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Logic is to improve human thinking in order to improve human existence.
[Andrzej Grzegorczyk]

However, this same [mathematical] form of thinking, this same kind of concept anal-
ysis, is also applicable to many other areas that are directly related to the immediate
reality of our daily lives. And such a broader application of the mathematical form
of thought seems to me to be of the highest importance. After all, the unparalleled
development of the technique in a narrow sense, of the technical technique, one
could say, is followed by a hardly less important development of the psychological
technique, of the advertising technique. propaganda technique, in short, of means
to influence people. However, we have failed to strengthen our defense equipment
against belief and suggestion attempts by others by improving our thinking technol-
ogy. [...] In this tangle of questions and sham questions we can find a guide in the
conceptual analysis, demonstrated in the mathematical way of thinking. Against all
these known and unknown psychic influences we can forge a weapon by improv-
ing our thinking technique. And that such a reinforcement of our spirit is required,
urgently needed, is my deepest conviction. [David van Dantzig, 1938, inaugural
lecture, Delft, the Netherlands; translated from Dutch]



This book is dedicated to Johan J. de Iongh
(1915 - 1999)

My friend and teacher



It is the main task of a philosopher to show people that things do not have to be
the way they are, that they might be different and that in some cases they should be
different. [Johan de Iongh]

Johan de Iongh (1915 - 1999) was a student of L.E.J. Brouwer (1881 - 1966), the
founding father of intuitionism. He was convinced of the soundness of the intuition-
istic view of mathematics. He also had a great affinity with the signific position,
represented by Gerrit Mannoury (1867 - 1956).

He became professor in Nijmegen in 1961, where he was teaching the course
on analysis for first-year students. Later de Iongh devoted most of his teaching to
courses on logic, the foundations and the philosophy of mathematics, and in particu-
lar intuitionistic mathematics. He was very careful in giving an accurate presentation
of Brouwer’s views. He took a great interest in the well-being of his students and
found it important to know them personally.

Johan de Iongh was as much a philosopher as a mathematician. He shared Plato’s
view that the study of mathematics is the correct introduction to philosophy. He has
published very little. His Platonic distrust towards the written word was great; his
tendency to share his thoughts and ideas with friends, rather than to write them
down, much greater. Yet some texts from him have been preserved, and many of his
ideas have been worked out in Ph.D. theses and papers by his students.

His broad scholarship was impressive. He read Greek and Latin authors in the
original. His interest in science reached far beyond mathematics and he was widely
read in world literature.

He was a convinced Catholic and his thinking on mathematics and philosophy
has developed in continuing discussion with St Augustine, St. Thomas Aquinas,
St. Thomas More and Nicholas of Cusa. He always started his lectures with a short
prayer in Latin: Spiritus sancti gratia illuminet sensus et corda nostra [May the grace
of the Holy Spirit illuminate our senses and our hearts]. And he always finished
his lectures with the following prayer: Gratias tibi agimus, Domine, pro omnibus
beneficiis tuis [We thank you, my Lord, for all your blessings].

It was a privilege to be his student, his PhD student, his assistant and his friend.
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Foreword

The following quotation is from Lewis Carroll, Symbolic Logic and The Game of
Logic; Introduction.

The learner, who wishes to try the question fairly, whether this little book does, or does
not, supply the materials for a most interesting recreation, is earnestly advised to adopt the
following Rules:

(1) Begin at the beginning, and do not allow yourself to gratify a mere idle curiosity by
dipping into the book, here and there. This would very likely lead to your throwing it aside,
with the remark ‘This is much too hard for me!’, and thus losing the chance of adding a
very large item to your stock of mental delights. . . . You will find the latter part hopelessly
unintelligible, if you read it before reaching it in regular course.

(2) Don’t begin any fresh Chapter, or Section, until you are certain that you thoroughly
understand the whole book up to that point, and that you have worked, correctly, most if
not all of the examples which have been set. So long as you are conscious that all the land
you have passed through is absolutely conquered, and that you are leaving no unsolved
difficulties behind you, which will be sure to turn up again later on, your triumphal progress
will be easy and delightful. Otherwise, you will find your state of puzzlement get worse and
worse as you proceed, till you give up the whole thing in utter disgust.

(3) When you come to any passage you don’t understand, read it again: if you still don’t
understand it, read it again: if you fail, even after three readings, very likely your brain is
getting a little tired. In that case, put the book away, and take to other occupations, and next
day, when you come to it fresh, you will very likely find that it is quite easy.

(4) If possible, find some genial friend, who will read the book along with you, and will talk
over the difficulties with you. Talking is a wonderful smoother-over of difficulties. When I
come upon anything - in Logic or in any other hard subject - that entirely puzzles me, I find
it a capital plan to talk it over, aloud, even when I am all alone. One can explain things so
clearly to one’s self! And then, you know, one is so patient with one’s self: one never gets
irritated at one’s own stupidity!

If, dear Reader, you will faithfully observe these Rules, and so give my little book a really
fair trial, I promise you, most confidently, that you will find Symbolic Logic to be one of
the most, if not the most, fascinating of mental recreations!

. . .

Mental recreation is a thing that we all of us need for our mental health; and you may get
much healthy enjoyment, no doubt, from Games, such as Back-gammon, Chess, and the
new Game ‘Halma’. But after all, when you have made yourself a first-rate player at any
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one of these Games, you have nothing real to show for it, as a result! You enjoyed the Game,
and the victory, no doubt, at the time; but you have no result that you can treasure up and
get real good out of. And, all the while, you have been leaving unexplored a perfect mine of
wealth. Once master the machinery of Symbolic Logic, and you have a mental occupation
always at hand, of absorbing interest, and one that will be of real use to you in any subject
you may take up. It will give you clearness of thought - the ability to see your way through
a puzzle - the habit of arranging your ideas in an orderly and get-at-able form - and, more
valuable than all, the power to detect fallacies, and to tear to pieces the flimsy illogical
arguments, which you will so continually encounter in books, in newspapers, in speeches,
and even in sermons, and which so easily delude those who have never taken the trouble to
master this fascinating Art. Try it. That is all I ask of you!

[From Lewis Carroll, Symbolic Logic and The Game of Logic. Introduction; Dover
Publications, Mineola, NY, 1958.]

x



Preface

Having studied mathematics, in particular foundations and philosophy of mathe-
matics, it happened that I was asked to teach logic to the students in the Faculty
of Philosophy of the Radboud University Nijmegen. It was there that I discovered
that logic is much more than just a mathematical discipline consisting of definitions,
theorems and proofs, and that logic can and should be embedded in a philosophi-
cal context. After ten years of teaching logic at the Faculty of Philosophy at the
Radboud University Nijmegen, thirty years at the Faculty of Philosophy of Tilburg
University and nine years at the Faculty of Philosophy of the Erasmus University
Rotterdam, I got many ideas how to improve my LOGIC book which was published
twenty five years ago in 1993 by Verlag Peter Lang. Although the amount of work
was enormous, I felt I should do it. It is like working on a large painting where you
put some extra color in one corner, add a little detail at another place, shed some
more light on a particular face, etc.

This book was written to serve as an introduction to logic, with special emphasis
on the interplay between logic and mathematics, philosophy, language and com-
puter science. The reader will not only be provided with an introduction to classical
propositional and predicate logic, but to philosophical (modal, deontic, epistemic)
and intuitionistic logic as well. Arithmetic and Gödel’s incompleteness theorems
are presented, there is a chapter on the philosophy of language and a chapter with
applications: logic programming, relational databases and SQL, and social choice
theory. The last chapter is on fallacies and unfair discussion methods.

Chapter 1 is intended to give the reader a first impression and a kind of overview of
the field, hopefully giving him or her the motivation to go on.

Chapter 2 is on (classical) propositional logic and Chapter 4 on predicate logic.
The notion of valid consequence is defined, as well as three notions of (formal) de-
ducibility (in terms of logical axioms and rules, in terms of tableaux and in terms
of rules of natural deduction). A procedure of searching for a formal deduction of a
formula B from given premisses A1, . . . ,An is given in order to show the equivalence
of the notions of valid consequence and (formal) deducibility: soundness and com-
pleteness. This procedure will either yield a (formal) deduction of B from A1, . . . ,An
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Preface

– in which case B is deducible from A1, . . . ,An and hence also a valid consequence
of these premisses – or (in the weak, not necessarily decidable sense) if not, one can
immediately read off a counterexample – in which case B is not a valid consequence
of A1, . . . ,An and hence not deducible from these premisses.

Chapter 3 contains the traditional material on sets treated informally in such a
way that everything can easily be adapted to an axiomatic treatment. A sketch of the
axioms of Zermelo-Fraenkel is given. The notions of relation and function are pre-
sented, since these notions are useful instruments in many fields. From a philosoph-
ical point of view infinite sets are interesting, because they have many properties
not shared by finite sets. The notion of enumerable set is needed in the Löwenheim-
Skolem theorem in predicate logic, reason why the chapter on sets is presented
before the chapter on predicate logic.

At appropriate places paradoxes are discussed because they are important for
the progress in philosophy and science. Chapter 5 presents a discussion of formal
number theory (arithmetic). Peano’s axioms for formal number theory are presented
together with an outline of Gödel’s incompleteness theorems, which say roughly
that arithmetic truth cannot be fully captured by a formal system.

Chapter 6 deals with modal, deontic, epistemic and temporal logic, frequently
called philosophical logic. It has several applications in the philosophy of language
whose major topics are discussed in Chapter 7.

It is interesting to note that traditional or classical logic silently is presupposing
certain philosophical views, frequently called Platonism. L.E.J. Brouwer (1881 -
1966) challenged these points of view, resulting in a completely different and much
more subtle intuitionistic logic which we present in Chapter 8.

Interestingly, both logic and set theory have applications in computer science. In
Chapter 9 we discuss logic programming and the programming language PROLOG
(PROgramming in LOGic), which is a version of the first-order language of pred-
icate logic. To illustrate the role of set theory in the field of computer science, we
discuss the logical structure of relational databases and the query language SQL.
In this chapter we also discuss social choice theory which deals with elections and
voting rules. Finally, in Chapter 10 we discuss a number of fallacies and unfair
discussion methods.

I have tried to give the reader some impressions of the historical development of
logic: Stoic and Aristotelian logic, logic in the Middle Ages, and Frege’s Begriffs-
schrift, together with the works of George Boole (1815 - 1864) and August De
Morgan (1806 - 1871), the origin of modern logic.

Since ‘if . . . , then . . . ’ can be considered to be the heart of logic, throughout
this book much attention is paid to conditionals: material, strict and relevant im-
plication, entailment, counterfactuals and conversational implicature are treated and
many references for further reading are given.

At the end of most sections are exercises; the solutions can be found at the end of
the chapter in question. Starred items are more difficult and can be omitted without
loss of continuity. The expression := is used as an abbreviation for ‘is by definition’.

Tilburg, Rotterdam, summer 2018 H.C.M. (Harrie) de Swart
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4.5 Completeness, Compactness and Löwenheim-Skolem . . . . . . . . . . . . 228
4.5.1 Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
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Chapter 1
Logic; a First Impression

H.C.M. (Harrie) de Swart

Abstract In this introductory chapter the topic of the book is explained: distinguish-
ing valid patterns of reasoning from invalid ones. The validity may depend on the
meaning of connectives like ‘if . . . , then . . . ’, ‘and’, ‘or’ and ‘not’, in which case
one speaks of propositional logic. But the validity may also depend on the mean-
ing of the quantifiers ‘for all’ and ‘for some’, in which case one speaks of predicate
logic. If we extend the logical language with symbols for addition and multiplication
of natural numbers, Gödel’s famous incompleteness theorems show up. In order to
have meaning, logical formulae presuppose a universe of discourse, or a set, which
may be finite or infinite. In particular infinite sets have peculiar properties. If the
validity of a reasoning pattern also depends on the meaning of modalities, like ‘nec-
essary’ and ‘possible’, one speaks of modal logic. Modal logic helps to clarify or
solve certain issues in the philosophy of language. It turns out that validity of an
argument is also dependent on philosophical presuppositions. Changing the philo-
sophical point of view may result in intuitionistic logic. The language of logic may
be used as a programming language: Prolog (Programming in Logic); and the the-
ory of sets is the basis for relational databases and the query language SQL; another
application of logic is social choice theory. Fallacies and unfair discussion methods
are abundantly present in daily discourse and hence deserve attention too.

1.1 General

The study of logic is the study of reasoning. The basic question in this book is what
conclusions can be drawn with absolute certainty from a particular set of premisses.
To illustrate what we mean by this, let us consider Euclid’s geometry.

Euclid (c. 330 B.C.) began his geometry books, called the ‘Elements’, with a
precise formulation of the geometrical axioms (postulates, premisses) on which he
wanted to found his geometry. For instance, one of the axioms says that it is possible
to draw a straight line through any two points. Next, Euclid used (informal) reason-
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2 1 Logic; a First Impression

ing to deduce theorems from the geometrical axioms, for instance, the theorem that
any triangle which is equiangular also is isosceles.

conclusion (theorem)

reasoning (studied in logic)

premisses (postulates, axioms)

In this book deductive logic is studied and not probabilistic logic which studies
the question what conclusions can be drawn from a set of premisses with a certain
probability. An example of the latter is, for instance, the question how likely it is
that a person gets a certain disease when he has been in touch with other people
having the disease.

Logic has a long history: it was studied by the Stoics (see [1, 5, 10, 12]), by
Aristotle (see [1, 10, 11]) and by many medieval philosophers (see [1, 2, 10, 13]);
the study of logic was greatly advanced by the works of Boole (1847, 1854) [3, 4],
Frege (1879) [6, 7] and Russell (1910) [14], becoming a full-fledged discipline with
the work of Gödel (1930-1931) [9, 15].

In addition to the term ‘logic’, one also encounters in the literature the expres-
sions ‘mathematical logic’, ‘philosophical logic’ and ‘formal (or symbolic) logic’,
which are used to stress one of the many aspects of logic.

1.2 Propositional Logic

Below we give some concrete simple arguments from different fields.

Example 1.1.

a1) If 1 = 2, then I am the Pope of Rome.
I am not the Pope of Rome.
Therefore: not 1 = 2.

a2) If 1 = 2, then I am the Pope of Rome.
Not 1 = 2.
Therefore: I am not the Pope of Rome.

b1) If triangle ABC is equiangular, then it is isosceles.
Triangle ABC is not isosceles.
Therefore: Triangle ABC is not equiangular.

b2) If triangle ABC is equiangular, then it is isosceles.
Triangle ABC is not equiangular.
Therefore: Triangle ABC is not isosceles.
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c1) If it snows, then it is cold.
It is not cold.
Therefore: It does not snow.

c2) If it snows, then it is cold.
It does not snow.
Therefore: It is not cold.

Note that all the arguments above consist of two premisses and one (putative) con-
clusion. Further note that all arguments a1, b1 and c1 in Example 1.1 have the same
structure, namely, the following pattern of reasoning:

1. if P1, then P2 P1 → P2

not P2 ¬P2

therefore: not P1 ¬P1

Using → for ‘if . . . , then . . . ’ and ¬ for ‘not’, this pattern of reasoning can be
represented by the schema to the above right. This pattern of reasoning is called
Modus Tollens.

The arguments a2, b2 and c2 in Example 1.1 also have the same pattern, namely,

if P1, then P2 P1 → P2

not P1 ¬P1

therefore: not P2 ¬P2

The first pattern of reasoning is valid, i.e., it is impossible to replace P1, P2 by such
propositions that the premisses P1 → P2 and ¬P2 result in true propositions and that
at the same time the conclusion¬P1 results in a false proposition. For suppose P1, P2

are interpreted as propositions P∗1 (e.g., it snows) and P∗2 (e.g., it is cold) respectively
and suppose that

‘if P∗1 , then P∗2 ’ (if it snows, then it is cold) and ‘not P∗2 ’ (it is not cold) are both true.

Then ‘not P∗1 ’ (it does not snow) must be true too. For suppose that P∗1 (it snows)
would be true; then – by the first premiss – P∗2 (it is cold) would be true too. This is
a contradiction with the second premiss ‘not P∗2 ’ (it is not cold).

Note that this insight does not depend on the particular choice of P∗1 and P∗2 . P∗1
and P∗2 may be any propositions from number theory, geometry, economics, philos-
ophy, from daily life, and so on.

Concrete arguments which have an underlying pattern of reasoning which is valid
are called correct arguments. Thus the arguments a1, b1 and c1 in Example 1.1 are
correct, since they are particular instances of the valid pattern 1:

P1 → P2

¬P2

¬P1

We say that ¬P1 is a logical (or valid) consequence of P1 → P2 and ¬P2. Notation:
P1 → P2,¬P2 |= ¬P1.
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We know that it is impossible for the premisses of a correct argument to be true
and at the same time its conclusion to be false. Whether the premisses and the con-
clusion of a concrete argument are true or false is not the business of the logician,
but of the mathematician, the economist, the philosopher, the physicist, and so on,
depending on what these propositions are about. The logician is not concerned with
the truth or falsity of the axioms of geometry. Given a concrete argument, he is only
concerned with the validity or invalidity of the underlying pattern of reasoning and
if this is valid, he can only say that if the premisses of the concrete argument in
question are true, then the conclusion must likewise be true.

Warning: If a pattern of reasoning is valid, a concrete argument with that pattern
does not imply that the premisses are true, nor that the conclusion is true.

Counterexample Pattern 1
P1 → P2

¬P2

¬P1

is a valid pattern of reasoning.

Now take P∗1 : Bill Gates is wealthy.
P∗2 : Bill Gates owns all the gold in Fort Knox.

Then we get the following concrete argument:
If Bill Gates is wealthy, then he owns all the gold in Fort Knox.
Bill Gates does not own all the gold in Fort Knox.
Therefore: Bill Gates is not wealthy.

So, we have a correct argument, since the underlying pattern is valid, with a false
conclusion. This is only possible if at least one of the premisses is false. And indeed,
the first premiss is actually false. Correctness of a concrete argument means that it is
impossible that all the premisses are true and at the same time the conclusion false,
in other words: if all premisses are true (which actually may not be the case), then
the conclusion must be true too.

From the definition of validity it follows that a pattern of reasoning is invalid if
it is possible to interpret P1,P2, . . . in such a way that all premisses result in true
propositions while at the same time a false one results from the conclusion. An
example of an invalid pattern is the following one:

P1 → P2

¬P1

¬P2

underlying the concrete arguments a2, b2 and c2 in Example 1.1. Taking
P∗1 : Bill Gates owns all the gold in Fort Knox,
P∗2 : Bill Gates is wealthy,

results in the following concrete argument :
If Bill Gates owns all the gold in Fort Knox, then he is wealthy.
Bill Gates does not own all the gold in Fort Knox.
Therefore: Bill Gates is not wealthy.

So, all the premisses are true, while the conclusion is false.
We say that ¬P2 is not a logical (or valid) consequence of P1 → P2 and ¬P1.

Notation: P1 → P2,¬P1 �|= ¬P2.
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Concrete arguments with an underlying pattern of reasoning which is invalid are
called incorrect. So, the arguments a2, b2 and c2 in Example 1.1 are incorrect.

Warning: A concrete argument with an underlying pattern of reasoning which is
invalid does not necessarily imply that the conclusion is false; the conclusion may
be true, but in that case the truth of the conclusion does not depend on the truth of
the premisses.

Counterexample: The pattern
P1 → P2

¬P1

¬P2

is an invalid pattern of reasoning.

Taking P∗1 : I own all the gold in Fort Knox,
P∗2 : I am wealthy,

we obtain the following concrete incorrect argument with true premisses and a true
conclusion:

If I own all the gold in Fort Knox, then I am wealthy.
I do not own all the gold in Fort Knox.
Therefore: I am not wealthy.

Below is a non exhaustive list of valid patterns of reasoning frequently used in prac-
tice:

Example 1.2 (some valid patters of reasoning).

1.
if P1, then P2 P1 → P2

not P2 ¬P2 Modus Tollens
therefore: not P1 ¬P1

2.
if P1, then P2 P1 → P2

P1 P1 Modus Ponens (MP)
therefore: P2 P2

3.
P1 if and only if (iff) P2 P1 � P2

not P1 ¬P1

therefore: not P2 ¬P2

4.
not (P1 and P2) ¬(P1∧P2)
P1 P1

therefore: not P2 ¬P2

5.
P1 or P2 P1∨P2

not P2 ¬P2

therefore: P1 P1

We have introduced above� for ‘if and only if (iff)’,∧ for ‘and’,∨ for the inclusive
‘or’, i.e., P1 ∨P2 stands for ‘P1 or P2 or both P1 and P2’. The reader should verify
that all patterns in Example 1.2 are valid.

The following two patterns of reasoning are frequently used in practice, although
they are invalid:
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if P1, then P2 P1 → P2

not P1 ¬P1

therefore: not P2 ¬P2

if P1, then P2 P1 → P2

P2 P2

therefore: P1 P1

So, the following concrete arguments are not correct:

If it rains, then the street becomes wet.
It does not rain.
Therefore: The street does not become wet.

If it is raining, then the street becomes wet.
The street becomes wet.
Therefore: It is raining.

It should now be clear that the expressions in patterns of reasoning are built from
P1,P2,P3, . . . using the connectives �,→,∧,∨ and ¬. In fact, we have introduced a
new language for representing patterns of reasoning, the alphabet of which consists
of the symbols:

P1, P2, P3, . . . called atomic formulas
�,→,∧,∨,¬ called connectives
( , ) called parentheses.

Of course, ∧P1P2¬ is not a well-formed expression of this language. Let us define
how the well-formed expressions or formulas of this language are built up.

Formulas:
1. P1,P2,P3, . . . are formulas. In other words, if P is an atomic formula, then P is a
formula.
2. If A and B are formulas, then (A�B), (A→B), (A∧B) and (A∨B) are formulas.
3. If A is a formula, then (¬A) is a formula too.

Example 1.3. P1,P3 and P5 are formulas.
(¬P1) and (P3 → P5) are formulas.
((¬P1)∨ (P3 → P5)) is a formula.

We can minimize the need for parentheses by agreeing that we leave out the most
outer parentheses in a formula and that in

�, →, ∧, ∨, ¬
any connective has a higher rank than any connective to the right of it and a lower
rank than any connective to the left of it. According to this convention¬P1→P2∨P3

means (¬P1)→ (P2∨P3), because→ has a higher rank than ¬ and∨, and it does not
mean ((¬P1)→ P2)∨P3 nor ¬((P1 → P2)∨P3). According to the convention just
mentioned the expression ¬P1∨P3 → P5 stands for the formula ((¬P1)∨P3)→ P5,
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because → has the highest rank and ∨ has a higher rank than ¬. Notice that the
formula (¬P1)∨ (P3 → P5) is a different formula with a quite different meaning.

It is important to notice that the validity or invalidity of the reasoning patterns above
does not depend on the content of the P1, P2, but solely on the meaning of the con-
nectives �, →, ∧, ∨ and ¬. In propositional logic one studies the (in)validity of
reasoning patterns of which the (in)validity is completely determined by the mean-
ing of the connectives between the propositions in question.

In Chapter 2 a characterization of validity is given both in semantic and in syntac-
tic terms, and it is shown that these two characterizations are equivalent, which gives
us confidence that we have given an adequate definition of the notion in question.

In logic we study the validity or invalidity of patterns of reasoning. The expres-
sions in these patterns are formulas of the language specified above. This language
is called the object-language, because it is the object of study. The language used
in studying the object-language is called the meta-language or the observer’s lan-
guage. In our case the meta-language will be part of English. The situation is simi-
lar to the one where an English speaking person is studying Russian, in which case
Russian is the object language and English is the meta-language. It is important to
keep in mind this distinction between the object-language and the meta-language;
otherwise, one may get involved in paradoxes like the antinomy of the liar.

That intuition is not always a reliable guide in judging correctness of a given argu-
ment will become clear from a few examples. At the end of this section are a few
exercises in which the reader is challenged to judge on intuitive grounds whether the
argument given is correct. Although the arguments are simple, they are sufficiently
complex to puzzle an untrained intuition. When the reader has finished Chapter 2 he
or she will be able to judge the correctness of these arguments with certainty!

Exercise 1.1. Check whether the following argument is correct by translating the
propositions in the argument into the language of propositional logic and by deter-
mining whether the corresponding pattern of reasoning is valid.
If Socrates did not die of old age [¬O], then the Athenians sentenced him to death
[D].
The Athenians did not sentence Socrates to death.
If Socrates died from poison [P], then he did not die of old age.
Therefore: Socrates did not die from poison.

Exercise 1.2. Check whether the following argument is correct.
If the weather is nice [N], then John will come. [J].
The weather is not nice.
Therefore: John will not come,

Exercise 1.3. Check whether the following argument is correct.
John comes [J] if the weather is nice [N].
John comes.
Therefore: the weather is nice.
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Exercise 1.4. Check whether the following argument is correct.
John comes [J] only if the weather is nice [N].
John comes.
Therefore: the weather is nice.

Exercise 1.5. Check whether the following argument is correct.
It is not the case that John gets promotion [P] and at the same time not a higher
salary [¬S].
John does not get promotion or he is not diligent [¬D].
John is diligent.
Therefore, John will not get a higher salary.

1.3 Sets; Finite and Infinite

The quantifiers ∀ (for all x) and ∃ (for some x) in (the language of) predicate logic are
ranging over a certain domain: the set of all persons, the set of all natural numbers,
the set of all real numbers, etc. In fact, there are many possible domains, where a
domain is just a set of objects. These sets may be finite, like the set consisting of
Ann, Bob and Coby, or the set {1, 2, 3} consisting of the numbers 1, 2 and 3, but they
may be also infinite, like the set N of all natural numbers. We will study these sets
more closely in Chapter 3 with particular attention for the properties of infinite sets.
As we shall see, infinite sets have properties quite different from the properties of
finite sets. For instance, a proper part of a finite set will be smaller than the original
set. But as we shall see in Chapter 3, this property does not hold for infinite sets:
a proper part of an infinite set may be equally large as the original set. A simple
example is the set Neven = {0,2,4,6, . . .} of the even natural numbers which is a
proper subset of the set N= {0,1,2,3,4,5,6, . . .} of all natural numbers. That these
sets are equally large may be seen as follows: there is a one-one correspondence
between the elements of both sets.

N: 0 1 2 3 4 . . .
| | | | | . . .

Neven: 0 2 4 6 8 . . .

1.4 Predicate Logic

An example of a simple argument which we cannot adequately analyse with the
means developed in propositional logic, is the following:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.
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If we translate this argument in the formal language of propositional logic, we find

as the underlying pattern of reasoning:
P1

P2

P3
and we know this pattern is invalid since we can substitute true propositions for P1

and P2 and at the same time a false one for P3. On the other hand, it seems to us that
the argument above, about Socrates, is correct.

The point is that in the translation of the premisses into P1 and P2 and of the
conclusion into P3, the internal structure of the sentences is lost: P1, P2 and P3 are
unrelated atomic formulas. But the premisses and the conclusion of the argument
are not unrelated; in fact, it is this relationship which causes the argument to be
correct. We have to exhibit the internal subject-predicate structure of the premisses
and the conclusion in order to make visible that these three sentences are related and
in order to see that the underlying pattern of reasoning is valid.

The structure of the argument above is the following pattern:

For all objects x, if x is a person, then x is mortal. ∀x[P(x)→M(x)]
Socrates is a person. P(c)
Therefore: Socrates is mortal. M(c)

Using ∀x for ‘for all x’, P(x) for ‘x has the property P (to be a Person)’, M(x) for
‘x has the property M (to be Mortal)’ and c for ‘Socrates’, this pattern of reasoning
can be represented by the schema to the above right .

Notice that the following arguments have the same underlying pattern of reasoning:

All philosophers are smart All natural numbers are positive
John is a philosopher 5 is a natural number
Therefore, John is smart Therefore, 5 is positive

The pattern just mentioned is valid, i.e., it is impossible to choose a domain of indi-
viduals and to give to P, M and c appropriate meanings such that from the premisses
∀x[P(x)→ M(x)] and P(c) true propositions result and at the same time from the
conclusion M(c) a false proposition.

But, for instance, the pattern ∀x[P(x)→M(x)]
M(c)

P(c)

is invalid, since it is possible to choose a domain, to interpret the symbols P, M
as predicates P∗, M∗ over the domain chosen and to interpret the symbol c as an
element c∗ in the domain, such that true propositions result from the premisses and
a false proposition from the conclusion. For instance, take as domain the set of all
persons, let P∗ be the predicate ‘is a man’, M∗ the predicate ‘is mortal’ and let c∗ be
the element ‘Queen Maxima’. Then ∀x[P(x)→ M(x)] yields the true proposition:
For every person x, if x is a man, then x is mortal. M(c) yields the true proposition:
Queen Maxima is mortal. But P(c) yields the false proposition: Queen Maxima is a
man.
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Next consider the following elementary argument:

John is ill
Therefore: someone is ill.

In order to exhibit the structure of this argument, we need one more symbol: ∃x, for
‘there is at least one x such that . . . ’. Then the underlying pattern of reasoning of
this argument is the following:

I(c)
∃x[I(x)]

This pattern of reasoning is again valid: it is impossible to take a domain D and to
interpret the symbol I as a predicate I∗ over D and the symbol c as an individual c∗
in D such that a true proposition (c∗ has the property I∗) results from the premiss
I(c) and at the same time a false proposition (there is at least one individual which
has the property I∗) from the conclusion ∃x[I(x)].

Note that the following arguments also have the same (valid) underlying pattern
of reasoning and hence are correct.

5 is odd Peter is rich
Therefore: some natural number is odd Therefore: someone is rich

In order to be able to exhibit the internal subject-predicate structure of atomic sen-
tences and the mutual relationships between them, we need the following symbols:

SYMBOLS NAME MEANING
x, . . . individual variables individuals in a given domain
P, M, I, . . . predicate symbols predicates over the given domain
c, . . . individual constants concrete individuals in the given domain
�;→;∧;∨,¬ connectives iff; if ..., then ...; and; or; not
∀,∃ quantifiers for all; there exists
[, ],(,) parentheses

In fact, we have introduced a new (subject-) predicate language, richer than the for-
mer propositional language, in which we can translate the subject-predicate struc-
ture of concrete arguments, exhibiting the underlying pattern of reasoning.

Of course, P∃∀¬ is not a well-formed expression of this language and we have
to define precisely what the well-formed expressions or formulas of this language
are. We shall do so in Chapter 4; for the moment it is sufficient to work with a not
precisely defined notion of formula.

It turns out that one can select a few elementary steps of reasoning, among which

A A→ B
B called Modus Ponens, A∧B

B , A
A∨B , ∀x[A(x)]

A(t)
,

such that every valid pattern of reasoning, no matter how complex, can be built up
from these elementary steps. This is Gödel’s Completeness Theorem, 1930.
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For instance, the following correct argument can be built up from the elementary
steps just specified.

John loves Jane and John is getting married.
If John is getting married, then he is looking for another job.
Hence: John is looking for another job or he does not love Jane.

The underlying pattern of reasoning is:
P1 ∧ P2

P2 → P3

P3 ∨¬P1

And indeed, this pattern can be built up from the elementary steps specified above
as follows:

And the four elementary steps of reasoning specified above can be supplemented
by a few more elementary steps to form what is called Gentzen’s [8] system of
Natural Deduction – to be discussed in Subsection 2.7.2 – such that every correct
argument can be simulated by an appropriate combination of the elementary steps
in Gentzen’s system (1934-5). We shall prove Gödel’s completeness theorem in
Chapter 2 for propositional logic and in Chapter 4 for predicate logic.

Another example: the argument above about Socrates which has as its underlying
pattern of reasoning

∀x[P(x)→ M(x)]
P(c)

M(c)

can be built up from the elementary steps in the system of Natural Deduction as
follows:

The schema above is called a logical deduction (in the system of Natural Deduction)
of M(c) from the premisses ∀x[P(x)→M(x)] and P(c). We say that M(c) is logically
deducible from ∀x[P(x)→ M(x)] and P(c), since such a logical deduction exists.

In Chapter 4 a characterization of validity is given both in semantic and in syntac-
tic terms, and it is shown that these two characterizations are equivalent, which gives
us confidence that we have given an adequate definition of the notion in question.

Exercise 1.6. Check whether the following argument is correct by translating the
propositions in the argument into the language of predicate logic and by determining

premiss
P1 ∧P2

P2 P2 → P3

premiss

P3

P3 ∨¬P1

premiss
P(c) P(c)→ M(c)

M(c)

∀x[P(x)→ M(x)]
premiss
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whether the corresponding pattern of reasoning is valid.
All gnomes have a beard or a conical cap.
Therefore: all gnomes have a beard or all gnomes have a conical cap.

Exercise 1.7. Check whether the following argument is correct.
All gnomes with a beard have a conical cap.
All gnomes have a beard.
Therefore: all gnomes have a conical cap.

Exercise 1.8. Check whether the following argument is correct.
There is a gnome with a beard.
There is a gnome with a conical cap.
Therefore: there is a gnome with a beard and a conical cap.

Exercise 1.9. Check whether the following argument is correct.
There is at least one gnome such that he has no beard or he has a conical cap.
There is at least one gnome who has a beard.
Therefore: there is at least one gnome who has a conical cap.

1.5 Arithmetic; Gödel’s Incompleteness Theorem

In Chapter 2 we shall see that it is possible to fully capture the meaning of the logical
connectives in terms of certain logical axioms. For instance, the meaning of the
connective ∧ can be fully captured by the following logical axioms: A∧B→ A, A∧
B→ B and A→ (B→ A∧B). In other words, the propositional connectives can be
characterized by appropriate logical axioms. This is expressed by the completeness
theorem for propositional logic.

This result can be extended to predicate logic. In Chapter 4 we shall see that
the meaning of the quantifiers ∀ and ∃ may also be fully captured by certain logi-
cal axioms. For instance, the meaning of ∀ is fully captured by the logical axioms
∀x[A(x)]→ A(t), where t is either an individual variable or an individual constant,
and A(y)→∀x[A(x)], assuming there are no restrictions on the individual variable y.
Gödel’s completeness theorem for predicate logic (1930) expresses that the propo-
sitional connectives and the quantifiers can be characterized by appropriate logical
axioms and rules.

Now, if we add to the logical language symbols + and × to render addition and
multiplication of natural numbers, naturally the question arises whether we may
fully capture the meaning of these symbols in terms of certain arithmetical axioms,
like x+0= x and x+ sy = s(x+y), where sy denotes the successor of y. Amazingly,
Kurt Gödel [9] proved in 1931 that it is impossible to fully capture the meaning of
+ and × by arithmetical axioms. This is his famous Incompleteness theorem. This
result has far reaching philosophical consequences.

We shall present Gödel’s result and its philosophical implications in Chapter 5.
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1.6 Modal Logic

The language of propositional and predicate logic may be further extended with a
symbol � for modalities, like necessary, obligatory, knowing that, etc. Depending
on the precise meaning of the modality one may add several logical axioms for
these modalities. For instance, �A → A, in case � stands for ‘necessary’ or for
‘knowing that’. But for the modality ‘obligatory’ the axiom �A→ A seems to be
inappropriate: it is obligatory to stop for a red traffic light, but that does not imply
that one actually does so. Since these modalities are used in several philosophical
arguments, it is worthwhile to give a logical analysis of them.

By defining ♦A by ¬�¬A we get modalities like ‘possibly’: ¬A is not necessary,
in other words, A is possible.

In Chapter 6 we will adapt the notions of validity and deducibility to modal logic
and show that these two notions are again equivalent, just as in propositional and
predicate logic. However, the notion of validity is now more complicated, since it
is given in terms of possible worlds. �A (A is necessary, or knowing A) is true in
a given world means that A is true in all worlds imaginable from that given world.
And ♦A (A is possible) is true in a given world means that A is true in at least one
world imaginable from that given world.

1.7 Philosophy of Language

In Chapter 7 we shall see that several problems in the philosophy of language are
better understood or may be clarified by using the notion of possible world.

For instance, the de re - de dicto distinction in a sentence like ‘it is possible that a
republican will win’ may be made clear by giving two different logical translations
of this sentence:
de re: ∃x[R(x)∧♦W (x)]: there is an individual x in the actual world w such that x
is a Republican in world w and such that there is a world w′ (imaginable from the
actual world w) in which x wins.
de dicto: ♦∃x[R(x)∧W (x)]: there is a world w′ (imaginable from the actual world
w) in which an individual x exists who is a Republican in that world w′ and who
wins in that world w′.
In the de re version the modality ♦ is within the scope of the existential quantifier
∃, while in the de dicto version the existential quantifier ∃ is within the scope of the
modality ♦.

Another example is the difference between a name like ‘Aristotle’ and the cor-
responding description, like ‘the most well known student of Plato’. Traditionally
these two expressions were identified. But that causes the problem that a sentence
like ‘Aristotle is the most well known student of Plato’ would be nothing more than a
logical truth, or, using Kant’s terminology, an analytic statement. Kripke proposed to
solve this problem by conceiving proper names like ‘Aristotle’ as a rigid designator,
i.e., as referring in all possible worlds to the same object. While the name ‘Aristotle’
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refers in all possible worlds to the same object, also in the world in which he actu-
ally was a carpenter instead of a philosopher, the description ‘the most well known
student of Plato’ may refer to different objects in different worlds. The description
‘the most well known student of Plato’ may help us to pick the proper reference of
the name ‘Aristotle’, but it should not be identified with the name ‘Aristotle’.

1.8 Intuitionism and Intuitionistic Logic

A classical mathematician studies the properties of mathematical objects like an
astronomer, who studies the properties of celestial bodies. From a classical point
of view, mathematical objects are like celestial bodies in the sense that they exist
independently of us; they are created by God.

An intuitionist creates the mathematical objects himself. According to Brouwer’s
intuitionism, mathematical objects, like 5, 7, 12 and +, are mental constructions. A
proposition about mathematical objects (like 5+ 7 = 12) is true if one has a proof-
construction that establishes it. Such a proof is again a mental construction.

Mathematics is created by a free action, independent of experience [L.E.J. Brouwer, Col-
lected Works, Vol. 1, p. 97].

Since, intuitionistically, the truth of a mathematical proposition is established by
a proof – which is a particular kind of mental construction –, the meaning of the
logical connectives has to be explained in terms of proof-constructions.
A proof of A∧B is anything that is a proof of A and of B.
A proof of A∨B is, in fact, a proof either of A or of B, or yields an effective means,
at least in principle, for obtaining a proof of one or other disjunct.
A proof of A→ B is a construction of which we can recognize that, applied to any
proof of A, it yields a proof of B. Such a proof is therefore an operation carrying
proofs into proofs.
Intuitionists consider ¬A as an abbreviation for A→ ⊥, postulating that nothing is
a proof of ⊥ (falsity).

It follows that from an intuitionistic point of view it is reckless to assume A∨¬A.
The validity of A∨¬A means, intuitionistically, that we have a method adequate
in principle to solve any mathematical problem A. However, consider Goldbach’s
conjecture, G, which states that each even number is the sum of two odd primes:
2 = 1+ 1, 4 = 3+ 1, 6 = 5+ 1, 8 = 7+ 1, 10 = 7+ 3, 12 = 7+ 5, 14 = 7+ 7,
16= 13+3, 18= 13+5, . . .. One can check only finitely many individual instances,
while Goldbach’s Conjecture is a statement about infinitely many (even) natural
numbers. So far neither Goldbach’s Conjecture, G, nor its negation, ¬G, has been
proved. An intuitionist is therefore not in a position to affirm G∨¬G. A person who
claims that he or she can provide a proof either of G or of ¬G is called reckless.

Notice that from a classical point of view A∨¬A is valid, since A is a statement
about mathematical objects created independently of us, for which either A or ¬A
holds, although we may not know which one.
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In Chapter 8 we will elaborate on Brouwer’s intuitionism and see that his differ-
ent philosophical point of view about the nature of mathematical objects results in a
logic which is much more fine-grained, but also more difficult, than classical logic.

1.9 Applications

1.9.1 Programming in Logic: Prolog

Since Gödel’s completeness theorem expresses that every valid pattern of reasoning
can be built up from a certain small collection of logical rules in a logical proof-
system (such as the system of Natural Deduction), the idea to equip a computer
with these logical rules is quite natural. If we do so, the computer will be able
to simulate reasoning and hence disposes of Artificial Intelligence. By adding to
such a computer-program a number of data A1, . . . ,An, concerning a small and well-
described subject, the so-called knowledge base, the computer is able to draw con-
clusions from those data. If A1, . . . ,An represent someone’s expertise, one speaks
of an expert system. And if the knowledge base consists of Euclid’s axioms for ge-
ometry or Peano’s axioms for number theory or of axioms for some other part of
mathematics, one speaks of automated theorem proving.

It was only in the early 1970’s that the idea emerged to use the formal language
of logic as a programming language. An example is PROLOG, which stands for
PROgramming in LOGic. A logic program is simply a set of formulas (of a par-
ticular form) in the language of predicate logic. The formulas below constitute a
logic program for kinship relations. The objects are people and there are two binary
predicates ‘parent of’ (p), and ‘grandparent of’ (g).

• A1: p(art, bob).
• A2: p(art, bud).
• A3: p(bob, cap).
• A4: p(bud, coe).
• A5: g(x,z) :- p(x,y), p(y,z).

’art’, ’bob’, ’bud’, ’cap’ and ’coe’ are individual constants and A5 stands for
p(x,y)∧ p(y,z)→ g(x,z). Now if we ask the question

?- g(art, cap)

the answer will be ‘yes’, corresponding with the fact that g(art, cap) can be logically
deduced from the premisses or data A1, . . . ,A5.

But if we ask the question

?- g(art, amy)

the answer will be ‘no’, corresponding with the fact that g(art, amy) cannot be logi-
cally deduced from A1, . . . ,A5. Note that this does not mean that ¬g(art, amy) logi-
cally follows from A1, . . . ,A5.
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And if we ask the question

?- g(art, X)

the answer will be X = cap, X = coe.
Once we have observed that data can be translated into formulas in the formal

language of logic and that queries concerning the objects in the data – again trans-
lated into formulas – can be answered with ’yes’ or ’no’, depending on whether
the putative conclusion can or cannot be logically deduced from the given data, it
becomes clear that there is an interesting connection between logic and databases.

In Chapter 9 we shall study more closely how the language of logic may be used
as a programming language in the context of artificial intelligence.

1.9.2 Relational Databases

The theory of finite sets is the basis for relational databases, which we shall present
in Chapter 9. In fact, the query language SQL formulates questions to the database in
terms of sets. To illustrate, suppose we have a table P with patients containing their
number (nmb), name (nm), address (addr), residence (res) and gender (gen).

nmb nm addr res gen

t t(nmb) t(nm) t(addr) t(res) t(gen)

Each row in the table, called a tuple t, represents one patient. Mathematically, a
tuple t assigns to every attibute nmb, nm, addr, res, gen a value t(nmb), t(nm),
t(addr), t(res), t(gen) in a predefined domain. Then

{ t(nm) | t ∈ P | t(res) = ‘Princeton’ ∧ t(gen) = ‘male’ }
is the set of all names of patients in table P who live in Princeton and are male.

This set is generated by the Structured Query Language SQL as follows:
SELECT t.nm
FROM P t
WHERE t.res = ‘Princeton’
AND t.gen = ‘male’

1.9.3 Social Choice Theory

In social choice theory one studies how individual preferences or evaluations should
be aggregated to a common (group or social) preference or evaluation respectively.
That this is problematic may be demonstrated by the following simple example.
Suppose there are nine voters (or judges) who have the following preferences over
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three candidates or alternatives a, b and c:
4: a b c
3: b c a
2: c b a

That is, the first

four voters prefer a to b, b to c and also a to c; similarly for the other voters.
If we apply Plurality Rule (PR) or ‘most votes count’, only the most preferred

candidate is taken into account. So, a has four first votes, b three and c only two.
Consequently, the common or social ranking under PR will be: a b c.

If we apply Majority Rule (MR) or pairwise comparison, we see that 3 + 2 = 5
voters, hence a majority, prefer b and c to a; and that 4 + 3 = 7 voters prefer b to c.
So, under Majority Rule the common or social ranking will be: b c a.

Many other voting rules exist, which will all lead to different outcomes. But
already at this stage we see that the outcome depends on the aggregation rule, rather
than on the preferences of the voters.

Another problem is that all familiar voting rules may yield an outcome which
is counter-intuitive. For instance, Plurality Rule makes a the winner, while a for a
majority of the voters is the least preferred candidate. And Majority Rule in some
cases does not even yield a winner, for instance, when there are three voters with the
following preferences 1: a b c; 1: b c a and 1: c a b. So the question arises whether
there exists a voting rule that has only nice properties. This question was answered
negatively by K. Arrow in 1951: there cannot exist a voting rule, which takes indi-
vidual preferences as input, that satisfies certain desirable properties among which
being non-dictatorial. This impossibility theorem has puzzled the social choice com-
munity, consisting of political scientists, economists, mathematicians and philoso-
phers, ever since.

However, in 2010 Balinski and Laraki pointed out that the framework of Arrow,
in which voters are supposed to give a preference ordering, is ill conceived. Voters
should be asked to give evaluations of the candidates, for instance in terms of ‘ex-
cellent’, ‘good’, ‘acceptable’, ‘poor’ and ‘reject’. Notice that evaluations are much
more informative than preference orderings. Next, Balinksi and Laraki present a
voting rule, called Majority Judgment (MJ), which takes evaluations of the candi-
dates by the voters as input and yields a social ranking of the candidates as output.
This Majority Judgment does satisfy the desired properties.

In Section 9.3 we shall discuss Plurality Rule, Majority Rule and the Borda Rule
and show that they all violate one or more of the desired properties. Also a version
of Arrow’s theorem will be proved. Next we present Balinski and Laraki’s Majority
Judgment and show that it does satisfy the desired properties.

1.10 Fallacies and Unfair Discussion Methods

For many discussions and meetings it holds that they are led perfectly from a formal,
procedural and technical point of view, but that the quality of the in-depth discussion
is poor. The cause of poor thinking should be sought in the weakness of human
nature, rather than in the restrictions of our intelligence. Among the weaknesses of
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human nature are ambitions, emotions, prejudices and laziness of thinking. The goal
of a discussion is not to be right or to overplay or mislead the other, but to discover
the truth or to come to an agreement by common and orderly thinking.

Ideally, an argument consists of carefully specified premisses or assumptions and
a conclusion which logically follows from the premisses. Logical correctness of an
argument means that if the premisses are true, then the conclusion must also be true.
In Section 1.2 we have already seen that logical correctness of an argument does
not mean that the premisses are true, neither that the conclusion is true. We may
have a logically correct argument with a false conclusion when at least one of the
premisses is false. And a logically incorrect argument may have a conclusion that is
true, when its truth is not based on the given premisses but on other grounds. One
should also realize that from contradicting premisses one may conclude anything
one wants: ex falso sequitur quod libet; a principle popular among many politicians.

In real life premisses and even the conclusion may be tacit, in which case one
speaks of enthymemes. Premisses may not be explicitly stated for practical reasons
or because the speaker is not aware of them himself, but also to mislead the audience.

One may distinguish formal and informal fallacies. A formal fallacy is an incor-
rect argument which may be represented in a formal logical system such as proposi-
tional logic. A simple example is: A implies B (A→B) and B; hence A. For instance:
if the weather is nice, then John will come. John comes; hence the weather is nice.
That this argument is incorrect may become clear from the following example which
has exactly the same structure: if Bill Gates owns all the gold in Fort Knox, then he
is rich. Bill Gates is rich; hence Bill Gates owns all the gold in Fort Knox. However,
a doctor frequently has to reason this way: a patient comes with a certain complaint
B that may have several causes A; A→ B and B, so the doctor will start with treating
the most likely cause A.

An argument is an informal fallacy when the putative conclusion is not supported
by the content of the premisses, but is based on the ambitions, emotions, prejudices
and/or laziness of thinking of the people involved. In real life, ambitions, emotions,
prejudices and laziness of thinking play a major role in argumentation, debating
and discussions. A speaker may be too proud to admit that he is wrong, he may
be irritated by his opponent and consequently say more than he can justify, he may
have prejudices which he does not want to give up and/or he may be too lazy to
study an issue carefully and for that reason oversimplify it.

So, in real life discussions and debating it is important that one is aware of all
kinds of tricks which are used, consciously or unconsciously, by one’s opponent to
suggest that you are wrong, while in fact your opponent is wrong. In Chapter 10 we
discuss a dozen different fallacies and a dozen unfair discussion methods.
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1.11 Solutions

Solution 1.1. The pattern of reasoning is the following one:

(1) ¬O→ D
(2) ¬D
(3) P→¬O

¬P
This pattern is valid; hence the argument is correct. Suppose (1), (2) and (3) and P.
Then by (3) ¬O. Then by (1) D, contradicting (2). Therefore, if (1), (2) and (3), then
¬P. Note that both the conclusion and the second premiss in this argument are false.

Solution 1.2. The pattern of reasoning is the following one:
(1) N → J
(2) ¬N

¬J
This pattern is invalid and hence the argument is not correct. It may well be that
John comes, while the weather is not nice. In that case J is true and hence also the
premisses (1) and (2) are true, while the conclusion ¬J is false.
Another counterexample: take for N the proposition ‘Bill Gates owns all the gold
in Fort Knox’ and for J the proposition ‘Bill Gates is rich’. Then all premisses are
true, while the conclusion is false.

Solution 1.3. The pattern of reasoning is the following one:
(1) N → J
(2) J

N
This pattern is equivalent to the former one, since ¬N →¬J is equivalent to J→ N,
and hence invalid.

Solution 1.4. The pattern of reasoning is the following one:
(1) J → N
(2) J

N
This pattern is valid and hence the argument is correct. The first premiss may be
expressed by ¬N →¬J or equivalently by J → N. If both premisses (1) and (2) are
true, then the conclusion must be true too.

Solution 1.5. The pattern of reasoning is the following one:

(1) ¬(P∧¬S)
(2) ¬P∨¬D
(3) D

¬S
This pattern is not valid and hence the argument is incorrect. If P is false and S and
D are true, then the premisses are all true, while the conclusion is false.

Solution 1.6. The pattern of reasoning is the following one:
∀x[B(x)∨C(x)]

∀x[B(x)]∨∀x[C(x)]
using B(x) for ‘x has a beard’ and C(x) for ‘x has a conical cap’. This pattern is not
valid; hence the argument is not correct: taking natural numbers as domain, inter-
preting B(x) as ‘x is even’ and C(x) as ‘x is odd’ yields a true premiss and a false
conclusion.
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Solution 1.7. The pattern of reasoning is the following one:
∀x[B(x)→C(x)]
∀x[B(x)]

∀x[C(x)]
This pattern is valid; hence the argument is correct: if all objects with the property
B also have the property C, and all objects have the property B, then all objects must
have the property C, no matter what the objects or what the properties B and C are.

Solution 1.8. The pattern of reasoning is the following one:
∃x[B(x)]
∃x[C(x)]
∃x[B(x)∧C(x)]

This pattern is not valid and hence the argument is not correct: taking natural num-
bers as domain, interpreting B(x) as ‘x is even’ and C(x) as ‘x is odd’, yields true
premisses and a false conclusion.

Solution 1.9. The pattern of reasoning is the following one:
∃x[¬B(x)∨C(x)]
∃x[B(x)]

∃x[C(x)]
This pattern is not valid and hence the argument is not correct: taking natural num-
bers as domain, interpreting B(x) as ‘x is even’ and C(x) as ‘x is negative’, yields
true premisses and a false conclusion.
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Chapter 2
Propositional Logic

H.C.M. (Harrie) de Swart

Abstract In this chapter we analyse reasoning patterns of which the validity only
depends on the meaning of the propositional connectives ‘if . . ., then . . .’, ‘and’,
‘or’ and ‘not’. By giving a precise description of the meaning of these propositional
connectives one is able to give a precise definition of the notion of logical or valid
consequence. Two such definitions are given: a semantic one, in terms of truth val-
ues and hence in terms of the meaning of the formulas involved, and a syntactic
one in terms of logical axioms and rules of which only the form is important. The
semantic and the syntactic definition of logical consequence turn out be equivalent,
giving us confidence that we gave a proper characterization of the intuitive notion of
logical consequence. We prove or disprove all kinds of statements about the notion
of logical or valid consequence, which is useful in order to get a good grasp of this
notion. The last section treats a number of paradoxes which have been important for
the progress in science and philosophy; it also contains a number of historical and
philosophical remarks.

2.1 Linguistic Considerations

Logic is such a rich, broad and varied discipline that it is necessary to approach it
by picking a small and manageable portion to treat first, after which the treatment
can be extended to include more. In this Chapter we restrict our study of reasoning
to what is called propositional logic or the propositional calculus.

A proposition is the meaning of a declarative sentence, like ‘John is ill’, ‘Coby goes
to school’, etc., where a sentence has been obtained from letters or words from a
given alphabet according to certain grammatical rules. So, a sentence is just a com-
bination of letters or words, while the corresponding proposition is the meaning
of the sentence in question. One says that a sentence expresses a proposition. This
explains the term ‘sentential calculus’ instead of ‘propositional calculus’. A propo-
sition is either true or false, although we do not have to know which of the two.
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Besides declarative sentences one can distinguish interrogatory sentences which
ask questions and imperative sentences which express commands. These latter sen-
tences do not express propositions: it does not make sense to ask whether they ex-
press something true or something false. Note that different declarative sentences
may express the same proposition. Thus the same proposition is expressed by ‘John
reads the book’ and ‘the book is read by John’. 32 + 42 = 52 and 52 = 32 + 42 also
express the same proposition (which happens to be true); but 5+ 7 = 12 expresses
a different proposition (also true).

By means of connectives one may construct more complex propositions from
more elementary ones. For instance, ‘John is ill and Coby goes to school’ has been
composed from the two more elementary propositions by means of the connective
‘and’. The most important connectives or propositional operations are: ‘if and only
if (iff)’, ‘if . . ., then . . .’, ‘and’, ‘or’ and ‘not’. In propositional logic one uses the
symbols �, →, ∧, ∨ and ¬ for these connectives, respectively.

We distinguish atomic propositions, like ‘John is ill’ and ‘Coby goes to school’
on the one hand and composite propositions on the other hand. Atomic propositions
are those propositions which cannot be composed of yet more simple propositions
by means of propositional operations. If a proposition has been composed from
more elementary propositions by means of one or more propositional operations
we call it a composite proposition. Thus, ‘John is ill and Coby goes to school’ is a
composite proposition.

In propositional logic one uses letters P1,P2,P3, . . . to denote atomic propositions.
For instance, ‘John is ill’ may be translated by P1, while ‘Coby goes to school’ may
be translated by P2. The composite proposition ‘John is ill and Coby goes to school’
is then translated by P1∧P2.

In propositional logic one studies the (in)validity of reasoning patterns of which
the (in)validity is completely determined by the meaning of the connectives ‘if and
only if’ (�), ‘if . . ., then . . .’ (→), ‘and’ (∧), ‘or’ (∨) and ‘not’ (¬) between the
propositions in question. A simple example is the following reasoning pattern, called
Modus Ponens (MP):

It snows (1) P1

If it snows, then it is cold. (2) P1 → P2

Therefore: it is cold. (3) P2

The pattern to the above right is valid, i.e., no matter what propositions the formulas
P1,P2 stand for, if the resulting two premisses are both true, then also the conclusion
must be true; in particular, if (1) and (2) are true, then (3) must be true too. Notice
that the validity of this pattern only depends on the meaning of the connective →
and not on the meaning of the formulas P1,P2. We call the concrete argument about
snow and being cold correct, because the underlying reasoning pattern is valid.

But, for instance, the validity of the reasoning pattern

For all x, if x is a person, then x is mortal ∀x[P(x)→M(x)]
Socrates is a person P(c)
Therefore: Socrates is mortal M(c)



2.1 Linguistic Considerations 23

not only depends on the meaning of the connective→, but also on the meaning of the
universal quantifier ∀ (for all). Notice that P1,P2 above stand for propositions, while
P(x),M(x) stand for the predicates ‘x is a person’ and ‘x is mortal’ respectively. In
predicate logic, to be treated in Chapter 4, we study reasoning patterns of which the
validity also depends on the meaning of the quantifiers ∀ (for all) and ∃ (for at least
one).

The study of propositional logic was initiated by the Stoics (see Subsection
2.10.2), some 300 years before Aristotle developed his theory of the syllogisms
(see Subsection 4.7.4).

Let us start by considering some examples of propositions about numbers, some
of which are true and some of which are false. We give their translation into the
language of propositional logic, and their translation into the language of predicate
logic.

Proposition prop. formula pred. formula
1. All numbers are positive (≥ 0) P1 ∀x[P(x)]
2. All numbers are negative (≤ 0) P2 ∀x[N(x)]
3. All numbers are positive or negative P3 ∀x[P(x)∨N(x)]

Here ∀ is the universal quantifier expressing ‘for all’, P(x) stands for the predicate
‘x is positive’, N(x) for the predicate ‘x is negative’ and ∨ stands for the connective
‘or’. It is important to notice that the propositional translation of sentence 3 cannot
be rendered by P1∨P2, because this formula expresses the proposition ‘all numbers
are positive or all numbers are negative’ which happens to be false, while sentence 3
is true. Also notice that in P1∨P2 the connective∨ stands between two propositions,
while in ∀x[P(x)∨N(x)] the connective ∨ stands between two predicates.

Proposition prop. formula pred. formula
4. There is at least one even number P4 ∃x[E(x)]
5. There is at least one odd number P5 ∃x[O(x)]
6. There is a number that is both even and odd P6 ∃x[E(x)∧O(x)]

Here ∃ is the existential quantifier expressing ‘there is at least one’, E(x) stands for
the predicate ‘x is even’, O(x) for the predicate ‘x is odd’ and ∧ stands for the con-
nective ‘and’. It is important to notice that the propositional translation of sentence 6
cannot be rendered by P4∧P5, because this formula expresses the proposition ‘there
is at least one even number and there is at least one odd number’ which happens
to be true, while sentence 6 is false. Also notice that in P4 ∧P5 the connective ∧
stands between two propositions, while in ∃x[E(x)∧O(x)] the connective ∧ stands
between two predicates.

Proposition prop. formula pred. formula
7. There is a number x such that x > 0 P7 ∃x[x > 0]
8. There is a number x such that not x > 0 P8 ∃x[¬(x > 0)]

x > 0 is not a proposition, but a predicate, while 5 > 0, for instance, is a proposition.
Similarly, ‘not x > 0’ is not a proposition, but the negation of a predicate, while ‘not
5 > 0’ is a proposition. It is important to notice that proposition 8 is not the negation
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of proposition 7; the negation of 7 is ‘there is no number x such that x > 0’, ¬∃x[x >
0], which is equivalent to ‘for all numbers x, not x > 0’. This latter proposition is
false, while proposition 8 is true. In the negation of sentence 7, the negation stands
in front of the existential quantifier, while in sentence 8 the negation stands in front
of the predicate x > 0.

Proposition prop. formula pred. formula
9. All persons have a mother P9 ∀x∃y[M(x,y)]
10. There is one mother of all persons P10 ∃y∀x[M(x,y)]

∀x∃y[M(x,y)] says: for every person x there is a person y such that x stands in the
child-mother relation M(x,y) with y. But by changing the order of the quantifiers
one obtains ∃y∀x[M(x,y)] which says: there is at least one person y such that for all
persons x, x stands in the child-mother relation M(x,y) with y. Notice that sentence
9 is true, while sentence 10 is false.

Proposition prop. formula pred. formula
11. For every number there is a larger one P11 ∀x∃y[x < y]
12. There is a largest number P12 ∃y∀x[x < y]

∀x∃y[x< y] says: for every number x there is a number y such that x is smaller than y.
But changing the order of the quantifiers one obtains ∃y∀x[x < y] which says: there
is a number y such that for all numbers x, x is smaller than y. Notice that sentence
11 is true, while sentence 12 is false. So, the order of the quantifiers ∀ and ∃ does
matter!

Let us have a closer look at proposition 9: ‘all persons have a mother’, or equiva-
lently:

For every person x there is some person y such that y is the mother of x.

————————
I

—————————————————————
II

————————————————————————————–
III

I, ‘y is the mother of x’, does not express a proposition, but a binary predicate or
relation; neither does ‘Mary is the mother of x’, which expresses a unary predicate.
However, ‘Mary is the mother of John’ does express a proposition.
II, ‘there is some person y such that y is the mother of x’, does not express a proposi-
tion, but a unary predicate, which may become more clear if we formulate II as fol-
lows: someone is the mother of x or, equivalently, x has a mother. However, ‘some-
one is the mother of John’ does express a proposition.
III does express the proposition ‘every person has a mother’. Note that all variables
x,y occurring in III also occur in the context ‘for every’ or ‘there is’.

In propositional logic one ignores the internal subject-predicate structure of the
atomic propositions. The atomic propositions can have the form ‘for all x, x has
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a certain property P’, like the propositions 1 up to 3 inclusive, or the form ‘there is
at least one x such that x has the property P’, like the propositions 4 up to 8 inclu-
sive, or the form ‘for every x there is a y such that x is in relation R(x,y) to y’, like
proposition 9 and 11, and so on. In the propositional calculus we restrict ourselves
to arguments like Modus Ponens and the arguments a), b) and c) in Chapter 1, the
correctness of which only depends on how the different propositions are composed
of more elementary ones by means of operations like ‘iff’, ‘if . . ., then . . .’, ‘and’,
‘or’ and ‘not’. In the propositional calculus the internal subject-predicate structure
of the elementary propositions is not taken into consideration. However, the argu-
ment above about Socrates makes it clear that the correctness of an argument may
also depend on this subject-predicate structure. Therefore, the propositional calculus
has to be extended to the predicate calculus, which is treated in Chapter 4.

Below we list the symbols we are using for the propositional operations, mentioning
their name and alternative symbols which may be used in the literature.

name symbol alternatives meaning
equivalence � ↔, ∼, ≡ (is) equivalent (to); if and only if; iff
(material) implication → ⊃ if . . ., then . . .; implies
conjunction ∧ & and
disjunction ∨ or; and/or
negation ¬ - not

Instead of the atomic propositions considered above, being about numbers, and the
propositions that can be built from them by the propositional connectives, we can
of course consider different atomic propositions, for instance of geometry, physics
or of some other sharply circumscribed part of natural language, together with the
composite propositions that can be built from them. So, in order to retain flexibility
for the applications, we shall simply assume, throughout this chapter, that we are
dealing with an object language in which there is a class of (declarative) sentences
consisting of certain building blocks

P1, P2, P3, . . .

called atomic formulas, from which composite formulas can be built by means of
the propositional connectives. By a formula we mean either an atomic or a compos-
ite formula. So, throughout this chapter our object language will be the following
symbolic language:

symbols names
Alphabet: P1, P2, P3, . . . atomic formulas or propositional variables

�, →, ∧, ∨, ¬ connectives
( , ) parentheses

Definition 2.1 (Formulas).

1. Each atomic formula is a formula. In other words, if P is an atomic formula, then
P is a formula.
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2. If each of A and B is a given formula (i.e., either an atomic formula or a composite
formula already constructed), then (A � B), (A→ B), (A∧B) and (A∨B) are
(composite) formulas.

3. If A is a given formula, then (¬A) is a (composite) formula.

This language is the formal language of propositional logic. It consists of the for-
mulas built from the given alphabet according to Definition 2.1.

P1, P2, P3, . . . are symbols to be interpreted as atomic propositions from arith-
metic, geometry, physics, any other science or daily life. The first four connectives
are binary connectives, the last one is unary. The connectives are symbols whose
meanings are the respective propositional operations; in Section 2.2 we will fix and
stylize these meanings by truth tables. The parentheses are punctuation marks. In
A→ B we call A the antecedent and B the succedent.

Example 2.1. Here are some examples of formulas:

P1, P2, P3, P4

(¬P2), (¬P3)
(P1∨ (¬P2)), ((¬P3)→ P4)

((P1∨ (¬P2))∧ ((¬P3)→ P4)).

Notice that the number of left parentheses must be equal to the number of right
parentheses.

if, only if and iff:
‘B if A’ is translated by A→ B, which may also be read as ‘if A, then B’.
‘B only if A’ is translated by B→ A, and ‘B if and only if (iff) A’ is translated by
(A→ B)∧ (B→ A), or, equivalently, by A � B.

Convention: When we want to state something about arbitrary natural number, the
letters n, m are used to stand for any of the natural numbers 0, 1, 2, 3, . . .. For
instance, when we state that for all natural numbers n, m: n+m = m+ n. Similarly,
the letters P, Q and R are used to stand for any atomic formulas P1, P2, P3, . . . and the
letters A, B, C, A1, A2, . . ., B1, B2, . . ., C1, C2, . . . are used to stand for any formulas,
not necessarily atomic. For instance, the letters A and B may stand for any of the
formulas in Example 2.1. Distinct such letters need not represent distinct formulas,
in contrast to P1, P2, P3, . . . which are distinct atomic formulas.

Parentheses in formulas are essential: they indicate which parts belong together.
Leaving them out may cause ambiguity. For instance, A∧B→C might mean:

• (A∧B)→C, which is an implicational formula with A∧B as antecedent, and
• A∧ (B→C), which is a conjunction of the formulas A and B→C.

‘If John wins the lottery and is healthy, then he will go to the Bahamas’ is a proposi-
tion of the first form, while ‘John wins the lottery and if he is healthy, then he will go
to the Bahamas’ is a proposition of the second form. Only in the second proposition
it is stated that John wins the lottery.
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Convention We can minimize the need for parentheses by agreeing that we leave
out the most outer parentheses in a formula and that in

�, →, ∧, ∨, ¬
any connective has a higher rank than any connective to the right of it and a lower
rank than any connective to the left of it.

According to this convention, A∧B→C should be read as (A∧B)→C, because
→ has a higher rank than ∧, and not as A∧ (B→C), which has a different meaning.
The formula ¬A∨B should be read as (¬A)∨B, because by convention ∨ has a
higher rank than ¬, and not as ¬(A∨B), which means quite something else. And
C � A∧B→C should be read as C � ((A∧B)→C).

It is interesting to notice that the build-up of formulas is very similar to the build-up
of natural numbers. Formulas are generated by starting with atomic formulas P1, P2,
P3, . . . and successively passing from one or two formulas already generated before
to another formula by means of the connectives. Natural numbers are generated by
starting with one initial object 0 and successively passing from a natural number n
already generated before to another natural number n+ 1 or n′ (the successor of n).

Since natural numbers are built up from 0 by repeated application of the succes-
sor operation, the theorem of mathematical induction follows immediately from the
definition of natural numbers:

Theorem 2.1 (Mathematical induction). Let Φ be a property of natural numbers
such that

1. (induction basis:) 0 has property Φ , and
2. property Φ is preserved when going from a natural number n to its successor n′,

i.e., for all natural numbers n, if n has property Φ (induction hypothesis), then
also n′ has property Φ .

Then all natural numbers have property Φ .

Using mathematical induction, one can prove, for instance, that for all natural num-
bers n, 1 + 2 + . . . + n = 1

2 n(n+ 1). See Exercise 2.5.
The induction principle for formulas is similar to mathematical induction for

natural numbers. Since (propositional) formulas are built up from atomic formulas
P1, P2, P3, . . . by successive applications of connectives to formulas already gener-
ated before, the following theorem, called the induction principle (for propositional
formulas), follows immediately from the definition of formulas.

Theorem 2.2 (Induction principle). Let Φ be a property of formulas, satisfying

1. (induction basis:) every atomic formula has property Φ and
2. property Φ is preserved in building more complex formulas by means of the

connectives, i.e., if A and B have property Φ (induction hypothesis), then (A �
B), (A→ B), (A∧B). (A∨B) and (¬A) also have property Φ .

Then every formula (of the propositional calculus) has property Φ .
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Using Theorem 2.2 one can prove, for instance, that every formula contains as many
left parentheses as right parentheses (see Exercise 2.6.) Another application is The-
orem 2.18 which says that every formula can be written in normal form.

Notice that we have introduced a logical (propositional) language such that English
sentences may be translated into this logical language and conversely one may trans-
late the logical formulas into the corresponding English sentences. What holds for
English sentences of course also holds for German, French, Spanish and all other
sentences. With this in mind one might build for each natural language a machine
that translates the sentences of the language in question into logical formulas and
back. By combining these machines with logic as the intermediate language, one
obtains an automatic translation of, for instance, English to, for instance, German:
automatically translate the English sentences into logical formulas and next auto-
matically translate the resulting logical formulas into German sentences. This was
roughly the Rosetta translation project of the European Union.

Exercise 2.1. Let P1 stand for ‘John works hard’,
P2 for ‘John is going to school’, and
P3 for ‘John is wise’.

Translate the following sentences into the language of propositional logic, using the
least possible number of parentheses.

i) If John works hard and is going to school, then John is not wise.
ii) John works hard and if John is going to school, then he is not wise.

iii) John works hard, or if John is going to school, then he is wise.
iv) If John is going to school or works hard, then John is wise.
v) If John works hard, then John is not wise, at least if he is going to school.

Exercise 2.2. Translate the following formulas into English sentences, reading P1,
P2 and P3 as indicated in exercise 2.1.

i) (P1 → P2)→¬P3 iv) ¬P2∧P3

ii) ¬P1∨P3 v) ¬(P2∧P3)
iii) ¬(P1∨P3)

Exercise 2.3. Translate the following propositions into propositional formulas and
into predicate formulas:
1. Every gnome has a beard.
2. All gnomes have no beard.
3. Not every gnome has a beard.

Exercise 2.4. Which of the following expressions are formulas (of the language of
propositional calculus)? P1, P, ¬P8, ¬Q, P1 ∧¬P8, P∧¬Q, A, B, A∧¬B,
(P1∧P2)→¬P3, (P1∧P2)→Q, (P1∧P2)→ B, A∧B→C.

Exercise 2.5. Use mathematical induction (Theorem 2.1) to prove that for all natural
numbers n, 1+ 2+ . . .+ n = 1

2 n(n+ 1).

Exercise 2.6. Use the induction principle (Theorem 2.2) to show that every formula
of propositional logic contains as many left parentheses ‘(’ as right parentheses ‘)’.
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2.2 Semantics; Truth Tables

In the first section of this chapter a logical (propositional) language was introduced
in which we can translate the premisses and the conclusion of an argument, result-
ing in a reasoning pattern. We have indicated the meaning of the atomic formulas:
atomic propositions which are either true or false. And we have indicated the mean-
ing of the propositional connectives �,→, ∧, ∨, and ¬: ‘if and only if’, ‘if . . ., then
. . .’, ‘and’, ‘or’, and ‘not’, respectively.

In this section the meaning of the atomic formulas and the propositional connec-
tives is made more precise, where we restrict ourselves (in this chapter) to classical
logic. Owing in part to different analyses of implication, the heart of logic, there
are different systems of logic: classical logic, intuitionistic logic, relevance logic
and so on. Although we will treat the latter logic systems in other chapters, in this
chapter we shall concern ourselves primarily with classical logic, because it is the
simplest and most commonly used system of logic. In classical logic we assume that
each proposition is either true, indicated by 1, or false indicated by 0. We do not,
however, suppose that one always knows whether a particular proposition is true or
false.

To start with, the atomic formulas P1, P2, P3, . . . stand for (or are interpreted as)
atomic propositions, such as ‘John is ill’, the ‘weather is nice’, etc. These atomic
propositions may be true, indicated by 1, or false, indicated by 0. We standardize
this in the so-called truth table of the atomic formulas P1, P2, P3, . . .. So, by definition
the truth table of an atomic formula P, where P stands for any of the atomic formulas
P1, P2, P3, . . ., is the following one:

P
1
0

For two atomic formulas P and Q there are four different assignments of the values
1 (true) and 0 (false), schematically rendered as follows:

P Q
1 1
1 0
0 1
0 0

In the first line the atomic formulas P and Q are both interpreted as true atomic
propositions, in the fourth line both as false atomic propositions.

For three atomic formulas P, Q and R there are eight different assignments of the
values 1 and 0. Notice that the number of different assignments of the values 1 and
0 to P, Q and R is two times as many as for the two atomic formulas P and Q, since
for each of the four different assignments of the values 1 and 0 to P and Q, one may
assign a 1 or a 0 to R: More generally:

Lemma 2.1. For n atomic formulas P1, . . . ,Pn, n = 1,2, . . ., there are 2n different
assignments of the values 1 and 0.
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If a formula A, for instance A = P1 → (P2 → P3), has been built from three atomic
formulas, there are 23 = 8 different assignments of the values 1 and 0 to the atomic
formulas P1, P2 and P3. But the formula A itself can have at most two different
values: 1 and 0.

Next a precise meaning has to be given to the propositional connectives. This is done
in the so-called truth tables for the propositional connectives, where it is specified
how the truth value of the composite formulas A � B, A→ B, A∧B, A∨B and ¬A
is completely determined by the truth values of the components A and B.

Two different formulas A and B can have at most four different values of truth
(1) and falsity (0), represented by the four rows in the table below. Each column in
the table below indicates how the truth or falsity of the composite formula heading
that column depends on the truth values of its immediate components A and B.

A B A � B A→ B A∧B A∨B A ¬A
1 1 1 1 1 1 1 0
1 0 0 0 0 1 0 1
0 1 0 1 0 1
0 0 1 1 0 0

Thus A � B is true exactly when A and B have the same truth value; hence, the
reading ‘equivalent’, i.e., ‘equal valued’, for �.
A→ B is false exactly when A is true and B is false.
A∧B is true exactly when A and B are both true.
A∨B is false exactly when both A and B are false.
And ¬A is true exactly when A is false.

The truth tables for the propositional connectives may also be presented in the fol-
lowing way:

� → ∧ ∨ ¬
1 1 1 � 1 = 1 1→ 1 = 1 1∧1 = 1 1∨1 = 1 1 ¬1 = 0
1 0 1 � 0 = 0 1→ 0 = 0 1∧0 = 0 1∨0 = 1 0 ¬0 = 1
0 1 0 � 1 = 0 0→ 1 = 1 0∧1 = 0 0∨1 = 1
0 0 0 � 0 = 1 0→ 0 = 1 0∧0 = 0 0∨0 = 0

The truth tables for �, ∧, ∨ and ¬ are self evident and give little or no reason
for discussion. However, the table for → was already disputed by the Stoics, see
Subsection 2.10.2. Nevertheless, it is the only one of the 16 possible columns of
length 4 consisting of 1’s and 0’s which is tenable; any other proposal can easily be
rejected as unreasonable.

First, let us notice that the propositional connectives�,→,∧, ∨ and¬ as defined
in the truth tables are truthfunctional, i.e., the truth values of A � B, A→ B, A∧B,
A∨B and ¬A are completely determined by the truth values of its components A
and B. This is not always the case for the connective ‘if . . ., then . . .’ from daily
language, as may be illustrated by the following two sentences:
1. If I would have jumped out of the window on the 10th floor, then I would have
been injured.
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2. If I would have jumped out of the window on the 10th floor, then I would have
changed into a bird.
Although in both sentences the components have the same truth value 0 (I have not
jumped out of the window, I have not been injured and I have not changed into a
bird) the first sentence is held to be true, while the second sentence is held to be
false. In other words, in sentence 1, the combination ‘if 0, then 0’ gives a 1, while
in sentence 2 the same combination ‘if 0, then 0’ gives a 0. So, the ‘if . . ., then . . .’
from daily language is not truthfunctional. Consequently, the → may be different
from the ‘if . . ., then . . .’ from daily language.

Neverthelesse, in daily life the ‘if . . ., then . . .’ is frequently, although not always,
used precisely as described in the truth table of →. We may illustrate this with the
following example:

For all integers n and m, if n = m, then n2 = m2.

Why is this proposition true? Simply because it is impossible that for some integers
n and m the proposition n = m has truth value 1, while the proposition n2 = m2 has
truth value 0. In other words, the combination 1 for n = m and 0 for n2 = m2 does
not occur. Only the combinations 1 - 1, 0 - 1 and 0 - 0 may occur and these give the
value 1, just as in the truth table of → :

From the table for → one sees that A → B is true (has value 1; is 1) if and only if A
is false (¬A is true) or B is true (has value 1); in other words, it is easy to check that
A → B and ¬A∨B have the same truth table. The truth table of A → B is also the
same as the one of ¬(A∧¬B), which corresponds with our intuitions:

A B ¬A ¬A∨B ¬B A∧¬B ¬(A∧¬B)
1 1 ¬1 = 0 0∨1 = 1 ¬1 = 0 1∧0 = 0 ¬0 = 1
1 0 ¬1 = 0 0∨0 = 0 ¬0 = 1 1∧1 = 1 ¬1 = 0
0 1 ¬0 = 1 1∨1 = 1 ¬1 = 0 0∧0 = 0 ¬0 = 1
0 0 ¬0 = 1 1∨0 = 1 ¬0 = 1 0∧1 = 0 ¬0 = 1

Warning One frequently is inclined to read A → B as: A and hence B. But this is
wrong! If I assert A → B, I do not assert A, neither B. Consider, for instance, the
sentence: if I win the lottery, then I will give you a Cadillac. This does not mean
that I win the lottery and hence will give you a Cadillac.

Why is A → B true (1) in case A is false (0)? Consider the following example.
Suppose I am determined never to play in a lottery; in this case I can truthfully
state: If I win the lottery, then I will give you a Cadillac. Assuming I never play in a
lottery, this is an empty statement, without content, and hence this statement cannot
be false.

n = m n2 = m2 if n = m, then n2 = m2

n = 2, m = 2 1 1 1
n = 2, m =−2 0 1 1
n = 2, m = 3 0 0 1
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And why is A→ B true (1) if B is true (1)? Suppose B stands for ‘I give you a
Cadillac’ and suppose this is true (1). Then the sentence ‘if I win the lottery, then I
will give you a Cadillac’ is certainly true (1) too.

The reader should also verify that the truth table for A � B is the same as the one of
(A→ B)∧ (B→ A), which also corresponds with our intuition:

A B A � B A→ B B→ A (A→ B)∧ (B→ A)
1 1 1 1 1 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 1 1 1

If one constructs the truth tables for A∧B and for B∧A, one will find that these two
truth tables are the same:

A B A∧B B∧A
1 1 1∧1 = 1 1∧1 = 1
1 0 1∧0 = 0 0∧1 = 0
0 1 0∧1 = 0 1∧0 = 0
0 0 0∧0 = 0 0∧0 = 0

However, a sentence like ‘Ann had a baby and got married’ will leave another im-
pression than the sentence ‘Ann got married and had a baby’. In this example the
order of the two atomic propositions suggests a temporal or causal succession. Also
in the sentence ‘John fell into the water and drowned’ one cannot easily change the
order of the atomic components. These examples show that the connectives from
daily language may have shades of meaning which are lost in their translation to the
corresponding propositional connectives. Notice that the expression ‘A but B’ has
nuances of meaning not possessed by ‘A and B’ and lost in the translation A∧B: ‘I
love you and I love your sister almost as well’ will leave another impression than ‘I
love you but I love your sister almost as well’.

In daily life, the connective ‘or’ is sometimes used in an exclusive way. For in-
stance, when the dinner menu says ‘tea or coffee included’, we do not expect to get
both. But in ‘books can be delivered at school or at church’ the connective ‘or’ is
used in an inclusive way: we may deliver books at school and/or at church. Notice
that the symbol ∨, coming from the Latin ‘vel’, corresponds with the inclusive ‘or’
and that A∨B has the same truth table as B∨A.

Analysing the use of the propositional operations ‘iff’, ‘if . . ., then . . .’, ‘and’,
‘or’, and ‘not’ in arithmetic, calculus and more generally in mathematics, it turns out
that these operations are used precisely as described in the truth tables of �,→,∧, ∨
and ¬ respectively. This should make it clear that our propositional connectives and
material implication A→ B in particular are useful and natural forms of expression.
In natural language the propositional operations are frequently, but not always, used
as described in the truth tables above.

No disagreement exists that ‘if A, then B’ is false if A is true and B is false.
Problems arise with the claim that ‘if A, then B’ is false only if A is true and B is
false, and is true in all other cases. ‘If these three chairs cost 6 dollars (A), then
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one chair costs 2 dollars (B)’ is true, because it is impossible that A is true and B
is false, due to the causal relation between A and B; in this example both A and B
are supposed to be false. Problems arise if there is no connection of ideas between A
and B, like in ‘if I would have jumped out of the window, then I would have changed
into a bird’, which is true under our table. A→B is called a conditional or a material
implication; the latter name because the truth of ‘if A, then B’ in general depends on
matters of empirical fact.

Example 2.2. Let us illustrate the repeated use of the truth tables by computing the
one for P1 → (P2 → P3) and the one for (P1∧P2)→ P3:

P1 P2 P3 P2 → P3 P1 → (P2 → P3) P1∧P2 (P1∧P2)→ P3

1 1 1 1→ 1 = 1 1→ 1 = 1 1∧1 = 1 1→ 1 = 1
1 1 0 1→ 0 = 0 1→ 0 = 0 1∧1 = 1 1→ 0 = 0
1 0 1 0→ 1 = 1 1→ 1 = 1 1∧0 = 0 0→ 1 = 1
1 0 0 0→ 0 = 1 1→ 1 = 1 1∧0 = 0 0→ 0 = 1
0 1 1 1→ 1 = 1 0→ 1 = 1 0∧1 = 0 0→ 1 = 1
0 1 0 1→ 0 = 0 0→ 0 = 1 0∧1 = 0 0→ 0 = 1
0 0 1 0→ 1 = 1 0→ 1 = 1 0∧0 = 0 0→ 1 = 1
0 0 0 0→ 0 = 1 0→ 1 = 1 0∧0 = 0 0→ 0 = 1

Notice that P1 → (P2 → P3) has the same truth table as (P1∧P2)→ P3, which cor-
responds with our intuition: P1 → (P2 → P3) is read as ‘if P1, then (if - in addition -
P2, then P3), which is equivalent to ‘if P1 and P2, then P3’.

2.2.1 Validity

Atomic formulas have (by definition) two truth values, 1 and 0. However, it is easy
to see that some composite formulas have only one truth value. For instance, the
formula P1 → P1 can only have the truth value 1, no matter what the truth value of
P1 is. And the formula P1∧¬P1 can only have the truth value 0, no matter what the
truth value of P1 is:

P1 P1 → P1 ¬P1 P1∧¬P1

1 1→ 1 = 1 ¬1 = 0 1∧0 = 0
0 0→ 0 = 1 ¬0 = 1 0∧1 = 0

Other formulas with only the truth value 1 are P1∨¬P1, P1∧P2 → P1, P1 → (P2 →
P1) and P1 → P1∨P2. These formulas are called always true or valid. Wittgenstein
(1921) called these formulas tautologies.

Definition 2.2 (Valid; Consistent; Contingent). Let A be a formula.
A is always true or valid := the truth table of A – entered from the atomic formulas
from which A has been built – contains only 1’s. Notation: |= A.
A is consistent or satisfiable := the truth table of A contains at least one 1; that is,
the formula A may be true.
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A is contingent := the truth table of A contains at least one 1 and at least one 0; that
is, A may be true and it may be false.
A is inconsistent or always false or contradictory := the truth table of A contains
only 0’s; that is, A cannot be true, in other words, is always false.

Notice that a valid formula is consistent, but not contingent; that a contingent for-
mula is by definition also consistent; and that an inconsistent formula is by definition
not contingent.

So, for instance, the formula P1 → P1 is valid and hence also consistent, the
formula P1→P2 is contingent and consistent, but not valid, and the formula P1∧¬P1

is inconsistent or always false.

On the one hand, valid formulas are uninteresting because they give no information.
On the other hand, since valid formulas are always true regardless of the truth or fal-
sity of their atomic components, they may be used in reasoning as may be illustrated
by the following example.

Example 2.3. Consider the following argument:
John is lazy [L]. L
If John is ill [I] or lazy, he stays at home [H]. I∨L→ H
Therefore: John stays at home. H

In this valid reasoning pattern we use silently that |= L→ I∨L. The argument might
be simulated as follows: L L→ I∨L

I∨L I∨L→ H
H

Note that there are infinitely many valid formulas. Although it is not exhaustive (for
instance, P∨¬P does not occur in it), the following list enumerates infinitely many
valid formulas.

P→ P
P→ (P→ P)
P→ (P→ (P→ P))
...

Warning: While the symbol A stands for any formula, like P1 → P2, P2∧¬P3, etc.,
the expression |= A is not a formula, but a statement about the formula A, namely,
that the truth table of A contains only 1’s. The symbol |= does not occur in the
logical alphabet, and ‘|= A’ is shorthand for ‘A is valid’ or ‘A is always true’, which
clearly is not a logical formula. In other words, the symbol A indicates a formula
from the logical language, our object language, while the expression |= A belongs
to the meta-language, in which we make statements about formulas of the object
language.

Notation: If a particular formula A is not valid, this is frequently written by �|= A
instead of ‘not |= A’. For instance: |= P1 → P1∨P2, but �|= P1 → P1∧P2.

Definition 2.3 (Interpretation; Model). Let A be a formula built from the atomic
formulas P1, . . . ,Pn. An interpretation i of A assigns a value 1 or 0 to all the atomic
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components of A; so, an interpretation i of A corresponds with a line in the truth table
for A and interprets each atomic formula in A as either a true or a false proposition.
Interpretation i of A is a model of A := i assigns to A the value 1, in other words,
i(A) = 1. In this terminology the definition of ‘A is valid’ can be reformulated as
follows: every interpretation i of A is a model of A.

Example 2.4. Thus, if A has been built from only two atomic formulas P and Q, then
there are four different interpretations of A: i1, i2, i3, i4.

P Q P→ Q
i1 1 1 1 i1(P) = 1, i1(Q) = 1, i1(P→Q) = 1
i2 1 0 0 i2(P) = 1, i2(Q) = 0, i2(P→Q) = 0
i3 0 1 1 i3(P) = 0, i3(Q) = 1, i3(P→Q) = 1
i4 0 0 1 i4(P) = 0, i4(Q) = 0, i4(P→Q) = 1

For instance, i1, i3 and i4 are a model of P→ Q, but i2 is not a model of P→Q.

Definition 2.4. Let Γ be a (possibly infinite) set of formulas and i an interpretation,
assigning the values 0 or 1 to all the atomic components of the formulas in Γ .
i a model of Γ := i is a model of all formulas in Γ , i.e., i makes all formulas in Γ
true.
Γ is satisfiable := there is at least one assignment i which is a model of Γ .

Example 2.5. If Γ consists of P1 → P2 and P1∨P2, then i1 and i3 are models of Γ .

P1 P2 P1 → P2 P1∨P2

i1 1 1 1 1
i2 1 0 0 1
i3 0 1 1 1
i4 0 0 1 0

Theorem 2.3 (Compactness theorem). * Let Γ be a (possibly infinite) set of for-
mulas such that every finite subset of Γ has a model. Then Γ has a model.

Proof. Let Γ be a (possibly infinite) set of formulas such that every finite subset of Γ
has a model. We will define an interpretation i of the atomic propositional formulas
P1,P2,P3, . . . such that for every natural number n, Φ(n), where Φ(n) := every finite
subset of Γ has a model in which P1,P2, . . . ,Pn take the values i(P1), i(P2), . . . , i(Pn).

Once having shown this, it follows that i(A) = 1 for every formula A in Γ . For
given a formula A in Γ , take n so large that all atomic formulas occurring in A are
among P1, . . . ,Pn. Since {A} is a finite subset of Γ and because of Φ(n), A has a
model in which P1, . . . ,Pn take the values i(P1), . . . , i(Pn). So, i(A) = 1.

Let i(P1) = 0 and suppose Φ(1) does not hold. That is, there is a finite subset
Γ ′ of Γ which has no model in which P1 takes the value i(P1) = 0. Then we define
i(P1) = 1 and show that Φ(1), i.e., every finite subset of Γ has a model in which P1

takes the value i(P1) = 1. For let Δ be a finite subset of Γ . Then Δ ∪Γ ′ is a finite
subset of Γ and hence has a model i. Since i is a model of Γ ′, i(P1) = 1.

Suppose we have defined i(P1), . . . , i(Pn) such that Φ(n). Then we can extend
the definition of i to Pn+1 such that Φ(n + 1). For suppose that Φ(n + 1) does
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not hold if i(Pn+1) = 0. That is, there is a finite subset Γ ′ of Γ which has no
model in which P1, . . . ,Pn,Pn+1 take the values i(P1), . . . , i(Pn),0. Then we define
i(Pn+1) = 1 and show that Φ(n+ 1), i.e., every finite subset of Γ has a model in
which P1, . . . ,Pn,Pn+1 take the values i(P1), . . . , i(Pn),1. For let Δ be a finite subset
of Γ . Then Δ ∪Γ ′ is a finite subset of Γ and hence, by the induction hypothesis,
Δ ∪Γ ′ has a model in which P1, . . . ,Pn take the values i(P1), . . . , i(Pn). Since i is a
model of Γ ′, i(Pn+1) = 1. ��
For applications of the compactness theorem in mathematics see Exercises 2.16,
2.17 and 2.18.

Exercise 2.7. Show that the formulas in the pairs below have the same truth table:
a) ¬(A∧B) and ¬A∨¬B. d) ¬(A→ B) and A∧¬B.
b) ¬(A∨B) and ¬A∧¬B. e) A→ B and ¬B→¬A.
c) ¬A∨B and A→ B. f) A→ B and ¬(A∧¬B).

Exercise 2.8. Compute and compare the truth tables for:
a) P1∧P2 →¬P3 and P1∧ (P2 →¬P3) (see Exercise 2.1).
b) P1∨ (P2 → P3) and P1∨P2 → P3 (see Exercise 2.1).
c) P1 → (P2 →¬P3) and (P1 → P2)→¬P3 (see Exercise 2.1 and 2.2).
d) ¬P1∨P3 and ¬(P1∨P3) (see Exercise 2.2).
e) ¬P2∧P3 and ¬(P2∧P3) (see Exercise 2.2).

Exercise 2.9. Prove that a) (A∨¬A)→ B has the same truth table as B,
b) (A∨¬A)∧B has the same truth table as B, and
c) (A∧¬A)∨B has the same truth table as B.

Exercise 2.10. Prove that A∨B, (A→ B)→ B and (B→ A)→ A all have the same
truth table.

Exercise 2.11. Verify that the following formulas are valid by showing that it is
impossible that at some line in the truth table they have the value 0.
a) ¬¬A→ A b) (A→ B)∨ (B→ A) c) (P→ Q)→ (¬Q→¬P).

Exercise 2.12. Show that the following formulas are not valid by computing just
one suitable line of the table: a) P∨Q→ P∧Q b) (P→ Q)→ (Q→ P).

Exercise 2.13. Which of the following alternatives applies to the following formu-
las? 1. P1 →¬P1 6. (P1 → P2)� (¬P1∨P2)

2. P1 � ¬P1 7. ¬(P1 → P2)� (P1∧¬P2)
3. P1 → P1∧P2 8. ¬(P1∧P2)� (¬P1∨¬P2)
4. P1 → P1∨P2 9. ¬(P1∨P2)� (¬P1∧¬P2)
5. P1 → P2 10. (¬P1∨P2)� (P1 → P2)

Alternative A: not satisfiable (inconsistent).
B: satisfiable (consistent), but not valid.
C: valid, and hence satisfiable.

Exercise 2.14. Show that each formula built by means of connectives from only one
atomic formula P has the same truth table as either P∧¬P, P, ¬P or P→ P.
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Exercise 2.15. Consider the following truth table for the exclusive ‘or’, ∨.
A B A ∨ B
1 1 0
1 0 1
0 1 1
0 0 0

a) Verify that A ∨ B has the same truth table as (A∨B)∧¬(A∧B) and as ¬(A � B).
b) Verify that (A∨ B)∨C and A∨ (B∨C) have the same truth table and in particular
that these formulas have the value 1 in the first line of the truth table (where A, B
and C are 1). Note that this does not correspond with the intended meaning of ‘A or
B or C’, if the ‘or’ is used exclusively.

Exercise 2.16. * (Kreisel-Krivine [18]) A group G is said to be ordered if there is a
total ordering < of G (see Chapter 3) such that a ≤ b implies ac≤ bc and ca ≤ cb
for all c in G. Show that a group G can be ordered if and only if every subgroup of
G generated by a finite number of elements of G can be ordered.

Exercise 2.17. * (Kreisel-Krivine [18]) A graph (a non-reflexive symmetric rela-
tion) defined on a set V is said to be k-chromatic, where k is a positive integer, if
there is a partition of V into k disjoint sets V1, . . . ,Vk, such that two elements of V
connected by the graph do not belong to the same Vi. Show that for a graph to be
k-chromatic it is necessary and sufficient that every finite sub-graph be k-chromatic.

Exercise 2.18. * Suppose that each of a (possibly infinite) set of boys is acquainted
with a finite set of girls. Under what conditions is it possible for each boy to marry
one of his acquaintances? It is clearly necessary that every finite set of k boys be,
collectively, acquainted with at least k girls. The marriage theorem says that this
condition is also sufficient. More precisely, let B and G be sets (of Boys and Girls
respectively) and let R ⊆ B×G be such that (i) for all x ∈ B, R{x} is finite, and
(ii) for every finite subset B′ ⊆ B, RB′ has at least as many elements as B′, where
RB′ := {y ∈G | for some x in B′, R(x,y)}. Then there is an injection f : B→G such
that for all x ∈ B and y ∈ G, if f (x) = y, then R(x, y). In The Marriage Problem
(American Journal of Mathematics, Vol. 72, 1950, pp. 214-215) P. Halmos and H.
Vaughan prove first the case in which the number of boys is finite. Using this result
prove the marriage theorem for the case that B is infinite.

2.3 Semantics; Logical (Valid) Consequence

Consider the following concrete argument:
John is intelligent [I] or John is diligent [D].
If John is intelligent, then he will succeed [S].
If John is diligent, then he will succeed (too).
Therefore: John will succeed.
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We may translate the propositions in this argument into formulas:

I ∨ D
I → S
D→ S

S
To help our memory, for convenience we have used the symbols I, D and S instead
of P1, P2, P3. Intuitively, this pattern of reasoning is valid: no matter what proposi-
tions I,D,S stand for, if all premisses are true, the conclusion must be true too; in
other words, it is impossible that the premisses are all true and at the same time the
conclusion false. Now we have given in Section 2.2 a precise meaning to the atomic
formulas and to the connectives in terms of truth tables, we can make the notion of
valid or logical consequence precise: in the truth table starting with I, D and S, at
each line in which all of I∨D, I → S and D→ S have the value 1, also S must have
the value 1; in other words: there is no line in the truth table starting with I, D, and
S in which the premisses I∨D, I → S, D→ S are all 1 and the conclusion S is 0.

I D S I∨D I → S D→ S S
1 1 1 1 1 1 1
1 1 0 1 0 0 0
1 0 1 1 1 1 1
1 0 0 1 0 1 0
0 1 1 1 1 1 1
0 1 0 1 1 0 0
0 0 1 0 1 1 1
0 0 0 0 1 1 0

In this example there are three lines, line 1, 3 and 5, in which all premisses are true
and, as we can see, in each of these lines also the conclusion is true. So, in each
case that all premisses are true, the conclusion is true too. We say that S is a valid or
logical consequence of the premisses I∨D, I → S and D→ S.

Definition 2.5 (Logical or valid consequence).
a) B is a logical or valid consequence of premisses A1, . . . ,An := in each line of the
truth table for A1, . . . ,An and B in which all premisses A1, . . . ,An are 1, also B is 1;
in other words, there is no line in the truth table in which all premisses A1, . . . ,An

are 1 and at the same time B is 0. Notation: A1, . . . ,An |= B.
b) Let Γ be a (possibly infinite) set of formulas. B is a logical or valid consequence
of Γ := for each interpretation i, if i(A) = 1 for all formulas A in Γ , then also
i(B) = 1. In other words, each interpretation which is a model of all formulas in Γ
is also a model of B. Notation: Γ |= B.

The notion of logical (or valid) consequence is a semantical notion: it concerns the
truth or falsity, and hence the meaning, of the formulas in question. Notice that in
case n = 0, i.e., there are no premisses, the definition of A1, . . . ,An |= B reduces to
the definition of |= B: there is no line in the truth table for B in which B is 0.

Next consider the following argument.
If the weather is nice [N], then John will come [C].
The weather is not nice.
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Therefore: John will not come.

We may translate these propositions into the following formulas:
N →C
¬N
¬C

Again, for convenience, we have used the symbols N and C instead of the atomic
formulas P1,P2 in order to help our memory.

Intuitively, this argument is not correct: John may also come when the weather
is not nice; for instance, because someone offers John to bring him by car. So, the
premisses may be true, while the conclusion is false. We see this clearly in the truth
table for the formulas in question:

N C N →C ¬N ¬C
1 1 1 0 0
1 0 0 0 1
0 1 1 1 0
0 0 1 1 1

There are two lines in the truth table in which both premisses are 1 (true): line 3 and
line 4. In line 4 the conclusion ¬C is 1 too, but in line 3 the conclusion is 0! Line
3 is the case that N is 0 and C is 1, i.e., the weather is not nice, while John does
come; in this case both premisses N →C and ¬N are true, while the conclusion ¬C
is false. So, there is a line in the truth table, in which all premisses are true, while
the conclusion is false; in other words, ¬C is not a logical consequence of N → C
and ¬N. Therefore, not N →C,¬N |= ¬C or N →C,¬N �|= ¬C.
Notation: Instead of ‘not A1, . . . ,An |= B’ one usually writes: A1, . . . ,An �|= B.

Another intuitive counterexample is the following one; Suppose Berta is a cow
and interpret N as ‘Berta is a dog’ and C as ‘Berta has four legs’. Then we have the
situation of line 3 in the table: N is 0, C is 1, N →C is 1, ¬N is 1, but ¬C is 0.

Theorem 2.4.
a) A |= B if and only if (iff) |= A→ B.
More generally,
b) A1,A2 |= B if and only if (iff) A1 |= A2 → B

if and only if (iff) |= A1 → (A2 → B)
if and only if (iff) |= A1∧A2 → B.

Even more generally,
c) A1, . . . ,An |= B if and only if (iff) A1, . . . ,An−1 |= An → B

if and only if (iff) |= (A1∧ . . .∧An)→ B.

Proof. a) A |= B iff there is no line in the truth table in which A is 1 and B is 0.
This is equivalent to: there is no line in the truth table in which A→ B is 0. In other
words, equivalent to: |= A→ B.
b) A1,A2 |= B iff there is no line in the truth table in which A1 and A2 are both 1 and
B is 0. This is equivalent to: there is no line in the truth table in which A1 is 1 and
A2 → B is 0, i.e., A1 |= A2 → B. This is - in its turn - equivalent to: there is no line in
the truth table in which A1→ (A2→B) is 0, i.e., |= A1→ (A2→B). Or equivalently,
there is no line in the truth table in which (A1∧A2)→ B is 0, i.e., |= (A1∧A2)→ B.
c) Similarly. ��
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It is important to notice that A → B is a formula of the logical language, while
|= A → B, or equivalently A |= B, is a statement in the meta-language about the
formulas A and B, namely, that there is no line in the truth table in which A is 1
and B is 0. The symbol |= does not occur in the logical language, but is just an
abbreviation from the metalanguage.

Definition 2.6. In the statement A1, . . . ,An |= B we call A1, . . . ,An the premisses and
B the (putative) conclusion. In particular, in A |= B we call A the premiss and B the
conclusion. However, in the formula A → B we call A the antecedent and B the
succedent.

Theorem 2.5. * Let Γ be a (possibly infinite) set of formulas. B is a valid conse-
quence of Γ (Γ |= B) if and only if there are finitely many formulas A1, . . . ,An in Γ
such that B is a valid consequence of A1, . . . ,An (A1, . . . ,An |= B).

Proof. The ‘if’ part is evident. To show the ‘only if’ part, suppose that Γ |= B, that
is, Γ ∪{¬B}, i.e., the set consisting of ¬B and of all formulas in Γ , does not have
a model. Then, according to the Compactness Theorem 2.3, there is a finite subset
Γ ′ = {A1, . . . ,An} of formulas in Γ such that {A1, . . . ,An}∪{¬B} does not have a
model, which means that A1, . . . ,An |= B. ��

2.3.1 Decidability

The notion of validity (for the classical propositional calculus) is clearly decidable,
i.e., there is an algorithm (an effective computational procedure), also called a deci-
sion procedure, to determine for any formula A in a finite number of steps (depend-
ing on the complexity of A) whether it is valid or not. Namely, in order to determine
whether A is valid or not, we simply have to compute the truth table of A, entered
from its atomic components, and see whether it has 1 in all its lines or not. Comput-
ing a truth table of a given formula A and checking whether it has 1 in all its lines can
be carried out by a machine and yields an answer ‘yes’ or ‘no’ in finitely many steps,
the number of steps depending on the complexity of A. Because A1, . . . ,An |= B is
equivalent to |= A1∧ . . .∧An → B, also the notion of valid consequence (of a finite
number of premisses) is clearly decidable.

One of Leibniz’ ideals was to develop a lingua philosophica or characteristica uni-
versalis, an artificial language that in its structure would mirror the structure of
thought and that would not be affected with ambiguity and vagueness like ordinary
language. His idea was that in such a language the linguistic expressions would
be pictures, as it were, of the thoughts they represent, such that signs of complex
thoughts are always built up in a unique way out of the signs for their composing
parts. Leibniz (1646 - 1716) believed that such a language would greatly facilitate
thinking and communication and that it would permit the development of mechan-
ical rules for deciding all questions of consistency or consequence. The language,
when it is perfected, should be such that ‘men of good will desiring to settle a
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controversy on any subject whatsoever will take their pens in their hands and say
Calculemus (let us calculate)’. If we restrict ourselves to the propositional calculus,
Leibniz’ ideal has been realized: the classical propositional calculus is decidable,
more precisely, given premisses A1, . . . ,An and a putative conclusion B, one may
decide whether B is a logical consequence of A1, . . . ,An by simply calculating the
truth tables of A1, . . . ,An,B. However, A. Church and A. Turing proved in 1936 that
the predicate calculus is undecidable, i.e., there is no mechanical method to test
logical consequence (in the predicate calculus), let alone philosophical truth.

For more information the reader is referred to W. & M. Kneale [16], The Devel-
opment of Logic and to B. Mates [20], Elementary Logic, Chapter 12.

Now, if A has been built from n atomic formulas, the truth table of A has 2n lines.
So, a formula built from 10 atomic formulas has a truth table with 210 = 1024 lines.
And if n= 20, the truth table of A has 220 = 210×210 = 1024×1024, so more than a
million lines. Hence, the number of steps needed to decide whether a given formula
A is valid or not grows fast if A becomes more complex. In fact, if A has been built
from 64 atomic formulas, it will take many lifetimes in order to compute whether
A is valid or not, even with very futuristic computers, the number of lines being
264 = 24× (210)6 ≈ 16× (103)6 = 16× 1018. In Subsection 2.5.3 we will construct
such a formula, built from 64 atomic formulas, to describe a particular travelling
salesman problem. Supposing a computer computes 16000 = 16× 103 lines per
second, in one human lifetime it can compute about 100 (years) × 365 (days) ×
24 (hours) × 60 (minutes) × 60 (seconds) × 16000 (lines) ≈ 16× 1013 lines. So,
in order to compute a truth table of a formula built from 64 atomic formulas, our
computer needs about (16× 1018) / (16× 1013) = 105 human lifetimes, supposing
it can compute 16000 lines per second. This means that our decision procedure to
determine whether a given formula A (of the propositional calculus) is valid or not,
is a rather theoretical one if the complexity of A is great, more precisely, if A has
been built from say 64 atomic components.

One may wonder whether there are more effective or more realistic decision
procedures to determine validity, other than making the truth table and checking
whether it has 1 in all its lines. No such procedure is known, although for many
concrete formulas ad hoc solutions can give a quick answer to the question whether
they are valid or not. But no (general) procedure is known, other than making truth
tables, to determine the validity of an arbitrary formula.

2.3.2 Sound versus Plausible Arguments; Enthymemes

A concrete argument consists of a number of premisses and a (putative) conclu-
sion. The atomic propositions of the argument are translated into atomic formulas
P1,P2, . . . and the composite propositions of the argument are translated into com-
posite formulas which are composed by the logical connectives from the atomic
formulas. The result is a logical reasoning pattern:
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premisses
|

logical | reasoning
|

conclusion

A reasoning pattern is valid if it is impossible that the premisses are true and at the
same time the conclusion false. A concrete argument is correct if the underlying
reasoning pattern is valid, otherwise it is incorrect.

The correctness of a concrete argument is not determined by the content or mean-
ing of the atomic propositions in question, but by the meaning of the propositional
connectives (and in predicate logic also by the meaning of the quantifiers) which
occur in the argument. That is why one abstracts from the content of the atomic
propositions in question by translating them into P1,P2, . . ., as pointed out by Frege
[8] in his Begriffsschrift (1879).

The atomic formulas may be interpreted as true or false propositions, denoted
by 1 and 0 respectively, and the meaning of the logical connectives is specified
precisely in the truth tables. Validity of a reasoning pattern means that for every
interpretation of the atomic formulas it is impossible that the premisses become true
propositions while the conclusion becomes a false proposition.

In his Begriffsschrift [8] of 1879 Gottlob Frege compares the use of the logical
language with the use of a microscope. Although the eye is superior to the micro-
scope, for certain distinctions the microscope is more appropriate than the naked
eye. Similarly, although natural language is superior to the logical language, for
judging the correctness of a certain argument the logical language is more appropri-
ate than natural language. Since the content or meaning of the atomic propositions
does not matter for the correctness of the argument, it is more convenient to abstract
from this content by replacing the atomic propositions by atomic formulas P1,P2, . . ..

It is possible that the study of logic does not augment our native capacity to discover
correct arguments; but it certainly is of value in checking the correctness of given
arguments. However, the reader should realize that at this stage we are not yet able
to give an adequate logical analysis of, for instance, the following argument.

All men are mortal.
Socrates is a man.
Therefore: Socrates is mortal.

In order to see the correctness of this argument one has to take into account the
internal subject-predicate structure of the atomic propositions involved, and this is
precisely what is ignored in the propositional calculus and what we shall study in
the predicate calculus; see Chapter 4. Using only the means of the propositional
calculus, all we can say is that the foregoing argument is of the form P, Q |= R,
which does not hold, because we may interpret P and Q as true propositions and R
as a false one; in other words, P and Q may have the value 1, while R may have the
value 0. In order to see the correctness of the argument above, one has to analyse
the internal subject-predicate structure of the atomic formulas P, Q and R; but this is
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beyond the scope of the propositional calculus. In the propositional calculus we can
adequately analyse only those arguments the correctness of which depends on the
way the composite propositions are composed of the atomic propositions by means
of the propositional operations.

Arguments are frequently used to persuade the hearer of the truth of the conclusion
on the grounds that (i) the conclusion logically follows from the premisses and in
addition (ii) the premisses are true. Let us use A1, . . . ,An :: B to denote
(i) A1, . . . ,An |= B, and
(ii) A1, . . . ,An are true; and therefore B is true.

When both (i) and (ii) hold, we call the argument not simply ‘valid’, but sound.
And we call an argument plausible, when it is valid, but we can only say that
A1, . . . ,An are plausible.

It frequently happens that speakers in giving an argument do not explicitly men-
tion all their premisses; in some cases they even leave the conclusion tacit. For
instance, if someone offers me coffee, I might respond as follows:

If I drink coffee [C], I can’t get to sleep early [¬S]. So please don’t pour me any.

The argument given is of the form C →¬S :: ¬C, which is clearly an abbreviation
for C →¬S, S :: ¬C.

I might even leave out the conclusion; if I have just been offered a cup of coffee,
simply C →¬S might be sufficient not to let the hostess pour me any coffee.

Arguments in which one or more premisses or the conclusion is tacit are called
enthymemes. Premises may not be explicitly stated for practical reasons, but also to
mislead the audience.

Exercise 2.19. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the (putative) conclusion
is a logical (or valid) consequence of the premisses:
If the government raises taxes for its citizens, the unemployment grows.
The unemployment does not grow or the income of the state decreases.
Therefore: if the government raises taxes, then the income of the state decreases.

Exercise 2.20. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the putative conclusion is
a logical (or valid) consequence of the premisses:
Europe may form a monetary union only if it is a political union.
Europe is not a political union or all European countries are member of the union.
Therefore: If all European countries are a member of the union, then Europe may
form a monetary union.

Exercise 2.21. Verify by making truth tables:
a) A, A → B |= B b) A → B, ¬B |= ¬A c) A,¬A |= B
d) A → B �|= B → A e) A → B,¬A �|= ¬B f) A → (B∨C) |= (A → B)∨ (A →C)
g) A∨B, ¬A |= B h) ¬(A∧B), A |= ¬B

Exercise 2.22. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the putative conclusion is
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a logical (or valid) consequence of the premisses:
John does not win the lottery or he makes a journey [J].
If John does not make a journey, then he does not succeed for logic.
John wins the lottery [W] or he succeeds for logic [S].
Therefore: John makes a journey.

Exercise 2.23. Translate the propositions in the following argument into formulas
of the language of propositional logic and check whether the putative conclusion is
a logical (or valid) consequence of the premisses:
If Turkey joins the EU [T], then the EU becomes larger [L].
It is not the case that the EU becomes stronger [S] and at the same time not larger.
Therefore: Turkey does not join the EU or the EU becomes stronger.

2.4 Semantics: Meta-logical Considerations

In this section we will prove results about the notions of validity and valid conse-
quence of the type: if certain formulas are valid, then also some other formulas are
valid.

Suppose we want to determine whether the formula (P3 ∧¬P4)∧ (¬P4 ∨ P5 ∨
P6)→ (P3 ∧¬P4) is valid. Making the truth table of this formula, starting with the
atomic formulas P3,P4,P5,P6 occurring in it, will yield a positive answer. But this
table contains 24 = 16 rows and the chance of making a computational mistake is
considerable. However, notice that the formula has the form P1 ∧P2 → P1 with P1

replaced by A1 = (P3 ∧¬P4) and P2 replaced by A2 = (¬P4 ∨P5 ∨P6). Although the
table for A1 ∧A2 → A1 may consist of many lines, 16 in our example, there cannot
be more than 4 different combinations of 1 and 0 for A1 and A2. In our example the
second row, in which A1 = P3 ∧¬P4 has value 1 and A2 = ¬P4 ∨P5 ∨P6 has value 0,
will even not occur, because if ¬P4 is 1, then also A2 = ¬P4 ∨P5 ∨P6 is 1.

A1 A2 A1 ∧A2 → A1

1 1 (1∧1)→ 1 = 1
1 0 (1∧0)→ 1 = 1
0 1 (0∧1)→ 0 = 1
0 0 (0∧0)→ 0 = 1

All four possible combinations of 1 and 0 for A1 and A2 will yield for A1 ∧A2 → A1

the value 1. So, from the fact that the formula P1∧P2 →P1 is valid, we may conclude
that also the formula A1∧A2 → A1 is valid for any formulas A1 and A2; in particular,
that the formula (P3 ∧¬P4)∧ (¬P4 ∨P5 ∨P6)→ (P3 ∧¬P4) is valid. What we have
won is that the table for P1 ∧P2 → P1 requires only the computation of 4 instead of
16 rows.

The substitution theorem below reduces the amount of work needed to establish
the validity of certain formulas.
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Theorem 2.6 (Substitution theorem). Let E(P1,P2) be a formula containing only
the atomic formulas P1,P2, and let E(A1,A2) result from E(P1,P2) by substituting
formulas A1,A2 simultaneously for P1,P2, respectively.

If |= E(P1,P2), then |= E(A1,A2).

More generally: if |= E(P1, . . . ,Pn), then |= E(A1, . . . ,An), where the latter formula
results from the former one by replacing the atomic formulas P1, . . . ,Pn by the (com-
posite) formulas A1, . . . ,An.

So, since |= P1 → P1, the substitution theorem tells us that
|= P2∧¬P3 → P2∧¬P3 (A1 = P2∧¬P3)
|= (P3 → P5∧¬P7)→ (P3 → P5∧¬P7) (A1 = P3 → P5∧¬P7)

and so on. So, the purpose of the substitution theorem is to reduce the amount of
work needed to establish the validity of certain formulas.

Proof. Suppose E = E(P1, . . . ,Pn) contains only the atomic formulas P1, . . . ,Pn and
|= E , i.e., the truth table of E entered from the atomic formulas P1, . . . ,Pn is 1 in
each line.

P1 . . . Pn . . . E
1 . . . 1 . . . 1
...

...
...

0 . . . 0 . . . 1

Now E∗ = E(A1, . . . ,An) results from E by substituting the formulas A1, . . . ,An for
the atomic formulas P1, . . . ,Pn in E . Let us suppose that the formulas A1, . . . ,An and
hence also E∗ are built from the atomic formulas Q1, . . . ,Qk. Then the computation
of the truth table of E∗ is as follows.

Q1 . . . Qk . . . A1 . . . An . . . E∗

1 . . . 1 . . . . . . . . .
...

...
...

...
...

0 . . . 0 . . . . . . . . .

Since the construction of E∗ from A1, . . . ,An is the same as the construction of E
from P1, . . . ,Pn, the truth table of E∗ is computed from those of A1, . . . ,An in pre-
cisely the same manner as the truth table of E is computed from those of P1, . . . ,Pn.
Hence, because by assumption the computation of the values of E from the values
for P1, . . . ,Pn only yield 1’s, also the computation of the values of E∗ from the values
for A1, . . . ,An will only yield 1’s. I.e., |= E∗.

Note that it may happen that some combinations of 0’s and 1’s for A1, . . . ,An do
not occur. For instance, if A1 = Q1∨¬Q1, then A1 will have the value 1 in all lines
and the value 0 for A1 will not occur. ��
Remark 2.1. : The converse of the substitution theorem, if |= E∗, then |= E , does not
hold. For instance, let E(P1) = P1 and let A1 =P2→P2. Then E∗= E(A1) = P2→P2

is valid, but E(P1) = P1 is not valid.
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In the next theorem the validity of many formulas is shown by means of the
substitution theorem. For example, 5b) says that for any choice of formulas A
and B, B → A∨B is valid. Taking A = P1 ∧¬P2 and B = P2 → P3, we find that
(P2 → P3)→ ((P1∧¬P2)∨ (P2 → P3)) is valid. This method of proving the validity
of the latter formula is much more economical than proving the validity directly
from its definition by making the truth table of the latter formula entered from the
atomic components P1, P2 and P3; this table would consist of eight lines!

Theorem 2.7. For any choice of formulas A, B, C:

1 |= A→ (B→ A) or A |= B→ A or A, B |= A
2 |= (A→ B)→ ((A→ (B→C))→ (A→C)) or A→ B,A→ (B→C),A |=C
3 |= A→ (B→ A∧B) or A, B |= A∧B
4a |= A∧B→ A or A∧B |= A
4b |= A∧B→ B or A∧B |= B
5a |= A→ A∨B or A |= A∨B
5b |= B→ A∨B or B |= A∨B
6 |= (A→C)→ ((B→C)→ (A∨B→C)) or A→C, B→C |= A∨B→C
7 |= (A→ B)→ ((A→¬B)→¬A) or A→ B, A→¬B |= ¬A
8 |= ¬¬A→ A or ¬¬A |= A
9 |= (A→ B)→ ((B→ A)→ (A � B)) or A→ B, B→ A |= A � B
10a |= (A � B)→ (A→ B) or A � B |= A→ B
10b |= (A � B)→ (B→ A) or A � B |= B→ A

Proof. The statements in the right column, after the ‘or’, are according to Theorem
2.4 equivalent to the corresponding statements in the left column, before the ‘or’.
The statements in the left column follow from the substitution theorem. For instance,
to show 1, |= A→ (B→ A), it is easy to verify that |= P1 → (P2 → P1), from which
it follows by the substitution theorem that for any formulas A,B, |= A→ (B→ A).

��
The student is not expected to learn the list in Theorem 2.7 outright now. In the
course of time he or she will become familiar with the most frequently used results.

Later in Section 2.9 it will be shown that all valid formulas may be obtained (or
deduced) by applications of Modus Ponens to formulas of the ten forms in Theo-
rem 2.7; this is the so-called completeness theorem for propositional logic. For that
reason formulas of the form 1, . . ., 10 in Theorem 2.7 are called logical axioms for
(classical) propositional logic. Notice that the formulas in 1 and 2 concern →, the
formulas in 3 and 4 concern ∧, the formulas in 5 and 6 concern ∨, the formulas
in 7 and 8 concern ¬ and the formulas in 9 and 10 concern �. For instance, the
formulas in 1 and 2 would not be valid if the → were replaced by any other con-
nective. The completeness theorem says essentially that formulas of these ten forms
together characterize the meanings of �, →, ∧, ∨ and ¬: every valid formula may
be obtained by applications of Modus Ponens to formulas of these ten forms.

Paradoxes of Material Implication |= A→ (B→ A), or, equivalently, A |= B→ A,
and |=¬A→ (A→ B), or, equivalently,¬A |= A→ B, have been called paradoxes of
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material implication. This has been illustrated by examples like the following ones:
A |= B→ A: I like coffee; therefore: if there is oil in my coffee, I like coffee. ¬A |=
A→ B: I do not break my legs; therefore: if I break my legs, I will go for skying.
This sounds very strange indeed. However, Paul Grice [10] has pointed out that
in conversation one is supposed to take social rules into account, such as being
relevant and maximally informative. And although B→ A is true when A is true, it
is simply misleading to say B→ A, or equivalently ¬B∨A, when one knows that A
is true, because A is clearly more informative than B→ A or, equivalently, ¬B∨A.
Similarly, although A→ B is true when ¬A is true, it is misleading to say A→ B, or,
equivalently,¬A∨B, when one has the information ¬A, because ¬A is clearly more
informative than A→ B or, equivalently ¬A∨B.

Also the proof of the next theorem is by showing that one obtains valid formulas if
one replaces A,B,C by the atomic formulas P1,P2,P3; next application of the substi-
tution theorem yields the desired result.

Theorem 2.8. For any formulas A,B,C:

11 |= ¬¬A � A law of double negation
12 |= A∨¬A law of excluded middle
13 |= ¬(A∧¬A) law of non-contradiction
14 |= ¬A→ (A→ B) or ¬A,A |= B ex falso sequitur quod libet
15 |= (A→ B)→ ((B→C)→ (A→C)) or A→ B, B→C |= A→C

From the table for � follows immediately the next theorem.

Theorem 2.9. Let A,B be any formulas. |= A � B if and only if A and B have the
same truth table.

Proof. Suppose |= A � B. Then from the table for � it follows that it is impossible
that in some line of the truth table one of A,B is 1 while the other is 0. Conversely,
suppose A and B have the same truth table. Then in every line of the truth table both
formulas are 1 or both formulas are 0. In either case A � B is 1. Since this holds for
every line in the truth table, |= A � B. ��
Theorem 2.10. For any formulas A,B,C:

16 |= (A→ B) � (¬B→¬A) contraposition
17a |= ¬(A∨B) � ¬A∧¬B De Morgan’s laws 1847
17b |= ¬(A∧B) � ¬A∨¬B
18 |= ¬(A→ B) � A∧¬B
19 |= (A � B) � (A→ B)∧ (B→ A)
20 |= A→ B � ¬(A∧¬B)
21 |= A→ B � ¬A∨B
22 |= A∧ (B∨C) � (A∧B)∨ (A∧C) distributive law
23 |= A∨ (B∧C) � (A∨B)∧ (A∨C) distributive law
24 |= A→ (B→C) � B→ (A→C)
25 |= A→ (B→C) � A∧B→C



48 2 Propositional Logic

Proof. One easily verifies that A→ B and ¬B→¬A have the same truth truth table.
Hence, by theorem 2.9 it follows that |= (A→ B) � (¬B→¬A). Another way of
showing this is to verify that |= (P1 → P2) � (¬P2 →¬P1), simply by computing
the truth table. Next the substitution theorem 2.6 yields the desired result.
The other items are shown similarly. ��
A reasoning rule like Modus Ponens or Modus Tollens should, of course, be sound,
i.e., if its premisses are true (1), then its conclusion must be true (1) too. In other
words, these rules should preserve truth. One easily verifies that Modus Ponens and
Modus Tollens are sound.

Theorem 2.11. (a) For every line in the truth table: if A is 1 and A→ B is 1 in that
line, then B is also 1 in that line. In other words: A, A→ B |= B.
We say that the rule of Modus Ponens (MP) is sound. Consequently:
(b) For all formulas A and B, if |= A and |= A→ B, then |= B. In other words:
for all formulas A and B, if |= A→ B, then if (in addition) |= A, then |= B.
(c) However, not for all formulas A and B, if (if |= A, then |= B), then |= A→ B.

Proof. (a) follows immediately from the truth table for→.
From (a) follows: if A is 1 in all lines and A→ B is 1 in all lines of the truth table,
then B is 1 in all lines of the truth table. In other words, if |= A and |= A→ B, then
|= B. This proves (b).
(c) ‘if |= A, then |= B’ means: if A is 1 in all lines of the truth table, then B is 1 in
all lines of the truth table (*). |= A→ B means: in every line in which A is 1, B must
be 1 too. Notice that this does not follow from (*). For suppose that A is 1 in some
line of the truth table, we do not know whether A is 1 in all lines of its truth table. In
fact, there are formulas A and B such that ‘if |= A, then |= B’ holds, while |= A→ B
does not hold. For example, take A = P1 (it is cold) and B = P2 (it is snowing). Since
�|= P1 (not always it is cold) and �|= P2 (not always it is snowing), ‘if |= P1, then |= P2’
holds, while |= P1 → P2 (always if it is cold, then it is snowing) does not hold. ��
Theorem 2.12. (a) For all formulas A, if |= ¬A, then not |= A.
However, the converse does not hold:
(b) Not for all formulas A, if not |= A, then |= ¬A.

Proof. (a) Suppose |= ¬A, i.e., ¬A is 1 in all lines of its truth table. Equivalently: A
is 0 in all lines of its truth table. So, for sure, it is not the case that A is 1 in all lines
of its truth table, i.e., not |= A.
(b) ‘Not |= A’ means that not in all lines of its truth table A is 1, in other words, A is
0 in some line of its truth table. This does not mean that |= ¬A, or equivalently, that
A is 0 in all lines of its truth table. In fact, there are formulas A such that not |= A,
while |= ¬A does not hold. For instance, take A = P1 (it is raining). Then not |= P1

(not always it is raining), while |= ¬P1 (always it is not raining; it never rains) does
not hold. ��
Warning One might be inclined to write: for all formulas A, if not |= A, then not
|= ¬A. However, this is false. For instance, taking A = P1∧¬P1 we have
not |= P1∧¬P1, but also |= ¬(P1∧¬P1). The expression
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if not |= A, then |= ¬A (*)

does hold for some formulas, for instance, for A = P1∧¬P1, but it does not hold for
other formulas, for instance, not for A = P1.

A formula that refutes (*) is called a counterexample to the statement (*). So, P1

is a counterexample to (*).

Theorem 2.13. (a) For all formulas A and B, if |= A or |= B, then |= A∨B.
However, the converse does not hold:
(b) Not for all formulas A and B, if |= A∨B, then |= A or |= B.

Proof. (a) Suppose |= A or |= B. Consider the case that |= A, i.e., A is 1 in all lines of
its truth table. Then clearly, also A∨B is 1 in all lines of its truth table, i.e., |= A∨B.
The case that |= B is treated similarly.
(b) |= A∨B means: A∨B is 1 in all lines of its truth table, i.e., in each line of the
truth table A is 1 or B is 1. So, there might be lines in which A is 1 and B is 0,
while there might be other lines in which A is 0 and B is 1. So, this does not mean
that A is 1 in all lines, i.e., |= A, nor that B is 1 in all lines, i.e., |= B. In fact, there
are formulas A and B, such that |= A∨B, while neither |= A nor |= B. For instance,
take A = P1 (it is raining) and B = ¬P1. Then |= P1 ∨¬P1 (always it is raining or
not raining), while neither |= P1 (always it is raining), nor |= ¬P1 (always it is not
raining; it never rains). ��
Warning One might be inclined to write: for all formulas A and B, if |= A∨B, then
not |= A and not |= B. However, this is false. For instance, take A = P1 → P1 and B
arbitrary, then |= (P1 → P1)∨B, but also |= P1 → P1 holds. The expression

if |= A∨B, then |= A or |= B (*)

does hold for some formulas, for instance, for A = P1 → P1 and B arbitrary, but
it does not hold for other formulas, for instance, not for A = P1 and B = ¬P1. So,
A = P1 and B = ¬P1 is a counterexample to the statement (*).

Notice that, for instance, A = P and B = Q with P,Q atomic, is not a counterex-
ample against (*), because such a counterexample should consist of formulas A and
B such that ‘|= A∨B’ does hold, while ‘|= A or |= B’ does not hold; and |= P∨Q is
not the case.

Theorem 2.14. For all formulas A and B, |= A∧B if and only if |= A and |= B.

Proof. |= A∧B means: in all lines of its truth table, A∧B is 1, i.e., in all lines, A is
1 and B is 1. This is equivalent to: in all lines A is 1 and in all lines B is 1, i.e., |= A
and |= B. ��
In order to be able to formulate the replacement theorem, we first have to define the
notion of subformula.

Definition 2.7 (Subformula). 1. If A is a formula, then A is a subformula of A.
2. If A and B are formulas, the subformulas of A and the subformulas of B are
subformulas of A � B, A→ B, A∧B, and A∨B.
3. If A is a formula, then the subformulas of A are subformulas of ¬A.
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Example 2.6. The subformulas of ¬P∨Q → (P → ¬P∨Q) are: ¬P∨Q → (P →
¬P∨Q), ¬P∨Q, P→¬P∨Q, ¬P, Q and P. Notice that P∨Q is not a subformula
of ¬P∨Q→ (P→¬P∨Q).

Theorem 2.15 (Replacement theorem). Let CA be a formula containing A as a
subformula, and let CB come from CA by replacing the subformula A by formula B.
If A and B have the same truth table, then CA and CB have the same truth table too.

Proof. Assume A and B have the same table. If, in the computation of a given line of
the table for CA, we replace the computation of the specified part A by a computation
of B instead, the outcome will be unchanged. Thus, CB has the same table as CA. ��
Corollary 2.1 (Replacement rule). If |=CA and A and B have the same table, then
|=CB.

Warning: do not confuse object- and meta-language The reader should realize
that the symbol ‘|=’ does not occur in the alphabet of the propositional calculus and
that consequently any expression containing |= is not a formula. ‘|=A’ is a statement
about formula A, saying that A is valid, i.e., A is 1 in all lines of its truth table
(always true). ‘A’ stands for a formula in the object-language, i.e., the language of
propositional logic, but ‘|= A’ is an expression in the meta-language about formula
A, saying that A is always true.
|= A � B means |= (A � B); it cannot mean (|= A)� B, because ‘|= A’ belongs

to the meta-language, while ‘�’ and ‘B’ belong to the object language. So, ‘|=’
stands outside every formula.

Because ‘|= ¬A’ is an expression of the meta-language and ‘→’ is a symbol of
the object language, we are not allowed to write ‘if |=¬A, then not |= A’ in Theorem
2.12 as ‘|= ¬A→¬ |= A’; ‘→’ should connect formulas and ‘|= ¬A’ and ‘not |= A’
are not formulas.

We can compare ‘|= A’ with for instance ”’Jean est malade’ is a short sentence”.
This is not a sentence in French (the object language), but a statement in English (the
meta-language) about a sentence (’Jean est malade’, ’A’) of the object language.

Below we have listed a number of expressions on the left hand side and the
language they belong to on the right hand side.

P∧¬P: Formula of the object-language.
|= P∧¬P: Statement in the meta-language about the formula P∧¬P.

‘ |= P∧¬P’ is false: Statement in the meta-meta-language about |= P∧¬P.
Because our meta-language is a natural language (English), the meta-meta-

language coincides with the meta-language itself.

Exercise 2.24. Show that for all formulas A and B,
1) if |= A � (A→ B), then |= A and |= B;
2) if A |= ¬A, then |= ¬A.
3) if A→ B |= A, then |= A.

Exercise 2.25. Prove or refute: for all formulas A and B,
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a) if not |= A→ B, then |= A and |= ¬B. b) if |= ¬(A→ B), then |= A and |= ¬B.
c) if not |= A∧B, then |= ¬A or |= ¬B. d) if |= ¬(A∧B), then |= ¬A or |= ¬B.
e) if not |= A∨B, then |= ¬A and |= ¬B. f) if |= ¬(A∨B), then |= ¬A and |= ¬B.

Exercise 2.26. Establish the following.
(a1) A1,A2,A3 |= A1, A1,A2,A3 |= A2, A1,A2,A3 |= A3.
(a2) More generally: A1, . . . ,Ai, . . . ,An |= Ai for i = 1, . . . ,n.
(b1) If A1,A2,A3 |= B1 and A1,A2,A3 |= B2 and B1,B2 |=C, then A1,A2,A3 |=C.
(b2) More generally, for any n,k≥ 0: if A1, . . . ,An |= B1 and . . . and A1, . . . ,An |= Bk

and B1, . . . ,Bk |=C, then A1, . . . ,An |=C.

Exercise 2.27. Show directly from the definition of valid consequence:
1) if A |= B and A |= ¬B, then |= ¬A. (Reductio ad absurdum)
2) if A |=C and B |=C, then A∨B |=C. (Proof by cases)

Exercise 2.28. Which of the following statements are right and which are wrong,
and why is that the case? For all formulas A,B,C,
(a) A→ B∨C |= (A→ B)∨ (A→C).
(b) if |= (A→ B)∨ (A→C), then |= A→ B or |= A→C.
(c) if A |= B, then B→C |= A→C.

Exercise 2.29. Prove: if T ∧A∧B |= P, then ¬P |= ¬T ∨¬A∨¬B.
Interpreting T as a Theory, A as Auxiliary hypotheses, B as Background hypotheses
and P as Prediction, this is actually the Duhem-Quine thesis. In 1906 Pierre Duhem
argued that the falsification of a theory is necessarily ambiguous and therefore that
there are no crucial experiments; one can never be sure that it is a given theory rather
than auxiliary or background hypotheses which experiment has falsified. [See S.C.
Harding, [11], Can theories be refuted? p. IX.]

Exercise 2.30. Prove or refute: for all formulas A, B and C,
a) if A |= B, then ¬B |= ¬A.
b) if A |= B and A, B |=C, then A |=C.
c) if A∨B |= A∧B, then A and B have the same truth table.

2.5 About Truthfunctional Connectives

One may wonder if the object-language of propositional logic may be enriched by
adding some new truthfunctional connectives, for instance, the connective ↑, called
the Sheffer stroke, to be read as ‘neither . . ., nor . . .’ and defined by the following
truth table.

A B A ↑ B
1 1 0
1 0 0
0 1 0
0 0 1
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In this case we see immediately that ↑ may be defined in terms of ¬ and ∧:
A ↑ B has the same truth table as ¬A∧¬B. But maybe there are other binary (i.e.,
with two arguments A and B) truthfunctional connectives which cannot be defined
in terms of the ones we already have: �,→, ∧, ∨ and ¬.

Now it is easy to see that there are 24 = 16 possible binary truthfunctional con-
nectives, each of them corresponding with a table of length 4:

A B . . .

1 1 1 1 . . . 0 0
1 0 1 1 . . . 0 0
0 1 1 1 . . . 0 0
0 0 1 0 . . . 1 0

It is not difficult to see that each of these 16 truthfunctional connectives may be
expressed in terms of ∧, ∨ and ¬. Consider, for instance, the three truthfunctional
connectives corresponding with the following truth tables:

A B A B A B
1 1 0 1 1 0 1 1 0
1 0 1 1 0 0 1 0 1
0 1 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0

The left truth table is precisely the table of A∧¬B, the truth table in the middle is
precisely the table of ¬A∧B, and the right truth table is precisely the truth table of
(A∧¬B) ∨ (¬A∧B). So, the following Theorem is evident:

Theorem 2.16. Each binary (i.e., having two arguments A and B) truthfunctional
connective may be expressed in terms of ∧, ∨ and ¬.

We say that the set {∧, ∨, ¬} is a complete set of truthfunctional connectives: each
binary truthfunctional connective may be expressed in terms of these three connec-
tives. We have already seen earlier that→ and � can be expressed in terms of ∧, ∨
and ¬: A→ B has the same truth table as ¬A∨B, and also as ¬(A∧¬B); and A � B
has the same truth table as (A→ B)∧ (B→ A).

Theorem 2.16 can easily be generalized to truth tables entered from more than
two formulas. Consider, for instance, the truth table below entered from three atomic
formulas P, Q and R:

P Q R
1 1 1 0
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0
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The formula corresponding with this table is clearly: (P∧Q∧¬R)∨ (¬P∧Q∧R).
More generally, we see that for every formula A there is a formula A′ which is a
disjunction of conjunctions of literals, i.e., atomic formulas or negations of atomic
formulas, such that A and A′ have the same truth table. We shall say that A′ is in
disjunctive normal form. By applying the de Morgan’s laws (Theorem 2.10), we
may conclude that for every formula A there is also a formula A′′ in conjunctive
normal form, i.e., which is a conjunction of disjunctions of literals, and which has
the same truth table as A. See Theorem 2.18.

Next we shall show that each truthfunctional connective may be expressed in terms
of only one connective: the Sheffer stroke ↑.
Theorem 2.17. Every binary truthfunctional connective may be expressed in terms
of the Sheffer stroke ↑.
Proof. In order to prove this, by Theorem 2.16 it suffices to prove that ∧, ∨ and ¬
may be expressed in terms of the Sheffer stroke ↑.
a) ¬A has the same truth table as ¬A∧¬A, and hence as A ↑ A (neither A, nor A).
b) A∧B has the same truth table as ¬(¬A)∧¬(¬B), hence as ¬A ↑ ¬B (neither ¬A,

nor ¬B) and therefore as (A ↑ A) ↑ (B ↑ B).
c) A∨B has the same truth table as ¬(¬A∧¬B), hence as ¬(A ↑ B) and therefore

as (A ↑ B) ↑ (A ↑ B). ��

2.5.1 Applications in Electrical Engineering and in Jurisdiction

There are many situations in which there are two opposites analogous to the case of
truth and falsity of propositions. For example, in electrical engineering: on (lit, 1)
and off (unlit, 0); and in jurisdiction: innocent and guilty. In all such situations one
can work with truth tables in a similar way as in propositional logic.

Suppose we have two switches A and B, both with a 0- and a 1- position, a bulb
and a battery and that we want the bulb to burn (1, lit) precisely if both switches are
in the 1-position. So, the corresponding table is the one for A∧B:

switch A switch B bulb
1 1 1
1 0 0
0 1 0
0 0 0

The following electric circuit will satisfy our wishes.

�

� �

�
A.

0. .0

.B

11

∧−circuit
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If we want the bulb to burn if at least one of the two switches A and B is in the
1-position, then we find a table corresponding with the one for A∨B and the corre-
sponding electric circuit is as follows.

B.

A.
0.

0.

1.

1.

∨−circuit

�
�

�
�

And if we want the bulb to burn if switch A is in the 0-position, then we find a
table corresponding with the one for ¬A and the corresponding electric circuit is the
following one.

�
�

1.

0.
A.

¬−circuit

Theorem 2.16 formulated in terms of electric circuits now tells us that each elec-
tric circuit can be built from the electric circuits for ∧, ∨ and ¬, and the proof of
Theorem 2.16 provides us with a uniform method to build any circuit we want from
the circuits for ∧, ∨ and ¬. We shall consider some examples below. However, the
circuits resulting from our uniform method in the proof of Theorem 2.16 will not al-
ways be the simplest ones and for economic reasons one may in practice use circuits
other than the ones found by this uniform method.

Example 2.7. Suppose we want our bulb to burn in all cases except one: if switch
A is in position 1 and switch B is in position 0. So the corresponding table is the
following one.

switch A switch B bulb
1 1 1
1 0 0
0 1 1
0 0 1

We see that this table corresponds with the one for A→ B. The proof of Theorem
2.16 tells us that the circuit corresponding with (A∧B)∨ (¬A∧ B)∨ (¬A∧¬B)
will satisfy our wishes. However, a much simpler, and hence less expensive circuit,
doing the same job, can be found if we realize that A→ B has the same truth table
as (¬A)∨B. So in order to achieve our purpose, we can take the ∨-circuit described
above with instead of switch A the circuit for ¬A.
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�
�

0.
1.
�
�

B.

A.
0.

1. →−circuit

Example 2.8. Suppose we want to build a two-way switch: a switch A at the foot of
the stairs and a switch B at the top of the stairs such that we can turn the light on and
off both at the foot and at the top of the stairs by changing the nearest switch over
into another position.

A

B

We can achieve our purpose by making the electric circuit such that the light is on
when both switches are in the same position and off when both are in a different
position. The corresponding table is the following one.

switch A switch B light
1 1 1
1 0 0
0 1 0
0 0 1

This table corresponds with the one for A�B. Applying the proof of Theorem 2.16,
we shall find that the circuit corresponding with (A∧B)∨(¬A∧¬B) will satisfy our
requirements. So we can take the C∨D-circuit described above with the circuit for
A∧B instead of switch C and the circuit for ¬A∧¬B instead of switch D. And this
latter circuit is obtained by replacing in the E ∧F-circuit described above switch E
by the circuit for ¬A and switch F by the circuit for ¬B.

�
� �

�
.00.

A.

1. .1

B.

¬A∧¬B

A∧B

�−circuit

For an application of truth tables in jurisdiction we refer the reader to Exercise 2.31.

2.5.2 Normal Form∗; Logic Programming∗

Definition 2.8 (Normal form). A literal is by definition an atomic formula or the
negation of an atomic formula.
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A formula B is in disjunctive normal form if it is a disjunction B1 ∨ . . .∨Bk of
formulas, where each Bi (1≤ i≤ k) is a conjunction L1∧ . . .∧Ln of literals.

A formula B is in conjunctive normal form if it is a conjunction B1∧ . . .∧Bk of
formulas, where each Bi (1≤ i≤ k) is a disjunction L1∨ . . .∨Ln of literals.

Example 2.9. So, P2 and ¬P1 are examples of literals. (¬P1∧P2)∨¬P3 is a formula
in disjunctive normal form, and (¬P1∨¬P3)∧(P2∨¬P3) is a formula in conjunctive
normal form.

Theorem 2.18 (Normal form theorem). For each formula A (of classical proposi-
tional logic) there are formulas A′ and A′′ in disjunctive or conjunctive normal form
respectively, which have the same truth table as A. In other words, each formula A of
classical propositional logic may be written in disjunctive, respectively, conjunctive,
normal form.

Proof. We will use the induction principle (Theorem 2.2) to show that every formula
A has the property Φ: there are formulas A′ and A′′ in disjunctive or conjunctive
normal form respectively, which have the same truth table as A. Since all truth-
functional connectives can be expressed in terms of¬, ∧ and ∨, we may assume that
all formulas are built from atomic formulas by means of these three connectives.

1. If A is an atomic formula P, then A = P itself is both in disjunctive and in con-
junctive normal form.

2. Suppose A = ¬B and (induction hypothesis) that there are formulas B′ and B′′
which are in disjunctive or conjunctive normal form respectively, and which are
equivalent to B. Then A = ¬B has the same truth table as ¬B′, which by the De
Morgan’s laws, Theorem 2.10, 17, can be rewritten as a conjunction of disjunc-
tions of literals. And A = ¬B has the same truth table as ¬B′′, which by the De
Morgan’s laws, Theorem 2.10, 17, can be rewritten as a disjunction of conjunc-
tions of literals.

3. Suppose A = B∧C and (induction hypothesis) that there are formulas B′, C′ and
formulas B′′, C′′ which are in disjunctive or conjunctive normal form respectively
and which are equivalent to B, respectively C. Then A = B∧C has the same truth
table as B′′ ∧C′′, which is again a conjunction of disjunctions of literals. And
A = B∧C has the same truth table as B′ ∧C′, which by the distributive laws,
Theorem 2.10, 22 and 23, can be rewritten in disjunctive normal form.

4. Suppose A = B∨C and (induction hypothesis) that there are formulas B′, C′ and
formulas B′′, C′′ which are in disjunctive or conjunctive normal form respectively
and which are equivalent to B, respectively C. Then A = B∨C has the same truth
table as B′ ∨C′, which is again a disjunction of conjunctions of literals. And
A = B∨C has the same truth table as B′′ ∨C′′, which by the distributive laws,
Theorem 2.10, 22 and 23, can be rewritten as a conjunction of disjunctions of
literals.

Example 2.10. A = P→¬(¬Q∨P) has the same truth table as, subsequently, ¬P∨
¬(¬Q∨P), ¬P∨ (¬¬Q∧¬P), ¬P∨ (Q∧¬P), which is in disjunctive normal form,
and (¬P∨Q)∧ (¬P∨¬P), which is in conjunctive normal form.
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Knowledge Representation and Logic Programming The language of logic may
be used to represent knowledge. For instance, suppose a person has the following
knowledge at his disposal:
(1) John buys the book if it is about logic and interesting.
(2) The book is about logic.
(3) The book is interesting if it is about logic.
Using P to represent ’John buys the book’,

Q to represent ’the book is about logic’, and
R to represent ’the book is interesting’,

the person’s knowledge can be represented by the following logical formulas:
(1a) Q∧R→ P,
(2a) Q,
(3a) Q→ R.

In the programming language Prolog (Programming in Logic), which will be
treated in Chapter 9, these formulas are rendered as follows:
(1b) P :- Q, R. (to be read as: P if Q and R)
(2b) Q.
(3b) R :- Q. (to be read as: R if Q)

(1b) and (3b) are called rules and (2b) is called a fact. Using logical reasoning
‘new’ knowledge can be deduced from the knowledge already available. For in-
stance, from (2a) and (3a) follows R (4a), and from (2a), (4a) and (1a) follows P,
i.e., ‘John buys the book’.

(1b), (2b) and (3b) together can be considered to form a knowledge base from
which new knowledge can be obtained by logical reasoning or deduction.

The programming language Prolog, to be treated in Chapter 9, has a built in
logical inference mechanism. When provided with the database consisting of (1b),
(2b) and (3b), Prolog will answer the question ‘?- P.’ with ’yes’, corresponding to
the fact that P is a logical consequence of (1b), (2b) and (3b).

The following definition introduces some terminology which is used in logic
programming and which is needed in Chapter 9.

Definition 2.9 (Literal). a) A positive literal is an atomic formula. A negative literal
is the negation of an atomic formula.
b) A clause is a formula of the form L1∨ . . .∨Lm, where each Li is a literal.

Because clauses are so common in logic programming, it will be convenient to adopt
a special clausal notation. In logic programming the clause ¬P1 ∨ . . .∨¬Pk ∨Q1 ∨
. . .∨Qn, where P1, . . . ,Pk,Q1, . . . ,Qn are atomic, is denoted by

Q1, . . . ,Qn :- P1, . . . ,Pk (k≥ 0).

which stands for P1 ∧ . . .∧Pk → Q1 ∨ . . .∨Qn, which has the same truth table as
¬P1∨ . . .∨¬Pk∨Q1∨ . . .∨Qn.

Theorem 2.18 says that each formula of (classical) propositional logic may be
written as a finite conjunction of clauses.

For reasons of efficiency, to be explained in Chapter 9, in Prolog only Horn
clauses are used, i.e., clauses which contain at most one positive literal, in other
words, which are of the form Q :- P1, . . . ,Pk or of the form :- P1, . . . ,Pk.
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(1b), (2b) and (3b) above are examples of Horn-clauses. Q1, Q2 :- P1, P2, P3. or
equivalently P1∧P2∧P3 →Q1∨Q2, is not a Horn clause.

Definition 2.10 (Horn clause).

a) A definite program clause is a clause of the form

Q :- P1, . . . ,Pk (k≥ 0, P1, . . . ,Pk,Q atomic)

which contains precisely one atomic formula (viz. Q) in its consequent. Q is
called the head and P1, . . . ,Pk is called the body of the program clause.

b) A unit clause, also called a fact, is a clause of the form

Q :-

that is, a definite program clause with an empty body.
c) A definite program is a finite set of definite program clauses.
d) A definite goal is a clause of the form

:- P1, . . . ,Pk

that is, a clause which has an empty consequent. Each Pi (i = 1, . . . ,k) is called a
subgoal of the goal.

e) A Horn clause is a clause which is either a definite program clause or a definite
goal. So, a Horn clause is a clause with at most one positive literal.

Example 2.11. The following is an example of a definite program:
P :- Q, R.
Q :-.
R :- Q.

This program corresponds with the formula (P∨¬Q∨¬R)∧Q∧(R∨¬Q), which is
in conjunctive normal form, and where each conjunct contains precisely one positive
literal (and hence is a Horn clause). Note that this formula has the same truth table
as (Q∧R→ P)∧Q∧ (Q→ R).

Given this program, in logic programming the goal ‘:- P.’ will be answered with
‘yes’, corresponding with the fact that P logically follows from (P∨¬Q∨¬R)∧
Q∧ (R∨¬Q).

The goal ‘:- S’ will be answered with ‘no’, corresponding with the fact that S
does not logically follow from the given program.

Logic programming in general and Prolog in particular will be treated in Chapter 9.
However, this treatment also presupposes familiarity with classical predicate logic,
which will be treated in Chapter 4.

2.5.3 Travelling Salesman Problem (TSP)∗; NP-completeness∗

The Traveling Salesman Problem is the problem of computing the shortest itinerary,
when a number, n, of cities with given distances has to be visited, each city to be
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visited only once. From a theoretical point of view there is no problem at all: if there
are n cities to be visited, there are (n− 1)! itineraries; compute the total distance of
each of them and take the shortest. However, from a practical point of view there
are problems: if 10 cities are to be visited, there are 9! = 362,880 itineraries; and if
a sales-representative has to visit 30 cities, there are 29! itineraries and 29! is larger
than 1029. Supposing that a computer could calculate the distances of 1000 = 103

itineraries per second, in one human lifetime it could compute about 100 (years) ×
365 (days) × 24 (hours)× 60 (minutes) × 60 (seconds) × 103 (itineraries) ≈ 1013

itineraries. So, in order to compute the distances of 29! itineraries, our computer
would need more than 1029 / 1013 = 1016 human lifetimes! Thus, like the validity
problem for formulas of propositional logic, also the Travelling Salesman Problem
is solvable in theory, but no realistic solution is known.

We will see below how the following Traveling Salesman Problem can be reduced
to a satisfiability problem in the propositional calculus. In the map, the vertices are
towns and the lines are roads, each 10 miles long. This example is from A. Keith
Austin [1].
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PROBLEM: Can the salesman start at 1 and visit all the towns in a journey of only
70 miles?

Theorem 2.19. There is a formula E of the propositional calculus such that there is
a journey of only 70 miles starting at 1 if and only if E is satisfiable.

CONSTRUCTION of E: To express the problem in propositional logic, we intro-
duce the atomic formulas Pm

t , for m = 0,1, . . . ,7, t = 1,2, . . . ,8, the intended mean-
ing of Pm

t being: after 10×m miles the salesman is at town t. Given any journey
of 70 miles, each Pm

t is either true or false. We now express the conditions of the
problem as logical formulas.

i) If the salesman is at 5 after 30 miles, then he is at 3 or 4 after 40 miles, i.e., if P3
5

is true, then either P4
3 or P4

4 is true. Let J3
5 := P3

5 → P4
3 ∨P4

4 be the formula in our
propositional language expressing this. Similarly we have Pm

5 → Pm+1
3 ∨Pm+1

4 ,
and Pm

3 → (Pm+1
1 ∨Pm+1

2 ∨Pm+1
5 ∨Pm+1

6 ∨Pm+1
7 ) for m = 0,1, . . . ,6, and so on

for each town. Denote each of these by the corresponding Jx
y . All these have to

be true and so we write

J := J0
1 ∧ J0

2 ∧ . . .∧ J0
8 ∧ J1

1 ∧ J1
2 ∧ . . .∧ J1

8 ∧ . . .∧ J6
8 .
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ii) Another condition is that each town has to be visited. That town 1 has to be
visited can be expressed as P0

1 ∨P1
1 ∨P2

1 ∨ . . .∨ P7
1 and similarly for the other

towns. Let

V := (P0
1 ∨ . . .∨P7

1 )∧ (P0
2 ∨ . . .∨P7

2 )∧ . . .∧ (P0
8 ∨ . . .∨P7

8 ).

iii) Also the salesman is only at one town at any one time, so we have, e.g., P5
3 →

¬P5
1 . Let N5

3 := P5
3 →¬P5

1 ∧¬P5
2 ∧¬P5

4 ∧ . . .∧¬P5
8 . And let

N := N0
1 ∧N0

2 ∧ . . .∧N7
8 .

iv) Finally, he has to start at 1, so we require P0
1 to be true.

Now let E := J∧V ∧N∧P0
1 . Then E has the required property: there is a journey of

only 70 miles starting at 1 if and only if E is satisfiable.

Theorem 2.19 reduces the Traveling Salesman Problem for eight cities to a satisfia-
bility problem in the propositional calculus. However, the formula E constructed in
the proof of Theorem 2.19 is built from 82 = 64 atomic formulas Pm

t . So, in order
to check whether E is satisfiable, we have to compute a truth table entered from
264 lines. We have already seen in Subsection 2.3.1 that making truth tables with
so many entries does not yield a practical or realistic decision method to decide
whether arbitrary formulas are satisfiable or not. Since the original problem can be
solved by computing the distances of (8 - 1)! itineraries, the reduction of the Trav-
eling Salesman Problem to the satisfiability problem for propositional logic has not
helped us to find a practical or realistic solution for the former. We have to wait for
a realistic solution of the satisfiability problem or for a proof that no such solution
exists.

Of course, in order to see whether a given formula E is satisfiable, i.e., has at
least one 1 in its truth table, one might non-deterministically choose a line in the
truth table and compute whether E is 1 in that line. The computation of one line
in the truth table can be done in a realistic way: the time required to do so is a
polynomial of the complexity of the formula in question. If it turns out that E is 1
in the chosen line, one knows that E is satisfiable, but when it turns out that E is 0
in the chosen line, one does not know whether E is satisfiable or not. And we have
seen in Subsection 2.3.1 that it is not realistic to compute all lines in the truth table
of E if E has been built from many, say 64, atomic formulas. For that reason, the
satisfiability problem for propositional calculus is said to belong to the class NP of
all problems which may be decided Non-deterministically in Polynomial time.

In 1971, S. Cook showed that not only the Traveling Salesman Problem, but also
all other problems in the class NP, can be reduced to a satisfiability problem in the
propositional calculus. For that reason the satisfiability problem for propositional
logic is called NP-complete.

Exercise 2.31. [Keisler; appearance in S.C. Kleene [14], p. 67] Brown, Jones and
Smith are suspected of income tax evasion. They testify under oath as follows.
BROWN: Jones is guilty and Smith is innocent.
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JONES: If Brown is guilty, then so is Smith.
SMITH: I’m innocent, but at least one of the others is guilty.
Let B, J, S be the statements ‘Brown is innocent’, ‘Jones is innocent’, ‘Smith is
innocent’, respectively. Express the testimony of each suspect by a formula in our
logical symbolism, and write out the truth tables for these three formulas (in parallel
columns). Now answer the following questions.
a) Are the testimonies of the three suspects consistent, i.e., is the conjunction of
these testimonies consistent?
b) The testimony of one of the suspects follows from that of another. Which from
which?
c) Assuming everybody is innocent, who committed perjury?
d) Assuming everyone’s testimony is true, who is innocent and who is guilty?
e) Assuming that the innocent told the truth and the guilty told lies, who is innocent
and who is guilty?

Exercise 2.32. [W. Ophelders] The football clubs Pro, Quick and Runners play a
football tournament. The trainers of these clubs make the following statements.
Trainer of Pro: If the Runners win the tournament, then Quick does not.
Trainer of Quick: We or the Runners win the tournament.
Trainer of the Runners: We win the tournament.
Express the three statements by formulas in our logical symbolism and write out the
truth tables for these three formulas. Next answer the following questions, supposing
there can be at most one winner.
a) Assuming everyone’s statement is true, which club wins the tournament?
b) Assuming only the trainer of the winning club makes a true statement, which club
wins the tournament?

Exercise 2.33. Find formulas composed from P, Q, R, ∧, ∨ and ¬ only, whose truth
tables have the following value columns:

P Q R (a) (b) (c) (d)
1 1 1 0 1 0 0
1 1 0 0 0 0 1
1 0 1 0 0 0 1
1 0 0 0 0 0 1
0 1 1 1 1 0 1
0 1 0 0 0 0 0
0 0 1 0 1 0 1
0 0 0 0 0 0 1

Exercise 2.34. Let A ↓ B be defined by the following truth table:

A B A ↓ B
1 1 0
1 0 1
0 1 1
0 0 1
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A ↓ B may be read as ‘not A or not B’. Prove that ¬, ∨ and ∧, and hence each of the
16 binary truthfunctional connectives, can be expressed in terms of ↓.
Exercise 2.35. A set of binary truthfunctional connectives is independent iff none
of the members of the set can be expressed in terms of the other members of the set.
i) Show that {∧, ∨, ¬} is not independent.
ii) Show that {∧, ¬}, {∨, ¬} and {→, ¬} are independent and complete sets of
truthfunctional binary connectives.

Exercise 2.36. Show that there are only two binary connectives, namely, ↑ (the
Sheffer stroke) and ↓ (see Exercise 2.34) such that every binary truthfunctional con-
nective can be expressed in it.

Exercise 2.37. Construct formulas in conjunctive normal form which have the same
truth table as the following formulas:
i) (P→ (Q→ P))∧ (P→ Q∨P)
ii) (P→¬(Q→ P))∧ (P→Q∧P)
iii) (P→¬(Q→ P))∨ (P→Q∧P)

2.6 Syntax: Provability and Deducibility

By now it will be clear that there are a great many, in fact even infinitely many, valid
formulas. And given premisses A1, . . . ,An, there are infinitely many valid conse-
quences of those premisses. The question now arises whether it is possible to select
a few valid formulas, to be called logical axioms, together with certain rules – which
applied to valid formulas produce (or generate) new valid formulas – such that any
valid formula can be obtained (or generated) by a finite number of applications of
the given rules to the selected logical axioms. This question can be answered pos-
itively, which means that in a certain sense we have reduced the big collection of
valid formulas to a surveyable subset: any formula in the big collection of valid
formulas can be generated by the given rules from formulas in the subset.

There are several possibilities for choosing the logical axioms and rules such that
the desired goal is accomplished. In this section one of them is presented, namely,
a system for propositional logic developed by Frege, and adapted by Russell and
Hilbert. Henceforth, we shall speak of a Hilbert-type system. In Section 2.8 two
other, more recent, systems will be treated which achieve the same goal.

One may design production methods satisfying the following two conditions:
(I) the production method produces in the course of time only formulas which

are valid, and, more generally,
(II) the production method if applied to certain formulas given as premisses, only

produces formulas which are a valid consequence of those premisses.

There are in fact many such production methods, each of them consisting of (i) a set
of valid formulas, and (ii) a set of rules of inference. One such production method
satisfying (I) and (II) can be obtained by taking:
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(i) All formulas of any of the forms A→ (B→ A) and
(A→ B)→ ((A→ (B→C))→ (A→C));

We have seen in Theorem 2.7, 1 and 2, that such formulas are valid. We call these
formulas (logical) axioms for the connective→.

(ii) As the sole rule of inference, called the →-rule or Modus Ponens (MP),
we take the operation of passing from two formulas of the respective forms D and
D→ E to the formula E , for any choice of formulas D and E .

Modus Ponens (MP):
D D→ E

E

In an inference by this rule, the formulas D and D→ E are the premisses, and E is
the conclusion. The following statements can easily be checked:

(α) Any interpretation that makes the premisses of the rule true, also makes the
conclusion of the rule true. For our particular rule MP: for any interpretation i, if
i(D) = 1 and i(D→ E) = 1, then i(E) = 1, and consequently

(β ) If all premisses of the rule are valid, then also the conclusion of the rule is
valid. For our particular rule MP: if |= D and |= D→ E , then |= E (Theorem 2.11).
Our rule of inference may be applied zero, one, two or more times to formulas of
the form mentioned in (i) or to formulas which we have already generated earlier.

Example 2.12. This production method yields, among other things, the following
formulas for any choice of the formula A:

1. A→ (A→ A) This is a formula of the form A→ (B→ A), taking B = A.
2. (A→ (A→ A))→ ((A→ ((A→ A)→ A))→ (A→ A)) This is a formula of the

form (A→ B)→ ((A→ (B→C))→ (A→C)), taking B = A→ A and C = A.
3. (A→ ((A→ A)→ A))→ (A→ A) This formula is obtained by an application of

Modus Ponens to 1 and 2.
4. A→ ((A→A)→A) This formula is of the form A→ (B→A), taking B=A→A.
5. A→ A This formula is obtained by an application of Modus Ponens to 3 and 4.

Schematically:

MP
A→ A

(A→ ((A→ A)→ A))→ (A→ A)

(A→ (A→ A))→ ((A→ ((A→ A)→ A))→ (A→ A))
MP

A→ (A→ A)

A→ ((A→ A)→ A)

This schema is called a (logical, Hilbert-type) proof of the formula A→A and A→A
is called (logically) provable, because there exists such a schema using only logical
axioms and Modus Ponens. Note that each of the formulas in this schema, and A→A
in particular, is produced by our production method and that each of these formulas
is valid, since we started with valid formulas and since Modus Ponens applied to
valid formulas only yields formulas which are valid (Theorem 2.11 or (β ) above).

Example 2.13. The production method described above applied to the formulas A→
B and B→C, for instance, yields the following formulas:
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1. A→ B This formula is a given premiss.
2. (A → B)→ ((A → (B → C))→ (A → C)) This formula is of the appropriate

form.
3. (A→ (B→C))→ (A→C) Obtained by applying Modus Ponens to 1 and 2.
4. B→C This formula is a given premiss.
5. (B→C)→ (A→ (B→C)) This is a formula of the form A→ (B→ A), taking

A = B→C and B = A.
6. A→ (B→C) This formula is obtained by applying Modus Ponens to 4 and 5.
7. A→C This formula is obtained by an application of Modus Ponens to 6 and 3.

Schematically: premiss axiom 2
A→ B (A→ B)→ ((A→ (B→C))→ (A→C))

(A→ (B→C))→ (A→C)
premiss axiom 1
B→C (B→C)→ (A→ (B→C))

A→ (B→C)
A→C

This schema is called a (logical, Hilbert-type) deduction of A → C from the pre-
misses A → B and B → C and A → C is said to be deducible from the premisses
A→ B and B→C, using only these premisses, logical axioms and Modus Ponens.
Note that each of the formulas in this schema, and A→C in particular, is produced
by our production method applied to the premisses A→ B and B→C, and that each
of these formulas is a valid consequence of the premisses A→ B and B→C, since
we started with valid formulas, the premisses A→ B and B→C only, and because
of (α) above.

It will be clear now that any production method, consisting of (i) a set of valid
formulas and (ii) a set of rules of inference satisfying (α) and (β ), will satisfy the
conditions (I) and (II), mentioned in the beginning of this section.

One can prove (see Exercise 2.44) that Peirce’s law, ((A→ B)→ A)→ A, although
it contains only the connective→, is not generated by the production method con-
sisting of the two logical axioms for→ and Modus Ponens. This raises the question
whether there is a complete production method satisfying I and II, i.e., a production
method which in the course of time generates all valid formulas and, more gener-
ally, which generates, if applied to certain formulas, given as premisses, all valid
consequences of those premisses. The answer to this question is affirmative. In Sec-
tion 2.9 we shall prove that the production method consisting of all formulas of any
of the forms shown after the symbol |= in Theorem 2.7, and of the sole rule of infer-
ence, Modus Ponens, is complete. For convenience these formulas are again listed
below and will be called (logical) axioms for (classical) propositional logic.

1. A→ (B→ A)
2. (A→ B)→ ((A→ (B→C))→ (A→C))
3. A→ (B→ A∧B)
4a A∧B→ A
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4b A∧B→ B
5a A→ A∨B
5b B→ A∨B
6. (A→C)→ ((B→C)→ (A∨B→C))
7. (A→ B)→ ((A→¬B)→¬A)
8. ¬¬A→ A
9. (A→ B)→ ((B→ A)→ (A � B))
10a (A � B)→ (A→ B)
10b (A � B)→ (B→ A)

Numbers 1 and 2 concern axioms for the connective →, numbers 3 and 4 concern
axioms for ∧, numbers 5 and 6 concern axioms for ∨, numbers 7 and 8 concern
axioms for ¬ and numbers 9 and 10 concern axioms for �. Notice that in a sense
they describe the typical properties of the connective in question; for instance, the
axioms for ∧ will not hold if we replace ∧ by ∨.

These forms themselves will be called axiom schemata. Each schema includes
infinitely many axioms, one for each choice of the formulas denoted by A, B, C.
For example, corresponding to 1 in Theorem 2.7, we have as Axiom Schema 1:
A→ (B→ A). Particular axioms in this schema are P→ (P→ P), P→ (Q→ P),
Q→ (P→Q), ¬P→ (Q∧R→¬P), (P→ (¬Q→P))→ (R→ (P→ (¬Q→P))),
etc.

The choice of the logical axioms is a subtle matter. For instance, if one would
replace axiom schema 8, ¬¬A → A, by its converse, A → ¬¬A, then the result-
ing system would not be complete, in particular, the resulting system would not be
able to generate Peirce’s law, ((A→ B)→ A)→ A. Also, if one replaces axiom 8,
¬¬A→ A, by ¬A→ (A→ B) one obtains intuitionistic propositional logic, which
is completely different from classical logic; see Chapter 8. Small changes may have
far reaching consequences!

Example 2.14. For illustration, let us show that from the premisses
P→W : I will pay them for fixing our TV [P] only if it works [W ].
¬W : Our TV still does not work.

the logical consequence ¬P (I will not pay) can be generated by using the logical
axioms 1 and 7 and by three applications of Modus Ponens.

prem axiom 1 prem axiom 7
¬W ¬W → (P→¬W ) P→W (P→W )→ ((P→¬W )→¬P)

P→¬W (P→¬W )→¬P
¬P

The schema above is called a (logical, Hilbert-type) deduction of ¬P from the pre-
misses P →W and ¬W and we say that ¬P is (logically) deducible from P →W
and ¬W , meaning that there exists a (logical, Hilbert-type) deduction of ¬P from
P→W and ¬W .

Definition 2.11 (Deduction; Deducible). Let B,A1, . . . ,An be formulas.
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1. A (logical, Hilbert-type) deduction of B from A1, . . . ,An (in classical proposi-
tional logic) is a finite list B1, . . . ,Bk of formulas, such that
(a) B = Bk is the last formula in the list, and
(b) each formula in the list is either one of A1, . . . ,An, or one of the axioms of
propositional logic (see Theorem 2.7), or is obtained by an application of Modus
Ponens to a pair of formulas preceding it in the list.

2. B is deducible from A1, . . . ,An := there exists a (logical, Hilbert-type) deduction
of B from A1, . . . ,An.
Notation: A1, . . . ,An � B, where the symbol �may be read ‘yields’. If there does
not exist a deduction of B from A1, . . . ,An this is written as A1, . . . ,An �� B as
shorthand for: not A1, . . . ,An � B.

3. In case n = 0, i.e., in case there are no premisses, these definitions reduce to:
A (logical, Hilbert-type) proof of B is a finite list of formulas with B as last
formula in the list, such that every formula in the list is either an axiom of propo-
sitional logic or obtained by Modus Ponens to formulas earlier in the list.
B is (logically) provable := there exists a (logical, Hilbert-type) proof of B.
Notation: � B

4. For Γ a (possibly infinite) set of formulas, B is deducible from Γ , if there is a
finite list A1, . . . ,An of formulas in Γ such that A1, . . . ,An � B.
Notation: Γ � B.

Example 2.15. We have seen in Example 2.13 that A→ B, B→C � A→C and in
Example 2.14 that P→W,¬W � ¬P. And also in Example 2.12 that � A→ A.

So, A1, . . . ,An � B, in words: B is deducible from A1, . . . ,An, if and only if there
exists a finite schema of the form

B

E

D→ ED

axiom axiomA1 . . . An

And in case there are no premisses A1, . . . ,An, i.e., n = 0, we say that � B, in words:
B is (logically) provable or deducible.

Example 2.16. Consider the following sequence of formulas:

MP
A∧B→ B

B
MP

C

B→C
MP

A→ (B→C)A
premissMP

A∧B→ AA∧B
premiss 4a

4bpremiss
A∧B
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For each choice of formulas A, B, C, this sequence of formulas is a deduction of C
from A→ (B→C) and A∧B. Hence, C is deducible from A→ (B→C) and A∧B;
i.e., A→ (B→C), A∧B �C.

The notion of logical consequence, A1, . . . ,An |= B, is in terms of the truth or falsity
and hence in terms of the meaning of the formulas involved. Therefore, this notion
of logical consequence is a semantic notion. But the notion of (logical) deducibility,
A1, . . . ,An � B, is in terms of the forms of the formulas involved. One does not have
to know the meaning of the connectives, one only has to distinguish the form of the
formulas involved. Therefore, this notion is a syntactic notion.

In A1, . . . ,An � B one may think of the premisses A1, . . . ,An as being the (non-
logical) axioms of Euclid (± 300 B.C.) for geometry, the axioms of Peano for arith-
metic (see Chapter 5), the axioms of Zermelo - Fraenkel for set theory (see Chapter
3) or the laws of Newton for classical mechanics.

The premisses A1, . . . ,An, formulated in an appropriate formal language, consti-
tute what one calls a (formal) theory: Euclid’s geometry, Peano’s arithmetic, the
set theory of Zermelo - Fraenkel, Newton’s mechanics, and so on. Each science is
continually trying to re-adjust its foundations, as formulated in its premisses. For
instance, Cantor’s naive set theory had to be replaced by the set theory of Zermelo
- Fraenkel (see Chapter 3) and Newton’s (classical) mechanics by Einstein’s theory
of relativity.

Of course, we want that our production method, consisting of the (logical) axioms
for propositional logic and Modus Ponens, is sound, that is, when applied to given
premisses A1, . . . ,An, it should generate only formulas which are a logical (or valid)
consequence of A1, . . . ,An. This is indeed the case, as stated in the following sound-
ness theorem.

Theorem 2.20 (Soundness theorem).
(a): If A1, . . . ,An � B, then A1, . . . ,An |= B, or, equivalently,
(a’) if A1, . . . ,An �|= B, then A1, . . . ,An �� B.
(b): In case n = 0, i.e., there are no premisses: if � B, then |= B.
(c): If Γ � B, then Γ |= B.

Proof. Suppose A1, . . . ,An � B, i.e., there is a finite schema of the form

B

E

D→ ED

A1 . . . An axiom axiom

Note the following:
i) Each axiom of propositional logic has the value 1 in each line of the truth table.
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ii) For all lines of the truth table, given that in an application of Modus Ponens the
premisses D and D→ E have the value 1, the conclusion E has the value 1 as well.

We have to show that A1, . . . ,An |= B. So, suppose that the premisses A1, . . . ,An

are 1 in a given line of the truth table. Then it follows from i) and ii) that, going from
top to bottom in the deduction of B from A1, . . . ,An, every formula in the deduction
has value 1 in the given line. Hence, in particular, B has value 1 in that same line of
the truth table. ��

One may illustrate this proof by a concrete example, for instance, for the case
that A→ (B→C), A∧B �C.

Corollary 2.2 (Simple consistency).
There is no formula B such that both � B and � ¬B.

Proof. Suppose � B and �¬B for some B. Then according to the soundness theorem
2.20, |= B and |= ¬B. Contradiction. ��
We hope that the production method, consisting of the (logical) axioms for propo-
sitional logic and Modus Ponens, is complete, that is, that every valid consequence
of given premisses A1, . . . ,An may be logically) deduced from these premisses. This
is indeed the case, as is stated in the following theorem, which will be proved in
Section 2.9 and in Exercise 2.59.

Theorem 2.21 (Completeness theorem).
(a): If A1, . . . ,An |= B, then A1, . . . ,An � B, or, equivalently,
(a’) if A1, . . . ,An �� B, then A1, . . . ,An �|= B.
(b): In case n = 0, i.e., there are no premisses: if |= B, then � B.
(c): If Γ |= B, then Γ � B.

By the soundness of the axiomatic-deductive system for (classical) propositional
logic we mean that at most certain formulas are provable, namely only those which
are valid; by the completeness we mean that at least certain formulas are provable,
namely, all which are valid. By the end of Section 2.9 we shall have proved the
completeness theorem and hence (combining completeness and soundness) have
shown the following equivalences:

A1, . . . ,An |= B iff A1, . . . ,An � B
Γ |= B iff Γ � B
|= B iff � B

There are a number of arguments underscoring the philosophical meaning of the
completeness theorem, which justify taking the trouble to prove this theorem.

1. The completeness theorem tells us that any correct argument (in the object lan-
guage) has a rational reconstruction which has the standard form described in the
definition of A1, . . . ,An � B. Arguments in science and in daily life usually do not
proceed in the way described in the definition of A1, . . . ,An � B, but according
to the completeness theorem for any such correct argument there is a rational
reconstruction which does.
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2. Note that whether B is deducible from A1, . . . ,An or not only depends on the
form of the formulas A1, . . . ,An and B. Hence, the question whether B is a valid
consequence of A1, . . . ,An or not has been reduced to a question about the form
of the formulas A1, . . . ,An and B.

