* terminate early */
}
}
}

Backtracking ensures correctness by enumerating all possibilities. It ensures
efficiency by never visiting a state more than once.

Study how recursion yields an elegant and easy implementation of the back-
tracking algorithm. Because a new candidates array c is allocated with each recur-
sive procedure call, the subsets of not-yet-considered extension candidates at each
position will not interfere with each other.

The application-specific parts of this algorithm consists of five subroutines:

e is_a solution(a,k,input) — This Boolean function tests whether the first &
elements of vector a from a complete solution for the given problem. The last
argument, input, allows us to pass general information into the routine. We
can use it to specify n—the size of a target solution. This makes sense when
constructing permutations or subsets of n elements, but other data may be
relevant when constructing variable-sized objects such as sequences of moves
in a game.

7.1 BACKTRACKING

233

e construct_candidates(a,k,input,c,ncandidates) — This routine fills an
array ¢ with the complete set of possible candidates for the kth position of
a, given the contents of the first k — 1 positions. The number of candidates
returned in this array is denoted by ncandidates. Again, input may be used
to pass auxiliary information.

e process_solution(a,k,input) — This routine prints, counts, or however
processes a complete solution once it is constructed.

e make move(a,k,input) and unmake move(a,k,input) — These routines en-
able us to modify a data structure in response to the latest move, as well as
clean up this data structure if we decide to take back the move. Such a data
structure could be rebuilt from scratch from the solution vector a as needed,
but this is inefficient when each move involves incremental changes that can
easily be undone.

These calls function as null stubs in all of this section’s examples, but will be
employed in the Sudoku program of Section 7.3 (page 239).

We include a global finished flag to allow for premature termination, which
could be set in any application-specific routine.

To really understand how backtracking works, you must see how such objects
as permutations and subsets can be constructed by defining the right state spaces.
Examples of several state spaces are described in subsections below.

7.1.1 Constructing All Subsets

A critical issue when designing state spaces to represent combinatorial objects is
how many objects need representing. How many subsets are there of an n-element
set, say the integers {1,...,n}? There are exactly two subsets for n = 1, namely {}
and {1}. There are four subsets for n = 2, and eight subsets for n = 3. Each new
element doubles the number of possibilities, so there are 2" subsets of n elements.

Each subset is described by elements that are in it. To construct all 2™ sub-
sets, we set up an array/vector of n cells, where the value of a; (true or false)
signifies whether the ith item is in the given subset. In the scheme of our general
backtrack algorithm, S = (true, false) and a is a solution whenever k = n. We
can now construct all subsets with simple implementations of is_a_solution(),
construct_candidates(), and process_solution().

is_a_solution(int a[], int k, int n)
{
return (k == n); /* is k == n? %/

3

234

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

construct_candidates(int al[], int k, int n, int c[], int *ncandidates)
{

c[0] TRUE;

c[1] = FALSE;

*ncandidates = 2;

process_solution(int a[], int k)

{
int i; /* counter */
printf ("{");
for (i=1; i<=k; i++)
if (a[i] == TRUE) printf(" %d4d",i);
printf (" F\n");
}

Printing each out subset after constructing it proves to be the most complicated
of the three routines!

Finally, we must instantiate the call to backtrack with the right arguments.
Specifically, this means giving a pointer to the empty solution vector, setting k = 0
to denote that it is empty, and specifying the number of elements in the universal
set:

generate_subsets(int n)

{
int a[NMAX]; /* solution vector */

backtrack(a,0,n);

In what order will the subsets of {1,2,3} be generated? It depends on the order
of moves construct_candidates. Since true always appears before false, the subset
of all trues is generated first, and the all-false empty set is generated last: {123},
{12}, {13}, {1}, {23}, {2}, {3}, {}

Trace through this example carefully to make sure you understand the back-
tracking procedure. The problem of generating subsets is more thoroughly discussed
in Section 14.5 (page 452).

7.1.2 Constructing All Permutations

Counting permutations of {1,...,n} is a necessary prerequisite to generating them.
There are n distinct choices for the value of the first element of a permutation. Once

7.1 BACKTRACKING

235

we have fixed a1, there are n — 1 candidates remaining for the second position,
since we can have any value except a; (repetitions are forbidden in permutation).
Repeating this argument yields a total of n! = [];-_, ¢ distinct permutations.

This counting argument suggests a suitable representation. Set up an ar-
ray/vector a of n cells. The set of candidates for the ith position will be the set
of elements that have not appeared in the (i — 1) elements of the partial solution,
corresponding to the first ¢ — 1 elements of the permutation.

