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Preface

Since the first German edition of this textbook in 1993, many extensions and
corrections of the text have been added in every further edition. For the present
seventh English edition, the text of several chapters and also many figures have
been thoroughly revised and updated, and plenty of additional information has been
added.

Werner Rodejohann joined the team of authors. He mainly cared about the
chapters that deal with neutrinos and the Higgs particle. A new Chap. 11 has been
added with the focus on neutrino properties, neutrino oscillations and Majorana
neutrinos; additional aspects of the latter topic are summarised in Chap. 18.
Chapter 12 has been extended by a discussion on spontaneous symmetry breaking,
the Higgs potential and the experimental observation of the Higgs particle at the
LHC.

Updates on experimental results include new information about the elastic form
factors of proton and neutron, in particular from JLab experiments (Chap. 6) and the
final results for the proton structure function F and charged-current cross-sections
obtained by the experiments H1 and ZEUS at the HERA electron/positron-proton
collider HERA (Chaps. 8, 10, 12). Chapter 15 has been substantially extended by a
discussion of CP violation in the decay of neutral K- and B-mesons and its detailed
investigation by fixed-target experiments with high-energy kaon beams at CERN
and FNAL and the two B-factory experiments BaBar and BELLE. A section on
the investigation of the nucleon’s spin structure in deep-inelastic lepton-nucleon
scattering with polarised beams and targets has been added to Chap. 16.



vi Preface

We would like to thank Lara de Nardo, Markus Diefenthaler and Friedrich
Stinzing for producing some of the new figures and Armine Rostomyan and Morgan
Murray for carefully reading and correcting the translations of several newly written
paragraphs.

Heidelberg, Germany The authors
March 2015



Preface to the First Edition

The aim of PARTICLES AND NUCLETI is to give a unified description of nuclear and
particle physics because the experiments which have uncovered the substructure
of atomic nuclei and nucleons are conceptually similar. With the progress of
experimental and theoretical methods, atoms, nuclei, nucleons and finally quarks
have been analysed during the course of this century. The intuitive assumption that
our world is composed of a few constituents — an idea which seems attractive, but
could not be taken for granted — appears to be confirmed. Moreover, the interactions
between these constituents of matter can be formulated elegantly and are well
understood conceptually, within the so-called standard model.

Once we have arrived at this underlying theory, we are immediately faced with
the question of how the complex structures around us are produced by it. On the way
from elementary particles to nucleons and nuclei, we learn that the “fundamental”
laws of the interaction between elementary particles are less and less recognisable
in composite systems because many-body interactions cause greater and greater
complexity for larger systems.

This book is therefore divided into two parts. In the first part we deal with the
reduction of matter in all its complication to a few elementary constituents and
interactions, while the second part is devoted to the composition of hadrons and
nuclei from their constituents.

We put special emphasis on the description of the experimental concepts, but
we mostly refrain from explaining technical details. The appendix contains a
short description of the principles of accelerators and detectors. The exercises
predominantly aim at giving the students a feeling for the sizes of the phenomena
of nuclear and particle physics.

Wherever possible, we refer to the similarities between atoms, nuclei and
hadrons, because applying analogies has not only turned out to be a very effective
research tool but is also very helpful for understanding the character of the
underlying physics.

We have aimed at a concise description but have taken care that all the
fundamental concepts are clearly described. Regarding our selection of topics, we
were guided by pedagogical considerations. This is why we describe experiments

vii



viii Preface to the First Edition

which — from today’s point of view — can be interpreted in a straightforward way.
Many historically significant experiments, whose results can nowadays be much
more simply obtained, were deliberately omitted.

PARTICLES AND NUCLEI (TEILCHEN UND KERNE) is based on lectures on
nuclear and particle physics given at the University of Heidelberg to students in
their 6th semester and conveys the fundamental knowledge in this area, which is
required of a student majoring in physics. On traditional grounds these lectures, and
therefore this book, strongly emphasise the physical concepts.

We are particularly grateful to J. Hiifner (Heidelberg) and M. Rosina (Ljubljana)
for their valuable contributions to the nuclear physics part of the book. We
would like to thank D. Dubbers (Heidelberg), A. FiBler (Tiibingen), G. Garvey
(Los Alamos), H. Koch (Bochum), K. Konigsmann (Freiburg), U. Lynen (GSI
Darmstadt), G. Mairle (Mannheim), O. Nachtmann (Heidelberg), H.J. Pirner
(Heidelberg), B. Stech (Heidelberg) and Th. Walcher (Mainz) for their critical
reading and helpful comments on some sections. Many students who attended our
lecture in the 1991 and 1992 summer semesters helped us through their criticism
to correct mistakes and improve unclear passages. We owe special thanks to
M. Beck, Ch. Biischer, S. Fabian, Th. Haller, A. Laser, A. Miicklich, W. Wander
and E. Wittmann.

M. Lavelle (Barcelona) has translated the major part of the book and put it in
the present linguistic form. We much appreciated his close collaboration with us.
The English translation of this book was started by H. Hahn and M. Moinester (Tel
Aviv) whom we greatly thank.

Numerous figures from the German text have been adapted for the English
edition by J. Bockholt, V. Traumer and G. Vogt of the Max-Planck-Institut fiir
Kernphysik in Heidelberg.

We would like to extend our thanks to Springer-Verlag, in particular
W. Beiglbock for his support and advice during the preparation of the German
and, later on, the English editions of this book.

Heidelberg, Germany Bogdan Povh
May 1995 Klaus Rith
Christoph Scholz

Frank Zetsche
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Chapter 1
Hors d’ceuvre

Nicht allein in Rechnungssachen
Soll der Mensch sich Miihe machen;
Sondern auch der Weisheit Lehren
Muf; man mit Vergniigen horen.

Wilhelm Busch
Max und Moritz (4. Streich)

1.1 Fundamental Constituents of Matter

In their search for the fundamental building blocks of matter, physicists have found
smaller and smaller constituents that have proven to be themselves composite
systems. By the end of the nineteenth century, it was known that all matter is
composed of atoms. However, the existence of close to 100 elements showing
periodically recurring properties was a clear indication that atoms themselves have
an internal structure, and are not indivisible.

The modern concept of the atom emerged at the beginning of the twentieth
century, in particular as a result of the experiments by Rutherford and co-workers.
An atom is composed of a dense nucleus surrounded by an electron cloud. The
nucleus itself can be decomposed into smaller particles. After the discovery of the
neutron in 1932, there was no longer any doubt that the building blocks of nuclei
are protons and neutrons (collectively called nucleons). The electron, neutron and
proton were later joined by a fourth particle, the neutrino, which was postulated in
1930 in order to reconcile the description of §-decay with the fundamental laws of
conservation of energy, momentum and angular momentum.

Thus, by the mid-thirties, these four particles could describe all the then known
phenomena of atomic and nuclear physics. Today, these particles are still considered
to be the main constituents of matter. But this simple, closed picture turned out in
fact to be incapable of describing other phenomena.

Experiments at particle accelerators in the 1950s and 1960s showed that protons
and neutrons are merely representatives of a large family of particles now called
hadrons. More than 200 hadrons, sometimes called the “hadronic zoo”, have thus
far been detected. These hadrons, like atoms, can be classified in groups with similar
properties. It was therefore assumed that they cannot be understood as fundamental

© Springer-Verlag Berlin Heidelberg 2015 1
B. Povh et al., Particles and Nuclei, Graduate Texts in Physics,
DOI 10.1007/978-3-662-46321-5_1



2 1 Hors d’ceuvre

constituents of matter. In the late 1960s, the quark model established order in the
hadronic zoo. All known hadrons could be described as combinations of two or
three quarks.

Figure 1.1 shows different scales in the hierarchy of the structure of matter. As
we probe the atom with increasing magnification, smaller and smaller structures
become visible: the nucleus, the nucleons, and finally the quarks.

Leptons and quarks The two fundamental types of building blocks are the
leptons, which include the electron and the neutrino, and the quarks. In scattering
experiments, these were found to be smaller than 10™!8 m. They are possibly point-
like particles. For comparison, protons are as large as ~10~!> m. Leptons and quarks
have spin 1/2, i.e., they are fermions. In contrast to atoms, nuclei and hadrons, no
excited states of quarks or leptons have so far been observed. Thus, they appear to
be elementary particles.

Today, however, we know of six leptons and six quarks as well as their antipar-
ticles. These can be grouped into so-called “generations” or “families”, according
to certain characteristics. Thus, the number of leptons and quarks is relatively large;

Fig. 1.1 Length scales and [eV]
structural hierarchy in atomic Atom
structure. To the right, typical
excitation energies and
spectra are shown. Smaller
bound systems possess larger 30L
excitation energies
0
Na Atom
10
10 "'m [MeV]
Nucleus
301
Protons 0
and Neutrons . —— —— —
< =y > Pb Nucleus
10 'm
[GeV]
Proton
o3
0
< 15 > Proton

10 °m



1.2 Fundamental Interactions 3

furthermore, their properties recur in each generation. Some physicists believe these
two facts are a hint that leptons and quarks are not elementary building blocks of
matter. Only experiment will teach us the truth.

1.2 Fundamental Interactions

Together with our changing conception of elementary particles, our understanding
of the basic forces of nature and so of the fundamental interactions between
elementary particles has evolved. Around the year 1800, four forces were considered
to be basic: gravitation, electricity, magnetism and the barely comprehended forces
between atoms and molecules. By the end of the nineteenth century, electricity
and magnetism were understood to be manifestations of the same force: electro-
magnetism. Later it was shown that atoms have a structure and are composed of
a positively charged nucleus and an electron cloud; the whole held together by
the electromagnetic interaction. Overall, atoms are electrically neutral. At short
distances, however, the electric fields between atoms do not cancel out completely,
and neighbouring atoms and molecules influence each other. The different kinds
of “chemical forces” (e.g., the Van der Waals force) are thus expressions of the
electromagnetic force.

When nuclear physics developed, two new short-ranged forces joined the ranks.
These are the nuclear force, which acts between nucleons, and the weak force,
which manifests itself in nuclear 8-decay. Today, we know that the nuclear force
is not fundamental. In analogy to the forces acting between atoms being effects
of the electromagnetic interaction, the nuclear force is a result of the strong force
binding quarks to form protons and neutrons. These strong and weak forces lead to
the corresponding fundamental interactions between the elementary particles.

Intermediate bosons The four fundamental interactions on which all physical
phenomena are based are gravitation, the electromagnetic interaction, the strong
interaction and the weak interaction.

Gravitation is important for the existence of stars, galaxies, and planetary systems
(and for our daily life), it is of no significance in subatomic physics, being far
too weak to noticeably influence the interaction between elementary particles. We
mention it only for completeness.

According to today’s conceptions, interactions are mediated by the exchange
of vector bosons, i.e., particles with spin 1. These are photons in electromagnetic
interactions, gluons in strong interactions and the W+, W and Z° bosons in weak
interactions. The diagrams in Fig. 1.2 show examples of interactions between two
particles by the exchange of vector bosons: In our diagrams we depict leptons and
quarks by straight lines, photons by wavy lines, gluons by spirals, and W* and Z°
bosons by dashed lines.

Each of these three interactions is associated with a charge: electric charge,
weak charge and strong charge. The strong charge is also called colour charge or
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q

Photon
Mass=0

W-Boson 5
Mass~80 GeV/c v

Z-Boson

Mass~91 GeV/c?

Vu

Fig. 1.2 Diagrams for fundamental interactions between particles by the exchange of vector
bosons

colour for short. A particle is subject to an interaction if and only if it carries the
corresponding charge:

— Leptons and quarks carry weak charge.
— Quarks are electrically charged, so are some of the leptons (e.g., electrons).
— Colour charge is only carried by quarks (not by leptons).

The W and Z bosons, masses My, ~ 80 GeV /c? and M ~ 91 GeV/c?, are very
heavy particles. According to the Heisenberg uncertainty principle, they can only
be produced as virtual, intermediate particles in scattering processes for extremely
short times. Therefore, the weak interaction is of very short range. The rest mass of
the photon is zero. Therefore, the range of the electromagnetic interaction is infinite.

The gluons, like the photons, have zero rest mass. Whereas photons, however,
have no electrical charge, gluons carry colour charge. Hence they can interact with
each other. As we will see, this causes the strong interaction to be also very short
ranged.

1.3 Symmetries and Conservation Laws

Symmetries are of great importance in physics. The conservation laws of classical
physics (energy, momentum, angular momentum) are a consequence of the fact that
the interactions are invariant with respect to their canonically conjugate quantities
(time, space, angles). In other words, physical laws are independent of the time, the
location and the orientation in space under which they take place.
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An additional important property in non-relativistic quantum mechanics is
reflection symmetry.! Depending on whether the sign of the wave function changes
under reflection or not, the system is said to have negative or positive parity (P),
respectively. For example, the spatial wave function of a bound system with angular
momentum {# has parity P = (—1)%. For those laws of nature with left-right
symmetry, i.e., invariant under a reflection in space P, the parity quantum number
P of the system is conserved. Conservation of parity leads, e.g., in atomic physics
to selection rules for electromagnetic transitions.

The concept of parity has been generalised in relativistic quantum mechanics.
One has to ascribe an intrinsic parity P to particles and antiparticles. Bosons and
antibosons have the same intrinsic parity, fermions and antifermions have opposite
parities. An additional important symmetry relates particles and antiparticles.
An operator C is introduced which changes particles into antiparticles and vice
versa. Since the charge reverses its sign under this operation, it is called charge
conjugation. Eigenstates of C have a quantum number C-parity which is conserved
whenever the interaction is symmetric with respect to C.

Another symmetry derives from the fact that certain groups (“multiplets”) of
particles behave practically identically with respect to the strong or the weak
interaction. Particles belonging to such a multiplet may be described as different
states of the same particle. These states are characterised by a quantum number
referred to as strong or weak isospin. Conservation laws are also applicable to these
quantities.

1.4 Experiments

Experiments in nuclear and elementary particle physics have, with very few
exceptions, to be carried out using particle accelerators. The development and
construction of accelerators with ever greater energies and beam intensities has
made it possible to discover more and more elementary particles. A short description
of the most important types of accelerators can be found in the appendix. The
experiments can be classified as scattering or spectroscopic experiments.

Scattering In scattering experiments, a beam of particles with known energy and
momentum is directed towards the object to be studied (the targer). The beam
particles then interact with the object. From the changes in the kinematical quantities
caused by this process, we may learn about the properties both of the target and of
the interaction.

Consider, as an example, elastic electron scattering which has proven to be a
reliable method for measuring radii in nuclear physics. The structure of the target

! As is well known, reflection around a point is equivalent to reflection in a plane with simultaneous
rotation about an axis perpendicular to that plane.
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becomes visible via diffraction only when the de Broglie wavelength A =#h/ p of the
electron is comparable to the target’s size. The resulting diffraction pattern of the
scattered particles yields the size of the nucleus rather precisely.

Figure 1.1 shows the geometrical dimensions of various targets. To determine
the size of an atom, X-rays with an energy of ~10*eV suffice. Nuclear radii are
measured with electron beams of about 108 eV, proton radii with electron beams of
some 108-10°eV. Even with today’s energies, 10'! eV for electrons and 4 - 10'2eV
for protons, there is no sign of a substructure in either quarks or leptons.

Spectroscopy The term “spectroscopy” is used to describe those experiments
which determine the decay products of excited states. In this way, one can study the
properties of the excited states as well as the interactions between the constituents.

From Fig. 1.1 we see that the excitation energies of a system increase as its
size decreases. To produce these excited states high energy particles are needed.
Scattering experiments to determine the size of a system and to produce excited
states require similar beam energies.

Detectors Charged particles interact with gases, liquids, amorphous solids, and

crystals. These interactions produce electrical or optical signals in these materials

which betray the passage of the particles. Neutral particles are detected indirectly

through secondary particles: photons produce free electrons or electron-positron

pairs, by the photoelectric or Compton effects, and pair production, respectively.

Neutrons and neutrinos produce charged particles through reactions with nuclei.
Particle detectors can be divided into the following categories:

— Scintillators provide fast time information, but have only moderate spatial
resolution.

— Gaseous counters covering large areas (wire chambers) provide good spatial res-
olution, and are used in combination with magnetic fields to measure momentum.

— Semiconductor counters have a very good energy and spatial resolution.

— Cherenkov counters and counters based on transition radiation are used for
particle identification.

— Calorimeters measure the total energy at very high energies.

The basic types of counters for the detection of charged particles are compiled in
Appendix A.2.

1.5 Units

The common units for length and energy in nuclear and elementary particle physics
are the femtometre (fm, or Fermi) and the electron volt (eV). The Fermi is a standard
SI-unit, defined as 1075 m, and corresponds approximately to the size of a proton.
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An electron volt is the energy gained by a particle with charge le by traversing a
potential difference of 1 V:

leV=1.602-10""7. (1.1)

For the decimal multiples of this unit, the usual prefixes are employed: keV, MeV,
GeV, etc. Usually, one uses units of MeV/c? or GeV/c? for particle masses,
according to the mass-energy equivalence E = mc?.

Length and energy scales are connected in subatomic physics by the uncertainty

principle. The Planck constant is especially easily remembered in the form
h-c &~ 200 MeV - fm. 1.2)

Another quantity which will be used frequently is the coupling constant for
electromagnetic interactions. It is defined by:

_ &2 1

“= 4meohc ~ 137°

(1.3)

For historical reasons, it is also called the fine structure constant.

A system of physical quantities which is frequently used in elementary particle
physics has identical dimensions for mass, momentum, energy, inverse length and
inverse time. In this system, the units may be chosen such that 2 = ¢ = 1. In atomic
physics, it is common to define 4rey = 1 and therefore o = e? (Gauss system).
In particle physics, &g = 1 and @ = e?/4x is more commonly used (Heavyside-
Lorentz system). However, we will utilise the SI-system [1] used in all other fields
of physics and so retain the constants everywhere.

Reference

1. S.U.N. Commission, Symbols, units and nomenclature in physics. Physica 93A, 1 (1978)
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Chapter 2
Global Properties of Nuclei

The discovery of the electron and of radioactivity marked the beginning of a new
era in the investigation of matter. At that time, some signs of the atomic structure
of matter were already clearly visible: e.g. the integer stoichiometric proportions
of chemistry, the thermodynamics of gases, the periodic system of the elements or
Brownian motion. However, the existence of atoms was not yet generally accepted.
The reason was simple: nobody was able to really picture these building blocks
of matter, the atoms. The new discoveries showed for the first time “particles”
emerging from matter which had to be interpreted as its constituents.

It now became possible to use the particles produced by radioactive decay
to bombard other elements in order to study the constituents of the latter. This
experimental ansatz is the basis of modern nuclear and particle physics. Systematic
studies of nuclei became possible by the late 1930s with the availability of
modern particle accelerators. But the fundamental building blocks of atoms — the
electron, proton and neutron — were detected beforehand. A pre-condition for these
discoveries were important technical developments in vacuum techniques and in
particle detection. Before we turn to the global properties of nuclei from a modern
viewpoint, we will briefly discuss these historical experiments.

2.1 The Atom and Its Constituents

The electron The first building block of the atom to be identified was the electron.
In 1897 Thomson was able to produce electrons as beams of free particles in
discharge tubes. By deflecting them in electric and magnetic fields, he could
determine their velocity and the ratio of their mass and charge. The results turned
out to be independent of the kind of cathode and gas used. He had in other words
found a universal constituent of matter. He then measured the charge of the electron

© Springer-Verlag Berlin Heidelberg 2015 11
B. Povh et al., Particles and Nuclei, Graduate Texts in Physics,
DOI 10.1007/978-3-662-46321-5_2
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independently — using a method that was in 1910 significantly refined by Millikan
(the drop method) — this of course also fixed the electron mass.

The atomic nucleus Subsequently, different models of the atom were discussed,
one of them being the model of Thomson. In this model, the electrons, and
an equivalent number of positively charged particles are uniformly distributed
throughout the atom. The resulting atom is electrically neutral. Rutherford, Geiger
and Marsden succeeded in disproving this picture. In their famous experiments,
where they scattered a-particles off heavy atoms, they were able to show that
the positively charged particles are closely packed together. They reached this
conclusion from the angular distribution of the scattered «-particles. The angular
distribution showed «-particle scattering at large scattering angles which was
incompatible with a homogeneous charge distribution. The explanation of the
scattering data was a central Coulomb field caused by a massive, positively charged
nucleus. The method of extracting the properties of the scattering potential from the
angular distribution of the scattered projectiles is still of great importance in nuclear
and particle physics, and we will encounter it repeatedly in the following chapters.
These experiments established the existence of the atom as a positively charged,
small, massive nucleus with negatively charged electrons orbiting it.

The proton Rutherford also bombarded light nuclei with «-particles which them-
selves were identified as ionised helium atoms. In these reactions, he was looking
for a conversion of elements, i.e., for a sort of inverse reaction to radioactive o-
decay, which itself is a conversion of elements. While bombarding nitrogen with
a-particles, he observed positively charged particles with an unusually long range,
which must have been ejected from the atom as well. From this he concluded that
the nitrogen atom had been destroyed in these reactions, and a light constituent
of the nucleus had been ejected. He had already discovered similar long-ranged
particles when bombarding hydrogen. From this he concluded that these particles
were hydrogen nuclei which, therefore, had to be constituents of nitrogen as well.
He had indeed observed the reaction

UN + “He —» 0 + P,

in which the nitrogen nucleus is converted into an oxygen nucleus, by the loss
of a proton. The hydrogen nucleus could therefore be regarded as an elementary
constituent of atomic nuclei. Rutherford also assumed that it would be possible to
disintegrate additional atomic nuclei by using a-particles with higher energies than
those available to him. He so paved the way for modern nuclear physics.

The neutron The neutron was also detected by bombarding nuclei with o-
particles. Rutherford’s method of visually detecting and counting particles by their
scintillation on a zinc sulphide screen is not applicable to neutral particles. The
development of ionisation and cloud chambers significantly simplified the detection
of charged particles, but did not help here. Neutral particles could only be detected
indirectly. Chadwick in 1932 found an appropriate experimental approach. He used
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the irradiation of beryllium with «-particles from a polonium source, and thereby
established the neutron as a fundamental constituent of nuclei. Previously, a “neutral
radiation” had been observed in similar experiments, but its origin and identity
was not understood. Chadwick arranged for this neutral radiation to collide with
hydrogen, helium and nitrogen, and measured the recoil energies of these nuclei in
a ionisation chamber. He deduced from the laws of collision that the mass of the
neutral radiation particle was similar to that of the proton. Chadwick named this
particle the “neutron”.

Nuclear force and binding With these discoveries, the building blocks of the
atom had been found. The development of ion sources and mass spectrographs
now permitted the investigation of the forces binding the nuclear constituents, i.e.,
the proton and the neutron. These forces were evidently much stronger than the
electromagnetic forces holding the atom together, since atomic nuclei could only be
broken up by bombarding them with highly energetic a-particles.

The binding energy of a system gives information about its binding and stability.
This energy is the difference between the mass of a system and the sum of the masses
of its constituents. It turns out that for nuclei this difference is close to 1 % of the
nuclear mass. This phenomenon, historically called the mass defect, was one of the
first experimental proofs of the mass-energy relation E = mc?. The mass defect is
of fundamental importance in the study of strongly interacting bound systems. We
will therefore describe nuclear masses and their systematics in this chapter at some
length.

2.2 Nuclides

The atomic number The atomic number Z gives the number of protons in the
nucleus. The charge of the nucleus is, therefore, 0 = Ze, the elementary charge
beinge = 1.6+ 10719 C. In a neutral atom, there are Z electrons, which balance the
charge of the nucleus, in the electron cloud. The atomic number of a given nucleus
determines its chemical properties.

The classical method of determining the charge of the nucleus is the measurement
of the characteristic X-rays of the atom to be studied. For this purpose the atom is
excited by electrons, protons or synchrotron radiation. Moseley’s law says that the
energy of the K,-line is proportional to (Z — 1)?. Nowadays, the detection of these
characteristic X-rays is used to identify elements in material analysis.

Atoms are electrically neutral, which shows the equality of the absolute values
of the positive charge of the proton and the negative charge of the electron.
Experiments measuring the deflection of molecular beams in electric fields yield
an upper limit for the difference between the proton and electron charges [4]:

lep +eo| <107 e (2.1)
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Today’s cosmological estimates give an even smaller upper limit for any difference
between these charges.

The mass number In addition to the Z protons, N neutrons are found in the
nucleus. The mass number A gives the number of nucleons in the nucleus, where
A = Z + N. Different combinations of Z and N (or Z and A) are called nuclides.

— Nuclides with the same mass number A are called isobars.
— Nuclides with the same atomic number Z are called isotopes.
— Nuclides with the same neutron number N are called isotones.

The binding energy B is usually determined from atomic masses [1], since they
can be measured to a considerably higher precision than nuclear masses. We have:

B(Z.A) = [ZzM('H) + (A — Z)M, — M(A,Z)] - ¢*. (2.2)

Here, M('H) = M, + m, is the mass of the hydrogen atom (the 13.6 eV binding
energy of the H-atom is negligible), M, is the mass of the neutron and M(A, Z) is
the mass of an atom with Z electrons whose nucleus contains A nucleons. The rest
masses of these particles are:

M, = 938.272 MeV/c* = 1,836.153 m,
M, = 939.565MeV/c? = 1,838.684 m,
me = 0.511 MeV/c2.

The conversion factor into ST units is 1.783 - 1073° kg/(MeV/c?).

In nuclear physics, nuclides are denoted by 4X, X being the chemical symbol of
the element. For example, the stable carbon isotopes are labelled '2C and '3C; while
the radioactive carbon isotope frequently used for isotopic dating is labelled '*C.
Sometimes the notations /%X or ‘}XN are used, whereby the atomic number Z and
possibly the neutron number N are explicitly added.

Determining masses from mass spectroscopy The binding energy of an atomic
nucleus can be calculated if the atomic mass is accurately known. At the start of
the twentieth century, the method of mass spectrometry was developed for precision
determinations of atomic masses (and nucleon binding energies). The deflection
of an ion with charge Q in an electric and magnetic field allows the simultaneous
measurement of its momentum p = Mv and its kinetic energy Ey;, = Mv?/2. From
these, its mass can be determined. This is how most mass spectrometers work.

While the radius of curvature rg of the ionic path in an electrical sector field is
proportional to the energy,

[}

2 2.3)

12 =
. E

QX



2.2 Nuclides 15

N
\2z7#74]

ZZ77777

lon source

P

=,
Detector

Fig. 2.1 Doubly focusing mass spectrometer [5]. The spectrometer focuses ions of a certain
specific charge to mass ratio Q/M. For clarity, only the trajectories of particles at the edges of
the beam are drawn (I and 2). The electric and magnetic sector fields draw the ions from the
ion source into the collector. Ions with a different Q/M ratio are separated from the beam in the
magnetic field and do not pass through the slit O

in a magnetic field B the radius of curvature ry of the ion is proportional to its
momentum:

M v

05 (2.4)

v =

Figure 2.1 shows a common spectrometer design. After leaving the ion source,
the ions are accelerated in an electric field to about 40 keV. In an electric field, they
are then separated according to their energy and, in a magnetic field, according to
their momentum. By careful design of the magnetic fields, ions with identical /M
ratios leaving the ion source at various angles are focused at a point at the end of the
spectrometer where a detector can be placed.

For technical reasons, it is very convenient to use the '>C nuclide as the reference
mass. Carbon and its many compounds are always present in a spectrometer and are
well suited for mass calibration. An atomic mass unit u was therefore defined as
1/12 of the atomic mass of the '>C nuclide. We have:

! 2 -27
lu= = Mic = 931494 MeV/c* = 1.66054- 10" k.

Mass spectrometers are still widely used both in research and industry.
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Nuclear abundance A current application of mass spectroscopy in fundamental
research is the determination of isotope abundances in the solar system. The relative
abundance of the various nuclides as a function of their mass number A is shown
in Fig.2.2. The relative abundances of isotopes in terrestrial, lunar, and meteoritic
probes are, with few exceptions, identical and coincide with the nuclide abundances
in cosmic rays from outside the solar system. According to current thinking, the
synthesis of the presently existing deuterium and helium from hydrogen fusion
mainly took place at the beginning of the universe (minutes after the big bang [2]).
Nuclei up to *°Fe, the most stable nucleus, were produced by nuclear fusion in
stars. Nuclei heavier than this last were created in the explosion of very heavy stars
(supernovae) [6].

Deviations from the universal abundance of isotopes occur locally when nuclides
are formed in radioactive decays. Figure 2.3 shows the abundances of various
xenon isotopes in a drill core which was found at a depth of 10km. The isotope
distribution strongly deviates from that which is found in the Earth’s atmosphere.
This deviation is a result of the atmospheric xenon being, for the most part,
already present when the Earth came into existence, while the xenon isotopes
from the core come from radioactive decays (spontaneous fission of uranium
isotopes).
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Fig. 2.3 Mass spectrum of T T T T T T T
xenon isotopes, found in a
roughly 2.7 - 10° year old
gneiss sample from a drill
core produced in the Kola
peninsula (fop) and, for
comparison, the spectrum of
Xe-isotopes as they occur in
the atmosphere (bottom). The
Xe-isotopes in the gneiss
were produced by
spontaneous fission of
uranium (Picture courtesy of
Klaus Schifer,
Max-Planck-Institut fiir
Kernphysik)
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Determining masses from nuclear reactions Binding energies may also be
determined from systematic studies of nuclear reactions. Consider, as an example,
the capture of thermal neutrons (Ey, &~ 1/40eV) by hydrogen,

n+ 'H- 2H+y. (2.5)

The energy of the emitted photon is directly related to the binding energy B of the
deuterium nucleus ?H:

2

E
— 2 _ )4 _
B = (My+My—My) - =E, + v 2.225MeV, (2.6)

where the last term takes into account the recoil energy of the deuteron. As a further
example, we consider the reaction

'H + °Li — *He + *He.
The energy balance of this reaction is given by

EIH + EﬁLi - E3He + EAHe N (27)
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Fig. 2.4 Binding energy per nucleon of nuclei with even mass number A. The solid line
corresponds to the Weizsédcker mass formula (2.8). Nuclei with a small number of nucleons display
relatively large deviations from the general trend, and should be considered on an individual
basis. For heavy nuclei deviations in the form of a somewhat stronger binding per nucleon are
also observed for certain proton and neutron numbers. These so-called “magic numbers” will be
discussed in Sect. 18.3

where the energies Ex each represent the total energy of the nuclide X, i.e., the sum
of its rest mass and kinetic energy. If three of these nuclide masses are known, and if
all of the kinetic energies have been measured, then the binding energy of the fourth
nuclide can be determined.

The measurement of binding energies from nuclear reactions was mainly accom-
plished using low-energy (van de Graaff, cyclotron, betatron) accelerators. Follow-
ing two decades of measurements in the 1950s and 1960s, the systematic errors of
both methods, mass spectrometry and the energy balance of nuclear reactions, have
been considerably reduced and both now provide high precision results which are
consistent with each other. Figure 2.4 shows schematically the results of the binding
energies per nucleon measured for stable nuclei. Nuclear reactions even provide
mass determinations for nuclei which are so short-lived that that they cannot be
studied by mass spectroscopy.
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2.3 Parametrisation of Binding Energies

Apart from the lightest elements, the binding energy per nucleon for most nuclei is
about 8-9 MeV. Depending only weakly on the mass number, it can be described
with the help of just a few parameters. The parametrisation of nuclear masses as
a function of A and Z, which is known as the Weizsdcker formula or the semi-
empirical mass formula, was first introduced in 1935 [3, 7]. It allows the calculation
of the binding energy according to (2.2). The mass of an atom with Z protons and N
neutrons is given by the following phenomenological formula:

M(A,Z) = NMy + ZM,, + Zm,, — a,A + a,A*?

z? N-2?% ¢
JE— + a, —— JE—
A3 T 4A Al

with N=A—-Z.

+ ac (2.8)

The exact values of the parameters ay, ds, d¢, a, and § depend on the range of
masses for which they are optimised. One possible set of parameters is given below:

a, = 15.67 MeV/c?
a; = 17.23 MeV/c?
ac = 0.714 MeV/c?
a, = 93.15MeV/c?

—11.2 MeV/c? for even Z and N (even-even nuclei)
8= 0 MeV/c? for odd A (odd-even nuclei)
+11.2 MeV/c2 for odd Z and N (odd-odd nuclei).

To a great extent the mass of an atom is given by the sum of the masses of
its constituents (protons, neutrons and electrons). The nuclear binding responsible
for the deviation from this sum is reflected in five additional terms. The physical
meaning of these five terms can be understood by recalling that the nuclear radius R
and mass number A are connected by the relation

Rx A3, (2.9)

The experimental proof of this relation and a quantitative determination of the
coefficient of proportionality will be discussed in Sect.5.4. The individual terms
can be interpreted as follows:

Volume term This term, which dominates the binding energy, is proportional to the
number of nucleons. Each nucleon in the interior of a (large) nucleus contributes an
energy of about 16 MeV. From this we deduce that the nuclear force has a short
range, corresponding approximately to the distance between two nucleons. This
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phenomenon is called saturation. If each nucleon would interact with each of the
other nucleons in the nucleus, the total binding energy would be proportional to
A(A — 1) or approximately to A%. Due to saturation, the central density of nucleons
is the same for all nuclei, with few exceptions. The central density is

00 ~ 0.17 nucleons/fm* = 3. 10" kg/m® . (2.10)

The average nuclear density, which can be deduced from the mass and radius
(see (5.56)), is smaller (0.13 nucleons/fm?). The average inter-nucleon distance in
the nucleus is about 1.8 fm.

Surface term For nucleons at the surface of the nucleus, which are surrounded
by fewer nucleons, the above binding energy is reduced. This contribution is
proportional to the surface area of the nucleus (R? or A%/3).

Coulomb term The electrical repulsive force acting between the protons in the
nucleus further reduces the binding energy. This term is calculated to be

3Z(Z—-1Dahe
Ecouomb = g% (2.11)

This is approximately proportional to Z2/A'/3.

Asymmetry term As long as mass numbers are small, nuclei tend to have the
same number of protons and neutrons. Heavier nuclei accumulate more and more
neutrons, to partly compensate for the increasing Coulomb repulsion by increasing
the nuclear force. This creates an asymmetry in the number of neutrons and protons.
For, e.g., 2%Pb it amounts to N — Z = 44. The dependence of the nuclear force on
the surplus of neutrons is described by the asymmetry term (N — Z)?/(4A). This
shows that the symmetry decreases as the nuclear mass increases. We will further
discuss this point in Sect. 18.1. The dependence of the above terms on A is shown in
Fig.2.5.

Pairing term A systematic study of nuclear masses shows that nuclei are more
stable when they have an even number of protons and/or neutrons. This observation
is interpreted as a coupling of protons and neutrons in pairs. The pairing energy
depends on the mass number, as the overlap of the wave functions of these nucleons
is smaller in larger nuclei. Empirically this is described by the term §-A~"/2 in (2.8).

All in all, the global properties of the nuclear force are rather well described
by the mass formula (2.8). However, the details of nuclear structure which we will
discuss later (mainly in Chap. 18) are not accounted for by this formula.

The Weizsicker formula is often mentioned in connection with the liquid drop
model. In fact, the formula is based on some properties known from liquid drops:
constant density, short-range forces, saturation, deformability and surface tension.
An essential difference, however, is found in the mean free path of the particles.
For molecules in liquid drops, this is far smaller than the size of the drop; but for
nucleons in the nucleus, it is large. Therefore, the nucleus has to be treated as a
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Fig. 2.5 The different contributions to the binding energy per nucleon versus mass number A. The
horizontal line at ~16 MeV represents the contribution of the volume energy. This is reduced by
the surface energy, the asymmetry energy and the Coulomb energy to the effective binding energy
of ~8MeV (lower line). The contributions of the asymmetry and Coulomb terms increase rapidly
with A, while the contribution of the surface term decreases

quantum liquid, and not as a classical one. At low excitation energies, the nucleus
may be even more simply described as a Fermi gas; i.e., as a system of free particles
only weakly interacting with each other. This model will be discussed in more detail
in Sect. 18.1.

2.4 Charge Independence of the Nuclear Force and Isospin

Protons and neutrons not only have nearly equal masses, they also have similar
nuclear interactions. This is particularly visible in the study of mirror nuclei. Mirror
nuclei are pairs of isobars, in which the proton number of one of the nuclides equals
the neutron number of the other and vice versa.

Figure 2.6 shows the lowest energy levels of the mirror nuclei '¢Cq and 'Oy,
together with those of '3N,. The energy-level diagrams of '¢Cy and '30, are very
similar with respect to the quantum numbers J* of the levels as well as with respect
to the distances between them. The small differences and the global shift of the
levels as a whole in '$Cq, as compared to '$O, can be explained by differences in the
Coulomb energy. Further examples of mirror nuclei will be discussed in Sect. 18.3
(Fig. 18.8). The energy levels of '¢Cg and '§Oy are also found in the isobaric nucleus
!N,. Other states in 4N, have no analogy in the two neighbouring nuclei. We
therefore can distinguish between triplet and singlet states.

These multiplets of states are reminiscent of the multiplets known from the
coupling of angular momenta (spins). The symmetry between protons and neutrons
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Fig. 2.6 Low-lying energy levels of the three most stable A = 14 isobars. Angular momentum J
and parity P are shown for the most important levels. The analogous states of the three nuclei are
joined by dashed lines. The zero of the energy scale is set to the ground state of 4N,

may therefore be described by a similar formalism, called isospin I. The proton and
neutron are treated as two states of the nucleon which form a doublet (I = 1/2).

Nucleon: I=1/2

{proton: L=+41/2 2.12)

neutron : [; = —1/2.

Formally, isospin is treated as a quantum mechanical angular momentum. For
example, a proton-neutron pair can be in a state of total isospin 1 or 0. The third (z-)
component of isospin is additive:

] nucleon Z-N
I3nucleus — 213 1 = T . (213)

This enables us to describe the appearance of similar states in Fig.2.6: '¢Cq and
140y, have respectively I3 = —1 and I3 = +1. Therefore, their isospin cannot
be less than / = 1. The states in these nuclei thus necessarily belong to a triplet
of similar states in '¢Cq, "IN, and '§O,. The I3 component of the nuclide 3N,
however, is 0. This nuclide can, therefore, have additional states with isospin /=0.

Since 3N, is the most stable A = 14 isobar, its ground state is necessarily an
isospin singlet since otherwise '¢Cg would possess an analogous state, which, with
less Coulomb repulsion, would be lower in energy and so more stable. States with
I = 2 are not shown in Fig.2.6. Such states would have analogous states in '¢B,
and in lgFS. These nuclides, however, are very unstable (i.e., highly energetic), and
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lie above the energy range of the diagram. The A = 14 isobars are rather light nuclei
in which the Coulomb energy is not strongly felt. In heavier nuclei, the influence of
the Coulomb energy grows, which increasingly disturbs the isospin symmetry.

The concept of isospin is of great importance not only in nuclear physics, but
also in particle physics. As we will see quarks, and particles composed of quarks,
can be classified by isospin into isospin multiplets. In dynamical processes of the
strong-interaction type, the isospin of the system is conserved.

Problem

1. Isospin symmetry
One could naively imagine the three nucleons in the *H and *He nuclei as being
rigid spheres. If one solely attributes the difference in the binding energies of
these two nuclei to the electrostatic repulsion of the protons in *He, how large
must the separation of the protons be? (The maximal energy of the electron in
the B~-decay of *H is 18.6keV.)
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Chapter 3
Nuclear Stability

Stable nuclei only occur in a very narrow band in the Z — N plane (Fig.3.1). All
other nuclei are unstable and decay spontaneously in various ways. Isobars with a
large surplus of neutrons gain energy by converting a neutron into a proton. In the
case of a surplus of protons, the inverse reaction may occur: i.e., the conversion
of a proton into a neutron. These transformations are called B-decays and they are
manifestations of the weak interaction. After dealing with the weak interaction in
Chap. 10, we will discuss these decays in more detail in Sects. 16.6 and 18.6. In the
present chapter, we will merely survey certain general properties, paying particular
attention to the energy balance of B-decays.

Iron and nickel isotopes possess the maximum binding energy per nucleon and
they are therefore the most stable nuclides. In heavier nuclei the binding energy is
smaller because of the larger Coulomb repulsion. For still heavier masses nuclei
become unstable to fission and decay spontaneously into two or more lighter nuclei
should the mass of the original atom be larger than the sum of the masses of the
daughter atoms. For a two-body decay, this condition has the form

M@A.Z) > MA—A,Z-Z7)+ M@A'.Z). 3.1)

This relation takes into account the conservation of the number of protons and
neutrons. However, it does not give any information about the probability of such
a decay. An isotope is said to be stable if its lifetime is considerably longer than
the age of the solar system. We will not consider many-body decays any further
since they are much rarer than two-body decays. It is very often the case that one
of the daughter nuclei is a *He nucleus, i.e., A’ = 4, Z’ = 2. This decay mode is
called a-decay, and the Helium nucleus is called an a-particle. If a heavy nucleus
decays into two similarly massive daughter nuclei we speak of spontaneous fission.
The probability of spontaneous fission exceeds that of «-decay only for nuclei with
Z 2 110 and is a fairly unimportant process for the naturally occurring heavy
elements.
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Fig. 3.1 Beta-stable nuclei in the Z — N plane (From [1])

Decay constants The probability per unit time for a radioactive nucleus to decay
is known as the decay constant A. It is related to the lifetime T and the half-life t, />
by

1 In2
T=— and Hhyp=—. (3.2)
A
The measurement of the decay constants of radioactive nuclei is based upon
finding the activity (the number of decays per unit time)

dN
A=—— =AN, 33
” (3.3)

where N is the number of radioactive nuclei in the sample. The unit of activity is
defined to be

1 Bq [Becquerel] = 1 decay/s. 3.4)

For short-lived nuclides, the fall-off over time of the activity
A(f) = AN(f) = ANge ™, where Ny = N(t = 0), (3.5)
may be measured using fast electronic counters. This method of measuring is not
suitable for lifetimes larger than about a year. For longer-lived nuclei both the

number of nuclei in the sample and the activity must be measured in order to obtain
the decay constant from (3.3).
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3.1 Beta Decay

Let us consider nuclei with equal mass number A (isobars). Equation (2.8) can be
transformed into

8
M(A,Z):a-A—,B-Z-q-y-ZZ-q-m, (3.6)
where a = Mn_av +asA_l/3 + %a
B = a.+ My —M,—me),
a, ae
Yy = X+m,
§ = asin (2.8).

The nuclear mass is now a quadratic function of the charge number Z. A plot of such
nuclear masses, for constant mass number A, as a function of Z yields a parabola for
odd A. For even A, the masses of the even-even and the odd-odd nuclei are found
to lie on two vertically shifted parabolas. The odd-odd parabola lies at twice the
pairing energy (28/+/A) above the even-even one. The minimum of the parabolas is
found at Z = B/2y. The nucleus with the smallest mass in an isobaric spectrum is
stable with respect to S-decay.

Beta decay in odd mass nuclei In what follows we wish to discuss the different
kinds of B-decay, using the example of the A = 101 isobars. For this mass number,
the parabola minimum is at the isobar !°'Ru which has Z = 44. Isobars with more

neutrons, such as %Mo and '3 Tc, decay through the conversion

n - p+e +ve. 3.7

The charge number of the daughter nucleus is one unit larger than that of the parent
nucleus (Fig. 3.2). An electron and an electron-antineutrino are also produced:

101 101 -45
»nMo — pTe+e” + v,

101 101 -4
plc— HRu+e +ve.

Historically such decays where a negative electron is emitted are called f~-
decays. Energetically, 8~ -decay is possible whenever the mass of the daughter atom
M(A,Z + 1) is smaller than the mass of its isobaric neighbour:

M@A.Z) > M(A,Z+ 1). (3.8)

We consider here the mass of the whole atom and not just that of the nucleus alone
and so the rest mass of the electron created in the decay is automatically taken into
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account. The tiny mass of the (anti-)neutrino (<2eV/c?) [3] is negligible in the
mass balance.

. Isobars with a proton excess, compared to '9}Ru, decay through proton conver-
sion

p—>n+e++ve. 3.9
The stable isobar '}}Ru is eventually produced via

19Pd — '"9'Rh +e* +v., and

%Rh — "%'Ru+et + v..

Such decays are called Bt -decays. Since the mass of a free neutron is larger than
the proton mass, the process (3.9) is only possible inside a nucleus. By contrast,
neutrons outside nuclei can and do decay via (3.7). Energetically, BT -decay is
possible whenever the following relationship between the masses M(A,Z) and
M(A,Z — 1) (of the parent and daughter atoms respectively) is satisfied:

MA.Z) > M(A,Z — 1) + 2m.. (3.10)

This relationship takes into account the creation of a positron and the existence of
an excess electron in the parent atom.

Beta decay in even nuclei Even mass-number isobars form, as we described above,
two separate (one for even-even and one for odd-odd nuclei) parabolas which are
split by an amount equal to twice the pairing energy.

Often there is more than one fB-stable isobar, especially in the range A > 70.
Let us consider the example of the nuclides with A = 106 (Fig. 3.3). The even-even
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1%Pd and '93Cd isobars are on the lower parabola, and '{$Pd is the stablest. '95Cd
is B-stable, since its two odd-odd neighbours both lie above it. The conversion of

1%Cd is thus only possible through a double S-decay into '$Pd:

1%cd — 19Pd + 2e™ + 2v, .
The probability for such a process is so small that lgng may be considered to be a
stable nuclide. Details of double 8-decay will be discussed in Sect. 18.7.

Odd-odd nuclei always have at least one more strongly bound even-even
neighbour nucleus in the isobaric spectrum. They are therefore unstable. The only
exceptions to this rule are the very light nuclei %H, gLi, l(S)B and 1‘7‘N, which are stable
to B-decay, since the increase in the asymmetry energy would exceed the decrease
in pairing energy. Some odd-odd nuclei can undergo both 8~ -decay and BT -decay.
Well-known examples of this are ‘l‘gK (Fig.3.4) and ggCu.

Electron capture Another possible decay process is the capture of an electron
from the cloud surrounding the atom. There is a finite probability of finding such an
electron inside the nucleus. In such circumstances it can combine with a proton to
form a neutron and a neutrino in the following way:

p+e —n+v.. (3.11)

This reaction occurs mainly in heavy nuclei where the nuclear radii are larger and
the electronic orbits are more compact. Usually the electrons that are captured
are from the innermost (the “K”) shell since such K-electrons are closest to the
nucleus and their radial wave function has a maximum at the centre of the nucleus.
Since an electron is missing from the K-shell after such a K-capture, electrons from
higher energy levels will successively cascade downwards and in so doing they emit
characteristic X-rays.
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Fig. 3.4 The B-decay of “°K. In this nuclear conversion, 8- and 81 -decay as well as electron
capture (EC) compete with each other. The relative frequency of these decays is given in
parentheses. The bent arrow in 1 -decay indicates that the production of an et and the presence
of the surplus electron in the *°Ar atom requires 1.022 MeV, and the remainder is carried off as
kinetic energy by the positron and the neutrino. The excited state of “°Ar produced in the electron
capture reaction decays by photon emission into its ground state

Electron-capture reactions compete with 81 -decay. The following condition is a
consequence of energy conservation

M@A,Z)>MA,Z—1) +¢, (3.12)

where ¢ is the excitation energy of the atomic shell of the daughter nucleus (electron
capture always leads to a hole in the electron shell). This process has, compared to
BT -decay, more kinetic energy (2m.c*>—e more) available to it and so there are some
cases where the mass difference between the initial and final atoms is too small for
conversion to proceed via 8T -decay and yet K-capture can take place.

Lifetimes The lifetimes t of f-unstable nuclei vary between a few ms and
10'® years. They strongly depend upon both the energy E which is released (1/7 o
E?) and upon the nuclear properties of the mother and daughter nuclei. The decay of
a free neutron into a proton, an electron and an antineutrino releases 0.78 MeV and
this particle has a lifetime of r = 880.1 & 1.1 s [3]. No two neighbouring isobars
are known to be B-stable.!

A well-known example of a long-lived B-emitter is the nuclide *°K. It transforms
into other isobars by both 87 - and B -decay. Electron capture in “°K also competes

'In some cases, however, one of two neighbouring isobars is stable and the other is extremely
long-lived. The most common isotopes of indium (''*In, 96 %) and rhenium ('*’Re, 63 %) B~ -
decay into stable nuclei (!'°Sn and '870s), but they are so long-lived (r = 3 - 10'* years and
7 = 3- 10! years respectively) that they may also be considered stable.
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here with BT -decay. The stable daughter nuclei are “°Ar and *°Ca respectively,
which is a case of two stable nuclei having the same mass number A (Fig. 3.4).

The “°K nuclide was chosen here because it contributes considerably to the
radiation exposure of human beings and other biological systems. Potassium is an
essential element: for example, signal transmission in the nervous system functions
by an exchange of potassium ions. The fraction of radioactive “°K in natural
potassium is 0.01 %, and the decay of “°K in the human body contributes about
16 % of the total natural radiation which we are exposed to.

3.2 Alpha Decay

Protons and neutrons have binding energies, even in heavy nuclei, of about § MeV
(Fig.2.4) and cannot generally escape from the nucleus. In many cases, however, it
is energetically possible for a bound system of a group of nucleons to be emitted,
since the binding energy of this system increases the total energy available to the
process. The probability for such a system to be formed in a nucleus decreases
rapidly with the number of nucleons required. In practice the most significant decay
process is the emission of a *He nucleus; i.e., a system of 2 protons and 2 neutrons.
Contrary to systems of 2 or 3 nucleons, this so-called «-particle is extraordinarily
strongly bound — 7 MeV/nucleon (cf. Fig. 2.4). Such decays are called a-decays.

Figure 3.5 shows the potential energy of an «-particle as a function of its
separation from the centre of the nucleus. Beyond the nuclear force range, the
a-particle feels only the Coulomb potential V¢ (r) = 2(Z—2)ahic/r, which increases
closer to the nucleus. Within the nuclear force range a strongly attractive nuclear
potential prevails. Its strength is characterised by the depth of the potential well.
Since we are considering «-particles which are energetically allowed to escape from
the nuclear potential, the total energy of this «-particle is positive. This energy is
released in the decay.

The range of lifetimes for the a-decay of heavy nuclei is extremely large.
Experimentally, lifetimes have been measured between 10ns and 10!7 years. These

Fig. 3.5 Potential energy of V(r)
an «-particle as a function of

its separation from the centre V; = 2(Z-2)
of the nucleus. The
probability that it tunnels E @ - -
through the Coulomb barrier e

can be calculated as the :
superposition of tunnelling
processes through thin

potential walls of R| Arr, r
thickness Ar (cf. Fig. 3.6)

ahc
r
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Fig. 3.6 Illustration of the
tunnelling probability of a
wave packet with energy E

and velocity v faced with a v
potential barrier of height V
and thickness Ar
Ar
v
L ; V
Ar

lifetimes can be calculated in quantum mechanics by treating the a-particle as a
wave packet. The probability for the «-particle to escape from the nucleus is given
by the probability for its penetrating the Coulomb barrier (the tunnel effect). If we
divide the Coulomb barrier into thin potential walls and look at the probability of
the o-particle tunnelling through one of these (Fig. 3.6), then the transmission T is
given by

T ~ e 247, where « = /2m|E—V|/h, (3.13)

and Ar is the thickness of the barrier and V is its height. E is the energy of
the o-particle. A Coulomb barrier can be thought of as a barrier composed of a
large number of thin potential walls of different heights. The transmission can be
described accordingly by

T =e¢2C, (3.14)

The Gamow factor G can be approximated by the integral [4]

o 2. Z-2)-
G= Z/ JVIME —V]dr ~ ”(‘f)“ (3.15)
R

where § = v/c is the velocity of the outgoing «-particle and R is the nuclear radius.

The probability per unit time A for an «-particle to escape from the nucleus is
therefore proportional to: the probability w(w) of finding such an «-particle in the
nucleus, the number of collisions (x vy/2R) of the a-particle with the barrier and
the transmission probability:

A = w(a) % e20 (3.16)



3.2 Alpha Decay 33

N A 238
146 N 4.510%a
234Th
_  234Pg
144 24.1d B Pa
i

234

142 | T 25.10%a

o
230Th

4
140 8'10‘?i|
(03
226Rg
138 7 1620a
222Rn N

136 - 3.8d
o
218Po
134 o 1T 3.05min
| 214Pp T |p— 214Bj
132 26.8min P ~ 19.7 min
214PO
130 o 1 164ps
210Pp _
128 n 194 a B 210Bj
o 3.0-10%a
126 <

206T]|
4.2%5% oo
124 stable

T T T T T T T
80 82 84 8 8 90 92 Z

»
>

Fig. 3.7 Tllustration of the 2**U decay chain in the N-Z plane. The half-life of each of the nuclides
is given together with its decay mode

where vy is the velocity of the a-particle in the nucleus (v9 ~ 0.1c¢). The large
variation in the lifetimes is explained by the Gamow factor in the exponent: since
G «x Z/B o Z/~/E, small differences in the energy of the a-particle have a strong
effect on the lifetime.

Most «-emitting nuclei are heavier than lead. For lighter nuclei with A < 140,
a-decay is energetically possible, but the energy released is extremely small.
Therefore, their nuclear lifetimes are so long that decays are usually not observable.

An example of an a-unstable nuclide with a long lifetime, 2*¥U, is shown
in Fig.3.7. Since uranium compounds are common in granite, uranium and its
radioactive daughters are a part of the stone walls of buildings. They therefore
contribute to the environmental radiation background. This is particularly true of
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the inert gas 2??Rn, which escapes from the walls and is inhaled into the lungs.
The a-decay of 2??Rn is responsible for about 40 % of the average natural human
radiation exposure.

3.3 Nuclear Fission

Spontaneous fission The largest binding energy per nucleon is found in those
nuclei in the region of %6Fe. For heavier nuclei, it decreases as the nuclear mass
increases (Fig.2.4). A nucleus with Z > 40 can thus, in principle, split into two
lighter nuclei. The potential barrier which must be tunnelled through is, however,
so large that such spontaneous fission reactions are generally speaking extremely
unlikely.

The lightest nuclides where the probability of spontaneous fission is comparable
to that of @-decay are certain uranium isotopes. The shape of the fission barrier is
shown in Fig. 3.8.

It is interesting to find the charge number Z above which nuclei become fission
unstable, i.e., the point from which the mutual Coulombic repulsion of the protons
outweighs the attractive nature of the nuclear force. An estimate can be obtained by
considering the surface and the Coulomb energies during the fission deformation.
As the nucleus is deformed the surface energy increases, while the Coulomb
energy decreases. If the deformation leads to an energetically more favourable
configuration, the nucleus is unstable. Quantitatively, this can be calculated as
follows: keeping the volume of the nucleus constant, we deform its spherical shape
into an ellipsoid with axesa = R(1 + &) and b = R(1 + &)7"/2 ~ R(1 —¢/2)
(Fig.3.9).

vi(r)

O O
Fig. 3.8 Potential energy during different stages of a fission reaction. A nucleus with charge Z
decays spontaneously into two daughter nuclei. The solid line corresponds to the shape of the
potential in the parent nucleus. The height of the barrier for fission determines the probability of

spontaneous fission. The fission barrier disappears for nuclei with Z2/A 2 48 and the shape of
the potential then corresponds to the dashed line
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Fig. 3.9 Deformation of a heavy nucleus. For a constant volume V (V = 47 R*/3 = 4mab?/3),
the surface energy of the nucleus increases and its Coulomb energy decreases

The surface energy then has the form
2/3 2,
E, =aA l—i—gs +...], (3.17)
while the Coulomb energy is given by

24-1/3 1,
E.=a.Z°A 1—58 +...]. (3.18)

Hence a deformation ¢ changes the total energy by

&2

AE = 5 (2aA* — a Z?A7'7). (3.19)

If AE is negative, a deformation is energetically favoured. The fission barrier
disappears for

2a,

dc

ZZ
2.2 g (3.20)
A

This is the case for nuclei with Z > 114 and A > 270.

Induced fission For very heavy nuclei (Z &~ 92) the fission barrier is only about
6 MeV. This energy may be supplied if one uses a flow of low energy neutrons to
induce neutron capture reactions. These push the nucleus into an excited state above
the fission barrier and it splits up. This process is known as induced nuclear fission.