3. We have defined the intuitive notion of ‘B is a logical consequence of A1, . . . ,An’
in two completely different ways; we have given a semantic definition in terms
of truth values (A1, . . . ,An |= B) and a syntactic one in terms of logical axioms
and the rule Modus Ponens (A1, . . . ,An � B). That these two notions turn out
to be equivalent suggests that our definitions indeed capture the corresponding
intuitive notion.

4. We have given a mathematically precise definition of the intuitive notion of logi-
cal consequence in order to make this notion mathematically manageable, which
is necessary if one wants to prove in a precise way certain statements about this
notion. Now it is safe to assume that

a) if B is intuitively a logical consequence of A1, . . . ,An, then A1, . . . ,An |= B.
According to the completeness theorem,

b) if A1, . . . ,An |= B, then A1, . . . ,An � B.
An analysis of the axioms and rules of propositional logic indicates that

c) if A1, . . . ,An � B, then B is intuitively a logical consequence of A1, . . . ,An.

(a), (b) and (c) show that the intuitive notion of logical consequence and the math-
ematical notions of A1, . . . ,An |= B and of A1, . . . ,An � B coincide extensionally.

5. In Chapter 4 we shall extend the notion of valid or logical consequence and of
(logical) deducibility to (classical) predicate logic. Then we shall prove that these
notions are again equivalent (soundness and completeness). On that occasion we
shall further elaborate on the meaning of the completeness theorem in the case
of predicate logic.

In Example 2.14 we have constructed a logical deduction of ¬P from the premisses
P→W and ¬W , hence, P→W,¬W � ¬P, where P and W were atomic formulas.
More generally, in the same way one can show that for arbitrary formulas A and B,
A→ B,¬B � ¬A. That is, the rule Modus Tollens

A→ B ¬B
¬A

is a derived rule, that from now on may be used in the construction of (logical)
deductions. There are many more derived rules, for instance, see Exercise 2.39.

Exercise 2.38. Translate the following arguments in logical terminology and check
whether the (putative) conclusion is deducible from the premisses. If so, give a de-
duction, using the logical axioms K→ (R→K) and (R→K)→ ((R→¬K)→¬R).
If not, then why not?
a) If it rains [R], then John will not come [¬C]. John will come. Therefore: it does
not rain.
b) Only if it rains [R], John will not come [¬C]. John will come. Therefore: it does
not rain.
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Exercise 2.39. By constructing appropriate deductions, show that
(a) A, A→ B � B (f) B � A∨B
(b) A, B � A∧B (g) ¬¬A � A
(c) A∧B � A (h) A→ B, B→ A � A � B
(d) A∧B � B (i) A � B � A→ B
(e) A � A∨B (j) A � B � B→ A

Hence, from now on, the following derived rules may be used in the construction of
(logical) deductions:

A B A∧B A∧B A B ¬¬A
A∧B A B A∨B A∨B A

Exercise 2.40. Prove that A,¬A � B by using the following axioms:
axiom 1 (a): A→ (¬B→ A) axiom 1 (b): ¬A→ (¬B→¬A)
axiom 7: (¬B→ A)→ ((¬B→¬A)→¬¬B) axiom 8: ¬¬B→ B

Exercise 2.41. By using the soundness theorem show that
(a) not P∨Q � P∧Q, (c) not P � Q,
(b) not P→ Q � Q→ P, (d) not P→Q � P∧Q.

Note that in order to show that A � B, it suffices to exhibit at least one logical de-
duction of B from A; but in order to show that not A � B, one has to prove that no
logical deduction of B from A can exist, in other words, that any deduction is not
a deduction of B from A. In order to prove the latter, it suffices – according to the
soundness theorem – to show that A �|= B.

Exercise 2.42. Prove or refute: P→ Q, P � R∨Q either by giving a deduction of
R∨Q from P→Q en P, using the logical axiom B→ A∨B, or by showing that such
a deduction cannot exist.

Exercise 2.43. Translate the following argument in logical terminology and check
whether the (putative) conclusion is deducible from the premisses. If so, give a de-
duction, using the logical axioms A→ (B→ A), (A→ B)→ ((A→¬B)→¬A) and
¬¬A→ A. If not, why not?
If John succeeds [S], then John works hard [H].
If John is not intelligent [¬I], then John does not succeed.
Therefore: if John is intelligent, then John works hard.

Exercise 2.44. Consider a system of three truth values, 0, 1 and 2, of which 0 is the
only designated truth value, and let the truth table of→ be as follows.

A B A→ B
0 0 0
0 1 1
0 2 2
1 0 0
1 1 0
1 2 2
2 0 0
2 1 0
2 2 0
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Show that for any choice of formulas A,B, C

a) for every interpretation i, i(A→ (B→ A)) = 0,
b) for every interpretation i, i((A→ B)→ ((A→ (B→C))→ (A→C))) = 0,
c) for every interpretation i, if i(A) = 0 and i(A→ B) = 0, then i(B) = 0,
d) for some interpretation i, i(((A→ B)→ A)→ A) �= 0.

Conclude that Peirce’s law, ((A→ B)→ A)→ A, is independent of A→ (B→ A)
and (A→ B)→ ((A→ (B→C))→ (A→C)), in other words, that Peirce’s law is
not generated by the production method consisting of only the two axioms for →
and Modus Ponens.

2.7 Syntax: Meta-logical Results

In this section (logical) proofs and deductions in the object-language will be stud-
ied, using (of necessity) informal proofs and deductions in the meta-language. The
main results are the Deduction theorem, and the Introduction and Elimination rules.
Given premisses A1, . . . ,An and given a formula B, these theorems are crucial in fa-
cilitating the search for a logical deduction of B from A1, . . . ,An, if there is one. Next
Gentzen’s system of Natural Deduction is presented. It is shown that any formula
which is logically provable in this system is also provable in the proof-system of
Section 2.6, and conversely.

In Section 2.6 we defined a (logical) deduction of B from premisses A1, . . . ,An

as being a finite sequence of formulas which satisfies certain conditions. It is im-
portant to realize that whether a given sequence of formulas is a (logical) deduction
or not only depends on the form of the formulas in the sequence. In other words,
whether a given sequence of formulas is a (logical) deduction can be checked me-
chanically; one can write a computer program to check the correctness of a given
putative (logical) deduction. An example is Automath, developed by N.G. de Bruijn
[3] and others at Eindhoven University.

It is also important to distinguish between logical deductions (of formulas) in the
object language and informal proofs of certain statements about logical deductions.
For instance, in Theorem 2.22 (b1) we will prove informally that if A1,A2,A3 �
B1 and A1,A2,A3 � B2 and B1,B2 � C, then A1,A2,A3 � C. This theorem is about
logical proofs and deductions in the object-language; however, the formulation and
the (informal) proof of this theorem are given in the meta-language. Notice that this
Theorem is the syntactic counterpart of Exercise 2.26.

Theorem 2.22.
(a1) A1,A2,A3 � A1, A1,A2,A3 � A2, A1,A2,A3 � A3.
(a2) More generally: A1, . . . ,Ai, . . . ,An � Ai for i = 1, . . . ,n.
(b1) If A1,A2,A3 � B1 and A1,A2,A3 � B2 and B1,B2 �C, then A1,A2,A3 �C.
(b2) More generally, for any n,k ≥ 0: if A1, . . . ,An � B1 and . . . and A1, . . . ,An � Bk

and B1, . . . ,Bk �C, then A1, . . . ,An �C.
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Proof. (a1) For each i,1 ≤ i ≤ 3, Ai itself is a (logical) deduction of Ai from
A1,A2,A3. In the definition of a logical deduction it is not required that all the pre-
misses are actually used; they may be used, but not necessarily so.
(a2) is shown similarly.
(b1)

axiomA3A1,A2 axiomA3A1,A2

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β2)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(β1)

B2B1

C

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(γ)

Assume A1,A2,A3 � B1, A1,A2,A3 � B2 and B1,B2 �C. That is, there are deductions
(β1) and (β2) of B1 and B2 respectively, from A1,A2,A3 and there is a deduction (γ)
of C from B1,B2. By replacing the premisses B1 and B2 in (γ) by the deductions (β1)
and (β2), we obtain a (logical) deduction of C from A1,A2,A3. Hence, A1,A2,A3 �C.
(b2) is shown similarly. ��
If we take in Theorem 2.22 (b1) B1 = B2 = A3 = A, we obtain the following result.

Corollary 2.3. If A �C, then A1,A2, A � C.
More generally: If A �C, then A1, . . . ,An−1, A � C.

Proof. In the definition of A1, . . . ,An−1, A � C it is not required that each of the
assumption formulas A1, . . . ,An−1 actually occur in the deduction. ��
Theorem 2.22 can be reformulated in set-theoretic terms: let L(A1, . . . ,An), called
the logic of A1, . . . ,An, be the set of all formulas that are deducible from A1, . . . ,An.
Then Theorem 2.22 says that i) for each i,1≤ i≤ n, Ai is in L(A1, . . . ,An), and ii) if
each of B1, . . . ,Bk is in L(A1, . . . ,An) and B1, . . . ,Bk �C, then C is in L(A1, . . . ,An).

Since in Corollary 2.3 the premisses A1, . . . ,An−1 are not relevant to C, Corollary
2.3, which just has been shown for classical logic, does not hold for the so-called
relevance logic; see Section 6.10.

Let us consider the following four expressions:
(i) |= A→ B i.e., A→ B is valid,
(ii) A |= B i.e., B is a valid consequence of A,
(iii) � A→ B i.e., A→ B is (logically) provable,
(iv) A � B i.e., B is (logically) deducible from A.
(i) and (ii) are semantic notions, i.e., they are concerned with the meaning of the
formulas in question; (iii) and (iv) are syntactic notions, i.e., they are concerned
with the form of the formulas in question.

In Theorem 2.4 we have already shown that (i) and (ii) are equivalent. In Theo-
rems 2.23 and 2.24 we will prove that (iii) and (iv) are equivalent.
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In the soundness theorem (Theorem 2.20) we have shown that (iii) implies (i) and
that (iv) implies (ii). The converses of these results, (i) implies (iii) and (ii) implies
(iv), will be shown in Section 2.9.

So, by the end of Section 2.9 we shall have proved that (i), (ii), (iii) and (iv) are
equivalent. But remember that ‘if |= A, then |= B’ is a weaker statement than (ii),
A |= B (see Theorem 2.11). Consequently, ‘if � A, then � B’ is a weaker statement
than (iv), A � B.

Theorem 2.23. (a) If � A→ B, then A � B. (b) More generally, for any n ≥ 1,
if A1, . . . ,An−1 � A→ B, then A1, . . . ,An−1, A � B.

Proof. (b) Suppose A1, . . . ,An−1 � A→ B, i.e., there is a deduction (α) of A→ B
from A1, . . . ,An−1.

B

A→ B
MP

A

axiomAn−1A1
⎫
⎪⎪⎬

⎪⎪⎭

(α)

By adding one more premiss, A, to this deduction and one more application of
Modus Ponens, one obtains a deduction of B from A1, . . . ,An−1, A. ��

2.7.1 Deduction Theorem; Introduction and Elimination Rules

In order to establish an implication ‘if A, then B’, one often assumes A and then con-
tinues to conclude B. The following theorem, called the deduction theorem, which
is the converse of Theorem 2.23, captures this idea in a precise form: in order to
establish that A1, . . . ,An−1 � A→ B, it suffices to show that A1, . . . ,An−1,A � B.

That the deduction theorem is a very useful tool may be seen from the following.
In order to show that � A→ ((A→ B)→ B), it suffices by the deduction theorem
to show that A � (A → B)→ B. Likewise, in order to show the latter statement it
suffices to prove A, A → B � B; and this is very easy (one application of Modus
Ponens suffices), while to show that � A→ ((A→ B)→ B) directly is much more
complicated.

Theorem 2.24 (Deduction theorem, Herbrand 1930).
(a) If A � B, then � A→ B. More generally,
(b) If A1, . . . ,An−1, A � B, then A1, . . . ,An−1 � A→ B.

Proof. (b) Suppose A1, . . . ,An−1, A � B, i.e., there is a (logical) deduction (α) of
B from the premisses A1, . . . ,An−1, A. Below we shall change (α) step by step
into a (logical) deduction (γ) of A → B from A1, . . . ,An−1, hence showing that
A1, . . . ,An−1 � A→ B.
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axiomAA1 An−1

C C→ D
D

B

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(α)

The first step consists in prefixing the symbols A → to each formula occurring in
(α). This results in the schema (β ).

A→ B

A→D

A→ (C→ D)A→C

A→ A1 A→ An−1 A→ A A→ axiom ⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(β )

Although the last formula in (β ) is A→ B, (β ) itself is not a deduction of A → B
from A1, . . . ,An−1 for the following reasons:
(i) (β ) does not start with logical axioms or premisses A1, . . . ,An−1, and (ii)

A→C A→ (C→D)

A→ D

is not an application of Modus Ponens.
However, by inserting appropriate formulas into (β ), one can transform (β ) into

a (logical) deduction (γ) of A→ B from A1, . . . ,An−1 as follows.

1. For 1≤ j ≤ n− 1 replace A→ A j at the top in (β ) by the following:

A j A j → (A→ A j)

A→ A j
MP

axiom 1

2. Replace A→ A at the top in (β ) by the (logical) proof of A→ A, given in Section
2.6.

3. Replace A→ axiom at the top in (β ) by the following:

A→ axiom

axiom→ (A→ axiom)
MP

axiom 1
axiom

4. Replace

A→C A→ (C→ D)

A→D

by the following:
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(A→C)→ ((A→ (C→ D))→ (A→D))

(A→ (C→ D))→ (A→ D)
MP

A→ (C→ D)

A→D

A→C
axiom 2

Each formula of the resulting sequence (γ) either is one of A1, . . . ,An−1 or is a logical
axiom or comes from two preceding formulas in the sequence by Modus Ponens,
and the last formula of the sequence is A→ B. So (γ) is a deduction of A→ B from
A1, . . . ,An−1. ��
In Exercise 2.58 the proof of the deduction theorem is applied to a deduction of
Q∨R from P→ Q and P in order to obtain a deduction of P→ Q∨R from P→ Q.

Example 2.17. In Example 2.16 we have seen that A → (B → C), A∧B � C. By
the deduction theorem it follows that A → (B → C) � A∧B → C. And, again by
the deduction theorem, it also follows that � (A→ (B→ C))→ (A∧B→ C). The
reader would find it a difficult exercise to construct in a direct way (i.e., without
applying the deduction theorem or using its method of proof) a logical proof of
(A→ (B→C))→ (A∧B→C).

In general, it is much easier to show that A1, . . . ,An−1, A � B than to show that
A1, . . . ,An−1 � A→ B. The deduction theorem is a simple way to show the existence
of certain (logical) deductions without having to exhibit those logical deductions
explicitly. It is easy to write down a logical deduction of C from A→ (B→C) and
A∧B; so, A → (B → C), A∧B � C. Then, by two applications of the deduction
theorem, one knows that � (A→ (B→C))→ (A∧B→C), without having to write
down a logical proof of the latter formula, which would be a rather complicated job.
Following the proof of the deduction theorem one is able in principle to exhibit such
a logical proof, but in most cases we are not interested in writing down this (logical)
proof explicitly.

It is possible to derive additional results which make it easy to show that certain
deductions exist without having to write down those deductions explicitly. One re-
sult is called Reductio ad absurdum; it says that in order to deduce ¬A (from Γ ,
where Γ is a finite list of zero or more formulas) it suffices to deduce a contradic-
tion (B and ¬B) from the assumption A (together with Γ ). Another result is called
∨-elimination: in order to deduce C from A∨B (and Γ ), it suffices to deduce C from
A (and Γ ) and to deduce C from B (and Γ ).

The proof system of Section 2.6 contains only one rule, Modus Ponens. How-
ever, many other rules can be derived, for example, the rule called ∧-introduction:
from the two formulas A and B one can deduce the one formula A∧B. This result is
obtained by using the axiom A→ (B→ A∧B) and two applications of Modus Po-
nens. The next theorem contains the results just mentioned and a number of related
similar results.
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Theorem 2.25 (Introduction and Elimination Rules). For any finite list Γ of
(zero or more) formulas, and for any formulas A, B, C:

INTRODUCTION ELIMINATION

→ If Γ , A � B, then Γ � A→ B A, A→ B � B

∧ A, B � A∧B A∧B � A
A∧B � B

∨ A � A∨B If Γ , A �C and Γ , B �C,
B � A∨B then Γ , A∨B �C

¬ If Γ , A � B and Γ , A � ¬B, ¬¬A � A
then Γ � ¬A (double negation elimination)
(reductio ad absurdum) A,¬A � B

(weak negation elimination)

� A→ B, B→ A � A � B A � B � A→ B
A � B � B→ A

Proof. →-introduction is the deduction theorem.

→-elimination, ∧-introduction, ∧-elimination, ∨-introduction, double negation
elimination and the three �-rules are done in Exercise 2.39.

∨-elimination: Suppose Γ , A �C and Γ , B �C. Then by the deduction theorem Γ �
A→C and Γ � B→C. The following schema shows that A→C, B→C, A∨B �C:

MP
A∨B

MP

MP
(A→C)→ ((B→C)→ (A∨B→C))

(B→C)→ (A∨B→C)

A∨B→C

A→C

B→C

axiom 6

C

Hence, Γ , A∨B �C.

Weak negation elimination: Evidently, (1) A, ¬A, ¬B � A, and (2) A, ¬A, ¬B � ¬A.
From (1) and (2) it follows by ¬-introduction that (3) A, ¬A � ¬¬B. And, by double
negation elimination, also (4) ¬¬B � B. From (3) and (4) it follows that A, ¬A � B.
By this rule, from a contradiction A, ¬A, any formula B can be deduced.

¬-introduction (reductio ad absurdum): Suppose Γ , A � B and Γ , A � ¬B. Then by
the deduction theorem Γ � A→B and Γ � A→¬B. Let (α) be a deduction of A→B
from Γ and let (β ) be a deduction of A→¬B from Γ . Then the schema below is a
deduction of ¬A from Γ .
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(A→ B)→ ((A→¬B)→¬A)

(A→¬B)→¬A

¬A

A→¬B

A→ B

ΓΓ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(β )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(α)

axiom 7

MP

MP

��
Exercise 2.45. Show that A∧B→C � A→ (B→C).

Exercise 2.46. Show that � (A→ B)→ (A→ ((B→C)→C)).

Exercise 2.47. Show: if A1, A2 � B, then � A1∧A2 → B.

Exercise 2.48. Show that: If � (A1∧A2)∧A3 → B, then A1,A2,A3 � B.

Exercise 2.49. Prove or refute without making use of the completeness theorem:
If � A→C and � B→C, then A∨B �C. You may make use of the logical axiom
(A→C)→ ((B→C)→ (A∨B→C)).

Exercise 2.50. Using ∨-elimination, show that A∨B, B→C � A∨C.

Exercise 2.51. Use ¬-introduction to show: if A � B, then ¬B � ¬A.

Exercise 2.52. Using ¬-introduction and exercise 2.51, show that � A∨¬A.

Exercise 2.53. Using ∨-elimination,¬-introduction and weak negation elimination,
show that ¬A, ¬B � ¬(A∨B).

Exercise 2.54. Use ¬-introduction to show: if A � ¬A, then � ¬A.

Exercise 2.55. Prove or refute (by means of a counterexample): for all formulas
A,B, if � A∨B, then � A or � B. Carefully specify your arguments.

Exercise 2.56. Prove or refute (by means of a counterexample): for all formulas A,
if not � A, then � ¬A. Carefully specify your arguments and do not use the com-
pleteness theorem.

Exercise 2.57. Prove or refute, carefully specifying your arguments and not making
use of the completeness theorem:
a) If � A→ B, then A � B. b) If � ¬A, then not � A.

Exercise 2.58. Show that ¬A∨B � A→ B. Next show: a) A→ B, ¬(¬A∨B) � ¬¬A
and b) A → B, ¬(¬A∨B) � ¬A. Conclude from a) and b) by ¬-introduction that
A→ B � ¬¬(¬A∨B) and hence A→ B � ¬A∨B.
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Exercise 2.59 (Completeness). In this exercise we shall prove the completeness
theorem for classical propositional logic along the lines of L. Kalmár, 1934-5.

Consider the truth table for a formula E(A,B) built from the formulas A and B.
To each entry (or line) of this truth table a corresponding deducibility relationship
holds, as indicated below:

A B E(A,B)
u1 1 1 u1(E) A, B � E∗1
u2 1 0 u2(E) A, ¬B � E∗2
u3 0 1 u3(E) ¬A, B � E∗3
u4 0 0 u4(E) ¬A, ¬B � E∗4

where E∗i = E if ui(E) = 1 and E∗i = ¬E if ui(E) = 0 (i = 1, 2, 3, 4).

a) Establish the first two deducibility relationships for E = A∧B and the last two
for E = A∨B.
b) Using the result mentioned above prove the completeness theorem for classical
propositional logic: if |= E , then � E .

2.7.2 Natural Deduction∗

Hilbert’s proof system, presented in Section 2.6, has several axiom schemas and
only one rule, Modus Ponens. In his Untersuchungen über das logische Schliessen
G. Gentzen [9] introduced a different, but equivalent, proof system which has sev-
eral rules, but no axioms. This proof system is called Gentzen’s system of Natural
Deduction. Logical proofs in this system are very similar to the informal proofs in
daily reasoning, which makes the search for a logical proof in this system much
easier than in a Hilbert-type proof system. Before the rules are presented some of
them will be discussed and the notation explained.

→-Introduction: Suppose B is derived from the assumption A (and perhaps other

assumptions as well); notation:

A
...
B

Then one can derive A→ B, cancelling the assumption A; notation:

[A]i

...
B

i
A→ B where i is a natural number.

Note that this rule corresponds to the deduction theorem (Theorem 2.24).

¬-Introduction: Suppose a contradiction (B and ¬B) is derived from one or more
assumption formulas among which is A. Notation:
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A
...

B ¬B
Then one can obtain a deduction of ¬A from the assumptions without A. Notation:

[A]i

...
B ¬B

i
¬A

∨-Elimination : Suppose one has a deduction of C from the assumption A and an-
other deduction of the same formula C from the assumption B, where in both cases
other assumptions may be present. Then one can obtain a deduction of C from the
assumption A∨B, cancelling the assumptions A and B. Notation:

[A]i [B]i

...
...

A∨B C C
i

C

Having explained how to read the more complicated rules of natural deduction,
below all Gentzen rules for natural deduction are presented.

GENTZEN’S INTRODUCTION RULES GENTZEN’S ELIMINATION RULES

&I
A B

A∧B
&E

A∧B

A

A∧B

B

∨I
B

A∨BA∨B

A

CC∨E
C

→E
A A→ B

B
→ I

A→ B

[A]

[A]
...

B ¬B

¬A
¬I

w ¬E
A ¬A

B
d ¬E

¬¬A

A
(w = weak) (d = double)

...
...
[B][A]

A∨B

B

...
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The reader should note the analogy with the Introduction and Elimination rules in
Theorem 2.25, but he should also see the difference. For instance, A� A∨B says that
A∨B can be obtained from A and the logical axioms by applying the rule Modus

Ponens a finite number of times, while
A

A∨B
itself is a rule of inference in the

natural deduction system, as Modus Ponens is a rule of inference in the axiomatic

system of Section 2.6. In other words, A � A∨B says that
A

A∨B
is a derived rule of

inference in the axiomatic system of Section 2.6.

Example 2.18. Below are some examples of deductions in Gentzen’s system of Nat-
ural Deduction.

(i) (A→ B)→ ((B→C)→ (A→C))

[A→ B]3

B

1[A]

[B→C]2

C

A→C

(B→C)→ (A→C)

(A→ B)→ ((B→C)→ (A→C))
→ I

→ I

→ I

→E

→E

(1)

(2)

(3)

The reader should note the analogy with the way in which we intuitively verify that
(A→ B)→ ((B→C)→ (A→C)) is true.
To show: (A→ B)→ ((B→C)→ (A→C)).
So suppose A→ B; then to show (B→C)→ (A→C).
So suppose B→C; then to show A→C.
So suppose A; then to show C.
Now from A and A → B it follows that B. And from B and B→ C it follows that
C. So C follows from A, B → C and A → B. Hence A → C follows from B → C
and A → B. Therefore (B → C)→ (A → C) follows from A → B. Consequently,
(A→ B)→ ((B→C)→ (A→C)).

(ii) ¬¬A→ A
[¬¬A]1

A

¬¬A→ A
(1) → I

d ¬E

(iii) A→¬¬A
[¬A]1

¬¬A

A→¬¬A
→ I

¬I
2[A]

(1)

(2)
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(iv) In the deduction of A∨¬A below, the reader should again note the analogy with
the way in which we intuitively show that A∨¬A is true. Suppose that ¬(A∨¬A).
Then, since A∨¬A follows from A, ¬A. But also, since A∨¬A follows from ¬A,
¬(¬A). So from ¬(A∨¬A) it follows that both ¬A and ¬(¬A). Therefore, by ¬-
introduction, ¬¬(A∨¬A) and hence, by double ¬-elimination, A∨¬A.

(1)

∨I

¬I
A∨¬A

[A]13[¬(A∨¬A)]

(2)

[¬A]23[¬(A∨¬A)]
∨I

¬I
A∨¬A

¬I
¬¬A

d¬E
¬¬(A∨¬A)

A∨¬A

¬A
(3)

Definition 2.12 (Deducibility in natural deduction). a) Let Γ be a (possibly in-
finite) set of formulas. B is deducible from Γ in Gentzen’s system of Natural De-
duction := B can be obtained by one or more (but finitely many) applications of
Gentzen’s rules of natural deduction from uncancelled assumptions that belong to
the set Γ . Notation: Γ �ND B.
b) In case Γ is empty, we say that B is provable in Gentzen’s system of natural
deduction. Notation: �ND B.

Example 2.19. In Example 2.18 we have seen:
A→ B �ND (B→C)→ (A→C) �ND (A→ B)→ ((B→C)→ (A→C))
¬¬A �ND A �ND ¬¬A→ A
A �ND ¬¬A �ND A→¬¬A

�ND A∨¬A

Once having shown Theorem 2.25 (introduction and elimination rules), one eas-
ily sees that Gentzen’s system of natural deduction is equivalent to the axiomatic
(Hilbert-type) system of Section 2.6.

Theorem 2.26. Γ � B iff Γ �ND B.

Proof. i) Suppose Γ � B. One easily checks that all the axioms of (classical) propo-
sitional logic are provable in Gentzen’s system of natural deduction. Modus Ponens
MP is precisely Gentzen’s rule→ E . It follows that Γ �ND B.
ii) Suppose Γ �ND B. a) If B is an element of Γ , then Γ � B.
b) Theorem 2.25 shows that all steps made in Gentzen’s rules of natural deduction
are also available for the notion of (Hilbert-type) deducibility of Section 2.6. More
precisely, Gentzen’s rule ∨E , for instance, says that if Δ , A �ND C and Δ , B �ND C,
then Δ , A∨B �ND C for any set Δ of formulas. Now suppose (by induction hy-
pothesis) that Δ , A � C and Δ , B � C; then by ∨-elimination in Theorem 2.25,
Δ , A∨B � C. By a) and b) it follows (by induction on the length of a given ND-
deduction of B from Γ in Gentzen’s system of natural deduction) that Γ � B. ��
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Exercise 2.60. Show that: i) ¬(A∧B) �ND ¬A∨¬B , ii) ¬A∨¬B �ND ¬(A∧B).
Keep in mind the way in which we would intuitively verify that the conclusion
follows from the premisses.

Exercise 2.61. i) Show that A�B→A and follow the proof of Theorem 2.26, part i),
to convert the given deduction of B → A from A in Hilbert’s system into a deduction
of B → A from A in Gentzen’s system of natural deduction.
ii) Show that A → B �ND ¬B →¬A and follow the proof of Theorem 2.26, part ii)
to show that A → B � ¬B →¬A.

2.8 Tableaux

In this section we will introduce another notion of provability and of deducibil-
ity, which is based on the work of E. Beth [2] and of G. Gentzen [9], and equiva-
lent to the corresponding notions defined in Section 2.6. The advantage of Beth’s
and Gentzen’s notions is that the search for a deduction of B from A1, . . . ,An be-
comes a mechanical matter and is not achieved by the method of trial and error,
as is (sometimes) the case for the historically older notions of Section 2.6, which
are essentially based on the work of G. Frege [7] (1848-1925) and B. Russell [25]
(1872-1970). This advantage is obtained by reducing the number of axiom-schemes
to one, essentially A → A, and by replacing the axioms by T and F rules, two for
each connective. The presentation chosen here is close to the one of R. Smullyan
[23] and was introduced by M. Fitting [6].

In the case of classical logic, the intended meanings of T (A) and F(A), in Beth’s se-
mantic tableaux rules, are as follows: T (A): A is true, F(A): A is false. (The intended
meanings of T (A) and F(A) for modal and intuitionistic logic are different.)

If it is clear from the context what is meant, we will simply write TA instead of
T (A) and FA instead of F(A). For instance, instead of T (B∧C) we will mostly write
T B∧C.

For example, {T P1 →P2, F ¬P1∧P2, F ¬P2∨(P2 →P1)} is a sequent. In Gentzen’s
approach the intended meaning of a sequent {T B1, . . . ,T Bm, FC1, . . . ,FCn} is as
follows: if B1 and . . . and Bm, then C1 or . . . or Cn.

Below we present the T - and F- tableaux rules for classical propositional logic; next
we will explain how to read them, either as semantic tableaux rules in the sense of
Beth or as Gentzen-type rules. In what follows, S will always denote a sequent.

Definition 2.13 (Signed formula). A signed formula is any expression of the form
T (A) or F(A), where A is a formula.

Definition 2.14 (Sequent). A sequent S is any finite set of signed formulas.
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T∧ S, T B∧C F∧ S, F B∧C
S, T B, TC S, FB | S, FC

T∨ S, T B∨C F∨ S, F B∨C
S, T B | S, TC S, FB, FC

T→ S, T B→C F→ S, F B→C
S, FB | S, TC S, T B, FC

T¬ S, T ¬B F¬ S, F ¬B
S, FB S, T B

Notation: S, TA stands for S ∪ {TA}, i.e., the set containing all signed formu-
las in S and in addition TA; and S, FA similarly stands for S∪ {FA}. Instead of
{TB1, . . . ,T Bm, FC1, . . . ,FCn} we often simply write T B1, . . . ,T Bm, FC1, . . . ,FCn.
For example, by {TD, FE}, TA we mean {TD, FE, TA}, but we will usually write
T D, FE, TA.

Since S, T B∧C stands for S∪ {T B∧C}, and since this latter set is equal to
S∪{T B∧C, T B∧C}, the following rule

S, T B∧C
S, T B∧C, TB, TC

is a derived rule. So, in any application of any rule the T -signed or the F-signed
formula to which the rule is applied may be repeated in the lower half of the rule.

Beth’s semantic tableaux rules The rules given above can be read in two ways.
First, read downwards, as semantic tableaux rules in the sense of E. Beth, inter-

preting the signed formulas rather than the sequents. For example, in the case of rule
T→: if B→C is true (T B→C), then there are two possibilities, B is false (FB) or
C is true (TC). And in the case of rule F→: if B→C is false (F B→C), then B is
true (TB) and C is false (FC).

This way of reading the rules is derived from E. Beth’s [2] method of semantic
tableaux. A formula B is called tableau-deducible from given formulas A1, . . . ,An if
it turns out to be impossible that A1, . . . ,An are all 1 and B is 0; more precisely, if all
sequents which result from application of the rules to the supposition TA1, . . . ,TAn,
FB (A1, . . . ,An are all 1 and B is 0) and to which no further rules can be applied,
turn out to be contradictory, i.e., for all such sequents there is an atomic formula P
such that both TP (P is true) and FP (P is false) occur in it (see Def. 2.16 and 2.18).

Note that we essentially have used this idea in exercise 2.11 to verify that, for
instance, |= (P→ Q)→ (¬Q→¬P) or, equivalently, (P→ Q) |= (¬Q→¬P), by
showing that it is impossible that in some line of the truth table (P→ Q) is 1 and
(¬Q→¬P) is 0. In the left column of Example 2.20 we apply the tableaux rules to
T (P→ Q), F (¬Q → ¬P) and in the right column of Example 2.20 we give the
interpretation of the left column in the sense of E. Beth.
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Example 2.20.
Suppose in some line of its truth table

T (P→ Q), F(¬Q→¬P) (P→ Q) is 1 and ¬Q→¬P is 0.
T P→ Q, T¬Q, F¬P Then P→ Q is 1, ¬Q is 1 and ¬P is 0.
T P→ Q, FQ, F¬P So, P→ Q is 1, Q is 0 and ¬P is 0 in that line.
T P→ Q, FQ, T P So, P→ Q is 1, Q is 0 and P is 1 in that line.
FP, FQ, T P | TQ, FQ, T P So, P is 0, Q is 0 and P is 1, or,

Q is 1, Q is 0 and P is 1 in that same line.
And both are impossible.

Informally, we say that the left column in Example 2.20 is a tableau T with initial
branch B0 = {T (P→ Q), F(¬Q→¬P)}. This tableau T consists of two tableau
branches B31 and B32, with B31 = {T (P→ Q), F(¬Q→¬P), T¬Q, F¬P, FQ,
T P, FP}, containing all signed formulas in the left half of the tableau and B32 =
{T (P→Q), F(¬Q→¬P), T¬Q, F¬P, FQ, T P, T Q}, containing all signed for-
mulas in the right half of the tableau. The branch B31 is closed because it contains
T P and FP, and the branch B32 is closed because it contains T Q and FQ. Both
branches are completed, i.e., for each signed formula in the branch the correspond-
ing T - or F-rule has been applied.

Definition 2.15 ((Tableau) Branch). (a) A tableau branch is a set of signed formu-
las. A branch is closed if it contains signed formulas TA and FA for some formula
A. A branch that is not closed is called open.
(b) Let B be a branch and TA, resp. FA, a signed formula occurring in B. TA, resp.
FA, is fulfilled in B if (i) A is atomic, or (ii) B contains the bottom formulas in the
application of the corresponding rule to A, and in case of the rules T∨, F∧ and T →,
B contains one of the bottom formulas in the application of these rules.
(c) A branch B is completed if B is closed or every signed formula in B is fulfilled
in B.

More formally, in Example 2.20 we call B0 = {T (P → Q), F(¬Q → ¬P)} the
initial branch and T0 = {B0} a tableau (with initial branch B0).

Let B1 = {T (P→Q), F(¬Q→¬P), T¬Q, F¬P}. Then T1 = {B1} is called
a one-step expansion of T0, because there is a signed formula in B0, to wit F(¬Q→
¬P), such that B1 =B0∪{T¬Q, F¬P}.

Let B2 = {T (P→ Q), F(¬Q→¬P), T¬Q, F¬P, FQ}. Then T2 = {B2} is
again a one-step expansion of T1.

Let B3 = {T (P→Q), F(¬Q→¬P), T¬Q, F¬P, FQ, T P}. Then T3 = {B3}
is a one-step expansion of T2.

Finally, let B31 = {T (P → Q), F(¬Q → ¬P), T¬Q, F¬P, FQ, T P, FP}
and B32 = {T (P → Q), F(¬Q → ¬P), T¬Q, F¬P, FQ, T P, T Q}. Then T4 =
{B31, B32} is called a one-step expansion of T3, because there is a signed formula
in B3, to wit T (P→ Q), such that B31 =B3∪{FP} and B32 =B3∪{TQ}.

T0, T1, T2, T3 and T4 are all tableaux with initial branch B0.
The branches B0, B1, B2 and B3 are not closed and not completed. But the

branches B31 and B32 are completed and both are also closed.
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We shall call, for instance, T3 = {B3} a tableau with initial branch or sequent B0,
because there is a sequence T0,T1, . . . ,T3 such that T0 = {B0} and each Ti+1 is
a one-step expansion of Ti (0≤ i < 3 ). This tableau T3 (with initial branch B0) is
not yet completed, because its only branch B3 is not completed: the T → rule has
not yet been applied to T (P→ Q). And T3 = {B3} is open, because it contains an
open branch, to wit B3 itself. The tableau T4 = {B31,B32}, however, is completed,
because each of its branches is completed and also closed, because all its branches
are closed.

Definition 2.16 (Tableau). (a) A set of branches T is a tableau with initial branch
B0 if there is a sequence T0,T1, . . . ,Tn such that T0 = {B0}, each Ti+1 is a one-
step expansion of Ti (0≤ i < n ) and T =Tn.
(b) We say that a finite B has tableau T if T is a tableau with initial branch B.
(c) A tableau T is open if some branch B in it is open, otherwise T is closed.
(d) A tableau is completed if each of its branches is completed, i.e., no application
of a tableau rule can change the tableau.

Example 2.21.
We make a tableau starting with T (P→ Q), F(P∧Q):

T (P→ Q), F(P∧Q)
FP, F(P∧Q) | T Q, F(P∧Q)

FP, FP | FP, FQ | TQ, FP | T Q, FQ

Let B1 be the leftmost branch, consisting of the formulas T (P→Q), F(P∧Q), FP
and FP, i.e., B1 = {T (P→Q), F(P∧Q), FP, FP}. Let B2 be the second branch
from the left, so B2 = {T (P→Q), F(P∧Q), FP, FQ}. Let B3 be the third branch
from the left, so B3 = {T (P → Q), F(P∧Q), TQ, FP}. Finally, let B4 be the
rightmost branch, i.e., B4 = {T (P→Q), F(P∧Q), T Q, FQ}.

Then T = {B1,B2,B3,B4} is a tableau with B0 = {T (P → Q),F(P∧Q)}
as initial branch. Branch B4 is completed and closed, because it contains T Q and
FQ. The branches B1,B2,B3 are completed and open. Hence, the tableau T =
{B1,B2,B3,B4} is completed, because all of its branches are completed and the
tableau T is open, since at least one of its branches is open.

From the formulation of the tableaux rules, we see immediately that our tableaux
have the so-called subformula property: each formula in any sequent of a tableau is
a subformula of some formula occurring in the preceding sequents. For that reason,
any tableau (in classical propositional logic) is necessarily a finite sequence of se-
quents. For instance, all formulas in the tableau in Example 2.20 are subformulas of
P→ Q and/or ¬Q→¬P.

From the examples in Section 2.6 it is clear that a Hilbert-type proof system does
not have the subformula property. For instance, we have given a deduction of A→C
from A→ B and B→C; in this deduction we have used the formula A→ (B→C)
and even more complex ones, which are subformulas of neither the premisses nor
the conclusion. Modus Ponens is responsible for this: E may be deduced from D
and D→ E; but D→ E is not a subformula of E and D is not necessarily one.
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In case n = 0, i.e., there are no premisses A1, . . . ,An, this definition reduces to:
(b) A (logical) tableau-proof of B (in classical propositional logic) is a tableau T
with B0 = {FB} as initial sequent, such that all branches of T are closed.

Example 2.22. (a) The following is a tableau-deduction of ¬P∨¬Q from ¬(P∧Q).

T ¬(P∧Q), F ¬P∨¬Q
F P∧Q, F ¬P∨¬Q

F P∧Q, F ¬P, F ¬Q
F P∧Q, T P, F ¬Q
F P∧Q, T P, T Q

FP, T P, T Q | FQ, T P, T Q

(b) The following is a tableau-proof of ((P → Q)→ P)→ P, i.e., Peirce’s law.

F ((P → Q)→ P)→ P
T (P → Q)→ P, FP

F P → Q, FP | T P, FP
T P, FQ, FP |

Notation: A1, . . . ,An �′ B. By A1, . . . ,An ��′ B we mean: not A1, . . . ,An �′ B.
(b) B is tableau-provable (in classical propositional logic) if there exists a tableau-
proof of B. Notation: �′ B.
(c) For Γ a (possibly infinite) set of formulas, B is tableau-deducible from Γ if there
exists a finite list A1, . . . ,An of formulas in Γ such that A1, . . . ,An �′ B.
Notation: Γ �′ B.

Example 2.23. (a) ¬(P ∧ Q) �′ ¬P ∨¬Q, because in Example 2.22 (a) we have
given a tableau-deduction of ¬P∨¬Q from ¬(P∧Q). One also easily checks that,
equivalently, �′ ¬(P∧Q)→¬P∨¬Q.
(b) �′ ((P → Q)→ P)→ P, because in Example 2.22 (b) we have given a tableau-
proof of ((P → Q)→ P)→ P. One also easily checks that, equivalently, (P → Q)→
P �′ P.

Note that by our definitions A �′ B is trivially equivalent to �′ A → B (because a
tableau starting with F A → B continues with TA,FB), while the corresponding
result for � (Theorem 2.23 and 2.24) was not trivial at all.

It is important to note that the T - and F-rules and hence the notions of ‘tableau-
provable’ and ‘tableau-deducible from’ are purely syntactic, i.e., they only refer to
the forms of the formulas: for instance, rule T∧ tells us that any time we see an
expression of the form T B∧C we must write down the expressions T B and TC
immediately below it; and a formula B is tableau-provable if starting with FB we
end up with sequents which all contain both T P and FP for some atomic formula P.

Definition 2.17 (Tableau-deduction). (a) A (logical) tableau-deduction of B from
A1, . . . ,An (in propositional logic) is a tableau T with B0 = {TA1, . . . ,TAn,FB} as
initial branch, such that all branches of T are closed.

Definition 2.18 (Tableau-deducible). (a) B is tableau-deducible from A1, . . . ,An (in
classical propositional logic) if there exists a tableau-deduction of B from A1, . . . ,An.
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Whether a formula B is tableau-provable or not only depends on the form of B,
and precisely this justifies our use of the expression ‘B is tableau-provable’.

So, we had good semantic reasons to choose the rules and the notions of ‘tableau-
provable’ and ‘tableau-deducible from’ as they are, but once having these rules and
these notions, we can forget the intuitive (semantic) motivation behind them and like
a computer or machine/robot play with them in a purely syntactic way, i.e., apply
the rules of the game, forgetting about their underlying ideas.

Gentzen-type rules A second way to read the T - and F- tableaux rules is to
read them upwards, as Gentzen-type rules, interpreting the sequents rather than the
signed formulas. Remember that a sequent {TA1, . . . ,TAn,FB1, . . . ,FBk} is read as:
if A1 and . . . and An, then B1 or . . . or Bk.

For example, taking S = {TD, FE}, rule T→ becomes

T D, FE, T B→C
T D, FE, FB | T D, FE, TC

and is read upwards as follows:

if (*) D implies E or B (TD, FE, FB),
and (**) D and C imply E (TD, FE, TC),
then D and B→C imply E (TD, FE, T B→C).

That rule T→, read in this way, is intuitively correct is easily seen as follows: sup-
pose (*), (**), D and B→C; then by (*), E or B; if B, then by B→C also C; and
hence by (**) E .

And again taking S = {T D, FE}, rule F→ becomes

T D, FE, F B→C
T D, FE, T B, FC

and is read upwards as follows:

if (*) D and B imply E or C (T D, FE, T B, FC),
then D implies E or B→C (T D, FE, F B→C).

That rule F→, read in this way, is intuitively correct is seen as follows: suppose (*)
and D; if ¬B, then B→C and hence E or B→C; and if B, then D and B, and hence
by (*), E or C; so, also E or B→C.

This way of reading the rules is derived from G. Gentzen’s system in [9]. Gentzen
thought his rules reflected (the elementary steps in) the actual reasoning of human
beings. With this reading the notion of tableau-provability is explained (see Def.
2.18) in terms of reducing a formula according to the rules to axioms essentially
of the type P→ P. More precisely, a formula B is tableau-provable if {FB} (to be
read as → B or B) can be obtained by applying the rules to sequents of the form
{. . . ,T P, FP, . . .} (to be read as: if . . . and P, then P or . . .), which can be conceived
of as axioms.

Decidability Evidently, it is easy to decide whether a given sequence of symbols is
a formula (of propositional logic). It is also easy to decide whether a given sequence
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of formulas is a (Hilbert-type) deduction (see Section 2.6) of a given formula B
from given premisses A1, . . . ,An. And similarly, it is easy to decide whether a given
tableau is a tableau-deduction of a given formula B from given premisses A1, . . . ,An.

But the question whether, given any formulas A1, . . .An and B, there exists a
Hilbert-type deduction of B from A1, . . .An, is not so easy to decide: one may search
for such a deduction without finding one and this may be due to the fact that one
is not smart enough – in which case one may continue trying to find one –, but
also due to the fact that there is no such deduction – in which case one better stops
searching. The deeper reason behind this is that Hilbert-type deductions do not have
the subformula property: if one searches for a deduction of B from given premisses,
one may try any formula D, not necessarily a subformula of the given formulas, in
order to apply Modus Ponens to D and D→ B.

Interestingly, for any propositional formulas A1, . . . ,An, B, the question whether
B is a valid (or logical) consequence of A1, . . . ,An is decidable, i.e., there is a deci-
sion procedure (algorithm, mechanical test) which yields in finitely many steps an
answer ‘yes’ or ‘no’: make the truth table of the formulas in question and check
whether B is 1 in all lines where the premisses A1, . . . ,An are all 1.

Similarly, for any propositional formulas A1, . . . ,An, B, the question whether
there exists a tableau-deduction of B from given premisses A1, . . . ,An is decidable,
since there is a decision procedure which yields in finitely many steps an answer
‘yes’ or ‘no’: given A1, . . . ,An and B, start a tableau with {TA1, . . . ,TAn,FB} as ini-
tial sequent and apply all possible tableau rules as frequently as possible; because of
the subformula property, after finitely many steps the tableau will be finished; if all
tableau branches are closed, then one has a tableau-deduction of B from A1, . . . ,An,
and if some completed tableau branch is open, one can from any open completed
tableau branch read off a line in the truth table in which A1, . . . ,An are all 1 and B is
0, hence showing that A1, . . . ,An �|= B. We shall prove this (completeness) result in
Section 2.9, but will illustrate this result now with an example.

Example 2.24. We wonder whether from P→ Q and ¬P one may deduce ¬Q. So,
we start a tableau with {TP→ Q, T¬P, F¬Q}:

T P→Q, T¬P, F¬Q
T P→ Q, FP, F¬Q
T P→ Q, FP, T Q

FP,FP,TQ | T Q,FP,TQ

For instance, the left tableau branch is completed but open, i.e. not closed. From
it one may immediately read off a counterexample, i.e., a line in the truth table in
which the premisses P → Q and ¬P are 1 and ¬Q is 0: corresponding with the
occurrence of FP in the left completed tableau branch give P the value 0 and corre-
sponding with the occurrence of TQ in the left completed tableau branch give Q the
value 1.

P Q P→Q ¬P ¬Q
0 1 1 1 0

This shows that P→ Q,¬P �|= ¬Q.
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Once we have shown in Sect. 2.9 that the three notions A1, . . . ,An |= B, A1, . . . ,An �
B, and A1, . . . ,An �′ B, although intensionally quite different, are equivalent, we
have also a decision procedure for the question whether, given formulas A1, . . . ,An,
B, there exists a (Hilbert-type) deduction of B from A1, . . . ,An. The significance of
this latter result is that the Hilbert-type system of Section 2.6, which does not have
the subformula property, is equivalent to the tableaux system of this section, which
does have the subformula property. (This result is essentially based on the work of
G. Gentzen, 1934-5.)

In order to show that our notions of tableau-deducibility (Def. 2.18) and (Hilbert-
type) deducibility (Def. 2.11) are equivalent, we first prove the following.

Theorem 2.27. (i) If B is tableau-deducible from A1, . . . ,An, i.e., A1, . . . ,An �′ B,
then B is deducible from A1, . . . ,An, i.e., A1, . . . ,An � B. In particular, for n = 0:
(ii) If �′ B, then � B.

Proof. Suppose A1, . . . ,An �′ B, i.e., B is tableau-deducible from A1, . . . ,An. It suf-
fices to show:

for every sequent S = {TD1, . . . ,TDk, FE1, . . . ,FEm} in a tableau-deduction of B
from A1, . . . ,An it holds that D1, . . . ,Dk � E1∨ . . .∨Em. (*)

Consequently, because {TA1, . . . ,TAn, FB} is the first (upper) sequent in any given
tableau-deduction of B from A1, . . . ,An, we have that A1, . . . ,An � B.

The proof of (*) is tedious, but has a simple plan: the statement is true for the
closed sequents in a tableau-deduction, and the statement remains true if we go up
in the tableau-deduction via the T and F rules.
Basic step: Any closed sequent in a tableau-deduction of B from A1, . . . ,An is
of the form {T D1, . . . ,T Dk, TP, FP, FE1, . . . ,FEm}. So, we have to show that
D1, . . . ,Dk, P � P∨E1 ∨ . . .∨Em. And this is straightforward: D1, . . . ,Dk, P � P
and P � P∨E1∨ . . .∨Em.
Induction step: We have to show that for all rules the following is the case: if (*)
holds for all lower sequent(s) in the rule (induction hypothesis), then (*) holds for
the upper sequent in the rule. For convenience, we will suppose that S = {TD, FE}
in all rules.

Rule T∧: TD, FE, T B∧C
T D, FE, T B, TC

Suppose D, B, C � E (induction hypothesis). To show: D, B∧C � E . This follows
immediately, because B∧C � B and B∧C �C.

Rule F∧: TD, FE, F B∧C
T D, FE, FB | T D, FE, FC

Suppose D � E∨B and D � E∨C (induction hypothesis). To show: D � E∨(B∧C).
It suffices to show that E ∨B, E ∨C � E ∨ (B∧C). Now it is clear that B, E �
E ∨ (B∧C) and B, C �E∨(B∧C). Hence, by∨-elimination, B, E∨C �E∨(B∧C).
But also E, E ∨C � E ∨ (B∧C). Hence, again by ∨-elimination, E ∨B, E ∨C �
E ∨ (B∧C).
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Rule T∨: TD, FE, T B∨C
T D, FE, T B | T D, FE, TC

Suppose D, B � E and D, C � E (induction hypothesis). To show: D, B∨C � E .
This follows from the induction hypothesis by ∨-elimination.

Rule F∨: TD, FE, F B∨C
T D, FE, FB, FC

Suppose D� (E∨B)∨C (induction hypothesis). To show: D�E∨(B∨C). It suffices
to show that (E ∨B)∨C � E ∨ (B∨C).
It is clear that E � E ∨ (B∨C) and also B � E ∨ (B∨C). Hence, by ∨-elimination,
E∨B � E∨(B∨C). Since also C � E∨(B∨C), again by ∨-elimination, (E∨B)∨C
� E ∨ (B∨C).

Rule T→: TD, FE, T B→C
T D, FE, FB | T D, FE, TC

Suppose D � E ∨B and D, C � E (induction hypothesis). To show: D, B→C � E .
By Exercise 2.50 E ∨B, B→C � E ∨C; hence, by the first induction hypothesis,
D, B→C � E ∨C. (1)
From the second induction hypothesis, by the deduction theorem, D �C→ E . (2)
By Exercise 2.50 E∨C, C→E � E∨E; hence, from (1) and (2): D, B→C � E∨E .
But by ∨-elimination E ∨E � E . Hence D, B→C � E .

Rule F→: TD, FE, F B→C
T D, FE, T B, FC

Suppose D, B � E ∨C (induction hypothesis). To show: D � E ∨ (B→C).
From weak negation elimination, applying the deduction theorem, it follows that
¬B � B→C; hence D, ¬B � B→C. Hence D, ¬B � E ∨ (B→C). (1)
By Exercise 2.50 E ∨C, C → (B → C) � E ∨ (B → C). So, since C → (B → C)
is an axiom, it follows that E ∨C � E ∨ (B→ C). So, by the induction hypothesis,
D, B � E ∨ (B→C). (2)
From (1) and (2), by ∨-elimination D, B∨¬B � E ∨ (B → C). But, by Exercise
2.52, � B∨¬B. Hence, D � E ∨ (B→C).

Rule T¬: TD, FE, T ¬B
T D, FE, FB

Suppose D � E∨B (induction hypothesis). To show: D, ¬B � E . In order to do this,
it suffices to prove that E ∨B, ¬B � E .
By Exercise 2.53 ¬B, ¬E � ¬(E∨B) and hence also E ∨ B, ¬B, ¬E � ¬(E ∨ B).
But also E ∨B, ¬B, ¬E � E∨B. Hence, by ¬-introduction E ∨B, ¬B � ¬¬E . So,
by double negation elimination E ∨B, ¬B � E .

Rule F¬: TD, FE, F ¬B
T D, FE, T B

Suppose D, B � E (induction hypothesis). To show: D � E ∨¬B.
From the induction hypothesis, D, B � E ∨¬B. (1)
From ¬B � E ∨¬B it follows that D, ¬B � E ∨¬B. (2)
From (1) and (2) it follows by ∨-elimination that D,B∨¬B � E ∨¬B. By Exercise
2.52 � B∨¬B and hence D � E ∨¬B. ��
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With the help of tableaux we may give a constructive proof of the interpolation
theorem.

Theorem 2.28 (Interpolation theorem for propositional logic). Suppose A �′ B,
��′ ¬A and ��′ B. Then there is a formula C such that every atomic formula that occurs
in C also occurs in both A and B (so, C is in the joint vocabulary of A and B) and
A �′ C and C �′ B.

Example 2.25. (P∨¬Q)∧R �′ (Q → P)∨ S. Then for C = P∨¬Q, we have (P∨
¬Q)∧R �′ C and C �′ (Q→ P)∨S.

Proof. Let A and B as mentioned in the interpolation theorem. Because A �′ B, any
completed tableau starting with the initial sequent {TA, FB} is closed, i.e., all its
branches are closed. (*)
Since ��′ ¬A we know that any completed tableau starting with F¬A (or, equiva-
lently, TA) has at least one open (completed) branch B. And since ��′ B, we know
there any completed tableau starting with the initial sequent {FB} has at least
one open branch. Let TA be a completed tableau starting with TA and TB a com-
pleted tableau sarting with FB. We may assume that a tableau is closed if and only
if it is atomically closed, i.e., every branch contains for some atomic formula P
both TP and FP. For any open branch B in TA, we define the sets B1 and B0:
B1 = {P | T P occurs in B and FP occurs in some open branch of TB} and B0 =
{¬P | FP occurs in B and T P occurs in some open branch of TB}.

By (*) the union of B0 and B1 is non empty and so the following sentence
is well-defined: C(B) := the conjunction of all formulas in B1 ∪B0. Finally, the
sentence C is defined as the disjunction of all formulas C(B), where B is an open
branch in the given tableau TA starting with TA. Clearly, C is in the joint vocabulary
of A and B. After some thinking it becomes clear that A �′ C and C �′ B. ��
Let us illustrate the proof for Example 2.25, where A=¬(Q∧¬P)∧R and B=(Q→
P)∨S. Let TA be the following completed tableau starting with F ¬(¬(Q∧¬P)∧R):

F ¬(¬(Q∧¬P)∧R)
T ¬(Q∧¬P)∧R
T ¬(Q∧¬P), T R

F Q∧¬P, T R
F ¬P, T R | FQ, TR
T P, TR | FQ, T R

Both the left branch BL and the right branch BR of this tableau are open. Now, by
definition, B1

L = {P}, since there is an open branch starting with F(Q→ P)∨S that
contains FP:

F (Q→ P)∨S
F (Q→ P), FS

T Q, FP, FS

Note that B0
L is empty. So, by definition, C(BL) = P.
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By definition,B1
R is empty andB0

R = {¬Q}, since there is an open branch starting
with F(Q→ P)∨S that contains T Q. So, by definition, C(BR) = ¬Q. Finally, C =
C(BL)∨C(BR) = P∨¬Q.

Exercise 2.62. (a) Show, by using ¬-introduction, that A→ B � ¬(A∧¬B).
(b) Show that A→ B �′ ¬(A∧¬B).
(c) Show that A→ B |= ¬(A∧¬B) by verifying that it is impossible that A→ B is 1
and ¬(A∧¬B) is 0 in some line of the truth table. Note the analogy in (b) and (c).

Exercise 2.63. (a) Show, by using the deduction theorem three times, that � (A→
B)→ ((B→C)→ (A→C)).
(b) Show that �′ (A→ B)→ ((B→C)→ (A→C)).
(c) Show that |= (A→ B)→ ((B→C)→ (A→C)) by verifying that it is impossible
that this formula is 0 in some line of its truth table. Note the analogy in (b) and (c).

Exercise 2.64. Prove the following statements:
(a) A→ B, ¬A→ B �′ B (d) ¬(A∧¬B) �′ A→ B
(b) ¬B→¬A �′ A→ B (e) A→ B �′ ¬A∨B
(c) ¬(A∧B) �′ ¬A∨¬B (f) A→ B∨C �′ (A→ B)∨ (A→C)

Exercise 2.65. a) Translate the following argument in the language of propositional
logic. If it rains [R], then John goes for a walk [W ].

If it does not rain, then John makes a bicycle tour [B].
John does not make a bicycle tour.
Therefore: John goes for a walk.

b) Construct a tableau-deduction of the putative conclusion from the premisses or
a counterexample (i.e., a line in the truth table in which all premisses are 1 and the
putative conclusion is 0) from a failed attempt to do so.

Exercise 2.66. a) Translate the following argument in the language of propositional
logic. If it rains [R], then John does not go for a walk.

If John goes for a walk [W ], then he is happy [H].
It does not rain.
Therefore: John is happy.

b) Construct a tableau-deduction of the putative conclusion from the premisses or
a counterexample (i.e., a line in the truth table in which all premisses are 1 and the
putative conclusion is 0) from a failed attempt to do so.

Exercise 2.67. (a) Verify that the (logical) axioms for (classical) propositional cal-
culus of Section 2.6 are tableau-provable.
(b) Check that it is not a simple matter to prove: if �′ A and �′ A → B, then �′ B.
Hence, the converse of Theorem 2.27, if � A, then �′ A, to be shown in Section 2.9,
is not a trivial result. However, one easily shows that A, A→ B �′ B does hold.

Exercise 2.68. Show right from the definitions that
(a) if �′ A or �′ B, then �′ A∨B;
(b) if �′ A∧B, then �′ A and �′ B.
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Exercise 2.69. (a) Show that ¬P, (P→ Q)→ P � P by using weak negation elimi-
nation and the deduction theorem.
(b) Show that P∨¬P, (P→Q)→ P � P by using (a) and ∨-elimination.
(c) Show that � ((P→Q)→ P)→ P (Peirce’s law) by using (b), Exercise 2.52. and
the deduction theorem.
Compare the complexity of the proof of � ((P→ Q)→ P)→ P with the simplicity
of the proof of �′ ((P → Q)→ P)→ P. Note also that, although in Peirce’s law
implication is the only connective, we needed weak negation- and ∨-elimination in
order to show that Peirce’s law is (logically) provable (see Exercise 2.44).

2.9 Completeness of classical propositional logic

So far we have established the following results; for convenience, we use the Greek
letter Γ to indicate a (possibly infinite) collection of formulas.
Theorem 2.27: if Γ �′ B, then Γ � B.
Theorem 2.20: if Γ � B, then Γ |= B (soundness). In this section we shall prove
completeness, i.e., every valid consequence of given premisses Γ can be (logically)
deduced from Γ : if Γ |= B, then Γ �′ B.

This shows that the three notions Γ �′ B (B is tableau-deducible from Γ ), Γ � B
(B is deducible from Γ ) and Γ |= B (B is a valid consequence of Γ ) are equivalent.

The intuitive ‘B is a logical consequence of the premisses in Γ ’ (without ref-
erence to the structure of the atomic formulas in B and Γ ) has been made math-
ematically precise in three different ways: Γ �′ B, Γ � B and Γ |= B. Since these
three mathematical notions, although intensionally quite different, turn out to be
equivalent, we may say (after the results we are about to prove) that we indeed have
captured in a mathematically definite sense the intuitive notion of ‘B is a logical
conclusion from Γ ’. (See also the discussion following Theorem 2.21.)

In proving the completeness of classical propositional logic, a procedure of
searching for a tableau-deduction of B from given premisses A1, . . . ,An is presented,
which will end after finitely many steps and then either gives such a deduction or
shows that such a deduction cannot exist. This algorithm thus yields a decision pro-
cedure for the (classical) propositional logic. This shall provide us an opportunity
to dwell upon automated theorem proving.

Given formulas B and A1, . . . ,An, the tableaux rules suggest a procedure of searching
for a tableau-deduction of B from A1, . . . ,An:
start with TA1, . . . ,TAn, FB and apply all the appropriate rules in some definite
fixed order, the choice of ordering being unimportant (at least, if we do not care
about efficiency); in an application of rule T → to, for example, S, T P → Q we
make two branches, one with S, FP and the other with S, TQ and similarly for
applications of the rules F∧ and T∨.

Example 2.26. 1) The tableau starting with F (P→ Q)→ (Q→ ¬P) is composed
of the following two branches:
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F (P→Q)→ (Q→¬P) and F(P→ Q)→ (Q→¬P)
T P→ Q, F Q→¬P T P→Q, F Q→¬P
FP, F Q→¬P T Q, F Q→¬P
FP, T Q, F ¬P T Q, T Q, F ¬P
FP, T Q, TP T Q, T Q, T P

The first branch for (P→ Q)→ (Q→¬P) is closed; the second one is completed
and open. Note that if we assign the value 1 to both P and Q, corresponding with
the fact that both T P and T Q occur in the open branch, the formula (P → Q)→
(Q→¬P) is assigned the value 0, corresponding with the fact that F (P→ Q)→
(Q → ¬P) occurs in the open branch. We shall see in Lemma 2.2 that this is not
accidental.

2) The tableau starting with T P→Q, F ¬Q→¬P is composed of the following
two branches:

T P→Q, F ¬Q→¬P and T P→Q, F ¬Q→¬P
FP, F ¬Q→¬P T Q, F ¬Q→¬P
FP, T ¬Q, F ¬P T Q, T ¬Q, F ¬P
FP, FQ, F ¬P T Q, FQ, F ¬P
FP, FQ, TP T Q, FQ, T P

Both branches starting with T P→ Q, F ¬Q→ ¬P are closed. Note that the two
branches together yield a tableau-deduction of ¬Q → ¬P from P → Q, just as a
tableau-proof of (P→ Q)→ (¬Q→ ¬P). The correctness of this statement is not
accidental either and follows immediately from the definition of a tableau-deduction
and the structure of our procedure of searching for a tableau-deduction; see Lemma
2.3.

Definition 2.19. Let τ be a completed tableau branch which is open. Then iτ is the
interpretation defined by iτ(P) = 1 if T P occurs in τ , iτ(P) = 0 if T P does not occur
in τ .

Lemma 2.2. Let τ be a completed tableau branch which is open. Then for each
formula E: a) if TE occurs in τ , then iτ(E) = 1, and
b) if FE occurs in τ , then iτ (E) = 0.

Proof. The proof is by induction on the construction of E . Let τ be a completed
tableau branch which is open.
Basic step. If E = P (atomic formula) and T P occurs in τ , then by definition iτ(P) =
1. If E = P and FP occurs in τ , then - since τ is open - TP does not occur in τ and
hence by definition iτ (P) = 0.
Induction step. Suppose that a) and b) have been shown for C and D (induction
hypothesis). We want to prove a) and b) for C∧D, C∨D, C→D and ¬C.

If E = C∧D and T C∧D occurs in τ , then - because τ is completed - both TC
and TD occur in τ . Hence, by the induction hypothesis, iτ(C) = 1 and iτ(D) = 1.
So, iτ (C∧D) = 1.
If E = C∧D and F C∧D occurs in τ , then - because τ is completed - FC occurs
in τ or FD occurs in τ . Hence, by the induction hypothesis, iτ(C) = 0 or iτ (D) = 0.
So, iτ (C∧D) = 0.
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The other cases, E =C∨D, E =C→ D and E = ¬C, are treated similarly. ��
Lemma 2.3. If all branches in a tableau with initial sequent {TA1, . . . ,TAn,FB}
are closed, then A1, . . . ,An �′ B.

Proof. This follows from the definition of a tableau with {TA1, . . . ,TAn,FB} as
initial sequent and from the observation that there are only finitely many different
branches in such a tableau. ��
Lemma 2.2 and 2.3 together yield the completeness theorem.

Theorem 2.29 (completeness of classical propositional logic).
a) If A1, . . . ,An |= B, then A1, . . . ,A �′ B. In particular, if n = 0:
b) If |= B, then �′ B.

Proof. Suppose A1, . . . ,An |= B. Apply the procedure of searching for a tableau-
deduction of B from A1, . . . ,An. If there were a completed tableau branch τ starting
with TA1, . . . ,TAn,FB which is open, then by Lemma 2.2, because TA1, . . . ,TAn

and FB occur in such a τ , iτ(A1) = . . .= iτ (An) = 1 and iτ (B) = 0. This would con-
tradict that A1, . . . ,An |= B. Hence, all tableau branches starting with TA1, . . . ,TAn,
FB are closed. So, by Lemma 2.3, A1, . . . ,An �′ B. ��
Remark 2.2. Our procedure of searching for a tableau-deduction of B from given
premisses A1, . . . ,An will end after finitely many steps and then either give a tableau-
deduction of B from A1, . . . ,An, indicating that A1, . . . ,An �′ B, or an interpretation i
such that i(A1) = . . .= i(An) = 1 and i(B) = 0, indicating that A1, . . . ,An �|= B.

Corollary 2.4 (Decidability of classical propositional logic). Classical proposi-
tional logic is decidable, i.e., we have an effective method (algorithm) to decide,
given any finite set of formulas B, A1, . . . ,An, whether B is tableau-deducible from
A1, . . . ,An or not.

Note that in Section 2.3 we have already given an effective method (algorithm) to
decide whether or not B is a valid consequence of A1, . . . ,An for any finite set of
formulas A1, . . . ,An.

The tableaux system for classical propositional calculus can easily be modified
and/or completed to a tableaux system for intuitionistic logic and for many in-
tensional (modal) logics. In all cases the completeness proof given above can be
adapted to a completeness proof for the logic in question. This type of proof has an
advantage over some other completeness proofs in that it is constructive.

Automated theorem proving In the case of the classical propositional calculus an
effective method has been given above to decide, given any finite set of formulas
B, A1, . . . ,An, whether B is tableau-deducible from A1, . . . ,An or not. This algorithm
can be formulated in an appropriate programming language such as Prolog (see,
for instance, Kogel-Ophelders [17]) and then a computer, when provided with for-
mulas B,A1, . . . ,An, is able to compute whether B is a theorem on the basis of the
hypotheses A1, . . . ,An or not.
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So, a computer, provided with the appropriate software, is able to simulate rea-
soning and in that case one may say that it disposes of Artificial Intelligence. By
adding to such a computer-program a number of data, A1, . . . ,An, concerning a small
and well-described subject, the so-called knowledge base, the computer is able to
draw conclusions from those data. If A1, . . . ,An represent someone’s expertise, one
speaks of an expert system. And if the knowledge base consists of Euclid’s axioms
for geometry or Peano’s axioms for number theory or of axioms for some other part
of mathematics, one speaks of automated theorem proving.

So the basic ideas underlying expert-systems and automated theorem proving are
very simple. However, in practice there may be a lot of complications. Without be-
ing exhaustive let us mention some of them.
1. The language of propositional logic may be too restrictive. For instance, in Chap-
ter 1 we have already seen that the argument

All men are mortal.
Socrates is a man.

Therefore, Socrates is mortal.

cannot be adequately formulated in the propositional language. For that reason the
propositional language will be extended to the predicate language in Chapter 4.
2. However, if one adapts the construction of a completed tableau with initial branch
{TA1, . . . ,TAn,FB} to the case that B, A1, . . . ,An are formulas of the predicate lan-
guage, this construction no longer yields a decision: if no logical deduction exists,
the tableau construction may continue forever, without ever knowing that this con-
struction will come to an end; so, in this case the tableau construction may not stop.
For more details see Subsection 4.4.2.
3. Even in the case of the propositional language, the time and space needed to
search for a logical deduction of B from A1, . . . ,An may grow very fast in the event
n is big or B, A1, . . . ,An are (very) complex; see Subsection 2.3.1.
4. If the knowledge base consists of Peano’s axioms for number theory (see Sec-
tion 5), this knowledge base contains the axiom schema of induction, and hence
infinitely many axioms. Searching for a logical deduction of a given formula B from
infinitely many axioms requires a strategy, without which such a search is hopeless.
5. If the knowledge base consists of someone’s expertise, it may contain uncertain
and/or incomplete information. For instance, it may be likely, but uncertain, that
there is oil in the ground. An expert-system may have to deal with uncertain knowl-
edge and then its conclusions will have a certain degree of probability, which has to
be computed. This is a far from trivial matter. Also the information in the knowledge
base may be incomplete in order to be able to draw a certain conclusion.
6. Building an expert-system is more than just providing an inference mechanism:
the system should also be able to explain how the conclusion was established or why
the conclusion cannot be drawn.
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2.10 Paradoxes; Historical and Philosophical Remarks

2.10.1 Paradoxes

Paradoxes have been important for making progress in science and philosophy. In
what follows a number of statements of the type B � ¬B are presented. Because
statements of this type cannot possibly be true, in other words are inconsistent, these
results are known as paradoxes. The reader easily checks the following theorem:

Theorem 2.30. a) For each formula B, |= ¬(B � ¬B).
b) If A1, . . . ,An |= B � ¬B, then |= ¬(A1∧ . . .∧An).

So, if for some formula B, B � ¬B is a valid consequence of hypotheses A1, . . . ,An,
then at least one of the hypotheses must be false. In practice, the problem frequently
is that we are not aware of the hypotheses we are using in deriving a paradox.

In his paper ‘Paradox’, W.V. Quine [21] distinguishes three types of paradox:
antinomies, veridical and falsidical paradoxes. Below we shall discuss these three
types and consider examples of each of them.

Antinomies There is the old paradox of the liar: A man says that he is lying. If he
speaks the truth, he is lying. And if he is lying, he speaks the truth. Hence, he speaks
the truth if and only if he does not.

A more recent version of this paradox is the one of A. Tarski [24] in his ‘Truth
and Proof’. Consider the following sentence.

s: The underlined sentence is false

Here s is just an abbreviation for: the underlined sentence is false. But what is the
object the name ‘the underlined sentence’ refers to? Up till now there is no under-
lined sentence. By underlining sentence s, we achieve that sentence s says of itself
that it is false, just as the man in the paradox says of himself that he is lying.

s: The underlined sentence is false

When one refers to an object, one usually uses a name for that object. One and
the same object may have different names. For instance, ‘Harrie de Swart’ and ‘the
author of this book’ are two different names for the same person. Usually, when
referring to a sentence or, more generally, a linguistic object, one may form its name
by putting the sentence in question between quotation marks. But another name for
that same sentence may be formed by underlining the sentence in question, after
which ‘the underlined sentence’ is another name for the same sentence. So, having
underlined sentence s, s has (at least) the following two names: ‘s’; the underlined
sentence. Consequently, by replacing one name by another one:

(1) ‘s’ is false if and only if the underlined sentence is false.

On the other hand we have the principle of adequacy: for each sentence p, ‘p’ is true
if and only if p; where ‘p’ is again a name for the sentence p. For example, ‘snow
is white’ is true if and only if snow is white. Now using this principle of adequacy,
we find
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‘s’ is true if and only if s, i.e.,
(2) ‘s’ is true if and only if the underlined sentence is false.

(1) and (2) together yield: ‘s’ is false if and only if ‘s’ is true.
The paradox of the liar, in one form or another, is a special kind of paradox, an

antinomy: an absurd statement, that cannot be true, with a correct argument, and
whose premisses are not in themselves absurd. However, if B � ¬B is a valid con-
sequence of premisses A1, . . . ,An, we know we have to revise our premisses. It is
typical of an antinomy that we are very surprised that such a revision is necessary,
because the premisses accepted seem more than plausible and seem completely in
accordance with our intuition. In order to be able to ‘solve’ an antinomy, a ma-
jor revision in our way of thinking is necessary. Because everything we do in the
derivation of an antinomy seems so natural and evident, we are generally not very
conscious of what precisely our premisses are.

Through all ages the antinomies have caused concern to philosophers. According
to a foolish tradition preserved by Diogenes Laertius, Diodorus Cronus (ca. 300
B.C.) committed suicide because he was not immediately able to solve the logical
puzzle posed by the paradox of the liar. (See W & M Kneale [16], p. 113.)

In his paper Truth and Proof, A. Tarski [24] argues that the paradox of the liar
forces us to give up our silent assumption that object language and meta language
do not have to be distinguished. But when we say that a sentence ‘s’ is true, we are
saying something about sentence s. If s belongs to a language L0, the sentence ‘
‘s’ is true’ is a statement about a sentence of L0 and hence a statement in the meta-
language L1 of L0. If we take care to distinguish predicates true0, true1, false0, false1,
and so on, for the truth/falsity predicates in the different languages, the paradox of
the liar disappears:

Again, let s be an abbreviation for: the underlined sentence is true0. Next, let us
underline this sentence:

s: The underlined sentence is false0

Then, again replacing one name by another one:

(1a) ‘s’ is false1 if and only if the underlined sentence is false1.

And by the principle of adequacy

(2a) ‘s’ is true1 if and only if the underlined sentence is false0.

And now (1a) and (2a) are no longer contradictory!
If we wish to avoid contradictions, we must insist that what we ordinarily call

English is in reality an infinite sequence L0, L1, L2, . . . of languages, in which Ln+1

is a metalanguage in relation to Ln.

Another way to escape the antinomy of the liar is by introducing a technical restric-
tion on the class of sentences regarded as possessing a truth value. According to
Ryle [22], sentences of the form ‘the such-and-such sentence is false’ should not be
regarded as having a truth value unless it is possible to attach a ‘namely-rider’. For
instance, in ‘the first thing that Plato said to Aristotle is true’ we can insert a clause,
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‘the first thing that Plato said to Aristotle, namely . . ., is true’, which may alter its
meaning, but does not alter its truth-value. But in the paradoxical ‘the underlined
sentence is false’, if we try to insert such a clause, ‘the underlined sentence, namely
‘the underlined sentence is false’, is false’ we get a new description (indirect) of a
sentence which must again be supplied with a namely-rider. As this process never
ends, the original sentence has no truth value, whereas in the Plato example, we get
down to something of the form ‘. . .’ is true, where the quoted part does not involve
the notions of truth and falsehood.

The paradox of the liar is an antinomy at the level of sentences. At the level of
subjects and singular descriptions there is the antinomy of Berry, to be discussed
in Chapter 4. And at the level of predicates there is the antinomy of Russell, better
known as Russell’s paradox, which will be discussed in Chapter 3.

Besides antinomies, like those of the liar, of Berry and of Russell, W.V. Quine
also distinguishes other, less serious, paradoxes: veridical and falsidical paradoxes.

Veridical paradoxes A veridical or truth-telling paradox is a paradoxical statement
that on reflection turns out to yield a somewhat astonishing, but true, proposition.

Example 2.27. 1. Frederic has reached the age of twenty-one without having more
than five birthdays.
2. The barber paradox: In a certain village there is a barber who shaves precisely
those men in the village who do not shave themselves. Question: does the barber
shave himself? Each man in the village is shaved by the barber if and only if he does
not shave himself. Hence, in particular, the barber shaves himself if and only if he
does not shave himself.

Both paradoxes are alike in the sense that at first sight they seem to prove absur-
dities by decisive arguments. The Frederic-paradox is a truth-telling paradox if we
conceive the statement as the abstract truth that one can be 4n (n = 0,1,2, . . .) years
old at one’s nth birthday, namely if one has been born on February 29. The barber-
paradox contains a reductio ad absurdum: from the, not explicitly mentioned, pre-
miss that such a barber exists, we derive an absurdity of the form B � ¬B. Hence
the assumption is false and no village can have a barber who shaves all and only
those men in the village who do not shave themselves.

The difference between an antinomy and a veridical paradox is that in the latter
case we are only slightly astonished that we have to give up one of the premisses
like the existence of a village-barber as described above, while in the case of an
antinomy we are forced to give up very fundamental ideas and a major revision in
our way of thinking is needed.

Falsidical paradoxes A falsidical paradox is a paradoxical statement that really is
false, the argument backing it up containing some impossible hidden assumption or
involving a fallacy. Typical examples of falsidical paradoxes are:

Example 2.28. 1. The comic mis-proof that 2 = 1: Let x = 1. Then x2 = x. Hence
x2− 1 = x− 1. Dividing both sides by x− 1, we conclude that x+ 1 = 1. Hence,
because x = 1, 2 = 1.
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2. Three men agree to share a hotel room overnight, splitting the charge of $ 30
three ways, with each man paying $ 10. After they have gone to their room, the
clerk realizes he should only have charged them $ 25 and sends the bellboy up with
$ 5 to be returned to them. The bellboy, realizing how hard it will be to make change,
pockets $ 2 and returns $ 1 to each man. Thus the men have each paid $ 9, for a total
of $ 27 and the bellboy has $ 2, for a total of $ 29. One dollar of the original thirty
is missing.
3. Zeno’s paradox of Archilles and the Tortoise.

A
| - - - - - - - - - | o o o o o o o |. . . . |

0 T
| - - - - - - - |o o o o |. . . . |

1 1.1 1.11 1.111

Suppose A(rchilles) and the T (ortoise) start to run at the same time and A runs 10
times as fast as T does. Suppose also that in the starting position A is in position
0, one mile behind T , which hence is in position 1. While A runs from 0 to the
starting position of T , T covers a distance of 0.1 mile since its velocity has been
supposed to be 1

10 of that of A. And while A runs from position 1 to position 1.1, T
covers a distance of 0.01 mile, thus arriving at position 1.11. And while A runs from
position 1.1 to position 1.11, T runs from position 1.11 to position 1.111. And so
on. Consequently, A will never pass T .

In a falsidical paradox there is always a fallacy or some impossible hidden assump-
tion in the argument and in addition the statement must look absurd and be false.

In the ’proof’ of 2 = 1 we divided by x− 1, which is 0 because x was supposed
to be 1. In the hotel paradox the number 2 is added wrongly to 27: 2 should be
subtracted from 27 in order to determine the price, 25 dollars, of the hotel room.

In the case of Archilles and the Tortoise the impossible hidden assumption is
that the infinite process of Archilles running to the position where the tortoise was
a moment ago, lasts infinitely long. In fact, however, if Archilles needs 0.1 hour for
one mile, the infinite process will last only 0.1+ 0.01+ 0.001+ . . .= 0.111 . . .= 1

9
hour, which is less than 0.12 hours. Within this time Archilles and the Tortoise
will arrive at the same position and Archilles will pass the Tortoise. The process of
Archilles passing the Tortoise may be thought of as consisting of infinitely many
steps, but this infinite process is actually completed in 1

9 hour (6 minutes and 40
seconds).

Only the antinomies cause a crisis of thought. Only an antinomy produces a self-
contradiction via accepted means of reasoning. Only an antinomy requires that some
tacitly accepted and trusted patterns of reasoning be made explicit and henceforth
be avoided or revised.

The falsidical paradox of Zeno must have been a real antinomy in his day. It
was thought as evident that a process consisting of infinitely many steps would last
infinitely long. It is only because of the mathematical achievements of the 18th
and 19th century that we know that some infinite sums, for example, 0.1+ 0.01+
0.001+ . . .= 0.111 . . .= 1

9 and 1
2 +

1
4 +

1
8 +

1
16 + . . .= 1, are finite, while others, for
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example, 1
2 +

1
3 +

1
4 +

1
5 + . . ., are not. What is an antinomy for the one is a falsidical

paradox for the other, given a lapse of a couple of thousands of years.
In the case of the paradox of Archilles and the Tortoise one should realize that

points of space and time do not occur in our perception, but are mathematical ideal-
izations. Points of space and time belong to the language of mathematics, not to the
language of our perception. If we talk about Archilles passing the infinitely many
points (positions) the Tortoise was a moment ago, we are speaking in terms of our
mathematical model and not in terms of what we perceive.

Exercise 2.70. Is the following paradox an antinomy, a veridical or a falsidical one?
A judge tells a condemned prisoner that he will be hanged either on Monday, Tues-
day, Wednesday, Thursday or Friday of the next week, but that the day of the hang-
ing will come as a surprise: he will not know until the last moment that he is going
to be hanged on that day. The prisoner reasons that if the first four days go by with-
out the hanging, he will know on Friday, that he is due to be hanged that day. So it
cannot be on Friday that he will be hanged. But now with Friday eliminated, if the
first three days go by without the hanging, he will know on Thursday that he is due
to be hanged that day, and it would not be a surprise. So it cannot be Thursday. In
the same way he rules out Wednesday, Tuesday and Monday, and convinces himself
that he cannot be hanged at all. But he is very surprised on Wednesday when the
executioner arrives at his cell. (See also Exercise 6.12 and its solution.)

Exercise 2.71. Is the following paradox an antinomy, a veridical or a falsidical one?
A crocodile seizes a baby, and tells the mother that he will return it if the next thing
she says to him is the truth, but will eat it if the next thing she says is false. The
mother says ‘you will eat the baby’. The crocodile will eat the baby if and only if
he will let it go.

Exercise 2.72. (From S.C. Kleene [15], p. 40) The following riddle also turns upon
the paradox of the liar. A traveller has fallen among cannibals. They offer him the
opportunity to make a statement, attaching the conditions that if his statement be
true, he will be boiled, and if it be false, he will be roasted. What statement should
he make? (A form of this riddle occurs in Cervantes’ ”Don Quixote” (1605), II, 51.)

Exercise 2.73. (From S.C. Kleene [15], p. 37, 38) Every municipality in Holland
must have a mayor, and no two may have the same mayor. Sometimes the mayor is a
non-resident of the municipality. Suppose a law is passed setting aside a special area
S exclusively for such non-resident mayors, and compelling all non-resident mayors
to reside there. Suppose further that there are so many non-resident mayors that S
has to be constituted a municipality. Where shall the mayor of S reside? (Mannoury,
cf. van Dantzig [5])

Exercise 2.74. (From S.C. Kleene [15], p. 38) Suppose the Librarian of Congress
compiles, for inclusion in the Library of Congress, a bibliography of all those bibli-
ographies in the Library of Congress which do not list themselves. (Gonseth 1933)
Should that bibliography list itself?
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Exercise 2.75. From Attic Nights by Aulus Gellius, Book V, x:

Among fallacious arguments the one which the Greeks call α
¸
ντιστρέφoν seems to be by

far the most fallacious. Some of our own philosophers have rather appropriately termed such
arguments reciproca, or ‘convertible’. The fallacy arises from the fact that the argument
that is presented may be turned in the opposite direction and used against the one who has
offered it, and is equally strong for both sides of the question. An example is the well-known
argument which Protagoras, the keenest of all sophists, is said to have used against his pupil
Euathlus.

For a dispute arose between them and an altercation as to the fee which had been agreed
upon, as follows: Euathlus, a wealthy young man, was desirous of instruction in oratory
and the pleading of causes. He became a pupil of Protagoras and promised to pay him a
large sum of money, as much as Protagoras had demanded. He paid half of the amount at
once, before beginning his lessons, and agreed to pay the remaining half on the day when
he first pleaded before jurors and won his case. Afterwards, when he had been for some
little time a pupil and follower of Protagoras, and had in fact made considerable progress in
the study of oratory, he nevertheless did not undertake any cases. And when the time was
already getting long, and he seemed to be acting thus in order not to pay the rest of the fee,
Protagoras formed what seemed to him at the time a wily scheme; he determined to demand
his pay according to the contract, and brought suit against Euathlus.

And when they had appeared before the jurors to bring forward and to contest the case,
Protagoras began as follows: ‘Let me tell you, most foolish of youths, that in either event
you will have to pay what I am demanding, whether judgement be pronounced for or against
you. For if the case goes against you, the money will be due me in accordance with the
verdict, because I have won; but if the decision be in your favour, the money will be due me
according to our contract, since you will have won a case.’

To this Euathlus replied: ‘I might have met this sophism of yours, tricky as it is, by not
pleading my own cause but employing another as my advocate. But I take greater satis-
faction in a victory in which I defeat you, not only in the suit, but also in this argument of
yours. So let me tell you in turn, wisest of masters, that in either event I shall not have to pay
what you demand, whether judgement be pronounced for or against me. For if the jurors
decide in my favour, according to their verdict nothing will be due you, because I have won;
but if they give judgement against me, by the terms of our contract I shall owe you nothing,
because I have not won a case.’

Then the jurors, thinking that the plea on both sides was uncertain and insoluble, for fear
that their decision, for whichever side it was rendered, might annul itself, left the matter
undecided and postponed the case to a distant day. Thus a celebrated master of oratory
was refuted by his youthful pupil with his own argument, and his cleverly devised sophism
failed. [From the English translation by John C. Rolfe of The Attic Nights of Aulus Gellius,
Book V, section X. Reprinted, Cambridge, Mass., 1967. The Loeb Classical Library, 195,
pp. 404-409.]

2.10.2 Historical and Philosophical Remarks

Stoic Logic Aristotle is generally seen as the founding father of logic. Only at the
beginning of the 20th century it became clear, among others by the work of the
Polish logician Łukasiewicz, that in fact the Stoics (± 300 B.C.) developed a kind
of propositional logic, while the logic of Aristotle is a small part of what we now
call predicate logic, to be studied in Chapter 4. A typical inference-schema of the
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Stoics runs as follows:
If the first, then the second.
The first.
Therefore, the second.

As a concrete example of this type of inference, they were accustomed to give:
If it is day, then it is light.
It is day.
Therefore, it is light.

A typical Aristotelian syllogism is: If all things with the predicate (property) P also
satisfy the predicate Q, and all things with the predicate Q also satisfy the predicate
R, then all things with the predicate P also satisfy the predicate R. A concrete in-
stance of this would be: If all birds are animals and all animals are mortal, then also
all birds are mortal.

As pointed out by Łukasiewicz, the Stoics were discussing the truth conditions
for implication. The truth-functional account, as in our truth table for →, is first
known to have been proposed by Philo of Megara ca. 300 B.C. in opposition to the
view of his teacher Diodorus Cronus. We know of this through the writings of Sextus
Empiricus some 500 years later, the earlier documents having been lost. According
to Sextus,

Philo says that a sound conditional is one that does not begin with a truth and end with a
falsehood. . . . But Diodorus says it is one that neither could nor can begin with a truth and
end with a falsehood. [Kneale, [16], p. 128]

There can be no doubt that what Sextus refers to is precisely the truth-functional
connective that we have symbolized by the→, for he says elsewhere,

So according to him there are three ways in which a conditional may be true, and one in
which it may be false. For a conditional is true when it begins with a truth and ends with a
truth, like ‘if it is day, it is light’; and true also when it begins with a falsehood and ends with
a falsehood, like ‘If the earth flies, the earth has wings’; and similarly a conditional which
begins with a falsehood and ends with a truth is itself true, like ‘If the earth flies, the earth
exists’. A conditional is false only when it begins with a truth and ends with a falsehood,
like ‘If it is day, it is night’. [Kneale [16], p. 130]

So Sextus reports Philo as attributing truth values to conditionals just as in our truth
table for→, except for the order in which he lists the cases. Diodorus probably had
in mind what later was called strict implication; see Chapter 6.

One of the Stoic principles noted by Łukasiewicz is as follows: an argument is
valid if and only if the conditional proposition having the conjunction of the pre-
misses as antecedent and the conclusion as consequent is logically true. The simi-
larity of this principle to our Theorem 2.4 is obvious.

According to the Stoics, there were five basic types of undemonstrated, i.e., self
evident, argument:
1. If the first, then the second; but the first. Therefore, the second.
2. If the first, then the second; but not the second. Therefore not the first.
3. Not both the first and the second; but the first. Therefore not the second.
4. Either the first or the second; but the first. Therefore not the second.
5. Either the first or the second; but not the second. Therefore the first.
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These arguments are basic, it was maintained, in the sense that every valid argu-
ment can be reduced to them. Sextus Empiricus gives us two very clear examples of
the analysis of an argument into its component basic arguments:
6. If the first, then if the first then the second; but the first. Therefore the second.
(Composition of two type 1 undemonstrated arguments.)
7. If the first and the second, then the third; but not the third; on the other hand the
first. Therefore not the second. (Composition of a type 2 and a type 3 undemon-
strated argument.)
One of the theorems attributed to Chrysippus is:
8. Either the first or the second or the third; but not the first; and not the second.
Therefore the third. (Composition of two type 5 undemonstrated arguments.)

Chrysippus himself is reported to have said that even dogs make use of this sort
of argument. For when a dog is chasing some animal and comes to the junction of
three roads, if he sniffs first at the two roads down which the animal did not run, he
will rush off down the third road without stopping to smell. [See B. Mates [19], pp.
67-82 and W. & M. Kneale [16], pp. 158-176.]

Consequentiae In the Middle Ages several treatises on consequentiae were written.
One of the more interesting ones is In Universam Logicam Quaestiones, formerly
attributed to John Duns the Scot (1266-1308), but later to a Pseudo-Scot (? John
of Cornwall). As we learn from Kneale [16], pp. 278-280, the Pseudo-Scot distin-
guishes various kinds of consequentiae.

Consequentia
�
�

�
�

formalis (α)

materialis
�
�

�
� bona ut nunc (γ)

bona simpliciter (β )

Examples:

(α)Socrates currit et Socrates est albus, igitur album currit.
Socrates walks and Socrates is white, so something white walks.

(β )Homo currit, igitur animal currit.
A man walks, therefore a living being walks.

(γ) Socrates currit, igitur album currit.
Socrates walks, therefore something white walks.

Consequentiae formales are inferences made exclusively on the basis of the forms
of the expressions involved. In consequentiae materiales the meaning of the pre-
misses and the conclusion also has to be taken into account. But consequentiae
materiales can always be reduced to consequentiae formales by making explicit
the silently assumed premises. For instance, ‘Socrates currit, igitur album currit’
(Socrates walks, so something white walks) can be reduced to ‘Socrates currit et
Socrates est albus, igitur album currit’ (Socrates walks and Socrates is white, so
something white walks). The Consequentiae materiales bona simpliciter are those
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inferences in which the silently assumed premisses are necessary, like, for instance,
‘omnis homo est animal’ (every man is a living being). When the silently assumed
premisses are contingent (not necessary), like, for instance, ‘Socrates est albus’
(Socrates is white), the Pseudo-Scot speaks of consequentiae materiales bona ut
nunc.

Because of their amusing character, we present below two theorems and their
proofs, as given by the Pseudo-Scot.

1. Ad quamlibet propositionem implicantem contradictionem de forma sequitur
quaelibet alia propositio in consequentia formali (From a proposition which
implies a formal contradiction, any proposition follows as a ‘consequentia for-
malis’).

2. Ad quamlibet propositionem impossibilem sequitur quaelibet alia propositio
non consequentia formali sed consequentia materiali bona simpliciter (From a
proposition which is impossible, any proposition follows not as a ‘consequentia
formalis’ but as a ‘consequentia materialis bona simpliciter’).

Kneale [16], pp. 281-282, gives the following reconstruction of the proof of 1.

Socrates does not exist

Socrates exists and Socrates does not exist
Socrates exists and

Socrates exists

Socrates exists or a man is an ass

a man is an ass

Socrates does not exist

And the Pseudo-Scot gives the following two proofs of 2:

1. Using 1., the consequentia ‘A man is an ass and a man is not an ass, therefore
you are in Rome’ is formally valid. Since it is impossible that a man is an ass,
it is necessary that a man is not an ass. And the Pseudo-Scot concludes that the
consequentia materialis ‘A man is an ass, therefore you are at Rome’ is bona
simpliciter, being reducible to a formally valid consequentia by addition of a
necessarily true premise.

2. Supposing that ‘A man is not an ass’ is necessarily true, the Pseudo-Scot also
gives the following derivation.

A man is an ass or you are at Rome A man is not an ass

A man is an ass

you are at Rome

Suggested reading on Medieval Logic: W. & M. Kneale, The Development of Logic;
L.M. de Rijk, Logica Modernorum; P. Boehner, Medieval Logic; E. Moody, Truth
and Consequence in Medieval Logic.

Frege’s Begriffsschrift (1879) Although an algebra of logic was initiated by Boole
in 1847 and De Morgan in that same year, the propositional logic properly appeared
with Frege’s Begriffsschrift in 1879, and in Russell’s work, especially in the Prin-
cipia Mathematica by Whitehead and Russell, 1910-13.
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The imprecision and ambiguity of ordinary language led Frege (1848-1925) to look for a
more appropriate tool; he devised a new mode of expression, a language that deals with the
‘conceptual content’ and that he came to call ‘Begriffsschrift’. This ideography is a ‘formula
language’, that is, a lingua characterica, a language written with special symbols, ‘for pure
thought’, that is, free from rhetorical embellishments, . . .. [Heijenoort [12], p. 1]

In the preface to his Begriffsschrift, Frege makes the following remarks about his
work (the following translations are by J. van Heijenoort [12], p. 6-7).

(p. X) Its first purpose, therefore, is to provide us with the most reliable test of the validity of
a chain of inferences and to point out every presupposition that tries to sneak in unnoticed,
so that its origin can be investigated. That is why I decided to forgo expressing anything
that is without significance for the inferential sequence. In § 3 I called what alone mattered
to me the conceptual content [begrifflichen Inhalt].

(p.XI) I believe that I can best make the relation of my ideography to ordinary language
[Sprache des Lebens] clear if I compare it to that which the microscope has to the eye.
Because of the range of its possible uses and the versatility with which it can adapt to
the most diverse circumstances, the eye is far superior to the microscope. Considered as
an optical instrument, to be sure, it exhibits many imperfections, which ordinarily remain
unnoticed only on account of its intimate connection with our mental life. But, as soon as
scientific goals demand great sharpness of resolution, the eye proves to be insufficient. The
microscope, on the other hand, is perfectly suited to precisely such goals, but that is just
why it is useless for all others.

(p.XII) If it is one of the tasks of philosophy to break the domination of the word over
the human spirit by laying bare the misconceptions that through the use of language often
almost unavoidably arise concerning the relations between concepts and by freeing thought
from that with which only the means of expression of ordinary language, constituted as
they are, saddle it, then my ideography, further developed for these purposes, can become
a useful tool for the philosopher. To be sure, it too will fail to reproduce ideas in a pure
form, and this is probably inevitable when ideas are represented by concrete means; but, on
the one hand, we can restrict the discrepancies to those that are unavoidable and harmless,
and, on the other, the fact that they are of a completely different kind from those peculiar to
ordinary language already affords protection against the specific influence that a particular
means of expression might exercise. [J. van Heijenoort [12], p. 6-7]

The notation that Frege introduces in his Begriffsschrift has not survived. It presents
difficulties in printing and takes up a large amount of space. But, as Frege himself
says, ‘the comfort of the typesetter is certainly not the summum bonum, and the
notation undoubtedly allows one to perceive the structure of a formula at a glance
and to perform substitutions with ease.’

In § 5 of his Begriffsschrift Frege introduces the notation
B

A

for our B→ A. Our C→ (B→ A) is represented by Frege as: A
B
C

while Frege represents our (C→ B)→ A by:
C
B
A

In section 7 of his Begriffsschrift Frege represents our ¬A by: A

Frege presents the propositional calculus in a version that uses the conditional and
negation as primitive connectives. Frege renders our A∨B by ¬B→ A, i.e.,
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B
A

And Frege renders our A∧B by ¬(B→¬A), i.e.,
A

B

The distinction between ‘and’ and ‘but’ is of the kind that is not expressed in the
present ideography. [G. Frege, Begriffsschrift, § 7.]

Conversational implicature P. Grice in the 1967 William James Lectures (pub-
lished in 1989 in [10]) works out a theory in pragmatics which he calls the theory
of conversational implicature. Generally speaking, in conversation we usually obey
or try to obey rules something like the following:

QUANTITY: Be informative
QUALITY: Tell the truth
RELATION: Be relevant
MODE: Avoid obscurity, prolixity, etc.

If the fact that A has been said, plus the assumption that the speaker is observing the
above rules, plus other reasonable assumptions about the speaker’s purposes and in-
tentions in the context, logically entails that B, then we can say A conversationally
implicates B.

It is possible for A to conversationally implicate many things which are in no way
part of the meaning of A. For example, if X says ‘I’m out of gas’ and Y says ‘there’s
a gas station around the corner’, Y’s remark conversationally implicates that the
station in question is open, since the information that the station is there would be
irrelevant to X’s predicament otherwise. If X says ‘Your hat is either upstairs in the
back bedroom or down in the hall closet’, this remark conversationally implicates ‘I
don’t know which’, since if X did know which, this remark would not be the most
informative one he could provide.

Grice shows how philosophers have sometimes mistaken conversational impli-
catures for elements of meaning. For instance, Strawson sometimes claims not-
knowing-which must be part of the meaning of ‘or’ (and therefore the traditional
treatment of disjunction in logic is misleading or false). Grice claims this is mistak-
ing the conversational implicature cited above for an aspect of meaning.

Sometimes it is possible to cancel a conversational implicature by adding some-
thing to one’s remark. For example, in the gas station case, ‘I’m not sure whether
it’s open’ and in the hat case, ‘I know, but I’m not saying which’ (one might say
this if locating the hat was part of some sort of parlor game). The possibility of
cancellation shows that the conversational implicatures definitely are not part of the
meaning of the utterance.

Conditionals In the examples below the conditional in (1) is in the indicative mood,
while the conditional in (2) is a subjunctive one.
(1) If Oswald did not kill Kennedy, someone else did.
(2) If Oswald had not killed Kennedy, someone else would have.
(These examples are from E. Adams, Subjunctive and Indicative Conditionals,
Foundations of Language 6: 89-94, 1970.)
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(1) is true: someone killed Kennedy; but (2) is probably false. Therefore, different
analyses are needed for indicative and for subjunctive conditionals.

A counterfactual conditional is an expression of the form ‘if A were the case,
then B would be the case’, where A is supposed to be false. Not all subjunctive
conditionals are counterfactual. Consider the argument, ‘The murderer used an ice
pick. But if the butler had done it, he wouldn’t have used an ice pick. So the murderer
must have been someone else.’. If this subjunctive conditional were a counterfactual,
then the speaker would be presupposing that the conclusion of his argument is true.
(This example is from R.C. Stalnaker, Indicative Conditionals, in W.L. Harper, e.a.,
IFS.)

In Chapter 6 we shall discuss counterfactuals and subjunctive conditionals in
general. In this section we will restrict our attention from now on to indicative con-
ditionals.

In Section 2.4 we have considered the so-called paradoxes of material implica-
tion: the following two inferences for material implication→ are valid, whereas the
corresponding English versions seem invalid.

¬A
A→ B

There is no oil in my coffee
If there is oil in my coffee, then I like it

B
A→ B

I’ll ski tomorrow
If I break my leg today, then I’ll ski tomorrow

So, the truth-functional reading of ‘if . . . , then . . . ’, in which A→ B is equivalent
to ¬A∨B, seems to conflict with judgments we ordinarily make. The paradoxical
character of these inferences disappears if one realizes that:
1. the material implication A→ B has the same truth-table as ¬A∨B;
2. speaking the truth is only one of the conversation rules one is expected to obey in
daily discourse; one is also expected to be as relevant and informative as possible.
Now, if one has at one’s disposal the information ¬A (or B, respectively) and at the
same time provides the information A → B, i.e., ¬A∨B, then one is speaking the
truth, but a truth calculated to mislead, since the premiss ¬A (or B, respectively) is
so much simpler and more informative than the conclusion A→ B. If one knows the
premiss ¬A (or B, respectively), the conversation rules force us to assert this premiss
instead of A→ B. Quoting R. Jeffrey:

Thus defenders of the truth-functional reading of everyday conditionals point out that the
disjunction ¬A∨B shares with the conditional ‘if A, then B’ the feature that normally it is
not to be asserted by someone who is in a position to deny A or to assert B. . . .

Normally, then, conditionals will be asserted only by speakers who think the antecedent
false or the consequent true, but do not know which. Such speakers will think they know of
some connection between the components, by virtue of which they are sure (enough for the
purposes at hand) that the first is false or the second is true. [R. Jeffrey [13], pp. 77-78]

Summarizing in a slogan:
indicative conditional = material implication + conversation rules.

So H.P. Grice uses principles of conversation to explain facts about the use of con-
ditionals that seem to conflict with the truth-functional analysis of the ordinary in-
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dicative conditional. In his paper ‘Indicative Conditionals’ (in W.L. Harper, e.a.
(eds.), IFS), R.C. Stalnaker follows another strategy, rejecting the material condi-
tional analysis. And in his book ‘Causal Necessity’, Brian Skyrms claims that the
indicative conditional cannot be construed as the material implication ‘→’ plus con-
versational implicature. The dispute between advocates of the truth-functional ac-
count of conditionals and the advocates of other, more complex but seemingly more
adequate accounts is as old as logic itself.

Frege, Russell, Hilbert In his Begriffsschrift (page 2) of 1879 Gottlob Frege dis-
tinguishes the notations –A for ‘the proposition that A’ and � A for ‘it is a fact that
A’. Frege calls A in –A and in � A ‘der Inhalt’ (the content) and ‘� A’ ‘ein Urteil’
(a judgment). In Chapter II of his book Frege gives the first axiomatic formulation
of classical propositional (and predicate) logic, namely, the following system PF ,
presented below in our own notation.
A→ (B→ A) (Begriffsschrift, p. 26, form. 1)
(C→ (B→ A))→ ((C→ B)→ (C→ A)) (Begriffsschrift, p. 26, form. 2)
(D→ (B→ A))→ (B→ (D→ A)) (Begriffsschrift, p. 35, form. 8)
(B→ A)→ (¬A→¬B) (Begriffsschrift, p. 43, form. 27)
¬¬A→ A (Begriffsschrift, p. 44, form. 31)
A→¬¬A (Begriffsschrift, p. 47, form. 41)
together with Modus Ponens.

It is probably correct to say that Frege’s work only became well-known through
Russell. The following formulation PR of classical propositional logic was used by
Whitehead and Russell in Principia Mathematica in 1910 (see part I, page 13).

A∨A→ A
B→ A∨B
A∨B→ B∨A
A∨ (B∨C)→ B∨ (A∨C)
(B→C)→ (A∨B→ A∨C)

together with Modus Ponens.
The following formulationP of propositional logic has implication and negation

as primitive connectives and Modus Ponens as its only rule:
A→ (B→ A)
(A→ (B→C))→ ((A→ B)→ (A→C))
(¬A→¬B)→ (B→ A)

Defining A∧B :=¬(A→¬B) and A∨B := (A→ B)→ B, the axioms for ∧ and ∨ in
Section 2.6 become formulas containing no connectives other than→ and ¬ and are
deducible (using MP) from the three axiom schemes given above. So, by expressing
∧ and ∨ in terms of → and ¬, formulations such as P are obtained, in which the
number of axioms is small.

In their Grundlagen der Mathematik (1934) D. Hilbert (1862-1943) and P.
Bernays (1888-1977) presented the following axiom system PH for the classical
propositional calculus. This system contains axioms for each of the connectives
→, ∧, ∨ and ¬.
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A→ (B→ A)
(A→ (B→C))→ ((A→ B)→ (A→C))

}

→

A∧B→ A
A∧B→ B
A→ (B→ A∧B)

⎫
⎬

⎭
∧

A→ A∨B
B→ A∨B
(A→C)→ ((B→C)→ (A∨B→C))

⎫
⎬

⎭
∨

(¬A→¬B)→ (B→ A) ¬
Formulations of intuitionistic propositional logic can be obtained by replacing the
negation axiom of PH by suitable different axioms, for instance, by (A→ ¬A)→
¬A and ¬A→ (A→ B); see Chapter 8.

For more historical details the reader is referred to section 29 of A. Church [4].
Introduction to Mathematical Logic.

Scientific Explanation, Inductive Logic Some, but not all, scientific explanations
are deductive arguments the premisses of which consist of general laws and partic-
ular facts. A trivial example is the following explanation.

If someone drops his pencil, it falls to the ground. (L1)
I drop my pencil. (C1)
Therefore, my pencil falls to the ground. (E)

L1 is a general law, i.e., a universal statement expressing that each time some con-
dition P is satisfied, then without exception some condition Q will occur. C1 is a
particular fact. And E is the explanandum, the statement which has to be explained.

Explanations of this kind are called deductive-nomological explanations. (The
Greek word ’nomos’ means ’law’.) Their general form is

L1, L2, . . . ,Lr (universal laws)
C1, C2, . . . ,Ck (particular facts)

E

}

Explanans

Explanandum

In a deductive-nomological explanation the explanandum follows logically or de-
ductively from the explanans.

Probabilistic explanations are different in that i) the laws are in terms of relative
frequences, and ii) the explanandum does not logically follow from the explanans,
but can only be expected with a certain degree of probability, called inductive or
logical probability. The following is an example of a probabilistic explanation.

Example 2.29. The statistical probability of catching the measles, when exposed to
them, is 3

4 . The statistical probability of catching pneumonia, when exposed to it, is
1
7 . Jim was exposed to the measles and to pneumonia. Therefore, the inductive or
logical probability that Jim catches both the measles and pneumonia is 3

4 × 1
7 = 3

28 .

The main question in inductive logic is how to determine the inductive probabil-
ity for the explanandum, given the statistical probabilities in the explanans. This
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problem is in part still unsettled. Note that inductive or logical probability is a re-
lation between statements, while statistical probability is a relation between (kinds
of) events.

References for further reading: 1. Hempel, R., Philosophy of Natural Science; 2.
Carnap, R., Logical foundations of probability; 3. Carnap, R. and Jeffrey, R., Studies
in inductive logic and probability; 4. Jeffrey, R., The logic of decision; 5. Swinburne,
R., An introduction to confirmation theory.

Syntax – Semantics The syntax of a language is concerned only with the form of
the expressions, while the semantics is concerned with their meaning.

So, the rules according to which the well-formed expressions of a language are
formed and the rules belonging to a logical proof system, such as Modus Ponens,
belong to the syntax of the language in question. These rules can be manipulated
mechanically; a machine can be instructed to apply the rule Modus Ponens and to
write down a B once it sees both A and A→ B, while the machine does not know
the meanings of A, B and →. The notions of (logical) proof and deduction, as well
as the notions of (logical) provability and deducibility, clearly belong to the syntax:
they are only concerned with the form of the formulas involved.

On the other hand, truth tables belong to the semantics, because they say how
the truth value (meaning) of a composite proposition is related to the truth values
(meanings) of the components from which it is built. The notions of validity and
valid consequence also belong to the semantics: they are concerned with the mean-
ing of the formulas in question.

Leibniz (1646-1716) We will here pay attention to only a few aspects of Leibniz. For
more information the reader is referred to Kneale [16] and to Mates [20], Chapter
12. What follows in this subsection is based on these works.

One of Leibniz’ ideals was to develop a lingua philosophica or characteristica
universalis, an artificial language that in its structure would mirror the structure of
thought and that would not be affected with ambiguity and vagueness like ordinary
language. His idea was that in such a language the linguistic expressions would
be pictures, at it were, of the thoughts they represent, such that signs of complex
thoughts are always built up in a unique way out of the signs for their compos-
ing parts. Leibniz believed that such a language would greatly facilitate thinking
and communication and that it would permit the development of mechanical rules
for deciding all questions of consistency or consequence. The language, when it is
perfected, should be such that ‘men of good will desiring to settle a controversy
on any subject whatsoever will take their pens in their hands and say Calculemus
(let us calculate)’. If we restrict ourselves to propositional logic, Leibniz’ ideal has
been realized: classical propositional logic is decidable; see Section 2.9. However,
A. Church and A. Turing proved in 1936 that extending the propositional language
with the quantifiers ‘for all’ (∀) and ‘for some’ (∃), the resulting predicate logic
is undecidable, i.e., there is no mechanical method to test logical consequence (in
predicate logic), let alone philosophical truth.

Leibniz also developed a theory of identity, basing it on Leibniz’ Law: eadem
sunt quorum unum potest substitui alteri salva veritate – those things are the same
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if one may be substituted for the other with preservation of truth. Leibniz’ Law is
also called the substitutivity of identity or the principle of extensionality and it is
frequently formulated as follows.

a = b→ (. . .a . . .� . . .b . . .)

where . . .a . . . is a context containing occurrences of the name a, and . . .b . . . is the
same context in which one or more occurrences of a has been replaced by b; if a is
b, then what holds for a holds for b and vice versa. In the propositional calculus we
have a similar principle of the substitutivity of material equivalents:

(A � B)→ (. . .A . . .� . . .B . . .).

Leibniz made a distinction between truths of reason and truths of fact. The truths
of reason are those which could not possibly be false, i.e., – in modern terminology
– which are necessarily true . Examples of such truths are: no bachelor is married,
2+ 2 = 4, living creatures cannot survive fire, and so on. Truths of fact are called
contingent truths nowadays; for example, unicorns do not exist, Amsterdam is the
capital of the Netherlands, and so on. Leibniz spoke of the truths of reason as true
in all possible worlds. He imagined that there are many possible worlds and that our
actual world is one of them. ’2+ 2 = 4’ is true not only in this world, but also in
any other world. ’Amsterdam is the capital of the Netherlands’ is true in this world,
but we can think of another world in which this proposition is false. In 1963, S.
Kripke extended the notion of possible world with an accessibility relation between
possible worlds, which enabled him to give adequate semantics for the different
modal logics, as we will see in Chapter 6. The idea is that some worlds are accessible
from the given world, and some are not. For instance, one could postulate (and one
usually does) that worlds with different mathematical laws are not accessible from
the present world.

2.11 Solutions

Solution 2.1. i) P1∧P2 →¬P3; ii) P1∧ (P2 →¬P3); iii) P1∨ (P2 → P3);
iv) (P2∨P1)→ P3; v) P1 → (P2 →¬P3)

Solution 2.2. i) If it is the case that if John works hard then he goes to school, then
John is not wise. ii) John does not work hard or John is wise. iii) It is not the case
that John works hard or that John is wise; in other words, John does not work hard
and John is not wise. iv) John does not go to school and John is wise. v) It is not the
case that both John goes to school and John is wise; in other words, John does not
go to school or John is not wise.

Solution 2.3. 1. P1 or ∀x[P(x)]; 2. P2 or ∀x[¬P(x)]; 3. ¬P1 or ¬∀x[P(x)].

Solution 2.4. Only the expressions P1, ¬P8, P1 ∧¬P8, and (P1 ∧ P2)→ ¬P3 are
formulas of propositional logic. All other expressions contain symbols which do
not occur in the alphabet of propositional logic.
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Solution 2.5. Let Φ be the property defined by Φ(n) := 1+ 2+ . . .n = 1
2 n(n+ 1).

1. 0 has the property Φ , since 0 = 1
2 0(0+ 1).

2. Suppose n has the property Φ , i.e., 1+ 2+ . . .n = 1
2 n(n+ 1) (induction hypoth-

esis). Then we have to show that n+ 1 also has the property Φ , i.e., 1+ 2+ . . .n+
(n+ 1) = 1

2 (n+ 1)((n+ 1)+ 1).
Proof: According to the induction hypothesis, 1+ 2+ . . .n+(n+ 1) = 1

2 n(n+ 1)+
(n+ 1) = ( 1

2 n+ 1)(n+ 1) = 1
2 (n+ 1)(n+ 2).

Solution 2.6. Atomic formulas have no or zero parentheses, so as many left paren-
theses as right parentheses.
Assume that A and B have as many left parentheses as right parentheses (induction
hypothesis). Then evidently the formulas (A � B), (A→ B), (A∧B), (A∨B) and
(¬A) also have as many left parentheses as right parentheses.

Solution 2.7. We restrict ourselves to showing that¬(A∧B) has the same truth table
as ¬A∨¬B. Although the formulas A and B may have been composed of many
atomic formulas P1, . . . ,Pn and hence their truth tables may consist of many lines,
2n, in the end there are at most 4 possible different combinations of 1 (true) and
0 (false) for A and B. Hence, it suffices to restrict ourselves to these maximally 4
possible different combinations:

A B A∧B ¬(A∧B) ¬A ¬B ¬A∨¬B
1 1 1 0 0 0 0
1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 0 1 1 1 1

Solution 2.8. Below are the truth tables for the formulas from exercise 2.1 and 2.2.

——- 2.1 ——- ——- 2.2 ——-
P1 P2 P3 i ii iii iv v i ii iii iv v
1 1 1 0 0 1 1 0 0 1 0 0 0
1 1 0 1 1 1 0 1 1 0 0 0 1
1 0 1 1 1 1 1 1 1 1 0 1 1
1 0 0 1 1 1 0 1 1 0 0 0 1
0 1 1 1 0 1 1 1 0 1 0 0 0
0 1 0 1 0 0 0 1 1 1 1 0 1
0 0 1 1 0 1 1 1 0 1 0 1 1
0 0 0 1 0 1 1 1 1 1 1 0 1

Solution 2.9. A∨¬A has the value 1 and A∧¬A has the value 0 in all lines of the
truth table. Hence, in each line of the truth table
a) (A∨¬A)→ B is 0 iff B is 0,
b) (A∨¬A)∧B is 0 iff B is 0, and
c) (A∧¬A)∨B is 0 iff B is 0.
Therefore (A∨¬A)→ B, (A∨¬A)∧B and (A∧¬A)∨B have the same truth table
as B.
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Solution 2.10. A B A→ B (A→ B)→ B B→ A (B→ A)→ A A∨B
1 1 1→ 1 = 1 1→ 1 = 1 1 1 → 1 = 1 1
1 0 1→ 0 = 0 0→ 0 = 1 1 1 → 1 = 1 1
0 1 0→ 1 = 1 1→ 1 = 1 0 0 → 0 = 1 1
0 0 0→ 0 = 1 1→ 0 = 0 1 1 → 0 = 0 0

Alternatively, one might argue as follows: (A→ B)→ B is 0 iff (A→ B is 1 and B
is 0) iff (A is 0 and B is 0) iff A∨B is 0. Similarly for (B→ A)→ A.

Solution 2.11. We restrict ourselves to c) (P→Q)→ (¬Q→¬P). Suppose in some
line of its truth table this formula has the value 0. Then in that line P→ Q is 1 and
¬Q→¬P is 0. Hence, P→Q is 1, ¬Q is 1 and ¬P is 0 in that same line. So, P→Q
is 1, Q is 0 and P is 1 in that same line. Then, either P is 0, Q is 0 and P is 1 in that
line, or Q is 1, Q is 0 and P is 1 in that line. Both are impossible, so the original
formula cannot have the value 0 in some line of its truth table.

Solution 2.12. a) In order that P∨Q→ P∧Q is 0 in some line, P∨Q must be 1 and
P∧Q 0 in that same line. So, at least one of P, Q must be 0. By taking the value of
the other formula 1, one achieves that P∨Q is 1, while P∧Q is 0:

P Q P∨Q P∧Q
1 0 1 0
0 1 1 0

b) is treated similarly.

Solution 2.13. 1 B, 2 A, 3 B, 4 C, 5 B, 6 C, 7 C, 8 C, 9 C, 10 C.

Solution 2.14. Each formula A built by means of connectives from only one atomic
formula P must have one of the following four truth tables.

P A
1 1 1 0 0
0 1 0 1 0

These four truth tables are the tables of P→ P, P, ¬P and P∧¬P, respectively.

Solution 2.15. Straightforward

Solution 2.16. * Let G be a group. If G can be ordered, then clearly every subgroup
of G, generated by finitely many elements of G, can be ordered. Conversely, suppose
every such subgroup of G can be ordered. (∗)
Now, consider the propositional language built from atomic formulas Pa,b, where
a,b are elements of G. Let Γ be the following set of formulas in this language.
Pa,a for every element a in G.
Pa,b∨Pb,a for all a,b in G.
Pa,b →¬Pb,a for all a,b in G with a �= b.
Pa,b∧Pb,c → Pa,c for all a,b,c in G.
Pa,b → Pac,bc∧Pca,cb for all a,b,c in G.
Proposition 1: Every finite subset of Γ has a model.
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Proof : Let Γ ′ be a finite subset of Γ . In Γ ′ there occur only finitely many elements
of G. Let G′ be the subgroup of G, generated by these finitely many elements. By
the hypothesis (∗), G′ can be ordered by some relation ≤ . Now, let u(Pa,b) = 1 if
a≤ b, and u(Pa,b) = 0 if a > b. Then u is a model of Γ ′.
By the compactness theorem it follows from Proposition 1 that Γ has a model, say
v. Now, let a≤ b := v(Pa,b) = 1. Since v is a model of Γ , ≤ is an ordering of G.

Solution 2.17. * If a graph on V is k-chromatic, then clearly every finite subgraph
of it is k-chromatic. Conversely, suppose R is a graph on V such that every finite
sub-graph of R is k-chromatic. (∗)
Now, consider the propositional language built from atomic formulas Pi,x, where
i ∈ {1, . . . ,k} and x ∈V . And let Γ be the following set of formulas.
Pi,x →¬Pj,x for all i, j ≤ k with i �= j and all x ∈V .
P1,x∨ . . .∨Pk,x for all x ∈V .
Pi,x →¬Pi,y for all i≤ k and all x, y ∈V such that xRy.
Proposition 1: Every finite subset of Γ has a model.
Proof : Let Γ ′ be a finite subset of Γ . In Γ ′ there occur only finitely many elements
of V . Let R′ be the sub-graph of R obtained by restricting R to the set V ′ of these
finitely many elements. By hypothesis (∗), R′ is k-chromatic, i.e., there is a partition
of V ′ into k disjoint sets W1, . . . ,Wk, such that two elements of V ′ connected by R′
do not belong to the same Wi. Now, let u(Pi,x) = 1 if x∈Wi, and u(Pi,x) = 0 if x �∈Wi.
Then u is a model of Γ ′.

By the compactness theorem it follows from proposition 1 that Γ has a model,
say v. Now, let Vi := {x∈V | v(Pi,x)= 1} for i= 1, . . . ,k. Then V1, . . . ,Vk is a partition
of V such that two elements of V , connected by R, do not belong to the same Vi. In
other words, R is k-chromatic.

Solution 2.18. * Let B and G be sets. R⊆ B×G, such that (i) for all x ∈ B, R{x} is
finite, and (ii) for every finite subset B′ ⊆ B, RB′ has at least as many elements as
B′. Consider a propositional language with as atomic formulas all expressions Hx,y

with x ∈ B and y ∈ G. Let Γ contain the following formulas:
Hx,y1 ∨ . . .∨Hx,yn for any x ∈ B, where R{x} = {y1, . . . ,yn}.
¬(Hx,y1 ∧Hx,y2) for any x ∈ B, y1,y2 ∈ G with y1 �= y2.
¬(Hx1,y∧Hx2,y) for any x1,x2 ∈ B, y ∈G with x1 �= x2.
If u is a model of Γ , then f : B → G, defined by f (x) = y if u(Hx,y) = 1, is an
injection from B to G.

In order to show that Γ has a model, by the compactness theorem it suffices to
show that each finite subset Γ ′ of Γ has a model. So, let Γ ′ be a finite subset of Γ .
Let B′ := {x ∈ B | Hx,y occurs in Γ ′ for some y ∈ G}, and G′ := {y ∈ G | Hx,y occurs
in Γ ′ for some x ∈ B}. Since B′ and G′ are finite, there is an injection f ′ : B′ → G′,
such that if f ′(x) = y, then R(x,y). Define u′ as follows: u′(Hx,y) = 1 iff f ′(x) = y.
Then u′ is a model of Γ ′.

Solution 2.19.
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P1 P2 P3 P1 → P2 ¬P2∨P3 P1 → P3 P3 → P1

1 1 1 1 1 1 1
1 1 0 1 0 0 1
1 0 1 0 1 1 1
1 0 0 0 1 0 1
0 1 1 1 1 1 0
0 1 0 1 0 1 1
0 0 1 1 1 1 0
0 0 0 1 1 1 1

Let P1 stand for: the government raises taxes for its citizens; P2 for: the unemploy-
ment grows; and P3 for: the income of the state decreases. Then the argument has
the following structure: P1 → P2,¬P2∨P3 |= P1 → P3. Notice that ¬P2∨P3 has the
same truth table as P2 → P3. One easily checks that in each line of the truth table
starting with P1,P2,P3 in which both premisses are 1, also the conclusion is 1.

There are four lines in which all premisses are true: line 1, 5, 7 and 8. In each of
these lines the conclusion P1 → P3 is 1 too. Therefore, P1→ P2,¬P2∨P3 |= P1 → P3.

Solution 2.20. Let P1 stand for: Europe may form a monetary union; P2 for: Europe
is a political union; and P3 for: all European countries are member of the union.
Then the argument has the following structure: P1 → P2,¬P2∨P3 |= P3 → P1, which
is false, because there is at least one line in the truth table in which all premisses
are 1, while the putative conclusion P3 → P1 is 0; see lines 5 and 7 in the table of
solution 2.19. Therefore, P1 → P2,¬P2∨P3 �|= P3 → P1.

Solution 2.21. c) There is no line in the truth table in which both A and ¬A are 1,
so there is no line in the truth table in which both A and ¬A are 1 and B is 0, i.e.,
A,¬A |= B.

Solution 2.22. Let W stand for: John wins the lottery; J for: John makes a journey;
and S for: John succeeds for logic. Then the structure of the argument is the follow-
ing one: ¬W ∨ J, ¬J →¬S, W ∨ S |= J. Notice that the first premiss has the same
truth table as W → J and that the second premiss has the same truth table as S→ J.
Hence, the structure of the argument is equivalent to W → J, S → J, W ∨ S |= J,
which clearly is valid. Checking the truth table will confirm this.

Solution 2.23. Let T stand for: Turkey joins the EU; L for: the EU becomes larger;
and S for: the EU becomes stronger. Then the argument has the following structure:
T → L, ¬(S∧¬L) |= ¬T ∨ S. Notice that ¬(S∧¬L) has the same truth table as
S→ L and that the conclusion ¬T ∨S has the same truth table as T → S. Hence the
structure of the argument is equivalent to T → L, S → L |= T → S, which clearly
does not hold: if T and L are 1 and S is 0, then the premisses are both 1, while the
conclusion is 0. Making a truth table will confirm this.

Solution 2.24. 1) Assume |= A � (A→ B). To show: |= A and |= B. So, suppose A
were 0 in some line of its truth table. Then A � (A→ B) would be 0� (0→ 0/1) =
(0 � 1) = 0 in that line, contradicting the assumption. Therefore, |= A. In a similar
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way |= B can be shown.
2) Assume A |= ¬A. To show: |= ¬A. So, suppose ¬A were 0 in some line of its
truth table, i.e. A were 1 in that line. Then, by assumption, also ¬A would be 1 in
that same line. Contradiction. Therefore, |= ¬A.
3) Assume A→ B |= A. To show: |= A. So, suppose A were 0 in some line of its truth
table. Then A→ B would be 1 in that same line and hence, by assumption, A would
be 1 in that same line. Contradiction. Therefore, |= A.

Solution 2.25. a) Counterexample: let A = P (atomic) and B = Q (atomic). Then
not |= P→ Q, but not |= P and not |= ¬Q.
b) Proof: ¬(A → B) has the same truth table as A∧¬B. So, if |= ¬(A → B), then
|= A∧¬B. Hence, by Theorem 2.14, |= A and |= ¬B.
c) Counterexample: let A = P (atomic) and B = Q (atomic). Then not |= P∧Q, but
not |= ¬P and not |= ¬Q.
d) Counterexample: let A = P (atomic) and B = ¬P. Then |= ¬(P∧¬P), but not
|= ¬P and not |= ¬¬P. Notice that A = P and B = Q with P,Q atomic, is not a
counterexample, because |= ¬(P∧Q) does not hold.
e) Counterexample: A = P (atomic) and B = Q (atomic). Then not |= P∨Q, but not
|= ¬P and not |= ¬Q.
f) Proof: ¬(A∨B) has the same truth table as ¬A∧¬B. So, if |= ¬(A∨B), then
|= ¬A∧¬B. Hence, by Theorem 2.14, |= ¬A and |= ¬B.

Solution 2.26. (a1) and (a2) For i = 1, . . . ,n, A1, . . . ,Ai, . . . ,An |= Ai, since for every
line in the truth table, if all of A1, . . . ,Ai, . . . ,An are 1, then also Ai is 1.
(b1) Assume A1,A2,A3 |= B1 and A1,A2,A3 |= B2 and B1,B2 |=C, i.e., for every line
in the truth table, if all of A1,A2,A3 are 1, then also B1 is 1 and B2 is 1; and for every
line in the truth table, if all of B1,B2 are 1, then also C is 1. Therefore, for every line
in the truth table, if all of A1,A2,A3 are 1, then also C is 1, i.e., A1,A2,A3 |=C.
(b2) Similarly.

Solution 2.27. 1) Assume A |= B and A |= ¬B and suppose that in some line of the
truth table¬A is 0, i.e., A is 1. Then, because of A |=B, B is 1 in that line and, because
of A |= ¬B, ¬B is 1 (and hence B is 0) in that line of the truth table. Contradiction.
So, there is no line in which A is 1. Therefore |= ¬A.
2) Assume A |=C and B |=C and, in order to show that A∨B |=C, suppose A∨B is
1 in some line of the truth table. Then A is 1 or B is 1 in that line. In the first case it
follows from A |=C and in the second case it follows from B |=C that C is 1 in that
line.

Solution 2.28. (a) Right. There is no line in the truth table in which A→ B∨C is 1
and (A→ B)∨ (A→C) is 0.
(b) Wrong. Counterexample: for P, Q atomic, |= (P → Q)∨ (P → ¬Q), but not
|= P→ Q and not |= P→¬Q. (See also Theorem 2.13 (b))
(c) Assume A |= B (1). To show: B→C |= A→C. So, suppose B→C is 1 in some
line of the truth table (2). Then we have to show that also A→ C is 1 in that line.
So, suppose A is 1 in that same line (3). Then, because of (1), B is 1 in that line and
hence, because of (2), C is 1 in that line, which had to be proved.
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Solution 2.29. Assume T ∧A∧B |= P. To show: ¬P |= ¬T ∨¬A∨¬B. So, suppose
¬P is 1 in some line of the truth table. Then P is 0 in that line and hence, by assump-
tion, T ∧A∧B is 0 in that line. Then ¬(T ∧A∧B) is 1 and hence ¬T ∨¬A∨¬B is
1 in the given line. Therefore, ¬P |= ¬T ∨¬A∨¬B.

Solution 2.30. Proof of a): Assume A |= B. To show: ¬B |= ¬A. So, suppose ¬B
is 1 in an arbitrary line of the truth table. Then B is 0 in that line and hence, by
assumption, A is 0 in that line. Therefore ¬A is 1 in that line, which had to be
shown.
Proof of b): Assume A |= B and A,B |=C. To show A |=C. So, suppose A is 1 in an
arbitrary line of the truth table. Then, because of A |= B, A and B are 1 in that line
and hence, by A,B |=C, C is 1 in that line, which had to be shown.
Proof of c): Assume A∨B |= A∧B. And suppose A and B have different values in
some line of the truth table (1−0 or 0−1 respectively). Then A∨B is 1 in that line,
while A∧B is 0 in that line, contradicting A∨B |= A∧B. Therefore A and B have
the same truth table.

An alternative proof: Suppose A∨B |= A∧B. This means that the formulas A and
B are such that in the standard truth table for A∨B and for A∧B line 2 (A is 1, B is
0) and line 3 (A is 0 and B is 1) do not occur. So, only line 1 (A is 1 and B is 1) and
line 4 (A is 0 and B is 0) may occur. Hence, A and B have the same truth table.

Solution 2.31. Brown’s testimony Jones’ testimony Smith’s testimony
B J S ¬J∧S ¬B→¬S S∧ (¬B∨¬J)
1 1 1 0 1 0
1 1 0 0 1 0
1 0 1 1 1 1
1 0 0 0 1 0
0 1 1 0 0 1
0 1 0 0 1 0
0 0 1 1 0 1
0 0 0 0 1 0

a) Yes, for the three testimonies are all true in the third line of the truth table.
b) ¬J∧S |= S∧ (¬B∨¬J), i.e., Smith’s testimony follows from that of Brown.
c) The assumption that everybody is innocent means in terms of the truth tables that

the first line applies. Since in this line Brown’s and Smith’s testimonies are false,
Brown and Smith commit perjury in this case.

d) There is only one line (namely the third one) in which everyone’s testimony is
true. In this line B and S are 1 and J is 0. So, in this case Brown and Smith are
innocent and Jones is guilty.

e) Line 6 in the truth table is the only line in which the innocent tells the truth and
the guilty tells lies. From line 6 we read off that in this case Brown and Smith are
guilty and tell lies and that Jones is innocent and tells the truth.

Solution 2.32. Let P, Q, R be the statement ‘Pro wins’, ‘Quick wins, ‘the Runners
win’, respectively.
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Trainer of Pro Trainer of Quick Trainer of Runners
P Q R R→¬Q Q∨R R
1 1 1 0 1 1
1 1 0 1 1 0
1 0 1 1 1 1
1 0 0 1 0 0
0 1 1 0 1 1
0 1 0 1 1 0
0 0 1 1 1 1
0 0 0 1 0 0

a) The assumption that everyone’s statement is true means in terms of the truth
tables that the third or seventh line applies. Assuming there is at most one winner,
the third line does not apply. So, the Runners win.
b) If only the trainer of the winning club makes a true statement, Pro wins the
tournament, as can be seen from the fourth line.

Solution 2.33. (a) ¬P∧Q∧R (see the outline of the proof of Theorem 2.16).
(b) (P∧Q∧R)∨ (¬P∧Q∧R)∨ (¬P∧¬Q∧R).
(c) P∧¬P.
(d) ¬((P∧Q∧R)∨ (¬P∧Q∧¬R)). Note: the table of (P∧Q∧R)∨ (¬P∧Q∧¬R)
corresponds with the negation of column (d).

Solution 2.34. ¬A has the same truth table as ¬A∨¬A and hence as A ↓ A.
A∨B has the same truth table as ¬(¬A)∨¬(¬B), hence as ¬A ↓ ¬B and therefore
as (A ↓ A) ↓ (B ↓ B).
A∧B has the same truth table as ¬(¬A∨¬B), hence as ¬(A ↓ B) and therefore as
(A ↓ B) ↓ (A ↓ B).

Solution 2.35. i) ∧ can be expressed in terms of ∨ and ¬, for A∧B has the same
truth table as ¬(¬A∨¬B); similarly, ∨ can be expressed in terms of ∧ and ¬, for
A∨B has the same truth table as ¬(¬A∧¬B).
ii) {→,¬} is complete, for according to Theorem 2.16 {∧,∨, ¬} is complete and
both ∧ and ∨ can be expressed in terms of→ and ¬: A∧B has the same truth table
as ¬(A→¬B) and A∨B has the same truth table as (A→ B)→ B.
{→,¬} is independent, for → cannot be expressed in terms of ¬; more precisely,
A → B does not have the same truth table as A, ¬A, ¬¬A, B, ¬B or ¬¬B; and ¬
cannot be expressed in terms of →; for suppose A is 1, then ¬A is 0 and one can
show that any formula, built from A and→ only, is 1 if A is 1.
iii) In a similar way one shows that {∧,¬} and {∨,¬} are both complete and inde-
pendent.

Solution 2.36. Suppose | is a binary connective such that every truthfunctional con-
nective of (1 or) 2 arguments can be expressed in it. (*)
Then, in particular, there must be a formula A built from P and | only, such that ¬P
has the same truth table as A (α). Now, if 1 | 1 = 1, one can show that any formula,
built from P and | only, will have the value 1 if P is 1 (β ). However,¬1= 0 (γ). From
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(α), (β ) and (γ) it follows that 1 | 1 = 0. In a similar way one shows that 0 | 0 = 1.
Consequently, the connective ”|” must have one of the following four truth tables.

P Q
1 1 0 0 0 0
1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 1

We will show next that the values of 1 | 0 and 0 | 1 should be the same, so that only
the first and the fourth column remain and | must be either ↑ or ↓.

If 1 | 0 �= 0 | 1, then one can show that any formula, built from P, Q and | only,
will get a different truth value if we interchange the P and the Q in it, giving P and
Q the values 1 and 0 respectively (a). Under the assumption (*) there must be a
formula B built from P, Q and | only, such that P∧Q has the same truth table as B
(b). However, 1∧0 = 0∧1 (c). From (a), (b) and (c) it follows that 1 | 0 = 0 | 1.

Solution 2.37. i) (P→ (Q→ P))∧ (P→ Q∨P) has the same truth table as
(¬P∨ (¬Q∨P))∧ (¬P∨ (Q∨P)).
ii) The following formulas have the same truth table:

(P→¬(Q→ P))∧ (P→ Q∧P) (¬P∨¬(¬Q∨P))∧ (¬P∨ (Q∧P))
(¬P∨ (¬¬Q∧¬P))∧ (¬P∨ (Q∧P)) (¬P∨ (Q∧¬P))∧ (¬P∨ (Q∧P))
(¬P∨Q)∧ (¬P∨¬P)∧ (¬P∨Q)∧ (¬P∨P) (¬P∨Q)∧¬P

iii) (P→¬(Q→ P))∨ (P→Q∧P) has the same truth table as:
((¬P∨Q)∧ (¬P∨¬P))∨ ((¬P∨Q)∧ (¬P∨P))
((¬P∨Q)∧¬P)∨ (¬P∨Q)
((¬P∨Q)∨ (¬P∨Q))∧ ((¬P∨Q)∨¬P)
(¬P∨Q).

Solution 2.38. a) R→ ¬K, K � ¬R. The following list of formulas is a deduction
of ¬R from the premisses R→¬K and K:
1. K premiss
2. K → (R→ K) axiom 1
3. R→ K MP applied to 1 and 2.
4. (R→ K)→ ((R→¬K)→¬R) axiom 7
5. (R→¬K)→¬R MP applied to 3 and 4.
6. R→¬K premiss
7. ¬R MP applied to 5 and 6.
b) Suppose ¬K → R, K � ¬R. Then by the soundness theorem ¬K → R, K |= ¬R.
Making the truth table shows that this is false. Therefore, ¬K → R, K �� ¬R.

Solution 2.39. The following schemas are deductions of the last formula in the
schema from the formulas mentioned as premisses.

MP
A∧B

B→ A∧B
MP

A→ (B→ A∧B)
(a)

A
premiss

MP
B

A→ B
premiss

(b)
B

premiss
A

premiss 3
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A
(c) MP

A∧B
premiss

A∧B→ A
4a

(d) MP
B

A∧B→ BA∧B
4bpremiss

A∨B
(e) MP

A A→ A∨B
premiss 5a

(f) MP
A∨B

B→ A∨B
5bpremiss

B

(g) MP
A

¬¬A→ A¬¬A
premiss 8

A � B
(h)

B→ A
premiss

A→ B
premiss

(B→ A)→ (A � B)

(A→ B)→ ((B→ A)→ (A � B))
9

MP

MP

(i)
A � B (A � B)→ (A→ B)

A→ B
MP (j)

A � B (A � B)→ (B→ A)

B→ A

premiss premiss10a 10b

Solution 2.40. The following list of formulas is a deduction of B from A and ¬A:
1. A premiss
2. A→ (¬B→ A) axiom 1
3. ¬B→ A from 1 and 2 by MP
4. ¬A premiss
5. ¬A→ (¬B→¬A) axiom 1
6. ¬B→¬A from 4 and 5 by MP
7. (¬B→ A)→ ((¬B→¬A)→¬¬B) axiom 7
8. (¬B→¬A)→¬¬B from 3 and 7 by MP
9. ¬¬B from 6 and 8 by MP
10. ¬¬B→ B axiom 8
11. B from 9 and 10 by MP.

Solution 2.41. (a) P∨Q �|= P∧Q, since there is a line in the truth table in which
P∨Q is 1 and P∧Q is 0. According to the soundness theorem: if P∨Q � P∧Q,
then P∨Q |= P∧Q. Therefore, P∨Q �� P∧Q.
(b), (c) and (d) are shown in a similar way.

Solution 2.42. P→ Q, P � R∨Q. The following list of formulas is a deduction of
R∨Q from P and P→ Q.
1. P premiss
2. P→ Q premiss
3. Q MP applied to 1 and 2.
4. Q→ R∨Q axiom
5. R∨Q MP applied to 3 and 4.

Solution 2.43. S → H, ¬I →¬S �? I → H. Suppose this were true. Then because
of the soundness theorem S→ H, ¬I →¬S |= I → H. One easily checks from the
truth table that this is not the case. Therefore, S→H, ¬I →¬S �� I → H.
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Solution 2.44. We leave the proof of (i) and (ii) to the reader. (iii) If u(A) = 0 and
u(A→ B) = 0, then only the first line of the table applies; so u(B) = 0.
(iv) In the sixth line of the table u(A) = 1 and u(B) = 2. Hence, u(((A → B)→
A)→ A) = ((1→ 2)→ 1)→ 1 = (2→ 1)→ 1 = 0→ 1 = 1. If Peirce’s law were
generated by the production method consisting of the two logical axioms for →
only, then because of (i), (ii) and (iii) ((A→ B)→ A)→ A would have the value 0
in every line of the table.

Solution 2.45. We show that A∧B→C, A, B �C. Then by two applications of the
deduction theorem it follows that A∧B→C � A→ (B→C).

premiss
B B→ A∧B

A→ (B→ A∧B)A
premiss 3

A∧B A∧B→C

C

premiss

Solution 2.46. We show that A→ B, A, B→C �C. Then by three applications of
the deduction theorem it follows that � (A→ B)→ (A→ ((B→C)→C)).

premiss
A A→ B

premiss

B B→C
premiss

C

Solution 2.47. Suppose A1,A2 � B, i.e., there exists a deduction of B from A1,A2.
We show that A1 ∧ A2 � B. Then by one application of the deduction theorem it
follows that � A1∧A2 → B.

A1∧A2 → A1
4apremiss

A1∧A2

A1

B

⎧
⎪⎪⎨

⎪⎪⎩given deduction
of B from A1,A2

A2

A1∧A2 → A2
4bpremiss

A1∧A2

Solution 2.48. Suppose � (A1∧A2)∧A3 → B. Let (α) be a (logical) proof of (A1∧
A2)∧A3 → B. Then the following schema is a deduction of B from A1, A2, A3. Note
that we first deduce (A1∧A2)∧A3 from A1, A2, A3 and next use � (A1∧A2)∧A3 →
B in order to deduce B.

A1∧A2∧A3

A3 → A1 ∧A2∧A3)

A1 ∧A2 → (A3 → A1 ∧A2∧A3)
3

A3
premiss

A1∧A2

A2 → A1∧A2

A1 → (A2 → A1∧A2)

A2
premiss

A1
premiss 3

B

(α)
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Solution 2.49. Proof: Suppose�A→C and � B→C. The following list of formulas
is a deduction of C from A∨B:
1. A→C deducible
2. (A→C)→ ((B→C)→ (A∨B→C)) axiom
3. (B→C)→ (A∨B→C) MP applied to 1 and 2.
4. B→C deducible
5. A∨B→C MP applied to 3 and 4.
6. A∨B premiss
7. C MP applied to 5 and 6.

Solution 2.50. A, B→C � A and A � A∨C; hence, A, B→C � A∨C. (1)
B, B→C �C and C � A∨C; hence, B, B→C � A∨C. (2)

From (1) and (2), by ∨-elimination, A∨B, B→C � A∨C.

Solution 2.51. Suppose A � B. Then, by Corollary 2.3, A,¬B � B.
But also A,¬B � ¬B. Hence, by ¬-introduction, ¬B � ¬A.

Solution 2.52. A � A∨¬A. Hence, by Exercise 2.51, ¬(A∨¬A) � ¬A. (a)
¬A � A∨¬A. Hence, by Exercise 2.51, ¬(A∨¬A) � ¬(¬A). (b)
From (a) and (b), by ¬-introduction, � ¬¬(A∨¬A). Hence, by double negation
elimination, � A∨¬A.

Solution 2.53. By weak negation elimination ¬A, ¬B, A �C (1)
and ¬A, ¬B, B �C. (2)

From (1) and (2), by ∨-elimination, ¬A, ¬B, A∨B �C. (I)
By weak negation elimination ¬A, ¬B, A � ¬C (a)

and ¬A, ¬B, B � ¬C. (b)
From (a) and (b), by ∨-elimination, ¬A, ¬B, A∨B � ¬C. (II)
From (I) and (II), by ¬-introduction, ¬A, ¬B � ¬(A∨B).

Solution 2.54. Suppose A � ¬A. Because of A � A, by ¬-introduction, � ¬A.

Solution 2.55. Counterexample: A = P (it rains) en B = ¬P (it does not rain).
|= P∨¬P (it is always true that it rains or does not rain). Hence, because of the
completeness theorem, � P∨¬P.
But �� P. For suppose � P; then, because of the soundness theorem, |= P (it is always
true that it rains), which is false. Therefore �� P.
Similarly, �� ¬P. For suppose � ¬P; then, because of the soundness theorem, |= ¬P
(it is always true that it does not rain; it never rains), which is false. Therefore, �� ¬P.

Solution 2.56. Counterexample: A = P (it rains). From the truth table we know that
�|= P (it is not always true that it rains). So, because of the soundness theorem �� P.
However, �� ¬P. For suppose � ¬P; then because of the soundness theorem |=¬P (it
is always true that it does not rain; it never rains), which is false. Therefore, �� ¬P.

Solution 2.57. a) Proof: Suppose � A→ B. The following list of formulas is a de-
duction of B from A:
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A premiss
A→ B deducible
B MP applied to 1 and 2.
b) Proof: Suppose � ¬A. Then, because of the soundness theorem, |= ¬A. (*)
We want to show that not � A. So, suppose that � A; then, because of the soundness
theorem, |= A; but this contradicts (*). Therefore, not � A.

Solution 2.58. We have seen in Exercise 2.40 that A,¬A � B. Hence, by the deduc-
tion theorem ¬A � A→ B (1). Also, by applying axiom 1, B→ (A→ B), we know
that B � A→ B (2). From (1) and (2) by ∨ elimination: ¬A∨B � A→ B.
a) A→ B, ¬(¬A∨B),¬A � ¬A∨B and A→ B, ¬(¬A∨B),¬A � ¬(¬A∨B). Hence,
by ¬-introduction, A→ B, ¬(¬A∨B) � ¬¬A.
b) By ¬-introduction, A→ B, ¬(¬A∨B) � ¬A.

Solution 2.59. a) A, B � A∧B, by using the axiom A→ (B→ A∧B).
Proof of A, ¬B � ¬(A∧B): A, ¬B, A∧B � ¬B and A, ¬B, A∧B � B Hence, by
reductio ad absurdum (¬-introduction), A, ¬B � ¬(A∧B).
¬A, B � A∨B because B � A∨B.
¬A, ¬B � ¬(A∨B); see Exercise 2.53.
b) Suppose |= E . Then E∗1 = E∗2 = E∗3 = E∗4 = E .
Therefore A, B � E and A, ¬B � E; hence by ∨-elimination: A, B∨¬B � E .
Also ¬A, B � E and ¬A, ¬B � E; hence by ∨-elimination: ¬A, B∨¬B � E .
By Exercise 2.52, � B∨¬B and consequently, A � E and ¬A � E .
Hence, by ∨-elimination: A∨¬A � E and therefore, � E .

Solution 2.60. i)

¬I(2)
3[¬B] B

2[A∧B]
∧E

¬(A∧B)
∨E(3)

¬A∨¬B

¬(A∧B)

¬(A∧B)
¬I(1)

3[¬A] A
∧E

1[A∧B]

(3) ¬I
A∧B¬(A∧B)

¬¬(¬A∨¬B)
d¬E

¬A∨¬B

∧I
BA

d¬E
¬¬B¬¬A

d¬E

¬I
¬A∨¬B

∨I
[¬B]23[¬(¬A∨¬B)]

(2)¬I
¬A∨¬B

∨I
[¬A]13[¬(¬A∨¬B)]

(1)

ii)
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Solution 2.61. i)

MP →E
B→ A

A→ (B→ A)AA→ (B→ A)

B→ A

A
axiom (1)

B→ A → I

→ I
[A]1

¬B→¬A
→ I(2)

¬I(1) ¬A

[¬B]2B

1[A] A→ Bii)

¬A
(1)

B ¬B

1[A]The deduction continues as follows: A→ B

To this corresponds: (1) A,A→ B,¬B � B, and

(2) A,A→ B,¬B � ¬B.

B ¬B

A→ BA
This deduction starts as follows:

To this corresponds A→ B, ¬B � ¬A, which follows from (1) and (2) by Theorem
2.25, ¬-introduction. And from A→ B, ¬B � ¬A it follows by Theorem 2.25, →-
introduction, that A→ B � ¬B→¬A.

Solution 2.62. (a) A → B, A∧¬B � B, and A → B, A∧¬B � ¬B. Hence, by ¬-
introduction, A→ B � ¬(A∧¬B).
(b) The following schema is a tableau-deduction of ¬(A∧¬B) from A→ B:

T A→ B, F ¬(A∧¬B)
T A→ B, T A∧¬B
T A→ B, TA, T¬B
T A→ B, TA, FB

FA, TA, FB | T B, TA, FB
(c) Suppose A→ B is 1 and ¬(A∧¬B) is 0. Then A∧¬B is 1. So, A is 1 and ¬B is
1. Hence, A→ B is 1, A is 1 and B is 0. Then (A is 0, A is 1 and B is 0) or (B is 1, A
is 1 and B is 0). Contradiction. Therefore, A→ B |= ¬(A∧¬B).

Solution 2.63. (a) A→ B, B→ C, A � C. Hence, by using the deduction theorem
three times, � (A→ B)→ ((B→C)→ (A→C)).
(b) F (A→ B)→ ((B→C)→ (A→C))

T A→ B, F (B→C)→ (A→C)
T A→ B, T B→C, F A→C
T A→ B, T B→C, TA, FC

FA, T B→C, TA, FC | T B, T B→C, TA, FC
T B, FB, TA, FC | T B, TC, TA, FC



126 2 Propositional Logic

(c) Suppose (A→ B)→ ((B→C)→ (A→C)) is 0. Then A→ B is 1, B→C is 1, A
is 1 and C is 0. So, (A is 0 and 1) or (B, B→C and A are 1 and C is 0). In the latter
case, B is 1 and 0 or C is 1 and 0. Contradiction.

Solution 2.64. (a) T A→ B, T ¬A→ B, FB
FA, T ¬A→ B, FB | T B, T ¬A→ B, FB

FA, F¬A, FB | FA, T B, FB | T B, T ¬A→ B, FB
FA, TA, FB Note that all three tableau branches are closed.

(f) T A→ B∨C, F (A→ B)∨ (A→C)
T A→ B∨C, F A→ B, F A→C
T A→ B∨C, TA, FB, TA, FC

FA, TA, FB, TA, FC | T B∨C, TA, FB, TA, FC
T B, TA, FB, TA, FC | TC, TA, FB, TA, FC

Note that all three tableau branches are closed.

Solution 2.65. a) R→W,¬R→ B,¬B |=? W .
b) T R→W, T ¬R→ B, T¬B, FW

T R→W, T ¬R→ B, FB, FW
FR, T ¬R→ B, FB, FW | TW, T ¬R→ B, FB, FW

FR, F ¬R, FB, FW | FR, T B, FB, FW
FR, T R, FB, FW

Note that all tableau branches are closed and hence: R→W,¬R→ B,¬B �′ W .

Solution 2.66. a) R→¬W,W → H,¬R |=? H.
b) T R→¬W, T W →H, T¬R, FH

T R→¬W, T W → H, FR, FH
T R→¬W, FW, FR, FH | T R→¬W, TH, FR, FH

FR, FW, FR, FH | T¬W, FW, FR, FH
FW, FW, FR, FH

Note that the two most left tableau branches are completed but open, i.e., not closed,
while the third tableau branch is closed. From any open and completed tableau
branch one read off a counterexample: give R, W and H value 0, corresponding
with the occurrence of FR, FW, FH in the completed open tableau branch.

R W H R→¬W W → H ¬R H
0 0 0 1 1 1 0

Therefore: R→¬W,W →H,¬R �|= H.

Solution 2.67. (a) The following schema is a tableau-proof of A→ (B→ A):
F A→ (B→ A)
TA, F B→ A
TA, TB, FA

The other axioms are treated similarly.
(b) A, A → B �′ B, for the following schema is a tableau-deduction of B from
A, A→ B : TA, T A→ B, FB

TA, FA, FB | TA, T B, FB.
On the other hand, suppose �′ A and �′ A→ B. Then there is a tableau-proof starting
with FA and there is a tableau-proof starting with
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F A→ B
TA, FB.
In order to show that �′ B one has to construct a tableau-proof starting with FB.

Solution 2.68. A tableau-proof of A∨B should start with: F A∨B
FA, FB

So, if there is a tableau-proof starting with FA or there is a tableau-proof starting
with FB, then �′ A∨B.
(b) A tableau-proof of A∧B starts with: F A∧B

FA | FB
The left part is a tableau-proof of A and the right part is a tableau-proof of B.

Solution 2.69. (a) ¬P,P � Q (weak negation elimination). Hence, by the deduction
theorem, ¬P � P→ Q. Therefore, ¬P, (P→ Q)→ P � P.
(b) P, (P→Q)→ P � P. So, by (a) and ∨-elimination, P∨¬P, (P→ Q)→ P � P.
(c) By Exercise 2.52, � P∨¬P. Therefore, from (b), (P→ Q)→ P � P. So, by the
deduction theorem, � ((P→Q)→ P)→ P.

Solution 2.70. The prisoner should reason as follows: If I wake up on Friday morn-
ing, what can I conclude. One of two things. Either they will hang me today, or else
the judge was lying when he said I would hang one day this week. Suppose I some-
how knew that the judge’s statement that I would hang one day this week was true.
Then I would know that I was to die today, and I would then know that his statement
about not knowing the day of my death was false. But since I do not know that his
first statement is true, I have no idea what is going to happen. Shortly before noon,
they come to get him. ‘Now I know’, says the prisoner. ‘Both statements were true’.

Let A stand for ‘the prisoner will be hanged on Monday, Tuesday, Wednesday
or Thursday’ and B for ‘the prisoner will be hanged on Friday’ and let �B stand
for ‘one knows B’, then it is shown in Exercise 6.12 that A∨ B, �¬A �� �B,
while �(A∨ B), �¬A � �B does hold. See also W.V. Quine, On a supposed
antinomy, in The Ways of Paradox, and F. Norwood, The prisoner’s card game, in
The Mathematical Intelligencer, Vol. 4, Number 3, 1982.

Solution 2.71. This paradox is veridical if we conceive it as making clear that the
promise A of the crocodile is inconsistent, more precisely A |= B � ¬B, where B
stands for ‘the crocodile will eat the baby’.

Solution 2.72. Let A be the statement made by the traveller. Then the condition of
the cannibals may be expressed by (A→ B∧¬R)∧ (¬A→¬B∧R), where B stands
for ‘the traveller will be boiled’, and R for ‘the traveller will be roasted’. A should
be such that the truth table of the condition has only 0’s and hence A should be of
the form (a), (b), (c) or (d).

B R (A→ B∧¬R)∧ (¬A→¬B∧R) A (a) (b) (c) (d)
1 1 0 0/1 0 0 1 1
1 0 0 0 0 0 0 0
0 1 0 1 1 1 1 1
0 0 0 0/1 0 1 0 1
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So, the traveller should make one of the following four statements: (a) ¬B∧R, (b)
¬B, (c) R, (d) B→ R, which has the same truth table as ¬B∨R.

Solution 2.73. Similar to the barber paradox. (See Exercise 2.27.)

Solution 2.74. Similar to the barber paradox. (See Exercise 2.27.)

Solution 2.75. Let ‘W ’ stand for ‘Euathlus wins the case’ and ‘P’ for ‘Euathlus has
to pay’. Then according to the contract, W → P (1) and ¬W → ¬P (2), in other
words, W � P. But according to the verdict, W → ¬P (3) and ¬W → P (4), in
other words, W � ¬P. Note that W � P and W � ¬P are inconsistent. In his argu-
ment Protagoras uses both (4) and (1), while Euathlus uses both (3) and (2) in his
argument.
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Chapter 3
Sets: finite and infinite

H.C.M. (Harrie) de Swart

Abstract Sets occur abundantly in mathematics and in daily life. But what is a
set? Cantor (1845-1918) defined a set as a collection of all objects which have a
certain property in common. Russell showed in 1902 that this assumption yields a
contradiction, known as Russell’s paradox, and hence is untenable. In 1908 Zermelo
(1871-1953) weakened Cantor’s postulate considerably and consequently had to add
a number of additional axioms. We present the set theory of Zermelo-Fraenkel. Next
we discuss relations and functions. We use the Hilbert hotel with as many rooms as
there are natural numbers to illustrate a number of astonishing properties of sets
which are equally large as the set N of the natural numbers. We shall discover that
there are many sets which in a very precise sense are much larger than N. We shall
even see that for any set V , finite or infinite, there is a larger set P(V ), called the
powerset of V . Amazingly, although all sets we experience in the world are finite,
we are still able to imagine infinite sets like N and to see amazing properties of
them. This reminds us of the statement by cardinal Cusanus (1400-1453) that in our
pursuit of grasping the divine truths we may expect the strongest support of math-
ematics. Finally we point out that Kant was right that mathematical (true) proposi-
tions are not analytic, but synthetic, and that Russell and Frege’s logicism, stating
that all of mathematics may be reduced to logic, is wrong. What may be true is that
mathematics can be reduced to logic plus set theory.

3.1 Russell’s Paradox

We all know lots of sets. Here are a few examples: the set of all citizens of the
Netherlands, the set of all players in a soccer team, the set of all triangles in a plane.

Another example is the set of the natural numbers 1, 2 and 3. This set is denoted
by {1, 2, 3}. Then 3 ∈ {1,2,3} denotes: 3 is an element of the set {1, 2, 3}; and
7 �∈ {1,2,3} denotes: ¬(7 ∈ {1,2,3}), i.e., 7 is not an element of the set {1, 2, 3}.
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The numbers 0, 1, 2, 3, . . . are called natural numbers. We may consider the
infinite set of all natural numbers. This set is denoted by N, in other words N =
{0,1,2, . . .}. For example, 3 ∈N and 1024∈ N, but −3 �∈ N, 2

3 �∈ N and
√

2 �∈N.
It turns out that many, if not all, notions from mathematics can be represented

by sets. For instance, we shall see that the natural numbers 0,1,2, . . . may be rep-
resented by sets. That means that set theory may be conceived as a foundation of
mathematics, as a unifying theory in which all mathematics may be represented. So,
from now on we shall assume that sets are our universe of discourse.

Cantor’s naive comprehension principle But what is a set? G. Cantor (1845 -
1918) answered this question as follows: a set is by definition the collection of all
objects which have a certain property A. This principle is now known as the naive
comprehension principle: Let A(x) express that (set) x has the property A. Then
{x | A(x)} is the set of all (sets) x which have the property A, i.e.,

for all (sets) y, y ∈ {x | A(x)} iff A(y).

For instance, let A(x) stand for: x is a natural number. Then Cantor’s naive com-
prehension principle tells us that {x | x is a natural number} is a set, which we may
denote by N.

However, in 1902 Bertrand Russell showed in a letter to Frege (see Heijenoort
[6], p. 124) that the naive comprehension principle leads to a contradiction. The
argument is extremely simple: apply the naive comprehension principle to the prop-
erty A(x): x �∈ x. According to Cantor’s principle, {x | x �∈ x} is a set V such that for
all (sets) y, y ∈V iff y �∈ y. In particular, taking for y the set V itself we get

V ∈V iff V �∈V .

Contradiction.
The argument above is known as Russell’s paradox. Russell’s argument shows

that set theory with the naive comprehension principle is inconsistent. This was
quite a shock to the community at the time, because set theory was (and still is)
considered to be a foundation for all of mathematics.

One way to escape the paradox was indicated by Zermelo on the grounds of the
following observation: the set involved in the derivation of the paradox turns out to
be very large – the set of all sets not being an element of themselves. Zermelo noted
that the full force of the naive comprehension principle was hardly ever used; one
mostly uses it to create subsets of a given set. So, instead of the naive comprehension
principle Zermelo put forward his Aussonderungs Axiom or separation axiom:

Separation Axiom: if V is a set and A(x) a property, then also {x ∈ V | A(x)} is a
set, consisting of all elements in V which have the property A, i.e., such that for all
(sets) y:

y ∈ {x ∈V | A(x)} iff y ∈V and A(y)

The separation axiom says that within a given set V we can collect all elements of V ,
which have a certain property A, into a subset {x ∈ V | A(x)} of V . Cantor allowed
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this principle not only for a given set V , but also for the universe of all sets. And
Russell showed that to be contradictory.

If we abandon the naive comprehension principle and adopt the separation axiom
instead, we can no longer accept the proof of Russell’s paradox. However, we may
use the idea of Russell’s proof to obtain, with the help of the separation axiom, a
positive result. From the separation axiom it follows:

Theorem 3.1. For any set V there is a set W, namely W = {x ∈V | x �∈ x}, such that
W �∈V .

Proof. Let V be a given set. According to the separation axiom, W = {x∈V | x �∈ x}
is a set such that for all sets y, y ∈W iff y ∈V and y �∈ y. In particular, since W itself
is a set, we get

W ∈W iff W ∈V and W �∈W .

Now suppose W ∈V ; then W ∈W iff W �∈W . Contradiction. Therefore, W �∈V .
Making use of truth-tables (see Chapter 2) one may illustrate this proof as fol-

lows. The propositions W ∈W and W ∈V can be either true (1) or false (0), giving
four possible combinations:

W ∈W W ∈V W �∈W W ∈V ∧W �∈W W ∈W �W ∈V ∧W �∈W
1 1 0 0 0
1 0 0 0 0
0 1 1 1 0
0 0 1 0 1

From the Separation Axiom it follows that W ∈W � W ∈ V ∧W �∈W is a true (1)
proposition. Hence, we are in the 4th line of the truth table. And we can read off
from that line that both W ∈W and W ∈V are false (0). In particular, W �∈V . ��
From the Separation Axiom it follows that no set may contain all sets, in other
words, the universe (or totality) of all sets is not a set.

Corollary 3.1. The universe (or totality) of all sets is not a set.

Proof. Suppose the universe of all sets were a set U . Then by definition of U , for all
sets W , W ∈U (1). But if U were a set, it follows from Theorem 3.1 that there is a
set W , namely W = {x ∈U | x �∈ x}, such that W �∈U (2).
(1) and (2) are contradictory. Hence, the universe of all sets is not a set. ��
Russell obtained his paradox from the naive comprehension principle by consider-
ing the ‘set’ {x | x �∈ x}. By considering the set {x ∈ V | x �∈ x}, given any set V ,
we did not obtain a paradox, but the positive and interesting results formulated in
Theorem 3.1 and Corollary 3.1 instead.

Another way to escape Russell’s paradox is to blame the contradiction on the
expression x �∈ x : x �∈ x produced a contradiction, so we must suppress x∈ x. Russell,
in his theory of types, has chosen this approach: assign type to variables (sets) and
allow expressions such as x ∈ y only if the type of x is one less than the type of y.
So, the expression x ∈ x is then grammatically not correct.
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Since the separation axiom yields only new sets, given any set V in advance,
we have to postulate the existence of at least one set, in order to be able to build
other sets. E. Zermelo (1871-1953) laid down his system of axioms for sets in 1908.
The extension of Fraenkel dates from 1922. Below we present the axioms ZF of
Zermelo and Fraenkel. The axioms may be formulated in natural language, but they
may also be formulated in the language of predicate logic, letting the variables range
over sets and using only two binary predicate symbols: ∈ (is element of) and = (is
equal to).

3.2 Axioms of Zermelo-Fraenkel for Sets

Empty set axiom: There exists a set without elements. In other words, there is a set
x such that for all sets y, y �∈ x.
Formulated in the predicate language just mentioned: ∃x∀y[¬(y ∈ x)]

There are many examples of empty sets in daily life: the set of living persons older
than 150 years; the set of all persons with blue hair, the set of all natural numbers
which are both even and odd, etc. Notice that the existence of the empty set also
would follow from the naive comprehension principle: {x | x �= x}, assuming that
each thing is equal to itself.

Sets are, just like triangles and numbers, legitimate mathematical objects. So it
makes perfectly good sense to ask whether two sets are identical or not. If two sets
x and y are identical (equal), we write x = y, if not, x �= y. Identical sets have exactly
the same properties; so, if x = y, then every element of x is also an element of y and
vice versa. One may wonder if, conversely, sets with exactly the same elements are
identical. Consider, for example, the set V of all even numbers greater than zero and
the set W of all sums of pairs of odd numbers. There is some reason to distinguish
V and W : they are given in different ways. On the other hand, we feel (and math-
ematical practice confirms this) that definitions do not matter so much, it is rather
content that counts. So, we make the explicit choice to consider sets as merely be-
ing determined by their elements. Hence, ‘having the same elements’ means ‘being
equal’.

Axiom of extensionality: Two sets are equal if and only if they have the same
elements. As observed above, the ‘only if’ holds trivially.
Formulated in our predicate language: x = y � ∀z[z ∈ x � z ∈ y].

The axiom of extensionality has among others the following consequences:

{3, 4, 5} = {4, 3, 5} {2, 3} �= {3, 4}
{3, 3, 7} = {3, 7} {0, 1} �= {1, 2}
{2, 3} = {2, 3, 3} {2, {3, 4}} �= {{2, 3}, 4}
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Notice that the only elements of {2,{3,4}} are: 2 and {3,4}, while the only el-
ements of {{2,3},4} are: {2,3} and 4. For instance, 2 ∈ {2,{3,4}}, but 2 �∈
{{2,3},4}; and {2,3} ∈ {{2,3},4}, but {2,3} �∈ {2,{3,4}}.
Since, by the extensionality axiom, a set is completely determined by its elements,
there may be at most one empty set: if there were two sets without elements, they
would have the same elements (0 � 0 = 1) and hence, by the axiom of extension-
ality, be equal. The empty set axiom says that there is at least one empty set. By the
axiom of extensionality there is at most one empty set. Hence, there is exactly one
empty set. Notation: /0.
By definition: ∀y[y �∈ /0].

Given two sets V and W , we want to be able to construct a set whose elements are
exactly V and W themselves. The existence of such a set would also follow from the
naive comprehension principle: {x | x =V or x =W}. So, we postulate:

Pairing Axiom: Given any sets v and w, there exists a set y, whose elements are
exactly v and w.
Formulated in our predicate language: ∀v∀w∃y∀z[z ∈ y � z = v∨ z = w].

Again, by the extensionality axiom, given sets v and w, the set whose existence is
required by the pairing axiom is unique and is called the unordered pair {v,w} of v
and w. Because {v,w} and {w,v} have the same elements, they are equal.
So, for all (sets) z, z ∈ {v,w} iff z = v or z = w.

{v} := {v,v} is the singleton of v. If v is a set, then so is {v}, because of the pairing
axiom and the definition of {v}.
Now, with only a few axioms, the existence of infinitely many sets follows:

/0, { /0}, {{ /0}}, {{{ /0}}}, . . .
/0 (we repeat) is a set without elements. { /0}, on the other hand, is a set with one
element, namely /0. Hence, /0 �= { /0}.
{{ /0}} is the set with { /0} as its only element, while { /0} has /0 as its only element.
Hence, {{ /0}} �= { /0}, because /0 �∈ {{ /0}}.
The Pairing Axiom also entails the existence of { /0,{ /0}}, which is the set with /0 and
{ /0} as its only elements.

Given two sets V and W we want to be able to construct the union V ∪W of V and W
such that for all z, z ∈V ∪W iff z ∈ V ∨ z ∈W . Its existence would follow from the
naive comprehension principle: {x | x ∈V or x ∈W}. Notice that in general, V ∪W
is a larger set than each of V and W separately.

Union axiom If v and w are sets, then there exists a set y such that for all (sets) z,
z ∈ y iff z ∈ v or z ∈ w.
Formulated in our predicate language: ∀v∀w∃y∀z[z ∈ y � z ∈ v∨ z ∈ w]
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Again, by the extensionality axiom, given sets V and W , the set required by the
union axiom is unique and is called the union of V and W . Notation: V ∪W .
So, for all (sets) z,

z ∈V ∪W � z ∈V ∨ z ∈W .

W
V

Example 3.1.
{1,2}∪{5,6}= {1,2,5,6}, {1,2}∪{2}= {1,2},
{1,2}∪{2,6}= {1,2,6}, {1,2}∪ /0 = {1,2}.
{1,2}∪{1,2}= {1,2}.

The union axiom allows us to construct the union of any two given sets v and w
or, put differently, to form the union of all elements of the set x = {v,w}. A more
general version of the union axiom, put forward by Zermelo, was the following.

Sumset Axiom: For every set x there exists a set y, whose elements are exactly the
objects occurring in at least one element of x.
Formulated in our predicate language: ∀x∃y∀z[z ∈ y � ∃v[v ∈ x∧ z ∈ v]].

Again, the extensionality axiom guarantees the uniqueness of the set y, given x. This
unique set is called the sum-set of x. Notation:

⋃
x or ∪{y | y ∈ x}.

Notice that v∪w =
⋃{v,w}.

Now we are able to define the natural numbers in terms of sets as follows.

Definition 3.1 (Successor function). 0 := /0.
The successor function S is defined by S(n) = n∪{n}, also denoted by n+ 1.

Example 3.2. 0 := /0
1 := 0∪{0}. So, 1 = {0}= { /0}.
2 := 1∪{1}. So, 2 = {0}∪{1}= {0,1}= { /0,{ /0}}.
3 := 2∪{2}. So, 3 = {0,1}∪{2}= {0,1,2}= { /0,{ /0},{ /0,{ /0}}}.
In general, for any natural number n, n+ 1 := n∪{n}.
One easily checks by induction that for any natural n, defined in this way, n =
{0, . . . ,n−1} and that the sets 0, 1, 2, 3, . . . are distinct pairwise. So, we have iden-
tified each natural number n with a certain standard set consisting of n elements.
This definition of natural numbers in terms of sets justifies the use of natural num-
bers in the examples at the beginning of this section.

With very few axioms we have generated up till now infinitely many sets, but all
of them are finite. But we also want to be able to deal with the infinite set of all
natural numbers, which is so important in mathematics and its many applications.
The existence of this set would follow easily from the naive comprehension princi-
ple: {x | x is a natural number}. Since this naive comprehension principle had to be
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replaced by the much weaker separation axiom we have to postulate the existence
of at least one infinite set.

Axiom of Infinity: There is at least one set y that contains 0, i.e., /0, and is such that
for every x ∈ y it also contains Sx, i.e., x∪{x}.
Formulated in our predicate language: ∃y[0 ∈ y∧∀x[x ∈ y→ Sx ∈ y]]

The set y whose existence is required by the axiom of infinity has clearly infinitely
many members: 0, 1, 2, 3, . . .. But there might be many of such sets containing in
addition other things. So, we take the smallest such set which contains 0 and with
every number n its successor Sn= n+1 and denote it by N. So, 0∈N, 1∈N, 2∈N,
etc. Notice that N has infinitely many members, but {N} has only one element: N.

In order to be able to construct for instance the set of all even natural numbers,
i.e., Neven = {n ∈N | n is even}, we need the separation axiom.

Separation Axiom: If x is a set and A(z) a property, then also {z ∈ x | A(z)} is a set,
consisting of all elements in x which have the property A, i.e., such that for all z:

z ∈ {z ∈ x | A(z)} iff z ∈ x and A(z)

Formulated in our logical predicate language: ∀x∃y∀z[z ∈ y � z ∈ x∧A(z)] for any
formula A in our logical predicate language.

The separation axiom says that within a given set x we can collect all elements of
x, which have a given property A, into a subset {z ∈ x | A(z)} of x. Notice that the
separation axiom is in fact an axiom schema: it yields an axiom for any formula
A. By the axiom of extensionality, given a set x and a property A, the set y, whose
existence is demanded by the separation axiom, is uniquely determined and shall be
denoted by {z ∈ x | A(z)}.

Given the separation axiom and the axiom of infinity, the existence of the empty
set follows immediately: /0 = {z ∈ N | z �= z}, if we assume that for all z, z = z.
Also, given the separation axiom, we may introduce some important set theoretical
operations: intersection and relative complement.

Corollary 3.2 (Intersection). Given any sets V and W, also the intersection V ∩W
:= {z ∈V | z ∈W} of V and W is a set, such that for all z

z ∈V ∩W � z ∈V ∧ z ∈W .

W

V

We may generalize the intersection as follows. If x is a non-empty set, say v ∈ x,
then

⋂
x := {z ∈ v | ∀y[y ∈ x→ z ∈ y}. Notice that V ∩W =

⋂{V,W}.
Corollary 3.3 (relative complement). Given any sets V and W, also the relative
complement, V −W := {z ∈V | z �∈W} of W with respect to V , is a set, such that



136 3 Sets: finite and infinite

z ∈V −W � z ∈V ∧ z �∈W.

W
V

Notice that V ∩W and V −W are in general smaller sets than V , while V ∪W in
general is a larger set than V . The existence of V ∩W and V −W follows from the
separation axiom, while the existence of V ∪W requires the union axiom.