In the scheme of the general backtrack algorithm, Sy = {1,...,n} —a, and a is
a solution whenever k = n:

construct_candidates(int a[], int k, int n, int c[], int *ncandidates)

{

int i; /* counter */
bool in_perm[NMAX] ; /* who is in the permutation? */
for (i=1; i<NMAX; i++) in_perm[i] = FALSE;
for (i=0; i<k; i++) in_perm[a[i]] = TRUE;

*ncandidates = 0;
for (i=1; i<=n; i++)
if (in_perm[i] == FALSE) {
c[*ncandidates] = i;
*ncandidates = *ncandidates + 1;

Testing whether ¢ is a candidate for the kth slot in the permutation can be
done by iterating through all £ — 1 elements of a and verifying that none of them
matched. However, we prefer to set up a bit-vector data structure (see Section 12.5
(page 385)) to maintain which elements are in the partial solution. This gives a
constant-time legality check.

Completing the job requires specifying process_solution and is_a_solution,
as well as setting the appropriate arguments to backtrack. All are essentially the
same as for subsets:

process_solution(int a[], int k)
{
int i; /* counter */

for (i=1; i<=k; i++) printf(" %d",alil);

printf("\n");

236 7. COMBINATORIAL SEARCH AND HEURISTIC METHODS

6

Figure 7.1: Search tree enumerating all simple s-t paths in the given graph (left).

is_a_solution(int al], int k, int n)
{
return (k == n);

}

generate_permutations(int n)

{
int a[NMAX]; /* solution vector *x/

backtrack(a,0,n);

As a consequence of the candidate order, these routines generate permutations
in lezicographic, or sorted order—i.e., 123, 132, 213, 231, 312, and 321. The prob-
lem of generating permutations is more thoroughly discussed in Section 14.4 (page
448).

7.1.3 Constructing All Paths in a Graph

Enumerating all the simple s to ¢ paths through a given graph is a more complicated
problem than listing permutations or subsets. There is no explicit formula that
counts the number of solutions as a function of the number of edges or vertices,
because the number of paths depends upon the structure of the graph.

The starting point of any path from s to ¢ is always s. Thus, s is the only
candidate for the first position and S; = {s}. The possible candidates for the
second position are the vertices v such that (s,v) is an edge of the graph, for the
path wanders from vertex to vertex using edges to define the legal steps. In general,

7.1 BACKTRACKING 237

Sk+1 consists of the set of vertices adjacent to ax that have not been used elsewhere
in the partial solution A.

construct_candidates(int al[], int k, int n, int c[], int *ncandidates)

{

int 1i; /* counters */

bool in_sol [NMAX]; /* what’s already in the solution? */
edgenode *p; /* temporary pointer */

int last; /* last vertex on current path */

for (i=1; i<NMAX; i++) in_sol[i] = FALSE;
for (i=1; i<k; i++) in_sol[al[i]] = TRUE;

if (k==1) { /* always start from vertex 1 */
clol = 1;
*ncandidates = 1;

}

else {
*ncandidates = 0;

last = alk-1];
p = g.edges[last];
while (p != NULL) {
if ('in_sol[p—>y 1) {
c[*ncandidates] = p->y;
*ncandidates = *ncandidates + 1;

+
P = p—>next;

We report a successful path whenever a; = t.

is_a_solution(int al], int k, int t)
{

return (alk] == t);
}

process_solution(int a[l, int k)

{

solution_count ++; /* count all s to t paths */

}

238

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

The solution vector A must have room for all n vertices, although most paths
are likely shorter than this. Figure 7.1 shows the search tree giving all paths from
a particular vertex in an example graph.

7.2 Search Pruning

Backtracking ensures correctness by enumerating all possibilities. Enumerating all
n! permutations of n vertices of the graph and selecting the best one yields the
correct algorithm to find the optimal traveling salesman tour. For each permuta-
tion, we could see whether all edges implied by the tour really exists in the graph
G, and if so, add the weights of these edges together.

However, it would be wasteful to construct all the permutations first and then
analyze them later. Suppose our search started from vertex v;, and it happened
that edge (v1, v2) was not in G. The next (n—2)! permutations enumerated starting
with (v, v2) would be a complete waste of effort. Much better would be to prune
the search after v1,vs and continue next with vy, vs. By restricting the set of next
elements to reflect only moves that are legal from the current partial configuration,
we significantly reduce the search complexity.