Neutron capture by nuclei with an odd neutron number releases not just some
binding energy but also a pairing energy. This small extra contribution to the energy
balance makes a decisive difference to nuclide fission properties: in neutron capture
by 28U, for example, 4.9MeV binding energy is released, which is below the
threshold energy of 5.5 MeV for nuclear fission of 2*U. Neutron capture by 233U can
therefore only lead to immediate nuclear fission if the neutron possesses a kinetic
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energy at least as large as this difference (“fast neutrons’). On top of this the reaction
probability is proportional to v™!, where v is the velocity of the neutron (4.21), and
so it is very small. By contrast neutron capture in >*U releases 6.4 MeV and the
fission barrier of 23U is just 5.5MeV. Thus fission may be induced in >**U with
the help of low-energy (thermal) neutrons. This is exploited in nuclear reactors and
nuclear weapons. Similarly both 2*3Th and 2*°Pu are suitable fission materials.

3.4 Decay of Excited Nuclear States

Nuclei usually have many excited states. Most of the lowest-lying states are
understood theoretically, at least in a qualitative way as will be discussed in more
detail in Chaps. 18 and 19.

Figure 3.10 schematically shows the energy levels of an even-even nucleus
with A ~ 100. Above the ground state, individual discrete levels with specific
JP quantum numbers can be seen. The excitation of even-even nuclei generally
corresponds to the break-up of nucleon pairs, which requires about 1-2 MeV. Even-
even nuclei with A X 40, therefore, rarely possess excitations below 2 MeV.? In
odd-even and odd-odd nuclei, the number of low-energy states (with excitation
energies of a few 100keV) is considerably larger.

Electromagnetic decays Low lying excited nuclear states usually decay by emit-
ting electromagnetic radiation. This can be described in a series expansion as
a superposition of different multipolarities each with its characteristic angular
distribution. Electric dipole, quadrupole, octupole radiation etc. are denoted by
El, E2, E3, etc. Similarly, the corresponding magnetic multipoles are denoted by
M1, M2, M3 etc. Conservation of angular momentum and parity determine which
multipolarities are possible in a transition. A photon of multipolarity E£ has angular
momentum £ and parity (—1)*, a photon of multipolarity M has angular momentum
¢ and parity (—1)(“*D (Table 3.1). In a transition J; — Jy, conservation of angular
momentum means that the triangle inequality |/; — J;| < £ < J; 4+ Jr must be
satisfied.

Table ?.lt Selectiotljl rules for Multi- Electric Magnetic

some electromagnetic )

transitions polarity EC ||AJ| | AP ML | |AJ] | AP
Dipole El |1 — Ml |1 +
Quadrupole |E2 |2 + M2 |2 _
Octupole E3 |3 — M3 |3 +

2Collective states in deformed nuclei are an exception to this: they cannot be understood as single
particle excitations (Chap. 19).
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Fig. 3.10 Sketch of typical nuclear energy levels. The example shows an even-even nucleus whose
ground state has the quantum numbers 07 . To the left the total cross-section for the reaction of the
nucleus A~} X with neutrons (elastic scattering, inelastic scattering, capture) is shown; to the right
the total cross-section for y-induced neutron emission 4X +y — 47 X +n

The lifetime of a state strongly depends upon the multipolarity of the y-
transitions by which it can decay. The lower the multipolarity, the larger the
transition probability. A magnetic transition M{ has approximately the same
probability as an electric E(¢ + 1) transition. A transition 37 — 1%, for example,
is in principle a mixture of E2, M3, and E4, but will be easily dominated by the
E2 contribution. A 3% — 2% transition will usually consist of an M1/E2 mixture,
even though M3, E4, and M5 transitions are also possible. In a series of excited
states 01, 2%, 4T, the most probable decay is by a cascade of E2-transitions
4% — 2% — 0%, and not by a single 4T — 0 E4-transition. The lifetime of a
state and the angular distribution of the electromagnetic radiation which it emits are
signatures for the multipolarity of the transitions, which in turn betray the spin and
parity of the nuclear levels. The decay probability also strongly depends upon the
energy. For radiation of multipolarity £ it is proportional to E)Z,“'1 (cf. Sect. 19.1).

The excitation energy of a nucleus may also be transferred to an electron in
the atomic shell. This process is called internal conversion. It is most important
in transitions for which y-emission is suppressed (high multipolarity, low energy)
and the nucleus is heavy (high probability of the electron being inside the nucleus).
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0" — 0% transitions cannot proceed through photon emission. If a nucleus is in
an excited 07 -state, and all its lower lying levels also have 01 quantum numbers
(e.g. in '°0 or #°Ca, cf. Fig. 19.6), then this state can only decay in a different way:
by internal conversion, by emission of 2 photons or by the emission of an e*e™-
pair, if this last is energetically possible. Parity conservation does not permit internal
conversion transitions between two levels with / = 0 and opposite parity.

The lifetime of excited nuclear states typically varies between 107 and 107! s,
which corresponds to a state width of less than 1eV. States which can only decay
by low energy and high multipolarity transitions have considerably longer lifetimes.
They are called isomers and are designated by an “m” superscript on the symbol
of the element. An extreme example is the second excited state of ''’Ag, whose
quantum numbers are J© = 67 and excitation energy is 117.7keV. It relaxes via
an M4-transition into the first excited state (1.3 keV; 27) since a decay directly into
the ground state (1) is even more improbable. The half-life of ''’Ag™ is extremely
long (1,2 = 235 days) [2].

Continuum states Most nuclei have a binding energy per nucleon of about 8 MeV
(Fig.2.4). This is approximately the energy required to separate a single nucleon
from the nucleus (separation energy). States with excitation energies above this
value can therefore emit single nucleons. The emitted nucleons are primarily
neutrons since they are not hindered by the Coulomb threshold. Such a strong
interaction process is clearly preferred to y-emission.

The excitation spectrum above the threshold for particle emission is called the
continuum, just as in atomic physics. Within this continuum there are also discrete,
quasi-bound states. States below this threshold decay only by (relatively slow) y-
emission and are, therefore, very narrow. But for excitation energies above the
particle threshold, the lifetimes of the states decrease dramatically, and their widths
increase. The density of states increases approximately exponentially with the
excitation energy. At higher excitation energies, the states therefore start to overlap,
and states with the same quantum numbers can begin to mix.

The continuum can be especially effectively investigated by measuring the cross-
sections of neutron capture and neutron scattering. Even at high excitation energies,
some narrow states can be identified. These are states with exotic quantum numbers
(high spin) which therefore cannot mix with neighbouring states.

Figure 3.10 shows schematically the cross-sections for neutron capture and
y-induced neutron emission (nuclear photoelectric effect). A broad resonance is
observed, the giant dipole resonance, which will be interpreted in Sect. 19.2.

Problems

1. Alpha decay
The a-decay of a 2®Pu (r = 127years) nuclide into a long-lived 2*U (t =
3.5 - 10° years) daughter nucleus releases 5.49 MeV kinetic energy. The heat so
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produced can be converted into useful electricity by radio-thermal generators
(RTG’s). The Voyager 2 space probe, which was launched on the 20.8.1977, flew
past four planets, including Saturn which it reached on the 26.8.1981. Saturn’s
separation from the Sun is 9.5 AU; 1 AU = separation of the Earth from the
Sun.

(a) How much plutonium would an RTG on Voyager 2 with 5.5 % efficiency
have to carry so as to deliver at least 395 W electric power when the probe
flies past Saturn?

(b) How much electric power would then be available at Neptune (24.8.1989;
30.1 AU separation)?

(c) To compare: the largest ever “solar paddles” used in space were those of the
space laboratory Skylab which would have produced 10.5kW from an area
of 730m? if they had not been damaged at launch. What area of solar cells
would Voyager 2 have needed?

2. Radioactivity
Naturally occurring uranium is a mixture of the 23U (99.28 %) and 2**U (0.72 %)
isotopes.

(a) How old must the material of the solar system be if one assumes that at its
creation both isotopes were present in equal quantities? How do you interpret
this result? The lifetime of 2*U is 7 = 1.015 - 10? years. For the lifetime of
238U use the data in Fig. 3.7.

(b) How much of the 2*3U has decayed since the formation of the Earth’s crust
2.5-10° years ago?

(c) How much energy per uranium nucleus is set free in the decay chain >*¥U —
gé;i’b? A small proportion of 23U spontaneously splits into, e.g., lgiXe and

3. Radon activity
After a lecture theatre whose walls, floor and ceiling are made of concrete (10 x
10 x 4m?) has not been aired for several days, a specific activity A from *?’Rn
of 100 Bq/m’ is measured.

(a) Calculate the activity of >*?Rn as a function of the lifetimes of the parent and
daughter nuclei.

(b) How high is the concentration of 28U in the concrete if the effective
thickness from which the 2??Rn decay product can diffuse is 1.5 cm?
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4. Mass formula
Isaac Asimov in his novel The Gods Themselves describes a universe where
the stablest nuclide with A = 186 is not '3{W but rather '${Pu. This is
claimed to be a consequence of the ratio of the strengths of the strong and
electromagnetic interactions being different to that in our universe. Assume that
only the electromagnetic coupling constant « differs and that both the strong
interaction and the nucleon masses are unchanged. How large must « be in order
that '8$Pb, '8¢Ra and '3Pu are stable?

5. Alpha decay
The binding energy of an « particle is 28.3 MeV. Estimate, using the mass
formula (2.8), from which mass number A onwards «-decay is energetically
allowed for all nuclei.

6. Quantum numbers
An even-even nucleus in the ground state decays by a-emission. Which J” states
are available to the daughter nucleus?
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Chapter 4
Scattering

4.1 General Observations About Scattering Processes

Scattering experiments are an important tool of nuclear and particle physics. They
are used both to study details of the interactions between different particles and
to obtain information about the internal structure of atomic nuclei and their con-
stituents. These experiments will therefore be discussed at length in the following.

In a typical scattering experiment, the object to be studied (the targer) is bom-
barded with a beam of particles with (mostly) well-defined energy. Occasionally, a
reaction of the form

a+b—>c+d

between the projectile and the target occurs. Here, a and b denote the beam- and
target particles, and ¢ and d denote the products of the reaction. In inelastic reactions,
the number of the reaction products may be larger than two. The rate, the energies
and masses of the reaction products and their angles relative to the beam direction
may be determined with suitable systems of detectors.

It is nowadays possible to produce beams of a broad variety of particles
(electrons, protons, neutrons, heavy ions,...). The beam energies available vary
between 1073 eV for “cold” neutrons up to several 10'>eV for protons. It is even
possible to produce beams of secondary particles which themselves have been
produced in high energy reactions. Some such beams are very short-lived, such as
muons, - or K-mesons, or hyperons (Zi, E-, Q7).

Solid, liquid or gaseous targets may be used as scattering material or, in storage
ring experiments, another beam of particles may serve as the target. Examples of this
last are the electron-positron storage ring LEP (Large Electron Positron collider) at
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CERN! in Geneva (maximum beam energy E.+ .- = 104.6 GeV), the “Tevatron”
proton-antiproton storage ring at the FNAL? in the USA (Epy = 980GeV) and
HERA (Hadron-Elektron-Ringanlage), the electron-proton storage ring at DESY?
in Hamburg (E. = 27.6 GeV, E, = 920 GeV), which last was operated from 1992
to 2007, or the proton-proton storage ring LHC (Large Hadron Collider) at CERN
with a nominal expected beam energy of E,=7 TeV.

Figure 4.1 shows some scattering processes. We distinguish between elastic and
inelastic scattering reactions.

Elastic scattering In an elastic process
a+b—a +b,

the same particles are present both before and after the scattering (Fig.4.1a). The
target b remains in its ground state, absorbing merely the recoil momentum and
hence changing its kinetic energy. The apostrophe indicates that the particles in the
initial and in the final state are identical up to momenta and energy. The scattering
angle and the energy of the a’ particle and the production angle and energy of b’ are
unambiguously correlated. As in optics, conclusions about the spatial shape of the

a)

Fig. 4.1 Scattering processes: (a) elastic scattering; (b) inelastic scattering — production of an
excited state which then decays into two particles; (¢) inelastic production of new particles; (d)
reaction of colliding beams

!Conseil Européen pour la Recherche Nucléaire.
2Fermi National Accelerator Laboratory.

3Deutsches Elektronen-Synchrotron.
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scattering object can be drawn from the dependence of the scattering rate upon the
beam energy and scattering angle.

It is easily seen that in order to resolve small target structures, larger beam
energies are required. The reduced de Broglie wavelength x = A /27 of a particle
with momentum p is given by

P h _ hic ~ h/\/2mE,, for Eiy, << mc? .1

p [2me Eyipy + El%in hc/Exin & hc/E for Egy > mc? .

The largest wavelength that can resolve structures of linear extension Ax, is of the
same order: x < Ax.

From Heisenberg’s uncertainty principle the corresponding particle momentum
is:

he 200 MeV fm
pe 2 28 22N

—_—, 4.2)
Ax Ax Ax

PR

Thus to study nuclei, whose radii are of a few fm, beam momenta of the order of

10-100MeV/c are necessary. Individual nucleons have radii of about 0.8 fm; and

may be resolved if the momenta are above ~100 MeV /c. To resolve the constituents

of a nucleon, the quarks, one has to penetrate deeply into the interior of the nucleon.
For this purpose, beam momenta of many GeV/c are necessary (see Fig. 4.2).

Inelastic scattering In inelastic reactions

a+b—a +b*

L e+ d,
Fig. 4.2 The connection p
between kinetic energy, 1 TeV/c i z
momentum and reduced 41am
wavelength of photons (), B
electrons (e), muons (i), o 7
protons (p), and *He N
nuclei (). Atomic diameters 1 GeVic -
are typically a few A L o —|1fm
(10719 m), nuclear diameters P -
a few fm (10~"° m) P |
1MeVic =~
— 1pm
P €
- v )
tkeVicl, o Lo 1o A
1keV 1MeV 1GeV 1TeV

E kin
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part of the kinetic energy transferred from a to the target b excites it into a higher
energy state b* (Fig.4.1b). The excited state will afterwards return to the ground
state by emitting a light particle (e.g., a photon or a 7-meson) or it may decay into
two or more different particles.

A measurement of a reaction in which only the scattered particle a’ is observed
(and the other reaction products are not), is called an inclusive measurement. If all
reaction products are detected, we speak of an exclusive measurement.

When allowed by the laws of conservation of lepton and baryon number (see
Sects. 8.1 and 10.1), the beam particle may completely disappear in the reaction
(Fig.4.1c, d). Its total energy then goes into the excitation of the target or into the
production of new particles. Such inelastic reactions represent the basis of nuclear
and particle spectroscopy, which will be discussed in more detail in the second part
of this book.

4.2 Cross-Sections

The reaction rates measured in scattering experiments, and the energy spectra and
angular distributions of the reaction products yield, as we have already mentioned,
information about the dynamics of the interaction between the projectile and the
target, i.e., about the shape of the interaction potential and the coupling strength.
The most important quantity for the description and interpretation of these reactions
is the cross-section o, which is a yardstick of the probability of a reaction between
the two colliding particles.

Geometric reaction cross-section We consider an idealised experiment, in order
to elucidate this concept. Imagine a thin scattering target of thickness d with Ny
scattering centres b and with a particle density ny,. Each target particle has a cross-
sectional area oy, to be determined by experiment. We bombard the target with a
mono-energetic beam of point-like particles a. A reaction occurs whenever a beam
particle hits a target particle, and we assume that the beam particle is then removed
from the beam. We do not distinguish between the final target states, i.e., whether
the reaction is elastic or inelastic. The total reaction rate N , i.e., the total number
of reactions per unit time, is given by the difference in the beam particle rate N,
upstream and downstream of the target. This is a direct measure for the cross-
sectional area oy, (Fig.4.3).

We further assume that the beam has cross-sectional area A and particle density
n,. The number of projectiles hitting the target per unit area and per unit time is
called the flux &,. This is just the product of the particle density and the particle
velocity v,:

N,
CDa:X:na-va, “4.3)

and has dimensions [(area x time)~'].
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Fig. 4.3 Measurement of the geometric reaction cross-section. The particle beam, a, coming from
the left with velocity v, and density n,, corresponds to a particle flux @, = n,v,. It hits a
(macroscopic) target of thickness d and cross-sectional area A. Some beam particles are scattered
by the scattering centres of the target, i.e., they are deflected from their original trajectory. The
frequency of this process is a measure of the cross-sectional area of the scattering particles

The total number of target particles within the beam area is N, = np - A - d.
Hence the reaction rate N is given by the product of the incoming flux and the total
cross-sectional area seen by the particles:

NZ @a-Nb-Gb. (4-4)

This formula is valid as long as the scattering centres do not overlap and particles
are only scattered off individual scattering centres. The area presented by a single
scattering centre to the incoming projectile a, will be called the geometric reaction
cross-section: in what follows:

N
Op = 4.5
&N, 4.5)

number of reactions per unit time

beam particles per unit time per unit area X scattering centres
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This definition assumes a homogeneous, constant beam (e.g., neutrons from a
reactor). In experiments with particle accelerators, the formula used is

number of reactions per unit time

Op =
beam particles per unit time X scattering centres per unit area ’

since the beam is then generally not homogeneous but the area density of the
scattering centres is.

Cross-sections This naive description of the geometric reaction cross-section as
the effective cross-sectional area of the target particles, (if necessary convoluted
with the cross-sectional area of the beam particles) is in many cases a good
approximation to the true reaction cross-section. An example is high-energy proton-
proton scattering where the geometric extent of the particles is comparable to their
interaction range.

The reaction probability for two particles is, however, generally very different
to what these geometric considerations would imply. Furthermore a strong energy
dependence is also observed. The reaction rate for the capture of thermal neutrons by
uranium, for example, varies by several orders of magnitude within a small energy
range. The reaction rate for scattering of (point-like) neutrinos, which only feel the
weak interaction, is much smaller than that for the scattering of (also point-like)
electrons which feel the electromagnetic interaction.

The shape, strength and range of the interaction potential, and not the geometric
forms involved in the scattering process, primarily determine the effective cross-
sectional area. The interaction can be determined from the reaction rate if the flux
of the incoming beam particles, and the area density of the scattering centres are
known, just as in the model above. The toral cross-section is defined analogously to
the geometric one:

number of reactions per unit time

Otot = ; . - - :
beam particles per unit time X scattering centres per unit area

In analogy to the fotal cross-section, cross-sections for elastic reactions o, and
for inelastic reactions oj,e) may also be defined. The inelastic part can be further
divided into different reaction channels. The total cross-section is the sum of these
parts:

Otot = Ocl + Oinel - (46)

The cross-section is a physical quantity with dimensions of [area], and is
independent of the specific experimental design. A commonly used unit is the barn,
which is defined as

lbarn = 1b = 107%m’
1 millibarn = I mb = 107! m?

etc.
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Typical total cross-sections at a beam energy of 10 GeV, for example, are
opp(10GeV) ~ 40 mb 4.7)
for proton-proton scattering, and
0,p(10GeV) ~ 7-107 b =70 fb (4.8)

for neutrino-proton scattering.

Luminosity The quantity
L=3&, N 4.9)

is called the Iuminosity. Like the flux, it has dimensions of [(areaxtime)~!].
From (4.3) and N, = ny, - d - A we have

L=, -Ny=N,-np-d=ny vy-Np . (4.10)

Hence the luminosity is the product of the number of incoming beam particles per
unit time N, the target particle density in the scattering material ny, and the target’s
thickness d; or the beam particle density n,, their velocity v, and the number of
target particles Ny, exposed to the beam.

There is an analogous equation for the case of two particle beams colliding in
a storage ring. Assume that j particle packets, each of N, or N, particles, have
been injected into a ring of circumference U. The two particle types circulate with
velocity v in opposite directions. Steered by magnetic fields, they collide at an
interaction point j - v/U times per unit time. The luminosity is then

_ Ne-No-jov/U

E ki
A

@.11)

where A is the beam cross-section at the collision point. For a Gaussian distribution
of the beam particles around the beam centre (with horizontal and vertical standard
deviations oy and o, respectively), A is given by

A = 4moy0y. 4.12)

To achieve a high luminosity, the beams must be focused at the interaction point
into the smallest possible cross-sectional area possible. Typical beam diameters are
of the order of tenths of millimetres or less.

An often used quantity in storage ring experiments is the integrated luminosity
f L dt. The number of reactions which can be observed in a given reaction time
is just the product of the integrated luminosity and the cross-section. With a 1 nb
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Fig. 4.4 Description of the
differential cross-section.
Only particles scattered into
the small solid angle AS2 are
recorded by the detector of
cross-sectional area Ap

Target plane

cross-section and a 100pb~! integrated luminosity, for example, 10° reactions
would be expected.

Differential cross-sections In practice, only a fraction of all the reactions are
measured. A detector of area Ap is placed at a distance r and at an angle 6 with
respect to the beam direction, covering a solid angle A2 = Ap/r? (Fig.4.4). The
rate of reactions seen by this detector is then proportional to the differential cross-
section do (E, 0)/d$2:

do(E.0)

N(E,0,AQ) =L
( ) 10

(4.13)

If the detector can determine the energy E’ of the scattered particles then one
can measure the doubly differential cross-section d’c(E, E’, 8)/d$2 dE’. The total
cross-section o is then the integral over the total solid angle and over all scattering
energies:

Emnax d*c(E,E', 0
O(E) = doE.E.0) 40 4e . (4.14)
. A2 dE

4.3 The “Golden Rule”

The cross-section can be experimentally determined from the reaction rate N, as we
saw above. We now outline how it may be found from theory.

First, the reaction rate is dependent upon the properties of the interaction
potential described by the Hamilton operator Hjy. In a reaction, this potential
transforms the initial-state wave function v; into the final-state wave function V.
The transition matrix element is given by

My = Wy lHanld) = [0 Hin 0 0V 4.15)

This matrix element is also called the probability amplitude for the transition.
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Furthermore, the reaction rate will depend upon the number of final states
available to the reaction. According to the uncertainty principle, each particle
occupies a volume h® = (27#)? in phase space, the six-dimensional space of
momentum and position. Consider a particle scattered into a volume V and into
a momentum interval between p’ and p’ + dp’. In momentum space, the interval
corresponds to a spherical shell with inner radius p’ and thickness d p’ which has a
volume 47 p?dp’. Excluding processes where the spin changes, the number of final
states available is

V.-dmxp”?

)’ dp’ . (4.16)

dn(p’) =
The energy and momentum of a particle are connected by
dE' = v'dp’. (4.17)
Hence the density of final states in the energy interval dE’ is given by

dn(E") V. 4xp”?
dE' v - Quh)3

o(E) = (4.18)

The connection between the reaction rate, the transition matrix element and the
density of final states is expressed by Fermi’s second golden rule. Its derivation can
be found in quantum mechanics textbooks (e.g. [2]). It expresses the reaction rate
W per target particle and per beam particle in the form:

2
W= Ml oE). (4.19)

We also know, however, from (4.3) and (4.4) that

N(E
W= ()Zav

= , (4.20)
Ny - N, v

where V = N,/n, is the spatial volume occupied by the beam particles. Hence, the
cross-section is

2
0= IMs|* -0 (E)-V. 4.21)

If the interaction potential is known, the cross-section can be calculated from (4.21).
Otherwise, the cross-section data and Eq.(4.21) can be used to determine the
transition matrix element.
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The golden rule applies to both scattering and spectroscopic processes. Examples
of the latter are the decay of unstable particles, excitation of particle resonances and
transitions between different atomic or nuclear energy states. In these cases we have

1
W=-—, (4.22)
T

and the transition probability per unit time can be either directly determined by
measuring the lifetime 7 or indirectly read off from the energy width of the state
AE =h/t.

4.4 Feynman Diagrams

In QED, as in other quantum field theories, we can use the little
pictures invented by my colleague Richard Feynman, which are
supposed to give the illusion of understanding what is going on in
quantum field theory.

M. Gell-Mann [1]

Elementary processes such as the scattering of two particles off each other or
the decay of a single particle are nowadays commonly depicted by Feynman
diagrams. Originally, these diagrams were introduced by Feynman as a sort of
shorthand for the individual terms in his calculations of transition matrix elements
M in electromagnetic processes in the framework of quantum electrodynamics
(QED). Each symbol in such a space-time diagram corresponds to a term in
the matrix element. The meaning of the individual terms and the links between
them are fixed by the Feynman rules. Similarly to the QED rules, corresponding
prescriptions exist for the calculation of weak and strong processes as well, in
quantum chromodynamics (QCD). We will not use such diagrams for quantitative
calculations, since this requires knowledge of relativistic field theory. Instead, they
will serve as pictorial illustrations of the processes that occur. We will therefore
merely treat a few examples below and explain some of the definitions and rules.

Figure 4.5 shows some typical diagrams. We use the convention that the time axis
runs upwards and the space axis from left to right. The straight lines in the graphs
correspond to the wave functions of the initial and final fermions. Antiparticles (in
our examples: the positron e, the positive muon p* and the electron-antineutrino
V) are symbolised by arrows pointing backwards in time; photons by wavy lines;
heavy vector bosons by dashed lines; and gluons by corkscrew-like lines.

As we mentioned in Chap. 1, the electromagnetic interaction between charged
particles proceeds via photon exchange. Figure 4.5a depicts schematically the elastic
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Fig. 4.5 Feynman diagrams for the electromagnetic (a—c), weak (d, e) and strong interactions (f)

scattering of an electron off a positron. The interaction process corresponds to
a photon being emitted by the electron and absorbed by the positron. Particles
appearing neither in the initial nor in the final state, such as this exchanged photon,
are called virtual particles. Because of the uncertainty principle, virtual particles do
not have to satisfy the energy-momentum relation E> = p?c? + m?c*. This may be
interpreted as meaning that the exchanged particle has a mass different from that
of a free (real) particle, or that energy conservation is violated for a brief period of
time.

Points at which three or more particles meet are called vertices. Each vertex
corresponds to a term in the transition matrix element which includes the structure
and strength of the interaction. In (a), the exchanged photon couples to the charge of
the electron at the left vertex and to that of the positron at the right vertex. For each
vertex the transition amplitude contains a factor which is proportional to e, i.e., /.

Figure 4.5b represents the annihilation of an electron-positron pair. A photon is
created as an intermediate state which then decays into a negatively charged pu™
and its positively charged antiparticle, a u*. Figure 4.5¢ shows a slightly more
complicated version of the same process. Here, the photon, by vacuum polarisation,
is briefly transformed into an intermediate state made up of an e™e™ pair. This and
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additional, more complicated, diagrams contributing to the same process are called
higher-order diagrams.

The transition matrix element includes the superposition of amplitudes of all
diagrams leading to the same final state. Because the number of vertices is greater
in higher-order diagrams these graphs include higher powers of «. The amplitude of
diagram (b) is proportional to &, while diagram (c)’s is proportional to . The cross-
section for conversion of an electron-positron pair into a u* ™ pair is therefore
given to a good approximation by diagram (b). Diagram (c) and other diagrams of
even higher order produce only small corrections to (b).

Figure 4.5d shows electron-positron annihilation followed by muon pair produc-
tion in a weak interaction proceeding through exchange of the neutral, heavy vector
boson Z°. In Fig.4.5e, we see a neutron transform into a proton via B-decay in
which it emits a negatively charged heavy vector boson W~ which subsequently
decays into an electron and antineutrino V.. Figure 4.5f depicts a strong interaction
process between two quarks q and q' which exchange a gluon, the field quantum of
the strong interaction.

In weak interactions, a heavy vector boson is exchanged which couples to the
“weak charge” g and not to the electric charge e. Accordingly, Mj; x g* « ay. In
strong interactions the gluons which are exchanged between the quarks couple to
the “colour charge” of the quarks, My o /o - J/os = ots.

The exchange particles contribute a propagator term to the transition matrix
element. This contribution has the general form

1
R (4.23)
Here Q7 is the square of the four-momentum (cf. (5.3) and (6.3)) which is transferred
in the interaction and M is the mass of the exchange particle. In the case of a
virtual photon, this results in a factor 1/Q? in the amplitude and 1/Q* in the cross-
section. In the weak interaction, the large mass of the exchanged vector boson causes
the cross-section to be much smaller than that of the electromagnetic interaction
— although at very high momentum transfers, of the order of the masses of the
vector bosons, the two cross-sections become comparable in size, as it has been
demonstrated at the electron-proton storage ring HERA (cf. Sect. 12.2).

Problems

1. Cross-section
Deuterons with an energy Eyj, = 5MeV are perpendicularly incident upon a
tritium target, which has a mass occupation density u; = 0.2 mg/ cm?, 50 as to
investigate the reaction *H(d, n)*He.
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(a) How many neutrons per second pass through a detector with a reception
area of A = 20 cm? which is at a distance R = 3m from the target and an
angle 6 =30° to the deuteron beam direction, if the differential cross-section
do/d$2 at this angle is 13 mb/sr and the deuteron current applied to the target
isly = 2LA?

(b) How many neutrons per second does the detector receive if the target is tilted
so that the same deuteron current now approaches it at 80° instead of 90°?

2. Absorption length
A particle beam is incident upon a thick layer of an absorbing material (with n
absorbing particles per unit volume). How large is the absorption length, i.e., the
distance over which the intensity of the beam is reduced by a factor of 1/e for
the following examples?

(a) Thermal neutrons (E ~ 25meV) in cadmium (o = 8.6g/cm’, 0 =
24 506 barn).

(b) E, = 2MeV photons in lead (¢ = 11.3 g/cm?, o = 15.7 barn/atom).

(c) Antineutrinos from a reactor in earth (0 = 5g/cm3, o ~ 107P

barn/electron; interactions with nuclei may be neglected; Z/A ~ 0.5).
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Chapter 5
Geometric Shapes of Nuclei

In this chapter we shall study nuclear sizes and shapes. In principle, this information
may be obtained from scattering experiments (e.g., scattering of protons or o-
particles) and when Rutherford discovered that nuclei have a radial extent of less
than 10™'*m, he employed a-scattering. In practice, however, there are difficulties
in extracting detailed information from such experiments. Firstly, these projectiles
are themselves extended objects. Therefore, the cross-section reflects not only the
structure of the target, but also that of the projectile. Secondly, the nuclear forces
between the projectile and the target are complex and not well understood.
Electron scattering is particularly valuable for investigating small objects. As
far as we know electrons are point-like objects without any internal structure. The
interactions between an electron and a nucleus, nucleon or quark take place via
the exchange of a virtual photon — this may be very accurately calculated within
quantum electrodynamics (QED). These processes are in fact manifestations of the
well known electromagnetic interaction, whose coupling constant @ ~ 1/137 is
much less than one. This means that higher order corrections play only a tiny role.

5.1 Kinematics of Electron Scattering

In electron scattering experiments one employs highly relativistic particles. Hence
it is advisable to use four-vectors in kinematical calculations. The zero component
of space-time four-vectors is time, the zero component of four-momentum vectors
is energy:

x = (x0,Xx1,X2,x3) = (ct,x),

5.1
p = (po, p1, p2, p3) = (E/c, p) . -1
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Three-vectors are designated by bold-faced type to distinguish them from four-
vectors. The Lorentz-invariant scalar product of two four-vectors a and b is defined
by

a-b = dobo—albl —azbz—a3b3 = aobo—a'b. (52)
In particular, this applies to the four-momentum squared:

E2
P’ = =~ 2, (5.3)

This squared product is equal to the square of the rest mass m (multiplied by c?).
This is so since a reference frame in which the particle is at rest can always be found
and there p = 0, and E = mc?. The quantity

m=+/p?/c (5.4)

is called the invariant mass. From (5.3) and (5.4) we obtain the relativistic energy-
momentum relation

E? — p?’c? = m*c* (5.5)
and thus
E~|plc if E>mc*. (5.6)

For electrons, this approximation is already valid at energies of a few MeV.

B Consider the scattering of an electron with four-momentum p off a particle with four-
momentum P (Fig.5.1). Energy and momentum conservation imply that the sums of the four-
momenta before and after the reaction are identical:

p+P=p +P, 6.7

Fig. 5.1 Kinematics of Nucleus
elastic electron-nucleus
scattering Electron
— 00—
E.p

E,.P
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or squared:
2 2 2 — 2 /p/ /2

In elastic scattering the invariant masses m,. and M of the colliding particles are unchanged. Hence
from

pr=pt= mgcz and P> =P? = M*? 5.9
it follows that
p-P=p-P. (5.10)

Usually only the scattered electron is detected and not the recoiling particle. In this case the
relation

pP=p-(p+P-p)=pp+pP—ml (5.11)

is used. Consider the laboratory frame where the particle with four-momentum P is at rest before
the collision. Then the four-momenta can be written as

p=(E/c.p) p'=(E'/c.p)) P=Mc,0) P = (Ep/c.P). (5.12)
Hence (5.11) yields
E-Mc*=EE—pp'c®+EMP —mic*. (5.13)

At high energies, m?c* may be neglected and E & |p| - ¢ (Eq. (5.6)) can be safely used. One thus
obtains a relation between the angle and the energy

E-Mc? =FE-(1—cosf)+E -Mc . (5.14)

In the laboratory system, the energy E’ of the scattered electron is

E
14+ E/Mc2-(1—cosh)

!

(5.15)

The angle 6 through which the electron is deflected is called the scattering angle.
The recoil which is transferred to the target is given by the difference E — E’. In
elastic scattering, a one-to-one relationship (5.15) exists between the scattering
angle 6 and the energy E’ of the scattered electron; (5.15) does not hold for inelastic
scattering.

The angular dependence of the scattering energy E’ is described by the term
(1 —cos ) multiplied by E/Mc?. Hence the recoil energy of the target increases
with the ratio of the relativistic electron mass E/c? to the target mass M. This is in
accordance with the classical laws of collision.

In electron scattering at the relatively low energy of 0.5 GeV off a nucleus with
mass number A = 50 the scattering energy varies by only 2 % between forward and
backward scattering. The situation is very different for 10 GeV-electrons scattering
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Fig. 5.2 Angular 12
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off protons. The scattering energy E’ then varies between 10GeV (6 ~ 0°) and
445MeV (0 =180°) (cf. Fig.5.2).

5.2 The Rutherford Cross-Section

We will now consider the cross-section for an electron with energy E scattering off
an atomic nucleus with charge Ze. For the calculation of the reaction kinematics
to be sufficiently precise, it must be both relativistic and quantum mechanical. We
will approach this goal step by step. Firstly, we introduce the Rutherford scattering
formula. By definition, this formula yields the cross-section up to spin effects. For
heavy nuclei and low energy electrons, the recoil can, from (5.15), be neglected. In
this case, the energy E and the modulus of the momentum p are the same before
and after the scattering. The kinematics can be calculated in the same way as, for
example, the hyperbolic trajectory of a comet which is deflected by the Sun as it
traverses the solar system. As long as the radius of the scattering centre (nucleus,
Sun) is smaller than the closest approach of the projectile (electron, comet) then
the spatial extension of the scattering centre does not affect this purely classical
calculation. This leads to the Rutherford formula for the scattering of a particle with
charge ze and kinetical energy Eyi, on a target nucleus with charge Ze:

do (zZe?)?
il = . 7 (5.16)
d$2 ) Rutherfora ~ (471€0)? - (4Ejin)? sin® 5

Exactly the same equation is obtained by a calculation of this cross-section in
non-relativistic quantum mechanics using Fermi’s golden rule. This we will now
demonstrate. To avoid unnecessary repetitions we will consider the case of a central
charge with finite spatial distribution.
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Scattering off an extended charge distribution Consider the case of a target so
heavy that the recoil is negligible. We can then use three-momenta. If Ze is small,
ie., if

Zo < 1, (5.17)

the Born approximation can be applied, and the wave functions v; and v of the
incoming and of the outgoing electron can be described by plane waves

1 . 1 -
v = Wesz/h I/ff = W elpx/h . (5.18)

We can sidestep any difficulties related to the normalisation of the wave functions
by considering only a finite volume V. We need this volume to be large compared
to the scattering centre, and also large enough that the discrete energy states in this
volume can be approximated by a continuum. The physical results have, of course,
to be independent of V.

We consider an electron beam with a density of n, particles per unit volume. With
the volume of integration chosen to be sufficiently large, the normalisation condition
is given by

N,
/|w,-|2dV:na~V where V= —, (5.19)
Vv

ny

i.e., V is the normalisation volume that must be chosen for a single beam particle.

According to (4.20), the reaction rate W is given by the product of the cross-
section o and the beam particle velocity v, divided by the above volume. When
applying the golden rule (4.19), we get

5 dn
dEy -

OV,
\%4

2
=W = = |y Ml )| (5.20)

Here, E is the total energy (kinetic energy and rest mass) of the final state. Since
we neglect the recoil and since the rest mass is a constant, dEy = dE' = dE.
The density n of possible final states in phase space (cf. (4.16)) is

_Axm|p/lPdlp’|-V

an(lp') = =

(5.21)

Therefore the cross-section for the scattering of an electron into a solid angle
element ds2 is

2 VIp'Id|p/|

I (5.22)

1 2
do vy~ 3 = % (s [ Him V) |
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The velocity v, can be replaced, to a good approximation, by the velocity of light
c. For large electron energies, | p’| = E’/c applies, and we obtain

do V2E?
10 = W‘ 1/ff|7'[im|1/fi)|2 . (5.23)

The interaction operator for a charge e in an electric potential ¢ is Hi,r = e¢.
Hence, the matrix element is

e —ip’ i
Willin) = 5 [ 7 gy ety (5.24)
Defining the momentum transfer q by

g=p-p. (5.25)

we may re-write the matrix element as

Wil vr) = / ¢ () /1 @ (5.26)

B Green'’s theorem permits us to use a clever trick here: for two arbitrarily chosen scalar fields u
and v, which fall off fast enough at large distances, the following equation holds for a sufficiently
large integration volume:

/(uAv —vAu)d’x =0, with A = V2, (5.27)
Inserting
. —h? ,
e/h = — . Aei/h (5.28)
lq|?

into (5.26), we may rewrite the matrix element as

(Y [ Hindl ) = / A¢(x) e®/m @y . (5.29)

VI |2
The potential ¢ (x) and the charge density o(x) are related by Poisson’s equation

Ap(x) = (") (5.30)

In the following, we will assume the charge density o(x) to be static, i.e. independent of
time.
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We now define a charge distribution function f by o(x) = Zef (x) which satisfies the
normalisation condition [ f(x) d3x = 1, and re-write the matrix element as

eh’ iqx/h 13
Wy i) = / o) ¥/
= %‘xfj% / F(x) e /@iy (5.31)
The integral
F(q) = / e/t r(x)dx (5.32)

is the Fourier transform of the charge function f(x), normalised to the total charge.
It is called the form factor of the charge distribution. The form factor contains all the
information about the spatial distribution of the charge of the object being studied.
We will discuss form factors and their meaning in the following chapters in some
detail.

To calculate the Rutherford cross-section we, by definition, neglect the spatial
extension — i.e., we replace the charge distribution by a é-function. Hence, the form
factor is fixed to unity. By inserting the matrix element into (5.23) we obtain

(5.33)

do _ 4Z%2a*(he)’E”?
ds2

Rutherford I qc I 4

The 1/g*-dependence of the electromagnetic cross-section implies very low event
rates for electron scattering with large momentum transfers. The event rates drop off
so sharply that small measurement errors in ¢ can significantly falsify the results.

B Since recoil is neglected in Rutherford scattering, the electron energy and the magnitude of its
momentum do not change in the interaction:

E=E, lpl = 1p']. (5.34)

The magnitude of the momentum transfer ¢ is therefore

)
lgl =2- Iplsmi- (5.35)
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Fig. 5.3 Sketch of elastic
electron scattering off a
nucleus with charge Z - e

If we recall that E = | p|-c is a good approximation we obtain the relativistic Rutherford scattering

formula
do 720 (he)?
do = 2o (5.36)
d$2 /Rutherfora ~ 4E2 sin* 5

The classical Rutherford formula (5.16) may be obtained from (5.33) by applying non-

relativistic kinematics: p = mv, Eyj, = mv?/2 and E’ ~ mc?.

Field-theoretical considerations Figure 5.3 is a pictorial representation of a
scattering process. In the language of field theory, the electromagnetic interaction of
an electron with the charge distribution is mediated by the exchange of a photon, the
field quantum of this interaction. The photon which does not itself carry any charge,
couples to the charges of the two interacting particles. In the transition matrix
element, this yields a factor Ze - e and in the cross-section we have a term (Ze?)?.
The three-momentum transfer ¢ defined in (5.25) is the momentum transferred by
the exchanged photon. Hence the reduced de Broglie wavelength of the photon is

h 1

“lglIpl 2sing

x (5.37)

If & is considerably larger than the spatial extent of the target particle, internal
structures cannot be resolved, and the target particle may be considered to be point-
like. The Rutherford cross-section from (5.33) was obtained for this case.

In the form (5.33), the dependence of the cross-section on the momentum transfer
is clearly expressed. To lowest order the interaction is mediated by the exchange of
a single photon. Since the photon is massless, the propagator (4.23) in the matrix
elementis 1/Q?, or 1/|g|* in a non-relativistic approximation. The propagator enters
the cross-section squared which leads to the characteristic fast 1/|g|* fall-off of the
cross-section.

If the Born approximation condition (5.17) no longer holds, then our simple
picture must be modified. Higher order corrections (exchange of several photons)
must be included and more complicated calculations (phase shift analyses) are
necessary.
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5.3 The Mott Cross-Section

Up to now we have neglected the spins of the electron and of the target. At
relativistic energies, however, the Rutherford cross-section is modified by spin
effects. The Mott cross-section, which describes electron scattering and includes
effects due to the electron spin, may be written as

do \* d
(_“) = (_“) : (1 — B sin? 9) . with f=2.  (538)
ds2 Mott ds2 Rutherford 2 ¢

The asterisk indicates that the recoil of the nucleus has been neglected in deriving
this equation. The expression shows that, at relativistic energies, the Mott cross-
section drops off more rapidly at large scattering angles than does the Rutherford
cross-section. In the limiting case of 8 — 1, and using sin’x + cos®x = 1, the Mott
cross-section can be written in a simpler form:

do \* d 0 47202 (he)?E? 0
al - (£ .cos’ — = L cos® — . (5.39)
dg Mott dg Rutherford 2 |qC | 4 2

The additional factor in (5.38) can be understood by considering the extreme
case of scattering through 180°. For relativistic particles in the limit § — 1, the
projection of their spin s on the direction of their motion p/|p| is a conserved
quantity. This conservation law follows from the solution of the Dirac equation in
relativistic quantum mechanics [3]. It is usually called conservation of helicity rather
than conservation of the projection of the spin. Helicity is defined by

LA 4
sl -1pl

(5.40)

Particles with spin pointing in the direction of their motion have helicity +1,
particles with spin pointing in the opposite direction have helicity —1.

Figure 5.4 shows the kinematics of scattering through 180°. We here choose the
momentum direction of the incoming electron as the axis of quantisation z. Because
of conservation of helicity, the projection of the spin on the z-axis would have to
turn over (spin-flip). This, however, is impossible with a spinless target, because
of conservation of total angular momentum. The orbital angular momentum L is
perpendicular to the direction of motion z. It therefore cannot cause any change in
the z-component of the angular momentum. Hence in the limiting case § — 1,
scattering through 180° must be completely suppressed.

If the target has spin, the spin projection of the electron can be changed, as
conservation of angular momentum can be compensated by a change in the spin
direction of the target. In this case, the above reasoning is not valid, and scattering
through 180° is possible.
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XA

L=rxp

y

Fig. 5.4 Helicity, h = s- p/(|s| - | p]), is conserved in the B — 1 limit. This means that the spin
projection on the z-axis would have to change its sign in scattering through 180°. This is impossible
if the target is spinless, because of conservation of angular momentum

5.4 Nuclear Form Factors

In actual scattering experiments with nuclei or nucleons, we see that the Mott cross-
sections agree with the experimental cross-sections only in the limit |g|] — 0. At
larger values of |g|, the experimental cross-sections are systematically smaller. The
reason for this lies in the spatial extension of nuclei and nucleons. At larger values of
|q|, the reduced wavelength of the virtual photon decreases (5.37), and the resolution
increases. The scattered electron no longer sees the total charge, but only parts of it.
Therefore, the cross-section decreases.

As we have seen, the spatial extension of a nucleus is described by a form
factor (5.32). In the following, we will restrict the discussion to the form factors
of spherically symmetric systems which have no preferred orientation in space. In
this case, the form factor only depends on the momentum transfer g. We symbolise
this fact by writing the form factor as F(g?).

Experimentally, the magnitude of the form factor is determined by the ratio of
the measured cross-section to the Mott cross-section

d do \*
(). = (5@), ., trar (541
exp. Mott

One therefore measures the cross-section for a fixed beam energy at various
angles (and thus different values of |g|) and divides by the calculated Mott cross-
section.

In Fig. 5.5, a typical experimental set-up for the measurement of form factors is
depicted. The electron beam is provided by a linear accelerator and is directed at a
thin target. The scattered electrons are measured in a magnetic spectrometer. In an
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Spectrometer A
Spectrometer B
I e i e |
b_'_u Spectrometer C
I
Me————JT
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3-Spectrometer facility
at MAMI accelerator

Fig. 5.5 Experimental set-up for the measurement of electron scattering off protons and nuclei
at the electron accelerator MAMI-B (Mainzer Microtron). The maximum energy available is
820 MeV. The figure shows three magnetic spectrometers. They can be used individually to detect
elastic scattering or in coincidence for a detailed study of inelastic channels. Spectrometer A is
shown in cutaway view. The scattered electrons are analysed according to their momentum by two
dipole magnets supplemented by a system of detectors made up of wire chambers and scintillation
counters. The diameter of the rotating ring is approximately 12 m (Courtesy of Arnd P. Liesenfeld
(Mainz), who produced this picture)

analysing magnet the electrons are deflected according to their momentum, and are
then detected in wire chambers. The spectrometer can be rotated around the target
in order to allow measurements at different angles 6.

Examples of form factors The first measurements of nuclear form factors were
carried out in the early 1950s at a linear accelerator at Stanford University,
California. Cross-sections were measured for a large variety of nuclei at electron
energies of about 500 MeV.

An example of one of the first measurements of form factors can be seen in
Fig.5.6. It shows the '2C cross-section measured as a function of the scattering
angle 6. The fast fall-off of the cross-section at large angles corresponds to the
1/|q|*-dependence. Superimposed is a typical diffraction pattern associated with
the form factor. It has a minimum at § ~ 51° or |g|/A ~ 1.8 fm™!. We want to now
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Fig. 5.6 Measurement of the 102
form factor of '2C by

electron scattering (From E =420 MeV
[4]). The figure shows the
differential cross-section
measured at a fixed beam
energy of 420MeV, at 7
different scattering angles.
The dashed line corresponds
to scattering of a plane wave
off an homogeneous sphere
with a diffuse surface (Born
approximation). The solid
line corresponds to an exact
phase shift analysis which
was fitted to the experimental
data

do/dQ [em?sr]

90°

discuss this figure and describe what information about the nucleus can be extracted
from it.

As we have seen, the form factor F(g?) is under certain conditions (negligible
recoil, Born approximation) the Fourier transform of the charge distribution f(x)

F(¢®) = / e/t (x) dx . (5.42)

For spherically symmetric cases f only depends upon the radius » = |x|. Integration
over the total solid angle then yields

sin |q|r/h

alr/h r2dr, (5.43)

F) = 4x [ 1)
with the normalisation

0o +1 2 ~
IZ/f(x)d3x:/0 /—1 | f(r)r2d¢dcos19dr:47r/0 fr)rtdr.
(5.44)
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Table 5.1 Connection between charge distributions and form factors for some spherically
symmetric charge distributions in Born approximation

Charge distribution f(r) Form factor F(g?)
Point 8(r)/4n 1 Constant
Exponential (a®/8m) - exp (—ar) (144¢% azhz)_2 Dipole
Gaussian (612/271)3/2 - exp (—a2r2/2) exp (—q2/2a2h2) Gaussian
Homogeneous 3/47R3 for r <R 3a73 (sina — o cos &) o

. Oscillating
sphere 0 forr>R with o = |q|R/k

In principle, the radial charge distribution could be determined from the inverse
Fourier transform, using the g>-dependence of the experimental form factor

1
(27)?

f(r) = / F(g?) e /" ¢3¢ . (5.45)

In practice, however, the form factor can be measured only over a limited range of
momentum transfer |g|. The limitation is due to the finite beam energy available
and the sharp drop in the cross-section for large momentum transfer. One therefore
chooses various parametrisations of f(r), determines the theoretical prediction for
F(g?) and varies the parameters to obtain a best fit between theory and the measured
value of F(g?).

The form factor can be calculated analytically for certain charge distributions
described by some simple radial functions f(r). The form factors for some special
cases of f(r) are listed in Table 5.1, and are depicted in Fig. 5.7. A charge distribution
which drops off gently corresponds to a smooth form factor. The more extended the
charge distribution, the stronger the fall-off of the form factor with g2. On the other
hand if the object is small, the form factor falls off slowly. In the limit of a point-like
target, the form factor approaches unity.

Scattering off an object with a sharp surface generally results in well-defined
diffraction maxima and minima. For a homogeneous sphere with radius R, for
example, a minimum is found at

‘R
% ~4.5. (5.46)

The location of the minima thus tells us the size of the scattering nucleus.

In Fig.5.6 we saw that the minimum in the cross-section of electron scattering
off 12C (and thus the minimum in the form factor) is found at |g|/A ~ 1.8 fm™!.
One concludes that the carbon nucleus has a radius R = 4.5%/|q| =~ 2.5 fm.

Figure 5.8 shows the result of an experiment comparing the two isotopes “°Ca
and *8Ca. This picture is interesting in several respects:



68 Geometric Shapes of Nuclei
p(r) IF(q?)] Example
pointlike constant Electron
exponential \\dipole Proton
gauss Y BLi
homogeneous
sphere oscillating -
sphere with
a diffuse o
surface oscillating 40Ca

lql—>

Fig. 5.7 Relation between the radial charge distribution go(r) and the corresponding form factor in
Born approximation. A constant form factor corresponds to a point-like charge (e.g., an electron); a
dipole form factor to a charge distribution which falls off exponentially (e.g., a proton); a Gaussian
form factor to a Gaussian charge distribution (e.g., ®Li nucleus); and an oscillating form factor
corresponds to a homogeneous sphere with a more or less sharp edge. All nuclei except for the
lightest ones, display an oscillating form factor

— The cross-section was measured over a large range of |¢|. Within this range, it
changes by seven orders of magnitude.!
— Not one but three minima are visible in the diffraction pattern. This behaviour
of the cross-section means that F(g”) and the charge distribution o(r) can be

determined very accurately.

— The minima of **Ca are shifted to slightly lower values of |g| than those of *’Ca.
This shows that *Ca is larger.

Information about the nuclear radius can be obtained not only from the
location of the minima of the form factor, but also from its behaviour for

! Even measurements over 12 (!) orders of magnitude have been carried out (cf., e.g., [5]).
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Fig. 5.8 Differential cross-sections for electron scattering off the calcium isotopes *°Ca and **Ca
[1]. For clarity, the cross-sections of “°Ca and ** Ca have been multiplied by factors of 10 and 10!,
respectively. The solid lines are the charge distributions obtained from a fit to the data. The location
of the minima shows that the radius of *Ca is larger than that of “°Ca

g¢*> — 0. If the wavelength is considerably larger than the nuclear radius R,
then

% <1, (5.47)

and F(g?) can from (5.42) be expanded in powers of |q|:

F(g*) = /f(x)z . (l|q||x|cosﬂ) dx with & = <(x,q)

_ e} +1 2 _l M 2 .
_/o /_1 /0 f(r)[l 2( h ) cos? ¥ + ... | dp deos ¥ rdr

=4 / - f(r)Pdr — -—471 / f(r)rtdr + . (5.48)
0
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Defining the mean square charge radius according to the normalisation condi-
tion (5.44) by

() = 4x /00 P f(r) rdr, (5.49)
0
then
N lq2(72>
Fgh=1- 10 (5.50)

Hence it is necessary to measure the form factor F(g*) down to very small values of
g* in order to determine (r?). The following equation holds:

dF(q?)

() = —6 > :
dq2 q2=0

(5.51)

Charge distributions of nuclei Many high-precision measurements of this kind
have been carried out at different accelerators since the middle of the 1950s. Radial
charge distributions o(r) have been determined from the results. The following has
been understood:

— Nuclei are not spheres with a sharply defined surface. In their interior, the charge
density is nearly constant. At the surface the charge density falls off over a
relatively large range. The radial charge distribution can be described to good
approximation by a Fermi function with two parameters

0(0)

e (5.52)

o(r) =

This is shown in Fig. 5.9 for different nuclei.

Fig. 5.9 Radial charge
distributions of various
nuclei. These charge
distributions can be
approximately described by
the Fermi distribution (5.52),
i.e., as spheres with diffuse
surfaces
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— The constant c is the radius at which o(r) has decreased by half. Empirically, for
larger nuclei, ¢ and a are measured to be

c=1.07fm-A"3, a=0.54fm. (5.53)

— From this charge density, the mean square radius can be calculated. Approxi-
mately, for medium and heavy nuclei

(P2 =y A3, where ry = 0.94 fm . (5.54)
The nucleus is often approximated by a homogeneously charged sphere. The

radius R of this sphere is then quoted as the nuclear radius. The following
connection exists between this radius and the mean square radius:

5
R* = 3 (r). (5.55)
Quantitatively we have
R=121-A"*fm. (5.56)
This definition of the radius is used in the mass formula (2.8).
— The surface thickness ¢ is defined as the thickness of the layer over which the
charge density drops from 90 % to 10 % of its maximal value
= T(o/ov=0.1) = T(0/00=0.9) - (5.57)
Its value is roughly the same for all heavy nuclei, namely

t =2a-In9 ~ 2.40fm. (5.58)
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— The charge density o(0) at the centre of the nucleus decreases slightly with
increasing mass number. If one takes the presence of the neutrons into account
by multiplying by A/Z one finds an almost identical nuclear density in the
nuclear interior for nearly all nuclei. For “infinitely large” nuclear matter, it
would amount to?

on ~ 0.17 nu(:leons/fm3 . (5.59)

This corresponds to a value of c=1.12fm - A3 in (5.53).

— Some nuclei deviate from a spherical shape and possess ellipsoidal deformations.
In particular, this is found in the lanthanides (the “rare earth” elements). Their
exact shape cannot be determined by elastic electron scattering. Only a rather
diffuse surface can be observed.

— Light nuclei such as ®’Li, °Be, and in particular *He, are special cases. Here, no
constant density plateau is formed in the nuclear interior, and the charge density
is approximately Gaussian.

This summary describes only the global shape of nuclear charge distributions. Many
details specific to individual nuclei are known, but will not be treated further here

[2].

5.5 Inelastic Nuclear Excitations

Above, we have mainly discussed elastic scattering off nuclei. In this case the
initial and final state particles are identical. The only energy transferred is recoil
energy and the target is not excited to a higher energy level. For fixed scat-
tering angles, the incoming and scattering energies are then uniquely connected
by (5.15).

The measured energy spectrum of the scattered electrons, at a fixed scattering
angle 0, contains events where the energy transfer is larger than we would expect
from recoil. These events correspond to inelastic reactions.

Figure 5.10 shows a high-resolution spectrum of electrons with an initial energy
of 495MeV, scattered off '>C and detected at a scattering angle of 65.4°. The
sharp peak at E' ~ 482 MeV is due to elastic scattering off the '>C nucleus.
Below this energy, excitations of individual nuclear energy levels are clearly
seen. The prominent maximum at £/ ~ 463 MeV is caused by the giant dipole
resonance (Sect.19.2). At even lower scattering energies a broad distribution
from quasi-elastic scattering off the nucleons bound in the nucleus (Sect. 6.2) is
seen.