Example 3.3.
{1,2}∪{2,3}= {1,2,3} {1,2}∪ /0 = {1,2} {1,2}∪N= N

{1,2,3}∩{2,3,4}= {2,3} {1,2}∩ /0 = /0 {2,3}∩N= {2,3}
{1,2,3}−{2,3,4}= {1} {1,2,3}− /0= {1,2,3} {1,2,3}−N= /0

The reader may easily verify the following statements:
1. ∩ and ∪ are idempotent, i.e., V ∩V =V , respectively V ∪V =V , for any set V .
2. ∩ and ∪ are commutative, i.e., V ∩W =W ∩V , respectively V ∪W =W ∪V , for
any sets V and W .
3. ∩ and ∪ are associative, i.e., U ∩ (V ∩W ) = (U ∩V )∩W , respectively U ∪ (V ∪
W ) = (U ∪V )∪W , for any sets U,V,W .
4. V ∩ /0 = /0 and V ∪ /0 =V for any set V .

Theorem 3.2 (absorption laws). For all sets V and W,
V ∩ (V ∪W ) =V and V ∪ (V ∩W ) =V.

Proof. By the axiom of extensionality we have to show that the two sets in question
have the same elements, i.e., for all z, z ∈V ∩ (V ∪W ) iff z ∈V and z ∈V ∪ (V ∩W )
iff z ∈V . This is straightforward. ��
Theorem 3.3 (distributive laws). For all sets U, V and W,
U ∩ (V ∪W ) = (U ∩V )∪ (U ∩W ) and U ∪ (V ∩W ) = (U ∪V )∩ (U ∪W ).

Proof. By the axiom of extensionality we have to show that for all z, z∈U∩(V ∪W )
iff z ∈ (U ∩V )∪ (U ∩W ), in other words, z ∈U ∧ (z ∈ V ∨ z ∈W ) iff (z ∈U ∧ z ∈
V )∨ (z ∈U ∧ z ∈W ). This is straightforward and also follows from the distributive
laws of propositional logic in Theorem 2.10. ��
When it is clear from the context that the complement of a set W is taken relative
to a given universe U , U−W is simply called the complement of W and denoted by
W c.

W
U

Theorem 3.4. Let V c and W c be the complement of V , respectively W, relative to a
given universe U. (V ∪W )c = V c∩W c and (V ∩W )c = V c∪W c.
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Proof. We leave the proof to the reader as Exercise 3.3. ��
In order to be able to formulate the powerset axiom we first have to introduce the
notion of subset.

Definition 3.2 (Subset). W is a subset of V := every element of W is also an element
of V , i.e., for every x, if x ∈W , then also x ∈V . Notation: W ⊆V .

W

V

Notice that W is not a subset of V iff not all elements of W are elements of V , in
other words, iff there is some x∈W such that x �∈V . Notation:¬(W ⊆V ) or W �⊆V .

Example 3.4.
{2,3} ⊆ {1,2,3,4} {2,3} ⊆ {2,3} /0⊆ {2,3} {2,3} ⊆ N

{2,3} �⊆ {3,4,5} {1,{2}} �⊆ {1,2} {1,2} �⊆ {1,{2}} N �⊆ {N}
Definition 3.3 (Proper subset). W is a proper subset of V := W ⊆V and not W =V .
Notation: W ⊂V .

Example 3.5. {2,3} ⊂ {2,3,4} and {2,3} ⊂N.

Warning: It is important not to confuse ∈ and ⊆:
{2} ∈ {{2},3}, but {2} �⊆ {{2},3}, the latter because 2 ∈ {2}, but 2 �∈ {{2},3}.
{2,3} ⊆ {1,2,3}, but {2,3} �∈ {1,2,3}.
Theorem 3.5. For any set V , /0⊆V and V ⊆V.

Proof. Suppose that for some V , /0 �⊆ V , i.e., there would be an element x ∈ /0 such
that x �∈ V . Because /0 has no elements, this is impossible. Therefore, /0 ⊆ V . And
because every element of V is an element of V , it follows that V ⊆V . ��
Example 3.6. /0⊆ /0, but /0 �∈ /0.
/0⊆ { /0}, and by definition of { /0} also /0 ∈ { /0}.
/0⊆ {{ /0}}, but /0 �∈ {{ /0}}, since the only element of {{ /0}} is { /0}.
{ /0} ⊆ { /0}, but { /0} �∈ { /0}, since the only element of { /0} is /0.
{ /0} �⊆ {{ /0}}, because /0 ∈ { /0} while /0 �∈ {{ /0}}, but { /0} ∈ {{ /0}}.
Next we will determine for a few small finite sets all their subsets and the set of all
their subsets. Let us start with /0. The only subset of /0 is /0 itself. So, the set P( /0) of
all subsets of /0 is { /0}.

The only subsets of the set {u} are /0 with zero elements and {u} itself with one
element. So, the set P({u}) of all subsets of {u} is { /0,{u}}.

The subsets of {u,v} can have 0, 1 or 2 elements and are, respectively, /0 with
zero elements, {u} and {v} with one element, and {u,v} itself with two elements.
So, the set P({u,v}) of all subsets of {u,v} is { /0,{u},{v},{u,v}}. Notice that there
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are twice as many subsets of {u,v} as there are subsets of {u}: all subsets of {u},
i.e., /0 and {u}, are also a subset of {u,v} and the other subsets of {u,v} are obtained
by adding the element v to the subsets of {u}.

The subsets of {u,v,w} can have 0, 1, 2 or 3 elements and are, respectively, /0 with
zero elements, {u}, {v} and {w} with one element, {u,v}, {u,w} and {v,w} with
two elements, and finally {u,v,w} itself with three elements. So, the set P({u,v,w})
of all subsets of {u,v,w} is { /0,{u},{v},{w},{u,v},{u,w},{v,w},{u,v,w}}.Notice
that there are twice as many subsets of {u,v,w} as there are subsets of {u,v}: all
subsets of {u,v}, i.e., /0, {u}, {v} and {u,v}, are also a subset of {u,v,w} and the
other subsets of {u,v,w} are obtained by adding the element w to the subsets of
{u,v}.

This brings us to the following observation: each time that one adds one element
w to a given finite set V , one obtains twice as many subsets: all the subsets of V
plus all subsets of V with the new element w added. From this insight results the
following theorem:

Theorem 3.6. For each natural number n, if V is a finite set with n elements, then V
has 2n subsets.

Proof. By mathematical induction. For n = 0: a set V with 0 elements is the empty
set /0, and this set has 20 = 1 subset, namely /0. Suppose the statement is true for
n = k, i.e. any set with k elements has 2k subsets (induction hypothesis). Then a set
with k+ 1 elements has twice as many subsets, i.e., 2 ·2k = 2k+1 subsets. ��
For instance, if V has 10 elements, V has 210 = 1024 subsets. And if V has 20
elements, V has 220 = 210 ·210 = 1024 ·1024 subsets, that is more than one million!

Since sets of subsets occur abundantly in mathematics and since the existence of
many of these sets does not follow from the set theoretic axioms introduced up till
now, we postulate the following powerset axiom:

Powerset axiom: If V is a set, then also P(V ) = {X | X ⊆V} is a set. We call P(V )
the powerset of V .

Formulated in our logical predicate language: ∀v∃y∀x[x ∈ y � x⊆ v].

So, the elements of P(V ) are the subsets of V , i.e.,

X ∈ P(V ) iff X ⊆V .

The name powerset refers to the fact that if V has n (n ∈ N) elements, then by
Theorem 3.6, P(V ) has 2n elements.

This powerset axiom may look innocent, but is it? We have already seen that if
V is a relatively small finite set, then P(V ) may become a relatively large set. And
what will happen when we apply the P-operator to an infinite set, like N? According
to the powerset axiom, not only P(N) is another set, but also P(P(N)), P(P(P(N))),
etc. are new sets. As we shall see later on in Section 3.6, these sets become so large
that one may ask the question whether we are still able to construct these sets. In
fact, the powerset axiom is the only set theoretic axiom which is not by everyone
accepted in its full strength, in particular not by the intuitionists; see Chapter 8.
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Up till now we have postulated the following axioms for set theory: empty set ax-
iom, axiom of extensionality, pairing axiom, union axiom, sumset axiom, axiom
of infinity, separation axiom, and powerset axiom. The set theory ZF of Zermelo-
Fraenkel contains two more axioms: the axiom of replacement, which is the only
contribution of Fraenkel, and the axiom of regularity (or foundation). We only men-
tion these axioms here and refer to exercise 3.8 and to van Dalen, Doets, de Swart
[3].

Axiom of Replacement: If for every x in V there is exactly one y such that Φ(x,y),
then there exists a set W which contains precisely the elements y for which there is
an x ∈ V with the property Φ(x,y). In other words, the image of a set V under an
operation (functional property Φ) is again a set.

Axiom of Regularity: Every non-empty set is disjoint from at least one of its ele-
ments.

The latter axiom guarantees that for any set x, x �∈ x and that there is no sequence
v1, . . . ,vn of sets such that v1 ∈ v2, v2 ∈ v3, . . ., vn−1 ∈ vn and vn ∈ v1 (Exercise 3.8).

There are several set theoretical principles which are consistent with, but indepen-
dent of the axioms of Zermelo-Fraenkel. The axioms of choice and the continuum
hypothesis (see Section 3.6) are not treated here because of their more dubious sta-
tus. See van Dalen, Doets, de Swart, [3] for an elaborate discussion.

Exercise 3.1. Which of the following propositions are true and which are false?
N ∈ N {2,3} ⊆ {N} /0 ∈ /0 { /0} ∈ /0
N ∈ {N} {2} ⊆ {N} /0⊆ /0 { /0} ⊆ /0
N⊆ N {2} ⊆ N /0 ∈ { /0} { /0} ⊆ { /0}
N ∈ {{N}} 2 ∈ {1,{2},3} /0⊆ { /0} /0⊆ { /0,{ /0}}
N⊆ {N} {2} ∈ {1,{2},3} /0 ∈ {{ /0}} /0 ∈ { /0,{ /0}}
{1,2} ∈ N {1,{2}} ⊆ {1,{2,3}} /0⊆ {{ /0}} { /0} ⊆ { /0,{ /0}}
{1,2} ⊆ N {1,{2}} ⊆ {1,{2},3} { /0} ∈ {{ /0}} { /0} ∈ { /0,{ /0}}
{1,2} ∈ {N} {−2,2} ⊆ N { /0} ⊆ {{ /0}} /0⊆ {{ /0,{ /0}}}
Exercise 3.2. Prove or refute: a) W ⊆V iff V ∩W =W ; b) W ⊆V iff V ∪W =V .

Exercise 3.3. Prove or refute: for all sets U , V and W ,
a) U− (V ∪W ) = (U−V)∩ (U−W); b) U− (V ∩W ) = (U−V)∪ (U−W).

Exercise 3.4. Prove or refute: for all sets U , V and W ,
a) if U ∈V and V ∈W , then U ∈W ; b) if U ⊆V and V ⊆W , then U ⊆W .

Exercise 3.5. Determine P( /0), P(P( /0)) and P(P(P( /0))).

Exercise 3.6. Prove:
(a) If W ⊆V , then P(W )⊆ P(V ); (b) If P(W )⊆ P(V ), then W ⊆V .
(c) If P(W ) = P(V ), then W =V ; (d) If P(W ) ∈ P(V ), then W ∈V .
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Exercise 3.7. Prove or refute:
a) for all sets W , V , if P(W ) ∈ PP(V ), then W ∈ P(V ).
b) for all sets W , V , if W ∈ P(V ), then P(W ) ∈ PP(V ).
c) for all sets W , V , if P(W )⊆ PP(V), then W ⊆ P(V ).
d) for all sets W , V , if W ⊆ P(V ), then P(W )⊆ PP(V ).

Exercise 3.8. Show that from the axiom of regularity it follows that i) for any set x,
x �∈ x, and ii) there is no sequence v1, . . . ,vn such that v1 ∈ v2, v2 ∈ v3, . . ., vn−1 ∈ vn

and vn ∈ v1.

3.3 Historical and Philosophical Remarks

3.3.1 Mathematics and Theology

In Corollary 3.1 we have seen that from the separation axiom it follows that the
universe of all sets itself is not a set. This reminds us of Cardinal Cusanus (1400-
1453), who in his De docta ignorantia [2] says that in the pursuit of grasping the
divine truths we may expect the strongest support from mathematics. Although he
illustrated this statement with other examples, it seems fair to say that he might have
used Corollary 3.1 as an illustration: the universe of all earthly things (God?) is itself
not an earthly thing.

Also the insights about infinite sets to be discovered in Sections 3.5 and 3.6
may be considered as illustrations of his statement. Although we never experience
infinite sets in daily life, we are still able to imagine them and even to gain insights
into their amazing properties.

3.3.2 Ontology of mathematics

Since the integers, the rational and the real numbers can be defined in terms of
sets and natural numbers, it follows that these numbers can ultimately be defined
in set-theoretical terms (see van Dalen, Doets, de Swart, [3]). Through practical
experience mathematicians have found that most well-known concepts, such as the
notion of number, function, triangle, and so on, can be defined in set-theoretical
terms. This has led to the slogan ‘Everything is a set’, meaning that all objects from
mathematical practice turn out to be representable in terms of sets. Consequently,
every mathematical proposition can be reduced to a proposition about sets. It turns
out that most, if not all, mathematical theorems – after translation in terms of sets –
can be deduced logically from the axioms of set theory.
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mathematical theorems

Set-theoretical Axioms

logical reasoning

So one might say that the axioms of ZF (Zermelo-Fraenkel) determine the ontology
of mathematics: all mathematical objects are conceived as sets and the axioms of
Zermelo-Fraenkel postulate the existence of certain sets, leaving room for extension
with possibly more axioms, and they specify what the characteristic properties of
these mathematical objects (sets) are. In this sense the axioms of ZF can be consid-
ered to be a foundation for (the greater part of) mathematics.

The axioms of Zermelo-Fraenkel (ZF) may be described informally. But we have
also seen that the set theory of Zermelo-Faenkel may be formalized by:
1. first introducing the predicate language with only two binary predicate symbols =
and ∈ with ‘is equal to’, respectively ‘is element of’ as intended interpretation, such
that all statements about sets may be expressed in this language;
2. and next by specifying the axioms of ZF in this language, such that statements
about sets (mathematical objects) may be logically deduced from these axioms.

3.3.3 Analytic-Synthetic

In his Critique of Pure Reason (1781) Immanuel Kant [7] makes a distinction be-
tween analytic and synthetic judgments. Kant calls a judgment analytic if its pred-
icate is contained (though covertly) in the subject, in other words, the predicate
adds nothing to the conception of the subject. Kant gives ‘All bodies are extended’
(Alle Körper sind ausgedehnt) as an example of an analytic judgment; I need not
go beyond the conception of body in order to find extension connected with it. If a
judgment is not analytic, Kant calls it synthetic; a synthetic judgment adds to our
conception of the subject a predicate which was not contained in it, and which no
analysis could ever have discovered therein. Kant mentions ‘All bodies are heavy’
(Alle Körper sind schwer) as an example of a synthetic judgment.

Also in his Critique of Pure Reason Kant makes a distinction between a priori
knowledge and a posteriori knowledge. A priori knowledge is knowledge exist-
ing altogether independent of experience, while a posteriori knowledge is empirical
knowledge, which has its sources in experience.

Sometimes one speaks of logically necessary truths instead of analytic truths and
of logically contingent truths instead of synthetic truths, to be distinguished from
physically necessary truths (truths which physically could not be otherwise, true in
all physically possible worlds). The distinction between necessary and contingent
truth is a metaphysical one, to be distinguished from the epistemological distinction
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between a priori and a posteriori truths.. Although these – the metaphysical and the
epistemological – are certainly different distinctions, it was controversial whether
they coincide in extension, that is, whether all and only necessary truths are a priori
and all and only contingent truths are a posteriori.

In his Critique of Pure Reason Kant stresses that mathematical judgments are
both a priori and synthetic. ‘Proper mathematical propositions are always judgments
a priori, and not empirical, because they carry along with them the conception of
necessity, which cannot be given by experience.’ Why are mathematical judgments
synthetic? Kant considers the proposition 7+5= 12 as an example. ‘The conception
of twelve is by no means obtained by merely cogitating the union of seven and five;
and we may analyse our conception of such a possible sum as long as we will,
still we shall never discover in it the notion of twelve.’ We must go beyond this
conception of 7+5 and have recourse to an intuition which corresponds to counting
using our fingers: first take seven fingers, next five fingers extra, and then by starting
to count right from the beginning we arrive at the number twelve.

7: 1 1 1 1 1 1 1
5: 1 1 1 1 1

7 + 5: 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

‘Arithmetical propositions are therefore always synthetic, of which we may become
more clearly convinced by trying large numbers.’ Geometrical propositions are also
synthetic. As an example Kant gives ‘A straight line between two points is the short-
est’, and explains ‘For my conception of straight contains no notion of quantity, but
is merely qualitative. The conception of the shortest is therefore wholly an addition,
and by no analysis can it be extracted from our conception of a straight line.’

In more modern terminology, following roughly a ’Fregean’ account of analytic-
ity, one would define a proposition A to be analytic iff either
(i) A is an instance of a logically valid formula; e.g., ’No unmarried man is married’
has the logical form ¬∃x[¬P(x)∧P(x)], which is a valid formula, or
(ii) A is reducible to an instance of a logically valid formula by substitution of syn-
onyms for synonyms; e.g., ’No bachelor is married’.

In his Two dogmas of empiricism W.V. Quine [8] is sceptical of the analytic-
synthetic distinction. Quine argues as follows. In order to define the notion of ana-
lyticity we used the notion of synonymy in clause (ii) above. However, if one tries
to explain this latter notion, one has to take recourse to other notions which directly
or indirectly will have to be explained in terms of analyticity.

3.3.4 Logicism

Logicism dates from about 1900, its most important representatives being G. Frege
in his Grundgesetze der Arithmetik I, II (1893, 1903) and B. Russell in his Principia
Mathematica (1903), together with A.N. Whitehead. The program of the logicists
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was to reduce mathematics to logic. What do they mean by this? In his Grundgesetze
der Arithmetik Frege defines the natural numbers in terms of sets as follows: 1 := the
class of all sets having one element, 2 := the class of all sets having two elements,
and so on. Next Frege shows that all kinds of properties of natural numbers can be
logically deduced from a naive comprehension principle: if A(x) is a property of
an object x, then there exists a set {x | A(x)} which contains precisely all objects x
which have property A. (See Section 3.1.)

Logicism tried to introduce mathematical notions by means of explicit defi-
nitions; mathematical truths would then be logical consequences of these defini-
tions. Mathematical propositions would then be reducible to logical propositions
and hence mathematical truths would be analytic, contrary to what Kant said.

The greatest achievement of Logicism is that it succeeded in reducing great parts
of mathematics to one single (formal) system, namely, set theory. The logicists be-
lieved that by doing this they reduced all of mathematics to logic without making
use of any non-logical assumptions, hence showing that mathematical truths are an-
alytic. However, what they actually did was reduce mathematics to logic PLUS set
theory. And the axioms of set theory have a non-logical status! The axioms of set
theory are – in Kant’s terminology – synthetic, and surely not analytic. In his later
years Frege came to realize that the axioms of set theory (see Section 3.2) are not a
part of logic and gave up Logicism, which he had founded himself. The interested
reader is referred to K. Gödel [4], Russell’s mathematical logic.

Another way to see that a mathematical truth like 7+ 5 = 12 is synthetic is to
realize that 7+ 5 = 12 is not a logically valid formula; it is true under the intended
interpretation, but not true under all possible interpretations. 7+ 5 = 12 can be log-
ically deduced from the axioms of Peano for (formal) number theory (see Chapter
5), but it cannot be proved by the axioms and rules of formal logic alone.

axioms of Peano

logical reasoning

7 + 5 = 12

Again, Peano’s axioms are true under the intended interpretation, but are not (logi-
cally) valid and hence they do not belong to logic.
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3.4 Relations, Functions and Orderings∗

3.4.1 Ordered pairs and Cartesian product

In the plane the pairs (4,2) and (2,4) indicate different points.

(4,2)

(2,4)

The order of the numbers 2 and 4 is of importance here, in the same way that the
order of letters is of importance in constructing words: ‘pin’ and ‘nip’ contain the
same letters, but in a different order. A pair of objects, say v and w, in which their
order is relevant, is called the ordered pair of v and w, written (v,w). Sometimes
the notation < v,w > is used. This is different from the ordinary (unordered) pair
{v,w}, which is the same as {w,v}. Ordered pairs have the characteristic property

(v,w) = (x,y) iff v = x and w = y. (*)

Unordered pairs do not have this property, since {v,w}= {w,v} even for v �= w.
We can introduce the notion of ordered pair as a primitive notion (i.e., undefined)

and introduce the above-mentioned property (*) as an axiom. However, it is a wise
rule not to introduce more primitive notions than necessary (‘Ockham’s razor’) and
hence we shall define a set, which behaves as an ordered pair, i.e., which satisfies
the desired property (∗).
Definition 3.4 (Ordered pair). (v,w) := {{v},{v,w}}.
This is not the only definition which will work: see Exercise 3.9. We must now show
that this definition satisfies (*).

Theorem 3.7. (v,w) = (x,y) iff v = x and w = y.

Proof. The implication from right to left is trivial. So suppose (v,w) = (x,y), i.e.,
{{v},{v,w}} = {{x},{x,y}}. If two sets are equal, then they have the same ele-
ments. Hence, {v} = {x} and {v,w} = {x,y} or {v} = {x,y} and {v,w} = {x}. In
the first case it follows that v = x and w = y. In the second case we can conclude:
v = x = y and v = w = x; so, also in this case, v = x and w = y. ��
The following theorem holds for Definition 3.4 of ordered pairs.

Theorem 3.8. If v ∈V and w ∈W, then (v,w) ∈ PP(V ∪W ).

Proof. Suppose v ∈V and w ∈W . Then:
(i) v ∈V ∪W , so {v} ⊆V ∪W , in other words, {v} ∈ P(V ∪W ), and
(ii) w ∈V ∪W , so {v,w} ⊆V ∪W , in other words, {v,w} ∈ P(V ∪W ).
From (i) and (ii) it follows that {{v},{v,w}} ⊆ P(V ∪W ), in other words,

{{v},{v,w}} ∈ PP(V ∪W ). ��
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We can generalize the notion of ordered pair to the notion of ordered n-tuple:

Definition 3.5 (Ordered n-tuple). For n ∈ N, n≥ 1:
(v) := v,

(v1, . . . ,vn,vn+1) := ((v1, . . . ,vn),vn+1).

By means of mathematical induction one easily verifies that the object (v1, . . . ,vn),
(n ∈N, n≥ 1), defined above, indeed behaves as an ordered n-tuple.

Theorem 3.9. (x1, . . . ,xn) = (y1, . . . ,yn) iff x1 = y1 and . . . and xn = yn.

Proof. For n = 1, (x1) = x1 and (y1) = y1, so the proposition holds for n = 1.
Now suppose (induction hypothesis) that the proposition holds for n, i.e., (x1, . . . ,xn)
= (y1, . . . ,yn) iff x1 = y1 and . . . and xn = yn. Next suppose that (x1, . . . ,xn,xn+1) =
(y1, . . . ,yn,yn+1), i.e., ((x1, . . . ,xn), xn+1) = ((y1, . . . ,yn), yn+1). Then by Theorem
3.7, (x1, . . . ,xn) = (y1, . . . ,yn) and xn+1 = yn+1. Hence, by the induction hypothesis,
x1 = y1 and . . . and xn = yn and xn+1 = yn+1. ��
The Cartesian product V ×W of two sets V and W is by definition the set of all
ordered pairs (v,w) with v ∈V and w ∈W .

W

w

V ×W

(v,w)

V v

Definition 3.6 (Cartesian Product). V ×W := {x | there is some v ∈V and there is
some w∈W such that x=(v,w)}, in other words, V×W := {(v,w) | v∈V ∧w∈W}.
Example 3.7.
{2,3}×{4} = {(2,4),(3,4)}, {2,3}×{4,5} = {(2,4),(3,4),(2,5),(3,5)},
{1}×{4,5} = {(1,4),(1,5)}, R×R = {(x,y) | x ∈ R∧ y ∈ R}.
So, R×R corresponds to the set of all points in the Euclidean plane:

√
2

(
√

2, 3
4)

R
R

3
4

‘There is some v∈V and there is some w∈W such that x=(v,w)’ can be formulated
in our logical symbolism as follows: ∃v ∈V ∃w ∈W [ x = (v,w) ].
So, V ×W = {x | ∃v ∈V ∃w ∈W [ x = (v,w) ]}.

From Definition 3.6 and Theorem 3.8 we immediately conclude:

Corollary 3.4. V ×W = {x ∈ PP(V ∪W ) | ∃v ∈V ∃w ∈W [ x = (v,w) ]}, or simply

V ×W = {(v,w) ∈ PP(V ∪W ) | v ∈V ∧w ∈W}.
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From Corollary 3.4, the Axiom of Union, the Powerset Axiom and the Separation
Axiom it follows that: if V and W are sets, then so is V ×W .

{2}×{4}= {(2,4)}, but {4}×{2}= {(4,2)}. So, it is not true that for all sets V
and W, V ×W = W ×V ; in other words, the operation × is not commutative. The
operation× is not associative either (see Exercise 3.11).

Instead of V ×V we usually write V 2.

Example 3.8. {3,4}2 = {3,4}×{3,4}= {(3,3),(3,4),(4,3),(4,4)}.
More generally, we define V n (n ∈ N, n≥ 1) inductively by:

Definition 3.7. V 1 :=V , and V n+1 := V n×V .

Example: {3,4}3 = {3,4}2×{3,4} = {((3,3),3),((3,3),4),((3,4),3),((3,4),4),
((4,3),3),((4,3),4),((4,4),3),((4,4),4)}.
More generally, we define the Cartesian product with finitely many factors:

Definition 3.8. X1
i=1Vi =V1 and Xn+1

i=1 Vi = (Xn
i=1Vi)×Vn+1.

Example 3.9. Let V1 = {1,2},V2 = {3,4} and V3 = {7,8,9}.
Then X3

i=1Vi = (V1×V2)×V3 = ({1,2}×{3,4})×{7,8,9}.

3.4.2 Relations

We start with a few examples of binary relations R between the elements of a set V
and the elements of a set W (or: between V and W ). Instead of xRy – to be read as:
x is in relation R to y – one also writes R(x,y).

Example 3.10.
1. V = M(en) W =W (omen) xRy := x is a son of y
2. V = N W =N xRy := y = x+ 1
3. V = N W =R xRy := y =

√
x

4. V = N
2 W =N

2 (m,n)R(p,q) := m− n = p− q
5. V = N× (Z−{0}) W =V (m,n)R(p,q) := m

n = p
q

6. V = N W = P(N) xRy := x ∈ y.

Below are some examples of a ternary relation R between the elements of a set V ,
the elements of a set W and the elements of a set U :
1. V = M(en), W =W (omen), U = P(eople); R(x,y,z) := x and y are parents of z.
2. V =W =U = N; R(x,y,z) := x+ y = z.
For reasons of efficiency, we will at this point discuss only binary relations.

The adagium ‘everything is a set’ also applies to relations. A relation R between
sets V and W can be represented by the set {(v,w) ∈ V ×W | vRw}. For instance,
the relations in Example 3.10, 1 and 2 can be represented by the sets:
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1. {(x,y) ∈M×W | x is a son of y}
2. {(x,y) ∈N×N | y = x+ 1}
So, we may represent the mathematical notion of ‘relation’ by a set: each binary
relation R between the elements of a set V and those of a set W determines a subset of
V ×W ; and, conversely, each subset of V ×W determines a binary relation between
the elements of V and those of W . Hence, the following definition makes sense.

Definition 3.9 (Relation). R is a (binary) relation between V and W := R⊆V ×W .
Notation: xRy := (x,y) ∈ R. One sometimes uses R(x,y) instead of xRy.

For R⊆V ×W we define the domain and the range of R: The domain of R is the set
of all elements x in V which are related to at least one element y in W ; the range of
R is the set of all elements y in W which are related to at least one element x in V .

Definition 3.10 (Domain and Range).
Dom(R) := {x ∈V | ∃y ∈W [ xRy ] } domain of R
Ran(R) := {y ∈W | ∃x ∈V [ xRy ] } range of R

For the relations in Example 3.10 Dom(R) and Ran(R) are respectively:

Dom(R) Ran(R)
1. the set of all men the set of all mothers with at least one son
2. N N−{0}
3. N {y ∈R | ∃x ∈ N [ y =

√
x ]}

4. N
2

N
2

5. N× (Z−{0}) N× (Z−{0})
6. N P(N)−{ /0}
If R⊆V×V , then R is simply a relation on V . Example 3.10, 2 gives a relation on N,
Example 3.10, 4 a relation on N

2 and Example 3.10, 5 a relation on N× (Z−{0}).
Since a relation R between (the elements of) V and (the elements of) W may be
represented by the set {(x,y) ∈ V ×W | xRy }, the set theoretic operations of inter-
section, union, and complement also apply to relations: R∩S, R∪S and R.

Similarly, the set theoretic predicates of inclusion and equality apply to relations
R and S: R⊆ S and R = S.

Below we define two special operations on relations: the converse R̆, also called
the transposition RT, of R, and the composition R;S of two relations R and S.

Definition 3.11 (Converse relation). Let R be a relation between V and W .
Then the converse relation R̆ of R is the relation between W and V , defined by wR̆v
:= vRw. In set-theoretic terms, R̆ := {(w,v) ∈W ×V | (v,w) ∈ R }.
For the relations in Example 3.10, 1 - 4, the converse relations are respectively:

1. {(y,x) ∈W ×M | y is the mother of x},
2. {(y,x) ∈N×N | x = y− 1},
3. {(y,x) ∈R×N | x = y2},
4. {(p,q),(m,n) ∈ N

2×N
2 | p− q = m− n}.

Note that in example 4, R̆ = R.
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Let R be a relation between sets U and V and S a relation between sets V and W .
Then the composition R;S of R and S is the relation between U and W defined by
x(R;S)z := there is some y ∈V such that xRy and ySz. In set theoretic terms:

Definition 3.12 (Composition). Let R⊆U×V and S⊆V ×W .
Then R;S := {(x,z) ∈U ×W | ∃y ∈ V [ (x,y) ∈ R∧ (y,z) ∈ S ]} is called the com-
position of R and S. Instead of R;S one also writes R ◦ S and (in case R and S are
functions) also S ◦R.

ẋ ẏ ż

WVU
R S

R;S

Example 3.11. 1. Let R be the relation of Example 3.10, 2, R ⊆ N×N, defined by
xRy := y = x+ 1, and let S be the relation of Example 3.10, 3, S ⊆ N×R, defined
by ySz := z =

√
y. Then

R;S = {(x,z) ∈ N×R | ∃y ∈ N [ (x,y) ∈ R∧ (y,z) ∈ S ] }
= {(x,z) ∈ N×R | ∃y ∈ N [ y = x+ 1∧ z =

√
y ] }

= {(x,z) ∈ N×R | z =√x+ 1 }.
In other words, x(R;S)z := z =

√
x+!.

2. Let M be the set of all Men and R⊆M×M with xRy := y is the father of x. Then
R;R = {(x,z) ∈M×M | ∃y ∈M [ (x,y) ∈ R∧ (y,z) ∈ R] }

= {(x,z) ∈M×M | ∃y ∈M [ y is the father of x and z is the father of y ] }
= {(x,z) ∈M×M | z is the grandfather of x }.

In other words: x(R;R)z := z is the grandfather of x.

Finally, we define some special relations: the empty relationO, the universal relation
L and the identity relation I.

Definition 3.13. Let V and W be any sets. Then:
L := {(x,y) | x ∈V ∧ y ∈W} is the universal relation between V and W . So, xLy for
any x ∈V and for any y ∈W .
O := /0 is the empty relation between V and W . So, not xOy, for any x ∈ V and for
any y ∈W .
I := {(x,x) | x ∈ V} is the identity relation on V (or the diagonal of V ×V ). So, xIx
for any x ∈V .

Notice that in fact we have for any two sets V and W a universal, an empty and an
identity relation.

Also notice that in case V and W are finite sets, a relation R between V and W
may be represented by a Boolean matrix. For instance, let R be the relation between
V = {1,2,3} and W = {1,2,3,4,5,6} defined by xRy := y = 2 · x. Then R may be
represented by the following Boolean matrix:

1 2 3 4 5 6
1 �
2 �
3 �
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A Boolean matrix interpretation of relations is well suited for many purposes and
also used as one of the graphical representations of relations within RelView, a soft-
ware tool for the evaluation of relation-algebraic expressions. The RelView system
is an interactive tool for computer-supported manipulation of relations represented
as Boolean matrices or directed graphs.

3.4.3 Equivalence Relations

25 �= 13 and 13 �= 1, but 25 o’clock = 13 o’clock = 1 o’clock.
26 �= 14 and 14 �= 2, but 26 o’clock = 14 o’clock = 2 o’clock.
and so on.

In reading off the clock we call two natural numbers equal if their difference is a
multiple of twelve. Therefore, we consider the following relation R on the set N of
the natural numbers: nRm := n−m is a multiple of twelve.

In symbols: nRm := ∃k ∈ Z [ n−m = 12 · k ].
Definition 3.14 (Equivalence relation). A relation R on a set V is an equivalence
relation on V := R is reflexive, symmetric and transitive, where
R is reflexive := for all x ∈V , xRx;
R is symmetric := for all x, y ∈V , if xRy, then yRx;
R is transitive := for all x, y, z ∈V , if xRy and yRz, then xRz.

Example 3.12. 1. The relation R on the set N, defined by nRm := n−m is a multiple
of twelve, is an equivalence relation on N.
2. The relation = on N is an equivalence relation.
3. The relation R on the set N2, defined by (m,n)R(p,q) := m+q= n+ p (or m−n=
p− q), is an equivalence relation on N

2.
4. The relation R on the set N× (Z−{0}), defined by (m,n)R(p,q) := m ·q = n · p
(or m

n = p
q ), is an equivalence relation on N× (Z−{0}).

5. The relation is parallel to or is equal to on the set of all straight lines in the
Euclidean plane is an equivalence relation.

Definition 3.15 (Equivalence class). Let R be an equivalence relation on a set V .
The equivalence class [v]R, also called v modulo R, of an element v of V with respect
to R is by definition the subset of V , consisting of all those elements w in V for which
vRw. Instead of [v]R one sometimes writes v/R.

[v]R := {w ∈V | vRw}
v is called a representative of the class [v]R. Note that if R is an equivalence relation
on V , then for all v, w ∈V , vRw iff [v]R = [w]R.

Example 3.13. We now give the equivalence classes [v]R for the equivalence relation
R on N from Example 3.12, 1, where nRm := n−m is a multiple of 12.



150 3 Sets: finite and infinite

[0]R = {0,12,24,36, . . .}, [12]R = [0]R, [24]R = [0]R.
[1]R = {1,13,25,37, . . .}, [13]R = [1]R, [25]R = [1]R.
[2]R = {2,14,26,38, . . .}, [14]R = [2]R, [26]R = [2]R.
...
[11]R = {11,23,35,47, . . .}, [23]R = [11]R, [35]R = [11]R.
Thus, it would be more appropriate to indicate the numerals on the clock by
[1]R, [2]R, . . . , [11]R, [12]R instead of 1,2, . . . ,11,12.

One may show that the integers and the rational numbers can be defined in terms of
the natural numbers, making use of the equivalence relations R from Example 3.12,
3 and 4 respectively. So, roughly speaking, one may say that the natural numbers
form the basis of all mathematics. For instance,−1 := [(1,2)]R with (m,n)R(p,q) :=
m+q = n+ p (or m−n = p−q) and 2

3 := [(2,3)]R with (m,n)R(p,q) := m ·q = n · p
(or m

n = p
q ). See van Dalen, Doets, de Swart, [3].

Definition 3.16 (Quotient set). Let R be an equivalence relation on V . The quotient
set V/R or V modulo R is the set of all equivalence classes [v]R with v ∈V .
In other words: V/R := {[v]R | v ∈V}.
As an example let us consider the quotient set from Example 3.13 above, where R
is the equivalence relation on N defined by nRm := n−m is a multiple of twelve.

N/R = {[1]R, [2]R, . . . , [11]R, [12]R}.
N/R has twelve elements, corresponding to the twelve numerals on the clock. The
twelve different elements of N/R are pairwise disjoint, i.e., [n]R∩ [m]R = /0 for n �=m
and 1≤ n,m≤ 12, and together they form the whole set N, more precisely,

[1]R∪ [2]R∪ . . .∪ [11]R∪ [12]R = N.

Therefore we call N/R a partition of N:

N

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[1]R = {1,13,25,37, . . .}
...

[11]R = {11,23,35,47, . . .}
[12]R = {0,12,24,36, . . .}

Definition 3.17 (Partition). A collection U consisting of subsets of V is a partition
of V := 1) V = the union of all elements of U , and 2) the different elements of U are
pairwise disjoint.

Clearly, every partition U consisting of subsets of V defines an equivalence relation
R: xRy iff x and y belong to the same element of U . Conversely,

Theorem 3.10. If R is an equivalence relation on V , then V/R is a partition of V .

Proof. We have to show: 1) V = the union of all elements in V/R, and 2) the different
elements of V/R are pairwise disjoint.
1) Let v ∈V . Then v ∈ [v]R. Conversely, if w ∈ [v]R, then w ∈V .
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Now suppose [v]R∩ [w]R �= /0. Then for some u ∈V, u ∈ [v]R and u ∈ [w]R. But then
vRu and uRw, and consequently – since R is an equivalence relation – vRw. This is
a contradiction of (1). Therefore, [v]R∩ [w]R = /0 if [v]R �= [w]R. ��

3.4.4 Functions

Let V and W be sets. ‘ f is a (total) function or mapping from V to W ’ means intu-
itively: f assigns to each v∈V a uniquely determined w ∈W . Notation: f : V →W .

For each v ∈ V , the uniquely determined w ∈W , which is assigned by f to v, is
called the image (under f ) of v. Notation: w = f (v).

An example from daily life is the function f from the set M of all men to the set
W of all women, which assigns to every person x his or her mother f (x).

Example 3.14. Examples of functions f : V →W :

4. V = {1, 2, 3}, W = {4, 5, 6}, f (1) = 5
f (2) = 4
f (3) = 6 �3 6

��
��	
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13. V = {1, 2, 3}, W = {4, 5}, f (1) = 4

f (2) = 4
f (3) = 5

f (2) = 5
f (3) = 6

2. V = {1, 2, 3}, W = {4, 5, 6}, f (1) = 4

3
2
1 �

�
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4
5
6

1. V = {1, 2, 3}, W = {4, 5, 6}, f (1) = 4
f (2) = 4
f (3) = 6
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5. V = N, W = N,

{
f (n) = 0 if n is even,
f (n) = 1 if n is odd.

6. V = N, W = P(N), f (n) = {n}.
7. V = N

2, W = Z, f ((n,m)) = n−m.

8. V = R+ with R+ := {x ∈ R | x > 0}, W = R, f (x) = log(x).

1

log

2) Suppose [v]R �= [w]R. Then not vRw. (1)
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If f :V →W , then f determines a set of ordered pairs, namely, {(v,w)∈V×W |w=
f (v)}. This set, known as the graph of f , has the property that for each v in V there is
a unique element w in W such that (v,w) is in the set (namely w= f (v)). Conversely,
each subset of V×W with this special property will determine a function f : V →W .

The graphs of the functions from Example 3.14 are respectively:
1. {(1,4),(2,4),(3,6)}, 2. {(1,4),(2,5),(3,6)},
3. {(1,4),(2,4),(3,5)}, 4. {(1,5),(2,4),(3,6)},
5. {(n,m) ∈N

2 | (n is even ∧ m = 0)∨ (n is odd ∧ m = 1)},
6. {(n,y) ∈ N×P(N) | y = {n}},
7. {((n,m),y) ∈ N

2×Z | y = n−m},
8. {(x,y) ∈ R+×R | y = log(x)}.
Any function can thus be represented by its graph. In fact, it is common in set theory
to identify a function with its graph and thus reduce the notion of function to the
notion of set. This is what we will do.

Definition 3.18 (Function). f is a (total) function from V to W := f is a relation
between V and W , such that for each v ∈ V there is a unique w ∈W such that
(v,w) ∈ f . Notation: f : V →W .

Because a function f : V →W is by definition a relation, Definition 3.10 defines the
domain Dom( f ) and the range Ran( f ) of f . It is evident that for f : V →W , Dom( f )
= V and Ran( f ) = {w ∈W | ∃v ∈V [ w = f (v) ]}. For instance, for the function f in
Example 3.14, 1, Ran( f ) = {4,6}; and in Example 3.14, 2, Ran( f ) = {4,5,6}.

We shall maintain the notation introduced earlier, that we write f (v) for the
unique w ∈W such that (v,w) ∈ f . Thus we have, for all v ∈V , w ∈W : w = f (v) if
and only if (v,w) ∈ f . From time to time we will write v �−→ f (v) for (v, f (v)) ∈ f .

Sometimes it is convenient to have at one’s disposal also the notion of partial
function. Intuitively, a partial function f from V to W assigns to some (not neces-
sarily all) v ∈V a uniquely determined w ∈W .

Definition 3.19 (Partial function). f is a partial function from V to W := f is a
relation between V and W , such that for all v ∈ V and w, w′ ∈W , if (v,w) ∈ f and
(v,w′) ∈ f , then w = w′.

If f is a partial function from V to W , then Dom( f ) := {v ∈ V | there is a w ∈W
such that (v,w) ∈ f}. If f is a (total) function from V to W , then Dom( f ) = V .

Definition 3.20. If f : V →W and V ′ ⊆V , then f (V ′) := { f (v) | v ∈V ′}.
If f : V →W and W ′ ⊆W , then f−1(W ′) := {v ∈V | f (v) ∈W ′}.
The notation f (V ′) may be ambiguous, because a subset of V may at the same time
be an element of V .

Remark: Let W be any set. Then /0 ⊆ /0×W . Further, because /0 has no elements, it
follows that for each v ∈ /0 there is a unique w ∈W such that (v,w) ∈ /0. Hence, by
Definition 3.18, /0 is a function from /0 to W , in other words /0 : /0 →W . Since /0 is
the only relation with Dom(/0) = /0, /0 is also the only function from /0 to W .

If f : V →W , then f ⊆V ×W and hence, f ∈ P(V ×W).
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Definition 3.21 (Set of all functions f : V →W ).
WV := the set of all functions f : V →W , i.e., WV := { f ∈ P(V ×W) | f : V →W}.
So, if V and W are sets, then by the separation axiom WV is a set too.

Example 3.15. The set {1,2,3}{5,6} has 32 = 9 elements f1, . . . , f9, the functions
f1, . . . , f9 being defined by the following scheme:

f1 f2 f3 f4 f5 f6 f7 f8 f9

5 1 1 1 2 2 2 3 3 3
6 1 2 3 1 2 3 1 2 3

i.e.,

{
f1(5) = 1, f2(5) = 1, . . ., f9(5) = 3,
f1(6) = 1, f2(6) = 2, . . ., f9(6) = 3.

The reader should check for him or her self that {5,6}{1,2,3} has 23 = 8 elements.
Theorem 3.11. If W is a set with m elements and V is a set with n elements (m,n ∈
N), then WV has mn elements.

So, if W is a set with 10 elements and V has 6 elements, then there are, by this
theorem, 106, i.e., one million, functions f : V →W .

Proof. Throughout the following argument, let m ∈N be fixed, and let W be a fixed
set with m elements. Let Φ(n) := if V is any set with n elements, then WV has mn

elements. Then Theorem 3.11 says: for every n ∈N, Φ(n).
By induction it suffices to show: Φ(0) and for all k ∈ N, Φ(k)→Φ(k+ 1).

Induction basis Φ(0): if V has 0 elements, i.e., V = /0, then /0 is the only function
from V to W ; hence, WV = { /0}; so W /0 has m0 = 1 element.
Induction step Φ(k)→ Φ(k + 1): Suppose Φ(k), i.e., if V is any set with k ele-
ments, then WV has mk elements. We must now show that Φ(k + 1) holds. So let
{v1, . . . , vk, vk+1} be a set with k+ 1 elements. By the induction hypothesis Φ(k)
there are mk different functions from {v1, . . . , vk} to W .

f1 f2 . . . fmk

v1 ∗ ∗ ∗
v2 ∗ ∗ ∗
...
vk ∗ ∗ ∗
vk+1

For each i, 1≤ i≤mk, there are now m different possible choices for fi(vk+1). Thus,
there are m ·mk = mk+1 different functions from {v1, . . . ,vk, vk+1} to W . ��
In mathematics (especially analysis) one frequently uses sequences of objects. We
can now give an exact formulation of the notion of sequence.

Definition 3.22 (Sequence). An (infinite) sequence of elements of V is a function f
from N to V . Notation: f (0), f (1), f (2), . . . .
A (finite) sequence of elements of V is a function f from {0, . . . ,n} to V , for some
n ∈ N. Notation: f (0), . . . , f (n).
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The functions f : V →W in Example 3.14, 2, 4, 6 and 8 have the property that they
assign distinct elements of W to distinct elements of V ; in other words: for all v,v′ ∈
V , if v �= v′, then f (v) �= f (v′), or (equivalently): for all v,v′ ∈V , if f (v) = f (v′), then
v = v′. We call such functions injective (one-to-one). Notice that the other functions
in Example 3.14 do not have this property.

Definition 3.23 (Injection). f : V →W is injective or an injection := for all v,v′ ∈V ,
if v �= v′, then f (v) �= f (v′). In logical notation: ∀x ∈ V ∀x′ ∈ V [ x �= x′ → f (x) �=
f (x′) ]. Notation: Intuitively, the existence of an injection f : V →W means that
the set V cannot be larger than W ; therefore we write f : V ≤1 W to indicate that
f : V →W is injective.

The functions f : V →W in Example 3.14, 2, 3, 4, 7 and 8 have the property that
each element w ∈W is the image (under f ) of an element v ∈ V . We call such
functions surjective (onto). Note that the other functions in Example 3.14 do not
have this property.

Definition 3.24 (Surjection). f : V →W is surjective or a surjection := for every
w ∈W there is a v ∈V such that w = f (v). In logical notation: ∀y ∈W ∃x ∈V [ y =
f (x) ]. In other words, f : V →W is surjective if and only if Ran( f ) = W .

The functions in Example 3.14, 1 and 5 are neither injective nor surjective. Those in
Example 3.14, 2, 4 and 8 have both properties. We call such functions bijective.

Definition 3.25 (Bijection). f : V →W is bijective or a bijection := f is both in-
jective and surjective. Notation: Intuitively, the existence of a bijection f : V →W
means that the sets V and W are equally large; therefore one writes f : V =1 W to
indicate that f : V →W is bijective.

A bijection f : V →W gives a one-one correspondence between the elements of V
and the elements of W: for each v ∈ V there is exactly one ( f is a function) w ∈W
such that w = f (v) and for each w ∈W there is at least one ( f is surjective) and
precisely one ( f is injective) v ∈V such that w = f (v).

Definition 3.26 (Canonical function). Let R be an equivalence relation on V . The
canonical function f : V →V/R is defined by f (x) := [x]R. It is of course surjective,
but in general not injective.

Definition 3.27 (Characteristic function). Let U ⊆V . The characteristic function

KU : V → {0,1} of U is defined by KU (v) =

{
1 if v ∈U ,
0 if v �∈U .

In the special case that U ⊆ N, the characteristic function KU : N → {0,1} of
U may be represented by the infinite sequence KU(0),KU (1),KU (2),KU(3), . . .
of 0’s and 1’s (see Definition 3.22). For instance, let U = {0,2,4,6, . . .}, then
KU = 1 0 1 0 1 0 1 . . ..

Since we have defined a function f : V →W as a set {(v,w) ∈ V ×W | w = f (v)}
of ordered pairs, the equality relation between functions is thereby determined. Let
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f : V →W and g : V →W . Then, by the axiom of extensionality: f = g iff f and g
have the same elements, i.e., for all v ∈V and for all w ∈W , (v,w) ∈ f iff (v,w) ∈ g.
In other words, f = g := for all v ∈V and for all w ∈W , w = f (v) iff w = g(v). So,
for f ,g : V →W , f = g iff for all v ∈V , f (v) = g(v).

In logical notation: f = g := ∀x ∈V [ f (x) = g(x)].

Theorem 3.12. The function K : P(V )→ {0,1}V , defined by K(U) := KU (i.e., K
assigns to each subset U of V the characteristic function KU of U) is a bijection.

Proof. We first show that K is injective. So, suppose U1 �= U2, i.e., there is some
v ∈ V such that (v ∈ U1 and v �∈ U2) or (v ∈ U2 and v �∈ U1). Then (KU1(v) = 1
and KU2 (v) = 0) or (KU2(v) = 1 and KU1(v) = 0). So, there is a v ∈ V such that
KU1(v) �= KU2(v), and hence KU1 �= KU2 .
Next we show that K is surjective. Suppose f ∈ {0,1}V . Let Uf := {v ∈ V | f (v) =
1}. Then for all v ∈ V , KUf (v) = 1 iff v ∈ Uf , i.e, for all v ∈ V , KUf (v) = 1 iff
f (v) = 1. Hence, for all v ∈V , KUf (v) = f (v). Therefore, f = KUf . ��
Let f : U →V and g : V →W . Since f and g are (special) relations, the composition
f ;g of f and g has been defined according to Definition 3.12.

�

VU W� �gf

f ;g

Applying f ;g to an element x ∈U , we first apply f to x and next g to f (x), resulting
in g( f (x)). So, in the case of the composition of functions f : U →V and g : V →W
it is attractive to write g ◦ f instead of f ;g, where (g ◦ f )(x) := g( f (x)).

Definition 3.28 (Composition of functions). Let f : U → V and g : V →W . Then
the composition g◦ f : U →W of f and g is defined by (g ◦ f )(x) = g( f (x)).

Example 3.16. Let f : N→ Z be defined by f (n) := −n. Let g : Z→ Q be defined
by g(m) := 1

2 m. Then g ◦ f : N→Q is defined by (g ◦ f )(n) =− 1
2 n.

If f : V →W is a bijection, then there is – because f is surjective – for each w ∈W
at least one v ∈V such that w = f (v), and – because f is injective – there is for each
w ∈W at most one w ∈ V such that w = f (v). Hence, if f : V →W is a bijection,
then for each w ∈W there is precisely one v ∈V such that w = f (v).

Definition 3.29 (Inverse function). Let f : V →W be a bijection. Then the inverse
function f−1 : W →V is defined by f−1(w) := the unique element v in V such that
w = f (v).

Note that the inverse function f−1 of a bijection f equals the converse f̆ of f (see
Definition 3.11). If f : V →W is a bijection, then f−1 ◦ f : V → V is the identity
function on V and f ◦ f−1 : W →W is the identity function on W .
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Example 3.17. Let Neven be the set of all even natural numbers and define f : N→
Neven by f (n) := 2n. Then f :N→Neven is a bijection and f−1 :Neven→N is defined
by f−1(m) := 1

2 m.
Let R+ be the set of all real numbers greater than 0 and define f : R+ → R by

f (x) := log(x) (see Example 3.14, 8). Then f : R+→R is a bijection and f−1 : R→
R+ is defined by f−1(x) := ex.

Definition 3.30. Let f : V →W and V0 ⊆ V . Then the restriction f �V0 : V0 →W is
defined by ( f �V0)(x) := f (x).

��
V0 V

f

Example 3.18. Let f : R→ R be defined by f (x) := sinπx. Then f �Z : Z→ R is
defined by ( f �Z)(m) = sinπm = 0 (for m ∈ Z).

3.4.5 Orderings

We start with giving six examples of an ordering relation R on a given set V .

Example 3.19.
1. V = P({v,w}) = { /0,{v},{w},{v,w}} with xRy := x⊆ y.

{v}⊆
{v, w}⊇{w}⊇ ⊆

/0

2. V = {1,2,3,4,6,8,12,24}with xRy := x is a divisor of y.

3. V is the set M of all men with xRy := x is at least as old (in years) as y.

4. V = Z with xRy := x≤ y.

-2 -1 0 1 2
5. V = N with xRy := x≤ y.

6. V = N×N and (n,m)R(x,y) := n≤ x or (n = x and m≤ y).
(0,0),(0,1),(0,2), . . . ,(1,0),(1,1),(1,2), . . . ,(2,0), . . .

The ordering in example 6 is similar to the well-known ordering of words in a dic-
tionary. Therefore we call this ordering the lexicographic ordering on N×N.

Definition 3.31 (Partial ordering).
A relation R on a set V is a partial ordering on V :=
1. R is reflexive, i.e., for all x ∈V , xRx, and
2. R is anti-symmetric, i.e., for all x,y ∈V , if xRy and yRx, then x = y, and
3. R is transitive, i.e., for all x,y,z ∈V , if xRy and yRz, then xRz.
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The reader should check that all relations in Example 3.19 are a partial ordering on
the given set V . Instead of ‘R is a partial ordering on V ’ one sometimes says: V is a
set, partially ordered by R, or: R partially orders V , or: (V, R) is a partially ordered
set. If it is clear from the context what partial ordering relation is involved, we may
write: V is a partially ordered set.

The relations 1 and 2 in Example 3.19 do not have the property that any two
elements are comparable via R: for instance, for v �= w, {v} �⊆ {w} and {w} �⊆ {v}.
The other relations in Example 3.19 do have the property that for all x,y∈V , xRy or
yRx (or both). In the case that R expresses the (weak) preference of an agent (voter)
or a society over the elements of a set V of alternatives or candidates, reading xRy
as ‘the agent judges x is at least as good as y’, ‘xRy and yRx’ expresses that the
agent is indifferent between x and y. Anti-symmetry then expresses that indifference
between two distinct elements of V does not occur and transitivity expresses that the
preference of the agent is rational.

Definition 3.32 (Complete relation). A relation R on a set V is complete := for all
x,y ∈V , xRy or yRx. In other words, any two elements in V are related via R.

Notice that a complete relation on V is by definition reflexive: taking x = y, (xRy or
yRx) implies xRx.

Definition 3.33 (Weak ordering). A relation R on a set V is a weak ordering on V
:= R is complete and transitive.

The relations in Example 3.19, 3, 4, 5 and 6 are a weak ordering on the given set V .
Notice that the third relation is not anti-symmetric: two different men may have the
same age; however, the fourth, fifth and sixth are anti-symmetric.

Definition 3.34 (Linear ordering). R is a linear or total ordering or simply an or-
dering on V := R is weak ordering on V that in addition is anti-symmetric, i.e.,
1. R is complete: for all x,y ∈V , xRy or yRx; and hence, in particular, xRx;
2. R is anti-symmetric: for all x,y ∈V , if xRy and yRx, then x = y.
3. R is transitive: for all x,y,z ∈V , if xRy and yRz, then xRz.

Relation 3 in Example 3.19 is not a linear ordering; the relations 4, 5 and 6 in
Example 3.19 are linear orderings on the given sets. Whenever we refer to a subset
W of a partially or totally ordered set (V, R), we will usually think of this subset W
as being partially, resp. totally ordered by the restriction of R to W , i.e., R∩(W×W ).

Let R be a weak (preference) ordering on a set V of alternatives, reading xRy as: the
agent (voter, judge) weakly prefers x to y, in other words: the agent judges that x is
at least as good as y. Then we can express ‘the agent strictly prefers x to y’ by: xRy
and not yRx, which we abbreviate by xPy.

Definition 3.35 (Strict associated ordering). Let R be an ordering on V . The strict
associated ordering P of R on V is defined by xPy := xRy and not yRx.

Theorem 3.13. Let R be a (total or linear) ordering on V . Let xPy := xRy and not
yRx. Then P satisfies the following properties: 1. for all x ∈V, not xPx;
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2. P is asymmetric, i.e, for all x,y ∈V, if xPy, then not yPx;
3. P is transitive; and
4. P is connected, i.e., for all x,y ∈V, xPy or x = y or yPx.

Proof. Let R be a (total or linear) ordering on V and let xPy := xRy and not yRx.
1. From this definition follows immediately that not xPx.
2. Suppose xPy, i.e., xRy and not yRx. Then certainly not yPx.
3. Suppose xPy and yPz, i.e,, xRy and yRz and hence, by transitivity of R, xRz. Also,
not yRx and not zRy. In order to show xPz, we still have to show that not zRx. So,
suppose zRx. Then by xRy and the transitivity of R, zRy. Contradiction.
4. It suffices to show: if x �= y, then xPy or yPx. So suppose x �= y. Then, because R is
anti-symmetric: not xRy or not yRx (1). Because R is complete: xRy or yRx (2). From
(1) and (2) follows: (not xRy and yRx) or (not yRx and xRy), i.e., yPx or xPy. ��
The ordered set (N, ≤) has the property that each non-empty subset of N has a least
(with respect to ≤) element. The ordered sets (Z, ≤) and (Q, ≤) do not have this
property.

Definition 3.36 (Well-ordering). A relation R on a set V is a well-ordering on V :=
1. R is an (total) ordering on V , and
2. each non-empty subset of V has a least element (with respect to R), i.e., an element
x ∈V such that for all y ∈V , xRy.

So, the set (N, ≤) is well-ordered, but the sets (Z, ≤) and (Q, ≤) are not.

3.4.6 Structures and Isomorphisms

Frequently one is not interested in how the elements of a given set have been con-
structed, only in how they behave under certain given relations (and operations) on
the set. For instance, given a certain set V of people, one may be interested only
in how the people in the set behave under the relation ‘is father of’, or under the
relation ‘is older than’, or under the relation ‘is stronger than’; and sometimes one
is interested in more than one relation on the same set. This brings us to the notion
of structure.

Definition 3.37 (Structure). 〈V, R0, . . . ,Rk〉 is a (relational) structure := V is a set
and R0, . . . ,Rk are relations on V .

Remark: A more general notion of structure is obtained by considering sets together
with certain relations and operations on them; see, for instance, [3].

Example 3.20. Examples of (relational) structures:
1. 〈 {Charles, John, Peter}, is older than 〉;
2. 〈 {Charles, John, Peter}, is older than, is stronger than 〉;
3. 〈N, < 〉, where m < n := m is less than n;
4. 〈N, <, | 〉, where m | n := m is a divisor of n;
5. 〈Neven, < 〉, where Neven is the set of all even natural numbers;
6. 〈Neven, <, | 〉.
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Now, let us suppose that John is older than Charles and that Charles is older than
Peter. Then there is no difference, as far as order properties are concerned, between
the set {Charles, John, Peter} together with the ordering relation ‘is older than’ and
the set {1, 2, 3} together with the ordering relation < . In both cases we get the same
picture or structure:

Peter

Charles

John

.

.

.

3

2

1 .

.

.

where the vertical line denotes in the left picture the relation ‘is older than’ and in
the right picture the relation ‘is less than’. For that reason we call the two structures
〈 {Charles, John, Peter}, is older than 〉 and 〈 {1, 2, 3}, < 〉 isomorphic.

Definition 3.38 (Isomorphism). Let 〈V, R0, . . . ,Rk〉 and 〈W, S0, . . . ,Sk〉 be two (re-
lational) structures such that for each i = 0, . . . ,k, Ri and Si have the same number,
say ni, of arguments; for convenience, suppose ni = 2 for all i. Let f : V →W .
f is an isomorphism from 〈V, R0, . . . ,Rk〉 to 〈W, S0, . . . ,Sk〉 :=
1. f is a bijection from V to W , and
2. for all i = 0, . . . ,k and for all v,w ∈V , Ri(v,w) iff Si( f (v), f (w)).

Example 3.21 (Isomorphisms).

1) f : {John, Charles, Peter} → {1, 2, 3}, defined by f (John) = 1, f (Charles) =
2, f (Peter) = 3, is an isomorphism from 〈{John, Charles, Peter}, is older than 〉
to 〈{1,2,3},< 〉, under the supposition that John is older than Charles and that
Charles is older than Peter.

2) f :N→Neven, defined by f (n) = 2n, is an isomorphism from 〈N,<〉 to 〈Neven,<〉
and likewise an isomorphism from 〈N, <, | 〉 to 〈Neven, <, | 〉, where | is the
divisibility-relation.

N : 0 1 2 3 4 . . .
f ↓
Neven : 0 2 4 6 8 . . .

3) Let us suppose that John is the father of Charles and that Charles is the fa-
ther of Peter. Then the function f , defined in 1), is NOT an isomorphism from
〈{John, Charles, Peter}, is father of 〉 to 〈{1,2,3},< 〉, since 1 < 3, i.e., f (John)
< f (Peter), but not (John is the father of Peter).

4) f : N→ Z, defined by f (2n) = n and f (2n− 1) = −n, is a bijection from N

to Z, but it is not an isomorphism from 〈N,<〉 to 〈Z,<〉, since 0 < 1, but not
f (0)< f (1).

N : 0 1 2 3 4 . . .
f ↓
Z : 0 −1 1 −2 2 . . .

Definition 3.39 (Isomorphic). 〈V, R0, . . . ,Rk〉 is isomorphic to 〈W, S0, . . . ,Sk〉 :=
there is at least one isomorphism f from 〈V, R0, . . . ,Rk〉 to 〈W, S0, . . . ,Sk〉.
Example 3.22 (Isomorphic).
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1) Supposing that John and Peter are equally strong and that Charles is stronger
than John and Peter, 〈{Charles, John, Peter}, is stronger than 〉 is isomorphic to
〈{2,4,6}, | 〉.

John Peter
�
��

�

Charles 2

�
��
�

4 6

In the left picture the line denotes the relation ‘is stronger than’ and in the right
picture it denotes the relation ‘is divisor of’. However, 〈 {Charles, John, Peter},
is stronger than 〉 is (under the same supposition as above) NOT isomorphic to
〈{1,2,3},< 〉.

.

.

.

3

2

1

2) f : N→ Neven, defined by f (0) = 2, f (1) = 0, f (n) = 2n for n ≥ 2, is not an
isomorphism from 〈N, < 〉 to 〈Neven, < 〉, although f is a bijection from N to
Neven, because 0 < 1, but not 2 = f (0)< f (1) = 0.

N : 0 1 2 3 4 . . .
f ↓
Neven : 2 0 4 6 8 . . .

Nevertheless, 〈N, < 〉 is isomorphic to 〈Neven, < 〉, since there is an isomorphism
from 〈N, < 〉 to 〈Neven, < 〉, namely f : N→ Neven defined by f (n) = 2n for all
n ∈N.

N : 0 1 2 3 4 . . .
f ↓
Neven : 0 2 4 6 8 . . .

Exercise 3.9. We provide alternative notions of ordered pair:
a) (v,w) := {{v, /0}, {w,{ /0}}}, and b) (v,w) := {{v, /0},{w}}.
Prove that for these definitions it holds that (v,w) = (x,y) iff v = x and w = y.

Exercise 3.10. Prove that the operation × (Cartesian Product) is distributive with
respect to union and intersection, i.e., U× (V ∪W ) = (U×V )∪ (U×W ), and
U× (V ∩W ) = (U×V)∩ (U×W).

Exercise 3.11. Give an example to show that the operation× (Cartesian Product) is
not associative, i.e., that not for all sets U , V and W , U× (V ×W ) = (U×V )×W .

Exercise 3.12. Let R = {(0,1),(0,3),(0,4),(2,1),(1,2),(4,7)}. Compute Dom(R),
Ran(R) and R̆. Is R a function? Let S = {(1,4),(3,2),(5,0)}. Compute R;S and S;R.

Exercise 3.13. a) Let U be a partition of V and define for v,w ∈V , vSw := there is a
set W in U such that both v,w ∈W . Show that S is an equivalence relation on V .
b) Let R be an equivalence relation on V . Then V/R = {[v]R | v ∈V} is the partition
of V belonging to R (see Theorem 3.10). Let S be the equivalence relation belonging
to V/R according to a). Prove that R and S are identical.
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Exercise 3.14. Check whether each of the following relations onZ is an equivalence
relation or not.
a) R = {(x,y) ∈ Z

2 | x+ y < 3} b) R = {(x,y) ∈ Z
2 | x is a divisor of y}

c) R = {(x,y) ∈ Z
2 | x+ y is even } d) R = {(x,y) ∈ Z

2 | x = y or x =−y}
Exercise 3.15. Prove that in each of the following cases {Vr | r ∈R} is a partition of
R × R. Describe geometrically the members of this partition. Find the equivalence
relations corresponding to the partitions (see Exercise 3.13).
a) Vr = {(x,y) ∈ R

2 | y = x+ r}, b) Vr = {(x,y) ∈ R
2 | x2 + y2 = r}.

Hint: y = x+ r is the equation of a line and x2 + y2 = r is the equation of a circle.

Exercise 3.16. For each n ∈ Z let Vn = {m ∈ Z | ∃q ∈ Z [ m = n+ 5q ]}. Prove that
{Vn | n ∈ Z} is a partition of Z.

Exercise 3.17. Give an example of a relation, which is transitive and symmetric, but
not reflexive.

Exercise 3.18. Spot the flaw in the following argument: Let R be transitive and sym-
metric. Then xRy and yRz implies xRz for all x, y and z. Also xRy→ yRx holds for
all x and y. Now take any x and y such that xRy; then, by the preceding lines, xRx.
Hence R is reflexive.

Exercise 3.19. Draw diagrams for the following partially ordered sets:
a) The set of all subsets of a set with 3 elements, partially ordered by ⊆.
b) The set of natural numbers 1, . . . ,25, partially ordered by divisibility.

Exercise 3.20. Determine which of the following sets are relations, functions, in-
jections, surjections or bijections from {1,2,3,4} to {1,2,3,4}:
a) R1 = {(3,1),(4,2),(4,3),(2,3)}, b) R2 = {(2,3),(1,2),(3,2),(4,3)},
c) R3 = {(2,1),(1,2),(4,3),(3,4)}, d) R1;R2 and e) R̆3.

Exercise 3.21. Let f : U →V and g : V →W . Prove: a) if g ◦ f is injective, then f
is injective; and b) if g ◦ f is surjective, then g is surjective.
Let f ∗ : N → N be defined by f ∗(n) = n+ 1 and let g∗ : N → N be defined by
g∗(0) = 0 and g∗(n+ 1) = n. Prove, using f ∗ and g∗, that not for all f and g:
c) if g◦ f is injective, then g is injective; d) if g◦ f is surjective, then f is surjective;
e) if g ◦ f is bijective, then f or g is bijective.

0 1 2 3
....�

�
�
�
�
�
....

�

�
�
�
�
�
�

....0 1 2 3
f ∗

g∗

Exercise 3.22. Let f : V →W . Prove: f̆ is a function from W to V iff f is bijective.

Exercise 3.23. f : U → V and g : V →W . Prove: a) If f and g are injective, then
g ◦ f is injective; b) If f and g are surjective, then g ◦ f is surjective; c) If f and g
are bijective, then g ◦ f is bijective.
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Exercise 3.24. Prove that f : N × N→N, defined by f (n,m) := 2m(2n+1)−1, is
injective.

Exercise 3.25. Prove: a) 〈N, < 〉 is not isomorphic to 〈Z, < 〉, i.e., there is no
isomorphism from 〈N, < 〉 to 〈Z, < 〉; and b) 〈Z, < 〉 is not isomorphic to 〈Q, < 〉.
Exercise 3.26. Prove: 〈{2,4,6,12}, / 〉 is isomorphic to 〈P({1,2}), ⊆ 〉.

3.5 The Hilbert Hotel; Denumerable Sets

All sets we experience in daily life are finite. That is why we think that a proper
part is smaller than its whole. For instance, {2, 3} is a smaller set than {1, 2, 3}. We
shall see that this law for finite sets does not hold anymore for infinite sets.

The numbers 0,1,2,3, . . . are called natural numbers. N= {0,1,2, . . .} is the set
of all natural numbers. So, for example, 3 ∈N, 5 ∈N and 1024∈N, while −3 �∈N,
2
3 �∈ N and

√
2 �∈ N. The numbers . . . ,−3,−2,−1,0,1,2,3, . . . are called integers.

Z = N∪{−1,−2,−3, . . .} is the set of all integers. Note that each natural number
is an integer, but not conversely. Examples: 2 ∈ Z, −2 ∈ Z, 0 ∈ Z, 3 ∈ Z, 2

3 �∈ Z and√
2 �∈ Z.
Numbers of the form p

q , where p∈Z, q∈N, q �= 0 (and p and q relatively prime)

are called rational numbers. Q+ =N∪{ 1
1 .

1
2 ,

1
3 , . . .}∪{ 2

1 ,
2
2 ,

2
3 , . . .}∪{ 3

1 ,
3
2 ,

3
3 , . . .}∪

. . . is the set of all positive rational numbers. Examples: 1
4 ∈ Q

+, 2 ∈ Q
+, 0 ∈ Q

+,
3
5 ∈Q

+,
√

2 �∈Q
+, π �∈Q

+. By Q we mean the set of all positive and negative ratio-
nal numbers. Note that all integers and hence also all natural numbers are rational.

There are many, many, numbers which are not rational. Already the Greeks knew
that

√
2 cannot be written as a quotient of the form p

q . The same holds for many

other numbers, such as
√

5, log2, π and Euler’s constant e. By R we mean the set of
all real numbers. This set contains all natural numbers, all integers and all rational
numbers, but also all limits of convergent sequences of rational numbers, such as√

2, log2, π and e. For a precise definition of real numbers in terms of sets, see van
Dalen, Doets, de Swart [3], section 12.

In this section we shall see that the set N of all natural numbers is as large as the
set Z of all integers and also as large as the set Q of all rational numbers. In Section
3.6 we shall see that the set R of all real numbers is larger than each of the sets N,
Z and Q, which are equally large.

From a classical or platonistic point of view the sets N, Z, Q and R are actually in-
finite, i.e., the Creator has created these sets, just like the planets, as a completed to-
tality, prior to and independently of any human process of generation and as though
they can be spread out completely for our inspection. Mathematicians are like as-
tronomers who try to discover properties of the objects which have been created in
its full totality by the Creator.

Since for an intuitionist like L.E.J. Brouwer (1891-1966) mathematical objects
are my own mental constructions, from an intuitionistic point of view the infinite is
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treated only as potential or becoming or constructive, i.e., the set N of the natural
numbers is identified with the construction process for its elements: start with 0 and
add 1 to each natural number which has already been constructed before. And it
was one of the main achievements of Brouwer to solve the problem how we can talk
constructively about the non-denumerable set R of the real numbers; see Chapter 8.

What does it mean that ‘set V has just as many elements as set W ’? The proper
formulation of this question makes use of the notion of one-one correspondence or
matching. For example, the set {Plato, Augustine, Wittgenstein} has just as many
elements as the set {chair 1, chair 2, chair 3}, simply because we can match these
sets in a suitable way:

Wittgenstein
Augustine

Plato

chair 3
chair 2
chair 1

From an intuitive point of view a one-one correspondence between two sets V and
W is a prescription or function f that associates with every element v in V exactly
one element f (v) in W in such a way that conversely for every element w in W there
is exactly one v in V with w = f (v). More technically, a one-one correspondence
between V and W is a bijective function from V to W ; see Section 3.4.

Early scientists were rather puzzled by the effects of the matching-concept. In
1638 Galileo noticed that we can match the set of squares of the positive integers
and the set of positive integers itself:

. . .

. . .

. . .

. . .

1

1 2

4 9

3

16

4

n2

n

• • • • •

This was considered paradoxical, in view of Euclid’s proposition that ‘the whole is
greater than its part’ (circa 300 B.C.). However, if one thinks of billiard-balls, being
labeled 1, 2, 3, 4, . . . on one occasion and the same balls being labeled 1, 4, 9, 16,
. . . on another occasion, it becomes quite obvious that the sets in question can be
matched and hence have as many elements.

This is essentially Gödel’s defense that the following definition is the natural one
for comparing sets in magnitude, also in the case of infinite sets; see Gödel [5], What
is Cantor’s continuum problem?.

Definition 3.40 (Equipollent). V is equally great as or equipollent to W (V and W
are of the same cardinality) iff there exists a one-one correspondence between (the
elements of) V and (the elements of) W . Notation: V =1 W .

One easily may verify the following:

Theorem 3.14. For all sets U, V and W,
i) V =1 V; ii) if V =1 W , then W =1 V; iii) if U =1 V and V =1 W, then U =1 W.

Proof. i) The identity function which associates with every element x∈V this same
x, is a one-one correspondence (bijection) between V and V . ii) Let f : V →W be
a one-one correspondence (bijection) between V and W , then the inverse function
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f−1 : W → V (see Definition 3.29) is a one-one correspondence between W and V .
iii) Let f : U → V be a one-one correspondence between U and V and g : V →W
a one-one correspondence between V and W . Then the composition g ◦ f : U →W
(see Definition 3.28) is a one-one correspondence between U and W . ��
Definition 3.41 (Finite). a) V is finite iff there is some natural number n ∈ N such
that V =1 {x ∈ N | x < n}. b) V is infinite iff V is not finite.

Example 3.23. {Plato,Augustine,Wittgenstein}=1{1,2,3}; not {1,2,3}=1 {1,2}.
Example 3.24. N=1 P, where P is the set of prime numbers. In book IX of Euclid’s
‘Elements’ (300 B.C.) it is shown that there are infinitely many prime numbers.
Euclid proceeds by constructing for each finite set of primes a prime which does
not belong to it. Using the fact that there are infinitely many primes, we can find a
bijection from N to P by running through N and checking whether each number is
a prime. This is basically the method known as the sieve of Erathostenes.

Theorem 3.15. N=1 Neven, where Neven := {x ∈ N | x is even}.
Proof. The correspondence or function f that associates with each natural number n
in N the even natural number f (n) = 2n in Neven is one-one: f associates with each
natural number n in N exactly one even natural number in Neven, namely f (n) = 2n,
in such a way that conversely for every even natural number m = 2n in Neven there
is exactly one natural number n in N, namely n = m

2 , such that f (n) = m.

N: 0 1 2 3 4 . . . n . . .
↓ ↓ ↓ ↓ ↓ ↓

Neven 0 2 4 6 8 . . . 2n . . . ��
Hence, the proposition ‘the whole is greater than its part’ (Euclid) turns out to be
false for infinite sets: Neven is a proper subset of N, but Neven is still equipollent to
N. However, it is easy to see that ‘a proper part is smaller than the whole’ is true for
finite sets.

N=1 V means that there is a one-one correspondence v between the sets N and V :

N: 0 1 2 3 4 5 . . .

V : v(0) v(1) v(2) v(3) v(4) v(5) . . .

If V is equipollent to N, we say that V is denumerable: V = {v(0),v(1),v(2), . . .}.
Definition 3.42 (Denumerable; Enumerable; Countable).
V is denumerable := N=1 V .
V is enumerable or countable := V is finite or denumerable.
A one-one correspondence v between {0,1, . . . ,n} or N respectively and V is called
an enumeration of V .

Remark 3.1. The usage of the terminology is not firmly established. Instead of ‘de-
numerable’ some authors use countably infinite.
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Suppose somewhere in heaven is a hotel, called the Hilbert hotel, after the German
mathematician and philosopher David Hilbert (1862 – 1943), with as many rooms
as there are natural numbers. We also suppose that in every room there is exactly
one guest: g0, g1, g2, g3, . . ..

room: 0 1 2 3 4 5 . . .
————————————————-| | | | | | |
| g0 | g1 | g2 | g3 | g4 | g5 || | | | | | |————————————————

So, the Hilbert hotel is full in the sense that there is a one-one correspondence g
between the set of room numbers {0,1,2, . . .} and the set {g0,g1,g2, . . .} of guests.

At a certain day two new guests, g−1 and g−2, arrive at the reception and both
ask for a private room; neither the two new guests nor the existing guests want to
share a room with somebody else. The receptionist, who studied mathematics and
philosophy, had to think a little while, but found an easy solution: let all the existing
guests move two rooms; then the first two rooms are becoming free and can be given
to the two new guests. The result is the following room assignment:

room: 0 1 2 3 4 5 . . .
————————————————-| | | | | | |
g−2 g−1 g0 g1 g2 g3| | | | | | |————————————————

We see that the two sets {g0,g1,g2, . . .} and {g−2,g−1,g0,g1,g2, . . .} are equally
large: the number of rooms did not change. We also see that N = {0,1,2, . . .} is as
large as {−2,−1}∪N, in other words: there is a one-one correspondence f between
these two sets: f (0) =−2, f (1) =−1 and f (n+ 2) = n for n≥ 0.

Theorem 3.16. a) N =1 {−2,−1}∪N, in other words, {−2,−1}∪N is denumer-
able. b) More generally: if W is a finite set {w0, . . . ,wk−1}, k ≥ 1, and V is a denu-
merable set, then W ∪V is denumerable.

Proof. a) The function f from N to {−2,−1}∪N, defined by f (0) = −2, f (1) =
−1, and f (n+2) = n for n≥ 0, is a one-one correspondence between these two sets:
f assigns to every n ∈N exactly one element in {−2,−1}∪N, such that conversely
for every element m in {−2,−1}∪N there is exactly one n ∈ N, namely n = m+2,
with m = f (n).
b) Suppose W = {w0, . . . ,wk−1}, k≥ 1, and V is denumerable, i.e., there is a one-one
correspondence v between N and V . Hence, V = {v0,v1,v2, . . .}. Then the function
f from N to W ∪V , defined by f (0) = w0, . . ., f (k−1) = wk−1, and for each n ∈N,
f (n+ k) = vn, is a one-one correspondence between N and W ∪V . ��
So far, so good! But at a certain day all denumerably many guests, except g0, of the
Hilbert hotel want to invite a personal friend and to give him or her a private room;
again nobody is willing to share his room with somebody else. Say guest gi wants
to invite g−i for each i≥ 1. This situation is pictured in the following schema:
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room: 0 1 2 3 4 5 . . .
————————————————-| | | | | | |
| g0 | g1 | g2 | g3 | g4 | g5 || | | | | | |————————————————

g−1 g−2 g−3 g−4 g−5 . . .

The receptionist looks concerned; she could host finitely many new guests, but now
she is asked to host countably many new guests, each wanting a separate room. But
... after some thinking she found a solution: let all old guests move to the room with
number twice the old room number; by doing that all rooms with an odd number
become empty and the new guests can be hosted in these odd numbered rooms. So,
the new room assignment looks as follows:

room: 0 1 2 3 4 5 . . .
————————————————-| | | | | | |
g0 g−1 g1 g−2 g2 g−3| | | | | | |————————————————

The receptionist is proud, the guests are happy and the Hilbert hotel is doing good
business. Guest g0 can stay in room number 0, guest g1 moves to room number 2,
guest g2 moves to room number 4, guest g3 moves to room number 6, etc. By doing
this the rooms 1, 3, 5, . . . with an odd number become available and the new guests
g−1,g−2,g−3, . . . can occupy these rooms.

We see that the set N is as large as the set {−1,−2,−3, . . .}∪N, this is Z, while
at the same time N is a proper subset of Z.

Theorem 3.17. a) N=1 N∪{−1,−2,−3, . . .}= Z; i.e., Z is denumerable.
b) More generally: if V and W are denumerable, then also V ∪W is denumerable.

Proof. a) With the even natural numbers 0, 2, 4, . . . in N we can associate respec-
tively the numbers 0, 1, 2, . . . in Z and with the odd natural numbers 1, 3, 5, . . . in
N we can associate respectively the numbers −1,−2,−3, . . . in Z. More precisely,
the function f from N to Z, defined by f (2n) = n and f (2n− 1) =−n is a one-one
correspondence between N and Z.
b) Suppose V and W are denumerable, i.e., there are one-one correspondences v
and w between N and V , respectively W . Hence, V = {v(0),v(1),v(2), . . .} and
W = {w(0),w(1),w(2), . . .}. Then v(0),w(0),v(1),w(1),v(2),w(2), . . . is an enu-
meration of V ∪W . More precisely, the function f from N to V ∪W , defined by
f (2n) = v(n) and for n ≥ 1, f (2n− 1) = w(n− 1) is a one-one correspondence be-
tween N and V ∪W . ��
So far the Hilbert hotel had overcome all difficulties. The real problem started only
the next day, when each of the denumerably many guests announced that he or she
wants to accommodate denumerably many friends. Each guest gi, i∈N, wants to in-
vite denumerably many friends gi1,gi2,gi3, . . .. How should the receptionist provide
everybody with a private room?
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room: 0 1 2 3 4 5 . . .
————————————————-| | | | | | |
| g0 | g1 | g2 | g3 | g4 | g5 || | | | | | |————————————————

g01 g11 g21 g31 g41 g51 . . .

g02 g12 g22 g32 g42 g52 . . .

g03 g13 g23 g33 g43 g53 . . .

...
...

...
...

...
... . . .

Although the first thought of the receptionist was that this may be impossible, after
thinking approximately fifteen minutes she found a solution. For convenience, she
identifies g0 with g00, g! with g10, g2 with g20, etc. Let V0 = {g00,g01,g02, . . .},
V1 = {g10,g11,g12, . . .}, V2 = {g20,g21,g22, . . .}, etc. Then the diagram below at the
left hand side shows all the guests who have to be accommodated in a private room,
i.e., V0∪V1∪V2∪ . . .. Making a systematic ‘walk’ through the schema of guests, as
indicated in the diagram below at the right hand side, gives an enumeration of all
the guests in V0∪V1 ∪V2∪ . . .. The receptionist assigns to guest gi j, the jth friend
of gi, room number 1

2 (i+ j)(i+ j+ 1)+ j. So, guest g0 = g00 gets room 0, guest
g1 = g10 gets room 1, guest g01 gets room 2, guest g2 = g20 gets room 3, guest g11

gets room 4, guest g02 gets room 5, guest g3 = g30 gets room 6, guest g21 gets room
7, guest g12 gets room 8, guest g03 gets room 9, guest g4 = g40 gets room 10, etc.

More precisely, the function f from V0∪V1∪V2∪ . . . to N, defined by f (gi j) =
1
2 (i+ j)(i+ j+1)+ j, is a one-one correspondence between the two sets in question:
f assigns to every gi j exactly one natural (room) number f (gi j), such that conversely
for every natural number n in N there is exactly one guest gi j with n = f (gi j).

V0 V1 V2 V3 V4 . . .

g00 g10 g20 g30 g40 . . . 0 1 3 6 10 . . .

g01 g11 g21 g31 g41 . . . 2 4 7 11 . . .

g02 g12 g22 g32 g42 . . . 5 8 12 . . .

g03 g13 g23 g33 g43 . . . 9 13 . . .

...
...

...
...

...
...

...
...

...
...

Theorem 3.18. a) The union of denumerably many denumerable sets V0,V!,V2, . . .
is denumerable.
b) The set Q+ of all rational numbers greater or equal than 0 is denumerable.

Proof. a) Let V0 = {v00,v01,v02, . . .}, V1 = {v10,v11,v12, . . .}, V2 = {v20,v21,v22, . . .},
etc. be denumerably many denumerable sets. Then the function f from V0∪V1∪V2∪
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. . . to N, defined by f (vi j) =
1
2(i+ j)(i+ j+1)+ j, is a one-one correspondence be-

tween the two sets in question: f assigns to every vi j exactly one natural number
f (vi j) ∈ N, in such a way that conversely for every natural number n ∈ N there is
exactly one vi j ∈V0∪V1∪V2∪ . . . with f (vi j) = n.
b) Identifying gi j with the rational number i

j , leaving out gi0 for all i ∈N and taking

away all double occurrences of the same rational number, such as 1
2 = 2

4 = 3
6 = . . .,

we obtain an enumeration of all rational numbers i
j ≥ 0 with i, j ∈N and j > 0. ��

Corollary 3.5. Q is denumerable.

Proof. Q = Q
+ ∪Q

−, where Q
− = {x ∈ Q | x < 0}. According to Theorem 3.18

Q
+ is denumerable. In the same way one may prove that Q− is denumerable. And

by Theorem 3.17 the union of two denumerable sets is again denumerable. ��
Exercise 3.27. a) Prove that a) Z =1 Neven; b) Neven =1 Nodd , where Neven = {x ∈
N | x is even} and Nodd = {x ∈ N | x is odd}.
Exercise 3.28. a) Prove that the set {0,1}∗ of all finite sequences of 0’s and 1’s is
denumerable.
b) Let Σ be an alphabet, i.e., a finite set of symbols. And let Σ∗ be the set of all
words over Σ , i.e., Σ∗ is the set of all finite sequences of elements of Σ . Prove that
Σ∗ is denumerable. Hint: Note that a) is a special case of b) by taking Σ = {0,1}.
c) Conclude that the set of all expressions in English is denumerable.

Exercise 3.29. Let V be a enumerable set. Prove that the set V ∗ of all finite se-
quences of elements of V is denumerable.

3.6 Non-enumerable Sets

In Section 3.5 we have seen that the infinite sets N, Z and Q have the same cardi-
nality, i.e., are equally large, although clearly N is a proper subset of Z and Z is a
proper subset of Q. One might be inclined to think that all infinite sets are equally
large. Nothing is less true! We shall see in this section that there are many sets which
are larger than the sets N, Z and Q. But first we have to explain what we mean by
‘being larger than’. The natural definition of V <1 W , V is smaller than W , is:
1. V may be embedded into W , i.e., there is a function f from V to W such that for
all x,y ∈V , if x �= y, then f (x) �= f (y) ( f is injective), but
2. there is no one-one correspondence between the (elements of) V and W . More
precisely, for every function f from V to W there will be at least one element w ∈W
such that there is no v ∈ V with f (v) = w. In other words, there is no surjection
f : V →W and hence there cannot be a bijection f : V →W .

A first example of a non-enumerable set is the set {0,1}N, i.e., the set of all
functions f : N→ {0,1}. Since a function f : N→ {0,1} may be identified with
the infinite sequence f (0), f (1), f (2), . . . of zero’s and one’s, the set {0,1}N is also
called the set of all infinite sequences of zero’s and one’s.
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It is easy to see that N can be embedded into {0,1}N: let F : N→{0,1}N be defined
by F(n) = the infinite sequence of zero’s and one’s with F(n)(i) = 0 for i �= n and
F(n)(n) = 1, i.e., F(n) is the sequence of zero’s and one’s with a 1 only at the nth

place. Evidently, an infinite sequence with two or more one’s does not belong to
the range of F . In Theorem 3.19 we shall prove that any function F : N→ {0,1}N
will ‘forget’ some elements of {0,1}N, more precisely, that for any such function F
there is an infinite sequence s of zero’s and one’s such that s �= F(i) for all i ∈ N.

Definition 3.43 (Smaller than). V is smaller than W :=
a) There exists an embedding from V into W , i.e., there exists a function f : V →W
such that for all x,y ∈V , if x �= y, then f (x) �= f (y) ( f is injective),
b) but there is no surjection, and hence no bijection or one-one correspondence,
f : V →W . Notation: V <1 W ,

Theorem 3.19. N<1 {0,1}N.

Proof. a) There is an injection F : N→ {0,1}N; for instance, the function F with
F(n)(i) = 0 for all i �= n and F(n)(n) = 1.
b) We show that each F : N→ {0,1}N is not surjective, in other words, that for
each such function F there is an infinite sequence s in {0,1}N such that s �= F(i) for
all i ∈ N. So, let F : N→ {0,1}N. Then for all i ∈ N, F(i) is an infinite sequence
of zero’s and one’s. The sequences F(i) may be represented in, for instance, the
following diagram:

0 1 2 3 . . .

F(0) = 0 1 0 0 . . .
F(1) = 1 0 1 0 . . .
F(2) = 0 0 1 1 . . .
F(3) = 1 1 0 0 . . .

...
s = 1 1 0 1 . . .

Construct the infinite sequence s by interchanging the zero’s and one’s at the diag-
onal F(0)(0), F(1)(1), F(2)(2), F(3)(3), . . ., i.e., define s(i) := 1−F(i)(i). Then
for all i∈N, s differs from F(i) at place i, in other words s(i) �= F(i)(i). So, s �= F(i)
for all i ∈ N and therefore F : N→ {0,1}N is not surjective. ��
Remark 3.2. The method used in the proof of Theorem 3.19 is called diagonalisa-
tion or the diagonal method of Cantor.
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Next we will show that P(N) =1 {0,1}N, from which it follows by Theorem 3.19
that N<1 P(N).

Theorem 3.20. For any set V , P(V ) =1 {0,1}V .

Proof. The function K : P(V )→ {0,1}V , defined by K(U) = KU , where KU is the
characteristic function of U , is a bijection from P(V ) to {0,1}V . First we show
that K is injective. So, suppose U1 �= U2, say v ∈U1 and v �∈U2. Then KU1(v) = 1
and KU2(v) = 0 and therefore K(U1) �= K(U2). To show that K is surjective, suppose
f ∈{0,1}V . Taking U := {v∈V | f (v) = 1}, it follows that f =K(U), since f (v) = 1
iff v ∈U , i.e., iff KU (v) = 1. ��
Now that we have established that P({1, . . . ,n}) =1 {0,1}{1,...,n} we can use The-
orem 3.11 to determine the number of elements of P({1, . . . ,n}), namely 2n, the
number of elements of {0,1}{1,...,n}. So, we know that for finite sets V the power set
of V is much larger than the set V itself. A similar proposition, Theorem 3.21, holds
for infinite sets, only we cannot expect to prove it by just counting. Cantor provided
us with a revolutionary technique for this purpose: diagonalisation.

From Theorem 3.19 and Theorem 3.20 follows Cantor’s theorem:

Corollary 3.6 (Cantor’s Theorem). N <1 P(N). So, there are more subsets of N
than there are natural numbers.

Proof. By Theorem 3.19 there is an injection f : N→ {0,1}N. By Theorem 3.20
there is a bijection g : P(N)→ {0,1}N. Then g−1 ◦ f : N→ P(N) is an injection.
Suppose there were a surjection f : N→ P(N). Then g ◦ f : N→ {0,1}N would be
a surjection (see Exercise 3.23), which contradicts Theorem 3.19. ��
More generally, we shall prove that any set V is smaller than its powerset P(V ).
It is easy to see that any set V can be embedded into its powerset P(V ): with every
element v∈V corresponds the set {v}∈P(V ), more precisely, the function f from V
to P(V ), defined by f (v) = {v}, assigns to different elements in V different elements
of P(V ). Clearly, this function is not a one-one correspondence betweenV and P(V ):
for instance, if W is a subset of V with two or more elements, then there is no v ∈V
such that f (v) = W . Even stronger, below we shall show that there cannot exist
a one-one correspondence between V and P(V ). Consequently, for any set V , the
powerset P(V ) of V is larger than V itself. Note that we already verified this for
finite sets, see Theorem 3.6.

Theorem 3.21. For any set V , V <1 P(V ).

Proof. Clearly, the function f from V to P(V ), defined by f (v) = {v}, assigns to
different elements of V different elements of P(V ). So, f embeds V into P(V ).
Next we have to show that there cannot exist a one-one correspondence between V
and P(V ). So, suppose g is any function from V to P(V ). Then we have to show
that there is a set W ∈ P(V ), i.e., W ⊆ V , such that for no v ∈ V , W = g(v). Take
W = {v ∈V | v �∈ g(v)}. Then indeed, there is no v ∈V such that W = g(v).
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For suppose for some v0 ∈ V , W = {v ∈ V | v �∈ g(v)} = g(v0). Then for all x,
x ∈W iff x ∈ g(v0), i.e., for all x ∈ V , x �∈ g(x) iff x ∈ g(v0). In particular, taking
x = v0, v0 �∈ g(v0) iff v0 ∈ g(v0). Contradiction. ��
The preceding theorem is an eye-opener: it says in particular that

N<1 P(N)<1 P(P(N))<1 P(P(P(N)))<1 . . ..

So, there are many degrees of infinity: the degree of infinity of N is smaller than the
one of P(N), which in its turn is smaller than the one of P(P(N)), etc.

Definition 3.44 (Interval). For a,b ∈ R let [a,b] := {x ∈ R | a ≤ x ≤ b}; (a,b) :=
{x ∈R | a < x < b}; [a,b) := {x ∈ R | a≤ x < b}; and (a,b] := {x ∈ R | a < x≤ b}.
[a,b] is called the closed (at both sides) interval between a and b, while (a,b) is
called the open (at both sides) interval between a and b.

Next we will prove that N is not only smaller than P(N), but also smaller than [0, 1],
the set of all real numbers between 0 and 1. We will present a direct proof here for
historical reasons. The proof below is Poincaré’s proof. The first direct proof was
presented by Cantor.

Theorem 3.22. N<1 [0, 1]. So, there are more real numbers between 0 and 1 than
there are natural numbers.

Proof. It is easy to construct an embedding from N into [0, 1]. For instance, f : N→
[0, 1], defined by f (0) = 0 and f (n) = 1

n for n ≥ 1, is an injection. Next we have
to show that there cannot exist a surjection g : N→ [0, 1]. To do so, we shall prove
that for any function g : N→ [0, 1] we can construct a real number b between 0
and 1 such that b �= g(n) for any n ∈ N. So, let g : N→ [0, 1]. Given this g, we can
construct a chain S0, S1, S2, . . . of segments (in Q), where each segment is contained
in the preceding one and the length of the segments is decreasing to 0, such that for
every n ∈ N, g(n) is not an element of Sn.

Note that [0, 1] = [0, 1
3 ] ∪ [ 1

3 , 2
3 ] ∪ [ 2

3 , 1]. At least one of those three subsets does
not contain g(0), say S0.

Suppose S0, . . . ,Sn have already been defined, such that
1. for all i, 0≤ i≤ n, g(i) is not an element of Si,
2. for all i, 0≤ i < n, Si+1 ⊆ Si, and
3. for all i, 0≤ i≤ n, the length of Si equals 3−i−1.

Let Sn = [pn, qn]. Now Sn is the union of

[pn,
2pn+qn

3 ], [ 2pn+qn
3 , pn+2qn

3 ] and [ pn+2qn
3 ,qn].

At least one of those three subsets of Sn does not contain g(n+ 1), say Sn+1. This
chain of segments S0, S1, S2, . . . determines a real number b (which in general will
not be a rational number), such that for every n ∈ N, b occurs in Sn, and hence, b ∈
[0, 1]. Now for every n ∈ N, g(n) does not occur in Sn, while b does occur in Sn.
Hence, for every n ∈ N, b �= g(n). ��



172 3 Sets: finite and infinite

∨
S2

∗g(2)

∨
S1

∗ ∗g(1)g(2)
S0
∨

12
3

∗g(1)g(2)∗1
3

∗g(0)
0

Theorem 3.22 tells us that [0, 1] is not enumerable, more precisely, for each enu-
meration g : N→ [0, 1] of elements of [0, 1], a real number b (between 0 and 1)
can be constructed such that b does not occur in that enumeration, i.e., for all n ∈N,
b �= g(n). On the other hand, we can define only countably many individual real
numbers (between 0 and 1). This restriction is inherent to our language. Next we are
going to show that [0, 1] is equipollent to R and consequently, by Theorem 3.22,
that N<1 R. In order to do so, we first show:

Theorem 3.23. [0, 1] =1 (0, 1).

Proof. Consider the following denumerable subset of [0, 1]: {1,0, 1
2 ,

1
3 ,

1
4 , . . .}. Now

let f : [0, 1]→ (0, 1) be defined as follows:

)
1

(
0 1
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1
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1
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2

(0, 1)
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1
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���

f (1) = 1
2 , f ( 1

n ) =
1

n+2 if n≥ 2,
f (0) = 1

3 , f (x) = x if x �∈ {1,0, 1
2 ,

1
3 ,

1
4 , . . .}.

Clearly, f is a bijection from [0, 1] to (0, 1). Therefore [0, 1] =1 (0, 1). ��
In the proof of Theorem 3.23 we have used the fact that the uncountable sets [0, 1]
and (0, 1) have an denumerable subset, {1,0, 1

2 ,
1
3 ,

1
4 , . . .} and { 1

2 ,
1
3 ,

1
4 , . . .} respec-

tively. More generally, one can show:

Theorem 3.24. If V contains a denumerable subset, then there is a proper subset of
V , which is equipollent to V . Hence, Euclid’s axiom ’the whole is greater than its
proper part’ does not hold for such sets V .

Proof. Let {x0, x1, x2, . . .} be a denumerable subset of V . Then V−{x0} is a proper
subset of V , which is equipollent to V . For the function g : V → V −{x0}, defined
by g(x) = x if x �∈ {x0, x1, x2, . . .}, and g(xi) = xi+1 for all i ∈N, is a bijection from
V to V −{x0}. ��
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By using an argument similar to the proof of Theorem 3.23 (see Exercise 3.30) one
can show:

Theorem 3.25. For a,b ∈ R, [a,b] =1 (a,b] =1 [a,b) =1 (a,b).

Amazingly, the length of an interval of real numbers does not change the cardinality
(number of elements) of the interval. Compare an interval of real numbers with an
elastic. By stretching the elastic out, its length becomes larger, but the number of
points in the elastic does not change.

Theorem 3.26. For a,b,c,d ∈ R with a < b and c < d, (a,b) =1 (c,d).

Proof. First we translate a and c to 0.
f1 : (a,b)→ (0,b−a), defined by f1(x) = x−a, is a bijection from (a,b) to (0,b−a).
f2 : (c,d)→ (0,d−c), defined by f2(x) = x−c, is a bijection from (c,d) to (0,d−c).
Next we stretch (or shrink) (0,b−a): f3 : (0,b−a)→ (0,d−c), defined by f3(x) =
d−c
b−a x, is a bijection from (0,b−a) to (0,d−c). Then f−1

2 ◦ f3 ◦ f1 : (a,b)→ (c,d) is
a bijection from (a,b) to (c,d). ��

f3(x)
  

  
  

  
  

��
��

  
  

��
��

��

��

��

��
��

��

��

0 x b− a

d− c0

Next we show that any interval (of finite length) of real numbers is equipollent to
the set R of all real numbers.

Theorem 3.27. (−1,1) =1 R.

Proof. f : (−1,1)→ R, defined by f (x) = tg(π
2 x), is a bijection from (−1,1) to

R. ��

R

−1 1

tg( π
2 x)
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(−1,1) is again a proper subset of R, which is equipollent to R. So, there are as
many real numbers between −1 and 1 as there are real numbers on a straight line.

By Theorem 3.23, [0, 1] =1 (0, 1), by Theorem 3.26, (0, 1) =1 (-1, 1) and by
Theorem 3.27, (-1, 1) =1 R. Hence, [0, 1] =1 R. Since, according to Theorem 3.22,
N<1 [0, 1], it follows that:

Theorem 3.28. N<1 R

By Theorem 3.19 and Theorem 3.22 we know that {0,1}N, i.e., the set of all infinite
sequences of zero’s and one’s, and [0, 1], i.e., the set of all real numbers between 0
and 1, each are larger than N. But how do the cardinalities of these two sets compare;
in other words, is one larger than the other or are they equipollent?

It is known that each real number in (0, 1] has a unique non-terminating decimal
extension. For instance, 1 = 0.999. . ., 1

3 = 0.333. . . and 0.5 = 0.4999. . .. Hence, (0, 1]
=1 {0,1, . . . ,9}N. One can also show that {0,1, . . . ,9}N =1 {0,1}N (see [3], section
18). Hence, it follows that:

Theorem 3.29. R=1 (0,1] =1 {0,1, . . . ,9}N =1 {0,1}N =1 P(N).

Traditionally R is called the continuum. The term is, however, also metaphorically
used for {0,1}N, which is usually written as 2N.

Summarizing: The sets in each column below are equipollent and are strictly smaller
than any set in a column to the right of it.

N {0,1}N PP(N) PPP(N) . . .
Z P(N) P(R) PP(R)
Q (a,b)

R

One may say that there are infinitely many degrees of infinity. As far as our limited
experience goes, it turns out that (leaving aside larger sets, such as PP(N),PPP(N))
most familiar infinite sets are either denumerable or equipollent to the continuum. A
natural question to ask is whether there are sets which are larger than N and smaller
than R.

Cantor conjectured in 1878 that each infinite subset of R is either denumerable or
equipollent to the continuum. This conjecture is known as the Continuum Hypothe-
sis (CH). A precise formulation reads:

Cantor’s Continuum Hypothesis: there is no set V ⊆ R such that N<1 V <1 R.

So far the continuum hypothesis has withstood all attempts to settle it. From the
work of Gödel (1938) and Cohen (1963) we know that the Continuum Hypothesis
is consistent with, but at the same time independent of, the basic axioms of set
theory (such as given by Zermelo and Fraenkel). The matter of its truth or falsity in
the intended universe of set theory however remains unsettled. Gödel, in his paper
What is Cantor’s Continuum Problem? in [5] has analysed the evidence, which turns
out to be rather in favour of a rejection.

Exercise 3.30. Prove that (0, 1] =1 [0, 1], (0, 1] =1 (0, 1) and (0, 1] =1 [0, 1).
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Exercise 3.31. Let Σ be an alphabet, i.e., a finite set of symbols. L is a language
over Σ := L⊆ Σ∗, where Σ∗ is the set of all finite sequences of elements of Σ . Prove
that the set of languages over Σ is uncountable.

Exercise 3.32. Prove that [0, 1] =1 [0, 2] and that (0, 1) =1 (0, 3).

Exercise 3.33. V is Dedekind infinite := there is an injective function with domain
V and whose range is a proper subset of V . Prove: V is infinite iff V is Dedekind
infinite. Hint: If V is infinite, then by the axiom of choice V has an denumerable
subset. Next use Theorem 3.24. For the axiom of choice see van Dalen, e.a. [3].

3.7 Solutions

Solution 3.1.
N �∈ N {2,3} �⊆ {N} /0 �∈ /0 { /0} �∈ /0
N ∈ {N} {2} �⊆ {N} /0⊆ /0 { /0} �⊆ /0
N⊆ N {2} ⊆ N /0 ∈ { /0} { /0} ⊆ { /0}
N �∈ {{N}} 2 �∈ {1,{2},3} /0⊆ { /0} /0⊆ { /0,{ /0}}
N �⊆ {N} {2} ∈ {1,{2},3} /0 �∈ {{ /0}} /0 ∈ { /0,{ /0}}
{1,2} �∈ N {1,{2}} �⊆ {1,{2,3}} /0⊆ {{ /0}} { /0} ⊆ { /0,{ /0}}
{1,2} ⊆ N {1,{2}} ⊆ {1,{2},3} { /0} ∈ {{ /0}} { /0} ∈ { /0,{ /0}}
{1,2} �∈ {N} {−2,2} �⊆ N { /0} �⊆ {{ /0}} /0⊆ {{ /0,{ /0}}}
Solution 3.2. a) W ⊆V iff V ∩W =W . Proof: We have to show that
(i) if W ⊆V , then V ∩W =W , and conversely, (ii) if V ∩W =W , then W ⊆V .
Proof of (i): Suppose W ⊆V . In order to show that V ∩W =W it suffices – by the ax-
iom of extensionality – to show that V ∩W and W have the same elements. Clearly,
each element of V ∩W is also an element of W . Conversely, that each element of W
also is an element of V ∩W follows from the assumption that W ⊆V .
Proof of (ii): Suppose V ∩W =W . To show: W ⊆V . So, let x ∈W . Then it follows
from V ∩W =W that x ∈V ∩W . Hence, x ∈V .
b) W ⊆V iff V ∪W =V is shown in a similar way.

Solution 3.3. a) To show: U− (V ∪W ) = (U−V)∩ (U−W).
Proof: x ∈U− (V ∪W ) � x ∈U ∧¬ (x ∈V ∪W )

� x ∈U ∧¬ (x ∈V ∨ x ∈W )
� x ∈U ∧ (x �∈V ∧ x �∈W )
� (x ∈U ∧ x �∈V )∧ (x ∈U ∧ x �∈W )
� x ∈ (U −V) ∧ x ∈ (U −W)
� x ∈ (U −V) ∩ (U−W).

b) U− (V ∩W ) = (U−V)∪ (U−W) is shown in a similar way.

Solution 3.4. a) Let U = /0, V = { /0} and W = {{ /0}}. Then U ∈ V and V ∈W , but
U �∈W . b) Proof: Suppose that U ⊆ V and V ⊆W , i.e., ∀x[x ∈ U → x ∈ V ] and
∀x[x ∈V → x ∈W ]. Then it follows that ∀x[x ∈U → x ∈W ], i.e., U ⊆W .
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Solution 3.5. /0 has only one subset: /0. So, P( /0) = { /0}.
P( /0) = { /0} has 21 = 2 subsets: /0 and { /0}. So, P(P( /0)) = { /0,{ /0}}.
P(P( /0)) = { /0,{ /0}} has 22 = 4 subsets: /0, { /0}, {{ /0}} and { /0,{ /0}}.
So, P(P(P( /0))) = { /0,{ /0},{{ /0}},{ /0,{ /0}}}.
Solution 3.6. (a) Suppose that W ⊆ V . Then ∀x[x ⊆W → x ⊆ V ], in other words,
∀x[x ∈ P(W )→ x ∈ P(V )] and this means precisely that P(W )⊆ P(V ).
(b) Suppose P(W )⊆ P(V ), i.e., ∀x[x ∈ P(W )→ x ∈ P(V )], in other words,
∀x[x⊆W → x⊆V ]. Now we know W ⊆W . Hence also W ⊆V .
(c) Suppose P(W ) = P(V ). Then P(W )⊆ P(V ) and P(V )⊆ P(W ). Hence, applying
(b) twice, W ⊆V and V ⊆W . Hence W =V .
(d) Suppose P(W ) ∈ P(V ), i.e., P(W )⊆V . Now W ∈ P(W ), and so W ∈V .
Warning: The converse of (d), if W ∈ V , then P(W ) ∈ P(V ), does not hold. Coun-
terexample: Let W := { /0} and V := {{ /0}}. Then P(W ) = { /0,{ /0}} and P(V ) =
{ /0,{{ /0}}}. So P(W ) �∈ P(V ), while W ∈V .

Solution 3.7. a) Proof: Suppose P(W )∈ PP(V). This is equivalent to P(W )⊆ P(V ).
Since W ∈ P(W ), it follows that W ∈ P(V ).
b) Proof: Suppose W ∈ P(V ), i.e., W ⊆ V . Then ∀x[x ⊆W → x ⊆ V ], i.e., ∀x[x ∈
P(W )→ x ∈ P(V )], i.e., P(W )⊆ P(V ), or equivalently, P(W ) ∈ P(P(V )).
c) Proof: Suppose P(W ) ⊆ PP(V), i.e., ∀x[x ∈ P(W )→ x ∈ PP(V)]. W ⊆W , so
W ∈ P(W ); therefore, W ∈ PP(V ); in other words, W ⊆ P(V ).
d) Proof: Suppose W ⊆ P(V ). Then ∀x[x ⊆W → x ⊆ P(V )], i.e., ∀x[x ∈ P(W )→
x ∈ P(P(V ))], or, equivalently, P(W )⊆ P(P(V )).

Solution 3.8. i) {v} �= /0. So, by the regularity axiom, there is some z ∈ {v} such
that z∩{v} = /0, i.e., v∩{v} = /0. Now suppose v ∈ v. Then v ∈ v and v ∈ {v}; so,
v∩{v} �= /0. Contradiction. Therefore, by the regularity axiom it follows that v �∈ v.
ii) {v1, . . . ,vn} �= /0. So, by the regularity axiom, there is some z ∈ {v1, . . . ,vn} such
that z∩ {v1, . . . ,vn} = /0. Now suppose v1 ∈ v2 ∧ v2 ∈ v3 ∧ . . .vn−1 ∈ vn ∧ vn ∈ v1.
Then there is no z ∈ {v1, . . . ,vn} such that z∩{v1, . . . ,vn}= /0. Contradiction.

Solution 3.9. a) From right to left is trivial. From left to right: Suppose (v,w) =
(x,y), i.e., {{v, /0},{w,{ /0}}}= {{x, /0},{y,{ /0}}}. So, these two sets have the same
elements; hence, (i) {v, /0}= {x, /0} and {w,{ /0}}= {y,{ /0}}, or (ii) {v, /0}= {y,{ /0}}
and {w,{ /0}}= {x, /0}. In case (i) v= x and w= y. In case (ii) it follows from /0 �= { /0}
that v = { /0} and y = /0; w = /0 and x = { /0}. Hence, v = x and w = y.
b) From right to left is trivial. So, suppose (v,w) = (x,y), i.e., {{v, /0},{w}} =
{{x, /0},{y}}. So, these two sets have the same elements. Hence, (i) {v, /0}= {x, /0}
and {w} = {y}, or (ii) {v, /0}= {y} and {w} = {x, /0}. In case (i), v = x and w = y.
In case (ii), v = y = /0 and w = x = /0; so, again v = x and w = y.

Solution 3.10.
(u,v) ∈U× (V ∪W ) iff u ∈U and v ∈V ∪W

u ∈U and (v ∈V or v ∈W )
(u ∈U and v ∈V ) or (u ∈U and v ∈W )
(u,v) ∈U×V or (u,v) ∈U×W
(u,v) ∈ (U×V)∪ (U×W ).
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Solution 3.11. Counterexample: Let U = {1}, V = {2}, W = {3}. Then U ×
(V ×W ) = {1}×{(2,3)} = {(1,(2,3))}, which is different from (U ×V )×W =
{(1,2)}×{3}= {((1,2),3)}, since (1,(2,3)) �= ((1,2),3).

Solution 3.12. Dom(R) = {0,1,2,4}, Ran(R) = {1,2,3,4,7}. R is not a function,
because 0 ∈ Dom(R) and there is more than one z ∈ Ran(R) such that (0,z) ∈ R.
R̆ = {(1,0),(3,0),(4,0),(1,2),(2,1),(7,4)}. R;S = {(0,4),(0,2),(2,4)}. S;R =
{(1,7),(3,1),(5,1),(5,3),(5,4)}.
Solution 3.13. a) Let U be a partition of V . To prove: S is reflexive, symmetric and
transitive. (1) S is reflexive. Suppose v ∈ V . Then there is precisely one set W ∈U
such that v∈W ; hence, vSv. (2) S is symmetric. Suppose v,w∈V and vSw, i.e., there
is a set W in U such that both v and w are elements of W . Then also w and v are
elements of W ; hence, wSv. (3) S is transitive. Suppose u,v,w ∈V and uSv and vSw.
Then for some W1 in U both u ∈W1 and v ∈W1. Also for some W2 in U both v ∈W2

and w ∈W2. Since U is a partition of V and v ∈W1 ∩W2, it follows that W1 = W2.
So, u ∈W1 and w ∈W1; therefore uSw.
b) vSw is defined as follows: there is a set [u]R in V/R such that v,w ∈ [u]R, i.e., vRu
and wRu. To prove: vSw iff vRw. From left to right: suppose vSw, i.e., vRu and wRu
for some u ∈V . Then vRu and uRw. Hence, vRw. From right to left: Suppose vRw.
Then vRv and wRv. Hence, there is a set [u]R in V/R, namely [v]R, such that v ∈ [u]R
and w ∈ [u]R, i.e., vSw.

Solution 3.14. a) R is neither reflexive nor transitive. b) R is not symmetric. c) R is
an equivalence relation. d) R is an equivalence relation.

Solution 3.15. To prove: (1)∪{Vr | r ∈R}=R×R. (2) The elements of {Vr | r ∈R}
are pairwise disjoint. a) Proof for Vr = {(x,y) ∈R

2 | y = x+ r}: (1) For any x,y ∈R

take r := y− x. Then (x,y) ∈ Vr. (2) Suppose r �= r′. Then, clearly, Vr ∩Vr′ = /0.
Geometrically, Vr as defined above is a straight line cutting the y-axis in r and the
x-axis in −r. The equivalence relation R is defined by (x1,y1)R(x2,y2) := for some
r ∈R, (x1,y1) ∈Vr and (x2,y2) ∈Vr. Hence, (x1,y1)R(x2,y2) iff y1− x1 = y2− x2.
b) The proof that {Vr | r ∈ R} with Vr := {(x,y) ∈ R

2 | r = x2 + y2} is a partition
of R×R is analogous to the proof given in a). In this case Vr is a circle with centre
(0,0) and radius r. The equivalence relation R is defined by (x1,y1)R(x2,y2) :=
x1

2 + y2
1 = x2

2 + y2
2.

Solution 3.16. To prove: (1) ∪{Vn | n ∈ Z} = Z. (2) The different elements of {Vn |
n ∈ Z} are pairwise disjoint. Proof: (1) Take any m ∈ Z. Then there is an n ∈ Z such
that m = n+ 5 ·q for some q ∈ Z. So, m ∈Vn.
(2) V0 = {. . . ,−10,−5, 0, 5, 10, . . .} , V5 =V0,

V1 = {. . . , −9, −4, 1, 6, 11, . . .} , V6 =V1,
V2 = {. . . , −8, −3, 2, 7, 12, . . .} , V7 =V2,
V3 = {. . . , −7, −2, 3, 8, 13, . . .} , V8 =V3,
V4 = {. . . , −6, −1, 4, 9, 14, . . .} , V9 =V4, etc.

Solution 3.17. For any set V consider the empty relation R /0 on V , i.e., for all x,y ∈
V , not xR /0y. Clearly, R /0 is not reflexive, but ∀x,y∈V [xR /0y→ yR /0x] is logically true,
since xR /0y is false; in a similar way one sees that R /0 is transitive.
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Solution 3.18. The argument presupposes there is at least one pair (x,y) such that
xRy. This argument is not valid if R = /0.

Solution 3.19.
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Solution 3.20. a) R1 is a relation between {1,2,3,4} and {1,2,3,4}. b) R2 is a
function from {1,2,3,4} to {1,2,3,4}. c) R3 is a bijection from {1,2,3,4} to
{1,2,3,4}. d) R1;R2 = {2,2),(3,2),(4,2),(4,3)} is a relation between {1,2,3,4}
and {1,2,3,4}. e) R̆3 is a bijection from {1,2,3,4} to {1,2,3,4}.
Solution 3.21. a) Proof: Suppose g◦ f : U →W is injective, x �= x′ and f (x) = f (x′).
Then, because g : V →W is a function, g( f (x)) = g( f (x′)). But g ◦ f is injective.
So, we have a contradiction.
b) Proof: Suppose g◦ f : U →W is a surjection. Then for every w∈W there is u∈U
such that w = g( f (u)). Hence, for every w∈W there is v∈V , namely v= f (u), such
that w = g(v). In other words: g : V →W is surjective.
c) Counterexample: g∗ ◦ f ∗ : N→ N is an injection; but g∗(0) = 0 and g∗(1) = 0;
hence, g∗ : N→ N is not an injection.
d) Counterexample: g∗ ◦ f ∗ : N→ N is a surjection, but there is no n ∈ N such that
0 = f ∗(n).
e) Counterexample: g∗ ◦ f ∗ : N→N is a bijection, but f ∗ : N→N is not a surjection
and g∗ : N→ N is not an injection.

Solution 3.22. Let f : V →W . f̆ : W → V := for all w ∈W there is precisely one
v∈V such that f̆ (w) = v, or equivalently, f (v) =w. Hence, f̆ : W →V iff f : V →W
is a bijection.

Solution 3.23. a) Proof: Suppose f : U → V and g : V →W are injective. Then for
any x,x′ ∈U , if x �= x′, then f (x) �= f (x′) and g( f (x)) �= g( f (x′)).
b) Proof: Suppose f : U → V and g : V →W are surjective. Then for every w ∈W
there is v ∈ V such that w = g(v). Also for every v ∈ V there is u ∈ U such that
v = f (u). Hence, for every w ∈W there is u ∈U such that w = g( f (u)).
c) This follows immediately from a) and b).

Solution 3.24. f : N×N→ N, defined by f (n,m) = 2m(2n+ 1)− 1, is injective.
Proof: suppose that 2m(2n+ 1)− 1 = 2m′(2n′+ 1)− 1. Then, supposing that m ≥
m′, 2m−m′ = 2n′+1

2n+1 . But 2m−m′ is even, except when m = m′; and an odd number
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divided by an odd number is again an odd number. So, 2m−m′ = 1 and m = m′.
Consequently, also n = n′.

Solution 3.25. a) Suppose f were an isomorphism from 〈N, < 〉 to 〈Z, < 〉. Let
f (0) = z with z ∈ Z. Since f is an isomorphism, for all k ∈N, z≤ f (k). So, f is not
surjective, since the elements of Z smaller than z are not in the range of f .
b) Suppose f were an isomorphism from 〈Z, < 〉 to 〈Q, < 〉. Let f (0) = q1 and
f (1) = q2 with q1, q2 ∈ Q. Then between q1 and q2 there is a rational number q
with q1 < q < q2. But there is no integer i in Z between 0 and 1 such that f (i) = q.
Hence, f is not surjective.

Solution 3.26. Let f : {2,4,6,12} → P({1,2}) be defined as follows: f (2) = /0,
f (4) = {1}, f (6) = {2} and f (12) = {1,2}. Then f is a bijection and for all n,m ∈
{2,4,6,12}, n/m iff f (n)⊆ f (m).

4
-
-

2
.
.

6
�
��

12
/
// {1} {2}

{1,2}
⊆ ⊇

⊆⊇
/0

Solution 3.27. a) The function f from Z to Neven, defined by f (n) = 4n and
f (−n) = 4n− 2 for any n ∈ N, is a one-one correspondence between Z and Neven:

Z: 0 −1 1 −2 2 −3 3 . . .
| | | | | | |

N: 0 1 2 3 4 5 6 . . .
| | | | | | |

Neven: 0 2 4 6 8 10 12 . . .

b) The function f from Neven to Nodd , defined by f (2n) = 2n+ 1 for all n ∈ N, is a
one-one correspondence between the two sets in question:

Neven: 0 2 4 6 8 10 12 . . .
| | | | | | |

Nodd : 1 3 5 7 9 11 13 . . .

Solution 3.28. a) Let {0,1}n be the set of all finite sequences of 0’s and 1’s of length
n (n ∈ N). For each n ∈ N, {0,1}n has 2n elements. Now {0,1}∗ is the union of all
sets {0,1}n with n ∈N. Hence, {0,1}∗ is the union of denumerably many finite sets
and hence denumerable. b) Let Σn (n ∈ N) be the set of all words over Σ of length
n. Let k be the number of symbols (characters) in Σ . Then Σn has kn elements. Now
Σ∗ is the union of all Σn with n ∈ N. Hence, Σ∗ is the union of denumerably many
finite sets and hence denumerable.

Solution 3.29. Suppose V is enumerable. Let Vn (n ∈ N) be the set of all finite se-
quences of elements of V of length n. For each n∈N, Vn is enumerable. Now V ∗, the
set of all finite sequences of elements of V , is the union of all Vn with n ∈N. Hence,
V ∗ is the union of denumerably many enumerable sets and hence, by Theorem 3.18,
V ∗ is denumerable.
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Solution 3.30. (i) f : (0, 1] → [0, 1], defined by f (1) = 0, f ( 1
n ) =

1
n−1 for n ∈

N, n≥ 2, f (x) = x if x �∈ {1, 1
2 ,

1
3 , . . .}, is a bijection.

(ii) f : (0, 1] → (0, 1), defined by f ( 1
n ) =

1
n+1 for n ∈ N, n ≥ 1, f (x) = x if x �∈

{1, 1
2 ,

1
3 , . . .}, is a bijection.

(iii) f : (0, 1]→ [0, 1), defined by f (1) = 0, f (x) = x if x �= 1, is a bijection.

Solution 3.31. By Exercise 3.28, Σ∗ is denumerable. Hence, by Theorem 3.21,
P(Σ∗) is uncountable. And P(Σ∗) is precisely the set of all languages over Σ , since
L is a language over Σ iff L ∈ P(Σ∗).

Solution 3.32. a) f : [0, 1]→ [0, 2], defined by f (x) = 2x, is a bijection.
b) f : (0, 1)→ (0, 3), defined by f (x) = 3x, is a bijection.

Solution 3.33. Suppose V is infinite. Then by the axiom of choice V has a de-
numerable subset {x0,x1,x2, . . .}. By Theorem 3.24, g : V →V −{x0}, defined by
g(xi) = xi+1 and g(x) = x if x �∈ {x0,x1,x2, . . .}, is a bijection with domain V and
range V −{x0}. Conversely, suppose V is Dedekind infinite, i.e., there is an injec-
tive function with domain V and whose range is a proper subset of V . Then V cannot
be finite. Therefore, V is infinite.
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5. Gödel, K., What is Cantor’s continuum problem? American Mathematical Monthly, vol. 54,
1947, pp. 515-525.
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Chapter 4
Predicate Logic

H.C.M. (Harrie) de Swart

Abstract In this chapter we extend the language of propositional logic to the one
of predicate logic, in which we also can analyse arguments containing subjects and
predicates, such as in, for example: All men are mortal; therefore: Socrates is mortal;
and in: Socrates is a philosopher; therefore: someone is a philosopher. These sim-
ple arguments cannot be adequately dealt with in propositional logic. The semantic
notions of logical consequence and logical validity and the syntactic notions of (log-
ical) deducibility and provability are adapted to the language of predicate logic, and
again it turns out that these two notions are extensionally equivalent (soundness and
completeness).

4.1 Predicate Language

There are many arguments which cannot be analyzed adequately in propositional
logic. An example is the following argument:

John is ill
Therefore: someone is ill.

If we translate the premiss and the conclusion into a propositional language, two
atomic propositional formulas P1 and P2 respectively result. However, P2 is not a
valid consequence of P1, while the argument above certainly is correct. The point is
that P1 and P2 are two different atomic formulas not expressing the internal ‘subject-
predicate structure’ of the premiss and the conclusion in the argument above. And
it is the similarity in the internal structure of the premiss and the conclusion which
is responsible for the correctness of the argument above.

So, we have to enrich the propositional language with symbols to indicate sub-
jects, such as ‘John’ and ‘someone’ and symbols to indicate predicates, such as ‘is
ill’. In propositional logic, treated in Chapter 2, one can only analyze those argu-
ments the correctness of which depends on the meaning of the propositional opera-
tions ‘if . . ., then . . .’, ‘and’, ‘or’ and ‘not’. In predicate logic, also called predicate
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calculus, one can also analyze arguments the correctness of which depends on the
‘subject-predicate structure’ of the sentences involved.

With the help of a number of examples we introduce quantifiers, individual vari-
ables, constants and terms. Then we pay attention to the translation of English sen-
tences into formulas of predicate logic and consider both intended and non-intended
interpretations of these formulas. The scope of a quantifier and free and bound oc-
currences of a variable in a formula A are defined. A precise definition of the lan-
guage of predicate logic is given, starting with an alphabet from which formulas can
be built by means of connectives and quantifiers.

4.1.1 Quantifiers, Individual Variables and Constants

Below we give a number of examples of atomic propositions, grouping together
those which have a similar internal (subject-predicate) structure.

1. Each of the numbers 2, 4, and 6 is even.
All natural numbers are positive.
All natural numbers are negative.
All men are mortal.

The atomic propositions of group 1 all are of the following form:

all objects (of a certain kind) have the property P;
in other words: for each object x, x has the property P.

Notation: ∀x[P(x)].

Here P(a) stands for: a has the property P. In P(a), ‘a’ is called an individual vari-
able (or object variable) to emphasize that a ranges over the domain of individuals
(or objects). The variable a indicates an open place, which may be filled by the name
of a concrete individual, for instance, ‘Socrates’. P(Socrates) then means: Socrates
has the property P. P(x) results from P(a) by replacing a by x.
∀x is read as: for each object x. The symbol ∀ is called a universal quantifier.

(The latin ‘quantum’ means ‘how much’.) One might also use Ax (for All x) or
∧

x
instead of ∀x; the first one because it does not need any special symbol, the second
one because of its analogy with ∧ (and). For instance, ‘each of the numbers 2, 4
and 6 is even’ is equivalent to ‘2 is even and 4 is even and 6 is even’. However, in
the case of an infinite domain as in ‘all natural numbers are positive’, for instance,
the universal quantifier can be represented only by infinitely many conjunctions
(0 is positive and 1 is positive and 2 is positive and . . .). Such an expression with
infinitely many conjunctions is not a formula, since formulas are by definition finite
expressions. Therefore, we need quantifiers.

Instead of the variable x one may also use another variable y: ∀x[P(x)] and
∀y[P(y)] have the same meaning! They both mean: all objects (of a certain kind)
have the property P.
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2. At least one of the numbers 2, 3 and 4 is even.
There is some natural number x such that x > 0.
Some men are immortal.

The atomic propositions of group 2 are all of the following form:

some objects (of a certain kind) have the property P;
in other words: there is at least one object x such that x has the property P.

Notation: ∃x[P(x)].

∃x is read as: there is at least one object x such that . . .. The symbol ∃ is called
an existential quantifier. One might also use Ex (there Exists an x such that) or

∨
x

instead of ∃x; the first one again because it does not need any special symbol, the
second one because of its analogy with ∨ (or). For instance, ‘There is some natural
number x such that x is even’ is analogous to ‘0 is even or 1 is even or 2 is even or
. . . ’. Again, ∃y[P(y)] and ∃x[P(x)] have exactly the same meaning.

The predicate in an atomic proposition may be built from simpler predicates by
means of ‘if and only if (iff)’, ‘if . . ., then . . .’, ‘and’, ‘or’ and ‘not’. For instance,
using � for ‘iff’,→ for ‘if . . ., then . . .’, ∧ for ‘and’, ∨ for ‘or’ and ¬ for ‘not’:
‘For each number x, x is even iff x2 is even’ is of the form ∀x[P(x)� Q(x)].
‘All animals having four legs are cows’ is of the form ∀x[P(x)→Q(x)].
‘Some natural numbers are positive and even” is of the form ∃x[P(x)∧Q(x)].
‘All natural numbers are positive or negative” is of the form ∀x[P(x)∨Q(x)].
‘There is some natural number x such that not x > 0’ is of the form ∃x[¬P(x)].

In an atomic proposition more than one quantifier may occur, as is the case in the
following examples:
‘All natural numbers are equal’, or equivalently, ‘for every natural number x and for
every natural number y, x = y’ is of the form ∀x∀y[R(x,y)].
‘There are different natural numbers’, or equivalently, ‘there is a natural number x
and there is a natural number y such that x �= y’ is of the form ∃x∃y[R(x,y)].

Here ‘R(a,b)’ stands for: a is in the relation R to b. In R(a,b), ‘a’ and ‘b’ are
individual variables indicating open places which may be filled by the names of
concrete individuals, for instance, by ‘Janet’ and ‘Peter’ respectively. ‘R(Janet, Pe-
ter)’ then means: Janet is in the relation R to Peter. ‘R(x,y)’ results from ‘R(a,b)’
by replacing a and b by x and y respectively.

In ‘John loves Jane’ we call ‘John’ the subject and ‘ - loves Jane’ or ‘a loves
Jane’ the predicate of the sentence. In logic we use the expression predicate in a
more general way than in grammar. In grammar ‘a loves Jane’ is a predicate, but
not ‘John loves b’ or ‘a loves b’. In grammar, we call ‘John’ the subject and ‘Jane’
the object of the proposition ‘John loves Jane’. In mathematics and in logic, but not
in grammar, ‘John loves b’ and ‘a loves b’ are also called predicates, with one and
two arguments respectively; and both ‘John’ and ‘Jane’ are called subjects of the
proposition ‘John loves Jane’. Notice that ‘a loves Jane’ assigns a proposition to
each value of a; ‘John loves b’ assigns a proposition to each value of b and ‘a loves
b’ assigns a proposition to each pair of values of a and b.
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‘a loves Jane’ is a predicate with one argument, also called a property; and so
is ‘John loves b’. But ‘a loves b’ is a predicate with two arguments, also called a
(binary) relation. ‘a1 and a2 are the parents of b’ is an example of a 3-ary predicate,
also called a ternary relation.

3. Every person has a mother; or equivalently: for every person x there is some
person y such that x has y as mother.
For every natural number there is a greater one; or equivalently: for every natural
number x there is some natural number y such that x < y.

The atomic propositions of group 3 are all of the form:

for every object x there is an object y (possibly depending on x) such that x is in the
relation R to y.

Notation: ∀x∃y[R(x,y)].

4. Someone is the mother of all persons; or equivalently: there is some person y
such that for all persons x, x has y as mother.
There is a greatest natural number; or equivalently: there is some natural number
y such that for all natural numbers x, x < y.
There is a least natural number; or equivalently: there is some natural number y
such that for all natural numbers x, y≤ x.

The atomic propositions of group 4 all are of the form:

there is some object y (independent of any x) such that for all objects x (including y
itself), x is in the relation R to y.

Notation: ∃y∀x[R(x,y)].

From the examples in group 3 and 4 it should become obvious that the reading of
∀x∃y[R(x,y)] is quite different from the reading of ∃y∀x[R(x,y)]. So, the order of the
quantifiers is very important. The following example may clarify the difference: It
is true that for every natural number x there is a natural number y such that x2 = y,
which is of the form ∀x∃y[R(x,y)], but it is not true that there is a natural number y
such that for every natural number x, x2 = y, which is of the form ∃y∀x[R(x,y)].

In an atomic proposition the names of concrete individuals may occur, as is the case
in the following examples.

5. Socrates is a man.
Socrates is mortal.
3 is odd.
4 is even.

The atomic propositions of group 5 are all of the form:

c has the property P.

Notation: P(c).
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The letter ‘c’ is used as the name for some concrete object. Different objects within
the same context should be indicated by different names, for instance, c1,c2, . . .. We
call ‘c1’, ‘c2’, . . . individual constants: throughout some context every occurrence
of each of them is the name for the same object.

‘All natural numbers are greater than or equal to zero’ and ‘everyone loves Janet’
both are of the form ∀x[R(x,c)], where R(a,c) is to be read as: a is in the relation
R to c. The symbol ‘a’ is an individual variable and the symbol ‘c’ is an individual
constant .

From the atomic propositions considered above one can build composite proposi-
tions by means of the propositional operations studied in Chapter 2 on propositional
logic. For instance, ‘if all natural numbers are even, then all natural numbers are
odd’ is a composite proposition of the form ∀x[P(x)]→ ∀x[Q(x)], not to be con-
fused with the atomic proposition ‘for each natural number x, if x is even, then x is
odd’, which is of the form ∀x[P(x)→Q(x)].

Note the difference between:

a) ∀x[P(x)]→∀x[Q(x)]: if every object x has the property P, then also every object
x has the property Q.

b) ∀x[P(x)→ Q(x)]: for each (individual) object x, if x has the property P, then x
also has the property Q.

In a) the implication→ is between the two sentences ∀x[P(x)] and ∀x[Q(x)] to form
a new sentence ∀x[P(x)]→ ∀x[Q(x)]. In b) the implication → is between the two
predicates P(x) and Q(x) to form a new predicate P(x)→ Q(x) and the formula in
b) says that every object x has this property P(x)→Q(x). The formulas in a) and b)
have quite different meanings! For instance, ‘if all natural numbers are even (which
is false), then all natural numbers are odd (which is also false)’ is an instance of the
formula in a) and is true (0→ 0 = 1), while ‘for each natural number x, if x is even,
then x is odd’ is an instance of the formula in b) and is false.

Similarly, ‘if there is an even natural number, then there is a natural number not
equal to itself’ is a composite proposition of the form ∃x[P(x)]→∃x[Q(x)] and false
(1 → 0 = 0), not to be confused with the atomic proposition ‘there is some natural
number x such that if x is even, then x �= x’, which is of the form ∃x[P(x)→ Q(x)]
and true, because ‘if 3 is even, then 3 �= 3’ is true (0→ 0 = 1).

4.1.2 Translating English into Predicate Logic,
Intended and Non-intended Interpretation

The English sentences ‘John is ill’ and ‘Someone is ill’ have the same noun phrase
(NP) - verb phrase (V P) syntactic structure, while their translations into the predi-
cate language do not have the same (logical) structure:

John is ill I( j),
Someone is ill ∃x[I(x)].
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This makes automated translation of English into symbolic logic a non-trivial mat-
ter. The following six English sentences also have the same NP-VP structure, while
their translations into predicate logic have quite different (logical) structures.

English sentences Usual translation into logic
(1) John walks W ( j)
(2) Every student walks ∀x[S(x)→W (x)]
(3) Some student walks ∃x[S(x)∧W(x)]
(4) No student walks ¬∃x[S(x)∧W(x)]
(5) Somebody walks ∃x[W (x)]
(6) Nobody walks ¬∃x[W (x)] or ∀x[¬W (x)]

We have translated the sentences (1) - (6) into a formal predicate language the al-
phabet of which consists of the following symbols with the corresponding intended
interpretation:

Symbols Intended interpretation
x,y, . . . persons
j John
W ; S is walking; being a student
�, →, ∧, ∨, ¬
∀, ∃
[ , ], ( , )

The translations of the sentences (1) - (6) are called formulas of this formal lan-
guage. The interpretation of the connectives and the quantifiers has been fixed once
and for all in Section 2.2 of Chapter 2 on propositional logic and in Subsection 4.1.1
at the beginning of this section; for this reason these symbols are called logical sym-
bols. But the interpretation of the other symbols can be varied and therefore the
symbols ‘ j’, ‘W ’ and ‘S’ are called non-logical symbols. Consider, for instance, the
following non-intended interpretation:

Symbols Example of a non-intended interpretation
x,y, . . . natural numbers
j 0
W ; S is even; is odd

Under this (non-intended) interpretation the meanings of the formulas above are as
follows:

formula Non-intended interpretation, as specified above
W ( j) 0 is even;
∀x[S(x)→W (x)] Every odd natural number is even;
∃x[S(x)∧W (x)] Some natural number is both odd and even;
¬∃x[S(x)∧W (x)] No natural number is both odd and even;
∃x[W (x)] Some natural number is even;
¬∃x[W (x)] No natural number is even.

The translation of the correct argument

If every student walks and John is a student, then John walks
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into propositional logic would be an invalid formula of the form P∧Q → R, and
hence such a translation is inadequate. However, the translation of this sentence into
the predicate language specified above is

∀x[S(x)→W (x)]∧S( j)→W ( j). (∗)
Now the reader can easily convince himself that this formula yields a true proposi-
tion for each possible interpretation (intended or non-intended): for every domain
D, for every unary predicate S∗ and W ∗ over D and for every element j∗ in D, if all
elements of D with the property S∗ have the property W ∗ and j∗ has the property
S∗, then j∗ also has the property W ∗. For instance: if every Soccer player Wins the
lottery and John is a Soccer player, then John Wins the lottery; and: if every Son of
my father is Wealthy and John is a Son of my father, then John is Wealthy. For this
reason the formula (∗) is called valid . The validity of (∗) is guaranteed by the fixed
meaning of the logical symbols ∀, → and ∧ in this formula.

Other examples of valid formulas of the formal language under consideration
are: ∀x[S(x)→ S(x)], ∀x[¬(W (x)∧¬W (x))], and
∀x[S(x)→W (x)]∧∀x[S(x)]→∀x[W (x)].
We will study valid formulas more closely in Section 4.2.

Suppose we want to translate sentences about addition and multiplication of natural
numbers into a logical language. Examples of such sentences are:
(1) for any natural number n, n+ 0 = n,
(2) for any natural number n, n× 0 = 0,
(3) there is no natural number n such that n× n = 2.
Of course, we might translate these sentences into atomic propositional formulas P1,
P2 and P3 of propositional logic, respectively. This suffices, if we want to conclude,
for instance, that the sentence ((1) or (2)) logically follows from sentence (1), be-
cause P1∨P2 is a valid consequence of P1. However, if we want to conclude from
sentence (1) that 2+ 0 = 2, our translation into propositional formulas is not ade-
quate. The proposition 2+ 0 = 2 should be rendered by a different atomic formula
Q and we know from Chapter 2 that Q is not a valid consequence of P1; on the other
hand, the proposition 2 + 0 = 2 does follow from proposition (1). Therefore, a trans-
lation into the language of predicate logic, exhibiting the subject-predicate structure
of the sentences involved, is needed.

We may take a predicate language with the following non-logical symbols, hav-
ing the corresponding intended interpretation:

Non-logical symbols Intended-interpretation
0, 1, 2, . . . zero, one, two, . . .
≡ is equal to (=)
A A(a,b,c): a plus b equals c (Addition)
M M(a,b,c): a times b equals c (Multiplication)

The symbols 0, 1, 2, . . . are individual constants. the symbol ≡ is a binary predi-
cate symbol, i.e., with two arguments, and the symbols A (Addition) and M (Mul-
tiplication) are ternary predicate symbols, i.e., with three arguments. The transla-
tions of sentences (1), (2) and (3) are now respectively: ∀x[A(x,0,x)], ∀x[M(x,0,0)],
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¬∃x[M(x,x,2)] and the translation of 2 + 0 = 2 now becomes A(2,0,2), which is a
valid consequence of ∀x[A(x,0,x)].

Of course, once having built these formulas one can forget about their origin and
consider non-intended interpretations, like the following one.

x, y : persons
0, 1, 2, . . . : John, Mary, Janet, . . ., respectively
a≡ b : a loves b
A(a,b,c) : a and b are the parents of c
M(a,b,c) : a and b are the grandparents of c.

Needless to say that under this non intended interpretation the formula A(2,0,2)
yields a false proposition: Janet and John are the parents of Janet.

4.1.3 Scope, Bound and Free Variables

In ∀x[A(x)] and in ∃x[A(x)] we call A(x) the scope of the quantifier ∀x.
For example, in the expression

∃x[R(a,x)→ S(x,a,b)]→ R(a,b)

the scope of the ∃x is the part R(a,x)→ S(x,a,b).
In the expression

∀x∃y[R(x,y)→∃z[S(y,z)]]→∀x[¬R(x,a)]

the scope of the first occurrence of the ∀x is the part ∃y[R(x,y)→ ∃z[S(y,z)]], the
scope of ∃y is the part R(x,y)→∃z[S(y,z)], the scope of ∃z is the part S(y,z) and the
scope of the second occurrence of the ∀x is ¬R(x,a).

Similarly, in ¬A, A � B, A→ B, A∧B and A∨B we call the expression A or
pair of expressions A, B the scope of the propositional connective in question.

Definition 4.1 (Bound/Free occurrence of a variable in a formula). An occur-
rence of a variable x in an expression A is said to be bound (or as a bound variable),
if the occurrence is in a quantifier ∀x or ∃x or in the scope of a quantifier ∀x or ∃x
(with the same x); otherwise, free (or as a free variable).

It has turned out that it is convenient to use different letters for free and bound
variables:

a1, a2, a3, . . . for free occurrences only and
x1, x2, x3, . . . for bound occurrences only.

Example 4.1. In ‘a2 is the mother of a1’ and in ‘a2 > a1’ both occurrences of a1 and
a2 are free.
In ∃x2[x2 is the mother of a1] (a1 has a mother) and in ∀x2[x2 is the mother of a1]
(everyone is a mother of a1), the occurrence of a1 is free and both occurrences of x2

are bound.
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In ∀x1∃x2[x2 is the mother of x1] (everyone has a mother) and in ∃x1∀x2[x2 is the
mother of x1] (someone has everyone as mother) both occurrences of x1 and both
occurrences of x2 are bound.
The occurrences of the variables a1 and a2 are free in ∃x1∀x2[R(x1,a1)∧R(x2,a2)],
while both occurrences of the variables x1 and x2 are bound in this formula.

A variable a which occurs as a free variable (briefly, occurs free) in A is called a free
variable of A, and A is then said to contain a as a free variable (briefly, to contain a
free); and likewise for bound variables.

4.1.4 Alphabet and Formulas

In Subsection 4.1.2 we introduced two different formal predicate languages: one for
expressing that certain students walk (John was one of them) and one for expressing
certain properties of natural numbers. In the exercises at the end of this section
several other predicate languages are introduced. All predicate languages have the
individual variables, the connectives and quantifiers in common, they differ only in
the choice of the individual constants and predicate symbols, which depends on the
context. We do not want to study any particular one of these languages, but we want
to study these languages in general, so that any of our results is applicable to each
particular language we want to consider.

So, in order to retain flexibility for the applications, we shall assume throughout
this chapter that we are dealing with one or another object language in which there
is a class of individual constants

c1, c2, c3, . . .

and a class of predicate symbols

P1, P2, P3, . . .

where each Pi is supposed to be a different ni-place predicate symbol, i.e., taking
ni arguments (ni = 0,1,2, . . .). By including the possibility that ni = 0, we allow
P1,P2, . . . to express atomic propositions. Consequently, the predicate calculus ex-
tends the propositional calculus. That is, any propositional language can be con-
ceived of as a predicate language: instead of the atomic formula Pi, one can take a
0-ary predicate symbol Pi (with ni = 0).

In Chapter 3 we introduced a formal predicate language for set theory and in
Chapter 5 we shall introduce another predicate language for arithmetic, in which
we can express properties of natural numbers. In The Proper Treatment of Quantifi-
cation in Ordinary English, R. Montague presented a formal language in which a
suitably restricted and regulated part of English or some other natural language can
be expressed.

Thus, throughout this chapter our logical predicate language shall consist of the
following symbols:
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Definition 4.2 (Alphabet of predicate logic).
Symbols Name
a1, a2, a3, . . . free individual variables
x1, x2, x3, . . . bound individual variables
c1, c2, c3, . . . individual constants
P1, P2, P3, . . . predicate symbols (each Pi is ni-ary)
�,→,∧,∨,¬ connectives
∀, ∃ quantifiers
( , ), [ , ] parentheses

Since the logical predicate language is the object of our study in this chapter, we
shall call it the object-language. We shall study this language using English as met-
alanguage, i.e., as the language we use to talk about (formulas of) the object lan-
guage.

In order to prevent writing subscripts and because ∀x1[P(x1)] has the same mean-
ing as ∀x3[P(x3)], we agree to use x, y, z as (meta)variables over x1,x2,x3, . . . and
simply write ∀x[P(x)] instead of ∀x1[P(x1)],∀x2[P(x2)], . . .. The use of the letter x
in the expression ‘if A(a) is a formula and x is a bound variable, then ∀x[A(x)] is a
formula’ is similar to the use of the letter n in the expression ‘if n is a natural num-
ber, then also n+1 is natural number’. The letter n itself is not a natural number, but
may be replaced by any natural number 0, 1, 2, . . . in the expression just mentioned.
Similarly, the letter x itself is not a variable, but may be replaced by any variable
x1,x2,x3, . . .. So, strictly speaking, the expression ∀x[P(x)] itself is not a formula,
but replacing x by x1 (or x2,x3, . . .) and P by P1 yields a formula ∀x1[P1(x1)], which
does belong to the object language.

In a similar way we agree to use the symbols a and b as names for free individual
variables a1,a2, . . . in the object language; the symbols c and d as names for indi-
vidual constants c1,c2, . . . in the object language; and the symbols P, Q, R and S as
names for predicate symbols P1,P2, . . . in the object language. Strictly speaking, the
symbols a, b, x, y, z, c, d, P, Q, R and S themselves do not belong to the logical
predicate language!

Definition 4.3 (Basic Term). A basic term is a free individual variable or an in-
dividual constant. Later in Definition 4.17 the notion of term will be generalized,
allowing it to contain also function symbols.

Definition 4.4 (Atomic formulas). If P is an n-ary predicate symbol and t1, . . . , tn
are terms, then P(t1, . . . , tn) is an atomic formula.

Example 4.2. Supposing that S (being a Student) and W (Walking) are unary predi-
cate symbols, that M (having as Mother) is a binary predicate symbol, that a and b
stand for any free individual variable a1,a2, . . ., and that c and d stand for any indi-
vidual constant c1,c2, . . ., the following expressions are atomic formulas of predicate
logic: S(a), W (a), S(c), W (c); M(a,b), M(a,c) (cobi is the Mother of a), M(c,a) (a
is the Mother of cobi), M(c,b), M(c,d) (cobi has dora as Mother).

The expression P(t1, . . . , tn) itself is not an atomic formula, but a meta-expression
representing any atomic formulas. In particular, the expression P(a) itself is not
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an atomic formula, but P(a1),P(a2),P(a3), . . . are atomic formulas, if P is a unary
predicate symbol in the alphabet of our predicate language, which is the object of
our study.

Definition 4.5 (Formulas).

a) Each atomic formula is a formula.
b) If A and B are any formulas (either atomic formulas, or composite formulas al-

ready constructed), then (A � B), (A→ B), (A∧B), (A∨B) and (¬A) are (com-
posite) formulas.

c) If A(a) is any formula in which the free variable a occurs, and x is any bound
variable not occurring in A(a), then ∀x[A(x)] and ∃x[A(x)] are (composite) for-
mulas, where A(x) results from A(a) by replacing every occurrence of a in A(a)
by x.

d) The only formulas are those given by a), b) and c).

Example 4.3. Supposing that S (being a Student) and W (Walking) are unary predi-
cate symbols in our predicate language, by clause b), S(a)→W (a) is a formula of
our logical predicate language, and by clause c) ∀x[S(x)→W (x)] is a formula of
our predicate language. Supposing that M(a,b) (a has b as Mother) is a binary pred-
icate symbol in our predicate language, by clause c) ∃y[M(a,y)] (a has a Mother)
is a formula of our predicate language, and again by clause c), also ∀x∃y[M(x,y)]
(everyone has a Mother) is a formula of our predicate language. And by applying
clause b) again, ∀x[S(x)→W (x)]∧∀x∃y[M(x,y)] is also a formula of our predicate
language.

Strictly speaking, assuming that M is a binary predicate symbol of our predicate
language, ∃y[M(a,y)] itself is not a formula of our predicate language, but, for in-
stance, ∃x2[M(a1,x2)] is, expressing that ‘a1 has a mother’. And strictly speaking,
∀x∃y[M(x,y] itself is not a formula of our predicate language, but ∀x1∃x2[M(x1,x2)]
is, expressing that ‘everyone has a mother’.

We are using the symbols A, B, C, . . ., A1, A2, A3, . . ., from the beginning of the
Roman alphabet to stand for any formulas, not necessarily atomic. Such distinct
letters as A, B, C, . . . need not represent distinct formulas in contrast to the symbols
P, Q, R, S, . . . which represent distinct predicate symbols.

Assuming that A(a) is a formula, the expression ∀x[A(x)] itself is, strictly speak-
ing, not a formula, since the letter x is a meta-variable representing any bound vari-
able; but ∀x[A(x)] becomes a formula when the letter x is replaced by any bound
variable x1 or x2 or x3 or . . ..

For instance, supposing again that S (is a Student) is a unary predicate symbol and
that M (has as Mother) is a binary predicate symbol of our predicate language, S(a1)
and M(a1,a2), are atomic formulas of our predicate language and ∀x1[S(x1)] (every-
one is a Student) and ∃x2[M(a1,x2)] (a1 has a mother) are composite formulas of
our predicate language. Using, e.g., x3 instead, we get different formulas ∀x3[S(x3)]
and ∃x3[M(a1,x3)] which have the same meaning as ∀x1[S(x1)] and ∃x2[M(a1,x2)],
respectively. This is why the meta-variable x is necessary in clause c) in Defini-
tion 4.5; had we written x1 instead, we would be allowing only ∀x1[S(x1)] (but not
∀x2[S(x2)], ∀x3[S(x3)], etc.) as a formula.
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The quantifiers act as unary operators in building formulas, and with our other
unary operator ¬ are ranked last under the convention for omitting parentheses.
Thus, ∀xA(x)→ B means ∀x[A(x)]→ B, not ∀x[A(x)→ B].

Definition 4.6 (Closed Formula). A formula A is called closed if it contains no
free occurrences of variables; otherwise, open. A closed formula is also called a
sentence.

Example 4.4. Supposing that M is a binary predicate symbol of our predicate lan-
guage, M(a1,a2) (a1 has a2 as Mother) and ∃x2[M(a1,x2)] (a1 has a Mother) are
open formulas, while M(c1,c2) (c1 has c2 as Mother), ∃x2[M(c1,x2)] (c1 has a
Mother) and ∀x1∃x2[M(x1,x2)] (everyone has a Mother) are closed formulas.

Since formulas are built up from atomic formulas by successive applications of con-
nectives and quantifiers to formulas already generated before, the following Theo-
rem, called the induction principle (for predicate formulas), follows immediately
from the definition of formulas. (See also Theorem 2.2.)

Theorem 4.1 (Induction principle for formulas). Let Φ be a property of formulas,
such that a) all atomic formulas have the property Φ ,
b) if A and B have the property Φ , then also (A � B), (A→ B), (A∧B), (A∨B) and
(¬A) have the property Φ , and
c) if A(a) has the property Φ , x does not occur in A(a) and A(x) results from A(a)
by replacing all occurrences of a in A(a) by x, then also ∀x[A(x)] and ∃x[A(x)] have
the property Φ .
Then all formulas have the property Φ .

For an application of this induction principle see the proof of Theorem 4.18.

Exercise 4.1. Let G(a) stand for ’a is a girl’ and P(a) for ’a is pretty’.

a) Translate each of the following sentences into logical symbolism in an adequate
way: (1) Every girl is pretty. (2) Some girl is pretty.

b) Explain why ∀x[G(x)∧P(x)] is not a correct representation of the meaning of
sentence (1) and why ∃x[G(x) → P(x)] is not a correct representation of the
meaning of sentence (2).

Exercise 4.2. Let M be a binary predicate (relation) symbol with intended interpre-
tation ‘is married to’, and c and d individual constants with Cod, respectively Diana,
as intended interpretation. Translate the following sentences into formulas of predi-
cate logic: 1. Cod is not married to Diana; 2. For all persons x and y, if x is married
to y, then y is married to x; 3. Diana is married; 4. There is at least one person who
is not married.

Exercise 4.3. Let A(a,b) stand for ‘a admires b’. Translate the following two sen-
tences into logical symbolism.
(1) Everyone has someone whom he admires.
(2) There is someone whom everyone admires.
Note that ‘everyone admires someone’ is ambiguous and can have each of the two
readings above.
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Exercise 4.4. Let L(x,y) stand for ‘x loves y’. Translate the following sentences into
logical symbolism.
(1) All persons love each other. (2) Some persons love each other.
(3) Every person loves someone. (4) Someone is loved by everyone.
(5) Everyone is loved by someone. (6) There is a person who loves everyone.

Exercise 4.5. Let D(a) stand for ‘a is a Dutchman’, C(a) for ‘a is a kind of cheese’,
W (a) for ‘a is a kind of wine’, L(a,b) for ‘a likes b’, c for Chip, and d for Donald.
Translate the following sentences into logical symbolism in an adequate way.

1. Donald likes all kinds of cheese.
2. Some Dutchmen like all kinds of cheese.
3. Donald likes some kinds of cheese.
4. All Dutchmen like at least one kind of cheese.
5. There is a kind of cheese which is liked by any Dutchman.
6. Chip doesn’t like any kind of cheese.
7. All Dutchmen don’t like any kind of cheese.
8. All Dutchmen like some kind of cheese and some kind of wine.
9. All Dutchmen who like some kind of cheese, also like some kind of wine.

10. If all Dutchmen like some kind of cheese, then all Dutchmen like some kind of
wine.

Exercise 4.6. Consider the predicate language with the following non-logical sym-
bols: the binary predicate symbol ≡ and the individual constants c1, c2.

1 Translate the sentences below into this language in an adequate way.
i) The Morning Star is the same as the Evening Star.
ii) Every star identical to the Morning Star, is the same as the Evening Star.

2 For the formulas found in 1, consider the non-intended interpretation:
∀x: for all numbers x, . . .; ∃x: there is some number x such that . . ..
≡: is equal to (=); c1: 3, c2: 4.
Are the readings of the formulas found in 1 i) and ii) under this interpretation
true or false propositions?

3 Similar question as in 2, but now for the non-intended interpretation:
∀x: for all persons x . . . ; ∃x: there is some person x such that . . ..
≡: was older than; c1: Reagan, c2: Nixon.

Exercise 4.7. Let P(a) stand for ’a has the property P’, and a ≡ b for ’a equals b’.
Translate each of the following sentences into logical symbolism, using the binary
predicate symbol≡ for equality.

1. There is at least one x which has the property P.
2. There is at most one x which has the property P.
3. There is exactly one x which has the property P.
4. There are at least two objects which have the property P.
5. There are at most two objects which have the property P.
6. There are exactly two objects which have the property P.

∃!x[A(x)] is adopted as an abbreviation for the formula expressing ‘there is exactly
one x such that P(x)’ or ‘there exists a unique x such that P(x)’.
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Exercise 4.8. Translate the following sentences containing the indefinite article ‘a’
into the language of predicate logic, using the unary predicate symbols C, A, M and
W for ‘being a Child’, ‘needs Affection’, ‘being a Man’ and ‘to Whistle’, respec-
tively: a) A child needs affection. b) A man was whistling. Notice that the indefinite
article ‘a’ or ‘an’ sometimes has the force of ‘all’, sometimes of ‘some’.

Exercise 4.9. Translate the following sentences containing the word ‘any’ into the
language of predicate logic, using the unary predicate symbols M, O, B and S for
‘being Mortal’, ‘being Older than 150 years’, ‘celebrating one’s Birthday’ and ‘be-
ing Stupid’ respectively, and using the propositional formula P for ‘there is a party’.
a) For any x, x is mortal.
b) Not for any x, x is older than 150 years.
c) If anyone celebrates his or her birthday, then there is a party.
d) If John was stupid, then anyone is stupid.
Notice that the meaning of ‘any’ depends on the context. When an any-expression
stands by itself, as in sentence a), ‘any’ has the same logical force as ‘all’. But when
an any-expression D is put into either of the context¬D, as in sentence b), or D→E ,
as in sentence c), the meaning of ‘any’ normally alters from ‘all’ to ‘some’.

Exercise 4.10. Give an interpretation such that ∀x[P(x)→Q(x)] yields a true propo-
sition, while ∃x[P(x)∧Q(x)] yields a false proposition under this interpretation.
This shows that from ∀x[P(x)→ Q(x)] one may not conclude that ∃x[P(x)∧Q(x)],
although one may conclude from it that ∃x[P(x)→ Q(x)].

Exercise 4.11. a) Give an interpretation such that ∀x[P(x)]→∀x[Q(x)] yields a true
proposition, while ∀x[P(x)→Q(x)] yields a false proposition under this interpreta-
tion. So, from ∀x[P(x)]→∀x[Q(x)] one may not conclude that ∀x[P(x)→ Q(x)].
b) Show in a similar way that from ∃x[P(x)→ Q(x)] one may not conclude that
∃x[P(x)]→∃x[Q(x)].

4.2 Semantics: Tarski’s Truth Definition; Logical (Valid)
Consequence

Let A be an atomic formula containing (free occurrences of) variables, a one-place
predicate symbol P or a 2-place predicate (or relation) symbol R and individual
constants c and d. For instance, A = P(c), A = P(a), A = R(c,d) or A = R(a,c).
In order to give a meaning to A, we have to give an interpretation of the symbols
occurring in A. Such an interpretation M has to specify:

1. a domain or universe of discourse D; for instance, the set of all men or the set N
of all natural numbers.

2. a unary predicate P∗ or a binary predicate R∗, respectively, over the given do-
main, determining the meaning of the predicate symbols P and R; for instance,
assuming the domain is N, P∗(a): a is even, R∗(a,b): a > b.
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3. elements c∗ and d∗ in the given domain, determining the meaning of the individ-
ual constants c and d.

So, let M = 〈N; P∗, R∗; c∗, d∗〉 be the interpretation with domain N, P∗(a): a is
even, R∗(a,b): a > b; c∗ = 2 and d∗ = 3. Then under interpretation M the formula
P(c) yields the proposition P∗(c∗), i.e., 2 is even, which happens to have the truth
value 1. Therefore, we say that M is a model for the formula P(c), i.e., P(c) yields
under interpretation M a true proposition. Notation: M |= P(c).

And under interpretation M the formula R(c,d) yields the proposition R∗(c∗,d∗),
i.e., 2 > 3, which happens to have the truth value 0. Therefore, we say that M is not
a model for the formula R(c,d), i.e., R(c,d) yields under interpretation M a false
proposition. Notation: M �|= R(c,d).

An interpretation M for a formula A does specify the domain and the meanings
of the predicate symbols and individual constants in A, but it does not specify the
meaning of the variables that occur free in A. Given an interpretation M for formula
A with domain D, a valuation v shall give a value in the given domain to the variables
occurring free in A. So, let M = 〈N; P∗, R∗; c∗, d∗〉 be the interpretation given above
for the formula P(a) or R(a,c) respectively, and let v be the valuation which assigns
to the free variable a the value 4, v(a) = 4, then under interpretation M and valuation
v the formula P(a) yields the proposition P∗(4), i.e., 4 is even, which happens to
have the truth value 1. Therefore, we say that interpretation M and valuation v make
the formula P(a) true. Notation: M |= P(a)[v] or M |= P(a)[4].

Under the interpretation M just given and valuation v with v(a) = 4, the formula
R(a,c) yields the proposition R∗(4,c∗), i.e., 4 > 2, which happens to have the truth
value 1. So, interpretation M and valuation v make also the formula R(a,c) true.
Notation: M |= R(a,c)[v] or M |= R(a,c)[4].

So, an interpretation M for a formula A together with a valuation v assigns to A a
truth value 1 or 0. In the first case we write M |= A[v] and in the second case we
write M �|= A[v].

If A is composed from atomic formulas by means of connectives, the truth tables
tell us the truth value of A under a given interpretation and valuation. For instance,
if M = 〈N; is even, > ; 2〉, then M |= P(a)∧R(a,c)[4], since ‘4 is even and 4 > 2’
has truth value 1∧1 = 1. But M �|= P(a)∧R(a,c)[3], since ‘3 is even and 3 > 2’ has
truth value 0∧ 1 = 0. And M |= P(a)→ R(a,c)[1], since ‘if 1 is even, then 1 > 2’
has truth value 0→ 0 = 1.

Next, consider the formula ∀x[P(x)].
If we let the individual variable x range over the set of all men and if we inter-

pret the predicate symbol P as ‘is mortal’, then the atomic proposition ‘all men are
mortal’ results and this proposition has truth value 1. So, for M = 〈Men; is mortal〉,
M is a model for ∀x[P(x)]; notation: M |= ∀x[P(x)]. However, if we let the variable
x range over the set of all natural numbers and if we interpret the predicate sym-
bol P as ‘is even’, then the proposition ‘all natural numbers are even’ results and
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this proposition has truth value 0; so, for M = 〈N; is even〉, M is not a model for
∀x[P(x)]; notation: M �|= ∀x[P(x)].

So depending on the interpretation of the individual variable x and the predicate
symbol P, a true or false atomic proposition results from the formula ∀x[P(x)]:

∀x[P(x)]
M = 〈Men;P∗〉 with P∗(x): x is mortal 1
M = 〈N;P∗〉 with P∗(x): x is even 0

In the following table for the two formulas ∀x[P(x)] and ∃x[Q(x)] we indicate on the
left-hand side an interpretation and on the right-hand side the truth or falsity of the
corresponding (atomic) proposition.

∀x[P(x)] ∃x[Q(x)]
N; P∗(x): x = x, Q∗(x): x is even 1 1
Men; P∗(x): x is mortal, Q∗(x): x is immortal 1 0
N; P∗(x): x is even, Q∗(x): x is odd 0 1
Pets; P∗(x): x is a dog, Q∗(x): x is immortal 0 0

Above, we have given two interpretations of the symbols x and P, under which
∀x[P(x)] yields a true proposition (‘every natural number is equal to itself’ and ‘all
men are mortal’, respectively); and two interpretations under which ∀x[P(x)] yields
a false proposition (‘all natural numbers are even’ and ‘all pets are dogs’, respec-
tively). So, ∀x[P(x)], although not under all interpretations true, is true under at least
one interpretation. For that reason we say that ∀x[P(x)] is satisfiable.

‘Not all men have black hair’ is equivalent to ‘there is some man who does not have
black hair’. More generally, we see that ¬∀x[P(x)] (not all objects have the property
P) has the same meaning as ∃x[¬P(x)] (there is some object which does not have
the property P), no matter how we interpret the symbols x and P. Hence, we say
that ¬∀x[P(x)] � ∃x[¬P(x)] is a valid or always true formula. So, we shall call a
formula A valid or always true if A yields a true proposition under each possible
interpretation of the individual and predicate-symbols which occur in A. Notation:
|= A. Examples of valid formulas are:

1. |= ¬∀x[P(x)]� ∃x[¬P(x)] 3. |= ∀x[P(x)]� ¬∃x[¬P(x)]
2. |= ¬∃x[P(x)]� ∀x[¬P(x)] 4. |= ∃x[P(x)]� ¬∀x[¬P(x)]

In order to see the validity of the formula A � A, we do not have to consider
the internal structure of the formula A. However, in order to see the validity of the
formula ¬∀x[P(x)] � ∃x[¬P(x)], which is a formula of the form ¬A � B, we do
have to consider the internal structure of the subformulas A and B from which this
formula has been built. ¬A � B is not for all formulas A and B valid, but it is valid
when A is ∀x[P(x)] and B is ∃x[¬P(x)].

And we shall call B a valid or logical consequence of given premisses A1, . . . ,An if
every interpretation M and valuation v which make all of the premisses A1, . . . ,An

true also make B true. Notation: A1, . . . ,An |= B.
For instance, P(a) |= ∃x[P(x)] and ∀x[P(x)→ Q(x)],P(a) |= Q(a).
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After this introduction we shall give a precise definition of the notion of M |= A,
which is Tarski’s truth definition (1933), and of the notions of (logical) validity and
valid (or logical) consequence.

Definition 4.7 (Interpretation). Let A be a formula, containing predicate symbols
P1, . . . ,Pk and individual constants c1, . . .cl . An interpretation or structure for A is a
tuple M = 〈D; P∗1 , . . . ,P

∗
k ; c∗1, . . . ,c

∗
l 〉, where

1. D is a non-empty set, called the domain or universe of discourse. All individual
variables occurring bound in A are interpreted as ranging over this domain D. For
instance, D is the finite set of all men or the infinite set N of all natural numbers.
The requirement that the domain is non-empty is to guarantee that the following
formula will be valid: ∀x[P(x)]→∃x[P(x)].

2. For each ni-ary predicate symbol Pi in A, P∗i is a ni-ary predicate over D. For
instance, if P is a unary and R is a binary predicate symbol in A, and D =N, then
P∗(n) might be ‘n is even’ and R∗(n,m) might be ‘n > m’.

3. For each individual constant c j in A, c∗j is a concrete element of D. For instance,
if c is an individual constant in A and D = N, then c∗ might be 2.

Note that the interpretation of the quantifiers and of the connectives in a formula A
has been fixed once and for all in Section 4.1 and in the truth tables for the connec-
tives (see Section 2.2). We are only free to vary the interpretation of the individual
variables, the predicate symbols and the individual constants in A.

Given a formula A and an interpretation M for A with domain D, in order to give
a meaning to A we still have to interpret the individual variables occurring free in A
as elements of D.

Definition 4.8 (Valuation). Let A be a formula and M an interpretation for A with
domain D. A valuation v for A assigns to each variable occurring free in A an ele-
ment v(a) in D.

Example 4.5. Let A = P(a)∧R(a,c). Then M = 〈N; P∗, R∗; c∗〉 with P∗(a) := ‘a is
even’, R∗(a,b) := ‘a > b’ and c∗ = 2, is an interpretation for A; and v with v(a) = 4
is a valuation for A.

Next we shall give Tarski’s truth definition (1933), which is not a definition of truth,
but which defines the notion of M |= A[v], i.e., ‘interpretation M and valuation v
make A true’, or ‘under interpretation M and valuation v formula A yields a propo-
sition with truth value 1’.

Definition 4.9 (Tarski’s truth definition, 1933). Let A be a formula containing
predicate symbols P1, . . . ,Pk and individual constants c1, . . . ,cl .
Let M = 〈D; P∗1 , . . . ,P

∗
k ; c∗1, . . . ,c

∗
l 〉 be an interpretation for A and let v be a valuation

for the variables occurring free in A.
We define M |= A[v] by induction on the build-up of A:

• A is atomic, say A = Pi(a1, . . . ,ak, c1, . . . ,cl).

M |= Pi(a1, . . . ,ak, c1, . . . ,cl) [v] iff P∗i (v(a1), . . . ,v(ak), c∗1, . . . ,c
∗
l ).
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For instance, if R is binary predicate symbol, R∗(a,b) := ‘a > b’, c∗ = 2 and
v(a) = 4, then M |= R(a,c) [v] iff 4 > 2. If v(a) = 4, then instead of M |=
R(a,c) [v] we shall also write M |= R(a,c) [4].
Notice that if A contains only the free variables a1, . . . ,ak, then only the values
v(a1), . . . ,v(ak) matter in the definition of M |= A[v]. In particular, if A contains
no free occurrences of variables, then the valuation v in ‘M |= A[v]’ does not
matter. These properties are preserved throughout the definition of M |= A[v].
Instead of ‘not M |= A[v]’ we shall write: M �|= A[v]. In such a case M is called a
countermodel for A or a counterexample to A.

• A = B �C, A = B→C, A = B∧C, A = B∨C, A = ¬B:

1. M |= B �C [v] iff (M |= B[v] and M |=C[v]) or (M �|= B[v] and M �|=C[v]).
2. M |= B→C [v] iff M �|= B[v] or M |=C[v].
3. M |= B∧C [v] iff M |= B[v] and M |=C[v].
4. M |= B∨C [v] iff M |= B[v] or M |=C[v].
5. M |= ¬B [v] iff M �|= B[v].

This definition just follows the truth tables for the connectives given in Section
2.2. This may be easily seen if one realizes that a pair (M,v) consisting of an
interpretation M and a valuation v assigns to every formula A a truth value 1 or
0. So, a pair (M,v) corresponds with a line in the truth table and one might write
(M,v)(A) = 1 iff M |=A[v] and (M,v)(A) = 0 iff not M |=A[v]. Then, for instance,
clause 2 reads as follows: (M,v)(B→C) = 1 iff (M,v)(B) = 0 or (M,v)(C) = 1.

• A = ∀x[P(x)] or A = ∃x[Q(x)]

In case A = ∀x[P(x)] does not contain any free occurrences of variables,
M |= ∀x[P(x)] iff for every element d in the domain D of M, M |= P(a)[d].

For instance, let M = 〈N; ≥ 0〉, then M |= ∀x[P(x)] since for every natural number
d in N, M |= P(a)[d], i.e., for every natural number d, d ≥ 0.
More generally, allowing A = ∀x[P(x)] to contain also free occurrences of vari-
ables, M |= ∀x[P(x)] [v] iff for every d in the domain D of M, M |= P(a)[d/v],
where a is a (new) variable not occurring in ∀x[P(x)] and d/v is the same valua-
tion as v, except that d/v assigns to a the value d.

In case A = ∃x[Q(x)] does not contain any free variables, M |= ∃x[Q(x)] iff there
is at least one element d in the domain D of M, such that M |= Q(a)[d].

For instance, let M = 〈N; is even〉, then M |= ∃x[Q(x)] since there is at least one
natural number d in N such that M |= Q(a)[d], i.e., there is a natural number d
such that d is even.
More generally, allowing A = ∃x[Q(x)] to contain also free occurrences of vari-
ables, M |= ∃x[Q(x)] [v] iff there is an element d in the domain D of M such that
M |= Q(a)[d/v], where a is a (new) variable not occurring in ∃x[Q(x)] and d/v is
the same valuation as v, except that d/v assigns to a the value d.

This finishes the definition of M |=A[v]. Notice that if A contains no free occurrences
of variables, the valuation v does not play a role. Now Tarski’s notion of M |= A[v] (A
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yields a true proposition under interpretation M and valuation v) has been defined,
it is straightforward to define satisfiability and validity of a formula A.

Definition 4.10 (Satisfiable). Let A be a formula. A is satisfiable := there is an in-
terpretation M for A and a valuation v such that M |= A[v].

Example 4.6. ∀x[P(x)] is satisfiable, since M = 〈N; ≥ 0〉makes ∀x[P(x)] true. How-
ever, ∀x[P(x)]∧∃x[¬P(x)] is not satisfiable.

Definition 4.11 (Model). Let A be a formula and let M be an interpretation for A
with domain D. M is a model of A := for all valuations v assigning elements of D to
the variables occurring free in A, M |= A[v]. Notation: M |= A.
Instead of ‘M is a model of A’, one also says: M makes A true or A is true in M.
M is called a countermodel or counterexample for A if M is not a model for A, i.e.,
not M |= A. Notation: M �|= A.

Example 4.7. Let M = 〈N;=〉. Then M |= a≡ a, since for all n ∈N, n = n.
Let M = 〈N; ≥; 0〉. Then M |= R(a,c), since for all natural numbers n in N, M |=
R(a,c)[n], i.e., for all natural numbers n, n≥ 0. However, for M = 〈N; ≥; 2〉we have
M �|= R(a,c), since there is a valuation v with v(a) = 1 such that M �|= R(a,c)[v], i.e.,
it is not the case that 1≥ 2.

Definition 4.12 (Closure). Let A = A(a1, . . . ,ak) be a formula having a1, . . . ,ak as
the only free variables and not containing the bound variables z1, . . . ,zk. Then the
universal closure of A is by definition the closed formula ∀z1 . . .∀zk[A(z1, . . . ,zk)],
where A(z1, . . . ,zk) results from A(a1, . . . ,ak) by replacing every occurrence of
a1, . . . ,ak by z1, . . . ,zk, respectively. Notation: Cl(A).

Theorem 4.2. M |= A iff M |=Cl(A).

Proof. Evident from the definitions. For instance, for M = 〈N; ≥; 0〉, M |= R(a,c)
iff M |= ∀z[R(z,c)]. ��
Since every interpretation M (for a formula A) is a model of some formula B, one
often uses the word model instead of ‘interpretation’ or ‘structure’. The notion of
M |= A is the main notion of model theory. However, in logic one is not interested
in the truth of formulas in individual interpretations M, but in the truth of formulas
in all interpretations M (of the appropriate kind), in other words, in the validity of
formulas.