Pruning is the technique of cutting off the search the instant we have estab-
lished that a partial solution cannot be extended into a full solution. For traveling
salesman, we seek the cheapest tour that visits all vertices. Suppose that in the
course of our search we find a tour ¢ whose cost is C}. Later, we may have a partial
solution a whose edge sum C'4 > C}. Is there any reason to continue exploring this
node? No, because any tour with this prefix aq,...,a; will have cost greater than
tour ¢, and hence is doomed to be nonoptimal. Cutting away such failed partial
tours as soon as possible can have an enormous impact on running time.

Exploiting symmetry is another avenue for reducing combinatorial searches.
Pruning away partial solutions identical to those previously considered requires
recognizing underlying symmetries in the search space. For example, consider the
state of our TSP search after we have tried all partial positions beginning with v;.
Does it pay to continue the search with partial solutions beginning with vs? No.
Any tour starting and ending at vy can be viewed as a rotation of one starting
and ending at vy, for these tours are cycles. There are thus only (n — 1)! distinct
tours on n vertices, not n!. By restricting the first element of the tour to vy, we
save a factor of n in time without missing any interesting solutions. Detecting such
symmetries can be subtle, but once identified they can usually be easily exploited.

Take-Home Lesson: Combinatorial searches, when augmented with tree prun-
ing techniques, can be used to find the optimal solution of small optimization
problems. How small depends upon the specific problem, but typical size limits
are somewhere between 15 < n < 50 items.

7.3 SUDOKU

239

B
[
WK A~ ot oo
G100 O w o Ol = ~1
— - ©O|ha o ot o w
© W otk oo 1
Bt |0 1 o~ w ©
O 0[O w R[N ot
o = =3[0wl ot
N W o © v~ 00—
0 © U~ — alw o N

5 6

Figure 7.2: Challenging Sudoku puzzle (1) with solution (r)

7.3 Sudoku

A Sudoku craze has swept the world. Many newspapers now publish daily Sudoku
puzzles, and millions of books about Sudoku have been sold. British Airways sent
a formal memo forbidding its cabin crews from doing Sudoku during takeoffs and
landings. Indeed, I have noticed plenty of Sudoku going on in the back of my
algorithms classes during lecture.

What is Sudoku? In its most common form, it consists of a 9 x 9 grid filled with
blanks and the digits 1 to 9. The puzzle is completed when every row, column, and
sector (3 x 3 subproblems corresponding to the nine sectors of a tic-tac-toe puzzle)
contain the digits 1 through 9 with no deletions or repetition. Figure 7.2 presents
a challenging Sudoku puzzle and its solution.

Backtracking lends itself nicely to the problem of solving Sudoku puzzles. We
will use the puzzle here to better illustrate the algorithmic technique. Our state
space will be the sequence of open squares, each of which must ultimately be filled
in with a number. The candidates for open squares (i,j) are exactly the integers
from 1 to 9 that have not yet appeared in row i, column j, or the 3 x 3 sector
containing (7, 7). We backtrack as soon as we are out of candidates for a square.

The solution vector a supported by backtrack only accepts a single integer
per position. This is enough to store contents of a board square (1-9) but not the
coordinates of the board square. Thus, we keep a separate array of move positions
as part of our board data type provided below. The basic data structures we need
to support our solution are:

#define DIMENSION 9 /* 9%9 board */
#define NCELLS DIMENSION*DIMENSION /* 81 cells in a 9%9 problem */

typedef struct {
int x, y;
} point;

/* x and y coordinates of point */

240

7. COMBINATORIAL SEARCH AND HEURISTIC METHODS

typedef struct {
int m[DIMENSION+1] [DIMENSION+1]; /* matrix of board contents */
int freecount; /* how many open squares remain? */
point move [NCELLS+1]; /* how did we fill the squares? */
} boardtype;

Constructing the candidates for the next solution position involves first picking
the open square we want to fill next (next_square), and then identifying which
numbers are candidates to fill that square (possible_values). These routines are
basically bookkeeping, although the subtle details of how they work can have an
enormous impact on performance.

construct_candidates(int al[], int k, boardtype *board, int cl[],
int *ncandidates)

{
int x,y; /* position of next move */
int i; /* counter */
bool possible[DIMENSION+1]; /* what is possible for the square */
next_square (&x,&y,board); /* which square should we fill next? */
board->move[k] .x = x; /* store our choice of next position */
board->move [k] .y = y;
*ncandidates = 0;
if ((x<0) && (y<0)) return; /* error condition, no moves possible */
possible_values(x,y,board,possible);
for (i=0; i<=DIMENSION; i++)
if (possible[i] == TRUE) {
c[*ncandidates] = i;
*ncandidates = *ncandidates + 1;
}
}