2This quantity is usually denoted by gy in the literature. To avoid any confusion with the charge
density we have used the symbol g, here.
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Fig. 5.10 Spectrum of electron scattering off '>C. The sharp peaks correspond to elastic scattering
and to the excitation of discrete energy levels in the '2C nucleus by inelastic scattering. The
excitation energy of the nucleus is given for each peak. The 495 MeV electrons were accelerated
with the linear accelerator MAMI-B in Mainz and were detected using a high-resolution magnetic
spectrometer (cf. Fig.5.5) at a scattering angle of 65.4° (Courtesy of Th. Walcher and G. Rosner,
Mainz)

Problems

1. Kinematics of electromagnetic scattering
An electron beam with energy E is elastically scattered off a heavy nucleus.

(a) Calculate the maximal momentum transfer.

(b) Calculate the momentum and energy of the backwardly scattered nucleus in
this case.

(c) Obtain the same quantities for the elastic scattering of photons with the same
energy (nuclear Compton effect).

2. Wavelength
Fraunhofer diffraction upon a circular disc with diameter D produces a ring
shaped diffraction pattern. The first minimum appears at 6 = 1.221/D.
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Calculate the angular separation of the diffraction minima of « particles with
energy Exin = 100MeV scattered off a %6Fe nucleus. The nucleus should be
considered as an impenetrable disc.

3. Rutherford scattering
Alpha particles with Eyj, = 6MeV from a radioactive source are scattered
off 7Au nuclei. At which scattering angle are deviations from the cross-
section (5.16) to be expected?

4. Form factor
Instead of a-particles with Eyj, = 6 MeV we now consider the scattering of
electrons with the same de Broglie wavelength off gold. How large must the
kinetic energy of the electrons be? How many maxima and minima will be visible
in the angular distribution (cf. Fig. 5.8)?
Since the recoil is small in this case, we may assume that the kinematical
quantities are the same in both the centre-of-mass and laboratory frames.

5. Elastic scattering of X-rays
X-rays are scattered off liquid helium. Which charge carriers in the helium
atom are responsible for the scattering? Which of the form factors of Fig.5.7
corresponds to this scattering off helium?

6. Compton scattering
Compton scattering off bound electrons can be understood in analogy to quasi-
elastic and deep-inelastic scattering. Gamma rays from positronium annihilation
are scattered off helium atoms (binding energy of the “first” electron: 24eV).
Calculate the angular spread of the Compton electrons that are measured in
coincidence with photons that are scattered by 6, = 30°.
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Chapter 6
Elastic Scattering Off Nucleons

6.1 Form Factors of the Nucleons

Elastic electron scattering off the lightest nuclei, hydrogen and deuterium, yields
information about the nuclear building blocks, the proton and the neutron. Certain
subtleties have, however, to be taken into account in any discussion of these
experiments.

Recoil As we will soon see, nucleons have a radius of about 0.8 fm. Their study
therefore requires energies from some hundred MeV up to several GeV. Comparing
these energies with the mass of the nucleon, M =~ 938 MeV/ c?, we see that they are
of the same order of magnitude. Hence the target recoil can no longer be neglected.
In the derivation of the cross-sections (5.33) and (5.39) we “prepared” for this by
using E’ rather than E. On top of this, however, the phase-space density dn/dEf
in (5.20) must be modified. We so eventually find an additional factor of E'/E in the

Mott cross-section [13]:
do do\* FE
- = —= L= 6.1)
dQ Mott dQ Mott E

Since the energy loss of the electron due to the recoil is now significant, it is no
longer possible to describe the scattering in terms of a three-momentum transfer.
Instead, the Lorentz-invariant squared four-momentum transfer,

q* = (p—p')* = 2mic* —2(EE'/c* — |p||p| cosb)

—4EE’ 0
2
~ sin” — , 6.2
= > (6.2)
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must be used. In order to only work with positive quantities we define:

0’ =—¢". (6.3)

In the Mott cross-section, g> must be replaced by ¢ or Q2.

Magnetic moment We must now not only take the interaction of the electron with
the nuclear charge into account, but also we have to consider the interaction between
the current of the electron and the nucleon’s magnetic moment.

The magnetic moment of a spin-1/2 particle is given by

, (6.4)

where M is the mass of the particle. For a charged, point-like particle which does
not possess any internal structure, the factor g is equal to 2 as a result of relativistic
quantum mechanics (the Dirac equation). The magnetic interaction is associated
with a flip of the spin of the nucleon. Scattering through 0° is not consistent with
conservation of both angular momentum and helicity and scattering through 180°
is preferred. The magnetic interaction is taken into account by an additional term in
the cross-section that contains a factor of sin’ %. With sin? % = cos? % - tan? % the
cross-section for elastic electron scattering on a charged Dirac particle reads:

d d 0
(—G) = (—G) -[1 +2ttan2—:|, (6.5)
ds2 Spl?sulﬁ/ ) d2 )y 2
where
Q2

The factor 27 can be fairly easily understood: the matrix element of the interaction
is proportional to the magnetic moment of the nucleon (and thus to 1/M) and to the
magnetic field which is produced at the target in the scattering process. Integrated
over time, this is proportional to the deflection of the electron (i.e., to the momentum
transfer Q). These quantities then enter the cross-section quadratically.

The magnetic term in (6.5) is large at large values of the four-momentum transfer
Q and at large scattering angles 6. Because of this additional term, the cross-section
decreases less steeply with the scattering angle than for the electric interaction alone
and the distribution is more isotropic.

Anomalous magnetic moment For charged Dirac particles without internal struc-
ture the g-factor in (6.4) should be exactly 2, while for neutral such particles the
magnetic moment should vanish. Indeed, measurements of the magnetic moments
of electrons and muons yield the value g = 2 up to small deviations that are caused
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by (theoretically well understood) quantum electrodynamical processes of higher
order.

Nucleons, however, are not point-like particles since they are made up of quarks.
Therefore their g-factors are determined by their sub-structure. The values measured
for protons and neutrons are

1y = %PMN = 42793 ux 6.7)
gn
Hn = SN = —1.913 - un , (6.8)

where the nuclear magneton uy is:

B
[N = % —3.1525- 1074 MeVT " . (6.9)
P

Form factors Charge and current distributions can be described by form factors,
just as in the case of nuclei. For nucleons, two form factors are necessary to
characterise both the electric and magnetic distributions. The cross-section for the
scattering of an electron off a nucleon is described by the Rosenbluth formula [16]:

do\ (do GE(0%) + 1G{ (0% 2 oy a2
(E) _ (E)Mon.l: — 420G, (0) tan 5] (6.10)

Here Gg(Q?) and Gy(Q?) are the electric and magnetic form factors which depend
on Q?. The measured Q? dependence of the form factors gives us information about
the radial distributions of charge and magnetisation. The limiting case Q> — 0
is particularly important. In this case Gg coincides with the electric charge of the
target, normalised to the elementary charge e; and Gy is equal to the magnetic
moment p of the target, normalised to the nuclear magneton. The limiting values
are:

Gi(Q> =0) =1 G =0) =0 6.11)
GYL(0* =0)=2.793 GY(Q*=0)=-1913. ’

In order to independently determine Gg(Q?) and Gy (Q?) the cross-sections
must be measured at fixed values of Q® for various scattering angles 6 (i.e., at
different beam energies E). The measured cross-sections are then divided by the
Mott cross-sections. If we display the results as a function of tanzg then the
measured points form a straight line, in accordance with the Rosenbluth formula.
Gwm(Q?) is determined by the slope of the line, and the intercept (G +1tGy;)/(1+1)
at § = 0 yields Gg(Q?). If we perform this analysis for various values of Q?, we

can obtain the Q? dependence of the form factors.
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Measurements of the electromagnetic form factors were carried out mainly in
the 1960s and 1970s at various electron accelerators in the United States and in
Europe. Figure 6.1 shows the results of a pioneering experiment at Stanford where,
by elastic electron scattering off protons and deuterons, the Q” dependence of the
two form factors for both proton and neutron were determined up to Q? values of
1.2 (GeV/c)? [9].

It turned out that the proton electric form factor and the magnetic form factors of
both the proton and the neutron fall off similarly with Q. They can be described to
a good approximation by a so-called dipole form factor

unGy(Q?) ~ NG (Q%)

~ Gdipole(QZ) ,
Hp Hn

Gh(Q?) ~

dipole 2\ Qz )_2
where G Q%) = (1 + 071GV /o2 (GeV/o)? . (6.12)

The neutron, being electrically neutral, has a very small electric form factor.

We may obtain distributions of charge and magnetisation inside the nucleon from
the Q? dependence of the form factors, just as we saw could be done for nuclei.
The interpretation of the form factors as the Fourier transform of the static charge
distribution is, however, only correct for small values of QZ, since only then the
three- and four-momentum transfers are approximately equal. The observed dipole
form factor (6.12) corresponds to a charge distribution which falls off exponentially
(cf. Fig.5.7):

o(r) =o0(0)e ™™ with a=427fm™" . (6.13)
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Nucleons are, we see, neither point-like particles nor homogeneously charged
spheres, but rather quite diffuse systems.

The mean square radii of the charge distribution in the proton and of the
distributions of magnetisation in the proton and the neutron are similarly large. They
may be found from the slope of Gg n(Q?) at Q> = 0. The dipole form factor yields:

deipole 2 12
: —2(Q) = — = 0.66 fm”,
dQ Q2=0 a

v () dipote = 0.81 fm . (6.14)

Precise measurements of the form factors at small values of Q> show slight
deviations from the dipole parametrisation. The slope at Q> — 0 determined from
these data yields the present best value [5] of the charge radius of the proton:

(r2>dipole = —6h

(r*)p = 0.879 fm. (6.15)

In subsequent measurements at the linear accelerator SLAC at Stanford, the Q?
range has been extended beyond 30 (GeV/c)? [6]. Small deviations from the relation
uUnGr(Q?)/ 11, G (Q?) = 1 have been observed. Figure 6.2 shows the results of
a global analysis of all presently available data [4]. Below Q*> ~ 10 (GeV/c)? the
deviations amount to a few percent only. At larger Q® values Gia decreases faster
with Q? than the dipole form factor. At Q* ~ 30 (GeV/c)? ,quGi,l /itp is about 30 %
smaller than G4iPole,

Of special interest are more recent experiments that have been performed at the
beginning of this century at the Thomas Jefferson Accelerator Facility (JLab) in the

- o ‘””‘é‘l_i ‘ “i.‘;wu : ‘E
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Fig. 6.2 Ratio of the normalised magnetic form factor un GYy/ Jp of the proton and the dipole
form factor GYP°l® as a function of Q7 (After [4])
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USA. In these measurements GE and Gia have not been determined by means of
the Rosenbluth separation. Instead, longitudinally polarised electrons whose spin is
oriented preferentially parallel to the beam direction or opposite to it are scattered
off unpolarised protons. Thereby the recoil proton gets polarised : T+ p—>e¢e+ _p)
It acquires two polarisation components, P;, perpendicular to the proton momentum
in the scattering plane and Py, parallel to it. Their ratio directly yields [3]

Ge P E+E 0

=—-—"."—" tan— . (6.16)
Gm P, 2Mc? 2

Figure 6.3 shows results of such measurements. The experimentally determined
ratio p,Gh(Q%)/(unGY(Q%)) decreases nearly linearly with Q? in the range
0.5 (GeV/c)* < Q% < 8.5 (GeV/c)? down to approximately 0.2 at the highest Q?
value [7, 10, 14, 15]. Therefore, the spatial distributions of the electric charge and
the magnetisation in the proton are substantially different: the charge distribution
extends to larger radii than the distribution of the magnetisation.

The discrepancy of the results obtained by the two methods is astounding. At
present, a favoured explanation is a possible contribution of two-photon exchange
in the scattering process. This might give rise to large corrections for the Rosenbluth
separation while it hardly affects the double-polarisation measurement.

The electric form factor of the neutron In the absence of a free neutron target, the
measurement of the two elastic form factors for the neutron is less straightforward
than for the proton. Most of the information about Gy, (Q?) and G&(Q?) has been
obtained from elastic electron scattering from deuterium. In this case it is necessary
to correct the measured data for the effects of the nuclear force between the
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Fig. 6.4 World data on the electric form factor of the neutron from double-polarisation exper-
iments (After [8]). The symbols characterise the measurement method: circles — polarised
deuterium, squares — polarised *He, triangles — measurement of the polarisation of the recoil
neutron. The solid line is a parametrisation of the data, the dashed straight line shows the slope
of GA(Q?) at Q*> = 0 (GeV/c)? that is proportional to the (negative) mean square radius of the
neutron

proton and the neutron. Incomplete corrections of this kind are responsible for the
negative values of (Gg)2 seen in Fig. 6.1. Initially the authors of these measurements
speculated that G, might be imaginary, but subsequently it was shown that Gy is
positive, leading, seemingly, to a contradiction.

To explain this contradiction, precise results have been obtained from double-
polarisation experiments with longitudinally polarised electron beams and either
polarised targets or the measurement of the polarisation of the recoil neutron.
Usually either deuterium or *He are used as polarised neutron targets. The deuteron
nucleus has spin-1, caused by the parallel spins of the proton and the neutron and
in addition a small D-state admixture to the deuteron wave function (cf. Sect. 17.2).
Polarised *He is regarded as an effective polarised neutron target, as the spins of
the two protons largely cancel. The world’s data on G} from double-polarisation
experiments [8] are displayed in Fig.6.4 as a function of Q2. The form factor
rises from zero at Q> = 0 (GeV/c)?> up to a value of approximately 0.06 at
Q?> ~ 0.3 (GeV/c)? and then decreases slowly with increasing Q”. The slope at
Q?> — 0 is positive. Consequently the mean square radius of the neutron must be
negative.

An elegant approach has been developed to determine the charge radius of the
free neutron. Low-energy neutrons from a nuclear reactor are scattered off electrons
in an atomic shell of a heavy nucleus and the resulting ejected electrons are then
measured. This reaction corresponds to electron-neutron scattering at small Q?. The
result of these measurements is [11]:

dGE(Q%)

— 61 =
dQ Q2=0

= —0.115 + 0.004 fm? . (6.17)
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The dashed straight line in Fig. 6.4 corresponds to these measurements. The
neutron only appears electrically neutral from the outside; its interior contains
electrically charged constituents which also possess magnetic moments. Since both
the charges and their magnetic moments contribute to the electric form factor, we
cannot separate their contributions in a Lorentz-invariant fashion. An interpretation
as a Fourier transform of the static charge distribution has to be taken with caution,
as already stated above. When (despite these restrictions) a Fourier transformation
of the parametrisation shown in Fig. 6.4 is performed, one obtains a radial charge
density ¢"(r) that is positive for r below approximately 0.5-0.6 fm and negative for
larger values of r, and which extends to radii of approximately 2.5 fm. Calculations
within the framework of various models yield a similar radial dependence of the
charge density of the neutron [17].

6.2 Quasi-elastic Scattering

In Sect.6.1 we considered the elastic scattering of electrons off free protons
(neutrons) at rest. For a given beam energy E and at a fixed scattering angle 6,
scattered electrons from this reaction always have a definite scattering energy E’
which is given by (5.15)

_ E
B 1+A%(1—0059) '

!

(6.18)

Repeating the scattering experiment at the same beam energy and at the
same detector angle, but now off a nucleus containing several nucleons, a more
complicated energy spectrum is observed. Figure 6.5 shows a spectrum of electrons
which were scattered off a thin H,O target, i.e., some were scattered off free protons,
some off oxygen nuclei.

The narrow peak observed at E' ~ 160 MeV stems from elastic scattering off
the free protons in hydrogen. Superimposed is a broad distribution with a maximum
shifted a few MeV towards smaller scattering energies. This part of the spectrum
may be identified with the scattering of electrons off individual nucleons within the
190 nucleus. This process is called quasi-elastic scattering. The sharp peaks at high
energies are caused by scattering off the '°0O nucleus as a whole (cf. Fig. 5.10). At
the left side of the picture, the tail of the A-resonance can be recognised; this will
be discussed in Sect. 7.1.

Both the shift and the broadening of the quasi-elastic spectrum contain informa-
tion about the internal structure of atomic nuclei. In the impulse approximation we
assume that the electron interacts with a single nucleon. The nucleon is knocked
out of the nuclear system by the scattering process without any further interactions
with the remaining nucleons in the nucleus. The shift of the maximum in the energy
distribution of the scattered electrons towards lower energies compared to the free-
proton case is due to the energy needed to remove the nucleon from the nucleus.
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From the broadening of the maximum compared to elastic scattering off free protons
in the hydrogen atom, we conclude that the nucleus is not a static object with locally
fixed nucleons. The nucleons rather move around “quasi-freely”” within the nucleus.
This motion causes a change in the kinematics compared to scattering off a nucleon
at rest.

Let us consider a bound nucleon moving with momentum P in an effective
average nuclear potential of strength S. This nucleon’s binding energy is then
S — P?/2M. We neglect residual interactions with other nucleons, and the kinetic
energy of the remaining nucleus and consider the scattering of an electron off this
nucleon.

P

./. Proton
o—— .
P ‘{A
Electron
Residual nucleus

In this case, the following kinematic connections apply:

p +P = p’ + P momentum conservation in the e-p system
P'=q+ P momentum conservation in the y-p system
E+E, = E + E; energy conservation in the e-p system
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The energy transfer v from the electron to the proton for E,E’ > me.c?> and
|P|, |P'| < Mc is given by

P/2 P2
V=E—-FE =FE —-E, = [M*+—)—(MP*+— -5
P M M

_®te P o @ 2dlPlcose

2 (6.19)
oM oM oM oM

where « is the angle between ¢ and P. We now assume that the motion of the
nucleons within the nucleus is isotropic (i.e., a spherically symmetric distribution).
This leads to a symmetric distribution for v around an average value
2
q

=18 6.20
Vo= + (6.20)

with a width of
1
oy = V{(v—1p)?) = %\/ (P2cos?a) = % 3 (P?) . (6.21)

Fermi momentum As we will discuss in Sect. 18.1, the nucleus can be described
as a Fermi gas in which the nucleons move around like quasi-free particles. The
Fermi momentum Pr is related to the mean square momentum by (cf. (18.9)):

Pi = §(1ﬂ>. (6.22)

An analysis of quasi-elastic scattering off different nuclei can thus determine the
effective average potential S and the Fermi momentum Pr of the nucleons.
Studies of the A-dependence of S and Pr were first carried out in the early

seventies. The results of the first systematic analysis are shown in Table 6.1 and
can be summarised as follows:

— The effective average nuclear potential S increases continuously with the mass
number A, varying between 17 MeV in Li to 44 MeV in Pb.

Table 6.1 Fermi momentum P and effective average potential S for various nuclei. These values
were obtained from an analysis of quasi-elastic electron scattering at beam energies between 320
and 500 MeV and at a fixed scattering angle of 60° [12, 18]. The errors are approximately 5 MeV/c
(Pg) and 3 MeV (S)

Nucleus Li 12C #Mg | %Ca |PNi |¥Y 1196n | 1817y | 208pp
Pr (MeV/e) |169 221 235 249 260 254 260 265 265

S (MeV) 17 25 32 33 36 39 42 42 44
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— Apart from in the lightest nuclei, the Fermi momentum is nearly independent of
A and is:

Pp ~ 250 MeV/c . (6.23)

This behaviour is consistent with the Fermi gas model. The density of nuclear
matter is independent of the mass number except for in the lightest nuclei.

6.3 Charge Radii of Pions and Kaons

The charge radii of various other particles can also be measured by the same method
that was used for the neutron. For example those of the w-meson [1] and the K-
meson [2], particles which we will introduce in Sect. 8.1. High-energy mesons are
scattered off electrons in the hydrogen atom. The form factor is then determined by
analysing the angular distribution of the ejected electrons. Since the pion and the
kaon are spin-0 particles, they have an electric but not a magnetic form factor.

The Q*-dependence of these form factors is shown in Fig.6.6. Both can be
described by a monopole form factor:

F(Q?) = Ge(Q%) = (1 + Q¥/a?) ™" with o = % . (6.24)

The slopes near the origin yield the mean square charge radii:

(), = 0.44 £0.02 fm? ; /(2), = 0.67 +0.02 fm
(P)k = 0.34£0.05 fm? ; /(r?)x = 0.58 +0.04 fm .

(Fo)? (FK)?
1.0

0.8

0.6

0.4

0.2

0.4 . . . . . . . . . . .
0 0.02 0.04 0.06 0.08 0.10 0.12 0 0.02 0.04 0.06 0.08 0.10

Q2 [(GeV/c)?] Q2 [(GeV/c)?]

Fig. 6.6 Pion and kaon form factors as functions of Q? (From [1] and [2]). The solid lines
correspond to a monopole form factor, (1 + Q?/a?h?) !
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We see that the pion and the kaon have a different charge distribution than the
proton; in particular it is less spread out. This may be understood as a result of the
different internal structures of these particles. We will see in Chap. 8 that the proton
is composed of three quarks, while the pion and kaon are both composed of a quark
and an antiquark.

The kaon has a smaller radius than that of the pion. This can be traced back to
the fact that the kaon, in contrast to the pion, contains a heavy quark (an s-quark).
In Sect. 14.5 we will demonstrate in a heavy quark-antiquark system that the radius
of a system of quarks decreases if the mass of its constituents increases.

Problems

1. Electron radius
Suppose one wants to obtain an upper bound for the electron’s radius by looking
for a deviation from the Mott cross-section in electron-electron scattering. What
centre-of-mass energy would be necessary to set an upper limit on the radius of
1073 fm?

2. Electron-pion scattering
State the differential cross-section, do/dS2, for elastic electron-pion scattering.
Write out explicitly the Q? dependence of the form factor part of the cross-section
in the limit 9*> — 0 assuming that (r?), = 0.44 fm?.
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Chapter 7
Deep-Inelastic Scattering

Verlockend ist der duf3re Schein der Weise dringet tiefer ein.

Wilhelm Busch
Der Geburtstag

In the present chapter we will discuss deep-inelastic scattering of charged leptons off
nucleons and demonstrate that these nucleons are not fundamental particles but that
they have a substructure of quarks and gluons. To resolve the nucleon’s constituents
experimentally, the wavelength of the exchanged virtual photon has to be small
compared to the nucleon’s radius, A < R, and consequently high beam energies
are required. The first generation of such experiments was carried out in the late
1960s and in the 1970s at SLAC using a linear electron accelerator with a maximum
energy of 25 GeV. The second generation was performed in the 1980s and 1990s at
CERN and FNAL using beams of muons instead of electrons. Like electrons, muons
are point-like charged particles; the scattering processes are completely analogous
and the cross-sections are the same. Muon beams have the advantage that they can
be produced at much higher energies than electron beams. In order to make those
muon beams, protons with energies of several hundred GeV impinge on a target
producing a large number of pions. On a several hundred metre long decay line, a
fraction of these pions decays in flight into muons (cf. Sect. 10.1) which are then
momentum-selected and focused by a series of magnetic lenses to form a beam.
At CERN (FNAL) average beam energies of up to 280 GeV (490GeV) and Q-
values of several hundred (GeV/c)? have been achieved. The last generation of
such experiments has been performed in the years 1992-2007 at the electron-proton
collider HERA located at DESY. Here electrons or positrons with 27.6 GeV and
protons with a maximum beam energy of 920 GeV circulated in two separate storage
rings in opposite directions and were brought to collision at two crossing points. The
resulting kinematic region extended to Q*-values of several 10*(GeV /c)>.

The basic properties of the quark and gluon structure of the hadrons were
established by the experiments at SLAC, which will be discussed and interpreted in
this chapter. The second and the third generations of experiments served for detailed
studies of this structure and tests of Quantum Chromodynamics (QCD), the theory
of the strong interaction, which we will discuss in the subsequent chapter.

© Springer-Verlag Berlin Heidelberg 2015 87
B. Povh et al., Particles and Nuclei, Graduate Texts in Physics,
DOI 10.1007/978-3-662-46321-5_7



88 7 Deep-Inelastic Scattering

7.1 Excited States of the Nucleons

In Fig.5.10 of Sect.5.5 we presented the spectrum observed in electron scattering
off the '>C nucleus where, in addition to the sharp peak due to elastic scattering
off the whole nucleus, further peaks appeared associated with nuclear excitations.
Similar spectra are observed for electron-nucleon scattering.

Figure 7.1 shows a spectrum from electron-proton scattering. It was obtained
at an electron energy E = 4.9GeV and at a scattering angle of 8§ = 10° by
varying the accepted scattering energy of a magnetic spectrometer in small steps.
Besides the sharp elastic scattering peak (scaled down by a factor of 15 for clarity),
peaks at lower scattering energies are observed associated with inelastic excitations
of the proton. These peaks correspond to excited states of the nucleon which we
call nucleon resonances. The existence of these excited states of the proton already
indicates that the proton is a composite system. In Chap. 16 we will explain the
structure of these resonances in the framework of the quark model.

The invariant mass of these states is denoted by W. It is calculated from the four-
momenta of the exchanged photon (g) and of the incoming proton (P) according
to

W22 = P? = (P + q)* = M** + 2Pq + ¢* = M*c* + 2Mv — Q* . (7.1)
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Fig. 7.1 Spectrum of scattered electrons from electron-proton scattering at an electron energy of
E = 4.9GeV and a scattering angle of # = 10° (From [4])
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Here the Lorentz-invariant quantity v is defined as

Pq
=—. 7.2
v=os (7.2)
The target proton is at rest in the laboratory system. This corresponds to P =
(Mc,0) and ¢ = ((E—FE’)/c,q). Therefore the energy transferred by the virtual

photon from the electron to the proton in the laboratory frame is:
v=E-F. (7.3)

For the following discussion it is useful to introduce two additional dimension-
less Lorentz-invariant quantities. These are the variable

Pq 14 E'
yo= Sd by 2 (7.4)
Pp E
and the Bjorken scaling variable
0 0

x:= = . (7.5)
2Pq  2Mv

We will interpret the latter quantity in more detail further down in Sect.7.3. Itis a

measure for the inelasticity of the process. For elastic scattering the invariant mass

W is equal to the nucleon mass M and therefore we get with (7.1)

XMy—0Q*=0 = x=1, (7.6)

while for inelastic processes W is larger than M and we get

XMy—0*>0 = O<x<]l. (1.7)

The A (1232) resonance The nucleon resonance A(1232), which appears in
Fig.7.1 at about E' = 4.2GeV, has a mass W = 1,232 MeV/c?. As we will see
in Chap. 16, this resonance exists in four different charge states: AT+, A*, A°, and
A~. In Fig.7.1, the A" excitation is observed since charge is not transferred in the
reaction (Fig. 7.2).

The width observed for the elastic peak is a result of the finite resolution of
the spectrometer, but resonances have a real width! of typically I"~100MeV.
The uncertainty principle then implies that such resonances have very short
lifetimes. The A(1232) resonance has a width of approximately 120 MeV and
thus a lifetime of

h 6.6-1072MeVs o4
IT=— = —————— = 55.100""s.
I 120 MeV

IThe exact meaning of “width” will be discussed in Sect. 9.2.
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Fig. 7.2 Inelastic A Resonance
electron-nucleon scattering

with the excitement of the
nucleon to a A resonance

Electron

This is the typical time scale for strong interaction processes. The AT resonance
decays by:

AT > p+n°

AT >n+nt.

A light particle, the 7-meson (or pion) is produced in such decays in addition to the
nucleon.

7.2 Structure Functions

Individual resonances cannot be distinguished in the excitation spectrum for invari-
ant masses W 2 2.5 GeV/c?. Instead, one observes that many further strongly
interacting particles (hadrons) are produced (Fig. 7.3).

Electron scattering in the kinematic region where W, \/@ /c and v/c* are
much larger than the nucleon mass M, we denote as deep-inelastic scattering.
The dynamics of such production processes may be, similar to the case of elastic
scattering, described in terms of form factors. In the inelastic case they are usually
termed structure functions Wy and W,, or F| and F;, respectively.

In elastic scattering, at a given beam energy E, only one of the kinematical
parameters may vary freely. For example, if the scattering angle 6 is fixed,
kinematics requires that the squared four-momentum transfer Q?, the energy transfer
v, the energy of the scattered electron E’ etc. are also fixed. In inelastic scattering,
however, the excitation energy of the proton adds a further degree of freedom. Hence
these structure functions and cross-sections are functions of two independent, free
parameters, e.g., (E', 0), (0%, v) or (Q?, x).



7.2 Structure Functions 91

Fig. 7.3 Inelastic Hadrons
electron-nucleon scattering

leading to several hadrons in
the final state
PI

p Proton

Electron

The Rosenbluth formula (6.10) is now replaced by the cross-section:
d’o do \* 6

—— == W1 (0%, 2Wi(Q% v) tan® | . 7.8

10 dF (d.Q) [ 2(Q°,v) + 2Wi(Q7, v) tan 2} (7.8)

Mott

The second term again stems from the magnetic interaction.

This notation of the cross-section is mainly used for didactic and historical
purposes. Instead of the two structure functions W;(Q?, v) and W,(Q?, v) usually
the two dimensionless structure functions

F](X, QZ) = MCZ Wl(sz U) B
Fo(x, Q%) = v Wa(Q,v) (7.9)

are used and the differential cross-section is expressed in terms of the two variables
x and Q%

2 242
dgz"dx - 4”g4h [(1 . Y %) Fa(x. 0 + Y*Fi (. QZ):| . (7.10)
Measurements of the deep-inelastic cross-section at fixed values of x and Q? but
several values of y, i.e., several beam energies E, are required for the determination
of both structure functions F; (x, Q%) and F»(x, Q?).
The first deep-inelastic scattering experiments were carried out in the late 1960s
at SLAC [5, 6]. Figure 7.4 shows one of the results of these experiments that came
as a surprise. Displayed is the structure function F,(x, Q%) as a function of x, for
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Fig. 7.4 The structure function F, of the proton as a function of x, for Q? between 2 (GeV/c)?
and 18 (GeV/c)? [3].

data covering a range of Q? between 2 (GeV/c)? and 18 (GeV/c)?. At fixed values
of x the structure function depends only weakly, if at all, on Q2.

The fact that the structure functions are independent of Q> means, according
to our previous discussion, that the electrons are scattered off a point charge (cf.
Fig.5.7). Since nucleons are extended objects, it follows from the above result that:

Nucleons have a sub-structure made up of point-like constituents.

The F; structure function results from the magnetic interaction. It vanishes for
scattering off spin-zero particles. For spin-1/2 Dirac particles (6.5) and (7.8) imply
the so called Callan-Gross relation [7] (see the exercises)

2xF (x) = Fo(x). (7.11)

The ratio 2xF/F, is shown in Fig.7.5 as a function of x. It can be seen that
the ratio is consistent with unity within experimental uncertainties. Hence we can
further conclude that:

The point-like constituents of the nucleon have spin 1/2.

7.3 The Parton Model

The interpretation of deep-inelastic scattering off protons may be considerably
simplified if the reference frame is chosen judiciously. The physics of the process
is, of course, independent of this choice. If one looks at the proton in a fast moving
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Fig. 7.5 Ratio of the structure functions 2xF;(x) and F,(x). The data are from experiments at
SLAC (From [9])

system, then the transverse momenta and the rest masses of the proton constituents
can be neglected. The structure of the proton is then given to a first approximation by
the longitudinal momenta of its constituents. This is the basis of the parton model
of Feynman and Bjorken. In this model the constituents of the proton are called
partons. Today the charged partons are identified with the quarks and the electrically
neutral ones with the gluons — the field quanta of the strong interaction.

Decomposing the proton into independently moving partons, the interaction of
the electron with the proton can be viewed as the incoherent sum of its interactions
with the individual partons. These interactions in turn can be regarded as elastic
scattering. This approximation is valid as long as the duration of the photon-parton
interaction is so short that the interaction between the partons themselves can be
safely neglected (Fig. 7.6). This is the impulse approximation which we have already
met in quasi-elastic scattering (p. 82). In deep-inelastic scattering this approximation
is valid because the interaction between partons at short distances is weak, as we will
see in Sect. 8.2.

If we make this approximation and assume both that the parton masses can be
safely neglected and that Q> >> M?>c?, we obtain a direct interpretation of the
Bjorken scaling variable x = Q?/2Mv which we defined in (7.5). It is that fraction
of the four-momentum of the proton which is carried by the struck parton. A photon
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Electron

Parton

Proton

b)

a)

Electron

Fig. 7.6 Schematic representation of deep-inelastic electron-proton scattering according to the
parton model, in the laboratory system (a) and in a fast moving system (b). This diagram shows
the process in two spatial dimensions. The arrows indicate the directions of the momenta. Diagram
(b) depicts the scattering process in the Breit frame in which the energy transferred by the virtual
photon is zero. Hence the momentum of the struck parton is turned around but its magnitude is
unchanged

which, in the laboratory system, has four-momentum g = (v/c, q) interacts with a
parton carrying the four-momentum xP. We emphasise that this interpretation of x
is only valid in the impulse approximation, and then only if we neglect transverse
momenta and the rest mass of the parton; i.e. in a very fast moving system.

A popular reference frame satisfying these conditions is the Breit frame
(Fig.7.6b), where the photon does not transfer any energy (go = 0). In this system
x is the three-momentum fraction of the parton.

The spatial resolution of deep-inelastic scattering is given by the reduced
wavelength % of the virtual photon. This quantity is not Lorentz-invariant but
depends upon the reference frame. In the laboratory system (go = v/c¢) it is:

P h . he hic . 2Mxhc

lgl 2+ 022 T

For example, if x = 0.1 and Q> = 4 (GeV/c)? one finds 2 ~ 1077 m in the
laboratory system. In the Breit frame, the equation simplifies to

(7.12)

(7.13)
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The quantity Q?, therefore, has an obvious interpretation in the Breit frame: it is a
measure for the spatial resolution with which structures can be studied.

7.4 The Quark Structure of Nucleons

Quarks The quark model was conceived in the mid-1960s of the last century in
order to systematise the great diversity of strongly interacting particles (hadrons)
which had been discovered up to then. By means of deep-inelastic scattering, we
found that nucleons consist of electrically charged, point-like particles. We now
identify them with the quarks. It should be possible to reconstruct and to explain
the properties of the nucleons (charge, mass, magnetic moment, isospin, etc.) from
the quantum numbers of these constituents. For this purpose, we need at least two
different types of quarks, which are designated by u (up) and d (down). The quarks
have spin 1/2 and, in the naive quark model, their spins must combine to give the
total spin 1/2 of the nucleon. Hence nucleons are built up out of at least 3 quarks.
The proton has two u-quarks and one d-quark, while the neutron has two d-quarks
and one u-quark.

d P 8
u (uud) (udd)
Charge number %4 +2/3 -1/3 1 0
oo 1 1/2 1/2
sospn A +1/2 —1/2 +1/2 ~1/2
Spin s 1/2 1/2 1/2 1/2

Formally, the proton and the neutron maybe transformed to each other by
interchanging the u- and d-quarks. They form an isospin doublet with I = 1/2
(cf. (2.12)). This is attributed to the fact that u- and d-quarks form an isospin doublet
as well. The charges of proton and neutron are obtained by assigning charges to the
quarks that are multiples of e¢/3, the charge of the u-quark being ey, = z, - ¢ = 2¢/3
and the charge of the d-quark being eq = z4 - ¢ = —le/3. These charges of the
quarks are not unequivocally fixed by the charges of the proton and the neutron. This
assignment is rather related to other clues; such as the fact that the maximum posi-
tive charge found in hadrons is two (e.g., AT), and the maximum negative charge
is one (e.g., A™). Hence the charges of these hadrons are attributed to 3 u-quarks
(charge: 3 - (2¢/3) = 2e¢) and 3 d-quarks (charge: 3 - (—1e/3) = —1le) respectively.

Valence quarks and sea quarks The three quarks that determine the quantum
numbers of the nucleons are called valence quarks. As well as these there also
exist quark-antiquark pairs in the nucleon. They are produced and annihilated as
virtual particles in the field of the strong interaction (cf. Sect. 8.2). This process is
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analogous to the production of virtual electron-positron pairs in the Coulomb field.
These quark-antiquark pairs are called sea quarks. Their effective quantum numbers
average out to zero and do not alter those of the nucleon. Because of their electrical
charge, they are “visible” in deep-inelastic scattering, too. However, they carry only
very small fractions x of the nucleon’s momentum.

As well as u- and d-quarks, further types of quark-antiquark pairs are found in the
“sea”; they will be discussed in more detail in Chap. 9. The different types of quarks
are called “flavours”. The additional quarks were named s (strange), ¢ (charm),
b (bottom) and t (top). As we will see later, the six quark types can be arranged in
doublets (called families or generations), according to their increasing mass:

u c t

d s b/’
The quarks of the top row have charge number z, = +2/3, those of the bottom row
zq = —1/3. The c-, b- and t- quarks are so heavy that they play a very minor role

at Q?-values attainable in experiments with stationary targets. We will therefore
neglect them in what follows.

7.5 Interpretation of Structure Functions in the Parton
Model

Structure functions describe the internal composition of the nucleon. We now
assume the nucleon to be built from different types of quarks q carrying an electrical
charge z4 - e. The cross-section for electromagnetic scattering from a quark is
proportional to the square of its charge, and hence to zé.

We denote the distribution function of the quark momenta by q(x), i.e., q(x)dx is
the expectation value of the number of quarks of type q = u,d, s in the nucleon
whose momentum fraction lies within the interval [x,x + dx]. The momentum
distribution of the valence quarks we denote by qy(x) and correspondingly the
distribution of the antiquarks in the “sea” by qs(x). The proton consists of two
valence u-quarks and one valence d-quark. Therefore we have

1 1
/ uy(x)dx = 2, / dy(x)dx =1. (7.14)
0 0

The structure function F; is the sum of the momentum distributions weighted by x
and zfl. Here the sum is over all types of quarks and antiquarks:

Fa) =x ) zla) + G, (7.15)

q=u,d,s

with q(x) = qy(x) + gs(x) for u- and d-quarks and q(x) = gs(x) for s-quarks.
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Structure functions of proton and neutron Much detailed information about the
distribution functions of quarks can be obtained by the study of combinations of the
structure functions F and F3 of proton and neutron. In the absence of free neutron
targets, information about /7 must be obtained from deep-inelastic scattering of
deuterons. By convention in scattering off nuclei, the structure function is always
given per nucleon. Except for small corrections due to the Fermi motion of the
nucleons, the structure function of the deuteron FY is equal to the proton-neutron
average structure function Fy

FY + F3

D
Py~ =

=F), (7.16)
and hence we have F} ~ 2FD — F5.

According to (7.15), the structure functions F, of the proton and the neutron are
given by

FY(x)=x- [g (uP+uP+iP) + é (@ +d>+d°) + é (s§+§§):|

4 _ 1 - 1 -

P = [ (R +) 4 5 (@ +a48) + 5 (245) | @7
where ub"(x) denotes the distribution of valence u-quarks in the proton and the
neutron, respectively, and ug(x)P" the distribution of the sea u-quarks etc.

From isospin symmetry we obtain for the quark distributions

up () = dy () =1 uys(x)

df () = ug(x) =: dys(x) . (7.18)

Ratio of the neutron and proton structure functions The effective quantum
numbers of the sea quarks average out to zero and we therefore have q(x) = qs(x).
We assume that the distributions of s-quarks in the proton and the neutron are
identical (55(x) = §"(x)), and also that the contributions of the two light u- and
d-quarks to the “sea” are equal (s (x) = dg(x)). (Below we will see that this relation
is only approximately true.) Because of the larger mass of s-quarks, fluctuations
into quark-antiquark pairs of this flavour have a smaller probability and we have
(%) > 55(x).
Summing up the zé-weighted contributions of all sea quarks we can define

S(x) = 100,(x) + 254(x) . (7.19)
Then we obtain for the ratio of the neutron and proton structure functions:

B _ o) +4dv(x) + SO)]
F(x)  [4ue() +dv(x) + S)] |

(7.20)
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Fig. 7.7 The structure function ratio F3/ sz as a function of x [2]. The data were obtained from
muon scattering with beam energies of 90 and 280 GeV. Shown are results at Q> = 4 (GeV/c)?

Figure 7.7 shows the ratio F3/F5 as a function of x. Plotted are data of one
of the second-generation muon experiments [1, 2]. This experiment has a beam
energy that is more than an order of magnitude higher than the experiments done at
SLAC, and therefore the data cover much smaller values of x. Since the proton is
composed of two valence u-quarks and one valence d-quark we could assume that
their distributions are related by uy(x) = 2d,(x). For a vanishing contribution of
the sea quarks (S(x) = 0), F3/F5 would obtain the value 2/3 independent of x. In
reality, however, the ratio approaches unity for x — 0 and decreases with x down to
a value of approximately 1/4 for x — 1. We can interpret this behaviour as follows:
for small values of x the distribution of sea quarks S(x) is much larger than the two
valence quark distributions, the ratio is mainly determined by the last term in the
numerator and denominator of (7.20). As x — 1, the situation is reversed: the sea
quarks no longer play a role and we obtain the value 1/4 for the ratio by neglecting
in (7.20) both S(x) and dy(x) compared to u,(x). The distribution of d-quarks drops
much faster with x than the u-quark distribution. This implies that large momentum
fractions in the proton (neutron) are carried by u-quarks (d-quarks).

Difference of the proton and neutron structure functions The difference of the
proton and neutron structure functions is given by

F() — F3() = x- [%(uv(x) ) + 2@ - as(x))} . (7.21)
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Fig. 7.8 The structure function FY for an “average” nucleon (closed symbols, left scale) and the
difference of the proton and neutron structure functions Fg — F5 (open symbols, right scale) as
function of x [2]. The data were obtained from muon scattering with beam energies of 90 and
280 GeV. Shown are results at Q> = 4 (GeV/c)?

Thus if and only if the “sea” is symmetric in the two light-quark flavours,
ie., Us(x) = dy(x), then the contributions from sea quarks drop out and the
difference (7.21) is a pure valence quark distribution. In Fig. 7.8 data from the same
muon experiment are shown for F° zp — F (open symbols, right scale) as a function
of x. The distribution has a maximum near x &~ 1/3 and drops down to zero for
x — 0 and x — 1. This supports our assumption, made above, that at low values
of x mainly sea quarks contribute to the structure function. Also at large values of
x the distribution becomes very small. Thus it is very unlikely that one quark alone
carries the major part of the momentum of the nucleon.

The observed behaviour has often been interpreted as resulting from three
valence quarks, each of them carrying on average one third of the nucleon’s
momentum and the sharply defined momentum at x = 1/3 is then washed out by
the Fermi motion of the quarks inside the nucleon. This interpretation is incorrect.
As we will see below, quarks carry only about half of the nucleon’s momentum. The
distributions u,(x) and d, (x) both have a maximum near x ~ 0.17 and the maximum
of F’ 12) — FJ near x = 1/3 accidentally arises from the different x dependencies of
these two distributions.

When we divide (7.21) by x and integrate over x, we obtain

1 1 2 [ i
Se =/O [P0 - F@] dr = 5(2—1)+§/0 (f,(x) — ds () dx . (7.22)
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For iis(x) = d,(x) the last term drops out and we get Sg = % This is the Gottfried
Sum Rule [8]. Experimentally, however, the integral amounts to [2]

S¢ = 0.235+0.026 . (7.23)

This leads to the conclusion that dg(x) > U(x) and that consequently the quark-
antiquark “sea” is not symmetric in the two light-quark flavours. We will come back
to this finding in Sect. 8.4.

Quark charges All of the quantitative statements made in the present chapter
confirm the assignment of the fractional quark charges e, = 2¢/3 and eq = —1e/3.
In addition, a convincing confirmation comes from the comparison of the nucleon
structure functions measured in deep-inelastic scattering of electrons or muons and
of neutrinos that we will discuss in Sect. 10.6. Thus we can conclude:

Quarks carry fractional charges of 2e/3 and —1e/3.

Structure function for an “average” nucleon Finally, after having discussed the
ratio and the difference of the proton and neutron structure functions, we can get
another important information about the structure of the nucleon by looking at their
average. The structure function for an “average” nucleon (7.16) reads:

5 1
F0 = YW+ 601+ 5[50+ 5]
q=d,u
=2 Y [+ 0] — 2 s) (7.24)
18 a0 s ER ‘

q=d,u,s

The last term in the equation is small, since s-quarks occur only as sea quarks.
To a good approximation, F;\I is therefore given by the product of the average
squared charges 5/18 of u- and d-quarks (in units of ¢*) and the sum over all quark
distributions.

The integral of F g’ (x) is taken over all quark momenta weighted by their
distribution functions and the average squared quark charges. Therefore, the integral
should yield the value 5/18, provided that the whole nucleon momentum is carried
by its charged constituents, the quarks.

However, integration of the data shown in Fig. 7.8 only yields the value

1

5

/ FY(x)dx ~ 0.55- — . (7.25)
0 18

Thus we have to conclude:

Quarks carry only about half of the nucleon’s momentum.

The other half must be carried by uncharged particles interacting neither electro-
magnetically nor weakly. This finding was the starting point for the development of
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QCD, the field theory of the strong interaction. The electrically neutral constituents
have been identified with the field quanta of this interaction, the gluons.

Problems

. Deep-inelastic scattering

Derive the Callan-Gross relation (7.11). Which value for the mass of the target
must be used?

. Parton momentum fractions and x

Show that in the parton model of deep-inelastic scattering, if we do not neglect

the masses of the nucleon M and of the parton m, the momentum fraction & of
the scattered parton in a nucleon with momentum P is given by

_ .l m*c* — M?c*x?

é =X + T .

In the deep-inelastic domain % <« 1 and ”ggz <« 1. (Hint: for small ¢, & we

can approximate /1 +&(1 +&) ~ 1 + 5(1 + &' — %))

References

[SSIN S

Nelie BEN Be NIV N

P. Amaudruz et al., Nucl. Phys. B371, 3 (1992)
M. Arneodo et al., Phys. Rev. D50, 1 (1994)

. W.B. Atwood, Lectures on Lepton Nucleon Scattering and Quantum Chromodynamics. Progress

in Physics, vol. 4 (Birkhduser, Boston/Basel/Stuttgart, 1982)

. W. Bartel et al., Phys. Lett. B28, 148 (1968)

. E.D. Bloom et al., Phys. Rev. Lett. 23, 930 (1969)

. M. Breidenbach et al., Phys. Rev. Lett. 23, 935 (1969)

. C.G. Callan Jr., D.J. Gross, Phys. Rev. Lett. 22, 156 (1969)

. K. Gottfried, Phys. Rev. Lett. 18, 1174 (1967)

. D.H. Perkins, Introduction to High Energy Physics, 4th edn. (Addison-Wesley, Wokingham,

2000)



Chapter 8
Quarks, Gluons, and the Strong Interaction

Quark [aus dem Slaw.], aus Milch durch Siuerung oder
Labfillung und Abtrennen der Molke gewonnenes
Frischkdseprodukt, das vor allem aus geronnenem, weif3
ausgeflocktem (noch stark wasserhaltigem).
Kasein besteht
Brockhaus-Encyclopaedia, 19th edition

In the previous chapter we learnt how deep-inelastic scattering may be used as a tool
to study the structure and composition of the nucleons. Complementary information
about the structure of the nucleons and of other strongly interacting objects (the
hadrons) can be obtained from the spectroscopy of these particles. This gives us
information about the strong interaction and its field quanta which describe the
internal dynamics of the hadrons and the forces acting between them.

8.1 Quarks in Hadrons

A multitude of unstable hadrons are known in addition to the nucleons. Through
the study of these hadrons the diverse properties of the strong interaction are
revealed. Hadrons can be classified in two groups: the baryons, fermions with half-
integral spin, and the mesons, bosons with integral spin. The hadronic spectrum was
uncovered step by step: initially from analyses of photographic plates which had
been exposed to cosmic radiation and later in experiments at particle accelerators.
Many short-lived particles were thus detected, including excited states of the
nucleon. This led to the conclusion that nucleons themselves are composed of
smaller structures. This conclusion was then extended to all known hadrons.

Baryons The lowest mass baryons are the proton and the neutron. They are the
“ground states” of a rich excitation spectrum of well-defined energy (or mass) states.
This will be discussed further in Chap. 16. In this respect, baryon spectra have many
parallels to atomic and molecular spectra. Yet, there is an important difference. The
energy (or mass) gaps between individual states are of the same order of magnitude
as the nucleon mass. These gaps are then relatively much larger than those of atomic
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or molecular physics. Consequently these states are also classified as individual
particles with corresponding lifetimes.

Like the proton and neutron, other baryons are also composed of three quarks.
Since quarks have spin 1/2, baryons have half-integral spin.

When baryons are produced in particle reactions the same number of antibaryons
are simultaneously created. To describe this phenomenon a new additive quantum
number is introduced: baryon number B. We assign B = 1 to baryons and B = —1
to antibaryons. Accordingly, baryon number +1/3 is attributed to quarks, and
baryon number —1/3 to antiquarks. All other particles have baryon number B = 0.
Experiments indicate that baryon number is conserved in all particle reactions
and decays. Thus, the quark minus antiquark number is conserved. This would be
violated by, e.g., the hypothetical decay of the proton:

p—>710+e+.

Without conservation of baryon number this decay mode would be energetically
favoured. Yet, it has not been observed. The experimental limit of the partial lifetime
is given by t(p — 7° +e*) > 8.2 103 years [18, 20].

Mesons The lightest hadrons are the pions. Their mass, about 140 MeV /c?, is much
less than that of the nucleon. They are found in three different charge states: 7, 7°
and 7w t. Pions have spin 0. It is, therefore, natural to assume that they are composed
of two quarks, or, more exactly, of a quark and an antiquark: this is the only way to
build the three charge states out of quarks. Pions have the following quark structure:

7)) =lud)  |z7)=[ad) |x°) = \/LE {lud) — [dd)} .

The |7°) is a mixed state of [uti) and |dd). The above expression includes the correct
symmetry and normalisation.

Hadrons composed of quark-antiquark pairs are called mesons. Mesons have
integer spin: their total spin results from a vector sum of the quark and antiquark
spins, including a possible integer orbital angular momentum contribution. Mesons
eventually decay into electrons, neutrinos and/or photons; there is no “meson num-
ber conservation”, in contrast to baryon number conservation. This is understood in
the quark model: mesons are quark-antiquark combinations |qq ) and so the number
of quarks minus the number of antiquarks is zero. Hence any number of mesons
may be produced or annihilated. It is just a matter of convention which mesons are
called particles and which antiparticles.

8.2 The Quark-Gluon Interaction

Colour Quarks have another important property called colour which we have
previously neglected. This is needed to ensure that quarks in hadrons obey the Pauli
principle. Consider the AT T -resonance which consists of three u-quarks. The AT+



8.2 The Quark-Gluon Interaction 105

has spin J = 3/2 and positive parity; it is the lightest baryon with J© = 3/27.
We therefore can assume that its orbital angular momentum is £ = 0; so it has a
symmetric spatial wave function. In order to yield total angular momentum 3/2, the
spins of all three quarks have to be parallel:

AT = [uTutuly.

Thus, the spin wave function is also symmetric. The wave function of this system
is furthermore symmetric under the interchange of any two quarks, as only quarks
of the same flavour are present. Therefore the total wave function appears to be
symmetric, in violation of the Pauli principle.

Including the colour property, a kind of quark charge, the Pauli principle may
be salvaged. The quantum number colour can assume three values, which may be
called red, blue and green. Accordingly, antiquarks carry the anticolours anti-red,
anti-blue, and anti-green. Now the three u-quarks may be distinguished by their
colour. Thus, a colour wave function antisymmetric under particle interchange can
be constructed, and we so have antisymmetry for the total wave function. The
quantum number colour was introduced for theoretical reasons, yet experimental
clues indicate that this hypothesis is correct. This will be discussed in Sect. 9.3.

Gluons The interaction binding quarks into hadrons is called the strong interaction.
Such a fundamental interaction is, in our current understanding, always connected
with a particle exchange. For the strong interaction, gluons are the exchange
particles that couple to the colour charge. This is analogous to the electromagnetic
interaction in which photons are exchanged between electrically charged particles.

The experimental findings of Sect. 7.4 led to the development of a field theory
called quantum chromodynamics (QCD). As its name implies, QCD is modelled
upon quantum electrodynamics (QED). In both, the interaction is mediated by
exchange of a massless field particle with J® = 17 (a vector boson).

The gluons carry simultaneously colour and anticolour. According to group
theory, the 3 x 3 colour combinations form two multiplets of states: a singlet and
an octet. The octet states form a basis from which all other colour states may be
constructed. They correspond to an octet of gluons. The way in which these eight
states are constructed from colours and anticolours is a matter of convention. One
possible choice is

rg, tb, gb, gf, bf, bz, /1/2(F—gg), +/1/6 (f+ gg—2bb).

The colour singlet

V1/3 (i + g& + bb) ,

which is symmetrically constructed from the three colours and the three anticolours
is invariant with respect to a re-definition of the colour names (rotation in colour
space). It, therefore, has no effect in colour space and cannot be exchanged between
colour charges.
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Ty X

a) b) c) d)

Fig. 8.1 The fundamental interaction diagrams of the strong interaction: emission of a gluon by a
quark (a), splitting of a gluon into a quark-antiquark pair (b) and “self-coupling” of gluons (¢, d)

By their exchange the eight gluons mediate the interaction between particles
carrying colour charge, i.e., not only the quarks but also the gluons themselves.
This is an important difference to the electromagnetic interaction, where the photon
field quanta have no charge, and therefore cannot couple with each other.

In analogy to the elementary processes of QED (emission and absorption of
photons, pair production and annihilation), emission and absorption of gluons
(Fig. 8.1a) take place in QCD, as do production and annihilation of quark-antiquark
pairs (Fig. 8.1b). In addition, however, three or four gluons can couple to each other
in QCD (Fig. 8.1c, d).

Hadrons as colour-neutral objects With colour, quarks gain an additional degree
of freedom. One might, therefore, expect each hadron to exist in a multitude of
versions which, depending upon the colours of the constituent quarks involved,
would have different total (net) colours but would be equal in all other respects.
In practice only one type of each hadron is observed (one 7, p, A etc.). This
implies the existence of an additional condition: only colourless particles, i.e., with
no net colour, can exist as free particles.

This condition explains why quarks are not observed as free particles. A single
quark can be detached from a hadron only by producing at least two free objects
carrying colour: the quark, and the remainder of the hadron. This phenomenon
is, therefore, called confinement. Accordingly, the potential acting on a quark
limitlessly increases (cf. Sect. 14.3) with increasing separation — in sharp contrast
to the Coulomb potential. This phenomenon is due to the inter-gluonic interactions.

The combination of a colour with the corresponding anticolour results in a
colourless (“white”) state. Putting the three different colours together results in a
colourless (“white”) state as well. This can be graphically depicted by three vectors
in a plane symbolising the three colours, rotated with respect to each other by 120°
(Fig. 8.2).

Hence, e.g., the 7+ meson has three possible colour combinations:

| uraf)
= q lupdg)
| llg dg) .

|7*)
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Fig. 8.2 Graphical presentation of the colour vectors in colour space (left); colour and anticolour
in a meson combine to ‘white’ (middle) as do the three colours in a baryon (right)
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Fig. 8.3 By the exchange of coloured gluons quark and antiquark in a meson (left) and the three
quarks in a baryon (right) continuously change their colour, preserving always the net colour
‘white’

where the index designates the colour or anticolour. The physical pion is a mixture of
these states. By exchange of gluons, which by themselves simultaneously transfer
colour and anticolour, the colour combination continuously changes; yet the net-
colour “white” is preserved (Fig. 8.3).

In baryons, the colours of the three quarks also combine to yield “white”. Hence,
to obtain a colour-neutral baryon, each quark must have a different colour. The
proton is a mixture of such states:

[upud,)
Ip) = { lurtieds)
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From this argument, it also becomes clear why no hadrons exist which are |qq), or
|qqq) combinations, or the like. These states would not be colour neutral, no matter
what combination of colours were chosen.

Constituent and current quarks In (7.25) we saw that only about half of the
momentum of a nucleon is carried by valence and sea quarks. In dealing with the
spectroscopic properties of nucleons, sea quarks and gluons need not be explicitly
dealt with. We can combine them with the valence quarks. One then acts as though
there were only three valence quarks, with enlarged masses but unchanged quantum
numbers. We will return to this point in Chaps. 14-16. These “effective valence
quarks” are called constituent quarks.