Definition 4.13 (Validity). A is valid or always true := for all interpretations M for
A, M |= A. Notation: |= A.

Example 4.8. |= ∀x[R(x,c)∨¬R(x,c)]; |= ∀x[P(x)→ P(x)];
|= ∀x[P(x)→ Q(x)]∧P(c)→Q(c); |= ¬∀x[P(x)]� ∃x[¬P(x)].

Theorem 4.3. 1) |= ∀x[P(x)]� ∀y[P(y)] and 2) |= ∃x[P(x)]� ∃y[P(y)].
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Proof. 1) Let M = 〈D;P∗〉 be an interpretation. Then M |= ∀x[P(x)] iff M |=
∀y[P(y)], because under interpretation M both formulas express the same propo-
sition: all elements in D have the property P∗. So, every structure 〈D;P∗〉 is a model
of ∀x[P(x)]� ∀y[P(y)]. 2) is shown in a similar way. ��
∀x∀y[R(x,y)] and ∀y∀x[R(x,y)] express the same proposition: all objects are in the
relation R with each other. Similarly, ∃x∃y[R(x,y)] and ∃y∃x[R(x,y] express the same
proposition: there are objects which are in the relation R to each other. Therefore:

Theorem 4.4.
|= ∀x∀y[R(x,y)]� ∀y∀x[R(x,y)] and |= ∃x∃y[R(x,y)]� ∃y∃x[R(x,y)].

Adapting the definition of ‘valid consequence’ for propositional logic to predicate
logic, we say that B is a valid (or logical) consequence of A1, . . . ,An, iff every in-
terpretation which makes A1, . . . ,An simultaneously true also makes B true. For in-
stance, Q(c) is a logical consequence of ∀x[P(x)→ Q(x)] and P(c):

∀x[P(x)→Q(x)], P(c) |= Q(c)

since every interpretation which makes both ∀x[P(x)→ Q(x)] and P(c) true also
makes Q(c) true; in particular, for M = 〈Persons; is a man, is mortal; Caspar〉 we
have: if all men are mortal and Caspar is a man, then Caspar is mortal.

Definition 4.14 (Valid (or logical) consequence). B is a valid (or logical) con-
sequence of A1, . . . ,An := for every interpretation M and for all valuations v, if
M |= A1[v] and . . . and M |= An[v], then M |= B[v]. Notation: A1, . . . ,An |= B.

Example 4.9.

1. ∀x[P(x)→ Q(x)],∃x[R(x) ∧¬Q(x)] |= ∃x[R(x)∧¬P(x)]. This statement corre-
sponds to Aristotle’s syllogism ’Baroco’ (see Subsection 4.7.4). For instance, the
following argument is of this form:

All logicians are philosophers.
There are men who are not philosophers.
Hence, there are men who are not logicians.

2. ∀x[P(x)→ ¬Q(x)],∃x[R(x) ∧Q(x)] |= ∃x[R(x)∧¬P(x)]. This statement corre-
sponds to Aristotle’s syllogism ’Festino’ (see Subsection 4.7.4).

3. P(a),P(a)→Q(a) |= Q(a)

From the definition of A1, . . . ,An |= B it follows immediately that A1, . . . ,An �|= B
(B is not a logical consequence of A1, . . . ,An) iff there is an interpretation M and
a valuation v which make all of A1, . . . ,An true (M |= A1 ∧ . . .∧An [v]), but which
make B false (M �|= B[v]). Notice that if the formulas A1, . . . ,An and B are all closed,
i.e., contain no free occurrences of variables, then the valuation v does not play any
role.

Example 4.10. ¬∀x[P(x)] �|= ∀x[¬P(x)], since M = 〈N;P∗〉, with P∗(x) := x is even,
makes ¬∀x[P(x)] true (‘not all natural numbers are even’ has truth value 1), while
M makes ∀x[¬P(x)] false (‘all natural numbers are not even’ has truth value 0).
In Exercise 4.10 we have shown that ∀x[P(x)→ Q(x)] �|= ∃x[P(x)∧Q(x)] and in
Exercise 4.11 we have seen that ∀x[P(x)]→∀x[Q(x)] �|= ∀x[P(x)→Q(x)].
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The following theorem generalizes Theorem 2.4 for propositional logic to predicate
logic.

Theorem 4.5.
a) A |= B if and only if (iff) |= A→ B.
More generally,
b) A1,A2 |= B if and only if (iff) A1 |= A2 → B

if and only if (iff) |= A1 → (A2 → B)
if and only if (iff) |= A1∧A2 → B.

Even more generally,
c) A1, . . . ,An |= B if and only if (iff) A1, . . . ,An−1 |= An → B

if and only if (iff) |= (A1∧ . . .∧An)→ B.

Proof. We shall prove the first statement of b). A1,A2 |= B := for every interpretation
M and for every valuation v, if M |= A1[v] and M |= A2[v], then M |= B[v]. (1)
A1 |= A2 → B := for every interpretation M and for every valuation v, if M |= A1[v],
then M |= A2 → B[v] (2)
It is easy to see that (1) and (2) mean exactly the same, because M |= A2 → B[v]
means: if M |= A2[v], then M |= B[v]. ��
Notice that P(a) �|= ∀x[P(x)], because from ‘Antoine has property P’ we cannot
conclude that ‘everyone has property P’. More precisely, let M = 〈N; is even〉 and
let v(a) = 2. Then M |= P(a)[2], but M �|= ∀x[P(x)]. However, the following does
hold: if M |= P(a), then M |= ∀x[P(x)]. For M |= P(a) means: for every valuation v,
M |= P(a)[v], which means the same as: M |= ∀x[P(x)] (see Theorem 4.2).

Corresponding to two possible treatments of the free individual variables in mathe-
matical practice (see below), there are two different notions of ‘valid consequence’,
the one defined in Def. 4.14 and the other to be defined in Def. 4.15 below.

a2− 2a− 3 = 0 is a conditional equation, since it expresses a condition on a.
From this condition we should not infer that 22− 2 ·2− 3 = 0; however, from a2−
2a−3 = 0 we can infer that (a−3)(a+1) = 0 and hence that a = 3 or a =−1. We
may say that in these inferences the variable a is held constant, since it stands for
the same number throughout the deductions. This inference can be written thus:

a2− 2a− 3= 0→ a = 3∨a =−1 or, equivalently, as
∀x[x2− 2x− 3= 0 → x = 3∨ x =−1]. (1)

This inference corresponds with our definition of A |= B.
However, from a+ b = b+ a one may conclude that 2+ 3 = 3+ 2. In the infer-

ences from a+b= b+a, the variables a and b are general or allowed to vary. Using
only bound variables, the result of this inference can be written thus:

∀x∀y[x+ y = y+ x]→ 2+ 3 = 3+ 2. (2)
This inference corresponds with our definition of A |=2 B, as given in Def. 4.15
below.

Note that in (1) parentheses close after the →, in (2) before the →. Whether we
choose to use interpretation (1) or (2) depends on the role the assumptions have in
each case we want to infer consequences from assumptions.
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Definition 4.15. B is a valid consequence of A1, . . . ,An with all free variables gen-
eral := for every structure M, if M |= A1 and . . . and M |= An, then M |= B.
Notation: A1, . . . ,An |=2 B. So, A1, . . . ,An |=2 B iff Cl(A1), . . . ,Cl(An) |= Cl(B),
where Cl(B) is the universal closure of B.

Theorem 4.6. If A |= B, then A |=2 B, but in general not conversely.

Proof. Suppose A |= B, i.e., for every interpretation M and for every valuation v, if
M |= A[v], then M |= B[v]. (*)
To show: M |=2 B. So, suppose that M |= A, i.e., for every valuation v, M |= A[v].
Then it follows from (*) that for every valuation v, M |= B[v], i.e., M |= B.

To establish that in general the converse does not hold, note that P(a) |=2

∀x[P(x)], i.e., ∀x[P(x)] |= ∀x[P(x)], but P(a) �|= ∀x[P(x)], since for M = 〈N; is even〉,
M |= P(a)[2] (2 is even), while M �|= ∀x[P(x)] (not all natural numbers are even). ��
Many-sorted and higher-order predicate logic In order to avoid misunderstand-
ing, it should be noted that also for formulas containing two or more quantifiers,
like, for instance, ∀x∃y[R(x,y)], an interpretation contains only one (non-empty)
domain or set for the bound individual variables of the formula, such that all indi-
vidual variables x, y, etc., are to be interpreted as elements of that one domain. So, in
∀x∃y[R(x,y)], for instance, we are not allowed to let x range over the set of all Men
and y range over the set of all Women; the variables x and y have to be interpreted
as elements of the same set, for instance, the set of all persons. The expression ‘for
every man x there is some woman y such that R(x,y)’ should be translated into our
symbolism by a formula of the form ∀x[M(x)→ ∃y[W (y)∧R(x,y)]], where M and
W are unary predicate symbols for ‘is a man’ and ‘is a woman’ respectively.

The predicate logic we have presented thus far is one-sorted, i.e., the language
contains only one sort of variables which have to be interpreted as elements of one
and the same domain. One might also develop a two-sorted predicate logic having
two sorts of variables, where the variables of the one sort should be interpreted as
elements of a domain D1 and the variables of the other sort as elements of a do-
main D2. This corresponds more closely to mathematical practice, where frequently
different sorts of variables are used; for instance, m, n, p, . . . ranging over natural
numbers and x, y, z, . . . ranging over real numbers. The development of two-sorted
predicate logic is similar to that of one-sorted predicate logic. The same holds for
predicate logic with more than two sorts of variables.

The predicate calculus we have presented thus far is also first-order, i.e., one
can only quantify over individuals and not over properties of individuals, nor over
properties of properties of individuals, and so on. (For instance, ‘being a colour’
is a property of the property ‘being red’ of individuals.) In second-order logic, not
only quantification over individual variables, ∀x, ∃y, . . ., but also quantification over
predicate variables is allowed: ∀P, ∃Q, . . .. This increases the expressive power of
the language considerably. By iteration one can obtain higher-order predicate logic.

Exercise 4.12. Let N be the set of natural numbers and M = 〈N,P∗,Q∗,R∗〉with P∗:
is even, Q∗: is odd, R∗: is less than (<). Which of the following statements are right
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and which are wrong?
M |= P(a)[2] M |= ∃x[P(x)] M |= ∃x[P(x)]→∃x[Q(x)] M |= ∀x∃y[R(x,y)]
M |= P(a)[5] M |= ∀x[P(x)] M |= ∃x[P(x)]→∀x[Q(x)] M |= ∃y∀x[R(x,y)]
M |= Q(a)[5] M |= ∃x[Q(x)] M |= ∀x[P(x)]→∃x[Q(x)] M |= ∃x[P(x)→ Q(x)]
M |= Q(a)[2] M |= ∀x[Q(x)] M |= ∀x[P(x)]→∀x[Q(x)] M |= ∀x[P(x)→ Q(x)]

Exercise 4.13. Which of the following alternatives applies to the following below:
(i) not satisfiable, (ii) satisfiable, but not valid, (iii) valid, and hence satisfiable?
1. ∃x[P(x)]→∀x[P(x)] 5. ¬∀x[P(x)]→∀x[¬P(x)]
2. ∃x[P(x)]→∃x[¬P(x)] 6. ∀x[¬P(x)]→¬∀x[P(x)]
3. ∃x[P(x)]∧∀x[¬P(x)] 7. ∀x∃y[R(x,y)]∧∃x∀y[¬R(x,y)]
4. ∀x[P(x)]∧¬∃x[P(x)] 8. ∀x∃y[R(x,y)]→∃y∀x[R(x,y)]
9. ∃x[P(x)]∧∃x[Q(x)]→∃x[P(x)∧Q(x)]
10. ∀x[P(x)∨Q(x)]→∃x[P(x)]∨∀x[Q(x)]

Exercise 4.14 (Kleene [9]). Translate each of the following arguments into the lan-
guage of predicate logic and establish whether the conclusion logically follows from
the premisses. If so, give a proof; if not, give a counterexample.

1. Each politician is a showman. Some showmen are insincere. Therefore, some
politicians are insincere.

2. No professors are ignorant. All ignorant people are vain. Therefore, no professors
are vain.

3. Only birds have feathers. No mammal is a bird. Therefore, each mammal is feath-
erless.

4. Some masons are not strong. All carpenters are strong. Therefore, some carpen-
ters are not masons.

5. Some plumbers are smart. There are no smart persons who are not careful. There-
fore, some plumbers are careful.

Exercise 4.15 (Kleene [9]). The same question as in Exercise 4.14.

1. No animals are immortal. All cats are animals. Therefore, some cats are not im-
mortal.

2. If anyone can solve this problem, some philosopher can solve it. Cabot is a
philosopher and cannot solve the problem. Therefore, the problem cannot be
solved.

3. Any mathematician can solve this problem if anyone can. Cabot is a mathemati-
cian and cannot solve the problem. Therefore, the problem cannot be solved.

4. Some healthy people are fat. No unhealthy people are strong. Therefore, some
fat people are not strong.

5. Some students are studious. No student is unqualified. Therefore, some unquali-
fied students are not studious.

Exercise 4.16. Prove or refute: ∀x[P(x)→ Q(x)] |= ∃x[P(x)∧Q(x)].

Exercise 4.17. Let R(a,b) stand for ‘a is greater than b’. i) Translate the following
sentences into the language of predicate logic using the binary predicate symbol R:
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(a) For every natural number there is a greater one.
(b) There is no natural number which is greater than all natural numbers.
ii) Let A and B be the translations of (a), (b) respectively. Show that not A |= B.
iii) Intuitively, (b) seems to follow from (a). Why does not this contradict A �|= B ?
iv) Show that ∀x∃y[R(y,x)], ∀x∀y[R(y,x)→¬R(x,y)] |= ¬∃x∀y[R(x,y)].

Exercise 4.18. Translate the following sentence into the language of predicate logic
and show that the resulting formula is always true (valid). Take as domain the set
of all men in a certain village and interpret S(x,y) as ‘x shaves y’: there is no man
(in the village) such that he shaves precisely those men (in the village) who do not
shave themselves.

Exercise 4.19. Check that the following formulas are valid.
a. ∀x∃y[P(x)→ P(y)];
b. ∀y∃x[P(x)→ P(y)];

c. ∃x∀y[P(x)→ P(y)];
d. ∃y∀x[P(x)→ P(y)].

Exercise 4.20. Which of the following formulas are valid? Give either a proof or a
counterexample.
a. ∀x∃y[R(x,y)]→∃x∀y[R(x,y)];
b. ∃x∀y[R(x,y)]→∀x∃y[R(x,y)];
c. ∀x∃y[R(x,y)]→∀x∃y[R(y,x)];

d. ∃x∀y[R(x,y)]→∃y∀x[R(x,y)];
e. ∃x∀y[R(x,y)]� ∃y∀x[R(y,x)];
f. ∀x∃y[R(x,y)]� ∀y∃x[R(y,x)].

4.3 Basic Results about Validity and Logical Consequence

Definition 4.16. A |=| B := A |= B and B |= A, i.e., for every interpretation M and
valuation v, M |= A [v] iff M |= B [v]. This is equivalent to |= A � B.

In what follows it is important to realize that for M = 〈D;P∗〉 and d an element of D,
M |= P(a)[d] is equivalent to saying that the proposition P∗(d) - d has the property
P∗ - has truth value 1. For instance, for M = 〈N; is odd〉, M |= P(a)[3] because the
proposition ‘3 is odd’ has truth value 1, while M �|= P(a)[2], because the proposition
‘2 is odd’ has truth value 0.

4.3.1 Quantifiers and Connectives

We start with looking at combinations of the quantifiers ∀ and ∃, respectively, with
negation ¬:

Theorem 4.7 (Quantifiers and Negation).
1) ¬∀x[P(x)] |=| ∃x[¬P(x)];
2) ¬∃x[P(x)] |=| ∀x[¬P(x)].
3) ¬∀x[P(x)] �|= ∀x[¬P(x)], although conversely, ∀x[¬P(x)] |= ¬∀x[P(x)].
4) ¬∃x[P(x)] |= ∃x[¬P(x)], but conversely, ∃x[¬P(x)] �|= ¬∃x[P(x)].
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Proof. 1) Let M = 〈D;P∗〉 be an interpretation. Then M |= ¬∀x[P(x)] (i.e., not all
elements in D have the property P∗) iff M |= ∃x[¬P(x)] (i.e., some element in D does
not have the property P∗). So each model M is a model of ¬∀x[P(x)]� ∃x[¬P(x)].
2) is shown in a way similar: there is no element in D which has the property P∗ iff
all elements in D do not have the property P∗.
3) M = 〈N; is odd〉 is a counterexample, since M |= ¬∀x[P(x)]: the proposition ‘not
all natural numbers are odd’ has truth value 1; but M �|= ∀x[¬P(x)]: the proposition
‘all natural numbers are not odd’ has truth value 0.
Conversely, suppose M = 〈D;P∗〉 is an interpretation and suppose M |= ∀x[¬P(x)],
i.e., all elements in D have the property not-P∗. Then surely not all elements in D
have the property P∗, i.e., M |= ¬∀x[P(x)].
4) Let M = 〈D;P∗〉 be an interpretation and suppose M |= ¬∃x[P(x)], i.e., there is
no element d in D which has the property P∗, in other words, all elements in D have
the property not-P∗. So, since D is non-empty, there is an element in D with the
property not-P∗, i.e., M |= ∃x[¬P(x)].
Conversely, M = 〈N; is odd〉 is a counterexample, for M |= ∃x[¬P(x)]: the proposi-
tion ‘there is a natural number that is not odd’ has truth value 1; but M �|=¬∃x[P(x)]:
the proposition ‘there is no odd natural number’ has truth value 0. ��
Given a propositional formula A, one might let the variable x range over the lines
of the truth table of A, and interpret P(x) as ‘formula A is 1 at line x’. Under this
interpretation the formula ¬∀xP(x] yields the proposition ‘not in all lines of the
truth table A is 1’, i.e., �|= A, while the formula ∀x[¬P(x)] yields the proposition ‘in
all lines of the truth table A is 0’, i.e., |= ¬A. Under this interpretation ¬∀x[P(x)] �|=
∀x[¬P(x)] expresses that from �|= A one may in general not conclude that |= ¬A, as
we have already seen in Theorem 2.12.

Because the meaning of the universal quantitier ∀ is similar to the meaning of the
connective ∧, the following theorem is evident:

Theorem 4.8 (∀ and ∧). ∀x[P(x)]∧∀x[Q(x)] |=| ∀x[P(x)∧Q(x)]

However, one has to be careful when combining a universal quantifier ∀ with the
connective ∨. Consider the following argument:

Every gnome has a conical cap or is a Quaker.
Therefore: all gnomes have a conical cap or all gnomes are Quakers.

Translating this argument into the language of predicate logic we find:

∀x[P(x)∨Q(x)] �|= ∀x[P(x)]∨∀x[Q(x)]

The following interpretation (or model) is a counterexample: M = 〈N;P∗,Q∗〉 with
P∗(x): x is even, and Q∗(x): x is odd. Then M |= ∀x[P(x)∨Q(x)]: the proposition ‘ev-
ery natural number is even or odd’ has truth value 1. But M �|= ∀x[P(x)]∨∀x[Q(x)]:
the proposition ‘all natural numbers are even or all natural numbers are odd’ has
truth value 0.

Theorem 4.9 (∀ and ∨). a) ∀x[P(x)∨Q(x)] �|= ∀x[P(x)]∨∀x[Q(x)].
But conversely, b) ∀x[P(x)]∨∀x[Q(x)] |= ∀x[P(x)∨Q(x)].
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Proof. We start with an informal proof of b): Suppose all things have the property
P or all things have the property Q. If an individual thing has the property P, then it
also has the property P∨Q; and similarly, if an individual thing has the property Q,
then it also has the property P∨Q. So, in both cases it follows that all things have
the property P∨Q, i.e., ∀x[P(x)∨Q(x)].
More precisely: Suppose M = 〈D; P∗, Q∗〉 is an interpretation and M |= ∀x[P(x)]∨
∀x[Q(x)], i.e., 1) for every thing d in the domain D of M, M |= P(a)[d] or 2) for
every thing d in the domain D of M, M |= Q(a)[d]. In case 1) it follows from ‘if
M |= P(a)[d], then M |= P(a)∨Q(a) [d]’ that for all things d in the domain D of M,
M |= P(a)∨Q(a) [d], in other words, M |= ∀x[P(x)∨Q(x)]. In case 2) it follows in
a similar way that M |= ∀x[P(x)∨Q(x)]. ��
Given propositional formulas A and B, one may let the variable x range over the lines
in the truth tables of A,B, interpret P(x) as ‘A is 1 in line x’ and Q(x) as ‘B is 1 in
line x’. Under this interpretation ∀x[P(x)∨Q(x)] yields the proposition ‘in all lines
of the truth table, A is 1 or B is 1’, i.e., |= A∨B. But under this same interpretation
∀x[P(x)]∨∀x[Q(x)] yields the proposition ‘in all lines of the truth table A is 1 or
in all lines of the truth table B is 1’, i.e., |= A or |= B. Under this interpretation
∀x[P(x)∨Q(x)] �|= ∀x[P(x)]∨∀x[Q(x)] expresses that in general from |= A∨B one
may not conclude that |= A or |= B, as we have already seen in Theorem 2.13.

Because the meaning of the existential quantifier ∃ is similar to the meaning of the
connective ∨, the following theorem is evident:

Theorem 4.10 (∃ and ∨). ∃x[P(x)]∨∃x[Q(x)] |=| ∃x[P(x)∨Q(x)].

However, one has to be careful when combining an existential quantifier with the
connective ∧. Consider the following argument:

There is gnome who has a conical cap and there is a gnome who is a Quaker.
Therefore: there is a gnome who has a conical cap and is a Quaker.

Translating this argument into the language of predicate logic we find:

∃x[P(x)]∧∃x[Q(x)] �|= ∃x[P(x)∧Q(x)]

The following interpretation (or model) is a counterexample: M = 〈N;P∗,Q∗〉 with
P∗(x): x is even, and Q∗(x): x is odd. Then M |= ∃x[P(x)]∧∃x[Q(x)]: the proposition
‘there is an even natural number and there is an odd natural number’ has truth value
1. But M �|= ∃x[P(x)∧Q(x)]: the proposition ‘there is natural number that is both
even and odd’ has truth value 0.

Theorem 4.11 (∃ and ∧). a) ∃x[P(x)]∧∃x[Q(x)] �|= ∃x[P(x)∧Q(x)].
But conversely, b) ∃x[P(x)∧Q(x)] |= ∃x[P(x)]∧∃x[Q(x)].

Proof. We start with an informal proof of b): Suppose ∃x[P(x)∧Q(x)], i.e., there is
a thing d such that d has both the property P and the property Q. Then this d has the
property P, so ∃x[P(x)]; and this same d has the property Q, so ∃x[Q(x)].
More precisely: Suppose M = 〈D; P∗, Q∗〉 is a model and M |= ∃x[P(x)∧Q(x)],
i.e., there is a thing d in the domain D of M such that M |= P(a)∧Q(a) [d]. Then
M |= P(a)[d], hence M |= ∃x[P(x)]; and M |= Q(a)[d] and hence M |= ∃x[Q(x)]. ��
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Consider the following argument:

If all gnomes have a conical cap, then all gnomes are Quakers.
Therefore: every gnome with a conical cap is a Quaker.

Translating this argument into the language of predicate logic we find:

∀x[P(x)]→∀x[Q(x)] �|= ∀x[P(x)→Q(x)]

The following interpretation (or model) is a counterexample: M = 〈N;P∗,Q∗〉 with
P∗(x): x is even, and Q∗(x): x is odd. Then M |= ∀x[P(x)]→ ∀x[Q(x)]: the propo-
sition ‘if all natural numbers are even, then all natural numbers are odd’ has truth
value 0→ 0= 1. But M �|= ∀x[P(x)→Q(x)]: the proposition ‘for every natural num-
ber n, if n is even, then n is odd’ has truth value 0.

Theorem 4.12 (∀ and→). a) ∀x[P(x)]→∀x[Q(x)] �|= ∀x[P(x)→Q(x)].
But conversely, b) ∀x[P(x)→Q(x)] |= ∀x[P(x)]→∀x[Q(x)].

Proof. We start with an informal proof of b): Suppose ∀x[P(x)→ Q(x)], i.e., every
thing with the property P also has the property Q. Next suppose ∀x[P(x)], i.e., every
thing has the property P. Then clearly it follows that every thing has the property Q.
More precisely: Suppose M = 〈D; P∗, Q∗〉 is a model and M |= ∀x[P(x)→ Q(x)],
i.e., for every thing d in the domain D of M, M |= P(a)→ Q(a) [d]. Suppose next
that M |= ∀x[P(x)], i.e., for every thing d in the domain D of M, M |= P(a)[d]. Then
it clearly follows that for every thing d in the domain D of M, M |= Q(a)[d], in other
words, M |= ∀x[Q(x)]. ��
Given propositional formulas A and B, one may let the variable x range over the lines
in the truth tables of A,B, interpret P(x) as ‘A is 1 in line x’ and Q(x) as ‘B is 1 in line
x’. Under this interpretation ∀x[P(x)]→∀x[Q(x)] yields the proposition ‘if A is 1 in
all lines of the truth table, then B is 1 in all lines of the truth table’, i.e., if |= A, then
|= B. But under this same interpretation ∀x[P(x)→ Q(x)] yields the proposition ‘in
all lines x of the truth table, if A is 1 at line x, then also B is 1 at line x’, i.e., |= A→B.
Under this interpretation ∀x[P(x)]→∀x[Q(x)] �|= ∀x[P(x)→Q(x)] expresses that in
general from ‘if |= A, then |= B’ one may not conclude that |= A→ B, as we have
already seen in Theorem 2.11.

Consider the following argument:

There is a gnome such that if he has a conical cap, then he is a Quaker.
There is gnome who has a conical cap.

Therefore: there is a gnome who is a Quaker.

Translating this argument into the language of predicate logic we find:

∃x[P(x)→ Q(x)],∃x[P(x)] �|= ∃x[Q(x)]

The following interpretation is a counterexample: M = 〈N;P∗,Q∗〉 with P∗(x): x is
even, and Q∗(x): x �= x. Then M |= ∃x[P(x)→ Q(x)], since M |= P(a)→ Q(a) [3]:
the proposition ‘if 3 is even, then 3 �= 3’ has truth value 0 → 0 = 1. Also M |=
∃x[P(x)]: the proposition ‘there is an even natural number’ has truth value 1. But
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M �|= ∃x[Q(x)]: the proposition ‘there is a natural number which is not equal to
itself’ has truth value 0.

Theorem 4.13 (∃ and→). a) ∃x[P(x)→ Q(x)],∃x[P(x)] �|= ∃x[Q(x)],
or, equivalently, ∃x[P(x)→Q(x)] �|= ∃x[P(x)]→∃x[Q(x)].
But conversely, b) ∃x[P(x)]→∃x[Q(x)] |= ∃x[P(x)→ Q(x)].

Proof. We start with an informal proof of b): Suppose ∃x[P(x)] → ∃x[Q(x)] (*)
and ¬∃x[P(x)→ Q(x)]. Then ∀x[¬ (P(x)→ Q(x))], i.e., ∀x[P(x)∧¬Q(x)], in other
words, ∀x[P(x)]∧ ∀x[¬Q(x)]. Hence, surely, ∃x[P(x)] and hence by (*) ∃x[Q(x)].
Contradiction with ∀x[¬Q(x)].
More precisely: Suppose M = 〈D; P∗, Q∗〉 is a model and M |= ∃x[P(x)] →
∃x[Q(x)]. (*) Case 1) M |= ∃x[Q(x)], i.e., there is some element d in the domain
D of M such that M |= Q(a)[d]. Then also M |= P(a) → Q(a) [d] and hence,
M |= ∃x[P(x)→ Q(x)]. Case 2) M �|= ∃x[Q(x)]. Then by (*), M �|= ∃x[P(x)], i.e.,
M |= ∀x[¬P(x)]. But then M |= ∀x[P(x)→Q(x)], since for every d in the domain D
of M, M |= P(a)→Q(a) [d] (0→ 0 = 1). Hence, surely, M |= ∃x[P(x)→Q(x)]. ��

4.3.2 Two different quantifiers

Consider the following argument:

Every gnome has a teacher. .
Therefore: some gnome is the teacher of all gnomes.

Translating this argument into the language of predicate logic, reading R(x,y) as ‘x
has y as teacher’, we find:

∀x∃y[R(x,y)] �|= ∃y∀x[R(x,y)]

M = 〈N; <〉 is a counterexample. M |= ∀x∃y[R(x,y)]: the proposition ‘for ev-
ery natural number x there is a larger natural number y’ has truth value 1; but
M �|= ∃y∀x[R(x,y)]: the proposition ‘there is a natural number y such that all nat-
ural numbers x are smaller than y’ has truth value 0.

Theorem 4.14 (Interchanging Quantifiers). a) ∀x∃y[R(x,y)] �|= ∃y∀x[R(x,y)].
But conversely, b) ∃y∀x[R(x,y)] |= ∀x∃y[R(x,y)].

Proof. We start with an informal proof of b): Suppose ∃y∀x[R(x,y)], i.e., there is a
thing d such that each thing x stands in the relation R to d. Then clearly, for every x
there is a thing y, namely d, such that x is in relation R to y. For instance, suppose
there is someone, say Michael Jackson, such that all persons admire this one person.
Then clearly, everyone admires at least one person, namely Michael Jackson.
More precisely: Let M = 〈D; R∗〉 be a model and suppose M |= ∃y∀x[R(x,y)], i.e.,
there is some d in the domain D of M such that M |= ∀x[R(x,b)] [d]. Then clearly,
M |= ∀x∃y[R(x,y)] because for every x one may take y = d. ��
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The following theorem says that a negation in front of a sequence of quantifiers may
be pushed inside, provided one changes a universal quantifier ∀ into an existential
quantifier ∃ and an existential quantifier ∃ into a universal quantifier ∀.

Theorem 4.15 (Negation in front of a sequence of Quantifiers).
1. ¬∀x∃y[R(x,y)] |=| ∃x∀y[¬R(x,y)].
2. ¬∃x∀y[R(x,y)] |=| ∀x∃y[¬R(x,y)].

Proof. 1. Let M = 〈D;R∗〉 be an interpretation. Then
M |= ¬∀x∃y[R(x,y)] iff (by Theorem 4.7, 1)
M |= ∃x¬∃y[R(x,y)] iff (by Theorem 4.7, 2)
M |= ∃x∀y[¬R(x,y)].

2. M |= ¬∃x∀y[R(x,y)] iff M |= ∀x¬∀y[R(x,y)] iff M |= ∀x∃y[¬R(x,y)]. ��
Warning Note that ‘not |= A (A is not valid)’ means that not every interpretation
M for A is a model of A, in other words, there is at least one interpretation M that
makes A false. In such a case one may in general not conclude that |= ¬A, since
there may be other interpretations which make A true.

For instance, we have seen in Theorem 4.9 that there are interpretations M which
make the formula ∀x[P(x)∨Q(x)]→∀x[P(x)]∨∀x[Q(x)] false, but the interpretation
M = 〈N; is even, x= x〉makes ∀x[P(x)∨Q(x)]→∀x[P(x)]∨∀x[Q(x)] true. Summa-
rizing, the formula ∀x[P(x)∨Q(x)]→∀x[P(x)]∨∀x[Q(x)] yields a false proposition
for some interpretations and a true proposition for others. Hence, neither the formula
itself nor its negation is valid.

4.3.3 About the axioms and rules for ∀ and ∃

Later in this chapter the formula ∀x[A(x)]→ A(t), where t is a term, will be chosen
as an logical axiom schema for ∀, and A(t)→ ∃x[A(x)] as a logical axiom schema
for ∃. In the next theorem we verify that these formulas are valid or always true.

Theorem 4.16 (Validity of the logical axioms for the Quantifiers).
Let t be a term, and let A(t) result from A(x) by substituting t for all occurrences of
x in A(x). Then 1. |= ∀x[A(x)]→ A(t), and 2. |= A(t)→∃x[A(x)].

Proof. The formula ∀x[A(x)]→ A(t) expresses that if all objects (of a certain kind)
have the property A∗ and t∗ is one these objects, then also t∗ has the property A∗.
More formally: Let M be a structure with domain D and let v be a valuation assigning
values in D to the individual variables occurring free in A(x). We have to show
that M |= ∀x[A(x)]→ A(t) [v]. So, suppose M |= ∀x[A(x)] [v], i.e., for all d in D,
M |= A(a) [d/v)] where a is a free variable not occurring in A(x) and d/v is the
same valuation as v except that it assigns d to the variable a. (*)
Now let t∗ be the element in D assigned by the valuation v to the term t, i.e., v(t)= t∗.
Then because of (*), M |= A(a) [t∗/v], which is equivalent to M |= A(t) [v].

The proof of 2. is similar to the proof of 1. ��
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Note that if y is a bound variable, ∀x[A(x)] → A(y) is not a formula; and even
if it were a formula, in general, not |= ∀x[A(x)] → A(y). For instance, if A(x) =
∃y[P(x,y)], �|= ∀x∃y[P(x,y)] → ∃y[P(y,y)], for 〈N; < 〉 is a counterexample to this
formula. This demonstrates the usefulness of having two kinds of symbols for free
and bound (occurrences of) individual variables. If one uses the same symbols for
both free and bound occurrences of individual variables, then ∀x[A(x)] → A(y) is
only valid under the condition that y is free for x in A(x), i.e., if any free occurrence
of x in A(x) is replaced by an occurrence of y, then the resulting occurrence of y in
A(y) should also be free.

In Section 4.4 we shall introduce the following deduction rules for ∀ and for ∃,
assuming that C does not contain the free variable a :

C → P(a) P(a)→C
C →∀x[P(x)] ∃x[P(x)]→C

Theorem 4.17 says that these rules are sound in the sense that for any interpretation
M, if M makes the premiss true, then M also makes the conclusion true. But the same
theorem says that C → P(a) �|= C → ∀x[P(x)] and that P(a)→ C �|= ∃x[P(x)]→ C.
Note the difference with the rule Modus Ponens, where we do have A,A → B |= B.
In propositional logic we have seen in Theorem 2.11 that ‘A |= B’ is a stronger
statement than ‘if |= A, then |= B’. This becomes particularly evident in predicate
logic, as can be seen from Theorem 4.17 below. For instance, from Theorem 4.17,
1 it follows that ‘if |= P(a), then |= ∀x[P(x)]’ is true, while the stronger statement
P(a) |= ∀x[P(x)] is false. Items 2 and 3 of this theorem state that the logical deduc-
tion rules for ∀ and for ∃, to be introduced in Section 4.4, are sound.

Theorem 4.17 (Soundness of the deduction rules for the Quantifiers).
Let A(a) be a formula containing a free variable a and let C be a formula not
containing the free variable a. Let M be an interpretation.
1. If M |= A(a), then M |= ∀x[A(x)]. But A(a) 6|= ∀x[A(x)].
2. If M |=C→ A(a), then M |=C→∀x[A(x)]. But C→ A(a) 6|=C→∀x[A(x)].
3. If M |= A(a)→C, then M |= ∃x[A(x)]→C. But A(a)→C 6|= ∃x[A(x)]→C.

Proof. 1) Suppose M |= A(a), i.e., for every d in the domain D of M, M |= A(a)[d].
In other words, M |= ∀x[A(x)]. On the other hand, let M = 〈N; is even〉. Then M |=
P(a)[2] (2 is even), but M 6|= ∀x[P(x)] (not all natural numbers are even). Hence
P(a) 6|= ∀x[P(x)].
2) Suppose M |=C→ A(a) and C does not contain the variable a. Then by 1) M |=
∀x[C → A(x)] and hence, because C does not contain a, M |= C → ∀x[A(x)]. On
the other hand, for C = Q∨¬Q, C→ A(a) is equivalent to A(a) and C→ ∀x[A(x)]
is equivalent to ∀x[A(x)]. Hence, for C = Q∨¬Q, C→ A(a) |= C→ ∀x[A(x)] iff
A(a) |= ∀x[A(x)], which according to 1) does not hold. Another way to see that
C→ A(a) 6|= C→ ∀x[A(x)] does not hold is as follows: from ‘if it is September 5,
then a(ntoine) has his birthday’ one may not conclude ‘if it is September 5, then
everyone has his birthday’.
3) Suppose M |= A(a)→C and C does not contain a. That is, for every element d in
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the domain of M, M |= A(a)→C [d] (*). We have to show: M |= ∃x[A(x)]→C. So,
suppose M |= ∃x[A(x)], i.e., for some d in the domain of M, M |= A(a) [d]. Hence,
because of (*) and because C does not contain a, M |= C. On the other hand, from
‘if a(ntoine) has his birthday, then it is September 5’ one may not conclude that ‘if
someone has his birthday, then it is September 5’. ut

The condition in Theorem 4.17 that C does not contain the free variable a is
necessary. To see this, let C be A(a). Then M |= A(a) → A(a), but in general
M 6|= A(a)→ ∀x[A(x)]; for instance, the proposition ‘if a(ntoine) has his birthday,
then everyone has his birthday’ is false.

Also M |= A(a)→ A(a), but in general M 6|= ∃x[A(x)]→ A(a); for instance, the
proposition ‘if there is an even number, then 3 is even’ is false.

4.3.4 Predicate Logic with Function Symbols∗

In mathematics, but also in natural language, one frequently uses functions. For
instance, the binary function + that assigns to any pair of natural numbers n and
m the natural number n+m; the unary function the-mother-of that assigns to any
person a his or her mother: the-mother-of (a). So, it is convenient to extend the
predicate language with function symbols:

f1, f2, f3, . . .

where each fi is supposed to be ki-ary, i.e., taking ki arguments. Individual constants
are then special function symbols, namely, function symbols fi taking 0 arguments,
i.e., ki = 0. An example of a predicate language containing function symbols for
addition and multiplication of natural numbers is given in Chapter 5.

With no function symbols present, the only terms - denoting elements of the
domain D of a given interpretation M - are free individual variables and individual
constants. But with function symbols present, we have to extend the notion of term.

Definition 4.17 (Terms). Terms are defined (inductively) as follows:
1. Each free individual variable is a term.
2. Each individual constant is a term.
3. If fi is a ki-ary function symbol and t1, . . . , tki are terms, then fi(t1, . . . , tki) is a
term. Note that clause 2 can be treated as a special case of clause 3, taking ki = 0.

Formulas are defined as before (see Definition 4.5), but now allowing the t1, . . . , tn
in Definition 4.4 of ‘atomic formula’ to be any terms, instead of simply any free
individual variables or individual constants.

If we extend the predicate language with function symbols, we have to adapt the
definition of an interpretation or structure (Definition 4.7) accordingly.

Definition 4.18 (Interpretation). An interpretation M for the predicate logic with
function symbols is by definition a tuple 〈D;P∗1 ,P

∗
2 , . . . ; f ∗1 , f ∗2 , . . .〉, such that:

1. D is a non-empty set, called the domain of M.
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2. For any ni-ary predicate symbol Pi, P∗i is a ni-ary predicate over D.
3. For any ki-ary function symbol fi, f ∗i is a function that assigns to any ki tuple of
elements of D an element of D.

For instance, if ⊕ is a 2-ary function symbol in the predicate language and M is an
interpretation with domain N, then the interpretation⊕∗ of ⊕ might be the function
+ that assigns to any pair (or 2-tuple) n,m of natural numbers the natural number
n+m. If fi is an individual constant, i.e., ki = 0, then f ∗i is an element of D.

The definitions of M |= A (M is a model of A), |= B (B is valid) and of
A1, . . . ,An |= B (B is a valid or logical consequence of A1, . . . ,An) are as before,
taking into consideration that now all structures M are interpretations for the predi-
cate logic with function symbols.

All results stated for the predicate logic without function symbols also hold for
the predicate logic with function symbols, where terms may also contain function
symbols in addition to individual variables and constants.

Example 4.11. Let f be a binary (i.e., 2-ary) function symbol, ≡ a binary predicate
symbol, and a and b free individual variables. Then f (a,b) and f (b,a) are terms.
Let M = 〈N; =; +〉 be the model with domain N, interpreting≡ as = (equality) and
f as + (addition). Then M |= f (a,b)≡ f (b,a), because for all natural numbers n,m,
n+m = m+n. Also M |= f (a,b)≡ a [2,0], because 2 + 0 = 2, but M �|= f (a,b)≡ a,
because, for instance, M �|= f (a,b)≡ a [2,1], since 2+ 1 �= 2.

4.3.5 Prenex Form∗

Definition 4.19 (Prenex Formula). A formula A is in prenex (normal) form if A
consists of a (possibly empty) string of quantifiers followed by a formula without
quantifiers. We also say that A is a prenex formula.

A simple example is the formula ∀x∀y∃z[P(x,y)∧Q(y,x)→ P(z,z)]. By pulling out
quantifiers, we can reduce every formula to a formula in prenex form.

Theorem 4.18 (Prenex Normal Form Theorem). For every formula A there is a
prenex formula B such that |= A � B (or, equivalently, A |=| B).

Proof. The proof is by induction on the complexity of the formula A (Theorem 4.1).
Induction basis: for an atomic formula P(t1, . . . , tn) the theorem is trivially true.
Induction step for the connectives: suppose A= B→C, B∧C, B∨C or ¬B, and B, C
are equivalent to prenex formulas B∗, C∗ respectively (induction hypothesis). Then
B∗ = (Q1y1) . . . (Qnyn)B1 and C∗ = (Q′1z1) . . . (Q′mzm)C1, where Qi,Q′j are quanti-
fiers and B1, C1 open. By Theorem 4.3 all bound variables can be chosen distinct.
Now A is semantically equivalent to B∗ →C∗, B∗∧C∗, B∗ ∨C∗ or ¬B∗ respectively.
By means of the prenex operations (a), (b), (c) and (d) below, we can convert the
latter formula into a formula in prenex form.
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(a) (1) Replace a part Qx[B]→C by Q′x[B→C],
where Q′x is ∀x if Qx is ∃x and Q′x is ∃x if Qx is ∀x.

(2) Replace a part B→Qx[C] by Qx[B→C].
(b) (1) Replace a part Qx[B]∧C by Qx[B∧C].

(2) Replace a part B∧Qx[C] by Qx[B∧C].
(c) (1) Replace a part Qx[B]∨C by Qx[B∨C].

(2) Replace a part B∨Qx[C] by Qx[B∨C].
(d) Replace a part ¬Qx[B] by Q′x[¬B] where Q′ is as in (a).
It remains to be shown that if E ′ results from E by a prenex operation, then
|= E � E ′. But this is straightforward; see Exercise 4.26.
Induction step for the quantifiers: Suppose A = ∀x[B(x)] or A = ∃x[B(x)] and B(a)
is equivalent to a prenex formula B∗(a) (induction hypothesis). By Theorem 4.3
we can choose the bound variables in B∗(a) distinct from x. Then ∀x[B∗(x)] and
∃x[B∗(x)] are prenex formulas and |= A � ∀x[B∗(x)] or |= A � ∃x[B∗(x)] respec-
tively. ��
The prenex normal form theorem states that for every formula A there is a prenex
formula B which is equivalent to A. Being prenex, B consists of a finite string of
quantifiers followed by a formula C without quantifiers, i.e., B = Q1x1 . . .Qnxn[C].
According to Theorem 2.18, C is equivalent to a formula C′ in conjunctive normal
form. So, by combining the prenex normal form theorem and the conjunctive normal
form theorem (Theorem 2.18), every formula A is equivalent to a formula of the form

Q1x1 . . .Qnxn [(Li1 ∨ . . .∨Lik)∧ . . .∧ (Lj1 ∨ . . .∨Ljl )],

where each Ln is a literal, i.e., an atomic formula or the negation of an atomic for-
mula. Any logic program in the programming language PROLOG, to be treated in
Section 9.1, will be a formula of this form with all the quantifiers universal.

In 1936 A. Church and A. Turing proved independently that there is no decision
procedure for validity of formulas in predicate logic (see Section 4.5). Nevertheless,
there is a decision procedure for formulas in prenex normal form in the prefix of
which no existential quantifier precedes any universal quantifier. In the exercises of
Section 4.5 some other classes of formulas are given for which a decision procedure
is known. Most of these classes consist of formulas having a prenex normal form of
a particular type. For more of these results see A. Church [3].

4.3.6 Skolemization, Clausal Form∗

If M is a model with domain D and M |= ∀x∃y[P(x,y)], then there must be some
function f ∗ : D→D such that for all d ∈D, M |= P(a1,a2)[d, f ∗(d)]. This suggests
introducing a function symbol f in our language and replacing ∀x∃y[P(x,y)] by the
formula ∀x[P(x, f (x))].

Let A be a formula in prenex normal form, the Skolem (normal) form of A
is obtained by eliminating all existential quantifiers in (the prefix of) A as fol-
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lows: for any expression of the form ∀x1 . . .∀xk∃y[B(x1, . . . ,xk,y, . . .)] a new k-
ary function symbol f is introduced and the original expression is replaced by
∀x1 . . .∀xk[B(x1, . . . ,xk, f (x1, . . . ,xk), . . .)].

Thus, the Skolem normal forms of ∃x[P(x)],∀x∃y[P(x,y)], ∀x∃y∀z[P(x,y,z)] and
∀x∃y∀z∃u[P(x,y,z,u)] are P(c), ∀x[P(x, f (x))], ∀x∀z[P(x, f (x),z)] and
∀x∀z[P(x, f (x),z,g(x,z))] respectively, where c is a new individual constant and f
and g are new function symbols.

Let Sk(A) denote the Skolem normal form of A. Clearly, if M |= Sk(A), then
M |= A. But not conversely: 〈N; is even; 3 〉 |= ∃x[P(x)], but 〈N; is even; 3〉 �|= P(c).
And if i is the identity function on N, then 〈N; <; i〉 |= ∀x∃y[P(x,y)], but 〈N; <
; i〉 �|= ∀x[P(x, f (x))]. However, it is easy to see the following

Theorem 4.19. 1. Sk(A) |= A; but not conversely.
2. Sk(A) is satisfiable iff A is satisfiable.

It follows that if |= Sk(A), then also |= A. But the converse does not hold:
|= ∀x∃y[P(x)→ P(y)], but �|= ∀x[P(x)→ P( f (x))].

Definition 4.20 (Clausal Form). Given any formula A (of first-order predicate
logic), the clausal form C(A) of A is obtained as follows:
1. construct the prenex (normal) form A′ of A; A′ = Q1x1 . . .Qnxn[M], where Qi = ∀
or ∃ and M is quantifier-free;
2. construct the Skolem (normal) form A∗ of A′; A∗= ∀x1 . . .∀xk[M∗], M∗ quantifier-
free, but containing (n− k) additional function-symbols;
3. construct the conjunctive normal form (L1 ∨ . . .∨Ln1)∧ . . .∧ (Lk ∨ . . .∨Lnk) of
M∗ (see Theorem 2.18).

Example 4.12. Let A = ∃x[P(x)]→ ∃x[Q(x)]. Then A′ = ∀x∃y[P(x)→ Q(y)], A∗ =
∀x[P(x)→Q( f (x))] and C(A) = ∀x[¬P(x)∨Q( f (x))].

Theorem 4.20. For the clausal form C(A) of A the following holds:
1. C(A) |= A. Consequently, if C(A) is valid, then A is valid. But not conversely:
|= ∀x∃y[P(x)→ P(y)], but �|= ∀x[¬P(x)∨P( f (x))].
2. A is satisfiable iff C(A) is satisfiable.
3. The ‘complexity’ of C(A) is lower than that of A, in the sense that C(A) contains
only universal quantifiers and no existential quantifiers that occur in the prenex
(normal) form of A.

Automated theorem provers for logic based on resolution operate as follows. Given
any assumption formulas A1, . . . ,An and given any formula B, they construct¬B and
the clausal forms C(A1), . . . ,C(An) and C(¬B) of A1, . . . ,An and ¬B respectively.
Next they check whether a contradiction can be derived from C(A1), . . . ,C(An)
and C(¬B) by resolution (or otherwise, for instance, by the tableaux-method).
If so, then C(A1), . . . ,C(An), C(¬B) are not simultaneously satisfiable; hence,
A1, . . . ,An, ¬B are not simultaneously satisfiable and therefore A1, . . . ,An |= B. If
not, then C(A1), . . . ,C(An), C(¬B) are simultaneously satisfiable (completeness);
hence, A1, . . . ,An, ¬B are simultaneously satisfiable and therefore A1, . . . ,An �|= B.
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Theorem 4.21. Any definite logic program (see also Chapter 2 and 9) is actually a
formula in clausal form.

Proof. The structure of any definite logic program is by definition the following:

P1 :- Q1, . . . ,Qn1 .
...
Pk :- Qk, . . . ,Qnk .

⎫
⎬

⎭
I

where Pi and Q j are atomic formulas.

I stands for: (P1 ← Q1∧ . . .∧Qn1) ∧
...

∧ (Pk ← Qk ∧ . . .∧Qnk)

⎫
⎬

⎭
II

or, equivalently, for:

(P1∨¬Q1∨ . . .∨¬Qn1) ∧
...

∧ (Pk∨¬Qk ∨ . . .∨¬Qnk) .

⎫
⎬

⎭
III

Remembering that Cl(A) denotes the universal closure of A, III is short for:

Cl(P1∨¬Q1∨ . . .∨¬Qn1) ∧
...

∧Cl(Pk ∨¬Qk ∨ . . .∨¬Qnk) .

⎫
⎬

⎭
IV

IV, and hence also I is equivalent to a formula ∀x1 . . .∀xk[(P1∨¬Q1∨ . . .∨¬Qn1)∧
. . .∧ (Pk∨¬Qk ∨ . . .∨¬Qnk)], which is in clausal form.

Exercise 4.21. let P be a unary and Q a 0-ary predicate symbol. Which of the fol-
lowing statements are right? Give either a proof or a counterexample.
1. ∀x[P(x)]→Q |= ∀x[P(x)→Q] and 2. ∀x[P(x)→ Q] |= ∀x[P(x)]→ Q.
3. ∃x[P(x)]→Q |= ∃x[P(x)→Q] and 4. ∃x[P(x)→Q] |= ∃x[P(x)]→ Q.

Exercise 4.22. Are the following formulas valid or invalid? Give either a proof or a

counterexample.
1. (∀x[P(x)]→∃x[Q(x)])� ∃x[P(x)→ Q(x)];
2. (∃x[P(x)]→∀x[Q(x)])� ∀x[P(x)→ Q(x)].

Exercise 4.23. Which of the following statements are right? Give either a proof or
a counterexample.
1. ∀x[P(x)→Q(x)] |= (∃x[P(x)]→∃x[Q(x)]); and conversely?.
2. ∃x[P(x)→Q(x)] |= (∀x[P(x)]→∀x[Q(x)]); and conversely?

Exercise 4.24. Prove or refute: ∀x∃y[P(x)→ Q(y)] |= ∃y∀x[P(x)→ Q(y)].

Exercise 4.25. (H. Wang) Prove: |= ∃x∃y∀z[(P(x,y)→ P(y,z)∧P(z,z)) ∧
(P(x,y)∧Q(x,y)→Q(x,z)∧Q(z,z))].
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Exercise 4.26. Prove that the formulas in the prenex operations (a), (b), (c) and (d)
in the proof of Theorem 4.18 are semantically equivalent.

Exercise 4.27. Following the proof of the prenex normal form theorem (Theorem
4.18) convert each of the following formulas into a formula in prenex form.
1. ∀x[P(x)]→∃x[Q(x)]; 2. ∃x[P(x)]→∀x[Q(x)];
3. ∃x[P(x,a)]→∃x[Q(x)∨¬∃y[R(y)]].

Exercise 4.28. Find two prenex normal forms for the formula ∃x[P(x)]→∃x[Q(x)].
(See also Exercise 4.24)

4.4 Syntax: Provability and Deducibility

In this section we shall generalize the notions of (logical) provability (� B) and
(logical) deducibility (A1, . . . ,An � B), as defined for propositional logic in Section
2.6, to predicate logic.

It turns out that also for (classical) predicate logic one can select a small, finite,
number of valid formula schemata, henceforth called (logical) axiom schemata, and
rules of inference such that i) precisely all valid formulas can be obtained by finitely
many applications of the rules to instances of the axiom schemata and such that ii)
for any premisses A1, . . . ,An, precisely all valid consequences of A1, . . . ,An can be
obtained by finitely many applications of the rules to A1, . . . ,An and to instances of
the axiom schemata.

We have selected the following axiom schemata and rules of inference for (clas-
sical) predicate logic:

The axiom schemata 1, . . . ,10b for (classical) propositional logic (see Section
2.6), together with the rule of inference Modus Ponens. However, the formulas in
these axiom schemata and in applications of the rule Modus Ponens are now under-
stood to be formulas of predicate logic. For the sake of completeness we repeat the
axiom schemata for propositional logic and the rule Modus Ponens below:

1. A→ (B→ A); 2. (A→ B)→ ((A→ (B→C))→ (A→C))
3. A→ (B→ A∧B); 4a. A∧B→ A; 4b. A∧B→ B
5a. A→ A∨B; 5b. B→ A∨B; 6. (A→C)→ ((B→C)→ (A∨B→C))
7. (A→ B)→ ((A→¬B)→¬A); 8. ¬¬A→ A
9. (A→ B)→ ((B→ A)→ (A � B));
10a. (A � B)→ (A→ B); 10b. (A � B)→ (B→ A)

We add one axiom schema for ∀ and one for ∃ (compare Theorem 4.16):

the ∀-schema ∀x[A(x)]→ A(t), and the ∃-schema A(t)→∃x[A(x)],

where t is a term, i.e., a free individual variable or an individual constant.

To the rule Modus Ponens (MP),
A A→ B

B
, we also add one rule of inference

for ∀ and one for ∃:
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the ∀ -rule
C→ A(a)

C→∀x[A(x)]
and the ∃ -rule

A(a)→C
∃x[A(x)]→C

,

when C does not contain a (compare Theorem 4.17).

Warning For predicate logic we have three rules of inference:

MP
A A→ B

B
, ∀ C→ A(a)

C→∀x[A(x)]
and ∃ A(a)→C

∃x[A(x)]→C
,

if C does not contain a. However, there is an important difference between these
rules. We do have A, A→ B |= B and hence also the weaker statement: if M |= A
and M |= A → B, then M |= B. But – as we have seen in Theorem 4.17 – we do
not have C → A(a) |=C →∀x[A(x)], although we do have the weaker statement: if
M |=C→ A(a), then M |=C→∀x[A(x)]. Similarly for the ∃-rule.

The definition of a (logical) proof of B is similar to the one for propositional logic,
taking into account that we have two more axiom schemata and two more rules of
inference.

Definition 4.21 (Proof; Provable). Let B be a formula. A (logical, Hilbert-type)
proof of B is a finite list of formulas with B as last formula in the list, such that every
formula in the list is either an axiom of predicate logic (i.e, an instance of an axiom
schema) or obtained by application of one of the rules to formulas earlier in the list.
B is (logically) provable := there exists a (logical, Hilbert-type) proof of B.
Notation: � B

Example 4.13. � ∀x[P(x)→ P(x)]. Below is a (logical) proof of ∀x[P(x)→ P(x)]:

∀x[P(x)→ P(x)]
MP

axiom axiom→∀x[P(x)→ P(x)]
∀

axiom→ (P(a)→ P(a))

P(a)→ P(a) (P(a)→ P(a))→ (axiom→ (P(a)→ P(a)))
1Ex. 2.12

⎧
⎪⎨

⎪⎩

axiom 1 axiom 2

The definition of a (logical) deduction of B from A1, . . . ,An in predicate logic is
similar to the one for propositional logic. However, in order to prevent that, for
instance, one could deduce from C → P(a) (if it is September 5, then ad has his
birthday) that C → ∀x[P(x)] (if it is September 5, then everyone has his birthday),
in such a deduction all free variables of A1, . . . ,An should be held constant, i.e., the
∀-rule and the ∃-rule may not be applied with respect to a free variable a occurring
in A1, . . . ,An, except preceding the first occurrence of A1, . . . ,An in the deduction.

Definition 4.22 (Deduction; Deducible).
1. A (logical, Hilbert-type) deduction of B from A1, . . . ,An (in classical predicate
logic) is a finite list B1, . . . ,Bk of formulas, such that
(a) B = Bk is the last formula in the list, and
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(b) each formula in the list is either one of A1, . . . ,An, or an axiom of predicate logic
(i.e., an instance of one of the axiom schemata), or is obtained by application of one
of the rules to formulas preceding it in the list, such that
(c) all free variables of A1, . . . ,An are held constant, i.e., the ∀-rule and the ∃-rule are
not applied with respect to a free variable a occurring in A1, . . . ,An, except preceding
the first occurrence of A1, . . . ,An in the deduction.
2. B is (logically) deducible from A1, . . . ,An := there exists a (logical, Hilbert-type)
deduction of B from A1, . . . ,An. Notation: A1, . . . ,An � B. The symbol � may be
read ‘yields’. A1, . . . ,An �� B abbreviates: not A1, . . . ,An � B.
3. For Γ a (possibly infinite) set of formulas, B is deducible from Γ := there is a
finite list A1, . . . ,An of formulas in Γ such that A1, . . . ,An � B. Notation: Γ � B.

Example 4.14. ∀x[P(x)→ Q(x)],P(c) � Q(c). The following schema is a deduction
of Q(c) from ∀x[P(x)→Q(x)] and P(c).

P(c)
premiss

MP
Q(c)

P(c)→ Q(c)

∀x[P(x)→ Q(x)]
premiss ∀-schema∀x[P(x)→ Q(x)]→ (P(c)→ Q(c))

MP

Example 4.15. ∀x[P(x)]�∃x[P(x)]. The following schema is a deduction of ∃x[P(x)]
from ∀x[P(x)].

MP
∀x[P(x)]→ P(t)

∀-schema

P(t)
MP∃x[P(x)]

P(t)→∃x[P(x)]
∃-schema

∀x[P(x)]
premiss

Warning: Note that according to our definition the schema
C→ A(a)

C→∀x[A(x)]
, where

the variable a does not occur in C, is not a deduction of C→∀x[A(x)] from C→A(a)
(holding all free variables constant), since in this schema the ∀-rule is applied with
respect to a free variable a occurring in the premiss.

This remark by itself does not establish that there is no deduction of C→∀x[A(x)]
from C→A(a); it only says that the given schema is not such a deduction. In order to
establish that no (other) schema can be a deduction of C→∀x[A(x)] from C→ A(a)
(holding all free variables constant), we have to prove the generalized soundness
theorem:

if A1, . . . ,An � B, then A1, . . . ,An |= B.

Since we have seen in Theorem 4.17 that C → A(a) �|= C → ∀x[A(x)], it follows
by this theorem that C → A(a) ��C → ∀x[A(x)], i.e., there is no deduction of C →
∀x[A(x)] from C→ A(a) (holding all free variables constant).

Sometimes the free variables in the premisses A1, . . . ,An are allowed to vary, such
as, for instance, in ‘if it rains, then a takes an umbrella’, when one means ‘for all x,
if it rains, then x takes an umbrella’ or ‘if it rains, then any a takes an umbrella’.
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Definition 4.23. B is deducible from A1, . . . ,An allowing all free variables to vary or
with all free variables general := Cl(A1), . . . ,Cl(An) � B. Notation: A1, . . . ,An �2 B.

Example 4.16. C→ A(a) �2 C→∀x[A(x)], i.e., ∀x[C→ A(x)] �C→∀x[A(x)], since
the following schema is a deduction of C → ∀x[A(x)] from ∀x[C → A(x)] (holding
all free variables constant):

∀x[C→ A(x)]
premiss

∀x[C→ A(x)]→ (C→ A(a))
∀-schema

MP
C→ A(a) ∀
C→∀x[A(x)]

where we have chosen the free variable a such that a does not occur in the premiss
∀x[C→ A(x)] and hence not in C.

In a similar way one shows that A(a)→ C �� ∃x[A(x)]→ C (from ‘if ad has his
birthday, then it is May 5’ it does not follow that ‘if someone has his birthday, then
it is May 5) and A(a) �� ∀x[A(x)] (from ‘ad is an Alcoholic’, it does not follow that
‘everyone is an Alcoholic’), while we do have that A(a)→C �2 ∃x[A(x)]→C (from
‘if any a takes an umbrella, then it is raining’, it follows that ‘if someone takes an
umbrella, then it is raining’) and A(a) �2 ∀x[A(x)] (from ‘any a has the property A’,
it follows that ‘everything has the property A’).

The soundness theorem says that the logical axioms and rules of (classical) predicate
logic are sound, i.e., every formula B which may be deduced from given premisses
A1, . . . ,An by means of the logical axioms and rules is a logical (or valid) conse-
quence of the given premisses.

Theorem 4.22 (Soundness). a) If A1, . . . ,An � B, then A1, . . . ,An |= B.
Hence, in particular, if � B, then |= B.
b) If A1, . . . ,An �2 B, then A1, . . . ,An |=2 B.

Proof. a) Suppose A1, . . . ,An � B, i.e., there is a finite schema of formulas of the
following form:

A1 . . . An axioms

MP, ∀ or ∃
B

where the ∀- and ∃-rule are not applied with respect to a free variable a occurring in
A1, . . . ,An, except preceding the first occurrence of A1, . . . ,An in the deduction. (α)
Let M be an interpretation with domain D and let v be a valuation in D of the
free individual variables. We have to show: if for all i, 1 ≤ i ≤ n, M |= Ai[v], then
M |= B[v]. So suppose that for all i, 1≤ i≤ n, M |= Ai[v] . (1)
By Theorem 2.7 and Theorem 4.16. all axioms of predicate logic are valid. (2)
For an application of Modus Ponens, note that if M |=C[v] and M |=C→D [v], then
M |= D[v]. (3)
For an application of the ∀- or ∃-rule, note that due to the condition (α) stated above,
interpretation M and valuation d/v make the premiss true for every d in D and hence
M and valuation v make the conclusion of the rule true. (4).
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From (1), (2), (3) and (4) it follows that M |= B[v].
(b) follows from (a). ��
Without proof we mention that the deduction theorem for propositional logic (Theo-
rem 2.24) also holds for (classical) predicate logic: if Γ , A � B, then also Γ � A→B.
The introduction and elimination rules for the propositional connectives (Theorem
2.25) may be extended with introduction and elimination rules for the quantifiers.

Theorem 4.23 (Introduction and elimination rules for the quantifiers). Let a be
a free variable, A(a) a formula, t a term and A(t) the result of substituting t for the
occurrences of a in A(a). Also let Γ be a list of (zero or more) formulas, and C a
formula. Then the following rules hold.

INTRODUCTION ELIMINATION

∀ If Γ � A(a), then Γ � ∀x[A(x)], ∀x[A(x)] � A(t)
provided Γ does not contain a.

∃ A(t) � ∃x[A(x)] If Γ , A(a) �C, then Γ ,∃x[A(x)] �C,
provided Γ and C do not contain a.

Proof. ∀-introduction: Let E be an axiom not containing a. Suppose Γ � A(a). Then
also Γ ,E � A(a). By the deduction theorem (for predicate logic), Γ � E → A(a).
Since by hypothesis Γ and E do not contain a, we can apply the ∀-rule; hence
Γ � E →∀x[A(x)]. So Γ ,E � ∀x[A(x)] and since E is an axiom, Γ � ∀x[A(x)].
∀-elimination: From ∀x[A(x)], by using the ∀-axiom, ∀x[A(x)]→ A(t) and Modus
Ponens, we may deduce A(t).
∃-introduction: From A(t), by using the ∃-axiom, A(t)→∃x[A(x)], and Modus Po-
nens, we may deduce ∃x[A(x)].
∃-elimination : Suppose Γ , A(a) �C. Then by the deduction theorem, Γ � A(a)→
C. Since Γ and C do not contain a, by the ∃-rule, Γ � ∃x[A(x)]→C. And therefore
Γ , ∃x[A(x)] �C. ��
Exercise 4.29. premiss

A(a)
MP

∀x[A(x)]

C→∀x[A(x)]
MP

∀C→ A(a)

A(a)→ (C→ A(a))
1

C
axiom

Is this schema, in which C is an axiom not containing the free variable a, a deduction
of ∀x[A(x)] from A(a) (holding all free variables constant)?

Exercise 4.30. Is the following schema a deduction of ∃y∀x[P(y,x,a)] from
∃z∀x[P(b,x,z)]?

MP
∃z∀x[P(b,x,z)]→∃y∀x[P(y,x,a)]

∀x[P(b,x,a)]→∃y∀x[P(y,x,a)] ∃
∃z∀x[P(b,x,z)]

premiss

∃-schema

∃y∀x[P(y,x,a)]
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Exercise 4.31. Is the following schema a deduction of ∃z∀y[P(z,y,b)] from
∃x∀y[P(x,y,b)]?

MP
∃x∀y[P(x,y,b)]→∃z∀y[P(z,y,b)]

∀y[P(a,y,b)]→∃z∀y[P(z,y,b)] ∃
∃x∀y[P(x,y,b)]

premiss

∃-schema

∃z∀y[P(z,y,b)]

Exercise 4.32. Show that i) ∃x[A(x)] � ∃z[A(z)] and ii) ∀x[A(x)] � ∀z[A(z)].

4.4.1 Natural Deduction

Gentzen’s system of Natural Deduction for classical predicate logic is obtained by
adding to the natural deduction rules for the connectives (see Subsection 2.7.2) the
following introduction and elimination rules for the quantifiers.

INTRODUCTION ELIMINATION

∀I
A(a)
∀x[A(x)]

∀E
∀x[A(x)]

A(t)
if the free variable a does not occur where t is a term
in any of the premisses of A(a).

[A(a)]
...

∃I
A(t)

∃x[A(x)]
∃E

∃x[A(x)] C
C

where t is a term if the variable a in the cancelled formula
A(a) does not occur in C or any of the
premisses in the righthand derivation.

That the conditions accompanying the rules above are necessary follows immedi-
ately from Theorem 4.17. The definition of Γ �ND B (B is deducible from Γ in
Gentzen’s system of natural deduction) for classical predicate logic is similar to the
one for classical propositional logic (see Definition 2.12), taking into account that
now we also have introduction and elimination rules for the quantifiers. And again
one easily shows that Γ � B iff Γ �ND B (compare Theorem 2.26), where the if-part
now follows from Theorem 2.25 and Theorem 4.23. Below are some examples of
deductions in Gentzen’s system of natural deduction.

Example 4.17. �ND ∀x[A(x)∧B(x)]→∀x[A(x)]∧∀x[B(x)]:
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∧E
A(a)∧B(a)

∀E
[∀x[A(x)∧B(x)]]1

A(a)

∀x[A(x)] ∀x[B(x)]

B(a)
A(a)∧B(a)

[∀x[A(x)∧B(x)]]1 ∀E

∧E
∀I∀I

∧I ∀x[A(x)]∧∀x[B(x)]
(1)→ I∀x[A(x)∧B(x)]→∀x[A(x)]∧∀x[B(x)]

Example 4.18. �ND (∃x[A(x)]→ B)→∀x[A(x)→ B]:

→E
∃x[A(x)]

[A(a)]1 ∃I
[∃x[A(x)]→ B]2

B → I
A(a)→ B ∀I∀x[A(x)→ B] → I(2)

(∃x[A(x)]→ B)→∀x[A(x)→ B]

(1)

The reader should be aware again that the logical proofs by natural deduction
are very close to our informal way of verifying the formula in question. For in-
stance, how do we prove informally that (∃x[A(x)] → B) → ∀x[A(x) → B]? We
suppose that ∃x[A(x)]→ B (2). Then we have to show that ∀x[A(x)→ B]. So, we
let a be an arbitrary individual and we show that A(a)→ B. So, suppose A(a) (1).
Then ∃x[A(x)] and hence by (2), B. Therefore A(a)→ B under the assumption of
∃x[A(x)]→ B. Since a was arbitrary, it follows that ∀x[A(x)→ B] under the assump-
tion of ∃x[A(x)]→ B. Therefore, (∃x[A(x)]→ B)→∀x[A(x)→ B].

Exercise 4.33. Show that ∀x[A→ B(x)] �ND A→ ∀x[B(x)] and A→ ∀x[B(x)] �ND

∀x[A→ B(x)], realizing that a formal proof by natural deduction is very close to an
informal proof of the formula in question.

4.4.2 Tableaux

To make this subsection self contained, we repeat some definitions from Section 2.8.

Definition 4.24 (Signed Formula; Sequent). A signed formula is any expression
of the form T (A) or F(A), where A is a formula. Informally, we may read T (A) as
‘A is true’ and F(A) as ‘A is false’. We frequently write TA and FA instead of T (A)
and F(A), respectively. A sequent S is any finite set of signed formulas.

Below are the tableaux rules for the propositional connectives.
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T∧ S, T B∧C F∧ S, F B∧C
S, T B, TC S, FB | S, FC

T∨ S, T B∨C F∨ S, F B∨C
S, T B | S, TC S, FB, FC

T→ S, T B→C F→ S, F B→C
S, FB | S, TC S, T B, FC

T¬ S, T ¬B F¬ S, F ¬B
S, FB S, T B

The tableaux rules for (classical) predicate logic are the following ones:
1. The T - and F-rules for →, ∧, ∨ and ¬ of (classical) propositional logic (see
Section 2.8), but now for any formulas of predicate logic.
2. To these, we add T - and F-rules for the quantifiers ∀ and ∃:

T ∃ S, T ∃x[A(x)] F ∃ S, F ∃x[A(x)]
S, TA(a) S, F ∃x[A(x)], FA(t)

a new: a does not occur in S, T∃x[A(x)] t being any term

T ∀ S, T ∀x[A(x)] F ∀ S, F ∀x[A(x)]
S, T ∀x[A(x)], TA(t) S, FA(a)

t being any term a new: a does not occur in S, F ∀x[A(x)]

The extra condition in the rules T ∃ and F ∀which the free individual variable a has
to satisfy can be explained as follows.

If we read the rules downwards as semantic tableaux rules in the sense of E. Beth,
interpreting the signed formulas rather than the sequents, the condition on a in the
rule T ∃ and F ∀ is intuitively clear:
T ∃: Suppose T ∃x[A(x)], i.e., there is at least one object with the property A. This
object is not necessarily one of the objects already mentioned before.
F ∀: Suppose F ∀x[A(x)], i.e., not all objects have the property A, or equivalently, at
least one object does not have the property A. And again this object is not necessarily
one of the objects already mentioned before.

If we read the rules upwards as Gentzen-type rules, interpreting the sequents
rather than the signed formulas, rule T ∃, for instance, taking S = {FC}, becomes
FC, T ∃x[A(x)]

FC, TA(a) and is read as: if A(a)→C, then ∃x[A(x)]→C; the condition on a in
rule T ∃ now corresponds to the condition ’a does not occur in C’ in Theorem 4.17.

The definitions of ‘(tableau) branch’, ‘tableau’, ‘tableau proof of B’, ‘B is tableau-
provable’ (notation: �′ B), a ‘tableau-deduction of B from A1, . . . ,An’ and of ‘B
is tableau-deducible from A1, . . . ,An’ (notation: A1, . . . ,An �′ B) are similar to the
definitions for propositional logic (see Definition 2.17 and 2.18), allowing that now
we have two more T -rules and two more F-rules for the quantifiers.

Definition 4.25 ((Tableau) Branch). (a) A tableau branch is a (possibly infinite)
set of signed formulas. A branch is closed if it contains signed formulas TA and FA
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for some formula A. A branch that is not closed is called open.
(b) Let B be a branch and TA, resp. FA, a signed formula occurring in B. TA, resp.
FA, is fulfilled in B if (i) A is atomic, or (ii) B contains the bottom formulas in the
application of the corresponding rule to A, and in case of the rules T∨, F∧ and T →,
B contains one of the bottom formulas in the application of these rules.
(c) A branch B is completed if B is closed or every signed formula in B is fulfilled
in B.

Let B = {T∀x[P(x)], . . .} be a tableau branch and let Ba = {T∀x[P(x)],P(a), . . .}.
Then the tableau Ta = {Ba} is called a one-step expansion of tableau T = {B}.
And if B = {T (P → Q), . . .} is a tableau branch, B1 = {T (P→ Q),FP, . . .} and
B2 = {T (P→ Q), TQ, . . .}, then the tableau T ′ = {B1,B2} is called a one-step
expansion of tableau T = {B}.
Definition 4.26 (Tableau). (a) A set of branches T is a tableau with initial branch
B0 if there is a sequence T0,T1, . . . ,Tn such that T0 = {B0}, each Ti+1 is a one-
step expansion of Ti (0≤ i < n ) and T =Tn.
(b) We say that a branch B has tableau T if T is a tableau with initial branch B.
(c) A tableau T is open if some branch B in it is open, otherwise T is closed.
(d) A tableau is completed if each of its branches is completed, i.e., no application
of a tableau rule can change the tableau.

Definition 4.27 (Tableau-deduction; Tableau-proof).
(a) A (logical) tableau-deduction of B from A1, . . . ,An (in classical predicate logic) is
a tableau T with B0 = {TA1, . . . ,TAn,FB} as initial branch, such that all branches
of T are closed.

In case n = 0, i.e., there are no premisses A1, . . . ,An, this definition reduces to:
(b) A (logical) tableau-proof of B (in classical predicate logic) is a tableau T with
B0 = {FB} as initial sequent, such that all branches of T are closed.

Definition 4.28 (Tableau-deducible; Tableau-provable).
(a) B is tableau-deducible from A1, . . . ,An (in classical predicate logic) if there exists
a tableau-deduction of B from A1, . . . ,An. Notation: A1, . . . ,An �′ B.
By A1, . . . ,An ��′ B we mean: not A1, . . . ,An �′ B.
(b) B is tableau-provable (in classical predicate logic) if there exists a tableau-proof
of B. Notation: �′ B.
(c) For Γ a (possibly infinite) set of formulas, B is tableau-deducible from Γ if there
exists a finite list A1, . . . ,An of formulas in Γ such that A1, . . . ,An �′ B.
Notation: Γ �′ B.

Since S∪ {T ∃x[A(x)]} = S∪ {T ∃x[A(x)], T ∃x[A(x)]} and S∪ {F ∀x[A(x)]} =
S∪{F ∀x[A(x)], F ∀x[A(x)]}, we have the following two derived rules:

S, T ∃x[A(x)] and S, F ∀x[A(x)]
S, T ∃x[A(x)],TA(a) S, F ∀x[A(x)],FA(a)
provided a is new; provided a is new.

This enables us to apply the rules T ∃ and F ∀ as frequently as we want, each time
with a new variable.
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Example 4.19. �′ ∀x[¬P(x)]→ ¬ ∀x[P(x)], since there is a tableau-proof (in clas-
sical predicate logic) of ∀x[¬P(x)] → ¬ ∀x[P(x)], i.e., there is a closed tableau
T = {B5} with B0 = {F ∀x[¬P(x)]→ ¬ ∀x[P(x)]} as initial branch, where B5

consists of all signed formulas in the schema below:

F ∀x[¬P(x)] →¬ ∀x[P(x)]
T ∀x[¬P(x)], F ¬ ∀x[P(x)]
T ∀x[¬P(x)], T ∀x[P(x)]

T ¬P(a1), T ∀x[¬P(x)], T ∀x[P(x)]
F P(a1), T ∀x[¬P(x)], T ∀x[P(x)]
F P(a1), T ∀x[¬P(x)], T ∀x[P(x)], T P(a1)

closure

Example 4.20. not �′ ¬∀x[P(x)]→∀x[¬P(x)]. If we try to construct a tableau-proof
of ¬∀x[P(x)] → ∀x[¬P(x)], we find the following open, i.e., not closed, and not
completed branch consisting of the signed formulas in the schema below:

F ¬∀x[P(x)]→∀x[¬P(x)]
T ¬∀x[P(x)], F ∀x[¬P(x)]

F ∀x[P(x)], F ∀x[¬P(x)]
FP(a1), F ∀x[P(x)], F ∀x[¬P(x)]
FP(a1), F ∀x[P(x)], F ∀x[¬P(x)], F ¬P(a2)
FP(a1), F ∀x[P(x)], F ∀x[¬P(x)], T P(a2)

FP(a3), FP(a1), F ∀x[P(x)], F ∀x[¬P(x)], T P(a2)
FP(a3), FP(a1), F ∀x[P(x)], F ∀x[¬P(x)], T P(a2), F ¬P(a4)
FP(a3), FP(a1), F ∀x[P(x)], F ∀x[¬P(x)], T P(a2), T P(a4)

and so on

It is clear now that, no matter how far we continue this construction, we will never
find a tableau-proof of the formula in question. We may apply the rules in a different
order yielding a different open tableau, but not one that is closed. On the contrary,
from the resulting open tableau with initial branch {F ¬∀x[P(x)] → ∀x[¬P(x)]},
which consists of only one infinitely long, open branch, we can immediately read
off a counterexample to ¬∀x[P(x)]→ ∀x[¬P(x)] with the set N of all natural num-
bers as domain: the natural numbers 1,3,5, . . . do not have the property P, corre-
sponding with the occurrences of FP(a1), FP(a3), FP(a5), . . . in the open branch
and the natural numbers 2,4,6, . . . do have the property P, corresponding with the
occurrences of T P(a2), T P(a4), T P(a6), . . . in the (open) branch. So let P∗ be the
predicate ‘is even’ over the natural numbers. Then 〈N;P∗〉 is a counterexample to
¬∀x[P(x)]→ ∀x[¬P(x)], since 〈N;P∗〉 |= ¬∀x[P(x)] (the sentence ‘not all natural
numbers are even’ has truth value 1), while 〈N;P∗〉 �|= ∀x[¬P(x)] (the sentence ‘all
natural numbers are not even’ has truth value 0).

Note that 〈N;P∗〉 |= P(a2) [2] (the sentence ‘2 is even’ has truth value 1),
〈N;P∗〉 |= P(a4) [4] (the sentence ‘4 is even’ has truth value 1), and so on, corre-
sponding with the occurrence of TP(a2), TP(a4), . . . in the open branch above. But
〈N;P∗〉 �|= P(a1) [1] (the sentence ‘1 is even’ has truth value 0), 〈N;P∗〉 �|= P(a3) [3]
(the sentence ‘3 is even’ has truth value 0), and so on, corresponding with the oc-
currences of FP(a1), FP(a3), . . . in the open branch above.
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Example 4.21. ∃y∀x[P(x,y)] �′ ∀x∃y[P(x,y)], since there is a tableau-deduction of
∀x∃y[P(x,y)] from ∃y∀x[P(x,y)], i.e., there is a closed tableau T = {B4} starting
with the initial branch B0 = {T ∃y∀x[P(x,y)], F ∀x∃y[P(x,y)]}, where B4 is the set
consisting of all signed formulas in the schema below.

T ∃y∀x[P(x,y)], F ∀x∃y[P(x,y)]
T ∀x[P(x,a1)], T ∃y∀x[P(x,y)], F ∀x∃y[P(x,y)]
T ∀x[P(x,a1)], T ∃y∀x[P(x,y)], F ∀x∃y[P(x,y)], F ∃y[P(a2,y)]

TP(a2,a1), T ∃y∀x[P(x,y)], F ∀x∃y[P(x,y)], F ∃y[P(a2,y)]
TP(a2,a1), T ∃y∀x[P(x,y)], F ∀x∃y[P(x,y)], FP(a2,a1)

closure

Example 4.22. not ∀x∃y[P(x,y)] �′ ∃y∀x[P(x,y)]. If we try to construct a tableau-
deduction of ∃y∀x[P(x,y)] from ∀x∃y[P(x,y)], we find the following open and not
completed branch consisting of the signed formulas in the schema below, using
some obvious abbreviations:

T∀x∃y[P(x,y)], F∃y∀x[P(x,y)]
T∃y[P(a1,y)], T∀x∃y, F∃y∀x
T∃y[P(a1,y)], T∀x∃y, F∃y∀x, F∀x[P(x,a1)]

TP(a1,a2), T∀x∃y, F∃y∀x, F∀x[P(x,a1)]
TP(a1,a2), T∀x∃y, F∃y∀x, FP(a3,a1)

T∃y[P(a2,y)], TP(a1,a2), T∀x∃y, F∃y∀x, FP(a3,a1)
T∃y[P(a2,y)], TP(a1,a2), T∀x∃y, F∃y∀x, FP(a3,a1), F∀x[P(x,a2)]

T P(a2,a4), TP(a1,a2), T∀x∃y, F∃y∀x, FP(a3,a1), F∀x[P(x,a2)]
T P(a2,a4), TP(a1,a2), T∀x∃y, F∃y∀x, FP(a3,a1), FP(a5,a2)

and so on

It is clear that, no matter how far we continue our construction, we will never
find a tableau-deduction of ∃y∀x[P(x,y)] from ∀x∃y[P(x,y)]. (Application of the
rules in a different order may result in a different tableau, but not one that is
closed.) On the contrary, from the resulting open branch, which is infinitely long,
we can immediately read off a counterexample with the set N of all natural num-
bers as its domain: for each n = 1,2,3, . . ., P∗(n,2n), corresponding with the occur-
rences of T P(a1,a2), T P(a2,a4), T P(a3,a6), . . . in the open branch and for each
n = 1,2,3, . . ., not P∗(2n+1, n), corresponding with the occurrences of FP(a3,a1),
FP(a5,a2), FP(a7,a3), . . . in the open branch. So, let P∗ be the binary predicate over
the natural numbers, defined by P∗(n,m) := m = 2n. Then 〈N; P∗〉 |= ∀x∃y[P(x,y)]
(the sentence ‘for each natural number n there is a natural number m such that
m = 2n’ has truth value 1), but 〈N; P∗〉 �|= ∃y∀x[P(x,y)] (the sentence ‘there is a
natural number m such that for all natural numbers n, m = 2n’ has truth value 0).
Note that 〈N; P∗〉 |= ∃y[P(a1,y)][1],

〈N; P∗〉 |= P(a1,a2)[1,2] (the sentence ‘2 = 2 ·1’ has truth value 1),
〈N; P∗〉 |= ∃y[P(a2,y)][2],
〈N; P∗〉 |= P(a2,a4)[2,4] (the sentence ‘4 = 2 ·2’ has truth value 1),
and so on,

corresponding with the occurrences of T ∃y[P(a1,y)], T P(a1,a2), T ∃y[P(a2,y)],
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T P(a2,a4), . . . respectively in the open branch in Example 4.22.
But 〈N; P∗〉 �|= ∀x[P(x,a1)][1],

〈N; P∗〉 �|= P(a3,a1)[3,1] (the sentence ‘1 = 2 ·3’ has truth value 0),
〈N; P∗〉 �|= ∀x[P(x,a2)][2],
〈N; P∗〉 �|= P(a5,a2)[5,2] (the sentence ‘2 = 2 ·5’ has truth value 0),
and so on,

corresponding with the occurrences of F ∀x[P(x,a1)], FP(a3,a1), F ∀x[P(x,a2)],
FP(a5,a2), . . . respectively in the open branch in Example 4.22.

Like in classical propositional logic, the three notions A1, . . . ,An �′ B, A1, . . . ,An � B
and A1, . . . ,An |= B turn out to be equivalent. Remember that the first two of these
notions are syntactic, while the latter one is a semantic notion.

Theorem 4.24. If A1, . . . ,An �′ B, then A1, . . . ,An � B.

Proof. The proof is a generalization of the proof of the corresponding theorem 2.27
for classical propositional logic, now in addition using the introduction and elimi-
nation rules for the quantifiers in Theorem 4.23.

In Theorem 4.22 we have already shown that classical predicate logic is sound.
Theorem (Soundness): if A1, . . . ,A � B, then A1, . . . ,An |= B.

So in order to show the equivalence of model theory and proof theory for classical
predicate logic, it remains to be shown that the completeness theorem holds:
Theorem (Completeness): if A1, . . . ,An |= B, then A1, . . . ,An �′ B.
We shall do so in Section 4.5.

This is Gödel’s completeness theorem (1930) for classical predicate logic. The
soundness theorem says that we do not have too many axioms or rules, i.e., ev-
ery formula which may be deduced from given premisses by our axioms and rules
is a logical consequence of those premisses. The completeness theorem, on the other
hand, says that we have enough axioms and rules (for classical predicate logic), i.e.,
every formula which is a logical consequence of given premisses can be deduced
from those premisses by finitely many applications of our axioms and rules.

In Section 2.6 we already paid attention to the philosophical meaning of the
completeness theorem. Having the notions of validity and provability for (classical)
predicate logic at our disposal, we can add the following observations to our discus-
sion in Section 2.6 (assuming acquaintance with the notions of enumerable set and
non-enumerable set, which are treated in Chapter 3).

a) The notions of validity and satisfiability refer to the totality of all structures,
which is non-enumerable, while the equivalent proof-theoretic notions of provability
and irrefutability (B is irrefutable := ¬B is unprovable) refer only to the enumerable
infinity of logical proofs. In other words, in the definition of |= B we have a (uni-
versal) quantification over non-enumerably many structures, while in the definition
of � B there is an (existential) quantification over only enumerably many logical
proofs. So in the completeness theorem a reduction from the non-enumerably to the
enumerably infinite is achieved.
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b) The proof of Gödel’s completeness theorem is more complex than the proofs
of other theorems considered thus far. However, from a careful analysis of this proof
one can draw some further conclusions which are philosophically interesting. These
conclusions are formulated in the Compactness Theorem and the Löwenheim-
Skolem Theorem, also to be treated in Section 4.5.

Exercise 4.34. Construct either a tableau-proof of the following formulas or con-
struct a counterexample from an open branch in the tableau.
1. (∃x[P(x)]→∃x[Q(x)])→∃x[P(x)→ Q(x)],
2. ∃x[P(x)→Q(x)]→ (∃x[P(x)]→∃x[Q(x)]), and 3. ∃x∀y[P(x)→ P(y)].

4.5 Completeness, Compactness and Löwenheim-Skolem

Given formulas B and A1, . . . ,An, the tableaux rules suggest a procedure of search-
ing for a tableau-deduction of B from A1, . . . ,An:
start with TA1, . . . , TAn, FB and apply all the appropriate rules in some definite
fixed order, the choice of ordering being unimportant (at least, if we do not care
about efficiency); in an application of rule T → to, for example, S, T P → Q we
make two branches, one with S, FP and the other with S, TQ and similarly for
applications of the rules F ∧ and T ∨. Owing to the rules F ∃ and T ∀, the system-
atic search for such a tableau-deduction now does not necessarily come to an end in
finitely many steps, because new variables can be introduced again and again, which
may or may not cause closure. In the proof of the completeness theorem below we
suppose for reasons of simplicity that there are no individual constants in the lan-
guage. The case in which there are individual constants (and/or function symbols)
in the language is treated similarly.

Example 4.23. We wonder whether ∃x[P(x)→ Q(x)] �′ ∃x[P(x)]→∃x[Q(x)]. Start
making a tableau with initial branch {T ∃x[P(x)→Q(x)], F ∃x[P(x)]→∃x[Q(x)]}:

T ∃x[P(x)→ Q(x)], F ∃x[P(x)]→∃x[Q(x)]
T P(a1)→Q(a1), F ∃x[P(x)]→∃x[Q(x)]
T P(a1)→Q(a1), T ∃x[P(x)], F ∃x[Q(x)]

Because of rule T → we continue with two branches:
FP(a1), T∃x[P(x)], F∃x[Q(x)] and TQ(a1), T∃x[P(x)], F∃x[Q(x)]

FP(a1),T∃x[P(x)],F∃x[Q(x)],FQ(a1) TQ(a1),T∃x[P(x)],F∃x[Q(x)],FQ(a1)

So, the left – not yet completed – branch is open, while the right branch is closed.
For the left branch we may continue with:

FP(a1), T∃x[P(x)], F∃x[Q(x)], FQ(a1)
FP(a1), T P(a2), T∃x[P(x)], F∃x[Q(x)], FQ(a1)

FP(a1), T P(a2), T∃x[P(x)], F∃x[Q(x)], FQ(a1), FQ(a2)

By ad hoc considerations we can see that the left-most branch will never close,
no matter how many more tableaux rules we apply. From this open branch we
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can construct a counterexample M = 〈N; P∗, Q∗〉 with the natural numbers as
domain: by definition, M �|= P(a)[1], corresponding to the occurrence of FP(a1)
in the left branch; M |= P(a)[n] iff n > 1, corresponding to the occurrence of
T P(a2), T P(a3), . . . in the left branch; and M �|=Q(a)[n] for all n∈N, corresponding
to the occurrence of FQ(a1), FQ(a2), . . . in the left branch.

Then M |= ∃x[P(x)→ Q(x)], corresponding to the occurrence of T ∃x[P(x)→
Q(x)] in the left branch, since M |= P(a)→ Q(a)[1]; also M |= ∃x[P(x)], corre-
sponding to the occurrence of T ∃x[P(x)] in the left branch, since M |= P(a)[2], but
M �|= ∃x[Q(x)], corresponding to the occurrence of F ∃x[Q(x)] in the left branch,
since there is no natural number n with M |= Q(a)[n].

Like in propositional logic, any completed open tableau branch τ in a tableau
with initial branch {TA1, . . . ,TAn, FB} yields a model Mτ (see Definition 4.29) of
A1, . . . ,An in which B does not hold, showing that A1, . . . ,An �|= B (see Lemma 4.1)
and if all branches in a tableau with initial branch {TA1, . . . ,An, FB} are closed,
then A1, . . . ,An �′ B (see Lemma 4.2).

Definition 4.29 (Model Mτ ). Let τ be a completed open tableau branch. Then Mτ =
〈D; P∗1 , P∗2 , . . .〉 is the model defined by (1) D is the set of all natural numbers i such
that ai occurs in τ , and (2) P∗i (n1, . . . ,ni) iff T Pi(an1 , . . . ,ani) occurs in τ . From the
construction of Mτ it follows that one can always take D = N.

Lemma 4.1. Let τ be a completed open tableau branch. Then for each formula
E(an1 , . . . ,ank):
a) if T E(an1 , . . . ,ank) occurs in τ , then Mτ |= E(an1 , . . . ,ank)[n1, . . . ,nk],
b) if FE(an1 , . . . ,ank) occurs in τ , then Mτ �|= E(an1 , . . . ,ank)[n1, . . . ,nk].

Proof. The proof is by induction on the construction of E and generalizes the proof
of the completeness theorem for classical propositional logic in Chapter 2.
Basic step: E = P(an1 , . . . ,ank) is atomic. a) If T P(an1 , . . . ,ank) occurs in τ , then
by Definition 4.29, Mτ |= P(an1 , . . . ,ank) [n1, . . . ,nk]. b) If F P(an1 , . . . ,ank) occurs
in τ , then – since τ is open – T P(an1 , . . . ,ank) does not occur in τ and hence, by
Definition 4.29, Mτ �|= P(an1 , . . . ,ank) [n1, . . . ,nk].
Induction step. Suppose that a) and b) have been shown for C and D (induction
hypothesis). We want to prove a) and b) for C∧D, C∨D, C→D and ¬C.

If E = C ∧D and T C ∧D occurs in τ , then - because τ is completed - both
TC and T D occur in τ . Hence, by the induction hypothesis, Mτ |= C [n1, . . . ,nk]
and Mτ |= D [n1, . . . ,nk]. So, Mτ |= C∧D [n1, . . . ,nk]. If E = C∧D and F C∧D
occurs in τ , then - because τ is completed - FC occurs in τ or TD occur in τ .
Hence, by the induction hypothesis, Mτ �|=C [n1, . . . ,nk] or Mτ �|= D [n1, . . . ,nk]. So,
Mτ �|=C∧D [n1, . . . ,nk].

The cases E =C∨D, E =C→D and E =¬C are treated similarly. Next suppose
that a) and b) have been shown for A(ai,an1 , . . . ,ank) (induction hypothesis). We
want to prove a) and b) for ∀x[A(x,an1 , . . . ,ank)] and for ∃x[A(x,an1 , . . . ,ank)].

If E = ∀x[A(x,an1 , . . . ,ank)] and T E occurs in τ , then - because τ is com-
pleted - T A(ai,an1 , . . . ,ank) occurs in τ for every i ∈ D. Hence, by the induc-
tion hypothesis, Mτ |= A(ai,an1 , . . . ,ank)[i,n1, . . . ,nk] for every i ∈ D. So, Mτ |=
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∀x[A(x,an1 , . . . ,ank)][n1, . . . ,nk]. If E = ∀x[A(x,an1 , . . . ,ank)] and FE occurs in τ ,
then - because τ is completed - F A(ai,an1 , . . . ,ank) occurs in τ for some i ∈D with
ai new. Hence, by the induction hypothesis, Mτ �|= A(ai,an1 , . . . ,ank)[i,n1, . . . ,nk] for
some i ∈D. So, Mτ �|= ∀x[A(x,an1 , . . . ,ank)][n1, . . . ,nk].

The case E = ∃x[A(x,an1 , . . . ,ank)] is treated similarly. ��
Lemma 4.2. If all branches in a tableau with initial branch {TA1, . . . ,TAn,FB} are
closed, then A1, . . . ,An �′ B.

Proof. Suppose all branches in a tableau with initial sequent {TA1, . . . ,TAn,FB}
are closed. Then for some natural number k they all close in less than k steps. For
if not, then (by König’s lemma 1926; see Exercise 4.43) there would be an open
infinite tableau branch starting with {TA1, . . . ,TAn,FB}. The finitely many (closed)
tableau branches together yield a tableau-deduction of B from A1, . . . ,An. ��
Lemma 4.1 and Lemma 4.2 together yield the completeness theorem for classical
predicate logic.

Theorem 4.25 (Completeness of classical predicate logic).
a) If A1, . . . ,An |= B, then A1, . . . ,An �′ B. In particular, if n = 0:
b) If |= B, then �′ B.

Proof. a) Suppose A1, . . . ,An |= B. Apply the procedure of searching for a tableau-
deduction of B from A1, . . . ,An. Let T be the resulting completed tableau. Let
an1 , . . . ,ank be the free variables occurring in A1, . . . ,An,B. If there were an open
tableau branch τ in T , then by Lemma 4.1 for all i = 1, . . . ,n, Mτ |= Ai[n1, . . . ,nk]
and Mτ �|= B[n1, . . . ,nk], contradicting A1, . . . ,An |= B. Therefore, all branches in
tableau T with initial branch {TA1, . . . ,TAn,FB} are not open, i.e., not not closed
and hence closed. So, by Lemma 4.2, A1, . . . ,An �′ B.
b) is a special case (n = 0) of a). ��
The proof of the completeness theorem for (classical) predicate logic given above
is close to Gödel’s original proof, 1930; see van Heijenoort [6] for Gödel’s proof.
Another interesting completeness proof has been given by Henkin in [7].

4.5.1 Undecidability

In contrast to the case of propositional logic, the construction of a completed tableau
with initial branch {TA1, . . . ,TAn,FB} will in general not end after finitely many
steps, because the quantifier rules T ∀ and F ∃ may be applied again and again.
Although for many concrete formulas B we can make a decision about their being
valid (provable) by constructing a completed tableau with {FB} as initial branch by
ad hoc considerations about the growth of the tableau branches – as in the exam-
ples 4.20 and 4.22: ¬∀x[P(x)]→∀x[¬P(x)], resp. ∀x∃y[P(x,y)]→∃y∀x[P(x,y)] – ,
constructing a completed tableau with initial branch {FB} does not give a uniform
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decision procedure for validity (provability) in predicate logic. It is not the case that
given any formula B, our construction of a completed tableau with initial branch
{FB} will tell us after a finite number of steps (which, given B, can be determined
in advance) whether B is tableau-provable (and hence valid) or not.

A positive test for validity (provability) is a mechanical test such that for each
formula B, B is valid (provable) iff the test applied to input B gives a positive answer
in finitely many steps. And a negative test for validity is a mechanical test such that
for each formula B, B is invalid (not provable) iff the test applied to input B gives
a negative answer in finitely many steps. A decision procedure for validity is now
simultaneously both a positive and a negative test. Conversely, if one has both a
positive and a negative test (possibly different) for validity, then one can obtain
a decision procedure by applying the steps of both tests alternately to the input
formula B. (∗)

Note that constructing a completed tableau with initial branch {FB} clearly is a
positive test for validity: if it is applied to a valid formula B, the construction will
come to an end after finitely many steps and provide a tableau-deduction of B. But
our procedure does not give a negative test for validity: if it is applied to a non-valid
formula B, the procedure may run forever without presenting an answer, because the
rules T ∀ and F ∃ may be applied again and again. In 1936 A. Church (see Kleene
[9], Section 45) and A. Turing [15] proved independently that there is no decision
procedure for validity (provability) in classical predicate logic.

Theorem 4.26 (Church-Turing: Predicate logic is undecidable). There is no de-
cision procedure for validity (provability) in (classical) predicate logic.

This theorem not only says that constructing a completed tableau with initial branch
{FB} does not give a decision procedure for validity of an arbitrary formula B, but
also that no other decision procedure can exist. In other words, classical predicate
logic is undecidable.

From the Church-Turing Theorem and remark (∗) above it follows that there can
be no negative test for validity, since constructing a completed tableau with initial
branch {FB} is a positive test for validity.

And since A is not satisfiable if and only if ¬A is valid, it follows that there is a
negative test for satisfiability, but no positive test for satisfiability.

In the exercises we will consider some particular classes of formulas B, for which
one can determine a natural number N such that constructing a completed tableau
with initial branch {FB}with only N applications of the T ∀ and F ∃-rules, provides
a decision procedure for formulas in the class; for each formula B in the class it
yields in finitely many steps either a tableau-proof of B or the conclusion that no
tableau-deduction of B exists. So, for formulas B in the given class it holds that
if no tableau-proof of B is found after N applications of the T∀ and F∃-rules in
the construction of a completed tableau with initial branch {FB}, then there is no
tableau-proof of B at all.
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4.5.2 Compactness and Löwenheim-Skolem Theorems

Definition 4.30 (Validity and Satisfiability in a given Domain). Let D be a non-
empty domain and B a formula.
a) B is valid in D := M |= B [v] for all models M with domain D and for each
valuation v in D.
b) B is satisfiable in D := there is at least one model M with domain D and at least
one valuation v in D such that M |= B [v].
c) A class Γ of formulas is simultaneously satisfiable in D := there is a model M
with domain D and a valuation v in D such that M |= B [v] for all B in Γ .

On close inspection we have shown in the proof of the Completeness Theorem 4.25
much more than is stated in the formulation of this theorem itself.

Theorem 4.27 (Löwenheim, 1915). a) If not �′ B, then B is not valid in an enumer-
able domain (N or a finite subset of N).
b) Löwenheim’s theorem: if a formula B is satisfiable in any non-empty domain,
then it is satisfiable in an enumerable domain (N or a finite subset of N).
c) If A1, . . . ,An are simultaneously satisfiable in any non-empty domain, then they
are simultaneously satisfiable in an enumerable domain (N or a finite subset of N).

Proof. a) Suppose not �′ B. Then, by Lemma 4.2, not all branches in a completed
tableau with initial branch {FB} are closed. Hence, there is an open branch τ in such
a tableau. Let an1 , . . . ,ank be the free variables occurring in B. Then, by Lemma 4.1,
since FB occurs in τ , Mτ �|= B[n1, . . . ,nk]. And Mτ is a model with N or a finite sub-
set of N as domain (see Definition 4.29).
b) Suppose B is satisfiable (in some non-empty domain). Then not �′ ¬B. Let
an1 , . . . ,ank be the free variables occurring in ¬B. Then by the proof of a), Mτ �|=
¬B[n1, . . . ,nk], i.e., Mτ |= B[n1, . . . ,nk]. And the domain of Mτ is N or a finite subset
of N. c) Follows from b) taking B = A1∧ . . .∧An. ��
Theorem 4.28 (Compactness; Skolem). Let A0, A1, A2, . . . be an infinite list of
formulas. a) Compactness (Gödel 1930): If, for each natural number k, A0, . . . ,Ak

are simultaneously satisfiable, then A0, A1, A2, . . . are simultaneously satisfiable in
an enumerable domain (N or a finite subset of N).
b) Skolem’s (1920) generalization of Löwenheim (1915): If A0, A1, A2, . . . are si-
multaneously satisfiable, then A0, A1, A2, . . . are simultaneously satisfiable in an
enumerable domain (N or a finite subset of N).

Proof. b) follows immediately from a). To prove a), suppose that for each natural
number k, A0, . . . ,Ak are simultaneously satisfiable in some non-empty domain D.
Construct a tableau with initial branch {TA0,TA1,TA2, . . . ,F(P∧¬P)} by admit-
ting step by step more and more assumption formulas Ai in the tableau construction
(see also Kleene [9], Section 50).

Now suppose that all branches in this tableau would close. Then (by König’s
Lemma, see Exercise 4.43) there is a natural number m such that they all close
in less than m steps. Let A0, . . . ,Ak be all formulas Ai occurring in the finitely
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many closed branches. Then A0, . . . ,Ak �′ P∧¬P, contradicting the hypothesis of
(a). So, there must be at least one open branch τ in the tableau with initial branch
{TA0,TA1,TA2, . . . ,F(P∧¬P)}. Then, by Lemma 4.1, Mτ is a model with domain
N (or a finite subset of N) such that for all i = 0,1,2, . . ., Mτ |= Ai[v] for some valu-
ation v in the domain of Mτ . ��
Let Γ be a (possibly infinite) set of sentences (closed formulas). We say that M is a
model of Γ if M is a model of all sentences in Γ . We can specialize Theorem 4.28
to the case that Γ is an infinite list A0, A1, A2, . . . of closed formulas (sentences).

Corollary 4.1. Let Γ be a (possibly infinite) set of sentences (closed formulas).
a) Compactness theorem: If each finite subset of Γ has a model, then Γ has a model.
b) Downward Löwenheim-Skolem theorem: If Γ has a model, then Γ has an enu-
merable model.

It is important to realize that the downward Löwenheim-Skolem theorem is due to
the fact that first-order predicate languages contain only enumerably many symbols.

In addition to the ‘downward-’ there is also an ‘upward-’ Löwenheim-Skolem
theorem, saying that under certain conditions, if Γ has a model, then it has arbitrarily
large models. The interested reader is referred to van Dalen [4].

Once one has proved the completeness theorem, ‘if Γ |= B, then Γ � B’, also
for an infinite set Γ of premisses, the compactness theorem is an immediate con-
sequence of it. The argument goes as follows: By definition, Γ � B iff there is a fi-
nite subset Γ ′ of Γ such that Γ ′ � B. Therefore, using soundness and completeness,
Γ |= B iff there is a finite subset Γ ′ of Γ such that Γ ′ |=B. Taking for B=P∧¬P, we
obtain by contraposition: Γ �|= P∧¬P iff for each finite subset Γ ′ of Γ , Γ ′ �|= P∧¬P.
Or equivalently, Γ has a model iff each finite subset Γ ′ of Γ has a model.

For historical details concerning the Löwenheim-Skolem Theorem the reader is
referred to van Heijenoort [6].

On the Meaning of the Compactness and Löwenheim-Skolem Theorem
From Theorem 4.28 b) it follows immediately that there can be no class Γ of for-
mulas of first-order predicate logic such that Γ is simultaneously satisfiable in D
iff D has non-enumerably many elements. Therefore, the expression ‘having non-
enumerably many elements’ cannot be formulated in a first-order predicate lan-
guage; in other words, ‘non-enumerable’ is not a first-order property.

The Löwenheim-Skolem Theorem points out that the expressive power of first-
order predicate languages is restricted: ‘being non-enumerable’ cannot be formu-
lated in first-order logic. On the other hand, ‘having infinitely many elements’ is a
first-order property; see Exercise 4.35.

As is explained in Exercise 4.35, there are classes Γ1, Γ2, Γ3, . . . of formulas such
that for each n ∈ N, Γn is simultaneously satisfiable in D iff D contains at least n
elements. So, the expressions ‘having at least one element’, ‘having at least two
elements’, and so on, can all be formulated in an appropriate first-order predicate
language. However, below we shall prove that ‘having finitely many elements’ can-
not be formulated in a first-order predicate language.
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Theorem 4.29. There is no class Γ of formulas such that Γ is simultaneously satis-
fiable in D iff D contains finitely many elements. (∗)
Proof. Suppose there was a class Γ of formulas such that (∗) holds. Now consider
Δ := Γ ∪Γ1 ∪Γ2 ∪ . . ., where for each n, Γn is a class of formulas expressing that
there are at least n elements (see above). Then each finite subset of Δ is simultane-
ously satisfiable. So, by Theorem 4.28, Δ is simultaneously satisfiable in N or in a
finite subset of N. But by virtue of the formulas in Δ , Δ cannot be satisfiable in a
finite subset of N. So,5 Δ is simultaneously satisfiable in N. Therefore, Γ is simul-
taneously satisfiable in N. Contradiction with (∗). ��
Summarizing The Löwenheim-Skolem Theorems point out that the expressive power
of first-order predicate languages is restricted: ‘finite’ and ‘non-enumerable’ are
not first-order properties.

4.5.3 Second-order Logic

It is interesting to note that the notions of ‘finite’ and of ‘non-enumerable’, which
are not first-order properties (see Subsection 4.5.2), can be formulated in second-
order logic. In second-order logic one is allowed to quantify not only over individual
variables, but also over function variables and predicate variables. A second-order
formula is a formula that contains at least one occurrence of a function or predi-
cate variable. Here are some examples of second-order formulas, using x, y, z as
individual variables, u as a function variable and X as a (unary) predicate variable:

Example 4.24. ∃u∀x[u(x) = x]: there exists an identity function;
∀x∀y∃X [X(x)∧X(y)]: every two individuals share some property;
a = b � ∀X [X(a) � X(b)]: a and b are equal iff they have the same properties
(Leibniz’ Law).

Now let In f be the second-order sentence

∃z∃u[∀x[z �= u(x)]∧∀x∀y[x �= y→ u(x) �= u(y)]].

In f is true in an interpretation with domain D iff there is an injective function (u)
with domain D whose range is a proper subset of D (z �∈ Ran(u)). So, In f is true in an
interpretation iff the domain is Dedekind infinite (see Exercise 3.33). Consequently,
‘being finite’ can be expressed by the second-order formula ¬In f .

Let En be the second-order sentence

∃z∃u∀X [X(z)∧∀x[X(x)→ X(u(x))]→∀x[X(x)]].

En is true in an interpretation iff the domain of the interpretation is enumerable (see
Exercise 4.38). Consequently, ‘non-enumerable’ can be expressed by the second-
order formula ¬En.
¬En is true in an interpretation iff the domain of the interpretation is non-

enumerable. Since such interpretations exist, ¬En is satisfiable. But ¬En is not



4.5 Completeness, Compactness and Löwenheim-Skolem 235

satisfiable in any enumerable domain. Therefore: the Löwenheim-Skolem theorem
fails for second-order logic. The compactness theorem and many other properties
of first-order logic also fail for second-order logic. See Chapter 5 and Boolos [2],
Chapter 22.

4.5.4 Skolem’s Paradox

Below we shall work out the astonishing and philosophically interesting conse-
quence of the Löwenheim-Skolem theorem known as Skolem’s paradox.

Let Γ be the set of (closed) axioms of some axiomatic set theory formulated in a
first-order predicate language, for instance, Γ = ZF (Zermelo-Fraenkel set theory;
see Chapter 3). It is generally believed that such a Γ is consistent, in other words,
that there is some model M which makes all axioms in Γ true. But then it follows
from the Löwenheim-Skolem theorem that Γ has an enumerable model. There are
only enumerably many ‘sets’ in this model. (1)

On the other hand, we know that Cantor’s theorem (Corollary 3.6) is deducible
from Γ , saying that the set P(N) of all subsets of N is not enumerable. (2)

(1) and (2) together constitute what is called Skolem’s paradox (1922-3).
Skolem’s paradox is not an antinomy (or real paradox), but rather a veridical

(or truth-telling) paradox (see Section 2.10). It tells us the (astonishing) truth that
there is an enumerable model which makes all axioms in Γ true, although it follows
from Γ that there are non-enumerably many sets. How is this possible? How can we
explain this phenomenon?

The set of all subsets in the model is indeed enumerable and therefore there is
a bijective mapping from it to the set of natural numbers. But this mapping is not
in the model; so it does not make invalid the theorem of set theory which states
that there is no bijective mapping from the set P(N) of all subsets of N to N. More
precisely: Let Γ be the axioms of set theory formulated in a first order predicate
language. Then

Γ � ¬∃x[x is a bijection from P(N) to N].

Now let M be a countable model of Γ . Then

M |= ¬∃x[x is a bijection from P(N) to N],

i.e., there is no bijection (in the sense of M) in M from the set P(N)M in M to the set
N

M in M. This does not exclude that there is a bijection outside of M (i.e., being not
a set or object of the model M) from the set P(N)M in M to the set NM in M.

Skolem’s ‘paradox’ may be further clarified by the following two observations.
1. From the axioms of set theory it follows that there are non-enumerably many
subsets of a given infinite set. But given some set, we can actually define only enu-
merably many subsets of it. So, it is not that surprising that there is an enumerable
model of the axioms of set theory.
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2. Skolem’s ‘paradox’ is the result of an application of the Löwenheim-Skolem the-
orem which was a by-product of the completeness theorem. These theorems are the
result of considerations about the formal system as a whole and are not deducible
within the formal system itself. This explains the possibility that looking from the
outside to a formal system for set theory, the collection of all subsets of a given infi-
nite set may be enumerable, while at the same time this collection is non-enumerable
within the formal system itself.

We finish this section with a quotation from van Heijenoort [6], pp. 290-291:

For Skolem the discrepancy between an intuitive set-theoretic notion and its formal coun-
terpart leads to the ‘relativity’ of set-theoretic notions. Thus, two sets are equivalent if there
exists a one-to-one mapping of the first onto the second; but this mapping is itself a collec-
tion of ordered pairs of elements. If, in a formalized set theory, this collection exists as a
set, the two given sets are equivalent in the theory; if it does not, the sets are not equivalent
in the theory and, when one set is that of the natural numbers as defined in the theory, the
other becomes ‘nondenumerable’. The existence of such a ‘relativity’ is sometimes referred
to as the Löwenheim-Skolem paradox. But, of course, it is not a paradox in the sense of an
antinomy; it is a novel and unexpected feature of formal systems.

Exercise 4.35. a) Show that P(a1),¬P(a2) are simultaneously satisfiable in D iff D
contains at least two elements.
b) Find a class Γ of formulas such that Γ is simultaneously satisfiable in D iff D
contains at least three elements.
c) Show that ∀x[¬P(x,x)], ∀x∀y∀z[P(x,y)∧P(y,z)→ P(x,z)], ∀x∃y[P(x,y)] are si-
multaneously satisfiable in D iff D contains at least denumerably many elements.
d) Show that it is impossible to find a class Γ of formulas such that Γ is satisfiable
in D iff D has non-enumerably many elements.
Thus if one attempts to characterize a mathematical structure by means of a set of
axioms formulated in first order predicate logic, one is in a certain sense doomed to
failure if that structure involves a non-enumerable infinity of elements.

Exercise 4.36. Let Γ be a (possibly infinite) set of formulas. Γ is consistent := for
no formula B, Γ � B and Γ � ¬B. Note that Γ is consistent iff there is at least one
formula C such that Γ ��C. Supposing that Γ is a finite set of formulas, show that Γ
is consistent iff Γ has a model with an enumerable domain. (Skolem, 1922; see van
Heijenoort [6], p. 293.)

Exercise 4.37. Using Skolem’s result (1922) that Γ is consistent iff Γ has a model
with an enumerable domain (see Exercise 4.36), prove the completeness theorem:
if A1, . . . ,An |= B, then A1 . . . ,An � B. Skolem himself did not make this step from
his result (1922) to the completeness theorem (K. Gödel, 1930) for philosophical
reasons. The notions of validity and valid consequence contain a universal quan-
tification over all non-enumerably many structures and for that reason the idea of
formulating the completeness theorem did not even occur to Skolem.

Exercise 4.38. Let En be the second-order formula

∃z∃u∀X [X(z)∧∀x[X(x)→ X(u(x))]→∀x[X(x)]].
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Prove: En is true in an interpretation with domain D iff D is enumerable.

Exercise 4.39. Prove that there is a decision procedure (to test tableau-provability)
for the class of formulas having a prenex normal form such that, in the prefix, no
existential quantifier precedes any universal quantifier.

Exercise 4.40. A monadic formula contains by definition only unary (monadic)
predicate symbols. Prove that each monadic formula is equivalent to a truth-
functional composition of formulas of the form ∀x[B(x)] and ∃x[B(x)], where B
does not contain any quantifiers.

Exercise 4.41. Prove that there is a decision procedure (to test tableau-provability)
for the class of monadic formulas (see Exercise 4.40).

Exercise 4.42. Prove that there is a decision procedure (to test tableau-provability)
for the class of formulas having a prenex normal form ∃x∀y[M], where M is the
matrix, containing no individual variables except x and y and containing only one
binary predicate symbol P. Similarly, if M contains two binary predicate symbols.

Solutions of the decision problem for special classes of more complex formulas can
be found in Church [3], Section 46.

Exercise 4.43. Let N∗ be the set of all n-tuples (k1, . . . ,kn) of natural numbers, n ∈
N. Let s = (k1, . . . ,kn) ∈ N

∗ and t = (l1, . . . , lm) ∈ N
∗. Then the concatenation of s

and t, denoted by st, is the (n+m)-tuple (k1, . . . ,kn, l1, . . . , lm). And s is a prefix of
t := there is a tuple s′ ∈ N

∗ such that t = ss′.
Let T be a subset of N∗. T is a tree := a) for each t ∈ T , every prefix of t is also in

T , and b) for each t ∈ T , and for every i ∈N, if t(i) ∈ T , then for every j ≤ i, t( j) is
also in T . The elements of a tree T are called nodes. For s, t ∈ T , t is an immediate
successor of s := for some i ∈N, t = s(i). A path in T is a finite or infinite sequence
s0,s1, . . . of nodes in T , starting with the empty tuple (), i.e., s0 = (), and such that
each node si+1 is an immediate successor of the preceding node si.

König’s Lemma: Let T be a tree such that each node in T has only finitely many
immediate successors. If there are arbitrarily long finite paths in T , then there is an
infinite path in T . Prove König’s Lemma and show that the lemma need not hold for
trees in which some node has infinitely many immediate successors.

4.6 Predicate Logic with Equality

The predicate logic with equality arises from predicate logic (without equality) by
giving one of the binary predicate symbols, say ≡, special treatment. That is, in
the predicate logic with equality one allows only interpretations (structures) which
interpret ≡ as equality (=); no other interpretations of ≡ are allowed.

Definition 4.31 (Interpretation). Let M be an interpretation. M is an interpretation
or model for the predicate logic with equality := M interprets ≡ as = (equality).
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Here ≡ is a particular binary predicate symbol in the predicate language, while = is
the name of the equality relation, which is a mathematical object. For convenience,
one frequently writes = instead of the logical predicate symbol ≡, in which case the
sign = is used both as a symbol in the predicate language and as a symbol denoting
mathematical equality, which is the interpretation of the predicate symbol ≡.

‘A1, . . . ,Am |= B’ in the predicate logic with equality is defined similarly.

A Hilbert-type proof system for the predicate logic with equality is obtained by
adding to the axiom schemata and rules of inference for the predicate logic without
equality the following formulas as further axioms:
∀x[x ≡ x] ∀x∀y[x ≡ y → (P(. . . ,x, . . .)→ P(. . . ,y, . . .))]
∀x∀y∀z[x ≡ y → (x ≡ z → y ≡ z)] ∀x∀y[x ≡ y → f (. . . ,x, . . .)≡ f (. . . ,y, . . .)]
One easily sees that these axioms are valid in the predicate logic with equality. Of
course, they are not valid (in the predicate logic without equality): taking N as do-
main and interpreting ≡ as < (is less than), a false proposition results from ∀x[x≡ x].
The provability and deducibility results, in particular the deduction theorem, already
established for the predicate logic (without equality) all hold also for the predicate
logic with equality.

Theorem 4.30. In the predicate logic with equality:
� ∀x[x ≡ x] r ≡ s � t ≡ r � t ≡ s
� ∀x∀y[x ≡ y → y ≡ x] r ≡ s � r ≡ t � s ≡ t
� ∀x∀y∀z[x ≡ y∧ y ≡ z → x ≡ z] r ≡ s � P(. . . ,r, . . .)� P(. . . ,s, . . .)
(where r, s and t are terms) r ≡ s � f (. . . ,r, . . .)≡ f (. . . ,s, . . .)

Proof.
1) ∀x[x ≡ x] is an axiom and hence provable in the predicate logic with equality.
2) To show that � ∀x∀y[x ≡ y → y ≡ x] in the predicate logic with equality, sup-
pose a1 ≡ a2. From the second equality axiom: a1 ≡ a2 → (a1 ≡ a1 → a2 ≡ a1).
By Modus Ponens: a1 ≡ a1 → a2 ≡ a1. From the first equality axiom: a1 ≡ a1.
Applying Modus Ponens: a2 ≡ a1. Therefore, a1 ≡ a2 → a2 ≡ a1. Therefore,
∀x∀y[x ≡ y → y ≡ x] is provable in the predicate logic with equality.
3) To show that r ≡ s � P(. . . ,r, . . .) � P(. . . ,s, . . .) in the predicate logic with
equality, assume r ≡ s and assume P(. . . ,r, . . .). From the third equality axiom:
r ≡ s → (P(. . . ,r, . . .) → P(. . . ,s, . . .)). Then by two applications of Modus Po-
nens, P(. . . ,s, . . .). Conversely, assume P(. . . ,s, . . .). We have already shown that
� ∀x∀y[x ≡ y → y ≡ x]. So � r ≡ s → s ≡ r. Assuming r ≡ s, by Modus Ponens
s ≡ r. Then from the third equality axiom, P(. . . ,r, . . .).
4) The other cases are similar. ��

Another equivalent proof system for the predicate logic with equality is obtained by
adding to the axiom schemata and rules of inference for predicate logic the axiom
∀x[x ≡ x] and the axiom schema ∀x∀y[x ≡ y → (A(x)→ A(y))].

Definition 4.32 (Validity). |= A (A is valid in the predicate logic with equality) :=
for all interpretations M for the predicate logic with equality, M |= A.
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Theorem 4.31. Let M be a model (structure) for the predicate logic (without equal-
ity) with domain D, such that M satisfies the equality axioms. Let R be the interpre-
tation in M of≡. Then R is an equivalence relation on D (see Subsection 3.4.3). And
there is a model M′ such that
1. the domain of M′ is the quotient set D/R (see Subsection 3.4.3),
2. M′ interprets the binary predicate symbol≡ as the equality relation = ; hence M′
is a model for the predicate logic with equality, and
3. for any formula A = A(a1, . . . ,an), M |= A [d1, . . . ,dn] iff M′ |= A [[d1]R, . . . , [dn]R],
where for d ∈D, [d]R is the equivalence class of d with respect to R.

Proof. Let M = 〈D;PM
1 , PM

2 , . . . ; f M
1 , f M

2 , . . .〉 be a structure (for the predicate logic
without equality), which satisfies the equality axioms. Then M also satisfies the for-
mulas in Theorem 4.30, since these formulas are deducible from the equality axioms
in the predicate logic (without equality). Let R be ≡M, i.e., the interpretation in M
of the binary predicate symbol≡; R is not necessarily the equality relation. Since M
satisfies the first three formulas in Theorem 4.30, ∀x[x ≡ x], ∀x∀y[x ≡ y→ y ≡ x],
∀x∀y∀z[x ≡ y∧ y≡ z→ x≡ z], it follows that the relation R on D is reflexive, sym-
metric and transitive. In other words, R is an equivalence relation on D. As explained
in Subsection 3.4.3, any equivalence relation on D separates D into disjoint non-
empty equivalence classes. For d ∈ D, let [d]R be the equivalence class of d with
respect to R, i.e.,

[d]R := {d′ ∈D | R(d,d′)}= {d′ ∈D |M |= a1 ≡ a2 [d,d′]}.
Define the model M′ as follows: a) the domain of M′ is the quotient set D/R of all
equivalence classes [d]R with d ∈ D;
b) for any n-ary predicate symbol P, PM′

([d1]R, . . . , [dn]R) := PM(d1, . . . ,dn);
c) for any n-ary function symbol f , f M′

([d1]R, . . . , [dn]R) := [ f M(d1, . . . ,dn)]R.
By Theorem 4.30, M satisfies in particular: r ≡ s → (P(. . . ,r, . . .) � P(. . . ,s, . . .))
and r ≡ s → f (. . . ,r, . . .) ≡ f (. . . ,s, . . .). Consequently, the definitions of PM′

and
f M′

, given above, are correct, i.e., if [d1]R = [e1]R and . . . [dn]R = [en]R, then
PM(d1, . . . ,dn) iff PM(e1, . . . ,en) and f M(d1, . . . ,dn)R f M(e1, . . . ,en).

M′ interprets the binary predicate symbol ≡ by the equality relation = on
D/R. For ≡ M′

([d1]R, [d2]R) := ≡ M(d1,d2); but ≡ M(d1,d2) iff R(d1,d2); hence
≡M(d1,d2) iff [d1]R = [d2]R. Therefore ≡ M′

is the equality relation on D/R. By
straightforward induction it follows from the definition of M′ that M |= A [d1, . . . ,dn]
iff M′ |= A [[d1]R, . . . , [dn]R]. ��
It is straightforward to check that the soundness theorem holds for the predicate
logic with equality: if Γ � B in the predicate logic with equality, then Γ |= B in
the predicate logic with equality. Making use of Theorem 4.31 one can easily see
that from the completeness theorem, the compactness theorem and the Löwenheim-
Skolem theorem for the predicate logic (without equality) similar theorems follow
for the predicate logic with equality.

Theorem 4.32. Let Γ be a possibly infinite set of closed formulas, and let B be a
closed formula.
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a) Completeness for the predicate logic with equality: if Γ |= B in the predicate
logic with equality, then Γ �′ B in the predicate logic with equality.
b) Compactness for the predicate logic with equality: Γ has a model (in the pred-
icate logic with equality) if and only if every finite subset of Γ has a model (in the
predicate logic with equality).
c) Downward Löwenheim-Skolem for the predicate logic with equality: If Γ is
simultaneously satisfiable in the predicate logic with equality, then Γ is simultane-
ously satisfiable in an enumerable domain in the predicate logic with equality.

Proof. a) Let Γ = {A1, . . . ,An}. The construction of a complete tableau T with
initial branch {TA1, . . . ,TAn,FB} in the predicate logic with equality starts with
{TA1, . . . ,TAn, T E1, . . . ,T Em,FB}, where E1, . . . ,Em are the equality axioms for
the predicate and function symbols occurring in A1, . . . ,An,B. If all branches in
T close, then by Lemma 4.2, A1, . . . ,An,E1, . . . ,Em �′ B, i.e., A1, . . . ,An �′ B in
the predicate logic with equality. If τ is an open branch in T , then by Lemma
4.1 the model Mτ (see Definition 4.29) makes all of A1, . . . ,An, E1, . . . ,Em true
and B false. Then by Theorem 4.31 there is a model M′

τ for the predicate logic
with equality which makes A1, . . . ,An true and B false. Therefore, if A1, . . . ,An |= B
in the predicate logic with equality, there can be no open branch starting with
TA1, . . . ,TAn, TE1, . . . ,T Em, FB; in other words, in that case all such branches
will close and hence A1, . . . ,An �′ B in the predicate logic with equality. In case that
Γ contains infinitely many sentences, the construction of a complete tableau has to
be adapted, such that at each step one more assumption formula in Γ is taken into
consideration.
b) Because only a finite number of sentences in Γ can be used in a formal deduc-
tion, it follows that Γ � B iff there is a finite subset Γ ′ of Γ such that Γ ′ � B. From
the soundness and completeness theorems it follows that Γ |= B iff for some finite
subset Γ ′ of Γ , Γ ′ |= B. Taking for B the formula ∃x[x �≡ x] and noting that ∃x[x �≡ x]
is not true in any structure, the result follows by contraposition.
c) Let M be a model for the predicate logic with equality, which makes all formu-
las in Γ simultaneously true. Construct a complete tableau T with initial branch
{TA1,TA2, . . . ,T E1, . . . ,T Em,F(P∧¬P)} where {A1,A2, . . .} = Γ and E1, . . . ,Em

are the equality axioms for the predicate and function symbols occurring in Γ . If
all branches would close, then Γ �′ P∧¬P in the predicate logic with equality, and
hence M |= P∧¬P. Contradiction. Therefore, there is at least one open branch τ in
T , which by Lemma 4.1 yields a model Mτ that satisfies (simultaneously) all for-
mulas in Γ and the equality axioms. Then by Theorem 4.31 there is a model M′

τ for
the predicate logic with equality which simultaneously satisfies all formulas in Γ .
Since the domain D of Mτ is enumerable and since the domain of M′

τ is D modulo
R for some equivalence relation R, the domain of M′

τ is also enumerable. ��
Warning For instance M = 〈{0}; =〉 is a model of the formula ∃x∀y[x ≡ y] in the
predicate logic with equality. So, by the downward Löwenheim-Skolem theorem
for the predicate logic with equality (Theorem 4.32) the formula ∃x∀y[x ≡ y] has
a model with an enumerable domain. Notice that this domain cannot be N or any
other denumerable domain, since in the predicate logic with equality ∃x∀y[x ≡ y]
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expresses that there is exactly one element in the domain. Of course, in the predi-
cate logic without equality, ∃x∀y[x ≡ y] does have a model with N as domain, for
instance, M = 〈N; ≤〉 is a model of ∃x∀y[x≡ y].

For applications of the Compactness theorem in mathematics see Exercises 4.44,
4.45 and 4.46.

Exercise 4.44. * The elementary theory of fields, designated by FL, has as non-
logical symbols the constants 0, 1 and−1 and the binary function symbols + and · .
The non-logical axioms of FL are:
∀x∀y∀z[(x+ y)+ z = x+(y+ z)] ∀x[x+ 0 = x]
∀x[x+(−1 · x) = 0] ∀x∀y[x+ y = y+ x]
∀x∀y∀z[(x · y) · z = x · (y · z)] ∀x[x ·1 = x]
∀x[x �= 0→∃y[x · y = 1]] ∀x∀y[x · y = y · x]
∀x∀y∀z[x · (y+ z) = (x · y)+ (x · z)] 0 �= 1.
The models of FL are just the fields. Let An be the formula 1+ 1+ . . .+ 1 = 0,
where there are n occurrences of 1 on the left. By adding the non-logical axioms
¬A2, ¬A3, . . . , ¬An−1, An, we get the elementary theory FL(n) of fields of char-
acteristic n (n≥ 2). To get the elementary theory FL(0) of fields of characteristic 0,
we add all of the ¬An as non-logical axioms. Prove the following assertions:
1. If FL(n) is consistent, then n = 0 or n is prime. Hint: use the mathematical fact
that the characteristic of a field is 0 or a prime number.
2. If FL(0) |= B, then there is an n0 such that for every n ≥ n0, FL(n) |= B. Hint:
use the compactness theorem.
3. We cannot replace the infinite number of non-logical axioms we added to FL to
get FL(0) by a finite number. Hint: use 2.
4. There is no extension of FL whose models are just the finite fields.

Exercise 4.45. * Theorem: Let R be a partial ordering on V . Then there is a com-
plete partial ordering R′ on V such that R ⊆ R′. Prove this theorem for finite sets
V using mathematical induction on the number of elements of V and, using the
compactness theorem, prove this theorem also for infinite sets.

Exercise 4.46. * Let B = 〈V, �, �, ¬, 0, 1〉 be a Boolean algebra. An element v
in V is called an atom (of B) if v �= 0 and for all y ∈ V , if y ≤ v (i.e., y� v = y),
then y = 0 or y = v. B is atomic := for all x in V , if x > 0, then there is a y in V
such that y is an atom of B and y ≤ x. Let ATB := {v ∈ V | v is an atom of B}.
1. Prove that every atomic Boolean algebra B is isomorphic to a subalgebra of a
set-algebra 〈P(W ), ∩, ∪, CW , /0, W 〉. Hint: consider f : V → P(ATB), defined by
f (w) := {v ∈V | v is an atom of B and v≤ w}.
2. Using the compactness theorem, prove that every Boolean algebra can be embed-
ded in an atomic Boolean algebra. Hint: use the mathematical fact that the smallest
Boolean algebra, generated by finitely many elements, is finite and hence atomic.
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4.7 About the Relation of Logic with other Disciplines

4.7.1 Logic and Philosophy of Language

4.7.1.1 Definite Descriptions

Both Russell (1872-1970) and Wittgenstein (1889-1951), for different sets of rea-
sons, rejected Frege’s [5] distinction between sense (Sinn) and reference (Bedeu-
tung) (see Chapter 7). Frege’s analysis of a sentence like ‘The king of France is
bald’ would be that this sentence lacks a truth value (reference, Bedeutung), be-
cause the subject expression has no reference, but that the lack of a truth value does
not render the sentence meaningless, since this sentence does have a sense (Sinn).
Russell, having already rejected Frege’s theory of sense and reference, explains how
sentences like this one can be meaningful, while there is nothing for the proposition,
expressed by the sentence, to be about. Russell claims in [14] that the sentence in
question appears to be in subject-predicate form, but is not really so. Its grammatical
form is misleading as to its logical form. Russell’s analysis of ‘The king of France
is bald’ is as follows:

∃x [x is king of France ∧ x is bald ∧ ∀y [y is king of France→ y = x]], or
equivalently, but shorter ∃x [x is bald ∧ ∀y [y is king of France � y = x]].

And since there is no king of France, this sentence is false.
Russell analyzed ‘The king of France is bald’ as no simple subject-predicate

statement but as a far more complicated one, in which two different quantified vari-
ables occur. In Russell’s theory, the deep structure of such statements is very dif-
ferent from what their surface grammar suggests. Russell does not give an explicit
definition enabling one to replace a definite description by an equivalent one wher-
ever it appears, but a contextual definition, which enables one to replace sentences
containing definite descriptions by equivalent sentences not containing definite de-
scriptions. Russell used the following ‘iota’-notation:

ιxA(x) the unique x with property A, and
C(ιxA(x)) the unique x with property A has property C
as shorthand for ∃x[A(x)∧C(x)∧∀y[A(y)→ y = x]].

Where the condition C is complex, the iota notation is ambiguous. Russell’s sim-
ple example is well known:

¬B(ιxF(x)) The king of France is not bald.

Here the ambiguity of the iota notation corresponds to an ambiguity in the English,
between these two:
1. ¬(B(ιxF(x))), i.e., ¬∃x[F(x)∧ B(x)∧ ∀y[F(y)→ y = x]]: there is no object x
such that x is king of France and x is bald and x is the only king of France. And this
happens to be true.
2. (¬B)(ιxF(x)), i.e., ∃x[F(x)∧ (¬B)(x)∧∀y[F(y)→ y = x]]: there is some object x
such that x is king of France and x is not bald and x is the only king of France. And
this happens to be false; so we have ¬((¬B)(ιxF(x))).
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Note that this latter expression is not equivalent to B(ιxF(x)), i.e., ∃x[F(x)∧
B(x)∧ ∀y[F(y)→ y = x]] (the king of France is bald): ¬((¬B)(ιxF(x))) is true,
while B(ιxF(x)) is false. In Russell’s jargon, the definite description ιxF(x) has
narrow scope in version 1 and wide scope in version 2.

A less confusing notation for definite descriptions would result by treating them
as a kind of quantifier: (Ix)(F(x),B(x)) instead of B(ιxF(x)). Then the sentence in
version 1, ¬(B(ιxF(x))), would be rendered by ¬(Ix)(F(x),B(x)), and the sentence
in version 2, (¬B)(ιxF(x)), by (Ix)(F(x),¬B(x)). While it was somewhat strange to
have both, ¬(B(ιxF(x))) and ¬((¬B)(ιxF(x))) in the new notation this would be-
come ¬(Ix)(F(x),B(x)) and ¬(Ix)(F(x),¬B(x)), which looks similar to ¬∀x[A(x)]
and ¬∀x[¬A(x)]. which does not look like a contradiction at all.

4.7.1.2 Analytic-Synthetic

Immanuel Kant in his Critique of Pure Reason [8] makes a distinction between
analytic and synthetic judgments. Kant calls a judgment analytic if its predicate is
contained (though covertly) in the subject, in other words, the predicate adds nothing
to the conception of the subject. Kant gives ‘All bodies are extended (Alle Körper
sind ausgedehnt)’ as an example of an analytic judgment; I need not go beyond the
conception of body in order to find extension connected with it. If a judgment is not
analytic, Kant calls it synthetic. So, a synthetic judgment adds to our conception of
the subject a predicate which was not contained in it, and which no analysis could
ever have discovered therein. Kant mentions ‘All bodies are heavy (Alle Körper sind
schwer)’ as an example of a synthetic judgment.

Kant makes in [8] also a distinction between a priori knowledge and a poste-
riori knowledge. A priori knowledge is knowledge existing altogether independent
of experience, while a posteriori knowledge is empirical knowledge, which has its
sources in experience.

Sometimes one speaks of logically necessary truths instead of analytic truths and
of logically contingent truths instead of synthetic truths, to be distinguished from
physically necessary truths (truths which physically could not be otherwise, true in
all physically possible worlds). The distinction between necessary and contingent
truth is a metaphysical one, while the distinction between a priori and a posteriori
truth is an epistemic one. Although these – the metaphysical and the epistemological
– are certainly different distinctions, it is controversial whether they coincide in
extension, that is, whether all and only necessary truths are a priori and all and only
contingent truths are a posteriori.

In [8] Kant stresses that mathematical judgments are both a priori and synthetic.
‘Proper mathematical propositions are always judgments a priori, and not empiri-
cal, because they carry along with them the conception of necessity, which cannot
be given by experience’. Why are mathematical judgments synthetic? Kant consid-
ers the proposition 7+ 5 = 12 as an example. ‘The conception of twelve is by no
means obtained by merely cogitating the union of seven and five; and we may anal-
yse our conception of such a possible sum as long as we will, still we shall never
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discover in it the notion of twelve’. We must go beyond this conception of 7+5 and
have recourse to an intuition which corresponds to counting using our fingers: first
take seven fingers, next five fingers extra, and then by starting to count right from
the beginning we arrive at the number twelve.

7: 1 1 1 1 1 1 1
5: 1 1 1 1 1

7 + 5: 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

‘Arithmetical propositions are therefore always synthetic, of which we may become
more clearly convinced by trying large numbers’. Geometrical propositions are also
synthetic. As an example Kant gives ‘A straight line between two points is the short-
est’, and explains ‘For my conception of straight contains no notion of quantity, but
is merely qualitative. The conception of the shortest is therefore wholly an addition,
and by no analysis can it be extracted from our conception of a straight line’.

In more modern terminology, following roughly a ’Fregean’ account of analytic-
ity, one would define a proposition A to be analytic iff either
(i) A is an instance of a logically valid formula; e.g., ’No unmarried man is married’
has the logical form ¬∃x[¬P(x)∧P(x)], which is a valid formula, or
(ii) A is reducible to an instance of a logically valid formula by substitution of syn-
onyms for synonyms; e.g., ’No bachelor is married’.

W.V. Quine [13] is sceptical of the analytic/synthetic distinction. Quine argues as
follows. In order to define the notion of analyticity we used the notion of synonymy
in clause (ii) above. However, if one tries to explain this latter notion, one has to
take recourse to other notions which directly or indirectly will have to be explained
in terms of analyticity.

4.7.2 Logic and Philosophy of Science

It is an old problem to draw the line between scientifically meaningful and mean-
ingless statements. Consider the following quotation, taken from Hume’s Enquiry
Concerning Human Understanding.

When we run over libraries, persuaded of these principles, what havoc must we make? If
we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask,
Does it contain any abstract reasoning concerning quantity of number? No. Does it contain
any experimental reasoning concerning matter of fact and existence? No. Commit it then to
the flames: for it can contain nothing but sophistry and illusion”. (David Hume, 1711-1776)

As we learn from A.J. Ayer [1], the quotation above is a good formulation of the
positivist’s position. In the 1930’s the adjective logical was added, resulting in the
term Logical Positivism, which underscored the successes of modern logic and the
expectation that the new logical discoveries would be very fruitful for philosophy.
This logical positivism was typical of the Vienna Circle, a group of philosophers
(among them Moritz Schlick, Rudolf Carnap and Otto Neurath), scientists and math-
ematicians (among them Karl Menger and Kurt Gödel). According to A.J. Ayer [1],



4.7 About the Relation of Logic with other Disciplines 245

Einstein, Russell and Wittgenstein had a clear kinship to the Vienna Circle and had
a great influence upon it.

In order to draw a sharp distinction between scientifically meaningful state-
ments and scientifically meaningless statements the verification principle was for-
mulated: only those statements are scientifically meaningful which can be verified
in principle; in other words, the meaning of a proposition is its method of verifica-
tion. However, a proposition like ‘all ravens are black’, which has as logical form
∀x[R(x)→ B(x)], cannot be verified due to the universal quantifier, ∀; at the same
time we consider this proposition to be (scientifically) meaningful.

On the other hand, the proposition ‘all ravens are black’ can be conclusively fal-
sified, since its negation ‘not all ravens are black’, being of the form ¬∀x[R(x)→
B(x)], is logically equivalent to ‘some raven is not black’, which has the logical
form ∃x[R(x)∧¬B(x)], and hence can be verified. For this reason the falsification
principle was formulated: only those statements are scientifically meaningful which
can be falsified in principle. This principle seems to be more in conformity with
scientific practice: hypotheses are set up and rejected as soon as experimental re-
sults force us to do so. However, Otto Neurath himself soon realized that a slightly
more complex proposition, like ‘all men are mortal’, which has the logical form
∀x∃y[R(x,y)] (for every person there is a moment of time such that . . . ), can neither
be verified (due to the universal quantifier, ∀) nor falsified, since its negation ‘not all
men are mortal’, being of the form ¬∀x∃y[R(x,y)], is equivalent to ‘some men are
immortal’, which has the logical form ∃x∀y[¬R(x,y)], and hence – again due to the
universal quantifier – cannot be verified.

Falsification of ∀x∃y[R(x,y)] is equivalent to verification of ¬∀x∃y[R(x,y)], i.e.,
verification of ∃x∀y[¬R(x,y)], which is not possible in principle due to the univer-
sal quantifier. At the same time we want to consider a statement like ‘all men are
mortal’ as (scientifically) meaningful. Therefore, we have to give up not only the
verification principle, but also the falsification principle. This was already realized
by Otto Neurath during his stay (1938-39) in the Netherlands (oral communication
by Johan J. de Iongh).

Summarizing: statements of the form ∀x∃y[R(x,y)] cannot be verified due to the
universal quantifier ∀ and cannot be falsified due to the existential quantifier ∃.

Instead of the verification or falsification principle, a weaker criterion was for-
mulated, called the confirmation principle: a statement is scientifically meaningful if
and only if it is to some degree possible to confirm or disconfirm it. One way to con-
firm (increase the degree of credibility of) universal generalizations like ‘all ravens
are black’ is to find things that are both ravens and black, and one way to discon-
firm this proposition is to find things that are ravens but not black. The problem with
this confirmation principle is that ‘all ravens are black’, ∀x[R(x)→B(x)], is logically
equivalent to ‘all non-black things are non-ravens’,∀x[¬B(x)→¬R(x)], and accord-
ing to the confirmation principle, the latter proposition is confirmed by observations
of non-black non-ravens; thus observations of brown shoes, white chalk, etc., would
confirm the proposition ‘all ravens are black’. Various attempts have been made to
give the verification principle, in this weaker form, a precise expression, but the re-
sults have not been altogether satisfactory. For instance, a solution might be found
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by replacing the material implication → in ∀x[R(x)→ B(x)] by the counterfactual
implication �→ (see Chapter 6), for ∀x[A(x) �→ B(x)] is not logically equivalent
to ∀x[¬B(x) �→ ¬A(x)].

4.7.3 Logic and Artificial Intelligence; Prolog

As already mentioned in Chapter 2, the language of logic can be used to represent
knowledge. And the language of predicate logic is a richer tool than the proposi-
tional language. Suppose, for instance, that someone knows the following:

(1) john is a parent of bob (2) john is a parent of claudia
(3) john is male (4) bob is male
(5) claudia is female (6) x is brother of y if x and y have a parent in

common and x is male.

Introducing a predicate language containing the individual constants j, b and c,
the unary predicate symbols ’male’ and ’female’ and the binary predicate symbols
’parent’ and ’brother’, (1) to (6) can be represented by the following formulas:

(1a) parent( j,b). (2a) parent( j,c).
(3a) male( j). (4a) male(b).
(5a) female(c). (6a) brother(x,y)← parent(z,x) ∧ parent(z,y) ∧ male(x).

Note that (1) to (6) cannot be adequately formulated in a propositional language. In
the programming language Prolog, to be treated in Section 9.1, these formulas are
rendered as follows:

(1b) parent( j,b). (2b) parent( j,c).
(3b) male( j). (4b) male(b).
(5b) female(c). (6b) brother(X ,Y) :- parent(Z,X), parent(Z,Y ), male(X).

(1b) to (6b) constitute what is called a logic program; (1b) to (5b) are called a fact
and (6b) is called a rule in the logic program.

In (6a) and (6b) all variables are understood to be quantified universally. So (6a)
is short for

∀x∀y∀z [parent(z,x) ∧ parent (z,y) ∧ male(x)→ brother(x,y)]
which is equivalent to

∀x∀y [ ∃z [ parent(z,x) ∧ parent(z,y) ] ∧ male(x)→ brother(x,y)].

(1b), . . ., (6b), taken together, can be considered to form a knowledge base from
which new knowledge can be obtained by logical reasoning. The programming lan-
guage Prolog has a built-in inference mechanism. When provided with the database
consisting of (1b), . . ., (6b), Prolog will give the following answers to the following
questions, respectively:

?-brother(b,c). Answer: yes (corresponding with the fact that ’brother(b,c)’ is a
valid consequence of the given database).
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?-brother(c,b). Answer: no (corresponding with the fact that ’brother(c,b)’ is not a
valid consequence of the given database).

?-brother(X ,c). (For which X , brother(X ,c) ?) Answer: X = bob.

4.7.4 Aristotle’s Organon

While Stoic Logic was primarily concerned with propositions, Aristotle’s logic (see
[10, 11, 12] was mainly concerned with predicate logic, at least with a (small) part
of it. After Aristotle’s death in 322 B.C. his students grouped together a number of
his treatises on reasoning. This collection was called the Organon, or instrument of
science. Its two best known contributions to logic are described below.

The doctrine of the square of opposition This doctrine occurs in one of the earlier
works of the Organon, the Peri Hermeneias (On Exposition), also known under its
Latin name, De Interpretatione. Because there is a practical interest in the winning
of arguments, it is important to know what statements are opposed to each other
and in what ways. However, the only statements considered are of the form ’P is
Q’ and ’P is not Q’ with a universal or existential quantification. The doctrine can
be summarized in the following figure, called the square of opposition. Neither the
square of opposition itself nor the vowels A,E, I and O, by which the four types
have been distinguished since the Middle Ages, occur in Aristotle’s work.

∃x[P(x)∧Q(x)]

Some man is white

Particular Affirmative (I) Particular Negative (O)

¬∀x[P(x)→Q(x)]

∃x[P(x)∧¬Q(x)]

Some man is not white

�� �
�
�
�
�
���

�
�
�
�
��

sub-contrary

∀x[P(x)→¬Q(x)]
¬∃x[P(x)∧Q(x)]
No man is white

Universal Negative (E)

contrary∀x[P(x)→Q(x)]
Every man is white

Universal Affirmation (A)

Two statements are contradictory when they cannot both be true and cannot both be
false. Two statements are contrary when they cannot both be true, but may both be
false. Note that Aristotle here assumes implicitly that ∃x[P(x)] is true.

Later logicians have said the two particular statements are subaltern to the uni-
versal statements under which they occur in the figure, and sub-contrary to each
other. Again assuming that ∃x[P(x)] is true, subcontraries cannot both be false, al-
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though they may both be true. Aristotle also assumes that each universal statement
entails its subaltern, which again means that Aristotle is assuming implicitly the
truth of ∃x[P(x)].

Syllogisms In the Prior Analytics, one of the later works of the Organon, there
is a theoretical interest in valid reasoning. However, Aristotle was only concerned
with arguments of a particular form, called syllogisms. A syllogism is an argument
consisting of two premisses and one conclusion, where the two premisses relate the
terms of the conclusion to a third term, called the middle. For instance,

|= ∀x[P(x)→ Q(x)]∧∀x[Q(x)→ R(x)]→∀x[P(x)→ R(x)]
(A) (A) (A)

corresponds to Aristotle’s syllogism b A r b A r A. In this example, Q is the middle
term, since it relates the terms P and R of the conclusion. Below is another example:

|= ∀x[P(x)→¬Q(x)]∧∃x[R(x)∧P(x)]→∃x[R(x)∧¬Q(x)]
(E) (I) (O)

corresponds to Aristotle’s syllogism f E r I O. In this example, P is the middle term.

4.8 Solutions

Solution 4.1. a) (1) ∀x[G(x)→ P(x)]; (2) ∃x[G(x)∧P(x)].
b) ∀x[G(x)∧P(x)] says among other things that ∀x[G(x)] (every individual is a girl),
which is not implied by ‘every girl is pretty’. ‘Some girl is pretty’, rendered by (2),
implies that there is at least one girl (∃x[G(x)]), who in addition is pretty. However,
this is not implied by ∃x[G(x)→ P(x)], which says that there is some individual x
such that if x is a girl, then x is pretty.

Solution 4.2. 1. ¬M(c,d); 2. ∀x∀y[M(x,y)→M(y,x)]; 3. ∃x[M(x,d)];
4. ∃x∀y[¬M(x,y)].

Solution 4.3. (1) ∀x∃y[A(x,y)]; (2) ∃y∀x[A(x,y)].

Solution 4.4.
(1) ∀x∀y[L(x,y)]: for all objects x and y, x is in the relation L to y.
(2) ∃x∃y[L(x,y)]: there are objects x and y such that x is in the relation L to y.
(3) ∀x∃y[L(x,y)]: for every object x there is at least one object y (possibly depending
on x) such that x is in the relation L to y.
(4) ∃y∀x[L(x,y)]: there is an object y such that for all x, x is in the relation L to y.
(5) ∀y∃x[L(x,y)]: for every object y there is an object x (possibly depending on y)
such that x is in the relation L to y. Interchanging x and y, this formula is equivalent
to ∀x∃y[L(y,x)].
(6) ∃x∀y[L(x,y)]: there is an object x such that for all objects y, x is in relation L to
y. Interchanging x and y, this formula is equivalent to ∃y∀x[L(y,x)].
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Solution 4.5. 1. ∀x[C(x)→ L(d,x)] 2. ∃y[D(y)∧∀x[C(x)→ L(y,x)]]
3. ∃x[C(x)∧L(d,x)] 4. ∀y[D(y)→∃x[C(x)∧L(y,x)]]
5. ∃x[C(x)∧∀y[D(y)→ L(y,x)]]
6. ¬∃x[C(x)∧L(c,x)], or, equivalently, ∀x[C(x)→¬L(c,x)]
7. ∀y[D(y)→¬∃x[C(x)∧L(y,x)]] or ∀y∀x[D(y)∧C(x)→¬L(y,x)]
8. ∀y[D(y)→∃x[C(x)∧L(y,x)]∧∃x[W (x)∧L(y,x)]]
9. ∀y[D(y)∧∃x[C(x)∧L(y,x)]→∃x[W (x)∧L(y,x)]]
10. ∀y[D(y)→∃x[C(x)∧L(y,x)]]→∀y[D(y)→∃x[W (x)∧L(y,x)]]

Solution 4.6. 1. i) c1 ≡ c2; ii) ∀x[x≡ c1 → x≡ c2].
2. i) ‘3 = 4’ is false; ii) ‘all numbers equal to 3 are equal to 4’ is false.
3. i) ‘Reagan was older than Nixon’ is true; ii) ‘all persons older than Reagan are
older than Nixon’ is true.

Solution 4.7.
1. ∃x[P(x)], or equivalently, ∃x∀y[y≡ x→ P(y)]
2. ∃x∀y[P(y)→ y≡ x]
3. ∃x∀y[P(y)� y≡ x]
4. ∃x∃y[¬(x ≡ y)∧P(x)∧P(y)], or equivalently, ∃x∃y[x �≡ y∧∀z[z ≡ x∨ z ≡ y →
P(z)]], or equivalently, ∃x∃y∀z[x �≡ y∧ (z≡ x∨ z≡ y→ P(z))].
5. ∃x∃y∀z[x �≡ y∧ (P(z)→ z≡ x∨ z≡ y)]
6. ∃x∃y∀z[x �≡ y∧ (P(z)� z≡ x∨ z≡ y)]

Solution 4.8. a) ∀x[C(x)→ A(x)]; b) ∃x[M(x)∧W (x)]

Solution 4.9. a) ∀x[M(x)].
b) ¬∃x[O(x)], or, equivalently, ∀x[¬O(x)].
c) ∃x[B(x)]→ P, or, equivalently, ∀x[B(x)→ P].
d) S( j)→∀x[S(x)] or, equivalently, ∀x[S( j)→ S(x)].

Solution 4.10. ‘For any natural number n, if n �= n, then n �= n’ is a true sentence
of the form ∀x[P(x)→ Q(x)], but ‘there is a natural number n such that n �= n and
n �= n’ is a false sentence of the form ∃x[P(x)∧Q(x)]. If we assume that a domain
is by definition non-empty, i.e., contains at least one element, then it follows from
∀x[A(x)] that ∃x[A(x)].

Solution 4.11.
a) ‘If all natural numbers are even, then all natural numbers are odd’ is a true (0→
0 = 1) sentence of the form ∀x[P(x)]→∀x[Q(x)], but ‘for each natural number n, if
n is even, then n is odd’ is a false sentence of the form ∀x[P(x)→Q(x)].
b) ‘There is a natural number n such that if n is even, then n �= n’ is a true sentence
of the form ∃x[P(x)→ Q(x)], since, for instance, ‘if 3 is even, then 3 �= 3’ is true
(0 → 0 = 1). But ‘if there is a natural number n such that n is even, then there is
also a natural number n such that n �= n’ is a false (1→ 0 = 0) sentence of the form
∃x[P(x)]→∃x[Q(x)].

Solution 4.12. For M = 〈N,P∗,Q∗,R∗〉 with P∗: is even, Q∗: is odd, R∗: is less than
(<) we have:
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M |= P(a)[2] (2 is even) M |= ∃x[P(x)] (there is an even natural number)
M �|= P(a)[5] (not: 5 is even) M �|= ∀x[P(x)] (not: all natural numbers are even)
M |= Q(a)[5] (5 is odd) M |= ∃x[Q(x)] (there is an odd natural number)
M �|= Q(a)[2] (not: 2 is odd) M �|= ∀x[Q(x)] (not: all natural numbers are odd)

M |= ∃x[P(x)]→∃x[Q(x)] (true: 1 → 1 = 1)
M �|= ∃x[P(x)]→∀x[Q(x)] (false: 1 → 0 = 0)
M |= ∀x[P(x)]→∃x[Q(x)] (true: 0 → 1 = 1)
M |= ∀x[P(x)]→∀x[Q(x)] (true: 0 → 0 = 1)
M |= ∀x∃y[R(x,y)] (true: for each natural number x there is a natural number y such
that x < y). But M �|= ∃y∀x[R(x,y)] (false: there is a natural number y such that for
each natural number x, x < y).
M |= ∃x[P(x)→Q(x)] (true: there is a natural number x such that if x is even, then x
is odd; since ‘if 3 is even, then 3 is odd’ has truth value 1).
M �|= ∀x[P(x)→ Q(x)] (false: for all natural numbers x, if x is even, then x is odd;
since ‘if 2 is even, then 2 is odd’ has truth value 0).

Solution 4.13. 1. ∃x[P(x)]→∀x[P(x)] is satisfiable: M = 〈N; x = x〉 is a model; but
the formula is not valid: M = 〈N; is odd〉 is a countermodel.
2. ∃x[P(x)]→∃x[¬P(x)] is satisfiable: M = 〈N; is odd〉 is a model: but the formula
is not valid: M = 〈N; x = x〉 is a countermodel.
3. ∃x[P(x)]∧∀x[¬P(x)] is not satisfiable, since by Theorem 4.7 ∀x[¬P(x)] means
the same as ¬∃x[P(x)].
4. ∀x[P(x)]∧¬∃x[P(x)] is not satisfiable, since by Theorem 4.7 ¬∃x[P(x)] means
the same as ∀x[¬P(x)].
5. ¬∀x[P(x)]→ ∀x[¬P(x)] is satisfiable: M = 〈N; is negative〉 is a model; but the
formula is not valid: M = 〈N; is odd〉 is a countermodel.
6. ∀x[¬P(x)]→¬∀x[P(x)] is valid and hence satisfiable.
7. ∀x∃y[R(x,y)]∧∃x∀y[¬R(x,y)] is not satisfiable, since ∃x∀y[¬R(x,y)] has the same
meaning as ¬∀x∃y[R(x,y)] (see Theorem 4.15).
8. ∀x∃y[R(x,y)]→ ∃y∀x[R(x,y)] is satisfiable: M = 〈N; x ≥ y〉 is a model; but the
formula is not valid: M = 〈N; x≤ y〉 is a countermodel.
9. ∃x[P(x)]∧∃x[Q(x)]→ ∃x[P(x)∧Q(x)] is satisfiable: M = 〈N; is even, x = x〉 is
a model; but the formula is not valid: M = 〈N; is even, is odd〉 is a countermodel.
10. ∀x[P(x)∨Q(x)]→∃x[P(x)]∨∀x[Q(x)] is valid and hence satisfiable: in case that
¬∃x[P(x)], it follows from ∀x[P(x)∨Q(x)] that ∀x[Q(x)] .

Solution 4.14. 1. Not ∀x[P(x)→ S(x)],∃x[S(x)∧I(x)] |= ∃x[P(x)∧I(x)]. Counterex-
ample: M = 〈N; P∗, S∗, I∗〉 with P∗(x): x is even, S∗(x): x = x and I∗(x): x is odd.
2. Not ¬∃x[P(x) ∧ I(x)],∀x[I(x) → V (x)] |= ¬∃x[P(x) ∧V (x)]. Counterexample:
M = 〈N; P∗, V ∗, I∗〉 with P∗(x): x is even, V ∗(x): x is even, and I∗(x): x �= x.
3. ∀x[F(x)→ B(x)],¬∃x[M(x) ∧B(x)] |= ∀x[M(x)→ ¬F(x)]. Proof: Suppose the
two premisses are true under an interpretation M. To show: M |= ∀x[M(x)→¬F(x)].
So, suppose M |= M(a)[d] for an arbitrary element d in the domain of M. Then by
the second premiss, M |= ¬B(a)[d] and hence, by the first premiss, M |= ¬F(a)[d].
4. Not ∃x[M(x)∧¬S(x)],∀x[C(x)→ S(x)] |= ∃x[C(x)∧¬M(x)]. Counterexample:
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M = 〈N; M∗, S∗, C∗〉 with M∗(x): x is even, S∗(x): x is odd, and C∗(x): x �= x.
5. ∃x[P(x)∧S(x)],¬∃x[S(x)∧¬C(x)] |= ∃x[P(x)∧C(x)]. Proof: the second premiss
is equivalent to ∀x[S(x)→ C(x)] and the first premiss says that some plumber is
smart; so, by the second premiss, this plumber will also be careful.

Solution 4.15. 1. ¬∃x[A(x)∧ I(x)],∀x[C(x)→ A(x)] �|= ∃x[C(x)∧¬I(x)].
Counterexample: M = 〈N; C∗(x) : x �= x, A∗(x) : x is even, I∗(x) : x is odd〉.
2. ∃x[S(x)]→∃x[P(x)∧S(x)], P(c)∧¬S(c) �|= ¬∃x[S(x)].
Counterexample: M = 〈N; S∗(x) : x is even, P∗(x) : x = x; c∗ : 3〉.
3. ∀x[M(x)∧∃y[S(y)]→ S(x)], M(c)∧¬S(c) |= ¬∃x[S(x)].
Proof: Let M = 〈D; M∗, S∗; c∗〉 be a model of the two premisses. Then it is in
particular a model of M(c)∧∃y[S(y)]→ S(c) (1) and of M(c)∧¬S(c) (2). Now
suppose M were a model of ∃x[S(x)]. Then by (2) it would be a model of M(c)∧
∃y[S(y)]. So, by (1), M would be a model of S(c), contradicting (2). Hence, M is a
model of ¬∃x[S(x)].
4. ∃x[H(x)∧F(x)], ¬∃x[¬H(x)∧S(x)] �|= ∃x[F(x)∧¬S(x)].
Counterexample: M = 〈N; H∗(x) : x = x, F∗(x) : x is even, S∗(x) : x = x〉.
5. ∃x[S1(x)∧S2(x)],¬∃x[S1(x)∧U(x)] �|= ∃x[S1(x)∧U(x)∧¬S2(x)].
Counterexample: M = 〈N; S∗1(x) : x is even, S∗2(x) : x is even, U∗(x) : x �= x〉.
Solution 4.16. ∀x[P(x)→ Q(x)] �|= ∃x[P(x)∧Q(x)]. M = 〈N; P∗, Q∗〉, with P∗(x)
= Q∗(x) := x �= x, is a counterexample: M |= ∀x[P(x)→ Q(x)] (for every natural
number x, if x �= x, then x �= x), but M �|= ∃x[P(x)∧Q(x)] (it is not the case that there
is a natural number x such that x �= x).

Solution 4.17. i) (a) ∀x∃y[R(y,x)]; (b) ¬∃x∀y[R(x,y)].
ii) ∀x∃y[R(y,x)] �|= ¬∃x∀y[R(x,y)]. Counterexample: Let M = 〈N;≤〉. Then M |=
∀x∃y[R(y,x)] (for every natural number n there is a natural number m such that
m ≤ n). But M �|= ¬∃x∀y[R(x,y)], since M |= ∃x∀y[R(x,y)] (there is a natural num-
ber n, namely 0, such that for all natural numbers m, n≤ m.
iii) Concluding (b) from (a) we use tacitly that if m > n, then not n > m. Suppose (a)
and not (b). So, there is a natural number n greater than all natural numbers. From
(a) it follows that there is a natural number m such that m > n (1). However, by the
choice of n, n > m (2). However, (1) and (2) contradict m > n→¬(n > m).
iv) To show: ∀x∃y[R(y,x)], ∀x∀y[R(y,x)→¬R(x,y)] |= ¬∃x∀y[R(x,y)] So, suppose
M |= ∀x∃y[R(y,x)], M |= ∀x∀y[R(y,x) → ¬R(x,y)] and M |= ∃x∀y[R(x,y)]. Then
for some d1 in the domain of M, M |= ∀y[R(a1,y)][d1]. Since M |= ∀x∃y[R(y,x)]
it follows that M |= ∃y[R(y,a1)][d1] and therefore for some d2 in the domain of
M, M |= R(a2,a1)[d2,d1] (1). From M |= ∀y[R(a1,y)][d1] it follows that also M |=
R(a1,a2)[d1,d2] (2). But (1) and (2) contradict that M |= ∀x∀y[R(y,x)→¬R(x,y)].

Solution 4.18. |= ¬∃y∀x[S(y,x)� ¬S(x,x)].
Proof: Suppose that M |= ∃y∀x[S(y,x) � ¬S(x,x)]. Then there is some element
d in the domain D of M such that M |= ∀x[S(a,x) � ¬S(x,x)] [d], where a
is a new free variable. Hence, in particular, M |= S(a,a) � ¬S(a,a) [d], i.e.,
M |= S(a,a)[d] iff M |= ¬S(a,a)[d]. Contradiction. So, for every interpretation M,
M |= ¬∃y∀x[S(y,x)� ¬S(x,x)].
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Solution 4.19. Let M = 〈D;P∗〉 be an interpretation.
a) M |= ∀x[P(x)→ P(x)]; hence, M |= ∀x∃y[P(x)→ P(y)].
b) M |= ∀y[P(y)→ P(y)]; hence, M |= ∀y∃x[P(x)→ P(y)].
c) To show: for any interpretation M, M |= ∃x∀y[P(x) → P(y)]. Case 1: M |=
∃x[¬P(x)], i.e., there is a d in the domain of M such that M |= ¬P(a) [d]. But
then M |= P(a)→ P(b) [d,d′] for any valuation d′ of the free variable b (0 →
0/1 = 1). Therefore, M |= ∃x∀y[P(x) → P(y)]. Case 2: M |= ¬∃x[¬P(x)], i.e.,
M |= ∀x[P(x)], i.e., all objects in the domain of M have the property P∗. Then
M |= ∀x∀y[P(x)→ P(y)] (1→ 1 = 1). Hence, in particular, M |= ∃x∀y[P(x)→ P(y)].
d) To show: for any interpretation M, M |= ∃y∀x[P(x) → P(y)]. Case 1: M |=
∃y[P(y)], i.e., there is some d in the domain of M such that M |= P(b)[d]. But then
M |= ∀x[P(x)→ P(b)] [d] (0/1→ 1 = 1) and hence M |= ∃y∀x[P(x)→ P(y)]. Case 2:
M |=¬∃y[P(y)], i.e., M |= ∀y[¬P(y)], that is, no element in the domain of M has the
property P∗. But then M |= ∀y∀x[P(x)→ P(y)] (0→ 0 = 1) and hence, in particular,
M |= ∃y∀x[P(x)→ P(y)].

Solution 4.20. a) The formula ∀x∃y[R(x,y)]→ ∃x∀y[R(x,y)] contains a transition
from ∃y to ∀y and hence cannot be valid. Let M = 〈N; R∗ 〉 with R∗(d1,d2) := d2 is
even (and d1 = d1). Then M |= ∀x∃y[R(x,y)] (there is some natural number which
is even), but M �|= ∃x∀y[R(x,y)] (it is not the case that all natural numbers are even).
b) The formula ∃x∀y[R(x,y)]→ ∀x∃y[R(x,y)] contains a transition from ∃x to ∀x
and hence cannot be valid. M = 〈N; R∗〉, with R∗(d1,d2) := d1 is even (and d2 = d2),
is a counterexample.
c) Let M = 〈N; < 〉. Then M |= ∀x∃y[R(x,y)] (for every natural number x there is a
greater one y), but M �|= ∀x∃y[R(y,x)] (it is not the case that for every natural number
x there is a smaller one y; there is no natural number less than 0).
d) The formula ∃x∀y[R(x,y)]→∃y∀x[R(x,y)] contains again a transition from ∃x to
∀x and hence cannot be valid. See the counterexample in b).
e) and f) The right and left part of � express the same proposition; only the
variables x and y have been interchanged.

Solution 4.21. 1. Let M = 〈N; is even,0 = 1〉. Then M |= ∀x[P(x)]→Q: the propo-
sition ‘if all natural numbers are even, then 0 = 1’ has truth value 0→ 0 = 1. But
M �|= ∀x[P(x)→ Q]: it is not the case that for every natural number n, if n is even,
then 0 = 1 (for instance, ‘if 2 is even, then 0 = 1’ has truth value 1→ 0 = 0). So, M
is a counterexample.
2. Of course, ∀x[P(x)→ Q] |= ∃x[P(x)→ Q]. And ∃x[P(x)→ Q] |=| ∀x[P(x)]→ Q.
Hence, ∀x[P(x)→ Q] |= ∀x[P(x)]→ Q.
3. ∃x[P(x)]→Q |= ∃x[P(x)→ Q] follows from ∃x[P(x)]→ Q |=| ∀x[P(x)→ Q].
4. Let M = 〈N; is even,0 = 1〉. Then M |= ∃x[P(x)→Q]: the proposition ‘there is a
natural number n such that if n is even, then 0 = 1’ has truth value 1 (for instance,
‘if 3 is even, then 0 = 1’ has truth value 0 → 0 = 1). But M �|= ∃x[P(x)]→ Q: the
proposition ‘if there is an even natural number, then 0 = 1’ has truth value 1→ 0= 0.

Solution 4.22. 1. Suppose M |= ∀x[P(x)]→ ∃x[Q(x)] and M �|= ∃x[P(x)→ Q(x)].
Then M |= ¬∃x[P(x)→ Q(x)], i.e., M |= ∀x[¬(P(x)→ Q(x))]. So, M |= ∀x[P(x)∧
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¬Q(x)]; therefore, M |= ∀x[P(x)] and M |= ∀x[¬Q(x)]. Contradiction with M |=
∀x[P(x)]→∃x[Q(x)]. So, ∀x[P(x)]→∃x[Q(x)]) |= ∃x[P(x)→ Q(x)].

Conversely, suppose M |= ∃x[P(x)→ Q(x)] and M |= ∀x[P(x)]. Then for some
element d in the domain of M, M |= P(a)→ Q(a) [d], where a does not occur in
∃x[P(x)→ Q(x)]. Since M |= ∀x[P(x)], M |= P(a)[d]. So, M |= Q(a)[d]. Therefore,
M |= ∃x[Q(x)]. This shows that also ∃x[P(x)→Q(x)] |= ∀x[P(x)]→∃x[Q(x)].
2. ∃x[P(x)] → ∀x[Q(x)]) |= ∀x[P(x) → Q(x)], but M = 〈N; is even, is even〉 is a
counterexample to the converse formula,∀x[P(x)→Q(x)]→ (∃x[P(x)]→∀x[Q(x)]).

Solution 4.23. 1. ∀x[P(x)→Q(x)] |= ∃x[P(x)]→∃x[Q(x)].
For suppose M |= ∀x[P(x)→ Q(x)] (i) and M |= ∃x[P(x)]. Then for some element d
in the domain of M, M |= P(a)[d], where a is a new variable. From (i) it follows that
M |= Q(a)[d]. Hence, M |= ∃x[Q(x)].

However, conversely, M = 〈N; is even, is odd〉 makes ∃x[P(x)]→∃x[Q(x)] true:
the proposition ‘if there is an even natural number, then there is an odd natural num-
ber’ has truth value 1→ 1 = 1. But M �|= ∀x[P(x)→ Q(x)]: the proposition ‘every
even natural number is odd’ has truth value 0.
2. ∃x[P(x)→Q(x)] �|= ∀x[P(x)]→∀x[Q(x)]. For M = 〈N; x = x, is even〉 is a coun-
terexample. M |= ∃x[P(x)→Q(x)]: the proposition ‘there is some natural number n
such that if n = n, then n is even’ has truth value 1; for instance, ‘if 2 = 2, then 2 is
even’ has truth value 1→ 1 = 1. Also M |= ∀x[P(x)]. But M �|= ∀x[Q(x)].

However, conversely, we do have ∀x[P(x)]→ ∀x[Q(x)] |= ∃x[P(x)→ Q(x)]. For
suppose M |= ∀x[P(x)] → ∀x[Q(x)] (i) and M �|= ∃x[P(x) → Q(x)]. Then M |=
¬∃x[P(x) → Q(x)], i.e., M |= ∀x[¬(P(x) → Q(x))]. So, M |= ∀x[P(x) ∧ ¬Q(x)].
Therefore, M |= ∀x[P(x)] and M |= ∀x[¬Q(x)]. Contradiction with (i).

Solution 4.24. ∀x∃y[P(x)→Q(y)] |= ∃y∀x[P(x)→Q(y)]. For suppose
M |= ∀x∃y[P(x)→Q(y)] (i) and M |=¬∃y∀x[P(x)→Q(y)]. Then M |= ∀y∃x[P(x)∧
¬Q(y)]. So, M |= ∃x[P(x)] and M |= ∀y[¬Q(y)]. Hence, for some element d in the
domain of M, M |= P(a)[d], where a is a new free variable. From (i) it follows that
M |= ∃y[P(a)→ Q(y)] [d]. So, M |= ∃y[Q(y)]. Contradiction with M |= ∀y[¬Q(y)].

Solution 4.25. Let W (Wang) be the formula in question and let M be a model.
Case 1: M |= ∃x∃y[¬P(x,y)]. Then M |=W .
Case 2: M �|= ∃x∃y[¬P(x,y)]. Then M |= ∀x∀y[P(x,y)].
Subcase 2a): M |= ∃x∃y[¬Q(x,y)]. Then M |=W .
Subcase 2b): M �|= ∃x∃y[¬Q(x,y)]. Then M |= ∀x∀y[Q(x,y)]. Consequently, M |=W .