We must update our board data structure to reflect the effect of filling a candi-
date value into a square, as well as remove these changes should we backtrack away
from this position. These updates are handled by make_move and unmake_move, both
of which are called directly from backtrack:

7.3 SUDOKU

241

make_move(int a[], int k, boardtype *board)

{
fill_square(board->move [k] .x,board->move [k] .y,a[k] ,board) ;

3

unmake_move(int a[], int k, boardtype *board)

{
free_square(board->move [k] .x,board->move [k] .y,board) ;

3

One important job for these board update routines is maintaining how many
free squares remain on the board. A solution is found when there are no more free
squares remaining to be filled:

is_a_solution(int al[], int k, boardtype *board)

{
if (board->freecount == 0)
return (TRUE);
else
return(FALSE) ;
}

We print the configuration and turn off the backtrack search by setting off the
global finished flag on finding a solution. This can be done without consequence
because “official” Sudoku puzzles are only allowed to have one solution. There
can be an enormous number of solutions to nonofficial Sudoku puzzles. Indeed,
the empty puzzle (where no number is initially specified) can be filled in exactly
6,670,903,752,021,072,936,960 ways. We can ensure we don’t see all of them by
turning off the search:

process_solution(int a[], int k, boardtype *board)
{

print_board(board) ;

finished = TRUE;

This completes the program modulo details of identifying the next open
square to fill (next_square) and identifying the candidates to fill that square
(possible_values). Two reasonable ways to select the next square are:

o Arbitrary Square Selection — Pick the first open square we encounter, possibly
picking the first, the last, or a random open square. All are equivalent in that
there seems to be no reason to believe that one heuristic will perform any
better than the other.

242

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

e Most Constrained Square Selection — Here, we check each of the open squares
(i,7) to see how many number candidates remain for each—i.e., have not
already been used in either row i, column j, or the sector containing (i, 7).
We pick the square with the fewest number of candidates.

Although both possibilities work correctly, the second option is much, much
better. Often there will be open squares with only one remaining candidate. For
these, the choice is forced. We might as well make it now, especially since pinning
this value down will help trim the possibilities for other open squares. Of course,
we will spend more time selecting each candidate square, but if the puzzle is easy
enough we may never have to backtrack at all.

If the most constrained square has two possibilities, we have a 1/2 probability
of guessing right the first time, as opposed to a (1/9)"* probability for a completely
unconstrained square. Reducing our average number of choices from (say) 3 per
square to 2 per square is an enormous win, since it multiplies for each position.
If we have (say) 20 positions to fill, we must enumerate only 220 = 1,048,576
solutions. A branching factor of 3 at each of the 20 positions will result in over
3,000 times as much work!

Our final decision concerns the possible_values we allow for each square. We
have two possibilities:

e Local Count — Our backtrack search works correctly if the routine generating
candidates for board position (4, j) (possible_values) does the obvious thing
and allows all numbers 1 to 9 that have not appeared in the given row, column,
or sector.

e Look ahead — But what if our current partial solution has some other open
square where there are no candidates remaining under the local count cri-
teria? There is no possible way to complete this partial solution into a full
Sudoku grid. Thus there really are zero possible moves to consider for (i, j)
because of what is happening elsewhere on the board!

We will discover this obstruction eventually, when we pick this square for
expansion, discover it has no moves, and then have to backtrack. But why
wait, since all our efforts until then will be wasted? We are much better off
backtracking immediately and moving on.!

Successful pruning requires looking ahead to see when a solution is doomed to
go nowhere, and backing off as soon as possible.

Table 7.1 presents the number of calls to is_a_solution for all four backtracking
variants on three Sudoku instances of varying complexity:

IThis look-ahead condition might have naturally followed from the most-constrained square selection, had
it been permitted to select squares with no moves. However, my implementation credited squares that already
contained numbers as having no moves, thus limiting the next square choices to squares with at least one move.

7.3 SUDOKU

243

Pruning Condition Puzzle Complexity
next_square possible_values Easy | Medium Hard
arbitrary local count 1,904,832 | 863,305 | never finished
arbitrary look ahead 127 142 12,507,212
most constrained local count 48 84 1,243,838
most constrained look ahead 48 65 10,374

Table 7.1: Sudoku run times (in number of steps) under different pruning strategies

e The Fasy board was intended to be easy for a human player. Indeed, my
program solved it without any backtracking steps when the most constrained
square was selected as the next position.

e The Medium board stumped all the contestants at the finals of the World Su-
doku Championship in March 2006. The decent search variants still required
only a few backtrack steps to dispatch this problem.

e The Hard problem is the board displayed in Figure 7.2, which contains only
17 fixed numbers. This is the fewest specified known number of positions in
any problem instance that has only one complete solution.