In interpreting deep-inelastic scattering, we neglected the rest masses of the bare
u- and d-quarks. This is justified since they are small [20]: m, = 1.8—3MeV/c?,
mq = 4.5—5.5MeV/c?. These masses are commonly called current quark masses.
However, these are not the masses obtained from hadron spectroscopy; e.g., from
calculations of magnetic moments and hadron excitation energies that we will
discuss in detail in Chaps. 15 and 16. The constituent-quark masses are much larger
with values of about 300 MeV /c?. They are mainly due to the cloud of gluons and
sea quarks. Their values for all the quark flavours are compiled in Table 9.1.

The bare d-quark is heavier than the bare u-quark, which can be easily understood
as follows. The proton (uud) and the neutron (ddu) are isospin symmetric as stated
above; i.e., they transform into each other under interchange of the u- and d-quarks.
Since the strong interaction is independent of quark flavour, the neutron-proton mass
difference can only be due to the intrinsic quark masses and to the electromagnetic
interaction between them. If we assume that the spatial distribution of the u- and
d-quarks in the proton corresponds to the distribution of d- and u-quarks in the
neutron, then it is easily seen that the Coulomb energy must be higher in the proton.
Despite this, the neutron is heavier than the proton which implies that the mass of
the d-quark is larger.

The strong coupling constant o In quantum field theory, the coupling “constant”
describing the interaction between two particles is an effective constant which in fact
depends on Q2. In the electromagnetic interaction this dependence is very weak; in
the strong interaction, however, it is rather strong. The reason for this is that gluons,
the field quanta of the strong interaction, carry colour themselves, and therefore
can also couple to other gluons. In Fig. 8.4 the different Q® behaviours of the
electromagnetic and the strong coupling constants are presented. The contribution
of the fluctuation of the photon into an electron-positron pair as well as of the gluon
into a quark-antiquark pair results in the screening of the electric and strong charge.
The higher Q? is, the smaller are the distances between the interacting particles,
and thus the effective charge of the interacting particles increases and the coupling
constant increases. Gluons couple to other gluons and can fluctuate into gluons. This
fluctuation causes antiscreening. The closer the interacting particles are, the smaller
the charge they see. The coupling constant decreases with increasing Q. In the case
of gluons the antiscreening is far stronger than the screening.
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Fig. 8.4 The Q? dependence of the strong a and the electromagnetic a,, coupling constants is
shown. The fluctuation of the photon into an electron-positron pair leads to the screening of the
electric charge. Analogously, the fluctuation of the gluon into a quark-antiquark pair leads to the
screening of the strong charge. The self coupling of the gluons results in the antiscreening

A first-order perturbation calculation in QCD yields:

127
(33 —2ny) - In(Q?/ A?) ’

ay(0%) = 8.1)

Here, n; denotes the number of quark types involved. Since a heavy virtual quark-
antiquark pair has a very short lifetime and range, it can be resolved only at very
high Q. Hence, ny depends on Q?, with ns ~ 3-6. The parameter A is the only free
parameter of QCD. It was found to be A ~ 250 MeV/c by comparing the prediction
with the experimental data. The application of perturbative expansion procedures in
QCD is valid only if o < 1. This is satisfied for Q% > A%~ 0.06 (GeV/c)>.
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From (7.13) we can see that the Q?-dependence of the coupling strength
corresponds to a dependence on separation. For very small distances and
correspondingly high values of Q?, the interquark coupling decreases, vanishing
asymptotically. In the limit Q> — oo, quarks can be considered “free”, this is
called asymptotic freedom. By contrast, at large distances, the interquark coupling
increases so strongly that it is impossible to detach individual quarks from hadrons
(confinement).

8.3 Scaling Violations of the Structure Functions

In Sect. 7.2 we showed that the structure function F, depends solely on the scaling
variable x. We thereby concluded that the nucleon is composed of point-like,
charged constituents. Yet, high precision measurements show that to a small degree,
F, does also depend on Q7. Figure 8.5 shows the experimental measurements of the
deuteron structure function F3 as a function of Q? at several fixed values of x. The
data cover a large kinematic range in x and Q. We see that the structure function
increases with Q? at small values of x and decreases with increasing Q? at large
values of x. This behaviour is called scaling violation. With increasing values of Q?
there are fewer quarks with large momentum fractions in the nucleon while more
quarks with small momentum fractions are found.

A particularly large range in x and Q? is covered by the two experiments H1 [1]
and ZEUS [14] at the HERA storage ring, which took data during the years 1992—
2007 [10]. As already explained in the previous chapter, electrons or positrons of
27.6GeV and protons with energies up to 920 GeV were stored in two separate
storage rings. For short periods also proton energies of 460, 575 and 820 GeV
were used. These latter measurements enabled also the measurement of the second
structure function F f(x, QZ) that we will, however, not discuss further. The two
beams circulated in opposite directions and were brought to head-on collision
at two interaction points that were hermetically surrounded by the two magnetic
spectrometers H1 and ZEUS. These 4 detectors allowed a complete reconstruction
of deep-inelastic scattering events.

One of the textbook deep-inelastic scattering events in the H1 detector is shown
in Fig. 8.6. Because of the confinement, discussed above, neither the scattered quark
nor the proton remnant can be observed directly. They hadronise into colour-neutral
hadrons. In the detector one observes the scattered electron and two bundles of
charged-particle tracks, mostly hadrons, that stem either from the struck quark or
from the target remnant. In most cases they can be nicely separated from each
other. The trajectories of all charged particles are determined in the inner part of
the apparatus by position sensitive detectors. The energy of the scattered electrons
is measured in an electromagnetic calorimeter, that of the hadrons in a hadron
calorimeter.
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Fig. 8.5 Structure function F, of the deuteron as a function of Q2 at different values of x on
a logarithmic scale. The results shown are from muon scattering at CERN (NMC and BCDMS
collaboration) [5, 9] and from electron scattering at SLAC [21]. For clarity, the data at the various
values of x are multiplied by constant factors. The solid line is a QCD fit, taking into account the
theoretically predicted scaling violation. The gluon distribution and the strong coupling constant
are free parameters here
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Fig. 8.6 A deep-inelastic scattering event in the H1 detector. The proton beam enters from the
right, the electron beam from the left
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Fig. 8.7 The proton structure function F5 as a function of Q? in intervals of x. Shown is a
combined data set of the two HERA experiments H1 and ZEUS together with data from deep-
inelastic scattering experiments of the first and second generation with a stationary proton target

In Fig.8.7 a combined data set of both experiments is presented for the
structure function F3(x, 0*) measured in deep-inelastic positron-proton scattering
at a centre-of-mass energy /s = 319 GeV. Also shown are data from deep-inelastic
scattering experiments with electrons, positrons or muons using stationary proton
targets. Only data in the Q region above Q2. = 0.8 (GeV/c)?* are shown, where
the structure function F, can be interpreted in the framework of the quark-parton
model. For better visibility the data at each x value have been multiplied by constant

factors and a few x intervals have been omitted.
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Fig. 8.8 Schematic presentation of the proton structure function F as function of x at three values
of 07

The HERA data cover the impressive large kinematic range 107¢ < x < 0.7
and 0.04 (GeV/c)? < Q% < 10° (GeV/c)?. This is many times larger than for the
experiments of the first and second generation using a stationary proton target. Also
here we see at low values of x a considerable increase of F» with Q2; the smaller
x, the steeper the increase. At large values of x a somewhat weaker decrease of the
structure function with Q? is observed.

The variation of the x dependence of the proton structure function with Q7 is
schematically shown in Fig. 8.8 for three values of Q2. The lines are a fit to the
experimental data of all the experiments of the three generations taking into account
the scaling violation predicted by QCD. The experimental points were omitted as
to clearly show the decrease of the structure function with increasing Q7 at large
values of x.

The DGLAP equations This violation of scaling is not caused by a finite size
of the quarks. In the framework of QCD, it can be traced back to fundamental
processes in which the constituents of the nucleon continuously interact with each
other (Fig. 8.1). Quarks can emit or absorb gluons, gluons may split into qq pairs, or
emit gluons themselves. Thus, the momentum distribution between the constituents
of the nucleon is continually changing.

Figure 8.9 is an attempt to illustrate how this alters the measurements of structure
functions at different values of Q%. A virtual photon can resolve dimensions of the
order of &/ \/@ . Atsmall Q% = Q%, quarks and any possibly emitted gluons cannot
be distinguished and a quark distribution q(x, Qé) is measured. At larger Q7 and
higher space-time resolution, emission and splitting processes must be considered.
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Fig. 8.9 With increasing Q? the space-time resolution of the virtual photon increases, allowing to
resolve more partons

A quark with the momentum fraction x can originate from a parent quark with a
larger momentum fraction y that has radiated a gluon (cf. Fig. 8.1a). The probability
that this happens is proportional to a5(Q?)Pgq(x/y), where Pyq(x/y) is a so-called
splitting function.

But a quark with momentum fraction x can also originate from a gluon with
higher momentum fraction y (cf. Fig.8.1b). The probability for this process is
proportional to another splitting function Pq,(x/y). Similarly the gluon distribution
g(x, Q%) is modified by radiation of gluons from a quark (~Pgq(x/y)) or from
another gluon (~Pg(x/y)), respectively (cf. Fig.8.1c, d). The splitting functions
can be calculated in QCD. Thus, with increasing Q® the number of resolved partons
sharing the nucleon’s momentum increases. The quark distribution q(x, Q%) at small
momentum fractions x, therefore, is larger than q(x, Q%), whereas the effect is
reversed for large x. This is the origin of the increase of the structure function with
Q? at small values of x and its decrease at large x.

The change in the quark distribution and in the gluon distribution with Q? at fixed
values of x is proportional to the strong coupling constant a5 (Q?) and depends upon
the size of the quark and gluon distributions at all larger values of x. The mutual
dependence of the quark and gluon distributions can be described by a system
of coupled integral-differential equations [3, 12, 16], named after their authors as
DGLAP equations:

dq(x, 0*) o (Q?
dinQ?>  2n

g
) / 7y[qu(x/y)-q(y,QZ)+qu(x/y)-g(y,Q2)], (8.2)

dev, %) (0 ['dy
dn@> 27 J, y

[Z Pyq(x/) - q(y, Q%) + Pye(x/y) - 20, Qz)} :
! (8.3)

In higher orders of o(Q%) one obtains similar expressions with more and
different splitting functions which take into account more complicated processes,
as for example those sketched in Fig. 8.10, where the gluon or an antiquark that
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Fig. 8.10 Examples of higher-order contributions to deep-inelastic scattering

already originates from gluon splitting radiate another gluon that then produces
another generation of sea quarks.

If a(Q?) and the shape of q(x, Q2) and g(x, Q3) are known at a given value Q3,
then q(x, Q%) and g(x, Q%) can be predicted via the DGLAP equations for all other
values of Q2. Alternatively, the coupling cs(Q?) and the gluon distribution g(x, Q?),
which cannot be directly measured, can be determined from the observed scaling
violation of the structure function F,(x, Q?).

The solid lines in Fig. 8.5 show a fit to the scaling violation of the measured
structure functions from a QCD calculation [6]. The fit value of A ~ 250MeV/c
corresponds to a coupling constant:

o (0* =100 (GeV/c)?) ~ 0.16. (8.4)

Also the data shown in Fig. 8.7 can be excellently described by QCD. They allow
a determination of o at a much larger Q? than was possible from the experiments
with a stationary target. In a so-called double-logarithmic perturbative calculation
one obtains for the strong coupling constant

o, (Q*=10* (GeV/c)?) ~ 0.12. (8.5)
As predicted by theory, o decreases with increasing Q2.

Conclusion Scaling violation in the structure functions is a highly interesting
phenomenon. It is not unusual that particles which appear point-like turn out to be
composite when studied more closely (e.g., atomic nuclei in Rutherford scattering
with low-energy o particles or in elastic high-energy electron scattering). In deep-
inelastic scattering, however, a new phenomenon is observed. With increasing
resolution, quarks and gluons turn out to be composed of quarks and gluons;
which themselves, at even higher resolutions, turn out to be composite as well. The
quantum numbers (spin, flavour, colour,. . .) of these particles remain the same; only
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the mass, size, and the effective coupling o5 change. Hence, there appears to be in
some sense a self similarity in the internal structure of strongly interacting particles.

8.4 Flavour-separated Parton Distributions

It has to be pointed out that theoretically only the change in the structure function
with Q? can be calculated but not the x dependence of the structure functions
themselves or of the parton distributions which are non-perturbative objects. Thus
at least at one Q> = Q(z) the x-dependence of the F,(x, Q?) has to be well determined
experimentally.

In Fig.8.11 the quark distributions xq(x) and the gluon distribution xg(x) are
shown at a scale Q> = 10(GeV/c)?. These distributions stem from a common
analysis of all the data presented so far and of many other data, amongst others from
deep-inelastic neutrino-nucleon scattering experiments and proton-proton scattering
at high energies. It can be seen that the distributions of gluons and of sea quarks
strongly increase with decreasing x; valence quarks dominate only for x values
above approximately x ~ 0.1.

In Sect. 7.5 we have shown that the distribution of the light u- and d-antiquarks
is not flavour symmetric: (_is > Us. This conclusion resulted from the violation
of the Gottfried sum rule for the integral over [Fg(x) —Fg(x)] /x. This finding
was confirmed by dedicated experiments [2, 13]. The most precise results have
been obtained by the Drell-Yan process [11] in proton-nucleon scattering: pN —
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(£t€7)X. In the Drell-Yan process a quark (antiquark) with the four-momentum
fraction x; from the beam proton and an antiquark (quark) of the target nucleon with
X, annihilate electromagnetically into a virtual photon, which immediately decays
intoa ut - orete” pair: q(x;)q(x;) — y* — £,

The longitudinal momentum of the £*¢~ pair in the proton-nucleon centre-
of-mass system is given by pf”_c ~ (x; — x2)+/s/2 and its invariant mass by
(M4~ ¢*)? = x1x,5. Here, s is the centre-of-mass energy (cf. (9.1)). By a suitable
choice of the kinematics of the £ ¢~ pair the quark and antiquark distributions in
the target can be determined separately and from a comparison of the count rates for
hydrogen and deuterium targets one obtains the ratio d,(x)/i(x).

In the quark-parton model, a suppression of uii pairs compared to dd pairs can be
explained by the Pauli principle: the proton already contains two valence u-quarks
of different colour and one valence d-quark. It is therefore possible to add one more
u-quark but two more d-quarks before the colour quantum numbers are saturated.
In another model this asymmetry originates from the pion cloud of the nucleon.
Here one assumes that the nucleon fluctuates for a short period into a baryon and a
pion: p <> B + . Thereby the fluctuation into a positive pionp <> n + 7T, i.e.,
|uud) <> |udd) + |ud), has a higher probability than the fluctuation into a 77, as in
the latter the proton has to be excited to a AT resonance, p <+ AT + 77, ie.,
|uud) <> |uuu) + |ad). In this hybrid model naturally an excess of d; compared to
U, is obtained.

8.5 Nuclear Effects in Deep-Inelastic Scattering

Typical energies in nuclear physics (e.g., binding energies) are of the order of
several MeV and typical momenta (e.g., Fermi momenta) are of the order of
250MeV/c. These are many orders of magnitude less than the momentum transfers
0 of scattering experiments used to determine the structure functions. Therefore one
would expect the structure functions to be the same for scattering off free nucleons
or scattering off nucleons bound in nuclei, except, of course, for kinematic effects
due to the Fermi motion of the nucleons in the nucleus. In practice, however, a
definite influence of the surrounding nuclear medium on the momentum distribution
of the quarks is observed [19]. This phenomenon is called EMC Effect after the
collaboration that first detected it in 1983 [8].

For illustration, Fig. 8.12 shows data of the NMC muon experiment at CERN and
of an experiment at SLAC for the ratio of the structure functions per nucleon of “He,
carbon and calcium to deuterium. The deuteron is only weakly bound and proton
and neutron can be roughly considered to be free nucleons. “He and deuterium
are isoscalar nuclides, i.e. nuclides with the same number of protons and neutrons.
Approximately this is also true for carbon and calcium. In natural abundance, carbon
consists to 99 % of the isotope '>C and calcium to 97 % of the isotope *°Ca, the
heaviest stable isoscalar nuclide. The advantage of comparing isoscalar nuclides,
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Fig. 8.12 Ratio of the structure functions F, of 4He, carbon, and calcium over deuterium as a
function of x [4, 7]

i.e., nuclides with the same number of protons and neutrons is that we can study the
influence of nuclear binding on the structure function F,, without having to worry
about the differences between F5 and F}.

A distinct deviation of the ratio from unity is visible throughout the entire
x-range. For x < 0.06, where the structure functions are dominated by the sea
quarks, the ratio is smaller than unity, and decreases with decreasing values of x.
The effect increases with increasing nuclear mass A. For 0.06 < x < 0.3, the
ratio is slightly larger than unity. In the range of 0.3 < x < 0.8 where the valence
quarks prevail, the ratio is again smaller than unity, with a minimum at x ~ 0.65.
This effect demonstrates that the momentum distributions of the quarks are shifted
towards smaller x when nucleons are bound in the nucleus. Also in the valence-
quark region the effect increases with increasing nuclear mass, although somewhat
weaker than at small values of x. For x — 1 the ratio F5/F? increases rapidly with
x. The rapid change of the ratio in this region disguises the fact that the absolute
changes in F, are very small since the structure functions themselves are tiny.

Notwithstanding the small size of the observed effects, they have generated
great theoretical interest. There is a plethora of models attempting to explain this
phenomenon [19]. So far, none of the models is able to convincingly describe
the observed behaviour over the entire range of x. This suggests that the effect is
probably due to several factors. Some possible explanations for the EMC effect are:
interactions between quarks in different nucleons over the nucleon’s boundaries; the
“swelling” of the radius of the nucleon within the nucleus; short-range correlation
between nucleons leading in the extreme case to a coalescence of nucleons to form
“multiquark clusters” of 6, 9, ... valence quarks; kinematical effects caused by the
reduction in the effective nucleon mass due to nuclear binding; Fermi motion — and
many other reasons.

As an example we want to briefly present two rather different models to describe
the decline of the nuclear structure function at x < 0.1. In the first approach
the effect is attributed to a modification of the quark and gluon distributions in
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the nucleus. The interaction of the virtual photon with the nucleus is viewed in
a fast moving system like the Breit frame. In its rest system the nucleon has the
diameter D. In the Breit frame it has the energy Ey and is Lorentz contracted to a
disc of thickness

Mc? Mc?

D=D/y=D " aD ——.
/v=D-"p Plc

(8.6)
Here y = [1 — (v/c)?]7"/? is the Lorentz factor. The longitudinal position of its
constituents, however, has an uncertainty of

he

- x|P|c’

Az 8.7)

At small values of x this uncertainty Az can be much larger than D’. Now we
consider a nucleus with mass number A with several nucleons along the direction of
the virtual photon. In the rest system of the nucleus its diameter is D and the mean
nucleon distance is d ~ 2 fm. When

Mc?
A d=d —, 8.8
7> Pl (8.8)

or equivalently

1 hc |Ple 1 & 8.9
<3 |Plc M2 d Mc’ (8.9)
then there will be a spatial overlap of sea quarks and gluons of different nucleons.
The quantity #/Mc is the reduced Compton wavelength of the nucleon with a
value of ~0.2fm. At x ~ 0.1 the uncertainty in the longitudinal position of the
constituents becomes comparable with the average distance of the nucleons in the
nucleus. The smaller x, the larger is the number of nucleons sharing their contents
of sea quarks and gluons. The effect increases with increasing mass number A and
saturates for x &~ 1/Dx - h/Mc. Thus, the density of gluons and sea quarks at the
position of a nucleon in a nucleus can be much larger than for a free nucleon. Due
to this “overcrowding”, the probability for an interaction between sea quarks and
gluons is increased and by pair annihilation their density is reduced again.
Consequently, fewer gluons and sea quarks are found at low values of x in
a nucleus compared to a free nucleon resulting in the observed reduction of the
nuclear structure function. Momentum conservation requires that this reduction of
the number of partons at low values of x is compensated by an enhancement at larger
x. This naturally explains the enhancement of 4 /F? in the range 0.06 < x < 0.3.
In the second approach, the parton distributions in a nucleus remain unchanged
compared to those in the free nucleon. The nuclear effect is attributed to a
modification of the interaction of the virtual photon with the atomic nucleus [15].
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We view the interaction in the rest system of the nucleus and take into account
that the virtual photon can fluctuate into a quark-antiquark pair. This pair then
interacts with the nucleus via the strong interaction. Since the strength of the strong
interaction is much larger than of the electromagnetic one, the interaction does no
longer happen incoherently with all the nucleons in the nucleus but preferentially
with those at the front surface. The nucleons in the “shadow” of the nucleons at the
front surface then do not contribute, or contribute much less, to the cross-section.
This effect is called nuclear shadowing.

When the virtual photon fluctuates into a quark-antiquark pair, its three-
momentum is conserved, but not its energy. For simplicity we treat the
quark-antiquark pair as one particle with the mass 2m,. Its energy is then with (7.12)
given by

V= \/(qc)z + @mge)? = |02+ (Q0)* + (2mye?)? | (8.10)

At small values of x, where we observe the shadowing effect, the energy of the
virtual photon v is large and v > chz_ Then we have

2 .2
v’%v(1+Q—C), (8.11)
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and the non-conservation of energy during the fluctuation has the magnitude

_ Q) _ Mo _

Av=v' —v Mcx. (8.12)
2v 2Mv
The fluctuation extends over the distance
Al=Ae=TC_ 1 (8.13)
Av Mcx

For x 2 0.1 the fluctuation length of the quark-antiquark pair becomes comparable
to the distance between the nucleons in the nucleus and nuclear shadowing becomes
influential. The “thicker” the nucleus is, the more pronounced is the effect.

Although the two approaches on the first sight seem to be very different, they lead
to the same conclusions for the reduction of the nuclear structure functions at low
values of x. This is not really surprising, since only observables are Lorentz invariant
but not our pictures about the dynamics of the interaction. In a fast moving system
we have fusion of partons from different nucleons that leads to an overall reduction
of parton densities seen by the virtual photon. In the rest system of the nucleus the
same process looks like a fluctuation of the virtual photon into a colourless quark-
antiquark pair that interacts strongly with one of the nucleons thereby reducing the
photon flux in its shadow. In both cases it is the same phenomenon, but viewed in a
different reference frame.
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Problems

1. Partons
Consider deep-inelastic scattering of muons with energy 600 GeV off protons at
rest. The data analysis is to be carried out at Q> = 4 GeV?/c>.

(a) What is the smallest value of x which can be attained under these circum-
stances? You may assume that the minimal scattering energy is E’ = 0.

(b) How many partons may be resolved with x > 0.3, x > 0.03 and in the full
measurable range of x if we parametrise the parton distribution as follows:

gv(x) = A(1 — x)?/{/x for the valence quarks,
gs(x) = 0.4(1 — x)®/x for the sea quarks and
g(x) = 4(1 —x)%/x  for the gluons.

The role of the normalisation constant, A, is to take into account that there are
three valence quarks.

2. Deep-inelastic scattering
Deep-inelastic electron-proton scattering is studied at the HERA collider. Elec-
trons with 27.6 GeV are collided head on with 920 GeV protons.

(a) Calculate the centre-of-mass energy of this reaction. What energy does an
electron beam which hits a stationary proton target have to have to reproduce
this centre-of-mass energy?

(b) The relevant kinematical quantities in deep-inelastic scattering are the square
of the four momentum transfer Q* and the Bjorken scaling variable x. Q> may,
e.g., be found from (6.2). Only the electron’s kinematical variables (the beam
energy E, the energy of the scattered electron E and the scattering angle )
appear here. In certain kinematical regions it is better to extract Q% from other
variables since their experimental values give Q> with smaller errors. Find
a formula for Q® where the scattering angles of the electron 6 and of the
scattered quark y appear. The latter may be determined experimentally from
measurements of the final state hadron energies and momenta. How?

(c) What is the largest possible four momentum transfer Q> at HERA? What Q?
values are attainable in experiments with stationary targets and 300 GeV beam
energies? What spatial resolution of the proton does this value correspond to?

(d) Find the kinematical region in Q? and x that can be reached with the ZEUS
calorimeter which covers the angular region 7°-178°. The scattered electron
needs to have at least 5 GeV energy to be resolved.

(e) The electron-quark interaction can occur through neutral currents (y, Z°) or
through charged ones (W*). Estimate at which value of Q? the electromag-
netic and weak interaction cross-sections are of the same size.
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Chapter 9
Particle Production in ete~ Collisions

So far, we have mainly discussed the light quarks, u and d, and those hadrons
composed of these two quarks. The easiest way to produce hadrons with heavier
quarks is in eTe™ collisions. Free electrons and positrons may be produced rather
easily. They can be accelerated, stored and made to collide in accelerators. In an
electron-positron collision process, all particles which interact electromagnetically
and weakly can be produced, as long as the energy of the beam particles is
sufficiently high. In an electron-positron electromagnetic annihilation, a virtual
photon is produced, which immediately decays into a pair of charged elementary
particles Fig. 9.1 (left). In a weak interaction, the exchanged particle is the heavy
vector boson Z° (cf. Fig. 9.1 (right) and see Chap. 12). The symbol f denotes an
elementary fermion (quark or lepton) and f its antiparticle. The ff system must have
the quantum numbers of the photon or the Z°, respectively. In these reactions all
fundamental, charged particle-antiparticle pairs can be produced; lepton-antilepton
and quark-antiquark pairs. Neutrinos are electrically neutral; hence, neutrino-
antineutrino pairs can only be produced by Z° exchange.

Colliding beams Which particle-antiparticle pairs can be produced only depends
upon the energy of the electrons and positrons (Fig. 9.2). In a storage ring, electrons
and positrons with beam energies E; and E, orbit in opposite directions and collide
head-on. It is conventional to use the Lorentz-invariant energy variable s, the square
of the centre-of-mass energy:

s = (pic + pac)? 9.1)
_ 24 2.4 2 :
= mic” +myc" + 2E1Ey — 2p pac”.

In a storage ring with colliding particles of the same energy E,

s=4E?. 9.2)
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Fig. 9.1 Fermion-
antifermion production in
electron-positron collisions
via the exchange of a virtual
photon (left) and a Z°-boson

(right) '
20
e e’
Fig. 9.2 For colliding
particles of the same energy ' f
the fermion and anti fermion P 1
are produced back-to-back
P; _ P,
e et
Hence, particle-antiparticle pairs with masses of up to 2m = ./s/c* can be

produced. To discover new particles, the storage ring energy must be raised. One
then looks for an increase in the reaction rate, or for resonances in the cross-section.

The great advantage of colliding beam experiments is that the total beam energy
is available in the centre-of-mass system. In a fixed target experiment, with m
satisfying mc? < E, s is related to E by:

s~ 2mc* - E. (9.3)

Here, the centre-of-mass energy only increases proportionally to the square root of
the beam energy.

Particle detection To detect the particles produced back-to-back in e*e™ annihila-
tion (Fig. 9.2) one requires a detector set up around the collision point which covers
as much as possible of the total 4 solid angle. The detector should permit us to
trace the tracks back to the interaction point and to identify the particles themselves.
The basic form of such a detector is sketched in Fig. 9.3.
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Scintillation counters < Muon detector

Iron yoke

Lead glass counter

\ } —— Wire chamber

Vertex detector

Scintillation counters

Magnetic field B

Supraconductive coil

Fig. 9.3 Sketch of a 4r-detector, as used in et e™ collision experiments. The detector is inside
the coil of a solenoid, which typically produces a magnetic field of around 1T along the beam
direction. Charged particles are detected in a vertex detector, mostly composed of silicon microstrip
counters, and in wire chambers. The vertex detector is used to locate the interaction point. The
curvature of the tracks in the magnetic field tell us the momenta. Photons and electrons are detected
as shower formations in electromagnetic calorimeters (of, e.g., lead glass). Muons pass through the
iron yoke with little energy loss. They are then seen in the exterior scintillation counters

9.1 Lepton Pair Production

Before we turn to the creation of heavy quarks, we want to initially consider the
leptons. Leptons are elementary spin-1/2 particles which feel the weak and, if
they are charged, the electromagnetic interaction — but not, however, the strong
interaction.

Muons The lightest particles which can be produced in electron-positron collisions
are muon pairs:

et +e > ut +pu.

The muon 4~ and its antiparticle' the u* both have a mass of only 105.7 MeV/c?
and they are produced in all usual e*e™ storage ring experiments. They penetrate
matter very easily,” whereas electrons because of their small mass and hadrons
because of the strong interaction have much smaller ranges. After that of the

! Antiparticles are generally symbolised by a bar (e.g., V). This symbol is generally skipped over
for charged leptons since knowledge of the charge alone tells us whether we have a particle or an
antiparticle. We thus write et, /,L+, 1

2Muons from cosmic radiation can still be detected in underground mines!
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neutron, theirs is the longest lifetime (2 j1s) of any unstable particle. This means
that experimentally they may easily be identified. Therefore the process of muon
pair production is often used as a reference point for other ee™ reactions.

Tau leptons If the centre-of-mass energy in an e™e™ reaction suffices, a further
lepton pair, the 7~ and t+, may be produced. Their lifetime, 3 - 107 s, is much
shorter. They may weakly decay into muons or electrons as will be discussed in
Sect. 10.1f.

The tau was discovered at the SPEAR eTe™ storage ring at SLAC when
oppositely charged electron-muon pairs were observed whose energy was much
smaller than the available centre-of-mass energy [16].

These events were interpreted as the creation and subsequent decay of a heavy
lepton-antilepton pair:

et +e  — 1T+ 7

I |—>,u_—|—iﬂ—i—vI or € —+ Ve v,

e++ve+if or ,u++vﬂ+ﬁf.

The neutrinos which are created are not detected.

The threshold for T+ ¢~ -pair production, and hence the mass of the t-lepton,
may be read off from the increase of the cross-section of the e™e™ reaction with
the centre-of-mass energy. One should use as many leptonic and hadronic decay
channels as possible to provide a good signature for t-production (Fig.9.4). The
experimental threshold at /s = 2m,c? implies that the tau mass is 1.777 GeV /c?.

0.15 — + —
L Charm threshold %ﬁ
0.10 — (

0.05 —

c(ete"—=e* + XT 1Y)
o (ete”™ —»putpY)

V5 [GeV]

Fig. 9.4 Ratio of the cross-sections for the production of two particles with opposite charges in
the reaction e + ¢~ — e* 4+ XT + Y, to the cross-sections for the production of .t 1 pairs
[5, 6]. Here XT denotes a charged lepton or meson and Y symbolises the unobserved, neutral
particles. The sharp increase at /s & 3.55GeV is a result of 7-pair production, which here
becomes energetically possible. The threshold for the creation of mesons containing a charmed
quark (arrow) is only a little above that for r-lepton production. Both particles have similar decay
modes which makes it more difficult to detect 7-leptons
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Cross-section The creation of charged lepton pairs may, to a good approximation,
be viewed as a purely electromagnetic process (y exchange). The exchange of Z°
bosons, and interference between photon and Z° exchange, may be neglected if the
energy is small compared to the mass of the Z°. The cross-section may then be found
relatively easily. The most complicated case is the elastic process eTe™ — eTe™,
Bhabha scattering. Here two processes must be taken into account: the annihilation
of the electron and positron into a virtual photon with subsequent e *e ~-pair creation
(Fig. 9.5 (left)) and secondly the scattering of the electron and positron off each
other (Fig. 9.5 (right)). These processes lead to the same final state and so their
amplitudes must be added in order to obtain the cross-section.

Muon pair creation is more easily calculated. Other e e~ reactions are therefore
usually normalised with respect to it. The differential cross-section for this reac-
tion 1s:

d 2
é - % (he)? - (1 + cos>6) . 9:4)

Integrating over the solid angle §2 yields the total cross-section:

4 o?

o =
3s

(he)? 9.5)

and one finds

nbarn

a(e+e_ —> ,U,+,U,_) =21.7 W .

(9.6)

The formal derivation of (9.4) may be found in many standard text books [10, 14,
15], we will merely try to make it plausible: The photon couples to two elementary
charges. Hence the matrix element contains two powers of e and the cross-section,

which is proportional to the square of the matrix element, is proportional to e* or /2.

Fig. 9.5 The two processes contributing to Bhabha scattering
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Fig. 9.6 Cross-sections of the reactions ete™ — utu™ and ete™ — v+ ¢~ as functions of
the centre-of-mass energy ﬁ (From [7] and [8]). The solid line shows the cross-section (9.6)
predicted by quantum electrodynamics

The length scale is proportional to Ac, which enters twice over since cross-sections
have the dimension of area. We must further divide by a quantity with dimensions of
[energy?]. Since the masses of the electron and the muon are very small compared
to s, this last is the only reasonable choice. The cross-section then falls off with
the square of the storage ring’s energy. The (1 + cos? ) angular dependence is
typical for the production of two spin-1/2 particles such as muons. Note that (9.4)
is, up to this angular dependence, completely analogous to the equation for Mott
scattering (5.39) once we recognise that Q?c?> = s = 4E? = 4E" holds here.

Figure 9.6 shows the cross-section for eTe™ — u*u™ and the prediction of
quantum electrodynamics. One sees an excellent agreement between theory and
experiment. The cross-section for ete™ — 777~ is also shown in the figure. If
the centre-of-mass energy /s is large enough that the difference in the p and 7 rest
masses can be neglected, then the cross-sections for ™ and T~ production
are identical. One speaks of lepton universality, which means that the electron, the
muon and the tau behave, apart from their masses and associated effects, identically
in all reactions. The muon and the tau may to a certain extent be viewed as being
heavier copies of the electron.

Since (9.6) describes the experimental cross-section so well, the form factors of
the @ and t are unity — which according to Table 5.1 means they are point-like
particles. No spatial extension of the leptons has yet been seen. The upper limit
for the electron is 107'8 m. Since the hunt for excited leptons so far has also been
unsuccessful, it is currently believed that leptons are indeed elementary, point-like
particles.
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9.2 Resonances

If the cross-sections for the production of muon pairs and hadrons in e*e ™ scattering

are plotted as a function of the centre-of-mass energy +/s, one finds in both cases
the 1/s-dependence of (9.5). In the hadronic final state channels this trend is broken
by various strong peaks which are sketched in Fig. 9.7. These so-called resonances
are short lived states which have a fixed mass and well-defined quantum numbers
such as angular momentum. It is therefore reasonable to call them particles.

Breit-Wigner formula The energy dependence of the cross-section of a reaction
between two particles a and b close to a resonance energy Ej is generally described
by the Breit-Wigner formula (see, e.g., [15]). In the case of elastic scattering, it is
approximately given by:

2 2
o(E) = nx” 2+ 1) . r ' ©.7)
2sa+ D)2sp + 1) (E—Ep)?+I'2/4

Here # is the reduced wavelength in the centre-of-mass system, s, and sy, are the
spins of the reacting particles and I" is the width (half width) of the resonance. The
lifetime of such a resonance is t = A/I". This formula is similar to that for the
resonance of a forced oscillator with large damping. The energy E corresponds to
the excitation frequency w, Ej to the resonance frequency wy and the width I to the
damping.

For an inelastic reaction like the case at hand, the cross-section depends upon the
partial widths I'; and I in the initial and final channels and on the total width IT.
The latter is the sum of the partial widths of all possible final channels. The result

Fig. 9.7 Cross-section of the 1029 T T T T
reaction eTe™ — hadrons as
a function of the
centre-of-mass energy /s kb
(sketch) [11]. The a1
cross-section for direct muon 10 A
pair production (9.5) is
denoted by a dashed curve _ 1
E
T T —1nb
e}
10735 ]
L — 1pb
1 1 1 1
107" 10° 10" 102 10® 10

s [GeV]
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Fig. 9.8 Production of a o°
vector meson in ete™
annihilation with its
subsequent decay into a
charged pion pair

for an individual decay channel f is

3k’ Ly
4 (E-E)*+g/4’

9.8)

or(E) =

where we have replaced s, and s, by the spins of the electrons (1/2) and J by the
spin of the photon (1).

The resonances g, w, and ¢ First, we discuss resonances at low energies. The
width I' of these states varies between 4 and 150 MeV, corresponding to lifetimes
from about 10722 to 1072*s. These values are typical of the strong interaction. These
resonances are therefore interpreted as quark-antiquark bound states whose masses
are just equal to the total centre-of-mass energy of the reaction. The quark-antiquark
states must have the same quantum numbers as the virtual photon; in particular, they
must have total angular momentum J = 1 and negative parity. Such quark-antiquark
states are called vector mesons; they decay into lighter mesons. Figure 9.8 depicts
schematically the production and the decay of the o° resonance.

The analysis of the peak at 770-780MeV reveals that it is caused by the
interference of two resonances, the o° — meson (mpo = 776 MeV/ c?) and the -
meson (m,, = 782MeV/c?). These resonances are produced via the creation of utt
and dd pairs. Since u-quarks and d-quarks have nearly identical masses, the uti- and
dd-states are approximately degenerate. The o° and w are mixed states of uti and dd.

These two mesons undergo different decays and may be experimentally identified
by them (cf. Sect. 15.3):

+

0 —
o —>mn T ,

w—> 777,
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At an energy of 1,019 MeV, the ¢-resonance is produced. It has a width of only
I' = 4.3MeV, and hence a relatively long lifetime compared to other hadrons. The
main decay modes (/85 %) of the ¢ are into two kaons, which have masses of
494 MeV /c* (K*) and 498 MeV /2 (K°):

¢ —> KM +K
¢ - K +K°.

Kaons are examples of the so-called strange particles. This name reflects the
unusual fact that they are produced by the strong interaction, but only decay by the
weak interaction; this despite the fact that their decay products include hadrons, i.e.,
strongly interacting particles.

This behaviour is explained by the fact that kaons are quark-antiquark combina-
tions containing an s or “strange” quark:

[K*) = [us) K% = |
IK™) = [us) K°) = |

The constituent mass attributed to the s-quark is 450 MeV/c?. In a kaon decay,
the s-quark must turn into a light quark which can only happen in weak interaction
processes. Kaons and other “strange particles” can be produced in the strong
interaction, as long as equal numbers of s-quarks and S-antiquarks are produced.
At least two “strange particles” must therefore be produced simultaneously. We
introduce the quantum number S (the strangeness), to indicate the number of s-
antiquarks minus the number of s-quarks. This quantum number is conserved in the
strong and electromagnetic interactions, but it can be changed in weak interactions.

The ¢ meson decays mainly into two kaons because it is an ss system When it
decays a utl pair or a dd pair are produced in the colour field of the strong interaction.
The kaons are produced by combining these with the ss quarks, as shown in Fig. 9.9.

K* KO KO

< \/\ < \/‘*

Fig. 9.9 The decay of the ¢ meson into two Kaons with continuous s- and s-quark lines
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Fig. 9.10 The decay of the ¢ meson into light mesons requires the annihilation of the ss pair and
a virtual state with three gluons

Because of the small mass difference mgy — 2my, the phase space available to this
decay is very small. This accounts for the narrow width of the ¢ resonance.

One could ask: why does the ¢ not decay mainly into light mesons? The decay
into pions is very rare (2.5 %), although the phase space available is much larger.
Such a decay is only possible if the s and § first annihilate, producing two or three
quark-antiquark pairs (Fig. 9.10). According to QCD, this proceeds through a virtual
intermediate state with at least three gluons. Hence, this process is suppressed with
respect to the decay into two kaons which can proceed through the exchange of
one gluon. The enhancement of processes with continuous quark lines is called the
Zweig rule.

The resonances J/¢v and ¥ Although the s-quarks were known from hadron
spectroscopy, it was a surprise when in 1974 an extremely narrow resonance whose
width was only 93 keV was discovered at a centre-of-mass energy of 3,097 MeV. It
was named J/v.°> The resonance was attributed to the production of a new heavy
quark. There were already theoretical suggestions that such a c-quark (“charmed”
quark) exists. The long lifetime of the J/v is explained by its cc structure. The decay
into two mesons each containing a c- (or ¢)-quark plus a light quark (in analogy to
the decay ¢ — K + K) would be favoured by the Zweig rule, but is impossible
due to energy conservation. This is because the mass of any pair of D mesons (ct,
cd etc.), which were observed in later experiments, is larger than the mass of the
J/¥. More resonances were found at centre-of-mass energies some 100 MeV higher.
They were called ', ¥” etc., and were interpreted as excited states of the cC system.
The J/ is the lowest cC state with the quantum numbers of the photon J* = 17,

3This particle was discovered nearly simultaneously in two differently conceived experiments (pp
collision and et e~ annihilation). One collaboration called it J [3], the other v [4].
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Table 9.1 Charges and Electr. | Mass (MeV/c?)
masses of the quarks Quark | Colour |charge | Bare quark | Const. quark
Down |b,g,r |—1/3 |4.555 ~300

Up b,g,r | +2/3 |1.8-3.0 ~300
Strange |b,g,r | —1/3 | 90-100 ~450
Charm |b,g,r +2/3 1,250-1,300

Bottom |b,g,r | —1/3 |4,150-4,210

Top b,g,r |+2/3 |172.5-10°-174.5- 103

A cc state, the 7., exists at a somewhat lower energy, it has quantum numbers 0~
(cf. Sect. 14.2 ff) and cannot be produced directly in e*e™ annihilation.

A similar behaviour in the cross-section was found at about 10 GeV. Here the
series of Upsilon (') resonances was discovered [12, 13]. These bb states are due
to the even heavier b-quark (“bottom” quark). The lowest-lying state at 9.46 GeV
also has an extremely narrow width (only 54 keV) and hence a long lifetime.

The t-quark (“top” quark) was found in 1995 by the two experiments DO and CDF
at the Tevatron (FNAL) in pp collisions [1, 2]. From these experiments and more
recently also from the LHC experiments a t-quark mass of 173.5 + 1.0 GeV/c? [17]
has been derived. The ete™-storage ring LEP could only attain centre-of-mass
energies of up to 209.2 GeV, which is not enough for tt pair production. An actual
review of the experimental results and the properties of the t-quark can be found,
e.g.,in [18].

Table 9.1 shows a compilation of the colour charges, the electric charges and
the masses of the quarks; b, g, r denote the colours blue, green and red. Listed
are the masses of “bare” quarks (current quarks) which would be measured in the
limit Q2 — 00 [17] as well as the masses of constituent quarks, i.e., the effective
masses of quarks bound in hadrons. The masses of the quarks, in particular those
of the current quarks, are strongly model dependent. For heavy quarks, the relative
difference between the two masses is small.

The Z° resonance At /s = 91.2GeV, an additional resonance is observed with
a width of 2,495 MeV. It decays into lepton and quark pairs. The properties of this
resonance are such that it is thought to be a real Z°, the vector boson of the weak
interaction. In Sect. 12.2, we will describe what we can learn from this resonance.

9.3 Non-resonant Hadron Production

Up to now we have solely considered resonances in the cross-sections of electron-
positron annihilation. Quark-antiquark pairs can, naturally, also be produced among
the resonances. Further quark-antiquark pairs are then produced and form hadrons,
around the primarily produced quark (or antiquark). This process is called hadro-
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nisation. Of course only those quarks can be produced whose masses are less than
half the centre-of-mass energy available.

In hadron production, a quark-antiquark pair is initially produced. Hence the
cross-section is given by the sum of the individual cross-sections of quark-
antiquark pair production. The production of the primary quark-antiquark pair by an
electromagnetic interaction can be calculated analogously to muon pair production.
Unlike muons, quarks do not carry a full elementary charge of 1 - e; but rather
a charge zr - e which is —1/3e or +2/3e, depending on the quark flavour f.
Hence the transition matrix element is proportional to z; €%, and the cross-section is
proportional to zf a?. Since quarks (antiquarks) carry colour (anticolour), a quark-
antiquark pair can be produced in three different colour states. Therefore there is an
additional factor of 3 in the cross-section formula. The cross-section is given by:

o(ete” > qq) =3-z-0(te” > putu), (9.9)

and the ratio of the cross-sections by

+e~ - had oete” > q,g
o(e e_ — ha ron_s) _ Zf (_ qf?f) _3. ZZ? 9.10)
olete™ > utu) olete” - utu) :

f

Here only those quark types f which can be produced at the centre-of-mass energy
of the reaction contribute to the sum over the quarks.

Figure 9.11 shows schematically the ratio R as a function of the centre-of-mass
energy /s. Many experiments had to be carried out at different particle accelerators,
each covering a specific region of energy, to obtain such a picture. In the non-
resonant regions R increases step by step with increasing energy 1/s. This becomes
plausible if we consider the contributions of the individual quark flavours. Below
the threshold for J/v production, only uil, dd, and ss pairs can be produced. Above
it, cC pairs can also be produced; and at even higher energies, bb pairs are produced.
The sum in (9.10) thus contains at higher energies ever more terms. As a corollary,
the increase in R tells us about the charges of the quarks involved. Depending on
the energy region, i.e., depending upon the number of quark flavours involved, one
expects:

R=3.32 =303 + -1+ H2+ @ + =12}, @1
f u d S c b

3-6/9

3-10/9

3.11/9

These predictions are in good agreement with the experimental results. The
measurement of R represents an additional way to determine the quark charges
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Fig. 9.11 Cross-section of the reaction eTe™ — hadrons, normalised to eTe™ — utp =, asa
function of the centre of mass energy /s (sketch). The horizontal lines correspond to R = 6/3,
R =10/3 and R = 11/3, the values we expect from (9.10), depending upon the number of quarks
involved. The value R = 15/3 which is expected if the t-quark participates lies outside the plotted
energy range (Courtesy of G. Myatt, Oxford )

and is simultaneously an impressive confirmation of the existence of exactly three
colours.

9.4 Gluon Emission

Using eTe™ scattering it has proven possible to experimentally establish the

existence of gluons and to measure the value of «, the strong coupling constant.
The first indications for the existence of gluons were provided by deep-inelastic

scattering of leptons off the “average nucleon”. The integral of the structure function
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Fig. 9.12 Typical 2-jet and 3-jet events, measured with the JADE detector at the PETRA ete™
storage ring. The figures show a projection perpendicular to the beam axis, which is at the centre of
the cylindrical detector. The tracks of charged particles (solid lines) and of neutral particles (dotted
lines) are shown. They were reconstructed from the signals in the central wire chamber and in the
lead glass calorimeter surrounding the wire chamber. In this projection, the concentration of the
produced hadrons in two or three particle jets is clearly visible (Courtesy of DESY )

F, was only half the expected value (cf. Sect. 7.5). The missing half of the nucleon
momentum was apparently carried by electrically neutral particles which were
also not involved in weak interactions. They were identified with the gluons. The
coupling constant oy was determined from the scaling violation of the structure
function F, (Sect. 8.3).

A direct measurement of these quantities is possible by analysing “jets”. At high
energies, hadrons are typically produced in two jets, emitted in opposite directions.
These jets are produced in the hadronisation of the primary quarks and antiquarks
(left side of Fig.9.12).
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In addition to simple qq production, higher-order processes can occur. For
example, a high-energy (“hard”) gluon can be emitted, which can then manifest
itself as a third jet of hadrons. This corresponds to the emission of a photon in
electromagnetic bremsstrahlung. Emission of a hard photon, however, is a relatively
rare process, as the electromagnetic coupling constant « is rather small. By contrast,
the probability of gluon bremsstrahlung is given by the coupling constant ¢;. Such
3-jet events are indeed detected. Figure 9.12 (right) shows a particularly nice
example. The coupling constant g may be deduced directly from a comparison
of the 3- and 2-jet event rates. Measurements at different centre-of-mass energies
also demonstrate that o decreases with increasing Q? = s/c? as (8.1) predicts. The
experimental determination of the Q* dependence of the strong coupling constant
o5 has been reviewed in detail, e.g., in Ref. [9].

Problems

1. Electron-positron collisions

(a) Electrons and positrons each with a beam energy E of 4 GeV collide head on
in a storage ring. What production rate of ™ -pairs would you expect at a
luminosity of 10°2 cm™2s~!? What production rate for events with hadronic
final states would you expect?

(b) Itis planned to construct two linear accelerators aimed at each other (a linear
collider) from whose ends electrons and positrons will collide head on with
a centre-of-mass energy of 500 GeV. How big must the luminosity be if one
wants to measure the hadronic cross-section within two hours with a 10 %
statistical error?

2. 7 resonance
Detailed measurements of the 7°(1S) resonance, whose mass is roughly
9,460 MeV, are performed at the CESR electron-positron storage ring.

(a) Calculate the uncertainty in the beam energy E and the centre-of-mass
energy W if the radius of curvature of the storage ring is R = 100m. We
have:

5E—( 55 hcmuc? 4)1/2
“\32v3 2k 7

What does this uncertainty in the energy tell us about the experimental
measurement of the 7" (Use the information given in Part b)?

(b) Integrate the Breit-Wigner formula across the region of energy where the
T (1S) resonance is found. The experimentally observed value of this integral
for hadronic final states is [ o(e*e™ — 7" — hadrons) dW =~ 300nbMeV.



13

R

1
2

—_

11
12

13.
14.

15.

16.
17.

SO U AW

8 9 Particle Production in eTe™ Collisions

The decay probabilities for T — €14~ (£ = e, u, 7) are each around 2.5 %.
How large is the total natural decay width of the 7" ? What cross-section would
one expect at the resonance peak if there was no uncertainty in the beam
energy (and the resonance was not broadened by radiative corrections)?
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Chapter 10
Phenomenology of the Weak Interaction

The discovery and the first theories of the weak interaction were based on the
phenomenology of fB-decay. Bound states formed by the weak interaction are
not known, in contrast to those of the electromagnetic, strong and gravitational
interactions. The weak interaction is in this sense somewhat foreign. We cannot,
for example, base its description on any analogous phenomena in atomic physics.
The weak interaction is, however, responsible for the decay of quarks and leptons.

In scattering experiments weak interaction effects are difficult to observe.
Reactions of particles which are solely subject to the weak interaction (neutrinos)
have extremely tiny cross-sections. In scattering experiments involving charged
leptons and hadrons the effects of the weak interaction are clouded by those of the
strong and electromagnetic interactions. Thus, most of our knowledge of the weak
interaction has been obtained from particle decays.

The first theoretical description of §-decay, due to Fermi [12], was constructed
analogously to that of the electromagnetic interaction. With some modifications, it
is still applicable to low-energy processes. Further milestones in the investigation of
the weak interaction were the discovery of parity violation [21], of different neutrino
families [11] and of CP violation in the K° system [8].

Quarks and leptons are equally affected by the weak interaction. In the previous
chapter we discussed the quarks at length. We now want to treat the leptons in more
detail before we turn to face the phenomena of the weak interaction.

10.1 Properties of Leptons

Charged leptons In our treatment of e™e™ scattering we encountered the charged
leptons: the electron (e), the muon (i) and the tau (7) as well as their antiparticles
(thee™, u* and t+) which have the same masses as their partners but are oppositely
charged.

© Springer-Verlag Berlin Heidelberg 2015 139
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The electron and the muon are the lightest electrically charged particles. Charge
conservation thus ensures that the electron is stable and that an electron is produced
when a muon decays. Muon decay proceeds via

U o= e + Vet .

In a very few cases an additional photon or e™

allowed process

e pair is produced. The energetically

woA e+,

is, on the other hand, never observed. The muon is therefore not just an excited state
of the electron.

The t-lepton is much heavier than the muon and, indeed, more so than many
hadrons. Thus it does not have to decay solely into lighter leptons

T —> e +V.+ v, T > UVt v,
but can also turn into hadrons, e.g., into a pion and a neutrino
T > +v;.

In fact more than half of all r decays follow the hadronic route [4].

Neutrinos We have already seen several processes in which neutrinos are pro-
duced: nuclear B-decay and the decays of charged leptons. Neutrinos are electrically
neutral leptons and, as such, do not feel the electromagnetic or strong forces. Since
neutrinos interact only weakly, they can as a rule only be detected indirectly in
processes where charged particles are produced. Typically the energy, momentum
and spin carried away or brought in by the neutrino is determined by measuring the
other particles involved in the reaction and applying conservation laws. For example,
the sums of the energies and angular momenta of the observed particles in S-decays
indicate that another particle as well as the electron must also have been emitted.
Experiment has made it completely clear that neutrinos and antineutrinos are distinct
particles. The antineutrinos produced in a S-decay

n - p+e +ve

for example, only induce further reactions in which positrons are produced and do
not lead to electrons being created:

Vo+p—-n+et

Ve+nAp+e .
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Neutrinos and antineutrinos produced in charged pion decays

T u +vy

at

— p,+ + v,
also behave differently. They are distinct particles: neutrinos from 7+ decays
only generate negatively charged muons, while antineutrinos from 7~ decays only
produce positive muons. Furthermore, they induce reactions in which = or u are
created but never produce electrons or positrons [11]. This implies that the electron
neutrino v, and the muon neutrino v, are different sorts of neutrinos: an electron
neutrino, which is associated with the creation and annihilation of electrons, and a
muon neutrino, which we similarly associate with the muon. Accordingly we can
assign a tau neutrino v, to the tau lepton.

Thus, we may conclude that there are three sorts of neutrinos: the electron
neutrino v, associated with the creation or annihilation of electrons, the muon
neutrino v, allocated to the muon, and the tau neutrino v,, assigned to the tau lepton.

The lepton families We now know a total of six different leptons. Three of them
(e™, u~, t7) are electrically charged, the other three, the neutrinos (ve, v, v;), are
neutral. To each of them there exists an antiparticle. We denote the various types of
leptons as leptonic flavour in analogy to the classification of the six types of quarks
by their flavour u, d, c, s, t and b (cf. Sect.7.4). All leptons have spin-% and are
therefore fermions. We have seen that the three charged leptons and their neutrinos
are intimately connected and, therefore, denote them in three families, each of which

is made up of two particles whose charges differ by one unit:

() Ge) ()

The neutrinos in the upper row are electrically neutral, the leptons in the lower
row have charge —le. The charged leptons have, like the quarks, very different
masses: (m,/me. ~ 207, m./m, ~ 17). To each of these families there exists
the corresponding family of antiparticles.

There is one important difference between neutrinos and charged leptons in
addition to their charge: the otherwise very successful standard model of particle
physics (cf. Chap. 13) predicts neutrinos to be massless. From neutrino oscillations,
that we will discuss in the subsequent chapter, we learn, however, that neutrinos
must possess a mass. As a consequence, a neutrino from one family, e.g., an electron
neutrino v, can transmute into a neutrino of another family, e.g., a tau neutrino v,.
The masses of the neutrinos are still unknown, we only know the differences of their
masses squared. Details will be discussed in Sects. 11.2 and 11.3.

Despite intensive searches at ever higher energies, no further leptons have
yet been found. The lower bound for the mass of any further charged lepton is
currently approximately 100 GeV/c? and of any further neutral lepton approximately
40GeV/c?. In Sect.12.2 we will see that there cannot be more than three light
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neutrinos (m, < 10GeV/c?). We still do not have a generally accepted reason
for why the fundamental fermions come in three families and we do not understand
their masses.

Lepton number conservation In all the reactions we have mentioned above, the
creation or annihilation of a lepton was always associated with the creation or
annihilation of an antilepton of the same flavour family. To our present knowledge
this is true for all reactions. As with the baryons, we therefore have a conservation
law: in all reactions the number of leptons of a particular family minus the number
of the corresponding antileptons is conserved. We write

Ly = N(£) —N(£) + N(v¢) — N(V;) = const., where £ =ce, u, 7. (10.1)
The L;’s are individually referred to as lepton family numbers and the sum L =

Le + L, + L. is called lepton number.
In consequence the following production reactions are allowed or forbidden:

Allowed Forbidden
ptu” = vtn ptp= A 2'+n
et +e- — v+, et +e= A v+ Vyu
7T = u+v, A
uwoo—=> e vty [T S SRV TN
T = a4, T A a F .

Experimentally the upper limits for any violation of the lepton family number
Ly or the lepton number L in electromagnetic and weak decays are very small.
Examples are [19]

I'(p* —e*y)

<24-107" (L
I'(;u* — all channels) (Le)

e —eta )

88-10"° (L). 10.2
I'(t— — all channels) = @ ( )

Note though that this conservation rule only really refers to production processes.
Neutrino oscillations lead to a change of lepton family numbers and so only lepton
number as a whole is truly conserved. Many theorists believe that neutrinos are
so-called Majorana-particles. This would lead to a small violation of the lepton
number, cf. Sect. 11.4. The only realistic hope for the observation of this effect is
the neutrinoless double B-decay, which we will treat in some detail in Sect. 18.7.