Solution 4.26. (a)(1) (i) To show: ∀x[B(x)] → C |= ∃x[B(x)→ C]. Suppose M |=
∀x[B(x)]→ C [v] and M �|= ∃x[B(x)→ C] [v]. Then M |= ¬∃x[B(x)→ C] [v], i.e.,
M |= ∀x[¬(B(x)→C)] [v]. So, M |= ∀x[B(x)∧¬C] [v]; therefore, M |= ∀x[B(x)] [v]
and M |= ¬C [v]. Contradiction with M |= ∀x[B(x)]→C [v].
Next we show: ∃x[B(x)→C] |= ∀x[B(x)]→C. So, suppose M |= ∃x[B(x)→C] [v].
Then for some element d in the domain D of M, M |= B(a)→C [d/v], where a is
new. Now suppose that M |= ∀x[B(x)] [v]. Then M |= B(a) [d/v]. So, M |=C [v].
(a)(1) (ii) To show: ∃x[B(x)]→C |= ∀x[B(x)→C]. Suppose M |= ∃x[B(x)]→C [v]
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and M �|= ∀x[B(x)→C] [v]. Then M |= ¬∀x[B(x)→C] [v], i.e., M |= ∃x[¬(B(x)→
C)] [v]. So, M |= ∃x[B(x)∧¬C] [v]; therefore, M |= ∃x[B(x)] [v] and M |= ¬C [v].
Contradiction with M |= ∃x[B(x)]→C [v].
Next we show: ∀x[B(x)→ C] |= ∃x[B(x)] → C. So, suppose M |= ∀x[B(x) → C]
[v] and M |= ∃x[B(x)] [v]. Then for some element d in the domain D of M, M |=
B(a) [d/v], where a is new. Since M |= ∀x[B(x)→C] [v], it follows that M |= B(a)→
C [d/v]. So, M |=C [v].
The validity of the other formulas is shown similarly.

Solution 4.27.
|= ∀x[P(x)]→∃x[Q(x)] � ∀x[P(x)]→∃y[Q(y)]

� ∃x[P(x)→∃y[Q(y)]]
� ∃x∃y[P(x)→ Q(y)].

|= ∃x[P(x)]→∀x[Q(x)] � ∃x[P(x)]→∀y[Q(y)]
� ∀x[P(x)→∀y[Q(y)]]
� ∀x∀y[P(x)→ Q(y)].

|= ∃x[P(x,a)]→∃x[Q(x)∨¬∃y[R(y)]] � ∃x[P(x,a)]→∃z[Q(z)∨∀y[¬R(y)]]
� ∃x[P(x,a)]→∃z∀y[Q(z)∨¬R(y)]
� ∀x[P(x,a)→∃z∀y[Q(z)∨¬R(y)]]
� ∀x∃z[P(x,a)→∀y[Q(z)∨¬R(y)]]
� ∀x∃z∀y[P(x,a)→Q(z)∨¬R(y)].

Solution 4.28.
|= ∃x[P(x)]→∃x[Q(x)] � ∃x[P(x)]→∃y[Q(y)]

Theorem 4.18 (a)(1) � ∀x[P(x)→∃y[Q(y)]]
Theorem 4.18 (a)(2) � ∀x∃y[P(x)→Q(y)].

|= ∃x[P(x)]→∃x[Q(x)] � ∃x[P(x)]→∃y[Q(y)]
Theorem 4.18 (a)(2) � ∃y[∃x[P(x)]→ Q(y)]
Theorem 4.18 (a)(1) � ∃y∀x[P(x)→ Q(y)].

Solution 4.29. No, since the ∀-rule is applied with respect to the free variable a
occurring in the premiss A(a).

Solution 4.30. No, since the ∃-rule is applied to a formula of the form A(a)→ C
where C does contain a.

Solution 4.31. Yes.

Solution 4.32.

∀z[A(z)]
∀x[A(x)]
premiss ∀x[A(x)]→∀z[A(z)]

MP

∀x[A(x)]→ A(a) ∀

∃z[A(z)]
∃x[A(x)]
premiss ∃x[A(x)]→∃z[A(z)]

MP

A(a)→∃z[A(z)] ∃
∃-schema

∀-schemaii)

i)
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Solution 4.33.
∀x[A→ B(x)]

premiss

A→ B(a)
[A]1

B(a)
∀x[B(x)] (1)

A→∀x[B(x)] ∀x[A→ B(x)]
A→ B(a)

(1)B(a)
∀x[B(x)]

A→∀x[B(x)] [A]1
premiss

Solution 4.34. 1. A tableau-proof of (∃x[P(x)]→∃x[Q(x)])→∃x[P(x)→Q(x)]:

F (∃x[P(x)]→∃x[Q(x)])→∃x[P(x)→Q(x)]
T ∃x[P(x)]→∃x[Q(x)], F ∃x[P(x)→Q(x)]

F ∃x[P(x)], F ∃x[P(x)→ Q(x)] | T ∃x[Q(x)], F ∃x[P(x)→Q(x)]
FP(a), F ∃x[P(x)→Q(x)] | T Q(a), F ∃x[P(x)→ Q(x)]
FP(a), F P(a)→Q(a) | T Q(a), F P(a)→ Q(a)
FP(a),TP(a),FQ(a) | T Q(a),T P(a),FQ(a)

2. The schema below shows an open, not completed, branch in a tableau with initial
branch {F ∃x[P(x)→Q(x)]→ (∃x[P(x)]→∃x[Q(x)])}:

F ∃x[P(x)→ Q(x)]→ (∃x[P(x)]→∃x[Q(x)])
T ∃x[P(x)→ Q(x)], F ∃x[P(x)]→∃x[Q(x)]
T ∃x[P(x)→ Q(x)], T ∃x[P(x)], F ∃x[Q(x)]

T∃x[→ ], T∃x, F∃x, T P(a1)→ Q(a1)
T∃x[→ ], T∃x, F∃x, FP(a1)

T∃x[→ ], T∃x, F∃x, FP(a1), T P(a2)
T∃x[→ ], T∃x, F∃x, FP(a1), T P(a2), FQ(a1)

T∃x[→ ], T∃x, F∃x, FP(a1), T P(a2), FQ(a1), FQ(a2)
T P(a3)→ Q(a3), T∃x, F∃x, FP(a1), T P(a2), FQ(a1), FQ(a2)

FP(a3), T∃x, F∃x, FP(a1), TP(a2), FQ(a1), FQ(a2)
FP(a3), T P(a4), F∃x, FP(a1), T P(a2), FQ(a1), FQ(a2)

and so on,

where we have used some obvious abbreviations.
From this open branch we can read off a counterexample to the formula in ques-

tion having as domain the set N of all natural numbers: the even natural numbers
have the property P∗, corresponding to the occurrences of T P(a2), TP(a4), . . .,
the odd natural numbers do not have the property P∗, corresponding to the occur-
rences of FP(a1), FP(a3), . . . and all natural numbers have the property not-Q,
corresponding to the occurrences of FQ(a1), FQ(a2), FQ(a3), . . .; take for P∗ the
predicate ‘is even’ and let Q(a) be interpreted as a �= a. Under this interpretation
there results a true proposition from ∃x[P(x)→ Q(x)], but a false proposition from
∃x[P(x)]→∃x[Q(x)].
P.S. After application of rule T∃ to T ∃x[P(x)→ Q(x)] and to T ∃x[P(x)] respec-
tively, one may delete the occurrences of these signed formulas. If one does so, one
finds a counterexample with a finite domain.

3. The schema below is a tableau-proof of ∃x∀y[P(x)→ P(y)]:
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F ∃x∀y[P(x)→ P(y)]
F ∃x∀y[P(x)→ P(y)], F ∀y[P(a1)→ P(y)]

F ∃x∀y[P(x)→ P(y)], F ∀y[P(a1)→ P(y)], F P(a1)→ P(a2)
F ∃x∀y, F ∀y[P(a2)→ P(y)], F ∀y[P(a1)→ P(y)], F P(a1)→ P(a2)

F ∃x∀y, F P(a2)→ P(a3), F ∀y[P(a1)→ P(y)], F P(a1)→ P(a2)
F ∃x∀y, TP(a2), FP(a3), F ∀y[P(a1)→ P(y)], T P(a1), FP(a2)

where we have used some obvious abbreviations.

Solution 4.35. a) trivial. b) {P(a1), ¬P(a2), ¬P(a3), Q(a2), ¬Q(a3)} is simulta-
neously satisfiable in D iff D contains at least three elements.
c) Suppose M = 〈D; P∗〉 is a model of the three formulas in question. Let d1

be an element in D. Since M |= ∀x∃y[P(x,y)], there must be some element d2

in D such that M |= P(a1,a2)[d1,d2]. Since M |= ∀x[¬P(x,x)], it follows that
d2 �= d1. From M |= ∀x∃y[P(x,y)] we conclude that M |= P(a2,a3)[d2,d3] for some
d3 in D. Again d3 �= d2, since M |= ∀x[¬P(x,x)]. But also d3 �= d1, since from
M |= ∀x∀y∀z[P(x,y)∧P(y,z)→ P(x,z)] it follows that M |= P(a1,a3)[d1,d3] and
M |= ∀x[¬P(x,x)]. From M |= ∀x∃y[P(x,y)] it follows that there must be some ele-
ment d4 in D such that M |= P(a3,a4)[d3,d4] and we can again show that d4 �= d3,
d4 �= d2 and d4 �= d1. By induction one shows that D contains at least denumerably
many elements. Conversely, let d0,d1,d2, . . . be denumerably many elements in D.
Define P∗(di,d j) iff i < j. Then 〈D; P∗〉 is a model of the formulas in question.
d) By the Lőwenheim-Skolem Theorem.

Solution 4.36. Let Γ be consistent and A ∈ Γ . Then Γ � A; hence, Γ �� ¬A. So,
there is at least one formula C such that Γ ��C. Conversely, suppose Γ ��C and for
some formula B both Γ � B and Γ � ¬B; then Γ � B∧¬B and hence Γ �C for any
formula C; contradiction.
Let Γ = A1, . . . ,An and suppose Γ is consistent. Then for some formula C, Γ ��
C, i.e., A1, . . .An �� C. So, by the completeness theorem, A1, . . .An �|= C, i.e., there
is a model M such that M |= A1 ∧ . . .∧An [n1, . . . ,nk] and M �|= C [n1, . . . ,nk], if
an1 , . . . ,ank are the free variables in A1, . . . ,An,C. So, Γ is satisfiable and hence, by
Löwenheim’s Theorem 4.27, Γ has an enumerable model. Conversely, if Γ has an
enumerable model, then for no formula B, Γ � B and Γ � ¬B.

Solution 4.37. Suppose A1, . . . ,An |= B and A1, . . . ,An �� B. Then A1, . . . ,An,¬B �� B
and therefore Γ = A1, . . . ,An,¬B is consistent. Using Skolem’s result, formulated in
Exercise 4.36, A1, . . . ,An,¬B has an enumerable model, contradicting A1, . . . ,An |=
B. Therefore, A1, . . . ,An � B.

Solution 4.38. Let M be an interpretation for second-order logic with domain D.
M |= En iff there are d ∈ D and f : D→ D such that for all V ⊆ D, if 1. d ∈V , and
2. for all x ∈ D, if x ∈V , then f (x) ∈V , then for all x ∈ D, x ∈V .
Suppose M |= En. Take V ′ := {d, f (d), f ( f (d)), . . .}. Then V ′ satisfies 1. and 2.
Therefore D⊆ V ′. Hence, D is enumerable. Conversely, suppose D is finite or D =
{d0,d1,d2, . . .}. Then En is true in any interpretation with domain D.
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Solution 4.39. Let B be of the form ∀x1 . . .∀xn∃y1 . . .∃ym[A(x1, . . . ,xn, y1, . . . ,ym)]
with A quantifier-free. For reasons of simplicity we suppose that n = 2 and m = 1.
Then developing a completed tableau with initial branch {F ∀x1∀x2∃y[A(x1,x2,y)]}
goes as follows:

F ∀x1∀x2∃y[A(x1,x2,y)]
F ∀x2∃y[A(a1,x2,y)] (a1 new)

F ∃y[A(a1,a2,y)] (a2 new)
FA(a1,a2,a1), F ∃y[A(a1,a2,y)]

FA(a1,a2,a1), FA(a1,a2,a2), F ∃y[A(a1,a2,y)]
FA(a1,a2,a1), FA(a1,a2,a2), FA(a1,a2,a3), F ∃y[A(a1,a2,y)]

... (propositional rules)
Further applications of rule F∃ do not make sense. If FA(a1,a2,a1), FA(a1,a2,a2),
FA(a1,a2,a3) with a3 new does not provide a closed tableau (which is decidable),
then there is no deduction of B.

Solution 4.40. In order to show that every monadic formula is equivalent to a truth-
functional composition of formulas of the form ∀x[B(x)] and ∃x[B(x)], where B
is quantifier-free, we proceed as follows. Let A = Q1x1 . . .Qnxn[M] be a monadic
formula in prenex normal form.
For instance, let A0 := ∃y∀x[(¬P(x)∨Q(y))∧ (P(y)∨¬Q(x))].
STEP 1: a) If Qn = ∀, replace M by its conjunctive normal form; if Qn = ∃, replace
M by its disjunctive normal form. (See Theorem 4.7.)
b) Replace ∀xn[C∧D] by ∀xn[C]∧∀xn[D]; and replace ∃xn[C∨D] by ∃xn[C]∨∃xn[D]
respectively. Applying step 1 b) to A0 yields

A′0 := ∃y[ ∀x[¬P(x)∨Q(y)]∧∀x[P(y)∨¬Q(x)] ].

c) In the result of step 1b) replace expressions of the form ∀x[E∨F ] by ∀x[E]∨F , if
x does not occur in F ; and replace expressions of the form ∃x[E ∧F ] by ∃x[E]∧F ,
if x does not occur in F . Applying step 1 c) to A′0 yields

A1 := ∃y[ (∀x[¬P(x)]∨Q(y))∧ (P(y)∨∀x[¬Q(x)]) ].

d) Remove vacuous occurrences of quantifiers.
STEP k+ 1 (k < n): similar to step 1 with n− k instead of n. Below we present the
results of the different substeps of step 2 in the case of our example.
2a): ∃y[ (∀x[¬P(x)]∧P(y)) ∨ (Q(y)∧P(y)) ∨

(∀x[¬P(x)]∧∀x[¬Q(x)]) ∨ (Q(y)∧∀x[¬Q(x)])]
2b): ∃y[ ∀x[¬P(x)]∧P(y)] ∨ ∃y[Q(y)∧P(y)] ∨

∃y[ ∀x[¬P(x)]∧∀x[¬Q(x)] ] ∨ ∃y[ Q(y)∧∀x[¬Q(x)] ]
2c) and d): (∀x[¬P(x)]∧∃y[P(y)]) ∨ ∃y[Q(y)∧P(y)] ∨ (∀x[ ¬P(x)]∧∀x[¬Q(x)]) ∨
(∃y[Q(y)]∧∀x[¬Q(x)]).

Solution 4.41. Let A be a monadic formula. Let C be a truth-functional composi-
tion of formulas of the form ∀x[B(x)] and ∃x[B(x)], B quantifier-free, such that C is
equivalent to A (see Exercise 4.40). Starting with FC and applying the propositional
rules we find a sequent of the form
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F∀x[B1(x)],T∃x[B2(x)], . . . ,T∀x[B3(x)],F∃x[B4(x)].

Next apply all F∀- and T∃-rules, yielding

FB1(a1), T B2(a2), . . . ,T∀x[B3(x)],F∃x[B4(x)] (a1,a2 new).

For each T∀- and F∃-formula in this sequent finitely many applications of the cor-
responding rules suffice to find a closed tableau, if there is any. If FB1(a1),T B2(a2),
. . . , TB3(a1), T B3(a2), T B3(a3), FB4(a1), FB4(a2), FB4(a3), FB4(a4), where a3

and a4 are new, does not yield a closed tableau (which is decidable), then there is no
closed tableau for the original formula.

Solution 4.42. Let B be a formula of the form ∃x∀y[M(x,y)], where M is quantifier-
free, and suppose that the only predicate symbol appearing in M is a binary predicate
symbol P. Our systematic search for a formal deduction of B starts as follows:

F ∃x∀y[M(x,y)]
F ∀y[M(a1,y)],F ∃x∀y[M(x,y)]
F M(a1,a2),F ∃x∀y[M(x,y)]

... (propositional rules)

The propositional rules applied to F M(a1,a2) may give rise to signed atomic for-
mulas of the form P(a1,a1), P(a1,a2), P(a2,a1) and P(a2,a2). Several branches
may result, each containing the expression F ∃x∀y[M(x,y)]. One more application
of rule F∃ yields at each branch:

F ∀y[M(a2,y)],F ∃x∀y[M(x,y)]
F M(a2,a3), F ∃x∀y[M(x,y)]

... (propositional rules)

The propositional rules applied to F M(a2,a3) may give rise to signed atomic for-
mulas of the form P(a2,a2), P(a2,a3), P(a3,a2) and P(a3,a3). So, the only way
closure can result from interaction of F M(a1,a2) and F M(a2,a3) is via P(a2,a2).
Applying rule F∃ more than two times does not make sense: if not all branches are
closed after two applications of rule F∃, there is no deduction of ∃x∀y[M(x,y)]. If
M contains n binary predicate symbols, one has to allow 2n applications of rule F∃
in order that the construction of a completed tableau provides a decision procedure.

Solution 4.43. Suppose T is a tree such that each node in T has only finitely many
immediate successors. For s a node in T , let Φ(s) := there are arbitrarily long finite
paths going through s. Let s0 be the empty tuple ().
(1) Φ(s0), by hypothesis.
(2) If Φ(s), then there is an immediate successor t of s such that Φ(t).
From (1) and (2) it follows that starting with (), we are thus always able to pick a
next node with the property Φ , ad infinitum, yielding an infinite path in T .
Proof of (2): Let s(0), . . . ,s(k) be the immediate successors of s. If the paths through
s(0), . . . ,s(k) were no longer than l0, . . . , lk respectively, then all paths through s
would be no longer than max(l0, . . . , lk). ��
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In the following tree the empty node () has infinitely many successors and it has
arbitrarily long finite paths, but there is no infinite path in it:

�
�
�
�
))

)))'
'
�
��

��

�������(0)

(1, 0)
(2, 0, 0)

(3, 0, 0, 0)

. . .
!
!
!!

Solution 4.44. 1. Suppose FL(n) is consistent. Then FL(n) is satisfiable. Let M be
a model of FL(n). Then M is a field of characteristic n. Hence, n = 0 or n is prime.
2. If FL(0) |= B, then there is an n0 such that for every n ≥ n0, FL(n) |= B. Proof:
Suppose FL(0) |= B. Then it follows from the compactness theorem that there is a
finite subset Γ ′ of FL(0) such that Γ ′ |= B. Choose n0 larger than all the n such that
¬An occurs in Γ ′.
3. We cannot replace the infinite number of non-logical axioms we added to FL to
get FL(0) by a finite number. Proof: Suppose we could. Let B be the conjunction of
these non-logical axioms. B would be true in fields of characteristic 0 but in no other
fields. FL(0) |= B. Choosing n0 as in assertion 2, we would conclude that there are
no fields of characteristic greater than n0, which is absurd.
4. There is no extension Γ of FL whose models are just the finite fields. Proof:
Suppose we had such an extension Γ . Let Bn be a formula which expresses that
there are at least n individuals; for example, B3 is ∃x∃y∃z[x �= y∧x �= z∧y �= z]. Let
Δ be obtained from Γ by adding all the Bn as non-logical axioms. Then Δ has no
model. Then it follows from the compactness theorem that there is a finite subset Δ ′
of Δ which has no model. Choose n0 larger than all the n such that Bn occurs in Δ ′
and choose a finite field M having more than n0 elements. Then M is a model of Δ ′.
Contradiction.

Solution 4.45. 1. Let R be a partial ordering on V and V finite. Let n be the number
of elements of V . If n= 1, then the proof is trivial. Suppose the induction hypothesis
and let V have n+ 1 elements. V has a minimal element, say v0. Then V −{v0} is
partially ordered by R�V −{v0}. By the induction hypothesis there is a complete
partial ordering R1 on V −{v0} such that R ⊆ R1. Let R′ := R1∪{(v0,v) | v ∈ V}.
Then R′ is a complete partial ordering on V such that R⊆ R′.
2. Let R be a partial ordering on V and V infinite. Consider a language containing
a binary predicate symbol≤ and an individual constant cv for each v ∈V . Let Γ be
the following set of sentences: If v1Rv2, then Γ contains cv1 ≤ cv2 .
If v1 �= v2, then Γ contains ¬(cv1 ≡ cv2).
∀x[ x≤ x ], ∀x,y[ x≤ y∧ y≤ x→ x≡ y ], ∀x,y,z[ x≤ y∧ y≤ z→ x≤ z ]
∀x,y[ x≤ y∨ y≤ x ]
If M = 〈D; R〉 is a model of Γ , then R yields a complete partial ordering on V .
By the compactness theorem, it suffices to prove that every finite subset of Γ has
a model. So, let Γ ′ be a finite subset of Γ and let V ′ := {v ∈ V | cv occurs in Γ ′}.
R�V ′ is a partial ordering on V ′ and V ′ is finite. Therefore, there is a complete partial
ordering on V ′ which contains R�V ′. That is, Γ ′ has a model.
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Chapter 5
Arithmetic: Gödel’s Incompleteness Theorems

H.C.M. (Harrie) de Swart

Abstract We formalize elementary number theory, i.e., we introduce a formal lan-
guage L for expressing properties of addition and multiplication of natural num-
bers, and a set P of non-logical axioms (of Peano) in order to be able to formally
deduce those properties from P .
Gödel’s first incompleteness theorem says that not every formula in L , which is
true in the intended interpretation, can be deduced from P; even worse, extending
P consistently with further axioms does not remedy this incompleteness. Gödel’s
second incompleteness theorem follows from his first one and says that the consis-
tency of P cannot be formally deduced from P; similar results hold for consistent
extensions of P . A sketch of Gödel’s incompleteness proofs is given.
It turns out that there are two non-isomorphic models of P (or of any consistent
extension Γ of P). However, if we also allow in our language quantifiers of the
type ∀X , where X is a variable over properties of natural numbers (or subsets of N),
as is done in second-order logic, then there is one single formula PA such that any
model of PA is isomorphic to the standard (or intended) interpretation.

5.1 Formalization of Elementary Number Theory

In elementary number theory or arithmetic one studies the properties of natural num-
bers with respect to addition and multiplication. In doing arithmetic one needs only
a very restricted sub-language of English containing the following expressions:
1. The binary predicate or relation ‘is equal to’.
2. The natural numbers: zero, one, two, three, and so on.
3. The functions of addition (plus) and multiplication (times).
4. Variables n,m for natural numbers. For instance, in: (n plus m) times (n plus m)
equals (n times n) plus two times (n times m) plus (m times m).
5. The connectives ‘if . . ., then . . .’, ‘and’, ‘or’, ‘not’ and ‘if and only if’. For in-
stance, in: if n equals m, then (n times n) equals (m times m).
6. The quantifiers ‘for all n, . . .’ and ‘there is at least one n such that . . .’. For in-
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stance, in: for all natural numbers n, n plus zero equals n. And in: there is a natural
number n such that (n times n) equals n.

Below we present a formal language L (Language for Arithmetic), rich enough to
express properties of addition and multiplication of natural numbers. This language
should contain non-logical symbols for:
1. the equality relation,
2. the individual natural numbers, and
3. the addition and multiplication functions.

Instead of introducing an individual constant cn for each individual natural num-
ber n, we can take only one individual constant c0 together with a unary function
symbol s, to be interpreted as the successor function. Then s(c0) can play the role
of c1, s(s(c0)) can play the role of c2, and so on.

Definition 5.1 (Formal Language L for Arithmetic).
Alphabet of L :
non-logical symbols: ≡ binary predicate symbol

c0 individual constant
s unary function symbol
⊕,⊗ binary function symbols

logical symbols: a1,a2,a3, . . . free individual variables
x1,x2,x3, . . . bound individual variables
�,→, ∧, ∨, ¬ connectives
∀, ∃ quantifiers
(,), [, ] parentheses

Definition 5.2 (Standard model of arithmetic).
N = 〈N; =; 0; ′, +, · 〉 is the intended interpretation of L , i.e., N interprets the
individual variables as natural numbers (i.e., as elements of N), the symbol≡ as the
equality relation = between natural numbers, the symbol c0 as the natural number 0,
the symbol s as the successor function ′ : N→N, defined by n′ = n+ 1, the symbol
⊕ as addition + of natural numbers and the symbol ⊗ as multiplication · of natural
numbers. The intended interpretationN of (the symbols in the formal language)L
is also called the standard model for the formal language L or the standard model
of arithmetic.

Warning: ≡, c0, s, ⊕ and ⊗ are just non-logical symbols in (the alphabet of) our
object-language, which under different interpretations may get many different non-
intended meanings:≡ might be interpreted as < (less than), c0 might be interpreted
as 5, s might be interpreted as taking the square, ⊕ might be interpreted as ex-
ponentiation and so on. One should clearly distinguish between the symbols in
our formal language, which under different interpretations may get many differ-
ent meanings, and the intended interpretation of these symbols. c0 is a symbol in
the object-language and not (the name of) a natural number; 0 (zero), on the other
hand, is the name of a natural number. Similarly,⊕ is a function symbol, not a func-
tion; + is (the name of) a function from N

2 to N, it is not a function symbol in the
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object-language. However, for reasons of easy notation, the following convention is
adopted, mostly implicitly.

Convention: One uses = instead of ≡ ; 0 instead of c0; ′ instead of s; and + and
· instead of ⊕ and ⊗, respectively. So, the symbols =, 0, ’, + and · are used in two
ways: ‘par abus de language’ as symbols in the formal language L for arithmetic
with many possible interpretations and as the intended interpretation of the corre-
sponding symbols in the language L .

Under this convention the alphabet of L contains the following symbols.
Symbols Name Intended interpretation
= binary predicate symbol equality
0 individual constant zero
′ unary function symbol successor function
+ ; · binary function symbols addition; multiplication
a1,a2, . . . free individual variables natural numbers
x1,x2, . . . bound individual variables natural numbers
�,→, ∧, ∨, ¬ connectives
∀, ∃ quantifiers
(,), [, ] parentheses

Definition 5.3 (Terms of L ).
The terms of the language L for formal arithmetic are defined as follows:
1. Each free individual variable a is a term.
2. 0 is a term.
3. If r and s are terms, then (r)′, (r+ s) and (r · s) are also terms.

If no confusion is possible, parentheses are omitted as much as possible.

Example 5.1. Examples of terms of L : 0, a1, 0+a1, (0+a1) ·a1, a1 ·a2, 0+a1 ·a1,
0′′ ·a1 + a2 ·a3.

Since there is only one predicate symbol in the alphabet, the atomic formulas in the
language L for formal number theory are of the form = (r,s), where r and s are
terms. Instead of = (r,s) one usually writes r = s.

Definition 5.4 (Atomic formulas of L ).
If r and s are terms, then r = s is an atomic formula of the language L for formal
number theory.

From these atomic formulas complex formulas can be built in the usual way by
means of connectives and quantifiers:

Definition 5.5 (Formulas of L ).
1. Every atomic formula of L is a formula of L .
2. If A and B are formulas of L , then also (A � B), (A→ B), (A∧B), (A∨B) and
(¬A) are formulas of L .
3. If A(a) is a formula of L and x is a bound individual variable, then also ∀x[A(x)]
and ∃x[A(x)] are formulas of L , where A(x) results from A(a) by replacing one or
more occurrences of a in A(a) by x.
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English sentences about addition and multiplication of natural numbers can be trans-
lated into formulas of the language L for formal number theory. Here are some
examples:
(i) For all natural numbers n,m, (n plus m) times (n plus m) equals (n times n) plus
two times (n times m) plus (m times m): ∀x∀y[(x+y) ·(x+y) = x ·x+0′′ ·x ·y+y ·y].
(ii) For all natural numbers n,m, if n equals m, then n square equals m square:
∀x∀y[x = y→ x · x = y · y].
(iii) For all natural numbers n, n plus zero equals n: ∀x[x+ 0 = x].
(iv) There is at least one natural number n such that n square equals n: ∃x[x · x = x].

Now consider the formula ∀x[x+ 0 = x], or rather ∀x[x⊕ c0 ≡ x]. This formula is
true under the intended interpretation N , in other words N |= ∀x[x+ 0 = x], but
this formula is not under every interpretation true. For instance, let M be the struc-
ture 〈Q; >; 5, ′, −, · 〉, i.e., M has the set of rational numbers as domain, interprets
≡ as ‘is greater than (>)’, c0 as 5, and ⊕ as subtraction (−). Under this interpre-
tation ∀x[x⊕ c0 ≡ x] reads as follows: for all rational numbers x, x− 5 > x; and
this happens to be false. Therefore, M �|= ∀x[x⊕ c0 ≡ x]. So, although ∀x[x⊕ c0 ≡ x]
is true under the intended interpretation, it is not always true,, i.e., not under every
interpretation true, in other words �|= ∀x[x⊕ c0 ≡ x].

Of course, |= ∀x[x⊕c0≡ x∨¬(x⊕c0≡ x)], i.e., ∀x[x⊕c0≡ x∨x⊕c0 �≡ x] is true
in every interpretation. The validity of this formula rests upon the fixed meaning of
the connectives and quantifiers, which for that reason are called logical symbols.
The symbols≡, c0, s, ⊕ and⊗ are called non-logical symbols, because they do not
belong to logic but come from mathematics; their meaning can vary depending on
the context, in other words, they allow many different interpretations.

Since valid patterns of reasoning should be applicable universally, i.e., in any
domain, mathematics, physics, economics or whatever, in logic we are interested in
valid formulas, i.e., in formulas which are always true, in other words, which yield
a true proposition in every interpretation of the non-logical symbols occurring in
them. But in elementary number theory (arithmetic) we are of course only interested
in the intended interpretation, and not in all possible interpretations.

Notice that N |= (a+1) ·(a+1) = a ·a+2 ·a+1, in other words, N |= ∀x[(x+
1) · (x+ 1) = x · x+ 2 · x+ 1], because for every n ∈ N, N |= (a+ 1) · (a+ 1) =
a · a+ 2 · a+ 1 [a/n]. But N �|= (a+ 1) · (a+ 1) = 4, because, for instance, N �|=
(a+ 1) · (a+ 1)= 4 [a/2], although N |= (a+ 1) · (a+ 1)= 4 [a/1].

So far we have introduced a (first-order) formal language L for elementary number
theory, in which propositions about addition and multiplication of natural numbers
can be formulated. The next step is to select a number of arithmetic (non-logical)
axioms, formulated in this language, in order to be able to deduce formally prop-
erties of natural numbers. To that purpose Guiseppe Peano formulated in 1891 the
following set P of arithmetic axioms, named after him.

The Peano axioms are formulas in the formal languageL for elementary number
theory and these axioms are true in the intended interpretation. The induction axiom
schema yields an induction axiom for any formula A in the language L .
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Definition 5.6 (Axioms of Peano).
∀x∀y∀z[x = y→ (x = z→ y = z)] axiom for =

∀x∀y[x′ = y′ → x = y]
∀x∀y[x = y→ x′ = y′] axioms for ′
∀x[¬(x′ = 0)]

∀x[x+ 0 = x] axioms for +
∀x∀y[x+ y′ = (x+ y)′]

∀x[x ·0 = 0] axioms for ·
∀x∀y[x · y′ = x · y+ x]

A(0)∧∀x[A(x)→ A(x′)]→∀x[A(x)] induction axiom schema

Now let P be the set of the axioms of Peano. One can verify that, for instance, P
� ∀x[x = x] and P � ∀x∀y[x+ y = y+ x] (see Exercise 5.1). And from experience
we know that any formula which is true in the intended interpretation and which one
encounters in practice can be formally deduced from P . In fact, in [4], Sections 38-
40, S.C. Kleene formally deduces a great number of such formulas from P .

By the completeness theorem (for the predicate logic with equality) we know that
for any formula A in L , P � A iff P |= A, i.e., P � A iff every interpretation that
makes P true also makes A true, in other words, P � A iff every model of P is also
a model of A. In particular: if P � A, then A is true in the standard interpretation, in
other words, if P � A, then N |= A. But the question arises if the following holds:

P � A iff A is true in the intended interpretation N , i.e.,
P � A iff N |= A.

In Section 5.2 it will be made clear that this is not the case. Even worse, there is
no consistent and axiomatizable extension Γ of P such that any formula A in L
which is true in the intended interpretation can be formally deduced from Γ . This is
Gödel’s first incompleteness theorem (for formal number theory; 1931).

Summarizing: In this Section we have given a formalization of elementary number
theory (arithmetic). That is:
1. We have introduced a formal language L for elementary number theory in which
we can express properties of natural numbers with respect to addition and multipli-
cation.
2. We have introduced an axiom system P for (formal) number theory in order to
be able to deduce formally formulas from P which are true in the intended inter-
pretation.

The result is called formal number theory, consisting of two components: the
formal language L and the axioms P of Peano. For any formula A,

if P � A, then A is true in the intended interpretation, i.e., N |= A.
But according to Gödel’s incompleteness theorem (1931), the converse,
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if A is true in the intended interpretation, then P � A
is not for all formulas A in L true.

Therefore, Gödel’s incompleteness theorem says that the proof power of P is
restricted; more generally, that the proof power of any consistent and axiomatizable
extension Γ of P is restricted.

Exercise 5.1. Prove: a) P � ∀x[x = x]; b) P � ∀y∀x[x′+ y = (x+ y)′];
c) P � ∀x∀y[x+ y = y+ x].

5.2 Gödel’s first Incompleteness Theorem

Definition 5.7 (Consistency). Let Γ be a set of formulas (in L or in any other
language). Γ is consistent := there is no formula A such that Γ � A and Γ � ¬A. (1)

Theorem 5.1. Γ is consistent iff
there is some formula A such that not Γ � A iff (2)
Γ is satisfiable. (3)

Proof. (1) implies (2), by the completeness theorem (2) implies (3), and (3) implies
(1). ��

1. Γ ′ is decidable, i.e., there is a decision method which decides for any formula A
in the language whether A is in Γ ′ or A is not in Γ ′, and
2. for any formula A in the language, Γ ′ � A iff Γ � A.
The elements of Γ ′ are called axioms for Γ .

The hope that any formula in L which is true under the intended interpretation, can
be formally deduced from Peano’s axioms, was dashed in 1931 by the incomplete-
ness theorem of Kurt Gödel.

Theorem 5.2 (First Incompleteness Theorem for Arithmetic).
Let Γ be a consistent and axiomatizable extension of P . Then there is a closed
formula AΓ (depending on Γ ) in L such that

1. AΓ is true in the intended interpretation, i.e., N |= AΓ , but
2. not Γ � AΓ , and
3. not Γ � ¬AΓ .

2 and 3 together say that AΓ is undecidable on the basis of Γ ; i.e., the proof power
of any consistent and axiomatizable extension Γ of P is restricted.

Of course, Gödel’s incompleteness theorem does not hold if we take for Γ the set of
all formulas in L which are true in the intended interpretation. But this set cannot
be seen as an axiom system, more precisely, it is not axiomatizable.

Gödel’s incompleteness theorem says that, given any consistent and axiomatiz-
able extension Γ of P , not every formula which is true in the intended interpretation

Definition 5.8 (Axiomatizable). Let Γ be a set of formulas (in L or in any other
language). Γ is axiomatizable := there is a subset Γ ′ of Γ such that:
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can be formally deduced from Γ . Given any such Γ , the truth of AΓ (in the standard
model) can be seen semantically, but AΓ cannot be formally deduced from Γ .

Since the set P of Peano’s axioms satisfies the conditions in Theorem 5.2,
Gödel’s incompleteness theorem says in particular that there is a formula A1 which
is true in the intended interpretation, but which cannot be deduced from P (not P
� A1). Because A1 is true in the intended interpretation, we might extend P with
the formula A1 to the set P ∪ {A1}. But then, taking Γ = P ∪ {A1}, Gödel’s
incompleteness theorem says that there is a formula A2, depending on P ∪ {A1},
such that A2 is true in the intended interpretation and not P , A1 � A2. In a similar
way we can find a formula A3 such that A3 is true in the intended interpretation and
such that not P , A1,A2 � A3, and so on.

Sketch of proof of Gödel’s first incompleteness theorem
A detailed proof of Gödel’s incompleteness theorem requires many pages. See, for
instance, Kleene [4], Boolos, Burgess and Jeffrey [2], Smith [8], Nagel [5]. How-
ever, the heart of the proof can be explained in a few lines, if we postulate in addition
that the formulas in Γ are true in N , which only slightly strengthens the condition
that Γ is consistent. The formula AΓ in the language L for formal number theory,
which is constructed given a set Γ satisfying the conditions of Theorem 5.2, means
that AΓ is not formally deducible from Γ ; more precisely:

AΓ is true (in the intended interpretation) if and only if not Γ � AΓ . (∗)
Hence, AΓ is a sentence in L that says of itself that it is not deducible from Γ .

Now suppose AΓ were false (in the intended interpretation). Then it follows from
(∗) that Γ � AΓ . Because of the Soundness Theorem it follows that Γ |= AΓ and
because Γ is supposed to be true (in the intended interpretation), it follows that AΓ
is true (in the intended interpretation). Contradiction. Therefore, AΓ is not false, and
hence true, in the intended interpretation. And hence it follows from (∗) that not
Γ � AΓ .

Because AΓ is true, ¬AΓ is false (in the intended interpretation). Now suppose
Γ � ¬AΓ . Then by soundness, Γ |= ¬AΓ . So, assuming that N |= Γ , it would
follow that N |=¬AΓ , i.e.,¬AΓ is true in the intended interpretation. Contradiction.
Therefore, not Γ � ¬AΓ . ��
Corollary 5.1. There exists a model of Peano’s arithmetic P that is not the stan-
dard model N .

Proof. Since P �� AP , we know by the completeness theorem for predicate logic
that P �|= AP , i.e., there is a model M of P such that M �|= AP . However, the
standard model N is a model of AP , in other words, AP is true in the intended
interpretation. Therefore, M cannot be the standard model N . ��
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5.2.1 Gödel-numbering

However, it still costs a lot of energy, given any Γ satisfying the conditions of The-
orem 5.2, to construct a (closed) formula AΓ in L satisfying the property (∗). The
key idea is the Gödel-numbering of the symbols (letters) in the alphabet of L , of
the terms and of the formulas in the language L for formal number theory. Each
symbol in the alphabet for formal number theory can be identified with a natural
number, called the Gödel-number of that symbol. Different symbols are identified
with different Gödel-numbers. For example, if we replace the free individual vari-
ables a1,a2, . . . by a,(|,a),(|,(|,a)), . . . respectively, then we can take the following
correlation (identification) of natural numbers with the symbols in L :

→ ∧ ∨ ¬ ∀ ∃ = + · ′ 0 a |
3 5 7 9 11 13 15 17 19 21 23 25 27

Many other correlations are possible. There is nothing special about our particular
Gödel-numbering.

A Gödel-numbering assigns to symbols, terms, formulas and deductions a natural
number, called the Gödel-number of the expression, such that:

(i) it assigns different Gödel-numbers to different expressions;
(ii) the Gödel-number of any expression is effectively calculable;
(iii) one can effectively decide whether a natural number is the Gödel-number of

some expression, and, if so, of what expression.
If A is an expression with Gödel-number n, we define �A� to be the expression

n̄, the numeral for n; 0̄ := 0, 1̄ := 0′, 2̄ := 0′′, . . . ; so, n̄ is the term in L that corre-
sponds to the natural number n.

Terms and formulas of L are finite sequences of symbols of (the alphabet of)
L formed according to certain rules and hence they can be identified with finite se-
quences of natural numbers. And in its turn each finite sequence k1, . . . ,kn of natural
numbers can be identified with another natural number, for instance, with pk1

1 · · · pkn
n ,

where p1, . . . , pn are the first n prime numbers. Then the individual variable a1, that
is (|,a), is identified with 227 ·325 and the atomic formula a1 = 0, that is = (a1,0),

is then identified with the natural number 215 ·3227·325 ·523.
Given a specific Gödel-numbering, if n is the Gödel-number of some formula, let

An(a) be the formula with Gödel-number n, so �An(a)�= n̄.
Now let Γ be a set of arithmetic axioms formulated in L . Then a formal deduc-

tion of A from Γ is a finite sequence of formulas in L , constructed according to
certain rules, and hence can be identified with a finite sequence of natural numbers,
and therefore with a natural number.

By correlating to different formal objects different natural numbers and by talk-
ing about the correlated natural numbers instead of the formal objects themselves,
the meta-mathematical predicate ‘A(a) is a formula, k is a natural number and b is
a formal deduction of A(k̄) from Γ ’ can be rendered by an arithmetical predicate
DedΓ (n,k,m) saying:

n is the Gödel-number of a formula, namely An(a), and m is the Gödel-number
of a formal deduction of An(k̄) from Γ .
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So, using the Gödel-numbering, meta-mathematics becomes part of arithmetic.
Γ � An(k̄) if and only if there is a natural number m such that DedΓ (n,k,m).

Now consider the arithmetic predicate DedΓ (n,n,m), which expresses: m is the
Gödel-number of a formal deduction of An(n̄) from Γ .

In section 52 of [4] S.C. Kleene proves that there is a formula DEDΓ (a,a1) of
L , such that for all natural numbers n,m:
(i) if DedΓ (n,n,m) is true, then Γ � DEDΓ (n̄, m̄), and
(ii) if DedΓ (n,n,m) is false, then Γ � ¬DEDΓ (n̄, m̄).

In order to prove (i) and (ii), one uses the supposition that Γ contains the axioms
of Peano and that Γ is axiomatizable.

Next consider the formula ¬∃y[DEDΓ (a,y)], having a as the only free variable.
This formula has a Gödel-number, say p, and hence equals Ap(a) according to the
notation introduced before.

Finally, consider the formula

AΓ := Ap(p̄) : ¬∃y[DEDΓ (p̄,y)].

Then it holds that AΓ is true in the intended interpretation if and only if there is no
formal deduction of the formula Ap(p̄) from Γ . But this latter formula Ap(p̄) is AΓ
itself! Therefore:

AΓ is true (in the intended interpretation) if and only if not Γ � AΓ (∗)
So, using the Gödel-numbering, it is possible to construct a formula AΓ of L , which
says of itself that it cannot be deduced from Γ .

Now it is easy to see that if Γ satisfies the conditions in Theorem 5.2, then not Γ �
AΓ and hence, by (∗), AΓ is true (in the intended interpretation). For suppose Γ is
consistent and Γ � AΓ . Let k be the Gödel-number of a formal deduction of AΓ from
Γ . Then DedΓ (p, p,k) is true. So it follows from (i) that Γ �DEDΓ (p̄, k̄). Therefore
Γ � ∃y[DEDΓ (p̄,y)]. But we supposed that Γ � AΓ , i.e., Γ � ¬∃y[DEDΓ (p̄,y)].
Contradiction with the consistency of Γ . Therefore, if Γ is consistent, then not Γ �
AΓ . And then according to (∗), AΓ is true (in the intended interpretation).

This finishes our sketch of the proof of Gödel’s first incompleteness theorem. For
further details the reader is referred to section 42 and Chapter X of Kleene [4]. For a
popular exposition of Gödel’s work see Nagel and Newman [5], Hofstadter [3], and
Smullyan [9].

Remark 5.1. The Liar’s paradox results from considering a sentence A which says
of itself that it is not true. By replacing ’A is not true’ by ’A is not deducible from
Γ ’, Gödel escapes a paradox and finds a deep philosophical insight instead.

Remark 5.2. In his proof of the incompleteness theorem, K. Gödel constructs –
given any Γ satisfying the hypotheses of the theorem – a formula AΓ , which in
the intended interpretation says of itself that it is not deducible from Γ . By thinking
about Γ and AΓ , we then see that not Γ � AΓ and hence that AΓ is true (in the in-
tended interpretation). The proof of Gödel’s incompleteness theorem is – although
very long and technically very smart – in essence very elementary. One can raise no
objections against it which would not be at the same time objections against parts
of traditional mathematics, which are generally considered to be unproblematic.
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Remark 5.3. The formula AΓ refers to itself, because it says about itself that it is not
deducible from Γ . Such sentences are not of particular interest for mathematicians.
However, Paris and Harrington [6] gave a strictly mathematical example of an in-
completeness in first-order Peano arithmetic, which is mathematically simple and
interesting and which does not require a numerical coding of logical notions.

Remark 5.4. From the definition of P |= A it follows immediately that for any for-
mula A, if P |= A, then A is true in the intended interpretation. (α)
By Gödel’s completeness theorem for the predicate logic, P |= A iff P � A. There-
fore, by Gödel’s incompleteness theorem for formal number theory, the converse of
(α) does not hold, i.e., not for every formula A, if A is true in the intended interpre-
tation, then P |= A.

5.2.2 Provability predicate for P

If A is a formula of the formal language L for arithmetic (see Section 5.1) with
Gödel-number n, we define �A� to be the expression n̄, the numeral for n; 1̄ = 0′,
2̄ = 0′′, etc.

We shall assume, but not prove, the following FACT: By ‘straightforwardly tran-
scribing’ in L the definition of being deducible from P , where P is the set of
Peano’s axioms for arithmetic, making reference to Gödel-numbers instead of ex-
pressions, one can construct a formula Prov(a) of L , with the following properties:
(a) Prov(a) expresses that a is the Gödel-number of a formula which is deducible
from P , and
(b) Prov(a) is a provability predicate for P , i.e.,

(i) if P � A, then P � Prov(�A�);
(ii) P � Prov(�B→C�)→ (Prov(�B�)→ Prov(�C�));
(iii) P � Prov(�A�)→ Prov(�Prov(�A�)�).

(c) In addition,
(iv) if P � Prov(�A�), then P � A.

That Prov(a) satisfies (i) may be seen as follows: Suppose P � A. Then there is a
formal proof of A from P . Let �A� be the Gödel number of A. Then the formula
Prov(�A�) expresses that �A� is the Gödel number of a formula which is deducible
from P . Then P � Prov(�A�). (ii) A deduction of C can be obtained from deduc-
tions of B and of B→C by one more application of Modus Ponens. This argument
can be formalized in P . Showing that Prov(a) satisfies (iii) is much harder: it in-
volves showing that the argument that Prov(a) satisfies (i) can be formalized in P .
To show (iv), suppose that P � Prov(�A�). Then Prov(�A�) is true in N . Hence A
is deducible from P .

However, Prov(a) does NOT meet the stronger condition P � Prov(�A�)→ A.
Löb’s theorem says that if P � Prov(�A�)→ A, then P � A.

For more details the reader is referred to Boolos and Jeffrey [1], Chapter 16, or
to Boolos, Burgess and Jeffrey [2], Chapter 18.
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There is an interesting connection between the provability predicate for arith-
metic and the necessitation operator � of a particular modal logic GL (Gödel’s
modal Logic); see Section 6.12.

5.3 Gödel’s second Incompleteness Theorem

Theorem 5.3 (Second Incompleteness Theorem for Arithmetic). Let Γ be a con-
sistent and axiomatizable extension of P . Let ConsΓ be a formula in L , expressing
the consistency of Γ . Then not Γ �ConsΓ .

Gödel’s second incompleteness theorem says that the consistency of Γ – provided
that Γ satisfies the conditions mentioned above – cannot be proved by means which
are available in Γ itself.

Since the standard model N is a model of the axioms P of Peano, we know
that P is consistent. By Gödel’s second theorem, the consistency proof for P just
given cannot be formalized in P itself.

First we have to construct a formula ConsΓ in L expressing the consistency of Γ .
Because P ⊆ Γ , Γ � ¬(0 = 1). Consequently, Γ is consistent if and only if not
Γ � 0 = 1. Now let k be the Gödel-number of the formula 0 = 1; therefore, Ak(a) is
the formula 0 = 1 and Ak(k̄) is the same formula, since a does not occur in 0 = 1.
The consistency of Γ can be expressed in L by the formula¬∃y[DEDΓ (k̄,y)]: there
is no y such that y is the Gödel-number of a formal deduction of Ak(k̄), i.e., 0 = 1,
from Γ . Let ConsΓ := ¬∃y[DEDΓ (k̄,y)]. Then ConsΓ is a formula in L expressing
the consistency of Γ .

Proof (of Gödel’s second theorem). Let Γ be an axiomatizable extension of P . In
Gödel’s first incompleteness theorem we have shown informally:

(I) if Γ is consistent, then not Γ � AΓ , where AΓ is the formula Ap(p̄).

The statement that AΓ is not deducible from Γ is expressed via the Gödel-numbering
by ¬∃y[DEDΓ (p̄,y)], this is AΓ itself. The statement that Γ is consistent is ex-
pressed by the formula ConsΓ . Because the informal proof of (I) is so elementary,
it can be completely formalized in P via the Gödel-numbering, and hence in Γ .
Therefore,

(II) Γ �ConsΓ → AΓ .

Now suppose that Γ � ConsΓ . Then it follows from (II) that Γ � AΓ . Supposing
that Γ is also consistent, this is in contradiction to Gödel’s first incompleteness
theorem. Therefore, if Γ is a consistent and axiomatizable extension of P , then not
Γ �ConsΓ . ��
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5.3.1 Implications of Gödel’s Incompleteness Theorems

In Chapter X , Minds and Machines, of his book From Mathematics to Philosophy,
Hao Wang [10] discusses the implications of Gödel’s incompleteness results with
respect to the superiority of man over machine. In section 7 of this chapter Hao
Wang presents as Gödel’s opinion that the two most interesting rigorously proved
results about minds and machines are:

1 The human mind is incapable of formulating (or mechanizing) all its mathematical intu-
itions. That is, if it has succeeded in formulating some of them, this very fact yields new
intuitive knowledge, e.g., the consistency of this formalism. This fact may be called the
’incompletability’ of mathematics. On the other hand, on the basis of what has been proved
so far, it remains possible that there may exist (and even be empirically discoverable) a
theorem-proving machine which in fact is equivalent to mathematical intuition, but cannot
be proved to be so, nor even be proved to yield only correct theorems of finitary number
theory.

2 The second result is the following disjunction: Either the human mind surpasses all ma-
chines (to be more precise: it can decide more number theoretical questions than any ma-
chine) or else there exist number theoretical questions undecidable for the human mind.

Gödel thinks Hilbert was right in rejecting the second alternative. If it were true, it would
mean that human reason is utterly irrational by asking questions it cannot answer, while
asserting emphatically that only reason can answer them. Human reason would then be
very imperfect . . . .

Wang also explains that Gödel considered the attempted proofs for the equivalence
of mind and machines as fallacious. See also Searle [7].

5.4 Non-standard Models of Peano’s Arithmetic

Let N be the intended interpretation or standard model of L , the language for
formal number theory, i.e., N := 〈N; =; 0, ′, +, · 〉. Trivially, N is a model of P ,
Peano’s axioms. But N is not the only model of P . Given N , one can construct
another model of P that is isomorphic but not identical to N by ’replacing’ some
element in the domain N of N by another object that is not in N. We leave it to the
reader to verify that the same sentences are true in isomorphic interpretations.

We now wonder whether any two models of P (or of some axiomatizable and
consistent extension Γ of P) are isomorphic. In that case, one would say that P
(or Γ ) characterizes its models ’up to isomorphism’ and that it has ’essentially’ only
one model. The following theorem answers this question in the negative.

Theorem 5.4. Let Γ be a consistent and axiomatizable extension of P . Then there
are two non-isomorphic models of Γ , both with enumerably infinite domains. (In
other words, Γ is not aleph-null-categorical).

Proof. Let Γ be a consistent and axiomatizable extension of P . By Gödel’s first
incompleteness theorem, there is a sentence AΓ such that AΓ is true in N , Γ �� AΓ
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and Γ �� ¬AΓ . By Gödel’s completeness theorem (for predicate logic), it follows that
Γ �|= AΓ and Γ �|= ¬AΓ . Hence, there is a model M1 of Γ such that M1 |= ¬AΓ and
there is a model M2 of Γ such that M2 |= AΓ . By the Löwenheim-Skolem Theorem
(for predicate logic), M1 and M2 may be assumed to have an enumerably infinite
domain. Since M1 |= ¬AΓ and M2 |= AΓ , M1 and M2 are non-isomorphic. ��

In Theorem 5.5 we prove the existence of non-standard models of arithmetic with
enumerably infinite domains.

Theorem 5.5. Let Δ be the set of all sentences of L that are true in N . Then there
is an interpretation M of L such that:
1. M is a model of Δ ,
2. M is not isomorphic to N , and
3. M has an enumerably infinite domain.
1 and 2 say that M is a non-standard model of arithmetic. It follows that Δ is not
aleph-null-categorical, i.e., it is not the case that any two models of Δ , which both
have an enumerably infinite domain, are isomorphic.

Proof. Let Δ be the set of all sentences of L that are true in N . Let A0, A1, A2, . . .
be an enumeration of all sentences in Δ . Now consider Δ ′ := {A0, a1 �= 0, A1, a1 �=
0′, A2, a1 �= 0′′, . . .}. Then each finite subset of Δ ′ is simultaneously satisfiable. So,
by the compactness theorem (for predicate logic), Δ ′ is simultaneously satisfiable
in an enumerable domain. Say M |= Δ ′ [a∗1], that is M |= Δ and M |= a1 �= 0 [a∗1],
M |= a1 �= 0′ [a∗1], M |= a1 �= 0′′ [a∗1], and so on.

For any natural numbers m,n, if m �= n, then m̄ �= n̄ is in Δ , where 1̄ := 0′, 2̄ := 0′′,
etc. Since M |= Δ , the domain of M is enumerably infinite.

The element a∗1 in the domain of M is not the denotation in M of n̄ for any natural
number n, while in any interpretation isomorphic to N every element in the domain
is denoted by n̄ for some natural number n. Hence, M is not isomorphic to N . ��

In Chapter 17 of [1], Boolos and Jeffrey investigate what non-standard models of
arithmetic do look like.

5.4.1 Second-order Logic (continued)

In Subsection 4.5.3 on second-order logic we have already seen that the Löwen-
heim-Skolem theorem fails for second-order logic. In this subsection we will indi-
cate other important differences between first- and second-order logic with respect
to arithmetic.

First of all, in Theorem 5.5 we have seen that arithmetic (i.e., the set of sentences
of L true in the standard model N ) has at least one model which is not isomorphic

Definition 5.9 (Non-standard model). Let M be an interpretation of the language
L for formal number theory. M is a non-standard model of arithmetic := the same
sentences are true in M as are true in N , and M is not isomorphic to N .
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to N . Below we will show that there is a single sentence, PA , of second-order
logic such that any model of PA is isomorphic to N .

Let Ind be the second-order sentence

∀X [ X(0)∧∀x[X(x)→ X(x′)]→∀x[X(x)] ].

When interpreted over N , Ind formalizes the principle of mathematical induction.
Therefore, Ind is true in N , interpreting ∀X as ‘for all subsets of N’. All of the enu-
merably many induction axioms of P (Peano’s axioms) are logical consequences
of the one second-order sentence Ind. Now let PA be the conjunction of Ind and
the finitely many axioms of Peano which are not an induction axiom. Ind and hence
PA are second-order sentences.

Theorem 5.6. If M |=PA , then M is isomorphic to N (the standard model).

Proof. Let M = 〈D; =; e, s, p, t 〉 be a model of PA , where e, s, p and t are what
M assigns to 0, ′, + and · , respectively. Since M is a model of Ind, it follows that
for any subset V of D

(†) if both e is in V and s(d) is in V whenever d is in V (for all d in D), then V = D.

Define h : N→ D inductively by: h(0) = e, and h(n′) = s(h(n)). In order to show
that h is an isomorphism from N to M, we still have to prove:
a) h is a surjection from N to D,
b) h is an injection from N to D,
c) h(m+ n) = p(h(m),h(n)), and
d) h(m ·n) = t(h(m),h(n)).

It is straightforward, but tedious, to prove b), c) and d), using the hypothesis of
the theorem. We leave this as an exercise to the reader; or the reader may consult
Chapter 18 of [1]. Here we restrict ourselves to the most crucial part of the proof,
that is the proof of a). Note:
1) e is in the range of h,
2) if d is in the range of h, then d = h(n) for some n, whence h(n′) = s(d), and so
s(d) is in the range of h.

It follows from (†) that the range of h equals D, i.e., h is a surjection. ��
It is important to note that the proof above does not work for P instead of PA ,
although the infinitely many induction axioms of P logically follow from Ind. The
point is that ‘d is in the range of h’ cannot be expressed by any first-order formula A.
There are more subsets of N than formulas in L : there are only denumerably many
formulas in L , while there are uncountably many subsets of N.

If P |= A, then A is true in N . But, by Gödel’s first incompleteness theorem,
the converse does not hold. However, any sentence A, which is true in N , is a valid
consequence of the second-order sentence PA .

Corollary 5.2. Suppose that A is a (first- or second-order) sentence of L . Then
PA |= A iff A is true in N .
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Proof. The ‘only if’ part is trivial. So, suppose A is true in N . We want to show:
PA |= A. So, let M be a model of PA . Then, by Theorem 5.6, M is isomorphic
to N . Since A is true in N , it follows that A is true in M. ��
A further Corollary of Theorem 5.6 is that the compactness theorem fails for second-
order logic: there is an enumerable, unsatisfiable set of sentences (at least one of
them is second-order), every finite subset of which is satisfiable.

Corollary 5.3. Let Γ = {PA , c �= 0, c �= 0′, c �= 0′′, . . .}, where c is an individual
constant. Then every finite subset of Γ is satisfiable, but Γ itself is not satisfiable.

Proof. One easily sees that every finite subset of Γ is satisfiable. Now suppose Γ
itself were satisfiable. Let M′ be a model of Γ and let M be like M′, but assigning
nothing to c. Then M is a model of PA and hence, by Theorem 5.6, M is isomor-
phic to N . On the other hand, because all of c �= 0, c �= 0′, c �= 0′′, . . . are true in M′,
M – having the same domain as M′ – cannot be isomorphic to N . Contradiction.
Therefore Γ has no model. ��
In Subsection 4.5.1 we have given an effective positive test for validity of first-order
formulas. However, there is no effective positive test for validity of second-order
sentences. The existence of such a test would imply that there is a decision procedure
for truth in N , which is not the case. For proofs of these results the reader is referred
to Chapter 15 and 18 of [2].

5.5 Solutions

Solution 5.1. a) To show that P � ∀x[x = x], we use the following abbreviations:
A := ∀x∀y∀z[x = y→ (x = z→ y = z)]
B := ∀y∀z[a1 + 0 = y→ (a1 + 0 = z→ y = z)]
C := ∀z[a1 + 0 = a1 → (a1 + 0 = z→ a1 = z)]
D := a1 + 0 = a1 → (a1 + 0 = a1 → a1 = a1)
Below we present a deduction of ∀x[x = x] from Peano’s axioms.
1. A; one of the axioms of Peano.
2. A→ B; one of the axioms of predicate logic.
3. B; Modus Ponens, 1, 2.
4. B→C; one of the axioms of predicate logic.
5. C; Modus Ponens, 3, 4.
6. C→D; one of the axioms of predicate logic.
7. D; Modus Ponens, 5, 6.
8. ∀x[x+ 0 = x]; one of the axioms of Peano.
9. ∀x[x+ 0 = x]→ a1 + 0 = a1; one of the axioms of predicate logic.
10. a1 + 0 = a1; Modus Ponens, 8, 9.
11. a1 + 0 = a1 → a1 = a1; Modus Ponens, 7, 10.
12. a1 = a1; Modus Ponens, 10, 11.
13. a1 = a1 → (axiom→ a1 = a1); axiom schema 1.
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14. axiom→ a1 = a1; Modus Ponens, 12, 13.
15. axiom→∀x[x = x]; ∀-rule, 14.
16. axiom.
17. ∀x[x = x]; Modus Ponens, 15, 16.
b) To show that P � ∀y∀x[x′+ y = (x+ y)′]. We use induction on y.
y = 0: ∀x[x′+ 0 = (x+ 0)′]; from the definition of +: x′+ 0 = x′ and x+ 0 = x.
Induction hypothesis: ∀x[x′+ y = (x+ y)′]. To show: ∀x[x′+ y′ = (x+ y′)′]. Proof:
x′+ y′ := (x′+ y)′ =indhyp ((x+ y)′)′ := (x+ y′)′.
c) To show that P � ∀x∀y[x+ y = y+ x]. We use induction on x, using induction on
y in the basis.
x = 0: To show ∀y[0+ y = y+ 0]. We use induction on y:

y = 0: 0 + 0 = 0 + 0. Induction hypothesis: 0+ y = y+ 0.
To show: 0+ y′ = y′+ 0. Proof: 0+ y′ := (0+ y)′ =indhyp (y+ 0)′ := y′.

Induction hypothesis: ∀y[x+ y = y+ x]. To show: ∀y[x′+ y = y+ x′].
Proof: y+ x′ := (y+ x)′ =indhyp (x+ y)′ and according to b) (x+ y)′ = x′+ y. ��
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Chapter 6
Modal Logic

H.C.M. (Harrie) de Swart

Abstract Modal operators, like ‘it is necessary that’ or ‘John knows that’, express an
attitude about the proposition to which they are applied. Modal logic studies the rea-
soning in modal contexts, extending classical logic in which only connectives and
quantifiers are taken into account. There are many systems of modal logic, depend-
ing on the axioms one wants to accept for the modal operators. The semantics of the
modal operators is in terms of possible worlds, where each possible world is sup-
posed to satisfy classical logic. A proposition is necessarily true if it is true in every
world accessible or imaginable from the given world. Also tableaux rules are avail-
able for the different systems of modal logic. Constructing a tableau-deduction in
modal propositional logic of a formula from given premisses, if it exists, is straight-
forward; and if it does not exist, one easily constructs a counterexample from a failed
attempt to construct one. Epistemic logic is about the modal operator ‘knowing that’
and an interesting puzzle in this field is the one of the muddy children. The possible
world semantics is useful to understand a number of phenomena in the philosophy
of language: rigid designators and the ‘de dicto - de re’ distinction. Also strict impli-
cation and counterfactuals may be understood in terms of possible world semantics.
In modal predicate logic we study the behavior of modal operators in combination
with the quantifiers. We shall see that in order to make sense, modal contexts should
be referentially transparent and at the same time extensionally opaque.

6.1 Modal Operators

Although modal operators seldom occur in scientific proza, they do occur in daily
language: it is possible that Rotterdam is the capital of Holland; it is impossible that
living creatures can survive fire; it is necessary that each object is equal to itself;
John knows that Amsterdam is the capital of the Netherlands; Rhea believes that
his wife is the best there is; it is obligatory to stop for a red traffic light; it is (not)
permitted to have a gun; John will always love Janet.
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A modal operator expresses an attitude about the proposition to which it is ap-
plied. One distinguishes alethic operators, such as ‘it is necessary that’ and ‘it is
possible that’, epistemic operators, such as ‘agent i knows that’ and ‘agent i believes
that’, deontic operators, such as ‘it is obligatory that’ and ‘it is permitted that’ and
tense operators, such as ‘it is and always will be true that’.

In modal logic one studies reasoning in modal texts, i.e., texts which contain
modal operators; see, for instance, Exercise 6.1. One may distinguish:
- modal propositional logic: it studies the reasoning in texts containing not only
the classical propositional connectives, denoted by �, →, ∧, ∨ and ¬, but also the
modal operators of necessity, denoted by �, and possibility, denoted by ♦; and
- modal predicate logic: it studies the reasoning in texts which in addition contain
the quantifiers ∀ and ∃.

Frege’s view in Section 4 of his Begriffsschrift [13] is that the notions of necessity
and possibility belong to epistemology and involve a covert reference to human
knowledge for which there is no place in pure logic.

C.I. Lewis’ book A Survey of Symbolic Logic [25] from 1918 is generally con-
sidered to be the beginning of modern modal logic. Rejecting material implication
as an adequate representation of ‘if . . ., then . . .’, C.I. Lewis put forward a logic
of strict implication, in which the latter can be rendered in terms of necessity and
material implication: �(A→ B).

For a brief outline of the history of modal logic we refer the reader to the His-
torical Introduction of E.J. Lemmon [24], pp. 1-12. For Aristotle’s modal logic and
Megarian and Stoic Theories of Modality see W. & M. Kneale [20], pp. 81-96 and
pp. 117-128 respectively.

In his Reference and Modality, W.V. Quine [32] argues that modal logic is prob-
lematic, because �, to be read as ‘it is necessary that’, and ♦, to be read as ‘it is
possible that’, create a context for which Leibniz’ Law does not seem to hold. His
argument is as follows: let a = 9 and b = the number of planets. Then a = b. But
�(9 > 7) is considered to be true, while � (the number of planets > 7) is generally
considered to be false; the number of planets might have been five, if it had pleased
the Creator. So substitution of ‘the number of planets’ for ‘9’ in �(9 > 7) turns a
truth into a falsehood, while the number of planets = 9. However, this argument is
misleading, since the expression 9 refers to a natural number, while the expression
‘the number of planets’ is a function that assigns to every possible world a natural
number. And the number 9 cannot be equal to the function ‘the number of planets’.
What is true is that 9 = the number of planets in this world, that �(9 > 7) and that
we hence also have to accept that �(the number of planets in this world > 7), which
is not counter-intuitive at all. We shall come back to this issue in Subsection 6.6.2
and in Subsection 6.11.1.

Since the principle of extensionality (Leibniz’Law) at first sight does not seem
to hold for contexts containing modal, epistemic or psychological operators, such
contexts have come to be called non-extensional or intensional. See L. Linsky [28].
For a closer investigation of this issue see Subsection 6.11.1 on Modal Predicate
Logic and Essentialism.
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A model-theoretic description of modal logic in terms of possible worlds was
developed, in particular by S.A. Kripke in his paper Semantical Analysis of Modal
Logic [21]. The basic idea may be said to be to treat modal contexts as involving a
reference to more than one possible world or possible state of affairs. �A holds in
world w iff A holds in all worlds which are accessible from w and ♦A holds in world
w iff there is some world accessible from w in which A holds.

Exercise 6.1. Translate the following argument in the language of modal proposi-
tional logic: If I want to succeed [S], then I should make many exercises [E]. If I
want to make many exercises, then I should have a lot of free time [L]. It is impos-
sible to have a lot of free time. Therefore, it is impossible to succeed.

6.2 Different systems of Modal Logic

Modal logic results from classical logic by adding one (or two) connectives to the
language of classical logic:
�, to be read as: ‘it is necessary that’; or as: ’it is obligatory that’; or as: ’agent i
knows that’, etc., and
♦, to be read as: ‘it is possible that’; or as: ‘it is permitted that’, etc.

However, ♦A �¬�¬A is generally accepted as an axiom schema. Alternatively,
one may define ♦A as ¬�¬A: A is possible iff ¬A is not necessary; and A is permit-
ted iff ¬A is not obligatory.

With � and ♦ added as unary operators to the language of classical logic, �P,
♦P, �P→♦P, �(�P→♦P), ��P, �♦P, ♦�P, ♦♦P, and so on, become formulas
of our extended language. Using ♦ we may translate the expression ‘P is contingent’
by ♦P∧♦¬P; and the expression ‘P is compatible with Q’ as ♦(P∧Q).

Since � may have different (alethic, deontic, epistemic, tense) readings or in-
terpretations, it comes as no surprise that there are many different axioms one may
postulate for �. Even the meaning of the word ‘necessary’ may vary:
- logically necessary, like in: ‘if I walk fast, then I walk fast’ is logically necessary;
- physically necessary, like in: it is physically necessary that if I drop this pencil,
then it falls to the ground;
- ethically necessary, like in: ’one should not kill’ is ethically necessary.
However, in general the notion of necessity is not a very clear one: ’men are nec-
essarily mortal’ may mean ’all men are mortal’ or ’from certain biological laws it
follows that men are mortal’ or ’from the history up till now it follows that men are
mortal’; and the reader may discover other meanings as well.

Depending on the intended meaning of the modal operator � one may accept
or reject one or more axioms for �. For instance, �A→ A seems plausible for the
alethic interpretation of �: if A is (logically or physically) necessary, then A will be
the case; but the same formula is not plausible for the deontic reading of �: from
A is obligatory, it does not have to follow that A is actually the case. On the other
hand, the formula �A→ ♦A seems plausible for the deontic reading of �: if A is
obligatory, then A is permitted.
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By imposing different conditions on �, many modal logics result. Below we list
some of the more important systems of modal logic.

The modal logic K (named after Kripke) results from classical propositional logic
by adding to the axioms of (classical) propositional logic for →, ∧, ∨ and ¬ (see
Section 2.6) and the rule Modus Ponens (from A and A→ B deduce B) one axiom
schema and one rule of inference for �:

axiom schema: �(A→ B)→ (�A→�B)

rule:
� A
� �A

i.e., if A is a theorem (of modal logic), then �A is too.

The modal logic KT is obtained from K by adding the axiom schema

T : �A→ A.

The modal logic S4 = KT 4 is obtained from KT by adding the axiom schema

4: �A→��A,

and the modal logic S5 = KT 4E is obtained from KT 4 = S4 by adding the axiom
schema

E: ♦A→�♦A.

Under the epistemic reading, the 4-axiom �A→��A is called positive introspec-
tion: if I know A, then I know that I know A; and the E-axiom ♦A→�♦A is called
negative introspection: if I do not know ¬A, then I know that I do not know ¬A.

Definition 6.1. By K− we shall mean any of the systems K, KT , KT 4 = S4, or
KT 4E = S5.

Definition 6.2. The alphabet of the language of modal propositional logic consists
of the following symbols:
P1,P2,P3, . . ., called propositional variables or atomic formulas;
the operators �,→, ∧, ∨, ¬ and �; and the brackets ( and ).

Definition 6.3 (Formulas of modal propositional logic).
P1,P2,P3, . . . are formulas of modal propositional logic;
If A and B are formulas of modal propositional logic, then also (A � B), (A→ B),
(A∧B) and (A∨B) are formulas of modal propositional logic;
If A is a formula of modal propositional logic, then also (¬A) and (�A) are formulas
of modal propositional logic.

Definition 6.4. ♦A := ¬�¬A.

Warning: �¬A or, equivalently,¬♦A means ‘¬A is necessary’ or, equivalently, A is
impossible. Notice that in �¬A the negation concerns A. But ¬�A or, equivalently,
♦¬A means ‘A is not necessary’ or, equivalently,¬A is possible. Notice that in ¬�A
the negation concerns �.

Convention We can minimize the need for parentheses by agreeing that we leave
out the most outer parentheses in a formula and that in
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�, →, ∧, ∨, ¬, �
any connective has a higher rank than any connective to the right of it and a lower
rank than any connective to the left of it.

According to this convention,�A∧B→C should be read as ((�A)∧B)→C, i.e.,
if A is necessary and (in addition) B, then C, because→ has a higher rank than ∧ and
∧ has a higher rank than�. This formula is different from the formula (�(A∧B))→
C, i.e., if A∧B is necessary, then C, and also different from the formula�((A∧B)→
C), i.e., it is necessary that if A∧B, then C. According to our convention, the formula
�¬A∨B should be read as (�¬A)∨B, because ∨ has a higher rank than ¬ and �,
and not as �((¬A)∨B), nor as �(¬(A∨B)), which mean quite something else.

Definition 6.5 (Deduction; deducible). Let A1,A2, . . . ,An and B be formulas of
modal propositional logic. A deduction of B from A1,A2, . . . ,An in the modal propo-
sitional logic K− is a finite sequence of formulas with B as last one, such that each
formula in this sequence is either one of the formulas A1,A2, . . . ,An, or one of the
logical axioms of K−, or is obtained by applying one of the rules to formula(s)
earlier in the sequence.

B is deducible from A1,A2, . . . ,An in K− iff there exists a deduction of B from
A1,A2, . . . ,An in K−. Notation: A1,A2, . . . ,An ` B in K−.

In case n = 0, i.e., there are no premisses A1,A2, . . . ,An, we say that B is provable
in K−. Notation: ` B in K−.

Example 6.1. ` A→ ♦A in KT and also `�A→ ♦A in KT .

Proof. �¬A→¬A is an axiom of KT . Since �¬A→¬A ` A→¬�¬A in classical
propositional logic (contraposition), it follows that ` A→ ♦A in KT . Both �A→ A
and A→ ♦A are provable in KT and because �A→ A, A→ ♦A ` �A→ ♦A in
classical propositional logic, it follows that �A→ ♦A is provable in KT . ut
Exercise 6.2. Show that a) A→�♦A and b) ¬�A→�¬�A are provable in S5.

Exercise 6.3 (Cosmological argument for God’s existence).
Let P stand for ‘something exists’ and Q for ‘there is a perfect being (God exists)’.
Show that: ♦P, �(♦P→Q) `�Q in S5. [From Hubbeling [19], Section 8; ‘cosmo-
logical’ because of the occurrence of ♦P]

Exercise 6.4 (Ontological proof of God’s existence). Let Q stand for ‘God ex-
ists’. Show that: �(Q→ �Q), ♦Q ` Q in S5. [This argument is Hartshorne’s ver-
sion of Anselm’s ontological proof of God’s existence (Anselm, Proslogion III); see
Hubbeling [19], Section 8.]

Exercise 6.5. Find the mistake made in the following putative deduction in the
modal logic S5 of Q (God exists) from Q→�Q and ♦Q.
1. �Q∨¬�Q
2. �Q∨�¬�Q From 1 and exercise 6.2.
3. ¬�Q→¬Q From the premiss Q→�Q.
4. �¬�Q→�¬Q From 3 and the axioms and rule for �.
5. �Q∨�¬Q From 2 and 4.
6. �Q From 5 and the premiss ♦Q.
7. Q From 6 and �Q→ Q.



282 6 Modal Logic

Exercise 6.6 (Ross’s Paradox). Prove directly from the definitions:
i) ��A→�(A∨B) in K, and ii) � ♦A→ ♦(A∨B) in K.
Notice that these theorems at first sight look counter-intuitive in the case of deon-
tic logic, reading �A as ‘it is obligatory that A’ or ‘A ought to be the case’. See,
however, the discussion of deontic logic in Section 6.3.

6.3 Possible World Semantics

Clearly, the truth of �A depends on more than just the truth value of A. We say that
�A is true in the present world/situation w iff A is true in all worlds/situations w′
which are accessibie/imaginable from w. And that ♦A is true in world w iff there is a
world w′ accessible from w such that A is true in world w′. Consider, for instance, the
following state of affairs: Jane is cleaning the street with water. So, in the present
world/situation w0, it does not rain (¬P) and the street becomes wet (Q). In the
present world/situation, Jane can imagine two other possible worlds, one (w1) in
which it does not rain (¬P) and the street does not become wet (¬Q) and another
one (w2) in which it does rain (P) and the street becomes wet (Q). We may model
this state of affairs with the following (Kripke) model M:

w0 ¬P, Q
� �

↙ ↘
¬P, ¬Q w1 w2 P, Q

Given this state of affairs or Kripke model M, �(P → Q) (necessarily: if it rains,
then the street becomes wet) is true in world w0 because in every world Jane can
imagine, i.e., in worlds w0,w1,w2, it is true that if it rains, then the street becomes
wet, in other words, in all three worlds, ¬P is true or Q is true.

And ♦P (it is possible that it rains) is true in world w0, because Jane can imagine
a world w′, namely w2, in which P is true.

We may describe this Kripke model M by the tuple M = 〈{w0,w1,w2},R, |=〉,
where the accessibility relation R is defined by w0Rw0, w0Rw1 and w0Rw2, and
where |= is defined by w0 �|= P, w0 |= Q, w1 �|= P, w1 �|= Q, w2 |= P and w2 |= Q.
Clearly, the picture contains all this information.

Of course, in world (situation) w1 Jane may imagine two other possible worlds
(situations): w3, in which ¬P and ¬Q hold, and in addition the sun is shining (S),
and w4, in which P, Q and ¬S are true. This state of affairs is then described by the
following Kripke model M′:

w0 ¬P, Q
� �

↙ ↘
¬P, ¬Q w1 w2 P, Q

� �

↙ ↘
¬P, ¬Q, S w3 w4 P, Q, ¬S
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If in model M′ it holds that world w3 is accessible from world w0, i.e., w0Rw3, then
♦S (it is possible that the sun is shining) is true in world w0 of model M′. However,
if not w0Rw3, then ♦S is not true in world w0 of model M′.

This brings us to the general definition of a Kripke model.

Definition 6.6 (Kripke model). M = 〈W, R, |= 〉 is a Kripke model iff

• W is a non-empty set, the elements of which are called possible worlds;
• R is a binary relation on W , called the accessibility relation; wRw′ is to be read

as: world w′ is accessible from world w;
• |= is a relation between the elements of W and the atomic formulas; w |= P is to

be read as: atomic formula P is true in world w.

In the case of deontic logic, wRw′ is read as: w′ is a (deontically) perfect alternative
of w.

Definition 6.7 (M,w |= A). Given a Kripke model M = 〈W, R, |= 〉, we define
M,w |= A (to be read as: A is true (holds) in world w of model M) for arbitrary
w in W and for arbitrary formulas A (of modal propositional logic) as follows:

• M,w |= P := w |= P (P atomic).
• M,w |= B∧C := M,w |= B and M,w |=C.
• M,w |= B∨C := M,w |= B or M,w |=C.
• M,w |= B→C := not M,w |= B or M,w |=C.
• M,w |= ¬B := not M,w |= B, also written as M,w 6|= B.
• M,w |=�B := for all w′ in W , if wRw′, then M,w′ |= B.
• M,w |= ♦B := there is a world w′ in W such that wRw′ and M,w′ |= B.

Note that the connectives ∧, ∨, → and ¬ in each world w are treated as in classical
logic; in other words, classical logic applies in each possible world, i.e., a Kripke
model can be conceived as a collection of classical models, supplemented by an
accessibility relation.

Definition 6.8 (M |= A). Let M = 〈W,R, |=〉 be a Kripke model and A a formula.
M is a Kripke model of A (or A is true in M) := for every world w in W , M,w |= A.
Notation: M |= A. ‘Not M |= A’ is also denoted by: M 6|= A.

It is easy to check that the axiom for K, i.e., �(B→C)→ (�B→ �C), is true in
every world w of every Kripke model M, i.e., for all Kripke models M, M |=�(B→
C)→ (�B→�C). We shall say that �(B→C)→ (�B→�C) is valid.

Proof. Suppose M,w |=�(B→C), i.e., for all w′ in M, if wRw′, then M,w′ |= B→
C. (1)
Next, suppose M,w |=�B, i.e., for all w′ in M, if wRw′, then M,w′ |= B. (2)
Then it follows from (1) and (2) that for all worlds w′ in M, if wRw′, then M,w′ |=C,
i.e., M,w |=�C. ut

Instead of saying that �(B→ C)→ (�B→ �C) is valid, we may also say that
�B→�C is a valid consequence of �(B→C).
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In case n = 0, i.e., there are no premisses, we say that B is valid, i.e., for all Kripke
models M and for all worlds w in M, M,w |= B. Notation: |= B.

Notice that A1, . . . ,An |= B iff |= A1 ∧ . . .∧An → B.

It is also easy to verify that the only rule for � (if � A, then ��A) preserves validity:
if |= A, then |=�A.

Proof. Suppose that |= A, i.e., for all Kripke models M and for every world w in M,
M,w |= A. (1)
We have to show that for all M and for all w in M, M,w |=�A, i.e., for all w′ in M,
if wRw′, then M,w′ |= A. This follows trivially from (1). ��
So, we have shown the following theorem:

Theorem 6.1.
1. |=�(B →C)→ (�B →�C); equivalently: �(B →C) |= (�B →�C).
2. if |= A, then |=�A.

The �-axiom for KT , �A → A, is not in all worlds of all Kripke models true. The
following Kripke model M = 〈{w0,w1},R, |=〉 with w0Rw1, but not w0Rw0, is a
counterexample:

w0

|
↓
w1 P

M,w0 |= �P, but M,w0 �|= P. In world w0 of this Kripke model M, P (stopping for
a red traffic light) is obligatory, meaning that P is true in all deontically perfect
alternatives of w0, but P does not have to be true in w0.

It is easy to see that �A → A holds precisely in those Kripke models M =
〈W,R, |=〉 in which the accessibility relation R is reflexive, i.e., for all w in M, wRw.
For if M,w |=�A, and R is reflexive, then clearly M,w |= A.

Deontic logic If one reads �A as ’it ought to be the case that A’ (or, equivalently,
as ’A is obligatory’) and ♦A as ’it is permitted that A’ (or, equivalently, as ’A is
permissible’), one speaks of deontic logic. In that case wRw′ is read as: w′ is a
deontically perfect alternative to w. Consequently, w |= �A iff A is the case in all
deontically perfect alternatives to w, and w |= ♦A iff there is a deontically perfect
alternative to w, in which A is true.

It is clear that in deontic logic �A → A and A →♦A do not hold. This means that
in general the accessibility relation R should not be reflexive. On the other hand,
�A → ♦A should be valid in deontic logic. A necessary and sufficient condition on
R in order to achieve this is that for each world w in a given Kripke model M there
is a w′ in M such that wRw′. This condition also rules out �A∧�¬A (something is
obligatory and forbidden).

Definition 6.9 (Valid consequence; valid). B is a valid consequence of premisses
A1, . . . ,An := for all Kripke models M and for every world w in M,
if M,w |= A1∧ . . .∧An, then M,w |= B. Notation: A1, . . . ,An |= B.
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However, certain theorems are not dependent upon any condition concerning R.
Some of these theorems have been viewed with suspicion because of their paradox-
ical appearance as deontic principles. For example, A. Ross illustrated the oddity of
�A→�(A∨B) by substituting ’I mail a letter’ for A and ’I burn the letter’ for B. The
result ’if I ought to mail a letter, then I ought to mail or burn it’ is known as Ross’s
paradox. A similar substitution may reveal the strangeness of ♦A→ ♦(A∨B). (See
Exercise 6.6.) However, although�(A∨B) is true if �A is true, according to Grice’s
[16] conversation rules, discussed in Section 2.10.2, it is simply misleading to say
�(A∨B), when one knows �A. For more information on deontic logic the reader is
referred to Hilpinen [18].

Also the �-axiom for S4, �A→��A, is not in all worlds of all Kripke models true.
The following Kripke model M = 〈{w0,w1,w2},R, |=〉 with w0Rw1, w1Rw2, but not
w0Rw2, is a counterexample:

w0

|
↓
w1 P
|
↓

w2

M,w0 |=�P, because M,w1 |= P. But M,w0 �|=��P, because w0Rw1 and M,w1 �|=
�P, the latter because M,w2 �|= P.

It is easy to see that �A→ ��A holds precisely in those Kripke models M =
〈W,R, |=〉 in which the accessibility relation R is transitive, i.e., for all w,w′,w′′ in
M, if wRw′ and w′Rw′′, then wRw′′.

Proof. Let M be a Kripke model, w a world in M, and suppose M,w |=�A, i.e., for
all w′ in M, if wRw′, then M,w′ |= A. (1)
We have to show that M,w |=��A, i.e., for all w′ in M, if wRw′, then M,w′ |=�A.
So, suppose that wRw′. (2)
We have to show that M,w′ |= �A, i.e., for all w′′ in M, if w′Rw′′, then M,w′′ |= A.
So, suppose that w′Rw′′. (3)
Assuming that R is transitive, it follows from (2) and (3) that wRw′′. Hence, from
(1): M,w′′ |= A. ��
Finally, also the �-axiom for S5, ♦A → �♦A, is not in all worlds of all Kripke
models true. The following Kripke model M = 〈{w0,w1,w2},R, |=〉 with w0Rw1

and w0Rw2, but not w2Rw1, is a counterexample:

w0

� �

↙ ↘
P w1 w2

M,w0 |= ♦P, because w0Rw1 and M,w1 |= P. But M,w0 �|= �♦P, because w0Rw2

and M,w2 �|= ♦P.
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It is not difficult to see that ♦A→ �♦A holds precisely in those Kripke models
M = 〈W,R, |=〉 in which the accessibility relation R is transitive and symmetric, i.e.,
for all w and w′ in M, if wRw′, then also w′Rw.

Proof. Let M be a Kripke model, w a world in M, and suppose M,w |= ♦A, i.e.,
there is some world w0 in M such that wRw0 and M,w0 |= A. (1)

w
� �

↙ ↘
A w0 w′ ♦A ?

We have to show that M,w |=�♦A, i.e., for all w′ in M, if wRw′, then M,w′ |= ♦A.
So, suppose wRw′. (2)
We have to show that M,w′ |= ♦A. Now, assuming that R is symmetric, it follows
from (2) that also w′Rw. (3)
Assuming that R is transitive, it follows from (3) and (1) that w′Rw0. And because
M,w0 |= A (1), it follows that M,w′ |= ♦A. ��
We collect the preceding results in the following theorem.

Theorem 6.2.
For every Kripke model M = 〈W,R, |=〉, M |=�(A→ B)→ (�A→�B).
For every Kripke model M = 〈W,R, |=〉 with R reflexive, M |=�A→ A.
For every Kripke model M = 〈W,R, |=〉 with R transitive, M |=�A→��A.
For every Kripke model M = 〈W,R, |=〉 with R transitive and symmetric, M |=♦A→
�♦A.

Definition 6.10 (Kripke model for K−). Let M = 〈W,R, |=〉 be a Kripke model. M
is a Kripke model for KT iff R is reflexive. M is a Kripke model for KT 4 = S4 iff
R is reflexive and transitive. M is a Kripke model for KT 4E = S5 iff R is reflexive,
transitive and symmetric.

Definition 6.11 (Valid consequence in K−). B is a valid consequence of premisses
A1, . . . ,An in K− := for all Kripke models M for K− and for every world w in M, if
M,w |= A1∧ . . .∧An, then M,w |= B. Notation: A1, . . . ,An |= B in K−.
In case n = 0, i.e., there are no premisses, we say that B is valid in K−, i.e., for all
Kripke models M for K− and for every world w in M, M,w |= B.
Notation: |= B in K−.

From Theorems 6.1 and 6.2 the following soundness theorem results, saying that
any formula that may be logically deduced in K− from given premisses is a valid
consequence in K− of those premisses:

Theorem 6.3 (Soundness of modal propositional logic).
If A1, . . . ,An � B in K−, then A1, . . . ,An |= B in K−.

Proof. Suppose A1, . . . ,An � B in K, i.e., there is a finite schema of formulas with B
as last one, such that every formula A in this schema is either one of A1, . . . ,An or an
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axiom of classical propositional logic or the �-axiom of K or obtained by the rule
Modus Ponens to two preceding formulas C and C → D in the schema or obtained
by application of the rule for � to a preceding formula E in the schema such that
� E . We have to show that A1, . . . ,An |= B in K. So, let M be a Kripke model, w be
a world in M and suppose M,w |= A1∧ . . .∧An. Notice that:
1. If A is an axiom of propositional logic or A is the �-axiom for K, then M,w |= A.
2. If M,w |=C and M,w |=C→ D, then M,w |= D.
3. If |= E , then by Theorem 6.1 |=�E .
Hence, from 1, 2 and 3: A1, . . . ,An |= B in K.

The proofs for KT , S4 and S5 are similar. ��
Exercise 6.7. Prove that A �|=�A, although by Theorem 6.1: if |= A, then |=�A.

Exercise 6.8. Prove or refute: a) |=�(A∧B)� (�A∧�B);
b) |=�(A∨B)� (�A∨�B); c) |= ♦(A∨B)� (♦A∨♦B).

6.4 Epistemic logic

In epistemic logic �A is read as ’I know that A’. More generally, �iA is read as
’agent i knows that A’, if one wants to consider more than one agent. Then wRiw′ is
read as: in world w agent i considers – on the ground of his knowledge – world w′
as an (epistemic) alternative.

Because of the validity of (�(A→ B)∧�A)→ �B, epistemic logic is not con-
cerned with actual occurrent knowledge, but with virtual or implicit knowledge. If a
knower (or agent) knows A and A→ B, he or she also knows B, at least in principle,
although one may not explicitly be aware of this.

In epistemic logic, one frequently uses K (Knowing) instead of the �-operator.
For instance, KA for ‘A(lice) knows A’ and KB for ‘B(ob) knows A’.

As an example with two agents, consider the following state of affairs: A(lice)
works in an office without windows, it is raining (P), but as far as Alice knows also
¬P might be the case. B(ob) works in an office with windows, has been informed
that it will rain all day and considers it possible that an important letter will ar-
rive today (Q). We may model this state of affairs by the following Kripke model
M = 〈{w0,w1,w2},RA,RB, |=〉with w0RAw1 and w0RBw2, RA and RB both reflexive,
transitive and symmetric, w0 |= P, but w1 �|= P, w2 |= P and w2 |= Q.

w0 P
↗ ↖

RA � � RB

↙ ↘
w1 w2 P,Q

Clearly, M,w0 �|= KAP (in world w0 of model M, Alice does not know P), because
w0RAw1 and w1 �|= P (Alice can imagine w1 in which it does not rain). But M,w0 |=
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KBP (in world w0 of model M, Bob knows P), because P holds in both worlds Bob
can imagine: w0 and w2.

M,w0 |=KA(KBP∨KB¬P) (Alice knows in world w0 of model M that Bob knows
if P holds), because M,w0 |= KBP (Bob knows in world w0 that P) and M,w1 |=
KB¬P (because from world w1 Bob can only imagine w1).

M,w0 |= ¬KB(¬KAP) (Bob does not know in w0 that Alice does not know P),
because w0RBw2 and M,w2 |= KAP (from world w0 Bob can imagine world w2 and
in w2 Alice knows P, because the only world she can imagine from w2 is w2 itself) .

As this example suggests, epistemic logic can be used for the formal description
of the knowledge of ’agents’ in distributed systems. A nice illustration is the muddy
children puzzle. See also Exercise 6.9.

6.4.1 Muddy Children Puzzle; Reasoning about Knowledge

Imagine the following state of affairs. Two children are playing outside and their
father asks them to come home. Both have mud on their foreheads, but they do not
know themselves. Each child can see the other child, but not him- or herself; there
are no mirrors. The father does not allow the children to talk to each other and says:
at least one of you has mud on his forehead (P). If you know you have mud on your
forehead, please step forward.

No child will step forward: each child sees the other child with mud on its fore-
head and considers it possible to be clean (without mud) himself. Notice that already
before the statement of the father each child knows that P, but does not know that
the other child knows P. After the statement of the father P has become common
knowledge, in particular, now each child knows that the other child also knows P.

Since no child steps forward, the father repeats his request and asks again: if you
know you have mud on your forehead, please step forward. Now both children step
forward. Why? Because they can perfectly reason about knowledge: if there were
only one child with mud, after the first statement/request of the father this child
would know that he is the one with mud and step forward. Since no one stepped
forward, there must be (at least) two children with mud.

We may model the state of affairs before the statement of the father by the follow-
ing Kripke model M, where mi stands for ‘child i, i = 1,2, has mud on his forehead’,
and Ri is the accessibility relation for child i.

m1,m2 w1 �		 - - - - R1 - - - - 		
 w2 ¬m1,m2

↑ ↑
R2 R2

↓ ↓
m1,¬m2 w3 �		 - - - - R1 - - - - 		
 w4 ¬m1,¬m2

Before the statement of the father there are four possible worlds/situations, de-
scribed by w1,w2,w3 and w4. For instance, in world w1 child 1 sees that child 2
has mud on his forehead, but child 1 can imagine to have no mud himself, i.e.,
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world w2 is accessible from world w1 for child 1: w1R1w2. Conversely, from world
w2 child 1 can imagine world w1: w2R1w1. In a similar way, from world w1 child 2
can easily imagine world w3 and conversely: w1R2w3 and w3R2w1. The relations R1

and R2 are reflexive, transitive and symmetric.
Notice that M,w1 |= K1m2 ∧K2m1. In addition, for each world w in M, M,w |=

¬K1m1 and M,w |= ¬K2m2.
By the statement P of the father, world w4 is eliminated and only three possible

worlds are left, as described by the following Kripke model M′:

m1,m2 w1 �		 - - - - R1 - - - - 		
 w2 ¬m1,m2

↑
R2

↓
m1,¬m2 w3

After the first statement P of the father, child 1 still does not know that he has mud
on his forehead, because it sees child 2 with mud. This corresponds with M′,w1 |=
¬K1m1. Similarly, M,w1 |= ¬K2m2.

If there would be only one child with mud, that is, if w2 or w3 would be the actual
world, then, of course, after the first statement P of the father, the child with mud
would know he has mud on his forehead, since he sees that the other child has no
mud on his forehead. This corresponds with M′,w2 |=K2m2 and M′,w3 |=K1m1. So,
if after the first statement/request of the father no child steps forward, each perfect
logician will know that there must be at least two children with mud, in other words
that world w2 and w3 do not occur and that only world w1 is left. The new state of
affairs is described by the Kripke model M′′ containing only one possible world,
i.e., w1. And M′′,w1 |= K1m1∧K2m2.

Exercise 6.9 (J.J.Ch. Meyer). Consider the following Kripke model M consisting
of four possible worlds w1, w2, w3, w4, two agents A(lice) and B(ob) with reflexive
and transitive accessibility relations RA and RB respectively, and suppose that RA,
RB and |= are defined as indicated in the following picture.

w2
0
0
0
0
001

�
�
�
�
���

0
0
0
0
001

�
�
�
�
���

��

Pw4

RA RB

w3QRBRAP,Q

RBRA

w1 P,Q

Check that
M,w1 |= Q , M,w1 |= ¬KAQ , M,w1 |= ¬KBKAP , M,w1 |= ¬KB¬KAQ,
M,w1 |= KAP , M,w1 |= ¬KBQ , M,w1 |= ¬KA¬KBP , M,w1 |= ¬KA¬KBQ,
M,w1 |= ¬KBP , M,w1 |= KAKAP , M,w1 |= KA¬KAQ , M,w1 |= KB¬KBQ.
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6.5 Tableaux for Modal Logics

A tableaux system for the modal logics K, KT and S4 is obtained by adding T and F
rules for the modal operator � to the T and F rules for the connectives→,∧,∨,¬ of
classical propositional logic, given in Section 2.8 and listed below. Now TA is read
as: A is true in world w; and FA as: A is false in world w. We do not give the tableaux
rules for S5 here, because they are complicated and hence somewhat artificial; the
interested reader is referred to de Swart [36]. In the tableaux rules below, S is a
sequent, i.e., a set of T - or F-signed formulas.

T∧ S, T B∧C F∧ S, F B∧C
S, T B, TC S, FB | S, FC

T∨ S, T B∨C F∨ S, F B∨C
S, T B | S, TC S, FB, FC

T→ S, T B→C F→ S, F B→C
S, FB | S, TC S, T B, FC

T¬ S, T ¬B F¬ S, F ¬B
S, FB S, T B

For K there is no T� rule, but only a F� rule: F� S, F�A
S�, FA

For KT (or KM or M or T ) the T� and F� rules are:

T� S, T�A
S, T�A, TA

F� S, F�A
S�, FA

and for S4 these rules are:

T� S, T�A
S, T�A, TA

F� S, F�A
ST�, FA

where S� := {TB | T�B ∈ S} and ST� := {T�B | T�B ∈ S}, i.e., S� contains all
expressions T B for which T�B occurs in S and ST� is the set of all expressions
T�B which occur in S. We have drawn a line in the rules F� in order to stress that
in the transition from S to S� and ST�, resp., some signed formulas may get lost.

The T - and F-rules for the propositional connectives follow the truth tables for
these connectives. For instance, B→C is true in world w (T B→C) iff B is false in
w (FB) or C is true in w (TC); and B→C is false in w (F B→C) iff B is true in w
(TB) and C is false in w (FC). For obvious reasons the rules T →, T∨ and F∧ are
called split-rules.

The intuitive motivation behind the T -rule for � is this one: if �A is true in a
world w, then also A will be true in world w, at least if w is accessible from itself,
i.e., when R is reflexive. So, this T� rule will apply in KT and in S4, but not in K.

The intuitive motivation behind the F-rule for � is the following one: if �A is
false in world w, then there must be a world w′, accessible from w, in which A is
false. Since F-signed formulas (which are aupposed to be false in w) do not have
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to be false in w′, these formulas are not copied. In general, also T -signed formulas
(which are supposed to be true in w) do not have to be true in w′ and hence are not
copied. There is one exception: If a T -signed formula �B is true in w, then B will be
true in w′; and even �B will be true in w′, if the accessibility relation R is transitive.
So, we have different F� rules for K and KT on the one hand, and for S4 on the
other hand.

A1, . . . ,An �′ B (B is tableau-deducible from A1, . . . ,An) in K, KT or S4, resp., is
defined in a similar way as in Definition 2.18, the only difference being that there
are two more rules for �.

Example 6.2. Let us verify that �(A→ B)�′�A→�B in K. We construct a tableau
starting with the premiss(es) T -signed and the putative conclusion F-signed; infor-
mally: we suppose the premisses are true and the putative conclusion false. Next we
apply the T and F rules for the different connectives and modal operator.

T�(A→ B), F (�A→�B)
T�(A→ B), T�A, F�B

T (A→ B), TA, FB
FA, TA, FB | T B, TA, FB

Since both ‘branches’ close, i.e., contain TC and FC for some formula C, this
schema is by definition a tableau-deduction (in K) of �A→ �B from �(A→ B).
Therefore, we have shown that �(A→ B) �′ �A→ �B (in K), i.e., one can con-
struct such a tableau-deduction. Informally: the supposition that the premisses are
true and the conclusion false turns out to be untenable.

Example 6.3. Let us verify that �′ �A→ A in KT , but not in K: F (�A→ A)
T�A, FA

TA, FA
The only ‘branch’ is closed, and hence �′ �A→ A in KT .

Notice that this tableau-proof does not hold in K, because there is no T� rule for
K. If we make a tableau in K for �A→ A we find:

F (�A→ A)
T�A, FA w

which does not close. In fact, we have constructed a Kripke counterexample M =
〈{w},R, |=〉 in K, with, by definition, not wRw and w �|= A, corresponding with the
occurrence of FA in w. M,w |= �A, since there is no world accessible from w in
which A is not true. But M,w �|= A.

Example 6.4. Let us verify that �′ �A→��A in S4, but not in KT :

F (�A→��A)
T�A, F��A

T�A, TA, F��A
T�A, F�A

T�A, TA, F�A
T�A, FA

T�A, TA, FA
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The only ‘branch’ of this tableau is closed, and hence �′ �A→��A in S4.
Notice that this tableau-proof does not hold in KT . A tableau starting with

F (�A→��A) in KT will look as follows and does not close:

F (�A→��A)
T�A, F��A w0 A
T�A, TA, F��A ↓
TA, F�A w1 A

↓
FA w2

In fact, we have constructed a Kripke countermodel M = 〈{w0,w1,w2},R, |=〉 in
KT , with w0Rw1, w1Rw2, but not w0Rw2, R reflexive, but not transitive, and by
definition w0 |= A, w1 |= A, but w2 �|= A, corresponding with the occurrence of TA in
w0 and w1 and the occurrence of FA in w2. Then, corresponding with the occurrence
of T�A in w0, M,w0 |= �A, since M,w0 |= A and M,w1 |= A, but, corresponding
with the occurrence of F��A in w0, M,w0 �|=��A, since M,w1 �|=�A. Notice that
if R were transitive, we would not have that M,w0 |= �A.

Example 6.5. We shall try to construct a tableau proof of the S5-axiom ♦A→�♦A
in S4. So, we start with F(♦A→�♦A):

F(♦A→�♦A)
T♦A, F�♦A

T¬�¬A, F�¬�¬A
F�¬A, F�¬�¬A

At this point there are two possibilities to continue: we may proceed with F�¬A
losing the second F-signed formula, or we may proceed with F�¬�¬A losing the
first F-signed formula. Either way, we do not get closure and hence we do not find
a tableau proof in S4 of ♦A→�♦A:

� �

F¬A F¬�¬A
TA T�¬A

T�¬A, T¬A
T�¬A, FA

We shall call the resulting tree the search tree for the conjecture �′ ♦A → �♦A
in S4. From this search tree one can immediately read off a Kripke counterexample
M = 〈{w0,w1,w2},R, |=〉 in S4 for this formula, with, by definition, w0Rw1, w0Rw2,
R reflexive and transitive, but not symmetric, and w1 |= A, corresponding with the
occurrence of TA in w1:

w0

↙ ↘
A w1 w2

Then, corresponding with the occurrence of T♦A in w0, M,w0 |= ♦A, since w0Rw1

and M,w1 |= A. But, corresponding with the occurrence of F�♦A in w0, M,w0 �|=
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�♦A, since w0Rw2 and M,w2 �|= ♦A, corresponding with the occurrence of F♦A in
w2. Notice: if R were symmetric, we would have M,w2 |= ♦A, because in that case
symmetry would guarantee w2Rw0 and next transitivity would guarantee w2Rw1.

Example 6.6. The following tableau T with initial branch B0 = {T�(P ∧ Q),
F (�P∧ (�Q∨�R))} is a tableau-deduction of �P∧ (�Q∨�R) from �(P∧Q)
in K:

T�(P∧Q), F (�P∧ (�Q∨�R))
T�(P∧Q), F �P | T�(P∧Q), F(�Q∨�R)
T�(P∧Q), F �P | T�(P∧Q), F �Q, F �R

T (P∧Q), FP | T (P∧Q), FQ
T P, TQ, FP | T P, TQ, FQ

Notice that both branches are closed, i.e., contain for some formula C both TC and
FC. Also notice that in the right branch, instead of applying the F� rule to F�Q,
we might also have applied the F� rule to F�R, in which case the right branch
would finish with T P,TQ,FR and hence would not close.

Let branch B1 = B0 ∪ {F�P} and branch B2 = B0 ∪ {F(�Q∨�R)}. Then
tableau T1 = {B1,B2} is called a one-step expansion in K of tableau T0 = {B0}.

Let branch B11 = B1 and branch B21 = B2∪{F�Q,F�R}. Then tableau T2 =
{B11,B21} is called a one-step expansion in K of tableau T1.

Let branch B111 = B∗
11∪{T (P∧Q),FP} and let B211 = B∗

21∪{T (P∧Q),FQ},
where B∗ indicates that the formulas in B do not count towards closure anymore.
Then tableau T3 = {B111,B211} is called a one-step expansion in K of T2.

Finally, let branch B1111 = B111 ∪ {TP,TQ)} and B2111 = B211 ∪ {TP,T Q}.
Then tableau T4 = {B1111,B2111} is called a one-step expansion in K of T3.

Definition 6.12 ((Tableau) Branch). (a) A tableau branch is a set of signed formu-
las. A branch is closed if it contains signed formulas TA and FA for some formula
A. A branch that is not closed is called open.
(b) Let B be a branch and TA, resp. FA, a signed formula occurring in B. TA, resp.
FA, is fulfilled in B if (i) A is atomic, or (ii) B contains the bottom formulas in the
application of the corresponding T or F rule to A, and in case of the rules T∨, F∧
and T →, B contains one of the bottom formulas in the application of these rules.
(c) A branch B is completed if B is closed or every signed formula in B is fulfilled
in B.

Definition 6.13 (Tableau). (a) A set T of branches is a tableau in K− with initial
branch B0 if there is a sequence T0,T1, . . . ,Tn such that T0 = {B0}, each Ti+1 is
a one-step expansion in K− of Ti (0≤ i < n ) and T =Tn.
(b) We say that a finite B has tableau T if T is a tableau with initial branch B.
(c) A tableau T in K− is open if some branch B in it is open, otherwise T is
closed.
(d) A tableau is completed if each of its branches is completed; informally, no ap-
plication of a tableau rule can change the tableau.
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Example 6.7. a) As seen in Example 6.2, �(A → B) �′ (�A →�B) in K.
b) As seen in Example 6.3, �A �′ A in KT , or, equivalently, �′ �A → A in KT .
c) As seen in Example 6.4, �A �′ ��A in S4 or, equivalently, �′ �A →��A in S4.

Example 6.8. We wonder whether ♦�P �′ �♦P in S4. We start a tableau with
T♦�P, F�♦P in S4:

T♦�P, F�♦P
F�¬�P, F�♦P

We may continue with F�¬�P, losing F�♦P and we may continue with F�♦P,
losing F�¬�P. If one of these two options would give closure, we would have
found a tableau deduction of �♦P from ♦�P in S4. However, it turns out that either
way does not give closure:

T♦�P, F�♦P
F�¬�P, F�♦P

↙ ↘
F¬�P F♦P

T�P T�¬P
T�P, T P T�¬P, T¬P

T�¬P, FP

We shall call the resulting tree the search tree for the conjecture ♦�P �′ �♦P in
S4. From this search tree with both branches open we may immediately read off a
Kripke counterexample M = 〈{w0,w1,w2},R, |=〉 in S4 with, by definition, w0Rw1,
w0Rw2, R reflexive and transitive, w1 |= P, corresponding with the occurrence of T P
in w1, and w2 �|= P, corresponding with the occurrence of FP in w2:

w0

↙ ↘
w1 P w2

Clearly, M,w0 |= ♦�P, since M,w1 |=�P, but M,w0 �|=�♦P, since M,w2 �|= ♦P.

Definition 6.14 (Tableau-deduction; Tableau-proof).
(a) A tableau-deduction of B from A1, . . . ,An in K− is a tableau T in K− with
B0 = {TA1, . . . ,TAn,FB} as initial branch, such that all branches of T are closed.

In case n = 0, i.e., there are no premisses A1, . . . ,An, this definition reduces to:
(b) A tableau-proof of B in K− is a tableau T in K− with B0 = {FB} as initial
sequent, such that all branches of T are closed.

Definition 6.15 (Tableau-deducible; Tableau-provable).
(a) B is tableau-deducible from A1, . . . ,An in K− := there exists a tableau-deduction
of B from A1, . . . ,An in K−. Notation: A1, . . . ,An `′ B in K−.
(b) B is tableau-provable in K− := there exists a tableau-proof of B in K−.
Notation: `′ B in K−. And for Γ a (possibly infinite) set of formulas,
(c) B is tableau-deducible from Γ in K− := there exists a finite list A1, . . . ,An of
formulas in Γ such that A1, . . . ,An `′ B in K−. Notation: Γ `′ B in K−.
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Example 6.9. We wonder whether �♦P �′ ♦�P in S4.
We start a tableau with T�♦P,F♦�P in S4, i.e.,

T�¬�¬P, F¬�¬�P
T�¬�¬P, T¬�¬P, F¬�¬�P
T�¬�¬P, T¬�¬P, T�¬�P
T�¬�¬P, F�¬P, T�¬�P

T�¬�¬P, F�¬P, T�¬�P, T¬�P
T�¬�¬P, F�¬P, T�¬�P, F�P (*)

At this stage we have applied the T� rule as many times as possible and we now
have two signed formulas of the form F�. If we apply the F� rule to either one
of them, we loose the other. So, there are two possibilities to go on; if one of them
would give closure, we would have a tableau deduction of ♦�P from �♦P.

� �

↙ ↘
T�¬�¬P, F¬P, T�¬�P T�¬�¬P, T�¬�P, FP
T�¬�¬P, T P, T�¬�P

T�¬�¬P will give T¬�¬P and next F�¬P again, and T�¬�P will give T¬�P
and next F�P. So, the tableau will continue with

F�¬P, T P, F�P F�¬P, F�P, FP.

So, we are essentially back at line (*) with F�¬P and F�P, from where the situa-
tion repeats itself. However, no branch will ever close and we read off the following
Kripke counterexample M in S4: w

� �

� �

P↙ ↘
� � � �

P↙ ↘ P ↙ ↘
� � � � � � � �

Clearly, M,w |=�♦P, i.e., for every w′ in M with wRw′ there is a w′′ in M such that
w′Rw′′ and M,w′′ |= P; but M,w �|= ♦�P, i.e., there is no w′ in M with wRw′ such
that for all all w′′ in M, if w′Rw′′, then M,w′′ |= P. Hence, �♦P �|= ♦�P.

The examples given above suggest a general procedure which, given a conjecture
A1, . . . ,An �′ B in K−, will either construct a tableau-deduction of B from the pre-
misses A1, . . . ,An in K− or yield a Kripke counterexample in K−. We shall de-
scribe this procedure in more detail in Section 6.7 and prove that the three notions
A1, . . . ,An � B in K−, A1, . . . ,An |= B in K−, and A1, . . . ,An �′ B in K−, are equiv-
alent.

Exercise 6.10. Translate the following argument in the language of modal proposi-
tional logic and either construct a tableau-deduction in K of the putative conclusion
from the premisses or construct a Kripke counterexample in K.
It is not the case that: if John works hard [W ], then he will necessarily succeed [S].
Therefore, it is possible that: if John works hard, then he will not succeed.
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Exercise 6.11. Translate the following argument in the language of modal proposi-
tional logic and either construct a tableau-deduction in K of the putative conclusion
from the premisses or construct a Kripke counterexample in K.
It is possible that: if John fails [J], then he will give a party [P].
Therefore, if John fails, then it is possible that he will give a party.

Exercise 6.12. Prove that i) Ki(A∨B),Ki¬A �′ KiB in K,
but ii) A∨B ,Ki¬A ��′ KiB in K, neither in S4.
This explains the paradox in Exercise 2.70: let A stand for ’the prisoner will be
hanged on Monday, Tuesday, Wednesday or Thursday’ and let B stand for ’the pris-
oner will be hanged on Friday’. Then A∨B is the judge’s statement that the prisoner
would hang one day this week. Read KiE as ’prisoner i knows (on Friday morning)
that E’. See also the answer to Exercise 2.70.

Exercise 6.13. Prove or refute in K: a) �A∨¬�A; b) �A∨�¬A.
Prove or refute in KT : c) ♦A∨¬♦A; d) ♦A∨♦¬A.

Exercise 6.14. Prove: �′ �A → �(A∨ B) in K and �′ ♦A → ♦(A∨ B) in K (cf.
Exercise 6.6).

Exercise 6.15. Prove that K, KT and S4 have the disjunction property:
if �′ �A∨�B, then �′ �A or �′ �B.

Exercise 6.16. Prove or refute in KT : a) ♦P→ ♦♦P; b) ♦♦P→ ♦P.
Prove or refute in S4: c) P→�♦P; d) (P→ Q)→¬♦(P∧¬Q).

6.6 Applications of Possible World Semantics

6.6.1 Direct Reference

There are at least two problems in the traditional theory of meaning:
1. In the traditional view, a proper name, like ’Jane’, is identified with a description,
such as ‘the woman John is married to’. Now suppose that John is a bachelor. Then
it would follow that Jane does not exist. This example makes clear that a person can
be referred to by his or her name even if the description of the person in question
does not apply to that person.
2. According to the traditional theory, a tiger, for instance, is identified with an
object which has certain properties, among which the property of having sharp teeth.
Consequently, the statement ’tigers have sharp teeth’ is analytic; this seems to be
counter-intuitive.

In the traditional theory, the conjunction of properties which a tiger is supposed
to have is called the intension of the word ’tiger’ and is supposed to be the essence
of tiger. In the traditional theory as well, intension determines extension. Similarly,
in the traditional view, the proper name ’Aristotle’ is identified with a description
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such as ‘the most well-known man who studied under Plato’. As a consequence, the
proposition ‘Aristotle studied under Plato’ would be an analytic truth. This is again
against our intuition.

Typical of the theory of direct reference is the position, held by Kripke, Donnellan
and others, that proper names and nouns standing for natural kinds refer indepen-
dently of identifying descriptions. In his paper [9], Donnellan distinguished between
two kinds of use for definite descriptions – the attributive use and the referential use.
In order to make this distinction clear, Donnellan considered the use of the definite
description ‘Smith’s Murderer’ in the following two cases.

Suppose first that we come upon poor Smith foully murdered. From the brutal manner of the
killing and the fact that Smith was the most lovable person in the world, we might exclaim
‘Smith’s murderer is insane’. I will assume, to make it a simpler case, that in a quite ordinary
sense we do not know who murdered Smith. . . . This, I shall say, is an attributive use of the
definite description. [[9], 285-286]

So, in the case of the attributive use, the speaker wants to say something about
whoever or whatever fits the description even if he does not know who or what that
is. On the other hand,

Suppose that Jones has been charged with Smith’s murder and has been placed on trial.
Imagine that there is a discussion of Jones’ odd behavior at his trial. We might sum up
our impression of his behavior by saying ‘Smith’s murderer is insane’. If someone asks to
whom we are referring by using this description, the answer here is ‘Jones’. This, I shall
say, is a referential use of the definite description.

So, if the description ‘Smith’s murderer’ is used referentially, the speaker is referring
to Jones, even in the case that Jones turns out to be innocent. Note that in this case
the description refers to Jones although it does not apply to Jones. To give another
example, suppose someone asks me at a party who Mr. X is. I answer ‘the man at
the door with a glass of sherry in his hand’. Now suppose that the person referred
to actually has a glass of white wine in his hand. Again the description may refer
successfully without applying to the object referred to. These examples make clear
that descriptions, when used referentially, do not always apply to the object they
refer to. When using a description referentially, we have a definite object in mind
whether or not it does fit the description.

According to the theory of direct reference, brought out by Keith Donnellan, Saul
Kripke and others, proper names, like ‘Aristotle’, ‘Thales’ and ‘Jane’, and nouns
standing for natural kinds, like ‘gold’, ‘water’ and ‘tiger’, have no intension (Sinn)
in the traditional sense, but only have reference; and this reference is established by
a causal chain rather than by an associated description. For example, the reference
to the person called ‘Aristotle’ is determined by a causal chain as follows. The per-
son in question is given a name in a ‘baptism’ with the referent present. Next this
name is handed on from speaker to speaker. It is in this way that we use the name
‘Aristotle’ referring to the person in question. We do not have to have any descrip-
tion of Aristotle; the information ‘Aristotle was a philosopher’ may be completely
new to the one who is using the name ‘Aristotle’.
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It is typical of the theory of direct reference that proper names, like ‘Jane’, refer
to some definite object, even when the description we supply, such as ‘the woman
John is married to’, does not apply to that object. This description may help us fix the
reference, but it should not be taken to be the meaning of the name. And a similar
view is held for nouns standing for natural kinds, like ‘gold’, ‘water’ and ‘tiger’.
The meaning of the word ‘tiger’ is its reference; identifying descriptions, such as
‘a tawny-coloured animal with sharp teeth’, only help us to fix the reference of this
term.

Summarizing, according to the theory of direct reference, the meaning of a proper
name or a natural kind term is its reference; the descriptions given in connection
with these terms only help the hearer to pick out what the speaker has in mind.

6.6.2 Rigid Designators

In his paper Naming and Necessity, Kripke [22] in addition holds the view that
a proper name, like ’Aristotle’, is a rigid designator, i.e., it designates the very
same object in all possible worlds in which this object exists. Thus, in the sentence
‘Aristotle might have been a carpenter’, the proper name ‘Aristotle’ refers to the
same individual referred to in the sentence ‘Aristotle was the philosopher who was
a pupil of Plato and taught Alexander’. The definite description ‘the most well-
known man who studied under Plato’, though it designates Aristotle in the actual
world, may designate other individuals in other possible worlds; for it is possible that
Aristotle did not study under Plato. Contrary to the traditional theory of meaning,
according to the theory of direct reference, the statement ‘Aristotle studied under
Plato’ is not necessarily true (and hence not analytic).

Now, if a and b are rigid designators and a = b is true (in this world), then a = b
must be true in all worlds (accessible from this one) and hence �(a = b) is true. So,
it follows from the thesis that proper names are rigid designators that all true iden-
tity statements of the form a = b, where a and b are proper names, are necessarily
true. In particular, it follows that ’Hesperus is Phosphorus (the morning star is the
evening star)’ and ’Tully is Cicero’, if true (in this world) are necessarily true. On
the other hand, we do not know a priori that Hesperus (the Morning Star) is Phos-
phorus (the Evening Star); this was discovered by empirical observation. Therefore,
Kripke [23] claims in his paper Identity and Necessity that sentences like ’Hesperus
is Phosphorus’ and ’Tully is Cicero’ if true (in this world) are necessarily true and
at the same time are a posteriori.

Kripke extends his insights about proper names to nouns standing for natural
kinds, such as ‘gold’, ‘water’ and ‘tiger’. These nouns are rigid designators too,
i.e., they refer to the same substance in all possible worlds in which this substance
exists. Let us consider some interesting consequences of this point of view. ‘Gold’
being a rigid designator, the sentence ‘gold is the element with atomic number 79’,
if true (in this world), will be true in all worlds (accessible from this one) and hence
be necessarily true. Similarly, ‘water’ being a rigid designator, the sentence ‘water
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has the chemical structure H2O’, if true (in this world), will be true in any world
(accessible from this one) and hence be necessarily true. So both propositions, if
true (in this world), are necessarily true and at the same time a posteriori. Kripke
defines a sentence A to be analytic if it is both necessary and a priori. Consequently,
sentences like ‘Hesperus is Phosphorus’, ‘Tully is Cicero’, ‘gold is the element with
atomic number 79’ and ‘water is H2O’ are NOT analytic, since they are a posteriori,
although necessarily true, if true (in this world).

Let stick S denote the standard meter in Paris. Then, by definition, stick S is one
meter long. Therefore, the epistemological status of the statement ‘stick S is one
meter long’ is that this statement is an a priori truth. Conceiving ’one meter’ as a
rigid designator, indicating the same length in all possible circumstances (worlds),
the metaphysical status of ‘stick S is one meter long’ will be that of a contingent
statement, since the length of stick S can vary with the temperature, humidity and
so on. So, assuming that ‘one meter’ is a rigid designator, the sentence ‘stick S is
one meter long’ is both a priori and contingent, i.e., not necessarily true.

Similarly, the sentence ‘water boils at 100 degrees Celcius’ will be a priori and
at the same time contingent, i.e., not necessarily true, if we conceive ‘100 degrees
Celcius’ as a rigid designator.

6.6.3 De dicto - de re distinction

If one wants to translate the sentence

It is possible that a Republican will win

into a logical formula, it becomes evident that this sentence is ambiguous. Using
♦ for ‘it is possible that’, the predicate symbol R for ‘being a Republican’ and
the symbol W for ‘will win’, there are two different translations of the sentence
in question:

(1) ∃x[R(x)∧♦W (x)], and
(2) ♦∃x[R(x)∧W (x)].

(1) says, literally, that there is some particular individual who actually is a Republi-
can and who may possibly win.
(2) says, literally, that it is possible that some Republican or other will win.

(1) is called the de re or referential reading of the sentence above. Typical of
the de re reading is that the possibility operator ♦ occurs within the scope of the
(existential) quantifier.

(2) is called the de dicto or non-referential reading of the sentence above. Typical
of the de dicto reading is that the (existential) quantifier occurs within the scope of
the possibility operator ♦.

The example above demonstrates that sentences containing modalities such as
‘possibly’, ‘necessarily’, ‘John believes that . . .’, etc., in combination with exis-
tential or universal quantifiers may give rise to ambiguities. Speaking in terms of
possible worlds:
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(1) says that in the given world there is a person who is a Republican (in the given
world) and who will win in some world accessible from the given one;
(2) says that there is a world accessible from the given one in which there is a person
who in that world is Republican and will win.

The proposition ‘John finds a unicorn’ can be properly translated as ∃x[U(x) ∧
F( j,x)], where U(a) stands for ‘a is a unicorn’, j stands for ‘John’ and F(a,b)
stands for ‘a finds b’. But ∃x[U(x)∧ S( j,x)], where S(a,b) stands for ‘a seeks b’
would be an improper translation of ‘John seeks a unicorn’, because the use of the
existential quantifier commits us to an ontology in which unicorns do exist. Note
that ‘John finds a unicorn’ and ‘John seeks a unicorn’ provide an extensional and an
intensional context respectively (see Section 6.11).

In his paper [30], R. Montague develops a ‘categorial’ language in which ‘John
seeks a unicorn’ can be properly translated.

6.6.4 Reasoning about Knowledge

Suppose three children, A(d), B(ob) and C(od), have played outside and two of
them, say A and B, have mud on their forehead; they can see each other, but not
themselves (there are no mirrors) and they do not communicate with each other.
However, they are all perfect logicians! Let P be the proposition:

P: there is at least one child with mud on its forehead.

Notice that each child knows P, because A sees B, B sees A and C sees both A
and B. But A does not know that B knows that P, because if A has no mud on its
forehead, B sees nobody with mud. So, P is not common knowledge.

Now the father of the children announces P. By this announcement, P becomes
common knowledge, in particular, everybody now knows that everybody knows P.
For instance, A now knows that B knows P.

Next, the father asks each child (for the first time) to step forward if he knows to
have mud on his forehead. What will happen? No child will step forward: A sees B
with mud, B sees A with mud, and C sees both A and B with mud. So, no child has
a reason to step forward.

Because after the first request no child steps forward, it becomes common knowl-
edge that there must be at least two children with mud; if there were only one child
with mud, this child would see no one else with mud and hence know he must be
the one with mud. Consequently, if the father asks each child for the second time
to step forward if he or she knows to have mud on the forehead, child A and B will
step forward: A knows that there are at least two children with mud and only sees B
with mud, and similarly for B.

Let mA be the proposition ‘A has mud on his forehead’ and cB the proposition ‘B
is clean’. By definition, wmAcBmC , abbreviated by wmcm or even mcm, is the world in
which mA, cB and mC are true, i.e., wmcm |= mA ∧ ¬mB ∧ mC. We may model the
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initial situation described above - before the father has said anything - by a Kripke
model M = 〈W,RA,RB,RC, |=〉 with eight possible worlds and three accessibility
relations RA, RB and RC.

w0

mmm←−−− RC −−−→ mmc
↗ ↑ ↑ ↖

RB | | RB

↙ | | ↘
mcm←−−−−−−−−RC −−−−−−−−→ mcc
↑ | | ↑

RA RA RA RA

↓ | | ↓
ccm←−−−−−−−−RC −−−−−−−−→ ccc
↖ | | ↗

RB | | RB

↘ ↓ ↓ ↙
cmm←−−− RC −−−→ cmc

In our story, the actual world is w0 = wmmc. Because the children cannot see them-
selves, A, for instance, cannot distinguish between wmmm and wcmm. So, the acces-
sibility relations RA, RB and RC are reflexive and symmetric.

Notice that in world w0 of this Kripke model M, A does not know that mA, since A
cannot distinguish between w0 and wcmc, in which mA does not hold. In other words,
M,w0 �|= KAmA, since w0RAwcmc, and M,wcmc �|= mA. The proposition P, expressing
that there is at least one child with mud, can now be rendered by P = mA∨mB∨mC.
In world w0 of this Kripke model M, A does not know that B knows that P, because
A cannot distinguish between w0 and wcmc, in which B does not know P, because
B cannot distinguish between wcmc and wccc. In other words, M,w0 �|= KA(KBP),
because M,wcmc �|= KBP.

Once the father has announced the proposition P, each child eliminates the world
wccc; the new situation is now modelled by the Kripke model M′:

w0

mmm←−−− RC −−−→ mmc
↗ ↑ ↑ ↖

RB | | RB

↙ | | ↘
mcm←−−−−−−−−RC −−−−−−−−→ mcc
↑ | |

RA RA RA

↓ | |
ccm
↖ | |

RB | |
↘ ↓ ↓

cmm←−−− RC −−−→ cmc
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Notice: M′,w0 |= KA(KBP), because M′,w0 |= KBP (B sees in w0 that A has mud)
and M′,wcmc |= KBP (B sees in wcmc that A and C are clean).

In case that exactly one child, say A, has mud on his forehead, i.e., in world wmcc

of Kripke model M′, we have M′,wmcc |= KAmA, because the only world accessi-
ble for A from wmcc is wmcc, in which mA is true (A sees that B and C are clean).
Similarly, M′,wcmc |= KBmB and M′,wccm |= KCmC. So, after announcing the propo-
sition P, if there were only one child with mud, the child in question would know
that he has mud on his forehead and would step forward. Once it becomes clear that
no child knows that he has mud on his forehead, it follows that the three possible
worlds wmcc, wcmc and wccm are cancelled and the only remaining possible worlds
are depicted in the following Kripke model M′′:

w0

mcm← RB → mmm← RC → mmc
↑

RA

↓
cmm

Now, clearly, M′′,w0 |= KAmA ∧KBmB, so A and B will step forward. Similarly,
M′′,wmcm |= KAmA∧KCmC and M′′,wcmm |= KBmB∧KCmC.

If no child would step forward after the second request of the father, it would
follow that the worlds wmmc, wmcm and wcmm are eliminated from model M′′ and
only world wmmm would remain, resulting in the Kripke model M′′′, consisting of
only one world wmmm. And M′′′,wmmm |= KAmA∧KBmB∧KCmC.

More generally, one may prove (see, for instance, Fagin, e.a. [10]):

Theorem 6.4. If there are k, k = 1,2, . . ., children with mud on the forehead, after
announcing the proposition that there is at least one child with mud, the father has to
state his request - to step forward once one knows that one has mud on the forehead
- k times, before each child with mud knows that he has mud on his forehead. After
i (i < k) rounds of questioning, it is common knowledge that at least i+ 1 children
have mud on their foreheads.

6.6.5 Common Knowledge

As seen in Subsection 6.6.4 common knowledge plays an important role in the
muddy children puzzle. But common knowledge is also relevant for reaching agree-
ment or for coordinating actions. We shall illustrate this by the coordinated attack
problem informally as follows:

There are two hills with a valley in between. On the hills are two divisions of an
army, each with its own general and in the valley is the enemy. If both divisions at-
tack the enemy simultaneously they will surely win, but if only one division attacks,
it will be defeated and have serious losses. So each general wants to be absolutely



6.7 Completeness of Modal Propositional Logic 303

sure that both divisions attack at the same time. Say, general 1 wants to coordinate
a simultaneous attack at dawn the next day and the generals are only able to com-
municate by means of a messenger (telephones are not available). The messenger,
however, may get lost or may be captured by the enemy. How long will it take the
generals to coordinate an attack?

Suppose general 1 sends a messenger with the message P (we attack at dawn tomorrow
morning) to general 2. Initially, we have that K1P and ¬K2P, where Ki is the knowledge
operator for general i ∈ {1,2}. Even if the message is in fact delivered, general 1 does not
know that it was delivered: ¬K1(K2P); hence he cannot be sure that general 2 will attack
simultaneously. So, given his state of knowledge, general 1 will not attack. General 2 knows
this and does not want to take the risk of attacking alone; hence, he cannot attack on the
basis of receiving the message of general 1. The only thing he can do is sending a messenger
to general 1, acknowledging that he received the message and achieving that K1(K2P).
However, even if general 1 receives this acknowledgment, he is in a similar position as
general 2 was in when he received the original message. Now general 2 does not know that
the acknowledgment was delivered: ¬K2(K1(K2P)). Because general 2 knows that without
receiving the acknowledgment general 1 will not attack, general 2 cannot attack as long
as he considers it possible that general 1 did not receive the acknowledgment. So, general
1 should send a message to general 2 in order to achieve that K2(K1(K2P)). However, the
problem now is that ¬K1(K2(K1(K2P))), and so on. It turns out that no number of successful
deliveries of acknowledgments can allow the generals to attack. Notice that, even if all the
acknowledgments sent are received, common knowledge of P and hence coordination is not
achieved, because of the uncertainty about what might have happened with the messengers.

Given a set N = {1,2} of agents (persons, computers) and a formula A, we may
define the the notions of ‘everyone knows A’ and ‘A is common knowledge’.

Definition 6.16 (Common Knowledge). EA := K1A∧K2A (everybody knows A);
E0A := A and for k = 0,1, . . ., Ek+1A := E(EkA). In particular, E1A = E(E0A) =
K1A∧K2A and E2A = E(E1A) = K1(K1A∧K2A)∧K2(K1A∧K2A), which in S4 and
S5 is equivalent to K1A∧K1(K2A)∧K2(K1A)∧K2A.
CA := A∧EA∧E2A∧E3A∧ . . . (A is common knowledge).

Notice that strictly speaking CA is not a formula in our language, because it is an
infinite conjunction. For the Kripke semantics and the syntaxis (axiom and rule) of
common knowledge see Fagin, e.a. [10] and Meyer and van der Hoek [29].

6.7 Completeness of Modal Propositional Logic

Let K− be any of the modal systems K, KT or KT 4 = S4. We shall prove complete-
ness of modal logic, i.e., that any valid consequence in K− of given premisses may
be logically deduced by the tableaux rules of K− from those premisses:
if A1, . . . ,An |= B in K−, then A1, . . . ,An �′ B in K− (Theorem 6.7). (1)
We shall also prove:
if A1, . . . ,An �′ B in K−, then A1, . . . ,An � B in K− (Theorem 6.9). (2)
In Theorem 6.3 we have already shown the soundness of modal logic:
if A1, . . . ,An � B in K−, then A1, . . . ,An |= B in K−. (3)
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From (1), (2) and (3) it follows that the three notions A1, . . . ,An � B in K−,
A1, . . . ,An |= B in K−, and A1, . . . ,An �′ B in K− are equivalent.

In order to prove completeness of modal logic, we define a procedure to construct a
counterexample to a given conjecture that A1, . . . ,An �′ B in K− with the following
property: if the procedure fails, i.e., does not yield a counterexample, we have in fact
constructed a tableau-deduction of B from A1, . . . ,An in K−. The procedure makes
use of the tableaux rules and produces ‘trees’ which we shall call search trees.

Definition 6.17 (Procedure to construct a counterexample). In order to construct
a oounterexample to the conjecture that A1, . . . ,An �′ B in K−, we must construct a
Kripke model M for K− such that for some world w in M, M,w |= A1∧ . . .∧An, but
M,w �|= B.

Step 1: Start with {TA1, . . . ,TAn,FB} and apply all tableaux rules for the propo-
sitional connectives and the T� rule in K− as frequently as possible. However, in
case one of the split-rules T →, T∨ and F∧ is applied, we make two search trees:
one with the left split and one with the right split. Notice that for a tableau-deduction
both search trees have to close.

For instance, consider the conjecture ♦P �′ �♦P∧♦♦P in KT :

search tree (1) search tree (2)
T ♦P, F �♦P∧♦♦P T ♦P, F �♦P∧♦♦P
T ¬�¬P, F �♦P∧♦♦P T ¬�¬P, F �♦P∧♦♦P
F �¬P, F �♦P∧♦♦P F �¬P, F �♦P∧♦♦P
F �¬P, F �♦P F �¬P, F ♦♦P

F �¬P, F ¬�¬¬�¬P
F �¬P, T ��¬P
F �¬P, T ��¬P, T �¬P
F �¬P, T ��¬P, T �¬P, T ¬P
F �¬P, T ��¬P, T �¬P, T ¬P, FP

In the transition of the third line to the fourth line we apply the rule F∧ to F �♦P∧
♦♦P, which causes a split. At that stage we make two search trees, one with the left
split signed formula F �♦P and one with the right split signed formula F ♦♦P. One
continues to apply all possible rules, except the F� rule, as frequently as possible.

At this stage we have partially constructed one, two (or more) search trees, each
consisting of one node labeled with signed formulas. A labeled node w in which
all tableaux rules except the F�-rule have been applied as frequently as possible
will be called logically complete. Intuitively, this means that one has fully described
which formulas are true and which formulas are false in the present world w. Next
we continue to expand each search tree by one or more applications of the F� rule.

Step 2 Each labeled node w in a search tree τ which is logically complete may
contain one or more signed formulas of the form F �A. For each of the signed
formulas of the form F �A in a labeled node w we construct a new node w′, declare
w′ accessible from w in the given search tree τ , i.e., wRτ w′, and label this node w′
with the formulas S�, FA or ST�, FA which result from applying the rule F� to
S, F �A in K, KT or S4, respectively. Notice that formulas that occur in labeled
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node w may not occur anymore in node w′ and that for closure it suffices that at
least one of the successor nodes contains TA and FA for some formula A.

Next we apply step 1 again, but now starting with S�, FA or ST�, FA, depend-
ing on the system K, KT or S4, resulting in one or more logically complete nodes
(worlds) w′. Step 1 and 2 are repeated as frequently as possible.

For search-tree (1) above one can apply the F� rule to F �¬P, losing the F �♦P
signed formula, and we can apply the F� rule to F �♦P, losing the F �¬P signed
formula. For a tableau-deduction only one of these two options has to yield closure.
So, we have two options to go on with search tree (1):

T ♦P, F �♦P∧♦♦P
T ¬�¬P, F �♦P∧♦♦P
F �¬P, F �♦P∧♦♦P

F �¬P, F �♦P
� �

↙ ↘
F ¬P F ♦P
T P F ¬�¬P

T �¬P, T ¬P, FP

Whatever we do, we do not get closure. However, the nice thing is that we have con-
structed a search tree τ , starting with T ♦P, F �♦P∧♦♦P, in this case consisting
of three nodes labeled with signed formulas, which yields a Kripke counterexample
M = 〈{w0,w1,w2},Rτ , |=〉 to the conjecture that ♦P �′ �♦P∧♦♦P in KT :

w0

� �

↙ ↘
P w1 w2

By definition, w0Rτ w1, w0Rτw2, w1 |= P, corresponding with the occurrence of T P
in node w1 and w2 �|= P, corresponding with the occurrence of FP in node w2. One
easily verifies that M,w0 |= ♦P, because M,w1 |= P, but M,w0 �|= �♦P and hence
M,w0 �|= �♦P∧♦♦P, because M,w2 �|= ♦P.

For search tree (2) there is only one formula of the form F �A in the upper node.
Application of Step 2 results in the following search tree in KT , consisting of two
nodes:

T ♦P, F �♦P∧♦♦P
...

F �¬P, T ��¬P, T �¬P, T ¬P, FP
|
↓

F ¬P, T �¬P, T¬P
T P, T �¬P, T¬P

T P, T �¬P, T¬P, T¬P
T P, T �¬P, T¬P, FP

closure
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However, because search tree (1) does not close, we have not found a tableau-
deduction of �♦P∧♦♦P from ♦P in KT . Instead, search tree (1) did not close
and yielded a Kripke counterexample to the conjecture ♦P `′ �♦P∧♦♦P in KT .
In our example, after executing step 1, 2 and 1 once more, the two search trees are
finished and cannot be extended anymore.

Definition 6.18 (Search tree).
A search tree τ for the conjecture A1, . . . ,An `′ B in K− is a set of nodes, labeled
with signed formulas, with a relation Rτ between the nodes, such that:
0. The upper node contains TA1, . . . ,TAn,FB.
1. In case of K, wRτ w′ := w′ is an immediate successor of w, i.e., w′ results from the
application of the F� rule to a formula of the form F �A in w.
In case of KT , wRτ w′ := w = w′ or w′ is an immediate successor of w.
In case of KT 4 = S4, wRτ w′ := w = w′ or w′ is a (not necessarily immediate) suc-
cessor of w.
2. For each node w in the search tree τ:
a) if F C→ D occurs in w, then TC occurs in w and FD occurs in w;
b) if T C∧D occurs in w, then TC occurs in w and T D occurs in w;
c) if F C∨D occurs in w, then FC occurs in w and FD occurs in w;
d) if T ¬C occurs in w, then FC occurs in w;
e) if F ¬C occurs in w, then TC occurs in w.
3. For each node w in the search tree τ:
a) if T C→ D occurs in w, then FC occurs in w or T D occurs in w;
b) if F C∧D occurs in w, then FC occurs in w or FD occurs in w;
c) if T C∨D occurs in w, then TC occurs in w or T D occurs in w.
4. For each node w in the search tree τ:
a) if T �C occurs in w, then for all w′ in τ with wRτ w′, TC occurs in w′;
b) if F �C occurs in w, then for some w′ in τ with wRτ w′, FC occurs in w′.

Definition 6.19 (Closed/open search tree).
A search tree τ is closed if it contains at least one node labeled with TA and FA for
some formula A. Otherwise, the search tree is called open.

Theorem 6.5. Let τ be an open search tree for the conjecture A1, , . . . ,An `′ B in
K− with upper node w0. Let Wτ the set of nodes in τ and let Rτ be defined as
in Definition 6.18. Define w |= P := T P occurs in w. Then Mτ = 〈Wτ ,Rτ , |=〉 is a
Kripke countermodel in K− to the conjecture that A1, . . . ,An `′ B. More precisely,
Mτ ,w0 |= A1∧ . . .∧An, but Mτ ,w0 6|= B.

Proof. Let τ be an open search tree with w0 as upper node, containing TA1, . . . ,TAn,
FB. Let Mτ = 〈Wτ ,Rτ , |=〉 be the corresponding Kripke model, as defined in the
theorem. We shall prove by induction:
1) If TA occurs in w, then Mτ ,w |= A.
2) If FA occurs in w, then Mτ ,w 6|= A.
Since TA1, . . . ,TAn,FB occur in the top node w0, it follows that Mτ ,w0 |= A1∧ . . .∧
An, but Mτ ,w0 6|= B. Therefore, A1, . . . ,An 6|= B in K−.
Induction basis Let A = P be atomic. If T P occurs in w, then by definition w |= P,
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i.e., Mτ ,w |= P. If FP occurs in w, then - since τ is open - TP does not occur in w
and hence by definition w �|= P, i.e., Mτ ,w �|= P.
Induction step Suppose 1) and 2) hold for C and D (induction hypothesis). We shall
prove that 1) and 2) hold for C→D, C∧D, C∨D, ¬C and �C.
Let A = C → D and suppose T C → D occurs in w. Then according to Definition
6.18, 3 a), FC is in w or T D is in w. So, by the induction hypothesis, Mτ ,w �|=C or
Mτ ,w |= D. Consequently, Mτ ,w |=C→D.
Let A = C → D and suppose F C → D occurs in w. Then according to Definition
6.18, 2 a), TC is in w and FD is in w. So, by the induction hypothesis, Mτ ,w |= C
and Mτ ,w �|= D. Consequently, Mτ ,w �|=C→ D.
The cases that A =C∧D, A =C∨D and A = ¬C are treated similarly.
Let A =�C and suppose T �C occurs in w. Then according to Definition 6.18, 4 a),
for every node w′ in τ with wRτ w′, TC occurs in w′. So, by the induction hypothesis,
for all w′ in τ , if wRτ w′, then Mτ ,w′ |=C and hence Mτ ,w |=�C.
Let A =�C and suppose F �C occurs in w. Then according to Definition 6.18, 4 b),
there is a node w′ in τ with wRτ w′ such that FC occurs in w′. So, by the induction
hypothesis, Mτ ,w′ �|=C and hence Mτ ,w �|=�C. ��
Theorem 6.6. If all search trees for the conjecture A1, . . . ,An �′ B in K− are closed,
i.e., contain closure in one of their branches, then A1, . . . ,An �′ B in K−.

Proof. Suppose all search trees for the conjecture A1, . . . ,An �′ B in K− are closed.
Then it follows from the construction of the search trees that the closed branches
together form a tableau-deduction of B from A1, . . . ,An in K−. ��
Example 6.10. We construct the search trees for the conjecture ♦(P∧Q) �′ ♦P∧
(♦Q∨�P) in K. Step 1 yields two partial search trees each consisting of one node:

T ♦(P∧Q), F ♦P∧ (♦Q∨�P) T ♦(P∧Q), F ♦P∧ (♦Q∨�P)
T ♦(P∧Q),F ♦P T ♦(P∧Q), F ♦Q∨�P
T ¬�¬(P∧Q), F ¬�¬P T ¬�¬(P∧Q), F ¬�¬Q, F �P
F �¬(P∧Q), T �¬P F �¬(P∧Q), T �¬Q, F �P

Because there is no T� rule for K, step 1 finishes here. The only rule which may be
applied next is the rule F� for K. Applying step 2 to the last sequents of step 1 we
get:

F �¬(P∧Q), T �¬P F �¬(P∧Q), T �¬Q, F �P
| � �

↓ ↙ ↘
F ¬(P∧Q), T ¬P F ¬(P∧Q), T ¬Q T ¬Q, FP
T P∧Q, FP T P∧Q, FQ FQ, FP
T P, TQ, FP T P, T Q, FQ

The leftmost search tree consists of one branch with two nodes, and is closed. The
rightmost search tree consists of two branches and three nodes; its left branch is
closed and its right branch is open. The two closed branches together form a tableau-
deduction in K of ♦P∧ (♦Q∨�P) from ♦(P∧Q).



308 6 Modal Logic

Theorem 6.7 (Completeness).
If A1, . . . ,An |= B in K−, then A1, . . . ,An �′ B in K−.

Proof. Suppose A1, . . . ,An |= B in K−. Construct all search trees for the conjecture
A1, . . . ,An �′ B in K−. If one of them is open, say τ , then by Theorem 6.5, Mτ ,w0 |=
A1∧ . . .∧An, while Mτ ,w0 �|= B. This contradicts the assumption A1, . . . ,An |= B in
K−. Hence, there can be no open search tree for the conjecture A1, . . . ,An �′ B in
K−. That is, all search trees for this conjecture are closed. So, by Theorem 6.6,
A1, . . . ,An �′ B in K−. ��
In the case of K, resp. KT , our procedure to construct a counterexample to the
conjecture A1, . . . ,An �′ B will stop after finitely many steps and then either yield a
Kripke counterexample or a tableau-deduction of B from A1, . . . ,An in K, resp. KT .
In the case of S4, this procedure does not necessarily stop after finitely many steps
(see Example 6.9), but nevertheless after finitely many steps it will become clear
whether one has constructed a Kripke counterexample in S4 or a tableau-deduction
of B from A1, . . . ,An in S4. Therefore, the modal propositional logics K, KT and S4
are decidable.

Theorem 6.8 (Decidability). The modal propositional logics K, KT and S4 are de-
cidable, i.e., there is a procedure to decide whether A1, . . . ,An �′ B in K, KT , resp.
S4, in finitely many steps.

In order to prove that the three notions of formal deducibility in K−, Kripke valid
consequence in K− and tableau-deducibility in K− are equivalent we still have to
show the following theorem.

Theorem 6.9. If A1, . . . ,An �′ B in K−, then A1, . . . ,An � B in K−.

Proof. The proof is a generalization of the analogue for classical propositional
logic; see Theorem 2.27. Suppose A1, . . . ,An �′ B in K−, i.e., B is tableau-deducible
from A1, . . . ,An in K−. It suffices to show:
for every sequent S = {TD1, . . . ,TDk, FE1, . . . ,FEm} in a tableau-deduction of B
from A1, . . . ,An in K− it holds that D1, . . . ,Dk � E1∨ . . .∨Em in K−. (*)
Consequently, because {TA1, . . . ,TAn, FB} is the first (upper) sequent in any given
tableau-deduction of B from A1, . . . ,An in K−, it follows that A1, . . . ,An � B in K−.

The proof of (*) is tedious, but has a simple plan: the statement is true for the
final sequents in a tableau-deduction in K−, and the statement remains true if we go
up in the tableau-deduction in K− via the T and F rules.
Basic step: Any final sequent in a tableau-deduction of B from A1, . . . ,An in K−
is of the form {T D1, . . . ,T Dk, T P, FP, FE1, . . . ,FEm}. So, we have to show that
D1, . . . ,Dk, P � P∨E1 ∨ . . .∨Em. And this is straightforward: D1, . . . ,Dk, P � P
and P � P∨E1∨ . . .∨Em.
Induction step: We have to show that for all rules of K− the following is the case: if
(*) holds for all lower sequents in the rule (induction hypothesis), then (*) holds for
the upper sequent in the rule.

In the proof of Theorem 2.27 we have already shown the induction step for the T -
and F-rules for the connectives. So, we may restrict ourselves to the T - and F-rules
for � in system K−.
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Induction step for rule F� in K: For convenience, we will suppose that S =
{T�C,T D,FE}. So, consider: T�C, T D, FE, F�A

TC, FA
By the induction hypothesis, we have C � A in K. We have to show: �C, D�E∨�A
in K. This is straightforward: from C � A in K follows �C � �A in K and hence,
�C, D � E ∨�A in K.

Induction step for rule T� in KT : For convenience, we will suppose that S =
{TD, FE}. So, consider: T�C, T D, FE

TC, T D, FE
By the induction hypothesis, we have C, D � E in KT . We have to show: �C, D � E
in KT . This is straightforward, because �C→C is an axiom of KT .

The other T - and F-rules for � in K− are treated similarly. ��
Exercise 6.17. Construct a counterexample showing that the cosmological proof of
God’s existence in S5, given in Exercise 6.3, does not hold in S4:
♦P, �(♦P→ Q) �� �Q in S4.

Exercise 6.18. Construct a counterexample showing that the ontological proof of
God’s existence in S5, given in Exercise 6.4, does not hold in S4:
�(Q→�Q), ♦Q �� Q in S4.

Exercise 6.19. Prove or refute: a) �(S→ E), �(E → L), ¬♦L �′ ¬♦S in K.
b) S→�E, E →�L, ¬♦L �′ ¬♦S in S4 (confer Exercise 6.1).

6.8 Strict Implication

The material implication, →, of classical propositional logic is characterized in
terms of its truth table: P → Q is 0 (false) if and only if P is 1 (true) and Q is 0
(false). Through the ages objections have been raised against the ‘only if’: if P is 0,
then P→ Q is 1. Although there are many arguments in favor of the truth table of
P→Q, as we have seen in Section 2.2, also objections have been raised, in particu-
lar the so-called paradoxes of material implication:
a) ¬A |= A→ B: if A is false, then from A follows any proposition B;
b) B |= A→ B: if B is true, then B follows from any proposition A.
So, from ‘I do not break my leg’ it logically follows that ‘if I break my leg, then
I go for skying’ and from ‘I like my coffee’ it logically follows that ‘if there is oil
in my coffee, then I like my coffee’; see Section 2.4. In the same section we have
seen that P. Grice [16] explains these paradoxes by pointing out that one should take
into account not only the truth conditions of the propositions asserted, but also the
pragmatic principles governing discourse: A→ B is normally not to be asserted by
someone who is in the position to deny A or to assert B.

The dispute between advocates of the truth-functional account of conditionals,
given in Section 2.2, and the advocates of other - more complex but seemingly more
adequate - accounts is as old as logic itself. The truth-functional account is first



310 6 Modal Logic

known to have been proposed by Philo of Megara ca. 300 B.C. in opposition to
the view of his teacher Diodorus Cronus. We know of this through the writings of
Sextus Empiricus some 500 years later, the earlier documents having been lost; see
Section 2.10.2. Sextus reports Philo as attributing truth values to conditionals just as
in our truth table for→. Diodorus probably had in mind what later was called strict
implication.

Rejecting material implication as an adequate representation of ‘if . . ., then . . .’, in
1918 C.I. Lewis [25] put forward strict implication, �→, which can be rendered in
terms of necessity and material implication: �(A→ B).

Definition 6.20. Strict implication, �→, is defined by A �→ B :=�(A→ B).

It is easy to show that the versions for strict implication of the paradoxes of material
implication do not hold. According to Exercise 6.20:
a) not ¬A �′ A �→ B in S4; and b) not B �′ A �→ B in S4.

However, the definition of strict implication leads to the so-called paradoxes of strict
implication. According to Exercise 6.21:
a) �¬A �′ A �→ B in K: an impossible proposition A implies every proposition B.
b) �B �′ A �→ B in K: a necessary proposition B is implied by every proposition A.
c) Q �′ P �→ P in K and d) �′ ¬Q∧Q �→ P in K.
The problem with these paradoxes is that for the provability of an inference from A
to B, A should be relevant to B. See Section 6.10.

Exercise 6.20. Prove: not ¬A �′ A �→ B in S4 and not B �′ A �→ B in S4.

Exercise 6.21. Prove the following so-called paradoxes of strict implication:
a) �¬A �′ A �→ B in K; b) �B �′ A �→ B in K;
c) Q �′ P �→ P in K; d) �′ ¬Q∧Q �→ P in K.

6.9 Counterfactuals

Counterfactuals are expressions of the form A �→ B, to be read as ’if it were the
case that A, then it would be the case that B’, where A is supposed to be false. Unlike
material, strict and relevant implication, the counterfactual

a) is not transitive, i.e., not
A �→ B B �→C

A �→C
,

b) does not have the property of contraposition
A �→ B
¬B �→¬A

, and

c) does not have the property of strengthening
A �→ B

A∧C �→ B
.

The following counterexamples are from D. Lewis [26]:
a) If J. Edgar Hoover had been born a Russian, then he would have been a commu-
nist. If he had been a communist, he would have been a traitor.
Therefore: If he had been born a Russian, he would have been a traitor.
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b) If Boris had gone to the party, Olga would still have gone.
Therefore: If Olga had not gone, Boris would still not have gone.
Suppose that Boris wanted to go, but stayed away solely in order to avoid Olga, so
the conclusion is false; but Olga would have gone all the more willingly if Boris had
been there, so the premiss is true.
c) If I walked on the lawn, no harm at all would come of it. Therefore:
If I and everyone else walked on the lawn, no harm at all would come of it.

e
e
e

%
%
%
%
%%

A,¬Bw′′

A,Bw′

A �→ B,¬Aw

We say that A �→ B is true in world w iff either A is impossible in w or there is
an accessible A∧B-world w′, which is closer to w than every A∧¬B-world is (R.
Stalnaker, D. Lewis,± 1970), where a C-world is simply a world in which C is true.

Example 6.11. a) A young child to his father: If you would bring that big tree home
(A), I would make matches from it (B). This proposition is true in the present world
because the child considers the antecedent A to be impossible.
b) If you would jump out of the window at the 20th floor (A), you would get injured
(B). This proposition is true in the present world w, because there is world w′ in
which A∧B is true and which is closer to w than each world w′′ in which A∧¬B is
true.
c) If you would jump out of the window at the 20th floor, you would change into a
bird. This proposition is not true in the present world w, because we cannot imagine
a world w′ in which A∧B is true and which is closer to w than any world in which
A∧¬B is true.

Given a Kripke model M = 〈W, R, |= 〉, we assume that for each w in W there is a
binary relation <w on W , where w′ <w w′′ is to be read as: w′ is closer to w than w′′.
Furthermore, we assume that R is reflexive, and
1. if wRw′ and not wRw′′, then w′ <w w′′;
2. for all w, w′ in W , if w 6= w′, then w <w w′ and not w′ <w w.

Definition 6.21 (M |=w A�→ B). Let M = 〈W, R, |=, <〉 be a Kripke model, where
for each w in W , <w is a binary relation on W , satisfying the conditions just men-
tioned. M |=w A �→ B := M |=w ¬♦A or there is some world w′ in W such that a)
wRw′ and M |=w′ A∧B, and b) for all w′′ in W , if M |=w′′ A∧¬B, then w′ <w w′′.

For an illustration we refer to Exercise 6.22.
Under the conditions just mentioned, counterfactuals with true antecedents re-

duce to material conditionals. More precisely, the following two inference-patterns
are valid:

(a)
A∧¬B

¬(A �→ B)
and (b)

A∧B
A �→ B

;
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that is, our truth conditions guarantee that whenever the premiss is true in a world
of a given model M, then so is the conclusion; see Exercise 6.23.

The validity of the first inference-pattern (a) also guarantees the validity of the
inference from a counterfactual to a material conditional and the validity of Modus

Ponens for a counterfactual conditional:
A �→ B
A→ B

and
A A �→ B

B
. We also have

the inference:
�(A→ B)
A �→ B

; see Exercise 6.24.

One can develop possible-world semantics for counterfactuals, a notion of validity
(|= A) and a notion of provability (� A) such that a counterfactual formula A is valid
if and only if A is provable. See D. Lewis’ paper [27], pp. 441-443, or his monograph
[26]; de Swart [37] and Gent [14].

Let A ♦→ B stand for ‘if A were the case, then B might be the case’. Then it is
plausible to have A ♦→ B iff ¬(A �→ B). The reader can check for himself that,
given plausible assumptions about comparative similarity of worlds where Bizet and
Verdi would be compatriots, both
(1) if Bizet and Verdi were compatriots, then Bizet might be Italian, and
(2) If Bizet and Verdi were compatriots, then Bizet might not be Italian,
are true. For further reading see Harper e.a. [17].

Exercise 6.22. Let C stand for: Bizet and Verdi are compatriots. Let BF , BI and BD

stand for: Bizet is French, Italian, Dutch, respectively. And similarly, VF , VI and VD

for: Verdi is French, Italian, Dutch, respectively. Let w be the actual world, in which
BF and VI hold, of the following Kripke model M. Verify that in the Stalnaker-Lewis
analysis of counterfactuals:
a) M,w |=C �→ (BF ∧VF)∨ (BI ∧VI) b) M,w �|=C �→ BI ,
c) M,w �|=C �→VF d) M,w |=C �→¬BD∧¬VD.

C,BF ,VF
�
�
� �
�
�
�
�
�
�

C,BD,VDM w′′

C,BI ,VIw2w1

.
w ¬C,BF ,VI

.
.
.

Exercise 6.23. Let M = 〈W, R, |= 〉 be a Kripke model with R reflexive and for each
w in W , let <w be a binary relation on W satisfying: 1. if wRw′ and not wRw′′, then
w′ <w w′′ and 2. if w �= w′, then w <w w′ and not w′ <w w. Prove:
a) if M,w |= A∧¬B, then M,w |= ¬(A �→ B), and
b) if M,w |= A∧B, then M,w |= A �→ B.

Exercise 6.24. Under the conditions mentioned in Exercise 6.23 prove that:
if M,w |=�(A→ B), then M,w |= A �→ B.
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Exercise 6.25. Show that not |= (P �→ Q)∨ (Q �→ P) in S4 and that also not |=
(P �→Q)∨ (Q �→ P), while |= (P→ Q)∨ (Q→ P).

6.10 Weak and Relevant Implication; Entailment∗

In his paper The weak theory of implication, A. Church [8] succeeds in excluding
the paradoxes of strict implication (see Exercise 6.21) without also excluding at
the same time arguments which everyone regards as valid. In his paper A. Church
presents essentially the following axiom schemes for what he calls weak implica-
tion, but what one might also call relevant implication, and which we denote by⇒:

1. A⇒ A
2. (A⇒ B)⇒ ((B⇒C)⇒ (A⇒C))
3. (A⇒ (B⇒C))⇒ ((A⇒ B)⇒ (A⇒C))
4. (A⇒ (B⇒C))⇒ (B⇒ (A⇒C))

together with the rule Modus Ponens,
B B⇒C

C
.

⇒ satisfies principles of relevance in the following mathematically definite sense:

A1, . . . ,An−1 �∗ An ⇒ B iff A1, . . . ,An−1,An �∗ B,

where A1, . . . ,An−1,An �∗ B (B is deducible from A1, . . . ,An) means that B can be
obtained by a finite number of applications of Modus Ponens to A1, . . . ,An−1,An and
to instances of the axiom schemes 1, 2, 3, 4, such that all of A1, . . . ,An−1,An actually
are used in the deduction of B; more precisely, such that B gets the relevance-index
{1, . . . ,n−1,n} if we assign to each Ai (1≤ i≤ n) the index {i} and to each conse-
quence of an application of Modus Ponens the union of the indices of its premisses.

For instance, A⇒ B, B⇒C �∗ A⇒C, for the following schema is a deduction
(in the new sense) of A⇒C from A⇒ B and B⇒C:

B⇒C{2} ((B⇒C)⇒ (A⇒C)){1}

A⇒ B{1} (A⇒ B)⇒ ((B⇒C))⇒ (A⇒C))

(A⇒C){1,2}

However, it is not the case that Q �∗ P⇒ P (see Anderson & Belnap, [2]), while
Q � P→ P does hold, since in ‘A � B’ it is not demanded that A actually is used in
the deduction of B and � P→ P holds; see Section 2.6.

We define M = 〈S, /0, ∪, |= 〉 to be a model (for the logic of weak or relevant
implication) if and only if
1. S is a collection of sets, closed under ∪; the elements of S are to be regarded as
pieces of information;
2. /0 is the empty set (regarded as the empty piece of information);
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3. a∪b is the union of a and b (see Chapter 3);
4. |= is a relation between elements of S and atomic formulas P; ‘a |= P’ is to be
read as: P is true on the basis of the information in a.

For M a model and A a formula built from atomic formulas by means of⇒ only,
we define M |=a A (A is true on the basis of the information a of the model M) as
follows:
M |=a P iff a |= P (P atomic);
M |=a B⇒C iff for all b in S, not M |=b B or M |=a∪b C.

M is a model for A (M |=∗ A) iff M |= /0 A.
A is valid (|=∗ A) iff for all models M, M |=∗ A. And B is a valid consequence of
A1, . . . ,An (A1, . . . ,An |=∗ B) iff |=∗ A1 ⇒ (A2 ⇒ . . . (An ⇒ B) . . .).

Exercise 6.26. Prove the (deduction) theorem: A1, . . . ,An−1 �∗ An ⇒ B iff
A1, . . . ,An−1,An �∗ B. Hint: the proof of the ’if’-part of the (deduction) theorem pro-
ceeds by replacing in a given deduction of B from A1, . . . ,An−1,An each expression

Cc with n ∈ c by (An ⇒C)c−{n}. For Modus Ponens,
Dd (D⇒ E)e

Ed∪e
, four different

cases arise, depending on whether n ∈ d and/or n ∈ e; and the axioms have been
chosen such that the resulting schema can easily be supplemented to a deduction of
An ⇒ B from A1, . . . ,An−1.

Exercise 6.27. a) Prove the Soundness Theorem:
if A1, . . . ,An �∗ B, then A1, . . . ,An |=∗ B.

In [38] A. Urquhart also proves the converse of this statement, i.e., completeness.
b) Prove that �|=∗ Q ⇒ (P ⇒ P), and hence Q ��∗ P ⇒ P. In general, the relevant
implication versions of the original paradoxes of strict implication do not hold.

Exercise 6.28. Prove that �∗ A⇒ ((A⇒ A)⇒ A). This says that if A is true, then
it follows from A⇒ A. But it seems reasonable to suppose that any logical conse-
quence of A⇒ A should necessarily be true (see Anderson & Belnap [2], p. 23). We
therefore consider entailment, �, defined by P � Q := �(P⇒ Q), which was es-
sentially considered for the first time by W. Ackermann [1] in his Begründung einer
strengen Implikation. In this paper W. Ackermann presents essentially the following
axiomatic system for � :
1. A � A
2. (A � B)� ((B �C)� (A �C))
3. (A � (B �C))� ((A � B)� (A �C))
4. (A � B)� (((A � B)�C)�C)

together with the rule Modus Ponens
P P � Q

Q
.

Entailment satisfies both principles of relevance and principles of necessity in
certain mathematically definite senses: all valid entailments are necessarily valid
and in all valid entailments the antecedent is relevant to the succedent.



6.11 Modal Predicate Logic 315

6.11 Modal Predicate Logic

A possible world semantics for the modal predicate logics is obtained by demanding
that a Kripke model M contains for every world w in M a domain or universe U(w)
such that if wRw′, then U(w) is a subset of U(w′).
M,w |= ∀x[A(x)] := for every individual d in U(w), M,w |= A(a)[d], and
M,w |= ∃x[A(x)] := there is some d in U(w) such that M,w |= A(a)[d].

‘It is possible that unicorns exist’ can be rendered by ♦∃x[P(x)], and is likely to
be true. But ‘there is an object which possibly is a unicorn’, to be rendered by
∃x[♦P(x)], is generally held to be false.

In terms of possible worlds, the difference can be explained as follows, using
U(w) for the universe of world w:
M,w |= ♦∃x[P(x)] := there is a world w′ in M accessible from w (wRw′) such that
M,w′ |= ∃x[P(x)], i.e., there is a world w′ in M accessible from w such that there is
an individual d in the universe U(w′) of w′ which is a unicorn in w′.
M,w |= ∃x[♦P(x)] := there is an object d in the universe U(w) of w such that M,w |=
♦P(a)[d], i.e., there is an object d in the universeU(w) of w such that there is a world
w′ in M accessible from w (wRw′) in which d is a unicorn.

Supposing that if wRw′, then the universe U(w) of w is a subset of the universe
U(w′) of w′, we find that

if M,w |= ∃x[♦P(x)], then M,w |= ♦∃x[P(x)],

but not conversely. Hence the following statements hold, but not conversely:
|= ∃x[♦¬A(x)]→ ♦∃x[¬A(x)].
|= ¬♦∃x[¬A(x)]→¬∃x[♦¬A(x)].
|= ¬¬�¬∃x[¬A(x)]→¬∃x[¬�¬¬A(x)].
|=�∀x[A(x)]→∀x[�A(x)].

Again, the difference between �∀x[A(x)] and ∀x[�A(x)] may be explained best in
terms of possible world semantics:
M,w |= �∀x[A(x)] := for every world w′ in M with wRw′ and for every object d in
the universe U(w′) of w′, M,w′ |= A(a)[d]; but
M,w |= ∀x[�A(x)] := for every object d in the universe U(w) of w and for every
world w′ in M with wRw′, M,w′ |= A(a)[d].

A Hilbert-type proof system for the modal predicate logics K, KT , S4, and S5, is
obtained by adding to the axioms and rules for the respective modal propositional
logics the (classical) axioms and rules for the quantifiers:
∀ axiom: ∀x[A(x)]→ A(t) and ∃ axiom: A(t)→∃x[A(x)] for any term t.
∀ rule: from C→ A(a) deduce C→∀x[A(x)], provided a does not occur in C.
∃ rule: from A(a)→C deduce ∃x[A(x)]→C, provided a does not occur in C.

Let us show that ��∀x[A(x)]→∀x[�A(x)] in K:
1. ∀x[A(x)]→ A(a) by the axiom for ∀.
2. �(∀x[A(x)]→ A(a)) from 1 by the rule for �.
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3. �∀x[A(x)]→�A(a) from 2 and the axiom for �, using Modus Ponens.
4. �∀x[A(x)]→∀x[�A(x)] from 3 by the rule for ∀.

A tableaux proof system for the modal predicate logics K, KT and S4 is obtained by
adding the T - and F-rules for ∀ and ∃ to the tableaux rules for the connectives and
�:

S, T ∀x[A(x)] S, F ∀x[A(x)]
S, T ∀x[A(x)],TA(t) S, FA(a) with a new

S, T ∃x[A(x)] S, F ∃x[A(x)]
S, T A(a) with a new S, F ∃x[A(x)],FA(t)

Soundness and completeness of the modal predicate logics with respect to the ap-
propriate Kripke semantics can again be shown by generalizing the proofs for the
propositional case in Section 6.7.

Although �∀x[A(x)] → ∀x[�A(x)] is formally provable in K and hence Kripke-
valid, the converse formula ∀x[�A(x)]→ �∀x[A(x)], called the Barcan formula,
is not Kripke-valid. A Kripke counterexample in S4 can be obtained by trying to
construct a tableau-proof of this formula; we do not succeed in finding such a proof,
but instead we find an open search tree from which we can immediately read off a
counterexample.

TA(a1),T�A(a1),T ∀x[�A(x)],F�∀x[A(x)]
T�A(a1),T ∀x[�A(x)],F�∀x[A(x)]

T ∀x[�A(x)],F�∀x[A(x)]

T�A(a1), F ∀x[A(x)]
T�A(a1), FA(a2)
T�A(a1),TA(a1), FA(a2)

A(a1){a1,a2}

M
{a1} A(a1)

Let M = 〈{w1,w2},R, |=〉 be the Kripke model in S4 consisting of two worlds w1,w2

with w1Rw2, U(w1) = {a1}, U(w2) = {a1,a2}, w1 |= A(a1) and w2 |= A(a1), but
w2 �|= A(a2), corresponding with the occurrence of TA(a1) in w1 and in w2 and the
occurrence of FA(a2) in w2.

M,w1 |= ∀x[�A(x)] := all objects in U(w1) have the property �A in w1. This is
the case, because M,w1 |= A(a1) and M,w2 |= A(a1). But M,w1 |=�∀x[A(x)] := for
all worlds w′ in M accessible from w1 each individual in U(w′) has the property
A in w′. Since w1Rw2, a2 in U(w2) and by definition w2 �|= A(a2), it follows that
M,w1 �|= �∀x[A(x)].

Exercise 6.29. Show that �′ �∀x[A(x)]→∀x[�A(x)] in K.

6.11.1 Modal Predicate Logic and Essentialism

Leibniz’ law says that those things are the same of which one may be substituted for
the other with preservation of truth. In contemporary treatments of identity this law
is presented as follows:
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(1) |= a = b → (. . .a . . .� . . .b . . .)

where . . .a . . . is a context containing occurrences of the name a, and . . .b . . . is the
same context except that one or more occurrences of a have been replaced by b: if
a = b, then what holds for a also holds for b and vice versa.

In the propositional calculus we have a similar principle, called the replacement
theorem:

(2) |= (A � B) → (. . .A . . .� . . .B . . .).

And the analogue of the replacement theorem for predicate logic is principle

(3) |= (P(a)� Q(a)) → (. . .P(a) . . .� . . .Q(a) . . .).

Quine [33] and Føllesdal [12] have argued that in order to make sense of quantified
modal logic, modal contexts should be referentially transparent, i.e., principle (1)
should hold also for modal contexts, and at the same time they should be extension-
ally opaque, i.e., the principles (2) and (3) should NOT hold for modal contexts.

According to Quine, in order to be able to quantify into modal contexts, these
contexts should be referentially transparent: ∃x[�(x > 7)] holds because �(9 > 7)
is true; but 9 = the number of planets (in this world); so, � (the number of planets
(in this world) > 7) should hold.

Therefore, quantified modal logic only makes sense if we accept principle (1)
also for modal contexts:

(1) |= a = b → (. . .a . . .� . . .b . . .).

Principle (1) says that whatever is asserted to be true of an object, must be true
of it regardless of how it is referred to. In other words, modal contexts should be
referentially transparent, i.e., if two singular terms refer to the same object, they are
interchangeable with preservation of truth (also in modal contexts).

Principle (1) says in particular that |= a = b → (�(a = a) � �(a = b)). And
since �(a = a) is valid, it follows that

(1∗) : |= a = b → �(a = b).

For instance, Hesperus and Phosphorus are two different names referring to the same
object (the planet Venus), i.e., Hesperus = Phosphorus, and hence, �(Hesperus =
Phosphorus).

Principle (1∗) says that if a and b refer to the same object, say o, in this world,
then they refer to the same object (but possibly different from o) in any world acces-
sible from this one. Hence, if a is a rigid designator (i.e., refers to the same object in
any world accessible from this one), then b is also a rigid designator. In fact, Kripke
already argued that proper names and nouns for natural kinds are rigid designators;
see Subsection 6.6.2.

On the other hand, if we accept one of the principles (2) or (3) also for modal
contexts (i.e., contexts . . .A . . . or . . .P(a) . . . containing modalities), then it even
follows that |= B ��B for any proposition B. In other words, the extension of (2)
or (3) from classical propositional logic or predicate logic respectively to modal
logic would collapse necessity into truth. The arguments are simple.
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Suppose (2) would hold also for modal contexts. Then in particular |= (A �
B) → (�A ��B). Taking for A the expression a = a, it follows that |= B→�B,
since both a = a and �(a = a) hold. Because we usually also assume the converse,
|=�B→ B, it follows that |= B ��B.

Suppose (3) would hold also for modal contexts. Next suppose B is true. Taking
P(a) := a = a and Q(a) := a = a ∧ B, P(a)� Q(a) is true and hence, by principle
(3), �(a = a) � �(a = a ∧ B) is true. Since �(a = a ∧ B) is equivalent to
�(a = a) ∧ �B, it follows that �B is true. So, we have shown that from principle
(3) it follows that |= B→�B and therefore |= B ��B.

Consequently, the principles (2) and (3) should NOT hold for modal contexts. In
other words, modal contexts should be extensionally opaque; that is, – formulated
negatively – general terms and sentences with the same extension (truth value in
the case of sentences) must in general not be interchangeable with preservation of
truth. Such interchangeability would amount to the collapse of modal distinctions.
Formulated positively, extensional opacity means that some properties belong to
things necessarily, while other properties belong to things only accidently.

So, in order to make sense of quantified modal logic, modal contexts should be
referentially transparent, i.e., principle (1) should hold also for modal contexts, and
at the same time they should be extensionally opaque, i.e., the principles (2) and (3)
should NOT hold for modal contexts. From this it is immediately clear that a sat-
isfactory semantics for the modalities must distinguish between expressions which
refer (singular terms) and expressions which have extension (general terms and sen-
tences, the extension of a sentence being its truth value). Therefore, a Fregean se-
mantics, according to which all expressions are considered to be referring, cannot
be appropriate for modal logic. However, as already has been pointed out by J.R.
Searle, Frege’s extension of the notion of reference to predicates and sentences is
not very natural:

. . . an expression refers to an object only because it conveys something true of that object.
But a predicate does not convey something true of a concept nor does a sentence convey
something true of a truth value. [Searle [34], p. 3]

Summarizing, if we want quantified modal logic to make sense, we have to accept
principle (1) also for modal contexts; in other words, modal contexts should be
referentially transparent: whatever is true of an object is true of it regardless of how
it is referred to (α). On the other hand, in order to avoid that necessity collapses
into truth, we should not accept the principles (2) and (3) for modal contexts. In
other words, modal contexts should be extensionally opaque: among the predicates
true of an object, some are necessarily true of it, others only accidentally (β ). And
essentialism is just this combination of (α) and (β ). See also Perrick [31].

6.12 The Modal Logic GL

The axioms of the modal logic GL (Gödel’s Logic, also called the Logic of Prov-
ability) are the following:
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the axioms of classical propositional logic;
�(B→C)→ (�B→�C);
�A→�(�A); and
�(�A→ A)→�A.

The two rules of GL are Modus Ponens and necessitation (from � A infer ��A).
The axioms and rules of GL resemble facts about Prov(a), in particular (i), (ii),

(iii) and (iv) in Subsection 5.2.2:
(i) if P � A, then P � Prov(�A�);
(ii) P � Prov(�B→C�)→ (Prov(�B�)→ Prov(�C�));
(iii) P � Prov(�A�)→ Prov(�Prov(�A�)�).
(iv) if P � Prov(�A�), then P � A.

However, Prov(a) does NOT meet the stronger condition P � Prov(�A�)→ A.

Theorem 6.10. � A in GL iff for every Kripke model M = 〈W, R, |=〉 with W finite
and non-empty, R transitive and irreflexive (i.e., for all w ∈W, not wRw), M |= A.