What is considered to be a “hard” problem instance depends upon the given heuris-
tic. Certainly you know people who find math/theory harder than programming
and others who think differently. Heuristic A may well think instance I; is easier
than I, while heuristic B ranks them in the other order.

What can we learn from these experiments? Looking ahead to eliminate dead
positions as soon as possible is the best way to prune a search. Without this
operation, we never finished the hardest puzzle and took thousands of times longer
than we should have on the easier ones.

Smart square selection had a similar impact, even though it nominally just
rearranges the order in which we do the work. However, doing more constrained
positions first is tantamount to reducing the outdegree of each node in the tree,
and each additional position we fix adds constraints that help lower the degree for
future selections.

It took the better part of an hour (48:44) to solve the puzzle in Figure 7.2 when
I selected an arbitrary square for my next move. Sure, my program was faster
in most instances, but Sudoku puzzles are designed to be solved by people using
pencils in much less time than this. Making the next move in the most constricted
square reduced search time by a factor of over 1,200. Each puzzle we tried can now
be solved in seconds—the time it takes to reach for the pencil if you want to do it
by hand.

This is the power of a pruning search. Even simple pruning strategies can suffice
to reduce running time from impossible to instantaneous.

244

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

L

ag X
a e
2

2
W e

Figure 7.3: Configurations covering 63 but not 64 squares

7.4 War Story: Covering Chessboards

Every researcher dreams of solving a classical problem—one that has remained open
and unsolved for over a century. There is something romantic about communicating
across the generations, being part of the evolution of science, and helping to climb
another rung up the ladder of human progress. There is also a pleasant sense of
smugness that comes from figuring out how to do something that nobody could do
before you.

There are several possible reasons why a problem might stay open for such
a long period of time. Perhaps it is so difficult and profound that it requires a
uniquely powerful intellect to solve. A second reason is technological—the ideas or
techniques required to solve the problem may not have existed when it was first
posed. A final possibility is that no one may have cared enough about the problem
in the interim to seriously bother with it. Once, I helped solve a problem that had
been open for over a hundred years. Decide for yourself which reason best explains
why.

Chess is a game that has fascinated mankind for thousands of years. In ad-
dition, it has inspired many combinatorial problems of independent interest. The
combinatorial explosion was first recognized with the legend that the inventor of
chess demanded as payment one grain of rice for the first square of the board, and
twice as much for the (i 4+ 1)st square than the ith square. The king was aston-
ished to learn he had to cough up Z?il 2t =265 _ 1 = 36,893,488,147,419,103,231
grains of rice. In beheading the inventor, the wise king first established pruning as
a technique for dealing with the combinatorial explosion.

In 1849, Kling posed the question of whether all 64 squares on the board can be
simultaneously threatened by an arrangement of the eight main pieces on the chess
board—the king, queen, two knights, two rooks, and two oppositely colored bishops.
Pieces do not threaten the square they sit on. Configurations that simultaneously
threaten 63 squares, such as those in Figure 7.3, have been known for a long time,
but whether this was the best possible remained an open problem. This problem

7.4 WAR STORY: COVERING CHESSBOARDS

245

W
W
Wy

Figure 7.4: The ten unique positions for the queen, with respect to symmetry

seemed ripe for solution by exhaustive combinatorial searching, although whether
it was solvable depended upon the size of the search space.

Consider the eight main pieces in chess (king, queen, two rooks, two bishops,
and two knights). How many ways can they be positioned on a chessboard? The
trivial bound is 64!/(64 — 8)! = 178,462,987,637,760 ~ 10'° positions. Anything
much larger than about 10? positions would be unreasonable to search on a modest
computer in a modest amount of time.

Getting the job done would require significant pruning. Our first idea was to
remove symmetries. Accounting for orthogonal and diagonal symmetries left only
ten distinct positions for the queen, shown in Figure 7.4.

Once the queen is placed, there are 64 - 63/2 = 2,016 distinct ways to position
a pair of rooks or knights, 64 places to locate the king, and 32 spots for each of the
white and black bishops. Such an exhaustive search would test 2,663,550,812,160
~ 103 distinct positions—still much too large to try.