All the allowed reactions that we have listed above proceed exclusively through
the weak interaction, since in all these cases neutrinos are involved and these
particles are only subject to the weak interaction. The opposite conclusion is,
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however, incorrect. We will see in the following section that there are indeed weak
processes which involve neither neutrinos nor any other leptons.

10.2 The Types of Weak Interactions

Recall that the weak interaction can transform a charged lepton into its family’s
neutrino and that it can produce a charged lepton (antilepton) and its antineutrino
(neutrino). In just the same manner quarks of one flavour can be transformed into
quarks with another flavour in weak interactions: a typical example of this is the
transformation of a d-quark into a u-quark — this takes place in the B-decay of a
neutron. In all such reactions the identity of the quarks and leptons involved changes
and, simultaneously, the charge changes by +1e or —le. The term charged current
was coined to describe such reactions. They are mediated by charged particles, the
W and W™.

For a long time only this type of weak interaction was known. Nowadays we
know that weak interactions may also proceed via the exchange of an additional,
electrically neutral particle, the Z°. In these reactions the quarks and leptons are not
changed. One refers to them as neutral currents.

The W and the Z° are vector bosons, i.e., they have spin-1. Their masses are
large: 80 GeV/c? (Wi) and 91 GeV/c? (Z°). We will return to their experimental
detection in Sect. 12.1. In this chapter we will, following the historical development,
initially concern ourselves with the charged currents. These may be straightfor-
wardly divided up into three categories (Fig. 10.1): leptonic processes, semileptonic
processes and non-leptonic processes.

""-"é-""-
|

________é________
|

________E_________
I+

Fig. 10.1 The three sorts of charged current reactions: a leptonic process (left), a semileptonic
process (middle) and a non-leptonic process (right)
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Fig. 10.2 Leptonic decay of
the t-lepton

T

Leptonic processes If the W boson only couples to leptons, one speaks of a
leptonic process. The underlying reaction is

L4+7v, <« U +7p.

Examples of this reaction are the leptonic decay of the z-lepton (Fig. 10.2):
T > UtV +,
T —>e +Ve+ Vv,
and the scattering process

Vyte —>u 4 ve.

Semileptonic processes Semileptonic processes are those where the exchanged W
boson couples to both leptons and quarks. The fundamental process here is

q+q «— L+,

A prominent example is the S-decay of a neutron (Fig. 10.3) which may be reduced

to the decay of a d-quark in which the two other quarks are not involved. The

latter are called spectator quarks. Inverse reactions are processes such as the inverse

B-decay V. + p —>n+et orve +n— p + e~ andelectron capture p + €~ — 1+ ve.
(Anti-)Neutrinos were directly detected for the first time in the first of these

reactions [10] — antineutrinos from the 8~ -decay of neutron-rich fission products

were seen to react with hydrogen. The second reaction may be used to detect solar

and stellar neutrinos emanating from B -decays of proton-rich nuclei produced in

fusion reactions.

Further examples of semileptonic processes are charged pion or kaon decay:
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Fig. 10.4 Non-leptonic decays of the A° hyperon (left, middle) and of the Kt meson (right)

Hadron description Quark description
7T >+, d+u —>u~ +v,
K™ =u™ +v, stu—pu” +v,,

or deep-inelastic neutrino-nucleon scattering, which we will treat in more detail in
Sect. 10.6.

Non-leptonic processes Finally non-leptonic processes do not involve leptons at
all. The basic reaction is

q+q < q;+q,.

Charge conservation requires that the only allowed quark combinations have a
total charge +1e. Examples are the hadronic decays of baryons and mesons with
strangeness, such as the decay of the A” hyperon into a nucleon and a pion, or that
of K™ (u5) into two pions (Fig. 10.4).



146 10 Phenomenology of the Weak Interaction
10.3 Coupling Strength of the Weak Interaction

We now want to deal with charged currents in a more quantitative manner. We will
treat leptonic processes in what follows since leptons, in contrast to quarks, exist as
free particles which simplifies matters.

As with Mott scattering or eTe™ annihilation, the transition matrix element for
such processes is proportional to the square of the weak charge g to which the W
Boson couples and to the propagator (4.23) of a massive spin-1 particle:

1 ?—0 g
Q%c? + M3, c* & Mt

M o« g (10.3)

The difference to an electromagnetic interaction is seen in the finite mass of the
exchange particle. Instead of the photon propagator (Qc)™2, we see a propagator
which is almost a constant for small enough momenta Q> < M3,c2. We will see in
Sect. 12.2 that the weak charge g and the electric charge e are of a similar size.
In fact, g is slightly larger than e. The very large mass of the exchange boson
means that at small O the weak interaction appears to be much weaker than the
electromagnetic interaction. It also means that its range #/Mwc ~ 2.5 - 1073 fm is
very limited.

In the approximation of small four-momentum transfers one may then describe
this interaction as a point-like interaction of the four particles involved (Fig. 10.5).
This was in fact the original description of the weak interaction before the idea of
the W and Z bosons was brought in. The coupling strength of this interaction is
described by the Fermi constant G, which is proportional to the square of the weak
charge g, very much as the electromagnetic coupling constant « = ¢*/(4mwephc) is

Fig. 10.5 Sketch of the leptonic muon decay with the exchange of a W boson (leff) and as
point-like interaction (right)
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proportional to the square of the electric charge e. It is so defined that Gg/ (fc)? has
dimensions of [1/energy?] and is related to g by

Gr  7no g (he)? 104
NI oy

The decay of the muon The most exact value for the Fermi constant is obtained
from muon decay. The muon decays, as explained in Sect. 10.1, by

wo e Vet pt —et +v.+7,.

Since the muon mass is tiny compared to that of the W boson, it is reasonable to treat
this interaction as point-like and to describe the coupling via the Fermi constant.

In this approximation the lifetime of the muon may be calculated with the help
of the golden rule, if we use the Dirac equation and take into account the amount
of phase space available to the three outgoing leptons. One finds that the decay
width is:

h 2

yr = — = ——*
Y, 19213 (he)S

S(mue®) - (1+e). (10.5)

The correction term &, which reflects higher order (radiative) corrections and phase-
space effects resulting from the finite electron mass, is small (see Eq.5 in [16]). It
should be noted that the transition rate is proportional to the fifth power of the energy
and hence the mass of the decaying muon. In Sect. 16.6 we will show in detail how
the phase space may be calculated and how the E°-dependence can be derived (in
the example of the B-decay of the neutron).

The muon mass and lifetime have been measured to a high precision:

my, = (105.6583715 4 0.0000035) MeV/c?,
7, = (2.1969811 = 0.0000022) - 10~®s.. (10.6)

This yields a value for the Fermi constant

1.03-107°

Gg _
B (MpC2)2 ’

(h_)} (1.1663787 + 0.0000006) - 107> GeV 2 ~
o)

(10.7)

Neutrino-electron scattering Neutrino-electron scattering is a reaction between
free, elementary particles. It proceeds exclusively through the weak interaction. We
can discuss the effects of the effective coupling strength Gr on the cross-section of
this reaction and show why the weak interaction is called “weak”.

In Fig. 10.6 the scattering of muon neutrinos off electrons in which the v, is
changed into a i~ is shown.
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Fig. 10.6 Sketch of the
charged-current reaction
vue —> U,

We have chosen this process as our example since it can only take place via
W-exchange.

For small four-momenta the total cross-section for neutrino-electron scattering
is proportional to the square of the effective coupling constant Gg. Similarly to
our discussion of the total cross-section in ete™ annihilation in Sect.9.1, the
characteristic length and energy scales of the reaction (the constants %c and the
centre-of-mass energy +/s) must enter the cross-section in such a way as to yield the
correct dimensions (area):

Gt
= .S, 10.8
T Xhot (108)
where s may be found in the laboratory frame from (9.3) to be s = 2mec?E,.

From (10.7) one finds that the cross-section in the laboratory frame is
o = 1.7-100" cm? - E, /GeV . (10.9)

This is an extremely tiny cross-section. To illustrate this point we now estimate
the distance L which a neutrino must traverse in iron until it may weakly interact
with an electron. The electron density in iron is

Z
Ne = ZgNA ~22-10%cm™. (10.10)

For neutrinos with an energy of 1 MeV the mean free path is therefore L =
(ne -0)~! = 2.6 - 10'7 m, which is about 30 light years!"

At very high energies the simple formula (10.9) is no longer valid, since the
cross-section would limitlessly grow with the neutrino energy. This of course will
not happen in practice: at large four-momentum transfers Q> > M%ch the prop-
agator term primarily determines the energy dependence of the cross-section. The
approximation of a point-like interaction no longer holds. At a fixed centre-of-mass

IThe absorption of neutrinos by the atomic nuclei is neglected here. This is a reasonable
approximation for neutrino energies less than 1MeV, but would need to be modified for higher
energies.
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energy /s the cross-section falls off, as in electromagnetic scattering, as 1/Q*. The
total cross-section is on the other hand [9]:

G> MZ,c*
o= E i Wz .S
mw(he)* s+ Mg,c*

(10.11)

It does not increase linearly with s, as the point-like approximation implies, rather
it asymptotically approaches a constant value.

Neutral currents Up to now we have only considered neutrino-electron scattering
via Wt exchange, i.e., through charged currents. Neutrinos and electrons can,
however, interact via Z° exchange, i.e., neutral-current interactions are possible. The
Z° changes neither the mass nor the charge of the involved particles.

Elastic muon-neutrino scattering off electrons, v, e~ — v,e” (Fig.10.7), is
particularly suitable for investigating the weak interaction via Z° exchange. This
is because conservation of lepton family number precludes W exchange. Reactions
of this kind were first seen in 1973 at CERN [14]. This was the first experimental
signal for weak neutral currents.

We can estimate the total cross-section for the reaction v, e~ — v, €™ for small
four-momenta by repeating the calculation we did for the scattering via charged
currents but modifying the coupling Gg. The only difference between the two
interactions is in the mass of the two exchange bosons. The mass of the exchange
boson squared appears in the propagator, so that the Gr should be multiplied by
M%V /M%O ~ 0.78. The total cross-section at low energies reads then

My~ Gi
= . . 10.12
7T M, whey (10.12)
or
o(vpe” —v,e)x0.6-0(vye— 1 ve). (10.13)

Calculating vee™ scattering is more complicated since both Z and W exchange
lead to the same final state and thus interfere with each other.

Fig. 10.7 Sketch of the
neutral-current reaction
vue —> e
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Fig. 10.8 Superposition of the charged-current reaction (left) and the neutral-current reaction
(right) in the process vee™ —> vee™

f f

e et e et

Fig. 10.9 Superposition of the electromagnetic and weak interaction in et e annihilation (leff)
and for electron-quark scattering (right)

Normally weak interactions via neutral currents will be hardly observed, since
they will be superposed by the much stronger electromagnetic interaction and
in case of the quarks by the strong interaction. In electron-positron annihilation
(Fig. 10.9 (left)) or for electron-quark scattering (Fig. 10.9 (right)) a superposition
of the weak and the electromagnetic interactions occurs.

Only when the centre-of-mass energy is comparable to the mass of the Z° the two
interactions become comparably large (cf. Sect. 12.2). The interference between the
weak and the electromagnetic neutral currents has been observed very clearly in
experiments at the electron-positron collider LEP and in deep-inelastic scattering at
very high Q7 at HERA (cf. Sect. 12.2).

Universality of the weak interaction If we assume that the weak charge g is the
same for all quarks and leptons, then (10.5) must hold for all possible charged
decays of the fundamental fermions into lighter leptons or quarks. All the decay
channels then contribute equally to the total decay width, up to a phase-space
correction coming from the different masses.
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We choose to consider the example of the decay of the r-lepton. This particle has
essentially three routes open to it

T =V +Ve+e”
T >V VU

T > v, +U4d, (10.14)

whose widths are I ~ I, and I;qz ~ 31",#.2 The factor of three follows from
the ud-pair having the possibility of appearing in three different colour combinations

(rf7 bB? gg)'
From the mass term in (10.5) we have:

It = (mt/mu)s “Le (10.15)
and the lifetime is thus predicted to be:

h Ty

T, = ~ ~3.1-107Bs. 10.16
FIC+FIM+Ftdﬁ 5'(mr/mu)5 ( )

Experimentally we find [19]
TP = (2.906 £ 0.010) - 107 5. (10.17)

This good agreement confirms that quarks occur in three different colours and is
strongly supportive of the quark and lepton weak charges being identical.

10.4 The Quark Families

We have claimed that the weak charge is universal, and that all the weak reactions
which proceed through W exchange can therefore be calculated using the one
coupling constant g or Gg. The lifetime of the t-lepton seemed to illustrate this
point: our expectations, based on the assumption that the W boson couples with the
same strength to both quarks and leptons were fulfilled. However, the lifetime does
not contain the decay widths for leptonic and hadronic processes separately, but only
their sum. Furthermore it is very sensitive to the mass of the r-lepton. Hence, this is
not a particularly precise test of weak charge universality.

The coupling to quarks can be better determined from semileptonic hadron
decays. This yields a smaller value for the coupling than that obtained from the
leptonic muon decay. If a d-quark is transformed into a u-quark, as in the S-decay

2The appearance of further hadronic decay channels will be treated in the next section.
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of the neutron, the coupling constant appears to be about 4 % smaller. In processes
in which an s-quark is transformed into a u-quark, as in A° decay, it even appears to
be 20 times smaller.

The Cabibbo angle An explanation of these findings was proposed by Cabibbo
as early as 1963 [7], at a time at which quarks had not been introduced. We will
re-express Cabibbo’s hypothesis in modern terms. We may group the quarks into
families, according to their charges and masses, as we did for the leptons:

(3) €) G

2 () ()

Quark transitions in the weak decays indeed are observed predominantly within a
family but also, to a lesser degree, from one family to another. For charged currents,
the “partner” of the flavour eigenstate |u) is therefore not the flavour eigenstate |d),
but a linear combination of |d) and |s). We call this linear combination |d’). Similarly
the partner of the c-quark is a linear combination of |s) and |d), orthogonal to |d’),
which we call |s').

The coefficients of these linear combinations can be written as the cosine and
sine of an angle called the Cabibbo angle Oc. The quark eigenstates |d’) and |s") of
W exchange are related to the eigenstates |d) and |s) of the strong interaction, by a
rotation through 6¢:

|d") = cosfc|d) +sinfc|s)
|s') =cosfc|s)—sinfc|d), (10.18)

which may be written as a matrix:

(ld/)):( CF)S@C sin@c)'(|d)). (10.19)
|s") —sin f¢ cos O¢c [s)
Whether the state vectors |d) and |s) or the state vectors |u) and |c) are rotated,
or indeed both pairs simultaneously, is a matter of convention alone. Only the
difference in the rotation angles is of physical importance. Usually the vectors of
the charge —e/3 quarks are rotated while those of the charge +2¢/3 quarks are left
untouched. In view of neutrino oscillations that we will discuss in the next chapter
we emphasise here that only the eigenstates |d) and |s) of the strong interaction have
a well defined mass, but not the states |d’) and |s').

Experimentally, O is determined by comparing the lifetimes and branching ratios
of the semileptonic and hadronic decays of various particles as shown in Fig. 10.10.
This yields:

sinfc ~ 0.22 , and cosOc ~ 0.98 . (10.20)
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Fig. 10.10 Leptonic decay of the muon (left) and the Cabibbo-suppressed semileptonic decays of
the neutron (middle) and the A° hyperon (right)

The transitions ¢ <> d and s <> u, as compared to ¢ <> s and d <> u, are therefore
suppressed by a factor of

sin6c : cos’fc ~ 1:20. (10.21)

We can now make our treatment of r decay more precise. In (10.14), we stated
that 7 — v, + U + d is “essentially” the only hadronic decay of the . But t —
V; + U + s is also energetically possible. Whereas the former decay is only slightly
suppressed by a factor of cos? O, the latter is faced with a factor of sin’ Oc. However,
since cos? ¢ and sin’ Oc add to one our conclusion concerning the lifetime of the
t-lepton is not affected, as long as we ignore the difference in the quark masses.

The Cabibbo-Kobayashi-Maskawa matrix Adding the third generation of
quarks, the 2 x 2 matrix of (10.19) is replaced by a 3 x 3 matrix [15]. This is
called the Cabibbo-Kobayashi-Maskawa matrix (CKM matrix):

| d ) Vud Vus Vub | d)
| s’ Y] =1 Vea Ves Voo | - | I8) |- (10.22)
I b ) Ve Vis Vio | b )

The probability for a transition from a quark q; to a quark q; is proportional to
[Vai, |2, the square of the magnitude of the matrix element.

The matrix elements are correlated since the matrix is unitary. The total number
of independent parameters is four: three real angles and an imaginary phase. The
phase affects weak processes of higher order via the interference terms. CP violation
(cf. Sect. 15.5) is attributed to the existence of this imaginary phase [17].

The matrix elements have been determined from a large number of decays and
meanwhile are known very well [19]. Their magnitudes are approximately:

0.974 0.225 0.003
( [Vij| )= 0225 0.973 0.041 |. (10.23)
0.008 0.040 0.999
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The diagonal elements of this matrix describe transitions within a family; they
deviate from unity by only a few percent. The values of the matrix elements V, and
Vs are nearly one order of magnitude smaller than those of Vs and V4. Accordingly,
transitions from the third to the second generation (t — s, b — c) are suppressed by
nearly two orders of magnitude compared to transitions from the second to the first
generation. This applies to an even higher degree for transitions from the third to the
first generation. The direct transition b — u was detected in the semileptonic decay
of B mesons into non-charmed mesons [2, 3, 13]. Many decays of this kind have
been observed during the last decade by the experiments Babar, Belle and CLEO
[19].

Weak quark decays only proceed through W exchange. Neutral currents which
change the quark flavour (e.g., c — u) are only possible in higher-order processes
and are therefore strongly suppressed in the standard model. The decay KT —
atvi, for example, has been observed, corresponding to a transition s — d. The
branching ratio of this decay is 1.5-107'° [19].

10.5 Parity Violation

A property unique to the weak interaction is parity violation. This means that weak
interaction reactions are not invariant under space inversion.
An example of a quantity which changes sign under a spatial inversion is helicity

LA 4
Is|- |pl’

(10.24)

which we introduced in Sect.5.3. The numerator is a scalar product of an axial
vector (spin) and a vector (momentum). Whereas spin preserves its orientation under
mirror reflection, the direction of the momentum is reversed. Thus helicity is a
pseudoscalar, changing sign when the parity operator is applied to it. An interaction
which depends upon helicity is therefore not invariant under spatial reflections.
Helicity is only Lorentz-invariant for massless particles. For particles with a non-
vanishing rest mass it is always possible to find a reference frame in which the
particle is “overtaken”, i.e., in which its direction of motion and thus its helicity are
reversed.

Strictly speaking, helicity has to be distinguished from chirality, i.e., handedness.
A fermion can be left-handed or right-handed. Helicity and chirality are not to be
distinguishable from each other when the fermion mass mc? is negligible compared
to its energy E. For relativistic fermions, a state with negative helicity is dominantly
left-handed, but it also has a small right-handed component. This is suppressed by
mc?/E or /1 — B2, where B = v/c. Right-handed and left-handed states, therefore,
have a small admixture of the opposite helicity which is the larger the smaller §.
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In weak-interaction experiments the participating particles are mostly relativistic
and the difference between helicity and chirality is normally irrelevant.

In general, the operator of an interaction described by the exchange of a spin-
1 particle can have a vector or an axial vector nature. In order for an interaction
to conserve parity, and therefore to couple identically to both right- and left-
handed particles, it must be either purely vectorial or purely axial-vectorial. In
electromagnetic interactions, for example, it is experimentally observed that only
a vector part is present. But in parity-violating interactions, the matrix element has
a vector part as well as an axial vector part. Their strengths are described by two
coefficients, cy and ca. The closer the size of the two parts the stronger is the
parity violation. Maximum parity violation occurs if both contributions are equal
in magnitude. A (V+A) interaction, i.e., a sum of vector and axial interactions of
equal strength (cy = ca), couples exclusively to right-handed fermions and left-
handed antifermions. A (V—A) interaction (cy = —ca) only couples to left-handed
fermions and right-handed antifermions.

As we will show, the angular distribution of electrons produced in the decay
of polarised muons exhibits parity violation. This decay can be used to measure
the ratio cy/ca. Such experiments yield cy = —ca = 1 for the coupling strength
of W bosons to leptons. One therefore speaks of a V-minus-A theory of charged
currents. Parity violation is maximal. If a neutrino or an antineutrino is produced
by W exchange, the neutrino helicity is negative, while the antineutrino helicity
is positive. Indeed all experiments are consistent with neutrinos being always left-
handed and antineutrinos right-handed. We will describe such an experiment in
Sect. 18.6.

Parity violation in muon decay An instructive example of parity violation is the
muon decay = — €~ + v, + V. In the rest frame of the muon, the momentum of
the electron is maximised if the momenta of the neutrinos are parallel to each other,
and antiparallel to the momentum of the electron. From Fig. 10.11 it is apparent that
the spin of the emitted electron must be in the same direction as that of the muon
since the spins of the (ve, V,,) pair cancel.

Fig. 10.11 Parity-violating suppressed favoured
decay of a polarised muon,
- —>e vty
Electrons are emitted
preferentially with their spin
opposite to their momentum

(right) _

e Ve VM
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Experimentally it is observed that electrons from polarised muon decays are
preferentially emitted with their spin opposite to their momentum; i.e., they are left-
handed. This left-right asymmetry is a manifestation of parity violation. The ratio of
the vector to axial vector strengths can be determined from the angular distribution

[6].

Helicity suppressed pion decay Our second example is the decay of the charged
pion. The lightest hadron with electric charge, the #~, can only decay in a
semileptonic weak process, i.e., through a charged current, according to

T >0+,
7 —>e +Ve.

The muon mass is only slightly smaller than the pion mass, therefore in pion
decay the muon is non-relativistic and we have to distinguish between helicity and
chirality. The second process is suppressed, compared to the first one, by a factor
of 1:8,000 [5] (cf. Table 15.3). From the amount of phase space available, however,
one would expect the pion to decay about 3.5 times more often into an electron than
into a muon. This behaviour may be explained from helicity considerations.

The particles created in such two-particle pion decays are emitted, in the centre-
of-mass system, in opposite directions. Since the pion has spin zero, the spins of the
two leptons must be opposite to each other. Thus, the projections on the direction
of motion are either +1/2 for both, or —1/2 for both. The latter case is impossible
as the helicity of antineutrinos is fixed. Therefore, the spin projection of the muon
(electron) is +1/2 (Fig. 10.12).

If electrons and muons were massless, two-body pion decays would be forbidden.
A massless electron, or muon, would have to be 100 % right-handed, but W bosons
only couple to left-handed leptons. Because of their finite mass, electrons and muons
with their spins pointing in their directions of motion actually also have a left-
handed component. This leads to a factor (1 — §) in the decay width (Fig. 10.12).
The W boson couples to this component. Since the electron mass is so small,
1 — B = 2.6-107° is very small in pion decay, compared to 1 — 8, = 0.72.
Hence, the left-handed component of the electron is far smaller than that of the
muon, and the electron decay is accordingly strongly suppressed.

CP conservation It may be easily seen that if the helicity of the neutrinos is fixed,
then C-parity (“charge conjugation”) is simultaneously violated. Application of
the C-parity operator replaces all particles by their antiparticles. Thus, left-handed

Fig. 10.12 Allowed spin —_ —

projections of u~ and v, in K V}J
~ deca — —_—
T y = =
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neutrinos would be transformed into left-handed antineutrinos, which do not appear
in the standard model. Therefore, physical processes which involve neutrinos, and
in general all weak processes, a priori violate C-parity. The combined application of
space inversion (P) and of charge conjugation (C), however, yields a process which
is physically possible. Here, left-handed fermions are transformed into right-handed
antifermions, which interact with equal strength. This is called the CP conservation
property of the weak interaction. Cases in which CP symmetry is not conserved (CP
violation) will be discussed in Sects. 15.4 and 15.5.

10.6 Deep-Inelastic Scattering with Charged Currents

Deep-inelastic scattering of neutrinos Deep-inelastic scattering of neutrinos and
antineutrinos off nucleons gives us information about the quark distributions in
the nucleon which cannot be obtained from electron or muon scattering alone.
In contrast to photon exchange, the exchange of W bosons (charged currents) in
neutrino scattering distinguishes between the helicity and charged states of the
fermions involved. This is then exploited to separately determine the quark and
antiquark distributions in the nucleon.

In deep-inelastic neutrino scattering experiments, muon (anti)neutrinos are gen-
erally used, which, as discussed in Sect. 10.5, stem from weak pion and kaon decays.
These latter particles can be produced in large numbers by bombarding a solid block
of material with a beam of high-energy protons. After a several hundred metre long
decay line the decay muons are ranged out by a long shield of iron and soil. What
remains is a beam of neutrinos impinging on a target. Since (anti)neutrinos have
very small cross-sections the targets that are used (e.g., iron) are generally many
metres long. The deep-inelastic scattering takes place off both the protons and the
neutrons in the target.

When left-handed neutrinos scatter off nucleons, the exchanged W™ can only
interact with the negatively charged, left-handed quarks (dp, s;) and negatively
charged, right-handed antiquarks (Ur, Cr) which are thereby transformed into the
corresponding (anti)quarks of the same family (Fig.10.13 (left)). In analogy to

W u,c(d,s) ut dss(uc)

<
=

<l
=

Fig. 10.13 Charged-current interactions of neutrinos (leff) and antineutrinos (right) with the
possible selected quark and antiquark flavours
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Fig. 10.14 Charged-current vq scattering (left) and vq scattering (right) before the reaction (top)
and after scattering through 180° in the neutrino-quark centre-of-mass system

our description of t decay, we can neglect complications due to Cabibbo mixing
if the energies are large enough that we can ignore the differences in the quark
masses. Equivalently for the scattering of right-handed antineutrinos, the W~ which
is exchanged can only interact with the positively charged, left-handed quarks
(ur, cz) and positively charged, right-handed antiquarks (dg, Sg) (Fig. 10.13 (right)).

Separation of quark and antiquark distributions The scattering off the quarks
and antiquarks is characterised by different angle and energy distributions for the
outgoing leptons. This becomes plausible if one (analogously to our considerations
in the case of Mott scattering in Sect. 5.3) considers the extreme case of scattering
through 6., = 180° in the centre-of-mass frame for the neutrino and the quark
(Fig. 10.14). We choose the quantisation axis Z to be the momentum direction of the
incoming neutrino. Since the W boson only couples to left-handed fermions, both
the neutrino and the quark have in the high-energy limit negative helicities and the
projection of the total spin on the Z axis is, both before and after scattering through
180° S5 = 0.

This also holds for all other scattering angles, i.e., the scattering is isotropic.

On the other hand if a left-handed neutrino interacts with a right-handed
antiquark, the spin projection before the scattering is S3 = —1 but after being
scattered through 180° it is S3 = +1. Hence scattering through 180° is forbidden
by conservation of angular momentum. An angular dependence, proportional to
(1 4 cos B..m.)?, is found in the differential cross-section. In the laboratory frame
this corresponds to an energy dependence proportional to (1 — y)? where

E,; — E

i
= (10.25)
Y Ev,ﬁ

is that fraction of the neutrino energy which is transferred to the quark. Completely
analogous considerations hold for antineutrino scattering.

The cross-section for neutrino-nucleon scattering may be written analogously to
the cross-section for neutrino-electron scattering (10.9) if we take into account the
fact that the interacting quark only carries a fraction x of the momentum of the
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nucleon and that the centre-of-mass energy in the neutrino-quark centre-of-mass
system is x times smaller than in the neutrino-nucleon system. For an isoscalar
target the double differential cross-section per (proton-neutron average) nucleon
then reads:

Povi—N _ GOV,a—N . KV,E—N(X’ y)., (10.26)
dxdy
where
v _ G ( Myc* )2 MLPEY (10.27)
0 xhot \ @+ M) P ‘
and

K7V (x,y) = x[u(x) +d(x) + 285 (x) + (@ (x) +ds (x) +28(x) (1 —=y)*],  (10.28)
K"V (x,y) = x[is(x) +dg (x) 4+ 285 (x) + (u(x) +d(x) +2¢,(x)) (1 —y)?] . (10.29)

The latter equations hold in the quark-parton model assuming isospin symmetry for
the quark distributions and with u(x) = uy(x) + us(x) and d(x) = dy(x) + ds(x).
Figure 10.15 shows the dependence of the differential cross-section do/dy as
a function of y upon integration over x. For neutrino scattering we have two
contributions: a large constant contribution from scattering off the quarks, and a
small contribution from scattering off the antiquarks which falls off as (1 — y).
In antineutrino scattering one observes a strong (1 — y)?> dependence from the

Fig. 10.15 Differential o T
crossjsections d{r/dy fgr 10+ o v E, = 30 - 200 GeV -
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units)
do 06 7
dy i
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interaction with the quarks and a small energy independent part from the antiquarks.
Suitable combinations of the data from neutrino and antineutrino scattering off
protons and neutrons can be used to separate the distributions of valence and sea
quarks shown in Fig. 10.16.

Structure functions in deep-inelastic neutrino scattering In Chap.7 we have
expressed the cross-section for deep-inelastic scattering of charged leptons off
nucleons (7.10) in terms of the two structure functions Fi(x, Q%) and F»(x, Q?).
Similarly also the cross-section for deep-inelastic neutrino-nucleon scattering can
be written in terms of three structure functions F;(x, Q%) (i = 1,2, 3), three each for
vp, Vp, vn, and vn scattering:

v, MC2 v, y2 Vv y Vv
:CIO . l—y—xym F2' +EZXF1 :by(l—i)xF3
(10.30)

dZO_v,i
dxdy

Here the x and Q? dependence of the structure functions has been omitted
for brevity. The structure function xF3"’ appears here for the first time. It is a
consequence of the parity violating (V—A) structure of the weak charged current.
The term with xF3" has positive sign for neutrino scattering and negative sign for
antineutrino scattering. Equation (10.30) is also valid in the kinematic region of
small values of Q?, where the quark-parton model can no longer be used for the
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interpretation of the data. Assuming 2xF|"” = F,", we obtain in the region of
sufficiently high values of Q* from Egs. (10.26) to (10.30) the following relations
between the structure functions for the proton-neutron averaged nucleon and the
quark distributions:

xFY(x) = %[xF3”'N(x) + xFy N )] = x[uy (x) + dy(0)] (10.31)

BN =N =x ) [a®) + 3], (10.32)
q=d,u,s,c

N = x[b(x) 4 d(x) + 25,(x)] , (10.33)

with q(x) = qy(x) + gs(x) for u- and d-quarks and q(x) = qs(x) for s- and c-quarks.
Thus, comparing (10.32) and (7.24) we see that apart from small corrections

for the contributions of the heavier s- and c-quarks the structure functions F, per

proton-neutron averaged nucleon in electron and neutrino scattering are related by

] 18 .
FyN(x) ~ ?Fz Nx). (10.34)

In Fig.10.16 data from deep-inelastic scattering experiments of the second
generation with muon beams (BCDMS, BFP, EMC) and neutrino beams (CCFRR,
CDHSW, CHARM) are presented as a function of x in the Q? range 10-100
(GeV/c)?.

The structure functions F5(x) per proton-neutron averaged nucleon are essen-
tially equal, apart from the factor 18/5. This is again a confirmation for the proper
assignment of the fractional quark charges +2¢/3 for u- and c-quarks and —1e/3
for d- and s-quarks. We also see from this figure that the sea-quark distribution q(x)
falls off steeply with x and is negligible for x > 0.35—0.4. At larger values of x only
valence quarks contribute to F5; their distribution has a maximum near x ~ 0.17.

Polarised deep-inelastic scattering at high Q> The two experiments HI and
ZEUS at HERA mainly investigated deep-inelastic events of the type et + p —
e’* + X, where the interaction between lepton and nucleon is mediated by the
exchange of a virtual photon or a Z° boson. Occasionally also events of the type
et + p — X occurred where no scattered electron or positron was observed in the
detector. These were attributed to the reactions e™ +p — v.+X or et +p = Ve +X,
respectively (Fig. 10.17).

In these reactions the interaction is mediated by the exchange of W* bosons,
i.e., by charged currents. Due to the hermetic 4m-detectors, the kinematics of
these events could be fully reconstructed from the tracks and energies of the quark
fragments and the remnants of the struck proton (cf. Fig. 8.6).

The lepton beam in the HERA storage ring could be longitudinally polarised.
This happened as follows: based on an asymmetry in the spin-flip probability
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d,s(6,5)

Fig. 10.17 Charged-current reactions in deep-inelastic positron (leff) and electron (right) scatter-
ing off nucleons

for the emission of synchrotron radiation, the spins of the circulating electrons
gradually became oriented antiparallel to the direction of the magnetic fields in
the arcs (Sokolov-Ternov-Effect [20], cf. Problem 10.6). A system of magnets,
so-called spin rotators, on both sides of the experiments changed this transverse
polarisation of the beam into a longitudinal one and back again to transverse
behind the experiments. The degree of longitudinal polarisation P, is given by
Po=(N7—N“)/(N7”+N*“).Here N~ (N*) is the number of electrons with spin
orientation parallel (antiparallel) to the beam momentum. Neutrinos are always left-
handed. But here we can choose the handedness: electrons or positrons with positive
polarisation are predominantly right-handed, those with negative polarisation are
predominantly left-handed.

The cross-section for charged-current reactions depends linearly on the lepton-
beam polarisation:

eip eip
Occ (Pe) =1 £Pe) Occ (P. =0), (10.35)
where the minus sign holds for electrons. For P. = +1 the cross-section for

the reaction e~ + p — ve + X should vanish, since by helicity conservation a
right-handed electron cannot be transformed into a left-handed neutrino, while the
cross-section is maximal for P, = —1. For positrons the situation is just reversed.
The experimental data of H1 and ZEUS excellently confirm these considerations.
In Fig. 10.18 the charged-current cross-sections occ for electrons and positrons are
shown as a function of the degree of longitudinal polarisation P, [1]. The data fulfil
the requirements Q> > 400 (GeV/c)?> and y > 0.9. As expected, they lie on a
straight line. The extrapolation to either P, = 41 or P, = —1 provides information
about the possible existence of right-handed charged currents which are excluded
in the standard model of particle physics (cf. Chap. 13). No deviations from this
expectation are observed. In addition, the data show another interesting feature:
the maximal cross-sections for electrons and positrons are of different magnitude.
This observation can be easily traced back to the circumstance that the W~ boson
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Fig. 10.18 The cross-section
occ of deep-inelastic
scattering of electrons and
positrons with charged
currents as a function of the
beam polarisation P,

120¥X¥X[!X!X[N¥X![X!X!

L1

|

100 -

L1

) A A H{
80 - ep-vX oeZEUS |

60 — 5

O¢c [Pb]
e

40 |- ]

20 [~ erpyX B

\
0
R

exchanged in electron scattering couples preferentially to the u-quark, while in
positron scattering the exchanged W boson couples preferentially to the d-quark,
and that the quark distribution u(x) is nearly a factor of two larger than the quark

distribution d(x).

Problems

1. Particle reactions

Show whether the following particle reactions and decays are possible or not.
State which interaction is concerned and sketch the quark composition of the

hadrons involved.

p+po>at+a +a'+at + 7
p+K =Xt +a +at +a +7°

p+n > A +3X

=0

Uﬂ+p—>p,++n
Ve+p—et + A+ K°

2. Parity and C-parity

05 A0 4y

(a) Which of the following particle states are eigenstates of the charge conjuga-
tion operator C and what are their respective eigenvalues?
y)s %) )5 [ )5 1) — )5 [ve)s | 2°).
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(b) How do the following quantities behave under the parity operation? (Supply a
brief explanation.)

Position vector r Momentum p
Angular momentum L Spin o
Electric field E Magnetic field B

Electric dipole moment o - E Magnetic dipole moment o - B
Helicity o - p Transversal polarisation o - (p; X p»)

3. Parity and C-parity of the f; -mesons The f,(1270) -meson has spin 2 and
decays, amongst other routes, into atn—.

(a) Use this decay to find the parity and C-parity of the f;.
(b) Investigate whether the decays f;, — 7°7° and f, — yy are allowed.

4. Pion decay and the Golden Rule
Calculate the ratio of the partial decay widths

Tt —etv)
it — utv)

and so verify the relevant claims in the text. From the Golden Rule it holds that
I(r — €v) & |My|?0(Eo), where | M| is the transition matrix element
and o(Ey) = dn/dE) is the density of states (£ denotes the charged lepton). The
calculation may be approached as follows:

(a) Derive formulae for the momenta and energies of the charged leptons £ as
functions of m; and m, and so find numerical values for 1 — v/c.

(b) We have |M¢|*> o« 1 — v/c. Use this to express the ratio of the squares of
the matrix elements as a function of the particle masses involved and find its
numerical value.

(c) Calculate the ratio of the densities of states o.(Ep)/0,(Eo) as a function of
the masses of the particles involved. Exploit the fact that the density of states
in momentum space is dn/d|p| o |p|*> (|p| = |pe+| = |py|) and that Ey =
E,+ + E,. For which of the two decays is the “phase space” bigger?

(d) Combine the results from (b) and (c) to obtain the ratio of the partial decay
widths as a function of the masses of the particles involved. Find its numerical
value and compare it with its experimental value of (1.230 & 0.004) - 10™*.

5. Spin polarisation of muon beams
Muons are used to carry out deep inelastic scattering experiments at high beam
energies. First a static target is bombarded with a proton beam. This produces
charged pions which decay in flight into muons and neutrinos.
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(a) What is the energy range of the muons in the laboratory frame if magnetic
fields are used to select a 350 GeV pion beam?

(b) Why are the spins of such a monoenergetic muon beam polarised? How does
the polarisation vary as a function of the muon energy?

6. Compton scattering
At the HERA collider ring the spins of the electrons going around the ring align
themselves over time antiparallel to the magnetic guide fields (Sokolov-Ternov
effect [20]). This spin polarisation may be measured with the help of the spin
dependence of Compton scattering. We solely consider the kinematics below.

(a) Circularly polarised photons from an argon laser (514 nm) hit the electrons
(26.67 GeV, straight flight path) head on. What energy does the incoming
photon have in the rest frame of the electron?

(b) Consider photon scattering through 90° and 180° in the electron rest frame.
What energy does the scattered photon possess in each case? How large are
the energies and scattering angles in the lab frame?

(c) How good does the spatial resolution of a calorimeter have to be if it is 64 m
away from the interaction vertex and should spatially distinguish between
these photons?
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Chapter 11
Neutrino Oscillations and Neutrino Mass

Today I have done something which you never should do in
theoretical physics. I have explained something which is not
understood by something which can never be observed!

Wolfgang Pauli

The existence of neutrinos was proposed by Wolfgang Pauli in 1930, in order to
explain the puzzling continuous energy spectrum of electrons in B-decay. If the
neutron would decay only into a proton and an electron, the energy of the latter
would be constant. In case of a 3-body decay, however, the third particle would
carry away a certain amount of energy, and thereby generate a continuous energy
spectrum for the electron. As we have seen in the last chapter, the interaction of
neutrinos with other elementary particles is extremely weak, see (10.9). Therefore it
was thought for a long time that the direct experimental verification of the existence
of neutrinos was impossible. Only in 1956 Cowan and Reines finally succeeded in
detecting electron antineutrinos originating from a nuclear reactor [8].

In the otherwise enormously successful standard model of particle physics (see
Chap. 13), neutrinos are massless. However, in 1998 it was shown beyond doubt that
neutrinos possess a non-vanishing rest mass. Till this date, this represents the only
directly testable and in laboratories accessible physics beyond the standard model.
This fact alone renders neutrinos highly interesting. In addition, neutrinos show
some remarkable properties. For instance, they can transform from one flavour into
another one, with a transition probability that changes periodically. These neutrino
oscillations are a quantum mechanical interference effect on macroscopic distances,
whose basic features and important experiments we will discuss in what follows.
The precise value of the neutrino mass is a currently unresolved problem, we will
discuss the most important approaches to answer this important question. Finally,
neutrinos are the only known electrically neutral fermions and, therefore, have the
option to be identical with their antiparticles. This would lead to processes that
violate the conservation of total lepton number.

© Springer-Verlag Berlin Heidelberg 2015 167
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11.1 Lepton Families

The leptonic mixing matrix We have outlined in Sect. 10.1 that leptons can be
written in terms of three family doublets:

(=) Ge) ()

The flavour states | v ), | v, ) and | v; ) are not identical to the states | vy ), | v2 ) and
| v3 ), which possess a well-defined mass. However, in analogy to the quarks, we can
write the flavour states as orthogonal linear combinations of the mass states:

[ ve) Uet Uer Ues [vi)
vi) | =V Uua U Us || Iv2) |- (11.1)
[ve) Uy U Uy [v3)

The 3 x 3 matrix U is analogous to the CKM matrix V, which has been introduced
in Sect. 10.4. In particular, it is unitary and contains three mixing angles and one
phase (see also Sect. 15.4). The possibility of neutrino mixing was investigated the-
oretically very early. Pontecorvo [15] was the first to consider neutrino-antineutrino
oscillations. Maki, Nakagawa and Sakata [14] have discussed flavour mixing of two
neutrinos (interestingly already before the Cabibbo angle for quark mixing was
introduced). Therefore U is called the PMNS matrix. Recall that mass states are
not constants of motion. The relative phases of these states change with time. If
neutrinos were massless, this would not be the case. It would make no sense to
distinguish between flavour and mass states and the PMNS matrix would not exist.
The indirect proof that neutrinos possess a mass, in contrast to the prediction of the
standard model, was possible by observing neutrino oscillations.

11.2 Neutrino Oscillations

To understand how the elements of U can be determined, consider two generations
of neutrinos, | v. ) and | v, ), which in analogy to (10.19) are written as

| ve) _ c9s9 sinf '\ (|vi) . (11.2)
V) —sin® cosf |va)
Neutrinos are produced as flavour states by the weak interaction, e.g. a |v.) =
cosB|v;) + sinf | v, ) by a charged current electron-quark interaction. The time
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evolution of the mass states leads after a time ¢ to the following wave function of
the electron neutrino:

[ve(?) ) = cos B e Ent/m |y} + sin @ e 7 Ent/h |1, ) (11.3)

Neutrinos are ultra-relativistic, hence their energy is:

1m€_c4
E, = /p**+mict ~pc|l+-——5]. (11.4)
! 2 p?c

The probability to find an electron neutrino after the time # is therefore

1 Amd,c* L
Py, = | {(e()|ve) |*= cos* 6 4 sin* § + 2 cos? 6 sin” 6 cos _ome &
2 hc pc

1 Am2,c* L
— 1 —sin?20 sin? (- 27218 =) (11.5)
4 hc pc
Here
Am3 = m —m), (11.6)

is the difference of the squares of the masses of the states v; and vy, and L = ct is
the distance between production and detection travelled by the neutrino in the time
t. We see that the survival probability P, ., oscillates as a function of the ratio of L
and p. This is a known interference effect in quantum mechanics, and we will cover
it once more later in this book, when we discuss oscillations of K° and K° mesons
in Sect. 15.4.

It follows that by measuring the survival probability one can determine the
amplitude sin® 26 (hence the elements of the mixing matrix) and the mass-squared
difference Am%l, which is proportional to the oscillation frequency. The transition
probability, i.e., the probability that the electron neutrino becomes a muon neutrino
follows from

1 Am, ¢ L
Prryy = 1 = Py, = sin20 sin? (Zﬂ—) (11.7)

he  pc)’

There is no oscillation in case neutrinos were massless, or when neutrinos had
identical mass; the transition and survival probabilities would simply be Py, = 0
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Fig. 11.1 Typical oscillation curve for the transition probability of electron neutrinos in muon
neutrinos, see (11.7). The chosen parameters are § = 34° and m2, —m? = 8-107° eV?/c*. Hence

the transition probability is zero for L/ p ~ 31km/(MeV/c) and maximal (sin’ 26 = 0.86) for
half this value. The oscillation length for a momentum of 3 MeV/c is Ly ~ 93 km

and P,,,, = 1. At the end we provide a very useful numerical form of the argument
of the sine in the oscillation formula:

1 Am3, ¢* L Am3, MeV L
- —H - — =127 —. (11.8)
4 hc pc eVZ/ct pc m

A simple example curve is shown in Fig. 11.1. The characteristic scale of oscilla-

tions is the distance between two minima or maxima, which is denoted as oscillation
length:

hpc?

Low = 4w —P<
Am%lc4

(11.9)

An experiment is especially well suited to test oscillations when the argument (11.8)
is of order 1. This rule of thumb allows to estimate the sensitivity on the mass-
squared difference of an experiment. For instance, experiments that detect neutrinos
at a distance of 1 km from nuclear power plants, which have an average momentum
of 3MeV/c, are sensitive to Am%1 ~ 1073eV?/c*. Such considerations are
confirmed in actual experiments. One should note from this example that we are
talking about quantum mechanical interference effects on macroscopic distances.

Two extreme cases of the oscillation formula are of particular interest: if the
argument of the sine is very small (small distances when compared to the oscillation
length), then the oscillations have not yet taken place. If the argument is very large
(large distances when compared to the oscillation length), then the oscillations take
place on scales which are too small to be resolved by a detector.
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11.3 Neutrino Oscillation Experiments

The existence of neutrino oscillations has been confirmed by various experiments.
We will discuss in this section the basic physics behind this important area of
modern particle physics. With three generations of neutrinos the expressions for
the oscillation probabilities are lengthy and complicated (they can be found, e.g.,
in [12]). To a good approximation, however, one can describe all experiments
with the 2-generation formulae (11.5) and (11.7), respectively, because the 3-
generation probabilities simplify when the actual experimental parameters pc and
L are inserted. The amplitude and mass-squared difference depends on the kind
of experiment considered. Before we go into detail, let us stress again that only
the mass-squared difference and not the masses themselves can be determined.
Approaches to measure the neutrino mass will be discussed later. Oscillation
experiments are often classified as “appearance” and “disappearance” experiments,
depending on whether one looks for neutrino flavours that are not produced in the
source, or whether one measures the expected flux of neutrinos.

Solar neutrinos Historically the first measurements that pointed towards oscilla-
tions were performed with solar neutrinos. The experimentally determined flux of
solar v, was, depending on energy, about one third to half the value predicted in
solar models. The interpretation is of course that the v, oscillate into v, and v;.

Solar models describe in detail the Sun’s energy production through a number
of nuclear reactions. Effectively, the following fusion reaction takes place: (see
Sect. 20.5):

4p+2e” — *He +2v, + 26.73MeV. (11.10)

It is realised by a complicated network of reactions. Of interest are here only the
ones that generate neutrinos. The first step is the production of the deuteron:

p+p—d+e+v. andp+e +p—d+ ..
The first reaction leads to a continuous energy spectrum with a maximal energy
of E™ = 0.42MeV, while for the second a fixed energy of E, = 1.44MeV is
predicted. The deuteron fuses with a proton to *He. This isotope can either fuse
with another 3He nucleus to “He and two protons, or generate neutrinos via
He+p— “He+v. +e™,
which have E'** = 18.77 MeV. Now we fuse “He and *He to "Be, which reacts via
"Be+e” — "Li+ ve

and again generates neutrinos. Because this reaction can end in the ground state
(in about 90 % of the cases) or the excited state of ’Li, the neutrino energy is
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Fig. 11.2 The solar neutrino spectrum from [7]. Plotted are the individual spectra of the five
different neutrino sources

either E, = 0.862MeV or E, = 0.384MeV." Through proton capture "Be is
transformed into 8B, which is another source of neutrinos (E)™ = 14.06MeV)
since it undergoes -decay:

5B — %Be+et + ve.

All in all there are five different neutrino sources with different spectra and
calculable percentage of the total flux [7]. Their sum should give the total solar
neutrino spectrum, see Fig. 11.2. We can estimate this flux once we know the so-
called solar constant @, which denotes the Sun’s electromagnetic power reaching
the Earth per area and time unit. Ignoring seasonal variations due to the Earth’s
elliptic orbit, it is given by @ ~ 8.5 - 10! MeVem™2 s~!. With two produced
neutrinos per reaction in (11.10), one finds

P

— ~6-109em™%s7!,
27 MeV

D(ve) =2

almost 10'! neutrinos per square centimetre and second. Their energy is at most
18.77MeYV, its average value however only 0.3 MeV. Therefore the energy of solar
neutrinos is too low to produce p or t leptons in charged-current reactions after the
Ve oscillate into v, or v,.

Early experiments [16] were only sensitive on ve, for instance via the reaction
ve + 3’Cl — 37Ar + e~ that is mediated by charged currents. The radioac-
tive Argon can be detected since it decays with a half-life of about 35 days:

I'The direct detection of this small and low-energy flux was possible only in 2007 by the Borexino
experiment [6].
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37Ar— 37Cl4-e~ +De. To generate 3’Ar one requires a threshold energy of 0.81 MeV,
and therefore only part of the solar spectrum can be tested. Measurements with
lower energy values were possible by constructing a similar experiment taking
advantage of neutrino capture on ’'Ga (threshold energy 0.23 MeV) and detection
of the generated 71Ge, which is radioactive (see Exercise 11.1).

Another possibility to measure solar neutrinos is through elastic scattering on
electrons, ve + €~ — Ve + €. In this reaction interference between charged and
neutral currents occurs. In contrast to this, the reaction v, ; +¢€~ — v, ; + €~ can
only be mediated by neutral currents of the v, and v, see Sect. 10.3. The result is

o(vee” = vee )~ 6.14-0(v €7 > v €7). (11.11)

Consequently one has some sensitivity on the v, ;. This reaction was examined
mainly in the SuperKamiokande experiment [11], a Cherenkov detector filled with
50,000 tons of water and located 1,000m below the surface of the Earth. The
reaction is detected by the Cherenkov light of the scattered electrons. This radiation
in the form of photons is generated when the electrons move within a medium
(for SuperKamiokande this is water) with a velocity that is larger than the speed
of light in that medium (see Sect. A.2). A light cone is produced whose opening
angle is 6 = arccos -, where n = 1.33 is the index of refraction of water. Since
electrons loose energy through bremsstrahlung, they move faster than light only for
a short amount of time, and a so-called Cherenkov ring is formed. By determining
the position of the original reaction and the opening angle of the Cherenkov cone
one can measure the energy of the electron. At high energies, the scattering occurs
mainly in forward direction.

The last doubts whether the solar models were really correct were removed
by the SNO Experiment (Sudbury Neutrino Observatory) [2, 3]. This experiment
determines the total neutrino flux by measuring also reactions which are mediated
by neutral currents only. To those reactions the v, and v, are contributing as well,
which implies that the total flux should come out in case the v, oscillate into v, and
v;. The Cherenkov detector is located in a depth of 2,000 m in a mine in Canada,
and was filled with 1,000 tons of heavy water. Here the oxygen atom is bound to
two deuterium atoms. The following reactions can now be measured:

CC: ve+d—=>p+p+e” (11.12)
NC: vey:+d—>p+n+veu: (11.13)
ES: vep:+e€ = veyur +e7. (11.14)

The first one is only mediated by charged currents, and is measured by the
Cherenkov light of the electrons.? It determines the incoming flux of electron

2The refractive index of heavy water is essentially identical to the one of normal water.
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neutrinos, ¢cc = ¢.. The second reaction is mediated by neutral currents. It is
independent of flavour and determines the total flux, ¢nc = ¢ + ¢.. The elastic
scattering reaction (11.14) is sensitive on all three flavours, though slightly more
on the ve, namely ¢gs ~ ¢ + 0.16 ¢, see (11.11). It can however also serve to
measure the total flux.

All three reactions can experimentally be distinguished. Electrons from elastic
scattering point, as mentioned above, in the same direction as the incoming
neutrinos. Since in the charged current reaction the proton is much heavier than
the electron, there is basically no direction dependence for the produced electron.
The free neutron in the neutral current reaction is captured by a deuterium nucleus,
whose de-excitation generates within typically 10 ms photons with a total energy of
6 MeV. Compton scattering of those photons with electrons results in Cherenkov
light. The detector was furthermore spiced with NaCl, because *°CI has a high
capture rate for neutrons. In addition, special counters equipped with *He were
added to the experiment.

The result was that the total neutrino flux is about 3 times as large as the flux of
the ve, and more importantly, consistent with the prediction of the solar models, see
Fig. 11.3. The theoretical analysis of the solar models is complicated by so-called
matter effects, which influence the oscillations of neutrinos in a medium such as
the interior of the Sun, see Exercise 11.2.> The extracted survival probability P,

ut
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Fig. 11.3 Results of the SNO experiment, see [3]. Plotted are the determined neutrino fluxes
(including measuring errors) from elastic scattering ¢gs, charged current ¢cc and neutral current
dnes see (11.12)—(11.14). The prediction of the solar standard model (shown here with theoretical
uncertainty) lies within the dashed lines. Calculation and measurement agree excellently

3The reason lies in the fact that in a medium consisting of electrons, protons and neutrons, electron
neutrinos can react through neutral and charged currents, whereas the other flavours only feel
neutral currents.
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gives for the mixing angle and the mass-squared difference that are relevant for solar
neutrinos:

012 &~ 34° and Am3; = m] —m] ~8.0-107eV?/c*.

Atmospheric neutrinos Oscillations were also observed in the flux of atmospheric
neutrinos. The atmosphere is constantly bombarded with protons and heavy nuclei
from cosmic rays, and the reactions generate a large number of pions. Their decays
produce the so-called atmospheric neutrinos

71+—>,u++vﬂ

,Lﬁ'—)l')#—i-f:++ve

and the appropriate antiparticles. The ratio of the two neutrino flavours is [n(v,) +
n()]/[n(ve) + n(ve)] = 2, if effects coming from the finite lifetime of the muon
are neglected. The energies of the neutrinos are determined again by the Cherenkov
radiation of the scattered charged leptons. The most important measurement of
atmospheric neutrinos was performed by the SuperKamiokande experiment in
Kamioka, Japan. The electrons and muons, and therefore the incoming v and v, are
identified by their Cherenkov light. The Cherenkov ring of the electrons is smeared
with respect to the one of the muons, since the lighter electrons scatter much more
frequently in the water tank than the heavier muons. The neutrino energies that
are of interest in our discussion are a few 100 MeV and more. It follows that the
produced charged leptons point in the same direction as the neutrinos. This allows
to determine if the neutrinos crossed only the atmosphere above the detector, or
if they originate from the other side of the Earth. The important observable is the
zenith angle 6 of the charged leptons. For down-going particles this angle is 6 = 0,
or cos § = 1. The original neutrinos therefore were generated above the detector
and have travelled about 20 km. Up-going neutrinos are characterised by 6 = 180°,
or cos = —1. They stem from the other side of the Earth, and have therefore
travelled about 10* km.

A flux too low by a factor of 2 was measured [10] for neutrinos with energies
above 1 GeV and travelled distances of 10*km, see Fig. 11.4. Since the Earth is
transparent to such neutrinos, there should be no attenuation of the flux. In contrast
to muon neutrinos, electron neutrinos did not show any deviation from the expected
flux; on length scales comparably to the radius of the Earth they do not develop
appreciable oscillations. The decreased flux of the v, is therefore attributed to the
oscillation of v, into v, which cannot be identified in the detector. Analysing the
data with the transition probability P, ., gives the parameters

023 ~ 45° and |Am3| = |m}, —m] | ~ |m], —m} | ~ 2.4-107eV?/c*.
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Fig. 11.4 Measured fluxes of atmospheric neutrinos, see [10]. Shown are the event numbers
including measurement errors for low (upper plots) and high (lower plots) energy neutrinos as
function of the cosine of the zenith angle 6. The left plots are events that have been identified
as electrons, the right plots are muons. The solid line is the expectation in absence of neutrino
oscillations, the dashed line is a fit to the data assuming oscillation of v, into v,

The value of the mass-squared difference can be easily understood (using L =~
10*km and E ~ 1 GeV) by our rule of thumb, which states that the argument of the
sine in the oscillation formula should be one. Currently the sign of the larger mass-
squared difference Am3, is not known. This is called the problem of the neutrino
mass ordering, and can be solved by future neutrino oscillation experiments.