For a proof of this theorem the reader is referred to Boolos, Burgess and Jeffrey,
[5], Chapter 27. Here we restrict ourselves to the remark that �(B→C)→ (�B→
�C) holds in any Kripke model and that �A→��A holds in any Kripke model
M = 〈W, R, |=〉 with R transitive. In Exercise 6.30 the reader is asked to prove
that �(�A→ A)→ �A holds in any finite Kripke model M = 〈W, R, |=〉 with R
transitive and irreflexive. Note that �A→ A does NOT hold in such Kripke models,
which corresponds to the fact that NOT P � Prov(�A�)→ A. The weaker statement
(iv) ‘if P � Prov(�A�), then P � A’ does hold, which corresponds to the fact that
if ��A in GL, then also � A in GL.

Definition 6.22. Let φ be a function that assigns to each atomic formula of modal
propositional logic a sentence in the formal language LA for arithmetic. For any
formula A of modal propositional logic, the formula Aφ in LA is inductively defined
as follows: Pφ

i := φ(Pi) for any atomic formula Pi, i = 1,2, . . .;
(B→C)φ := Bφ →Cφ ;
⊥φ := 0̄ = 1̄ ;

(�B)φ := Prov(�Bφ�) .
∧, ∨ and ¬ are treated similarly to→.

The following theorems bring out an important connection between the formal sys-
tem GL of modal logic and the formal system P for arithmetic.

Theorem 6.11 (Arithmetical Soundness).

If � A in GL, then for all φ , P � Aφ .

Proof. We restrict ourselves to the following observations:
If A is an axiom of propositional logic, then clearly P � Aφ .
Let A be �(B→C)→ (�B→�C). Then, by (ii) above, P � Aφ .
Let A be �B→��B. Then, by (iii) above, P � Aφ .
Corresponding to Modus Ponens: if P � Aφ and P � (A→ B)φ , then P � Bφ .
Corresponding to the necessitation rule of GL: if P � Aφ , then, by (i) above, also
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P � (�A)φ , i.e., P � Prov(�Aφ�).
It thus remains to show that P � Aφ , where A is an axiom �(�B→ B)→�B. For
a proof of this the reader is referred to Boolos, Burgess and Jeffrey [5], Chapter 27.

Theorem 6.12 (Arithmetical completeness theorem).

If for all φ , P � Aφ , then � A in GL.

This was proved by R. Solovay [35] and is also proved in Boolos [6], Chapter 12.

Exercise 6.30. Show that �(�A → A) → �A holds in any Kripke model M =
〈W, R, |=〉 with W finite and non-empty, R transitive and irreflexive.

6.13 Solutions

Solution 6.1. Depending on what the speaker has in mind, at least two translations
are possible: �(S → E),�(E → L),¬♦L �? ¬♦S, and S → �E,E → �L,¬♦L �?

¬♦S. The first argument is correct, the second incorrect; see Exercise 6.19.

Solution 6.2. a) In Example 6.1 we have seen that � A→♦A in KT and ♦A→�♦A
is an axiom of S5. By propositional logic: A→ ♦A,♦A→�♦A � A→�♦A. There-
fore, � A→ �♦A in S5. b) ♦¬A→ �♦¬A is an axiom of S5 and by propositional
logic � ♦¬A � ¬�A. Hence, � ¬�A→�¬�A in S5. This is called negative intro-
spection: if I do not know A, then I know that I do not know A.

Solution 6.3. ♦P, �(♦P→Q) ��Q in S5:
prem
♦P ♦P→�♦P �(♦P→ Q) �(♦P→Q)→ (�♦P→�Q)

axiom S5 prem axiom

�♦P→�Q�♦P

�Q

Solution 6.4.
By propositional logic, (Q→�Q) � (¬�Q→¬Q).
So, by the �-axiom and MP, �(Q→�Q) ��(¬�Q→¬Q) in K.
Again by the �-axiom and MP, �(Q→�Q) � (�¬�Q→�¬Q) in K. (1)
According to Exercise 6.2: � ¬�Q→ �¬�Q in S5. But � ¬A→ B iff � A∨B by
propositional logic; therefore: ��Q∨�¬�Q in S5. (2)
From (1) and (2): �(Q→�Q) � (�Q∨�¬Q) in S5.
Hence, by propositional logic, �(Q→�Q), ♦Q ��Q in S5.

Solution 6.5. The mistake is made in the transition from 3. to 4.: from the premiss
Q→�Q it follows that ¬�Q→¬Q; but we do not have � ¬�Q→¬Q and there-
fore we cannot apply the rule of necessitation, which would yield ��(¬�Q→¬Q)
and then, by the axiom for � and MP, ��¬�Q→�¬Q.
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Solution 6.6. A→ A∨B is an axiom of propositional logic, so � A→ A∨B. Hence,
by the �-rule, � �(A → A∨ B) in K. Hence, by the �-axiom of K and Modus
Ponens, ��A→�(A∨B) in K.
We want to show that � ♦A→ ♦(A∨B) in K. By contraposition it suffices to show
that ��¬(A∨B)→�¬A. We know from propositional logic that �¬(A∨B)→¬A.
By the �-rule it follows: ��(¬(A∨B)→¬A) in K. Therefore, by the �-axiom and
Modus Ponens, ��¬(A∨B)→�¬A in K.

Solution 6.7. Let M = 〈{w0,w1},R, |=〉 be the Kripke model (for K) with w0Rw1,
w0 |= P and not w1 |= P. Then M,w0 |= P, but not M,w0 |= �P.

Solution 6.8. a) To show: for all Kripke models M and for all w in M, M,w |=
�(A∧B) iff M,w |= �A∧�B. This is true because for any w′ in M with wRw′,
M,w′ |= A∧B iff M,w′ |= A and M,w′ |= B.
b) However, �|= �(A∨ B) � (�A∨�B). M = 〈{w0,w1},R, |=〉 with R reflexive,
w0Rw1, w0 |= P and w1 |= Q, is a counterexample: M,w0 |=�(P∨Q), but M,w0 �|=
�P and M,w0 �|=�Q.
c) To show: for all Kripke models M and for all w in M, M,w |=♦(A∨B) iff M,w |=
♦A or M,w |= ♦B. This is true because: there is a w′ with wRw′ such that M,w′ |=
A∨B iff there is w′ with wRw′ such that M,w′ |= A or there is a w′ with wRw′ such
that M,w′ |= B.

Solution 6.9. By definition, M,w1 |= Q.
M,w1 |= KAP, because w1,w2,w4 are accessible from w1 for Alice and M,w1 |= P,
M,w2 |= P and M,w4 |= P.
M,w1 |= ¬KBP, because w1RBw3 and M,w3 �|= P.
M,w1 |= ¬KAQ and M,w1 |= ¬KBQ are shown in a similar way.
M,w1 |= KAKAP := M,w1 |= KAP and M,w2 |= KAP and M,w4 |= KAP, which are
all true.
M,w1 |= KBKAP := M,w1 |= KAP and M,w3 |= KAP and M,w4 |= KAP. Because
w3RAw3 and M,w3 �|= P, it follows that M,w3 �|= KAP and hence M,w1 �|= KBKAP,
i.e., M,w1 |= ¬KBKAP.
M,w1 |= KA¬KBP := M,w1 |= ¬KBP and M,w2 |= ¬KBP and M,w4 |= ¬KBP, be-
cause w1,w2,w4 are accessible from w1 for Alice. However, M,w2 |= KBP and
M,w4 |= KBP. Hence, M,w1 �|= KA¬KBP, i.e., M,w1 |= ¬KA¬KBP.
The other cases are treated similarly.

Solution 6.10. ¬(W → �S) �′ ♦(W →¬S) in K, since the following tableau in K
is closed:
T ¬(W →�S), F ♦(W →¬S)
F (W →�S), T �¬(W →¬S)
TW, F �S, T �¬(W →¬S)
FS, T ¬(W →¬S)
FS, F (W →¬S)
FS, TW, F ¬S
FS, TW, T S
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Solution 6.11. ♦(J→ P) ��′ J→♦P in K, since we can construct a counterexample:
T ¬�¬(J → P), F (J → ♦P)
F �¬(J → P), TJ, F¬�¬P w1 J
F �¬(J → P), TJ, T�¬P |

F ¬(J → P), T¬P ↓
T (J → P), FP w2

FJ, FP
M = 〈{w1,w2},R, |=〉, with w1Rw2 and w1 |= J, is a counterexample in K:
M,w1 |= ♦(J → P), since M,w2 |= J → P, and M,w1 |= J, but M,w1 �|= ♦P.

Solution 6.12. The tableau in i) is a tableau-deduction of KiB from Ki(A∨B) and
Ki¬A in K. The search tree in ii) yields a counterexample M in S4 against the con-
jecture A∨B, Ki¬A �′ KiB in S4.
i) T Ki(A∨B), T Ki¬A, F KiB ii) T (A∨B), T Ki¬A, F KiB

T (A∨B), T ¬A, FB T B, T Ki¬A, T¬A, F KiB w0 B
TA, FA, FB | TB, FA, FB T B, T Ki¬A, FA, F KiB |

T Ki¬A, FB ↓
T Ki¬A, T¬A, FB |
T Ki¬A, FA, FB w1

M = 〈{w0,w1},R, |=〉, with w0Rw1 and w0 |= B, is a countermodel in S4:
M,w0 |= A∨B, M,w0 |= Ki¬A, but M,w0 �|= KiB, since M,w1 �|= B.

Solution 6.13. �A∨¬�A is tableau-provable in K, but �A∨�¬A is not.
♦A∨¬♦A is tableau-provable in KT , and ♦A∨♦¬A too:
a) F �A∨¬�A b) F �A∨�¬A c) F ♦A∨¬♦A d) F ♦A∨♦¬A

F�A, F¬�A F�A, F�¬A F¬�¬A, F¬¬�¬A F¬�¬A, F¬�A
F�A, T�A ↙ ↘ T�¬A, F�¬A T�¬A, T�A
FA, TA FA F¬A T¬A, F¬A T¬A, TA
closure TA FA, TA FA, TA

The tableaux in a), c) and d) are closed, while the tableau in b) yields a Kripke
counterexample M = 〈{w0,w1,w2},R, |=〉 in K with w0Rw1, w0Rw2, w1 �|= A and
w2 |= A: M,w0 �|=�A∨�¬A.

Solution 6.14. Both tableaux below are closed and hence are a tableau-deduction of
�A→�(A∨B) and ♦A→ ♦(A∨B) in K, respectively.
F�A→�(A∨B) F♦A→ ♦(A∨B)
T�A, F�(A∨B) T¬�¬A, F¬�¬(A∨B)
TA, F A∨B F�¬A, T�¬(A∨B)
TA, FA, FB F¬A, T¬(A∨B)
closure TA, FA∨B

TA, FA, FB

Solution 6.15. Suppose �′ �A∨�B in K, KT or S4, i.e., there is a closed tableau
starting with: F �A∨�B

F�A, F�B
This tableau will continue with either FA or FB and one of these two will be closed.
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In the first case a tableau starting with F�A will give closure and in the second case,
a tableau starting with F�B will give closure.

Solution 6.16.
a) tableau in KT for: b) search tree in KT for: countermodel M

F ♦P→ ♦♦P F ♦♦P→ ♦P
T ¬�¬P, F ¬��¬P T ¬��¬P, F¬�¬P
F �¬P, T ��¬P, . . . F ��¬P, T �¬P, . . . w0

F ¬P, T�¬P F�¬P, T¬P ↓
F ¬P, T�¬P, T¬P F�¬P, FP w1

T P, T�¬P, FP F ¬P ↓
closure T P no closure w2 P

The tableau in a) closes and hence is a tableau-proof of ♦P → ♦♦P in KT . M =
〈{w0,w1,w2},R, |=〉, with R reflexive, not transitive, w0Rw1, w1Rw2, not w0Rw2

and w2 |= P, is a counterexample in KT against ♦♦P→♦P: M,w0 |=♦♦P, because
M,w1 |= ♦P, since M,w2 |= P. But M,w0 �|= ♦P, because M,w1 �|= P.

c) search tree in S4 for: countermodel M′ d) search tree in S4 for: M′′
F P→�♦P w0 P T P→ Q, F ¬¬�¬(P∧¬Q) w0

T P, F �¬�¬P | FP, F �¬(P∧¬Q) |
F¬�¬P ↓ F ¬(P∧¬Q) ↓

T�¬P, T¬P w1 T (P∧¬Q) w1 P
T�¬P, FP TP, T ¬Q, FQ

M′ = 〈{w0,w1},R, |=〉, with w0Rw1 and w0 |= P, is a countermodel in S4 for
P→�♦P, because M′,w0 |= P, but M′,w0 �|=�♦P, since M′,w1 �|= ♦P.
M′′ = 〈{w0,w1},R, |=〉, with w0Rw1 and w1 |= P, is a countermodel in S4 for
(P → Q)→ ¬♦(P ∧¬Q), because M′′,w0 |= P → Q, but M′′,w0 |= ♦(P∧ ¬Q),
since M′′,w1 |= P∧¬Q.

Solution 6.17. The following search tree for the conjecture ♦P, �(♦P→Q) �′�Q
in S4 does not close and hence yields a Kripke counterexample in S4:

T♦P, T �(♦P→ Q), F�Q
T ¬�¬P, T �(♦P→Q), T ♦P→ Q, F�Q Q w1

F �¬P, T �(♦P→ Q), T Q, F�Q
↙↘ ↙↘

F ¬P, T �(♦P→Q) T �(♦P→Q), FQ
TP, T ♦P→Q T ♦P→ Q, FQ P,Q, w2 w3

TP, TQ F♦P, FQ
T�¬P, T ¬P, FQ
T�¬P, FP, FQ

M = 〈{w1,w2,w3},R, |=〉, with w1Rw2, w1Rw3, R reflexive and transitive, w1 |= Q
and w2 |= P∧Q, is a countermodel in S4 for the conjecture in question: M,w1 |=♦P,
M,w1 |=�(♦P→ Q) because in every world in which ♦P is true, Q is true too, but
M,w1 �|= �Q.

Solution 6.18. The following search tree for the conjecture �(Q→�Q), ♦Q �′ Q
in S4 does not close and hence yields a counterexample in S4:
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T �(Q→�Q), T♦Q, FQ
T �(Q→�Q), F �¬Q, FQ
T �(Q→�Q), T Q→�Q, F �¬Q, FQ w1

T �(Q→�Q), FQ, F �¬Q, FQ
| ↓

T �(Q→�Q), F¬Q
T �(Q→�Q), T Q→�Q, F¬Q w2 Q
T �(Q→�Q), T �Q, F¬Q
T �(Q→�Q), T �Q, T Q

M = 〈{w1,w2},R, |=〉, with w1Rw2, R reflexive, and w2 |= Q is a Kripke counterex-
ample in S4 for the conjecture in question: M,w1 |= �(Q→ �Q) because in every
world in which Q is true, �Q is true too, M,w1 |= ♦Q, but M,w1 �|= Q.

Solution 6.19. a) We start a tableau in K with the T -signed premisses and the F-
signed putative conclusion:

T�(S→ E), T�(E → L), T¬♦L, F¬♦S
T�(S→ E), T�(E → L), F¬�¬L, T¬�¬S

T�(S→ E), T�(E → L), T�¬L, F�¬S
T (S→ E), T (E → L), T¬L, F¬S

T (S→ E), T (E → L), FL, T S
FS,T (E → L), FL, T S | TE, T (E → L), FL, TS

| TE, FE, FL, TS | TE, T L, FL, T S

Since all branches close: �(S→ E), �(E → L), ¬♦L �′ ¬♦S in K.
b) The following search tree for the conjecture S→�E, E →�L, ¬♦L �′ ¬♦S in
S4 does not close and hence yields a Kripke counterexample in S4:

T (S→�E), T (E →�L), T ¬♦L, F¬♦S
FS, FE, F♦L, T♦S

FS, FE, T �¬L, F �¬S w1

FS, FE, T �¬L, T¬L, FL, F �¬S
| ↓

T �¬L, F ¬S
T �¬L, T¬L, FL, T S w2 S

M = 〈{w1,w2},R, |=〉, with w1Rw2, R reflexive, and w2 |= S, is a Kripke counterex-
ample in S4 for the conjecture in question: M,w1 |= S → �E because M,w1 �|= S,
M,w1 |= E →�L because M,w1 �|= E , M,w1 |= ¬♦L, but M,w1 |= ♦S.

Solution 6.20. The search trees for the conjectures ¬A �′ �(A → B) and B �′
�(A→ B) in S4 do not close and hence yield counterexamples in S4:
T ¬A, F �(A→ B) w1 T B, F �(A→ B) w1 B

FA, F �(A→ B) | | |
| ↓ | ↓

F A→ B w2 A F A→ B w2 A
TA, FB TA,FB

M = 〈{w1,w2},R, |=〉, with w1Rw2, R reflexive, w1 |= B and w2 |= A, is a Kripke
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counterexample in S4 for both conjectures: M,w1 |= ¬A, M,w1 |= B, but M,w1 �|=
�(A→ B), since M,w2 |= A and M,w2 �|= B.

Solution 6.21. The following tableaux in K are all closed and hence:
�¬A �′ �(A→ B), �B �′ �(A→ B), Q ��(P→ P) and �′ �(¬Q∧Q→ P) in K:
T �¬A, F �(A→ B) T�B, F �(A→ B) T Q, F �(P→ P) F �(¬Q∧Q→ P)

T ¬A, F A→ B T B, F A→ B F P→ P F ¬Q∧Q→ P
FA, TA, FB T B, TA, FB T P,FP T ¬Q∧Q, FP

FQ, T Q, FP

Solution 6.22. a) M,w |=C �→ (BF ∧VF)∨ (BI ∧VI): there is a world, namely w1

(or w2), such that M,w1 |= C∧ ((BF ∧VF)∨ (BI ∧VI)) and such that for any w′′, if
M,w′′ |=C∧¬((BF ∧VF)∨ (BI ∧VI)), then w1 <w w′′.
b) M,w �|=C �→ BI because there is no C∧BI-world which is closer to w than any
C∧¬BI-world; w1 is as close to w as w2.
c) and d) are treated similarly.

Solution 6.23. a) Suppose M,w |=A∧¬B (1) and M,w |=A �→B. From (1) M,w |=
A and hence, since R is reflexive, M,w |= ♦A. So, from the definition of M,w |=
A �→ B, it follows that there is some world w′ in W such that (2) wRw′ and M,w′ |=
A∧B, and (3) for all w′′ in W , if M,w′′ |= A∧¬B, then w′ <w w′′.
From (1) and (3) it follows that w′ <w w. And since M,w |= ¬B and M,w′ |= B we
know that w �= w′ and therefore, by assumption, not w′ <w w. Contradiction. So, if
M,w |= A∧¬B, then M,w |= ¬(A �→ B).
b) Suppose M,w |= A∧B. Since R is reflexive we have that wRw and M,w |= A∧B.
So, in order to show that M,w |= A �→ B it suffices to show that for all w′′ in W , if
M,w′′ |= A∧¬B, then w <w w′′. So, suppose M,w′′ |= A∧¬B. Now, M,w |= B and
M,w′′ |= ¬B. Therefore, w �= w′′ and hence, by assumption, w <w w′′.

Solution 6.24. Suppose M,w |= �(A→ B). If M,w |= ¬♦A, then M,w |= A �→ B.
So, suppose M,w |= ♦A, i.e., for some w′ in W , wRw′ and M,w′ |= A. Since M,w |=
�(A → B), it follows that wRw′ and M,w′ |= A∧B (1). So, in order to show that
M,w |= A �→ B it suffices to prove that for all w′′ in W , if M,w′′ |= A∧¬B, then
w′ <w w′′. So, suppose M,w′′ |= A∧¬B. Since M,w |=�(A→ B) it follows that not
wRw′′. Then, by assumption, it follows from wRw′ and not wRw′′ that w′ <w w′′.

Solution 6.25. The following search tree for the conjecture that �′ �(P → Q) ∨
�(Q→ P) in S4 does not close and hence yields a Kripke counterexample in S4:

F �(P→Q)∨�(Q→ P)
F �(P→ Q),F �(Q→ P) w1

↙↘ ↙↘
F P→ Q F Q→ P P w2 w3 Q
TP, FQ T Q, FP

From this open search tree we can read off a Kripke counterexample in S4 to
P �→ Q ∨ Q �→ P. Let M = 〈{w1,w2,w3}, R, |=〉 with R reflexive and transitive,
w1Rw2, w1Rw3, w2 |= P and w3 |= Q. Then M,w1 �|= �(P→ Q)∨�(Q→ P).
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It happens that also M,w1 �|= P �→ Q, since M,w1 �|= ¬♦P and for no w in
{w1,w2,w3}, M,w |= P∧Q. In a similar way one sees that M,w1 �|= Q �→ P.

Solution 6.26. Deduction Theorem: A1, . . . ,An �∗ B iff A1, . . . ,An−1 �∗ An ⇒ B.
Proof: From right to left is trivial. From left to right: Suppose A1, . . . ,An �∗ B. Re-
place in the given deduction of B from A1, . . . ,An each expression Cc with the natural
number n occurring in the index c by the expression (An⇒C)c−{n}, where the index
c−{n} results from c by leaving out n. The upper lines in the resulting schema may
look as follows: A1

{1}, . . . , An−1
{n−1}, An ⇒ An, axiom.

The bottom line in the resulting schema just contains An ⇒ B{1,...,n−1}. Note that

An ⇒ An is an axiom. For Modus Ponens,
Dd (D⇒ E)e

Ed∪e
there are four possibilities:

i) n occurs in d, but not in e. Then we get
An ⇒ Dd−{n} (D⇒ E)e

(An ⇒ E)d∪e−{n}
and using axiom

2 this is a derived rule.

ii) n occurs in e, but not in d. Then we get
Dd (An ⇒ (D⇒ E))e−{n}

(An ⇒ E)d∪e−{n}
and by using

axiom 4 this is a derived rule.

iii) n occurs both in d and in e. Then we get
(An ⇒ D)d−{n} (An ⇒ (D⇒ E))e−{n}

(An ⇒ E)d∪e−{n}
and by using axiom 3 this is a derived rule.
iv) In case n occurs neither in d nor in e, the application of Modus Ponens remains
unchanged. So, the resulting schema can be extended - by using the axioms - to a
deduction of An ⇒ B from A1, . . . ,An−1.

Solution 6.27. a) One easily checks that the axioms for weak implication are valid
(1). For instance, let M = 〈S, /0,∪, |=〉 be a model; then M |= /0 A⇒ A, i.e., for all a
in S, if M |=a A, then M |=a A. And the rule Modus Ponens preserves validity (2),
more precisely: if M |= /0 B and M |= /0 B⇒C, then M |= /0 C.
Now suppose A1, . . . ,An �∗ B. Then, by the deduction theorem, �∗ A1 ⇒ (. . . ⇒
(An ⇒ B) . . .), i.e., the latter formula can be obtained by a finite number of appli-
cations of Modus Ponens starting with the axioms for weak implication. So, by (1)
and (2), for all models M, M |= /0 A1 ⇒ (. . .⇒ (An ⇒ B) . . .), i.e., A1, . . . ,An |=∗ B.
ii) Let M = 〈{ /0,{1},{2},{1,2}}, /0, ∪, |=〉 be defined by {1} |= Q, {2} |= P and
{1,2} �|= P. Then M �|={1} P⇒ P and M �|= /0 Q⇒ (P⇒ P).

Solution 6.28. 1. (A⇒ A)⇒ (A⇒ A), axiom 1 for weak implication.
2. ((A⇒ A)⇒ (A⇒ A))⇒ (A⇒ ((A⇒ A)⇒ A)), axiom 4 for weak implication.
3. A⇒ ((A⇒ A)⇒ A), from 1 and 2 by MP.

Solution 6.29. �∀x[A(x)] �′ ∀x[�A(x)]: T �∀x[A(x)], F ∀x[�A(x)]
T �∀x[A(x)], F �A(a)
T ∀x[A(x)], F A(a)
T A(a), F A(a) closure

Solution 6.30. Let M = 〈W, R, |=〉 be a Kripke model with W finite and non-empty,
R transitive and irreflexive. Suppose M,w |= �(�A→ A), i.e., for all w′, if wRw′
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and M,w′ |=�A, then M,w′ |= A. (1)
Next suppose that not M,w |= �A. Then there is w1 ∈W such that wRw1 and not
M,w1 |= A. From (1) it follows that not M,w1 |= �A. Hence, there is w2 ∈W such
that w1Rw2 and not M,w2 |= A. Because R is transitive, wRw2. So, by (1), not
M,w2 |= �A. Consequently, there is w3 ∈W such that w2Rw3 and not M,w3 |= A.
And so on.

So, we find a sequence w = w0, w1, w2, . . . in W such that wiRwi+1 and not
M,wi |= A. Because R is transitive and irreflexive it follows that wi �= wj for all i, j
with i �= j. So, W is infinite. Contradiction.
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Chapter 7
Philosophy of Language

Luc Bergmans, John Burgess, Amitabha Das Gupta and Harrie de Swart

Abstract This chapter aims to be an introduction to the philosophy of language and
presents some major topics belonging to this field: the difference between use and
mention, Frege’s notions of Sinn (sense) and Bedeutung (reference), Mannoury’s
significs, speech acts, definite descriptions, Berry’s and Grelling’s paradox, the the-
ory of direct reference, Kant’s notions of analytic versus synthetic, logicism, logical
positivism, presuppositions, Wittgenstein on meaning, syntax - semantics - prag-
matics, conversational implicature, conditionals, Leibniz, de dicto - de re distinc-
tion, and grammars. It is fair to say that the Dutch mathematician Gerrit Mannoury
(1867 - 1956) invented the notion of speech act long before Austin, Searle and others
used this notion. In the subsection on Logicism we explain that - contrary to what
many philosophers of science claim even nowadays - Kant was right in asserting
that mathematical statements are not analytic, but synthetic.

7.1 Use and Mention

If we want to say something about an object, we use the name of that object. We
are used to doing so when the object is a person, but one frequently gets confused
when the object is a linguistic one. Names of linguistic objects can be formed by
enclosing the linguistic object in single (or double) quotation marks. For instance,
in the proposition

John is a teacher
we make a statement about a person using the name of that person; and, similarly,
in the proposition

’man’ is monosyllabic
we make a statement about the word (linguistic object) man, using the name of that
word. Using the terminology of W.V. Quine, we say that in

Man is a rational animal
the word man is used, but not mentioned; and that in
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’Man’ is monosyllabic
the word man is mentioned, but not used.

In practice the quotation marks are frequently suppressed, causing an equivocacy
which is often convenient and harmless on the condition that one realizes what one
is doing. So, instead of

’man’ is monosyllabic
one may come across

man is monosyllabic.
Adopting Carnap’s terminology, we say that the word man in the latter expression
is used autonymously, i.e., as the name of that same word. So, in

man is monosyllabic
the word man is both mentioned and used, though used in an anomalous manner,
namely, autonymously. Some more examples: in

The English translation of the French word homme has three letters
the word man is mentioned, but not used. In

The second letter of man is a vowel, and in
Man is a noun with a irregular plural,

the word man is mentioned and used autonymously.
The equivocacy, resulting from using the same word, man, both as a proper name

of a linguistic expression and as a common name of certain mammals, may be re-
moved by the use of added words in the sentence, or by the use of quotation marks,
or of italics, as in

The word man is monosyllabic,
’Man’ is monosyllabic,
Man is monosyllabic.

The latter device has been used above several times. The reader is advised to do
Exercise 7.1. The examples above are from Church [10].

Exercise 7.1. (B. Mates, Elementary Logic, 1972, pp. 40-41) Not using words au-
tonymously, which of the following sentences are true?

1. ’The Iliad’ is written in English.
2. ’The Iliad’ is an epic poem.
3. ’The Morning Star’ and ’The Evening Star’ denote the same planet.
4. The Morning Star is the same as the Evening Star.
5. ’7 + 5’ = ’12’
6. The expression ’ ’The Campanile’ ’ begins with a quotation mark.
7. The expression ’ ’der Haifisch’ ’ is suitable as the subject of an English sentence.
8. Saul is another name of Paul.
9. ’Mark Twain’ was a pseudonym of Samuel Clemens.

10. 2 + 2 = 4 is synthetic.
11. Although ’x’ is the 24th letter of a familiar alphabet, some authors have said x is

the unknown.
12. We are using capital Roman letters ’A’, ’B’, ’C’, . . . to stand for any formulas.
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7.2 Frege’s Sinn und Bedeutung (Sense and Reference)

In his Begriffsschrift of 1879 Frege made a distinction between ‘-A’ for ‘the propo-
sition that A’ and ‘� A’ for ‘it is a fact that A’. In ‘-A’ and in ‘� A’ Frege calls ‘A’
the conceptual content (begrifflichen Inhalt). Thus if ‘� A’ is an abbreviation for
the statement ‘unlike magnetic poles attract each other’, ‘-A’ is to convey only the
thought of mutual attraction between unlike magnetic poles, without any judgment
of the correctness of that thought (G. Frege [14], Section 2).

In section 8 of his Begriffsschrift Frege introduces � a ≡ b as meaning: the sign
a and the sign b have the same conceptual content so that a can always be replaced
by b and conversely. However, if we consider

� the morning star ≡ the evening star

it becomes clear that the definition just given must be wrong for the following two
reasons: i) The expressions ‘the morning star’ and ‘the evening star’ have different
conceptual contents, and ii) ‘The morning star is identical with the evening star’ has
a meaning quite different from ‘The morning star is identical with the morning star’.
To verify the truth of the first sentence, astronomical observation is needed, but it is
not necessary for the second one.

It is probably for these reasons that Frege, in his Ueber Sinn und Bedeutung of
1892, abandoned his talk of conceptual content and introduced a distinction between
sense (Sinn) and reference (Bedeutung) instead. ‘The morning star is identical with
the evening star’ then means: a) the expressions ‘the morning star’ and ‘the evening
star’ refer to the same object, i.e., the planet Venus, called the reference (die Bedeu-
tung), but b) they do so in different ways, because they have a different cognitive
meaning or sense (Sinn).

The reference (Bedeutung) of an expression is what it ‘stands for’. In the case of
a proper name (Plato, France, the Titanic), it is the thing named; in the case of a
singular definite description (Plato’s father, the president of the United States), the
object that fits the description.

In addition to words and the things (references) they stand for, Frege also insisted
on taking into account the sense or cognitive meaning of words, since it is through
its sense that an expression refers to an object. The sense provides the ‘mode of
presentation’ of the object and referring to a reference is always achieved by way of
sense.

Frege’s sense (Sinn) includes the information content (cognitive meaning) of an
expression, but not such features as (1) associations (emotional, literary; like the dif-
ference between ‘horse’ and ‘steed’), (2) level of speech (formal, colloquial, slang,
dialect, obsolescent, obscene; like the difference between ‘regurgitate’ and ‘puke’),
(3) indications of speaker’s attitude (like the difference between ‘but’ and ‘and’ in
‘he is a politician, but relatively honest’, or the difference between ‘they (still) have
not arrived’ with or without the ‘still’).

In poetry these other features are important, and a translation which merely pre-
served Frege’s sense and lost these other features of ‘meaning’ would be a poor one.
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In dry, objective scientific prose, only the sense is important. But for the study of
literature, these extra features are of great importance. They distinguish ‘I am de-
termined/you are stubborn/he is pig-headed’, which have, except for the change in
personal pronoun, more or less the same information content or Fregean sense.

Frege emphasized the abstract nature of senses – they do not belong to any partic-
ular language (words in different languages can have the same cognitive meaning)
and do not consist of individual psychological reactions in speakers of a language,
but are something common to all speakers.

Obviously it is possible that two names or descriptions stand for the same object
without being synonyms: we can have two expressions a and b with the same refer-
ence but with different senses. (The opposite cannot happen as we shall see below.)
Indeed, this is Frege’s explanation of how a statement ‘a = b’ can be informative. In
‘the Morning Star is the same thing as the Evening Star’, for example, the two ex-
pressions ‘Morning Star’ and ‘Evening Star’ refer to the same reference (the planet
Venus), but they express a different sense. And in ‘2+2 = 4’ the names ‘2+2’ and
‘4’ refer to the same number, but they express a different sense.

Names for Frege include both proper names but also singular definite descrip-
tions. Other writers use singular term or designator or denoting-phrase for Frege’s
name, which is less misleading, since we definitely want to include more than proper
names.

The reference of a name is called an object (ein Gegenstand) by Frege. In other
words, objects are anything which can be referred to by a name. This includes not
just people and physical objects, but also abstractions (the Equator, numbers, jus-
tice) and events (the battle of Hastings). Frege has no special term for the sense of
names. Carnap has called them individual concepts, not to be confused with Frege’s
concepts discussed below.

The expressions ‘the greatest natural number’ and ‘the present king of France’ do
have a sense, but do not have a reference, because these expressions refer to nothing.

An expression is said to express its sense and refer to its reference. Other philoso-
phers use the words connotation or meaning or intension for sense and connote or
mean for express. Denotation, designation, extension and signification have all been
used for reference, and denote, designate and signify for refer.

Frege goes on to argue that besides names and descriptions, predicates (or general
terms) and sentences have both sense and reference.

Frege has no special term for the sense of a predicate (‘is bald’, ‘lives in Prince-
ton’). Others have said the predicate expresses a property, attribute or quality.

According to Frege, the reference (Bedeutung) of a predicate is a concept (ein
Begriff). However, the nature of concepts is rather obscure. In addition to concepts,
Frege recognizes classes. These are simply collections of objects. The class cor-
responding to a predicate, e.g., the class of all bald people corresponding to the
predicate ‘is bald’, Frege calls the extension of the predicate. Most philosophers
who follow Frege on the whole discard his concepts and simply speak of the class,
and do not distinguish reference from extension.
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The two predicates ‘has a heart’ and ‘has a liver’ may be true of all the same
things (co-extensive, as Frege says) without being synonymous: they can have the
same reference and extension without having the same sense. (The opposite is im-
possible according to principle (i) below.) The class of all creatures with hearts may
be exactly the same class as the class of all creatures with livers, but the property of
having a heart is different from the property of having a liver: to say something has
a heart does not mean the same as saying it has a liver.

In order to figure out what the reference (Bedeutung) of a sentence is, Frege seems
to invoke two principles:

(i) expressions with the same sense have the same reference, and
(ii) (principle of compositionality:) the reference of a compound is entirely de-

termined by the references of its parts. This implies that
(ii∗) if we replace a name or description in a sentence by another name or de-

scription of the same object, the reference of the sentence is unchanged.
By the principles (i) and (ii∗) all sentences below have the same reference:

Scott wrote Waverly;
Scott is the author of the 29 Waverly novels (i);
29 is the number of Waverly novels that Scott wrote (i);
29 is the number of counties in Utah (ii∗);
Utah has 29 counties (i).

So, (i) and (ii) imply that seeming unrelated true statements ‘Scott wrote Waverly’
and ‘Utah has 29 counties’ have the same reference (and similarly for false sen-
tences). Frege concludes that the reference of a sentence is just its truth value, either
true or false. (The example is from Church, [10], pp. 24-25.)

According to the principle of compositionality, mentioned above, if a name or
description has no reference, no sentence of which it is a part can have a reference
(truth value). So, the sentence ‘The king of France is bald’ does not have a truth
value (reference, Bedeutung), because its subject ‘the king of France’ has no refer-
ence. If there is no Pegasus, ‘Pegasus is flying’ can be neither true nor false.

Frege explained the presuppositions of a statement as those things which must
be true if that statement is to have any truth value at all, and specifically stated that
a statement involving a description like ‘the present king of France’ presupposes
the existence of the thing satisfying this description. Later writers on presupposition
(e.g., Strawson) take Frege as their starting point (see Section 7.11).

Frege calls the sense of a sentence a proposition or thought (ein Gedanke). Ac-
tually, as commentators on Frege have pointed out, sentences like ‘it is raining’, ‘I
have a headache’ express different propositions (sometimes true, sometimes false)
according to when, where, and by whom they are uttered, so that it is necessary
to distinguish between the proposition expressed on any given occasion and the
meaning of the sentence, which is always the same. (In mathematics words like ‘I’,
‘here’, ‘now’ seldom occur, and so this problem does not arise. Frege was mainly
concerned with this area of discourse.)

Frege distinguishes between a proposition and an assertion. According to Frege,
when I state, ‘The door is open’ or ask, ‘Is the door open?’ or request, ‘Please open
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the door’ or sigh, ‘If only the door were open!’ or command, ‘Open the door!’ or
make a compound statement, ‘If the door is open, then there’ll be a draft’, the same
proposition is expressed in every case, but is only asserted in the first case. In the
other cases no assertion is made; rather there is a question, request, etc.

Other philosophers have called a proposition a phrastic (Hare) or locution
(Austin) and the element that must be added to make an assertion, or a question,
or a request, etc., a neustic (Hare) or illocutionary force (Austin). The distinction
between propositions and assertions is the origin of speech act theory, developed by
Austin, Searle, and others (see Section 7.4 on speech acts).

Embedded in the aspects of Frege’s theory of sense and reference, which have been
dealt with so far, is the following contradiction. Consider the sentences:

(1) Somebody wonders whether Amsterdam is the capital of the Netherlands, and
(2) Somebody wonders whether Amsterdam is Amsterdam.

While (1) is probably true, (2) is false. So, (1) and (2) are likely to have different
references (truth values). However, since the reference of ‘Amsterdam’ is the same
as the reference of ‘the capital of the Netherlands’, the principle of compositionality
seems to imply that (1) and (2) have the same truth value (reference).

Frege was aware of this problem and adapted his theory as follows. He postulated
that in intensional contexts, created by phrases such as ‘wonder whether’, ‘know
that’, and so on, expressions have an indirect (or oblique) reference and sense in-
stead of their direct (or ordinary) reference and sense. The indirect reference of
an expression is its ordinary sense and its indirect sense is something else. Con-
sequently, the expressions ‘Amsterdam’ and ‘the capital of the Netherlands’ in the
sentences (1) and (2) above have a different (indirect) reference, because both occur
in the context ‘wonders whether’. For that reason the principle of compositionality
cannot be applied in order to derive that (1) and (2) would have the same reference
(truth value).

The following schema gives a summary of Frege’s theory of sense (Sinn) and refer-
ence (Bedeutung).

proper names and predicates sentences
singular definite
descriptions
morning star; has a heart 2+ 2 = 4;
evening star; has a liver the morning star =

Examples 2+ 2 ; 4 the evening star.
the present Scott wrote Waverly;
king of France Utah has 29 counties

Sinn others: property, ein Gedanke
sense attribute, quality proposition, thought
Bedeutung ein Gegenstand ein Begriff, truth value
reference object concept

extension of a
predicate: class
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‘The morning star’ and ‘the evening star’ express a different sense, but refer to the
same reference (object). ‘Has a heart’ and ‘has a liver’ express a different sense
(property), but refer to the same reference (class). ‘Scott wrote Waverly’ and ‘Utah
has 29 counties’ express a different sense (proposition), but refer to the same refer-
ence (truth value).

‘The present king of France’ does have a sense, but does not have a reference.
Hence, the sentence ‘The present king of France is bald’ does not have a reference
(truth value).

As noted by J.R. Searle, although the distinction between sense and reference seems
to be quite natural for names (proper names and singular definite descriptions), its
extension to predicates and sentences is less compelling.

To my mind it loses the most brilliant insight of the original distinction, an insight which
reveals the connection between reference and truth: namely that an expression refers to
an object only because it conveys something true of that object. But a predicate does not
convey something true of a concept nor does a sentence convey something true of a truth
value. (Searle, [47], p. 3)

Reading list on Frege: Carnap [9]; Church [10], Introduction; Dummett [13]; Frege
[15]; Frege [16]; Heijenoort [23]; Searle [47]; Strawson [52].

7.3 Mannoury (1867-1956), Significs

The language, which is used by all people as a means of understanding, is full of unclean
elements that poison society, such as contaminated water poisons the population of a whole
city. For that reason it is immediately needed to show that the water supply and the sources
from which the city receives its drinking water, is contaminated by germs, and that it is most
urgent to first purify these sources. [F. van Eeden in: Brouwer, L. E. J., F. Van Eeden, J. Van
Ginneken en G. Mannoury, Signifische dialogen. 1939; translated from Dutch.]

Gerrit Mannoury’s writings are likely to be enriching and thought-provoking for
any student or scholar who takes a genuine interest in the phenomenon of language.
This great Dutch thinker made many piercing remarks on the essential functions of
language, on the nature of formalism, and on the connectedness of language-types
that are generally considered incompatible. His views on meaning and the methods
of describing it tended to be stated with refreshing and liberating relativism.

Mannoury was one of the founding members of the International Institute of
Philosophy in Amsterdam (1917), which in many ways prepared the activities of
the later Dutch Signific Circle (1922-1926) (for a history of Dutch significs from
1892 to 1926, see H.W. Schmitz [44]) and he remained the witful explainer and
propagator of the signific ideas long after the circle had been dissolved (see, for
example, Mannoury [34]).

Among the most prominent features of signific thought, and of Mannoury’s
thought in particular, was the idea of the intentional nature of language. This be-
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comes apparent from the way in which Mannoury characterized communicative
acts, of which linguistic acts form a subcategory:

We shall call communicative act any act by which living beings (say human beings to sim-
plify matters) try to influence directly the behavior or activity of other living beings. (G.
Mannoury [33], p. 13.)

For Mannoury and his fellow significians, language was in the first place an expres-
sion of the will or, to quote L.E.J. Brouwer, another authority in the field:

all utterances in words are more or less developed verbal imperatives, . . . hence addressing
always comes down to commanding or threatening, and understanding always comes down
to obeying. (L.E.J. Brouwer [7], p. 333).

A language shared by a group serves to regulate and coordinate individual will or,
to cite Brouwer again:

to keep the movement of the Will of separate persons on one track. (L.E.J. Brouwer [6], p.
38).

The volitional function, which is primary from a signific point of view, can be illus-
trated particularly well through what Karl Bücher regarded as the historically prim-
itive forms of poetry and music, namely the singing that accompanied manual labor.
Wilhelm Wundt commented on this type of language use in his Völkerpsychologie
(1900):

Whenever several people join in the same work, the sounds which accompany the cadenced
movements . . . automatically bring about a pattern of co-operation which allows every par-
ticipant to make the movements to the same rhythm. The resulting multiplication of rhyth-
mic sounds increases the awakening of ardour. If in addition the shared labor is oriented
towards one and the same object, such as in the case of the rowing of a boat or the joint
hoisting or hauling of loads, the regular utterance of sounds again naturally becomes an
expedient which rhythmically orders the singular powers synchronically or according to the
sequence in which they mesh with one another. (Wundt [58] (included in the bibliography
of G. Mannoury [34]), pp. 263-264.)

Here all the characteristics of what the significians considered to be the most original
forms of linguistic usage are united: language which accompanies activity; language
of people who focus their attention on one and the same object, or who pursue
one and the same goal; language as mutual imposition of the will. In less primitive
forms of language use than the ones mentioned above, other functions, such as the
indicative or declarative ones, become more prominent, or are perceived as such.
It was the merit of the significians to point to purposeful will and roots in human
activity even there.

To Mannoury the meaning of any communicative act was composed of emotional
or volitional elements on the one hand, and indicative or declarative ones on the
other. The essential task of significs he held to be the disentangling and connecting
of both types of elements (G. Mannoury [31], p. 113). He displayed great skill in
uncovering the volitional aspect of utterances that seem purely indicative:
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Strictly speaking one cannot reasonably ask: ’is it true what you say?’, but only: ’what do
you want from me when you say this to me?’, and ’can I agree with your goal?’. But of
course such general remarks should always be taken ’cum grano salis’, and it will be clear
that nobody would be able to say what is really aimed at, or which kind of will is expressed
in a sentence such as there is a running horse, but still I am sure that if someone all of a
sudden made this important announcement to you, and you could not remotely guess what
made him draw your attention to the movement of the Rosinante, you would be astonished
and you would ask even without the slightest philosophical reflection: ’what do you mean,
what are you getting at?’, or, putting it more philosophically, ’what is the cause of your
judgement?, which motive made you create this combination of thoughts?’. (G. Mannoury
and D. Vuysje, archives, university library of Amsterdam; text of the lecture in file 14, p. 7;
published version of the lecture: Mannoury [30]).

It is clear that finding dictionary-meanings of words or unalterable definitions of
terms was not the main concern of the significians. Instead they were interested
in the use of words in a particular context by specific people. The meaning of a
communicative act was characterized as follows by Mannoury:

the associations which link this act to the psychic complexes determined by the participants
involved. (Mannoury [33], p. 13)

These participants are ‘the speaker’ and ‘the listener’ (in a very general sense, be-
cause communicative acts can also be wars, smiles and paintings).

Two main methods of empirical signific research into the meaning of linguis-
tic acts were presented in Mannoury [34] (see also Schmitz [45]). The first, called
method of exhaustion, consists of finding the range of situations to which a person
reacts in the same verbal way; the second, termed method of transformation, aims
at collecting the verbal reactions of various people to one particular situation (Man-
noury [35], p. 44). These two methods are especially well adapted to the study of
non-technical language.

However, the scope of signific analysis is by no means reduced to everyday lan-
guage. As most of the significians were active in some other scientific field (math-
ematics, law, psychology, biology, . . . ) their signific writings displayed a marked
interest in the communicative acts of science. Here too their main concern was de-
tecting the emotional or volitional and delineating it from the indicative. Mannoury
felt that every logical or physical formalism, and even purely mathematical commu-
nicative acts, encompassed an empirical content (on the level of indication) and an
element of belief (on the level of emotion and volition). In the case of mathematics
the empirical content of the theorems or demonstrations consists of the knowledge
of preceding formalisms which speaker and listener share. The element of belief is
to be identified with the esthetic or sportive aspect of mathematics, which is the key
to its deepest truth (Mannoury [33], p. 46).

This should be understood as follows: Two mathematicians in the course of a
discussion try to find the solution to a problem and join their efforts in a project
of which words and signs on paper are only the external marks of progress. They
develop, through corroboration, which equally gifted or equally trained people give
each other when they strive for the same end, a feeling of certainty or beauty, which
is nothing other than approached truth.
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Mannoury distinguished between active / speaking mathematics and passive /
listening mathematics and pointed to the tension between the two:

It is the old song: speaking mathematics and listening mathematics are at loggerheads. . . .
Speaking mathematics searches, supposes, conjectures, guesses right or wrong, enjoys and
suffers, gets dizzy and hits some nails, but listening mathematics remains calm and hides
behind ready-made definitions and has logarithmic tables printed with typesetting plates.
And does not want to know its mother any more! It has risen so high that it forgets where it
came from . . . (Mannoury [31], p. 31).

One of Mannoury’s merits as a significian was that he showed with many examples
that formalisms should not be considered in isolation, but need to be studied in
relation to the intuitive insights from which they sprang, and to the purpose which
they are supposed to serve.

According to the Dutch signific group it is possible to develop a classification of
language-types (Mannoury ([33], pp. 19-20), a graded scheme, in which each type
of language is situated on a particular level, and words or expressions of a higher
type can be interpreted or replaced by words or expressions of a lower one, but never
vice versa. In such a scheme the symbolic language of sciences displaying advanced
formalization, for example mathematical logic, occupy the highest degree; primitive
forms of language, in which the immediate expression of emotions prevails, belong
to the lowest degree; and the language of daily social intercourse is situated some-
where in between.

The principle of linguistic gradation makes clear how even the most abstract sys-
tems of language (which by virtue of their rigidly regulated syntax or their constant
‘word-word-associations’ (Mannoury [36], p. 161), to use one of Mannoury’s own
terms, give the impression of complete independence and perfect self-sufficiency)
remain anchored in the living language of emotion and intuition. Disrooted abstrac-
tions lead to the creation of false problems (for example, with regard to the void or
the actual infinity; Mannoury [33], p. 53) and therefore have to be dismissed. Any
language that loses contact with life should be shed off as a snake’s skin of dead
formula.

The significian has a role to play in this process of sloughing and renewal. A
prerequisite for the success of his undertaking is a thorough understanding of the
field to which the language in question applies. It is only through familiarity with
the objects and approach roads that he is able to detect the flaws and imperfections
of the existing means of expression. The significian will then break through the
language, which is like a passive crust that is moulded to fit the terrain as discovered
thus far. He will proceed to an active and synthetic refinement that matches the new
needs and allows him and his fellow explorers to draw nearer to the objects that
required redefining.

Progress through refinement of a language that is starting to flounder was exem-
plified by David van Dantzig, a second generation significian:

Inasfar as progress of science consists of the discovery of new regularities of the formal
system, the preceding formalization will be very useful, but it may be (even if one is willing
to replace the old formalism by a new one) an impediment to the discovery of such new
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properties of the objects under investigation, which require finer distinctions (’fine struc-
ture’) of relations hitherto regarded (and formalized!) as ’identical’. It is to a large extent
by such ’finer distinctions’ and broader generalizations that progress of science proceeds,
as numerous examples show. After they have been made, formalization may become useful
again. Formalization therefore covers a small part of science only, in particular a part which
to a certain extent is ’ready’ or ’closed’ at the moment, and therefore formalism is running
behind actual science (van Dantzig [11], p. 515, quoted in Mannoury [36], p. 120).

The careful technical readjustment of formal or other language in order to serve
modifying goals belongs to the synthetic activities of the significian.

Mannoury also tackled a synthetic project of a more general kind. In [33] (Po-
lar Psychological Synthesis of Concepts) he developed a unifying terminology that
aimed at bridging the sharp distinction between the mathematical way of thinking
(characterized by formalism and specific objects of consideration) and the ideolog-
ical way of thinking (characterized by metaphor and general points of view). In
doing so Mannoury remained true to his relativist position, which allowed for polar
opposition (in which each pole needs its opposite) rather than separated categories,
and he avoided the false problems that arise from dualism.

In this same light one should view Mannoury’s scheme which distinguishes and
combines two types of negation: a negation of choice and an exclusive negation
(Mannoury [32], pp. 333-334). The negation of choice is used in contexts where two
alternatives clearly present themselves to the speaker’s mind (e.g. It is raining or it
is not raining; if this is not a big town, it must be a small town; etc). The exclusive
negation is based on a negative volition, a refusal without a clear alternative. In
natural language the exclusive negation is often marked by words such as ‘not . . . at
all’, which indicate a stronger emotional involvement on the part of the speaker.

Mannoury shows that it is possible to combine these two negations, and gives the
following example: ‘What is not a small town could be a big town, but also some-
thing quite different’ (ibidem). The small town/big town dichotomy is governed by
the negation of choice. However, the words ‘something quite different’ illustrate the
effects of the exclusive negation, namely drawing the attention away from the given
alternatives (small town/big town) without proposing another possibility.

Double negation also plays a crucial role in intuitionistic mathematics and logic,
as developed by L.E.J. Brouwer and his students. The question of inspiration and
transmission of ideas between G. Mannoury and L.E.J. Brouwer, who were fellow
significians, fellow mathematicians and intimate friends, is far from resolved (see
Schmitz [43]). However, in this treatment of negation, as in many other cases, one
is not surprised to find analogies in their thinking.

Both Brouwer and Mannoury seem to start from a language of dichotomy and
clearly perceived entities. These are Mannoury’s given alternatives or Brouwer’s
constructions in the mathematician’s mind. Into this language they insert specific
expressions involving two negations. These expressions hint at what extends beyond
dichotomy and the clearly perceived. In other words, the inserts call up Mannoury’s
undefined alternatives or Brouwer’s as yet unfulfilled goals of construction projects
in the mathematician’s mind.

The task of significs has been defined as showing the link between indication and
volition/emotion, between what we think we have, and what we reach for, whenever
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we communicate. Synthetic significs provides new language constructs that make
explicit this connection. What Mannoury and the intuitionists do when combining
and embedding the two negations, contributes to this explication. They make us see
the link between the given and that what goes beyond, between specific objects of
consideration and higher objectives, between mathematics and mysticism.

7.4 Speech Acts

According to J.L. Austin, any speech act comprises at least two, and typically three,
sub-acts. These are what he calls the locutionary, the illocutionary and the perlocu-
tionary acts involved in a total speech act.

The locutionary act includes the utterance of certain noises, the utterance of certain
words in a certain construction, and the utterance of them with a certain meaning.
Locutionary acts are acts of saying something and meaning it (and supplying a
definite reference for any pronouns like ‘this’, ‘he’, etc.).

Most every time we say something and mean it – when we aren’t just testing our
voice, or acting in a play – we do in fact perform illocutionary acts.

Illocutionary acts are things we do in speaking like: requesting, welcoming, ask-
ing questions, demanding, inviting, giving orders, accusing, granting permission,
asserting, promising, lying.

For more examples and a rough classification, see Austin [3] (How to do things
with words, Lecture XII). Austin offers no precise definition of ‘illocutionary act’
(nor does anyone else for that matter), but one can pretty well agree how to extend
the above list. The illocutionary act can be regarded as the force with which the
sentence is employed. The distinction between locutionary and illocutionary acts
recalls Frege’s distinction between proposition (also called thought) and assertion
(or question, command or whatever). As we have already had occasion to note in
our discussion of Frege, the same proposition can be expressed in many different
kinds of illocutionary acts:

Please come (request or invitation);
Will you come? (question);
You will come (prediction);

all having the same propositional contents.
Some illocutionary acts (greeting, resigning, condoling) do not involve express-

ing propositions.
If there is any distinction between locution and illocution it is this: while the

meaning of what we say severely restricts the range of illocutionary acts we can be
performing (e.g., ‘Get in here this instant, you S.O.B.’ cannot be a polite request;
nor of course can it be a question, an assertion, a promise, etc.), it may not suffice to
determine completely the illocutionary force of what we say (e.g., ‘Come in here’
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might, depending on the circumstances, be an invitation, a command, an official or-
der, etc., ‘I will come’ might, depending on the context, be a promise, a statement
of present intention, or a fatalistic prediction). Because the conventional meaning
may not suffice to completely determine what illocutionary act is performed, it may
happen that even when the hearer understands perfectly the meaning of speaker’s
words, there may be a gap between the speaker’s intentions and how his utterance
is taken by the hearer. (What is intended as a mere statement of present intention
may be mistaken for a promise; what is intended as a polite request may be misin-
terpreted as a peremptory command.) The existence of a gap between locution and
illocution means that the notion of illocutionary act belongs on the border between
semantics (the theory of the meaning of words, what is conventional and common
to all speakers independently of their particular circumstances) and pragmatics (the
theory of the use of language by speakers taking into account not only the invariant
meaning of the words but also aspects depending on the speaker’s intentions and
purposes in the particular speech situation).

Perlocutionary acts are things we can do by speaking like: persuading, perplexing,
alarming, irritating, boring, convincing, deceiving, frightening.

In general it is possible to try and fail to perform a perlocutionary act (we can
try to deceive someone but not succeed), whereas it hardly makes sense to speak
of trying and failing in the case of an illocutionary act (like lying). Generally the
illocutionary act is complete when we have spoken, so long as we have been un-
derstood, whereas the perlocutionary act requires our speech to have some kind of
further effect on the hearer.

So, then ‘I promise to come to dinner’ will be the performance (1) of a locution
– e.g., employing a certain grammatical construction, (2) of an illocution – that of
making a promise, and (3) of a perlocution – e.g., cheering you up.

Rules. Illocutionary acts may be called a form of ‘rule-governed behavior’. There
are rules and procedures for how the act is to be performed, and rules saying what
kind of further behavior on the part of the speaker and hearer is ‘in order’ once the
act has been performed, and what kind of behavior is ‘out of order’. (For example,
a bigamist violates the procedural rules for getting married, one of which involves
not being married already.) Breaking a promise, welcoming people and then treating
them like unwanted intruders, etc., are violations of the rules about what is supposed
to be done afterwards.

An important distinction between two kinds of rules has been made by J. Rawls
and taken over by Searle and others: regulative rules prescribe how some form of
behavior existing antecedently to and independently of the rules is to be carried out.
Thus rules of table manners prescribe the manner in which people should eat, but
they are going to eat anyhow whether or not anyone has thought up any rules of table
manners. Constitutive rules, by contrast, create the very possibility of new forms of
behavior which could not exist without the rules. The rules of a game like bridge
or basketball constitute what it is to play bridge or basketball. Apart from the rules,
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these games have no existence. The rules governing illocutionary acts belong in the
constitutive category.

In [48] (What is a Speech Act) Searle distinguishes two (not necessarily separate)
parts in a sentence used to perform an illocutionary act: the proposition-indicating
element and the function-indicating device. The latter indicates the illocutionary
act the speaker is performing in the utterance of the sentence. J.R. Searle gives the
following two examples.

(1) I promise that I will come.
(2) I promise to come.

The function-indicating device and the proposition-indicating element are separate
in (1), but not so in (2). As function-indicating devices Searle mentions, among
others, word order, stress, punctuation and performative verbs such as ‘apologize’,
‘warn’, ‘state’, etc. See J.R. Searle [48], pp. 43-44.

7.5 Definite Descriptions

Both Russell (1872-1970) and Wittgenstein (1889-1951), for different sets of rea-
sons, rejected Frege’s distinction between sense and reference. In ‘Russell’s Re-
jection of Frege’s Theory of Sense and Reference’ J.R. Searle critically examines
Russell’s reasons for doing so.

Frege’s analysis of a sentence like ‘The king of France is bald’ would be that this
sentence lacks a truth value (reference), because the subject expression has no ref-
erence, but that the lack of a truth value does not render the sentence meaningless,
since this sentence does have a sense. Now, how does Russell, having already re-
jected Frege’s theory of sense and reference, explain how sentences like this one can
be meaningful, while there is nothing for the proposition, expressed by the sentence,
to be about. In On Denoting (1905) Russell claims that the sentence in question ap-
pears to be in subject-predicate form, but is not really so. Its grammatical form is
misleading as to its logical form. Russell’s analysis of

The king of France is bald

is as follows:
∃x[x is king of France ∧ x is bald ∧ ∀y[y is king of France→ y = x]],
or equivalently, but shorter

∃x[x is bald ∧ ∀y[y is king of France � y = x]].

And since there is no king of France, this sentence is false.
Russell analyzed (say) ‘The king of France is bald’ as no simple subject-predicate

statement but a far more complicated one, in which two different quantified variables
occur. In Russell’s theory, the deep structure of such statements is very different
from what their surface grammar suggests.

So Russell does not give an explicit definition enabling one to replace a definite
description by an equivalent wherever it appears, but a contextual definition, which
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enables one to replace sentences containing definite descriptions by equivalent sen-
tences not containing definite descriptions.

Russell used the following ‘iota’ -notation

ιxA(x): the unique x with property A, and

C(ιxA(x)): the unique x with property A has property C

as shorthand for

∃x[A(x)∧C(x)∧∀y[A(y)→ y = x]].

Where the condition C is complex, the iota notation is ambiguous. Russell’s simple
example is well known:

¬B(ιxF(x)): The king of France is not bald.

Here the ambiguity of the iota notation corresponds to an ambiguity in the English,
between these two:

1. ¬(B(ιxF(x))), i.e., ¬∃x[F(x)∧B(x)∧∀y[F(y)→ y = x]]. There is no object x
such that x is king of France and x is bald and x is the only king of France. And
this happens to be true.

2. (¬B)(ιxF(x)), i.e., ∃x[F(x)∧ (¬B)(x)∧∀y[F (y)→ y = x]]. There is some object
x such that x is king of France and x is not bald and x is the only king of France.
And this happens to be false; so we have ¬((¬B)(ιxF(x))).

Note that this latter expression is not equivalent to B(ιxF(x)), i.e., ∃x[F(x)∧B(x)∧
∀y[F(y)→ y = x]] (the king of France is bald): ¬((¬B)(ιxF(x))) is true, while
B(ιxF(x)) is false. In Russell’s jargon, the definite description ιxF(x) has narrow
scope in version 1 and wide scope in version 2.

A less confusing notation for definite descriptions would result by treating them
as a kind of quantifier:

(Ix)(F(x),B(x)) instead of B(ιxF(x)).

Then the sentence in version 1, ¬(B(ιxF(x))), would be rendered by
¬(Ix)(F(x),B(x)), and the sentence in version 2, (¬B)(ιxF(x)), by
(Ix)(F(x),¬B(x)). While it was somewhat strange to have both,

¬(B(ιxF(x))) and ¬((¬B)(ιxF(x)))

in the new notation this would become

¬(Ix)(F(x),B(x)) and ¬(Ix)(F(x),¬B(x))

which looks similar to

¬∀x[A(x)] and ¬∀x[¬A(x)]

which does not look like a contradiction at all.
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7.6 Berry’s and Grelling’s Paradox

In Subsection 2.10.1 we discussed the antinomy of the liar. This paradox results
from considering a sentence which says of itself that it is not true. By making a
sharp distinction between object-language and meta-language we could avoid this
paradox. In this subsection two other antinomies are presented, those of the librarian
G.G. Berry and of Kurt Grelling (1908), which can be avoided in a similar way by
making the distinction between language and meta-language. While the paradox of
the Liar is on the level of sentences, Berry’s paradox is on the level of names/definite
descriptions and Grelling’s antinomy is on the level of predicates.

Berry’s Paradox Consider the following definite description: The least natural
number not specifiable in less than twenty-two syllables. (*)

First of all we should verify that such a natural number exists. That this actually
is the case follows from the following observations: (i) There are only finitely many
(different) syllables. (ii) Consequently, there are only finitely many phrases of less
than 22 syllables. (iii) There are infinitely many natural numbers.

From (ii) and (iii) it follows that there is a least natural number that is not specifi-
able in less than twenty-two syllables. However, counting the number of syllables in
(*) we find that we have specified that particular number in 21 syllables. Therefore,
here is Berry’s paradox:

The least natural number not specifiable in less than twenty-two syllables is
specifiable in 21 syllables.

In order to avoid this paradox, one should realize that the expression ‘specifiable’
does not have a clear meaning. It must be supposed that we are talking with ref-
erence to the resources of some particular language, say L0. ‘Specifiable in terms
of (expressions of) L0’, abbreviated by ‘specifiable0’, does have a clear meaning.
However, the expression ‘specifiable0’, which is short for ‘specifiable in terms of
L0’, does not belong to L0 itself, but to the meta-language L1 of L0. Keeping this in
mind, we easily see that Berry’s paradox is the result of a very loose usage of words
and of identifying object-language and meta-language. Expressing ourselves more
precisely, what we have actually found is that

The least natural number not specifiable0 in less than twenty-two syllables (of L0)
is specifiable1 in 21 syllables (of L1).

In its specification we have used the expression specifiable0 which does not belong
to the object-language L0, but to the meta-language L1 of L0. So, making a clear
distinction between object-language and meta-language and expressing ourselves
precisely, the paradox simply disappears.

We are perhaps not accustomed to thinking of a natural language such as En-
glish as a sequence English0, English1, English2, . . ., where for each natural num-
ber n, Englishn+1 is a meta-language of Englishn. However, the paradox of the Liar,
Berry’s paradox and others force us to conceive of English in such a way and af-
ter a while the distinction between object-language and meta-language seems to be
self-evident.
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That Ln+1 is a meta-language of Ln means:
i) Ln+1 contains Ln as a sublanguage (Ln ⊆ Ln+1), and
ii) Ln+1 contains in addition means to talk about Ln.

Grelling’s paradox Define the predicate ‘autological’ as ‘being true of itself’. This
predicate applies, for instance, to the adjectives ‘short’, ‘English’ and ‘polysyllabic’.
For example, the adjective ‘short’ is short and therefore, this adjective is autological.

Adjectives which are not autological are called heterological. The adjective
‘long’ is not long; the adjective ‘German’ is not German; and the adjective ‘mono-
syllabic’ is not monosyllabic. So, in Grelling’s terminology, the adjectives ‘long’,
‘German’ and ‘monosyllabic’ are heterological.

Now consider the question whether the adjective ‘heterological’ is autological or
not. If ‘heterological’ is autological, then it is true of itself, and hence it is heterolog-
ical. Conversely, if ‘heterological‘ is heterological, then it is true of itself and hence
it is autological. So, this is Grelling’s paradox (1908).

‘heterological’ is autological iff it is heterological (not autological).

This paradox is also the result of not making a sharp distinction between object-
language and meta-language. Let ‘truen’ belong to the language Ln. Then we
can talk about expressions of language Ln, such as ‘being not truen of itself
(heterologicaln)’, in the meta-language Ln+1 of Ln, but not in Ln itself. So, the ques-
tion whether

heterologicaln is autologicaln

does not make sense. What does make sense is the question whether

heterologicaln is autologicaln+1. (*)

The answer to this question is no, since (∗) is equivalent to

heterologicaln is a heterologicaln word

which is meaningless.

We summarize this section in the schema below.

proper names, predicates sentences
definite descriptions

antinomy Berry Grelling the liar
of (see this section) (see this section) (see Subsection 2.10.1)

distinction of distinction of distinction of
object-language object-language object-language
and meta-language: and meta-language: and meta-language:

way out specifiable0 true0 of true0

specifiable1 true1 of true1

etc. etc. etc.
other Namely-rider
way-outs (see Subsection 2.10.1)
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Another antinomy on the level of predicates is Russell’s paradox (see Section 3.1).
For further reading the reader is referred to Quine [39] and Kneale [27], Chapter XI.

Exercise 7.2. Richard paradox, 1905 We may take the English alphabet as consist-
ing of the blank space (to separate words), the 26 Latin letters, and the comma. By
an ’expression’ in the English language we may understand simply any finite se-
quence of these 28 symbols not beginning with a blank space. The expressions in
the English language can then be enumerated by a simple device: first enumerate in
alphabetical order all expressions of length 1, next all finitely many expressions of
length 2, and so on.

Some English expressions, such as the expression ‘the function which assigns to
each natural number its square’, define a number-theoretic function of one variable,
i.e., a function f : N→ N. By striking out from the specified enumeration of all the
expressions in the English language those which do not define a number-theoretic
function, we obtain an enumeration, say E0,E1,E2, . . . , of those which do; say the
functions defined are respectively f0, f1, f2, . . . . Now consider the function f defined
by f (n) = fn(n)+1. This function f can be defined by an expression in the English
language and hence should occur in the enumeration f0, f1, f2, . . . . (1)
On the other hand,

f �= f1 since f (1) = f1(1)+ 1,
f �= f2 since f (2) = f2(2)+ 1,
f �= f3 since f (3) = f3(3)+ 1,
and so on. Therefore, for all i ∈ N, f �= fi. (2)

(1) and (2) are contradictory. Discover the flaw in the argument above.

7.7 The Theory of Direct Reference

According to the theory of direct reference, brought out by Keith Donnellan, Saul
Kripke, Hilary Putnam and others, proper names (‘Aristotle’, ‘Thales’) and nouns
standing for natural kinds (‘gold’, ‘water’, ‘tiger’) have no intension (Sinn) in the
traditional sense, but only have reference; and this reference is established by a
causal chain rather than by an associated description. For example, the reference to
the person called ‘Aristotle’ is determined by a causal chain as follows. The person
in question is given a name in a ‘baptism’ with the referent present. Next this name
is handed on from speaker to speaker. It is in this way that we use the name ‘Aris-
totle’ referring to the person in question. We do not have to have any description of
Aristotle; the information ‘Aristotle was a philosopher’ may be completely new to
the one who is using the name ‘Aristotle’.

There are at least two problems in the traditional theory of meaning:

1. In the traditional view, a proper name, like ’Jane’, is identified with a description,
such as ‘the woman John is married to’. Now suppose that John is a bachelor.
Then it would follow that Jane does not exist. This example makes clear that a
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person can be referred to by his or her name even if the description of the person
in question does not apply to that person.

2. According to the traditional theory, a tiger, for instance, is identified with an
object which has certain properties, among which the property of having sharp
teeth. Consequently, the statement ’tigers have sharp teeth’ is analytic; this seems
to be counter-intuitive.

In the traditional theory, the conjunction of properties which a tiger is supposed to
have is called the intension of the word ’tiger’ and is supposed to be the essence
of tiger. In the traditional theory as well, intension determines extension. Similarly,
in the traditional view, the proper name ’Aristotle’ is identified with a description
such as ‘the most well-known man who studied under Plato’. As a consequence, the
proposition ‘Aristotle studied under Plato’ would be an analytic truth. This is again
against our intuition.

Typical of the theory of direct reference is the position, held by Kripke, Donnel-
lan and others, that proper names and nouns standing for natural kinds refer inde-
pendently of identifying descriptions.

In his paper [12] Donnellan distinguished between two kinds of use for definite
descriptions – the attributive, and the referential. In order to make this distinction
clear, Donnellan considered the use of the definite description ‘Smith’s Murderer’
in the following two cases.

Suppose first that we come upon poor Smith foully murdered. From the brutal manner of the
killing and the fact that Smith was the most lovable person in the world, we might exclaim
‘Smith’s murderer is insane’. I will assume, to make it a simpler case, that in a quite ordinary
sense we do not know who murdered Smith . . .. This, I shall say, is an attributive use of the
definite description.

So, in the case of the attributive use, the speaker wants to say something about
whoever or whatever fits the description even if he does not know who or what that
is. On the other hand,

Suppose that Jones has been charged with Smith’s murder and has been placed on trial.
Imagine that there is a discussion of Jones’ odd behavior at his trial. We might sum up
our impression of his behavior by saying ‘Smith’s murderer is insane’. If someone asks to
whom we are referring by using this description, the answer here is ‘Jones’. This, I shall
say, is a referential use of the definite description. [K.S. Donnellan, [12], pp. 285-286.]

So, if the description ‘Smith’s murderer’ is used referentially, the speaker is referring
to Jones, even in the case that Jones turns out to be innocent. Note that in this case
the description refers to Jones although it does not apply to Jones. To give another
example, suppose someone asks me at a party who Mr. X is. I answer ‘the man at
the door with a glass of sherry in his hand’. Now suppose that the person referred
to actually has a glass of white wine in his hand. Again the description may refer
successfully without applying to the object referred to. These examples make clear
that descriptions, when used referentially, do not always apply to the object they
refer to. When using a description referentially, we have a definite object in mind
whether or not it does fit the description.
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It is typical of the theory of direct reference that proper names, like ‘Jane’, refer
to some definite object, even when the description we supply, like ‘the woman John
is married to’, does not apply to that object. This description may help us fix the
reference, but it should not be taken to be the meaning of the name. And a similar
view is held for nouns standing for natural kinds, like ‘gold’, ‘water’ and ‘tiger’.
The meaning of the word ‘tiger’ is its reference; identifying descriptions such as ‘a
tawny-coloured animal with sharp teeth, . . .’ only help us to fix the reference of this
term.

Summarizing, according to the theory of direct reference, the meaning of a proper
name or a natural kind term is its reference; the descriptions given in connection
with these terms only help the hearer to pick out what the speaker has in mind.

In his paper [28] Kripke in addition holds the view that a proper name, like ’Aris-
totle’, is a rigid designator, i.e., it designates the very same object in all possible
worlds in which this object exists. Thus, in the sentence ‘Aristotle might have been
a carpenter’, the proper name ‘Aristotle’ refers to the same individual referred to
in the sentence ‘Aristotle was the philosopher who was a pupil of Plato and taught
Alexander’. The definite description ‘the most well-known man who studied under
Plato’, though it designates Aristotle in the actual world, may designate other indi-
viduals in other possible worlds; for it is possible that Aristotle did not study under
Plato. Contrary to the traditional theory of meaning, according to the theory of di-
rect reference, the statement ‘Aristotle studied under Plato’ is not necessarily true
(and hence not analytic).

Now, if a and b are rigid designators and a = b is true (in this world), then
�(a = b) is true, i.e., a = b is true in all possible worlds accessible from this one
(see Exercise 7.3). So it follows from the thesis that proper names are rigid desig-
nators that all true identity statements of the form a = b, where a and b are proper
names, are necessarily true. In particular, it follows that ’Hesperus is Phosphorus
(the Morning Star is the Evening Star)’ and ’Tully is Cicero’, if true (in this world)
are necessarily true. On the other hand, we do not know a priori that Hesperus (the
Morning Star) is Phosphorus (the Evening Star); this was discovered by empirical
observation. Therefore Kripke claims in his paper [29] that sentences like ’Hesperus
is Phosphorus’ and ’Tully is Cicero’ if true (in this world) are necessarily true and
at the same time are a posteriori.

Kripke extends his insights about proper names to nouns standing for natural
kinds, such as ‘gold’, ‘water’ and ‘tiger’. These nouns are rigid designators too, i.e.,
they refer to the same substance in all possible worlds in which this substance exists.
Let us consider some interesting consequences of this point of view.

‘Gold’ being a rigid designator, the sentence ‘gold is the element with atomic
number 79’, if true (in this world), will be true in all worlds (accessible from this
one) and hence be necessarily true. Similarly, ‘water’ being a rigid designator, the
sentence ‘water has the chemical structure H2O’, if true (in this world), will be
true in any world (accessible from this one) and hence be necessarily true. So both
propositions, if true (in this world), are necessarily true and at the same time a
posteriori.
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In Exercise 7.4 some examples are given of sentences which are contingent, i.e.,
not necessarily true, and at the same time a priori. Kripke defines a sentence A to be
analytic if it is both necessary and a priori. Consequently, sentences like ‘Hesperus
is Phosphorus’, ‘Tully is Cicero’, ‘gold is the element with atomic number 79’ and
‘water is H2O’ are not analytic, since they are a posteriori, although necessarily
true, if true (in this world).

Exercise 7.3. Suppose that ’a’ and ’b’ are rigid designators. Prove: if a = b is true
(in this world), then �(a = b) is true. More precisely, for any Kripke model M and
for any world w in M: if M,w |= a = b, then M,w |=�(a = b).

Exercise 7.4. Regarding ’one meter’ as a rigid designator, make clear that ’stick S
is one meter long’, where S is the standard meter in Paris, is a contingent and a
priori truth. (See S.A. Kripke, [28] pp. 54-57.) Similarly, for ’water boils at hundred
degrees Celsius’, regarding ’100 degree Celsius’ as a rigid designator, and for ’I am
here now’.

7.8 Analytic - Synthetic

In his Critique of Pure Reason (1781) Immanuel Kant [26] makes a distinction be-
tween analytic and synthetic judgments. Kant calls a judgment analytic if its pred-
icate is contained (though covertly) in the subject, in other words, the predicate
adds nothing to the conception of the subject. Kant gives ‘All bodies are extended
(Alle Körper sind ausgedehnt)’ as an example of an analytic judgment; I need not
go beyond the conception of body in order to find extension connected with it. If a
judgment is not analytic, Kant calls it synthetic. So, a synthetic judgment adds to
our conception of the subject a predicate which was not contained in it, and which
no analysis could ever have discovered therein. Kant mentions ‘All bodies are heavy
(Alle Körper sind schwer)’ as an example of a synthetic judgment.

Also in his Critique of Pure Reason Kant [26] makes a distinction between a
priori knowledge and a posteriori knowledge. A priori knowledge is knowledge
existing altogether independent of experience, while a posteriori knowledge is em-
pirical knowledge, which has its sources in experience.

Sometimes one speaks of logically necessary truths instead of analytic truths and
of logically contingent truths instead of synthetic truths, to be distinguished from
physically necessary truths (truths which physically could not be otherwise, true in
all physically possible worlds). The distinction between necessary and contingent
truth is a metaphysical one. In her book [21], p. 170, S. Haack stresses that this
distinction ‘should be distinguished from the epistemological distinction between a
priori and a posteriori truths’. Although these – the metaphysical and the epistemo-
logical – are certainly different distinctions, it is controversial whether they coincide
in extension, that is, whether all and only necessary truths are a priori and all and
only contingent truths are a posteriori.
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In his Critique of Pure Reason Kant stresses that mathematical judgments are
both a priori and synthetic. ‘Proper mathematical propositions are always judgments
a priori, and not empirical, because they carry along with them the conception of
necessity, which cannot be given by experience.’ Why are mathematical judgments
synthetic? Kant considers the proposition 7+5= 12 as an example. ‘The conception
of twelve is by no means obtained by merely cogitating the union of seven and five;
and we may analyse our conception of such a possible sum as long as we will,
still we shall never discover in it the notion of twelve.’ We must go beyond this
conception of 7+5 and have recourse to an intuition which corresponds to counting
using our fingers: first take seven fingers, next five fingers extra, and then by starting
to count right from the beginning we arrive at the number twelve.

7: 1 1 1 1 1 1 1
5: 1 1 1 1 1

7 + 5: 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

‘Arithmetical propositions are therefore always synthetic, of which we may become
more clearly convinced by trying large numbers’. Geometrical propositions are also
synthetic. As an example Kant gives ‘A straight line between two points is the short-
est’, and explains ‘For my conception of straight contains no notion of quantity, but
is merely qualitative. The conception of the shortest is therefore wholly an addition,
and by no analysis can it be extracted from our conception of a straight line’.

In more modern terminology, following roughly a ’Fregean’ account of analytic-
ity, one would define a proposition A to be analytic iff either

(i) A is an instance of a logically valid formula; e.g., ’No unmarried man is mar-
ried’ has the logical form ¬∃x[¬P(x)∧P(x)], which is a valid formula, or

(ii) A is reducible to an instance of a logically valid formula by substitution of
synonyms for synonyms; e.g., ’No bachelor is married’.

In his Two dogmas of empiricism W.V. Quine [40] is sceptical of the ana-
lytic/synthetic distinction. Quine argues as follows. In order to define the notion
of analyticity we used the notion of synonymy in clause (ii) above. However, if one
tries to explain this latter notion, one has to take recourse to other notions which
directly or indirectly will have to be explained in terms of analyticity.

7.9 Logicism

Logicism dates from about 1900, its most important representatives being G. Frege
[17] in his Grundgesetze der Arithmetik I, II (1893, 1903) and B. Russell [41] in
his Principia Mathematica (1903), together with A.N. Whitehead. The program of
the logicists was to reduce mathematics to logic. What do they mean by this? In his
Grundgesetze der Arithmetik Frege defines the natural numbers in terms of sets as
follows: 1 := the class of all sets having one element, 2 := the class of all sets having
two elements, and so on. Next Frege shows that all kinds of properties of natural
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numbers can be logically deduced from a naive comprehension principle: if A(x) is
a property of an object x, then there exists a set { x | A(x)} which contains precisely
all objects x which have property A (see Section 3.1).

Logicism tried to introduce mathematical notions by means of explicit defi-
nitions; mathematical truths would then be logical consequences of these defini-
tions. Mathematical propositions would then be reducible to logical propositions
and hence mathematical truths would be analytical, contrary to what Kant said.

The greatest achievement of Logicism is that it succeeded in reducing great parts
of mathematics to one single (formal) system, namely, set theory. The logicists be-
lieved that by doing this they reduced all of mathematics to logic without making
use of any non-logical assumptions, hence showing that mathematical truths are ana-
lytic. However, they mistakenly held the naive comprehension principle for a logical
axiom instead of a mathematical or set theoretical principle. So, what they actually
did was reduce mathematics to logic plus set theory. And the axioms of set theory
have a non-logical status! The axioms of set theory are – in Kant’s terminology –
synthetic, and surely not analytic. In his later years Frege came to realize that the
axioms of set theory (see Chapter 3) are not a part of logic and gave up Logicism,
which he had founded himself. The interested reader is referred to K. Gödel [19],
Russell’s mathematical logic.

Another way to see that a mathematical truth like 7+ 5 = 12 is synthetic is to
realize that 7+ 5 = 12 is not a logically valid formula; it is true under the intended
interpretation, but not true under all possible interpretations: if one interprets the +
symbol as negation, the formula 5 + 7 = 12 yields a false proposition. 7+ 5 = 12
can be logically deduced from the axioms of Peano for (formal) number theory (see
Chapter 5), but it cannot be proved by the axioms and rules of formal logic alone.

axioms of Peano

logical reasoning

7 + 5 = 12

Again, Peano’s axioms are true under the intended interpretation, but are not (logi-
cally) valid and hence they do not belong to logic.

7.10 Logical Positivism

It is an old problem to draw the line between scientifically meaningful and mean-
ingless statements. Consider the following quotation, taken from Hume’s Enquiry
Concerning Human Understanding:

When we run over libraries, persuaded of these principles, what havoc must we make? If
we take in our hand any volume; of divinity or school metaphysics, for instance; let us ask,
Does it contain any abstract reasoning concerning quantity of number? No. Does it contain
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any experimental reasoning concerning matter of fact and existence? No. Commit it then to
the flames: for it can contain nothing but sophistry and illusion [David Hume, 1711-1776].

As we learn from A.J. Ayer [2], the quotation above is a good formulation of the
positivist’s position. In the 1930’s the adjective logical was added, resulting in the
term Logical Positivism, which underscored the successes of modern logic and the
expectation that the new logical discoveries would be very fruitful for philosophy.

This logical positivism was typical of the Vienna Circle, a group of philosophers
(among them Moritz Schlick, Rudolf Carnap and Otto Neurath), scientists and math-
ematicians (among them Karl Menger and Kurt Gödel). According to A.J. Ayer [2],
Einstein, Russell and Wittgenstein had a clear kinship to the Vienna Circle and had
a great influence upon it.

In order to draw a sharp distinction between scientifically meaningful statements
and scientifically meaningless statements the verification principle was formu-
lated: only those statements are scientifically meaningful which can be verified in
principle; in other words, the meaning of a proposition is its method of verifica-
tion. However, a proposition like ‘all ravens are black’, which has as logical form
∀x[R(x)→ B(x)], cannot be verified due to the universal quantifier, ∀; at the same
time we consider this proposition to be (scientifically) meaningful.

However, the proposition ‘all ravens are black’ can be conclusively falsified,
since its negation ‘not all ravens are black’, being of the form ¬∀x[R(x)→ B(x)],
is logically equivalent to ‘some raven is not black’, which has the logical form
∃x[R(x)∧¬B(x)], and hence can be verified. For this reason the falsification princi-
ple was formulated: only those statements are scientifically meaningful which can
be falsified in principle. This principle seems to be more in conformity with sci-
entific practice: hypotheses are set up and rejected as soon as experimental results
force us to do so.

However, Otto Neurath himself soon realized that a slightly more complex propo-
sition, like ‘all men are mortal’, which has the logical form ∀x∃y[P(x,y)] (for every
person there is a moment of time such that . . .), can neither be verified (due to the
universal quantifier ∀x) nor falsified (due to the existential quantifier ∃y), since its
negation ‘not all men are mortal’, being of the form ¬∀x∃y[P(x,y)], is equivalent to
‘some men are immortal’, which has the logical form ∃x∀y[¬P(x,y)], and hence –
due to the universal quantifier ∀y – cannot be verified. Falsification of ∀x∃y[P(x,y)]
is equivalent to verification of ¬∀x∃y[P(x,y)], i.e., verification of ∃x∀y[¬P(x,y)],
which is not possible in principle due to the universal quantifier ∀y. At the same
time we want to consider a statement like ‘all men are mortal’ as (scientifically)
meaningful. Therefore, we have to give up not only the verification principle, but
also the falsification principle. This was already realized by Otto Neurath during his
stay (1938-39) in the Netherlands (oral communication by Johan J. de Iongh).

Instead of the verification or falsification principle, a weaker criterion was formu-
lated, called the confirmation principle: a statement is scientifically meaningful if
and only if it is to some degree possible to confirm or disconfirm it. One way to con-
firm (increase the degree of credibility of) universal generalizations like ‘all ravens
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are black’ is to find things that are both ravens and black, and one way to discon-
firm this proposition is to find things that are ravens but not black. The problem with
this confirmation principle is that ‘all ravens are black’, ∀x[R(x)→B(x)], is logically
equivalent to ‘all non-black things are non-ravens’,∀x[¬B(x)→¬R(x)], and accord-
ing to the confirmation principle, the latter proposition is confirmed by observations
of non-black non-ravens; thus observations of brown shoes, white chalk, etc., would
confirm the proposition ‘all ravens are black’. Various attempts have been made to
give the verification principle, in this weaker form, a precise expression, but the re-
sults have not been altogether satisfactory. For instance, a solution might be found
by replacing the material implication → in ∀x[R(x)→ B(x)] by the counterfactual
implication �→ (see Section 6.9), for ∀x[A(x) �→ B(x)] is not logically equivalent
to ∀x[¬B(x) �→¬A(x)].

7.11 Presuppositions

Let us start this subsection with a quotation from Frege, Ueber Sinn und Bedeutung.

If anything is asserted there is always an obvious presupposition that the simple or com-
pound proper names used have reference. If therefore one asserts ’Kepler died in misery’,
there is a presupposition that the name ’Kepler’ designates something; but it does not follow
that the sense of the sentence ’Kepler died in misery’ contains the thought that the name
’Kepler’ designates something. If this were the case, the negation would have to run not
‘Kepler did not die in misery’ but ‘Kepler did not die in misery, or the name ’Kepler’ has no
reference’. That the name ’Kepler’ designates something is just as much a presupposition
for the assertion ‘Kepler died in misery’ as for the contrary assertion. [G. Frege, 1892, in P.
Geach and M. Black [18]].

Thus, according to Frege, the sentences
(1) Kepler died in misery, and
(2) Kepler did not die in misery

both presuppose that the name ’Kepler’ has a reference. This presupposition is not
part of the meaning of (1) or (2) respectively, since in that case the negation of (1)
would not be (2), but

(*) Kepler did not die in misery, or the name ’Kepler’ has no reference.
If the presupposition is not satisfied, the speech act of asserting in (1) and (2) cannot
be performed successfully.

As we have already seen in Section 7.5 on definite descriptions, Russell places
the presupposition(s) of a sentence into an existentially quantified conjunction and
by doing so he makes the presupposition part of the meaning of the sentence. For
example, the sentence

(1a) The king of France is bald
presupposes that

(1b) There is a king of France,
but Russell translates (1a) by the expression ∃x[x is king of France ∧ x is bald ∧ x is
the only king of France], hence making the presupposition part of what is asserted.
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As we have seen above, sentences containing proper names and sentences contain-
ing definite descriptions in subject position carry or induce presuppositions. R. van
der Sandt gives in his book [42], on which this section is based, the following ex-
amples in which the (a)-sentences presuppose the corresponding (b)-sentences.

Quantifiers (all, a few, at least one, . . .)
(2a) All John’s children are asleep.
(2b) John has children.

Aspectual verbs (begin, stop)
(3a) Charles has stopped smoking.
(3b) Charles used to smoke.

Presuppositional adverbs (only, even, also, . . .)
(4a) Only John voted for Harry.
(4b) John voted for Harry.

Contrastive stress
(5a) The butcher killed the goose.
(5b) Someone killed the goose.

Factive verbs (realize, regret, discover, . . .)
(6a) Tom regrets that the goose has been killed.
(6b) The goose has been killed.

Cleft constructions
(7a) It was John who caught the thief.
(7b) Someone caught the thief.

It is widely accepted that presuppositions are characterized by the following three
tests.

1. The negation test: presuppositions are preserved when the original sentence is
embedded under negation. The negation of each (a)-sentence above still presup-
poses the corresponding (b)-sentence. For instance, the negation of (3a), ‘Charles
has not stopped smoking’, still presupposes (3b), ‘Charles used to smoke’.

2. The modality test: presuppositions are preserved when the original sentence is
embedded under a possibility operator. For instance, ‘It is possible that Charles
has stopped smoking‘ still presupposes (3b), ‘Charles used to smoke’.

3. The antecedent test: presuppositions are preserved when the original sentence
is taken as the antecedent of a conditional statement. For instance, ‘If Charles
stopped smoking, his wife would be happy’ still presupposes (3b) ‘Charles used
to smoke’.

(8) Charles managed to leave the country
entails
(9) Charles left the country.
But (8) does not presuppose (9), since (9) is not preserved in the application of the
tests mentioned above.
(8i) Charles did not manage to leave the country,
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(8ii) Perhaps Charles managed to leave the country, and
(8iii) If Charles has managed to leave the country, then he will never come back,
do not suggest that (9) is true.

The verb ‘manage’ is called implicative, i.e., each sentence containing this verb
entails the complement of that verb.

Next, consider sentence
(10) Charles was glad that he had left the country.
Applying the negation, modality and antecedent test to (10) teaches us that (9) is
a presupposition of (10). These examples show (or at least suggest) that the tests
mentioned above eliminate entailments, but preserve presuppositions. ([42], 2.3.)

When a presupposition is induced by a positive or negative polarity element, the
application of the negation test is problematic.

Negative polarity elements, such as at all, ever, anymore, matter that, mind that. In
order to form a grammatically correct expression, these elements are accompanied
by a negation. When a presupposition is induced by a negative polarity element,
the negation test cannot be applied, since the original sentence has no grammatical
non-negated counterpart. The following examples are from van der Sandt [42].
(11a) Dick does not mind that his theory is wrong
presupposes
(11b) Dick’s theory is wrong.
And
(12a) It does not matter that John was fired
presupposes
(12b) John was fired.
The presupposition-inducing elements mind that and matter that are negative polar-
ity elements; so the non-negative versions of (11a) and (12a) are not grammatical.
Thus the negation test cannot be applied in these cases. However, the modality test
and the antecedent test can be applied successfully to (11a) and (12a). For this reason
(11b) and (12b) are considered to be presuppositions of (11a) and (12a) respectively.

Positive polarity elements, such as still, plenty of, perhaps, a lot, certainly, swarm
with, be delighted. When a presupposition is induced by a positive polarity element,
the negation test may yield the wrong results since the negated sentence can evoke
some kind of echo-effect. By this we mean that the negated sentence may suggest
that the speaker rejects the original sentence, because he does not accept its presup-
position. Consequently, when the original sentence is embedded under negation, the
presupposition may get lost. Consider the following examples, again from [42].
(13a) John still believes in David’s theory
presupposes
(13b) John believed in David’s theory until recently.
And
(14a) Dick is delighted that his book is published
presupposes
(14b) Dick’s book is published.
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The presupposition inducing elements still and be delighted are positive polarity
elements. Now, consider the negations of (13a) and (14a) respectively:

John does not still believe in David’s theory; (he never believed in it).
Dick is not delighted that his book is published; (his book is not published).

On their most natural reading, the negations of (13a) and (14a) evoke the echo-effect
that the speaker rejects the original sentence, not accepting its presupposition. So,
application of the negation test would yield a negative result. On the other hand, if
we apply the modality test and the antecedent test to (13a) and (14a) the truth of
(13b) and (14b) is preserved. For this reason (13b) and (14b) are considered to be
presuppositions of (13a) and (14a) respectively.

The negation, modality and antecedent test enable us to determine the elementary
presuppositions of simple sentences. These elementary presuppositions are induced
directly by certain lexical elements or syntactic constructions. The projection prob-
lem is the problem of finding out whether there is an algorithm – and if so, which
one – which determines the presuppositions of a complex sentence on the basis of
the presuppositions of its components.

In this connection it is important to realize that presupposing is not a binary rela-
tion between sentences and propositions, but a ternary relation between sentences,
propositions and contexts. Whether a sentence presupposes a certain proposition or
not may depend on the context! This can be illustrated by the following two exam-
ples, again taken from [42].
(15a) John will regret that there is a bouncer at the party
presupposes
(15b) There will be a bouncer at the party.
In the context that Charles is a competent bouncer and that problems are expected
to arise, in sentence
(16) If Charles comes to the party, John will not regret that there is a bouncer at the
party
presupposition (15b) is lost. In this context (16) does not presuppose (15b). How-
ever, in the context in which John gives a party and Charles, a notorious brawler,
is one of the potential guests, the elementary presupposition (15b) is preserved. In
such a context (16) does presuppose (15b).
(17a) Peter drinks too
presupposes
(17b) Someone other than Peter drinks.
Without any specification of a context, more precisely, in an empty context
(18) If Peter drinks too, the bottle is empty
preserves the presupposition (17b). However, in the context ‘If John drinks, he
drinks at least half a bottle’, (18) does not presuppose (17b).

As is clear from these examples, in order to determine the presuppositions of a
sentence one has to take into account not only its elementary presuppositions and
its mode of composition, but also the relevant contextual information.

Exercise 7.5. The counterpart of the antecedent test for identifying elementary pre-
suppositions would be the ‘succedent test’. However, make clear that an elementary
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presupposition that is induced by the succedent need not be a presupposition of the
entire sentence. Hint: consider the sentence ‘If the king of France exists, then the
king of France is bald’.

Exercise 7.6. Inspired by the negation test, ‘A presupposes B’ has been defined as:
A |= B and ¬A |= B. Make clear that this definition does not make sense. Hint: use
the fact that |= A∨¬A.

7.12 Wittgenstein on meaning

My whole task consists in explaining the nature of proposition. (Wittgenstein)

Wittgenstein (1889-1951) is probably unique in the history of philosophy having
earned the name of being the author of two completely different, original and highly
influential systems of philosophy. His early philosophy, represented in the Tracta-
tus (1922) [55], and his later philosophy, represented mainly in the Philosophical
Investigations [56] (1952), are regarded as two major classics in the philosophy of
language. The present survey is chiefly concerned with Wittgenstein’s later philos-
ophy of language. However, reference to his earlier philosophy of language will
be necessary since his later philosophy, though different from the earlier one, can
never be viewed as separate from it. There is an underlying continuity between the
two systems that unites them. This is his critique of language or the problem of
meaning, a theme with which Wittgenstein was preoccupied in all his philosophical
writings. Wittgenstein’s remark quoted above ‘My whole task consists in explaining
the nature of proposition’ (Notebooks 1914-1916 [54], p. 39) characterizes this cen-
tral concern and also indicates the theme that dominates the different phases of his
philosophical thought. To explain the nature of proposition is to explain the nature
and function of language. That is why Wittgenstein was interested in questions like:
what makes it possible to say something?; how can words in combination signify
something?; how can the sense of an expression be communicated to others?. But
the difference lies in his approach to these questions. The questions are the same,
but the answers to these questions are different in the two phases of Wittgenstein’s
philosophy of language. The later Wittgenstein was not convinced of the answers he
offered to these questions in the Tractatus period. As a result, there was a new set of
answers offering a new understanding of the nature and function of language.

To put the difference in perspective, in the earlier period a proposition says some-
thing because it is a picture or model of reality. The reason for its being a picture of
reality is that it has an isomorphic relation to reality. Further, it is held that the sense
of a sentence is determined by its truth conditions. But when we come to the later
period, this perspective is changed. A sentence is no longer thought to be the pic-
ture of reality nor its meaning to be determined by its truth conditions. A sentence,
on the other hand, is compared with a tool to be used to perform various functions
including that of describing reality. Its meaning is determined by the rule or the
convention associated with it.
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One of the most important thrusts of the earlier approach was to show that ul-
timately a proposition consists only of names and that every name stands for an
object. Elementary propositions are thus placed at the very bottom of the system of
the Tractatus and all other compound (molecular) propositions are truth-functionally
related to elementary propositions. For an elementary proposition to be true, its pic-
torial form must be isomorphic to the state of affairs it represents. In other words,
its structure must mirror the actual structure of the state of affairs. Failure to do so
makes the proposition false (though the proposition will be meaningful because it
represents a possible state of affairs). According to what has been called the picture
theory of meaning, the sense of an elementary sentence is determined by its being
true or false with respect to the reality of which it is a picture or model. The same
holds true of molecular propositions since they are truth-functionally connected with
elementary propositions. The truth or falsity of a molecular proposition is depen-
dent on the truth or falsity of the elementary propositions. Similarly, the meaning
of a molecular sentence is determined by the specific truth conditions which are re-
lated to the elementary propositions. The basic presupposition underlying all these
theoretical moves is that the main function of language is to depict reality.

In Wittgenstein’s later philosophy we are confronted with a different story re-
garding how linguistic expressions get their meaning. The aim of the analysis was
not to arrive at elementary propositions conceived as the essence of language. The
entire depth-grammar approach to language was abandoned. For the later Wittgen-
stein, language is ordinary language. The question of reducing it to something more
basic, such as elementary propositions, does not arise. Language has to be described
and understood the way it is found. Its function is not just to describe reality or to
picture facts. It has varied functions to perform – it has multiple uses. As Wittgen-
stein said:

It is wrong to say that in philosophy we consider an ideal language as opposed to our
ordinary one. For this makes it appear as though we thought we could improve an ordinary
language. But ordinary language is all right. [The Blue and Brown Books [57], p. 28]

The expression, ’ordinary language is all right’ needs clarification. Wittgenstein
does not mean that ordinary language is free of problems. It is all right in so far
as it is used in the way it ought to be used. But very often it is found that language
has not been used correctly. These are cases of misuse which give rise to a num-
ber of problems, including philosophical problems. Wittgenstein argued that many
of the traditional disputes in philosophy arose precisely because of the misuse of
language. Such disputes, therefore, do not have any real basis. What is required is
a correct diagnosis which will reveal the pseudo nature of the philosophical prob-
lems arising due to the misuse of language. The need to reform ordinary language
is ruled out since ordinary language is very rich in its content and also because it
contains all the nuances regarding a particular concept. Later, Wittgenstein’s entire
approach to language took a radical turn, giving utmost importance to the notion of
use. Language is to be understood not in terms of any predesigned fixed model but
in the way it is used, i.e., the way it is used to perform various functions. This has far
reaching consequences for semantics. The meaning of an expression is determined
by its use and not by its truth conditions.
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It may be of interest to mention the historical event that profoundly influenced
Wittgenstein in this new direction of thinking. On March 10, 1928 in Vienna,
Wittgenstein along with Herbert Feigl and Friedrich Waismann attended a lecture
given by L.E.J. Brouwer on ’Mathematics, Science, and Language’. (See Hacker,
Insight and Illusion [22], p. 120.) Feigl noted that this lecture made a tremendous
impact on Wittgenstein and he was found to be visibly disturbed after the lecture
was over. The theme of Brouwer’s lecture was closer to the Kantian tradition of
epistemology. Following Kant, Brouwer defends the constructive function of the
human mind which provides the structure for organizing the data of experience.
Both mathematics and language are examples of these constructive activities of the
mind. Accordingly, as the argument goes, mathematical truths are not something to
be discovered; they are to be invented. There are no independent, eternal truths that
mathematics discloses. The Tractatus was not conceived in this constructivistic line
of thinking. On the contrary, the essential thrust of the Tractatus was always real-
istic. The greatest evidence of this was found in the conception of logic and math-
ematics by the early Wittgenstein. Logic discloses the necessary structure which is
inherent in all possible states of affairs and similarly mathematics, conceived as a set
of tautologies, discloses the necessities inherent in the structure of reality. Finally,
Wittgenstein comes to the determination of sense. The sense of all sentences must
be determinate so that they can correspond with the objects of the world. Further,
for the determination of sense, a well formulated language is required in which they
can be completely articulated. The constructivistic theme of Brouwer’s lecture, as
Feigl reported, appealed to Wittgenstein so much that he thought of coming back
to philosophy with a new approach and a new orientation to language. The result
was the post-Tractatus writings of Wittgenstein upholding the constructivistic and
conventionalistic view of language and meaning. Meaning of an expression does
not correspond to any independent structure of reality. It is, on the other hand, de-
termined by rules of use or conventions that people devise and adopt. With these
introductory remarks explaining the transition of Wittgenstein from his early phase
to his later phase, we now directly come to Wittgenstein’s later view on meaning.
In this attempt we shall be mainly concerned with the explication of the view that
meaning is to be understood as use. This ‘meaning as use’ view assumes a long
chain of involved and interconnected arguments. In our presentation we shall follow
an order which at the end will establish why meaning is to be understood as use.

Wittgenstein’s revolt against essentialism was probably the first step towards his
new approach to language and meaning. Essentialism is a view which says that there
are common, uniform and essential properties. Acceptance of such essential proper-
ties becomes necessary, otherwise there cannot be any proper understanding of any
thing. Accordingly, the search for common essences was a dominant theme in West-
ern philosophy. Belief in essences was epitomized in Plato’s doctrine of ideas. A
similar tendency was found in Russell’s attempt to discover the ultimate constituent
of matter. The Tractatus is not an exception to this. Essentialism is ingrained in the
very texture of the philosophical thinking of the Tractatus. One of the major goals
of the Tractatus is to determine the limits of language which implies drawing the
boundary that will separate sense from nonsense or what can be said from what can-
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not be said. In this task of separating the two, logic plays an important role. The task
of logic is to make the distinction between sense and nonsense in such a way that
the distinction becomes universal, necessary and a priori. In his search for universal
essences Wittgenstein further talked about the general form of propositions and the
essence of language. Wittgenstein tried to establish the essence of language by go-
ing back to the core from which all the propositions of language except those core
propositions follow. These are elementary propositions and all other propositions
are truth functions of these propositions. As stated earlier, elementary propositions
consist of names, each of which designates a simple object in the world. Further,
the configuration of names in a proposition depicts a state of affairs. This is, in
brief, Wittgenstein’s idea of the essence of all languages and also the essence of the
relation between language and the world.

Later, Wittgenstein rejected this search for essences or ’craving for generality’
as he called it. For him this whole search is illusory. But why do we look for such
essences? Wittgenstein analysed it and offered some reasons for this craving for
generality. In the following we shall present some of the reasons which will help us
to understand why the search for essences is illusory.

There is a peculiar tendency in us that we always look for something common.
We bring the particulars under a general term, for example, all houses are brought
under the general term ’house’, all tables are brought under the general term ’table’
and so on. We believe that these general terms are meant to express the common
properties which reside in the relevant particulars. But the falsity of this entire move
is evident if we analyse what is meant by a common property as expressed by a gen-
eral term. Wittgenstein (The Blue and Brown Books [57], pp. 17 to 20) explained
this with reference to the analogy of games. In accordance with our belief in es-
sentialism, we think that there must be something common to all games and the
general term ’game’ is meant to express this common property. But Wittgenstein
says that the analysis of the term ’game’ shows that it does not stand for any com-
mon property. The reason is that different games form a family in the sense that
members ‘exhibit family likeness’, for example, ‘some of them have the same nose,
others the same eyebrows and others again the same way of walking’. What is im-
portant here is to note that these similarities or likenesses overlap, but by no means
do they convey a general property. In other words, the overlapping likenesses cannot
be mistaken for a general property.

Second, as Wittgenstein pointed out, there is a tendency to think that a man who
has learnt a general term, say ’leaf’, has come to possess a general picture of a
leaf. This general picture is over and above the particular pictures of leaves. To
have a general picture of leaf is to have a ‘visual image’ which ‘contains what is
common to all leaves’. Thus the meaning of a word is associated with an image
which is correlated with the word. This is how essentialism arises and it gives rise
to a questionable notion of meaning.

The next important source of our craving for generality is our preoccupation with
the method of science. Philosophers are always influenced by the method of natural
science which seeks to discover essences beneath the multiplicities. Natural phe-
nomena are thus explained with reference to some universal laws. In this way the
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method of natural science reduces multiplicities to some general patterns or reg-
ularities. Influenced by this method, philosophers have made similar attempts and
offered generalisations in the same way as it is done in the sciences. Metaphysics is
the prime example of this or as Wittgenstein put it ‘this tendency is the real source
of metaphysics’ (ibid).

Finally, as Wittgenstein holds, this craving for generality also has its source in our
‘contemptuous attitude towards the particular case’ (ibid). We are averse to studying
particular cases.

It has already been mentioned that for Wittgenstein the whole search for essences
is illusory since there is nothing to be called a common property as has been shown
in connection with the analysis of game. This calls for a drastic change in our philo-
sophical method. To put it in concrete terms, Wittgenstein’s suggestion is that our
aim should be to study individual cases and while studying them we should take
note of both their similarities and differences. A study of this sort will make us re-
alise that there is no property common to all these cases. Instead of commonness,
we will find that there are overlapping similarities on the basis of which we use
general terms. As mentioned earlier, Wittgenstein compared this situation with a
human family. The members of a family may resemble each other, but it is not the
case that one particular characteristic is necessarily shared by all. What in tradi-
tional philosophy is taken as a common property expressing essence is in reality
what Wittgenstein calls family resemblance (Philosophical Investigations [56], sec.
67). The same holds true of a game. The term ’game’ covers the multitude of cases
where all of them are found to have family resemblances. To put it in Wittgenstein’s
words:

. . . we see a complicated network of similarities overlapping and criss-crossing: sometimes
overall similarities, sometimes similarities of detail (ibid, sec. 66).

This is how Wittgenstein moved from essentialism to the notion of family resem-
blance which provided the basis of his theory of language and meaning understood
as use.

In the light of the above considerations, Wittgenstein made an analysis of lan-
guage. Wittgenstein argued that we often make a common mistake by trying to
discover certain fixed essences in language. According to St. Augustine’s theory of
language, the primary function of language is to use names to refer to entities or
objects. Wittgenstein had a basic objection to any view which tries to define lan-
guage in essentialistic terms. His objection is that language cannot be defined as
having one single homogeneous nature. Language has a complex nature with an
enormously complex variety of uses. Accordingly, to suggest that there is a certain
use of language which is more fundamental than the other uses is wrong. There is
no fundamental use of language. On the contrary, any attempt to do so will be a
falsification of what language is.

That language has a variety of uses was explained by Wittgenstein with the help
of a number of interesting and revealing analogies. To cite some of them: words in a
language have been compared with tools in a tool box (Philosophical Investigations
[56], Section 11). In a tool box there are different kinds of instruments, e.g., ham-
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mers, pliers, screwdrivers, etc. All of them have to perform different functions. In
a similar way ‘functions of words are as diverse as the functions of these objects’.
Again, language has been compared with the inside of a cabin of a locomotive (ibid,
Section 12). If you look into its cabin ‘we see handles all looking more or less alike’.
But each handle has its own function to perform. These analogies show why there
cannot be any fundamental use of language. Language has a multiplicity of uses. A
view which holds that all words are names for objects is wrong from the point of
view of the actual functioning of language. To restrict language only to one such
function will be like saying that the only role of money is to buy objects. But this is
not true since money has many other uses (ibid, Section 120).

Wittgenstein further holds that many of the traditional disputes in philosophy
arise because of this mistaken view that all words function like a proper name. As
a result, philosophers have always been preoccupied with the task of showing what
is designated by such abstract terms as ’mind’, ’time’, ’proposition’, etc. That is
why they ask questions like: ‘What is time?’, ‘What is mind?’, ‘What is meaning?’,
‘What is length?’, etc. These questions demand that corresponding to the terms ex-
pressed in these questions there must be objects existing outside. But at the same
time we feel that there is nothing which we can point out as objects corresponding
to these terms. Yet, there is pressure to say that ‘we ought to point to something’
(The Blue and Brown Books [57], p. 1). This produces in us a ‘mental cramp’ which
becomes ‘the great source of philosophical bewilderment’ (ibid).

Wittgensteinian remedy to this bewilderment is that we must give up this falla-
cious view that words must name something. The very question: ’What is meaning?’
or ’What is time?’ is wrong. Instead, we should ask: ’What is an explanation of
meaning?’, ’How do we measure length?’, ’How are numerical expressions used?’.
Alternatively, to put it in a general form, meaning is to be seen as use.

The next crucially important concept that is intimately related to Wittgenstein’s
concept of meaning as use is the notion of a language game. A language game is
a theoretical construct developed by Wittgenstein which offers a justification for
the irreducible complexities that language exhibits. Language is not a monolithic
system. On the contrary, it consists of different types of language games. These are
as many language games as there are uses. St. Augustine’s account of language, in
spite of its limited application, is also considered to be a description of one kind of
language game. It is a simple language game in which human beings communicate
only by means of names where every name refers to some object. In Wittgenstein’s
famous example (Philosophical Investigations [56], sec. 2, 3) it is the language game
played by the builder and the assistant in which the builder uses such words as ‘slab’
or ’block’ to get the assistant to bring them out for him. This is a simple language
game in which words are used as names for objects and thereby the purpose of
communication is fulfilled, namely, giving the order and obeying it. There are also
more complicated language games and Wittgenstein cites many instances of such
games (ibid, sec. 23).

With the notion of language game, Wittgenstein introduced the notion of form
of life. A language game is associated with a definite form of life. It is something
which is embedded in the game itself. There is a controversy as to the exact meaning
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of form of life and its implications. Without going into these controversies, it is pos-
sible to offer a simple idea of what a form of life may mean. A form of life expresses
the typical life situation within which a particular language game is played. It is the
set of activities that define the form of life. Finally, coming back to use, to say that
the meaning of an expression is to be understood in terms of its use is really to as-
sert that it is the use of an expression in a particular language game that determines
its meaning. In Wittgenstein’s metaphor, a language game is the ‘original home’ of
meaning and use.

In the above we have tried to show at a very rudimentary level the grounds that
Wittgenstein offered to establish his new approach to meaning. However, his con-
ception of meaning has various other dimensions and implications all of which to-
gether give rise to a philosophy of language which makes a new breakthrough in our
understanding of language and meaning. It is also important to note in this connec-
tion that many of the implications of his theory of meaning are not restricted to the
semantics of natural language. Wittgenstein extended his approach to some other
frontiers of philosophical inquiry, such as the foundations of mathematics, philo-
sophical psychology, philosophy of social sciences, etc. It is not possible in this
brief survey to go into the various aspects of Wittgenstein’s theory of meaning nor
it is possible to show the application of this theory to other conceptual territory.

7.13 Syntax - Semantics - Pragnatics

Syntax is the study of sentences. It specifies the grammatical rules according to
which well-formed expressions are built from basic expressions or from the letters
of a given alphabet. The syntax of a language is concerned only with the form of
the expressions, while the semantics is concerned with their meaning. So, the rules
according to which the well-formed expressions of a language are formed and the

rules belonging to a formal proof system, such as
A A→ B

B
and

A
A∨B

, belong

to the syntax of the language in question. These rules can be manipulated mechani-
cally; a machine can be instructed to apply the rule Modus Ponens and to write down
a B once it sees both A and A→ B, while the machine does not know the meanings
of A, B and →. The notions of (formal) proof and deduction, as well as the notions
of (formal) provability and deducibility, clearly belong to the syntax: they are only
concerned with the form of the formulas involved.

Semantics is the study of propositions. By a proposition we mean the cognitive
meaning (Sinn, see Section 7.2) of a sentence. Semantics is the study of truth con-
ditions for the sentences of certain languages in isolation from the context in which
those sentences are uttered. Truth tables belong to the semantics, because they say
how the truth value (meaning) of a composite proposition is related to the truth val-
ues (meanings) of the components from which it is built. The notions of validity
and valid consequence also belong to the semantics: they are concerned with the
meaning of the formulas in question.
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Now consider the proposition expressed by ‘Nixon is the president of the USA’.
There is (was) a possible world in which this proposition is true, and there are pos-
sible worlds in which this proposition is false. Therefore, R.C. Stalnaker gave in his
paper Pragmatics [50] the following mathematical definition of a proposition.

A proposition is a function from the set W of possible worlds to the set {0,1} of
truth values. So a proposition assigns to each possible world a truth value. Stalnaker
explains that under this definition, propositions have all the properties that have
traditionally been ascribed to them:

1. A proposition is independent of the particular language and the linguistic formu-
lation in which it is expressed. ‘John writes a book’, ‘Johan schreibt ein Buch’
and ‘a book is written by John’ all express the same proposition.

2. A proposition is independent of the speech act in which it figures. The same
proposition ‘I will come’ may figure in the speech act of promising, in the speech
act of asserting and in many others (see Section 7.4 on speech acts).

Pragmatics is the study of speech acts and the contexts in which they are performed.
Typical examples of problems to be solved within pragmatics are:

• To find necessary and sufficient conditions for the successful performance of a
speech act, such as promising and many others.

• To characterize the features of the context which help determine which proposi-
tion is expressed by a given sentence. For instance, the sentence ‘I am here now’
expresses different propositions in different contexts.

• To determine how the presuppositions of a given sentence depend on the context
(see Section 7.11).

The syntactical and semantical rules for a language enable us to interpret a sen-
tence like ‘I am here now’, although we do not have to know what the indexical
expressions ‘I’, ‘here’ and ‘now’ stand for. This interpreted sentence will result in
different propositions depending on the context: ‘Harry is in Amsterdam on Novem-
ber 12, 1989’, ‘Mary is in New York on December 5, 1989’, and so on. Therefore,
the following mathematical definition (again from R.C. Stalnaker) of an interpreted
sentence seems appropriate:

An interpreted sentence is a function from the set C of contexts to the set P of
propositions. So an interpreted sentence assigns to each context a proposition. As
we have seen above, the set P of all propositions is the set {0,1}W of all functions
from the set W of possible worlds to the set {0,1} of truth values. Therefore, an
interpreted sentence is a function from C to {0,1}W , where C is the set of contexts
and W is the set of possible worlds. The overall picture is the following:

sentence � interpreted
sentence

� proposition � truth value
�

context + possible world

possible worldcontextsemantic rules
syntactic and
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Stalnaker explains further that pragmatics-semantics could be treated as the study
of the way in which truth values are dependent on context and a possible world in
which case propositions are not explicitly taken into consideration on the road from
sentences to truth values. However, propositions are of some independent interest:
they are the objects of illocutionary acts, such as asserting, promising, questioning,
etc., and of propositional attitudes, such as believing, knowing, hoping, wishing,
and so on. This justifies the extra step on the road from sentences to truth values.

7.14 Conversational Implicature

P. Grice in the 1967 William James Lectures (published in 1989 in [20]) works
out a theory in pragmatics which he calls the theory of conversational implicature.
Generally speaking, in conversation we usually obey or try to obey rules something
like the following:

Quantity: Be informative
Quality: Tell the truth
Relation: Be relevant
Mode: Avoid obscurity, prolixity, etc.

If the fact that A has been said, plus the assumption that the speaker is observing
the above rules, plus other reasonable assumptions about the speaker’s purposes and
intentions in the context, logically entails that B, then we can say A conversationally
implicates B.

It is possible for A to conversationally implicate many things which are in no way
part of the meaning of A. For example, if X says ‘I’m out of gas’ and Y says ‘there’s
a gas station around the corner’, Y’s remark conversationally implicates that the
station in question is open. (Since the information that the station is there would be
irrelevant to X’s predicament otherwise.) If X says ‘Your hat is either upstairs in the
back bedroom or down in the hall closet’, this remark conversationally implicates ‘I
don’t know which’, since if X did know which, this remark would not be the most
informative one he could provide.

Grice shows how philosophers have sometimes mistaken conversational impli-
catures for elements of meaning. For instance, Strawson sometimes claims not-
knowing-which must be part of the meaning of ‘or’ (and therefore the traditional
treatment of disjunction in logic is misleading or false). Grice claims this is mistak-
ing the conversational implicature cited above for an aspect of meaning.

Sometimes it is possible to cancel a conversational implicature by adding some-
thing to one’s remark. For example, in the gas station case, ‘I’m not sure whether
it’s open’ and in the hat case, ‘I know, but I’m not saying which’ (one might say
this if locating the hat was part of some sort of parlor game). The possibility of
cancellation shows that the conversational implicatures definitely are not part of the
meaning of the utterance.
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7.15 Conditionals

In the examples below (from Adams, [1]) the conditional in (1) is in the indicative
mood, while the conditional in (2) is a subjunctive one.

(1) If Oswald did not kill Kennedy, someone else did.
(2) If Oswald had not killed Kennedy, someone else would have.

(1) is true: someone killed Kennedy; but (2) is probably false. Therefore, different
analyses are needed for indicative and for subjunctive conditionals.

A counterfactual conditional is an expression of the form ‘if A were the case, then
B would be the case’, where A is supposed to be false. Not all subjunctive condition-
als are counterfactual. Consider the argument: ‘The murderer used an ice pick. But
if the butler had done it, he wouldn’t have used an ice pick. So the murderer must
have been someone else’. If this subjunctive conditional were a counterfactual, then
the speaker would be presupposing that the conclusion of his argument is true. (This
example is from R.C. Stalnaker, [51].) Counterfactuals are discussed in Section 6.9.
In this section we will restrict our attention from now on to indicative conditionals.

In Chapter 2 we have considered the so-called paradoxes of material implication:
the following two inferences for material implication ‘→’ are valid, whereas the
corresponding English versions seem invalid.

¬A
A→ B

There is no oil in my coffee
If there is oil in my coffee, then I like it

B
A→ B

I’ll ski tomorrow
If I break my leg today, then I’ll ski tomorrow

(The latter example is from R. Jeffrey [25], p.74.)
So, the truth-functional reading of ‘if . . . , then . . . ’, in which A→ B is equivalent

to ¬A∨B, seems to conflict with judgments we ordinarily make. The paradoxical
character of these inferences disappears if one realizes that
1. the material implication A→ B has the same truth-table as ¬A∨B,
2. speaking the truth is only one of the conversation rules one is expected to obey in
daily discourse; one is also expected to be as relevant and informative as possible.

Now, if one has at one’s disposal the information ¬A (or B, respectively) and at
the same time provides the information A→ B, i.e., ¬A∨B, then one is speaking the
truth, but a truth calculated to mislead, since the premiss ¬A (or B, respectively) is
so much simpler and more informative than the conclusion A→ B. If one knows the
premiss ¬A (or B, respectively), the conversation rules force us to assert this premiss
instead of A→ B. Quoting R. Jeffrey [25], pp. 77-78:

Thus defenders of the truth-functional reading of everyday conditionals point out that the
disjunction ‘¬A∨ B’ shares with the conditional ‘if A, then B’ the feature that normally
it is not to be asserted by someone who is in a position to deny ‘A’ or to assert ‘B. ’. . .
Normally, then, conditionals will be asserted only by speakers who think the antecedent
false or the consequent true, but do not know which. Such speakers will think they know of
some connection between the components, by virtue of which they are sure (enough for the
purposes at hand) that the first is false or the second is true. [R. Jeffrey, [25], pp. 77-78]

Summarizing in a slogan:
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indicative conditional = material implication + conversation rules.

So H.P. Grice uses principles of conversation to explain facts about the use of con-
ditionals that seem to conflict with the truth-functional analysis of the ordinary in-
dicative conditional. In [50] R.C. Stalnaker follows another strategy, rejecting the
material conditional analysis and in [49] Brian Skyrms also claims that the indica-
tive conditional cannot be construed as the material implication ‘→’ plus conver-
sational implicature. The dispute between advocates of the truth-functional account
of conditionals and the advocates of other, more complex but seemingly more ade-
quate accounts is as old as logic itself. The truth-functional account is first known to
have been proposed by Philo of Megara ca. 300 B.C. in opposition to the view of his
teacher Diodorus Cronus. We know of this through the writings of Sextus Empiricus
some 500 years later, the earlier documents having been lost. According to Sextus,

Philo says that a sound conditional is one that does not begin with a truth and end with a
falsehood. . . . But Diodorus says it is one that neither could nor can begin with a truth and
end with a falsehood. [W. & M. Kneale [27], p. 128]

There can be no doubt that what Sextus refers to is precisely the truth-functional
connective that we have symbolized by the ‘→’, for he says elsewhere,

So according to him there are three ways in which a conditional may be true, and one in
which it may be false. For a conditional is true when it begins with a truth and ends with
a truth, like ‘If it is day, it is light’; and true also when it begins with a falsehood and ends
with a falsehood, like ‘If the earth flies, the earth has wings’; and similarly a conditional
which begins with a falsehood and ends with a truth is itself true, like ‘If the earth flies,
the earth exists’. A conditional is false only when it begins with a truth and ends with a
falsehood, like ‘If it is day, it is night’. [W. & M. Kneale [27], p. 130]

So Sextus reports Philo as attributing truth values to conditionals just as in our table
for →, except for the order in which he lists the cases. Diodorus probably had in
mind what later was called ’strict implication’; see Section 6.8. For relevant impli-
cation see Section 6.10.

7.16 Leibniz

We will here pay attention to only a few aspects of G. Leibniz (1646-1716). For
more information the reader is referred to W. & M. Kneale, The Development of
Logic [27] and to B. Mates, Elementary Logic, [37] , Chapter 12. What follows in
this section is based on these works.

One of Leibniz’ ideals was to develop a lingua philosophica or characteristica
universalis, an artificial language that in its structure would mirror the structure of
thought and that would not be affected with ambiguity and vagueness like ordinary
language. His idea was that in such a language the linguistic expressions would
be pictures, at it were, of the thoughts they represent, such that signs of complex
thoughts are always built up in a unique way out of the signs for their compos-
ing parts. Leibniz believed that such a language would greatly facilitate thinking
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and communication and that it would permit the development of mechanical rules
for deciding all questions of consistency or consequence. The language, when it is
perfected, should be such that ‘men of good will desiring to settle a controversy
on any subject whatsoever will take their pens in their hands and say Calculemus
(let us calculate)’. If we restrict ourselves to propositional logic, Leibniz’ ideal has
been realized: classical propositional logic is decidable (see Chapter 2). However,
A. Church and A. Turing proved in 1936 that (classical) predicate logic is undecid-
able, i.e., there is no mechanical method to test logical consequence (in predicate
logic), let alone philosophical truth.

Leibniz also developed a theory of identity, basing it on Leibniz’ Law: eadem
sunt quorum unum potest substitui alteri salva veritate – those things are the same
if one may be substituted for the other with preservation of truth. Leibniz’ Law is
also called the substitutivity of identity and it is frequently formulated as follows.

a = b→ (. . .a . . .� . . .b . . .),

where . . .a . . . is a context containing occurrences of the name a, and . . .b . . . is the
same context in which one or more occurrences of a have been replaced by b; if
a = b, then what holds for a holds for b and vice versa.

A consequence of Leibniz’ law is that from ‘it is necessary that 9 > 7’ and from
‘the number of planets (in this world) = 9’ it follows that ‘it is necessary that the
number of planets (in this world) > 7’. This result has been seen as problematic, in
particular if one talks about ‘the number of planets’ instead of ‘the number of planets
in this world’. The definite description ‘the number of planets’ assigns different
numbers to different possible worlds, but the phrase ‘the number of planets in this
world’ is a rigid designator, referring to the number 9. So, the alleged problem is
caused by a sloppy use of language and can be remedied by a careful and precise
use of language. See Section 6.11.1.

Leibniz made a distinction between truths of reason and truths of fact. The truths
of reason are those which could not possibly be false, i.e., – in modern terminology
– which are necessarily true. Examples of such truths are: 2+2= 4, living creatures
cannot survive fire, and so on. Truths of fact are called contingent truths nowadays;
for example, unicorns do not exist, Amsterdam is the capital of the Netherlands, and
so on. Leibniz spoke of the truths of reason as true in all possible worlds. He imag-
ined that there are many possible worlds and that our actual world is one of them.
’2+ 2 = 4’ is true not only in this world, but also in any other world. ’Amsterdam
is the capital of the Netherlands’ is true in this world, but we can think of another
world in which this proposition is false. In 1963, S. Kripke extended the notion of
possible world with an accessibility relation between possible worlds, which en-
abled him to give adequate semantics for the different modal logics (see Chapter 6).
The idea is that some worlds are accessible from the given world, and some are not.
For instance, one could postulate (and one usually does) that worlds with different
mathematical laws are not accessible from the present world.
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7.17 De Dicto - De Re

If one wants to translate the sentence

It is possible that a Republican will win

into a logical formula, it becomes evident that this sentence is ambiguous. Using
‘♦’ for ‘it is possible that’, the predicate symbol R for ‘being a Republican’ and
the symbol W for ‘will win’, there are two different translations of the sentence in
question:

(1) ∃x[R(x)∧♦W (x)], and
(2) ♦∃x[R(x)∧W (x)].

(1) says, literally, that there is some particular individual (in the actual world) who
is a Republican (in the actual world) and who may possibly win (in some imaginary
world).
(2) says, literally, that it is possible that some Republican or other will win; more
precisely, there is an imaginary world in which a person exists who is a Republican
(in that world) en who wins (in that world)

(1) is called the de re or referential reading of the sentence above. Typical of
the de re reading is that the possibility operator ♦ occurs within the scope of the
(existential) quantifier. (2) is called the de dicto or non-referential reading of the
sentence above. Typical of the de dicto reading is that the (existential) quantifier
occurs within the scope of the possibility operator ♦.

The example above demonstrates that sentences containing modalities such as
‘possibly’, ‘necessarily’, ‘John believes that . . .’, etc., in combination with exis-
tential or universal quantifiers may give rise to ambiguities. Speaking in terms of
possible worlds (see Chapter 6) and interpreting ‘♦A (A is possible)’ as ‘there is
some world accessible from the given world in which A holds’, (1) says that in the
given world there is a person who is a Republican and who will win in some world
accessible from the given one, while (2) says that there is a world accessible from
the given one in which there is a person who in that world is Republican and will
win.

The proposition ‘John finds a unicorn’ can be properly translated as ∃x[U(x) ∧
F( j,x)] where U(a) stands for ‘a is a unicorn’, j stands for ‘John’ and F(a,b)
stands for ‘a finds b’. But ∃x[U(x)∧ S( j,x)], where S(a,b) stands for ‘a seeks b’
would be an improper translation of ‘John seeks a unicorn’, because the use of the
existential quantifier commits us to an ontology in which unicorns do exist. In his
‘The Proper Treatment of Quantification in Ordinary English’ R. Montague [38]
develops a ‘categorial’ language in which ‘John seeks a unicorn’ can be properly
translated.
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7.18 Grammars

In the sixties Noam Chomsky developed the notion of grammar which turned out to
be important not only for linguistics but also for computer science, for instance, in
building parsers and compilers.

One of the main reasons for Chomsky to introduce the notion of grammar was
to explain the linguistic competence of people; that they are able to produce new
sentences they have never read or heard before. In order to do so, Chomsky assumed
that everybody is equipped with certain grammatical rules which can be applied
again and again to produce more and more linguistic expressions.

It is well-known that a sentence (S) can be built from a noun phrase (NP) and a
verb phrase (VP). Chomsky’s basic idea was to represent this fact as a production
rule S→ NP+VP. This rule should be read as follows: whenever symbol S occurs,
it is allowed to rewrite S as the string consisting of the symbols NP and VP. Similar
rewrite or production rules, also called phrase structure rules, exist for NP and VP.
For instance, NP→ Art + N, expressing that a noun phrase (NP) can be built from
an article (Art) and a noun (N); and VP→ Aux+V +NP, expressing that a verb
phrase (VP) may consist of an auxiliary verb (Aux), a main verb (V ) and a noun
phrase (NP).

In order to produce English sentences, we also need rewrite or production rules
of the form Aux→ can, Aux→ may, Aux→ will, Aux→ must, usually represented
by Aux → (can, may, will, must) for short. And we also need rules such as V →
(read, hit, eat), Art → (a, the) and N → (boy, man, frog).

The expressions ‘can’, ‘read’, ‘a’, ‘boy’, etc., are called terminals because there
are no production rules starting with these expressions. The symbols S, NP, VP,
Art, N, Aux, V , on the other hand, are called non-terminals for obvious reasons.

Starting with the symbol S, we can, by repeated application of the production
rules above, generate terminal strings to which no production rules can be applied.
For instance, starting with S, the production rules mentioned above can generate the
English sentence ‘the boy must eat the frog’. The derivation tree or phrase marker
for this sentence looks as follows.

S

$
$
$$

2
2
22

VPNP

�
�
�

�
�
�

Art

The boy

N

.
.
.

�
�
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NPVAux

.
.
-
-
N

frogthe

Art

eatmust
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In this way the production rules above can generate a small fragment of English.
Together they form what Chomsky called a grammar. In his view, the production
rules in a grammar represent the linguistic competence of a speaker and are part of
everyone’s innate mental equipment.

Definition 7.1 (Grammar). A (type 0) grammar G is a quadruple 〈VN , VT , P, S〉,
where
1) VN is a finite set; the elements of VN are called non-terminals.
2) VT is a finite set such that VN and VT have no elements in common; the elements
of VT are called terminals.
3) P is a finite set of expressions of the form α → β , where α and β are strings of
finite length composed of symbols of VN and/or VT (i.e., α,β ∈ (VN ∪VT )

∗) and the
length of α is at least 1 (i.e., |α| ≥ 1); the elements of P are called productions.
4) S ∈VN ; S is called the sentence- or start-symbol.

Example 7.1. Let G1 = 〈VN , VT , P, S〉 where
VN = {S, NP, VP, Art, N, Aux, V},
VT = {can, may, will, must, read, hit, eat, a, the, boy, man, frog}, and
P consists of the following productions:
S→ NP - VP Aux→ (can, may, will, must)
NP→ Art - N V → (read, hit, eat)
V P→ Aux - V - NP Art → (a, the)

N → (boy, man, frog).

Example 7.2. Let G2 = 〈{S}, {0,1}, {S→ 0S1, S→ 01}, S〉.
Here, S is the only non-terminal, 0 and 1 are terminals and there are two productions,
S→ 0S1 and S→ 01.

By putting certain restrictions on the productions in P one obtains grammars of type
1, 2 and 3, respectively.

Definition 7.2 (Derivable from). Let G = 〈VN , VT , P, S〉 be a grammar and let α
and β be finite strings composed of elements of VN and/or VT (α,β ∈ (VN ∪VT )

∗).
α
∗⇒
G

β (β is derivable from α in grammar G) := β can be obtained from α by

application of one or more productions in P. By convention, α
∗⇒
G

α for each string
α .

Example 7.3. S
∗⇒

G1
Art - N - Aux - eat - NP and VP

∗⇒
G1

Aux - eat - the - frog.

S
∗⇒

G2
00S11.

Definition 7.3 (Language generated by a Grammar). Let G = 〈VN , VT , P, S〉 be

a grammar. L(G) := {w ∈V ∗T | S
∗⇒
G

w}, i.e., L(G), called the language generated by

G, is by definition the set of all strings (or words) w of terminals such that S
∗⇒
G

w.

So, a string w is in L(G) iff 1) w consists solely of terminals and 2) w is derivable
from S in G.
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Example 7.4. The reader easily verifies that the sentences ‘the boy must eat the frog’
and ‘a man may hit the boy’ both are in L(G1), where G1 is the grammar from Ex-
ample 7.1. L(G2) = {0n1n | n≥ 1}, i.e., the language generated by G2 (see Example
7.2) consists of all finite sequences composed of n 0’s followed by the same number
n of 1’s (n≥ 1).

Consider the following three sentences.
1. Locusta is an alleged poisoner.
2. Locusta is a Roman poisoner.
3. Locusta is a skillful poisoner.

These three sentences have similar surface structures, but still intuitively we feel
they are quite different in meaning. (An alleged poisoner is not another kind of poi-
soner along with Roman and Carthaginian or skillful and clumsy; a Roman poisoner
is one who is both Roman and a poisoner, but a skillful strangler may be a clumsy
poisoner.)

In order to explain this, Chomsky distinguishes the deep structure of a sentence,
determined by the production rules of a grammar and the surface structure of a sen-
tence which results by applying to the derivation tree of the sentence certain trans-
formation rules. Corresponding with their quite different meanings, the sentences 1,
2 and 3 above have radically different deep structures. Transformation rules trans-
form these different deep structures into similar surface structures. See Exercise 7.7.

Postulating that the deep structure determines the meaning of a sentence, Chom-
sky explains in this way that the sentences 1, 2 and 3 above have quite different
meanings although they have a similar surface structure.

The sentences ‘a man may hit the boy’ and ‘the boy may be hit by a man’, on the
other hand, have the same meaning, although they are syntactically different. This
can also be explained in terms of deep and surface structures. These sentences have
the same deep structure and hence the same meaning. And the surface structure of
one of these sentences is obtained by applying certain transformation rules to its
deep structure. See Exercise 7.8.

So, in Chomsky’s view, the syntax of a language consists of two components:
1) a base component, containing the production (or phrase structure) rules. These
rules generate the deep structure of each sentence.
2) a transformational component, containing the transformation rules which map
derivation trees into (other) derivation trees. The transformation rules take as input
a deep structure and generate as output a surface structure.

The deep structure determines the meaning of a sentence; the surface structure
determines its sound.

In the case of the sentences ‘a man will hit the boy’, in the active mood, and ‘the
boy will be hit by a man’, in the passive mood, two surface structures are derived
from one deep structure. And in the case of ‘Locusta is an alleged/Roman/skillful
poisoner’, similar surface structures are derived from several different deep struc-
tures.

One can show that the languages generated by a (type 0) grammar are precisely
the languages recognized by a Turing machine; see, for instance, de Swart [53].
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Exercise 7.7. Let G be a grammar with the following phrase structure rules (pro-
ductions):

S→ S - [and] - S VP→V - [that] - S
S→ NP - VP VP→ (Adv) - V - N
NP→ (Art) - (Ad j) - N VP→Copula - NP

VP→Copula - Ad j
Art → (a, an, the)
Ad j→ (roman, alleged, skilful)
N → (someone, Locusta, poisoner)
V → (allege, poison)
Copula→ be
Adv→ skilfully

Generate the phrase markers (derivation trees) in G for the deep structures of the
following sentences:

1. Locusta is an alleged poisoner.
2. Locusta is a Roman poisoner.
3. Locusta is a skilful poisoner.

Various transformations give rise to the same surface structure.

Exercise 7.8. Let G be the same grammar as in Exercise 7.7 and consider the fol-
lowing transformation rule: N1 - V - N2 → N2 - [be] - V - [ed] - [by] - N1.
Check that this transformation rule, applied to the phrase marker (derivation tree)
in G for the deep structure of ‘someone is poisoned by Locusta’, which is the same
as the one of ‘Locusta poisons someone’, yields the phrase marker for the surface
structure of ‘someone is poisoned by Locusta’.

Exercise 7.9. Construct a grammar which generates precisely all formulas of propo-
sitional logic built from the atomic formulas Q, Q′, Q′′, . . . by means of the connec-
tives ∧, ∨ and ¬.

Exercise 7.10. Let G = 〈{S}, {0,1}, {S → 0S1,S → 01}, S〉. Show that L(G) =
{0n1n | n≥ 1}, where 0n stands for 0 repeated n times and similarly for 1n.

Exercise 7.11. Give a grammar generating the set of all finite strings w of 0’s and
1’s such that w does not contain two consecutive 1’s.

Exercise 7.12. Give a grammar generating the set of all finite strings w of a’s, b’s
and c’s such that w consists of equal numbers of a’s, b’s and c’s.

Exercise 7.13. Let {a,b}∗ be the set of all finite strings of a’s and b’s, including the
empty string e of length 0. Let L = {w ∈ {a,b}∗ | w contains an even number of
b’s}. Check that L−{e} is generated by the grammar G = 〈{S,B}, {a,b}, P, S〉
with P = {S→ aS, S→ a, S→ bB, B→ aB, B→ bS, B→ b}.
Exercise 7.14. With {a,b}∗ as in Exercise 7.13, let L = {w ∈ {a,b}∗ | w does not
contain three consecutive b’s}. Verify that L−{e} is generated by the grammar
G = 〈{S,B,C,D}, {a,b}, P, S〉 with P consisting of the following productions:
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S→ aS, B→ aS, C→ aS, D→ aD,
S→ a, B→ a, C→ a, D→ bD.
S→ bB, B→ bC, C→ bD,
S→ b, B→ b.

7.19 Solutions

Solution 7.1.
(a) true (b) false; The Iliad is an epic poem.
(c) true (d) true
(e) false; 7+ 5 = 12. (f) true
(g) true (h) false; ’Saul’ is another name of Paul.
(i) true (j) false; ’2+ 2= 4’ is synthetic.
(k) true (l) true

Solution 7.2. The difficulty lies in our assumption that one can determine mechan-
ically whether or not an alleged definition of a function is indeed such a definition.
Since the function f , defined by f (n) := fn(n)+ 1, is not definable in the English
language, our only recourse is to conclude: There is no algorithm that enables one to
decide whether an alleged definition of a number-theoretic function is indeed such
a definition. In other words, there is no algorithm that enables one to decide me-
chanically for any expression in the English language whether it defines a number-
theoretic function or not.

Solution 7.3. Suppose that a and b are rigid designators. If ’a = b’ is true, so that
’a’ and ’b’ designate the same object in the actual world, then, since both names,
being rigid designators, designate the same object in all possible worlds, ’a = b’ is
true in all possible worlds, that is to say, it is necessarily true that a = b.

Solution 7.4. Since stick S is the standard meter in Paris, stick S is by definition one
meter long. Therefore, the epistemological status of the statement ‘stick S is one
meter long’ is that this statement is an a priori truth. Conceiving ’one meter’ as a
rigid designator, indicating the same length in all possible circumstances (worlds),
the metaphysical status of ‘stick S is one meter long’ will be that of a contingent
statement, since the length of stick S can vary with the temperature, humidity, etc.

Solution 7.5. ‘The king of France is bald’ induces the presupposition that there is
a king of France. This presupposition is not induced by the sentence ‘If the king of
France exists, then the king of France is bald’.

Solution 7.6. Suppose we define ‘A presupposes B’ as: A |= B and ¬A |= B. Then
A∨¬A |= B. But |= A∨¬A. Therefore, |= B. So, ‘A presupposes B’ would mean that
|= B. This is counter-intuitive.
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Solution 7.9. G = 〈VN , VT , P, S〉, where VT = {Q, ′, ∧, ∨, ¬, (, )}, VN = {S,A},
and P = {S→ A, S→ (S∧S), S→ (S∨S), S→ (¬S), A→ A′, A→ Q}.
Solution 7.10. Each string of the form 0n1n, n≥ 1, is generated by G:

S→ 0S1→ 00S11→ 03S13 → . . .→ 0n−1S1n−1 → 0n1n.
Furthermore it is easy to see that these are the only strings in L(G).

Solution 7.11. G = 〈{S,A}, {0,1}, P, S〉, where P contains the following produc-
tions:

S→ 1 , A→ 0,
S→ 0 , A→ 0S,
S→ 0S , S→ 1A.

Solution 7.12. G = 〈{S,A,B,C}, {a,b,c}, P, S〉, where P consists of the following
productions:

S→ ABC, A→ a, AB→ BA, BC→CB,
S→ SS, B→ b, AC→CA, CA→ AC,

C→ c, BA→ AB, CB→ BC.

Solution 7.13. We have to show that L−{e} = L(G), i.e. that L−{e} and L(G)
have the same elements.
1) So suppose w ∈ L−{e}, i.e., w contains an even number of b’s and w �= e. Then

it is not hard to see that w can be generated by G, i.e., S
∗⇒
G

w, and hence w ∈ L(G).

2) Conversely, suppose w ∈ L(G). Then it follows from the definition of the pro-
ductions in G that w contains an even number of b’s and w �= e, and hence that
w ∈ L−{e}.
Solution 7.14. Similar to Solution 7.13. Note that if an expression u generated by

the grammar (S
∗⇒
G

u) contains three or more consecutive b’s, it must also contain

the nonterminal D, and hence u /∈V ∗T , so u /∈ L(G).
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Chapter 8
Intuitionism and Intuitionistic Logic

H.C.M. (Harrie) de Swart

Abstract Brouwer’s intuitionism is based on quite different philosophical ideas
about the nature of mathematical objects than classical mathematics. This intuition-
istic point of view results in a different use of language and in a corresponding
different intuitionistic logic which is far more subtle than the classical use of lan-
guage and corresponding classical logic. Nevertheless an intuitionistic deduction
system and a notion of intuitionistic deducibility was developed by A. Heyting and
it is amazing to see that a small change in the logical axioms, replacing the logical
axiom ¬¬A → A by ¬A → (A → B), may have such far reaching consequences.
Since finding (intuitionistic) formal deductions may be difficult, an intuitionistic
tableaux based formal deduction system is presented in which the construction of
intuitionistic deductions is rather straightforward. The semantics of intuitionistic
logic and the notion of (intuitionistic) valid consequence are given in terms of (in-
tuitionistic) Kripke models and it is shown that the three notions of intuitionistic
valid consequence, intuitionistic deducibility and intuitionistic tableau-deducibility
are equivalent. Intuitionistic sets are either finite constructions or otherwise, they
are (subsets of) construction projects. Spreads are a particular kind of construction
project, inducing specific principles which typically do not hold for other sets.

8.1 Intuitionism vs Platonism; basic ideas

A classical mathematician studies the properties of mathematical objects like an
astronomer, who studies the properties of celestial bodies. Mathematical objects are
like celestial bodies in the sense that they exist independently of us; they are created
by God. And mathematicians are like astronomers who try to discover properties of
these objects.

An intuitionist creates the mathematical objects himself. According to Brouwer’s
intuitionism, mathematical objects, like 5, 7, 12 and +, are mental constructions. A
proposition about mathematical objects (like 5+ 7 = 12) is true if one has a proof-
construction that establishes it. Such a proof is again a mental construction.
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Mathematics is created by a free action, independent of experience. [L.E.J. Brouwer [3], p.
97]

In order to better understand the intuitionistic point of view, let us consider the
classical or platonistic standpoint more closely. Using Dummett’s terminology, one
might say that from a classical or platonistic point of view mathematical objects
exist in some external realm of mathematical reality; this realm of mathematical
reality, existing objectively and independently of our knowledge, renders our math-
ematical statements (like 5+ 7 = 12) true or false.

From a classical or platonistic standpoint, the understanding of a mathematical statement
consists in a grasp of what it is for that statement to be true, where truth may attach to it
even when we have no means of recognizing the fact. [M. Dummett [4], p. 6-7]

The following quotation, translated from German, from P. Bernays [1] may further
illuminate the classical or platonistic standpoint.

One considers the objects of a theory as the elements of a totality and concludes from that:
for every property, which can be expressed by means of the notions of the theory, it is an
established fact whether there is an element in the totality which has this property or not.
From this way of seeing things follow also the following alternatives: either all elements of
a set have a given property or there is at least one which does not have this property.

One finds in the axiomatics of geometry – in the form Hilbert has given to it – an example
for this way of building a theory. When we compare Hilbert’s axiomatics with those of
Euclid, where we waive that in the case of the Greek mathematicians still some axioms are
missing, we notice that Euclid talks about figures, which should be constructed, while for
Hilbert the systems of points, of lines and of planes already exist right from the beginning.
Euclid postulates: one can connect two points by a straight line; Hilbert, on the contrary,
formulates the axiom: Given two arbitrary points, then there exists a straight line, on which
both points are located. Existence refers here to the system of straight lines. This example
already shows that the tendency, we are talking about, goes in the direction to consider all
objects as detached from any connection with the thinking subject.

Since this tendency has become valid most of all in the philosophy of Plato, let me be
allowed, to call it Platonism. [P. Bernays [1], pp. 62-63]

The contrast between ’Platonism’ and ’Intuitionism’ already figures in essence in
the comment of Proclos (450 A.D.) on the first book of Euclid’s Elements, in which a
distinction is made between Speusippos and his adherents (350 B.C.), who maintain
that all construction problems are theorems, and Menaichmos and the people around
him (350 B.C.), who maintain that all theorems are construction problems. (See Paul
Ver Eecke [19], pp. 69-70.)

The different views underlying classical and intuitionistic mathematics also re-
sult in a different view of the infinite. In classical mathematics, the infinite (for
instance, the set N of the natural numbers 0,1,2,3, . . .) is treated as actual or com-
pleted. Quoting S.C. Kleene,

An infinite set is regarded as existing as a completed totality, prior to or independently
of any human process of generation or construction, and as though it could be spread out
completely for our inspection. [S.C. Kleene [8], p. 48]
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Since for an intuitionist mathematical objects are mental constructions, in intuition-
ism the infinite is treated only as potential or becoming or constructive. Intuitionis-
tically, the set N of natural numbers is identified with the construction project for
its elements: start with 0, and add 1 to each natural number which has already been
constructed before. And it was one of the main achievements of L.E.J. Brouwer
(1881-1966) to solve the problem how we can talk constructively about the non-
enumerable totality R of the real numbers (see Section 8.7).

For this purpose Brouwer introduced his notion of spread, which is again a con-
struction project for producing the elements of the spread, the elements being (po-
tentially) infinite sequences of natural numbers rather than natural numbers them-
selves. And since real numbers can be represented by infinite sequences of natural
numbers, more precisely, by infinite sequences of intervals with rational endpoints,
Brouwer’s notion of spread enables us to talk constructively about the set R of the
real numbers. (See Section 8.7 for a more elaborate discussion of sets in intuitionism
and spreads in particular.)

Since, according to Brouwer, both the mathematical objects themselves and the
proofs establishing properties of them are mental constructions, doing mathematics
is in principle language-less. Nevertheless, language may be introduced for reasons
of communication.

People try by means of sounds and symbols to originate in others copies of mathematical
constructions and reasonings which they have made themselves; by the same means they
try to aid their own memory. In this way mathematical language comes into being, and as
its special case the language of logical reasoning. [L.E.J. Brouwer, [3], p. 73]

8.1.1 Language

The following is a quotation from L.E.J. Brouwer [3].

The immediate companion of the intellect is language. From life in the Intellect follows
the impossibility to communicate directly, instinctively, by gesture or looks, or, even more
spiritually, through all separation of distance. People then try and train themselves and their
offspring in some form of communication by means of crude sounds, laboriously and help-
lessly, for never has anyone been able to communicate his soul by means of language. . . .

Only in those very narrowly delimited domains of the imagination such as the exclusively
intellectual sciences – which are completely separated from the world of perception and
therefore touch the least upon the essentially human – only there may mutual understand-
ing be sustained for some time and succeed reasonably well. Little confusion is possible
about the meaning of such words as ’equal’ or ’triangle’, but even then two different people
will never think of them in exactly the same way. Even in the most restricted sciences, logic
and mathematics (a sharp distinction between these two is hardly possible), no two differ-
ent people will have the same conception of the fundamental notions of which these two
sciences are constructed; and yet, they have a common will, and in both there is a small,
unimportant part of the brain that forces the attention in a similar way. . . .

Language becomes ridiculous when one tries to express subtle nuances of will which are
not a living reality to the speakers concerned, when for example so-called philosophers
or metaphysicians discuss among themselves morality, God, consciousness, immortality or
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the free will. These people do not even love each other, let alone share the same subtle
movements of the soul. Sometimes they do not even know each other personally. They
either talk at cross purposes or they each build their own little logical system that lacks any
connection with reality. For logic is life in the human brain; it may accompany life outside
it: it can never guide it by virtue of its own power. . . .

Language by itself has no meaning; any philosophy, which in this way tried to find a firm
foundation has come to grief. Lulled into sleep by the mistaken belief in its certainty one
later hits upon deficiencies and contradictions. A language which does not derive its cer-
tainty from the human will, which claims to live on in the ’pure concept’ is an absurdity. To
be able to go on talking without being caught in contradiction or without making a silent
assumption is an art to be valued only in an acrobat. [L.E.J. Brouwer [3], pp. 6-7]

8.1.2 First Steps in Intuitionistic Reasoning

Since, intuitionistically, the truth of a mathematical proposition is established by
a proof – which is a particular kind of mental construction –, the meaning of the
logical connectives has to be explained in terms of proof-constructions:

A proof of A∧B is anything that is a proof of A and of B.
A proof of A∨B is, in fact, a proof either of A or of B, or yields an effective

means, at least in principle, for obtaining a proof of one or other disjunct.
A proof of A→ B is a construction of which we can recognize that, applied to

any proof of A, it yields a proof of B. Such a proof is therefore an operation carrying
proofs (of A) into proofs (of B).

Intuitionists consider ¬A as an abbreviation for A→⊥, postulating that nothing
is a proof of ⊥ (falsity).

Also the existential quantifier has a constructive meaning in intuitionism:∃x[P(x)]
(there exists an x with the property P) means that I have an algorithm to construct an
x in the given domain and next prove that this x has the property P. Consequently,
∃x[P(x)] has a much stronger meaning than ¬∀x[¬P(x)] (not every x has the property
¬P, i.e., the assumption ∀x[¬P(x)] yields a contradiction). The constructive reading
of A∨B may be rendered by ∃x[(x = 0∧A)∨ (x = 1∧B)] .

The constructive meaning of the intuitionistic connectives causes that many fa-
miliar laws from classical logic are no longer valid. Below we shall make clear
that the different philosophical points of view, the intuitionistic and the platonistic
one, concerning the nature of mathematical objects, result in a quite different use of
language.

1. It is reckless to affirm the validity of A∨¬A. Classically, the validity of A∨
¬A means that the state of affairs expressed by proposition A is either true or
false, without necessarily having a method to decide which of these two. But
intuitionistically the validity of A∨¬A means that we have a method adequate
in principle to solve any mathematical problem. Consider Goldbach’s conjecture
G, which states that each even number is the sum of two odd primes: 2 = 1+
1, 4 = 3+ 1, 6 = 5+ 1, 8 = 7+ 1, 10 = 7+ 3, 12 = 7+ 5, 14 = 7+ 7, 16 =
13+ 3, 18 = 13+ 5, . . .. One can check only finitely many individual instances,
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while Goldbach’s conjecture is a statement about infinitely many (even) natural
numbers. So far neither Goldbach’s conjecture, G, nor its negation,¬G, has been
proved. We are therefore not in a position to affirm G∨¬G. Someone who does,
claims that he or she can provide a proof either of G or of ¬G; such a person is
called reckless. Of course, an intuitionist can prove that (2+ 3 = 5)∨¬(2+ 3 =
5). But the validity of A∨¬A means that he can give a proof of A or can give a
proof of ¬A for any mathematical proposition A. And this is a reckless statement.
Note that the proposition ¬(G∨¬G) implies a contradiction. From G→G∨¬G
it follows that ¬(G∨¬G)→¬G. And from ¬G→G∨¬G it follows that ¬(G∨
¬G)→¬¬G. So, ¬(G∨¬G) implies both ¬G and ¬¬G, i.e., a contradiction.

2. ¬¬(A∨¬A) is intuitionistically valid, and hence it is false to assert ¬(A∨¬A).
Proof:¬(A∨B) is intuitionstically equivalent to ¬A∧¬B. So, since¬(¬A∧¬¬A)
holds intuitionistically, it follows that ¬¬(A∨¬A) is intuitionistically valid.

3. It is reckless to affirm the validity of ¬¬E → E . For taking E = A∨¬A, we have
seen in 2) that ¬¬(A∨¬A) is intuitionistically valid, while A∨¬A is not, as we
have seen in 1).

4. E →¬¬E is intuitionistically valid.
Proof : We have a proof of ¬¬E when we can show that we shall never have a
proof of ¬E , that is, when we show that we shall never have a proof that E will
never be proved. Clearly, in general this does not amount to a proof of E itself,
as we have seen in 3) by taking E = A∨¬A. On the other hand, a proof of E does
count as a proof that E will never be disproved, for otherwise the possibility of
deriving a contradiction would remain open; hence E→¬¬E is intuitionistically
valid.

5. ¬D→¬¬¬D is intuitionistically valid.
Proof : From 4), taking E = ¬D.

6. (A → B) → (¬B → ¬A) is intuitionistically valid. But the converse, (¬B →
¬A)→ (A→ B) is not intuitionistically valid.
Proof : Given A→ B, if we have a proof that B can never be proved, then clearly
A can never be proved either, since we could transform any proof of A into a
proof of B. We may thus always infer ¬B→¬A from A→ B.
From 6) follows immediately that (¬B→¬A)→ (¬¬A→¬¬B) and hence also
that (¬B → ¬A)→ (A → ¬¬B) is intuitionistally valid, because A → ¬¬A is
intuitionistically valid. But because ¬¬B→ B is not intuitionistically valid, we
may not conclude the validity of (¬B→¬A)→ (A→ B).

7. ¬¬¬D→¬D is intuitionistically valid.
Proof : By 4) D→¬¬D is intuitionistically valid. Hence by 6) ¬¬¬D→¬D is
intuitionistically valid. From 5) and 7) it follows that ¬D and ¬¬¬D are intu-
itionistically equivalent; in other words, three negation signs can be reduced to
one, four negation signs can be reduced to two, five to one, and so on. However,
recall that in general ¬¬E is not equivalent to E , as we have seen in 3).

8. It is reckless to assert the validity of (A→ B)∨ (B→ A). Explanation: Let G be
Goldbach’s conjecture and F be another unsolved mathematical problem; then
we are neither in the position to assert F →G nor in the position to assert G→F .
Notice that (A→ B)∨ (B→ A) is classically valid; see Exercise 8.7.
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In the preceding subsection we have seen how a different philosophical point of view
concerning the nature of mathematical objects, results automatically in a different
use of language and in a different logic.

The classical meaning of, for instance, A∨¬A, may be rendered intuitionistically
by ¬¬(A∨¬A). In Exercise 8.12 we shall give a translation from classical formulas
to intuitionistic formulas, preserving the actual meaning of the formulas.

While the classical connectives can all be defined in terms of¬ and any one other
(cf. Section 2.5), all three connectives listed above→, ∧ and ∨ are intuitionistically
independent. Notice that A � B can be defined as (A→ B)∧ (B→ A).

In Section 8.2 a proof-theoretic formulation of intuitionistic propositional logic is
given; we present a Hilbert-type proof system for intuitionistic propositional logic,
consisting of (logical) axioms and one rule Modus Ponens (MP), and a tableaux
system which given formulas A1, . . . ,An and B will give either an intuitionistic de-
duction of B from A1, . . . ,An or a counterexample showing that such a deduction
cannot exist. In Section 8.4 we give a model-theoretic description of intuitionistic
propositional logic in terms of Kripke models.

In classical propositional logic each formula built by means of connectives from
only one atomic formula P is equivalent to either P∧¬P, P, ¬P or P→ P (see Exer-
cise 2.14). Nishimura [12] showed that in intuitionistic propositional logic, however,
an infinite number of non-equivalent formulas can be built from only one atomic for-
mula P (see Exercise 8.13). So by the intuitionistic refinement of the propositional
language, formulas which are indistinguishable classically (i.e., equivalent in clas-
sical propositional logic) become different intuitionistically (i.e., non-equivalent in
intuitionistic propositional logic). For instance, the formulas ¬¬A→ B, A→ B and
A→¬¬B are classically equivalent, but not intuitionistically. Summarizing: the lan-
guage of the intuitionist is richer and more subtle than the language of the classical
mathematician.

Exercise 8.1. For the following pairs of formulas, which can be inferred from which
intuitionistically?
(a) A→ B and ¬B→¬A
(b) ¬(A∧B) and ¬A∨¬B
(c) A→ B and ¬(A∧¬B)
(d) A→ B and ¬A∨B
(e) A→ B∨C and (A→ B)∨ (A→C)
(f) A∨¬A and ¬¬A→ A
Note that the two formulas in each pair are classically equivalent (and hence classi-
cally indistinguishable), but not so intuitionistically. So, in this sense, the intuition-
istic language is richer than the classical one.

Exercise 8.2. Verify that the following inferences are intuitionistically correct.

1. If A→C, then ¬¬A→¬¬C.
2. If A→ (B→C) and B, then ¬¬A→¬¬C.
3. If A→ (B→C) and ¬¬A, then ¬¬B→¬¬C.
4. If ¬¬(A→ B), then ¬¬A→¬¬B.

(Hint: use 3 with A→ B, A, B instead of A, B, C, respectively.)
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5. ¬¬A→¬¬B iff ¬¬(A→ B).
6. If ¬¬A∧¬¬B, then ¬¬(A∧B).

(Hint: use 3 with A, B, A∧B instead of A, B, C, respectively.)
7. ¬¬A∧¬¬B iff ¬¬(A∧B).
8. If ¬¬A∨¬¬B, then ¬¬(A∨B).
9. Show that conversely not for all formulas A, B, if ¬¬(A∨B), then ¬¬A∨¬¬B

intuitionistically.

Exercise 8.3. Note that if A is decidable, i.e., A∨¬A is intuitionistically true, then
also ¬¬A→ A is intuitionistically true.

8.2 Intuitionistic Propositional Logic: Syntax

The alphabet for intuitionistic propositional logic looks the same as the one for
classical propositional logic, but the atomic formulas and the connectives now have
a constructive interpretation, different from the classical interpretation.

Definition 8.1 (Alphabet). The alphabet for intuitionistic propositional logic con-
sists of the following symbols:
1. P1,P2,P3, . . ., called atomic formulas or propositional variables, to be interpreted
as (atomic) propositions.
2. →, ∧, ∨ and ¬, called connectives, to be interpreted constructively in terms of
proofs.
3. ( and ), called brackets.

Definition 8.2 (Constructive interpretation of the connectives).
A→ B: I have a construction which transforms any proof of A into a proof of B.
A∧B: I can construct a proof of A and I can construct a proof of B.
A∨B: I have an algorithm that yields a proof of A or a proof of B.
¬A: A→⊥, where⊥ is a special atomic formula, denoting falsity.
⊥: falsity; a proof of this formula implies a proof of any formula.

Definition 8.3 (Formulas). 1. If P is any of the atomic formulas P1,P2,P3, . . ., then
P is an (atomic) formula.
2. If A and B are formulas, then (A→ B), (A∧B), (A∨B) and (¬A) are (composite)
formulas.

We apply the usual convention for leaving out brackets, see Section 2.1.

A proof theoretic formulation of intuitionistic propositional logic was given in
1928 by Arend Heyting (1898-1980) and is obtained by replacing axiom schema 8,
¬¬A→ A of classical logic (see Section 2.6) by axiom schema 8i: ¬A→ (A→ B).
So, the axiom schemata for intuitionistic propositional logic are the following ones:

1. A→ (B→ A)
2. (A→ B)→ ((A→ (B→C))→ (A→C))
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3. A→ (B→ A∧B)
4a A∧B→ A
4b A∧B→ B
5a A→ A∨B
5b B→ A∨B
6. (A→C)→ ((B→C)→ (A∨B→C))
7. (A→ B)→ ((A→¬B)→¬A)
8i. ¬A→ (A→ B)

In addition, like in classical propositional logic, Modus Ponens A A→B
B , is the only

rule of inference for intuitionistic propositional logic.

Definition 8.4 (Intuitionistic Deducibility and Provability).
a) A deduction of B from A1, . . . ,An in intuitionistic propositional logic := a finite
list of formulas with B as last one, such that each formula in the list is either:
1. one of the premisses A1, . . . ,An, or
2. an instance of one of the axiom schemata for intuitionistic propositional logic, or
3. obtained from two earlier formulas in the list by an application of Modus Ponens.
b) In case there are no premisses A1, . . . ,An, we speak of a (formal) proof of B.
c) B is deducible from A1, . . . ,An in intuitionistic propositional logic := there exists
a deduction of B from A1, . . . ,An in intuitionistic propositional logic.
Notation: A1, . . . ,An �i B. By A1, . . . ,An ��i B we mean: not A1, . . . ,An �i B.
d) B is (formally) provable in intuitionistic propositional logic := there is a (formal)
proof of B in intuitionistic propositional logic. Notation: �i B.

Since the intuitionistic axiom schema 8i, ¬A → (A → B) is provable in classical
propositional logic, it follows that all propositional formulas provable intuitionis-
tically are also provable classically; see Exercise 8.4. In order to formally prove
A ∨ ¬A classically, we proved that ¬¬(A ∨ ¬A) and next used ¬¬B → B with
B = A∨¬A. However, such a proof is no longer available in intuitionistic logic.
In Section 8.4 we shall show that no intuitionistic formal proof of A∨¬A can exist.

Since searching for deductions and proofs in terms of logical axioms and Modus
Ponens may be difficult, we shall introduce a tableaux system for intuitionistic
propositional logic in Section 8.3. In this system searching for an intuitionistic de-
duction of a putative conclusion from given premisses is straightforward and a sys-
tematic search either yields such a deduction or provides us with a counterexample
showing that such a deduction cannot exist.

Gentzen’s natural deduction rules for intuitionistic propositional logic are obtained
from Gentzen’s natural deduction rules for classical propositional logic (see Section
2.7.2) by leaving out the double negation elimination rule ¬¬A

A .

Exercise 8.4. (i) Show that all formulas provable in intuitionistic propositional logic
are also provable in classical propositional logic.
(ii) Show that the deduction theorem also holds for intuitionistic propositional logic:
if A1, . . . ,An, A �i B, then A1, . . . ,An �i A→ B.
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Exercise 8.5. Show that the deductions in Gentzen’s system of natural deduction,
found in Exercise 2.60 a i), b i) and c i) are intuitionistically correct, but not so are
the deductions found in Exercise 2.60 a ii), b ii) and c ii).

8.3 Tableaux for Intuitionistic Propositional Logic

Definition 8.5 (Signed Formula). A signed formula is any expression of the form
T (A) or F(A), where A is a formula.

Intuitionistically, T (A) is read as: I have a proof of A; and F(A) as: I do not have
a proof of A (which is weaker than ‘I have a proof of ¬A’!). If no confusion is
possible. the brackets may be left out: so, we frequently write TA instead of T (A)
and FA instead of F(A).

Definition 8.6 (Sequent). A sequent S is a finite set of signed formulas.

A tableaux system for intuitionistic propositional logic is obtained from the tableaux
system in Section 2.8 for classical propositional logic by replacing the tableaux rules
F → and F¬ by

F →i
S, F B→C
ST , T B, FC and F¬i

S, F ¬B
ST , T B .

respectively, where ST = {TA | TA ∈ S}, i.e., ST is the set of all T -signed formulas
in S. We have drawn a line in the rules F →i and F¬i in order to stress that in the
transition from S to ST all F-signed formulas in S, if any, are lost.

For the sake of completeness we list here the tableaux rules for intuitionistic
propositional logic (see also Fitting [5, 6]):

T∧ S, T B∧C F∧ S, F B∧C
S, T B, TC S, FB | S, FC

T∨ S, T B∨C F∨ S, F B∨C
S, T B | S, TC S, FB, FC

T→ S, T B→C F→i S, F B→C
S, FB | S, TC ST , T B, FC

T¬ S, T ¬B F¬i S, F ¬B
S, FB ST , T B

Notation: S,TA stands for S ∪ {TA}, i.e., the set containing all signed formu-
las in S and in addition TA; and S,FA similarly stands for S∪ {FA}. Instead of
{TB1, . . . ,T Bm, FC1, . . . ,FCn} we often simply write T B1, . . . ,T Bm, FC1, . . . ,FCn.
For example, by {TD, FE}, TA we mean {TD, FE, TA}, but we will usually write
T D, FE, TA.
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Reading the tableaux rules from the top down, rule F→ i
S, F B→C
ST , TB, FC

is inter-

preted as follows: if I am in a proof-situation (this notion is analogous to the notion
of possible world) in which I do not have a proof of B→ C, then there is a proof-
situation accessible from the given one, in which I do have a proof of B without hav-
ing a proof of C. The change from S to ST (where ST is the set of all T -expressions in
S) is explained by noting that formulas of which I did not have a proof in the former
situation may have been proved by me in the latter situation, while sentences once
proved remain proved forever (an ideal mathematician does not forget); so F-signed
formulas in S may not be copied down below the line.

In a similar way there is a shift of one proof-situation to another in the interpre-

tation of rule F¬i
S, F ¬B
ST , TB

, while in interpreting the other intuitionistic tableaux

rules there is no such shift. For instance, rule

T→ S, T B→C
S, FB | S, TC

is read as follows: if I am in a (proof-)situation in which I have a proof of B→C,
then in that same (proof-)situation I do not have a proof of B or I do have a proof of
C. So the intuitionistic tableaux rules in which there is a shift from S to ST (the rules
which have a bar in it) are precisely the rules the interpretation of which requires a
shift from a former to a later proof-situation.

Notice that the rules for intuitionistic propositional logic still have the property
that in any application of the rules all T -signed formulas in the upper half of the rule
may be repeated in its lower half; because of the rules F →i and F¬i the same does
not hold any more for the F-signed formulas.

Example 8.1. Below is an intuitionistic tableau-deduction of ¬Q→ ¬P from P→
Q. The tableau starts with the premisses T -signed and the putative conclusion F-
signed. Informally, we check the possibility to have a proof of the premisses without
having a proof of the putative conclusion. Next we apply the tableaux rules and if
all possibilities turn out to be closed, i.e., after all to be impossible, then we say that
we have a tableau-deduction of the putative conclusion from the given premisses.

T P→ Q, F ¬Q→¬P
T P→Q, T¬Q, F¬P
T P→ Q, FQ, F¬P

FP, FQ, F¬P | T Q, FQ, F¬P
T P→Q, T¬Q, T P | closure

T P→ Q, FQ, T P
FP, FQ, T P | T Q, FQ, T P

closure | closure

So, we start with the supposition that we have a proof of P→ Q without having a
proof of ¬Q→¬P. That might be possible in three different ways, but all of these
three turn out to be impossible, in other words give closure. Therefore we shall say
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that P→ Q `′i ¬Q→¬P. The schema above is called a (closed) tableau T with
initial branch B0 = {T P→ Q, F ¬Q→¬P}.

Let tableau T0 = {B0} and B1 = B∗0 ∪{T¬Q, F¬P}, where the ∗ in B∗ in-
dicates that only T -signed formulas in B may count towards closure. Then we
call tableau T1 = {B1} a one-step expansion of T0, corresponding with the ap-
plication of rule F →i to F ¬Q→ ¬P in B0. Next let B2 = B1 ∪ {FQ}, then
we call T2 = {B2} a one-step expansion of T1, corresponding with the applica-
tion of rule T¬ to T¬Q in B1. Next let branch B20 = B2 ∪ {FP} and branch
B21 = B2 ∪ {T Q}, then we call tableau T3 = {B20,B21} a one-step expansion
of T2, corresponding with the application of rule T → to T P→ Q in B2. Let
branch B200 = B∗20 ∪{T P}, then tableau T4 = {B200,B21} is called a one-step
expansion of T3, corresponding with the application of rule F¬i to F¬P in B20.
Let B2000 = B200∪{FQ}, then T5 = {B2000,B21} is a one step expansion of T4.

Tableau T above consists of three branches and is closed since all of its branches
are closed, i.e., contain for some formula A both TA and FA. Informally this means
that the assumption that it is possible to have a proof of P→ Q without having a
proof of ¬Q→¬P turns out to be untenable.

Definition 8.7 ((Tableau) Branch). (a) A tableau branch is a set of signed formu-
las. A branch is closed if it contains signed formulas TA and FA for some formula
A. A branch that is not closed is called open.
(b) Let B be a branch and TA, resp. FA, a signed formula occurring in B. TA, resp.
FA, is fulfilled in B if (i) A is atomic, or (ii) B contains the bottom formulas in the
application of the corresponding rule to A, and in case of the rules T∨, F∧ and T →,
B contains one of the bottom formulas in the application of these rules.
(c) A branch B is completed if B is closed or every signed formula in B is fulfilled
in B.

Definition 8.8 (Tableau). (a) A set T of branches is a tableau with initial branch
B0 if there is a sequence T0,T1, . . . ,Tn such that T0 = {B0}, each Ti+1 is a one-
step expansion of Ti (0≤ i < n ) and T = Tn.
(b) We say that a finite B has tableau T if T is a tableau with initial branch B.
(c) A tableau T is open if some branch B in it is open, otherwise T is closed.
(d) A tableau is completed if each of its branches is completed, i.e., no application
of a tableau rule can change the tableau.

Definition 8.9 (Tableau-deduction/proof). (a) A (logical) tableau-deduction of B
from A1, . . . ,An (in intuitionistic propositional logic) is a tableau T with B0 =
{TA1, . . . ,TAn,FB} as initial branch, such that all branches of T are closed.

In case n = 0, i.e., there are no premisses A1, . . . ,An, this definition reduces to:
(b) A (logical) tableau-proof of B (in intuitionistic propositional logic) is a tableau
T with B0 = {FB} as initial sequent, such that all branches of T are closed.

Definition 8.10 (Tableau-deducible). (a) B is tableau-deducible from A1, . . . ,An
(in intuitionistic propositional logic) := there exists a tableau-deduction of B from
A1, . . . ,An. Notation: A1, . . . ,An `′i B. A1, . . . ,An 6`′i B means: not A1, . . . ,An `′i B.
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(b) B is tableau-provable (in intuitionistic propositional logic) := there exists a
tableau-proof of B. Notation: �′i B.
(c) For Γ a (possibly infinite) set of formulas, B is tableau-deducible from Γ := there
exists a finite list A1, . . . ,An of formulas in Γ such that A1, . . . ,An �′i B.
Notation: Γ �′i B.

Example 8.2. We check whether we can show that ¬Q→¬P �′i P→Q or equiva-
lently �′i (¬Q→¬P)→ (P→Q). So, we start a tableau with T ¬Q→¬P, F P→Q:

T ¬Q→¬P, F P→ Q
T ¬Q→¬P, TP, FQ

F ¬Q, TP, FQ | T ¬P, T P, FQ
F ¬Q, T P, FQ | FP, TP, FQ

T Q, T P | closure

The right branch does close, but the left branch does not; so we did not construct an
intuitionistic tableau-deduction of P→ Q from ¬Q→ ¬P. From this open branch
we shall construct in Section 8.5 an intuitionistic Kripke counterexample in which
¬Q→¬P is true, but in which P→ Q is false. Since the intuitionistic proof system
is sound, i.e., all formulas that are intuitionistically tableau-provable are also true
in all intuitionistic Kripke models (cf. Theorem 8.2), it follows that there does not
exist an intuitionistic tableau-deduction of P→ Q from ¬Q→¬P.

In order to show that the intuitionistic notions of tableau-deducibility (Definition
8.10) and (Hilbert-type) deducibility (Definition 8.4) are equivalent, we first prove
Theorem 8.1: if A1, . . . ,An �′i B, then A1, . . . ,An �i B. In Section 8.4 it is shown
that the Hilbert type proof system for intuitionistic propositional logic is sound,
i.e., if A1, . . . ,An �i B, then also A1, . . . ,An |=i B (B is an intuitionistically valid (or
logical) consequence of A1, . . . ,An). And in Section 8.5 we show completeness: if
A1, . . . ,An |=i B, then A1, . . . ,An �′i B.