We could use backtracking to construct all of the positions, but we had to find
a way to prune the search space significantly. Pruning the search meant that we
needed a quick way to prove that there was no way to complete a partially filled-in
position to cover all 64 squares. Suppose we had already placed seven pieces on the
board, and together they covered all but 10 squares of the board. Say the remaining
piece was the king. Can there be a position to place the king so that all squares
are threatened? The answer must be no, because the king can threaten at most
eight squares according to the rules of chess. There can be no reason to test any
king position. We might win big pruning such configurations.

This pruning strategy required carefully ordering the evaluation of the pieces.
Each piece can threaten a certain maximum number of squares: the queen 27, the
king/knight 8, the rook 14, and the bishop 13. We would want to insert the pieces
in decreasing order of mobility. We can prune when the number of unthreatened
squares exceeds the sum of the maximum coverage of the unplaced pieces. This
sum is minimized by using the decreasing order of mobility.

246

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

a
¢
We

-

a

[bmg oo
» Eke

Figure 7.5: Weakly covering 64 squares

When we implemented a backtrack search using this pruning strategy, we found
that it eliminated over 95% of the search space. After optimizing our move gener-
ation, our program could search over 1,000 positions per second. But this was still
too slow, for 1012/10% = 10° seconds meant 1,000 days! Although we might further
tweak the program to speed it up by an order of magnitude or so, what we really
needed was to find a way to prune more nodes.

Effective pruning meant eliminating large numbers of positions at a single
stroke. Our previous attempt was too weak. What if instead of placing up to eight
pieces on the board simultaneously, we placed more than eight pieces. Obviously,
the more pieces we placed simultaneously, the more likely they would threaten all
64 squares. But if they didn’t cover, all subsets of eight distinct pieces from the
set couldn’t possibly threaten all squares. The potential existed to eliminate a vast
number of positions by pruning a single node.

So in our final version, the nodes of our search tree corresponded to chessboards
that could have any number of pieces, and more than one piece on a square. For a
given board, we distinguished strong and weak attacks on a square. A strong attack
corresponds to the usual notion of a threat in chess. A square is weakly attacked if
the square is strongly attacked by some subset of the board—that is, a weak attack
ignores any possible blocking effects of intervening pieces. All 64 squares can be
weakly attacked with eight pieces, as shown in Figure 7.5.

Our algorithm consisted of two passes. The first pass listed boards where every
square was weakly attacked. The second pass filtered the list by considering block-
ing pieces. A weak attack is much faster to compute (no blocking to worry about),
and any strong attack set is always a subset of a weak attack set. The position
could be pruned whenever there was a non-weakly threatened square.

This program was efficient enough to complete the search on a slow 1988-era
IBM PC-RT in under one day. It did not find a single position covering all 64 squares
with the bishops on opposite colored squares. However, our program showed that
it is possible to cover the board with seven pieces provided a queen and a knight
can occupy the same square, as shown in Figure 7.6.

7.5 HEURISTIC SEARCH METHODS

247

Ll

Figure 7.6: Seven pieces suffice when superimposing queen and knight (shown as a white queen)

Take-Home Lesson: Clever pruning can make short work of surprisingly hard
combinatorial search problems. Proper pruning will have a greater impact on
search time than any other factor.

7.5 Heuristic Search Methods

Heuristic methods provide an alternate way to approach difficult combinatorial
optimization problems. Backtracking gave us a method to find the best of all pos-
sible solutions, as scored by a given objective function. However, any algorithm
searching all configurations is doomed to be impossible on large instances.

In this section, we discuss such heuristic search methods. We devote the bulk of
our attention to simulated annealing, which I find to be the most reliable method
to apply in practice. Heuristic search algorithms have an air of voodoo about them,
but how they work and why one method might work better than another follows
logically enough if you think them through.

In particular, we will look at three different heuristic search methods: random
sampling, gradient-descent search, and simulated annealing. The traveling salesman
problem will be our ongoing example for comparing heuristics. All three methods
have two common components:

e Solution space representation — This is a complete yet concise description
of the set of possible solutions for the problem. For traveling salesman, the
solution space counsists of (n — 1)! elements—namely all possible circular per-
mutations of the vertices. We need a data structure to represent each element
of the solution space. For TSP, the candidate solutions can naturally be rep-
resented using an array S of n — 1 vertices, where S; defines the (i + 1)st
vertex on the tour starting from wvy.

e (ost function — Search methods need a cost or evaluation function to ac-
cess the quality of each element of the solution space. Our search heuristic

248

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

identifies the element with the best possible score—either highest or lowest
depending upon the nature of the problem. For TSP, the cost function for
evaluating a given candidate solution S should just sum up the costs involved,
namely the weight of all edges (S;, Si+1), where S, 11 denotes v;.