Reactor neutrinos Additional information comes from observing oscillations
of antineutrinos produced in nuclear reactors. Here, we need the 3-generation
oscillation formulae. For the survival probability we have an expression containing
three different terms, which are proportional to Am3,, Am3, and Am3,, respectively.
The results considered so far imply that |Am3,| > Am3,, which leads to |Am3,| ~
| Am3, |, since the relation Am3, + Am3, — Am3, = 0 must hold. It follows

1 Am3,c
Py—y.=1—4clys?, cl; sin (4 hzcl pc)

1A L
miset ) (11.15)

—4 ¢l s, sin (4 B %
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We have abbreviated here C%Z = cos? 05, s%z = sin? 01, etc.* The smaller one of
the two oscillation lengths is proportional to 1/|Am3,|. If the distance of a detector
is small when compared to this oscillation length, then we have P, _.,, ~ 1.If we
increase the distance, the sine including Amg2 becomes of order one, while the term
including Am3, is negligible. This occurs at about L ~ 1,000 m. One is in this case
sensitive to 6y3. Increasing the distance further to L ~ 100 km, one sees that the sine
including Am%1 becomes of order one, while the fast oscillations of the other terms
can no longer be resolved, and are negligible in the limit of small 6,3. One expects to
test in this case the parameters of solar neutrinos. Figure 11.5 plots (11.15) together
with the results of experiments that were performed over many years at different
distances.

In Kamioka (Japan) the KamLAND detector is located, which contains 1,000
tons of a liquid scintillator to detect charged particles. Nuclear reactors in Japan and
South Korea generate v, and have a typical distance of 200 km from the detector.
As estimated above, KamLAND is sensitive to the same mass-squared difference
as solar experiments. Indeed, the same neutrino parameters as with solar neutrino
experiments could be measured [9].

The third mixing angle 0;3 is determined, as estimated above, also in experiments
with nuclear reactors, but with detectors which are located rather close (about 1 km)
to the reactor core, e.g. Daya Bay [4] in China or Double Chooz [1] in France. The
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Fig. 11.5 Oscillation curve P, _,,, in the 3-generation case with a neutrino momentum 3 MeV/c.
Plotted are the averaged results of several neutrino oscillation experiments at nuclear reactors

*One can show that P, _,,, = P57, and analogously for the survival probabilities of muon and
tau neutrinos, see Exercise 11.3.
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method to detect the v, is inverse S-decay,
Ve +p—>n+tet.

The produced positron annihilates with electrons. To determine the neutron, one
adds Gadolinium to the detector, which has a very high capture rate for neutrons,
and de-excites to its ground state after emitting photons with a total energy of about
8MeV.

Comparing expected and measured flux gives P,,,,, and one finds an angle
013 of about 9°; the mass-squared difference is Amgl, the same as for atmospheric
neutrinos.

Mixing matrix of neutrinos The absolute values of the lepton mixing matrix
elements are obtained from the results of all oscillation experiments. Their central
values are

0.826 0.544 0.151
(|Uui| )~ | 0.427 0.642 0.635 | . (11.16)
0.368 0.540 0.757

The precision is not as high as for the CKM matrix (10.23). Possible effects of the
CP phase in U are not yet seen.

Let us finally summarise the main features of lepton mixing. First one notes
that all elements of the mixing matrix are about the same size. It is therefore much
different from the CKM matrix, see (10.23), for which the diagonal elements domi-
nate. Such a drastically different mixing of quarks and leptons can be an important
hint for the understanding of physics beyond the standard model (Sect.20.4). In
analogy to the electroweak unification (Sect. 12.2) one suspects a grander unification
(Sect. 12.6) which unites also quarks and leptons.

Neutrino mass A second peculiarity of neutrinos is the smallness of their masses.
Upper limits on m,, are about 2 eV /c?, and neutrinos are therefore much lighter than
all other fermions. The explanation which theorists consider the most plausible one
is treated in Sect. 11.4.

Let us discuss here shortly the current information on neutrino masses. As
mentioned above, oscillation experiments can only probe the differences of the
squared masses. The sign of the larger mass-squared difference, Am3, = m3 — m?,
is unknown. The two possibilities are called normal and inverted ordering, Fig. 11.6
shows both cases. Per definition the largest mass in the normal ordering is ms,
whereas it is m, in the inverted ordering. Accordingly the smallest mass is m; or
ms3, respectively. The smallest mass can be zero, for the normal ordering this case is
called normal hierarchy:

my = \/Am3, ~ 0.009eV/c?, my = \/Am3, ~ 0.05eV/c?. (11.17)



11.3 Neutrino Oscillation Experiments 179

normal inverted
m3 N I | [ ] m3
Am3,
2
ISR
Am3, 28
Owvy
Ovr 9
Amsz;
mj ]
Amb,
m? 1 | I ] m3

Fig. 11.6 Possible ordering of neutrino masses. Shown are the normal (leff) and the inverted
(right) ordering. The size of the shaded areas of neutrino v; with mass m; corresponds to the
size of |U,;|?, i.e. the amount of the flavour state v,
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Fig. 11.7 In the left plot the neutrino masses m, and mj are shown as functions of the smallest
mass m, in the normal ordering. In the inverted ordering the according plot would be m;, and m;
as functions of mj. Both curves would be indistinguishable. The right plot shows the quantity

mg = V2 U2 m,-z, which is measurable in S-decays, as function of the smallest neutrino mass
for both mass orderings

If in the inverted ordering the smallest mass is zero we talk about the inverted

hierarchy:
my ~my = /|Am,| ~ 0.05eV/c?. (11.18)

The difference between m, and m; in the inverted hierarchy is / Am%l. One notes
that the ratio of neutrino masses is less extreme than for quarks or charged leptons,
compare for instance ms3/my with m/m. or m./my. In case the smallest mass is
non-zero, the ratios of neutrino masses are even larger, see Fig. 11.7. If the smallest
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mass exceeds about 0.1eV/c?, the differences in masses are negligible and one
speaks of quasi-degenerate neutrinos. The largest possible neutrino mass value can
be obtained from experiments on the energy spectrum of S-decays, which we will
discuss in more detail in Sect. 18.6. Effectively one can measure or constrain the

quantity /> |Uei|? miz, for which a current upper limit of 2.3 eV/c? is quoted [13].
One can easily show that this is the largest possible value of m;, m, and m3. New
experiments, one example is KATRIN, will be able to improve this number by a
factor of 10 in the near future.

Another approach to determine neutrino mass is neutrinoless double beta decay,
which we will discuss in Sect. 18.7. Here the observable is \Z U2 mi|. This method
is however quite model-dependent, because one has to assume that neutrinos are
Majorana particles (see the next section).

Yet another possibility to measure neutrino mass exists in cosmology, where
observations of galaxy distributions can probe the influence of neutrinos in the hot
early universe. This method is also very model-dependent.

11.4 Majorana Neutrinos?

Charged leptons and quarks are obviously different from their respective antiparti-
cles, since those have opposite electric charge. Fermions which are different from
their antiparticles are called Dirac particles. They can formally be described by
four degrees of freedom, namely particle and antiparticle, each with positive and
negative helicity. If an electron neutrino was a Dirac particle, we would write those
four degrees of freedom as

Dirac particle: (Vep, Vey, Vets Vel) -

The arrow 1 denotes here positive helicity, | accordingly negative helicity. How-
ever, since neutrinos are electrically neutral, they can be their own antiparticles.
Such particles are called Majorana particles. They possess two degrees of freedom,
namely particle = antiparticle with positive or negative helicity:

Majorana particle: (veq, vey) .

The distinction we have made so far, namely that in charged current reactions neutri-
nos generate electrons, and antineutrinos generate positrons, has to be discussed in
a more subtle manner: As we have seen in Sect. 10.5, weak interactions couple only
to left-handed electrons and right-handed positrons. Chirality is identical to helicity
up to corrections of order mass divided by energy. The particle that is produced by
a W™ together with a left-handed electron is now a right-handed Majorana fermion,
which in case its mass is non-zero possesses mainly positive helicity, but also a
small contribution of negative helicity: vep + € ve| . Here € is of the order m,c?/E,.
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This very tiny contribution can now interact with a second W~ and generate in a
charged current reaction a left-handed electron. All in all we have transformed two
W™ in two electrons:

W™ —e™ + (Vep + €1ey) ) ) (11.19)
Ve, + W™ —e™.

The total reaction chain violates lepton number conservation by two units. It is only

possible if neutrinos are Majorana particles. If neutrinos were Dirac particles, then

the particle that is produced in the first step would be veq + € V., and the small

contribution with negative helicity ve;, would not interact with a W™ . The reaction

chain in (11.19) would not take place.

In case of massive Majorana neutrinos the conservation of lepton number, as
discussed at the end of Sect. 10.1 should not be obeyed exactly. However, the rates of
lepton-number violating processes are strongly suppressed with the ratio of neutrino
mass and their energy. As a numerical example, consider neutrinos from nuclear
reactors, whose energy is £, ~ MeV. Assuming they have their largest allowed mass
of m, ~ 1eV/c?, one finds that they have a small fraction € of “wrong helicity” of
about m, ¢*/E, ~ 107, The probability to absorb this part is then proportional to
this small number squared. The dependence on neutrino mass implies that massless
Majorana neutrinos cannot be distinguished from massless Dirac neutrinos.

The search for neutrinoless double beta decay, discussed in Sect. 18.7, is the most
realistic possibility to prove the Majorana character of neutrinos. The factor that
compensates the strong suppression (1, c?/E,)? is the sheer number of atoms if one
searches with several kg of the decaying isotope. In case neutrinos are Majorana
particles the PMNS matrix contains two additional phases which however do not
influence neutrino oscillation, and only become important in processes that violate
lepton number.

Seesaw mechanism The idea of neutrinos being Majorana particles is appealing to
most theorists, since it is realised in most theories that extend the standard model. In
these models there are for each neutrino vq, v, and v; (linear combinations of which
form ve, v, and v,) additional neutrinos N, N, and N3. The latter are Majorana
particles with extremely large masses, whose magnitude is expected to correspond
to the characteristic energy scale of the theory that extends the standard model. The
different neutrinos interact with each other and thereby change their masses. For the
sake of simplicity one can consider the case of one family, i.e. one neutrino v and a
heavy neutrino N. The initial mass mgy of v is similar to the masses of the quarks
and charged leptons, since one assumes that it is generated by the same mechanism
that gives them masses. The interaction between N and v leads now to a suppression
of the mass of the neutrinos, in the form of

= msm—— . (1120)

my, ~
My My
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The mass is therefore much lighter than the one of the other fermions of the
standard model, suppressed with a factor msy/My.> In addition the light neutrinos
are, thanks to their interaction with their heavy partners, now Majorana fermions,
too. As one can see from (11.20), m, becomes smaller when My becomes larger.
Therefore this mechanism is called seesaw mechanism. Estimating msy ~ m; and

m, ~ ./ |m%3 — m%2| as largest standard model and neutrino mass, respectively,

gives My ~ 10" GeV/c?. The corresponding energy scale of 10> GeV is highly
interesting for theorists, since it is the scale at which all three interactions are unified
in Grand Unified Theories (Sect. 12.6). The fact that the same energy scale arises
from considerations of Grand Unified Theories as well as from the neutrino masses
makes the seesaw mechanism so plausible. As an additional bonus, the violation of
lepton number and the possible CP violation in the decays of the heavy Majorana
neutrinos help in understanding the generation of the matter-antimatter asymmetry
in the early universe, see Sect. 20.4.

The distinction between Dirac and Majorana neutrino is for most practical pur-
poses irrelevant, and we therefore return to the notation of neutrino and antineutrino.

Problems

1. Solar neutrinos
The GALLEX experiment measures solar neutrinos by the reaction ;1 Ga + v, —
J1Ge. The cross-section of this reaction at typical neutrino energies is about
2.5-107*% cm?. One looks for radioactive "' Ge atoms (lifetime T = 16 days),
which are produced in a tank containing 30t Gallium (40 % 7'Ga, 60 % ®Ga)
as dissolved chloride [5]. About 50 % of all neutrinos have energies above the
reaction threshold. All Germanium atoms are extracted from the tank. Estimate
how many 7'Ge atoms are generated per day. How many should be in the tank
after 3 weeks? How many if one waits for an infinite amount of time?

2. Matter effects
Convince yourself that the matrix

ctAm? (— cos 20 sin26 )

4E sin26 cos?20

is diagonalised by the matrix

cos6 sin6
v= (—sin@ cos@)

SA useful analogy exists with the effective 4-fermion description of weak interactions at low
energies with the Fermi constant. The presence of the W bosons is indirect, and only apparent at
high energies. In the same way the presence of the heavy Majorana neutrinos is felt only indirectly
at low energies, namely by the smallness of neutrino masses.
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ie. UTHU = c*diag(—Am?/4E, Am?/4E). The effect of neutrino oscillations
in matter can now be described by adding a term to the upper left entry of H:

Hy =

c* Am?
4F

tAm? [ —cos20 + WIGENE o
sin 26 cos20 |

Here N. is the number density of electrons (assumed constant) in the medium
through which the neutrinos travel. Diagonalising this matrix with UJ;Hy Um
yields the mixing angle in matter 6y;. Show with

cos By sin Oy
Unm = .
— sin By cos Oy

that it is given as

(422 in? 26

(% c0s 20 — /2 GgN.)? + (%)2 sin220

sin? 26y =

When is this angle maximal (6y = 45°)?
3. CP and T violation in neutrino oscillations

Starting from the oscillation probability P,,—,, for arbitrary flavours a =

e, U, T, find the CP- and T-transformed channels. When the combination CPT

is conserved, what does this imply for the survival probabilities P, ,,?
4. The effective mass in neutrinoless double beta decay

The so-called effective mass, to which squared value the lifetime of neutrinoless

double beta decay is proportional, can be written as:

mgg = |cos’ O1p cos’ B13my + sin’ Oy cos” O13 mp €” + sin” G13m;3 ei8| )

Here y and § are additional phases in the PMNS matrix which show up only for
Majorana neutrinos. Show with the neutrino parameters given in the book that
in case of an inverted mass ordering there is a lower limit on the effective mass.
Argue how the Majorana character of the neutrinos can be ruled out.
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Chapter 12
Exchange Bosons of the Weak Interaction
and the Higgs Boson

The idea that the weak interaction is mediated by very heavy exchange bosons was
generally accepted long before they were discovered. The structure of the Fermi
theory of B-decay implies that the interaction is point-like, which in turn implies that
the exchange bosons have to be very heavy particles. Quantitatively, however, this
was confirmed only when the W and the Z bosons were detected experimentally [6,
8] and their properties could be measured. The Z° boson’s properties imply a mixing
of the electromagnetic and weak interactions. The electroweak unification theory
due to Glashow, Salam and Weinberg from the early seventies was thus confirmed.
Today it is the basis of the standard model of elementary particle physics. Necessary
for a consistent description of electromagnetic and weak interactions is a concept
called symmetry breaking, related to a new scalar particle. The discovery of this
Higgs particle was a spectacular confirmation of the ideas and concepts behind the
standard model.

12.1 Real W and Z Bosons

The production of a real W or Z boson requires that a lepton and antilepton or a
quark and antiquark interact. The centre-of-mass energy necessary for this is /s =
My, 7 c*. This energy is most easily reached using colliding particle beams.

In eTe™ colliders, a centre-of-mass energy of /s = 2E. = My c? is necessary
for the production of Z° particles via

et +e — 70,

This became technically possible in 1989, when the SLC (Stanford Linear Collider)
and the LEP became operational; now large numbers of Z° bosons can be produced.
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W bosons can also be produced in ete™ reactions, but only in pairs:
et +e - Wh+w .

Hence, significantly higher energies are necessary for their production: /s >
2Mw 6‘2.

In 1996 the beam energy at LEP was upgraded from 50 to 86 GeV and later even
to 104.6 GeV. This made a precise measurement of the W-mass and of the decay
products of the W W™ pairs possible.

For many years the production of W* or Z° bosons was only possible with the
help of quarks and antiquarks in the proton via the reactions

u+u— 270, d+u—> W,
d+d— 79, u+d—>wt.

For these reactions, however, it is insufficient to collide two proton beams each
with half the rest energy of the vector bosons. Rather, the quarks which participate
have to carry enough centre-of-mass energy V5 to produce the bosons. In a fast
moving system, quarks carry only a fraction xP, of the proton momentum P, (cf.
Sect. 7.3). About half the total momentum is carried by gluons; the rest is distributed
among several quarks, with the mean x for valence quarks and sea quarks given by

(xy) ~ 0.12 (xs) ~ 0.04. (12.1)
One can produce a Z° boson in a head-on collision of two protons according to
u+u — Z2°.
But the proton beam energy E,, must be close to E, ~ 600 GeV in order to satisfy

Mz? = V5 ~ (x) () -s = 2-40.12-0.04 - E, . (12.2)

Proton-antiproton collisions are more favourable, since the momentum distribu-
tions of the U- and d-valence quarks in antiprotons are equal to those of the u- and
d-valence quarks in protons. Consequently, only about half the energy is necessary.
Since a p and a p have opposite charges, it is also not necessary to build two separate
accelerator rings; both beams can in fact be injected in opposite directions into the
same ring. At the SPS (Super Proton Synchrotron) at CERN, which was renamed
SppS (Super Proton Antiproton Storage ring) for this, protons and antiprotons of
up to 318 GeV were stored; at the Tevatron (FNAL), 980 GeV beam energies were
attained.
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Fig. 12.1 “Lego diagram” of
one of the first events of the
reaction qq — Z° — ete™, e2
in which the Z° boson was
detected at CERN. The
transverse energies of the el
electron and positron detected
in the calorimeter elements
are plotted as a function of
the polar and azimuthal 10 GeV
angles [7]

The bosons were detected for the first time in 1983 at CERN at the UA1 [6] and
UAZ2 [5, 8] experiments in the decays

Z0et +e, Wtet +.,
2 put 4+, WHpt 4,

The Z° boson has a very simple experimental signature. One observes a high-
energy eTe™ or uu~ pair with the lepton and antilepton flying off in opposite
directions. Figure 12.1 shows a so-called “lego diagram” of one of the first events.
The figure shows the transverse energy measured in the calorimeter cells plotted
against the polar and azimuthal angles of the leptons relative to the incoming proton
beam. The height of the “lego bars” measures the energy of the leptons. The total
energy of both leptons corresponds to the mass of the Z°.

The detection of the charged vector bosons is somewhat more complicated, since
only the charged lepton leaves a trail in the detector and the neutrino is not seen.
The presence of the neutrino may be inferred from the momentum balance. When
the transverse momenta (the momentum components perpendicular to the beam
direction) of all the detected particles are added together the sum is found to be
different from zero. This missing (transverse) momentum is ascribed to the neutrino.

Mass and width of the W boson The distribution of the transverse momenta of
the charged leptons may also be used to find the mass of the W*. Consider a W
produced at rest and then decaying into an e™ and a v, as shown in Fig. 12.2a. The
transverse momentum of the positron is roughly given by

pf+ ~ “sino (12.3)

~
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where 6 is the angle at which the positron is emitted with respect to the beam axis.
We now consider the dependence of the cross-section on p; or on cos 6. We have

do do dcosf

— = . , 12.4
dp; dcosf dp, (12.4)
from which follows
d d 2 1
o _ 90 = ) (12.5)
dp: dcost Mwc /(Mwc/2)2— p?
The cross-section should have a maximum at p, = Mywc/2 (because of the

transformation of variables, also called a Jacobian peak) and should then drop
off rapidly. Since the W is not produced at rest and has a finite decay width the
distribution is smeared out. In Fig. 12.2b a recent high statistics measurement of the
p: distribution by the DO experiment at the Tevatron/FNAL [3] is shown.! The data
have been obtained in p-p collisions at a centre-of-mass energy of 1.96 TeV. The
most precise figures to date for the width and mass of the W are [19]

My = 80.385 £ 0.015 GeV/c?,
I'y = 2.085+£0.042 GeV. (12.6)

'Instead of the transverse momentum, one nowadays rather uses the transverse mass m? =

ot e
2”’7 p‘T (1 —cos Ap(e™, ve)), where A¢ is the opening angle between the electron momentum
and the reconstructed neutrino momentum [15].
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Mass and width of the Z boson Since the cross-section for creating Z-bosons in
ete™ collisions is much larger than the cross-section for creating W bosons, in either
ete™ or pp collisions, the mass and width of the Z° boson have been much more
precisely determined than their W boson counterparts. Furthermore, the energies of
the et and e~ beams are known to an accuracy of a few MeV, which means that the
measurements are very precise. The experimental values of the Z° parameters and
width are [19]

My = 91.1876 + 0.0021 GeV/c?,
I, = 2.4952 +0.0023 GeV. (12.7)

Decays of the W boson When we dealt with the charged-current decays of
hadrons and leptons we saw that the W boson only couples to left-handed fermions
(maximum parity violation) and that the coupling is always the same (universality).
Only the Cabibbo rotation causes a small correction in the coupling to the quarks.

If this universality of the weak interaction holds, then all types of fermion-
antifermion pairs should be equally likely to be produced in the decay of real W
bosons. The colour charges mean that an extra factor of 3 is expected for quark-
antiquark production. The production of a t-quark is impossible because of its larger
mass. Thus, if we neglect the differences between the fermion masses, a ratio of
1:1:1:3:3is expected for the production of the pairs e*ve, u*v,, t7v,, ud’, and
s, in the decay of the W boson. Here, the states d’ and §’ are the Cabibbo-rotated
eigenstates of the weak interaction.

Because of the process of hadronisation, it is not always possible in an exper-
iment to unequivocally determine the type of quark-antiquark pair into which a
W boson decays. Leptonic decay channels can be identified much more easily.
According to the above estimate, a decay fraction of 1/9 is expected for each lepton
pair. The experimental results are [19]

Wt S et 1075+0.13%
wE+ Y 1057 £0.15%

1% 11254020%, (12.8)

in very good agreement with our prediction.

Decays of the Z boson If the Z boson mediates the weak interaction in the same
way as the W boson does, it should also couple with the same strength to all lepton-
antilepton pairs and to all quark-antiquark pairs. One therefore should expect a ratio
of 1:1:1:1:1:1:3:3:3:3:3 for the six leptonic channels and the five hadronic
channels which are energetically accessible; i.e., 1/21 for each lepton-antilepton
pair, and 1/7 for each quark-antiquark pair.
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To determine the branching ratios, the various pairs of charged leptons and
hadronic decays must be distinguished with appropriate detectors. The differ-
ent quark-antiquark channels cannot always be separated. Decays into neutrino-
antineutrino pairs cannot be directly detected. In order to measure their contribution,
the cross-sections for all other decays are measured, and compared to the total width
of the Z° boson. Treating the spin dependencies correctly [18], we rewrite the Breit-
Wigner formula (9.8) in the form

Iy
(s — M3 + MR T2

i (s) = 127 (hc)? - (12.9)

Here, I; is the partial width of the initial channel (the partial width for the decay
7% — e*e™) and [7} is the partial width of the final channel. The total width of the
Z° is the sum of the partial widths of all the possible decays into fermion-antifermion
pairs:

Mz = Y I@Z—fh. (12.10)

all fermions f

Each final channel thus yields a resonance curve with a maximum at /s = Myc?,
and a total width of I. Its height is proportional to the partial width I';. The
partial width Iy can experimentally be determined from the ratio of the events of
the corresponding channel to the total number of all Z° events.

Analyses of the experiments at LEP and SLC yield the following branching
ratios [19]:

7° — et te 3.363 4 0.004 %
wt+u 3.366 + 0.007 %
4+ 3.370 & 0.008 %
Veyr +Vepr 2000 £0.06 %
hadrons 69.91 +0.06 %. (12.11)

Thus, the probability for a decay into charged leptons is significantly different
from the decay probability into neutrinos. The coupling of the Z° boson apparently
depends on the electric charge. Hence the Z° cannot simply be a “neutral W
boson” coupling with the same strength to all fermions; rather it mediates a more
complicated interaction.
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12.2 Electroweak Unification

The properties of the Z° boson are attractively described in the theory of the
electroweak interaction. In this framework, developed by Salam and Weinberg, the
electromagnetic and weak interactions are understood as two aspects of the same
interaction.

Weak isospin The electroweak interaction theory can be elegantly described by
introducing a new quantum number, the weak isospin T, in analogy to the isospin
of the strong interaction. Each family of left-handed quarks and leptons forms a
doublet of fermions which can transform into each other by emitting (or absorbing)
a W boson. The electric charges zs - e of the two fermions in a doublet always differ
by one unit. The weak isospin ascribed to them is T = 1/2, and the third component
is T3 = £1/2. For right-handed antifermions, the signs of 75 and z¢ are inverted. By
contrast, right-handed fermions (and left-handed antifermions) do not couple to W
bosons. They are described as singlets (T = T3 = 0). Hence, the left-handed leptons
and the (Cabibbo-rotated) left-handed quarks of each family form two doublets and
there are additionally three right-handed fermion singlets (Table. 12.1).

The Weinberg angle We now continue our description of the weak isospin
formalism. One requires conservation of 73 in reactions with charged currents. The
W~ boson must then be assigned the quantum number 73(W~) = —1 and the W+
boson T3(WT) = +1. A third state should therefore exist with T = 1, T3 = 0,
coupling with the same strength g as the W¥ to the fermion doublets. This state
is denoted by WY; and together with the WT and the W~ it forms a weak isospin
triplet.

Table 12.1 Multiplets of the electroweak interaction. The quarks d’, s’ and b” emerge from the
mass eigenstates through a generalised Cabibbo rotation (CKM matrix). Weak isospin 7 doublets
are joined in parentheses. The electric charges of the two states of each doublet always differ by
one unit. The sign of the third component T3 is defined so that the difference zy — 73 is constant
within each doublet

Fermion multiplets T T3 2t
Leptons (ve) (”u) (uf) 12 +1/2 0
¢ /L R~y L —1/2 -1
€Rr MR TR 0 0 —1
Quarks ( u ) (c) ( t ) 12 +1/2  |+2/3
4 / 4 — —
d 5 s ), b L 1/2 1/3
UR CR tr 0 0 +2/3

dR SR bR 0 0 _1/3
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The W cannot be identical to the Z°, since we saw that the coupling of the
latter also depends on the electric charge. One now postulates the existence of an
additional state B®, a singlet of the weak isospin (T = 0, T3 = 0). Its coupling
strength does not have to be equal to that of the triplet (W*, W°). The corresponding
weak charge is denoted by g’. The B® and W° couple to fermions without changing
their weak isospin and hence without changing their type.

Experimentally two neutral vector bosons, the photon and the Z°, are indeed
known. The basic idea of the electroweak unification is to describe the photon and
the Z° as mutually orthogonal, linear combinations of the B® and the W°. This
mixing is, analogously to the description of quark mixing in terms of the Cabibbo
angle (10.18), expressed as a rotation through the so-called electroweak mixing
angle Oy (also called the Weinberg angle)

ly) =  cosBw|B°) + sin By W)
|Z°) = —sin 6y |[B°) + cos Oy |W?) . (12.12)

The connection between the Weinberg angle Oy, the weak charges g and g’ and the
electric charge e is given by demanding that the photon couples to the charges of the
left- and right-handed fermions but not to the neutrinos. One so obtains [18§]

/ /

8 8

§ .
tan Oy = =, sin by = ———, cosby = ——— . (12.13)
g /g2 + g/2 /g2 + g/2
The electromagnetic charge is given by
e = g-sinfy. (12.14)

The Weinberg angle can be determined, for example, from v-e scattering, from
electroweak interference in ete™ scattering, from the width of the 70, or from the
ratio of the masses of the W* and the Z° [4, 10]. A combined analysis of such
experiments gives the result [19]

sin” By = 0.23116 £ 0.00012 . (12.15)

Hence, the weak coupling constant (o, o g - g) is about four times stronger than the
electromagnetic one (o  e-e). It is the propagator term in the matrix element (10.3),
which is responsible for the tiny effective strength of the weak interaction at low
energies.

This Weinberg mixing somewhat complicates the interaction. The W boson
couples with equal strength to all the quarks and leptons (universality) but always
to only left-handed particles and right-handed antiparticles (maximum parity vio-
lation). In the coupling of the Z boson, however, the electric charges of the
fundamental fermions play a part as well. The coupling strength of the Z° to a
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fermion f is

8
cos By

gz(f) = -2(f) where  g(f) = T3 — zpsin® by , (12.16)

and zr is the electric charge of the fermion in units of the elementary charge e.

The ratio of the masses of the W and Z bosons The electroweak unification
theory could be used to predict the absolute masses of the W and the Z fairly well
before their actual discovery. According to (10.4) and (12.14), the electromagnetic
coupling constant ¢, the Fermi constant Gg and the mass of the W boson are
related by

4 2 (he)?
Mt = 2 V200 (12.17)

 8sin? Ow Gr

It is important to realise that in in quantum field theory the “constants” « and sin® Gy
are in fact weakly dependent upon the energy range (renormalisation) [11, 13]. For
the mass region of (12.17), we have o ~ 1/128 and sin? Bw ~ 0.231. The mass of
the Z boson is fixed by the relation

M
VZ = cos Oy ~ 0.88 . (12.18)

This is in good agreement with the ratio calculated from the experimentally
measured masses (12.6) and (12.7):

My
—— = 0.8818 £ 0.0011. (12.19)
Mz

The resulting value of sin? Ay is in very good agreement with the results of other
experiments. The value given in (12.15) is from the combined analysis of all
experiments.

Neutral and charged currents at large Q* The aspects discussed so far can be
illustrated nicely with the Q% dependence of cross-sections for neutral currents (onc)
and charged currents (occ) in deep-inelastic scattering of electrons and positrons. In
Fig. 12.3 we show results of the HI experiment [2] for those cross-sections as a
function of Q7 in the regime of 200 to 5 - 10* (GeV/c)?. For small values of Q2
the neutral current cross-section is almost a factor 1,000 larger than occ. Here
the cross-section is dominated by exchange of a virtual photon. This contribution
decreases quickly with 1/Q* and is for electrons and positrons of the same size. The
7° exchange becomes significant only for values of Q? larger than 3,000 (GeV/c)?.
For larger values of Q? electrons have a larger onc than positrons. This is caused by
the interference of Z° and y exchange, discussed already in Sect. 10.3.
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The cross-section for charged currents occ decreases much weaker with 0?
than onc, since the mass term in the propagator (Q*c? + M%,c*)™! dominates over
Q*c®. At Q*> ~ 10*(GeV/c)? the differences between electromagnetic and weak
propagator become small and onc becomes almost identical to occ. As already

. . - + .
mentioned in Sect. 10.6, oé- > o0&, because u(x) is larger than d(x).

12.3 Width of the Z° and the Number of Neutrinos

A detailed study of the production of Z° bosons in electron-positron annihilation
delivers a very precise check of the predictions of the standard model of electroweak
unification.

The coupling of a Z° to a fermion f is proportional to the quantity g(f) defined
in (12.16). The partial width I" for a decay Z° — ff is a superposition of two parts,
one for each helicity state:

=Ty [81(D) + gr(D)]. (12.20)
where

Gr

Ip=————  Mc® ~ 663MeV. (12.21)
T 32 (e 2

For left-handed neutrinos, 75 = 1/2, zz = 0; hence,

1
SOEES (12.22)
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Right-handed neutrinos would have 75 = zz = gg = 0 and would not be subject to
the interactions of the standard model. The contribution of each vV pair to the total
width is therefore

I, ~ 165.8MeV. (12.23)

The d-, s- and b-quarks have T3 = —1/2 (left-handed) or 75 = 0 (right-handed) and
zr = —1/3. This yields

. 1 1, . |
gL(d) = —3 + 3 sin? By, gr(d) = 3 sin? By . (12.24)

Recalling that quark-antiquark pairs can be produced in three colour combinations
(11, gg, bb), the total contribution of these quarks is

In=rIy=1,=3-122.4MeV. (12.25)
Similarly the contribution of the u- and c-quarks is
I=1I.=3-949MeV, (12.26)
and the contribution of the charged leptons is
I.=1T,=1;=_833MeV. (12.27)

Decays into vV pairs cannot be directly detected in an experiment, but they manifest
themselves in their contributions to the total width. Taking account of the finite
masses of the quarks and charged leptons only produces small corrections, as these
masses are small compared to the mass of the Z boson.

Including all known quarks and leptons in the calculations, one finds that the total
width is 2,418 MeV. After incorporating quantum field theoretical corrections due
to higher-order processes (radiative corrections) the width predicted is [17]

riheer — 2,497+ 6) MeV . (12.28)

tot

This is in very good agreement with the experimental value (12.7) of
Fat” = (2,490 £ 7) MeV . (12.29)

The proportion of the total number of decays into pairs of charged leptons is
equal to the ratio of the widths (12.27) and (12.28)

R,;L,t

tot

=337%. (12.30)
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Fig. 12.4 Cross-section of the reaction et e™ — hadrons close to the Z° resonance. The data
shown are the results of the OPAL experiment at CERN [9]. According to (12.9) the measured
width of the resonance yields the total cross-section. The more types of light leptons exist, the
smaller the fraction of the total cross-section that remains for the production of hadrons. The lines
show the theoretical predictions, based on the measured width of the resonance, assuming that 2,
3, or 4 massless neutrinos exist

The experimental branching ratios (12.11) are in excellent agreement with this
theoretical value.

If a fourth type of light neutrino were to couple to the Z° in the same way,
then the total width would be larger by 166 MeV. We thus can deduce from the
experimental result that exactly three types of light neutrinos exist (Fig. 12.4). This
may be interpreted as implying that the total number of generations of quarks and
leptons is three (and three only).

12.4 Symmetry Breaking

Notwithstanding the successes of electroweak unification, the theory is aesthetically
flawed: the mixture of states described by the Weinberg rotation (12.12) should only
occur for states with similar energies (masses). Yet, the photon is massless and the
W and Z bosons have very large masses. Furthermore, in the naive mathematical
description of electroweak unification the masses of W and Z bosons turn out to be
forbidden. How the W and Z bosons obtain masses and the photon stays massless is
a central question in particle physics.

A possible answer is associated with spontaneous symmetry breaking, a concept
known from the physics of phase transitions. This assumes an asymmetric vacuum
ground state. The best-known examples of this idea are the magnetic properties of
iron, and the Meissner effect (or Meissner-Ochsenfeld effect) in superconductivity.
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In a theoretical model, proposed independently by Englert and Brout [12] and by
Higgs [16], the masses of the Z° and of the W* bosons are explained in analogy
to the Meissner effect. In this model, so-called Higgs fields are postulated, which —
compared to our example — correspond to the ground state of correlated Cooper pairs
in superconductivity. At sufficiently high temperatures (or energies) the Z° and W+
bosons are massless like the photon. Below the energy of the phase transition, the
boson masses are produced by the Higgs fields, just as the “photon mass” is in the
Meissner effect.

The masses of the Z° and the W* bosons must be independent of their location
and orientation in the universe. Hence, the Higgs fields must be scalars. In the theory
of electroweak unification, there are thus four Higgs fields, one for each boson.
During the cooling of the system, three Higgs bosons, the quanta of the Higgs field,
are absorbed by the Z° and by the W . This generates their masses. Since the photon
remains massless there must still be a free Higgs boson.

Higgs potential and spontaneous symmetry breaking To illustrate what sponta-
neous symmetry breaking means in case of the Higgs boson, consider the simple
one-dimensional and real case (in the standard model one deals with the two-
dimensional complex generalisation). We write the Higgs field as ¢ and assign it
the following potential’:

V(p) = u? ¢* + A g*. (12.31)

The quadratic term corresponds in quantum field theory to a mass term %mé @
Like any physical system, the Higgs field attempts to reach the energetically lowest
state. In case of positive u? and A this is at ¢ = 0, see Fig. 12.5. The interesting
case occurs when A > 0 and u?> < 0. The quadratic term would now correspond

Vo)
V@)

j

(=]

0 (0] -V 0 +Vv 0]

Fig. 12.5 The potential (12.31) of the Higgs field. The case 4> > 0 and A > 0 (left) implies a
minimum for ¢ at the origin; the corresponding position of ¢ is indicated by the black point. The
case > < 0and A > 0 (right) implies a shifted minimum at v = /—u2/(21)

2For the rest of this section we will for simplicity ignore factors of ¢ and #, as common in modern
literature of high energy physics.



198 12 Exchange Bosons of the Weak Interaction and the Higgs Boson

to a negative squared mass which lacks a meaningful physical interpretation. This
problem gets resolved when we consider the minimum of the potential, which is
given by

—2
go=v = (1232)

Without loss of generality we can choose the positive sign.> The quantity v
is denoted vacuum expectation value of the Higgs field. The original potential
possesses reflection symmetry, replacing ¢ — —¢ has no effect. The “ground state”
of the system (12.32) does no longer posses this symmetry, the reflection symmetry
is “spontaneously broken”. Since in quantum field theory we do not know any
exact solutions, we need to do perturbation theory around the minimum. We write
therefore

¢ =v+H,

with the constant minimum v and the physical Higgs boson H. Inserting this
expression in the original potential (12.31) yields that terms which are linear in H
disappear, while the quadratic term is given by 41 v H2. This term is now a positive
squared mass mj; = 8 v? for the Higgs boson H.

In case of a complex field ¢ we would replace ¢? in the potential by ¢*¢.
The symmetry that is broken when the field enters the minimum v is now a phase
transformation ¢ — e'* ¢. Again we develop around the minimum:

¢ =v+H+iK.

The field H is again a physical Higgs boson, while K turns out to be massless:
there is no quadratic term when we insert the above term in the original potential.
Such a massless scalar particle always appears when a continuous symmetry,
such as the one corresponding to a phase transformation, is spontaneously broken.
They are called Goldstone bosons, sometimes also Nambu Goldstone bosons. Such
particles have never been observed in experiments, and seem to pose a problem.
However, in theories in which massless gauge bosons are present, the degree of
freedom corresponding to the Goldstone boson K can be absorbed by that massless
boson, in case it has the same quantum numbers as the Higgs boson [18]. The
number of degrees of freedom of the exchange bosons (i.e., its polarisations) has
increased from 2 to 3, which corresponds to a massive boson. Recall that a massless
spin-1 boson possesses two transversal polarisation degrees of freedom, while a

3 An analogy is here a knitting needle which we compress with a force along its axis. For sufficiently
high pressure the needle will buckle in a bent position. The arbitrary direction in which it bends
can be chosen as coordinate axis.



12.4 Symmetry Breaking 199

massive spin-1 particle possesses in addition a third, longitudinal one. Therefore,
the exchange boson has obtained a mass.

In the standard model one deals with a complex Higgs doublet, containing 4
degrees of freedom. Those correspond to a physical, massive Higgs boson and three
massless ones, which get absorbed by the W, W™ and Z°, thereby providing them
with masses.

B To further illustrate how symmetry breaking can generate a mass, we now consider the analogy
of ferromagnetism. Above the Curie temperature, iron is paramagnetic and the spins of the valence
electrons are isotropically distributed. No force is required to alter spin orientations. The fields
that carry the magnetic interaction may, as far as spatial rotations are concerned, be considered
massless. When the temperature drops below the Curie point, a phase transition takes place and
iron becomes ferromagnetic. The spins, or the magnetic moments of the valence electrons turn
spontaneously to point in a common direction which is not fixed a priori. The space within the
ferromagnet is no longer isotropic, rather it has a definite preferred direction. Force must be used
to turn the spins away from the preferred direction. Thus the carriers of the magnetic interaction
now have a mass as far as rotations are concerned.

The Meissner effect, the absence of external magnetic fields in superconductors, provides an
even better analogy to particle production by symmetry breaking. Above the transition temperature
of the superconductor, magnetic fields propagate freely within the conductor. With the transition
to the superconducting phase, however, they are expelled from the superconductor. They can
only penetrate the superconductor at its surface and drop off exponentially inside. An observer
within the superconductor could explain this effect by a finite range of the magnetic field in the
superconductor. In analogy to the discussion of the Yukawa force (Sect. 17.3) he therefore would
ascribe a finite mass to the photon.

Where is the spontaneous symmetry breaking in this process? This is what actually happens in
superconductivity: below the critical temperature, Cooper pairs are formed out of the conduction
electrons which organise themselves into a correlated state of definite energy: the energy of the
superconducting ground state. For an observer within the superconductor, the ground state of
the superconductor is the ground state of the vacuum. As the temperature decreases, a current
is induced in the superconductor which compensates the external magnetic field and expels it from
the superconductor. The correlated Cooper pairs are responsible for this current. Just as in the case
of the ferromagnet where the spins are no longer free to choose their orientation, the phase of
a Cooper pair is here fixed by the phase of the other Cooper pairs. This effect corresponds to a
symmetry breaking of the ground state.

The existence of these Higgs fields is fundamental to the modern interpretation
of elementary particle physics. The search for a non-absorbed Higgs boson was
the main motivation for the construction of a new accelerator and storage ring at
CERN, the Large Hadron Collider (LHC). The experimental proof of its existence
would be a complete confirmation of the Glashow-Salam-Weinberg theory of
electroweak unification. The non-existence of the Higgs bosons, however, would
require completely new theoretical concepts. One could compare this situation with
that at the end of the nineteenth century, when the existence of the aether had a
similar importance for the interpretation of physics. However, the discovery of the
Higgs boson in 2012 made the standard model conclusively a consistent theory.
Details regarding the search for the Higgs boson are discussed in the next section.
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12.5 The Higgs Boson

As mentioned above, a consistent interpretation of the masses of the W, 70 particles
and a massless photon requires the existence of a scalar particle: the Higgs boson
H. It would be the only fundamental scalar particle. Other known spin-0 particles,
such as the 7°, are composite objects, made out of fermionic quarks. Furthermore,
one can show that the masses of the charged leptons and quarks can be generated
by the coupling with the Higgs field to which the Higgs boson is associated [18]. H
couples, since it is electrically neutral, to a fermion-antifermion pair, a wtw— pair,
or to two Z°. For all particles x with mass m, holds that the coupling to the Higgs
boson is proportional to my. Therefore electrons and the light up and down quarks
couple only very weakly to H, which makes its production at collider experiments
rather difficult. For many years the Higgs boson was the last missing piece of the
standard model.

For the case that the Higgs boson H exists, one knew indirect theoretical upper
and lower limits of about 10° and 10> GeV/c? on its mass. These limits depend in a
complicated way on other parameters such as the masses of the W or the top quark,
and are strong tests for the consistency of the standard model. However, except for
its mass all properties and couplings of the Higgs boson are predicted by the theory,
and one can calculate its total width and its branching ratios in standard model
particles. The total width of H in its interesting mass regime is of the order of a
few MeV, corresponding to lifetimes of order 10723 s. Experimental searches for the
Higgs boson are thus very difficult.

Figure 12.6 shows the branching ratios as a function of the Higgs boson mass
Mpy. One should note that the decay H — yy is given, even though the photon
should not couple to the Higgs boson because it is massless. The decay into two
photons can however occur indirectly via a pair of top quark and antiquark, see

Fig. 12.6 Branching ratios in 1 O0 -
fermions and vector bosons F
of the Higgs boson H as
function of its mass
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Fig. 12.7 Decays of the Higgs boson H in two photons and gluons, respectively. By inverting the
direction of the right process we obtain gluon fusion as a possible production mechanism of the
Higgs boson in hadron accelerators

q W, Z ~ T H

Fig. 12.8 Important Feynman diagrams for the production of Higgs bosons at accelerators: Vector
boson fusion (left) and with W or Z associated production or Higgs-strahlung (right). We can
translate the diagrams also to electron-positron accelerators, if we replace the incoming quarks as
e~ ore™, and the outgoing quarks as eT or neutrinos

Fig. 12.7. Such processes of higher order are usually strongly suppressed. In this
case the suppression is compensated by the large coupling of the Higgs-boson with
the top quark. The decay channel H — yy is, as we will later see, very important.
A similar looking decay channel, H — gg exists as well. Here the photons in the
diagram are replaced by gluons. By inverting the direction of this decay we end up
with a possible production channel for the Higgs boson: gg — H. Here two gluons
from two colliding protons or a proton and an antiproton fuse to a Higgs boson
Gluon fusion).

Higgs production in electron-positron annihilation Direct searches were first
performed at LEP. The reaction e™ e~ — H is not realistic because of the tiny
coupling of electrons with the Higgs-boson. Therefore one searched for the reaction

ete” >Z—>ZH (12.33)

(with the Z associated production), see Fig. 12.8. The analogy to bremsstrahlung
has led to the name Higgs-Strahlung for this process. The known decays of the
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(depending on centre-of-mass energy and Higgs mass) real or virtual Z and the
postulated decays of the Higgs boson as a function of its mass allow this search.
One mainly investigated the channels H — bb and H — t+7~, in which the
Z° additionally decays into two quarks or leptons. Since those decays were not
observed, a lower limit of My > 114.4GeV/ ¢* at 95 % confidence level was set.

Higgs production in proton-antiproton reactions At the Tevatron the most
important production processes are the already mentioned gluon fusion, the asso-
ciated W or Z production and vector boson fusion, which is also displayed in
Fig. 12.8. An important channel was, e.g. the detection of a bb pair from H — bb
in connection to associated production with identification of the W or Z. The
decay H — WW after gluon fusion and associated production is also of interest.
Gluon fusion followed by H — bb is overwhelmed with background from bb pair
production in the pp collisions. A Higgs boson with a mass between 147 and
180 GeV/c? could be ruled out in this way.

Higgs production in proton-proton reactions at LHC The start of the Large
Hadron Collider brought the long awaited breakthrough. The LHC is a proton-
proton storage ring with a final centre-of-mass energy of /s = 14TeV and a
planned luminosity of 103 cm™2s™!. Initial technical difficulties lead in the years
2010-2012 to a reduced centre-of-mass energy of /s = 7 TeV, later followed by
/s = 8TeV. Two large experiments are here important [14], ATLAS (A Toroidal
LHC Apparatus) and CMS (Compact Muon Solenoid). Since two protons instead
of proton and antiproton collide, and since the available centre-of-mass energy is
higher than at the Tevatron, the relative contributions of the production processes
changes. Gluon fusion has now the largest cross-section, followed by vector boson
fusion and associated production, see Fig.12.9. The decay H — bb is for all
production channels covered by bb pair production. Interesting decay channels are
now H— WW, H— ZZ and H — yy. The branching ration into two photons
is only about 0.002, however, the detectors are very sensitive to such a signal.

Fig. 12.9 Production of a
Higgs boson H in pp
collisions at a centre-of-mass
energy of /s = 8 TeV as
function of its mass: Shown
are (from top to bottom)
gluon fusion, vector boson
fusion, and with W or Z
associated production
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The invariant mass of both photons is a clear evidence for a resonantly produced
particle. In all studied channels events were found which can be explained by a
Higgs particle. The results of the analyses in summer 2012 are

My = (126.0 + 0.4 (stat.) & 0.4 (sys.)) GeV/c? (ATLAS [20])
My = (125.3 £ 0.4 (stat.) & 0.5 (sys.)) GeV/c?> (CMS [21]) .

where we have given statistical and systematical uncertainty. Figure 12.10 shows
the result of a follow-up analysis focusing on some channels, including the decay
into two photons. The width of the resonance corresponds to the resolution of the
detector, and not to the actual width of the Higgs particle. There are hints that the
new particle also decays into 7+ and bb pairs. The complete reconstruction of all
decay channels, and thus the absolutely certain confirmation that the new particle
is the Higgs boson of the standard model, will be difficult because its couplings
are proportional to the masses of the standard model particles. A Higgs mass of
of My = 126GeV/c? corresponds to a decay width of 4.2MeV, or a lifetime of
1.6 x 107235, The total cross-section for Higgs production at /s = 8 TeV is about
22 pb, i.e., nine orders of magnitude below the total pp — X cross-section at this
energy!

Both measured values for My agree within the uncertainties. In addition, when
the mass is determined for the individual decay channels the results agree as well.

> 10000(— T T T T T —]
3 C ATLAS .
N oo e Data2011+2012 ]
; L SM Higgs boson MH=126.8 GeV (fit)
c O ey temmeees Bkg (4th order polynomial) ]
@  6000— —
w o e, Hovy .
4000 — —
C Vs=7Tev JLdt =4.8fb" 7
2000 — =
C Vs=8TeV J-Ldt =20.71" ]
o 1 1 1 1 1 N
g MFE | E
Qo 400~ =
kel 300 E- =
3“:’ 200 E- + + 3
[ 100 E- + + 3
; oE 14T e B S o * 5
£ 00 = + ¢ ! + T ' v s e =
q>> -200 E- -3
1w 100 110 120 130 140 150 160
m,, [GeV]

Fig. 12.10 Invariant-mass spectrum of diphoton candidates after combining data at centre-of-mass
energies of 7 and 8 TeV. The expected background (fitted as a fourth order polynomial) is given
as a dashed line, the observation as a solid line. The lower plot shows the observed events minus
the expected background. The peak corresponds to the Higgs boson decaying into 2 photons. The
result of this analysis is My = 126.8 GeV/c? (From [1], ATLAS Experiment © 2013 CERN)
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The identification of this new elementary particle, which behaves so far as the
postulated Higgs boson, is a grand triumph of particle physics, and is a spectacular
confirmation of the theoretical ideas.

12.6 Grand Unification

One can extend further the idea of unification and try to combine also the strong
interaction with the weak and electromagnetic ones. The Grand Unification Theory
(GUT) unifies in the spirit of the electroweak interaction the three interactions
(strong, weak, electromagnetic) as well as quarks and leptons. The grand unification
occurs at very high energies (10'® GeV). This means that at such an energy no
differences between fermions, quarks and leptons exist, and that all interactions are
of equal strength.

Cosmology Modern cosmological models use the ideas of unification and sym-
metry breaking. They assume that at some stage also gravity can be unified with
the other interactions. Today’s picture is that the universe — consisting of a very
dense initial state of primordial particles with some primordial interaction — cooled
down after the big bang and underwent a number of phase transitions. At each phase
transition the primordial elementary particles and their interactions differentiated,
ending finally with the interactions of the standard model.

Problem

1. Number of neutrino generations

At the LEP storage ring at CERN Z’-bosons are produced in electron-positron
annihilations at a centre-of-mass energy of about 91 GeV before decaying into
fermions: ete™ — Z° — ff. Use the following measurements from the
OPAL experiment to verify the statement that there are exactly three sorts
of light neutrinos (with m, < mgyo/2). The measurement of the resonance
curve (12.9) yielded: o = 41.45 £ 0.31nb, [} = 1,738 £ 12MeV,
Iy = 83.274+0.50 MeV, M; = 91.1824+0.009 GeV/c2. All quark final states are
here combined into a single width I}, and I is the decay width of the 7% into
(single) charged leptons. Derive a formula for the number of neutrino species N,
and use the ratio I;/ I, from the text to calculate N,. Estimate the error in N,
from the experimental errors.
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Chapter 13
The Standard Model

Se non e vero, é ben trovato.

Giordano Bruno
Gli eroici furori

Die Wissenschaft hat ewig Grenzen,
aber keine ewigen Grenzen.

P. du Bois-Reymond
Uber die Grenzen
des Naturerkennens

The standard model of elementary particle physics comprises the unified theory of
the electroweak interaction and quantum chromodynamics. In the following, we will
once more summarise what we have learnt in previous chapters about the different
particles and interactions.

— As well as gravitation, we know of three elementary interactions which have very
similar structures. Each of them is mediated by the exchange of vector bosons.

Exchange Mass
Interaction Couples to particle(s) (GeV/c?) JP
Strong Colour charge 8 gluons (g) 0 1~
Electromagnetic Electric charge Photon (y) 0 1~
Weak Weak charge w, 70 ~102 1

Gluons carry colour and therefore interact with each other. The bosons of the
weak interaction themselves carry weak charge and couple with each other as
well.

— As well as the exchange bosons, the known fundamental particles are the quarks
and the leptons. They are fermions with spin-1/2. They are grouped, according
to their masses, into three “families”, or “generations”.
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Family Electr. Weak Isospin

Fermions 1 2 3 charge Colour Left-hd. Right-hd. Spin

Leptons Ve v, Ve 0 — 1/2 - 1/2
e T —1 0

Quarks u c t +2/3 b g 1/2 0 1/2
d S b —-1/3 0

Each fermion has an associated antifermion. It has the same mass as the
fermion, but opposite electric charge, colour and third component of weak
isospin.

From the measured width of the Z° resonance, one can deduce that no further
(fourth) light neutrino exists. Thus, the existence of a fourth generation of
fermions (at least one with a light neutrino) can be excluded.

— In the standard model neutrinos are predicted as massless. The observation of
neutrino oscillations, however, showed that they have to possess a mass (see
Chap. 11). The resulting lepton mixing can be described in analogy to the mixing
in the quark sector without having to give up the standard model.

— Quarks can change their flavour. They prefer transitions within one family,
transitions from the first to the second family are suppressed by one order of
magnitude, from the first to the third by two. Transitions of leptons do not display
such a hierarchy, but are almost generation independent.

— The consistency of the standard model necessitates the existence of a neutral
spin-0 particle, which couples to the other elementary particles with strength
proportional to their masses. This Higgs particle seems to have been detected,
having a mass of 126 GeV /c?.

— The range of the electromagnetic interaction is infinite since photons are mass-
less. Because of the large mass of the exchange bosons of the weak interaction, its
range is limited to 10~ fm. Gluons have zero rest mass. Yet, the effective range
of the strong interaction is limited by the mutual interaction of the gluons. The
energy of the colour field increases with increasing distance. At distances 2 1 fm,
it is sufficiently large to produce real quark-antiquark pairs. “Free” particles
always have to be colour neutral.

— The electromagnetic interaction and the weak interaction can be interpreted as
two aspects of a single interaction: the electroweak interaction. The correspond-
ing charges are related by the Weinberg angle, cf. (12.14).

— Different conservation laws apply to the different interactions:

e In all three interactions, energy (£), momentum (p ), angular momentum (L),
charge (Q), colour, baryon number (B) and the lepton number L are conserved.
e The P and C parities are conserved in the strong and in the electromagnetic
interaction; but not in the weak interaction. For the charged current of the weak
interaction, parity violation is maximal. The charged current only couples to
left-handed fermions and right-handed antifermions. The neutral weak current
is partly parity violating. It couples to left-handed and right-handed fermions
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and antifermions, but with different strengths. The combined CP parity is not
conserved in weak interactions.

e Only the charged current of the weak interaction transforms one type of quark
into another type (quarks of a different flavour) and one type of lepton into
another. Thus, the quantum numbers determining the quark flavour (third
component of isospin (/3), strangeness (S), charm (C) etc.) are conserved in
all other interactions.

e The magnitude of the isospin (/) is conserved in strong interactions.

The allowed transitions within lepton families are shown in Fig. 13.1. The transi-
tions are shown between the leptonic weak interaction eigenstates and also between
leptonic mass operator eigenstates. The corresponding quark family transitions are
shown in Fig. 13.2. Here the transitions between the quark eigenstates of the weak
interaction are shown, as are those between quark flavours. These pictures are

ol u— O R —
T o 'S G| g
S 3 > 5
O o L 5 2 el e
= u -1 = 10 10
o
§ 101 | @ 10!
= W= =
100 100
——e -1 -1
101 L 101 L
mv-__‘/e_ﬂ % V| g my b V3 0
. m\,<2.eV/c2 . rp\,l # T\’z # r.n\,3
vy (uv) (tv) ev)  (uvy  (tvy)

Fig. 13.1 Transitions between lepton states via charged currents. On the left for leptonic weak
interaction eigenstates, on the right for mass operator eigenstates
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Fig. 13.2 Transitions between quark states via charged currents. On the left quark weak interaction
eigenstates, on the right, mass operator eigenstates. The strength of the coupling is reflected in the
width of the arrows. The mass of the t-quark is so large, that it decays by emission of a real W+
boson
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perhaps the forerunner of a new type of spectroscopy, more elementary than the
atomic, nuclear or hadronic spectroscopies.

In summary, experiments are in astoundingly good quantitative agreement with
the assumptions of the standard model. These include the grouping of the fermions
into left-handed doublets and right-handed singlets of weak isospin, the strength
of the coupling of the Z° to left-handed and right-handed fermions, the three-fold
nature of the quark families because of colour and the ratio of the masses of the W=
and Z°. We thus possess a self-contained picture of the fundamental building blocks
of matter and of their interactions.