Theorem 8.1. (i) If B is tableau-deducible from A1, . . . ,An (in intuitionistic propo-
sitional logic), i.e., A1, . . . ,An �′i B, then B is deducible from A1, . . . ,An (in intuition-
istic propositional logic), i.e., A1, . . . ,An �i B. In particular, for n = 0:
(ii) If �′i B, then �i B.

Proof. Suppose A1, . . . ,An �′i B, i.e., B is intuitionistically tableau-deducible from
A1, . . . ,An. It suffices to show:

for every sequent S = {TD1, . . . ,T Dk, FE1, . . . ,FEm} in an intuitionistic tableau-
deduction of B from A1, . . . ,An it holds that D1, . . . ,Dk �i E1∨ . . .∨Em. (*)

Consequently, because {TA1, . . . ,TAn, FB} is the first (upper) sequent in any given
intuitionistic tableau-deduction of B from A1, . . . ,An, we have that A1, . . . ,An �i B.
The proof of (*) is tedious, but has a simple plan: the statement is true for the closed
sequents at the bottom of an intuitionistic tableau-deduction, and the statement re-
mains true if we go up in the intuitionistic tableau-deduction via the T and F rules.
Basic step: Any closed sequent in an intuitionistic tableau-deduction of B from
A1, . . . ,An is of the form {TD1, . . . ,T Dk, T P, FP, FE1, . . . ,FEm}. So, we have to
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show that D1, . . . ,Dk, P �i P∨E1∨ . . .∨Em. And this is straightforward:
D1, . . . ,Dk, P �i P and P �i P∨E1∨ . . .∨Em.
Induction step: We have to show that for all rules the following is the case: if (*)
holds for all lower sequent(s) in the rule (induction hypothesis), then (*) holds for
the upper sequent in the rule. For convenience, we will suppose that S = {TD, FE}
in all rules.

Rule T→: TD, FE, T B→C
T D, FE, FB | T D, FE, TC

Suppose D �i E∨B and D, C �i E (induction hypothesis). To show: D, B→C �i E .
Because E∨B, B→C �i E∨C (see Exercise 2.50), by the first induction hypothesis,
D, B→C �i E ∨C. (1)
From the second induction hypothesis, by the intuitionistic deduction theorem (see
Exercise 8.4), D �i C→ E . (2)
Because E ∨C, C → E �i E ∨E (see Exercise 2.50), it follows from (1) and (2):
D, B→C �i E ∨E . But (by ∨-elimination) E ∨E �i E . Hence D, B→C �i E .

Rule F→i: T D, FE, F B→C
T D, T B, FC

Suppose D, B �i C (induction hypothesis). Then by the (intuitionistic) deduction
theorem (see Exercise 8.4), D �i B→C and hence D �i E ∨ (B→C), what was to
be shown.

The other tableaux rules are treated similarly, see Theorem 2.27. Notice that the
proof for rule F → with S = {TD,FE} instead of ST = {T D} in rule F →i, would
not intuitionistically hold anymore: from D,B �i E ∨C it does not follow that D �i

E∨ (B→C), since in order to show the latter one needs the assumption B∨¬B. ��
Exercise 8.6. a) Show that all axioms for intuitionistic propositional logic (see Sec-
tion 8.2) are tableau-provable (in intuitionistic propositional logic). b) verify that:
1) �′i A→¬¬A, but trying to show �′i ¬¬A→ A fails;
2) �′i ¬¬(A∨¬A), but trying to show �′i A∨¬A fails;
3) ¬A∨B �′i A→ B, but trying to show A→ B �′i ¬A∨B fails.
4) ¬A∨¬B �′i ¬(A∧B), but trying to show ¬(A∧B) �′i ¬A∨¬B fails.
5) �′i ¬¬¬A→¬A.
c) Check that it is not possible to construct an intuitionistic tableau-deduction of B
from A→ B and ¬A→ B; the intuitive reason for this is, of course, that A∨¬A does
not hold intuitionistically.

Exercise 8.7. Prove: �′ (P→ Q)∨ (Q→ P) classically, but not intuitionistically.

Exercise 8.8. Prove the Disjunction Property for intuitionistic propositional logic:
if �′i B∨C, then �′i B or �′i C. Notice that the corresponding statement for classical
propositional logic does not hold.

Exercise 8.9. Show that the implications in the following diagrams all hold intu-
itionistically, but not in the converse direction. Note that the formulas in each dia-
gram are classically equivalent.



392 8 Intuitionism and Intuitionistic Logic

(a)
A∨B

(A→ B)→ B (B→ A)→ A

¬¬(A∨B)

�
���
�
��8

�
��8

�
���

A ∧ B

¬¬A ∧ B A ∧ ¬¬B

¬¬A ∧ ¬¬B

�
���
�
��8

�
��8

�
���

(b)

A→¬¬B
�

A→ B
�

¬¬A→ B

(c)

Exercise 8.10. Show that the following pairs of formulas are intuitionistically equiv-
alent. 1) ¬¬A∧¬¬B and ¬¬(A∧B); 2) ¬¬A→¬¬B, ¬¬(A→ B) and A→¬¬B.

A is stable := �′i ¬¬A→ A. So 1) and 2) above say that if both A and B are stable,
then A∧B and A→ B are stable too.
3) Show that ¬A is stable for each formula A.
4) For A ∨ B := ¬(¬A∧¬B) show that A ∨ B is stable, if both A and B are stable.
5) Show that ¬¬A∨¬¬B and ¬¬(A∨B) are not intuitionistically equivalent and
hence we cannot conclude: if A and B are stable, then A∨B is stable too.

Exercise 8.11. A is decidable := �′i A∨¬A.
1) Prove that �′i (A∨¬A)→ (¬¬A→ A). Hence, if A is decidable, then A is stable
(see Exercise 8.10).
2) Prove that not �′i (¬¬A→ A)→ (A∨¬A). Find a formula B which is stable such
that we cannot say that it is decidable. (Hint: see Exercise 8.10, 3.)

Exercise 8.12. Let E∗ come from E by replacing (or ‘translating’) each part of E
of the form shown below in the first line by the respective expression shown in the

second.
P A→ B A∧B A∨B ¬A

¬¬P A→ B A∧B ¬(¬A∧¬B) ¬A
1. Note that E∗ is stable, i.e., �′i ¬¬E∗ → E∗, for each formula E (see Exercise
8.10).
2. Using �i ¬¬E∗ → E∗, prove that classical propositional logic can be defined
within the intuitionistic one: if A1, . . . ,An � B (classically), then A∗1, . . . ,A

∗
n �i B∗.

Exercise 8.13. Show that no two of the formulas P→P, P∧¬P, P, ¬P, P∨¬P, (P∨
¬P)→ P are intuitionistically equivalent. Confer this with the classical case where
each formula built from only one atomic formula P is equivalent to either P→P, P∧
¬P, P or ¬P (see Exercise 2.14). In fact, the formulas mentioned above are just the
initial formulas of an infinite list of formulas built from only one atomic formula
P such that 1) no two of the formulas in the list are intuitionistically equivalent to
each other, and 2) any formula built from only one atomic formula P is equivalent
(intuitionistically) to one of the formulas in the list. See I. Nishimura [12].
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P∧¬P

¬P P

P∨¬P
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(P∨¬P)→ P

Exercise 8.14. * Let A be a formula and let Γ be a set of formulas of intuitionistic
propositional logic. Γ | A is defined by induction on A as follows.
Γ | P := Γ �i P.
Γ | B∨C := Γ |� B or Γ |�C where Γ |� A := Γ | A and Γ �i A.
Γ | B∧C := Γ | B and Γ |C.
Γ | B→C := if Γ |� B, then Γ |C.
Γ | ¬B := if Γ |� B, then Γ is inconsistent.
Prove the following theorem (S.C. Kleene, 1962): if Γ | C for all formulas C in Γ
and Γ �i A, then Γ | A. Conclude the following corollary: If H | H and H �i B∨C,
then H �i B or H �i C.

Exercise 8.15. * Prove the following intuitionistic analogue of Theorem 2.18, in-
troduced by S.A. Kripke (oral communication, August, 1977). Every consistent for-
mula A is intuitionistically provably equivalent to a disjunction A1∨ . . .∨An, where
each A j, 1≤ j≤ n, is a consistent conjunction of atomic formulas, of negations¬B,
where not A j �i B, and of implications B→ C, where not A j �i B; hence for each
such A j, A j | A j (see Exercise 8.14). Hint: if A j = (B→C)∧A′j and A j �i B, then
�i A j �C∧A′j.

8.4 Intuitionistic Propositional Logic: Semantics

In this section we define a notion of intuitionistically (Kripke-)valid consequence,
A1, . . . ,An |=i B, for intuitionistic propositional logic and we shall show that this (se-
mantic) notion of valid consequence for intuitionistic propositional logic is equiv-
alent to the (syntactic) notions of deducibility, A1, . . . ,An �i B and A1, . . . ,An �′i B,
for intuitionistic propositional logic.

In the intuitionistic tableaux rules (see Section 8.3) we interprete TA as: I have a
proof of A, and FA as: I do not (yet) have a proof of A. Then, reading these rules from

the top down, rule F →i
S, FB→C
ST , T B, FC

may be interpreted as follows: if I am in a

proof-situation (this notion is analogous to the notion of possible world in Chapter
6) in which I do not (yet) have a proof of B → C, then there is a proof-situation
accessible from the given one, in which I do have a proof of B without having a
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proof of C. The change from S to ST , where ST is the set of all T -signed formulas in
S, is explained by noting that formulas of which I did not have a proof in the former
situation may have been proved by me in the latter situation, while sentences once
proved remain proved forever (an ideal mathematician does not forget); so F-signed
formulas in S may not be copied down below the line.

In a similar way there is a shift of one proof-situation to another in the inter-
pretation of rule F¬i

S, F¬B
ST , T B , while in interpreting the other intuitionistic tableaux

rules there is no such shift. For instance, rule T →i
S, T B→C

S, FB | S, TC is read as follows:
if I am in a (proof-)situation in which I have a proof of B→ C, then in that same
(proof-)situation I may not have a proof of B or I may have a proof of C. So, the
intuitionistic tableaux rules in which there is a shift from S to ST (the rules which
have a bar in it) are precisely the rules the interpretation of which requires a shift
from a former to a later proof-situation.

These considerations form the basis for S.A. Kripke’s semantics for intuitionistic
logic; see Kripke [11]. In fact, this semantics has grown out of the possible world
semantics for modal logics (see Chapter 6) developed by Kripke [10] two years ear-
lier in 1963. And although E.W. Beth [2] in 1947 had already developed a semantics
for intuitionistic logic which is very close to the later Kripke-semantics, the latter
one has become more popular because it is easier to work with.

Definition 8.11 (Kripke model). M = 〈S, R, |=i 〉 is a Kripke model for intuition-
istic propositional logic :=
1. S is a non-empty set; the elements of S are called possible proof-situations.
2. R is a binary relation on S, which is reflexive, i.e., for all s in S, sRs, and transi-
tive, i.e., for all s, s′, s′′ in S, if sRs′ and s′Rs′′, then sRs′′. sRs′ is read as: the proof
situation s′ is accessible from and later in time than the proof-situation s; R is called
the accessibility relation.
3. |=i is a relation between the elements of S and the atomic formulas (of intu-
itionistic propositional logic) such that for all s, s′ in S, if s |=i P and sRs′, then
s′ |=i P. This condition is evident if one reads s |=i P as: P has been proved in the
proof-situation s; once proved, it remains proved.

Definition 8.12 (M,s |=i A). Given a Kripke model M = 〈 S, R, |=i 〉, we define
M,s |=i A, to be read as: A has been proved (or holds) in the situation s of the model
M, for arbitrary s in S and for arbitrary formulas A as follows:
M,s |=i P := s |=i P (P atomic)
M,s |=i B∧C := M,s |=i B and M,s |=i C
M,s |=i B∨C := M,s |=i B or M,s |=i C
M,s |=i B→C := for all t in S, if sRt, then not M, t |=i B or M, t |=i C,

or, equivalently, if sRt and M, t |=i B, then M, t |=i C,
M,s |=i ¬B := for all t in S, if sRt, then not M, t |=i B.

Note that the definition of M,s |=i ¬B results from the one of M,s |=i B → C by
identifying ¬B with B→⊥ and postulating that for all s in S, not M,s |=i ⊥ (⊥ is
the so-called false formula).
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Lemma 8.1. Let M = 〈 S, R, |=i 〉 be a Kripke model, s and t elements of S and A a
formula. If M,s |=i A and sRt, then M, t |=i A.

Proof. For atomic formulas P this follows immediately from condition 3 in Defi-
nition 8.11. Now suppose that the lemma has been proved for the formulas B and
C (induction hypothesis), i.e., a) if M,s |=i B and sRt, then M, t |=i B, and b) if
M,s |=i C and sRt, then M, t |=i C.
Then for A = B∧C and A = B∨C the induction proposition follows immediately
from the definition of M,s |=i A and from a) and b).
Now suppose A = B→ C, M,s |=i B→ C and sRt. We have to show that M, t |=i

B→C, i.e., for all t ′ in S, if tRt ′ and M, t ′ |=i B, then M, t ′ |=i C. So suppose tRt ′ and
M, t ′ |=i B. Then since sRt and tRt ′, by the transitivity of R, sRt ′ and hence, since
M,s |=i B→C and M, t ′ |=i B, it follows that M, t ′ |=i C.
The case A = ¬B is treated similarly. ��
Definition 8.13 (A1, . . . ,An |=i B).
1. Let M = 〈 S, R, |=i 〉 be a Kripke model and A a formula. M is an intuitionistic
model of A (or A is true (intuitionistically) in M) := for all s in S, M,s |=i A.
Notation: M |=i A. Otherwise M is called an intuitionistic countermodel for A (or
an intuitionistic counterexample to A). Notation: M �|=i A.
2. A is intuitionistically (Kripke-)valid := for all Kripke models M, M |=i A.
Notation: |=i A.
3. B is an intuitionistically (Kripke-)valid consequence of A1, . . . ,An := for all Kripke
models M = 〈 S, R, |=i 〉 and for all s in S, if for all j = 1, . . . ,n, M,s |=i A j, then
M,s |=i B. Notation: A1, . . . ,An |=i B.
Note that A1, . . . ,An |=i B iff |=i A1∧ . . .∧An → B.

Example 8.3. Let M = 〈{0,1}, R, |=i 〉 be the intuitionistic (Kripke) model with
{0,1} being the set consisting of the natural numbers 0 and 1 only, R being defined
by 0R0, 1R1 and 0R1 (and not 1R0), and |=i being defined by 1 |=i P (and not
0 |=i P). This model can be completely characterized by the following picture:

0
↓

1 P

Note that not M,0 |=i P and not M,0 |=i ¬P and hence that not M,0 |=i P∨¬P.
So M is an intuitionistic counterexample to P∨¬P and therefore �|=i P∨¬P. Also
notice that for this Kripke model M, for any formula A, M |=i A iff M,0 |=i A.
Notice that M,0 �|=i ¬P and M,1 �|=i ¬P and therefore M,0 |=i ¬¬P, while M,0 �|=i

P. So, M is an intuitionistic countermodel to ¬¬P → P. Hence ¬¬P → P is not
intuitionistically valid, i.e., �|=i ¬¬P→ P.

Example 8.4. Let M = 〈{0,1,2},R, |=i 〉 be the intuitionistic (Kripke) model with
{0,1,2} being the set consisting of the natural number 0, 1 and 2, R being defined
by 0R0, 1R1, 2R2; 0R1, 0R2 (and not 1R2, not 2R1, not 1R0, not 2R0), and |=i being
defined by 1 |=i P, 2 |=i Q (and not 1 |=i Q, not 2 |=i P, not 0 |=i P, not 0 |=i Q).
This model can be completely characterized by the following picture:
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0
↙↘

1 P 2 Q

Note that M,0 |=i ¬(P∧Q), but not M,0 |=i ¬P and not M,0 |=i ¬Q. Hence, M,0 �|=i

¬(P∧Q)→ ¬P∨¬Q. So M is a counterexample to ¬(P∧Q)→ ¬P∨¬Q and
therefore �|=i ¬(P∧Q)→ ¬P∨¬Q. Also notice that for this Kripke model M, for
any formula A, M |=i A iff M,0 |=i A.
Notice that M,0 �|=i P → Q and M,0 �|=i Q → P. Therefore, M is an intuitionistic
(Kripke) counterexample to (P→ Q)∨ (Q→ P). Hence, �|=i (P→ Q)∨ (Q→ P).

The reader can easily check that, for instance, P→¬¬P and ¬P∨¬Q→¬(P∧Q)
are Kripke valid, i.e., true in all intuitionistic Kripke models, in particular in the
Kripke models of Example 8.3 and 8.4. Let us prove this for the formula P→¬¬P.
We have to show that M,s |=i P→¬¬P for all Kripke models M = 〈 S, R, |=i 〉 and
for all s in S. So suppose sRt and M, t |=i P. Then we must prove that M, t |=i ¬¬P,
i.e., for all t ′ in S, if tRt ′, then M, t ′ �|=i ¬P. So suppose tRt ′. Then, since M, t |=i P,
it follows from Lemma 8.1 that M, t ′ |=i P and consequently that M, t ′ �|=i ¬P. ��
In Theorem 8.1 we have shown: if A1, . . . ,An �′i B, then A1, . . . ,An �i B, i.e., any for-
mula which is intuitionistically tableau-deducible from given premisses A1, . . . ,An

is also intuitionistically deducible from these premisses (in terms of the intuitionis-
tic logical axioms and Modus Ponens).
Now we shall show the soundness theorem for intuitionistic propositional logic:
if A1, . . . ,An �i B, then A1, . . . ,An |=i B, i.e., each formula which is intuitionistically
deducible from given premisses A1, . . . ,An is also an intuitionistically (Kripke) valid
consequence of these premisses.
In Section 8.5 we shall close the circle and prove the completeness of intuitionistic
propositional logic, that is, the intuitionistic logical axioms together with Modus
Ponens are complete with respect to the intuitionistic (Kripke) semantics, i.e., if
A1, . . . ,An |=i B, then A1, . . . ,An �′i B.

Theorem 8.2 (Soundness). If A1, . . . ,An �i B, then A1, . . . ,An |=i B.

Proof. It is easy to see that every intuitionistic logical axiom is intuitionistically
(Kripke) valid. Let us check the intuitionistic logical axioms A → (B → A) and
¬A→ (A→ B). So, let M = 〈 S, R, |=i 〉 be an intuitionistic (Kripke) model.
1. To show: for all s in S, M,s |=i A→ (B→ A). So, suppose sRt and M, t |=i A (1).
Then we have to show that M, t |=i B→ A. So suppose tRt ′ (2) and M, t ′ |=i B. To
show: M, t ′ |=i A. This follows from (1), (2) and Lemma 8.1.
2. To show: for all s in S, M,s |=i ¬A→ (A→ B). So, suppose sRt and M, t |=i ¬A,
i.e., for all t ′ in S, if tRt ′, then M, t ′ �|=i A. Therefore, for all t ′ in S with tRt ′, if
M, t ′ |=i A, then M, t ′ |=i B, i.e., M, t |=i A→ B.
3. Next we have to show that Modus Ponens is sound with respect to the intuition-
istic Kripke semantics, i.e., if M,s |=i A (1) and M,s |=i A→ B (2), then M,s |=i B.
So suppose (1) and (2). We have to show that M,s |=i B. This follows from (1), sRs
and (2). ��
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Exercise 8.16. Prove:
a) If M1 is a Kripke counterexample to B and M2 is a Kripke counterexample to C,
then from M1 and M2 one can construct a Kripke counterexample to B∨C.
b) Conclude from a): if |=i B∨C (B∨C is intuitionistically Kripke valid), then |=i B
or (in its classical meaning) |=i C (B is Kripke valid or C is Kripke valid).

8.5 Completeness of Intuitionistic Propositional Logic

We shall prove completeness of intuitionistic propositional logic, i.e., that any in-
tuitionistically (Kripke-)valid consequence of given premisses may be logically de-
duced by the intuitionistic tableaux rules from those premisses: if A1, . . . ,An |=i B,
then A1, . . . ,An �′i B (Theorem 8.5).

In order to prove completeness of intuitionistic propositional logic, we define a pro-
cedure to construct a counterexample to a given conjecture that A1, . . . ,An �′i B with
the following property: if the procedure fails, i.e., does not yield a Kripke coun-
terexample, we have in fact constructed an intuitionistic tableau-deduction of B
from A1, . . . ,An. The procedure makes use of the tableaux rules and produces ‘trees’
which we shall call (intuitionistic) search trees.

Definition 8.14 (Procedure to construct a counterexample). In order to construct
a (Kripke-)counterexample to the conjecture that A1, . . . ,An �′i B, we must construct
an intuitionistic Kripke model M such that for some proof situation s in M, M,s |=i

A1∧ . . .∧An, but M,s �|=i B.
Step 1: Start with {TA1, . . . ,TAn,FB} and apply all intuitionistic tableaux rules

for the propositional connectives, except the rules F →i and F¬i, as frequently as
possible. However, in case one of the split-rules T →, T∨ and F∧ is applied, we
make two search trees: one with the left split and one with the right split. Notice
that for an intuitionistic tableau-deduction both search trees have to close.

For instance, consider the conjecture ¬(P∧Q) �i ¬P∨¬Q:

search tree (1) search tree (2)
T ¬(P∧Q), F ¬P∨¬Q T¬(P∧Q), F ¬P∨¬Q
F P∧Q, F ¬P∨¬Q F P∧Q, F ¬P∨¬Q
F P∧Q, F ¬P, F¬Q F P∧Q, F ¬P, F ¬Q
FP, F ¬P, F¬Q FQ, F ¬P, F ¬Q

In the transition from the third to the fourth line we apply the rule F∧ to F P∧Q,
which causes a split. At that stage we make two search trees, one with the left split
signed formula FP and one with the right split signed formula FQ. One continues
to apply all possible rules, except the F¬i and F →i rules, as frequently as possible.

At this stage we have partially constructed one, two (or more) search trees, each
consisting of one node labeled with signed formulas. A labeled node s in which all
tableaux rules except the F¬i and F →i rules have been applied as frequently as
possible will be called logically complete. Intuitively, this means that one has fully
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described which formulas have been proved and which formulas have not (yet) been
proved in the present proof situation s. Next we continue to expand each search tree
by one or more applications of the F¬i and F →i rules.

Step 2 Each labeled node s in a search tree τ which is logically complete may
contain one or more signed formulas of the form F ¬B or F B→C. For each of the
signed formulas of the form F ¬B and F B→ C in a labeled node s we construct
a new node s′, declare s′ accessible from s in the given search tree τ , i.e., sRτ s′,
and label this node s′ with the formulas ST , FB or ST , T B, FC respectively, which
result from applying the rule F¬i to S, F ¬B or the rule F →i to S, F B → C,
respectively. It is important to copy all T -signed formulas occurring in s to the new
node s′ (formulas once proved remain proved). Notice that F-signed formulas that
occur in labeled node s may not occur anymore in node s′ and that for closure it
suffices that one of the successor nodes contains TA and FA for some formula A.

Next we apply step 1 again, but now starting with ST , FB or ST , T B, FC, de-
pending on whether rule F ¬i or F →i has been applied, resulting in one or more
logically complete nodes (proof situations) s′.

Step 1 and 2 are repeated as frequently as possible.
For search tree (1) above one may apply the F ¬i rule to F ¬P, losing all other F
signed formulas, and one may apply the F ¬i rule to F ¬Q, again losing all other F
signed formulas. Similarly for search tree (2) above.

search tree (1) search tree (2)
T ¬(P∧Q), F ¬P∨¬Q T¬(P∧Q), F ¬P∨¬Q
F P∧Q, F ¬P∨¬Q F P∧Q, F ¬P∨¬Q
F P∧Q, F ¬P, F¬Q F P∧Q, F ¬P, F ¬Q
FP, F ¬P, F¬Q FQ, F ¬P, F ¬Q

� � ��

T ¬(P∧Q), T P T ¬(P∧Q), TQ T ¬(P∧Q), TP T ¬(P∧Q), T Q
F P∧Q, TP F P∧Q, T Q F P∧Q, T P F P∧Q, T Q

Application of rule F∧ to search tree (1) yields four different search trees; three of
them are closed, i.e. contain a branch that is closed (a branch is closed if it contains
TA and FA for some formula A), but one of them, search tree τ below, is not closed:

search tree τ
T ¬(P∧Q), F ¬P∨¬Q Kripke model Mτ
F P∧Q, F ¬P∨¬Q
F P∧Q, F ¬P, F¬Q s
FP, F ¬P, F¬Q � �

�� ↙ ↘
T ¬(P∧Q), TP T ¬(P∧Q), T Q s1 P s2 Q
F P∧Q, T P F P∧Q, T Q

FQ, T P FP, TQ

The open (i.e., not closed) search tree τ yields a (Kripke-)counterexample Mτ to the
conjecture that ¬(P∧Q) �′i ¬P∨¬Q, as depicted in the right column above.

The Kripke model Mτ = 〈{s,s1,s2},Rτ , |=i〉 is defined as follows: sRτ s1, sRτ s2,
s1 |=i P, corresponding with the fact that T P occurs in s1, and s2 |=i Q corresponding
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with the fact that T Q occurs in s2. Clearly, Mτ ,s |=i ¬(P∧Q), corresponding with
the fact that T ¬(P∧Q) occurs in s, but Mτ ,s �|=i ¬P and Mτ ,s �|=i ¬Q, corresponding
with the fact that F ¬P, respectively F ¬Q, occurs in s.

Definition 8.15 (Search tree).
A search tree τ for the conjecture A1, . . . ,An �′i B is a set of nodes, labeled with
signed formulas, with a relation Rτ between the nodes, such that:
0. The upper node contains TA1, . . . ,TAn,FB.
1. sRτ s′ := s′ = s or s′ is an immediate successor of s, i.e., s′ results from applying
the rule F ¬i or F →i to a formula in s of the form F ¬C, respectively F C→D.
2. For each node s in the search tree τ:
a) if TP occurs in s and sRτ s′ , then T P occurs in s′.
b) if T C → D occurs in s, then for all s′ in τ , if sRτ s′, then FC occurs in s′ or T D
occurs in s′;
c) if F C → D occurs in s, then there is a node s′ in τ with sRτ s′, TC occurs in s′
and FD occurs in s′;
d) if T C∧D occurs in s, then TC occurs in s and T D occurs in s;
e) if F C∧D occurs in s, then FC occurs in s or FD occurs in s;
f) if T C∨D occurs in s, then TC occurs in s or T D occurs in s.
g) if F C∨D occurs in s, then FC occurs in s and FD occurs in s;
h) if T ¬C occurs in s, then for every node s′ in τ , if sRτ s′, then FC occurs in s′;
i) if F ¬C occurs in s, then there is a node s′ in τ with sRτ s′ and TC occurs in s′.

Definition 8.16 (Closed branch; closed search tree).
a) A branch in a search tree τ is closed if it contains at least one node labeled with
TA and FA for some formula A. Otherwise, the branch is called open.
b) A search tree τ is closed if it contains at least one closed branch. Otherwise, the
search tree is called open.

Theorem 8.3. Let τ be an open search tree for the conjecture A1, , . . . ,An �′i B with
upper node s0. Let Sτ the set of nodes in τ and let Rτ be defined as in Definition
8.15. Define s |=i P := TP occurs in s. Then Mτ = 〈 Sτ ,Rτ , |=i 〉 is an (intuitionistic)
Kripke countermodel to the conjecture that A1, . . . ,An �′i B. More precisely, Mτ ,s0 |=
A1∧ . . .∧An, but Mτ ,s0 �|= B.

Proof. Let τ be an open search tree with s0 as upper node, containing TA1, . . . ,TAn,
FB. Let Mτ = 〈 Sτ ,Rτ , |=i 〉 be the corresponding Kripke model, as defined in the
theorem. We shall prove by induction:
1) If TA occurs in s, then Mτ ,s |=i A; and 2) If FA occurs in s, then Mτ ,s �|=i A.
Since TA1, . . . ,TAn,FB occur in the top node s0, it follows that Mτ ,s0 |=i A1∧ . . .∧
An, but Mτ ,s0 �|=i B. Therefore, A1, . . . ,An �|=i B.
Induction basis Let A = P be atomic. If TP occurs in s, then by definition s |=i P,
i.e., Mτ ,s |=i P. If FP occurs in s, then - since τ is open - T P does not occur in s and
hence by definition s �|=i P, i.e., Mτ ,s �|=i P.
Induction step Suppose 1) and 2) hold for C and D (induction hypothesis). We shall
prove that 1) and 2) hold for C→D, C∧D, C∨D and ¬C.
Let A = C → D and suppose T C → D occurs in s. Then according to Definition
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8.15 b, for all s′ in τ , if sRτ s′, then FC is in s′ or TD is in s′. So, by the induction
hypothesis, for all s′ in τ , if sRτ s′, then Mτ ,s′ �|=i C or Mτ ,s′ |=i D. Consequently,
Mτ ,s |=i C→ D.
Let A =C→D and suppose F C→D occurs in s. Then according to Definition 8.15
c, there is a node s′ in τ with sRτ s′ such that TC is in s′ and FD is in s′. So, by the
induction hypothesis, Mτ ,s′ |=i C and Mτ ,s′ �|=i D. Consequently, Mτ ,s �|=C→D.
The cases that A =C∧D, A =C∨D and A = ¬C are treated similarly. ��
Example 8.5. We wonder whether �′i P∨¬P. So, in the left column below we start
a search tree τ beginning with F P∨¬P:

F P∨¬P s
FP, F¬P |

| ↓
T P s′ P

In the application of rule F¬i to F¬P the F-signed formulas are not be copied to
the next proof-situation. We do not find a tableau-proof of P∨¬P. Instead we have
actually constructed a search tree τ for P∨¬P which is open, i.e., no node in it
contains both T B and FB for some formula B; and from this open search tree one
can read off an intuitionistic Kripke counterexample to P∨¬P, as is shown in the
right-column above. Confer Example 8.3.

Example 8.6. We wonder whether �′i (P → Q)∨ (Q → P). So, in the left column
below we start a search tree τ beginning with F (P→ Q)∨ (Q→ P):

F (P→ Q)∨ (Q→ P) s
F P→Q, F Q→ P � �

� � ↙ ↘
T P, FQ TQ, FP s1 P s2 Q

At the second line of the search tree in the left column above, we can apply rule F→i

to F P→Q losing the expression F Q→P or apply rule F→i to F Q→P losing the
expression F P→Q. In neither case we find a tableau-proof of (P→Q)∨ (Q→ P).
Instead we have actually constructed a search tree for (P→ Q)∨ (Q→ P) which is
open, i.e., no node in it contains both T B and FB for some formula B; and from this
open search tree one can read off a Kripke counterexample to (P→ Q)∨ (Q→ P).
Confer Example 8.4.

Example 8.7. We wonder whether P∨¬Q �′i (R → P)∨ (Q → R). Application of
the procedure to construct a counterexample to this conjecture yields two different
search trees which both turn out to be closed.

T P∨¬Q, F (R→ P)∨ (Q→ R) T P∨¬Q, F (R→ P)∨ (Q→ R)
T P∨¬Q, F R→ P, F Q→ R T P∨¬Q, F R→ P, F Q→ R
T P, T P∨¬Q, F R→ P, F Q→ R T¬Q, T P∨¬Q, F R→ P, F Q→ R

FQ, T P∨¬Q, F R→ P, F Q→ R
�� ��

T P, T R, FP TP, T Q, FR T¬Q, T R, FP T¬Q, T Q, FR
closed FQ, T R, FP FQ, T Q, FR

closed
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Note that the two branches which give closure together yield an intuitionistic
tableau-deduction of (R→ P)∨ (Q→ R) from P∨¬Q:

T P∨¬Q, F (R→ P)∨ (Q→ R)
T P∨¬Q, F R→ P, F Q→ R

T P∨¬Q, T P, F R→ P, F Q→ R | T P∨¬Q, T ¬Q, F R→ P, F Q→ R
T P∨¬Q, T P, T R, FP T P∨¬Q, T ¬Q, T Q, FR
closure T P∨¬Q, FQ, T Q, FR

closure

The correctness of this remark is not accidental and follows immediately from the
definition of a tableau-deduction and the structure of the procedure in Definition
8.14 to construct a counterexample.

Theorem 8.4. If all search trees for the conjecture A1, . . . ,An �′i B are closed, i.e.,
contain closure in one of their branches, then A1, . . . ,An �′i B.

Proof. Suppose all search trees for the conjecture A1, . . . ,An �′i B are closed. Then it
follows from the procedure to construct a counterexample to this conjecture that
the closed branches together form an intuitionistic tableau-deduction of B from
A1, . . . ,An. ��
Theorem 8.5 (Completeness). If A1, . . . ,An |=i B, then A1, . . . ,An �′i B.

Proof. Suppose A1, . . . ,An |=i B. Apply the procedure to construct a counterexample
to the conjecture A1, . . . ,An �′i B. If one of the resulting search trees is open, say τ ,
then by Theorem 8.3, Mτ ,s0 |=i A1 ∧ . . .∧An, while Mτ ,s0 �|=i B. This contradicts
the assumption A1, . . . ,An |=i B. Hence, there can be no open search tree for the
conjecture A1, . . . ,An �′i B. That is, all search trees for this conjecture are closed. So,
by Theorem 8.4, A1, . . . ,An �′i B. ��
The procedure to construct a counterexample to the conjecture A1, . . . ,An �′i B
will stop after finitely many steps and then either yield an intuitionistic Kripke-
counterexample or an intuitionistic tableau-deduction of B from A1, . . . ,An. There-
fore, intuitionistic propositional logic is decidable.

Theorem 8.6 (Decidability). Intuitionistic propositional logic is decidable, i.e.,
there is a procedure to decide in finitely many steps whether A1, . . . ,An �′i B.

Proof. Given a conjecture A1, . . . ,An �′i B, the procedure (in Definition 8.14) to con-
struct a counterexample yields only finitely many different search trees, each of
which will be completed in a finite number of steps. If they all close, by Theorem
8.4 they actually give us a tableau-deduction of B from A1, . . . ,An, showing that
A1, . . . ,An �′i B and hence A1, . . . ,An |=i B; if one of them is open, by Theorem 8.3
it actually yields a Kripke counterexample to the given conjecture, showing that
A1, . . . ,An �|=i B and hence A1, . . . ,An ��′i B. ��
Note that while the decision procedure for A1, . . . ,An |= B in classical propositional
logic was immediately evident from the definition of A1, . . . ,An |= B (the truth table
of B has 1 in all lines in which all of A1, . . . ,An are 1), this is not so for the notion of
Kripke valid consequence (A1, . . . ,An |=i B) in intuitionistic propositional logic.
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Exercise 8.17. Construct either an intuitionistic tableau-proof or an intuitionistic
Kripke counterexample for the following formulas (confer Exercise 8.1):
(a) (P→ Q)→ (¬Q→¬P) and (¬Q→¬P)→ (P→ Q).
(b) ¬(P∧Q)→ (¬P∨¬Q) and (¬P∨¬Q)→¬(P∧Q).
(c) (P→ Q)→¬(P∧¬Q) and ¬(P∧¬Q)→ (P→Q).
(d) (P→ Q)→ (¬P∨Q) and (¬P∨Q)→ (P→ Q).
(e) (P→ Q∨R)→ (P→ Q)∨ (P→ R) and (P→ Q)∨ (P→ R)→ (P→Q∨R).
(f) (P∨¬P)→ (¬¬P→ P) and (¬¬P→ P)→ (P∨¬P).

Exercise 8.18. * (S.A. Kripke, oral communication, 1977)
Let M = 〈S, R, |=i 〉 be defined as follows: S is the set of all formulas A of intu-
itionistic propositional logic such that A | A (see Exercise 8.14). For H, H ′ in S, let
HRH ′ := H ′ �i H. For H in S let H |=i P := H �i P (P atomic).
Verify that M = 〈S, R, |=i 〉 is a Kripke model for intuitionistic propositional logic
such that for all formulas A, M,H |=i A iff H �i A. Hint: use Exercise 8.14 and 8.15.
As a corollary we have the completeness theorem for intuitionistic propositional
logic: if |=i A, then �i A.

8.6 Quantifiers in Intuitionism; Intuitionistic Predicate Logic

We have already seen in Section 8.1 that in classical mathematics the infinite – for
instance, the set N of the natural numbers – is treated as actual or completed. On the
other hand, since for an intuitionist mathematical objects are mental constructions,
the set N of the natural numbers intuitionistically cannot be regarded as a completed
totality, but only as potential or becoming or constructive. As explained in Section
8.1, the set N of the natural numbers is intuitionistically a construction project: start
with 0 and for every natural number n already constructed earlier construct n+ 1.
As a consequence the quantifiers have intuitionistically a meaning different from the
classical one.

The classical meaning of there exists an n such that P(n) (∃n[n∈N∧P(n)]), that
somewhere in the completed infinite totality of the natural numbers there occurs an
n such that P(n), is not available to the intuitionist, since he does not conceive the set
N of the natural numbers as a completed totality. The intuitionistic meaning of the
proposition there exists a natural number n such that P(n) is that one can construct a
natural number n which one can prove has the property P. So, an intuitionistic proof
of the proposition in question must be constructive, i.e., it must indicate a concrete
natural number with the property P, or at least indicate a method by which one can
construct such a natural number.

The intuitionistic meaning of all natural numbers n have the property P (∀n[n ∈
N→ P(n)]), or briefly for all n, P(n), is the following: I have a method (construc-
tion), which applied to any natural number n provides a proof of P(n). Note that
the classical concept of a completed infinity of the natural numbers does not oc-
cur in this intuitionistic interpretation of a universal quantification over the natural
numbers.
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Propositions of the form for all natural numbers n, P(n) may be proved intuition-
istically by using the principle of mathematical induction: if (1) P(0) and (2) for all
n ∈ N, if P(n), then P(n+ 1), then for all n, P(n). In order to arrive at an intuition-
istic proof of the proposition for all natural numbers n, P(n), the proofs of both the
induction basis (1) and the induction step (2) should, of course, be intuitionistic too.

That intuitionistic methods are to be distinguished from non-intuitionistic ones
is explained by S.C. Kleene [8] as follows:

In classical mathematics there occur non-constructive or indirect existence proofs, which
the intuitionists do not accept. For example, to prove there exists an n such that P(n), the
classical mathematician may deduce a contradiction from the assumption for all n, not P(n).
Under both the classical and the intuitionistic logic, by reductio ab absurdum this gives not
for all n, not P(n). The classical logic allows this result to be transformed into there exists
an n such that P(n), but not (in general) the intuitionistic. Such a classical existence proof
leaves us no nearer than before the proof was given to having an example of a number n
such that P(n) (though sometimes we may afterwards be able to discover one by another
method). [S.C. Kleene [8], p. 49]

Intuitionistic methods are to be distinguished from non-intuitionistic ones not only
in the case of proofs, but also in the case of definitions. For instance, suppose one can
show that the number 3 has a given property P if Goldbach’s conjecture (G) is true
and that if Goldbach’s conjecture (G) is false, then the number 5 has the property
P. From a classical point of view one may say that one has shown the existence of
a natural number n with the property P. But because Goldbach’s conjecture is an
open, i.e., not solved, problem, from an intuitionistic point of view no construction
of such a natural number n has been given. Neither 3 nor 5 is an example as long
as Goldbach’s conjecture has not been solved. From an intuitionistic point of view
one has only proved the implication if G or not G, then there exists an n such that
P(n), where G is Goldbach’s conjecture. From a classical point of view, the premiss
G∨¬G of this implication is available and consequently from a classical point of
view one may infer its conclusion that there is a natural number n with the property
P. However, in the present state of knowledge, an intuitionist does not accept the
principle G or not G and hence the number n which is equal to 3 if G, and equal to
5 if not G is intuitionistically not a valid definition of a natural number n: one has
no method to construct this natural number.

We have just seen that the quantifiers in intuitionism have a meaning quite different
from their classical one. Let V be an (intuitionistic) set. ∀x ∈ V [A(x)] (for every
x in V , A(x)) means intuitionistically: I have a construction which assigns to each
object a in V a proof of A(a). And ∃x ∈ V [A(x)] (for some x in V , A(x)) means
intuitionistically: I can construct an object a in V and give a proof(-construction) of
A(a).

The reader should verify for himself that for the intuitionistic quantifiers we still
have ¬∃x ∈ V [A(x)]� ∀x ∈ V [¬A(x)] , and also ∃x ∈ V [¬A(x)]→¬∀x ∈ V [A(x)],
but not anymore the converse, ¬∀x ∈ V [A(x)]→ ∃x ∈ V [¬A(x)]: from the assump-
tion that ¬∀x ∈ V [A(x)], i.e., that ∀x ∈ V [A(x)] yields a contradiction, one can in
general not construct a particular element x in V such that ¬A(x). An intuitionistic
(weak) counterexample to ¬∀x ∈V [A(x)]→∃x ∈V [¬A(x)] is obtained as follows:
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Let C(k) := in the decimal expansion of π a sequence of the form 0 1 2 3 4 5 6
7 8 9 occurs before the kth decimal. And let ρ = 0. a1 a2 a3 . . . , where ak = 3 if
¬C(k), and ak = 0 if C(k). Then if ρ �= 1

3 , i.e., ρ �= 0.333 . . . , then ¬∀k ∈N[¬C(k)],
and if ρ �= 0.33 . . . 0 0 0 . . . , then ¬∃k ∈ N[C(k)].

Let Q be the set of all rational numbers. Then
(1) ¬∀x ∈ Q[x �= ρ ], i.e., it is not the case that ρ is irrational; for if ρ is irrational,
then both ρ �= 1

3 and ρ �= 0.33 . . . 000 . . . and therefore both ¬∀k ∈ N[¬C(k)] and
¬∃k ∈ N[C(k)] or equivalently ∀k ∈ N[¬C(k)]; contradiction.
(2) But it is reckless to assume that ∃x ∈ Q[¬(x �= ρ)]: for indicating a ratio-
nal number equal to ρ implies ∀k ∈ N[¬C(k)] ∨ ∃k ∈ N[C(k)], or equivalently,
¬∃k ∈ N[C(k)]∨∃k ∈ N[C(k)], which clearly is a reckless statement since it states
that I know whether in the decimal expansion of π a sequence of the form 0 1 2 3 4
5 6 7 8 9 occurs or not.
From (1) and (2) it follows that ¬∀x ∈ Q[x �= ρ ] → ∃x ∈ Q[¬(x �= ρ)] is reck-
less. Note that ¬∀x ∈ V [A(x)]→ ∃x ∈ V [¬A(x)] is a generalization of ¬(P∧Q)→
¬P∨¬Q, of which we have already seen in Section 8.5 that it was intuitionistically
reckless.

We are not able to give an intuitionistic proof of ∀x ∈ V [¬¬A(x)]→ ¬¬∀x ∈
V [A(x)]. In Section 8.7 we shall show that this formula does not hold intuitionisti-
cally in the case that V = {0,1}N: Let A(α) express that α is the infinite sequence
consisting of only 0’s, which we denote by α = 0, i.e., ∀n ∈ N[α(n) = 0]. Then
∀α ∈ {0,1}N[¬¬(α = 0∨α �= 0)], but ¬∀α ∈ {0,1}N[α = 0∨α �= 0].
However, in the case that V =N, whether ∀x∈N[¬¬A(x)]→¬¬∀x∈N[A(x)] holds
intuitionistically or not is still an open problem.

8.6.1 Deducibility for Intuitionistic Predicate Logic

The language of intuitionistic predicate logic is the same as the one for classical
predicate logic (see Chapter 4), the difference being that the connectives and quan-
tifiers now have another, constructive and intuitionistic meaning. For the sake of
completeness we give the alphabet of predicate logic and mention the rules accord-
ing to which the well formed expressions or formulas of predicate logic are formed.

Definition 8.17 (Alphabet for Predicate Logic).
The alphabet for (intuitionistic) predicate logic consists of the following symbols:
individual constants: c1,c2,c3, . . .
predicate symbols: P1,P2,P3, . . ., where Pi is supposed to be ni-ary, i.e., taking ni

arguments.
free individual variables: a1,a2,a3, . . .; bound individual variables: x1,x2,x3, . . .
connectives: �,→, ∧, ∨, ¬; quantifiers: ∃, ∀
brackets: (, ), [, ]

We shall use a,b to range over free individual variables, x,y,z to range over bound
individual variables, and P,Q,R to range over predicate symbols.
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Definition 8.18 (Formulas of Predicate Logic).
If P is a n-ary predicate symbol and t1, . . . , tn are terms, i.e., individual constants or
free individual variables, then P(t1, . . . , tn) is an (atomic) formula.
If B and C are formulas, then also (B �C), (B→C), (B∧C), (B∨C) and (¬B) are
formulas.
If A(a) is a formula containing the free variable a, then ∀x[A(x)] and ∃x[A(x)] are
formulas, where A(x) results from A(a) by replacing all occurrences of a by x.

A Hilbert-type proof-theoretic formulation of intuitionistic predicate logic is ob-
tained by replacing axiom 8, ¬¬A → A for classical predicate logic (see Section
4.4) by axiom 8i, ¬A → (A → B) (see Section 8.2). The other axioms and rules
for the connectives and quantifiers remain unchanged and the reader should ver-
ify intuitively that they all hold true for the intuitionistic interpretation of �, →
, ∧, ∨, ¬, ∀ and ∃.

Definition 8.19 (Axioms and Rules for Intuitionistic Predicate Logic).
The (logical) axioms and rules for intuitionistic predicate logic consist of:
1. the axiom schemata for intuitionistic propositional logic, given in Section 8.2.
2. the axiom schemata for the quantifiers: ∀x[A(x)]→ A(t) and A(t)→ ∃x[A(x)],
where t is a term, i.e., an individual constant or free individual variable.

3. the logical rules for→, ∀ and ∃:
A A→ B

B
(MP),

C→ A(a)
C→∀x[A(x)]

,
A(a)→C
∃x[A(x)]→C

,

provided C does not contain a.

Definition 8.20 (Deduction; Deducible).
1. An intuitionistic (Hilbert-type) deduction of B from A1, . . . ,An (in predicate logic)
is a finite list B1, . . . ,Bk of formulas, such that
(a) B = Bk is the last formula in the list, and
(b) each formula in the list is either one of A1, . . . ,An, or an axiom of intuitionistic
predicate logic (i.e., an instance of one of the axiom schemata), or is obtained by
application of one of the rules to formulas preceding it in the list, such that
(c) all free variables of A1, . . . ,An are held constant, i.e., the ∀-rule and the ∃-rule
are not applied with respect to a free variable a occurring in A1, . . . ,An, except pre-
ceding the first occurrence of A1, . . . ,An in the deduction.
2. B is intuitionistically deducible from A1, . . . ,An := there exists an intuitionis-
tic (Hilbert-type) deduction of B from A1, . . . ,An. Notation: A1, . . . ,An �i B. The
symbol �i may be read ‘yields intuitionistically’. A1, . . . ,An ��i B abbreviates: not
A1, . . . ,An �i B.
3. For Γ a (possibly infinite) set of formulas, B is intuitionistically deducible from Γ
:= there is a finite list A1, . . . ,An of formulas in Γ such that A1, . . . ,An �i B. Notation:
Γ �i B.

Example 8.8. ∃x[¬A(x)] �i ¬∀x[A(x)]. Proof: ∀x[A(x)]→ A(a) is an (intuitionistic)
axiom. Hence, �i ¬A(a)→¬∀x[A(x)], and hence, by application of the rule for ∃,
�i ∃x[¬A(x)]→¬∀x[A(x)]. Consequently, ∃x[¬A(x)] �i ¬∀x[A(x)].
However, conversely, the classical deduction of ∃x[¬A(x)] from ¬∀x[A(x)] is not
intuitionistically valid: A(a)→∃x[A(x] is an axiom. Consequently, � ¬∃x[A(x)]→
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¬A(a) and hence � ¬∃x[A(x)]→∀x[¬A(x)] and � ¬∀x[¬A(x)]→¬¬∃x[A(x)]. Now
classically, but not intuitionistically, one may remove the double negation signs,
obtaining � ¬∀x[¬A(x)]→∃x[A(x)] classically, but not intuitionistically.

Without proof we mention here the following generalization of Exercise 8.12, that
classical predicate logic can be defined within intuitionistic predicate logic. For a
proof of this theorem we refer the reader to S.C. Kleene [8], Section 82.

Theorem 8.7. If A1, . . . ,An � B (classically), then A∗1, . . . ,A
∗
n �i B∗ (intuitionisti-

cally), where A∗ is defined as follows: For A atomic, A∗ := ¬¬A.
(B∧C)∗ := B∗ ∧C∗ (∀x[B(x)])∗ := ∀x[B(x)∗],
(B∨C)∗ := ¬(¬B∗ ∧¬C∗) (∃x[B(x)])∗ := ¬∀x[¬B(x)∗],
(A→ B)∗ := A∗ → B∗ (¬A)∗ := ¬A∗.

8.6.2 Tableaux for Intuitionistic Predicate Logic

A tableaux system for intuitionistic predicate logic is obtained by replacing the rules
F→ , F¬ and F ∀ for classical predicate logic (see Subsection 4.4.2) by the rules
F→i, F¬i and F ∀i:

F→i
S, F B→C
ST , T B,FC

F¬i
S, F ¬B
ST , TB

F ∀i
S, F ∀x[A(x)]

ST , FA(a)

where a is new, i.e., does not occur in S, F ∀x[A(x)], and where ST = {TB | T B∈ S}
is the set of all T -expressions in S. So, the tableaux rules for intuitionistic predicate
logic are obtained by adding to the tableaux rules for the intuitionistic connectives,
presented in Section 8.3, the intuitionistic tableaux rules for the quantifiers:

T ∃ S, T ∃x[A(x)] F ∃ S, F ∃x[A(x)]
S, TA(a) S, F ∃x[A(x)], FA(t)

a new: a does not occur in S, T∃x[A(x)] t being any term

T ∀ S, T ∀x[A(x)] F ∀i S, F ∀x[A(x)]
S, T ∀x[A(x)], TA(t) ST , FA(a)

t being any term a new: a does not occur in S, F ∀x[A(x)]

The definitions of an intuitionistic tableau-deduction of B from A1, . . . ,An and of B
is intuitionistically tableau-deducible from A1, . . . ,An, denoted by A1, . . . ,An �′i B,
are similar to the ones given in Section 8.3.

Example 8.9. ∃x[¬A(x)] �′i ¬∀x[A(x)]. Proof: the tableau in the left column below is
an intuitionistic tableau-deduction of ¬∀x[A(x)] from ∃x[¬A(x)]:

T ∃x[¬A(x)], F ¬∀x[A(x)] T ¬∀x[A(x)], F ∃x[¬A(x)]
T ∃x[¬A(x)], T ∀x[A(x)] F ∀x[A(x)], F ∃x[¬A(x)]
T ¬A(a1), T ∀x[A(x)] F ∀x[A(x)], F ¬A(a1)]
F A(a1), T ∀x[A(x)] F ∀x[A(x)], T A(a1)]

F A(a1), T A(a1) F A(a2), T A(a1)
closure no closure
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But, conversely, we do not find a tableau-deduction of ∃x[¬A(x)] from ¬∀x[A(x)]:
the tableau in the right column above fails to be an intuitionistic tableau deduction
of ∃x[¬A(x)] from ¬∀x[A(x)].

Without proof we mention that Theorem 8.1 for intuitionistic propositional logic
can be generalized to intuitionistic predicate logic.

Theorem 8.8. (i) If B is tableau-deducible from A1, . . . ,An (in intuitionistic predi-
cate logic), i.e., A1, . . . ,An �′i B, then B is deducible from A1, . . . ,An (in intuitionistic
predicate logic), i.e., A1, . . . ,An �i B. In particular, for n = 0:
(ii) If �′i B, then �i B.

8.6.3 Kripke Semantics for Intuitionistic Predicate Logic

In the definition of a Kripke model for intuitionistic predicate logic below, we shall,
for the sake of simplicity in notation, assume that our language contains no indi-
vidual constants. The definitions below generalize Definition 8.11 for intuitionistic
propositional logic.

Definition 8.21 (Kripke Model for Intuitionistic Predicate Logic).
A Kripke model M for intuitionistic predicate logic is a quadruple 〈 S, R, U, |=i 〉
such that
1. S is a non-empty set (of possible proof-situations);
2. R is a binary relation on S (regarded as the accessibility relation), which is reflex-
ive and transitive (see Definition 8.11);
3. U assigns to each s in S a non-empty set U(s), such that if sRs′, then U(s) is a
subset of U(s′). U(s) can be conceived as the Universe of the proof-situation s, i.e.,
the set of objects constructed in the situation s;
4. |=i is a relation between elements of S and expressions of the form P(a1, . . . ,ak)
[n1, . . . ,nk], such that
i) if s |= P(a1, . . . ,ak)[n1, . . . ,nk], then n1, . . . ,nk are elements of U(s), and
ii) if s |= P(a1, . . . ,ak)[n1, . . . ,nk] and sRs′, then s′ |= P(a1, . . . ,ak)[n1, . . . ,nk].
s |= P(a1, . . . ,ak)[n1, . . . ,nk] is to be read as: in the proof situation s it has been
shown that (n1, . . . ,nk) has the property P.

Definition 8.22. (M,s |=i A(a1, . . . ,ak)[n1, . . . ,nk])
Given a Kripke model M = 〈 S, R, U, |=i 〉, s in S, a formula A(a1, . . . ,ak) and
elements n1, . . . ,nk in U(s), M,s |=i A(a1, . . . ,ak)[n1, . . . ,nk] is defined as follows:
M,s |=i P(a1, . . . ,ak)[n1, . . . ,nk] := s |=i P(a1, . . . ,ak)[n1, . . . ,nk];
M,s |=i B∧C[n1, . . . ,nk] := M,s |=i B[n1, . . . ,nk] and M,s |=i C[n1, . . . ,nk];
The definition for B∨C, B→ C and ¬B is analogous to the one (Definition 8.12)
for intuitionistic propositional logic.
M,s |=i ∀x[B(x,a1, . . . ,ak)][n1, . . . ,nk] := for all s′ in S such that sRs′ and for all n in
U(s′), M,s′ |=i B(a,a1, . . . ,ak)[n,n1, . . . ,nk] (where a is new);
M,s |=i ∃x[B(x,a1, . . . ,ak)][n1, . . . ,nk] := M,s |= B(a,a1, . . . ,ak)[n,n1, . . . ,nk] for at
least one n in U(s) (a being a new free variable).
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Example 8.10. Let M = 〈{s,s′}, R, U, |=i 〉 be the Kripke model for intuitionistic
predicate logic defined by sRs′, U(s) = {1}, U(s′) = {1,2}, s |=i P(a)[1], s′ |=i

P(a)[1], and s′ �|=i P(a)[2].

{1} s P(a)[1]
|
↓

{1,2} s′ P(a)[1]

Then M,s |=i ¬∀x[P(x)], because M,s �|=i ∀x[P(x)] (since M,s′ �|=i P(a)[2]) and
M,s′ �|=i ∀x[P(x)]. But M,s �|=i ∃x[¬P(x)], because M,s �|=i ¬P(a)[1].
Hence, M,s �|=i ¬∀x[P(x)]→∃x[¬P(x)].

Example 8.11. Let M = 〈 S, R, U, |=i 〉 be the Kripke model for intuitionistic pred-
icate logic defined by:

s1 |=i P(a)[1], s2 |=i P(a)[1], s2 |=i Q, s2 �|=i P(a)[2], {1,2}

{1}

s2

s1
P(a)[1]

P(a)[1],Q
U(s1) = {1}, U(s2) = {1,2},
S = {s1,s2}, s1Rs1,s1Rs2 and s2Rs2,

Then M,s1 |=i ∀x[P(x)∨Q], but M,s1 �|=i ∀x[P(x)]∨Q (because M,s1 �|=i ∀x[P(x)]
and M,s1 �|= Q). Hence, M,s1 �|=i ∀x[P(x)∨Q]→∀x[P(x)]∨Q.

Example 8.12. Let M = 〈 S, R, U, |=i 〉 be the Kripke model for intuitionistic pred-
icate logic defined by:
S = {s1,s2, . . .},
for all i, j, if 1≤ i≤ j, then siRs j,
for all i = 1,2, . . . ,U(si) = {1, . . . , i},
for all i≥ 2,si |= P(a)[1], . . . ,si |= P(a)[i− 1],

P(1),P(2)
P(1)

{1} s1

{1,2} s2

{1,2,3} s3

si �|= P(a)[i],

Then for each s in S, M,s �|=i ∀x[P(x)∨¬P(x)]. Hence, M,s1 |=i ¬∀x[P(x)∨¬P(x)].

The reader can easily verify that the analogue of Lemma 8.1 holds again for intu-
itionistic predicate logic.

Lemma 8.2. Let M = 〈 S, R, U, |=i〉 be a Kripke model, s and t elements of S and
A = A(a1, . . . ,ak) a formula.
If M,s |=i A[n1, . . . ,nk] and sRt, then M, t |=i A[n1, . . . ,nk].

Definition 8.23 (Intuitionistically Kripke-valid Consequence).
Let M = 〈 S, R, U, |=i 〉 be a Kripke model for intuitionistic predicate logic and
A = A(a1, . . . ,ak) a formula.
(a) M is a model for A, or A holds in M := for all s in S and for all n1, . . . ,nk in U(s),
M,s |=i A(a1, . . . ,ak)[n1, . . . ,nk]. Notation: M |=i A.
(b) A is intuitionistically Kripke-valid := for all Kripke models M, M |=i A.
Notation: |=i A.
(c) B is an intuitionistically Kripke-valid consequence of A1, . . . ,An :=
|=i A1∧ . . .An → B. Notation: A1, . . .An |=i B.
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Example 8.13. For the Kripke model M of Example 8.10, M �|=i ¬∀x[P(x)] →
∃x[¬P(x)]. For the Kripke model M of Example 8.11, M �|=i ∀x[P(x) ∨ Q] →
∀x[P(x)]∨Q. And for the Kripke model M of Example 8.12, M �|= ¬¬∀x[P(x)∨
¬P(x)]. Since |=i ∀x[¬¬(P(x)∨¬P(x))], it follows that ∀x[¬¬A(x)] �|=i ¬¬∀x[A(x)].

8.6.4 Soundness and Completeness

The intuitionistic Hilbert-type proof system in Subsection 8.6.1 for intuitionistic
predicate logic is sound with respect to the intuitionistic Kripke semantics given in
Subsection 8.6.3.

Theorem 8.9 (Soundness). If A1, . . . ,An �i B, then A1, . . . ,An |=i B.

Proof. The proof is a generalization of the proof of the soundness theorem (Theo-
rem 8.2) for intuitionistic propositional logic.

The procedure to construct a counterexample to a given conjecture A1, . . . ,An �′
i

B, given in Definition 8.14 for intuitionistic propositional logic, may be adapted
to intuitionistic predicate logic, taking also the quantifiers into account. We shall
illustrate this procedure in the Examples 8.14 and 8.15. Again, if this procedure
yields an open search tree, then we have actually constructed an intuitionistic Kripke
counterexample to the given conjecture. And if all search trees are closed, then the
closed branches form together a tableau-deduction of B from A1, . . . ,An. Hence,
again we may conclude that the tableaux rules for intuitionistic predicate logic are
complete with respect to the Kripke semantics for intuitionistic predicate logic:

Theorem 8.10 (Completeness). If A1, . . . ,An |=i B, then A1, . . . ,An �′
i B.

Finally, we may generalize the proof of Theorem 8.1 to intuitionistic predicate logic:

Theorem 8.11. If A1, . . . ,An �′
i B, then A1, . . . ,An �i B.

Hence, the three notions of A1, . . . ,An �i B, A1, . . . ,An |=i B and A1, . . . ,An �′
i B turn

out to be equivalent.

Example 8.14. We wonder whether ¬∀x[P(x)] �′
i ∃x[¬P(x)]. Our procedure to con-

struct a counterexample to this conjecture yields the search tree in the left column
below:
T ¬∀x[P(x)], F ∃x[¬P(x)]
T ¬∀x[P(x)], F ¬P(a1)
T ¬∀x[P(x)], T P(a1) {1} s P(a)[1]
F ∀x[P(x)], T P(a1) |

| ↓
T ¬∀x[P(x)], F P(a2), T P(a1) {1,2} s′ P(a)[1]

Although we may proceed with developing this search tree, it is clear that we will
never find closure. In fact, we have constructed the Kripke counterexample M de-
scribed in Example 8.10, as depicted in the right column above. For instance, by
definition s |=i P(a)[1], corresponding with the fact that T P(a1) occurs in s.
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Example 8.15. We wonder whether ∀x[P(x)∨Q] �′i ∀x[P(x)]∨Q. Our procedure to
construct a counterexample to this conjecture yields among others the search tree in
the left column below:

TP(a1), TQ, T ∀x[P(x)∨Q], FP(a2)
TP(a1), T P(a2)∨Q, T ∀x[P(x)∨Q], FP(a2)

T P(a1), T ∀x[P(x)∨Q], FP(a2)

T P(a1), T ∀x[P(x)∨Q], F ∀x[P(x)], FQ
T P(a1)∨Q, T ∀x[P(x)∨Q], F ∀x[P(x)], FQ

T ∀x[P(x)∨Q], F ∀x[P(x)]∨Q

P(a)[1], Q

P(a)[1]

{1,2} s2

{1} s1

From this open search tree one may easily read off the the Kripke counterexample
described in Example 8.11, as depicted in the right column above. For instance,
by definition s1 |=i P(a)[1] corresponding to the fact that T P(a1) occurs in s1 and
s2 |=i Q corresponding to the fact that TQ occurs in s2.

The proofs of the soundness and completeness of intuitionistic predicate logic with
respect to (intuitionistic) Kripke semantics are generalizations of the correspond-
ing proofs for intuitionistic propositional logic (see the proofs of Theorem 8.2 and
8.5), and are analogous to the corresponding proofs for classical predicate logic (see
Chapter 4).

There is however one complication. Also for intuitionistic predicate logic we
have: if A is Kripke valid, then there is no open search tree starting with F A. Thus,
if A is Kripke valid, we can conclude that each search tree starting with F A is not
open, i.e., each search tree starting with F A is not not closed. Classically, we can
conclude from this that each search tree starting with FA is closed (and hence that
A is formally provable), but not so intuitionistically. So the completeness theorem
for intuitionistic predicate logic with respect to (intuitionistic) Kripke semantics
can only be proved if we use a classical metalanguage and not if we want to use
intuitionistic metamathematics.

W. Veldman [16] has discovered a generalization of the notion of an intuitionistic
Kripke model and hence a somewhat different notion of Kripke validity, such that
completeness with respect to this generalized Kripke semantics can be proved intu-
itionistically. The essence is to allow that ⊥ (falsum) is true in one or more proof
situations and to demand that if ⊥ is true in situation s (s |=i ⊥), then every formula
A is true in s (s |=i A). Next this idea was used by de Swart [14] to give another
intuitionistic completeness proof with respect to a different semantics.

Note that the transition from ‘not not closed’ to ‘closed’ is intuitionistically cor-
rect in the case of intuitionistic propositional logic, because in that case we can for
each search tree decide whether it is closed or not. And from ∀t[C(t)∨¬C(t)] and
∀t[¬¬C(t)], where C(t) stands for ‘the search tree t is closed’, it follows intuition-
istically that ∀t[C(t)].

Like classical predicate logic, also intuitionistic predicate logic is undecidable.
The search trees starting with F A may become infinitely long, each time introducing
new variables and we may not know whether we can stop at some stage.
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Exercise 8.19. Verify (intuitively) that intuitionistically the following formulas hold
true: a) ¬∃x∈V [¬A(x)]� ∀x∈V [¬¬A(x)]; b)¬¬∀x∈V [A(x)]→∀x∈V [¬¬A(x)].
c) Verify (intuitively) that the following formula does not hold intuitionistically:
∀x ∈V [¬¬A(x)]→∀x ∈V [A(x)].
d1) Show that a) is intuitionistically tableau-provable and d2) that a) is also formally
provable (in the intuitionistic Hilbert-type proof system).

Exercise 8.20. Prove that for A a formula in prenex normal form (see Subsection
4.3.5) �′i A (in intuitionistic predicate logic) is decidable. Since intuitionistic predi-
cate logic is undecidable, it follows that not every formula has a prenex normal form
to which it is equivalent in intuitionistic predicate logic.

Exercise 8.21. Prove that if �′i ∃x[A(x)] (intuitionistically) and in A(a) there occur
no other free variables than a, then �′i ∀x[A(x)].

Exercise 8.22. Prove that ∀x[P(x)∨Q]→ ∀x[P(x)]∨Q holds in all Kripke models
(for intuitionistic predicate logic) M = 〈 S, R, U, |=i 〉 with constant domain, i.e.,
U(s) =U(s′) for all s, s′ in S. (Compare Example 8.11.)

Exercise 8.23. For each formula A of intuitionistic predicate logic we define a for-
mula A′ of modal predicate logic by induction as follows: P′ := �P, (B → C)′ :=
�(B′ → C′), (¬B)′ := �¬(B′), (B∧C)′ := B′ ∧C′, (B∨C)′ := B′ ∨C′, (∀x[B(x)])′
:= �∀x[B(x)′], (∃x[B(x)])′ := ∃x[B(x)′]. Prove that |=i A iff |= A′ in S4, i.e., A is
intuitionistically Kripke valid iff A′ is valid in the modal logic S4 (see Chapter 6).

8.7 Sets in Intuitionism: Construction Projects and Spreads

Intuitionistically, a set – like any other mathematical object – should be a men-
tal construction. Natural numbers can be conceived as objects which are finitely
constructible. Intuitionistically, the set of all natural numbers is identified with the
following construction project: a) 0 is a natural number, and b) if n is a natural num-
ber, then n′ is a natural number too. (The term ‘construction project’ was coined by
Johan J. de Iongh.)

The set N of the natural numbers is intuitionistically not regarded as a completed
totality, but only as potential or becoming or constructive. The construction project
can be stated in only two clauses, but it generates the potentially infinite set N of
the natural numbers. At each stage only finitely many elements of N will actually
have been constructed; but also at each stage the construction project tells us how to
continue the construction of new natural numbers.

In classical mathematics one accepts the Powerset axiom: if V is a set, then P(V )
is a set too. It follows that P(N), PP(N), PPP(N), . . . are sets of ever increasing
cardinality. However, these sets are not surveyable in the most literal meaning of the
word; more precisely, no construction project is known of which we could reason-
ably say that it generates the elements of such a set in the course of time. For that
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reason, Brouwer rejected the powerset axiom and refused to accept the existence of
these sets.

The notion of construction project is a primitive, i.e., undefined, one. But we cer-
tainly want to say that the clauses a) and b) above together define a construction
project for N. In what follows we introduce the notion of spread, which we want to
consider as a particular kind of construction project. We do not exclude the possibil-
ity that one may discover other kinds of construction projects in the future, although
we are not aware of them now.

The intuitionist constructs the integers from the natural numbers (Z is enumer-
able) and the rationals from the integers (Q is enumerable), just like this is done in
classical set theory. A more difficult question is whether there is an intuitionistic set
which can reasonably be called R; in other words, if we can generate the elements
of such an R by an appropriate construction project. Only if this is the case, does
quantification over the reals (‘for all x ∈R . . .’ and ‘for some x∈R . . .’) make sense.
One could say that Brouwer invented the spread concept in order to answer this
question.

Now the construction project for R is rather complicated. For that reason we first
indicate a construction project for {0,1}N, i.e., the set of all (potentially) infinite
sequences of zeros and ones. Schematically, the construction project for {0,1}N
looks as follows:
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As an introduction one might think of a construction project as a mental project
generating all possibilities to swim from Amsterdam to ‘the end of the world’, where
at each stage one has the choice of going to the left or going to the right.

By choosing an element from {0,1} at successive moments or stages, potentially
infinite sequences of zero’s and one’s come into being. These sequences are gener-
ated in the course of time by a simple precept, called the choice-law: at each stage
choose either a zero or a one. We identify the (intuitionistic) set {0,1}N with this
precept; and we call the potentially infinite sequences of zero’s and one’s the el-
ements of this set, since they are generated in accordance with the corresponding
choice-law. One does have an overall picture of how the elements of this set come
into being.

The elements of a spread are generated by choosing natural numbers consecu-
tively, with due observation of a choice-law (corresponding to the given spread),
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which prescribes which natural numbers may be chosen given the choices already
made before.

In the case of {0,1}N, the choice-law dictates that to each finite sequence of
natural numbers already chosen before, we may choose only an element of {0,1}.
This spread is also called σ01 or the binary spread. A different choice-law is the
one that dictates that given a finite sequence of natural numbers chosen before, one
may choose an element of {0,1} if the given finite sequence does not contain 1 and
that otherwise one has to choose an element of {1}. The spread belonging to this
choice-law generates the monotone non-decreasing elements of σ01 and is called
σ01mon. Below is a picture of σ01mon.
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The elements of the spread, called choice-sequences, are the potentially infinite se-
quences of natural numbers which are admitted by the choice-law of the spread. So
the elements of {0,1}N are the potentially infinite sequences of zero’s and one’s.

σω is the universal spread, i.e., NN. This choice-law dictates that to each finite
sequence of natural numbers already chosen before, one may choose any natural
number n in N.

Some authors define a spread simply as a tree in which each node has at least one
successor. This is not in the spirit of intuitionism, but rather in the spirit of classical
mathematics.

We may consider every element of {0,1}N as the characteristic function of a
subset of N (see Theorem 3.12). Note that from an intuitionistic point of view, the
characteristic function KU (Definition 3.27) of a subset U of N is only well defined
if U is decidable, i.e., if for each n ∈ N one can decide whether n ∈U or not. So,
the intuitionist also has at his disposal the set Pdec(N), i.e., the set of all decidable
subsets of N.

The set containing just 0 if Goldbach’s conjecture holds and containing just 1 if
Goldbach’s conjecture does not hold, is a subset of N, but not a decidable one. In
fact, the intuitionist does not know of any spread to which we could reasonably give
the name P(N). Up till now no one has succeeded to present a construction project
which might be said to generate in the course of time all subsets of N.

As he needed a construction project for R, and not just for NN, Brouwer gener-
alized the notion of spread just introduced. A dressed spread consists of

1. a choice-law, prescribing – given a finite sequence of natural numbers already
chosen before – which natural numbers may be chosen next, and
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2. a correlation-law, which after each choice correlates effectively an object from
a fixed countable set to the finite sequence of natural numbers chosen up till now.

The elements of a dressed spread, again called choice-sequences, are the poten-
tially infinite sequences of objects which have been assigned by the correlation-law
to the sequences of natural numbers chosen according to the choice-law.

In Brouwer’s applications those correlated objects can be natural numbers, but
also rational numbers and intervals with rational endpoints. Defining real num-
bers as infinite sequences of intervals with rational endpoints (for instance,

√
2 =

[1,2], [1.4,1.5], [1.41,1.42], [1.414,1.415], . . .), Brouwer indicated a specific choice-
law and a specific correlation-law such that the corresponding spread has precisely
the reals as elements.

A (dressed) spread is not thought of intuitionistically as the ‘totality’ of its el-
ements, but rather as the pair consisting of the choice-law and the correlation-law,
which together govern the generation process under which its elements grow. So
a (dressed) spread is a construction project, which generates the elements of the
spread in the course of time. These elements are potentially infinite sequences (for
instance, of intervals with rational endpoints, in the case of R), of which at each
stage only a finite initial segment has been completed, but of which also is pre-
scribed at each stage how the finite sequence already constructed can be continued.
Among the elements of a spread there are choice sequences which are extensionally
the same as individual choice sequences defined by a particular law or otherwise.

For sets which can be obtained by means of a construction project, in particu-
lar for spreads, some surprising axioms are defended. One of them is Brouwer’s
Continuity Principle, which we explain below.

Brouwer’s Continuity Principle for natural numbers: Let σ be a spread.
If ∀α ∈ σ ∃k ∈ N [A(α,k)], then

∀α ∈ σ ∃m ∈ N ∃k ∈ N ∀β ∈ σ [β̄ m = ᾱm→ A(β ,k)].

i.e., for each α in σ there is an initial segment of length m and a natural number k
such that to all β in σ having the same initial segment of length m as α the same
natural number k is correlated; β̄m = ᾱm := ∀n < m[β (n) = α(n)].

Justification: Although Brouwer used this principle without further justification,
we now try to give a justification. Suppose ∀α ∈ σ ∃k ∈ N [A(α,k)]. Because intu-
itionistically the elements of a spread are considered as continuously growing with
new choices and not as being completed, and because natural numbers themselves
are finite constructions, the correlation that associates with each α in σ a natural
number k can intuitionistically only consist in such a way that the correlated natural
numbers will be determined effectively at a certain finite stage in the growth of the
choice sequences. That is, intuitionistically the correlated natural numbers will have
to be determined by finite initial segments of the choice sequences. The justification
of Brouwer’s principle ultimately rests on the insight that each element α in σ can
be thought of as being given step by step, also in the case that some particular α is
determined by a finite law. And the truth of A(α,k) does not depend on the manner
in which α has been generated. �
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We now derive a consequence from Brouwer’s principle.

Theorem 8.12. Let σ =σ01 and 0 be the element in σ01 such that ∀n∈N [0(n) = 0].
Then ¬∀α ∈ σ [α = 0∨¬(α = 0)].

Proof. Suppose ∀α ∈ σ [α = 0∨¬(α = 0)], i.e.,

∀α ∈ σ ∃k ∈ N [(k = 0∧α = 0)∨ (k = 1∧¬(α = 0))].

By Brouwer’s principle, ∀α ∈ σ ∃m ∈N ∃k ∈ N ∀β ∈ σ [β̄ m = ᾱm→
(k = 0∧β = 0)∨ (k = 1∧¬(β = 0))].

Now consider α = 0. Then there is m ∈ N such that ∀β ∈ σ [β̄m = ᾱm→ β = 0].
However, let β be such that β̄ m = ᾱm = 0̄m and β (m) = 1. Then β �= 0. Contradic-
tion. Therefore ¬∀α ∈ σ [α = 0∨¬(α = 0)]. ��
Notice that although for each α ∈ σ01 the statement α = 0∨α �= 0 itself does not
yield a contradiction – in fact, ¬¬(α = 0∨α �= 0) – , the simultaneous quantifica-
tion over all α ∈ σ01 of the expression α = 0∨α �= 0 does lead to a contradiction.
Summarizing: ¬¬(α = 0∨α �= 0), but ¬∀α ∈ σ01 [α = 0∨α �= 0].

From Brouwer’s principle it also follows that there do not exist bijective map-
pings from either σ01 or σ01mon to N (Brouwer 1918; see Exercise 8.24). Note that
from a classical point of view σ01mon is an enumerable set.

Given a construction project which results in an intuitionistic set V and given
a well defined extensional property A(x) concerning the elements x of V , an intu-
itionist also accepts W := {x ∈V | A(x)} as a set, for quantification over W may be
explained in the usual way as a restricted quantification over V : ∀x ∈W [E(x)] :=
∀x ∈V [A(x)→ E(x)] and ∃x ∈W [E(x)] := ∃x ∈V [A(x)∧E(x)].

For a more extensive treatment of spreads and the axioms holding for them see
Gielen, Veldman and de Swart [7].

Choice Sequences Choice-sequences are the potentially infinite sequences of natu-
ral numbers which are generated by the choice-law of the spread. And in the case
of a dressed spread choice sequences are the potentially infinite sequences of ob-
jects which have been assigned by the correlation-law to the sequences of natural
numbers chosen according to the choice-law.

Some particular choice sequences may be called lawlike, for instance, the se-
quence 0 which is generated by the choice-law that dictates that given a finite se-
quence of choices already made before one has to choose a 0 and nothing else.
Other particular choice sequences may be called lawless, for instance, the sequence
which is generated by the choice-law that dictates that given any finite sequence of
choices already made before one has to choose any natural number and of which we
have determined in advance that the choice-law will never impose any restriction on
further choices.

However, the expression ‘α is lawlike’ is not a well defined propositional func-
tion for α ∈ σω for the following reasons:
1. The notion of finite law has not been defined precisely.
2. Let A(α) := α is lawlike. Then A(0) is true. But A(0,0,0, . . .) is not true for the
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sequence 0, 0, 0, . . . which ‘accidentally’ only contains zero’s. But a well defined
propositional function should be a function in the sense that if α and β are exten-
sionally equal, then A(α) and A(β ) should be the same well defined assertion.

‘0 is lawlike’ is a well defined proposition (what-ever ‘lawlike’ may mean pre-
cisely). But as long as α has not been specified by some specific finite law, the
expression ‘α is lawlike’ has no clear meaning, because the notion of ‘finite law’
has not been defined. Consequently, we are not able to speak about the set of all law-
like sequences and hence we cannot quantify over them. Similar observations hold
for the expressions ‘α is lawless’ and ‘the set of all lawless sequences’. We have no
construction project that generates in the course of time all lawlike (respectively, all
lawless) sequences! See de Swart [15].

A(β ), e.g., ∀n[β (n) = 0], is a propositional function, rather than a well defined
proposition. If we have a construction determining all values of β , then this con-
struction together with our understanding of A(β ) would result in a well defined
proposition. But as long as such a finite law for β is not given, we have neither a
proof of A(β ), nor an insight in the impossibility of experiencing the truth of A(β ).

Summarizing: 1. Intuitionistic objects, in particular sets, are finite constructions
or construction projects. 2. Construction projects for non-denumerable sets techni-
cally boil down to spreads. A dressed spread consists of i) a choice law and ii) a
correlation law. 3. Choice sequences are just the elements of a spread. 4. Brouwer
defines the set R as a dressed spread whose choice sequences are infinite sequences
of (decreasing) intervals with rational endpoints. 5. Brouwer’s principle is proved
by reflection on what it means to have a proof of ∀α ∈ σ∃k ∈ N [ A(α,k) ], rather
than the result of the peculiar epistemological status of choice sequences. 6. Quan-
tification only makes sense if it is a quantification over an intuitionistic set, i.e., a
set for which one has a construction(-project).

Starting from these philosophically sound principles it is quite possible to de-
velop intuitionistic mathematics, enough for the purposes of science (physics, eco-
nomics, etc.). See, for instance, Veldman [17, 18] and de Swart [13].

Exercise 8.24. Using Brouwer’s principle, prove that there is no bijection from σ01

to N, neither from σ01mon to N. However, from a classical point of view σ01mon is
enumerable; explain the difference.

8.8 The Brouwer Kripke axiom

Brouwer-Kripke axiom (Brouwer, 1948) Let P be a determinate proposition. Then
there is an α in σ01 such that P � ∃n[α(n) = 1].

Justification Given a determinate proposition P it can be pondered again and again
in my mathematical life. We construct α as follows: α(n) = 1 if at stage n I did
succeed in proving P; otherwise, α(n) = 0. ��
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Johan de Iongh stressed that P should be determinate, i.e., P should not depend on
infinite objects which are still under construction. As long as information about P
has not yet been completed, I cannot really start to think about its truth. In particular,
P should not be of the form ∀n[β (n) = 0], in which case one would obtain a contra-
diction from the Brouwer-Kripke axiom and what Kleene [9] called Brouwer’s prin-
ciple for functions. Wim Veldman [17] calls this principle AC11, where AC stands
for Axiom of Choice.

Theorem: The Brouwer Kripke axiom and AC11 (Brouwer’s principle for functions)
are contradictory when applied to the expression ∀n[β (n) = 0] with β in σ01.

For a precise formulation of AC11 and for a proof of this theorem we refer the reader
to [17] or [7]. Several authors have blamed this contradiction on AC11 (Brouwer’s
principle for functions); however, the restriction proposed by Johan de Iongh that P
should be determinate seems rather natural and self-evident, while AC11 has a good
justification.

Application of the Brouwer-Kripke axiom: Let α(n) = 1 if at stage n I have a
proof of G∨¬G, where G is Goldbach’s conjecture. Then G∨¬G↔∃n[α(n) = 1].
Because of ¬¬(G∨¬G) we know ¬¬∃n[α(n) = 1]. But G∨¬G, i.e., ∃n[α(n) = 1]
cannot be asserted.

8.9 Solutions

Solution 8.1. (a) If A→B, then¬B→¬A. Conversely, if¬B→¬A, then A→¬¬B.
But we are not entitled to infer A→ B from ¬B→¬A. For ¬B→¬(¬¬B) is intu-
itionistically valid and ¬¬B→ B is not.
(b) (¬A∨¬B)→ ¬(A∧ B) is intuitionistically valid: (¬A∨¬B) and (A∧ B) to-
gether yield a contradiction. The converse formula ¬(A∧B)→ (¬A∨¬B) is not
valid intuitionistically: interpreting A as Goldbach’s conjecture and B as ¬A we
have ¬(A∧¬A), but not ¬A∨¬¬A.
(c) (A→ B)→¬(A∧¬B) is intuitionistically valid: (A→ B) and (A∧¬B) together
yield a contradiction. But ¬(A∧¬B)→ (A→ B) is not valid intuitionistically: inter-
preting A as ¬¬B we have ¬(¬¬B∧¬B), but not ¬¬B→ B, as we have seen before.
(d) (¬A∨B)→ (A→B) is intuitionistically valid:¬A→ (A→B) and B→ (A→B),
hence (¬A∨B)→ (A→ B). But (A→ B)→ (¬A∨B) is not valid intuitionistically:
interpreting B as ¬¬A we have A→¬¬A, but not ¬A∨¬¬A.
(e) ((A→B)∨(A→C))→ (A→B∨C) is intuitionistically valid: (A→ B)→ (A→
B∨C) and (A→C)→ (A→ B∨C), hence ((A→ B)∨ (A→C))→ (A→ B∨C).
But the converse formula is not valid intuitionistically: interpreting A as B∨C we
have B∨C→ B∨C, but not (B∨C→ B)∨ (B∨C→C).
(f) (A∨¬A)→ (¬¬A→ A) is intuitionistically valid: for if A∨¬A, then ¬¬A rules
out the second possibility ¬A; so, only the first possibility A is left. (¬¬A→ A)→
(A∨¬A) is not intuitionistically valid: interpreting A as ¬¬P we have ¬¬¬¬P →
¬¬P, but not ¬¬P∨¬¬¬P which is equivalent to ¬¬P∨¬P.
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Solution 8.2. 1. If A→C, then ¬C→¬A and hence ¬(¬A)→¬(¬C).
2. If A→ (B→C) and B, then A→C and so by 1) ¬¬A→¬¬C.
3. If A→ (B→C) and ¬¬A, then by 2) B→¬¬C and hence by 1) ¬¬B→¬¬¬¬C,
i.e., ¬¬B→¬¬C.
4. From 3) with A→ B, A, B instead of A, B, C respectively, if (A→ B)→ (A→ B)
and ¬¬(A→ B), then ¬¬A→¬¬B.
5. Suppose ¬¬A → ¬¬B and ¬(A → B). Then ¬¬A and ¬B, for A → B follows
both from ¬A and from B. So, ¬¬A and ¬¬A→¬¬B. Therefore, ¬¬B. Contradic-
tion with ¬B. So, if ¬¬A→¬¬B, then ¬¬(A→ B).
6. From 3) with A, B, A∧B instead of A, B, C respectively, if A→ (B→ A∧B) and
¬¬A, then ¬¬B→¬¬(A∧B). Hence, if ¬¬A∧¬¬B, then ¬¬(A∧B).
7. A∧B→ A. Hence by 1), ¬¬(A∧B)→¬¬A. Similarly, ¬¬(A∧B)→¬¬B.
8. A→A∨B. Hence by 1),¬¬A→¬¬(A∨B). Similarly,¬¬B→¬¬(A∨B). There-
fore, if ¬¬A∨¬¬B, then ¬¬(A∨B).
9. Take B = ¬A. Then ¬¬(A∨¬A), but ¬¬A∨¬A is not intuitionistically valid.

Solution 8.3. If A is decidable, i.e., A∨¬A, then ¬¬A eliminates the second option
¬A and consequently only the first option A is left.

Solution 8.4. Axiom 8i, ¬A→ (A→ B), of intuitionistic propositional logic is (for-
mally) provable in classical propositional logic. This follows from ¬A, A � B (weak
negation elimination) by two applications of the deduction theorem. Hence, we have
(i): all formulas provable in the intuitionistic system are provable in the classical
system. Since the proof of the deduction theorem only uses the axiom schemas 1
and 2 and applications of Modus Ponens and since all these tools are available in
intuitionistic propositional logic, we have (ii): the deduction theorem also holds for
intuitionistic propositional logic.

Solution 8.5. Note that the deductions found in Exercise 2.60 a ii), b ii) and c ii) do
use the rule of double negation elimination (d¬E), while those in a i), b i) and c i)
do not.

Solution 8.6. a) We restrict ourselves to a tableau-proof of A → (B → A) and of
¬A→ (A→ B):

F A→ (B→ A) F ¬A→ (A→ B)
TA, F B→ A T ¬A, F A→ B
TA, T B, FA T ¬A, FA, F A→ B
closure T ¬A, TA, FB

T ¬A, FA, TA, FB
closure

b) 1) In the left column below is an intuitionistic tableau-proof of A→¬¬A, while
in the right column there is a failed attempt to give an intuitionistic tableau-proof of
¬¬A→ A:

F A→¬¬A F ¬¬A→ A
TA, F ¬¬A T ¬¬A, FA
TA, T ¬A T ¬¬A, F ¬A, FA
TA, FA T ¬¬A, TA
closure no closure
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b) 2) Below is in the left column an intuitionistic tableau-proof of ¬¬(A∨¬A),
while in the right column there is a failed attempt to give an intuitionistic tableau-
proof of A∨¬A:

F ¬¬(A∨¬A) F A∨¬A
T ¬(A∨¬A) FA, F¬A
T ¬(A∨¬A), F A∨¬A TA
T ¬(A∨¬A), FA, F¬A no closure
T ¬(A∨¬A), TA
T ¬(A∨¬A), F A∨¬A, TA
T ¬(A∨¬A), FA, F¬A, TA
closure

c) It is not possible to construct an intuitionistic tableau-deduction of B from A→ B
and ¬A→ B:
T A→ B, T ¬A→ B, FB
FA, T A→ B, T ¬A→ B, FB | TB, T ¬A→ B, FB
FA, T A→ B, F¬A, FB | FA, T A→ B, T B, FB | T B, T ¬A→ B, FB
T A→ B, TA
FA, TA | TB, TA

no closure

Solution 8.7. Below in the left column there is a classical tableau-proof of (P →
Q)∨ (Q→ P), and in the right column there are two failed attempts to construct an
intuitionistic tableau proof of (P→ Q)∨ (Q→ P).

F (P→ Q)∨ (Q→ P) F (P→ Q)∨ (Q→ P)
F P→ Q, F Q→ P F P→Q, F Q→ P
T P, FQ, F Q→ P ↙↘
T P, FQ, T Q, FP T P, FQ T Q, FP

no closure no closure

Solution 8.8. In all F-rules, except in the rules F → and F¬, going from the top
downwards, only F-formulas are introduced, while in the intuitionistic rules F →i

and F¬i, S is replaced by ST . So: if an intuitionistic tableau-proof starts with
F B∨C

FB, FC
then it is impossible that in the lowest sequents – which are of the form S, TA, FA
– in the tableau-proof of B∨C, TA results from FB and FA results from FC, by
application of the rules. Hence, if �′i B∨C, then �′i B or �′i C.
The classical variant does not hold; for instance, �′ P∨¬P, but ��′ P and ��′ ¬P.

Solution 8.9. A∨B �′i (A→ B)→ B, but not (A→ B)→ B �′i A∨B:
T A∨B, F (A→ B)→ B T (A→ B)→ B, F A∨B
T A∨B, T A→ B, FB T (A→ B)→ B, FA, FB
TA, T A→ B, FB | T B, T A→ B, FB F A→ B, FA, FB | TB, FA, FB
TA, FA, FB | TA, TB, FB | closure TA, FB
closure closure no closure
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(A→ B)→ B �′i ¬¬(A∨B), but conversely not ¬¬(A∨B) �′i (A→ B)→ B:
T (A→ B)→ B, F ¬¬(A∨B) T ¬¬(A∨B), F (A→ B)→ B
T (A→ B)→ B, T ¬(A∨B) T ¬¬(A∨B), T A→ B, FB
T (A→ B)→ B, F A∨B T ¬¬(A∨B), F A, FB | T ¬¬, T B, FB
T (A→ B)→ B, FA, FB F ¬(A∨B), FA, FB | closure
F A→ B, FA, FB | T B, FA, FB T A∨B, T A→ B
TA, FB, T¬(A∨B) | closure TA, T A→ B | TB, T A→ B
TA, FB, F A∨B TA, FA | TA, T B | T B, FA | T B, T B
TA, FB, FA, FB closure | no closure | no closure | no closure
closure

Solution 8.10. 1) ¬¬A∧¬¬B �′i ¬¬(A∧B) and ¬¬(A∧B) �′i ¬¬A∧¬¬B.
2) ¬¬A → ¬¬B �′i ¬¬(A → B) and conversely; ¬¬(A → B) �′i A → ¬¬B and
conversely.
3) for each formula A, �′i ¬¬¬A→¬A.
4) It follows from 3) that (if A and B are stable, then) A ∨ B is stable.
5) ¬¬A∨¬¬B �′i ¬¬(A∨B), but conversely not ¬¬(A∨B) �′i ¬¬A∨¬¬B .

Solution 8.11. 1) Here is an intuitionistic tableau-proof of (A∨¬A)→ (¬¬A→ A):
F (A∨¬A)→ (¬¬A→ A)
T A∨¬A, F ¬¬A→ A
T A∨¬A, T ¬¬A, FA
TA, T ¬¬A, FA | T ¬A, T ¬¬A, FA
closure | T¬A, F ¬A, FA

closure
2) ¬P (P atomic) is stable, i.e., �′i ¬¬¬P → ¬P, but ¬P is not decidable, i.e., not
�′i ¬P∨¬¬P.

Solution 8.12. 1. If E = P (atomic), then E∗ = ¬¬P and �′i ¬¬¬¬P → ¬¬P, i.e.,
E∗ = ¬¬P is stable. Suppose that A∗ and B∗ are stable (induction hypothesis).
If E = A∧B, then E∗ = A∗ ∧B∗; and by Exercise 8.10 (1) E∗ is stable.
If E = A→ B, then E∗ = A∗ → B∗; and by Exercise 8.10 (2) E∗ is stable.
If E = ¬A, then E∗ = ¬A∗; and E∗ is stable by Exercise 8.10 (3).
If E = A∨B, then E∗ = ¬(¬A∗ ∧¬B∗); and by Exercise 8.10 (4) E∗ is stable.
2. Suppose A1, . . . ,An � B (classically), i.e., there is a schema of the form

axiom 1, . . . , axiom 8, A1, . . . ,An

C→ DC

D

B

Replace each formula E in this schema by E∗.
(axiom 1)∗ = (A → (B → A))∗ = A∗ → (B∗ → A∗) is again an instance of axiom
schema 1. (axiom 5a)∗ = (A→ A∨B)∗ = A∗ → (A∨B)∗ = A∗ → ¬(¬A∗ ∧¬B∗) is
intuitionistically provable.
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(axiom 6)∗ = ((A → C)→ ((B → C)→ (A∨B → C)))∗ = (A∗ → C∗)→ ((B∗ →
C∗)→ (¬(¬A∗ ∧¬B∗)→ C∗)). Now, �i (A∗ → C∗)→ ((B∗ → C∗)→ (¬(¬A∗ ∧
¬B∗)→¬¬C∗)) and, since C∗ is stable, �i ¬¬C∗ →C∗. Therefore, �i (axiom 6)∗.
(axiom 8)∗ = (¬¬A→ A)∗ = ¬¬A∗ → A∗ is intuitionistically provable (since A∗ is
stable).

Since (C → D)∗ = C∗ → D∗, C∗ (C→ D)∗
D∗ is again an application of Modus

Ponens. Therefore, the schema above can be transformed into an intuitionistic de-
duction of B∗ from A∗1, . . . ,A

∗
n.

Solution 8.13. While classically the formulas P → P and P∨ ¬P are equivalent
and both classically valid (always true), because of the stronger meaning of the ∨-
connective in intuitionism, the formula P∨¬P is intuitionistically no longer valid;
however, the formula P→ P is also intuitionistically valid.

Solution 8.14. * Suppose Γ |C for all formulas C in Γ and let Γ �i A. Then either
1. A ∈ Γ , or 2. A is an axiom, or 3. there are formulas B and B→ A such that Γ �i B
(1), Γ �i B→ A and A is deduced from B and B→ A by Modus Ponens.
In case 1, Γ | A by hypothesis. In case 2, one easily checks that Γ | A for each
intuitionistic axiom A. In case 3, by induction hypothesis, Γ | B (2) and Γ | B→ A
(3). From (1) and (2), Γ |� B and hence, by (3), Γ | A.
Suppose H | H and H �i B∨C. Then, by the Theorem just proved, H | B∨C, i.e.,
H |� B or H |�C. Hence, H �i B or H �i C.

Solution 8.15. * For A = P (atomic), the theorem is trivial. Induction Hypothesis:
�i A1 � B1∨ . . .∨Bm and �i A2 �C1∨ . . .∨Cn, where each Bi and Cj satisfies the
conditions specified.
Case 1: A = A1∨A2; then �i A � B1∨ . . .∨Bm∨C1∨ . . .∨Cn.
Case 2: A = A1 ∧ A2; then �i A � (B1 ∧C1)∨ . . .∨ (Bm ∧C1)∨ . . .∨ (Bm ∧Cn),
leaving out those Bi∧Cj which are inconsistent.
Case 3: A = A1 → A2. If A1 → A2 �i A1, then �i A � A2; hence �i A �C1∨ . . .∨Cn.
If A1 → A2 ��i A1, then �i A � B1 ∨ . . .∨ Bm → C1 ∨ . . .∨Cn and hence �i A �
(B1 →C1∨ . . .∨Cn)∧ . . .∧(Bm →C1∨ . . .∨Cn), where for all k, 1≤ k≤m, A ��i Bk

because we have supposed that A ��i A1 and therefore A ��i B1 ∨ . . .∨ Bm. (B1 →
C1∨ . . .∨Cn)∧ . . .∧(Bm →C1∨ . . .∨Cn) is consistent since, by hypothesis, A ��i A1.
Case 4: A = ¬A1; then �i A � ¬B1∧ . . .∧¬Bm.
Proof of A j | A j: Let A j = P∧¬B∧ (C→D), where A j ��i C and P atomic. To show:
A j | P and A j | ¬B and A j |C→ D, i.e., A j �i P and not A j |� B and (if A j |�C, then
A j | D). A j �i P is trivial. Because A j �i ¬B and A j is consistent, it follows that not
A j |� B. And because of A j ��i C it follows that (if A j |�C, then A j | D).

Solution 8.16.

�
�
�
�
�/
/
/
/
/--..

M1 M2

M

s0
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a) Let M1 = 〈S1, R1, |=1〉 be an intuitionistic Kripke model such that not M1,s1 |=1 B
for some s1 in S1. And let M2 = 〈S2, R2, |=2〉 be a Kripke model such that not
M2,s2 |=2 C for some s2 in S2. Let M = 〈S, R, |=i〉 be the following Kripke model:
1) S contains all nodes of S1 and of S2 and in addition one extra node s0.
2) s0Rs for all s in S1; s0Rs for all s in S2. R restricted to S1 equals R1 and R restricted
to S2 equals R2, i.e., for all s, t in S1, sRt := sR1t and for all s, t in S2, sRt := sR2t.
3) For s in S1, s |=i P := s |=1 P and for s in S2, s |=i P := s |=2 P. For all atomic
formulas P, by definition, s0 �|=i P. One easily checks that for all formulas A, M,s |=i

A iff M1,s |=1 A, if s in S1, and M,s |=i A iff M2,s |=2 A, if s in S2.
Now suppose M,s0 |=i B∨C. Then M,s0 |=i B or M,s0 |=i C.
Case 1: M,s0 |=i B; then M,s1 |=i B and hence, M1,s1 |=1 B; contradiction.
Case 2: M,s0 |=i C; then M,s2 |=i C and hence, M2,s2 |=2 C; contradiction.
Therefore, not M,s0 |=i B∨C.
b) Suppose |=i B∨C, not |=i B and not |=i C. Then there is a Kripke counterexample
M1 to B and a Kripke counterexample M2 to C. By a) it follows that there is a Kripke
counterexample M to B∨C, contradicting |= B∨C.

Solution 8.17. (a) The following schema is an intuitionistic tableau-proof of (P→
Q)→ (¬Q→¬P):

F (P→ Q)→ (¬Q→¬P)
T P→ Q, F ¬Q→¬P
T P→ Q, T ¬Q, F ¬P
T P→ Q, T ¬Q, TP
T P→ Q, FQ, TP
FP, FQ, TP | T Q, FQ, T P

Applying our procedure to construct a Kripke counterexample for (¬Q→ ¬P)→
(P→ Q) we find two different search trees, one of which is open:

F (¬Q→¬P)→ (P→Q)

T ¬Q→¬P, F P→ Q

T ¬Q→¬P, T P, FQ
F ¬Q, T P, FQ

T Q, TP 3

•

•

•

•

0

2

1

P

P,Q

From this open search tree one can read off a Kripke counterexample to (¬Q →
¬P)→ (P→Q): M = 〈{0,1,2,3}, R, |=i〉, where R is reflexive and transitive such
that 0R1, 1R2 and 2R3; and 2 |=i P, 3 |=i P and 3 |=i Q. Then M,0 �|=i (¬Q→¬P)→
(P→ Q).
(b) . . . (f) are treated similarly.

Solution 8.18. * M = 〈S, R, |=i〉 is a Kripke model, for:
1. R is reflexive, i.e., H �i H,
2. R is transitive, i.e., if H ′ �i H and H ′′ �i H ′, then H ′′ �i H,
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3. if H |=i P and HRH ′, then H ′ |=i P, i.e., if H �i P and H ′ �i H, then H ′ �i P.
Proof of: M,H |=i A iff H �i A, for H ∈ S, i.e., H | H.
1. For A = P (atomic), by definition.
2. Induction hypothesis: M,H |=i B iff H �i B, and M,H |=i C iff H �i C.
a) A = B∧C: M,H |=i B∧C iff M,H |=i B and M,H |=i C,

(ind. hyp.) iff H �i B and H �i C,
iff H �i B∧C.

b) A = B∨C: M,H |=i B∨C iff M,H |=i B or M,H |=i C,
(ind. hyp.) iff H �i B or H �i C,
(Exercise 8.14) iff H �i B∨C.

c) A = B→C: M,H |=i B→C iff for all H ′ in S such that HRH ′,
if M,H ′ |=i B, then M,H ′ |=i C.

(ind. hyp.) iff for all H ′ in S such that H ′ �i H,
if H ′ �i B, then H ′ �i C. (†)

To show: (†) iff H �i B → C. i) Suppose H �i B → C. Then (†) easily follows.
ii) Suppose (†). By Exercise 8.15 H ∧ B is intuitionistically provably equivalent
to a disjunction H1 ∨ . . .∨Hn such that for all Hj, 1 ≤ j ≤ n, Hj | Hj, i.e., Hj is
an element of S. Now Hj �i H ∧B. So, Hj �i H and Hj �i B. Hence, by (†), for all
j, 1≤ j≤ n, Hj �i C. Therefore, by∨-elimination, H1∨ . . .∨Hn �i C; so, H∧B�i C.
Consequently, H �i B→C.
Now suppose |=i A. One easily checks that P→ P | P→ P, i.e., P→ P is an element
of S. So, M,P→ P |=i A. Therefore, P→ P �i A, i.e., �i A.

Solution 8.19. a) ¬∃x ∈V [¬A(x)]→∀x ∈V [¬¬A(x)]: Suppose ¬∃x ∈V [¬A(x)], a
in V and ¬A(a). Then ∃x ∈V [¬A(x)]. Contradiction. Therefore, ∀x ∈V [¬¬A(x)].
∀x ∈V [¬¬A(x)]→¬∃x ∈V [¬A(x)]: Suppose ∀x ∈V [¬¬A(x)] and ∃x ∈V [¬A(x)].
Then for some a in V , both ¬A(a) and ¬¬A(a). Contradiction. Therefore, ¬∃x ∈
V [¬A(x)].
b) Suppose ¬¬∀x ∈V [A(x)], a in V and ¬A(a). Then ¬∀x ∈V [A(x)]. Contradiction.
Therefore ∀x ∈V [¬¬A(x)].
c) Let V = {a},A(a) := P∨¬P. Then ∀x ∈ V [¬¬A(x)] iff ¬¬(P∨¬P) and ∀x ∈
V [A(x)] iff P∨¬P. Now ¬¬(P∨¬P) is intuitionistically valid, while P∨¬P is in-
tuitionistically invalid (see Section 8.1.2).
d1)
F ¬∃x[¬A(x)]→∀x[¬¬A(x)] F ∀x[¬¬A(x)]→¬∃x[¬A(x)]
T ¬∃x[¬A(x)], F ∀x[¬¬A(x)] T ∀x[¬¬A(x)], F ¬∃x[¬A(x)]
T ¬∃x[¬A(x)], F ¬¬A(a1) T ∀x[¬¬A(x)], T ∃x[¬A(x)]
T ¬∃x[¬A(x)], T ¬A(a1) T ∀x[¬¬A(x)], T ¬A(a1)

F ∃x[¬A(x)], T ¬A(a1) T ¬¬A(a1), T ¬A(a1)
F ¬A(a1), T ¬A(a1) F ¬A(a1), T ¬A(a1)

TA(a1), T ¬A(a1) TA(a1), T ¬A(a1)
TA(a1), FA(a1) TA(a1), FA(a1)

closure closure
Hence, �′i ¬∃x[¬A(x)]→∀x[¬¬A(x)] Hence, �′ ∀x[¬¬A(x)]→¬∃x[¬A(x)]
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d2) By ∃-introduction, ¬∃x[¬A(x)],¬A(a) � ∃x[¬A(x)]. Also ¬∃x[¬A(x)],¬A(a) �
¬∃x[¬A(x)]. Therefore, by ¬-introduction, ¬∃x[¬A(x)] � ¬¬A(a). Hence, by ∀-
introduction, ¬∃x[¬A(x)] � ∀x[¬¬A(x)].
∀x[¬¬A(x)],¬A(a) � ¬A(a)∧¬¬A(a), and hence, by weak negation elimination,
∀x[¬¬A(x)], ¬A(a) � B∧¬B for any B. Hence, by ∃-elimination,
∀x[¬¬A(x)], ∃x[¬A(x)] � B∧¬B. So, by¬-introduction, ∀x[¬¬A(x)] �¬∃x[¬A(x)].

Solution 8.20. Z(∃x[B(x,a1, . . . ,am)]) := {B(ak,a1, . . . ,am), B(a1,a1, . . . ,am), . . . ,
B(am,a1, . . . ,am)}, and let Z(∀x[B(x,a1, . . . ,am)]) := {B(ak,a1, . . . ,am)}, where ak

is the first free variable not occurring in ∃x[B(x,a1, . . . ,am)], ∀x[B(x,a1, . . . ,am)]
resp. If V is a set of formulas of the form ∃x[B(x,a1, . . . ,am)] or ∀x[B(x,a1, . . . ,am)],
then Z(V ) := the union of all Z(C) for C in V . Clearly, if V is finite, then Z(V ) is
finite and the number of elements of Z(V ) can easily be estimated from the defini-
tions above.
Now suppose A is a prenex formula Q1x1 . . .Qnxn[B], where Qi = ∀ or Qi = ∃. Let
V1 := Z(A) and by induction Vk := Z(Vk−1), k = 2, . . . ,n. Note that �′ A iff V1 con-
tains at least one tableau-provable formula. By an easy induction with respect to
k, k= 2, . . . ,n, we find that �′ A iff Vk contains at least one tableau-provable formula.
Consequently, A is tableau-provable iff Vn contains at least one tableau-provable
formula. However, all formulas in Vn are quantifier-free and hence are decidable.
And since Vn is finite, we can decide by a finite method whether there is a tableau-
provable formula in Vn.

Solution 8.21. Suppose �′i ∃x[A(x)] and ak is the only free variable in A(ak). A

tableau-proof of ∃x[A(x)] starts with
F ∃x[A(x)]

FA(ak)
and then proceeds to closure. By replacing in a given tableau-proof of ∃x[A(x)] the
upper sequent, F∃x[A(x)], by F∀x[A(x)], one obtains a tableau-proof of ∀x[A(x)].

Solution 8.22. Let M = 〈S, R, U, |=i〉 be a Kripke model (for intuitionistic predi-
cate logic) with constant domain U . M,s |=i ∀x[P(x)∨Q] := for all s′ in S such that
sRs′ and for all n ∈U(s′), M,s′ |=i P(a)[n] or M,s′ |=i Q. (1)
M,s |=i ∀x[P(x)] ∨Q := M,s |=i Q or for all s′ in S such that sRs′ and for all
n ∈U(s′), M,s′ |=i P(a)[n]. (2)
(1) → (2): If M,s |=i Q, we are done. If M,s �|=i Q, then by (1) for all n ∈ U(s),
M,s |=i P(a)[n]. Now suppose sRs′ and n∈U(s′); then, since U is constant, n∈U(s)
and, since M,s |=i P(a)[n] and sRs′, M,s′ |=i P(a)[n], which was to be shown.

Solution 8.23. Suppose |= A′ in S4. We want to show that |=i A (intuitionistically).
So, let M = 〈S, R, U, |=i〉 be a Kripke model (for intuitionistic predicate logic).
Define the Kripke model M′ = 〈S, R, U, |=〉 for S4 as follows: s |= P := s |=i P.
Then, since R is reflexive and transitive, M′ is a Kripke model for the modal logic
S4 (satisfying the extra condition: if M′,s |= A and sRt, then M′, t |= A).
Claim: M,s |=i A intuitionistically iff M′,s |= A′ in S4. Now, since |= A′ in S4,
M′ |= A′ in S4 and hence, M |=i A (intuitionistically).
Proof of claim : for A = P (atomic), M,s |=i P (intuitionistically) iff
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for all t in S, if sRt, then M, t |=i P, iff
for all t in S, if sRt, then M′, t |= P, iff
M′,s |=�P in S4, iff
M′,s |= P′ in S4.
Induction hypothesis: the claim is correct for B and C. We shall show that the claim
also holds for B→C and for ∀x[B(x)], leaving the other cases to the reader.
M,s |=i B → C (intuitionistically) iff for all t in S, if sRt and M, t |=i B, then
M, t |=i C. By induction hypothesis, this is equivalent to: for all t in S, if sRt and
M′, t |= B′ in S4, then M′, t |= C′ in S4. And this latter expression is equivalent to
M′,s |=�(B′ →C′), i.e., M′,s |= (B→C)′ in S4.
M,s |=i ∀x[B(x)] iff for all t with sRt and for all n in U(t), M, t |=i B(a)[n],

(ind. hyp.) iff for all t with sRt and for all n in U(t), M′, t |= B(a)′[n] in S4,
iff for all t with sRt, M′, t |= ∀x[B(x)′] in S4,
iff M′,s |=�∀x[B(x)′] in S4
iff M′,s |= (∀x[B(x)])′ in S4.

Conversely, suppose |=i A intuitionistically. To show: |= A′ in S4. So, let M =
〈W, R, U, |=〉 be a Kripke model for S4, i.e., R is reflexive and transitive. Define
Mi = 〈W, R, U, |=i〉 as follows: w |=i P := for all w′ in W , if wRw′, then w′ |= P.
Then Mi is a Kripke model for intuitionistic logic, since from the transitivity of R it
follows that: if w |=i P and wRw′, then w′ |=i P.
Claim: Mi,w |=i A (intuitionistically) iff M,w |= A′ in S4. So, since |=i A (intuition-
istically), Mi |=i A intuitionistically and hence, M |= A′ in S4.
Proof of claim : For A = P (atomic), Mi,w |=i P (intuitionistically) iff w |=i P,
iff for all w′ in W , if wRw′, then w |= P,
iff M,w |=�P,
iff M,w |= P′ in S4.
Induction hypothesis: the claim holds for B and C. We shall show that the claim
holds for B→C and for ∀x[B(x)], leaving the other cases to the reader.
Mi,w |=i B→C (intuitionistically) := for all w′ in W , if wRw′ and Mi,w′ |=i B, then
Mi,w′ |=i C. By the induction hypothesis this is equivalent to: for all w′ in W , if
wRw′ and M,w′ |= B′, then M,w′ |= C′. And this latter expression is equivalent to
M,w |=�(B′ →C′), in other words, M,w |= (B→C)′ in S4.
Mi,w |=i ∀x[B(x)] := for all w′ with wRw′ and for all n in U(w′), Mi,w′ |=i B(a)[n],
iff (ind. hyp.) for all w′ with wRw′ and for all n in U(w′), M,w′ |= B(a)′[n],
iff for all w′ with wRw′, M,w′ |= ∀x[B(x)′]. And the latter expres-
sion is equivalent to M,w |=�∀x[B(x)′] and hence to M,w |= (∀x[B(x)])′ in S4.

Solution 8.24. Suppose f : σ01 → N were a bijection. Then ∀α ∈ σ01 ∃k ∈ N [k =
f (α)]. By Brouwer’s principle, ∀α ∈ σ01 ∃m ∈ N ∃k ∈ N ∀β ∈ σ01 [β̄m = ᾱm→
k = f (β )]. Let α = 0. Then there are m ∈ N and k ∈N such that

∀β ∈ σ01 [β̄ m = ᾱm = 0̄→ k = f (β )].

Now, take β such that β̄ m = ᾱm = 0̄m and β (m) �= α(m). Then β �= α , but
k = f (β ) = f (α). So, f is not injective. Contradiction. The proof for σ01mon is sim-
ilar. The classical function f : σ01mon → N, defined by f (0) = 0, f (1) = 1, f (01) =
2, f (001) = 3, etc. is intuitionistically not well defined: we cannot determine the
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value of f (α) for the sequence α defined by α(n) = 0 if at stage n I do not have a
proof of Goldbach’s conjecture G and α(n) = 1 if at stage n I do have a proof of G.
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Chapter 9
Applications: Prolog; Relational Databases and
SQL; Social Choice Theory

H.C.M. (Harrie) de Swart

9.1 Programming in Logic

Abstract The language of logic can be used as a declarative programming lan-
guage, i.e., the programmer has to describe what the problem is, not how it should be
solved. We introduce logic programming by means of an example and explain how
the system answers questions given a certain program. The possibility of recursive
definitions is one of the cornerstones of logic programming. Prolog is a particular
form of logic programming; it has been implemented in a certain way. As a conse-
quence, although declarative in principle, Prolog also has certain procedural aspects.
The syntax of logic programming in general and of Prolog in particular is very sim-
ple. Although the reasoning mechanism should use unification, many systems work
with a simpler form, called matching, for reasons of efficiency. Lists are important
terms in logic programming. Cut is a procedural device needed to keep programs
efficient. Negation is implemented by means of cut and hence differs from logical
negation. Logic programming has many applications in (deductive) databases and
in Artificial Intelligence. We discuss the most important pitfalls.

Example 9.1. The best way to introduce the subject of logic programming seems to
be to give an example of a concrete logic program. The following example is from
I. Bratko [7].

parent(X ,Y), parent(Y,Z). (7)
grandparent(X ,Z) :-
parent(pat, jim).

parent(bob, pat).
parent(bob, ann).

parent(tom, liz).
parent(tom, bob).
parent(pam, bob). (1)

(2)
(3)

(4)
(5)

(6)

jim

pat
�
��

bob
 
  

�
��

�
��

pam

ann

#
##

tom
 
  

liz
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This logic program consists of seven clauses. The first six of them are called facts;
They express that pam is a parent of bob, tom is a parent of bob, etc. The last clause
is called a rule; it expresses that X is a grandparent of Z if X is a parent of Y and
Y is a parent of Z. The symbol :- is to be read as ‘if’ and the comma between
‘parent(X ,Y)’ and ‘parent(Y,Z)’ is to be read as ‘and’. ‘X’, ‘Y ’ and ‘Z’ are called
variables; it is allowed to replace them by the names of arbitrary individual objects.
In the rule ‘L :- L1, L2’, ‘L’ is called the head of the rule and ‘L1, L2’ is called the
body.

Given a logic program P, the user may ask questions. Given the logic program
just presented one might ask who are the parents of bob; in other words, for which
X is it true that X is a parent of bob? This question is formulated as follows:

:- parent(X , bob).
or

?- parent(X , bob).
The question whether bob and liz have a common parent is formulated as follows:

:- parent(X , bob), parent(X , liz).
or

?- parent(X , bob), parent(X , liz).
In Prolog, which stands for PROgramming in LOGic and which is just a particular
form of logic programming, the answers to these questions are found as follows.
Given the logic program mentioned above and given the question

?- parent(X , bob).

the Prolog system tries to match or unify the clause ‘parent(X , bob)’ with the first
fact ‘parent(pam, bob)’ in the given program. This matching or unifying succeeds
by replacing the variable ‘X’ by ‘pam’. So, ‘X = pam’ is the first answer to this
question. Next, the Prolog system tries to match or unify the clause ‘parent(X , bob)’
with the second fact ‘parent(tom, bob)’ in the given program, yielding the second
answer ‘X = tom’. Since the Prolog system cannot succeed in unifying or matching
the clause ‘parent(X , bob)’ with the other facts in the program, there are no more
answers to this question.

The following picture describes graphically how the Prolog system finds the an-
swers to the question ‘?- parent(X , bob).’ given the program in Example 9.1.

X = pam X = tom
��

�
�
�
� �
�
�
�

2 X /tomX /pam 1

?- parent(X , bob).

This picture is called the search tree for the question ‘?- parent(X , bob).’ given
the program above. The numbers 1 and 2 refer to the first and second facts in the
program. ‘X /pam’ indicates that the variable ‘X’ is substituted by ‘pam’ in order
to match the clause ‘parent(X , bob)’ with fact (1) in the program. The symbol ‘�’
indicates that no other questions remain to be answered.
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The search tree for the question ‘do bob and liz have a common parent?’ given
the logic program in Example 9.1 looks as follows.

X = tom
�

parent(tom, liz)parent(pam, liz)
�
�
��

�
�

?- parent(X , bob), parent(X , liz).

X /pam 1 2 X /tom

3

failure

In this example there are two simultaneous questions or goals: parent(X , bob),
parent(X , liz). The Prolog system selects the left-most goal first and tries to match
it with the facts in the program. The first possibility to do so is by matching it with
fact (1) in the program via the substitution X /pam. Then only the goal ‘parent(X ,
liz)’ remains with ‘X’ replaced by ‘pam. However, this goal cannot be realized, in
the sense that there is no such fact in the program. Hence, this trial to realize the
two goals fails. Then the Prolog system backtracks and tries to realize the first goal
in another way. This can be done by matching it with fact (2) in the program via
the substitution X /tom. The second goal ‘parent(X , liz)’ remains with ‘X’ replaced
by ‘tom’. Since ‘parent(tom, liz)’ occurs as fact (3) in the program, this goal can be
realized by the program and no other goals remain.

Given the logic program in Example 9.1, the search tree for the question ‘who
are pat’s grandparents?’, i.e., ‘for which X is it true that X is a grandparent of pat’,
looks as follows.

?- grandparent(X , pat).

parent(X ,Y ), parent(Y , pat)

parent(bob, pat)

�
X = tom

parent(liz, pat)

failure

5

parent(bob, pat)

�
X = pam

5

X /pam, Y /bob 1 2 X /tom,
Y /bob

3 X /tom, Y /liz

Z/pat7

!
!
!
!!

(((((

Given the question or goal ‘?- grandparent(X , pat).’, the Prolog system looks for
facts of this form in the given program, but does not find any. It also tries to match
or unify the goal with the head of a rule in the program. This succeeds: the goal
‘grandparent(X , pat)’ can be unified with the head of clause (7) in the program
via the substitution Z/pat. Then the original goal is replaced by two new goals:
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parent(X ,Y), parent(Y , pat). The left-most goal is selected first. Looking at the pro-
gram, we see that there are six different ways to realize this goal. The first possibility
is to use the first clause in the program via the substitution X /pam, Y /bob. The sec-
ond goal ‘parent(Y , pat)’ remains with ‘Y ’ substituted by ‘bob’. Since ‘parent(bob,
pat)’ is the 5th clause in the program, this goal is realized and no other goals remain.
The Prolog system answers ‘X = pam’. Next the system backtracks and tries to re-
alize the left-most goal ‘parent(X ,Y)’ in another way. This can be done by using the
second clause in the program via the substitution X /tom, Y /bob. Then the second
goal ‘parent(Y , pat)’ remains with ‘Y ’ replaced by ‘bob’. Since this is the 5th fact in
the program, the second branch in the search tree is completed successfully and the
system answers ‘X = tom’. Again, backtracking takes place and Prolog realizes the
left-most goal ‘parent(X ,Y)’ by using the third fact in the program via the substitu-
tion X /tom, Y /liz. Then the goal ‘parent(liz, pat)’ remains. Looking at the program,
the Prolog system discovers that this goal cannot be realized. It backtracks and tries
to realize the left-most goal ‘parent(X ,Y)’ in a fourth way, and so on.

Summarizing: In logic programming a program consists of facts and rules. A logic
program is a kind of database. A question is a finite sequence of one or more goals.
Given a logic program, questions are answered by trying exhaustively to realize the
goals by matching (or unifying) them with the facts and/or the heads of the rules in
the program, possibly via substitution of the variables. A logic programming system
accepts facts and rules as a set of (non-logical) axioms and a question as a putative
theorem or conclusion. The logic programming system tries to deduce this putative
conclusion logically from the axioms.

Typical features of Prolog are that it has a left-most selection rule, that the search
is depth-first (not breadth-first) and that after successful or unsuccessful termination
of a branch in the search tree, backtracking takes place in order to find alternative
solutions.

The reader is advised to do Exercise 9.1.

9.1.1 Recursion

The use of recursive definitions (of predicates or relations) is typical in logic pro-
gramming. As an example we might add the following two clauses to the logic
program in Example 9.1:

pred(X ,Z) :- parent(X ,Z). X
pred(X ,Z) :- parent(X ,Y), pred(Y,Z). | parent

Y
... pred
Z

These two clauses define the predecessor relation, abbreviated by ‘pred’. The first
clause expresses that X is a predecessor of Z if X is a parent of Z. And the second
one expresses that X is a predecessor of Z if (for some Y ) X is a parent of Y and
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Y is a predecessor of Z. So, in the second clause the relation ‘pred’ recurs in the
definition of ‘pred(X ,Z)’. For this reason one speaks of a recursive definition.

In order to understand the role of recursive definitions in logic programming, let
us ask the question ‘is tom a predecessor of pat?’, given the program which results
from adding the two clauses for ‘pred’ to the program in Example 9.1. This program
then looks as follows:

Example 9.2.

parent(pam, bob). (1)
parent(tom, bob). (2)
parent(tom, liz). (3)
parent(bob, ann). (4)
parent(bob, pat). (5)
parent(pat, jim). (6)
grandparent(X ,Z) :- parent(X ,Y ), parent(Y,Z). (7)
pred(X ,Z) :- parent(X ,Z). (8)
pred(X ,Z) :- parent(X ,Y ), pred(Y,Z). (9)

Given this program, the search tree for the question (or goal) ‘is tom a predecessor
of pat?’ looks as follows:

parent(tom, pat)
failure

parent(tom, Y ), pred(Y , pat)

X /tom, Z/pat9
�
�

?- pred(tom, pat).

8

�
�

0
0

2 Y /bob 3 Y /liz

pred(liz, pat)pred(bob, pat)

�
�

0
0

98

parent(liz, pat)
failure

0
0

9�
�

8X ′/bob, Z′/pat

parent(bob, pat)

�
yes

5

"
"
""

In order to answer the question ‘pred(tom, pat)’ the Prolog system tries to unify this
goal with a fact or the head of a rule in the program. The first possibility is to unify
‘pred(tom, pat)’ with the head of clause (8) via the substitution X /tom, Z/pat. The
goal ‘parent(tom, pat)’ is the result. Since there is no such fact in the given program,
the left-most branch in the search tree terminates unsuccessfully and backtracking
takes place. The original goal can also be unified with the head of clause (9) in the
program via the substitution X /tom, Z/pat. Then the original goal is replaced by two
new goals: parent(tom, Y ), pred(Y , pat). Prolog selects the left-most goal first. It
can be unified with clause (2) in the program via the substitution Y /bob. Then the
goal ‘pred(Y , pat)’ remains with ‘Y ’ substituted by ‘bob’. In order to realize this
latter goal, Prolog first matches it with the head of clause (8). Since ‘X’ and ‘Z’
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have already been substituted by ‘tom’ and ‘pat’ respectively, the Prolog system has
replaced the variables X and Z in clause (8) by X ′ and Z′ respectively. Clause (8)
now looks as follows:

pred(X ′,Z′) :- parent(X ′,Z′). (8′)
The goal ‘pred(bob, pat)’ can now be unified with the head of clause (8′). This yields
the new goal ‘parent(bob, pat)’. Because of the 5th clause in the program, the second
branch (from the left) in the search tree terminates successfully, and the answer to
the original question is ‘yes’. Backtracking takes place in order to see whether the
goal ‘pred(bob, pat)’ can be realized in other ways. In our search tree we have not
worked this out. But it turns out that the goal ‘pred(bob, pat)’ cannot be realized
in another way. Further backtracking takes place in order to see whether the left-
most goal in ‘parent(tom, Y ), pred(Y , pat)’ can be realized in another way. This may
indeed be the case. Applying clause (3) in the program and substituting ‘liz’ for ‘Y ’,
the goal ‘pred(Y , pat)’ remains with ‘Y ’ replaced by ‘liz’, and so on.

9.1.2 Declarative versus Procedural Programming

Logic programming is in principle declarative: the programmer only has to describe
the problem, in other words, he must formulate what the problem is; but he does not
have to specify how the problem has to be solved. The logic programmer is more
concerned with knowledge than with algorithms.

In order to answer certain questions, the logic programmer has to formulate all
relevant information, consisting of facts and rules, in a logic program. Given a cer-
tain program, the logic programming system will try systematically to deduce the
answer to any question from the facts and rules in the program. This is done by an
exhaustive search, which can be represented in a search tree.

Given the program in Example 9.2, the answer to the question ‘is tom a prede-
cessor of pat?’ is ‘yes’. This means that pred(tom, pat) logically follows from (is a
valid consequence of) the facts and the rules in the program. The answer to the ques-
tion ‘is pam a predecessor of liz?’ will be ‘no’, meaning that pred(pam, liz) is not
a logical consequence of the (facts and rules in the) program. This does not mean
that ¬ pred(pam, liz) is a logical consequence of the program in question! And the
answer to the question

?- parent(X , bob), parent(X , liz).

was ‘X = tom’. This means that both parent(tom, bob) and parent(tom, liz) logically
follow from the given program.

One can prove what is called soundness: given any logic program P and question
or goal G every computed answer logically follows from P. The converse problem
is completeness: given any logic program P, is the logic programming system able
to compute any goal which logically follows from P? This problem is more difficult
and cannot be answered with a simple ‘yes’ or ‘no’.
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Programming languages like Pascal, Algol and C are procedural languages: the
programmer has to specify how the problem has to be solved. Although logic pro-
gramming is in principle declarative and not procedural, the logic programmer has
to take into account certain procedural aspects. We have already noticed above that
Prolog, being a particular – but most popular – logic programming system, has a
left-most selection rule and a depth-first search strategy. This strategy first develops
the left-most branch in the search tree. As long as this branch has not been termi-
nated, no other branches are developed. It also searches for facts and rules in the
program in the order they have been programmed. The programmer, who writes a
logic program in Prolog, has to take the procedural aspects of the Prolog system into
account. The order of the facts and rules in his program may be important and even
the order of the goals in the body of a rule may be important. In order to make this
clear, look at the following four definitions of the predecessor relation.

pred(X ,Z) :- parent(X ,Z).
pred(X ,Z) :- parent(X ,Y), pred(Y,Z).

pred2(X ,Z) :- parent(X ,Y), pred2(Y,Z).
pred2(X ,Z) :- parent(X ,Z).

pred3(X ,Z) :- parent(X ,Z).
pred3(X ,Z) :- pred3(X ,Y), parent(Y,Z).

pred4(X ,Z) :- pred4(X ,Y), parent(Y,Z). (I)
pred4(X ,Z) :- parent(X ,Z) . (II)

In the definition of ‘pred2’ and ‘pred4’ the order of the clauses is reversed with
respect to the definition of ‘pred’. And in the definition of ‘pred3’ and ‘pred4’ the
goals in the body of the recursion clause are reversed with respect to the definition
of ‘pred’. This may have disastrous consequences. Consider the search tree for ?-
pred4(tom, pat).

ad infinitum
.
.
.

pred4(tom, Y ′), parent(Y ′,Y ), parent(Y , pat)

pred4(tom, Y ), parent(Y , pat)

I

I X ′/tom, Z′/Y

I X /tom, Z/pat

?- pred4(tom, pat).

The left-most branch in this search tree will be infinitely long since clause I will
be applied again and again. And the other branches in the search tree will not be
developed. So, the Prolog system will give no answer to the question ‘?- pred4(tom,
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pat).’ and although the Prolog system does answer the questions ‘?- pred2(tom, pat).’
and ‘?- pred3(tom, pat).’ positively, Exercise 9.2 makes clear that from a procedural
point of view, pred2 and pred3 do not give an adequate description of the predeces-
sor relation.

To summarize, although the definitions of ‘pred’, ‘pred2’, ‘pred3’ and ‘pred4’
are equivalent from a logical or declarative point of view, they are quite different
from a procedural point of view. Consequently, the logic programmer has to take
into account the particular procedural aspects of the logic programming system he
or she is working with. For recursive definitions there is a simple rule:
i) The more simple clause is put first (supposing that the logic programming system
searches through the program from top to bottom). In the case of the predecessor
relation this is the clause ‘pred(X ,Z) :- parent(X ,Z).’
ii) The goals in the body of the recursion clause should be ordered from simple
to more complex (supposing a left-most selection rule in the logic programming
system). So, the recursion clause for the predecessor relation should be

pred(X ,Z) :- parent(X ,Y), pred(Y,Z).

since ‘parent’ is a more simple relation than ‘pred’.
Another procedural aspect of Prolog is the cut, denoted by ‘!’. The cut prunes

part of the search tree. This enhances efficiency, but may be dangerous if the pruned
part contains successful branches. We will discuss this feature of Prolog further on
in Subsection 9.1.6.

9.1.3 Syntax

The syntax of a logic programming language is that of first-order predicate logic
(see Chapter 4) with possibly some modifications in notation.

Definition 9.1 (Alphabet of Prolog). The alphabet consists of:
a) Individual variables, such as X1,X2, . . . ,X ,Y , Person, . . .
b) Individual constants, such as pam, bob, liz, . . . ; 0, 1, 2, . . .
c) Function symbols, such as father of, mother of, . . . ; +, ∗, . . .
d) Predicate symbols, such as parent, male, female; =, <, . . .

The programmer is free to choose his own symbols in the alphabet. However, in Pro-
log any expression starting with a capital is a variable. For instance, the expressions
‘Pam’ and ‘Bob’ are variables in Prolog, while ‘pam’ and ‘bob’ are individual con-
stants. Each function and predicate symbol is k-ary for some k; the arity is chosen
by the programmer.

Definition 9.2 (Terms). Terms are defined as in Chapter 4:
a) Each individual variable and each individual constant is a term.
b) If f is a k-ary function symbol and t1, . . . , tk are terms, then f (t1, . . . , tk) is a term.
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Examples of terms are: 1) Person, tom, bob; 1, 2.
2) father of(Person), mother of(bob); +(1, 2), usually written as 1+2.
3) mother of(father of(Person)); ∗(1, +(1, 2)), usually written as 1∗ (1+2).

Definition 9.3 (Atomic Formulas). Atomic formulas are defined as in Chapter 4: if
p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atomic
formula.

Examples of atomic formulas: parent(tom, bob), parent(X , liz), female(X), male(Y ),
male(bob); = (X , 1), usually written as X = 1, and <(2, 3), usually written as 2 < 3.

Definition 9.4 (Definite Program Clause, Goal, Program, Clause).
a) A definite program clause is any expression of the form B :- A1, . . . ,Am (m ≥ 0),
where B and A1, . . . ,Am are atomic formulas (Cf. Definition 2.10). If m = 0, one
writes simply ‘B’ instead of ‘B :- ’. ‘B :- A1, . . . ,Am’ is to be read as: B if A1 and . . .
and Am; in the notation of Chapter 4: B ← A1 ∧ . . .∧Am. B is called the head and
A1, . . . ,Am is called the body of the clause B :- A1, . . . ,Am. If m = 0, one calls the
definite program clause a fact, otherwise a rule.
b) A definite goal is any expression of the form :- A1, . . . ,Am (m ≥ 0), where
A1, . . . ,Am are atomic formulas. Each Ai is called a subgoal of the goal. If m = 0,
one speaks of the empty goal or empty clause, denoted by ‘�’.
c) A definite program is a finite set of definite program clauses. See, for instance,
Example 9.1.
d) A definite clause or Horn clause is either a definite program clause or a definite
goal.

Definition 9.5 (Literal, Normal Program Clause, Goal, Program).
a) A literal is an atomic formula A or the negation ‘not A’ of an atomic formula A.
In the notation of Chapter 4 ‘not A’ was written as ‘¬A’.
b) A normal program clause is any expression of the form B :- L1, . . . ,Lm, where B
is an atomic formula and L1, . . . ,Lm are literals.
Example: sister(X ,Y ) :- parent(Z,X), parent(Z,Y ), female(X), not X = Y .
c) A normal goal is any expression of the form :- L1, . . . ,Lm, where L1, . . . ,Lm are
literals.
d) A normal program is a finite set of normal program clauses.

From a theoretical point of view, in particular with respect to completeness, definite
logic programs are to be preferred to normal logic programs. However, for practical
purposes the latter ones are often needed. We return to the problems connected with
negation in Subsection 9.1.7 and 9.1.9.

Definite and normal program clauses are formulas of a special kind. In order to
see this, let us repeat the definition of formulas as given in Chapter 4.

Definition 9.6 (Formulas).
a) Any atomic formula is a formula.
b) If A and B are formulas, then so are (A � B), (A → B), (A∧B), (A∨B) and (¬A),
to be read as ‘A if and only if B’, ‘if A, then B’, ‘A and B’, ‘A or B’ and ‘not A’,
respectively.
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c) If A is a formula and x is an individual variable, then ∀x[A] and ∃x[A] are formulas,
to be read as ‘for all x, A’ and ‘there is at least one x such that A‘, respectively. (See
Definition 4.5 for more details.)

In Theorem 2.18 we have shown that any formula not containing the quantifiers ∀
and ∃ is equivalent to a finite conjunction of clauses, where a clause is a formula
of the form A1 ∧ . . .∧Am → B1 ∨ . . .∨Bn or, in different notation, B1 ∨ . . .∨Bn :-
A1, . . . ,Am, the A’s and B’s being atomic formulas. (See the topic on Knowledge
Representation and Prolog in Subsection 2.5.2.) Note that B1∨ . . .∨Bn :- A1, . . . ,Am

is equivalent to B1∨ . . .∨Bn∨¬A1∨ . . .∨¬Am.
However, in Prolog only definite clauses are allowed, i.e., clauses with n≤ 1, for

reasons of efficiency. For instance, suppose we had a program containing the clause
p(1)∨q(2). Now the question ?- p(X)∨q(X) should be answered as follows: X = 1
if p(1) and X = 2 if q(2). It is hard to implement a system that is able to give such
conditional answers.

In Subsection 4.3.6 on Skolemization and Clausal Form we have defined the
clausal form C(A) of any formula A, such that 1) C(A) is a conjunction of clauses,
and 2) A is satisfiable iff C(A) is satisfiable. And in Subsection 4.7.3 on Logic and
Artificial Intelligence we have shown that any (definite) logic program is a formula
in clausal form.

9.1.4 Matching versus Unification

In the preceding examples we have seen that a Prolog system, given a certain pro-
gram and answering a certain question, makes use of what is called matching or
unification. In this subsection we want to describe matching and unification more
precisely and to point out the difference between them.

Definition 9.7 (Matching). Matching is a process that takes as input two terms or
atomic formulas and checks whether they match. The rules governing this process
are the following:
1. Two individual constants match only if they are syntactically the same.
2. If X is a variable and t a term, then they match and X is instantiated to, or substi-
tuted by, t.
3. Two terms match only if they have the same principal function symbol and all
their arguments match.
4. Two atomic formulas match only if they have the same principal predicate symbol
and all their arguments match.

Example 9.3. a) The pair {parent(X , bob), parent(pam, bob)} can be matched.
b) The pair {parent(X , bob), parent(pat, jim)} cannot be matched, because the sec-
ond arguments cannot be matched.
c) The pair {p( f (X),Z), p(Y,c)} can be matched via the substitution Y/ f (X), Z/c.
d) The pair {p( f (X),c), p(Y, f (Z))} cannot be matched, since the second argu-
ments cannot be matched.
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e) The pair {p(X ,X), p(Y, f (Y ))} can be matched. The first arguments can be
matched via the substitution X/Y . The resulting pair is {p(Y,Y ), p(Y, f (Y ))}. The
second arguments can be matched via the substitution Y/ f (Y ).

The following logic program shows that in some cases matching yields undesirable
results. Let P be the following logic program:

parent(Y , child of(Y )). (1)

Note that ‘parent(X ,X)’ is similar to ‘p(X ,X)’ and that ‘parent(Y , child of(Y ))’ is
similar to ‘p(Y, f (Y ))’ in Example 9.3 e). Given this program, the search tree for
the question ‘?- parent(X ,X).’ looks as follows.

yes
�

?- parent(X ,X).

(1) X/Y, Y /child of(Y )

However, this result is undesired, since ‘parent(X ,X)’ does not logically follow from
program P. In the intended interpretation the only formula (1) in P expresses a true
proposition, while ‘parent(X ,X)’ expresses a false proposition for any value of X .

For reasons of efficiency, most logic programming systems make use of matching
and take for granted that in some cases this may yield the wrong results. What they
should do, however, is to replace matching by unification and take for granted that
in some cases this may be inefficient.

Definition 9.8 (Unification). Unification is characterized by the following slogan:

Unification = matching + occur check.

The occur check involves checking whether in the substitution of a term t for a
variable X (clause 2 in the definition of matching), the variable X does not occur in
t. If X does occur in t, then unification fails, while matching may succeed.

In Example 9.3 e) we have seen that the pair {p(X ,X), p(Y, f (Y ))} can be matched.
However, this pair cannot be unified. After the substitution X/Y the resulting pair
is {p(Y,Y ), p(Y, f (Y ))}. And although the second arguments in this pair can be
matched, they cannot be unified since the variable Y does occur in f (Y ).

The unification algorithm is like the matching algorithm given above, except that
the occur check is added to clause 2. Below, we demonstrate how the unification
algorithm works in a few examples.

Example 9.4. (Lloyd [16]):
Is it possible to unify p( f (c),g(X)) and p(Y,Y )?
1) The predicate symbols are identical.
2) The left-most arguments that differ are f (c) and Y . Occur check: Y does not occur
in f (c). So, replace Y by f (c). Result: p( f (c),g(X)) and p( f (c), f (c)).
3) The left-most arguments that differ are g(X) and f (c). These terms have different
principal function symbols and hence cannot be unified.
Conclusion: p( f (c),g(X)) and p(Y,Y ) cannot be unified. Nor can they be matched.
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Example 9.5. (Lloyd [16]):
Can p(c,X ,h(g(Z))) and p(Z,h(Y ),h(Y )) be unified?
1) The predicate symbols are identical.
2) The left-most arguments that differ are c and Z. Occur check: Z does not occur in
c. So, replace Z by c. Result: p(c,X ,h(g(c))) and p(c,h(Y ),h(Y )).
3) The left-most arguments that differ now are X and h(Y ). Occur check: X
does not occur in h(Y ). So, replace X by h(Y ). Result: p(c,h(Y ),h(g(c))) and
p(c,h(Y ),h(Y )).
4) The left-most arguments that differ now are h(g(c)) and h(Y ). The principal func-
tion symbols are identical. The arguments g(c) and Y are different. Occur check: Y
does not occur in g(c). So, replace Y by g(c). Result: h(g(c)) and h(g(c)).
Conclusion: p(c,X ,h(g(Z))) and p(Z,h(Y ),h(Y )) are unifiable via the substitutions
Z/c, X/h(Y) and Y/g(c).

For more details about substitution and unification the reader is referred to Lloyd
[16]. See also Exercise 9.3.

Note that both the matching and the unification algorithms result in a most general
unifier (substitution) in the sense that no more is substituted than strictly necessary.
For instance, unifying date(D, M, 1983) and date(D1, may, Y ) results in the substi-
tution D/D1, M/may and Y /1983. The substitutions D/3, D1/3, M/may and Y /1983
also unify the two terms, but are less general.

One can show that given a logic program P any answer to a question is correct in
the sense that the computed answer is a logical consequence of the given program,
provided the system uses unification instead of matching. For instance, given the
program of Example 9.1 the Prolog system computes two answers to the question
?- grandparent(X , pat): X = pam; X = tom. The theorem just mentioned, called the
soundness theorem, then says that ‘grandparent(pam, pat)’ and ‘grandparent(tom,
pat)’ are logical consequences of the given program. For more details we refer the
reader to Lloyd [16] where also the converse problem is discussed whether any
logical consequence of a given program can be computed by the Prolog system
(completeness).

9.1.5 Lists, Arithmetic

Lists are very important terms in the practice of logic programming. For instance,
if one wants to represent information about families in a logic program, one has the
problem that different families have different numbers of children. By putting the
children of any family in a list, one can represent any family in a uniform way:

family(Father, Mother, List of Children).

Here, ‘family’ is a predicate symbol taking three arguments, no matter how many
children there are.

Lists are terms of a special kind, defined as follows.
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Definition 9.9 (Lists).
1) [ ] is a list, called the empty list.
2) If t is any term and L is a list, then [t | L] is a list.
In [t | L], t is called the head and L is called the tail of the list [t | L].

Example 9.6. Examples of lists:
1) [ ] 2) [c | [ ]], usually rendered as [c].
3) [b | [c]], usually rendered as [b,c]. 4) [a | [b,c]], usually rendered as [a,b,c].

Working with lists, one needs a program that determines the elements or members
of a given list. Reading ‘member(X ,L)’ as ‘X is a member of list L’, the membership
relation is defined recursively as follows.

Definition 9.10 (Member). member(X , [X | L]). (1)
member(X , [Y | L]) :- member(X ,L) . (2)

In words: X is a member of a given list if (1) X is the head of the list, or (2) X is
a member of the tail of the list. Given this program, the search tree for the question
‘?- member(X , [b,c]).’ (what are the members of the list [b,c]?) looks as follows.

failure
�
�
�$

$
$$

failure

21

member(X , [ ])
2
2
22$

$
$$

�
X = c

X/c,L/[ ] 1 2 Y ′/c,L′/[ ]

member(X , [c])
2
2
22$

$
$$

�
X = b

X/b,L/[c] 1 2 Y/b,L/[c]

?- member(X , [b,c]).

In Exercise 9.4 the reader is invited to define a concatenation relation for lists and
in Exercise 9.5 to define a relation for deleting members from a given list.

Prolog contains some built-in arithmetic operations which can be used in the infix
notation, i.e., 2+ 3 instead of +(2,3), etc. Among them are

+ for addition, ∗ for multiplication,
− for subtraction, / for division.

When doing arithmetic in Prolog it is important to realize that ‘=’ is a built-in match-
ing operator, while ‘is’ is a built-in operator that forces the evaluation of the term in
question. In order to make the difference clear, consider the following examples.

?- X = 2+ 3. ?- X is 2+ 3. ?- 2+ 3 = 3+ 2.
X = 2+ 3 X = 5 no
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Other built-in operators which force the evaluation of the terms in question are:
> is greater than;
>= is greater than or equal to;
=:= the values of the left and right terms are equal;
= \= the values of the left and right terms are not equal.

Example 9.7.
?- 2+ 3 =:= 3+ 2. ?- 2 ∗ 3 > 5.
yes yes

It is important to realize that all arguments must be instantiated to numbers at the
time that the evaluation is carried out. Examples:

?- X is 2 ∗ 3, X > 5. ?- X > 5, X is 2 ∗ 3.
X = 6 control error

9.1.6 Cut

max(X ,Y,Z), to be read as ‘Z is the maximum of X and Y ’, can be defined as follows.

max(X ,Y,X) :- X >=Y . (1)
max(X ,Y,Y ) :- Y > X . (2)

Now the programmer, but not the logic programming system, knows that if the goal
X >= Y succeeds, then the goal Y > X is bound to fail. So, given this program
and the question ?- max(3, 2, Z), it is a waste of time and energy to try to apply
the second clause via backtracking, once the left-most branch in the search tree has
terminated successfully.

?- max(3, 2, Z).

$
$
$$

2
2
22

X/3, Y/2, Z/X 1 2 X/3, Y/2, Z/Y

2 > 33 >= 2

�
Z = 3

failure

It is attractive to have a control facility that prunes that part of a search tree that
only contains unsuccessful branches. Prolog has such a control facility, called cut
and denoted by ‘!’. The cut ! can be conceived of as a true atomic formula or as a
goal that always succeeds. However, while the declarative or logical meaning of ‘!’
is ‘true’, the procedural meaning of ‘!’ is the pruning of the search tree. Given the
program

max1(X ,Y,X) :- X >= Y , !. (1)
max1(X ,Y,Y). (2)
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the search trees for the questions ?- max1(3, 2, Z) and ?- max1(2, 3, Z) look as
follows:

Z = 3
�

!

3 >= 2, !

$
$
$$

?- max1(3, 2, Z).

X/3, Y/2, Z/X 1

failure

2 >= 3, !

/
/
/�
�
�

�
Z = 3

X/2, Y/3, Z/X 1 2 X/2, Y/3, Z/Y

?- max1(2, 3, Z).

The right-most branch in the search tree for ?- max1(3, 2, Z) is pruned because first
the goal 3 >= 2 succeeds and next the cut is passed. The goal 2 >= 3 in the left-
most branch in the search tree for ?- max1(2, 3, Z) fails, hence the cut is not passed
and backtracking takes place as usual.
From a procedural point of view, the programs for max(X ,Y,Z) and for max1(X ,Y,Z)
yield the same results. However, from a declarative or logical point of view the pro-
gram for max1(X ,Y,Z) is not an adequate description of the maximum relation.
Since the declarative meaning of ‘!’ is ‘true’, from a declarative point of view the
program for max1 is equivalent to the following one.

max2(X ,Y,X) :- X >= Y (1)
max2(X ,Y,Y). (2)

But the question ?- max2(3, 2, Z) yields two answers: Z = 3 and Z = 2.

Z = 3
�

3 >= 2
/
//���

�
Z = 2

X/3, Y/2, Z/X 1 2 X/3, Y/2, Z/Y

?- max2(3, 2, Z).

So, if one wants a program for the maximum relation that is both correct from a
declarative point of view and efficient from a procedural point of view, the following
program is to be preferred.

max3(X ,Y,X) :- X >= Y , ! . (1)
max3(X ,Y,Y) :- Y > X . (2)
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Z = 3
�

!

3 >= 2, !

/
/
/

?- max3(3, 2, Z).

X/3, Y/2, Z/X 1

failure

2 >= 3, !

/
/
/�
�
�

3 > 2

�
Z = 3

X/2, Y/3, Z/X 1 2 X/2, Y/3, Z/Y

?- max3(2, 3, Z).

So, a cut prunes the search tree. This is safe if the pruned part contains no successful
branches. In that case the cut merely enhances efficiency; it saves time. However,
if the pruned part contains successful branches, the use of cut may have disastrous
consequences. For that reason the programmer should be very careful in using this
control facility. Unfortunately, more complicated programs often require the use of
cuts in order to keep the program efficient.

What part of the search tree is pruned by using cut? In order to answer this question
more precisely, consider the following program P.

p(X) :- q(X), r(X).
...
q(X) :- s(X), t(X), !, u(X).
q(X) :- v(X).
...
r(1).
s(1).
t(1).
u(X) :- X = 5.
u(X) :- X > 2.

The following picture shows the effect of cut on the search tree for the question
‘?- p(X).’, given program P above. Given the program P above, the goal ‘?- p(X).’
will be answered with ‘no’, even if we add the fact v(1) to P. In that case there is a
successful branch in the search tree, namely, the branch with v(X), r(X). However,
this branch will be pruned because of the cut. If we add a second rule to P, ‘p(X) :-
X = 2.’, the goal ‘?- p(X).’ will have ‘X = 2’ as its only solution.

In order to formulate precisely what the effect of cut on the search tree is, we have
to define the notion of parent goal. The parent goal is the goal that causes the clause
containing the cut to be activated. In our example this is q(X). The cut commits the
system to all choices made between the time the parent goal was involved and the
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time the cut was encountered. The remaining alternatives between the parent goal
and the cut are discarded.

failure
1 = 5, r(1) 1 > 2, r(1)

/
/
/�
�
�

u(1), r(1)

! , u(1), r(1) because of the cut.
search tree is pruned
this part of the, u(1), r(1)t(1), !

,u(X), r(X)s(X), t(X), !
X/1

/
/
/ �

�
�

v(x), r(x)

q(X), r(X)

-
-
-
-
-
-
-
-
-
-
--

the search is resumed here.

?- p(X).

Exercises 9.7 and 9.8 give some other programs containing cuts.

9.1.7 Negation as Failure

Prolog has a built-in operator ‘not’, which has been defined, using cut, as follows.

not (A) :- A, !, fail.
not (A) :- true.

In order to understand this definition, the reader should know that ‘fail’ and ‘true’
are built-in expressions which always fail or succeed respectively, when they are
invoked. From this definition it follows immediately that

(i) the goal ‘not (A)’ fails if the search tree for ‘?- A.’ is finite and has a successful
branch, and

(ii) the goal ‘not (A)’ succeeds if the search tree for ‘?- A.’ is finite and has no
successful branches.

Note that if the search tree for ‘?- A.’ contains no successful branches and has
at least one infinite branch, then the Prolog system cannot answer the question ‘?-
not (A).’. In order to see how Prolog handles negation, let us consider the following
program P.
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student(tom).
student(jane).
teacher(mary).

It is important to note that neither ‘student(mary)’ nor ‘not student(mary)’ are logi-
cal consequences of P.

Given this program, the question ‘?- not student(mary).’ is answered by the Pro-
log system as follows:

?- not student(mary). � ?- student(mary).

fail
no�yes

...

...

The Prolog system uses what is called the Negation as Failure (NF) rule: if the
search tree for A, given a certain program, is finite and has no successful branches,
then conclude ‘not A’.

The Negation as Failure rule is non-monotonic, i.e., adding new facts and/or
rules to the given program may eliminate some former conclusions. For instance,
if we add the fact ‘student(mary)’ to the program P above, the conclusion ‘not stu-
dent(mary)’ can no longer be drawn. More information may lead to different (and
other) conclusions.

Program P above is equivalent to the following one:
student(X) :- X = tom.
student(X) :- X = jane.
teacher(X) :- X = mary.

In most cases what the programmer has in mind is not the program P itself, but what

is called the completion of P:
student(X) iff X = tom or X = jane.
teacher(X) iff X = mary.

The completion of P is obtained by replacing the if’s in program P by iff’s. And
although ‘not student(mary)’ is not a logical consequence of P, it is a logical con-
sequence of the completion of P. Both the Negation as Failure rule and the process
of completion capture the idea that information not given by the program is taken to
be false.

Exercises 9.9 and 9.10 make clear that for programs which contain negation, the
use of cut may affect the soundness of the system.

9.1.8 Applications: Deductive Databases and Artificial Intelligence

In Example 9.1 we have given a very simple application of logic programming to
databases. In this example a database is given containing facts or data concerning
who is a parent of whom. This database has been extended with rules stating un-
der what conditions the grandparent relation applies. We have seen that one can
add other rules such as rules for the predecessor relation, the mother relation, etc.
(see also Exercise 9.1). These rules enable the user to derive conclusions from the
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database which are not explicitly present in the database (as static facts), but which
can be logically deduced from the facts in the database by means of application of
the rules. For this reason one speaks of deductive databases. A logic program can be
viewed as a (deductive) database, consisting of facts and rules. Relational databases
correspond to logic programs consisting only of facts.

Prolog contains a number of facilities for updating databases. For instance, the
goal ‘assert(C)’ will always succeed and will result in adding the program clause C
to the database. The goal ‘asserta(C)’ adds C at the beginning of the database and
the goal ‘assertz(C)’ adds C at the end of the database. The goal ‘retract(C)’ deletes
a program clause that matches C.

Example 9.8. The following non-trivial example of a deductive database is from
Bratko [7], Section 4.1. The database or logic program contains facts of the follow-
ing form:

family(
person(tom, fox, date(7, may, 1950), works(bbc, 15200)),
person(ann, fox, date(9, may, 1951), unemployed),
[person(pat, fox, date(5, may, 1973), unemployed),
person(jim, fox, date(5, may, 1973), unemployed)]

).
These atomic formulas are built from a ternary predicate symbol ‘family’, a 4-ary
function symbol ‘person’, a ternary function symbol ‘date’, a binary function sym-
bol ‘works’ and a number of individual constants. The overall structure of these
facts is: family (Father, Mother, List of Children). Now, given a database of the
type above, the question ‘give name and surname of all married woman who have
at least two children’ can be formulated in Prolog as follows:

?- family( , person(Name, Surname, , ), [ , | ]).

In order to understand this formulation the reader should know that ‘ ’ is a so-called
anonymous variable, i.e., a variable whose value is not given when Prolog answers
the question. Among the answers to this question would be:

Name = ann,
Surname = fox.

In Exercise 9.11 the reader is invited to add a number of rules to the database such
that many other questions can be asked in a straightforward manner.

Since any logic programming system is equipped with a reasoning mechanism, one
might say that any such system is able to simulate reasoning and hence disposes of
Artificial Intelligence (AI). This makes logic programming a very appropriate tool
for solving many problems, which are generally considered to belong to the field of
Artificial Intelligence. Many puzzles can be solved by appropriate logic programs.
A nice example is cryptarithmetic puzzles, such as

M O N E Y
+EROM

S E N D
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where the problem is to assign decimal digits to the letters of the alphabet such that
the above sum is correct. Bratko’s book [7] contains in Section 7.1 a Prolog program
for solving cryptarithmetic puzzles.

Example 9.9. We give a simple logic program for colouring a given map, such that
the colour in each region is different from the colours in all its adjacent regions.

C

D
E

A B

color(X) :- X = red.
color(X) :- X = blue.
color(X) :- X = green.
color(X) :- X = black.
next(X ,Y) :- color(X), color(Y ), not (X = Y ).
colormap([A,B,C,D,E]) :- next(A,B), next(A,C), next(A,D), next(B,C),

next(B,E), next(C,D), next(C,E), next(D,E).
Given this program, the appropriate question to ask is

?- colormap(Z).

Example 9.10. Another example of the use of logic programming in the domain of
Artificial Intelligence is for parsing sentences. The following program is for parsing
sentences in a very simple and small fragment of English.

np([john]). ‘john’ is a noun phrase tv([loves]). ‘loves’ is a transitive verb
np([mary]). tv([hates]).
np([bill]). det([a]). ‘a’ is a determiner.
cn([dog]). ‘dog’ is a common noun det([the]).
cn([woman]). vp([walks]). ‘walks’ is a verb phrase.
cn([man]). vp([talks]).
np(L) :- conc(L1, L2, L), det(L1), cn(L2).
vp(L) :- conc(L1, L2, L), tv(L1), np(L2).
s(L) :- conc(L1, L2, L), np(L1), vp(L2).
conc([ ], L, L).
conc([X | L1], L2, [X | L3]) :- conc(L1, L2, L3).

In this program ‘conc(L1, L2, L)’ should be read as ‘L is the concatenation of L1
and L2’, and ‘s(L)’ should be read as ‘L is a sentence’. Given this program, questions
one might ask are:

?- s([john, hates, the, dog]). ?- s([john, hates, the, walks]).
yes no

The question ‘?- s(S).’ will generate all syntactically correct sentences in the given
fragment of English.
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When a logic program behaves like an expert in some specific domain such as medi-
cal diagnosis or system break-down diagnosis, the logic program is called an expert
system or a knowledge-based-system. By ‘behaving like an expert’ we mean that
1) the logic program contains some expertise information concerning a specific do-
main, 2) that the program must be able to ask certain questions to the user and 3) that
the program must be able to indicate in a user friendly manner how it has derived
the answer(s) to a given question. Logic programs which satisfy these conditions
become rather complex. Relatively simple examples of such expert systems can be
found, among others, in Bratko [7], Chapter 14.

9.1.9 Pitfalls

There are at least four pitfalls the logic programmer should be aware of.

1. We have already mentioned that most actual logic programming systems use
matching instead of unification for reasons of efficiency. However, as indicated in
Subsection 9.1.4 on Matching versus Unification, it may happen as a consequence
that some goal is answered affirmatively, while the goal does not logically follow
from the given program. In other words, the lack of the occur check destroys the
soundness of the system.

2. The occurrence of a cut in a definite program does not affect the soundness of the
system, although it may affect the completeness of the system by pruning success-
ful branches. However, Exercise 9.10 makes clear that the use of cut in a normal
program may even destroy the soundness of the system.

3. Consider the following program P (from Lloyd [16], Section 10).

p(a, b). (1)
p(c, b). (2)
p(X ,Z) :- p(X ,Y ), p(Y,Z). (3)
p(X ,Y ) :- p(Y,X). (4)

Now it is easy to see that p(a, c) is a logical consequence of P. From (2) and (4) it
follows that p(b, c) (5). And from (1), (5) and (3) it follows that p(a, c).

However, given this program, the question ‘?- p(a, c).’ will not be answered by
any of the existing Prolog systems. In order to see why, let us consider the search
tree for this question.

Any logic programming system that uses a depth-first search, combined with a
fixed order for trying clauses given by their ordering in the program, will never find
the success branch, because the left-most branch in the search tree is infinite. We
have seen that all the clauses (1), (2), (3) and (4) were used in concluding p(a, c)
from P. However, in the left-most branch of the search tree for ‘?- p(a, c).’, clause
(4) will never be applied. Interchanging clauses (3) and (4) in the program P would
result in a left-most branch in which clause (3) is never applied, while all the clauses
in P are necessary to deduce p(a, c).
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The solution to this problem would be a logic programming system with a
breadth-first search rule. However, it is unlikely that such a system can be imple-
mented efficiently.
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?- p(a,c).

Y/b 1

...

4. Many logic programming systems do not satisfy the safeness condition: negative
literals are only allowed to be selected if they do not contain any variables. The
safeness condition can be implemented by delaying the treatment of negative sub-
goals until any variable in the subgoal has been substituted by a term not containing
variables.

Violation of the safeness condition affects the soundness of the system. Consider,
for instance, the following program P:

bachelor(X) :- not married(X), man(X). (1)
man(bob). (2)
married(alice). (3)

What the programmer actually has in mind is not P itself, but the completion of P,
consisting of the following formulas:

bachelor(X) � not married(X), man(X).
man(X) � X = bob.
married(X) � X = alice.

From the completion of P it logically follows that for some X , bachelor(X), namely
X = bob. A logic programming system that delays the treatment of a negative sub-
goal, until all variables in the subgoal have been replaced by terms not containing
variables, will answer the question ‘?- bachelor(X).’ with ‘X = bob’.
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?- bachelor(X).

not married(X), man(X)

not married(bob) � ?- married(bob).

failure�
success
X = bob

�

(2)X /bob

(1)

The goal printed in italics is
the goal selected by a system
satisfying the safeness condition.

However, a logic programming system that does not satisfy the safeness condition
will answer the question ‘?- bachelor(X).’ with ‘no’.

failure

not married(X), man(X)

?- bachelor(X).

(1)

� ?- married(X)

�
success

(3)X /alice

�
...

...

Exercise 9.1. Extend the program concerning the parent relation in Example 9.1
with rules which define the offspring, the father, the mother, the sister and the brother
relation. It will be necessary to introduce unary predicate symbols ‘male’ and ‘fe-
male’ and to add some facts about the sex of the persons whose names occur in the
program. Given the extended program, construct the search trees for the following

questions.
?- mother(tom, liz). ?- mother(X , bob).
?- sister(ann, pat). ?- father(bob, Y ).

Exercise 9.2. Let the predecessor relation be added to the program in Example 9.1
(concerning the parent relation) in the following ways.

a)
pred2(X ,Z) :- parent(X ,Y ), pred2(Y,Z).
pred2(X ,Z) :- parent(X ,Z).

b)
pred3(X ,Z) :- parent(X ,Z).
pred3(X ,Z) :- pred3(X ,Y), parent(Y,Z).

Construct the search trees for the following questions: ?- pred2(tom, pat).
?- pred3(tom, pat). and ?- pred3(liz, jim). Conclude that from a procedural point of
view, pred2 and pred3 do not describe the predecessor relation in an adequate way.
(The examples are from Bratko [7], Section 2.6.2.)

Exercise 9.3. Determine whether the following pairs can be matched or unified:
a) p( f (X),Z) and p(Y,c); b) X and f (X) and c) p( f (X),c) and p(Y, f (Z)).
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Exercise 9.4. Give a recursive definition of the concatenation relation, reading
‘conc(L1,L2,L)’ as ‘L is the concatenation of the lists L1 and L2’.

Exercise 9.5. Give a recursive definition of the deletion relation, with ‘del(X ,L,L1)’
read as ‘L1 results from the list L by deleting one occurrence of X’.

Exercise 9.6. Give a recursive definition for establishing the length of a list, reading
‘length(L,N)’ as ‘N is the number of elements in the list L’.

Exercise 9.7. (Bratko [7]) Let P be the following program:
p(1).
p(2) :- ! .
p(3).

Construct the

search trees for the following goals: a) ?- p(X). b) ?- p(X), p(Y ). c) ?- p(X), !, p(Y ).

Exercise 9.8. Let P be the following program:
p(X , 0) :- X < 1.
p(X , 1) :- X >= 1, X < 2.
p(X , 2) :- X >= 2.

Using cuts, change P into a program which is declaratively equivalent, but procedu-
rally more efficient.

Exercise 9.9. (Lloyd [16]) Consider the following program P for the subset relation,
representing sets by lists, where p(X ,Y ) expresses that X is not a subset of Y .

subset(X ,Y ) :- not p(X ,Y ). (1)
p(X ,Y ) :- member(Z,X), not member(Z,Y ). (2)
member(X , [X | L]). (3)
member(X , [Y | L]) :- member(X ,L). (4)

Make clear how the Prolog system answers the question: ?- subset([1, 2], [1, 2, 3]).

Exercise 9.10. If we replace clause (3) in the program of Exercise 9.9 by the clause

member(X , [X | L]) :- ! . (3′)

then the membership program will generate just one solution and not all possible
solutions. Verify that if we do so, the question ‘?- subset([1, 2, 3], [1]).’ will be
answered affirmatively, while ‘not subset([1, 2, 3], [1])’ logically follows from P.
So, the use of cut in combination with negation may affect the soundness of the
system!

Exercise 9.11. Extend the database in Example 9.8 with appropriate rules, such that
the following questions can be formulated in Prolog in an adequate way. (Confer
Bratko [7], Section 4.1.)
1. Give the names and surnames of all people in the database.
2. Give all children born in 1973.
3. Give the names and surnames of all employed wives.
4. Give the names and surnames of all unemployed people born before 1960.
5. Give all people born before 1960 whose salary is more than 10000.
6. Give the surnames of all families with at least two children.
7. Give the surnames of all families without children.
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Exercise 9.12. Instead of f (t1, t2), Prolog also allows the infix notation t1 f t2. For
that purpose it is necessary to define f as an operator with a given precedence. The
precedence of an arbitrary term is then defined as follows.
1. The precedence of individual variables and individual constants is 0.
2. The precedence of f (t1, . . . , tn) is the precedence of f .
3. The precedence of (t), t a term, is 0.
In order to ensure that a+b∗ c is interpreted as a+(b∗ c) and not as (a+b)∗ c, the
operators + and ∗ may be defined as follows.

op(500, y f x, +). (1)
op(400, y f x, ∗). (2)

In (1) the operator + is defined as an infix operator (i.e., occurring between its ar-
guments) with precedence 500. ‘y’ represents an argument whose precedence must
be lower than or equal to that of the operator, and ‘x’ represents an argument whose
precedence must be strictly lower than that of the operator.
1. Check that under the definitions (1) and (2) a+ b ∗ c is understood as a+(b ∗ c)
and not as (a+ b)∗ c.
2. Defining ‘−’ by ‘op(500, y f x, −).’, check that a−b−c is read as (a−b)−c and
not as a− (b− c).
3. Defining ‘has’ by ‘op(600, x f x, has).’, check that instead of ‘has(peter, informa-
tion).’ the programmer can write ‘peter has information.’.

9.2 Relational Databases and SQL

Abstract In this section we shall concentrate on the conceptual schema, i.e., the
description of a database on a logical level. Only the relational model of databases
will be discussed, because this model is most interesting from a logical and set-
theoretical point of view. The description of the logical structure of relational
databases in set theoretic terms shows that a Query Language such as SQL is a
very natural one. Tuple-, table- and database- constraints are discussed. The notion
of key is introduced and we also discuss the Boyce-Codd Normal Form, the projec-
tion of a table and the (natural) join of two tables. The material presented in this
section is based on F. Remmen’s book Databases (in Dutch) and on de Brock [8].

By a database we mean a class of permanent data, which is available to all users
of an information system. These data relate to the objects which are relevant to the
information system and to the attributes which are relevant to these objects. For
instance, the permanent data of a hospital organisation include, among other things,
the name, address and residence of each patient.

These permanent data should be available to all users of an information system.
This availability for many users has important consequences as different groups of
users will be interested in the data in different manners. For instance, an adminis-
trator in a hospital organisation will be in need of financial data about persons and
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rates, while a specialist needs to have at his disposal all medical data of persons and
of all treatments to be applied.

Which objects with what properties are relevant to the information system can
only be determined by the users. The design and implementation of a database will
be a compromise between the different and partly clashing desires of the different
users. It is the task of the Data Base Administrator (DBA) to bring about such a
compromise.

In current database terminology the difference between species and individual is
usually indicated by the difference between type and occurrence. So one can speak
of the (object) type patient, and of the (object) occurrence of a patient in a hospital-
organisation. In this example we have one type (species) with – in general – many
occurrences (individuals).

Each user communicates with the database via the Data Base Management Sys-
tem (DBMS). In fact, a DBMS can be considered as a special expansion of the
operating system.

Database UserDBMS �
�

�
�

The users of an information-system are interested in information about individual
objects and information about an individual object can only be provided in the form
of values of one or more attributes. In general, many possible values will be avail-
able for each attribute. For instance, the attribute ’pnr’ (short for ’patientnumber’)
of the object ’patient’ may have a value between 1 and 100000, and the attribute
’pnm’ (patient-name) may have a value consisting of a combination of at most 25
characters. In general, we demand that the values of an attribute form a set.

The set of attributes of an object together with the sets of values belonging to
them is called the object-characterisation of that object. In the following examples
it is made clear how we shall render an object-characterisation.

obchar patient
attrib

=
pnr

pnm
padr
pres
db
sex

: {1, . . . ,100000}
: chs25
: chs20
: chs20
: {18800101, . . .,19991231}
: {m, f}

,
,
,
,
,
,
,

endobchar

patientnummer
name
address
residence
date of birth
sex

By chs25 (character string 25) we mean the set of all strings of at least one and at
most 25 signs (letters, figures). In the following example – an object-characterisation
of the object ’admission’ (into a hospital) – we use the abbreviation ’dat’ for the set
{19500101, . . ., 19991231}, i.e., the set of all natural numbers between 19500101
and 19991231.



9.2 Relational Databases and SQL 453

obchar admission =
attrib pnr

pnm
padr
pres
indat
outdat
reas
snr
snm
rnr
wnr

endobchar
: {1, . . . ,15}
: {1, . . . ,1000}
: chs25
: {1, . . . ,100000}
: chs25
: dat
: dat
: chs20
: chs20
: chs25
: {1, . . . ,100000} ,

date of admission

number of nursing-room

date of discharge
reason of admission
number of specialist
name of specialist

number of ward

,
,
,
,
,
,
,
,
,
,

Lastly, we give as an example an object-characterisation of the object ’specialist’.

obchar specialist
attrib

=
snr : {1, . . . ,100000} , registration-number
snm
sadr
sres
wnr
nbd

endobchar

: chs25
: chs20
: chs20
: {1, . . . ,15}
: {1, . . . ,100} ,

,
,
,
,

number of beds
number of ward
residence
address
name

Definition 9.11 (Object-characterization; Tuple). Let O be an object with at-
tributes A1, . . . ,Am and let W1, . . . ,Wm be the sets of values belonging to A1, . . . ,Am

respectively. Then we define

FO := {(A1,W1), . . . ,(Am,Wm)},
and call it the object-characterisation of O.

Next we define π(FO) :=

{t | t = {(A1,w1), . . . ,(Am,wm)} for some w1 ∈W1, . . . ,wm ∈Wm}.
The elements of π(FO) are called tuples for O. A tuple for O is a function (and hence
a relation) with domain {A1, . . . ,Am}. If t is a tuple for O and (Ai,wi) ∈ t, then we
write t(Ai) for wi.

So a tuple t for O is a set {(A1,w1), . . . ,(Am,wm)} with w1 ∈W1, . . . ,wm ∈Wm.
We write w1 = t(A1), . . . ,wm = t(Am). Each tuple for O represents one object-
occurrence. By mentioning the attributes at the head of columns, we can list the
tuples for a given object O in a table, each row in the table corresponding to a tuple
for O. For instance, below we give a partial table for the object ’patient’.

pnr pnm padr pres db sex
537 Blunt 36 Evans Drive Cranbury 19080527 m
498 Kiviat 67 Main Street Newark 19090730 f
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In general it holds that not all possible combinations of values of the attributes
A1, . . . ,Am will be allowed. In the literature on databases these restrictions are called
constraints. We distinguish constraints on tuples, constraints on tables, and con-
straints on databases.

Below we give some examples of tuple-constraints, i.e., constraints on tuples.
C1(t): if t(pnr) < 200, then t(db) < 19000101; t being a tuple for object ’patient’.
C2(t): t(indat) < t(outdat); t being a tuple for object ’admission’ (into hospital).
C3(t): if t(wnr) = 9, then t(sres) = Princeton; and if t(wnr) = 7, then t(nbd)≤ 2;

t being a tuple for object ’specialist’.

So a tuple-constraint is a condition on tuples for a given object O, such that it can
be determined whether the condition holds for a given tuple t or not, completely
independent of the other tuples.

Definition 9.12 (Tuple-type). Given an object O and a tuple-constraint C

T -O := {t ∈ π(FO) |C(t)}.
T -O is called the tuple-type for O (determined by the constraint C) and is the set of
all tuples t for O satisfying the condition C.

If the number of tuples t for O satisfying a condition C is finite (and in practice not
too large), then the tuple-type T -O for O can be rendered by an exhaustive list of all
object-occurrences satisfying condition C.

A table for O is by definition a subset of T -O. There may also be constraints on such
tables. We give some examples below.
TC1(D) : ∀t1, t2 ∈ D [ t1(pnr) = t2(pnr) → t1 = t2 ]; D being a table for the object
’patient’. ∀t1, t2 ∈ D stands for ’for all t1 and t2 in D’. This table-constraint TC1 is
also formulated as follows: {pnr} is uniquely identifying, or: {pnr} uni, for short.
TC2(D) : ∀t1, t2 ∈ D [ t1(pnr) = t2(pnr) ∧ t1(indat) = t2(indat) → t1 = t2]; D being
a table for the object ’admission’. This table-constraint TC2 is also formulated as
follows: {pnr, indat} is uniquely identifying, or: {pnr, indat} uni, for short.
TC3(D) : {snr} uni, and {snm, sadr, sres} uni, and the number of specialists at ward
9 is at least 2; D being a table for the object ’specialist’.

So, a table-constraint indicates which subsets of a tuple-type are allowed. The set
of all tables allowed, given an object O, is called a table-type for O.

Definition 9.13 (Table-type). Let O be an object, T -O a tuple-type for O and TC a
table-constraint for O. Then

T T -O := {D ∈ P(T -O) | TC(D)}
is called a table-type for O. If D ∈ TT -O, we say D is a table of type O.

Definition 9.14 (Functional Dependence; Uniquely Identifying; Key).
Let O be an object with attributes A1, . . . ,Am, and let D be a table of type O. Let
V,W ⊆ {A1, . . . ,Am}.
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1. V → W in D := ∀t1, t2 ∈ D [ t1�V = t2�V → t1�W = t2�W ], where t�V is the re-
striction of t to V . In words: V functionally determines W in D, or W is functionally
dependent on V in D.

3. V →W for O := for every table D of type O, V →W in D.
V is a key for O := V is uniquely identifying within every table of type O.

Example 9.11. {pnr} is a key for ’patient’; {pnr, indat} is a key for ’admission’;
{pnm, padr, pres} is a key for ’patient’; {snr} is a key for ’specialist’.