7.5.1 Random Sampling

The simplest method to search in a solution space uses random sampling. It is also
called the Monte Carlo method. We repeatedly construct random solutions and
evaluate them, stopping as soon as we get a good enough solution, or (more likely)
when we are tired of waiting. We report the best solution found over the course of
our sampling.

True random sampling requires that we are able to select elements from the
solution space uniformly at random. This means that each of the elements of the
solution space must have an equal probability of being the next candidate selected.
Such sampling can be a subtle problem. Algorithms for generating random permu-
tations, subsets, partitions, and graphs are discussed in Sections 14.4-14.7.

random_sampling(tsp_instance *t, int nsamples, tsp_solution *bestsol)

{

tsp_solution s; /* current tsp solution */
double best_cost; /* best cost so far */
double cost_now; /* current cost */

int i; /* counter */

initialize_solution(t->n,&s);
best_cost = solution_cost(&s,t);
copy_solution(&s,bestsol);

for (i=1; i<=nsamples; i++) {
random_solution(&s);
cost_now = solution_cost(&s,t);
if (cost_now < best_cost) {
best_cost = cost_now;
copy_solution(&s,bestsol);

When might random sampling do well?

o When there are a high proportion of acceptable solutions — Finding a piece of
hay in a haystack is easy, since almost anything you grab is a straw. When
solutions are plentiful, a random search should find one quickly.

7.5 HEURISTIC SEARCH METHODS 249

Performance of Random Sampling for TSP
200000 T

Random Samplihg

180000

160000

140000

120000 1

100000 1

Length of Tour

80000 - 1

60000 - 1

40000 - 1

20000 - 1

0 Il Il
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06
Number of Iterations

Figure 7.7: Search time/quality tradeoffs for TSP using random sampling.

Finding prime numbers is domain where a random search proves successful.
Generating large random prime numbers for keys is an important aspect of
cryptographic systems such as RSA. Roughly one out of every Inn integers
are prime, so only a modest number of samples need to be taken to discover
primes that are several hundred digits long.

e When there is no coherence in the solution space — Random sampling is the
right thing to do when there is no sense of when we are getting closer to a
solution. Suppose you wanted to find one of your friends who has a social
security number that ends in 00. There is not much you can hope to do but
tap an arbitrary fellow on their shoulder and ask. No cleverer method will be
better than random sampling.

Consider again the problem of hunting for a large prime number. Primes are
scattered quite arbitrarily among the integers. Random sampling is as good
as anything else.

How does random sampling do on TSP? Pretty lousy. The best solution I found
after testing 1.5 million random permutations of a classic TSP instance (the capital
cities of the 48 continental United States) was 101,712.8. This is more than three
times the cost of the optimal tour! The solution space consists almost entirely

250

7.

COMBINATORIAL SEARCH AND HEURISTIC METHODS

of mediocre to bad solutions, so quality grows very slowly with the amount of
sampling / running time we invest. Figure 7.7 presents the arbitrary up-and-down
movements of random sampling and generally poor quality solutions encountered
on the journey, so you can get a sense of how the score varied over each iteration.

Most problems we encounter, like TSP, have relatively few good solutions but
a highly coherent solution space. More powerful heuristic search algorithms are
required to deal effectively with such problems.

Stop and Think: Picking the Pair

Problem: We need an efficient and unbiased way to generate random pairs of
vertices to perform random vertex swaps. Propose an efficient algorithm to generate

elements from the (g) unordered pairs on {1,...,n} uniformly at random.

Solution: Uniformly generating random structures is a surprisingly subtle problem.
Consider the following procedure to generate random unordered pairs:

i = random_int(1,n-1);
random_int (i+1,n);

.
I

It is clear that this indeed generates unordered pairs, since ¢+ < j. Further,
it is clear that all (g) unordered pairs can indeed be generated, assuming that

random_int generates integers uniformly between its two arguments.

But are they uniform? The answer is no. What is the probability that pair (1,2)
is generated? There is a 1/(n—1) chance of getting the 1, and then a 1/(n—1) chance
of getting the 2, which yields p(1,2) = 1/(n — 1)2. But what is the probability of
getting (n — 1,n)? Again, there is a 1/(n — 1) chance of getting the first number,
but now there is only one possible choice for the second candidate! This pair will
occur (n — 1) times more often than the first!