And yet today’s standard model is unsatisfactory in many respects. A large
number of free parameters remain: 3 coupling constants for the interactions, 6 quark
masses, 3 masses of charged leptons, 4 parameters in the CKM mixing matrix and 2
parameters that describe the properties of the Higgs boson. If one includes neutrino
masses, 3 neutrino masses and 4 (or 6) parameters in the PMNS matrix are added.
Those parameters do not follow from the standard model, but have to be determined
experimentally. In addition, effects and observations which cannot be explained in
the standard model at all are present: for instance, dark energy or dark matter, both
of which dominate the evolution and the structure of the universe.

Many questions are still completely open. Why do exactly three families of
fermions exist? Is it a coincidence that within every family the fermions which
carry more charge (strong, electromagnetic, weak) have larger masses? Are baryon
number and lepton number strictly conserved? What is the origin of CP violation?
What is the origin of the mixture of lepton families, described by the Pontecorvo-
Maki-Nakagawa-Sakata matrix? What is the origin of the mixture of quark families,
described by the Cabibbo-Kobayashi-Maskawa matrix? What is the origin of
small neutrino masses? Why are there just four interactions? What determines the
magnitudes of the coupling constants of the different interactions? Is it possible to
unify the strong and electroweak interactions, as one has unified the electromagnetic
and weak interactions? Will it be possible to include gravitation in a complete
unification?

Such questions reflect the experience physicists have gained in analysing the
building blocks of matter. On their journey from solid bodies to quarks via
molecules, atoms, nuclei, and hadrons, they have constantly found new, fundamental
particles. The question “Why?” implicitly assumes that more fundamental reasons
exist for observed phenomena — new experiments are the only way to check this
assumption.

Nature has always looked like a horrible mess, but as we go along
we see patterns and put theories together; a certain clarity comes
and things get simpler.

Richard P. Feynman [1]
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Part I1
Synthesis:
Composite Systems

Naturam expelles furca, tamen usque recurret.

Horace, epist. I,XX



Chapter 14
Quarkonia

Analogy is perhaps the physicist’s most powerful conceptual
tool for understanding new phenomena or opening new areas of
investigation. Early in this century, for example, Ernest
Rutherford and Niels Bohr conceived the atom as a miniature
solar system in which electrons circle the nucleus as planets
circle the Sun.

V. L. Telegdi [9]

In the second part of this book we are going to consider hadronic bound-states. We
will at first discuss the properties of mesons and baryons and subsequently details of
the structure of atomic nuclei. The simplest example are heavy quark-antiquark (cc
and bb) pairs, which are known as quarkonia. Due to the large quark masses they
may be approximately treated in a non-relativistic manner. The hydrogen atom and
positronium will serve as electromagnetic analogues.

14.1 The Hydrogen Atom and Positronium Analogues

The simplest atomic bound-state is the hydrogen atom, which is composed of
a proton and an electron. To a first approximation the bound-states and energy
levels may be calculated from the non-relativistic Schrodinger equation. The static
Coulomb potential V¢ oc 1/r is then incorporated into the Hamiltonian

(—;'—ZA - “—hc) v(r) =Ey(r). (14.1)
m r

The eigenstates are characterised by the number of nodes N in the radial wave
functions and the orbital angular momentum £. For the particular case of the
Coulomb potential, states with identical n = N + £ + 1 are degenerate and n is
therefore called the principal quantum number. The allowed energy levels E, are
found to be

Olzl’i’lC2

on?

E,=— (14.2)

© Springer-Verlag Berlin Heidelberg 2015 215
B. Povh et al., Particles and Nuclei, Graduate Texts in Physics,
DOI 10.1007/978-3-662-46321-5_14



216 14  Quarkonia

where « is the electromagnetic coupling constant and m is the reduced mass of the
system:

M,m,

m=———""~ me = 0.511MeV/c?. (14.3)
M, + m,

The binding energy of the hydrogen ground state (n = 1) is E; = —13.6eV. The
Bohr radius ry is given by

h-c 197 MeV - fm
'y = IS

= A =0.53-10° fm. (14.4)
o-me>  13771.0.511 MeV

The spin-orbit interaction (“fine structure”) and the spin-spin-interaction
(“hyperfine structure”) split the degeneracy of the principal energy levels as is
shown in Fig. 14.1. These corrections to the general 1/n? behaviour of the energy
levels are, however, very small. The fine structure correction is of order o? while
that of the hyperfine structure is of order o - tp/ te. The ratio of the hyperfine
splitting of the s/, level to the gap between the n = 1 and n = 2 principal energy
levels is therefore merely Eyrs/E, ~ 5-107'. Here we employ the notation n¢;
for states when fine structure effects are taken into account. The orbital angular
momenta quantum numbers £ = 0, 1,2, 3 are then denoted by the letters s, p, d, f.
The quantum number ; is the total angular momentum of the electron, j = £ +s.
A fourth quantum number f is used to describe the hyperfine effects (see Fig. 14.1
left). This describes the total angular momentum of the atom, f = j + i, with the
proton’s spin # included.

Binding energy [eV] Binding energy [eV]
A A
f
oF 2 0
4S ——
i 2Py <IL, 1 35 —— — 2%, % T
B /' 2
al gg ¢ 45-10Sev 5| §§_< AL 2%, 10ev
B 2s,, i —ol7107ev | 2's, 2%y L
Py TIi 1
-8 0 4 -
12 4 6 —1°8,
| s —— eeee- 184 6-10 SeV 18 —— 8-10 “4ev
—t N 4ig ]
16 -8 0
Hydrogen Positronium

Fig. 14.1 The energy levels of the hydrogen atom and of positronium. The ground states (n = 1)
and the first excited states (n = 2) are shown together with their fine and hyperfine splitting. The
shown splitting is not to scale
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a) b)

Fig. 14.2 The first Bohr orbits of the hydrogen atom (a) and positronium (b) (From [6]). The Bohr
radius describes the average separation of the two bound particles

The energy states of positronium, the bound eTe™ system, can be found in an
analogous way to the above. The main differences are that the reduced mass (m =
me/?2) is only half the value of the hydrogen case and the spin-spin coupling is much
larger than before, since the electron magnetic moment is roughly 650 times larger
than that of the proton. The smaller reduced mass means that the binding energies of
the bound states are only half the size of those of the hydrogen atom while the Bohr
radius is twice its previous value (Fig. 14.2). The stronger spin-spin coupling now
means that the positronium spectrum does not display the clear hierarchy of fine and
hyperfine structure effects that we know from the hydrogen atom. The spin-orbit
and spin-spin forces are of a similar size (Fig. 14.1).

Thus for positronium the total spin S and the total angular momentum J as well
as the principal quantum number n and the orbital angular momentum L are the
useful quantum numbers. S can take on the values O (singlet) and 1 (triplet), and
J obeys the triangle inequality, [L — S| < J < L + S. The notation n>*'L; is
commonly employed, where the orbital angular momentum L is represented by the
capital letters (S, P, D, F). Thus 2P, signifies a positronium state with n = 2 and
S=L=J=1

Since electrons and positrons annihilate, positronium has a finite lifetime. It
primarily decays into two or three photons, depending upon whether the total spin
is 0 or 1. The decay width for the two-photon decay of the 1'Sy state is found to
be [6]

dra’h’

2
mgc

ra's, —»2y) = [v(0)>. (14.5)

Note that |1/(0)|? is the square of the wave function at the origin, i.e. the probability
that e and e~ meet at a point. Equation (14.5) yields a lifetime of ~107'°s.
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The potential and the coupling constant of the electromagnetic interaction are
very well known, and electromagnetic transitions in positronium as well as its
lifetime can be calculated to high precision and excellent agreement with experiment
is found. Quarkonia, i.e., systems built up of strongly interacting heavy quark-
antiquark pairs, can be investigated in an analogous manner. The effective potential
and the coupling strength of the strong interaction can thus be determined from the
experimental spectrum and transition strengths between the various states.

14.2 Charmonium

Bound states of c- and c-quarks are, in analogy to positronium, called charmonium.
For historical reasons a somewhat different nomenclature is employed for charmo-
nium states than is used for positronium. The first number is ngg = N + 1, where
N 1is the number of nodes in the radial wave function, while for positronium the
atomic convention, according to which the principal quantum number is defined as
Natom = N + £ + 1, is used.

cC pairs are most easily produced in the decay of virtual photons generated in

*e~ collisions (Fig. 14.3) with a centre-of-mass energy of around 3—4.5 GeV

e
et +e — C
y — cC.

Various resonances may be detected by varying the beam energy and looking for
peaks in the cross-section. These are then ascribed to the various charmonium
states (Fig. 14.4). Because of the intermediate virtual photon, only cc states with
the quantum numbers of a photon, (J* =17), can be created in this way. The lowest
state with such quantum numbers is the 13S;, which is called the J/v (see p. 132)

Fig. 14.3 Production of cc
pairs in et e collisions
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Fig. 14.4 The cross-section of the reaction ee™ —> hadrons, plotted against the centre-of-mass
energy in two different intervals each of 25 MeV. The two peaks which are both 100 times larger
than the continuum represent the lowest charmonium states with J* = 17 (the J/3 (13S;) and the
¥ (23S))). That the experimental width of these resonances is a few MeV is a consequence of the
detector’s resolution: widths of 87 and 286 keV respectively may be extracted from the lifetimes
of the resonances. The results shown are early data from the eTe™ ring SPEAR at Stanford [1]

and has a mass of 3.097 GeV/c?. Higher resonances with masses up to 4.4 GeV/c?
have been detected.

Charmonium states only have a finite lifetime. They predominantly decay via the
strong interaction into hadrons. Excited states can, however, by the emission of a
photon, decay into lower energy states, just as in atomic physics or for positronium.
The emitted photons may be measured with a detector that covers the entire solid
angle around the e*e™ interaction zone (47 detectors). Crystal balls, which are
composed of spherically arranged scintillators (Nal crystals) are particularly well
suited to this task (Fig. 14.5).

If one generates, say, the excited charmonium v (23S;) state one then may
measure the photon spectrum shown in Fig. 14.6, in which various sharp lines are
clearly visible. The photon energy is between 100 and 700 MeV. The stronger lines
are electric dipole transitions which obey the selection rules, AL = 1 and AS = 0.
Intermediate states with total angular momentum O, 1 or 2 and positive parity must
therefore be created in such decays. The parity of the spatial wave function is just
(—=1)%, where L is the orbital angular momentum. Furthermore from the Dirac theory
fermions and antifermions have opposite intrinsic parity. Thus the parity of qq states
is generally (—1)-!. Armed with this information we can reconstruct the diagram
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Photomultipliers
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lodide
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Fig. 14.5 A (crystal ball) detector built out of spherically arranged Nal crystals. High energy
photons from electromagnetic cc transitions are absorbed by the crystals. This creates a shower
of electron-positron pairs which generate many low energy, visible photons. These are then
detected by photomultipliers attached to the rear of the crystals. The current measured from the
photomultipliers is proportional to the energy of the initial photon (From [3])

in Fig. 14.6. We see that after the v (2°S) state is generated it primarily decays
into the 13P; charmonium triplet system which is known as y.. These y. states
then decay into J/v’s. The spin-O charmonium states (n'S), which are called 7.,
and cannot be produced in e*e™ collisions, are only produced in magnetic dipole
transitions from J/v or v (23S;). These obey the selection rules AL = 0 and
AS = 1 and thus connect states with the same parity. They correspond to a spin
flip of one of the c-quarks. Magnetic dipole transitions are weaker than electric
dipole transitions. They are, however, observed in charmonium, since the spin-spin
interaction for cC states is significantly stronger than in atomic systems. This is due
to the much smaller separation between the partners compared to atomic systems.
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Fig. 14.6 The photon spectrum in the decay of v (23S,), as measured in a crystal ball, and a
sketch of the so extracted charmonium energy levels. The strong peaks in the photon spectrum
represent the so numbered transitions in the sketch. The continuous lines in the sketch represent
parity changing electric dipole transitions and the dashed lines denote magnetic dipole transitions
which do not change parity [3]

14.3 Quark-Antiquark Potential

If we compare the spectra of charmonium and positronium, we find that the states
with n = 1 and n = 2 are very similarly arranged once an overall increase in
the positronium scale of about 10® is taken into account (Fig. 14.7). The higher
charmonium states do not, on the other hand, display the 1/n> behaviour we see in
positronium.

What can we learn from this about the potential and the coupling constant of
the strong interaction? Since the potential determines the relative positions of the
energy levels, it is clear that the potential of the strong interaction must, similarly to
the electromagnetic one, be of a Coulomb type (at least at very short distances,
i.e., for n = 1,2). This observation is supported by quantum chromodynamics
which describes the force between the quarks via gluon exchange and predicts a
r~! potential at short distances. The absence, in comparison to positronium, of any
degeneracy between the 23S and 13P states suggests that the potential is not of a pure
Coulomb form even at fairly small quark-antiquark separations. Since free quarks
have not been experimentally observed, it is plausible to postulate a potential which
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Fig. 14.7 Comparison of the energy levels of positronium and charmonium. The energy scales
were chosen such that the 1S and 2S states of the two systems coincide horizontally. As a result
of the differences in nomenclature for the first quantum number, the 2P states in positronium
actually correspond to the 1P levels in charmonium. The splitting of the positronium states has been
magnified. Dashed states have been calculated but not yet experimentally detected. Note that the
n=1and n=2 level patterns are very similar, while the 2S-3S separations are distinctly different.
The dashed, horizontal line marks the threshold where positronium breaks up and charmonium
decays into two D mesons (see Sect. 14.6)

is of a Coulomb type at short distances and grows linearly at greater separations,
thus leading to the confinement of quarks in hadrons.
An ansatz for the potential is therefore

4 as(nh
_4ahe
3 r

V= k-r, (14.6)
which displays the asymptotic behaviour V(r — 0) o 1/r and V(r — o0) —
0o. The factor of 4/3 is a theoretical consequence of quarks coming in three
different colours. The strong coupling constant ¢ is actually not a constant at all,
but depends upon the separation r of the quarks (8.1), becoming smaller as the
separation increases. This is a direct consequence of QCD and results in the so-
called asymptotic freedom property of the strong force. This behaviour allows us to
view quarks as quasi-free particles at short distances as we have already discussed
for deep-inelastic scattering.

While a Coulomb potential corresponds to a dipole field, where the field lines
are spread out in space (Fig. 14.8a), the kr term leads to a so-called flux tube. The
lines of force between the quarks are “stretched” (Fig. 14.8b) and the field energy
increases linearly with the separation of the quarks. The constant k in the second
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a) b)

Fig. 14.8 Field lines for (a) a dipole field (V o 1/r) between two electric charges, (b) a potential
V & r between two widely separated quarks

term of the potential determines the field energy per unit length and is called the
“string tension”.

The charmonium energy levels depend not only upon the potential but also upon
the kinetic terms in the Hamiltonian, which contain the a priori unknown c-quark
mass m.. The three unknown quantities o, k and m. may be roughly determined
by fitting the principal energy levels of the cc states from the non-relativistic
Schrodinger equation with the potential (14.6). Typical results are: oy ~ 0.15-0.25,
k ~ 1 GeV/fm and m. ~ 1.5GeV/c?. Note that m. is the constituent mass of the
c-quark. The strong coupling constant in the charmonium system is about 20-30
times larger than the electromagnetic coupling, « = 1/137. Figure 14.9 shows a
potential, based upon (14.6), where the calculated radii of the charmonium states
are given. The J/v (13S;) has, for example, a radius' of approximately r &~ 0.4 fm,
which is five orders of magnitude smaller than that of positronium.

To fully describe the energy levels of Fig. 14.7 one must incorporate further terms
into the potential. Similarly to the case of atomic physics, one can describe the
splitting of the P states very well through a spin-orbit interaction. The splitting of
the S states of charmonium and the related spin-spin interaction will be treated in
the next section.

The Coulomb potential describes forces that decrease with distance. The integral
of this force is the ionisation energy. The strong interaction potential, (14.6), on
the other hand, describes a force between quarks which remains constant at large
separations. To remove a coloured particle such as a quark from a hadron would
require an infinitely high energy. Thus, since the isolation of coloured objects is
impossible, we find only colourless objects in nature. This does not, however, mean
that quarks cannot be detached from one another.

Quarks are not liberated in such circumstances, rather fresh hadrons are produced
if the energy in the flux tube crosses a specific threshold. The now detached quarks
become constituents of these new hadrons. If, for example, a quark is knocked out

!By this we mean the average separation between the quark and the antiquark (see Fig. 14.2).
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Fig. 14.9 Strong interaction
potential versus the
separation r of two quarks.
This potential is roughly
described by (14.6). The
vertical lines mark the radii
of the cC and bb states as
calculated from such a
potential (From [2])
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of a hadron in deep-inelastic scattering, the flux tube between this quark and the
remainder of the original hadron breaks when the tube reaches a length of about
1-2 fm. The field energy is converted into a quark and an antiquark. These then
separately attach themselves to the two ends of the flux tube and thus produce two
colour neutral hadrons. This is the previously mentioned hadronisation process.

14.4 The Chromomagnetic Interaction

The similarity between the potential of the strong force and that of the elec-
tromagnetic interaction is due to the short distance r~! Coulombic term. This
part corresponds to 1-gluon (1-photon) exchange. Charmonium displays a strong
splitting of the S states, as does positronium, and this is due to a spin-spin
interaction. This force is only large at small distances and thus 1-gluon exchange
should essentially account for it in quarkonium. The spin-spin interaction splitting,
and hence the force itself, is, however, roughly 1,000 times larger for charmonium
than in positronium.
The spin-spin interaction for positronium takes the form

—2/0
3

Vi(eter) = B o 8(x), (14.7)
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where [ is the vacuum permeability. This equation describes the point interaction
of the magnetic moments jt;, of e and e™. The magnetic moment of the electron
(positron) is just

zieh

ni=—a;, where z; = Q;/e = +1, (14.8)
2m,~

and the components of the vector o are the Pauli matrices; 02 =02 =02 = 1. The

x y
potential Vs(e*e™) may then be expressed as

—h? 1o 2122 2nh®  61-0,
————01-028(x) = ——a——5—
6  mmy 3¢ m

€

Vs(eTeT) = §(x). (14.9)

The quark colour charges lead to a spin-spin interaction called the chromomag-
netic or colour magnetic interaction. To generalise the electromagnetic spin-spin
force to describe the chromomagnetic spin-spin interaction we have to replace
the electromagnetic coupling constant « by o and alter the factor to take the
three colour charges into account. We thus obtain for the quark-antiquark spin-spin
interaction

8nh® oq-0g
a5
9¢ mghig

The chromomagnetic energy thus depends upon the relative spin orientations of the
quark and the antiquark. The expectation value of o - 07 is found to be

0q-0g=4sq-55/h* =2-[S(S+ 1) —54(sq + 1) — s5(s5 + 1)]

—3forS§=0
= ’ 14.11

+1lforS=1, ( )
where S is the total spin of the charmonium state and we have used the identity
§? = (sq + sq)z. One thus obtains an energy splitting from this chromomagnetic
interaction of the form

87h®
AEg = (VflvssIW) =4 9 _
C mqmq

[ (0)]2. (14.12)

This splitting is only important for S states, since only then the wave function at the
origin ¥ (0) is non-vanishing.

The observed charmonium transition from the state 1S to 1'S; (i.e.,J /¥ — 1)
is a magnetic transition, which corresponds to one of the quarks flipping its spin.
The measured photon energy, and hence the gap between the states, is approximately
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120MeV. The colour magnetic force (14.12) should account for this splitting.
Although an exact calculation of the wave function is not possible, we can use
the values of oy and m. from the last section to see that our ansatz for the
chromomagnetic interaction is consistent with the observed splitting of the states.
We will see in Chap. 15 that the spin-spin force also plays a role for light mesons
and indeed describes their mass spectrum very well.

The c-quark’s mass The c-quark mass which we obtained from our study of the
charmonium spectrum is its constituent-quark mass, i.e., the effective quark mass in
the bound state. This constituent mass has two parts: the intrinsic (or “bare”) quark
mass and a “dynamical” part which comes from the cloud of sea quarks and gluons
that surrounds the quark. The fact that charmed hadrons are 4—10 times heavier
than light hadrons implies that the constituent mass of the c-quark is predominantly
intrinsic since the dynamical masses themselves should be more or less similar
for all hadrons. We should not forget that even if the dynamical masses are small
compared to the heavy quark constituent mass, the potential we have used is a
phenomenological one which merely describes the interaction between constituent
quarks.

14.5 Bottonium and Toponium

A further group of narrow resonances are found in e *e ™ scattering at centre-of-mass
energies of around 10 GeV. These are understood as bb bound states and are called
bottonium. The lowest bb state which can be obtained from e*e™ annihilation is
called the Y and has a mass of 9.46 GeV/c?. Higher bb excitations have been found
with masses up to 11 GeV/c?.

Various electromagnetic transitions between the various bottonium states are also
observed. As well as a 1°P; state, a 2°P; state has been observed. The spectrum of
these states closely parallels that of charmonium (Fig. 14.10). This indicates that
the quark-antiquark potential is independent of quark flavour. The b-quark mass
is about 3 times as large as that of the c-quark. The radius of the quarkonium
ground state is from (14.4) inversely proportional both to the quark mass and to
the strong coupling constant as. The 1S bb state thus has a radius of roughly
0.2fm (cf. Fig. 14.9), i.e., about half that of the equivalent cc state. Furthermore
the non-relativistic treatment of bottonium is better justified than was the case for
charmonium. The approximately equal mass difference between the 1S and 28 states
in both systems is, however, astounding. A purely Coulombic potential would cause
the levels to be proportional to the reduced mass of the system, (14.2). It is thus
clear that the long distance part of the potential kr cancels the mass dependence of
the energy levels at the c- and b-quark mass scales.
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Fig. 14.10 Energy levels of charmonium and bottonium. Dashed levels are theoretically predicted,
but not yet experimentally observed. The spectra display a very similar structure. The dashed line
shows the threshold beyond which charmonium (bottonium) decays into hadrons containing the
initial quarks, i.e., D (B) mesons. Below the threshold electromagnetic transitions from 3S states
into P and 'S states are observed. For bottonium the first and second excitations (n = 2, 3) lie
below this threshold, for charmonium only the first does

The t-quark has, due to its large mass, only a fleeting lifetime. Thus no
pronounced tt states (toponium) are expected.

14.6 The Decay Channels of Heavy Quarkonia

Up to now we have essentially dealt with the electromagnetic transitions between
various levels of quarkonia. But actually it is astonishing that electromagnetic
decays occur at all at an observable rate. One would naively expect a strongly
interacting object to decay “strongly”. The decays of heavy quarkonia have been
in fact investigated very thoroughly [4] so as to obtain the most accurate possible
picture of the quark-antiquark interaction. There are in principle four different ways
in which quarkonia can change its state or decay. They are:

(a) A change of excitation level via photon emission (electromagnetic), e.g.,

X1 (PPy) = J/y (1°S) + .
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Fig. 14.11 Various channels of cc annihilation

(b) Quark-antiquark annihilation (Fig. 14.11) into real or virtual photons or gluons
(electromagnetic or strong), e.g.,

ne (1'So) =2y
J/¥ (1°81) > ggg — hadrons
J/¥ (13S;) = virt. y — hadrons
J/y (13S)) > virt. y — leptons.

The J/v decays about 30 % of the time electromagnetically into hadrons or
charged leptons and about 70 % of the time strongly. The electromagnetic route
can, despite the smallness of «, compete with the strong one, since in the strong
case three gluons must be exchanged to conserve colour and parity. A factor of
o thus lowers this decay probability (compared to o? in the electromagnetic
case). States such as 7., which have J = 0, can decay into two gluons or two
real photons. The decay of the J/vy (J = 1) is mediated by three gluons or a
single virtual photon.

(c) Creation of one or more light qq pairs from the vacuum to form light mesons
via the strong interaction (Fig. 14.12 (left)).
(d) Weak decay of one or both heavy quarks (Fig. 14.12 (right)).
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Fig. 14.12 Strong decay

¥(3778) — D° + D°(iefo); S C Yo
weak decay
JJy > D7 +et +v,
(right)
,/W+

In practice the weak decay (d) is unimportant since the strong and electromag-
netic decays proceed much more quickly. The strong decay (c) is, in principle, the
most likely, but this can only take place above a certain threshold since the light
qq pairs need to be created from the quarkonia binding energy. Hence only options
(a) and (b) are available to quarkonia below this threshold.

Electromagnetic processes like deexcitation via photon emission are relatively
slow. Furthermore, although hadronisation via the annihilation (b) into gluons is a
strong process such decays are, according to the Zweig rule (cf. Sect. 9.2) suppressed
relative to those decays (c) where the initial quarks still exist in the final state. For
these reasons the width of those quarkonium levels below the mesonic threshold is
very small (e.g., ' =93 keV for the J/ ).

The first charmonium state beyond this threshold is the v (1°D;) which has a
mass of 3,778 MeV/c?. It has, compared to the J/v, rather a large width, I ~
27MeV. For the more strongly bound bb system the decay channel into mesons
with b-quarks is first open to the third excitation, the Y (43S;) (10,579 MeV/c?) (cf.
Fig. 14.10).

The lightest quarks are the u- and d-quarks and their pair production opens the
mesonic decay channels (cf. Fig. 14.12 (left)). Charmonium, say, decays into

cC — cu + cu,
¢ — cd +cd,
where cu is called the D° meson, cu the BO, cd the DT and ¢d the D~. The masses

of these mesons are 1,864.9MeV/c? (D°) and 1,869.6 MeV/c? (Di). The preferred
decays of bottonium are analogously

bb — bu + bu,
bb — bd + bd.
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These mesons are called> B~ and BT (m = 5,279.3 MeV/c?), as well as B’ and B
(m = 5,279.6MeV/c? ). For higher excitations decays into mesons with s-quarks
are also possible:

cC — cs+7Ts (D and D)),

bb — bs+bs (B, and BY).

Such mesons are accordingly heavier. The mass of DsE meson is, for example,
1,968.5MeV/c?. All of these mesons eventually decay weakly into lighter mesons
such as pions.

14.7 Decay Widths as a Test of QCD

The decays and decay rates of quarkonia can provide us with information about
the strong coupling constant og. Let us consider the 1'Sy charmonium state (7.)
which can decay into either two photons or two gluons. (In the latter case we will
experimentally only observe the end products of hadronisation.) Measurements of
the ratio of these two decay widths can determine o, in principle, in a very elegant
way.

The formula for the decay width into two real photons is essentially just the same
as for positronium (14.5), one needs only to recall that the c-quarks have fractional
electric charge z, =2/3 and come in three flavours.

3. dnta?h?
ra'sy —2y) = %W(O)lz (1+¢). (14.13)

C

The &' term signifies higher order QCD corrections which can be approximately
calculated.

To consider the two gluon decay, one must replace o by «. In contrast to
photons, gluons do not exist as real particles but rather have to hadronise. For this
process we set the strong coupling constant to one. The different colour-anticolour
combinations also mean we must use a different overall colour factor which takes
the various gluon combinations into account:

8w a’h
r'(1'sy — 2g — hadrons) = Tﬂas

3
—v O 1+, (14.14)
mcc

2The standard nomenclature for mesons containing heavy quarks is such that the neutral meson

with a b-quark is called a B and the meson with a b is known as a B”. An electrically neutral qq’
state is marked with a bar, if the heavier quark/antiquark is negatively charged [8].



14.7 Decay Widths as a Test of QCD 231

where ¢” signifies QCD corrections once again. The ratio of these decay widths is

ry) 8a?
Iog) ~ 9a2 1+e). (14.15)
The correction factor ¢ itself depends upon oy and is about ¢ ~ —0.5. From the
experimentally determined ratio I"(2y)/I"(2g) ~ (3.0 & 1.2) - 10~* [8] one finds
the value as(m?/ " c?) ~ 0.25 £ 0.05. This is consistent with the value from the
charmonium spectrum. From (8.1) we see that o always depends upon a distance
or, equivalently, energy or mass scale. In this case the scale is fixed by the constituent
mass of the c-quark or by the J/v mass.

The above result, despite the simplicity of the original idea, suffers from both
experimental and theoretical uncertainties. As well as QCD corrections, there
are further corrections from the relativistic motion of the quarks. For a better
determination of o from charmonium physics one can investigate other decay
channels. The comparison, for instance, of the decay rates

- 3
(J/v¥ — 3g — hadrons) o ﬁ’ (14.16)
rQ/y —y — 2leptons) ~ o

is simpler from an experimental viewpoint. Both here and in studies of other
channels one finds as(m?/wcz) ~0.2...03[5].

The comparison of various bottonium decays yields the coupling strength o in a
more accurate way since both QCD corrections and relativistic effects are smaller.
From QCD one expects o to be smaller, the coupling is supposed to decrease with
the separation. This is indeed the case. One finds from the ratio

'Y — ygg — y + hadrons) o g’ (14.17)
I'(Y — ggg — hadrons) o

which is (2.75+0.04) %, that o (m%fcz) = 0.16340.016 [7]. The error is dominated
by uncertainties in the theoretical corrections.

These examples demonstrate that the annihilation of a qq pair in both the
electromagnetic and strong interactions may formally be described in the same
manner. The only essential difference is the coupling constant. This comparison can
be understood as a test of the applicability of QCD at short distances, which, after
all, is where the qq annihilation takes place. In this region QCD and QED possess
the same structure since both interactions are well described by the exchange of a
single vector boson (a gluon or a photon).
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Problems

1. Weak charge
Bound states are known to exist for the strong interaction (hadrons, nuclei),
electromagnetism (atoms, solids) and gravity (the solar system, stars) but we
do not have such states for the weak force. Estimate, in analogy to positronium,
how heavy two particles would have to be if the Bohr radius of their bound state
would be roughly equal to the range of the weak interaction.

2. Muonic and hadronic atoms
Negatively charged particles that live long enough (u=, #=, K7, p, &7, &7,
Q7), can be captured by the field of an atomic nucleus. Calculate the energy
of atomic (2p — 1s) transitions in hydrogen-type “atoms” where the electron is
replaced by the above particles. Use the formulae of Chap. 14. The lifetime of
the 2p state in the H atom is 7y = 1.76- 10 s. What is the lifetime, as determined
from electromagnetic transitions, of the 2p state in a pp system (protonium)?
Remember to take the scaling of the matrix element and of phase space into
account.

3. Hyperfine structure
In a two-fermion system the hyperfine structure splitting between the levels 1°S,
and 1'S is proportional to the product of the magnetic moments of the fermions,
AE o< | (0) |1 fta2, where p; = 8i5.-. The g-factor of the protonis g, = 5.5858
and those of the electron and the muon are 8e ~ gu ~ 2.0023. In positronium an
additional factor of 7/4 arises in the formula for AE, which takes the level shifts
of the triplet state by pair annihilation graphs into account.
In the hydrogen atom, the level splitting corresponds to a transition frequency
fiu = 1,420 MHz. Estimate the values for positronium and muonium (u*e™).
(Hint: ¥(0) o< 7, 3/2. use the reduced mass in the expression for |(0)|%.)
Compare your result with the measured values of the transition frequencies,
203.4 GHz for positronium and 4.463 GHz for muonium. How can the (tiny)
difference be explained?
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Chapter 15
Mesons

We have seen that the mesons containing the heavy c- and b-quarks may be relatively
simply described. In particular since charmonium and bottonium have very different
masses they cannot be confused with each other. Furthermore the D and B mesons
may be straightforwardly identified with specific quark-antiquark flavour and charge
combinations.

Turning now to those mesons that are solely built out of the light flavours (i.e., u,
d and s) we encounter a more complicated situation. The constituent masses of these
quarks, especially those of the u- and d-quarks, are so similar that we cannot expect
to straightforwardly distinguish the mesons according to their quark content but
must expect to encounter mixed states of all three light flavours. We shall therefore
now consider all of the mesons that are made up of u-, d- and s-quarks.

Another consequence of the light-quark masses is that we cannot expect to treat
these mesons in a non-relativistic manner. However, our investigation of the light-
meson spectrum will lead us to the surprising conclusion that these particles can
be at least semi-quantitatively described in a non-relativistic model. The constituent
quark concept is founded upon this finding.

Of special interest are neutral quark-antiquark states containing a light quark
and a heavier s-, c- or b-quark, like the |K°) = |ds) or the |B®) = |db) and their
antiparticles. These mesons have very peculiar properties: particle and antiparticle
can oscillate into each other and their weak decays violate conservation of CP
symmetry. We will discuss these exciting aspects in some detail at the end of this
chapter.

15.1 Meson Multiplets

Meson quantum numbers We assume that the quarks and antiquarks of the lowest
lying mesons do not have any relative orbital angular momentum (L = 0). We will
only treat such states in what follows. Recall first that quarks and antiquarks have
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opposite intrinsic parities and so these mesons all have parity, (—1)“*! = —1. The
quark spins now determine the mesonic total angular momentum. They can add up
to either S =1 or § = 0. The J¥ = 0~ states are called pseudoscalar mesons while
the J* = 17 are the vector mesons. One naturally expects nine different meson
combinations from the three quarks and three antiquarks.

Isospin and strangeness Let us initially consider just the two lightest quarks. Since
the u- and d-quark constituent masses are both around 300 MeV/c? (see Table 9.1)
there is a natural mixing of degenerate states with the same quantum numbers. To
describe uti- and dd-quarkonia it is helpful to introduce the idea of isospin. The u-
and d-quarks form an isospin doublet (I = 1/2) with Is = +1/2 for the u-quark
and I3y = —1/2 for the d-quark. This strong isospin is conserved by the strong
interaction which does not distinguish between directions in strong isospin space.
Quantum mechanically, isospin is treated in analogy to angular momentum, which
reflects itself in isospin addition and the use of ladder operators. The spins of two
electrons may combine to form a (spin-)triplet or a singlet, and one can similarly
form an (isospin-)triplet or singlet from the 2 x 2 combinations of a u- or a d-quark
with a U- or a d-quark.

These ideas must be extended to include the s-quark. Its flavour is associated
with a further additive quantum number, strangeness. The s-quark has S=—1 and
the antiquark S = +1. Mesons containing one s-(anti)quark are eigenstates of
the strong interaction, since strangeness can only be changed in weak processes.
Zero strangeness ss states, on the other hand, can mix with uu and dd states since
these possess the same quantum numbers. Note that the somewhat larger s-quark
constituent mass of about 450 MeV/c? implies that this mixing is smaller than that
of utl and dd states.

Group theory now tells us that the 3 x 3 combinations of three quarks and three
antiquarks form an octet and a singlet. Recall that the 3 x 3 combinations of colours
and anticolours also form an octet and a singlet for the case of the gluons (Sect. 8.2).
The underlying symmetry is known as SU(3) in group theory.

We will see below that the larger s-quark mass leads to this symmetry being less
evident in the spectrum. Thus, while the mesons inside an isospin triplet have almost
identical masses, those of an octet vary noticeably. Were we now to include the c-
quark in these considerations we would find that the resulting symmetry was much
less evident in the mesonic spectrum.

Vector mesons Light vector mesons are produced in e e~ collisions, just as heavy
quarkonia can be. As we saw in Sect.9.2 (Fig.9.7), there are three resonances at
a centre-of-mass energy of around 1 GeV. The highest one is at 1,019 MeV and is
called the ¢ meson. Since the ¢ mostly decays into strange mesons, it is interpreted
as the following ss state:

l¢) = |s'sT),
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Table 15.1 The quantum B J I L S 0/e
numbers of the light quarks TRERED TR 3
and antiquarks: B = baryon u | +1/ / /2 |+1/ +2/
number, J = spin, I = isospin, d |+1/3 |1/2 |1/2 | —1/2 |0 —1/3
I3 = 3-component of the s | +1/3 |1/2 |0 0 -1 | —1/3
isospin, S = strangeness, Q/e | —1/3 [1/2 [1/2 [=1/2 |0 —2/3
= charge d =13 (12 12 [+1/2 [0 [ +1/3
s |—1/3 |[1/2 |0 0 +1 |+1/3

where the arrows signify the 3-component of the quark spins. The pair of light
resonances with nearly equal masses, the o and w mesons, are interpreted as mixed
states of u- and d-quarks.

The broad first resonance at 775 MeV is called the ¢ meson. It has two charged
partners with almost the same mass. These arise in other reactions. Together they
form the isospin triplet: o™, 0°, 0™. These o mesons are states with isospin 1 built
out of the u-, U-, d- and d-quarks. They may be easily constructed if we recall the
quark quantum numbers givenin Table 15.1. The charged o mesons are then the
states

lo*) = [uld") lo™) = [a'd"),

with / = 1 and I35 = =£1. We may now construct their uncharged partner (for
example by applying the ladder operators I*). We find

1 —
") = — {Wtat) - jatahy}.
le”) 7 lu'u') — |d'd")
The orthogonal wave function with zero isospin is then just the w-meson:
o) = {lutaty + |atah}.
V2

In contradistinction to coupling the angular momentum of two spin-1/2 particles,
there is here a minus sign in the triplet state and a plus in the singlet. The real reason
for this is that we have here particle-antiparticle combinations (see, e.g., [15]).

Vector mesons with strangeness S # 0 are called K* mesons and may be
produced by colliding high energy protons against a target:

p+p—>p+ It +K*.

The final state in such experiments must contain an equal number of s-quarks
and S-antiquarks bound inside hadrons. In this example the K*° contains the s-
antiquark and the X*-baryon contains the s-quark. Strangeness is a conserved
quantum number in the strong interaction.
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There are four combinations of light quarks which each have just one s- or s-
quark:

K*7) = |stat) [K*0) = |stat)
IK*F) = [uls?) [K*0) = |dTsT).

The two pairs K*~, K** and K*°, K*™ are both strong isospin doublets.

The 0, w, ¢ and K* are all of the possible 3 x 3 = 9 combinations. They have all
been seen in experiments — which is clear evidence of the correctness of the quark
model.! This classification is made clear in Fig. 15.1. The vector mesons are ordered
according to their strangeness S and the third component of the isospin /3. The
threefold symmetry of this scheme is due to the three fundamental quark flavours
from which the mesons are made. Mesons and antimesons are diagonally opposite
to each other and the three mesons at the centre are each their own antiparticles.

Pseudoscalar mesons The quark and antiquark pair in pseudoscalar mesons have
opposite spins and their angular momentum and parity are J® = 0~. The name
“pseudoscalar” arises as follows: spin-0 particles are usually called scalars, while
spin-1 particles are known as vectors, but scalar quantities should be invariant under
parity transformations. The prefix “pseudo” reflects that these particles possess an
unnatural, odd (negative) parity.

The quark structure of the pseudoscalar mesons mirrors that of the vector
mesons (Fig. 15.1). The & meson isospin triplet corresponds to the ¢ mesons. The
pseudoscalars with the quark content of the K* vector mesons are known as K

0 S 0
*| *+ +
aK .K ++1 aK -K

o9 Ny N
o _ e e e . L 0 e_ e e ° .
p 'po p b .no b

_ o_ —+-1 ° _ o _

K* K*O K KO
B e R
I3 I3

Fig. 15.1 The lightest vector (J/* = 17) (left) and pseudoscalar mesons (J* = 07) (right),
classified according to their isospin /3 and strangeness S

'Historically it was the other way around. The quark model was developed so as to order the
various mesons into multiplets and hence explain the mesons.
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mesons. Finally, the n" and 7 correspond to the ¢ and the w. There are, however,
differences in the quark mixings in the isospin singlets. As shown in Fig.15.1
there are three mesonic states with the quantum numbers S = I3 = 0. These are
a symmetric flavour singlet and two octet states. One of these last two has isospin 1
and is therefore a mixture of uti and dd. The 7 and o° occupy this slot in their
respective multiplets. The remaining octet state and the singlet can mix with each
other since the SU(3) flavour symmetry is broken (mg # my 4). This mixing is rather
small for the pseudoscalar case and 7 and n’ are fairly pure octet and singlet states:

)~ Ing) = — {lta?) + 1aad) - 21554},

7
1)~ Iy = 2 () + 1413 + 155}

The vector meson octet and singlet states are, on the other hand, more strongly
mixed. It so happens that the mixing angle is roughly arctan 1/+/2, which means
that the ¢ meson is an almost pure ss state and that the o is a mix of utl and dd
whose strange content can safely be neglected [20].

15.2 Meson Masses

The masses of the light mesons can be read off from Fig. 15.2. It is striking that the
J = 1 states have much larger masses than their / = 0 partners. The gap between
the 7 and p masses is, for example, about 600 MeV/c2. This should be contrasted
with the splitting of the 1'Sy and 13S; states of charmonium and bottonium, which
is only around 100 MeV/c?.

Just as for the states of heavy quarkonia with total spins S = 0 and § = 1, the
mass difference between the light pseudoscalars and vectors can be traced back to a
spin-spin interaction. From (14.10) and (14.11) we find a mass difference of

8k may

-3. 93 m |1//(O)|2 for pseudoscalar mesons,
AMss = (15.1)
8% ma
+1- 9% m ik |1/f(0)|2 for vector mesons.

Note the dependence of the mass gap on the constituent-quark masses. The increase
of the gap as the constituent mass decreases is the dominant effect, despite an
opposing tendency from the |y (0)|? term (this is proportional to 1/ rg and thus grows
with the quark mass). Hence this mass gap is larger for the light systems.
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Fig. 15.2 The spectrum of the light pseudoscalar and vector mesons. The multiplets are ordered
according to their strangeness S and isospin /. The angular momenta of the various mesons are
indicated by arrows. Note that the vector mesons are significantly heavier than their pseudoscalar
equivalents

The absolute masses of all the light mesons can be described by a pheno-
menological formula

qu = Myq + myg + AMSS s (152)

where myg once again refers to the constituent-quark mass. The unknowns in this
equation are the constituent masses of the three light quarks. We assume that the
u and d masses are the same, and that the product og - [y(0)|? is to a rough
approximation the same for all of the mesons under consideration here. We may
now, with the help of (15.2), extract the quark masses from the experimental results
for the meson masses. We thus obtain the following constituent-quark masses:
myq ~ 310 MeV/c?, mg ~ 483 MeV/c? [14]. The use of these values yields mesonic
masses which only deviate from their true values at the level of a few percent
(Table 15.2). These light-quark constituent masses are predominantly generated
by the cloud of gluons and virtual quark-antiquark pairs that surround the quark.
The bare masses are only around 5-10 MeV/c? for the u- and d-quarks and about
150 MeV/c? for the s. This simple calculation of the mesonic masses demonstrates
that the constituent-quark concept is valid, even for those quarks with only a tiny
bare mass.

It is actually highly surprising that (15.2) describes the mesonic spectrum so very
well. After all, the equation takes no account of possible mass terms which could
depend upon the quark kinetic energy or upon the strong potential (14.6). It appears
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Table ls.%h ?ight meson Mass (MeV/c? )
fmasses both from - - Meson |JP |1 Calculated | Experiment
experiment [20] and from
(15.2) [14]. The calculations _ 135.0 #°
b4 0 1 140 4
are fitted to the average mass 139.6 &
of an isospin multiplet and do 4976 KO
not cover those, albeit minor, K 0~ |1/2 |485 { ’ +
mass differences arising from 4937 K
electromagnetic effects n 0~ |0 559 547.9
n 0~ |0 - 957. 8
1= |1 780 775.5
k,
* 896.0 K'°
K 1= |1/2 | 896 ¢
/ % 891.7 K+
1) 1= |0 780 782.7
¢ 1= |0 1,032 1,019.5

to be a peculiarity of the potential of the strong interaction that its make up from a
Coulombic and a linearly increasing term effectively cancels these mass terms to a
very good approximation.

15.3 Decay Channels

The masses and quantum numbers of the various mesons may also be used to
make sense of how these particles decay. The most important decay channels of
the pseudoscalar and vector mesons treated here are listed in Table 15.3.

We start with the lightest mesons, the pions. The 7° is the lightest of all the
hadrons and so, although it can decay electromagnetically, it cannot decay strongly.
The 7% can, on the other hand, only decay semileptonically, i.e., through the weak
interaction. This is because conservation of charge and of lepton number require
that the final state must comprise of a charged lepton and a neutrino. This means that
these mesons have long lifetimes. The decay 7~ — e~ 4 V. is strongly suppressed
compared to 7~ — u~ + v, because of helicity conservation (see p. 156).

The next heavier mesons are the K mesons (kaons). Since these are the lightest
mesons containing an s-quark, their decay into a lighter particle requires the s-
quark to change its flavour, which is only possible in weak processes. Kaons are
thus also relatively long lived. They decay both non-leptonically (into pions) and
semileptonically. The decay of the K° is a case for itself and will be treated in
Sect. 15.4 in some depth.

As pions and kaons are both long lived and easy to produce it is possible to
produce beams of them with a definite momentum. These beams may then be used
in scattering experiments. High energy pions and kaons can furthermore be used
to produce secondary particle beams of muons or neutrinos if they are allowed to
decay in flight (cf. Sect. 10.6).
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Table 15.3 The most important decay channels of the lightest pseudoscalar and vector mesons.
The resonance’s width is often given, instead of the lifetime, for those mesons which can decay in
strong processes. The two quantities are related by I” = #/t (where A = 6.6 - 10722 MeV s)

Most common

Meson | Lifetime (s) | decay channels Comments
Pseudoscalar mesons | 7T 2.6-1078 /ft (17/1 ~100 % (see Sect. 10.5)

et [12-107

70 8.5-107" 2y 99 % Electromagnetic

K+ 12-107% | uE Y | 64%
xEx® [21%
3n 7%

K3 8.9-107"  |2x ~100 % (K° decay:

K? 5.1-1078 3n 32 % see Sect. 15.4)
TV 27 %
mev 41 %
27 3-1073 CP violating

n 55-107Y |37 55 % Electromagnetic
2y 39 % Electromagnetic

n 3.3-1072 TN 65 % Electromagnetic
%y 29 %

Vector mesons 0 4.3.1072 27 ~100 %

K" 13-1073  |Kr ~100 %

1) 7.8-107% 3n 89 %

1) 1.5-10722 2K 83 %
om 15 % Zweig-suppressed

The strong decays of vector mesons are normally into their lighter pseudoscalar
counterparts with some extra pions as a common byproduct. The decays of the o
and the K* are typical here. Their lifetimes are roughly 10723 s.

The w meson, in contrast to the g, is not allowed to strongly decay into two pions
for reasons of isospin and angular momentum conservation. More precisely, this
is a consequence of G-parity conservation in the strong interaction. G-parity is a
combination of C-parity and isospin symmetry [13] and will not be treated here.

How the ¢ decays has already been mentioned in Sect. 9.2 (p. 131). According
to the Zweig rule it prefers to decay into one meson with an s-quark and one with
an s, or, in other words, into a pair of kaons. Since their combined mass is almost
as large as that of the original ¢, the phase space available is small and the ¢ meson
consequently has a relatively long lifetime.

The 7 and 1’ decay in a somewhat unusual manner. It is easily seen that the 7 is
not allowed to strongly decay into two pions. Note first that the two pion state must
have relative angular momentum £ = 0. This follows from angular momentum
conservation: both the n and 7 have spin 0, the pion has odd intrinsic parity and
the final two pion state must have total parity P, = (—1)>- (=1)=% = +1.
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The n has, however, negative parity and so this final state can only be reached
by a weak process. A decay into three pions can conserve parity but not isospin
since pions, for reasons of symmetry, cannot couple to zero isospin. The upshot is
that the 1 predominantly decays electromagnetically, as isospin need not then be
conserved, and its lifetime is orders of magnitudes greater than those of strongly
decaying particles.

The %’ prefers to decay into 7 7t but this rate is still broadly comparable to that
of its electromagnetic decay into py. This shows that the strong process must also
be suppressed and the 1’ must have a fairly long lifetime. The story underlying this
is a complicated one [19] and will not be recounted here.

15.4 Neutral-Kaon Decay

The decays of the K° and the K° are of great importance for our understanding of
the P- and C-parities (spatial reflection and particle-antiparticle conjugation).

Neutral kaons can decay to either two or three pions. The two-pion final state
must have positive parity, recall our discussion of the decay of the 5, while the
three-pion system has negative parity. The fact that both decays are possible is a
classic example of parity violation.

K° and K° mixing The K° and K° are distinct eigenstates of the strong interaction
with definite strangeness. They can mix, however, via the weak interaction. Since
they can decay to the same final states, they can also transform into each other via
an intermediate state of virtual pions:

K0<—>{§n} «> K.
T

In terms of quarks this oscillation corresponds to the box diagrams in Fig. 15.3:

Fig. 15.3 Box diagrams for K 0 K 0
0 O L.
K" — K oscillation
s d s ) d
w
Pouct
w W u,c,t 4 ruct
ouct
A y
d B d B
K° K°
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CP conservation This possible mixing of particles and antiparticles leads to highly
interesting effects. In Sect. 10.5 we discussed that the weak interaction violates
parity maximally. This was particularly clear for the neutrino, which only occurs as
a left-handed particle |v.) and a right-handed antiparticle |[Vg). In K decay parity
violation shows itself via decays to two and three pions. For the neutrinos we further
saw that the combined application of spatial reflection and charge conjugation (P
and C) lead to a physically allowed state: CP|vr) — |vr). The V-minus-A theory
of the weak interaction may be formulated in such a way that the combined CP
quantum number is conserved.

Let us now apply this knowledge to the K-K° system. The two-pion and three-
pion final states are both eigenstates of the combined C’P operator and have distinct
eigenvalues

CP|n’7% = +1-172°72%  CP|n’7°70) = -1 |n°2°=0)

CPlntn™)=+1-|n~nt) CPlntn 7% = 1|~ mntx0,
but neither K® nor K° have well-defined CP parity:
CP|K% = —1-|K% CPIK% = —1-]K%) .

The relative phase between the K and the K° can be chosen arbitrarily. We have
picked the convention C|K®) = +|K°) and this together with the kaon’s odd parity
leads to the minus sign under the C’P transformation.

If we suppose that the weak interaction violates both the P- and C-parities but
is invariant under CP then the initial kaon state has to have well-defined CP parity
before its decay. Such CP eigenstates can be constructed from linear combinations
in the following way:

1 _

KD = 5 {K) =K} where CPIKY) = +1-[K))
1 _

KS) = 5 (K% + [K°)} where CPIKS) = ~1-[K3).

This assumption of CP conservation means that we have to understand the
hadronic decay of a neutral kaon as the decay of either a K(l) into two pions or of a Kg
into three pions. The two decay probabilities must differ sharply from one another.
The phase space available to the three-pion decay is significantly smaller than for
the two-pion case (this follows from the rest mass of three pions being nearly that
of the neutral kaon) and so the Kg state ought to be much longer lived than its K(l)
sibling.

Kaons may be produced in large numbers by colliding high energy protons onto
a target. An example is the reaction p + n — p + A + K°. The strong interaction
conserves strangeness S and so the neutral kaons are in an eigenstate of the strong
interaction. In the case at hand it is |[K®) which has strangeness S = +1. This state
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may be understood in quantum mechanics as a linear combination of the two CP
eigenstates |K°) and |K0) In practice, both in reactions where K° and in those where
K° mesons are produced, an equal mixture of short- and long-lived particles are
observed. These are called K0 and KO (for short and long), respectively (Table 15.3).
The short-lived kaons decay to two pions and the long-lived ones to three.

Strangeness oscillations This degree of mixing of initially 50 % Kg and 50 % Kg
will not be constant with time. The time dependence of K° and K° exhibits the
typical oscillating behaviour of a quantum mechanical two-state system with the
two base states having slightly different energies [12]. We have already discussed
such a behaviour for the case of neutrino oscillations in Chap. 11. Suppose that at
t = 0, a beam consists of pure K°. Then we get in its rest system for the time
dependence of the K° and K" intensities:

Tgo o = IKO(O)[ e e £ 2 cos(|Amypc?|t/h)e BT
(15.3)

where Amjyc? = m;c? — myc?. Here m;, m, are the masses of the states KO and

KO The + sign in front of the interference term holds for K°, the — sign for K.
Be51des the exponential decrease of the intensities due to the lifetimes 7; and 1, the
number of K° and K° oscillates with the frequency Amj»c?/h. The measurement
of this frequency permits a very precise determination of the mass difference of
the two CP eigenstates. The number of K° in the initially pure K beam can be
determined from, e.g., the yield of produced hyperons as a function of position from
the source of the beam. We will show in the next chapter that the cross-section for K°
interactions with matter is much larger than for K°, since hyperons like A° = |uds)
or ¥t = |uus) can be produced in strong interactions by K’ = |ds) according
to K% — A%zt or K% — Xt 70 but not by K® = [3d). Another possibility
to detect the appearance of K° is the observation of negatively charged leptons in
semileptonic K° decays: K® — w ot or K® — e v t. In contrast, positively
charged leptons are produced in K° decays.

Precision measurements of strangeness oscillations yield the tiny mass difference

|Amppc®| = 053100 As™! =3.48. 1072 MeV . (15.4)

Kg regeneration Consider a pure K® beam produced by the reactionp + n — p +
A° + K. Initially we will observe the rapid decays to two pions. After a flight time
of many Kg mean-lives, essentially all of the short-lived Kg component has decayed.
At a sufficiently large distance from the source we will now observe a pure K0 beam,
i.e., it will only decay to three pions. We can regenerate K0 mesons by inserting a
shce of material into the KO beam. This happens as follows: K0 consists of 50 % K°
and 50 % K°. When traversing the material, the K® component will undergo more
strong interactions than the K® component. As a result, behind the material the beam
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will contain a larger portion of K than of K and thereby again a K(S) component
manifesting itself by decays into two pions.

CP violation In 1964 Christenson, Cronin, Fitch and Turlay demonstrated for the
first time that also the long-lived Kg decays with a small probability to two pions
[11]. This is mainly explained by the supposition that the mass eigenstate Kg is
not identical to the CP eigenstate Kg but contains a small admixture € of the CP
eigenstate K(l) (and accordingly for K(S)):

1
KY) = TW(EIK?) + K9)),
1
KQ) = TIGIZOK?) + €|K9)). (15.5)

This CP violation due to an asymmetry in the mixing of the states K(l) and Kg,
where only K(l) decays to two pions but not K9, is called indirect CP violation. The
mixing parameter € is a complex number. We can determine its magnitude by a
measurement of the relative decay widths for the decays into two charged pions:

()
le] = W (15.6)

The present average value from several such measurements s |¢| = (2.2204+0.011)-
1073 [20].
Studies of semileptonic Kg decays

=) =)
K?‘—>ni+u¢+ vy K?‘—>ni+e:F+ Ve

reveal an asymmetry ¢ = (I't — I'")/(I't + I'") = 2Re(€) between the
creation of particles and antiparticles: there is a slight preponderance of decays with
positively charged leptons in the final state (the ratio is 1.00664 : 1). This is a further,
albeit very tiny, case of CP violation.

In addition to this indirect CP violation in the mixing of the states K{ and K3, also
direct CP violation in the decay can occur when various processes with different
weak and strong phases contribute to the decay and interfere. In Fig. 15.4, two
different processes are shown for the decay of K° into neutral and charged pions.
The diagrams in which the W™ decays directly into a ud are called tree diagrams,
the other two with the loop of a virtual W™ and an u-, c-, t-quark, are named penguin
diagrams since in a special version they are supposed to resemble a penguin. The
latter diagrams involve gluon exchange and thus strong interactions.

The complex parameter for direct CP violation is called €. The parameters €
and €' are related to the ratio of amplitudes A for the CP-violating and the CP-
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Fig. 15.4 Diagrams for the decay of K’ into pairs of neutral and charged pions

conserving decays to two neutral or two charged pions:

AKX Trn-
ARy = 7777) 5_”T ﬂ_)we+e’,
AKS — nta)
~e—2€ . (15.7)

The measurement of € requires large experimental efforts. At both CERN and
FNAL two parallel K beams were produced [2, 9]. After a long distance from
the source a movable regenerator was inserted in one of the two beams to regenerate
K3. This method allows a comparison of K? and K§ decays occurring at the same
distance from the detector and thus with the same geometrical acceptance. In the
double ratio

'K} > ntn7)/FK > ntn")

~ 14+ 6Re( 15.8
'K — 7%7%/I(KS — 7970) T ORe(€/6) (13.8)

many systematic uncertainties are minimised.

The current average value of Re(e’/¢) is (1.66 & 0.23) - 107 [20]. Thus, in K°
decays the direct CP violation is about a thousand times smaller than the indirect CP
violation in the mixing of the CP eigenstates that is common to all decay channels.