Within the framework of an information-system one usually will be interested in
more than only one table-type. For instance, in a hospital-organisation one may be
interested in patients, admissions (into the hospital) and specialists and hence also
in the table-types T T -patient, T T -admission and T T -specialist belonging to them.
At a certain moment the situation of the hospital, at least with respect to patients,
admissions and specialists, can be summed up by three tables, one of type T T -
patient, one of type T T -admission and one of type T T -specialist. Such a triple of
tables is called a relational database.

Definition 9.15 (Database-characterisation). A set of objects together with table-
types belonging to them is called a database-characterisation. More precisely, let
O1, . . . ,On be objects, together with table-types T T -O1, . . . ,T T -On belonging to
them. Then

FDB := {(O1,T T -O1), . . . ,(On,T T -On)}
is a database-characterisation. In the following example it is made clear how we
shall render a database-characterisation.

Example 9.12. The database-characterisation for the combination of the objects pa-
tient, admission and specialist looks as follows:

dbchar hospital =
obj pat : T T -patient ,

adm : T T -admission,
spec : T T -specialist

enddbchar

Note the analogy between an object-characterisation and a database-characterisa-
tion: the attributes are replaced by objects and the sets of values by table-types.

Definition 9.16 (Relational Databases).
π(FDB) := {{(O1,D1), . . . ,(On,Dn)} | D1 ∈ T T -O1, . . . ,Dn ∈ T T -On}. The ele-
ments of π(FDB) are called relational databases.

Given a database-characterisation with objects O1,O2, . . . ,On and table-types T T -
O1, T T -O2, . . . ,T T -On belonging to them, in general not all databases in π(FDB)
will be allowed. This brings us to the last class of constraints, the so-called database-
constraints. The set of all databases satisfying a certain database-constraint is called
a database-type.

2. V is uniquely identifying within D := V →{A1, . . . ,Am} in D, i.e.,
∀t1, t2 ∈ D [ t1dV = t2dV → t1 = t2].
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An important subclass of database-constraints is formed by the so-called subset-
requirements. We make this notion clear by means of the following two database-
constraints.

DC1(D1,D2,D3) := ∀t2 ∈ D2 ∃t1 ∈ D1 [ t2(pnr) = t1(pnr) ], in words: for each
admission-tuple t2 there is a patient-tuple t1 such that the value of pnr in t2 is equal
to the value of pnr in t1.

DC2(D1,D2,D3) := ∀t2 ∈ D2 ∃t3 ∈ D3 [ t2(snr) = t3(snr) ], in words: for each
admission-tuple t2 there is a specialist-tuple t3 such that the value of snr in t2 is
equal to the value of snr in t3.

The constraint DC1 means that for any database allowed the set of pnr-values in
the admission-table is a subset of the set of pnr-values in the patient-table. A similar
remark is to be made for DC2. For these subset-requirements the following notation
is used: for DC1, ssr(adm.pnr, pat.pnr); for DC2, ssr(adm.snr, spec.snr).

Below we give an example of a database-type. The symbols tatp, tutp, obchar, attrib
stand for table-type, tuple-type, object-characterisation and attribute respectively.
The symbols tuc, tac, dbc stand for tuple-constraint, table-constraint and database-
constraint respectively.

Type nr : {1, . . . ,100000}
hoev : {1, . . . ,100}
dat : {19000101, . . .,19991231}
tatp T T -patient =

tutp T -patient =
obchar patient =

attrib pnr : nr ,
pnm : chs25 ,
padr : chs20 ,
pres : chs20 ,
db : {18800101, . . . ,19991231} ,
sex : {m,f}

endobchar;
tuc pnr < 200→ db < 19000101

endtutp;
tac {pnr} uni,

{pnm, padr, pres} uni
endtatp,

tatp T T -admission =
tutp T -admission =

obchar admission =
attrib pnr : nr ,

pnm : chs25 ,
padr : chs20 ,
pres : chs20 ,
indat : dat ,
outdat : dat ,
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attrib reas : chs25 ,
snr : nr ,
snm : chs25 ,
rnr : {1, . . . ,1000} ,
wnr : {1, . . . ,15}

endobchar;
tuc indat < outdat,

reas = ’informaritis’→ rnr = 5
endtutp ;
tac {pnr, indat} key

endtatp,

tatp T T -specialist =
tutp T -specialist =

obchar specialist =
attrib snr : nr ,

snm : chs25 ,
sadr : chs20 ,
sres : chs20 ,
wnr : {1, . . . ,15} ,
nbd : hoev

endobchar;
tuc wnr = 9 → sres = ’Princeton’,

wnr = 7 → nbd ≤ 2
endtutp;
tac keys {{snr}, {snm, sadr, sres}},

‘at least two specialists at ward 9’
endtatp,

dbtype DT -hospital =
dbchar hospital =

obj pat : T T -patient ,
adm : T T -admission ,
spec : T T -specialist

enddbchar;
dbc ssr (adm.pnr, pat.pnr),

ssr (adm.snr, spec.snr)
enddbtype,

endtype

Looking at the database-type given above, we see that some attributes are redundant:
pnm, padr and pres in the table for ’admission’ are uniquely determined by pnr and
already occur in the table for ’patient’; snm in the table for ’admission’ is uniquely
determined by snr and also occurs in the table for ’specialist’; and wnr in the table
for ’admission’ is uniquely determined by rnr, although a table in which both rnr and
wnr already occur is not (yet) available. For these reasons we say that the table-type
T T -admission given above is not normal. In concrete cases this means that in case
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of a change of address of a patient not only the table for ’patient’ has to be updated,
but also the table for ’admission’; otherwise, an inconsistent database would result.

Definition 9.17 (Boyce-Codd Normal Form). Let O be an object with attributes
A1, . . . ,Am and let T T -O be a table-type for O. T T -O is in Boyce-Codd Normal
Form (BCNF) := for all V ⊆ {A1, . . . ,Am} and for all A ∈ {A1, . . . ,Am}: if V →{A}
for O and A �∈V , then V is a key for O. Informally: T T -O is in BCNF if every set V
of attributes which determines an attribute outside of V is a key for O.

Since {pnr} → {pnm} for ’admission’, pnm �∈ {pnr}, but {pnr} is not a key for
’admission’, it follows that T T -admission is not in Boyce-Codd Normal Form. (Re-
member that {pnr, indat} is a key for ’admission’.)

In the literature one also finds various other normal forms including the first,
second, third and fourth normal forms. If T T -O is in BCNF, then T T -O is also in
3NF (Third Normal Form).

Definition 9.18 (Normal Database-type). A normal database-type is a database-
type in which each table-type is normal.

Example 9.13. We can convert the database-type given above into a normal database-
type by applying the following two operations to the given database-type:
1. In the table-type T T -admission leave out the attributes pnm, padr, pres, snm and
wnr.
2. Add a table-type T T -room as follows:

tatp TT -room =
tutp T -room =

obchar room =
attrib rnr : {1, . . . ,1000},

wnr : {1, . . . ,15}
endobchar;

endtutp;
tac {rnr} uni

endtatp.

The result is a normal database-type, in which redundancies are avoided, while all
information has been saved. (However, in practice, redundant storage of data may
be necessary, for instance, because of the required time of response.)

Of course, a database-type for any actual hospital organisation will be much more
complex than the simple example considered here.

Definition 9.19 (Projection). Let O be an object with attributes A1, . . . ,Am, V ⊆
{A1, . . . ,Am} and let D be a table of type O. D || V , the projection of D on V , is by
definition { t�V ; t ∈ D}.
Example 9.14. For instance, for the following table D1:
nr name sal sex dept
8 Johnson 2200 male 1
7 Johnson 3100 female 2
9 Kiviat 2900 male 1

D1 || {sex, dept} is the table sex dept
male 1
female 2 .
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Definition 9.20 (Compatible tuples). Let O1 be an object with attributes A1, . . . ,Am

and O2 an object with attributes B1, . . . ,Bn. Let t1 be a tuple for O1 and t2 a tuple for
O2. t1 and t2 are compatible := t1�{A1, . . . ,Am}∩{B1, . . . ,Bn} = t2�{A1, . . . ,Am}∩
{B1, . . . ,Bn}.
Definition 9.21 (Join). Let D1 be a table of type O1 and D2 a table of type O2.
D1 �� D2 := {t1∪ t2 | t1 ∈ D1 and t2 ∈D2 and t1 and t2 are compatible}.
D1 �� D2 is called the (natural) join of D1 and D2.

Example 9.15. For instance, let D2 be the table:
anr name man
2 planning 7
1 production 9

and let D3 result from table D1 in Example 9.14 by replacing ’dept’ by ’anr’. Then
D3 �� D2 is the table:

nr name sal sex anr name man
8 Johnson 2200 male 1 production 9
7 Johnson 3100 female 2 planning 7
9 Kiviat 2900 male 1 production 9

9.2.1 SQL

The purpose of a query-language is to enable the user to make use of the data stored
in the database in an user-friendly manner. In order to give a more concrete idea of
a query-language, we shall treat some elements of the query-language SQL (Struc-
tured Query Language; 1980) on the basis of some examples. Having understood
the logical structure of a relational database, query-languages such as SQL become
very perspicuous.

The terminology of SQL is familiar to the terminology of set theory, as will
become clear from the examples below. In these examples P, ADM, SP and R stand
for the set (or table) of all patients, the set of all admissions, the set of all specialists
and the set of all rooms, respectively. The examples all refer to the objects described
in the normalized database given in Example 9.13.

Example 9.16. Describe the set of numbers, names and addresses of all patients who
live in Princeton and were born before 1960.
Answer: a) { t�{pnr, pnm, padr} | t ∈ P | t(pres) = ’Princeton’∧ t(db) < 19600101}.
b) Now, in SQL the query ’give number, name and address of all patients who live
in Princeton and were born before 1960’ is formulated as follows:

SELECT t.pnr, t.pnm, t.padr
FROM P t
WHERE t.pres = ’Princeton’
AND t.db < 19600101

Here t.pnr corresponds to t(pnr).
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Example 9.17. Describe the set of numbers, names and addresses of all patients who
were admitted into hospital in the period between May 26 and July 11, 1981.
Answer: a) {t�{pnr, pnm, padr} | t ∈ P | ∃s ∈ ADM

[s(pnr) = t(pnr) ∧ s(indat) ≥ 19810526 ∧ s(indat) ≤ 19810711]}
or, equivalently,

{t�{pnr, pnm, padr} | t ∈ P | t(pnr) ∈ {s(pnr) | s ∈ ADM | s(indat) ≥ 19810526 ∧
s(indat) ≤ 19810711}}.
b) Now, in SQL the query ’give number, name and address of all patients who were
admitted into hospital in the period between May 26 and July 11, 1981’ is formu-
lated as follows:

SELECT t.pnr, t.pnm, t.padr
FROM P t
WHERE t.pnr IN

(SELECT s.pnr
FROM ADM s
WHERE s.indat ≥ 19810526
AND s.indat ≤ 19810711)

Example 9.18. Describe the set of names, addresses and residences of all specialists
who were responsible for an admission in August 1977 of a patient from Princeton
for reason 034.
Answer: a) {t�{snm, sadr, sres} | t ∈ SP | ∃s ∈ ADM [ s(snr) = t(snr) ∧ s(reas) =
034 ∧ 19770801 ≤ s(indat) ≤ 19770831 ∧ ∃u ∈ P [ u(pnr) = s(pnr) ∧ u(pres) =
’Princeton’]]}

or, equivalently,
{t�{snm, sadr, sres} | t ∈ SP | t(snr)∈ {s(snr) | s∈ADM | s(reas) = 034∧ 19770801
≤ s(indat) ≤ 19770831 ∧ s(pnr) ∈ {u(pnr) | u ∈ P | u(pres) = ’Princeton’}}}.
b) Now, in SQL the query ’give name, address and residence of all specialists who
were responsible for an admission in August 1977 of a patient from Princeton for
reason 034’ is formulated as follows.

SELECT t.snm, t.sadr, t.sres
FROM SP t
WHERE t.snr IN

(SELECT s.snr
FROM ADM s
WHERE s.reas = 034
AND s.indat ≤ 19770831
AND s.indat ≥ 19770801
AND s.pnr IN

(SELECT u.pnr
FROM P u
WHERE u.pres = ’Princeton’))

Example 9.19. Describe the set of numbers and names of all patients, reason of ad-
mission and number of nursing-room, who were admitted into hospital between
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September 1 and 5, 1977, in ward number 9.
Answer: a) {t�{pnr, pnm, reas, rnr} | t ∈ P �� ADM | 19770901 ≤ t(indat) ≤
19770905 ∧ ∃s ∈ R [s(rnr) = t(rnr) ∧ s(wnr) = 9]}

or, equivalently,
{t�{pnr, pnm, reas, rnr} | t ∈ P �� ADM | 19770901≤ t(indat) ≤ 19770905 ∧
t(rnr) ∈ {s(rnr) | s ∈ R | s(wnr) = 9}}, where P �� ADM is the join of P and ADM.
b) Now, in SQL the query ’give number and name of all patients, reason of admis-
sion and number of nursing-room, who were admitted into hospital in the period
between September 1 and 5, 1977, in ward number 9’ is formulated as follows.

SELECT t1.pnr, t1.pnm, t2.reas, t2.rnr
FROM P t1, ADM t2
WHERE t1.pnr = t2.pnr
AND t2.indat≥ 19770901
AND t2.indat≤ 19770905
AND t2.rnr IN

(SELECT s.rnr
FROM R s
WHERE s.wnr = 9)

Example 9.20. Describe the set of all room-numbers, in which no patients from
Cranbury were hospitalized in the period between August 11 and 17, 1977.
Answer: a) {s(rnr) | s ∈ R | ¬∃t ∈ ADM [ t(rnr) = s(rnr) ∧ 19770811 ≤ t(indat) ≤
19770817 ∧ A(t)]} where A(t) :=

i) ∃u ∈ P [u(pnr) = t(pnr) ∧ u(pres) = ’Cranbury’] or, equivalently,
ii) t(pnr) ∈ {u(pnr) | u ∈ P | u(pres) = ’Cranbury’}.

Note that ¬∃t ∈ ADM [t(rnr) = s(rnr) ∧ . . .∧ A(t)] is equivalent to

s(rnr) �∈ {t(rnr) | t ∈ ADM | . . . ∧ A(t)}.
b) Now, in SQL the query ’give the numbers of all rooms, in which no patients from
Cranbury were hospitalized in the period between August 11 and 17, 1977’ can be
formulated as follows.

SELECT s.rnr
FROM R s
WHERE s.rnr NOT IN

(SELECT t.rnr
FROM ADM t
WHERE t.indat≤ 19770817
AND t.indat≥ 19770811
AND t.pnr IN

(SELECT u.pnr
FROM P u
WHERE u.pres = ’Cranbury’))

For further reading, the reader is referred to E. O. de Brock [8].
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Exercise 9.13. The following queries all refer to the normalized database given in
Example 9.13. Formulate these queries into SQL.
a) Give name, address and residence of all specialists from ward number 9, having
more than two beds.
b) Give number and name of all specialists who were responsible for admission on
March 3, 1980, because of informaritis.
c) Give number of all rooms in which no patients from Princeton were hospitalized
in the period between May 9 and 18, 1980.
d) Give number, name, address and residence of all patients who were hospitalized
by a specialist of ward number 9.

Exercise 9.14. Let D1 be the table

nr name sal sex dept
8 Johnson 2200 male 1
7 Johnson 3100 female 2
9 Kiviat 2900 male 1

and let D2 be

the table
anr name man
2 planning 7
1 production 9

Determine D1 �� D2. Let D3 result from D1 by replacing ’dept’ by ’anr’ and ’name’
by ’wnm’. Determine D3 �� D2.
Let D4 result from D2 by replacing ’man’ by ’nr’ and ’name’ by ’anm’. Determine
D1 �� D4 and D3 �� D4.

Exercise 9.15. Make clear why the following set does not describe the set of all
room-numbers in which no patients from Cranbury were hospitalized in the period
between August 11 and 17, 1977 (compare Example 9.20).
{s(rnr) | s ∈ R | ∃t ∈ ADM [ t(rnr) = s(rnr) ∧ 19770811 ≤ t(indat) ≤ 19770817 ∧
¬∃u ∈ P [ u(pnr) = t(pnr) ∧ u(pres) = ’Cranbury’]]}.
Hint: Consider the following tables.
R rnr wnr
s1 11 5
s2 12 5
s3 13 6

ADM pnr indat rnr
t1 400 19770812 11
t2 500 19770813 11
t3 600 19770814 12

P pnr pres
u1 400 Princeton
u2 500 Cranbury
u3 600 Cranbury

9.3 Social Choice Theory; Majority Judgment

Abstract We show that most well-known and most frequently used voting rules
have a number of unacceptable properties. The hope for a voting rule with only nice
properties seemed to be vanished when Kenneth Arrow [1] proved his impossibility
theorem in 1951. However, in 2010 Michel Balinski and Rida Laraki made clear that
– by asking voters for their evaluations of the candidates instead of their preferences
over the candidates – a nice voting rule does exist: Majority Judgment (MJ). They
show how poorly the existing voting rules perform in the French and American
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presidential elections and how Majority Judgment would lead to other and more
plausible results.

9.3.1 Introduction

When choosing a mayor, president, chairman, etc., usually the first thought is: most
votes count. Many people think that democracy is more or less identical to appli-
cation of ‘most votes count’, in other words, the Plurality Rule (PR). However, this
procedure to choose a winner or a common (or social) preference over the candi-
dates or alternatives has many defects. This rule takes only the top preference of
the voters into account, ignores the second, third, etc. preferences of the voters and
hence causes serious loss of information. In technical terms, this procedure is not
Independent of Irrelevant Alternatives (not IIA), as we shall see in Section 9.3.2.

Is then pairwise comparison, in other words Majority Rule (MR), a good alterna-
tive? This procedure does take the individual preference orderings of the voters over
the alternatives into account and is Independent of Irrelevant Alternatives. However,
it is not transitive and hence does not in all cases yield a feasable outcome, as we
shall see in Section 9.3.3. By the way, ‘most votes count’ and ‘pairwise comparison’
coincide in the case of only two alternatives, i.e., with only two candidates Plurality
Rule and Majority Rule give the same outcome.

In 1951 K. Arrow [1] proved that any voting rule which takes as input the indi-
vidual preference orderings (over the candidates or alternatives) of the voters and
which is transitive and Independent of Irrelevant Alternatives (together with some
other natural properties like anonymity and neutrality) is dictatorial, i.e., there will
be a voter whose preference is always the outcome of the voting rule, no matter what
the preferences of the other voters are. In Section 9.3.6 we shall give a simple proof
of (a version of) Arrow’s theorem, due to Balinski and Laraki [3].

Recently, Balinski and Laraki [3] showed that even with only two candidates
‘most votes count’ in many cases may give an unnatural or counterintuitive out-
come, i.e., it may select a candidate as winner who in fact has lower evaluations than
his competitor. In their words: Majority Rule does not respect domination. Conse-
quently, Majority Rule and Plurality Rule are disqualified as good voting rules for
determining a winner or a common preference ordering over the alternatives. We
shall elaborate this in Section 9.3.7.

Considering all this, the conclusion seems to be inevitable: there is no ‘good’
voting rule to determine a winner (or a common preference over the candidates) in
an election, where we mean by ‘good’ that the voting rule is transitive, Independent
of Irrelevant Alternatives and in addition respects domination.

However, already in 2010 Balinski and Laraki [2] presented their Majority Judg-
ment (MJ). This voting rule takes as input not the individual preference orderings
(over the alternatives) of the voters, but the evaluations by the voters of the dif-
ferent candidates in sufficiently varied terms, like for instance: excellent (ex), very
good (vg), good (go), acceptable (ac), poor (po) and reject (re). It turns out that this



464 9 Applications: Prolog; Relational Databases and SQL; Social Choice Theory

voting rule, Majority Judgment, is IIA, transitive and does respect domination and
nevertheless is not dictatorial. In addition, this Majority Judgment contains certain
safeguards to prevent successful manipulation by the voters. We describe this voting
rule in Section 9.3.8.

How is it possible that Majority Judgment escapes the curse of Arrow’s theorem?
Because MJ takes the evaluations of the candidates by the voters as input and not
the individual preferences over the candidates. Here it is important to notice that
from the evaluations of the candidates by a voter one may deduce the individual
preference ordering of this voter, but that conversely, from the individual preference
ordering over the candidates one cannot deduce the evaluations of the candidates
by the voter in question. So, an evaluation of all candidates by a voter is much
more informative than his preference ordering over the candidates. In addition, if
two voters say that they prefer candidate A to candidate B, they may mean quite
different things: one that he judges A as excellent and B as acceptable, the other that
he judges A as poor and B as even more poor. In other words, individual preference
orderings over the candidates lead to a babylonian confusion of tongues and one
should not be surprised that this yields problems, as becomes evident from Arrow’s
theorem.

Balinski and Laraki show on the basis of the presidential elections in the USA [4]
and in France [5] how poorly our familiar ways of choosing a president may work
out and illustrate with these examples from real life how their Majority Judgment
would lead to other and more plausible outcomes. We discuss this in Section 9.3.12
(USA) and 9.3.13 (France). In Section 9.3.14 we pay attention to the situation in the
Netherlands.

9.3.2 Plurality Rule (PR): most votes count

In the year 2000 there were presidential elections in the USA with Bush, Gore and
Nader as the most important candidates. In Florida the result of the ballot was ap-

proximately as follows:
41% Bush
39% Gore
20% Nader

Because ‘most votes count’ or Plurality Rule (PR) is applied, Bush was the winner
in Florida (with in fact only a few hundred votes more than Gore). But most votes
count? Or rather not? The individual preferences of the voters were approximately
as given in the following profile p.

41% Bush Gore Nader
39% Gore Nader Bush
20% Nader Gore Bush

Notice that (39 + 20) = 59% of the voters, hence a majority, has Bush as last pref-
erence. But Plurality Rule chooses Bush as the winner. How can this be? Because
the Plurality Rule causes loss of information: only the first preferences of the voters



9.3 Social Choice Theory; Majority Judgment 465

are taken into account, the second, third, etc. preferences of the voters are left out of
consideration.

Taking this extra information into account, pairwise comparison, in other words
Majority Rule (MR), yields the following result: both Gore and Nader beat Bush
with 39 + 20 = 59% against 41. And Gore beats Nader with 41 + 39 = 80% against
20. So, the outcome under pairwise comparison (MR) would be: Gore Nader Bush,
in this order, while the outcome under Pluraiity Rule was: Bush Gore Nader.

PR Bush Gore Nader
MR Gore Nader Bush

In a pairwise comparison Bush loses of every other candidate, and is therefore called
a Condorcet loser, but he becomes the winner under ‘most votes count’. Gore beats
every other candidate in a pairwise comparison and is therefore called the Condorcet
winner.

Candidate Nader was irrelevant in the sense that he did not have a chance to be-
come president. For that reason he could have withdrawn his candidacy. One might
think, no problem, because Nader was not chosen anyway. However, without Nader
the profile above looks like this:

41% Bush Gore
39 + 20 = 59% Gore Bush

Now, when applying ‘most votes count’, Gore would win instead of Bush. So, under
‘most votes count’ the choice between Bush and Gore is determined by the partic-
ipation or non-participation of a third (irrelevant) candidate. In other words, ‘most
votes count’ (PR) is not Independent of Irrelevant Alternatives (not IIA). Notice that
Majority Rule (MR), or pairwise comparison, is (by definition) IIA.

Related to this, the 20% voters with preference ordering Nader Gore Bush prefer
Gore to Bush. By giving an improper order of preference Gore Nader Bush they can
ensure that under ‘most votes count’ Gore becomes the winner with 39 + 20 = 59%
of the votes, which is a better outcome for them. In other words, ‘most votes count’
(PR) is not strategy-proof, i.e., cheating may pay off.

Another objection against Plurality Rule (PR) has been pointed out by Donald
Saari [13, 14, 15]. Profile p above contains what Saari calls a reversal portion:

20 Bush Gore Nader
20 Nader Gore Bush

These 20 + 20 voters have diametrically opposed preferences and hence cancel each
other out. One would intuitively expect that adding a reversal portion to or subtract-
ing it from a given profile does not change the outcome. However, subtracting the
reversal portion in question from the original profile p yields:

21 Bush Gore Nader
39 Gore Nader Bush

Now, under ‘most votes count’ Gore instead of Bush would become the winner,
while one would expect intuitively that the outcome does not change.
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9.3.3 Majority Rule (MR): pairwise comparison

As we have remarked earlier, Majority Rule (MR), or pairwise comparison, is In-
dependent of Irrelevant Alternatives (IIA). This follows immediately from the defi-
nition of Majority Rule: in a competition between two candidates A and B only the
relative positions of A and B in the given profile are compared and a third alternative
C has no influence on that. Related to this is that Majority Rule is also strategy-
proof; see Exercise 9.16. This might suggest that Majority Rule is a perfect voting
rule to aggregate the individual preference orderings of the voters to a common or
social ordering of the candidates. However, this is not the case, because in some
cases Majority Rule does not yield a feasible outcome, as illustrated by the follow-

ing so called Condorcet profile q:
1/3 a b c
1/3 b c a
1/3 c a b

A majority (group 1 and 3) prefers a to b, another majority (group 1 and 2) prefers
b to c and again another majority (group 2 and 3) prefers c to a. So, a beats b and b
beats c, but not a beats c. On the contrary, c beats a. In other words: Majority Rule
is not transitive. The outcome under Majority Rule may be cyclic: a b c a. This is
called Condorcet’s paradox.

Notice that with only two alternatives violation of transitivity cannot occur be-
cause transitivity refers to three alternatives. Transitivity of a relation R on a set V
means by definition: if aRb and bRc, then aRc for all elements a,b,c in V .

In the case of three alternatives and a great number of voters, supposing that every
individual preference ordering is equally likely, the probability of the occurrence of
the Condorcet paradox, i.e., the probability of a cyclic outcome, is 1 out of 16, a
number which is not negligible small; see Gehrlein [11].

As pointed out by Saari [13, 14, 15], the outcome under Majority Rule may
change when we add a Condorcet portion to, or subtract it from, a given profile. For

instance, consider the following profile r:
1: a c b
2: b a c

If we apply Majority Rule to this profile r the outcome is: b a c. But if add to profile

r the Condorcet portion s:
2: a b c
2: b c a
2: c a b

and next apply Majority Rule to the profile r+s the outcome will become a b c. This
is counterintuitive: a Condorcet portion represents voters whose collective advice
with regard to social choice is confused and hence should be ignored. Note that in
a Condorcet portion each candidate is an equal number of times first, second and
third choice. So, intuitively, nobody is preferred. A Condorcet portion should give a
tie. But it does not necessarily so under Majority Rule, as we have just seen.
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9.3.4 Borda Rule (BR)

The French mathematician and political scientist Jean-Charles de Borda (±1750)
proposed to count the number of candidates beaten by a given candidate. That is, if
a voter gives an order of preference Bush Gore Nader, Bush gets 2 (Borda) points,
because he beats both Gore and Nader, Gore gets 1 (Borda) point because he beats
only one candidate and Nader gets 0 (Borda) points. Given profile p above

41% Bush Gore Nader
39% Gore Nader Bush
20% Nader Gore Bush

the Borda score of Bush is: (41× 2)+ (39× 0)+(20×0)= 82,
the Borda score of Gore is: (41× 1)+ (39× 2)+(20×1)= 139, and
the Borda score of Nader is: (41× 0)+ (39×1)+(20× 2)= 79.
So, the outcome under the Borda Rule (BR) would be: Gore Bush Nader, in this
order.

Although the Borda Rule takes the individual preference orderings of the voters
into account, the Borda Rule still causes loss of information: it does not take into
account the intensity with which one candidate is preferred to the next one. If a
voter indicates that he prefers candidate A to B he may mean quite different things:
he may evaluate A as excellent and B as very good, he may evaluate A as excellent
and B as poor, or he may evaluate A as poor and B as reject.

Like Plurality Rule, also the Borda Rule is not Independent of Irrelevant Alter-

natives (not IIA), as illustrated by the following profile:

3: c a b
2: a b c
1: a c b
1: b c a

Given this profile, c is the Condorcet winner, i.e., c beats all other candidates in a
pairwise comparison, but a is the Borda winner with (3× 1)+ (2× 2)+ (1× 2)+
(1× 0) = 9 Borda points against 8 Borda points for c. In a competition between
a and c under application of the Borda Rule the third alternative b turns out to be
decisive: without the participation of b the Borda winner would become c with 4
Borda points against only 3 for a.

A serious disadvantage of the Borda Rule is that voters can rather easily act
strategically: by giving an improper order of preference they may be able to achieve
an outcome which is better for them. The three voters with preference c a b who
want c to win, can easily pretend that a is their last preference and pretend that their
order of preference is c b a. In this way they achieve that a gets 3 Borda points less,
hence 9−3= 6, the number of Borda points for c remains 8 and the Borda score of b
becomes 4 + 3 = 7. So, by giving an improper order of preference these three voters
can achieve an outcome c which they prefer to the outcome a when they give their
proper order of preference. In other words, the Borda Rule is not strategy-proof.

Another objection against the Borda Rule has been pointed out by Balinski and
Laraki [2]: if one removes the Borda winner Gore from the given profile p, the
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order of the remaining candidates may change under the Borda Rule: leaving out

the winner Gore from profile p we get:
41 Bush Nader
39 Nader Bush
20 Nader Bush

Applying the Borda Rule to this profile yields Nader Bush as social outcome, while
with the winner Gore present the social order between these two candidates was just
the opposite: Bush Nader.

As pointed out by Saari [13, 14, 15], the outcome under the Borda Rule remains
unaffected by adding a reversal portion to, or subtracting it from, a given profile.

Why is this so? A reversal portion has the following structure:
a b c
c b a

Applying the Borda Rule to this reversal portion, a gets 2 + 0 = 2 Borda points, b
gets 1 + 1 = 2 Borda points and c also gets 0 + 2 = 2 Borda Points. So, when we add
or subtract a reversal portion, the alternatives get the same number of Borda points
more or less. A similar result holds for Majority Rule, but not for Plurality Rule, as
we have seen in Section 9.3.2.

The outcome under the Borda Rule also remains unaffected by adding a Con-
dorcet portion to, or subtracting it from, a given profile. The reason is simple: all
alternatives in a Condorcet portion get the same number of Borda points. A similar
result holds for Plurality Rule, but not for Majority Rule as we have seen in Section
9.3.3.

9.3.5 Outcome depends on the Voting Rule

In the preceding subsections we have seen that the outcome of an election does not
depend so much on the preferences of the electorate, but rather on the voting rule
which aggregates the individual preferences of the voters to a common or social
order of preference. Given profile p above, the outcome

under Plurality Rule is: Bush Gore Nader
under Majority Rule is: Gore Nader Bush

and under the Borda Rule is: Gore Bush Nader

Notice that with only two alternatives, Plurality Rule, Majority Rule and the Borda
Rule are equivalent, i.e., for all profiles they yield the same outcome; see Exercise
9.17.

9.3.6 Arrow’s Impossibility Theorem

In the preceeding subsections we have seen that Plurality Rule (PR) or ‘most votes
count’ and the Borda Rule are not Independent of Irrelevant Alternatives (not IIA),
but they are transitive. On the other hand, Majority Rule (MR) or pairwise compari-
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son is IIA, but not transitive. The question remains whether one can devise a voting
rule which is both IIA and transitive. In 1951 K. Arrow made an abrupt end to this
hope by publishing his so called impossibility theorem [1]: for three or more alter-
natives every voting rule which takes as input the individual preference orderings
of the voters and which satifies IIA and transitivity (together with some other ele-
mentary properties like anonymity and neutrality) is dictatorial, i.e., there will be a
voter whose preference is always the social or common preference, no matter what
the preferences of the other voters are. Such a voter is called a dictator.

First some definitions.

Definition 9.22 (Profile). A profile p associates with every voter a (linear or weak)
ordering of the candidates or alternatives.

Definition 9.23 (Voting Rule). A voting rule or voting method M assigns to every
profile a common (or social) (weak) ordering +M of the candidates. The ordering
+M may be weak, i.e., indifferences (A≈M B, i.e., A+M B and B+M A) may occur.

There are many proofs of Arrow’s theorem. Below we present a simple proof of (a
version of) Arrow’s theorem, recently published by Balinski and Laraki [3]. They
start with listing May’s axioms [12] for a voting method M in the case of two candi-
dates:

Definition 9.24 (May’s axioms for a voting method M in the case of two alter-
natives). 1. Based on comparisons The input of the voting method M consists of the
individual preference orderings of the voters over the candidates or alternatives.
2. Unrestricted domain Every vote configuration (profile) is allowed, in other words,
the voting method M should assign a social ordering to every profile p.
3. Anonymity Interhanging the names of the voters does not change the outcome.
4. Neutrality Interchanging the names of the alternatives does not change the out-
come.
5. Monotonicity If A wins or is socially indifferent to B (A+M B) and one or more
voters change their preference in favor of A, then the voting method M will put A
above B (A,M B).
6. Completeness Given a pair of candidates A and B, the voting method M will put
A above B (A,M B) or B above A (B,M A) or declare them indifferent (A≈M B).

Theorem 9.1 (May [12]). In the case of only two alternatives the only voting
method which satisfies May’s axioms is Majority Rule. (Remember that in the case
of two alternatives Majority Rule, Plurality Rule and the Borda Rule are equivalent!)

Proof. (Balinski and Laraki [3]) Suppose two alternatives A and B and the voting
method M satisfies May’s axioms. Anonymity implies that only the numbers count:
the number nA of voters who prefer A to B, the number nB of voters who prefer B to
A and the number nAB of voters who are indifferent between A and B. Completeness
guarantees that there must be an outcome.

Suppose nA = nB and A ,M B. Because of neutrality changing the names of A
and B results in B ,M A. But the new profile is identical to the original profile.
Contradiction. Hence, by completeness, A≈M B when nA = nB.
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Suppose nA > nB. Change the preferences of nA− nB voters who prefer A to B
in indifferences. By May’s axiom of unrestricted domain this profile is allowed and
given this profile A ≈M B, as we have just seen. Changing this profile back to the
original profile yields A,M B according to May’s monotonicity axiom. ��
For the case of an arbitrary number of candidates Balinski and Laraki [3] add to
May’s axioms the following two axioms:
7. Transitivity If A+M B and B+M C, then A+M C.
8. Independence of Irrelevant Alternatives (IIA) If A+M B and other candidates are
dropped or adjoined, then again A+M B.
Next Balinski and Laraki prove the following version of Arrow’s impossibility the-
orem.

Theorem 9.2 (Arrow’s impossibility theorem [1]). For n ≥ 3 candidates there is
no voting method M which satisfies all eight axioms.

Proof. (Balinski and Laraki [3]) Consider any two candidates A and B. According to
IIA it is sufficient to consider only these two. By Theorem 9.1 axioms 1 till 6 imply
that the voting method M is Majority Rule. Because of the axiom of unrestricted do-
main, Condorcet’s paradoxical profile is admitted and hence transitivity is violated.
Hence, there can be no voting method which satisfies all eight axioms. ��
The question whether it is possible to escape from Arrow’s impossibility theorem
has kept many scientists busy for more than 60 years: mathematicians, economists,
political scientists and philosophers. Notice that when two people say that they pre-
fer A to B they may mean quite different things: one may mean that A is excellent
and B is (very) good, while the other may mean that A is acceptable and B should
be rejected. With many voters a babylonian confusion of tongues is the result and it
should not come as a surprise that problems like the impossibility theorem show up.

Already in the first half of last century people like Gerrit Mannoury, L.E.J.
Brouwer, David van Dantzig, Frederik van Eeden and some other like minded, uni-
fied in the Signific Circle in the Netherlands, have pointed to the importance of a
careful use of language. We quote Mannoury:

Who wants to control his feelings must first analyze them and the traditional language forms
are utterly insufficient for this purpose. [Mannoury 1917]

To the further development of philosophical thoughts an impediment stands in the way. ...
I know of no image that gives a clearer idea of this impediment than that of the tower of
Babel, symbol of the confusion of tongues. [Mannoury 2017]

This is precisely what happens if different people say that they prefer A to B. They
all mean something else!

9.3.7 Domination

In their book [2] Balinski and Laraki present a solution: instead of asking voters their
preference ordering over the candidates, one should ask them to give an evaluation
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of all candidates in terms which are well understood by everyone involved. For
instance in terms of: excellent (ex), very good (vg), good (go), acceptable (ac), poor
(po) and reject (re). The range of evaluations should be sufficiently large such that
every voter can express his distinction of the candidates.

Notice that evaluations are much more informative than preference orderings:
from the evaluations of the candidates by a voter one can easily deduce his prefer-
ence ordering over the candidates, but not vice versa! From a preference ordering
over the candidates one cannot deduce the evaluations by the voter in question.

By a more precise use of language, evaluations instead of orderings, Balinski and
Laraki [3] do an astonishing, if not shocking, discovery: Majority Rule does not
respect domination! Let us illustrate what we mean by an example. Consider two
candidates A and B who are evaluated by five voters as rendered in the following
opinion profile:

voter 1 2 3 4 5
candidate A go ac po ex vg
candidate B vg go ac po re

The first three voters slightly prefer B to A, while the last two voters strongly prefer
A to B. According to Majority Rule A is beaten by B with 2 against 3: B,MR A.

However, if we look at the evaluations of A and B, ordered from high till low,
then the following merit-profile results:

A ex vg go ac po
B vg go ac po re

It is A who has the better evaluations, in other words, the evaluations of A dominate
those of B. Hence, A instead of B should be the winner! Majority Rule does not
respect domination. On the other hand, any reasonable voting rule should respect
domination. Question is whether there exists such a voting rule. And yes, there is:
Majority Judgment (MJ) of Balinski and Laraki [2, 3]. Let us illustrate how Majority
Judgment works by applying it to the situation just given.

There is a majority of 3 voters who think that A deserves at least a go, and there is
another majority of 3 voters who think that A deserves at most a go. For that reason
the majority grade of A is by definition go. For B there is a majority of 3 voters who
think that B deserves at least an ac, and another majority of 3 voters who think that
B deserves at most an ac. Hence, the majority grade of B is by definition ac. The
majority grade of A is higher than the one of B and hence, according to Majority
Judgment, A is the winner: A,MJ B.

Majority Judgment (MJ) looks horizontally for majorities in the merit-profile,
while Majority Rule (MR) looks vertically for majorities in the opinion-profile. Ma-
jority Judgment (MJ) respects domination, however, Majority Rule (MR) does not.

9.3.8 Majority Judgment (MJ)

Balinski and Laraki develop in their book [2] and in their article [3] a theory, called
Majority Judgment (MJ), to aggregate the evaluations (instead of the preference or-
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derings) of the candidates by the voters to a common or social (weak) preference
ordering +MJ over the candidates. As suggested by the name Majority Judgment,
majorities play an essential role in this aggregation method. Majority Judgment (MJ)
is Independent of Irrelevant Alternatives (IIA), transitive and does respect domina-
tion.

To explain how Majority Judgment works, let us consider an example with three
candidates A, B and C and six voters or judges. The evaluations of the candidates by
the voters are given in the following opinion-profile:

voter 1 2 3 4 5 6
A: ex ex vg ex ex ex
B: ex vg vg vg go vg
C: ac ex go vg vg ex

Anonymity requires that only the judgments or grades count. The number of times
that each grade occurs, from high till low, is rendered in the merit-profile of the
candidates:

A: ex ex ex ex ex vg
B: ex [vg vg vg vg] go
C: ex [ex vg vg go] ac

There is a 4/6 majority of voters who think that C deserves at least a vg and there
is another 4/6 majority of voters who think that C deserves at most a vg. So, for C
there is a 4/6 majority for [vg, vg]. The majority grade of C is therefore by definition
vg. It is the most accurate possible majority decision about the evaluations of C. In
a similar way the 4/6 majorities for A and B have been indicated in boldface.

The merit-profile α = (α1,α2, . . . ,αn) of candidate A dominates the merit-profile
β = (β1,β2, . . . ,βn) of candidate B iff for every i, αi ≥ βi and for at least one k,
αk > βk. Every reasonable voting method should respect domination. In our example
the merit-profile of A dominates the one of B and the one of C. Therefore, Majority
Judgment (MJ) will make A the winner: A,MJ B and A,MJ C.

How should Majority Judgment (MJ) rank B and C? The 4/6 majorities for B and
C are identical: [vg, vg]. But for B the 5/6 majority (indicated by the square brackets)
is for [vg, vg], while for C the 5/6 majority is for [ex, go]. Because none of these
pairs dominates the other and because there is more consensus in the evaluations of
B than in those of C, Majority Judgment (MJ) will rank B above C. So, the social
or common preference ordering under Majority Judgment will be: A,MJ B,MJ C.
Notice that Majority Rule (MR), applied to the opinion-profile in our example, will
rank C above B: C beats B with 3 against 2, so C ,MR B.

More generally, suppose the evaluations of B are β = (β1,β2, . . . ,βn) and those
of C are γ = (γ1,γ2, . . . ,γn), both from high till low, and suppose the most accu-
rate majority where the candidates B and C differ is the majority for [βk,βn−k+1]
�= [γk,γn−k+1]. We call [βk,βn−k+1] B’s middle-most block with respect to C and
[γk,γn−k+1] C’s middle-most block with respect to B. Majority Judgment‘(MJ) ranks
B aboveC iff (a) the middle-most block of B with respect to C dominates the middle-
most block of C with respect to B, or (b) the middle-most block of B with respect to
C shows more consensus than the one of C with respect to B.
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So, B ,MJ C iff (a) βk + γk and βn−k+1 + γn−k+1, with at least one + strict, or
(b) γk , βk + βn−k+1 , γn−k+1. In all other cases the collections of evaluations are
identical and B≈MJ C.

9.3.9 Properties of Majority Judgment

From the definition of Majority Judgment (MJ) follows immediately:

Theorem 9.3. (Balinski and Laraki) Majority Judgment takes as input the evalua-
tions of the candidates by the voters and satisfies all axioms 2 till 8 in subsection
9.3.6.

In addition, Majority Judgment (MJ) has among others the following properties.

1. Majority Judgment (MJ) gives a social preference ordering+MJ of the candidates
or alternatives and society is indifferent between two candidates A and B, A≈MJ

B, precisely when they have the same evaluations. Majority Judgment measures
the support of the electorate for the candidates and orders them in proportion to
their support. With Majority Rule the voters cannot express their opinions about
the candidates, every voter is restricted to supporting one candidate at the expense
of all others.

2. From the definitions it is evident that Majority Judgment (MJ) is Independent of
Irrelevant Alternatives (IIA): whether A +MJ B or B +MJ A does not depend on
a third alternative C. As we saw, Plurality Rule and the Borda Rule are not IIA.

3. With more than two candidates,+MJ is transitive: if A+MJ B and B+MJ C, then
A+MJ C. As we have seen, Majority Rule (MR) is not transitive.

4. Majority Judgment (MJ) respects domination: if the evaluations of A dominate
those of B, then A ,MJ B. Majority Rule (and hence also Plurality Rule and the
Borda Rule) do not respect domination.

5. Majority Judgment is strategy-proof in grading: a group of voters whose input
is higher (respectively, lower) than the majority grade cannot raise (respectively,
lower) the majority grade. For instance, suppose candidate A receives the follow-
ing grades: good acceptable poor. The majority grade of A is acceptable. The
voter who gave A a good thinks the majority grade acceptable is too low, but he
cannot raise the majority grade of A; giving an excellent instead of a good does
not raise the majority grade of A.
This property certainly does not hold for mechanisms based on adding numbers
or taking averages of numbers, neither for the Borda Rule and its variants.

6. Majority Judgment (MJ) is partially strategy-proof in ranking: if a voter who
prefers B to A, can raise the majority grade of B, then he cannot lower the majority
grade of A; and if he can lower the majority grade of A, then he cannot raise the
majority grade of B. For instance, suppose voter i gives B a higher evaluation
than A and A has the same majority grade as B.
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←
B | ·

majority grade i i
A | ·

The only way in which voter i can raise the majority grade of B is by giving B
a grade higher than its majority grade instead of a grade lower than B’s majority
grade. But because i gave a lower grade to A than to B, he cannot lower A’s
majority grade.
This property certainly does not hold for mechanisms based on adding numbers
or taking averages of numbers, neither for the Borda Rule and its variants.

7. The majority grade of a candidate is an important signal both to the candidate
and to the electorate.

8. Majority Judgment stimulates candidates to get the highest possible grades of as
many voters as possible; every grade contributes to the final judgment.

9. Candidates cannot focus on 51% of the electorate and, once the winner, claim to
represent the whole electorate.

9.3.10 Point Summing and Approval Voting

One should notice that voting methods, where voters give points to candidates and
where candidates are ordered according to the number of points they have collected,
like Majority Judgment also satisfy the axioms 2 till 8 in Section 9.3.6. However,
such methods are not strategy-proof neither in grading nor in ranking. In addition,
a voting method based on giving points to the candidates is not consistent with
Majority Judgment, neither with Majority Rule. Consider the following example:

1 2 3 4 5 6 7
A: ex ex ex ac ac ac ac
B: po po po go go go go

Looking at this opinion profile vertically, we see that B beats A with 4 against 3, so
B is the Majority Rule winner: B,MR A. Looking at this profile horizontally, we see
that the majority grade of B is go and the majority grade of A is only ac; so, in this
example B is also the Majority Judgment winner: B,MJ A. However, with 5 points
for ex, 4 for vg, 3 for go, 2 for ac, 1 for po and 0 for re, A wins with 23 points against
15 for B. So, adding points is not consistent with Majority Judgment, neither with
Majority Rule.

The idea of Approval Voting [6] is that every voter gives 1 point to each candidate
he or she approves of and 0 points to every candidate he or she disapproves of. With
1 point for go or higher, B wins with 4 points against 3 for A. But with 1 point for ac
or higher, A wins with 7 points against 4 for B. So, Approval Voting yields arbitrary
outcomes and is not consistent with Majority Judgment, neither with Majority Rule.



9.3 Social Choice Theory; Majority Judgment 475

9.3.11 Majority Judgment with many Voters

Consider the following merit profile for two candidates A and B:

ex vg go - go ac po re
A: 28.63 16.42 04.95 - 06.72 14.79 14.25 14.24
B: 12.35 21.71 15.94 - 09.30 20.08 11.94 08.69

Left and right of the middle one finds 50% of the number of evaluations. For ε ≤
4.95, A and B have a (50+ε)% majority for [go, go]. But for ε < 6.72−4.95= 1.77,
A has a (54.95+ε)% majority for [vg, go], while B has a (54.95+ε)% majority for
[go, go]. Because A’s middlemost block dominates the one of B, A ,MJ B. This is
the case because 4.95 < min{6.72, 15.94, 9.30}. Finding the smallest of these four
numbers is the same as finding the highest percentage of each candidate’s grades
strictly above and strictly below their majority grades.

Let pA be the percentage of A’s grades strictly above the majority grade αA of
A and qA the percentage of A’s grades strictly below αA. A’s majority gauge is by
definition (pA,αA,qA). So, in our example the majority gauge of A is (45.05, go,
43.28) and the majority gauge of B is (34.06, go, 40.71).

The majority-gauge rule ,MG ranks A above B, A,MG B, iff αA , αB or (αA =
αB and pA > max{qA, pB,qB}) or (αA = αB and qB > max{pA,qA, pB}).

In our example: pA = 45.05 > max{43.28, 34.06, 40.71}, therefore A,MG B.
If+MG is decisive (written as,MG), then its ordering,MG is identical to the one of
,MJ . So, in our example it also follows that A,MJ B, as we already saw above.

9.3.12 Presidential Elections in the USA

In [4] Balinski and Laraki give an analysis of the recent (2016) presidential elections
in the USA. Their conclusion is unambiguous: the voting method in the USA does
not work, more precisely, it does not select the candidate who gets globally the
highest evaluation of the electorate. To illustrate this, they use the results mentioned
below of a poll by the Pew Research Center in March 2016 among 1787 voters from
all political stripes.

candidate great good average poor terrible
A 05 28 39 13 15 %
B 10 26 26 15 23 %
C 07 22 31 17 23 %
D 11 22 20 16 31 %
E 10 16 12 15 47 %

For candidate A there is a majority of 05 + 28 + 39 = 64% who thinks that he
deserves at least an average and there is another majority of 15 + 13 + 39 = 67%
who thinks that he deserves at most an average. Therefore, average is by definition
the majority grade of candidate A. In the table the majority grades of the different
candidates have been indicated by bold face letters. Notice that the opinions of the
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voters are clearly much more detailed than can be expressed by Majority Rule. Also
the percentages of voters who think that candidates D and E would be bad presidents
is relatively high.

Next Balinski and Laraki determine how, given these judgments, Majority Judg-
ment would rank the candidates. The majority grade of candidate A, B, C and D
is average, the one of candidate E is poor. The majority gauge of candidate A is
(33, average, 28), because pA = 5+ 28 = 33 and qA = 13+ 15 = 28. In the table
below the majority gauges of all candidates are listed, from which one may derive
a ranking of the candidates according to the majority-gauge rule, which is also the
Majority Judgment ranking.

majority grade majority gauge
1. A average (33, average, 28)
2. B average (36, average, 38)
3. C average (29, average, 40)
4. D average (33, average, 47)
5. E poor (38, poor, 47)

Because qB = 38 > max{33, 28, 36} it follows that A ,MG B; because qC = 40 >
max{36, 38, 29} it follows that B,MG C and because qD = 47 > max{29, 40, 33}
it follows that C ,MG D. Finally, because the majority grade average of D is higher
than the majority grade poor of E , it follows that D,MG E .

Amazingly, at election day the two main candidates were D and E, of which E
won the election, because he won in most states, although he did not get most votes.

The Majority Judgment ranking is the logical result of majorities which decide
about the judgments of the candidates instead of Majority Rule which ranks candi-
dates according to the number of votes they get. Majority Judgment measures the
support of the electorate for the different candidates and ranks them according to
their support. With Majority Rule the voters cannot express their opinions about the
candidates; every voter is restricted to supporting one candidate at the same time
excluding all others.

Why can Majority Rule work out so poorly? To make this clear, Balinski and
Laraki [4] consider the merit-profile of candidates D and E:

great good average poor terrible
D 11 22 20 16 31 %
E 10 16 12 15 47 %

Notice that the evaluations of D dominate those of E . Hence, D should win, as also
becomes clear from the following table:

at least great good average poor terrible
D 11 33 53 69 100 %
E 10 26 38 53 100 %

Any decent voting method should rank D above E . But Majority Rule can easily fail
to make D the winner: suppose that underlying the merit-profile for D and E is the
following opinion-profile for these candidates:
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10 16 12 15 14 11 12 04 04 02
D go av po te te gr go av po te
E gr go av po te te te te te te

The individual vote percentages in this opinion-profile are in accordance with the
degrees that each candidate received in the merit-profile. For instance, the 22% vot-
ers who gave a good to D are now divided in two groups: a group of 10% voters
who gave a good to D and a great to E and a group of 12% voters who evaluated
D as good and E as terrible. Applying Majority Rule to this opinion-profile, E will
beat D with 10 + 16 + 12 + 15 = 53% against 11 + 12 + 4 + 4 = 31%, while D’s
evaluations dominate those of E . Notice that in this opinion-profile the 53% voters
who prefer E to D only slightly do so, while most voters who prefer D to E do so
strongly.

9.3.13 Presidential Elections in France

In [5] Balinki and Laraki take a look at the French presidential elections. Their
conclusion is again extremely negative: the French election system can easily select
a winner who is rejected by a vast majority of the voters. The French presidential
election is in two rounds: 1. If in the first round a candidate has more than half of
the votes, then he or she is elected. 2. Otherwise, there is a second round between
the two candidates with most votes in the first round.

Let us start with having a look at the presidential elections of 2007 with twelve
candidates of which Sarkozy, Royal and Bayrou were the most important ones. The
results of the first round were as follows:

31.2% Sarkozy Bayrou Royal
25.9% Royal Bayrou Sarkozy
18.6% Bayrou
xy.z% ??? Bayrou Sarkozy/Royal

In the first round Sarkozy and Royal had most votes, but less than 50%. There-
fore, there was a second round between them, in which Sarkozy won. But the polls
showed clearly that a majority of 25.9 + 18.6 + xy.z % of the voters preferred Bay-
rou to Sarkozy and that another majority of 31.2 + 18.6 + xy.z % preferred Bayrou
to Royal. As we shall see further on in this subsection applying Majority Judgment
would most likely have chosen Bayrou as the winner.

At the French presidential elections of April 21, 2017, there were initially three
major candidates, say A, B and C. Suppose the preference orderings of the voters
were as follows:

34% A B C
32% B A C
34% C B A

In this case nobody has more than 50% of the votes and B, who has least votes, is
eliminated. The second round is then between A and C, in which A gets 34 + 32 =
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66% of the votes and wins. Next suppose that in the first round A gets more support

at the expense of candidate C:
37% A B C
32% B A C
31% C B A

Then after the first round C is eliminated and B wins in the second round with 32
+ 31 = 63% of the votes. More support for the winning candidate A in the first
round causes that he becomes a loser instead of a winner. In other words: the French
election mechanism is not monotonic: more support may mean losing instead of
winning.

On April 22, 2007, Balinski and Laraki did an experiment among 1752 voters
in three districts of Orsay. These voters were asked to fill in, apart from the official
voting ballot, also the following voting ballot.

Pour présider la France, ayant pris tous les éléments en compte, je juge en conscience que ce candidat serait:

très bien bien asses bien passable insuffisant à rejeter
Besancenot

Buffet
Schivardi
Bayrou
Bové

Voynet
Villiers
Royal

Nihous
Le Pen

Laguiller
Sarkozy

Attribuer à chaque candidat une évaluation parmi les mentions.

The results for the three most important candidates were:

exc very good good acc poor reject
Bayrou 13.6 30.7 25.1 14.8 8.4 7.4
Royal 16.7 22.7 19.1 16.8 12.2 12.6

Sarkozy 19.1 19.8 14.3 11.5 7.1 28.2

All three candidates have majority grade good. Let p, resp. q be the percentage
strictly above, resp. strictly below the majority grade.

majority rank p majority grade q national rank
1 Bayrou 44.3 good 30.6 3
2 Royal 39.4 good 41.5 2
3 Sarkozy 38.9 good 46.9 1

The majority gauge rule yields the ranking: 1 Bayrou, 2 Royal en 3 Sarkozy. One
may easily motivate this outcome by looking at the cumulative table below. With
the exception of the exc column it holds for every column that Bayrou scores better
than Royal and Royal better than Sarkozy.

at least exc very good good acc poor reject
Bayrou 13.6 44.3 69.4 84.2 92.6 100
Royal 16.7 39.4 58.5 75.3 87.5 100
Sarkozy 19.1 38.9 53.2 64.7 71.8 100
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9.3.14 Elections for Parliament in the Netherlands

Majority Judgment may be used to determine a common or social preference or-
dering over the candidates. Those candidates may be political parties. But Majority
Judgment does not yield a seat distribution among the parties. However, Majority
Judgment might be used in the Netherlands to choose a mayor, a prime minister, a
chairman, etc. That there is a need in the Netherlands for a better election mecha-
nism may become evident from the following examples.

In the table below one finds the vote and seat distribution after the elections for
parliament on September 6, 1989:

Party % of votes number of seats
CDA 35.3 54
PvdA 31.9 49
VVD 14.6 22
D66 07.9 12
GL 04.1 06
SR 05.0 07

Suppose the following plausible profile is underlying the seat distribution above:

35.3 CDA D66 VVD SR PvdA GL
31.9 PvdA GL D66 CDA VVD SR
14.6 VVD PvdA D66 SR CDA GL
07.9 D66 PvdA CDA VVD GL SR
04.1 GL PvdA D66 CDA VVD SR
05.0 SR VVD CDA D66 PvdA GL

Notice: VVD beats PvdA with 35.3 + 14.6 + 05.0 = 54.9 against 31.9 + 07.9 + 04.1
= 43.9, but PvdA gets 49 seats and VVD only 22. Similarly: D66 beats CDA with
31.9 + 14.6 + 07.9 + 04.1 = 58.5 against 35.3 + 05.0 = 40.3, but CDA gets 54 seats
and D66 only 12. Van Deemen [9] calls this phenomenon: the more preferred, but
less seats paradox.

The situation may be even worse: a party may beat every other party in a pairwise
comparison (Majority Rule) and still get less or no seats at all, as becomes clear from
the example below. On September 6, 1989, the Greens (G) were participating, but
did not get any seat. Suppose G was for all voters the second choice:

35.3 CDA G D66 VVD SR PvdA GL
31.9 PvdA G GL D66 CDA VVD SR
14.6 VVD G PvdA D66 SR CDA GL
07.9 D66 G PvdA CDA VVD GL SR
04.1 GL G PvdA D66 CDA VVD SR
05.0 SR G VVD CDA D66 PvdA GL

Under pairwise comparison (Majority Rule) G beats every other party and hence
is the Condorcet winner. But G gets no seat at all in the Dutch system. At another
occasion, a similar fate struck party DS70, which was second or third choice for
many voters. Van Deemen [9] calls this phenomenon: the Condorcet winner, but no
or less seats paradox.

From empirical research [10] it turns out that the ‘more preferred, but less seats’
paradox occurs abundantly. And from empirical research it also becomes clear that
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D66 in 1994 was the Condorcet winner, but got less seats than PvDA, CDA and
VVD. In 1982 PvdA was the Condorcet winner, but got less seats than CDA.

Exercise 9.16. Prove that pairwise comparison is strategy-proof in the following
sense: Let S be a set of voters and p,q profiles such that p(i) = q(i) for all voters i
not in S (the individuals in S give in q a dishonest preference). Let x be the Condorcet
winner given p and y the Condorcet winner given q. Suppose x �= y. Then there is an
individual i∈ S who in his honest individual preference ordering p(i) strictly prefers
x to y. So, for that individual the strategic change towards q(i) is a disadvantage.

Exercise 9.17. Prove that for two alternatives ‘most votes count’ (Plurality Rule),
pairwise comparison (Majority Rule) and the Borda Rule give the same results.
Conclude that Arrow’s theorem does not hold for the case of two alternatives.

Exercise 9.18. Agenda’s: Berlin versus Bonn
At June 20, 1991, the German parliament had to make a choice among the following
three alternatives:
(a) the parliament moves to Berlin, but the ministries stay in Bonn;
(b) both the parliament and the ministries move to Berlin;
(c) both the parliament and the ministries stay in Bonn.
The council of elderly had made an agenda, which was essentially as follows: in
the first round the representatives have to make a choice between (a) and not (a).
In the second round: if (a) is accepted, then the final choice is (a); if not, then the
representatives have to choose between (b) and (c).

From a reconstruction it has become pretty evident that the preferences of the

660 representatives were given in the following profile p:

077: a b c
070: a c b
178: b a c
083: b c a
190: c a b
062: c b a

i) Check that the outcome will be (b), in accordance with the real state of affairs.
Verify that given profile p there is no Condorcet winner.
ii) Why is the agenda set by the council of elderly not fair?
iii) Check that if the 83 representatives change their preference ordering b c a into b
a c and the preference orderings of the other representatives remain the same, then
(a) will be the Condorcet winner. Nevertheless, in this case (b) will again be the
outcome under the agenda devised by the council of elderly.
iv) A more fair agenda than the one above would be agenda I: in the first round
choose between (a) and (b), and in the second round choose between the winner
of the first round and (c). Why is this agenda more fair? Check that if a Condorcet
winner exists, it will always be the outcome under this agenda I. Check that the
outcome under agenda I given profile p will be (c).
v) Devise an agenda II, respectively III, such that the outcome under agenda II,
respectively III, given profile p, will be (a), respectively (b).

Exercise 9.19. District Paradox: more votes, but less seats.
Suppose there are three districts and two parties, twenty voters in each district and
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in each district the Plurality Rule is used to determine the winner. Suppose the ballot
yields the following results:

Candidate of party A Candidate of party B Elected candidate
district 1 11 votes 09 votes A
district 2 11 votes 09 votes A
district 3 05 votes 15 votes B

Party A gets a majority in the House of Commons and will form the cabinet. But
party B receives more votes (33) than party A (27). So, if the government would be
chosen directly, it would be composed by party B. The majority attributed to party
A is called a manufactured majority: a majority of the seats obtained by a minority
of the voters.

Exercise 9.20. Discursive Paradox in judgment aggregation
We explain the discursive paradox using the following example, due to Saari: A
three member faculty committee must determine whether or not a student should be
advanced to Ph.D. candidacy. A majority vote is required to advance. Each faculty
member’s decision is based on the student’s performance on both a written and an
oral exam. If a faculty member feels that the student failed one or both of these
exams, she is instructed to fail the student. The results follow, where a ‘yes’ or ‘no’
indicates the judge’s opinion on an exam and whether to advance.

Judge written oral decision
1 yes yes yes
2 no yes no
3 yes no no

Outcome yes yes no

Exercise 9.21. Consider the following Condorcet table of D. Saari:

Ranking {A,B} {B,C} {A,C}
A > B >C A > B B >C A >C
B >C > A B > A B >C C > A
C > A > B A > B C > B C > A
Outcome A > B B >C C > A

Verify that by replacing A > B, B >C and A >C by ‘yes’, B > A, C > B and C > A
by ‘no’, the discursive paradox in Exercise 9.20 is a special case of the Condorcet
paradox. Notice that the table below, in which the individual preferences are not
transitive but cyclic, gives under Majority Rule the same result as the table above:

Ranking {A,B} {B,C} {A,C}
A > B >C > A A > B B >C C > A
B >C > A > B A > B B >C C > A
C > B > A >C B > A C > B A >C

Outcome A > B B >C C > A

So, pairwise comparison ignores the rationality of the voters, i.e., that voters are
transitive. Similarly, the IIA condition ignores the rationality of the voters.
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Exercise 9.22. Sen’s Paradox: even a minimal form of Liberalism is impossible.
A voting rule satisfies the Pareto condition := if all voters prefer x to y, then also
society should prefer x to y.

Assuming that voter 1, respectively 2, is decisive over the pair {A,B}, respec-
tively {C,D} and that the voting rule satisfies the Pareto condition, determine in the
table below the outcome for each pair and notice that a cyclic outcome results. This
is Sen’s paradox: even a minimal form of Liberalism is impossible.

Voter Preference {A,B} {B,C} {C,D} {A,D}
1 D > A > B >C A > B B >C − D > A
2 B >C > D > A − B >C C > D D > A

outcome

In this table a dash indicates a ranking that is irrelevant for the decision rule because
another agent is decisive over that pair.

Notice that for instance for voter 2 it is immaterial whether his {A,B} preference
is A > B or B > A (because voter 1 is decisive over this pair). But the first choice
makes his preferences cyclic, while the second choice makes them transitive - a huge
difference. So, the assumptions imposed on the voting rule dismiss the individual
rationality assumption (that a voter’s preferences are transitive).

9.4 Solutions

Solution 9.1. Extend the program in Example 9.1 as follows.
(8) male(bob). (11) female(pam). (14) female(ann).
(9) male(tom). (12) female(liz). (15) offspring(X ,Y) :- parent(Y,X).
(10) male(jim). (13) female(pat). (16) father(X ,Y ) :- parent(X ,Y ), male(X).
(17) mother(X ,Y) :- parent(X ,Y ), female(X).
(18) sister(X ,Y ) :- parent(Z,X), parent(Z,Y ), female(X).
(19) brother(X ,Y) :- parent(Z,X), parent(Z,Y ), male(X).

parent(tom, liz), female(tom)

female(tom)

failure
no

(3)

(17)

?- mother(tom, liz).

parent(Z, ann), parent(Z, pat), female(ann)
(18)

?- sister(ann, pat).

(4)
parent(bob, pat), female(ann)

female(ann)
(5)

(14)

�
yes
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Solution 9.2.

parent(bob, Y1), pred2(Y1, pat) parent(bob, pat)
(5)

�pred2(ann, pat)
3
33

�
��failure

(4) (5)

failure











pred2(bob, pat)

(2)

parent(tom, Y ), pred2(Y , pat)
��
��

?- pred2(tom, pat).

���
���

� 555555555

The system has to backtrack many times before it finds a successful branch in the
search tree.

Solution 9.3. a) Replace Y by f (X); Y does not occur in f (X); result: p( f (X),Z)
and p( f (X),c). Next replace Z by c. Consequently, p( f (X),Z) and p(Y,c) can be
matched and unified. Result: p( f (X),c).
b) X and f (X) can be matched, but not unified: replace X by f (X); but X does occur
in f (X).
c) Replace Y by f (X). Result: p( f (X),c) and p( f (X), f (Z)). c and f (Z) cannot be
matched.

Solution 9.4. conc([ ], L, L). conc([X | L1], L2, [X | L]) :- conc(L1, L2, L).

Solution 9.5. del(X , [X | L], L). del(X , [Y | L], [Y | L1]) :- del(X , L, L1).

Solution 9.6. length([ ], 0). length([X | L], N) :- length(L, M), N is M+ 1.

Solution 9.7.

?- p(X), p(Y ).

���
���

�*******
!, p(Y )

p(Y )
(((

!
���

�
X = 2
Y = 1 �

X/2X/1

p(Y )

��
�)))Y/2

!

�
X = 1
Y = 2

Y/1
�

X = 1
Y = 1

X = 2
Y = 2

Y/2Y/1

?- p(X), !, p(Y ).

!, p(Y )

p(Y )

X/1

&&&&
))))

!

�
X = 1
Y = 2

Y/2

�
Y/1

X = 1
Y = 1
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Solution 9.8.
p(X ,0) :- X < 1, ! .
p(X ,1) :- X >= 1, X < 2, ! .
p(X ,2) :- X >= 2 .

Solution 9.9.

not p([1, 2], [1, 2, 3])

?- subset([1, 2], [1, 2, 3]).

(1)
� ?- p([1, 2], [1, 2, 3]).

member(Z, [1, 2]), not member(Z, [1, 2, 3])

(2)

)))))
&&&&&

not member(1, [1, 2, 3]) not member(2, [1, 2, 3])

failurefailure

(4)(3)

�success
yes

Solution 9.10.

not p([1, 2, 3], [1])

(1)

?- subset([1, 2, 3], [1]).

� ?- p([1, 2, 3], [1]).

(2)

member(Z, [1, 2, 3]), not member(Z, [1])
Z/1(3′)

not member(1, [1])

failure�success
yes

Solution 9.11.
husband(X) :- family(X , , ).
wife(X) :- family( , X , ).
child(X) :- family( , , L), member(X ,L).
exists(X) :- husband(X); wife(X); child(X).

1. ?- exists(person(N,S, , )).
2. ?- child(person(N,S, date( , , 1973), )).
3. ?- wife(person(N,S, , works( , ))).
4. ?- exists(person(N,S, date( , , Y ), unemployed)), Y < 1960.
5. ?- exists(person(N,S, date( , , Y ), works( , Sal))), Y < 1960, Sal > 10000.
6. ?- family(person( , S, , ), , [ , | ]).
7. ?- family(person( , S, , ), , [ ]).

Solution 9.12. 1. The reading (a+ b)∗ c has the following structure:
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a
�
� 0

0
b

+
�
�0
0

c

*

Now the precedence of a+ b is 500, which is
greater than the precedence of ∗. Therefore
this reading is rejected.

2. The reading a− (b− c) has the following structure:

a
�
� 0

0
−

−

�
�

b

0
0

c

The precedence of b− c is 500, which is
not strictly smaller than that of the
operator −. Since the operator− has
been defined to be of type y f x,
this reading is impossible

3. Since ‘has’ has been defined as an infix operator and the arguments ‘peter’ and
‘information’ have precedence 0, which is strictly smaller than the precedence 600
of ‘has’, ‘peter has information’ will be read as ‘has(peter, information)’.

Solution 9.13.

a)

SELECT t.snm, t.sadr, t.res
FROM SP t
WHERE t.wnr = 9
AND t.nbd > 2

b)

SELECT t.snr, t.snm
FROM SP t
WHERE t.snr IN

(SELECT u.snr
FROM ADM u
WHERE u.indat = 19800303
AND u.reas = ‘informaritis’)

c)

SELECT s.rnr
FROM R s
WHERE s.rnr NOT IN

(SELECT t.rnr
FROM ADM t
WHERE t.indat ≤ 19800518
AND t.indat≥ 19800509
AND t.pnr IN

(SELECT u.pnr
FROM P u
WHERE u.pres = ‘Princeton’))

d)

SELECT t.pnr, t.pnm, t.padr, t.pres
FROM P t
WHERE t.pnr IN

(SELECT u.pnr
FROM ADM u

WHERE u.snr IN
(SELECT s.snr
FROM SP s
WHERE s.wnr = 9))

Solution 9.14. D1 �� D2 is the empty set since no tuples agree on the common at-
tribute ‘name’.

D3 �� D2

nr wnm sal sex anr name man
8 Johnson 2200 male 1 production 9
7 Johnson 3100 female 2 planning 7
9 Kiviat 2900 male 1 production 9
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D1 �� D4

nr name sal sex dept anr anm
7 Johnson 3100 female 2 2 planning
9 Kiviat 2900 male 1 1 production

D3 �� D4

nr wnm sal sex anr anm
7 Johnson 3100 female 2 planning
9 Kiviat 2900 male 1 production

Solution 9.15. The patient with number 500 is from Cranbury and has been hos-
pitalized in the period in question in room number 11. So, 11 should not occur in
the set of all room-numbers in which no patients from Cranbury were hospitalized
between August 11 and 17, 1977. However, 11 is an element of the indicated set.
For consider s1; s1(rnr) = 11. Then there is t ∈ ADM, namely t1, such that t(rnr) =
s1(rnr) and 19770811 ≤ t(indat) ≤ 19770817 and ¬∃u ∈ P [ u(pnr) = t(pnr) = 400
∧ u(pres) = ‘Cranbury’ ].

Solution 9.16. Let S be a set of voters (who manipulate) and p,q profiles such that
for all i not in S, p(i) = q(i). Let x be the Condorcet winner at p and let y be the
Condorcet winner at q. Suppose that x �= y.
Because x is the Condorcet winner at p, we know for profile p that x beats y in a pair-
wise comparison. And because y is the Condorcet winner at q, we know for profile
q that y beats x in a pairwise comparison. So, there must be at least one individual i
such that
1. i prefers x to y in p, and
2. i prefers y to x in q.
Because only voters in coalition S give another (dishonest) preference order, indi-
vidual i must be in coalition S. Because in the real (honest) profile p, i prefers x to
y, i is punished for the strategic behaviour of the coalition S he or she belongs to.

Solution 9.17. a) Call the alternatives x en y and suppose:
m: x y
n: y x

Then the Borda score of x equals m en the one of y equals n. Therefore: the outcome
under the Borda Rule is x y if and only if (iff) m > n. But also: the outcome under
Plurality Rule is x y iff m> n. And similarly: the outcome under Majority Rule is x y
iff m > n. Hence, with two alternatives, the Borda Rule, Plurality Rule and Majority
Rule yield the same outcome.
b) Because Majority Rule is Independent of Irrelevant Alternatives and in the case
of two alternatives trivially is transitive (transitivity says something about 3 alter-
natives), this makes clear that in the case of two alternatives the theorem of Arrow
does not apply: Majority Rule is not dictatorial.

Solution 9.18. i) The first round is between (a) and not (a); 77 + 70 = 147 voters
vote for (a), all others vote for not (a) So, the second round is between (b) and (c).
77 + 178 + 83 = 338 representatives vote for (b) and 70 + 190 + 62 = 322 vote for
(c). Therefore (b) wins.

Given profile p, (a) beats (b) with 77 + 70 + 190 = 337 votes against 323; (b)
beats (c) with 77 + 178 + 83 = 338 votes against 322; and (c) beats (a) with 83 +



References 487

190 + 62 = 335 votes against 325. So, given p there is no Condorcet winner.
ii) The agenda set by the council of elderly is not fair, because (a) has to compete
with both (b) and (c) simultaneously.
iii) If the 83 representatives change their preference ordering b c a into b a c and the
preference orderings of the other representatives remain the same, then one easily
checks that (a) beats (b) with 77 + 70 + 190 = 337 against 323 votes and that (a) beats
(c) with 77 + 70 + 178 + 83 = 408 against 252 votes. So, in this new configuration (a)
is the Condorcet winner. But according to the agenda set by the council of elderly
(b) would again become the winner.
iv) Agenda I is more fair than the agenda set by the council of elderly because
according to this agenda in every round only two alternatives are compared and
every alternative is compared with at least one other alternative. If given a profile
there is a Condorcet winner, this Condorcet winner will also win using agenda I,
because the Condorcet winner will in the first or the second round be compared
with another alternative and from that moment on be the winner in every next round.
Given profile p and using agenda I, in the first round (a) beats (b) and in the second
round (c) beats (a). So, the outcome under agenda I given profile p will be (c).
v) Agenda II: first round between (b) and (c); second round: between (a) and the
winner of the first round. Given profile p, the outcome under agenda II will be
(a). Agenda III: first round between (a) and (c); second round: between (b) and the
winner of the first round. Given profile p, the outcome under agenda III will be (b).

Solution 9.19. According to Plurality Rule party A wins in district 1 and 2, while
party B only wins in district 3. So, party A gets 2/3 of the seats in parliament. But
the total number of votes for party A is 11 + 11 + 5 = 27, while party B has 9 + 9 +
15 = 33 votes.

Solution 9.20. A 2/3 majority of the judges gives a ‘yes’ for the written exam, an-
other 2/3 majority of the judges gives a ‘yes’ for the oral exam, but another 2/3
majority of the judges gives a ‘no’ for the final decision. So, judgment aggregation
with Majority Rule is problematic.

Solution 9.21. Majority Rule looks only at pairs of candidates. Transitivity concerns
three or more candidates. By looking only at pairs of candidates, as required by
Independence of Irrelevant Alternatives, transitivity, and hence the rationality of the
voters, cannot be taken into account.

Solution 9.22. The outcome is: A > B (1), B >C (2), C > D (3) and D > A (4).
(1) because 1 is decisive over the pair {A,B}, (2) because of the Pareto condition, (3)
because 2 is decisive over the pair {C,D} and (4) because of the Pareto condition.
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Chapter 10
Fallacies and Unfair Discussion Methods

H.C.M. (Harrie) de Swart

Abstract Many discussions and meetings are led perfectly from a formal and pro-
cedural perspective, but the quality of the in-depth discussion is nevertheless poor.
The cause of poor thinking should be sought in the weakness of human nature, rather
than in the limitations of our intelligence. Among the weaknesses of human nature
are ambitions, emotions, prejudices and laziness of thinking. The goal of a discus-
sion is not to be right or to overplay or mislead the other, but to discover the truth or
to come to an agreement by common and orderly thinking. In Section 10.2 we dis-
cuss a dozen fallacies and in Section 10.3 a dozen unfair discussion methods. This
chapter follows - broadly speaking - the nice arrangement of fallacies and unfair
discussion methods of a Dutch booklet from the 1950s, Zindelijk denken [Thinking
clearly], by A.F.G. van Hoesel [2]. Many examples in this chapter also come from
this booklet.

10.1 Introduction

Ideally, an argument consists of carefully specified premisses or assumptions and
a conclusion which logically follows from the premisses. Logical validity of an
argument means that if the premisses are true, then the conclusion must also be true.
In Chapter 1 we have already seen that logical validity of an argument does not mean
that the premisses are true, nor that the conclusion is true. We may have a logically
valid argument with a false conclusion when at least one of the premisses is false.
And a logically invalid argument may have a conclusion that is true, when its truth
is not based on the given premisses but on other grounds. One should also realize
that from a set of inconsistent premisses one may conclude anything one wants: ex
falso sequitur quod libet; a principle popular among many politicians.

In Subsection 2.3.2 we already mentioned that in real life premisses and even the
conclusion may be tacit, in which case one speaks of enthymemes. Premisses may
be left implicit for practical reasons or because the speaker is not aware of them
himself, but might also be omitted in order to mislead the audience.
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One may distinguish formal and informal fallacies. A formal fallacy is an invalid
argument whose incorrectness can be established via a formal representation in an
appropriate logical system. A simple example is: A implies B (A→ B) and B; hence
A. For instance: if the weather is nice, then John will come. John comes; hence the
weather is nice. That this argument is incorrect may become clear from the following
example which has exactly the same structure: if Bill Gates owns all the gold in Fort
Knox, then he is rich. Bill Gates is rich; hence Bill Gates owns all the gold in Fort
Knox. We discussed a number of such formal fallacies in Chapter 1.

In this Chapter we want to focus on informal fallacies in which the putative
conclusion is not supported by the content of the premisses, but is based on the
ambitions, emotions, prejudices and/or laziness of thinking of the people involved.
In real life, these weaknesses of human nature play a major role in argumentation,
debating and discussions. Quoting Jean de Boisson: ‘It is difficult to take someone
who has a different opinion for a wise person’. A speaker may be too proud to admit
that he is wrong, he may be irritated by his opponent and consequently say more than
he can justify, he may have prejudices which he does not want to give up and/or he
may be too lazy to study an issue carefully and for that reason oversimplify it.

So, in real life discussions and debating it is important that one is aware of all
kinds of tricks which are used, consciously or unconsciously, by one’s opponent to
suggest that you are wrong, while in fact your opponent is wrong. In this Chapter
we give a classification of fallacies and unfair discussion methods, which is based
on the Dutch booklet by A.F.G. van Hoesel [2]. This classification is not meant to
be exhaustive, and the different categories are not necessarily mutually exclusive.

Quoting Arthur Schopenhauer in his booklet ‘The Art of Always Being Right’ [4]:

A man may be objectively in the right, and nevertheless in the eyes of bystanders, and
sometimes in his own, he may come off worst. For example, I may advance a proof of
some assertion, and my adversary may refute the proof, and thus appear to have refuted
the assertion. There may, nevertheless, be other proofs. In this case ... he comes off best,
although, as a matter of fact, he is in the wrong. [p. 23]
If the reader asks how this is, I reply that it is simply the natural baseness of human nature.
If human nature were ... thoroughly honourable, we should in every debate have no other
aim than the discovery of truth. We should not in the least care whether the truth proves
to be in favour of the opinion which we had begun by expressing, or of the opinion of our
adversary. That we should regard as a matter of no importance ... . But, as things are, it is
the main concern. Our innate vanity will not allow that our first position was wrong and our
adversary’s right. [p. 24]
The way out of this difficulty would be simply to take the trouble always to form a correct
judgement. For this a man would have to think before he spoke. But, with most men, innate
vanity is accompanied by loquacity and innate dishonesty. They speak before they think;
and even though they may afterwards perceive that they are wrong they want it to seem the
contrary. The interest in truth, which may be presumed to have been their only motive when
they stated the proposition alleged to be true, now gives way to the interests of vanity. So,
for the sake of vanity, what is true must seem false, and what is false must seem true. [p.25]

The topic and purpose of this Chapter is best formulated by Schopenhauer [4], p.
29: ‘Even when a man has truth on his side, he needs dialectic in order to defend
and maintain it; he must know what the dishonest tricks are, in order to meet them,
so as to beat the enemy with his own weapons.’
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10.2 Fallacies

A fallacy or sophism is a reason or reasoning which sounds plausible, but actually
is not adequate. The oldest known treatises are:
1. the dialogue Euthydemos of Plato, written about 384 BC, in which he satirizes
what he presents as the logical fallacies of the Sophists, Euthydemos among them;
2. Sophistikoi elenchoi (sophistical refutations) of his pupil Aristotle, in which the
emphasis is on semantic and rhetorical matters having to do with argumentation.

10.2.1 Clichés and Killers

A cliché is a frequently used expression that has lost its freshness and descriptive
power. It refers to a saying or expression that, upon its inception, was striking and
thought-provoking, but has been so overused that it has become boring and unorigi-
nal. The French poet Gérard de Nerval said: ‘The first man who compared a woman
to a rose was a poet, the second, an imbecile’. Synonyms for the word cliché are:
platitude, commonplace, saying.

Example 10.1 (Clichés). a) Opposites attract;
b) Woke up on the wrong side of the bed.

Clichés frequently express experiences of many generations in a compact way and
hence contain a core of truth. Such expressions are easy to handle in a debate and
meet the laziness of thinking of both speaker and listener, because they are nice to
hear. Statements like ‘time is money’ and ‘if the need is the highest, the rescue is
near’ - although not true - are generally considered to be true and do not attract
scrutiny from the listener.

Many clichés have meanings that are obvious; others have meanings that are only
clear if you know the context. For instance, the obvious meaning of ‘any port in a
storm’ is that in a bad situation anything will do. However, this cliché can also be
used when talking about someone who has many lovers.

Example 10.2 (Clichés). Some more examples of clichés are:
I thank you from the bottom of my heart It’s only a drop in the bucket
Do not play with fire Beauty is skin deep
All that glitters isn’t gold He has his tail between his legs
Had nerves of steel The time of my life
The calm before the storm Laughter is the best medicine
Time heals all wounds Frightened to death
Read between the lines Only time will tell
All is fair in love and war Haste makes waste

A killer or silencer is a meaningless argument to divert a conversation from the
subject, hence cutting off a further exchange of views. In some contexts these ar-
guments may be appropriate and true, in others they are only meant to finish the
discussion without further arguments.
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Example 10.3 (Killers). a) The truth is in the middle;
b) The exception proves the rule.

For instance, if in a discussion someone says that all football players have a high
salary and his opponent argues that he knows some amateur players who get nothing,
the answer that this exception proves the rule is simply misleading. The exception
just shows that the original statement was too general and that it would have been
more appropriate to state that many or most football players earn a high salary. In
which case the opponent would certainly have agreed.

When two persons have opposite views concerning a certain item, frequently a
third person tries to make a wise impression by stating: ‘gentlemen, would not the
truth be in the middle’. However, when one person says ‘2 + 2 = 4’ and the other
says ‘2 + 2 = 6’, then the truth is certainly not in the middle. This killer argument
of the middle way is not to be confused with a compromise where one tries to unite
what is acceptable to both parties, in order to be able to proceed.

If in a discussion about improvements in the cafeteria of a company one of the
engineers states ‘let us be realistic; the first mission of the company is production’,
this argument looks like a down-to-earth argument, but it ignores the fact that a
better canteen may result in a better production. And suggestions of employees to
improve the production process are frequently dismissed by statements as ‘Tell me
something I don’t know’ or ’since when are you the expert’.

If in a political discussion someone claims that there are good arguments for
immigration restrictions, a liberal who dismisses the speaker on the basis of her be-
ing a conservative, ends the discussion without asking for clarification. Similarly, if
a person says he has strong arguments in favor of nuclear energy, someone might
immediately use a killer argument like ‘that is just your opinion’ to finish the dis-
cussion and most likely no one will ask for the announced arguments.

One may also kill a discussion by using body language, a facial expression or by
raising one’s eyebrows.

Example 10.4 (Killers). Some more examples of killers:
It is only a matter of taste Do not worry; it is as it is
Impossible! That is nothing for our clients
It is too difficult to handle Too expensive!
That is illogical More research is needed
The management will not like the idea There is no budget for it
Not my responsibility That is too great a change
Let’s keep it under consideration We do not have time for that
The market is not yet ripe We are too small for that
I have never heard of this We will put someone on it later
Practice is always different There he goes again
I already know what you are going to say You are a right wing zealot
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10.2.2 Improper or hasty Generalizations

An improper generalization is a general statement based on frequently emotional
experiences with only a small number of particular instances.

Example 10.5 (Improper generalizations). a) Civil servants are lazy; b) Juvenile
delinquents are psychopaths; c) Women are vain; d) Blondes are stupid.

When someone has met two or three civil servants whom he viewed as being lazy, he
will be inclined to generalize his limited experience to: civil servants are lazy. This
latter expression will be understood by most people as: all civil servants are lazy.
However, if the person in question would generalize his experience with two lazy
officers to ‘all civil servants are lazy’, it would become easy to reject his statement.
So, the person in question will say ‘civil servants are lazy’, while the only thing he
is entitled to say would be something like ‘some civil servants are lazy’. However,
this statement is so weak that it looks completely uninteresting. That is why one will
usually say ‘civil servants are lazy’.

Similar stories may be told about expressions like ‘women are vain’, ‘children
are difficult to handle’, ‘specialists are expensive’, ‘men are egoistic’, ‘people from
Morocco cannot be trusted’, etc. In general, there is no proof at all to suppose that
among civil servants there is a higher percentage of lazy ones than among masons,
carpenters or gardeners. Frequently, improper generalizations, like ‘politicians are
unreliable’ and ‘blondes are stupid’, are the consequence of emotional experiences
with some particular instances, which for convenience are generalized, even when
counterexamples are known.

Consider the following four statements (van Hoesel [2]):
1. All juvenile delinquents are psychopaths.
2. Juvenile delinquents are psychopaths.
3. The juvenile delinquents I have had in my practice are psychopaths.
4. The juvenile delinquents I have had in my practice are psychopaths; but I have to
add that I only had two.

Notice that the third sentence looks as a scientific generalization and suggests
a sufficient number of observations. The craftiness of the third sentence lies in the
fact that, on the one hand, a fair restriction is made by saying ‘that I have had in
my practice’ (a restriction that undoubtedly inspires confidence), while on the other
hand it fails to indicate on how many practical cases the judgment is based.

Notice that in some cases it is completely justified to draw a general conclusion
from a single observation. For instance, if a scientist in one experiment determines
the melting point of some substance. Experience has learned us that the melting
point of a substance is invariable (all other things, such as air pressure, being equal).
So, in this case one single observation justifies the generalization. On the other hand,
suppose that for a long time one has thought that swans are white, because one has
never seen a swan with a different colour. But this could be simply because the
person has never been to a different part of the continent where there are black
swans. In this case the thousands and thousands of observations did not justify the
absolute generalization ‘all swans are white’.
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Example 10.6 (Improper generalizations). Some more examples:
My grandfather smoked all day and he made it to 95, so smoking is not bad!
My friends all study law and I never saw them reading a book. So, it seems to me
that law students do not read books.
Most employers are too picky; I have applied for three different jobs and have not
been hired.
The last five years were very warm, so the climate has changed.
Last spring we stayed in a hotel in Germany and everything was extremely clean;
so, you see, Germans are very neat and hygienic.
Today 50% of the women who took the driving test failed. Women must be incom-
petent drivers. (But the speaker does not mention that only two women took the test
today.)

One makes a slippery slope argument when one takes several related ideas and in-
appropriately makes a generalization about them all.

Example 10.7 (Slippery slope arguments).
If we stop insisting that students wear button-up shirts to class, next thing you know,
they will be coming to class in pajamas.
If the border of Europe is not at the border of Turkey, then one may equally well
form a union with China.
If we allow him to smoke a cigarette now, he will become addicted to cocaine.
If the health insurance company were to start paying for viagra, by tomorrow people
will expect them to start reimbursing BMWs.

Another type of improper generalization is the questionable analogy which takes an
analogy and inappropriately generalizes the relationship between the two items.
See also Subsection 10.3.4.3.

Example 10.8 (Questionable analogy).
Forcing people to pay taxes is like cornering them in a dark alley and demanding
their money.
You can not fold that book as the back of the book cannot stand it. I do not fold you
in half either.
Education is like cake. A small amount tastes sweet, but eat too much and it will
spoil your teeth. Likewise, too much education is not good.

10.2.3 Thinking simplistically

When one is confronted with large complex problems or theories which require a
lot of knowledge, effort and thinking in order to understand them, our laziness of
thinking frequently leads us to leave out the nuances. One may simplify Einstein’s
theory of relativity to ‘everything is relative’, Freud’s theory about subconscious-
ness to ‘everything is sexuality’ and one may dismiss a person who is concerned
about overpopulation by calling him a misanthrope. Frequently one does not (want
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to) take the time nor the effort to study the problem in depth, while on the other
hand one wants to participate in the discussion, resulting in an oversimplification
of the problem or theory in question. Questions like ‘can you explain to me in five
minutes what philosophy is all about’ are typical examples of our laziness of think-
ing. When the discussion takes place among people with limited competence, the
one who simplifies will frequently have the sympathy of the others, because the
only specialist in the group is hard to understand and seems to make things more
complicated than necessary. With slogans as ‘simplicity is the hallmark of truth’ the
one who simplifies may defend his position by suggesting that his opponent, the
specialist, makes things too complicated. If a child asks his mother what Jehovah’s
witnesses stand for, the mother may give the following oversimplified answer: they
are people who do not accept blood transfusions when they need it. Such an an-
swer ignores completely the essence that Jehovah’s witnesses take the Bible as their
source of inspiration.

Example 10.9 (Thinking simplistically). Arthur Schopenhauer [4] gives a nice ex-
ample in his Chapter 28: Persuade the audience, not the opponent.

This is chiefly practicable in a dispute between scholars in the presence of the unlearned. If
you have no refutation whatsoever, you can make one aimed at the audience; that is to say,
you can start some invalid objection, which only an expert sees to be invalid. Though your
opponent is an expert, those who form your audience are not, and accordingly, in their eyes,
he is defeated, particularly if the objections which you make places him in any ridiculous
light. People are ready to laugh, and you have the laughers on your side. To show that your
objection is an idle one, would require a long explanation on the part of your opponent, and
a reference to the principles of the branch of knowledge in question, or to the elements of
the matter which you are discussing; and people are not disposed to listen to it.

For example, your opponent states that in the original formation of a mountain-range the
granite and other elements in its composition were, by reason of their high temperature, in a
fluid or molten state; that the temperature must have amounted to some 480 degrees Fahren-
heit; and that when the mass took shape it was covered by the sea. You reply that at that
temperature – indeed, long before it had been reached, namely, at 212 degrees Fahrenheit –
the sea would have been boiled away; and spread through the air in the form of steam. At
this the audience laughs. To refute the objection, your opponent would have to show that
the boiling-point depends not only on the degree of warmth, but also on the atmospheric
pressure, and that as soon as about half the seawater had gone off in the shape of steam,
this pressure would be so greatly increased that the rest of it would fail to boil even at a
temperature of 480 degrees. He is debarred from giving this explanation, as it would require
a treatise to demonstrate the matter to those who had no acquaintance with physics.

In daily life one may not be able to avoid simplistic thinking completely, because
one cannot be an expert in all fields. A good example is when a doctor has to explain
to a patient what is wrong with him or her. He cannot expect that the patient has the
knowledge he has himself, so he must resort to simplifications that are hopefully
understood by the patient. When one has to choose between two or three cars or
insurances, one is not able to take all aspects and details into account. In such cases
one has to act at a certain moment and make the choice which seems overall best at
that moment.

If one wants to become a member of a political party and one wavers between
two of them because both have more attractive and less attractive elements, then
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opting for one of them will make one understand and respect people who opted for
the other party. And based on new facts and experiences one may change one’s mind
later on.

10.2.4 Appeal to ignorance

A particular form of simplistic thinking is the appeal to ignorance. The speaker
shifts the burden of proof to his opponent instead of offering an argument for his
own claim. For example, if the speaker claims that someone is guilty by saying to
him: prove to me that you are innocent.

Example 10.10 (Appeal to ignorance). No one has ever been able to prove that
ghosts do exist, so they must not be real.

However, the same argument strategy may be used to support the opposite claim:
No one has ever been able to prove that ghosts do not exist, so they must be real.
Ignorance is not proof of anything except that one does not know something.

A more relevant example is from a discussion in a city council:

Example 10.11 (Appeal to ignorance). No one has been able to prove that radiation
from transmission masts is safe; therefore, we should not allow them in our city.

However, similar reasoning may be used to allow them: No one has been able to
prove that radiation from transmission masts is dangerous; therefore, they are safe.

Example 10.12 (Appeal to ignorance). Newton’s theory of classical mechanics is
not one hundred percent accurate. Therefore, Einstein’s theory of relativity must be
true.

Perhaps the theory of quantum mechanics is more accurate and Einstein’s theory is
flawed. Perhaps all theories in question are wrong. If one disproves someone’s claim
that 2 + 2 = 5, it does not mean that my claim that 2 + 2 = 7 is true.

The term argumentum ad ignorantiam was introduced by John Locke in his Essay
Concerning Human Understanding (1690). This fallacy essentially boils down to
the following two variants:
- Inferring that something is true from the fact that it has not been proven to be false;
- Inferring that something is false from the fact that it has not been proven to be true.
In the context of science, the mistake in the first variant is that a model can be false
even though there are to date no known experimental falsifications – that is, even
though the model is thus far in agreement with experimental data. The mistake in
the second variant is that a model can be true even though it has not yet been tested.

As to the first variant, here are some historical examples that date from the time that
Newtonian mechanics (now proven to be false on a micro and on a macro level) was
still in agreement with all experiments:
- ‘We are probably nearing the limit of all we can know about astronomy.’ (Simon



10.2 Fallacies 497

Newcomb, astronomer, 1888)
- ‘The more important fundamental laws and facts of physical science have all been
discovered .... Our future discoveries must be looked for in the sixth place of deci-
mals.’ (Physicist Albert. A. Michelson, 1894)
- ‘There is nothing new to be discovered in physics now. All that remains is more
and more precise measurement.’ (Lord Kelvin, 1900)

Also, currently, the adjective standard in the ‘standard model of particle and inter-
actions’ (the name for a body of theories in particle physics) reflects the confidence
of the physics community that this is basically the correct picture. But, truth be told:
this has not been refuted yet.

As to the second variant, we have this interesting quote: ‘Third-rate scientists cry
that everything has to be proven and mistake not being proven to be true as proven
to be false or at least not worthy of further consideration. (Hans Ten Dam, Journal
of Regression Therapy, VIII(1), 1994)

And so, this fallacy lies at the very basis of the fact that anyone who comes up
with a new theory will have a hard time getting it published in a recognized journal.
It is virtually a certainty that he will stumble on a referee report recommending
rejection along these lines:
- the author comes up with a new theory;
- this new theory is not proven to be correct in every aspect;
- therefore, the theory should be rejected, i.e., is not worthy of further consideration.

Practically every professional scientist who works on new theories will have had
a rejection along these lines at least once in his career. The mistake is thus to think
that a theory that has not been proven to be true in every aspect is not worthy of
further consideration. Of course, there may be good reasons to reject a new theory,
but the point is that it is a mistake to reject it as unworthy of further consideration
because it has not been proven to be true. The key is to remain impartial. That is
actually another one of the so-called principles of good scientific practice that are
widely agreed upon: the principle of impartiality. This implies, among other things,
that a different intellectual stance must be respected.

10.2.5 Speculative Thinking

Opinions should be based on facts, not on speculations. Speculating may be inter-
esting at the stock market, sometimes yielding profit and sometimes yielding loss.
Speculations may be useful because they suggest what might be the case or what
might happen. But only facts can tell us what actually is the case or what actually
happens. Nevertheless, speculative arguments are frequently used in discussions
among people. Here are some examples: every right-minded person knows that it
must be like that; it cannot be otherwise; it has always been the case; it cannot be
that that’s right. Frequently one argues that things are the way they are because it
always was the case or because it should be this way. But to quote Johan de Iongh:
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‘One of the most important tasks of a philosopher is to make clear that things do
not have to be the way they are, that they might be different and in some cases even
should be different.’

Example 10.13 (Speculative thinking). Here are three examples, all from [2].
A good and simple example is the following discussion. Based on the results

of some tests, a doctor prescribes a patient a diet without salt. When his wife is
informed about this, she reacts as follows: no salt at all? That can never be good!
Asking this woman on which facts or arguments her statement is based, she will
probably look at you in amazement and say: it cannot be that that is right.

In a discussion between a biologist who is enthusiastic about Darwin’s theory of
evolution and a skeptic, the latter might bring in the following arguments against
Darwin’s theory, all of them speculative and not based on facts: 1. It may never have
been God’s intention to let the most beautiful part of His creation originate from a
being equipped with only instincts; 2. It must be excluded that mankind descends
from such a stinking monkey; 3. For me it is certain that the higher can never have
evolved from the lower.

Another example is the discussion between two non-American managers with
opposite views about some new method introduced in the United States. The one
opposed to the method might use the following arguments, again all of them specu-
lative and not based on any facts: 1. It can never be good to always emulate America;
2. We have everything we need for our company; you may be able to put something
else in its place, but certainly not something better; 3. A system that has proven
its practicality for so long has to be much better than such a newfangled American
theory. Maybe, it will turn out that the new policies should be rejected, but these
arguments are purely emotional and not based on facts.

Strikingly, people using speculative arguments frequently do so with great self-
consciousness and without showing any doubts about their own points of view.
They tend to react very emotionally to objections with expressions like: crazy to
run loose to assume that . . .; for everyone with a little sense, it is obvious that . . .;
every right-minded person knows that this has to be the case. See Section 10.3.4.

One might think that speculative argumentation does not occur in a purely sci-
entific environment. Unfortunately, this is too good to be true. An example is the
election of a president, mayor or chairman. We have been holding elections already
many years in the familiar way, but from social choice theory it is evident that prac-
tically all existing election methods are seriously defective. Nevertheless, a scientif-
ically well defended proposal for another completely new election method, namely
Balinski and Laraki’s Majority Judgment, is generally met with great skepticism,
also among specialists in social choice theory. Similarly, Einstein’s Relativity The-
ory was originally met with great scepticism. See Section 10.2.6 for more examples
in the history of science.

And although organizations funding scientific research claim that they select the
best projects, their arguments to fund or not fund particular projects are in fact fre-
quently of a speculative nature. One also sees the phenomenon that scientists have
prejudices or presuppositions they are not aware of and consequently proceed down
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a dead alley. Giving up the original prejudices or presuppositions might harm their
reputation or might mean the end of their funding.

10.2.6 Incredulity

This fallacy essentially boils down to this: what I don’t believe cannot be true. A
weaker form is this: what I don’t believe is not worthy of further consideration.

In the history of science there have been numerous occasions where scientists
have been collectively mistaken in their rejection of a new idea: often the mistake
then stems from this fallacy. It is thus a mistake to think that something cannot be
true (or valuable) if you don’t believe it: the opposite is true – that is, something
can be true even if you don’t believe it. Below are some historical examples that are
based on this fallacy:

‘... so many centuries after the Creation it is unlikely that anyone could find
hitherto unknown lands of any value.’ (committee advising Ferdinand and Isabella
regarding Columbus’ proposal, 1486)

‘Drill for oil? You mean drill into the ground to try and find oil? You’re crazy.’
(drillers who Edwin L. Drake tried to enlist to his project to drill for oil in 1859)

‘Louis Pasteur’s theory of germs is a ridiculous fiction.’ (Pierre Pachet, Professor
of Physiology at Toulouse, 1872)

‘Fooling around with alternating current is just a waste of time. Nobody will use
it, ever.’ (Thomas Edison, 1889)

‘Heavier-than-air flying machines are impossible.’ (Lord Kelvin, president Royal
Society, 1895)

‘Airplanes are interesting toys but of no military value.’ (Marechal Ferdinand
Foch, Professor of Strategy, Ecole Superieure de Guerre, 1911)

‘All a trick.’ ‘A Mere Mountebank.’ ‘Absolute swindler.’ (members of Britain’s
Royal Society, 1926, after a demonstration of television)

‘Space travel is bunk.’ (Sir Harold Spencer Jones, Astronomer Royal of Britain,
1957, two weeks before the launch of Sputnik)

Besides that, this fallacy reflecting a standard response of the human mind has
been used in politics by a variety of governments, who very well know that they will
easily get away with colossal lies because the people simply cannot believe that their
own government would have the impunity to resort to such large-scale falsehoods.
Concluding, the truth of the matter is that only very few people are able to consider
the situation that their own belief about something is wrong. The famous Russian
novelist Leo Tolstoy expressed this as follows:

I know that the majority, not only of those that are considered intelligent people, but even
of the really very intelligent people that are able to understand the most difficult scientific,
mathematical, philosophical, problems, only very rarely can comprehend even the most
simple and evident truth, if it is such that as a result thereof they would have to admit that
their own, sometimes difficultly acquired opinion about things, which they are proud of,
which they have taught others, and which they have based their entire lives on, might be
false. [Leo Tolstoy, What is Art?, Ch. XIV (1897) (translation by M. Cabbolet)]
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The fallacy of incredulity applies when a scientist spontaneously and fiercely rejects
ideas which are inconsistent with what he has believed himself all his life. A kind of
reverse fallacy of incredulity is when a scientist uses any piece of evidence as proof
for his favored claim. A recent example is the claim that the Higgs boson exists.
In the literature it is even stated that scientists have observed the Higgs Boson. But
what one has actually observed are the decay products of the Higgs boson during a
very small fraction of a second.

A particular form of the fallacy of incredulity frequently occurs when someone
questions a widely accepted model. It has virtually become the standard reaction
of ‘experts’ to any dissenting paper that questions a widely accepted model, to (of-
ten publicly) denounce its author as incompetent. According to Brian Martin, who
has devoted his career to the study of the suppression of dissent in modern times,
the reasoning is as follows:
- Observation: an author criticizes a widely used model.
- (Tacit) assumption: the author in question is not aware of the reasons why the
model has become widely used.
- Conclusion: the author is incompetent.
This is a clear-cut case of jumping to conclusions. The mistake is thus to think that
when someone criticizes an accepted model, he or she is therefore unaware of the
reasons why that model has become accepted. However, the opposite is frequently
the case: an author may criticize a widely used model, even though he or she is com-
petent in the relevant field. Of course, an author who criticizes an accepted model
may indeed be incompetent, but the point is that this incompetence cannot be de-
duced immediately from the sheer fact alone that he or she criticizes the model.
Unfortunately, this is what frequently happens in scientific discourse!

Example 10.14 (Incredulity). ‘Professor Goddard does not know the relation be-
tween action and reaction and the need to have something better than a vacuum
against which to react. He seems to lack the basic knowledge ladled out daily in
high schools.’ (1921, New York Times editorial about Robert Goddard’s revolution-
ary rocket work)

The observation is that Goddard comes up with an idea for a rocket. At the time this
was considered impossible within the framework of Newtonian mechanics: the tacit
assumption is thus that anyone who nevertheless suggests that rockets are possible
does not know Newtonian mechanics.

10.2.7 The use of Terms with a vague Meaning

An essential ingredient for a good discussion is that all discussants involved know
what they are talking about. Nevertheless it rather frequently happens that people
talk past each other. The cause is then that the topic of the discussion is extremely
vague and therefore has a different meaning for everyone involved. Examples of
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words with a vague meaning are: democracy, slavery, intelligence, socialism, cap-
italism, power, green, sustainable. In a discussion with an alderman I heard him
say: ‘that is democracy: most votes count’. But from social choice theory we know
that there are many ways to aggregate the preferences of the people into a social or
common preference and that ‘most votes count’ is one of the worst ways to do so.

‘I love you’ is another example of an expression with a vague meaning. It may
mean: I will take care of you, I find you attractive, I want to make love to you, I will
be faithful to you, I want to marry you, and all kinds of other things in between.

Example 10.15 (Vague terms).
A man after visiting a modern production facility might argue that the employees
in the factory have become slaves, while his opponent might counter argue that the
employees are allowed to complain about their circumstances, that they can quit
their job, that they have a nice canteen, vacation days etc. The first person, however,
may talk about slavery in the sense that the machine rules over the human being,
controls his pace and his actions and deprives him of his initiative, while for his
opponent the word slavery means quite something else.

Someone argues that John will almost surely vote for the socialistic party, be-
cause John is a very social person. However, socialism is a political doctrine, which
has nothing to do with the property of John’s being a social person.

How is it possible that one so frequently does not realize the vagueness of the terms
used and does not take the trouble to make the terms in question more precise? The
answer is simple: laziness in general and laziness of thinking in particular. We hear
many people talk about democracy, socialism, etc. and they all make the impression
that they know what they are talking about, which most likely actually is not the
case. Consequently, different people give different meanings to the same words, in
this way laying the foundations for many confusing discussions.

Already in the first half of the 20th century the Dutch significists, among them
Gerrit Mannoury and Frederik van Eeden, warned for an imprecise use of language
resulting in a Babylonian confusion of tongues. See Section 7.3.

There is an obstacle in the way of the further development and impact of philosophical
thought. ... I know of no image that may give a clearer idea of the obstacle I have in mind
than the one of the Tower of Babylon, a symbol of the confusion of languages. [Mannoury,
1917; translated from Dutch.]

The language, which is used by all people as a means of understanding, is full of unclean
elements that poison society, such as contaminated water poisons the population of a whole
city. For that reason it is important to immediately show that the water supply and the
sources from which the city receives its drinking water is contaminated by germs, and it is
most urgent to first purify these sources. [F. van Eeden in: Brouwer, L. E. J., F. Van Eeden,
J. Van Ginneken en G. Mannoury, Signifische dialogen. 1939; translated from Dutch.]

If in a discussion about psychopaths one realizes that one does not know the content
of this term, one might start by looking up the meaning of this word in a dictionary
or encyclopedia. But a description of the word psychopath found in the encyclopedia
will not suffice and still remains vague. In order to grasp the relevant concept, we
need to know a number of examples of psychopaths. It is important that we cannot
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only verbalize what a psychopath is, but that we also know the living reality that lies
behind it. The latter can be achieved by giving clear examples, such as querulants,
kleptomaniacs, criminals, intrigants, fanatics and bigots, giving concrete examples
of each of them. In this way we prevent our mind from being filled up with vague
or empty notions which say nothing about the world around us.

New words and expressions enter the discussion arena now and then. A modern
example is the notion of sustainability. Everyone seems to understand what this
word means, i.e., pretends to understand this notion. But in all honesty, this notion
is still unclear to the present author.

10.2.8 The Danger of Words with more than one Meaning

Some words do have more than one meaning. A good example is the word nature.
It may mean: character; for instance when one speaks about the stubborn nature of
John. It may mean: creation; for instance when one speaks of human intervention
in nature. It may mean: the status in which primitive people live; for instance when
one talks about primitive peoples. By itself it is not a real problem that one and the
same word may have different meanings depending on the context. But it becomes
problematic when in the same conversation the word is used with quite different
meanings, causing a Babylonian confusion of tongues. This may be illustrated by
the following conversation between a teacher and the father of one her pupils.

Example 10.16 (Words with more than one meaning). (van Hoesel [2])
Teacher You should talk with your son; a boy with such a stubborn nature must be
dealt with firmly.
Father I am not so sure. I doubt whether we are allowed to intervene in nature.
Nature is the creation of God and hence is not only beautiful but also perfect.
Teacher Of course, but you do not want to claim that the stubbornness of John is
completely natural and should be accepted.
Father What should I say? Nature is nature. Look at the primitive peoples. We find
cannibalism there. But because nature is the creation of God, it is perfect. For the
same reason there is little to argue against the stubbornness of John.

Synonyms are two words for the same conception; for instance, ‘honorable’ and
’honest’. Homonyms are two conceptions which are covered by the same word. For
instance, ‘deep’ and ‘high’ used at one moment for bodies, at another moment for
tones. Schopenhauer [4] gives the following examples.

Example 10.17 (Words with more than one meaning).
1. Every light can be extinguished. The intellect is a light. Therefore, it can be
extinguished.
2. A: You are not yet initiated into the mysteries of the Kantian philosophy.
B: Oh, if it is mysteries you are talking of, I’ll have nothing to do with them.

Another example of an expression with more than one meaning is: do not shoot,
please. It may be used by someone who does not want photographers to take a
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picture of him. But in the newspaper of the next day it may be reported that there
was an attack on the person in question.

Example 10.18 (Words with more than one meaning).
According to Plato the end of a thing is its perfection. But death is the end of life.
Hence, death is the perfection of life.

In Plato’s usage the word end means: goal. But in ‘death is the end of life’ the word
end means quite something else: termination.

Example 10.19 (Words with more than one meaning).
Giving money to charity is the right thing to do. So, charities have a right to our
money.

The first time the word right is used in the sense of correct or good, but the second
time it is used in the sense of a claim. Two completely different things.

The words ‘true’ and ‘truth’ should be avoided as much as possible. That a state-
ment is true may mean that I have a (mathematical) proof of it; for instance, when I
say that ‘5 + 7 = 12’ is true. That a statement is true may also mean that it is in ac-
cordance with (empirical) facts; for instance, when I say that it is true that the earth
revolves around the sun. But in a social context the word true may also mean that the
speaker agrees with what is said; for instance, when I say that orchids are beautiful
and you react with ‘that is true’. Mathematicians avoid the word true altogether and
simply say that 5 + 7 = 12.

The word automation may also have different meanings: self-regulating, mecha-
nization, computerization. A psychologist will most likely use this word in another
meaning than a technical engineer. Similarly, the word capital may have quite dif-
ferent meanings: 1. the most important city or town of a country or region; 2. wealth
in the form of money or other assets owned by a person or organization; 3. a letter
of the size and form used to begin sentences and names; 4. the distinct, typically
broader section at the head of a pillar or column.

Example 10.20 (Words with more than one meaning).
The constitution says that all men are equal. But this is clearly not true, because
there are rich and poor people, wise and stupid people.

The constitution stipulates that all citizens are equal for the law, i.e., that everyone
will be treated in the same way and that no one will be privileged. This has nothing
to do with economic equality or equality of intelligence.

Similarly, the word ‘complete’ has entirely different meanings in theories about
mathematics and physics, which makes the following argument misleading.

Example 10.21 (Words with more than one meaning).
Gödel has proved that (formal) mathematics (including elementary number theory)
is not complete. Einstein’s relativity theory is expressed in mathematics. Therefore,
Einstein’s relativity theory cannot be complete.
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10.2.9 Aprioristic Reasoning

Someone claims that all tables have four legs. You realize you have seen a table with
only three legs and you present this counterexample to your opponent. To which he
responds: Sorry, such a thing I do not call a table. What is happening here is that
the property of having four legs is made part of the definition of the notion of table.
Consequently, the proposition ‘all tables have four legs’ is what Kant would call
an analytic statement: the predicate ‘having four legs’ is contained in the subject
concept (tables) of the sentence. In fact, in this way the content of the sentence
‘all tables have four legs’ is completely empty and the speaker is always right, an
undoubtedly desirable situation. A. Schopenhauer discusses in [4] that there are
many other tricks for always being right. The situation is similar to the one in which
a magician pulls a rabbit out of his hat: everyone knows he has put the rabbit in the
hat before.

Example 10.22 (Aprioristic reasoning). Some more examples:
The director of a company argues that all his managers are high level and his co-
director notices surprised that at least two of them are of questionable level. Then
the director might react with something like: I do not call these guys managers; they
should never have been appointed as such. Again, the director makes the property
of being high level part of his definition of manager.

A priest argues that Christians are living a more decent life than non-Christians.
His opponent mentions some persons which go to church every Sunday, but are
drunk the same evening, beat their wife and neglect their children. To which the
priest reacts with: sorry, I do not call such people (real) Christians.

Little John claims that all cars have four wheels. His little sister objects that she
has seen a car with only three wheels. But John replies with: That’s not a car.

All Scottish men love whisky. John is a Scott, but he does not like whisky. So,
John is no real Scott!

10.2.10 Circular Reasoning

A circular argument is like a revolving door that one cannot get out of. Its general
structure is: A because of B and B because of A. Consider for instance the following
conversation (van Hoesel [2]):

Example 10.23 (Circular reasoning).
John I believe that nowadays all young people are lazy.
Codd What might be the reason for this?
John I think they never learned to work.
Codd How could this happen?
John It seems to me because they are simply lazy.

The circular argument becomes less perspicuous when it is of type: A because of B,
B because of C, C because of D, D because of E and E because of A.
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In rhetoric too people are often guilty of circular reasoning. For instance, some-
one argues in the heat of his argument: Why does it have to be? Because it’s possi-
ble! And why is it possible? Because it has to be!

The conversation below also illustrates circular reasoning (van Hoesel [2]):
Teacher Children, do you know that a human being has s soul?
Children Yes, we know.
Teacher But can you also prove this?
Children No, we cannot.
Teacher I will explain. You have all seen an obituary card. If you looked carefully,
then you have seen that it mentioned ‘pray for the soul of the dead person’. Well,
you understand they would not have written this if the human being would not have
a soul. Do you understand?
Children Yes!

In circular reasoning, also called begging the question, the same proposition is for-
mulated in different words, obscuring the fact that the same proposition is used both
as a premiss and a conclusion. In the following examples, the author is repeating the
same assertion in different words and then attempting to ‘prove’ the first assertion
with the second one.

Example 10.24 (Circular reasoning).
God exists because it is mentioned in the Bible. What is mentioned in the Bible is
true, because it is God’s word.
Of course, freedom of speech is important. Everyone must be able to say what he
wants.
I am no kleptomaniac, for I do not steal.
I am the director since I have the final word here.

10.2.11 Applying double Standards

It is amazing to see how people use arguments in one context, but refuse to use
the same argument in another context. Usually, such an argument is used when it is
beneficial to oneself, but not when it is beneficial to others.

Politicians in Western Europe are very strict in condemning what they call expan-
sion of Russia, pointing for instance to the Crimea, but the same politicians consider
NATO’s enlargement of its territory into many former Russian states to be no issue.

Another example from real life: a jealous husband and his wife, where the hus-
band is always trying to seduce other women, while he does not even allow his wife
to dance with another man. Even worse: he refuses to dance, but does not allow his
wife to dance with somebody else.

Example 10.25 (Applying double standards). (van Hoesel [2])
A father to his son: you pay too much attention whether your girlfriend is beautiful;
the appearance is not important, only the inner self is. The son answers: I find her so
charming! The father replies: That is because of the make-up she is using. The son:
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But you said that only the inner self is important and not the appearance. So, the
father argues that his son’s girlfriend is charming because of her appearance, using
make-up, while he just said that the appearance is not important.

Two friends decided to go to a football match, but forgot to decide who would
buy the tickets. So it happened that each of them bought two tickets. When they
discovered their mistake, they blamed each other for not having informed the other
about buying the tickets. None of them saw that the argument could be reversed
against themselves.

In one and the same conversation the director of a company, in discussion with
his wife, argues that the fact that they spend a lot of money is useful because it
stimulates the economy and provides employment opportunities. But when his wife
argues that the employees should have a higher salary, the same man argues that this
would only mean that they will waste their money.

I have experienced several times in a city council that one has wasted lots of money
for projects which were doomed to failure, as has become clear afterwards, while
refusing to spend money for useful projects on the basis that there was no money
for it.

Applying double standards is even evident in daily language, as shown by the
following examples:
When a man dates many women, he is an interesting Don Juan, a womanizer. But
when a woman dates many men, she is immoral and a slut.
A man who is not married is a bachelor. But when a woman is not married, she is
an old spinster.
A man in his forties is in the prime of his life. But a woman of that age is already an
older lady.
A man who spends much money is called generous. When a woman does the same
she is called wasteful.
If a man argues strongly in an exalted tone, he is called masculine. But a woman
doing the same is called quarrelsome.

When one hears the production of atomic bombs defended by the argument that
it gives employment to many people, this argument does not contain an inconsis-
tency. That this argument is not convincing may be made clear by applying the same
argument to another situation: destroying whole cities is useful because it gives em-
ployment to many people. In this way it hopefully becomes clear that the person in
question is applying double standards.

10.2.12 Rationalizing

People want something, frequently based on unconscious premature judgments or
habits, and next try to give more or less good reasons to support this position; how-
ever, these reasons are not convincing or are not the real motives. The notion of
rationalizing is best explained by the following anecdote: there once was a fox that
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lost its tail and then told itself and the world that tailless foxes are much more fash-
ionable.

Example 10.26 (Rationalizing). A simple example is the following: a husband is
pretty lazy and likes to read the newspaper and watch TV when he comes home.
His wife is tired and asks him to do some shopping. The man reacts by saying: my
darling, you look a bit pale today, I think it would be good for you to make a small
walk to the shopping center. His wife replies: yes, you might be right.

Needless to say that this fallacy frequently occurs in political decision making.
Politicians want something, frequently based on private hobbies and premature
judgments, and do their very best to find all kinds of more or less reasonable ar-
guments to motivate their proposal, usually carefully remaining silent about their
real motives. One frequently sees that they, confronted with new facts and counter-
arguments, do not want to give up their premature judgments and do everything to
spasmodically maintain their original position. By doing this their premature judg-
ment becomes a prejudice.

Prejudices are the result of emotional and practical needs such as certainty, safety,
security, appreciation, physical well-being and to preserve what is familiar. These
needs and desires bring us as it were automatically to accepting certain viewpoints
and opinions, which are certainly not the result of critical analysis. In this context
one may be reminded of the saying: the wish is father to the thought.

Thinking is not a matter of our intelligence alone, but the whole human being
is involved with all his emotions and premature judgments. As a member of a cer-
tain class, religion or group everyone has unconsciously built up certain premature
judgments which seem to be self evident and have never been submitted to critical
analysis.

Strong prejudices are even able to reduce or eliminate critical thinking of (very)
intelligent persons, as becomes clear from the following little experiment. A group
of students is asked to judge the correctness of the following two arguments:
1. Because many people from Israel are hospitable and many hospitable people have
a good character, many people from Israel have a good character.
2. Because many Jews are warlike and many warlike people are slavish, many Jews
are slavish.
Both arguments have the same structure and are evidently not correct.
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The left circle represents the people from Israel, respectively the Jews; the middle
circle represents the hospitable, respectively the warlike people; and the right circle
represents the people with a good character, respectively the slavish people. Clearly,
the two outer circles may have nothing in common.

However, many people who are sympathetic towards Israel will judge the first
argument as correct and the second one as incorrect, while many people who have
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a prejudice against Israel will judge the first argument as incorrect and the second
one as correct.

So, the human being with a prejudice is not aware that his conviction is the result
of his own desires and needs. Since the real reasons for his opinion remain hidden
for himself, he will unconsciously create certain reasons or arguments. This pro-
cess is called rationalizing: the rational or reasonable foundation of an opinion or
conviction, which is essentially based on irrational grounds.

Example 10.27 (Rationalizing). (van Hoesel [2])
Sometimes the prejudiced person will try to maintain his prejudice with the most
contradictory arguments, as for instance in the following example which illustrates
the saying: it is an easy thing to find a staff to beat a dog.
X What I do not like about Jews is that they only look at their own group.
Y I doubt whether you are right. It turns out that they give relatively more money
to charities than non-Jews.
X This only proves that they try to buy the favor of mankind by giving money. Jews
only think of money which is the reason that so many Jews are bankers.
Y Recent research has shown that the number of Jews in the banking world is
negligible.
X That is the point. These people are not concerned with respectable matters.

Example 10.28 (Rationalizing). (van Hoesel [2])
When a large company wanted to introduce clocking (on/off), one of the employees
came with a number of fundamental objections: 1. impairment of personal freedom;
2. people should be trusted; 3. to gain trust you first have to give confidence; 4.
employees will also leave exactly in time. All these arguments against clocking look
reasonable, but, no surprise, the employee in question was always too late, because
he had problems leaving his bed in time.

10.2.13 After this, therefore because of this

A simple example of this fallacy is provided by people who argue that their headache
has disappeared due to taking a paracetamol tablet. After taking the paracetamol,
the headache disappeared and one concludes that it disappeared because of taking
this medicine. The idea that the headache might have disappeared without taking
paracetamol does not occur to these people.

This fallacy, in Latin called ‘post hoc, ergo propter hoc’ (after this, therefore
because of this) consists of assuming that a certain fact is a consequence of another
fact, only on the basis that the one fact is chronologically later than the other fact. It
occurs very frequently, also in modern times.

Example 10.29 (Post hoc, ergo propter hoc). Some more examples:
‘Last ten years climate has changed; that must be a consequence of CO2 emissions.’
That CO2 emissions were earlier than climate change is hard to refuse, but that they
are the cause of climate change is another question.
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The sun always comes up after the cock has crowed, so the sun rises because the
cock has crowed.

The inhabitants of some islands in the Pacific were convinced that lice keep peo-
ple healthy. They had observed that many healthy people had lice, while sick people
frequently do not have them. What they did not realize is that the lice run away from
sick people because due to fever their temperature is too high for them.

Also commercials frequently suggest a causal relation only on the basis that the one
follows chronologically on the other:

Example 10.30 (Post hoc, ergo propter hoc).
She was a wallflower, now she is engaged. She uses Lucia soap.

He was tired of being alone; now he is happily married. He signed up for our
dating site.

You want to be happy too? Our car is the perfect one for you.
Many people, among them many doctors, believe that injections against influenza

prevent them from having this disease, although many controlled experiments have
shown that they were useless.

Example 10.31 (Post hoc, ergo propter hoc).
Smith became president. Next the economy flourished. So, the presidency of Smith
was good for the economy.

Possibly the presidency of Smith was beneficial for the economy, but not necessar-
ily so. The effect of politicians on the economy should not be overestimated. The
economy may flourish for many other reasons, under any president.

Every cause always precedes its consequence, but not everything that precedes a
result is a cause!

A similar mistake is when one concludes from the parallel occurrence of phenomena
that one is causing the other. In Latin this fallacy is called ‘cum hoc, ergo propter
hoc’ (together with this, therefore because of this). A good example is the following
one (van Hoesel [2]). Reliable statistics show that students who smoke in general
have lower grades than students who do not smoke. Opponents against smoking
will gratefully conclude from this that smoking is harmful for learning. However,
one may also reverse this conclusion: lower grades are causing students to smoke. A
third even more likely conclusion might be that students who like to be popular and
to make a social impression will for that reason smoke and will avoid everything
that might lead them to being mistaken for an eager beaver.

Example 10.32 (Cum hoc, ergo propter hoc). Some more examples:
When in a certain village some form of cancer statistically occurs more frequently
than elsewhere, people may suggest that a particular factory in the neighborhood of
the village is responsible for it. However, it might well be that the real cause is that
the people in the village do not eat healthy for whatever reason.

The last 200 years the number of pirates has decreased and global warming has
increased. So climate change is due to the fact that there are fewer pirates.

I was just thinking about you when the phone rang. That cannot be a coincidence.
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10.3 Unfair Discussion Methods

Once more: the purpose of a discussion is not to be proved right, or to outdo, to force
or to mislead the other, but to discover the truth or to reach an agreement through
joint and ordered thinking. In this section we will point out and distinguish a number
of unfair discussion methods in the hope of making the reader aware of them and
to help the reader not to become the victim of so many unfair tricks that are used,
consciously or unconsciously, in local councils, parliaments and other meetings.

10.3.1 Pushing someone into an extreme corner

There is a well known Dutch saying: whoever claims a lot, has to justify a lot. Con-
sequently, if someone gives in to the temptation - under the influence of his emotions
- to exaggerate his claim and thus take an extreme position, he often becomes de-
fenseless against the arguments of his opponent. There are at least three ways in
which one can be pushed into an extreme corner without being aware of it:

10.3.1.1 Pushing someone into an extreme corner by fighting him
violently/emotionally

Example 10.33. As chairman of a faculty meeting I was confronted with a colleague
who evidently was lying repeatedly. Becoming more and more irritated by his lying
I was led to say explicitly that he was a liar. Everyone in the faculty meeting was
upset that I used these words and that I did not trust the words of my colleague.
Consequently, the members at the meeting demanded that I offered my apologies;
the truth or falsehood of the claims of my opponent was not further considered.

10.3.1.2 Pushing someone in an extreme corner by saddling him with more
than he said

Example 10.34. 1. In a debate about immigration, a politician argues for restrictions
on immigration. One of his opponents replies with: so, you want to deport all for-
eigners from the country.
2. One evening a husband came home and asked his wife whether she had been able
to put a button on his jacket. The reaction of his wife was astonishing: You think I
have nothing else to do than putting that button on your jacket! I worked all day, did
shopping, had to prepare dinner, cleaned the house, etc.

The best reaction for the politician is to make clear that he did not claim the things
his opponent said. The same holds for the husband. But - being irritated - the hus-
band may be tempted to say that his wife with a little bit more efficiency would have
been able to do what he hoped for, in which case the atmosphere in the family would
only become worse.
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10.3.1.3 Pushing someone into an extreme corner by drawing improper
consequences from his statement

Example 10.35. In a discussion between a politician and businessmen, one of the
businessmen was arguing for more roads because there are so many traffic jams.
The reply of the politician was simply: sir, we cannot asphalt the whole country!

Clearly, the proposal of the businessman does not lead to the ultimate consequence
that the whole country has to be asphalted. But the discussion was closed and the
businessman gave up instead of making clear to the politician that his conclusion
was inappropriate. Also nobody in the audience of more than one hundred people
made any objection.

10.3.2 Straw man argument

By misrepresenting the position of a speaker, it becomes easy for the opponent to
knock the speaker down. However, in fact the opponent does not refute the statement
of the speaker, but he creates another and frequently much stronger statement which
may easily be refuted, akin to the way that it is easy for a boxer to knock down a
straw man. For this reason this unfair discussion method is also known as the straw
man argument. The problem is that the position dismissed by the argument is not
the real one, but only a caricature of the real position. In such cases the best strategy
is to state explicitly: I did not say that.

Example 10.36 (Straw man argument).
A scientist submits a paper for publication in which an argument A is presented. The
referee who has to judge whether the paper is suitable for publication, misinterprets
the paper and believes that another argument B is presented. He then shows that
argument B is incorrect or nonsense and subsequently recommends rejection of the
submitted paper. In such a case the paper is rejected with a straw man argument.

Schopenhauer [4] calls this extension: carrying your opponent’s proposition beyond
its natural limits, so as to exaggerate it. He gives the following examples:

I say that the English were supreme in drama. My opponent attempts to give an instance
to the contrary, and replies that it is a well-known fact that in music, and consequently
in opera, they could do nothing at all. I repel the attack by reminding him that music is
not included in dramatic art, which includes tragedy and comedy alone. This he knew very
well. What he did was try to generalize my proposition so that it would apply to all theatrical
representations, and, consequently, to opera and then to music, in order to defeat me.

Lamarck states that the polyp has no feeling, because it has no nerves. It is certain, however,
that it has some sort of perception; for it advances towards light by moving in an ingenious
fashion from branch to branch, and it seizes its prey. Hence it has been assumed that its
nervous system is spread over the whole of its body in equal measure, as though it were
blended with it; for it is obvious that the polyp possesses some faculty of perception without
having any separate organs of sense. Since this assumption refutes Lamarck’s position, he
argues:
In that case all parts of its body must be capable of every kind of feeling, and also of motion,
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of will, of thought. The polyp would have all the organs of the most perfect animal in every
point of its body; every point could see, smell, taste, hear, and so on; in fact, it could think,
judge, and draw conclusions; every particle of its body would be a perfect animal, and it
would stand higher than man, as every part of it would possess all the faculties which man
possesses only in the whole of him. Further, there would be no reason for not extending
what is true of the polyp to all monads, the most imperfect of all creatures, and ultimately
to the plants, which are also alive, etc., etc.
By using dialectical tricks of this kind a writer betrays that he is secretly conscious of
being in the wrong. Because it was said that the creature’s whole body is sensitive to light,
and therefore possessed of nerves, he makes out that its whole body is capable of thought.
[Schopenhauer [4], Section 1]

10.3.3 Diversion maneuvers

In discussions it frequently happens that one tries to take someone away from his
proposition, consciously or unconsciously, in a way similar to that of the young boy
who came home with a great rip in his new pants and proudly showed to his mother
the beautiful chestnuts which he had collected, hoping that she would not notice the
rip. Below we present some of the methods used to embarrass someone.

10.3.3.1 Red herring argument: distracting someone from his original theme
by moving the discussion unnoticed to another area

Changing the subject or diverting the argument from the real question at issue to
some side-point is also known as a red herring argument. A red herring is a tactic
to divert the opponent and/or audience from the relevant issue. A frequently heard
example is this one: why should I pay for driving a few kilometers too fast; the
police should chase dangerous criminals, not a decent tax payer like me.

Unlike the straw man argument, a red herring argument does not involve any
misrepresentation of an opponent’s position, but it concerns the introduction of a
completely different issue which is not, or is only slightly, related to the real issue
in question.

Example 10.37 (Red herring). (van Hoesel [2])
At a meeting of the elementary school board with the parents of the pupils, a mother
asks one of the teachers about his opinion in the dispute between herself and her
husband about beating their child because it had stolen some money. The teacher
recognizes that the question is whether beating is admitted as a punishment. But
instead of answering this question, he starts to talk about the punishment problem
in more general terms, saying that the conscience of the child sometimes has to
be corrected by punishment and that punishment is a translation from an ethical
condemnation to empirical reality.

If the speaker continues to talk about this more general topic, illustrating more or
less interesting aspects of the punishment problem, occasionally making a small
joke, the woman in question will go home very satisfied and only realize later that
the teacher in fact did not answer her question.
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Example 10.38 (Red herring).
In a public debate with the mayor of the town the complaint is put forward that there
is too much crime. The mayor then answers: well, this town has lots of problems,
among which is also the housing shortage problem. But currently we are in con-
versation with cooperations to build new social housing. So, we are actually doing
something about it.

Personally, I have experienced in many meetings of the faculty, the university and
the city council that people frequently do not react to what might be strong argu-
ments, they simply ignore them and pretend they did not hear them. This is usually
a sign that they do not have appropriate counterarguments.

The College of Mayor and Aldermen is obliged to answer written questions of
a council member within six weeks, and they do react within this period. However,
frequently what they write is not an answer to the question! In such cases Schopen-
hauer [4] gives us in Section 34, Don’t let him off the hook, the following advice:

When you state a question or an argument and your opponent gives you no direct answer
or reply, but evades it by a counter-question or an indirect answer (or some assertion which
has no bearing on the matter, and, generally, tries to turn the subject), it is a sure sign that
you have touched a weak spot, sometimes without knowing it. You have, as it were, reduced
him to silence. You must, therefore, urge the point all the more, and not let your opponent
evade it, even when you do not know where the weakness which you have hit upon really
lies. [Schopenhauer [4], Section 34]

10.3.3.2 Distracting someone from his original theme by concentrating one’s
attack on one minor argument

If one has a number of arguments in favor of a certain proposition, one of the argu-
ments may be a weaker one. Clever debaters may pick out this one weaker argument
and with a great fanfare focus their attack on this minor argument. If they give a good
show, they may achieve in this way that the strong arguments are forgotten and that
they become the ‘winner’ of the discussion.

Example 10.39. (van Hoesel [2])
In a discussion about admitting or forbidding alcohol one of the participants brings
in the following arguments against a total ban on alcohol:
1. Thousands of people would become unemployed;
2. It would mean an attack on the liberty of people;
3. Alcohol may have a positive influence on the health of people;
4. A total ban will encourage illegal trade and alcohol abuse;
5. Many people are used to alcohol, alcohol is like a friend which they do not want
to miss.
One of the participants, strongly in favor of a total ban, focusses his attack on the
last weaker argument as follows: Your son may be used to biting his nails, but you
will not stop telling him he should not do so. You may be used to smoking a lot,
but you keep trying to quit smoking. Your neighbor is used to throwing his garbage
into your garden, but you will never accept this. Summarizing, let us remain sober
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(people laugh), that one is used to something does not mean that it is good and that
one should not fight against it.

10.3.3.3 Distracting someone from his original theme by making an irrelevant
objection

Example 10.40. (van Hoesel, [2])
A psychology professor has given a talk about the psychology of human resource
management, in which he has emphasized the importance of showing respect and
appreciation for the employees. Having given a number of good arguments to un-
derpin this claim, he concludes with: summarizing, with one pat on the back you
can achieve more than with thousand other measures. In the discussion following
his presentation one of the attendees reacts as follows: mister chairman, I have not
studied psychology, but I do not see myself walking through the factory giving pats
on the back, taking my hat off for the employees, offering them cigars and cigarettes,
bringing them coffee and tea in the morning and in the afternoon. (people laugh)
Sorry, mister chairman, in this way one cannot run a company.

By taking the ‘pat on the back’ from the context and doing so in a humorous way,
the attendee gets the laughers on his hand, but not the thinkers. This reminds us of
Schopenhauer’s [4] section 28: Persuade the audience, not the opponent, which was
already mentioned in Section 10.2.3, Thinking simplistically.

10.3.3.4 Bluffing the community

Example 10.41. In the years 1970-1980 the idea emerged in the Netherlands that
for students, from elementary school to university, it is social and emotional devel-
opment that is most important; students may discover subject matters like number
theory, language, history and geography themselves. Teachers who taught were in
the way of both the emotional and the professional development of their pupils. The
Dutch government from those days gave educational agencies plenty of room. These
agencies sent out advisers on a large scale, who quickly spread the new insights. By
working according to these new insights and the associated methods, the content
level of education would improve.

An advisor explains to a group of teachers that explanations of any sort may last
at most twenty minutes. The advisor himself takes more than one hour. A teacher
asks for attention to the way in which the content of subjects can still be brought
to the fore within the outlined framework. He expresses his serious concerns. The
consultant blames the teacher for interfering with the process that his colleagues
are going through. Also, this teacher apparently has no eye for the real interest of
his students. Teachers like him are subject matter-oriented, while the proper attitude
is student-oriented. Almost all colleagues remained silent, school directors almost
always chose the side of the advisors. Impure methods like these have caused great
suffering for many teachers (and students).
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10.3.3.5 Distracting someone from his correct conclusion by pointing out a
mistake in his argument

As we already know from Chapter 1 an invalid argument may have a true conclusion
when its truth does not depend on the truth of the premisses, but on other facts. So, it
may happen that a speaker is drawing a right conclusion, but gives a wrong argument
as in the following example (van Hoesel [2]).

Example 10.42. All planets are round. The earth is round. So, the earth is a planet.
Every rectangle has four right angles. A square has four right angles. So, a square is
a rectangle.

One may point out that the argument is invalid by remarking that a similar argument
would be: all men have two eyes; an ape also has two eyes; so, an ape is a man.
Nevertheless, the conclusion of the prior arguments is true, although its truth is not
based on and independent of the given premisses.

Example 10.43. (van Hoesel [2])
An engineer who just got a position at a certain firm concludes that he will belong to
the management, because the managers have four weeks of vacation and he himself
does too. His partner makes him doubt by pointing out that his argumentation is
invalid; because a similar argument would be: the managers are wearing shoes and
all employees are wearing shoes, so all employees are managers.

Again, the conclusion may be true, but if so, its truth does not depend on the given
argument.

10.3.4 Suggestive Methods

There are three ways to bring people to accept our insights and objectives: by forcing
them, by persuading them (but not by using good arguments) and by convincing
them (by honest, proper and relevant arguments). The difference between being
convinced and being persuaded is that in the first case one plays a more active role
in the process (agreeing happily) than in the second case where one plays a more
passive role. In this section we will analyse some discussion methods which have in
common that the most important factor in bringing about an insight or opinion is not
the quality of the argument used, but suggestive influence of one of the following
kinds:
1. by using terms with tendentious emotional value or biased connotation;
2. by exploitation of certain thinking habits;
3. by abusing the analogy reasoning;
4. by all kinds of suggestive tricks.
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10.3.4.1 Using terms with tendentious emotional value or biased connotation

Example 10.44 (Words with biased connotation).
protestants heretics
alteration innovation
existing order antiquated prejudice
public worship piety/godliness
system of religion bigotry/superstition
the priests the clergy
placing in safe custody throwing into prison
an equivocal story a bawdy story
religious zeal fanaticism
through influence and connection by bribery and nepotism

The difference between the objective and emotional meaning of a word becomes
evident when one puts the words next to each other. For instance, in the sequence
alcoholic – drunkard – boozer the meaning of the first word is a purely objective
one, but the last word in addition expresses that the person who used it has already
chosen a position.

Words with a tendentious emotional value can often be found in all kinds of
political, moral and religious discussions.

Example 10.45 (Terms with biased connotation).
The city council was discussing building a new shopping mall at the border of the
town and objections were raised that this might have disastrous consequences for
the shopkeepers in the city center and hence for the city center itself, because many
shops there would simply disappear. A representative of the labour party said that
the shopkeepers are just tax evaders, so for him there was no problem at all.

Emotional words are frequently used in the political sphere. One can easily see this
by reading how different newspapers report one and the same event. One newspaper
calls a mistake of a minister in parliament a somewhat unfortunate mistake, while
another newspaper calls it deliberate deception of the people.

Note that many initially completely neutral words can get an emotional con-
notation over time. Examples are the words workman and cleaning woman, who
nowadays are called employee and interior caretaker, respectively.

In the public domain one really plays with words in order to make a positive
impression. Since the word progressive for many people has a positive connotation,
left-wing parties call themselves progressive, suggesting that they are focused on
the future and go along with their time, thus ignoring the fact that one must keep the
good things and only needs to correct or adapt what goes wrong.

If in a discussion many emotional terms are used, one should be careful: fre-
quently these emotional terms are misused to mask bad argumentation. In such cases
one should try to replace the emotional terms by more neutral expressions and see
what remains of the argumentation. Van Hoesel [2] illustrates this with the following
example of a discussion between a host and his guest.
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Example 10.46 (Terms with biased connotation). (van Hoesel, [2])
Host: At Sundays I always like to drink a whisky before dinner; and I am fond of it.
Guest: Do you realize how much misery alcohol is causing to the world. Whole
families and cultures have been destroyed by this poison. See how many human
wrecks are walking in our big cities. Our psychiatric hospitals are overcrowded
with victims of alcohol. Alcohol is causing a strong increase in criminality and
sexual offences. I am deeply shocked by your statement that you enjoy your whisky
so much.
Host: My dear friend, your words have impressed me. I will stop drinking.

In a less emotional and more business-like atmosphere this conversation would
most likely have proceeded as follows:
Host: At Sundays I always like to drink a whisky before dinner; and I am fond of it.
Guest: You will have to admit that misuse of alcohol causes serious physical and
mental problems.
Host: I fully agree! That is why I only take one.

Schopenhauer [4], section 32, points out that one may get rid of an assertion one
does not like, or at any rate throw suspicion on it, by putting it into some odious
category, even if the connection is only apparent or of a loose character. One might
say for instance: that is Machiavellism, or Arianism, or Pantheism, or Atheism,
or Spiritualism, or Ultra-Right, all words with a biased connotation. In making an
objection of this kind, one essentially cries out ‘Oh, I have heard that before’ and one
suggests that the system referred to has been entirely refuted and does not contain a
word of truth.

10.3.4.2 Exploitation of certain thinking habits

It is not difficult to see that many of our thinking habits are based on incorrect and
emotionally-based generalizations which we have already treated in Section 10.2.2.
In this section we want to point out that our thinking habits may weaken our critical
insight and make us vulnerable for suggestive influencing. For instance, we are used
to talk about Russia as warlike and aggressive, which is exploited by our Western
politicians without any scruples and without any attention for the way Russia looks
at the West. A good example is the so called annexation of Crimea by Russia, where
in fact the citizens of Crimea requested Russia to protect them against Ukraine,
because they preferred to remain Russian. In addition, it is almost certain that if
Russia had not taken Crimea, NATO would have built a naval base there.

Speakers in public - with the exception of a few good ones - rely more on the
basis of our emotions and prejudices than on our common sense and critical insight.
A smart speaker who, for example, wants the public to accept a dubious proposition,
first formulates a number of propositions that are readily accepted by the public and
only then presents his dubious proposition. As soon as used to nodding yes, chances
are that they will not even think about the last questionable statement and nod again.
For example, in a meeting of school teachers, the speaker may start by pointing out
that the salaries have not been raised for many years, that the classrooms are getting
bigger and bigger, that the pressure on the teachers is increasing and that their job
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is becoming more and more demanding, before eventually formulating his dubious
proposition, like, for instance, that school teachers deserve a 10% salary increase.
After saying so many things that the teachers can not disagree with, they will also
be happy to accept his more dubious statement.

This technique is perfectly demonstrated by quacks at the market, for instance.
They present a pseudo-scientific argument in which they formulate many propo-
sitions which are easily accepted by the general public. Since people are inclined
to believe a person who proclaims their views, they will easily accept the dubious
proposition at the end of the argument. Van Hoesel [2] gives the following example
of such a quack.

Example 10.47 (Exploitation of certain thinking habits). (van Hoesel [2])
Ladies and gentlemen, we all know that the mind has a huge influence on the body.
Did you have fear in the past? What did you feel? Precisely, that your heart beats
faster. And what if you have suffered a great loss? Right, you start to cry, the tears
come out. The mind affects the body. And perhaps you know someone who was par-
alyzed and could walk again under the influence of a strong emotion. The influence
that body and mind have on each other is so strong. There are no physical illnesses
and there are no mental illnesses, there are only sick people. Whether you suffer
from nervous breakdowns, rheumatism, stomach- or head-aches, it really does not
matter that much. Because in our laboratory - after many years of experimenting
- we have discovered a method that can cure all your diseases, physically or men-
tally. Panasulfakin heals body and soul for the price of a doctor’s visit. Thousands
of fellow citizens owe their health to Panasulfakin.

10.3.4.3 Abusing the analogy reasoning

An analogy may be used to clarify something, like in the following example: The
circulation of money for the well-being of the economy is like the circulation of the
blood for the well-being of the body.

However, an analogy may also be misused when one tries to prove something. In
such a case, one usually points out that two items have some properties in common
and next one concludes that the second item has in addition another property of the
first item.

Example 10.48 (Abusing the analogy reasoning). (van Hoesel [2])
Family doctor: You just said that your son already visited several doctors; neverthe-
less I advise you to consult a psychologist.
Father: No way! Look, I have a motorbike. If one mechanic pours Shell oil in it, a
second one Renault oil and a third one again another oil, then my motor goes on the
fritz. The more people mess with my son, the more they’ll ruin him.

Although in this example a human being and a motorbike have some things in com-
mon, it goes too far to conclude that what is bad for the motorbike is also bad for
a human being. The family doctor might have made clear that the analogy is in-
appropriate by suggesting the father to pour some oil in his son and to kick-start
him.
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Example 10.49 (Abusing the analogy reasoning). (van Hoesel [2])
Probation officer: Believe me, you will get a good craftsman.
Employer: maybe, but I am not inclined to employ someone who was in prison for
theft. My father used to say: once a thief, always a thief.
Probation officer: Listen, your saying says nothing. On the contrary: no person
wants to be more honest than the one who comes from jail for theft. Look: if you
return from hospital after having fallen from the roof, would you climb on the roof
again? No way!

In this example there is little analogy between thieving and falling from a roof that
would allow one to draw any conclusion. Such forced analogies are frequently used
in public or political speeches and in commercials, like in the following example.

Example 10.50 (Abusing the analogy reasoning). (van Hoesel [2])
A market vendor with a hoarse voice was trying to convince the public of the excel-
lent qualities of his cough medicine. Colds, cough and bronchitis were according to
him nothing else than dirt that had settled on the chest. In order to illustrate this he
showed a glass of troubled water, and said that if he would not do anything, it will
remain troubled forever. However, by pouring a bit of cleaning liquid in the glass,
the water became crystal clear. He promised his audience that by taking three spoons
of this liquid per day, their chest would become as clean as his glass of water.

That the reactions of a living being are very different from an anorganic reaction did
not occur to his audience; the market vendor was doing good business.

Example 10.51 (Abusing the analogy reasoning). (van Hoesel [2])
A temperance advocate finished his speech by saying that liquor is not only bad
for the mind, but also for the body, illustrating this by dropping a rain-worm in
a glass of liquor. Indeed, the result was convincing, after a few seconds the rain-
worm was as dead as a doornail. I cannot, he continued, give you a more convincing
demonstration of the destructive effect of alcohol.

Of course, there is some similarity between a rain-worm and a human being: both are
living beings. But this does not mean that what is bad for the rain-worm is also bad
for a human being. In addition, the rain-worm was literally drowned, which would
also have happened had the speaker used a glass of milk. One of the attendees was
smart enough to realize these facts and drunk the glass of liquor with the excuse that
he was troubled with worms.

Example 10.52 (Abusing the analogy reasoning).
Guns are like hammers: they are both tools with metal parts that could be used to kill
someone. It would be ridiculous to restrict the purchase of hammers, so restrictions
on purchasing guns are equally ridiculous.

Restrictions on the purchase of guns may be justified because they can easily be used
to kill large numbers of people at a distance; this feature is not shared by hammers.
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10.3.4.4 Suggestive tricks: using authority; suggestive influence of
incomprehensible words; Argumentum ad Populum

A frequently used trick to suggest that a statement is true is to appeal to authority
or prestige. This authority may be legitimate, but it may also be fictitious or pre-
tended. When, for instance, a university professor in physics formulates a physical
proposition, it is more than reasonable to accept its truth. However, when the same
professor in physics formulates a proposition about some social problem, then we
may attribute no more value to his claim than to the claims of other personalities of
the same level and with the same level of information. The physician, the vicar, the
pastor, the notary, to mention just a few examples, have for many people also author-
ity on topics which have nothing to do with health, religion, morality and financial
affairs, respectively. A similar thing holds for popstars when they make statements
about political or social issues; their opinion has no more value than the ones uttered
by arbitrary persons of the same intellectual level and competence.

Authority arguments are frequently used in practice, even in the scientific world.

Example 10.53 (Authority argument).
A PhD student had submitted a complaint to the national body of scientific integrity
that the comments of a certain professor were inaccurate and careless. The professor
in question replied in a letter to this body as follows: I want to draw your attention
to the fact that I am the main editor of a journal of high reputation. Therefore you
better take my opinion seriously.

When a person is an authority in a particular field he may also misuse this authority
to intimidate others. Van Hoesel [2] gives an example of a university professor in
psychology who gave a talk about the psychology of the factory girl. One of his
students asks whether the factory girl does exist. To which he replies with ‘I do not
understand your question’, making the student seem ridiculous. But the student is
probably right that one cannot speak about the factory girl. By pretending he does
not understand the student’s question, the university professor insinuates to the by-
standers, with whom he is in good repute, that what the student says is nonsense.
The counter-trick for the student might be to admit that she might not have for-
mulated her question clearly, but that when one compares a factory girl in a small
bakery with a factory girl in a large Philips factory there may be more differences
than similarities and that consequently it is unclear whether one can speak about the
psychology of the factory girl. She might even add: with your intelligence it must
be easy for you to understand this question.

Schopenhauer [4] gives another example:

Thus, when Kant’s Kritik appeared – or, rather, when it began to make a noise in the world
– many professors of the old eclectic school declared that they failed to understand it, in
the belief that their failure settled the business. But when the adherents of the new school
proved to them that they were quite right, and had really failed to understand it, they were
in a very bad temper. [Schopenhauer [4], section 31]

The suggestive effect of authority does not always have to be based on social posi-
tion, title or the name of the speaker, but one may also successfully obtain authority
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by using incomprehensible quasi-scientific terminology. It is amazing how many
people consider incomprehensible and complicated terminology as scientific and
interesting, while in fact it is only a mush of words. Some even claim that philoso-
phers like Hegel and Heidegger are of this kind, but it may be that they did not
spend enough time to study these authors properly. It is staggering to see how great
the suggestive influence of incomprehensible words can be and how easily a be-
lief in words arises. Management jargon, for instance, is an inexhaustible source of
incomprehensible and quasi-scientific use of language.

Example 10.54 (Suggestive influence of incomprehensible words).
1. The unconscious Will of Nature eo ipso presupposes an unconscious idea as goal,
content or object of itself. ... Instinct is defined as a purposive action without con-
sciousness of the purpose. ... Instinct is conscious willing of the means to an uncon-
sciously willed end. [Wilm, E.C., The Theories of Instinct. Yale University Press,
1925, pp. 135,139]
2. The prohibition on incest is in origin neither purely cultural nor purely natural,
nor is it a composite mixture of elements from both nature and culture. It is the
fundamental step because of which, by which, but above all in which, the transition
from nature to culture is accomplished: the prohibition of incest is where nature
transcends itself. [Lévi-Strauss, e.a., The elementary structure of kinship. Beacon
Press, Boston, 1969, p. 24]

Sentences like these cannot be tested and have no clear meaning, which also means
that no one can show that they are false. At the same time the authors of such sen-
tences present themselves to be profound.

Example 10.55 (Suggestive influence of incomprehensible words). (van Hoesel [2])
A party-ideologist, at a party meeting at the end of his exposition about inflation,
finishes enthusiastically with the words: We do not want inflation! We do not want
deflation! But ... we want reflation!!! Followed by enthusiastic applause.

When someone after the meeting asked the speaker what he meant by reflation,
his answer was: I do not know, but ask it to the people in the audience, because they
seem to have understood it.

Evidently, in many cases people are satisfied with words they have gotten from
persons with a certain authority. Incomprehensible secret language is one of the
methods to seem important. D. Sperber calls this the Guru effect:

All too often, what readers do, is judge profound what they have failed to grasp. Obscurity
inspires awe, a fact I have been only too aware of, living as I have been in the Paris of
Sartre, Lacan, Derrida and other famously hard to interpret maı̂tres à penser. ... Still the
epidemiological mechanism I have briefly sketched, explains how many obscure texts and
their authors come to be overestimated, often ridiculously so, not in spite but because of
their very obscurity. [Sperber, D., The Guru effect. Review of Philosophy and Psychology
2010, pp. 583, 592]

Schopenhauer [4] points out that a universal prejudice may also be used as an au-
thority. Using an appeal to popular assent is also called an Argumentum ad Populum
(argument to the people). Such an appeal asserts that, since the majority of people
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believes an argument or chooses a particular course of action, the argument must be
true or the course of action must be followed. Nowadays one sees this phenomenon
in Western Europe, where wind-mills to generate electricity are built at a very large
scale, although it is pretty clear that the enormous costs cannot outweigh the return.

There is no opinion, however absurd, which men will not readily embrace as soon as they
can be brought to the conviction that it is generally adopted. ... They are like sheep following
the bellwether wherever he leads them. They would sooner die than think.

It is very curious that the universality of an opinion should have so much weight with
people. Their own experience might tell them that its acceptance is an entirely thoughtless
and merely imitative process. But it tells them nothing of the kind, because they possess no
self-knowledge whatever. ...

To speak seriously, the universality of an opinion is no proof. In fact, it is not even a prob-
ability that the opinion is right. [For instance, almost all people once have thought planet
earth was flat, but that majority’s belief did not mean the earth really was flat.] ...

When we come to look at the matter, so-called universal opinion is the opinion of two or
three persons. We should be persuaded of this if we could see the way in which it really
arises. ... [A few persons who select the news to be broadcasted and next more and more
people are spreading the word.] ...

When opinion reaches this stage [of universal acceptance], adhesion becomes a duty. Hence-
forward the few who are capable of forming a judgement hold their peace. Those who
venture to speak are entirely incapable of forming any opinions or any judgement of their
own, being merely the echo of other’s opinions. Nevertheless, they defend them with all the
greater zeal and intolerance. For what they hate in people who think differently is not so
much the different opinions which they have as the presumption of wanting to form their
own judgement. In short, there are very few who can think, but every man wants to have
an opinion; and what remains but to take it ready-made from others, instead of forming
opinions for himself. [Schopenhauer [4], section 30]

A particular type of argumentum ad populum does not assert that everybody is doing
it, but rather that all the best people are doing it. For instance: any true intellectual
would recognize the necessity for studying logical fallacies. The implication here is
that anyone who fails to recognize the truth of this assertion is not an intellectual.

10.3.4.5 Suggestive tricks: repeating oneself, speaking confidently, suggestive
questions

One would be surprised to realize how many of our ideas, views and convictions
are in the end the result of commercials and propaganda. The media (TV and news-
papers) get much of their information from the local and national governments,
journalists have little or no time for research and almost everyone parrots what they
have heard elsewhere. Consequently, many things are de facto not what they seem
to be. For instance, religious Christian leaders in Syria give a completely different
picture of the situation in their country than we are told by the mainstream media.
In what follows, we discuss some of the more important tricks of persuasion.

Repeating oneself
We have the tendency to start to believe statements which are repeated again and
again, either literally or with slight modifications. Repeating things is a well known
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method to learn addition and multiplication, to learn French, but also to learn playing
piano, etc. The speeches of Hitler, for instance, always had the same topics: the
Jews, Gross Deutschland, die Partei, frequently presented in small variations. In the
following example the speaker repeats several times more or less exactly the same
thing without any convincing argument. Nevertheless, these repetitions suggest that
what is said is absolutely true and that any further discussion is superfluous.

Example 10.56 (Suggestive repetitions). (van Hoesel [2])
Poverty is a lack of social adjustment. The economically weak are the ones who
were not able to adjust to the social demands put on them. They are biologically
less gifted than the working people, who were able to bring about such adjustment.

Speaking confidently Frequently people try to eliminate the critical attitude of their
audience by speaking (very) confidently. A more modest speaker is frequently not
taken very seriously, in particular if the audience is large. In political speeches, for
instance, addressed to a large audience, the speaker will usually speak very confi-
dently in order to prevent the audience from thinking that he has little or no knowl-
edge or that his views are poorly substantiated.

Suggestive questions Questions are suggestive if they – by the way they are asked
– actually suggest the answer.

Example 10.57 (Suggestive questions).
You certainly also buy a lottery ticket for the animal protection?
You will certainly agree with the usual 10% fee?
In a shop: you will certainly take it with you, madam? Instead of: do you want it to
be delivered at home?

One may distinguish:
1. The implying question For instance: although the car which caused an accident,
taken into custody by the police, does not have an antenna, the officer might ask:
was the antenna of the car on the bonnet or on the roof?
2. Question which contains a dilemma For instance, although the car in question is
green, the officer might ask: was the car black or red?
3. Expectation question For instance: he certainly drove too fast?
4. Complex question For instance: Did the driver give way, use his direction indicator
and drive at the right side of the road, yes or no?

Another well-known example is the question: have you stopped beating your
wife? Whether you answer this question with yes or no, in both cases you admit that
you have beaten your wife before, because this question presupposes that you did
so; see Section 7.11. In fact this question consists of two questions rolled into one:
a) Did you beat your wife in the past? and b) If so, did you stop beating her?

Complex questions appear in written argument frequently. A student might write
a bachelor thesis with the title ‘Why is private development of resources so much
more efficient than any public control?’. An observant reader may recognize that
the prior implicit question, whether private development of resources really is more
efficient in all cases, remains unaddressed.
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10.3.5 Either/Or Fallacy

By the words we are using, we frequently make sharp distinctions which do not
exist in reality. For instance, classifying people into rich and poor. However, when
we would try to put ourselves into one of these two categories, many of us would
notice that it is not really possible to do so. Similarly, in daily language we make
sharp distinctions between beautiful and ugly, expensive and cheap, good and bad,
intelligent and stupid, normal and abnormal. As already pointed out by the Dutch
Significists, among them G. Mannoury and L.E.J. Brouwer, there are gradual tran-
sitions between these two extremes; see Section 7.3. Nevertheless, in discussions
about a certain problem, people are frequently placed in front of a dilemma, while
in fact there is no dilemma. In such a case, two extreme alternatives are offered to
choose from, while in fact there is a whole range of possibilities. For instance: are
you my friend or my enemy? Is he normal or abnormal? Are you healthy or sick?

Example 10.58 (Either/or fallacy).
Yesterday you criticized the Israeli government. But then you are an anti-semite. So,
do you want to be an anti-semite or do you retract your comment?

The unfair element is that there is a whole range of possibilities between anti-
semitism (hating all Jews) and disagreeing with one decision of the Israeli gov-
ernment.

Conversely, one may accentuate the gradual transition to explain away the differ-
ence between two different things.

Example 10.59. (van Hoesel [2])
Boss: John, you were ten minutes too late at work this morning.
John: If I would have been one minute too late, would you make a point of it?
Boss: Of course not.
John: And if I would have been two minutes too late?
Boss: I would not say anything.
John: And if these two minutes were three minutes?
Boss: Okay, I could live with that.
John might continue this way to conclude that there is no reason at all to blame him
for anything. But the boss would nevertheless finish the conversation with: either
you are on time or you are too late!

In a similar way one might try to explain away the difference between a small group
of people and a crowd, by pointing out that one person more does not change a
small group of people into a crowd. By this kind of reasoning one may cheat not
only someone else, but also oneself.

10.3.6 The treacherous paradox

In this subsection we shall illustrate the disastrous influence that a paradox may
exert on our critical thinking. In Section 10.3.4.3 we have already seen that using an
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analogy can have a paralyzing effect on our intellectual activity, probably because
the analogy largely meets our laziness of thinking. No man is born as a good thinker,
and without effort no one will probably ever learn to think well and clearly.

If one wants to sell a dubious position, one has to present it in the form of a
paradox and one will notice that it is readily accepted.

Example 10.60 (Treacherous paradox). (van Hoesel [2])
A group of people discusses the education of children between say 15 and 20 years
old. Some of them argue that one should give these children a lot of freedom, while
others argue that too much freedom may have disastrous consequences. One of the
participants, defending the larger freedom, summarizes the discussion in the follow-
ing paradox: he who wants to hold his children must let them go.

Why is this paradoxical statement so convincing? First of all, because it suggests
an (apparent) reconciliation between two different points of view, causing a kind
of Eureka experience. In addition, since this paradoxical statement also seems to
do justice to both points of view, everyone has the impression that his or her point
of view has been taken into account. In the second place, this paradox suggests
objectivity and distinction. Finally, the paradox caters to the laziness of thinking of
the people involved.

Example 10.61 (Treacherous paradox).
A perfect organisation may be an organized chaos.
It takes a lot of reason to find something incomprehensible.
Strongly refusing outwardly means often accepting inwardly.
Less is more.
The voter is always right.

However, already the Roman writer Titus Livius (± 10 CE) stated: but, as it mostly
happens, the greater part overruled the better.

10.3.7 Ad Hominem Arguments

At the football field one sometimes hears fanatic supporters shout: first the man,
next the ball. The reader may wonder what football has to do with argumentation.
Well, there are many similarities: one sees many feints, tempers are often heated,
the goal is often passed by, one does little with his head and cooperation is often
lost. Similarly, in both cases one frequently gets personal.

When one has few or no arguments against a position defended by an opponent,
one frequently jumps from the subject of discussion to the person in question, at-
tacks him personally and tries to discredit him. This practice is fallacious because
the personal character of an individual is irrelevant to the truth or falsity of the con-
clusion of the argument itself.

Example 10.62 (Ad hominem argument). (van Hoesel [2])
Mister X is in favor of Darwin’s theory of evolution and mister Y opposes it, but
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cannot find good counterarguments. So, he might ask the question: please tell me, do
you descend from an ape from your grandmother’s side or from your grandfather’s
side?

Another example of an ad hominem argument is: That plan cannot be good; he
has not studied at a university. People, making remarks like this one, do not take
the troubles to study the plan objectively and critically, again an indication of their
laziness of thinking.

Example 10.63 (Ad hominem argument).
A local party LST in the Netherlands recently obtained the greatest number of seats
in an election for the city council: 10 out of 45 seats, which means that almost 1 out
of 4 voters had chosen for this party. Consequently, this party is entitled to form a
coalition. However, one of the parties in the old coalition had – already before the
election day – declared that they would not take part in a coalition with (the leader
of the) LST, without giving any (good) reason. Interestingly, the party in question
has the word democratic in its name! And since the other parties in the old coalition
wanted to continue their cooperation, they did not want to form a coalition with LST
either, in this way ignoring the votes of 22% of the citizens.

The same phenomenon occurred in several other cities in the Netherlands and also in
the Dutch and Belgian parliaments, while anybody in any organization is supposed
to cooperate with colleagues, even when they do not like each other very much.

Surprisingly, even in the academic world these ad hominem arguments are fre-
quently used, in particular by referees of scientific journals and of proposed research
projects.

Example 10.64 (Ad hominem argument).
This article might have been written by a beginning student.
The author of this PhD thesis is a charlatan.

Example 10.65 (Ad hominem argument).
A PhD candidate had written a thesis with a physical theory formulated in a logical
mathematical language. Interestingly, this theory was inconsistent with the general
theory of relativity. There was no claim at all that this theory was true. The thesis
had been approved for defense by the PhD committee of the university. When the
dean of the faculty learnt that this theory was inconsistent with general relativity,
he sent the PhD thesis to a former classmate who had won a Nobel prize in physics
with the request to have a look at it. Within a few hours his reply was there: The
idea of antimatter proposed in this thesis is inconsistent with the general theory of
relativity, and in my opinion that can only mean that the PhD candidate has no clue
whatsoever about what antimatter is; it would be a disgrace for the university to
admit the candidate to the defense. The dean decided to cancel the defense, even
without consulting the two PhD supervisors, who spent weeks in order to be able to
understand the formalism and the physical theory proposed.

Fortunately, later the PhD thesis was successfully defended at another university,
the logical-mathematical part was published in a journal for logic and the physical
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part was published in a journal for physics, both of the highest level. The Nobel
prize winner saved himself a lot of time by not having to look more carefully into
the thesis.

Example 10.66 (Ad hominem argument).
A committee of the faculty, consisting of three professors, had to judge a number of
research proposals which had been sent to its members quite in time. At the day of
the meeting it turned out that one of the committee members had not looked at the
proposal submitted by his colleague in the committee. So he asked to show him the
research proposal in question. He looked at the title and after a few seconds said:
that cannot be something interesting. The third committee member did not want to
intervene and the research project was not granted without it having been studied
properly.

Example 10.67 (Ad hominem argument). (van Hoesel [2])
A professor in psychology writes a book about the education of children. Without
reading the book, someone might argue: that book cannot be good! Look at his own
son; he is the terror of the neighborhood.

A man got the advice from his specialist not to smoke anymore. But he ignored
the advice completely, for the specialist himself was smoking a big cigar when he
gave his advice.

When one is confronted with such a personal attack, Schopenhauer [4] gives us the
following advice:

As soon as your opponent becomes personal, you quietly reply ‘That has no bearing on the
point in dispute’ and immediately bring the conversation back to it, and continue to show
him that he is wrong, without taking notice of his insults.

10.3.8 Argumentum ad baculum

This is an argument in which the opponent is physically or psychologically threat-
ened, as it were with a stick (ad baculum).

Example 10.68 (Ad baculum).
Father made him an offer he could not refuse (Michael Corleone in The Godfather).
Your remarks smell of racism.

This argument prevents the opponent to speak freely. Frequently the threat is im-
plicit. And when one makes the insinuation explicit, the other party has always the
possibility to deny the insinuation. This makes this argument a very nasty one.

Of course, not all arguments ad baculum are fallacious. For instance, a policeman
may threaten someone with a big fine if he does not respect the traffic lights.

10.3.9 Secrecy

By declaring a certain agreement to be secret, one may prevent critical questions or
even hide that the agreement is illegal.
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Example 10.69 (Secrecy).
The so called presidium of the city council, consisting of the chairmen of the dif-
ferent parties in the city council, had reached a majority decision that retired former
members of the council would get half-pay during a certain period. It was known
that this was illegal. For that reason the chairman of a local party announced that he
would make this majority decision public. By this threat the presidium decided by
majority to declare the agreement to be secret. Nevertheless, the party-leader made
the decision public. He was arrested for violating secrecy, had to spend one day at
the police office, his and his family’s computers were taken into custody and he was
sentenced to a fine of 350 euros.

The other members of the presidium, the mayor and the aldermen were not sen-
tenced at all, although they knew that they had made an illegal decision.

Example 10.70 (Secrecy).
The mayor and aldermen of the city asked the city council for more money for
transforming a former cinema to a theatre. Because the budget was already more
than ten million euros, they knew that many members of the city council would be
very critical, to say the least. In order to convince them still to make more funds
available they declared that there was a contract with an entertainment company for
making television programs in the new theatre. The leader of one of the parties in
the city council asked whether he could see this contract. However this was refused
with the argument that they could not make a trade secret public. Again the party
leader asked: may I see this contract? Again the answer was: no, we are not allowed
to make this trade secret public. Later it turned out that there was no contract at all,
that there even had been no contacts with the entertainment company in question.

The mayor and some of the aldermen were dismissed by the city council. However,
within half a year they all had new similar positions.

10.3.10 The Retirement Home’s Discussion

Imagine two old men on a bench next to each other, talking alternately about the
local football club and the youth of today. They do not listen to each other, but only
are concerned with their own argument which they bring forward again and again,
each time in a different form. They only listen to themselves, not to the other person.
‘A debate is a generally heated conversation, in which two people talk to each other
and listen to themselves’ (Jean de Boisson). One might think or hope that such con-
versations do not occur in business or scientific discussions. Unfortunately, they do!
Attend, for instance, a meeting of the local city council or of the parliament. It hap-
pens more than once that one speaker supports his position with various arguments,
while his opponent restricts himself to repeating his own position without going into
the arguments of the first speaker. In such a case the discussion leader, usually the
mayor, should ask the ‘old man’ what he brings forward against the arguments of
his opponent. Frequently it will turn out that he does not know them and/or that he
will say: that may be true, but I stick to my point of view. By the way, there are
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mayors who do not care about the quality of the discussion and just wait till they are
finished.

Another version of this phenomenon is cherry picking: only select evidence is
presented in order to persuade the audience to accept a certain position, and evidence
against this position is withheld. In other words, one picks the cherries one likes and
ignores the cherries one does not like.

Example 10.71 (Cherry picking).
In the Netherlands there is an ongoing discussion about the future of the pension
system, where it is difficult to find a balance between the interests of the younger
people and those of the older people. Each group brings forward their favoured
arguments, ignoring the arguments of the other group, even not mentioning them.

As we have already seen in Section 7.14 a statement may be true, but nevertheless
not tell the whole truth and hence be misleading. For instance, if I answer your
question whether I know a gas station because you are running out of gasoline and
I answer ‘yes, there is a gas station around the corner’, I may be speaking the truth,
but nevertheless be misleading if I know that the gas station is closed. The statement
‘there is a gas station around the corner’ together with simple conversation rules,
like being relevant and maximally informative, conversationally implicates that the
gas station is open.

As one may expect, politicians in particular are very good in telling truths that
are misleading.

Example 10.72 (Cherry picking).
Politicians like to claim that they will solve a certain problem, for instance, great
unemployment. But sometimes they forget to mention that they themselves were
the ones who caused the problem in the first place.

10.4 Summary

One must keep in mind that our emotions, feelings and sentiments may have a strong
negative influence on our thinking and that they can often overwhelm our critical
thinking.

In the preceding sections we have treated a great number of mistakes which stand
in the way of clear thinking and good discussion:
- An emotional thinker is frequently verbose, bombastic and theatrical, but at the
same time inaccurate and vague.
- His words are tendentious, his definitions incoherent and meaningless.
- He simplifies the most difficult problems to meaningless formulas and he uses
cliches as hand grenades.
- He starts with conclusions instead of finishing with them.
- He posits assumptions as established facts and he generalizes with the greatest
ease on the basis of a few examples.
- He is a master in rationalizing his prejudices and he simply ignores evidence that
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does not suit his purpose.
- He does not listen to the arguments of his opponent, but repeats his words again
and again.
- He ascribes to his opponent assertions which he has never made.
- He draws extreme conclusions from moderate statements and creates dilemmas
which do not exist.
- He camouflages his weak argumentation with a lot of words and he jumps from
one subject to another.
- He makes objections that do not make sense and does everything to bluff to the
audience.
- He poses suggestive questions and makes causal connections which are not realis-
tic.
- He insinuates in a crude way and becomes all too easily personal.

All these fallacies and unfair discussion methods make us understand the complaint
of Klemens von Metternich (1773-1859): Throughout my life I only knew ten or
twelve people with whom it was pleasant to speak: who kept strictly to the subject,
did not repeat themselves, did not speak about themselves, did not listen to their
own words, were too civilized to lose themselves in commonplaces, and who had
enough tact and good taste not to raise their own person above the subject.
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Gödel’s logic, 318
general term, 332
Gentzen’s elimination rules, 79
Gentzen’s introduction rules, 79
Gentzen’s system of natural deduction, 81, 221
Gentzen, G., 82
Gentzen-type rules, 82, 87
goal, 429
Goldbach’s conjecture, 14, 382
grammar, 371
graph, 152
Grelling’s paradox, 345
Grice, H.P., 47, 107, 108, 365, 367

head, 58, 428, 435, 439



Index 535

held constant, 217, 218, 405
Heyting, A., 385
Hilbert hotel, 165
Hilbert, D., 109
Hilbert-type, 62
homonyms, 502
Horn clause, 57, 58, 435
Hume, D., 352

idempotent, 136
identity relation, 148
ignorance, 496
IIA, 465
illocutionary act, 340
illocutionary force, 334
image, 151
immediate successor, 237
implicative verb, 355
impossibility theorem, 17, 469, 470
improper generalization, 493
incompleteness theorem, 12, 265, 266, 271
inconsistent, 34
incorrect argument, 5
incredulity, 499
independent, 62
Independent of Irrelevant Alternatives, 465,

470
indicative conditional, 107, 366
indirect reference, 334
individual constant, 185, 189
individual variable, 182, 185
induction basis, 27
induction hypothesis, 27
induction principle, 27, 192
inductive logic, 110
infinite, 164, 380
infinity, 135
infix notation, 451
informal fallacy, 18, 490
injection, 154
injective, 154
integer, 162
intended interpretation, 186, 262
intension, 332
intensional context, 278
interpolation theorem, 91
interpretation, 35, 194, 197, 211
interpreted sentence, 364
intersection, 135
interval, 171
introduction rule, 76, 220, 221
intuitionism, 14, 379
intuitionistic counterexample, 395
intuitionistic countermodel, 395

intuitionistic model, 395
intuitionistic propositional logic, 110, 385, 387
intuitionistically valid, 395
intuitionistically valid consequence, 393, 395
invalid, 4, 9
inverse function, 155
isomorphic, 159
isomorphism, 159

join, 459
judgment, 109
judgment aggregation, 481

König’s Lemma, 237
Kant, I., 141, 243, 349
key, 455
killer, 491
knowledge base, 15, 57, 96, 246
knowledge-based-system, 447
Kripke model, 283, 394, 407
Kripke model for K−, 286
Kripke valid, 408
Kripke valid consequence, 408
Kripke, S., 279
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