The problem is that fewer pairs start with big numbers than little numbers.
We could solve this problem by calculating exactly how unordered pairs start with
i (exactly (n —4)) and appropriately bias the probability. The second value could
then be selected uniformly at random from ¢ 4 1 to n.

But instead of working through the math, let’s exploit the fact that randomly
generating the n? ordered pairs uniformly is easy. Just pick two integers indepen-
dently of each other. Ignoring the ordering (i.e., permuting the ordered pair to
unordered pair (z,y) so that < y) gives us a 2/n? probability of generating each
unordered pair of distinct elements. If we happen to generate a pair (z, z), we dis-
card it and try again. We will get unordered pairs uniformly at random in constant
expected time using the following algorithm:

7.5 HEURISTIC SEARCH METHODS

251

Figure 7.8: Improving a TSP tour by swapping vertices 2 and 6

do {

i = random_int(1,n);

j = random_int(1,n);

if (i > j) swap(&i,&j);
} while (i==j);

7.5.2 Local Search

Now suppose you want to hire an algorithms expert as a consultant to solve your
problem. You could dial a phone number at random, ask if they are an algorithms
expert, and hang up the phone if they say no. After many repetitions you will
probably find one, but it would probably be more efficient to ask the fellow on the
phone for someone more likely to know an algorithms expert, and call them up
instead.

A local search employs local neighborhood around every element in the solution
space. Think of each element z in the solution space as a vertex, with a directed
edge (z,y) to every candidate solution y that is a neighbor of x. Our search proceeds
from x to the most promising candidate in x’s neighborhood.

We certainly do not want to explicitly construct this neighborhood graph for
any sizable solution space. Think about TSP, which will have (n — 1)! vertices in
this graph. We are conducting a heuristic search precisely because we cannot hope
to do this many operations in a reasonable amount of time.

Instead, we want a general transition mechanism that takes us to the next solu-
tion by slightly modifying the current one. Typical transition mechanisms include
swapping a random pair of items or changing (inserting or deleting) a single item
in the solution.

The most obvious transition mechanism for TSP would be to swap the current
tour positions of a random pair of vertices S; and S;, as shown in Figure 7.8.

252

7

COMBINATORIAL SEARCH AND HEURISTIC METHODS

This changes up to eight edges on the tour, deleting the edges currently adjacent
to both S; and S;, and adding their replacements. Ideally, the effect that these
incremental changes have on measuring the quality of the solution can be computed
incrementally, so cost function evaluation takes time proportional to the size of the
change (typically constant) instead of linear to the size of the solution.

A local search heuristic starts from an arbitrary element of the solution space,
and then scans the neighborhood looking for a favorable transition to take. For
TSP, this would be transition, which lowers the cost of the tour. In a hill-climbing
procedure, we try to find the top of a mountain (or alternately, the lowest point in
a ditch) by starting at some arbitrary point and taking any step that leads in the
direction we want to travel. We repeat until we have reached a point where all our
neighbors lead us in the wrong direction. We are now King of the Hill (or Dean of
the Ditch).

We are probably not King of the Mountain, however. Suppose you wake up in
a ski lodge, eager to reach the top of the neighboring peak. Your first transition
to gain altitude might be to go upstairs to the top of the building. And then
you are trapped. To reach the top of the mountain, you must go downstairs and
walk outside, but this violates the requirement that each step has to increase your
score. Hill-climbing and closely related heuristics such as greedy search or gradient
descent search are great at finding local optima quickly, but often fail to find the
globally best solution.

hill_climbing(tsp_instance *t, tsp_solution *s)

{
double cost; /* best cost so far */
double delta; /* swap cost */
int i,j; /* counters */
bool stuck; /* did I get a better solution? */

double transition();

initialize_solution(t->n,s);
random_solution(s);
cost = solution_cost(s,t);

do {
stuck = TRUE;
for (i=1; i<t->n; i++)
for (j=i+1l; j<=t->n; j++) {
delta = transition(s,t,i,j);
if (delta < 0) {
stuck = FALSE;
cost = cost + delta;

7.5 HEURISTIC SEARCH METHODS

253

else
transition(s,t,j,1i);
}
} while (!stuck);

When does local search do well?

o When there is great coherence in the solution space — Hill climbing is at its
best when the solution space is convex. In other words, it consists of exactly
one hill. No matter where you start on the hill, there is always a direction to
walk up until you are at the