For quite some time CP violation had only been experimentally observed in
the K <> K° system. Other electrically neutral meson-antimeson systems were
expected, however, to display a similar behaviour. In 1987 B® < B mixing was
indeed observed at DESY [3-5]. The mixing of D? and 50 was observed for the
first time in 2007 by the experiments BaBar and Belle [7, 22]. In the following
section we will discuss CP violation in the B® system.
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15.5 CP Violation and the CKM Matrix

In Sect. 10.4 we introduced the CKM matrix (10.22). For weak interactions with
charged currents this matrix quantifies the relative strengths for transitions of quarks
within a family or from one family to another one (cf. Fig. 13.2). Kobayashi and
Maskawa had already introduced this matrix, by which they wanted to explain CP
violation, before the second quark family had been established by the discovery of
the c-quark. As we subsequently will show, CP violation requires the existence of
a complex unitary (n x n) matrix with n > 3. This matrix has to be complex, since
only then the mixing of quarks is different from the mixing of antiquarks that is
described by the corresponding conjugate matrix.

A complex unitary (3 x 3) matrix V has 18 independent parameters. These can
be reduced to nine parameters by the unitarity requirement VogV; = 84y We
can absorb an arbitrary phase in every left-handed quark field. This removes an
arbitrary phase from each row and each column. But we still have to consider a
common phase, since V is unaffected by a common phase transformation of all
six quark fields. Consequently, V can be described by 18 — 9 — 5 = 4 independent
physical parameters. In general, the mixing matrix for n generations contains (n—1)?2
independent parameters. For two families only one parameter is needed, the Cabibbo
angle O¢c. A complex phase, which is responsible for CP violation, only appears for
n>3.

For three families we thus have four parameters: the mixing angles 6, 613 and

0,3 between the three quark families and the complex phase §. The elements of
the CKM matrix are linear combinations of products of cos 0;; and sin6;; (i, j =
1,2,3; i # j), with some elements containing the phase term e s,
Wolfenstein presentation of the CKM matrix The CKM matrix can be
parametrised to good approximation very vividly [23], when one bears in mind
that with increasing family number the off-diagonal elements become successively
smaller. We define

S12 = sin 912 = sin QC =2 s
s13=sin913 =A-A2 s

sne ™ =A-20—in . (15.9)
Considering only terms up to the order O(A*), we obtain:
1—212%/2 A AM(o—in)

Verm = —A 1—-2A%/2 A)A? . (15.10)
AV (1 —o—in) —AA? 1
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In this approximation we have two elements with an imaginary part. The phase
factor appears for transitions between the first and the third family, i.e., in the
elements Vy, and V4.

CP violation in the B" sector and the unitarity triangle The effects of CP
violation can be nicely illustrated with help of the so-called unitarity triangle. For
products of different columns and rows of V and V* we have:

Vkin:j = ﬂ‘/jT =0;i#j;, k=u,ct; 1=5s,d,b. (15.11)

From the product of the first row of V and the third row of V* we obtain, for
example, information about the CP violation in the B® sector:

VudViy + VeaVa + ViaViy, = 0. (15.12)
This is the equation for a triangle in the complex plane with the lengths of all three
sides being of order AA®. In Fig. 15.5 the rescaled unitarity triangle is shown, where
the sides are normalised to VqV}}. The corners of this triangle have the coordinates
(0,0), (1,0) and (o, n). CP violation requires the imaginary parts AA3n of Vi, and of
Via to be different from zero. Hence, a measurement of CP violation is equivalent to

a determination of at least one of the three angles «, B and y.
For the CP violation in the K° sector we consider the unitarity relation

VudVi + VeaVi + VaVie = 0. (15.13)
Here, the term with the complex part, ViqV, is proportional to A%A°. This is the

reason that the parameter €’ is so small in K° decays. CP violation in the B® sector
should, therefore, be substantially larger than in the KO sector.

A

)

Vud Vzb : o thvt*b

v,V [ —

cd “cb ! Vea Vb
]
I
]

\\ |
I
Y | B .
(0,0 (1,0)

Fig. 15.5 The rescaled unitarity triangle in the B? sector
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Fig. 15.6 Diagrams for the decays B® — K17~ (left) and EO — K=t (right)

Experimental determination of CP violation in the B sector At the end of
the 1990s two high-luminosity electron-positron storage rings were constructed to
detect the relatively large CP violation predicted by the standard model in the B
sector and to study it in detail: KEK-B in Japan with the detector Belle [1] and
PEP-II at SLAC with the detector BaBar [6]. These were predominantly operated at
the centre-of-mass energy of the Y (43S;) which is slightly above the threshold for
BB production (cf. Sect. 14.6). The Y (43S;) decays with a branching ratio of more
than 96 % to BB pairs. In order to increase the decay length in the laboratory system
(cf. Problem 15.4) and to thereby allow the measurement of time-dependent CP
asymmetries, the e™- and e~ beams had different energies; at KEK-B they were
3.5 and 8GeV, whereas at PEP-II they were 3.1 and 9 GeV. These experiments
investigated a plethora of B-meson decays and their decay products that allowed,
amongst other things, the determination of many of the elements of the CKM matrix
with high precision. A detailed discussion of the measurements and the results can
be found, e.g., in [10, 16].

Here we will only present two measurements and their results. One example for
direct CP violation is the decay B® — K7~ and B” — K+, to which tree and
penguin diagrams with different weak and strong phases contribute. We have already
discussed this in Sect. 15.4 about CP violation in the K° sector. The diagrams for the
B sector are shown in Fig. 15.6.

Experimentally one obtains an asymmetry in the decay width [8, 18, 20]

—0

r'B K nt)—T'B’ - Ktz~
(_O_) )T =K 5098+ 0.013. (15.14)
I'B - K rt)+T'(B°—>Ktz™)

which is many times larger than the corresponding asymmetry in the K° sector.

Of great interest is also the decay of B® and B” to the common final state
f=1/¥KS — £t¢ 7. Because of its clear signature, this is often called the
“golden channel”. The decay to two pions selects from the originally-generated K°
(in the case of BY) or K° (in the case of EO) the CP eigenstate with the CP eigenvalue
nk = +1. The final state has a CP eigenvalue n; = —1, since the Kg (spin-0) and



15.5 CP Violation and the CKM Matrix 249

' I
< Az " Kgéyn_
|// o-
/%0 :e+ }J/\P
e’ >Y(4°S) —— e?

\—>K+

D

Fig. 15.7 The method of ‘tagging’ in the decay 7" (43S;) — B'B’

the J/v (spin-1) from the decay of the B’ (spin-0) must have the relative orbital
angular momentum ¢ = 1. Here, CP violation is caused by the interference of
decays with and without mixing of the neutral mesons. The time dependence of

the asymmetry of the rates for B — f and B” — f has been investigated. This

presupposes knowledge of whether the decay stems from a BY or from a B". For
this purpose the method of “tagging” was used as shown in Fig. 15.7 and described
below.

In the decay of the Y (4°S;), the two B-mesons are produced in a coherent state.
Suppose that one observes the decay of one of the mesons, for instance to the final
state £TvyX or KTX. Then it is clear that the decaying particle is a B® and its
partner has to be a B". Correspondingly decays to £~ vy X or K™X tag a B and the
partner is a B®. The distance between the two decay vertices Az then corresponds
to the relative decay time At = Az/(cBy). For the asymmetry of the decay rates to
the final states f = J/ wKO, we obtain (a detailed derivation can be found, e.g., in
[17,21]):

r@’ = (A — I'(B° — (AL
r@° = f(ay + [B° — H(AY

= nesin 2B sin(AM /A - Aty (15.15)

Here, B is the angle in the rescaled unitarity triangle at the corner (1,0) and AM; is
the mass difference of the two CP eigenstates B(l) and Bg. (There are very many decay
channels for the two CP eigenstates. Consequently, only their masses are different
but not their lifetimes.) The asymmetry oscillates with the frequency AM;,c?/h
and the amplitude sin 2. The present average values from various measurements
are [20]: sin28 = 0.679 £ 0.020 and AM ¢ = 0.5-10"%As™! = 3.3-1071"MeV.

These are only two examples from a large number of measurements by which CP
violation in the B sector has been investigated and the elements of the CKM matrix
have been determined [16]. Other examples are the measurement of the asymmetry

B /§O — g~ ", from which the angle a can be determined, or the asymmetry
Bg/ﬁg — D, TK®, that fixes the angle y.
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Many more precise results (amongst others on the CP violation in D-meson
decay) are expected from the LHCb experiment at the LHC, where the production
rates of B-mesons will be larger than those at B factories by more than three orders
of magnitude. These measurements possibly will also allow a glimpse into physics
beyond the standard model.

Problems

1. o%-decay
The @° (J¥ = 17,1 = 1) almost 100 % decays into 7+ + 7. Why does it not
also decay into 2 °?

2. D*-decay
D7 (cd) decays into many channels. What value would you expect for the ratio:

'O - K +7a" +7%)
IOt > a4t +at)’

3. Pion and kaon decay
High energy neutrino beams can be generated using the decay of high energy,
charged pions and kaons:

+ +, @
T = U+ vy

K* — pu*+ (1_))“ .

Vv

(a) What fraction F of the pions and kaons in a 200 GeV beam decays inside
a distance d = 100m? (Use the particle masses and lifetimes given in
Tables 15.2 and 15.3)

(b) How large are the minimal and maximal neutrino energies in both cases?

4. B-meson factory
T -mesons with masses 10.58 GeV/c? were produced in the reaction eTe™ —
7 (4S) at the DORIS and CESR storage rings. The 7" (4S)-mesons were produced
at rest in the laboratory frame and decayed immediately to a pair of B-mesons:
Y — BTB™. The mass mp of the B-mesons is 5.28 GeV/c? and its lifetime 7 is
1.5ps.

(a) How large is the average decay length of the B-mesons in the laboratory
frame?

(b) To increase the decay length, the 7" (4S)-mesons need to be given momentum
in the laboratory frame. This idea is was employed at the asymmetric
“B-factories” PEP-II at SLAC and KEK-B in Japan, where electrons and
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positrons with different energies collide. What momentum do the B-mesons
need to have, if their average decay length is to be 0.2 mm?

(c) What energy do the 7' (4S)-mesons, in whose decay the B-mesons are

produced, need to have for this?

(d) What energy do the electron and positron beams need to have to produce

R

13.
14.
15.

16.
17.

18.
19.

20.

21.

22
23

these 7' (4S)-mesons? To simplify the last three questions, without altering
the result, assume that the B-mesons have a mass of 5.29 GeV/c? (instead of
the correct 5.28 GeV/c?).

eferences

. K. Abe et al., Nucl. Instr. Methods A479, 117 (2002)

E. Abouzaid et al., Phys. Rev. D 83, 092001 (2011)

. C. Albajar et al., Phys. Lett. B186, 247 (1987)

H. Albrecht et al., Phys. Lett. B192, 245 (1987)

H. Albrecht et al., Z. Phys C55, 357 (1992)

B. Aubert et al., Nucl. Instr. Methods A479, 1 (1997)

B. Aubert et al., Phys. Rev. Lett. 98, 211802 (2007)

. B. Aubert et al., Phys. Rev. Lett. 99, 021603 (2007)

. J.R. Batley et al., Phys. Lett. B§95, 75 (2002)

. T.E. Browder, R. Faccini, Annu. Rev. Nucl. Part. Sci. 53, 353 (2003)

. J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138 (1964)

. R.P. Feynman, Feynman Lectures on Physics. The New Millenium Edition, vol. III, Chap. 8
(Perseus-Basic Books, New York, 2011)

S. Gasiorowicz, Elementary Particle Physics (Wiley, New York, 1966)

S. Gasiorowicz, J.L. Rosner, Am. J. Phys. 49, 954 (1981)

K. Gottfried, V.F. Weisskopf, Concepts of Particle Physics, vol. 1 (Clarendon Press,
Oxford/New York, 1984)

A. Hocker, Z. Ligeti, Annu. Rev. Nucl. Part. Sci. 56, 501 (2006)

K. Kleinknecht, Uncovering CP Violation. Springer Tracts in Modern Physics, vol. 195
(Springer, Berlin/Heidelberg, 2003)

S.-W. Lin et al., Nature 452, 332 (2008)

B.M.K. Nefkens, Proceedings of the Workshop on Meson Production, Interaction and Decay,
Krakéw/Poland (World Scientific, Singapore, 1991)

Particle Data Group, J. Beringer et al., Review of Particle Properties. Phys. Rev. D 86, 010001
(2012)

A. Seiden, Particle Physics, A Comprehensive Introduction (Addison Wesley, San Francisco,
2005)

. M. Staric et al., Phys. Rev. Lett. 98, 211803 (2007)

. L. Wolfenstein, Phys. Rev. Lett. 51, 1945 (1983)



Chapter 16
Baryons

The best known baryons are the proton and the neutron. These are collectively
referred to as the nucleons. Our study of deep-inelastic scattering has taught us that
they are composed of three valence quarks, gluons and a “sea” of quark-antiquark
pairs. The following treatment of the baryon spectrum will, analogously to our
description of the mesons, be centred around the concept of the constituent quark.

Nomenclature This chapter will be solely concerned with those baryons which are
made up of u-, d- and s-quarks. The baryons whose valence quarks are just u- and
d-quarks are the nucleons (isospin / = 1/2) and the A particles (/ =3/2). Baryons
containing s-quarks are collectively known as hyperons. These particles, the A, X,

E and €2, are distinguished from each other by their isospin and the number of
s-quarks they contain.

Name N A A 2 2

Isospin 1 1/2 3/2 0 1 1/2 0
Strangeness S 0 -1 =2 -3
Number of s-quarks 0 1 2 3

The antihyperons have strangeness 41, 42 or +3, respectively.

The discovery of baryons containing c- and b-quarks has caused this scheme
to be extended. The presence of quarks heavier than the s-quark is signified by an
subscript attached to the relevant hyperon symbol: thus the A} corresponds to a
(udc) state and the EX has the valence structure (ucc). Such heavy baryons will
not, however, be discussed in what follows.
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16.1 The Production and Detection of Baryons

Formation experiments Baryons can be produced in many different ways at
accelerators. In Sect. 7.1 we have already described how nucleon resonances may
be produced in inelastic electron scattering. These excited nucleon states are also
created when pions are scattered off protons.

One can then study, for example, the energy (mass) and width (lifetime) of the
AT resonance in the reaction

at+p—-> ATt s p+at

by varying the energy of the incoming pion beam and measuring the total cross-
section. The largest and lowest energy peak in the cross-section is found at
1,232MeV. This is known as the ATT(1232). Figure 16.1 shows its creation
and decay in terms of quark lines. In simple terms we may say that the energy
which is released in the quark-antiquark annihilation is converted into the exci-
tation energy of the resonance and that this process is reversed in the decay of
the resonance to form a new quark-antiquark pair. This short-lived state decays
about 0.5 - 1072%s after it is formed and it is thus only possible to detect the
decay products, i.e., the proton and the m+. Their angular distribution, how-
ever, may be used to determine the resonances’ spin and parity. The result is
found to be J® = 3/2%. The extremely short lifetime attests to the decay
taking place through the strong interaction. At higher centre-of-mass energies
in this reaction further resonances may be seen in the cross-section. These cor-
respond to excited A*T states where the quarks occupy higher energy levels.
Strangeness may be brought into the game by replacing the pion beam by a kaon

Fig. 16.1 Quark-line
diagram for the formation and
the decay of the AT+
resonance in the reaction
at+p—>Attp+at
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Fig. 16.2 Quark-line
diagram for the formation and
decay of A° and X° hyperons
in the reaction

K p— (A%, 2% — pK~

beam and one may thus generate hyperons as sketched in Fig. 16.2. A possible
reaction is

K +p—->3* 5 pt+Kk.

The intermediate resonance state, an excited state of the X°, is, like the AT,
extremely short-lived and “immediately” decays, primarily back into a proton and
a negatively charged kaon. The quark line diagram offers a general description of
all those resonances whose quark composition is such that they may be produced
in this process. Thus excited A°’s may also be created in the above reaction. The
cross-sections of the above reactions are displayed in Fig. 16.3 as functions of the
centre-of-mass energy. The resonance structures may be easily recognised. The
individual peaks, which give us the masses of the excited baryon states, are generally
difficult to separate from each other. This is because their widths are typically of
the order of 100MeV and the various peaks hence overlap. Such large widths are
characteristic for particles which decay via strong processes.

In formation experiments, like those discussed above, the baryon that is formed
is detected as a resonance in a cross-section. Due to the limited number of particle
beams available to us this method may only be used to generate nucleons and their
excited states or those hyperons with strangeness S = —1.

Production experiments A more general way of generating baryons is in produc-
tion experiments. In these one fires a beam of protons, pions or kaons with as high an
energy as possible at a target. The limit on the energy available for the production of
new particles is the centre-of-mass energy of the scattering process. As can be seen
from Fig. 16.3, for centre-of-mass energies greater than 3 GeV no further resonances
can be recognised and the elastic cross-section is thereafter only a minor part of the
total cross-section. This energy range is dominated by inelastic particle production.
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Fig. 16.3 The total and elastic cross-sections for the scattering of 7+ mesons off protons (fop)
and of K™ mesons off protons (bottom) as a function of the meson beam momentum (or centre-of-
mass energy) [15]. The peaks are associated with short-lived states, and since the total initial charge
in 7w 1 p scattering is +2e the relevant peaks must correspond to the AT particle. The strongest
peak, at a beam momentum of around 300 MeV/c is due to the ground state of the AT which has a
mass of 1,232 MeV/c?. The resonances that show up as peaks in the K™ p cross-section are excited,
neutral ¥ and A baryons. The most prominent peaks are the excited X°(1775) and A°(1820) states
which overlap significantly

In such production experiments one does not look for resonances in the cross-
section but rather studies the particles which are created, generally in generous
quantities, in the reactions. If these particles are short-lived, then it is only possible
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to actually detect their decay products. The short-lived states can, however, often be
reconstructed by the invariant-mass method. If the momenta p; and energies E; of
the various products can be measured, then we may use the fact that the mass Mx of
the decayed particle X is given by

2

2 2
M§c4:p§(c2: Zp,-c = ZEi - Zpic . (16.1)

In practice one studies a great number of scattering events and calculates the
invariant mass of some particular combination of the particles which have been
detected. Short-lived resonances which have decayed into these particles reveal
themselves as peaks in the invariant-mass spectrum. We may identify short-lived
resonances that we already knew about in this way and we can also see if new,
previously unknown particles are being formed.

As an example, Fig. 16.4 shows the invariant-mass spectrum of the A’ 4+ 7 final
particles from an early measurement of the reaction

K +p—nt4+n +A°.

Events Events

30
25
20
15
10

5

! e ety M
1305 1355 1405 1455 1505 1555 1605 1655 1305 1355 1405 1455 1505 1555 1605 1655

Invariant Mass (A° nt) [MeV/c?] Invariant Mass ( A° ™) [MeV/c?]

Fig. 16.4 Invariant-mass spectrum of the particle combinations A%+x+ (leff) and A%4n~ (right)
in the reaction K~ +p — 7T +7~+A°. The momentum of the initial kaon was 1.11 GeV/c. The
events were recorded in a bubble chamber. Both spectra display a peak around 1,385 MeV/c? that
corresponds to £*1 and £*~ accordingly. A Breit-Wigner distribution (continuous line) has
been fitted to the peak. The mass and width of the resonance may be found in this way. The
energy of the pion which is not involved in the decay is kinematically fixed for any particular beam
energy. Its combination together with the A° yields a “false” peak at higher energies which does
not correspond to a resonance (From [9])
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This displays a clear peak at 1,385MeV/c? which corresponds to an excited 7.
The *7* baryon is therefore identified from its decay £** — 7+ 4+ A°. Since this
is a strong decay all quantum numbers, e.g., strangeness and isospin, are conserved.
In the above reaction it is just as likely to be the case that a ©*~ state is produced.
This would then decay to A + 7. Study of the invariant masses yields almost
identical masses for these two baryons.! This may also be read off from Fig. 16.4.
The somewhat flatter peak at higher energies visible in both spectra is a consequence
of the possibility to create either of these two charged X resonances: the momentum
and energy of the pion which is not created in the decay is fixed and so creates
a “fictitious” peak in the invariant-mass spectrum. This ambiguity can be resolved
by carrying out the experiment at various beam energies. There is a further small
background in the invariant-mass spectrum which is not correlated with the above,
i.e., it does not come from T ** decay. We note that the excited X state was first
found in 1960 using the invariant-mass method [5].

If the baryon state that we wish to investigate is already known, then the
resonance may be investigated in individual events as well. This is, for example,
important for the above identification of the ©*¥, since the A° itself decays via
A’ — p + 7~ and must first be reconstructed by the invariant-mass method. The
detection of the A° is rendered easier by its long lifetime of 2.6 - 10715 (due to
its weak decay). On average the A° transverses a distance from several centimetres
to a few metres, depending upon its energy, before it decays. From the tracks of its
decay products, the position of the A”’s decay may be localised and distinguished
from that of the primary reaction.

A nice example of such a step-by-step reconstruction of the initially created,
primary particles from a ¥~ +nucleus reaction is shown in Fig. 16.5. The method of
invariant masses could be used to show a three-step process of baryon decays. The
measured reaction is

ST4+A > p+Kt+at b+ + 1 + AL

The initial reaction takes place at one of the protons of a nucleus A. All of the
particles in the final state were identified (except for the final nucleus A’) and their
momenta were measured. The tracks of a proton and a 7~ could be measured in drift
and proportional chambers and followed back to the point (3), where a A® decayed
(as a calculation of the invariant mass of the proton and the 7~ shows). Since we
thus have the momentum of the A° we can extrapolate its path back to (2) where
it meets the path of a 7. The invariant mass of the A’ and of this 7~ is roughly
1,320MeV/c? which is the mass of the &~ baryon. This baryon can in turn be traced
to the target at (1). The analysis then shows that the &~ was in fact the decay product

of a primary E*? state which “instantaneously” decayed via the strong interaction

IThe mass difference between the ©*~ and the ©*7 is roughly 4 MeV/c? (see Table 16.1 on
p- 265).
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Fig. 16.5 Detection of a baryon decay cascade at the WA89 detector at the CERN hyperon beam
(based upon [16]). In this event a ¥~ hyperon with 370 GeV kinetic energy hits a thin carbon
target. The paths of the charged particles thus produced are detected near to the target by silicon
strip detectors and further away by drift and proportional chambers. Their momenta are determined
by measuring the deflection of the tracks in a strong magnetic field. The tracks marked in the figure
are based upon the signals from the various detectors. The baryonic decay chain is described in the
text

toa 2~ and a 7. The complete reaction in all its glory was therefore the following

TT4+ASEM Kkt 4+ A
L B+t
|—> A+ 7~
|—> p+n.
This reaction also exemplifies the associated production of strange particles: the X~
from the beam had strangeness —1 and yet produces in the collision with the target a

E*0 with strangeness —2. Since the strange quantum number is conserved in strong
interactions an additional K+ with strangeness +1 was also created.
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16.2 Baryon Multiplets

We now want to describe in somewhat more detail which baryons may be built up
from the u-, d- and s-quarks. We will though limit ourselves to the lightest states,
i.e., those for which the quarks have relative orbital angular momentum £ = 0 and
are not radially excited.

The three valence quarks in the baryon must, by virtue of their fermionic
character, satisfy the Pauli principle. In other words, the total baryonic wave
function

1;”tolall = Sspatial : gﬂavour * Xspin * ¢colour

must be antisymmetric under the exchange of any two of the quarks. The total
baryonic spin S results from adding the three individual quark spins (s = 1/2)
and must be either S = 1/2 or § = 3/2. Since we demand that £ = 0, the total
angular momentum J of the baryon is just the total spin of the three quarks.

The baryon decuplet Let us first investigate the J® = 3/2% baryons. Here the
three quarks have parallel spins and the spin wave function is therefore symmetric
under an interchange of two of the quarks. For £ = 0 states this is also true of
the spatial wave function. Taking, for example, the uuu state it is obvious that the
flavour wave function has to be symmetric and this then implies that the colour wave
function must be totally antisymmetric in order to yield an antisymmetric total wave
function and so fulfil the Pauli principle. Because baryons are colourless objects the
totally antisymmetric colour wave function can be constructed as follows:

1
¢c010ur = % Z Z Z EaBy |Qa(]ﬂq)/>a (16.2)

a=rgb fB=rgb y=rgb

where we sum over the three colours, here denoted by red, green and blue, and &4,
is the totally antisymmetric tensor.

If we do not concern ourselves with radial excitations, we are left with ten
different systems that can be built out of three quarks, are J* = 3/2% and have
totally antisymmetric wave functions. These are

|ATH) = [ulutu®)  |AT) = Jututd?)  |A%) = |ufatd?) A7) =|dTdTdT)
(=5 = Jutulst) 2% = fuldlst) |5*0) = [dtdls)
|E*0) = |uTsTsT) \E*_) = \deTsT)

|127) = |sTsTsT).
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Fig. 16.6 The baryon J* = 3/ 2t decuplet (left) and the J* = 1/ 2% octet (right) in Iy vs. S plots.
In contradistinction to the mesonic case the baryon multiplets are solely composed of quarks.
Antibaryons are purely composed of antiquarks and so form their own, equivalent antibaryon
multiplets

Note that we have only given the spin-flavour part of the total baryonic wave
function here, and that in an abbreviated fashion. It must be symmetric under quark
exchange. In the above notation this is evident for the pure uuu, ddd and sss systems.
For baryons built out of more than one quark flavour the symmetrised version
contains several terms. The symmetrised part of the wave function of, for example,
the AT reads more fully:

1
|AT) = ﬁ{|uTquT)+ lutdtu®y + |dTuTuT>}.

In what follows we will mostly employ the abbreviated notation for the baryonic
quark wave function and quietly assume that the total wave function has in fact
been correctly antisymmetrised.

If we display the states of this baryon decuplet on an I3 vs. S plot, we obtain
(Fig. 16.6) an isosceles triangle. This reflects the threefold symmetry of these three-
quark systems.

The baryon octet We are now faced with the question of bringing the nucleons
into our model of the baryons. If three quarks, each with spin 1/2, are to yield
a spin-1/2 baryon, then the spin of one of the quarks must be antiparallel to the
other two, i.e., we must have 11]. This spin state is then neither symmetric nor
antisymmetric under spin swaps, but rather has a mixed symmetry. This must then
also be the case for the flavour wave function, so that their product, the total spin-
flavour wave function, is purely symmetric. This is not possible for the uuu, ddd
and sss quark combinations and indeed we do not find any ground state baryons of
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this form with J = 1/2. There are then only two different possible combinations
of u- and d-quarks which can fulfil the necessary symmetry conditions on the wave
function of a spin-1/2 baryon, and these are just the proton and the neutron.

This simplified treatment of the derivation of the possible baryonic states and
their multiplets can be put on a firmer quantitative footing with the help of SU(6)
quark symmetry, we refer here to the literature (see, e.g., [7]).

The proton and neutron wave functions may be schematically written as

1pt) = lututaty  |nty = |utataty.

We now want to construct the symmetrised wave function. For a proton with, e.g.,
the z spin component m; = +1/2, we may write the spin wave function as a product
of the spin wave function of one quark and that of the remaining pair:

XP(J: %v my= %) =V 2/3 Xuw(1, I)Xd(%v _%) Y 1/3 Xuu(1, O)Xd(%v %) .
(16.3)

Here we have chosen to single out the d-quark and coupled the u-quark pair. (If we
initially single out one of the u-quarks we obtain the same result, but the notation
becomes much more complicated.) The factors in this equation are the Clebsch-
Gordan coefficients for the coupling of spin 1 and spin 1/2. Replacing X(1,0) by
the correct spin triplet wave function (1 + }1)/+/2 then yields in our spin-flavour
notation

Iph) = 273 ututdh) — V1/6uTutd®y — /1/6 [utuld?y. (16.4)

This expression is still only symmetric in terms of the exchange of the first and
second quarks, and not for two arbitrary quarks as we need. It can, however, be
straightforwardly totally symmetrised by swapping the first and third as well as
the second and third quarks in each term of this last equation and adding these
new terms. With the correct normalisation factor the totally symmetric proton wave
function is then

1
Ipt) = it {2 lutuldt) + 2 uldbut) + 2 |dbutu?) — [ulutdh)

—lufdTut) —|dTuTu¥) — Jututd?) — jutdtut) — |dTu¢uT)} . (16.5)
The neutron wave function is trivially found by exchanging the u- and d-quarks:

1
nt) = i {2 d*dtuty +2(dTutdly + 2 utdld?) — [dTdtut)

—|dtutaYy — jutd’at) — |avatuty — |dtuldly — |qu¢dT>} . (16.6)
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The nucleons have isospin 1/2 and so form an isospin doublet. A further
doublet may be produced by combining two s-quarks with a light quark. This is
schematically given by

|2 = |ubstst) |21 = |abstsh) . (16.7)
The remaining quark combinations are an isospin triplet and a singlet:

|=H1) = Jululst)
=N = jutdlsYy A% = |ultatst) (16.8)
=1 = |atdtst) .

Note that the uds quark combination appears twice here and depending upon the
relative quark spins and isospins can correspond to two different particles. If the u
and d spins and isospins couple to 1, as they do for the charged ¥ baryons, then the
above quark combination is a X°. If they couple to zero we are dealing with a A°.
These two hyperons have a mass difference of about 80 MeV/c?. This is evidence
that a spin-spin interaction must also play an important role in the physics of the
baryon spectrum. The eight J” = 1/2" baryons are displayed in an /5 vs. S plot in
Fig. 16.6. Note again the threefold symmetry of the states.

16.3 Baryon Masses

The mass spectrum of the baryons is plotted in Fig. 16.7 against strangeness and
isospin. The lowest energy levels are the J* = 1/2% and J* = 3/2% multiplets,
as can be clearly seen. It is also evident that the baryon masses increase with the
number of strange quarks, which we can put down to the larger mass of the s-quark.
Furthermore we can see that the J* = 3/27 baryons are about 300 MeV/c? heavier
than their J* = 1 / 2t equivalents. As was the case with the mesons, this effect can
be traced back to a spin-spin interaction

Jl'h3 g;-

4
Velaian) = g

L §(x), (16.9)
J

which is only important at short distances. The observant reader may notice that the
4/9 factor is only half that which we found for the quark-antiquark potential in the
mesons (14.10); this is a result of QCD considerations. Equation (16.9), it should
be noted, describes only the interaction of two quarks with each other and so to
describe the baryon mass splitting we need to sum the spin-spin interactions over
all quark pairs. The easiest cases are those where the constituent masses of all three
quarks are the same, i.e., the nucleons, the A’s and the €2. Then we just have to
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Fig. 16.7 The masses of the decuplet and octet baryons plotted against their strangeness S and
isospin 1. The angular momenta J of the various baryons are shown through arrows. The J* =
3/27F decuplet baryons lie significantly above their J* =1/27F octet partners

calculate the expectation values for the sums over ¢; - 0 ;. Denoting the total baryon
spin by S and using the identity §* = (s; + s, + s3)? we find in a similar way to
(14.11):

3 3

- 4 < —3forS=1/2,

Z O'i.o'j = ﬁ Z si'sj = / (16.10)
Py = +3 for S =3/2.

i<j i<j

The spin-spin energy (mass) splitting for these baryons is then just

4h3 mo
=333 37104 | (0)|*  for the nucleons,
4h Jrocs )
AMg; = 4 +3- 9 |1/f(0)| for the A states, (16.11)
C
4h3 oty
3G WO for the & baryon.
C

Here |y (0)|? is the probability that two quarks are at the same place. Somewhat
more complicated expressions may be obtained for those baryons made up of a
mixture of heavier s- and lighter u- or d-quarks (see the exercises).
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With the help of this mass-splitting formula a general expression for the masses
of all the £ =0 baryons may be written:

M= Zmi+AMSS. (16.12)

1

The three unknowns here, i.e., m, 4, 15 and o[y (0)|?, may be obtained by fitting to
the experimental masses. As with the mesons we assume that |1 (0)|? is roughly
the same for all of the baryons. We so obtain the following constituent-quark masses:
myg ~ 363 MeV/c?, mg ~ 538 MeV/c? [10]. The fitted baryon masses are within
1% of their true values (Table 16.1). The constituent-quark masses obtained from
such studies of baryons are a little larger than their mesonic counterparts. This is
not necessarily a contradiction since constituent-quark masses are generated by the
dynamics of the quark-gluon interaction and the effective interactions of a three-
quark system will not be identical to those of a quark-antiquark one.

Table 16.1 The masses of the lightest baryons both from experiment and as fitted from (16.12).
The fits were to the average values of the various multiplets and are in good agreement with the
measured masses. Also included in this table are the lifetimes and most important decay channels
of these baryons [15]. The four charged A resonances are not individually listed

Mass (MeV/c?) Primary Decay
S I Baryon | Theor. |Exp. T (s) decay channels type
|0 /2 |p 939 938.3 Stable? - -
BN n 939.6 | 880.0 pe v, | 100% Weak
-1 10 A 1,114 1,1157 |2.63-107'° | pz— 63.9 % Weak
S 0
S nmw 35.8% Weak
g 1 |zt 1,179 |1,189.4 [0.80-1071° |px® 51.6% | Weak
o nrt 483 % Weak
%0 1,1926 |74-1072 Ay ~ 100% |Elmgn.
o 1,197.4 |1.48-1071° |nz— 99.8 % Weak
-2 |1/ | B° 1,327 1,315 2.90-1071° | Ax® ~ 100% | Weak
2~ 1,322 1.64-10710 | Ax— ~ 100% | Weak
|0 3h |A 1,239 1,232 0.55-107% |Nx 99.4 % Strong
Lo [ =T 1381 (1383 [17-1003 | Ax 87 % Strong
I x¥0 1,384 = 12% Strong
5 ¥ 1,387
3 =2 |1 g% 1,529 [1,532 [7-1072 En ~ 100% | Strong
5 cl 1,535
Q — ’
(5]
A =3 |0 Q- 1,682 1,672.5 |0.82-1071° | AK™ 68 % Weak
O~ |24% Weak

70 9% Weak
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16.4 Magnetic Moments

The constituent-quark model is satisfyingly successful when its predictions for
baryonic magnetic moments are compared with the results of experiment. In Dirac
theory the magnetic moment p of a point particle with mass M and spin 1/2 is

_ (16.13)
MDirac = M . .
This relationship has been experimentally confirmed for both the electron and the
muon. If the proton were an elementary particle without any substructure, then its
magnetic moment should be one nuclear magneton:

eh

= —. 16.14
0, (16.14)

20N

Experimentally, however, the magnetic moment of the proton is measured to be
Mp = 2.79 un.

Magnetic moments in the quark model The proton magnetic moment in the
ground state, with £ = 0, is a simple vectorial sum of the magnetic moments of
the three quarks:

le = ”’u + I’l’u + ”’d . (1615)

The proton magnetic moment ji, then has the expectation value

o = (1) = (Vplmy|¥p) . (16.16)

where 1, is the totally antisymmetric quark wave function of the proton. To obtain
M p we merely require the spin part of the wave function, X ,. From (16.3) we thus
deduce

—2( + )—l—l _? 1 (16.17)
Hp—3 Hu T Hu — Md 3Nd—3ﬂu 3,Uvd7 .
where (1, g are the quark magnetons:
h
fog = 4R (16.18)
2mu,d

The other J* =1/27 baryons with two identical quarks may be described by (16.17)
with a suitable change of quark flavours. The neutron, for example, has a magnetic
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moment
_ 4 ! (16.19)
Hn = 3I'Ld 3 Hu .
and analogously for the =T we have
_ 4 ! (16.20)
Hs+ = 3 Hu 3 Ms . .

The situation is a little different for the A°. As we know this hyperon contains a
u- and a d-quark whose spins are coupled to 0 and so contribute neither to the spin
nor to the magnetic moment of the baryon (Sect. 16.2). Hence both the spin and the
magnetic moment of the A° are determined solely by the s-quark:

KA = s - (16.21)

To the extent that the u and d constituent-quark masses can be set equal to each
other we have u, = —2u4 and may then write the proton and neutron magnetic
moments as follows

3

Hp = Eﬂu , Hn = —MHu - (16.22)

We thus obtain the following prediction for their ratio

a 2
Ho _ 2 (16.23)

HMp 3

which is in excellent agreement with the experimental result of —0.685.

The absolute magnetic moments can only be calculated if we can specify the
quark masses. Let us first, however, look at this problem the other way round and
use the measured value of p, to determine the quark masses. From

eh
=2.79 =2.79— 16.24
Hp MUN M, ( )
and
3 eh
= Ty, = 16.25
Mp zﬂu 2my ( )
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Table 16.2 Experimental and theoretical values of the baryon magnetic moments [15]. The
measured values of the p, n and A’ moments are used to predict those of the other baryons. The %°
hyperon has a very short lifetime (7.4 - 1072° s) and decays electromagnetically via £° — A® + y.
For this particle the transition matrix element {A°||X°) is given in place of its magnetic moment

Baryon /N (experiment) Quark model /N
P +2.792847356 4 0.000000023 (4py — pa)/3 -

n —1.9130427 =+ 0.0000005 (4pg — p1u)/3 -

Al —0.613 + 0.004 s -

>t +2.458 + 0.010 4y — s)/3 +2.67
%0 Quy + 2pa — us)/3 +0.79
30— A0 —1.61 +0.08 (g — o)/ 3 —1.63
ho —1.160 + 0.025 (4peg — 1s)/3 —1.09
g0 —1.250 + 0.014 (4ps — pu)/3 —1.43
B~ —0.6507 + 0.0025 (4ps — 1a)/3 —0.49
Q- —2.02 + 0.05 3 s —1.84
we obtain

my = ﬂ = 336MeV/c?, (16.26)
2.79

which is very close indeed to the mass we found in Sect. 16.3 from the study of the
baryon spectrum.

Measuring the magnetic moments The agreement between the experimental
values of the hyperon magnetic moments with the predictions of the quark model
is impressive (Table 16.2). Our ability to measure the magnetic moments of
many of the short-lived hyperons (t ~ 107'"s) is due to a combination of two
circumstances: hyperons produced in nucleon-nucleon interactions are polarised
and the weak interaction violates parity maximally. In consequence the angular
distributions of their decay products are strongly dependent upon the direction of
the hyperons’ spins (i.e., their polarisations).

Let us clarify these remarks by studying how the magnetic moment of the A is
experimentally measured. Note that this is the most easily determined of the hyperon
magnetic moments. The decay

A —>p+n~
is rather simple to identify and has the largest branching ratio (64 %). If the A° spin
is, say, in the positive Z direction, then the proton will most likely be emitted in the

positive z direction, in accord with the angular distribution

W(@) o< 1 4+ acosb where o = 0.64 . (16.27)
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Precession

Fig. 16.8 Sketch of the measurement of the magnetic moment of the A°. The hyperon is generated
by the interaction of a proton coming in from the left with a proton in the target. The spin of the A°
is, for reasons of parity conservation, perpendicular to the production plane. The A then passes
through a magnetic field which is orthogonal to the particle’s spin. After traversing a distance d in
the magnetic field the spin has precessed through an angle ¢

The angle 6 is the angle between the spin of the A’ and the momentum of the
proton in the rest system of the A°. The parameter a depends upon the strength of
the interference of those terms with orbital angular momentum £ = 0 and £ =1 in
the p-w~ system and its size must be determined by experiment.

The asymmetry in the angular distribution of the emitted protons then fixes the
AP polarisation. Highly polarised A° particles may be obtained from the reaction

p+p—=K " +A+p.

As shown in Fig. 16.8, the spin of the A° is perpendicular to the production plane
defined by the path of the incident proton and that of the A itself. This is because
only this polarisation direction is allowed for unpolarised beams and targets by
parity conservation in the strong interaction.

If the A baryon traverses a distance d in a magnetic field B, where the field
is perpendicular to the hyperon’s spin, then its spin precesses with the Larmor
frequency

B
Cl)]_Z”Ig

(16.28)
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through the angle
d
¢ = v LAt = wL— (16.29)
v

where v is the speed of the A° (this may be reconstructed by measuring the momenta
of its decay products, i.e., a proton and a pion). The most accurate results may be
obtained by reversing the magnetic field and measuring the angle 2 - ¢ which is
given by the difference between the directions of the A spins (after crossing the
various magnetic fields). This trick neatly eliminates most of the systematic errors.
The magnetic moment is thus found to be [15]

fia = (—0.613 % 0.004) fix . (16.30)

If we suppose that the constituent s-quark is a point-like particle and that its
magnetic moment obeys (16.18), then we see that this result for ;p is consistent
with an s-quark mass of 510 MeV/c?.

The magnetic moments of many of the hyperons have been measured in a
similar fashion to the above. There is an additional complication for the charged
hyperons in that their deflection by the magnetic field must be taken into account if
one wants to study spin precession effects. The best results have been obtained at
Fermilab and are listed in Table 16.2. These results are compared with quark-model
predictions. The results for the proton, the neutron and the A° were used to fix all
the unknown parameters and so predict the other magnetic moments. The results of
the experiments agree with the model predictions to within a few percent.

These results support our constituent-quark picture in two ways: firstly the
constituent-quark masses from our mass formula and those obtained from the above
analysis of the magnetic moments agree well with each other, and secondly the
magnetic moments themselves are consistent with the quark model.

It should be noted, however, that the deviations of the experimental values from
the predictions of the model show that the constituent-quark magnetic moments
alone do not suffice to describe the magnetic moments of the hyperons exactly.
Further effects, such as relativistic ones and those due to the quark orbital angular
momenta, must be taken into account.

16.5 Spin Structure of the Nucleon

The statements made in the previous chapter can be illustrated especially well
by the spin structure of the nucleon. We have shown in Sect. 16.2 that, in the
constituent-quark model, the spin of the baryons is equal to the vector sum of the
spins of the three constituent quarks and that the magnetic moments and the masses
calculated with this assumption excellently agree with the experimental results.
The situation is very different when the spin contribution of the current-quarks to
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the spin of the nucleon is experimentally determined in deep-inelastic scattering
of longitudinally-polarised electrons or muons on longitudinally-polarised targets.
Pioneering experiments of this kind revealed the surprising result [6] that the
fraction of the nucleon’s spin which can be attributed to the spins of the current-
quarks may be compatible with zero, but not compatible with one. This result caused
enormous activity in both experiment and theory. Subsequently we will briefly
explain the principle and some details of such measurements.

Quark helicity distributions We denote the relative alignment of the longitudinal
spins of the leptons with respect to the lepton-beam direction by (—) and (<),
and the corresponding ones of the target by (=) and (<=). The quantisation axis is
selected as the momentum direction of the longitudinally-polarised virtual photon.
The projection of the total spin before and after the absorption of the virtual photon
(spin-1) by a quark (spin-%) can only have the values S, = +% or §; = —%.
Consequently the virtual photon can only be absorbed by a quark having opposite
spin orientation. For equal polarisation direction of beam and target (2), the spin
of the struck quark must be oriented anti-parallel to the spin of the parent nucleon
and vice versa. The corresponding quark-momentum distributions weighted with
the quark helicity are denoted as q—(x, Q%) and q+ (x, Q?), respectively, and their

difference

Aq(x, Q%) = q4(x, Q%) —q-(x. Q%) (16.31)
is known as the quark helicity distribution. The unpolarised quark distribution
q(x, Q%) is equal to the sum of q_(x, 9%) and q (x, Q?).

Spin structure functions The cross-sections for the two relative spin orientations
of beam and target are generally of different magnitude and their difference is

oL == (02 —02). (16.32)

N -

This difference of cross-sections is proportional to two additional structure func-
tions, the spin structure functions g;(x, %) and g (x, Q%). In analogy to (7.10) we
obtain

2
M ot Q2)} .

E
(16.33)

dop1 . 8ma’h?y [(1 y  yxMc?
2

d@*dx ¢ 2E )gl(x’ -

The structure functions g; and g, depend only very weakly on Q?, therefore we
will omit the Q? dependence in the subsequent discussion. The spin structure
function g; (x) is in analogy to (7.15) given by the sum of the helicity distributions
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weighted by Zé
n 1 -
") =5 )z [4d™ () + AP ()], (16.34)
q

where zq is the quark charge normalised to the elementary charge.
For the proton-neutron averaged nucleon we obtain (cf. (7.24))

Q=2 Y [A9W +A30)] — 3 4@+ A5@] (1639

q=d,u,s

The second spin structure function g, does not have any probabilistic interpretation.
It is small and in the quark-parton model it even disappears. Therefore the second
term in (16.33), which is anyway kinematically suppressed, can be neglected
compared to the first term. As an example, data from the HERMES experiment for
xgh(x), xgP(x) and xg!(x) [4] are presented in Fig. 16.9. This experiment used gas
targets of polarised atomic hydrogen and deuterium internal to the HERA storage
ring. This technology has the advantage that essentially all of the target atoms are
polarisable in contrast to polarised solid-state targets like NH3; or ND3, where the
fraction of polarisable nucleons is only 3/17 or 6/20, respectively, and hence the
signal from the spin structure functions is substantially diluted. The data shown in

ST HH* |

0.04 |- .l. .

X
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Fig. 16.9 Experimental results for the structure functions xg;(x) of the proton, deuteron and
neutron as a function of x obtained by the HERMES experiment [4]. The average value of Q>
is different for each of the data points and increases with x. Open symbols represent data points
with Q% < 1 (GeV/c)?
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Fig. 16.9 are in excellent agreement with the results of other experiments. From
the comparison with Figs.7.4 and 7.8 we see that the spin structure functions
xg(x) and xgP(x) are much smaller than the structure functions F5(x) and F} (x)
in the unpolarised case. In the region of small x they approach zero. Obviously the
contribution of sea-quark spins to the nucleon’s spin is very small. The spin structure
function xg'(x) is small and negative and we can therefore conclude that also the
helicity distribution of d-quarks is negative. Consequently the spin of current d-
quarks is preferentially oriented opposite to the spin of the parent proton as it is in
the case of the constituent-quark model.

Integrated helicity distributions The integral of the helicity distributions

1
Aq = / Aq(x) dx (16.36)
0

is of special interest. This quantity corresponds to the fraction of quarks of type q
with positive helicity in a nucleon with positive helicity. The sum over all quarks
and antiquarks

AT = ) (Aq+ A9 (16.37)

q=d,u,s

then represents (for a nucleon moving with infinite momentum in z-direction) the
fraction of the nucleon’s spin which can be attributed to the spin of the quarks.

In analogy to the discussion in Sect. 7.5 we examine the integral of the structure
function gP(x), which in good approximation is equal to the proton-neutron
averaged structure function g\ (x). We sum over all quark species and integrate over
all distribution functions. When we neglect a possible small contribution of the s-
quarks in the quark-antiquark sea, then this integral should have the value 5/36,
provided that the nucleon’s spin can be attributed totally to the spins of the quarks.
Integration of the data in Fig. 16.9 yields

1
5
/ gP(x)dx ~ 0.044 ~ 0.32- % (16.38)
0

Similar to the earlier observation that only half of the nucleon’s momentum is
carried by quarks we also here observe a deficit:

Only about one third of the nucleon’s spin can be attributed to the spins  of the
quarks.

Although this result is only a simple approximation it agrees very well with a very
detailed and refined analysis that also takes into account the d-wave contributions to
the deuteron wave function (cf. Sect. 17.2), the contribution of s-quarks and higher-
order QCD corrections. Hence, there must exist additional contributions to the
nucleon’s spin. One possible contribution, denoted by AG, stems from the spin of
the gluons. Furthermore there could be contributions from orbital angular momenta
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L, of quarks and gluons. With all these contributions the expectation value of the
nucleon’s spin reads

1
Se=5=3AZ +AG+L:. (16.39)

The investigation of the nucleon’s spin structure is a very active ongoing field of
research. Experiments show that the contribution of gluon spins is very likely rather
small, such that a substantial contribution may stem from orbital angular momenta
of quarks and/or gluons. But no experimental observable has been found so far that
can be related quantitatively to parton orbital angular momenta. A detailed up to
date summary of the experimental results and relevant publications can be found in
Ref. [3].

16.6 Semileptonic Baryon Decays

The weak decays of the baryons all follow the same pattern. A quark emits a virtual
W% boson and so changes its weak isospin and turns into a lighter quark. The
W decays to a lepton-antilepton pair or, if its energy suffices, a quark-antiquark
pair. In the decays to a quark-antiquark pair we actually measure one or more
mesons in the final state. These decays cannot be exactly calculated because of
the strong interaction’s complications. Matters are simpler for semileptonic decays.
The rich data available to us from semileptonic baryon decays have made a decisive
contribution to our current understanding of the weak interaction as formulated in
the generalised Cabibbo theory.

We now want to attempt to describe the weak decays of the baryons using our
knowledge of the weak interaction from Chap. 10. The weak decays take place
essentially at the quark level, but free quarks do not exist and experiments always
see hadrons. We must therefore try to interpret hadronic observables within the
framework of the fundamental theory of the weak interaction. We will start by
considering the S-decay of the neutron, since this has been thoroughly investigated
in various experiments. It will then be only a minor matter to extend the formalism
to the semileptonic decays of the hyperons and to nuclear S-decays.

We have seen from leptonic decays such as u~ — e~ + Ve + v, that the
weak interaction violates parity conservation maximally, which must mean that the
coupling constants for the vector and axial vector terms are of the same size. Since
neutrinos are left-handed and antineutrinos are right-handed the coupling constants
must have opposite signs (V—A theory). The weak decay of a hadron actually
means that a confined quark has decayed. It is therefore essential to take the quark
wave function of the hadron into account. Furthermore strong-interaction effects
of virtual particles cannot be neglected: although the effective electromagnetic
coupling constant is (for reasons of charge conservation) not altered by the cloud
of sea quarks and gluons, the weak coupling is indeed so changed. In what follows
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we will initially take the internal structure of the hadrons into account and then
discuss the coupling constants.

Beta decay of the neutron The §-decay of a free neutron
n—>p+e + 7V (16.40)

(maximum electron energy Ey = 782keV, lifetime ca. 15 min) is a rich source of
precise data about the low-energy behaviour of the weak interaction.

To find the form of the 8-spectrum and the coupling constants of neutron S-decay
we consider the decay probability. This may be calculated from the golden rule in
the usual fashion. If the electron has energy E., then the decay rate is

2 de(Eo,E)

dW(E.) = |M | £

E., (16.41)

where doy(Ey, E.)/dE. is the density of antineutrino-electron final states with total
energy Ey and the electron having energy E. and My is the matrix element for the
B-decay.

Vector transitions A B-decay which takes place through a vector coupling is called
a Fermi transition. The direction of the quark’s spin is unaltered in these decays. The
change of a d- into a u-quark is described by the ladder operator of weak isospin T+
which changes a state with 7=—1/2 into one with T=+1/2.

The matrix element for neutron B-decay has a leptonic and a quark part.
Conservation of angular momentum prevents any interference between vector and
axial vector transitions, i.e., a quark vector transition necessarily implies a leptonic
vector transition. Since we already have cy = —ca = 1 for leptons, we do not need
to worry further about their part of the matrix element.

The matrix element for Fermi decays may then be written as

3
G
(Milp = VFCV [(uud | Y " Tiy|udd)]|. (16.42)

i=1

where the sum is over the three quarks. According to the definition (10.4) the Fermi
constant Gr includes the propagator term and the coupling to the leptons. The initial
neutron state has the wave function |udd ) and the final state is described by the
quark combination |uud ). The wave functions of the electron and the antineutrino
can each be replaced by 1/+/V, since we have pR/h < 1.

The u- and d-quarks in the proton and neutron wave functions are eigenstates
of strong isospin. In B-decay we need to consider the eigenstates of the weak
interaction. We therefore recall that, while the ladder operators I+ of the strong
force map |u) and |d) onto each other, the Ty operators connect the |u) and |d’)
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quark states. The overlap between |d) and |d’) is, according to (10.18), fixed by the
cosine of the Cabibbo angle. Hence

(u|T4|d) = (u|l4]d) - cosbOc, where cosfc ~ 0.98. (16.43)

The vector component of the matrix element is then

3
G G
My = VF cosfc - cy (uud | E I+ |udd) = VF cosfc-cy-1. (16.44)

i=1

Here we have employed the fact that the sum (uud| ), /; 4 [udd) must be unity since
the operator ), ; + applied to the quark wave function of the neutron just gives
the quark wave function of the proton. This follows from isospin conservation in
the strong interaction and may be straightforwardly verified with the help of (16.5)
and (16.6). We thus see that the Fermi matrix element is independent of the internal
structure of the nucleon.

Axial transitions Those B-decays that take place as a result of an axial vector
coupling are called Gamow-Teller transitions. In such cases the direction of the
fermion spin flips over. The matrix element depends upon the overlap of the spin
densities of the particles carrying the weak charge in the initial and final states. The
transition operator is then cp 740

The universality of the weak interaction implies that this result should also hold
for free point-like quarks. Since quarks are always trapped inside hadrons, we need
to consider the internal structure of the nucleon if we want to calculate such matrix
elements. From the constituent-quark model we have

3
G
Myl gr = VFCA [(uud | Y T; 0| udd)| . (16.45)

i=1

Since the squares of the expectation values of the components of o are equal
to each other, (}_;0:)? = (Y., 0i,)> = (X, 0iz)?, it is sufficient to calculate the
expectation value of o, = (uud| ), J; +0;.| udd). One finds from (16.5), (16.6) and
some tedious arithmetic that

5
(uud| Zijli,+o,,z| udd) = 3. (16.46)

The total matrix element In experiments we measure the properties of the
nucleon, such as its spin, and not those of the quarks. To compare theory with
experiment we must therefore reformulate the matrix element so that all operators
act upon the nucleon wave function. The square of the neutron decay matrix element
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may be written as

2 2
2 8 8
[Mil™ = 75 plLsln)l® + 33 Kpllvoln)l”. (16.47)

We stress that /1 and o now act upon the wave function of the nucleon. The
quantities gy and g4 are those which are measured in neutron 8-decay and describe
the absolute strengths of the vector and axial vector contributions. They contain the
product of the weak charges at the leptonic and hadronic vertices.

Since the proton and the neutron form an isospin doublet, (16.47) may be written
as

(Ma* = (g3 +383)/ V2. (16.48)

We note that the factor of 3 in the axial vector part is due to the expectation value of
the spin operator 6> = 07 + 07 + 07

In the constituent-quark model gy and g are related to the quark-dependent
coupling constants cy and cp as follows:

8gv = GF COS ec cy , (1649)

5
A~ GF COS ec §CA . (1650)

The Fermi matrix element (16.44) is independent of the internal structure of
the neutron and (16.49) is as exact as the isospin symmetry of the proton and
the neutron. The axial vector coupling, on the other hand, does depend upon the
structure of the nucleon. In the constituent-quark model it is given by (16.50).
It is important to understand that the factor of 5/3 is merely an estimate, since
the constituent-quark model only gives us an approximation of the nucleon wave
function.

The neutron lifetime The lifetime is given by the inverse of the total decay
probability per unit time:

1 Eo gw Eo 2y 2 doy(Eo, Ee)
= —JdE, = —_— \M;T L——=4dE.. 16.51
T /mecz dE. /mecz h i ﬁi dE. ( )

Assuming that the matrix element is independent of the energy, we can pull it outside
the integral. The state density o(Ep, Ec) may, in analogy to (4.18) and (5.21), be
written as

(47t)2 2 dpe 2 dp,
iy e 4E. Pv 4K,

dor(Eo, Ee) = V2 dE, , (16.52)
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where we have taken into account that we here have an electron and a neutrino and
hence a 2-particle state density and V is the volume in which the wave functions of
the electron and of the neutrino are normalised. Since this normalisation enters the
matrix element (16.48) via a 1/V? factor, the decay probability is independent of V.

In (16.51) we only integrate over the electron spectrum and so we need the
density of states for a total energy E, with a fixed electron energy E.. Neglecting
recoil effects, we have Ey = E. + E, and hence dE; = dE,. Using the relativistic
energy-momentum relation £ = p?c? + m?c* we thus find

1 1
pedpe = — peEe dE. = —<E\/E} — m2c* dE, (16.53)
C C

and an analogous relation for the neutrino. Assuming that the neutrino is massless
we obtain

Ee/E2 —m2c* - (Eg — E.)? e
..

_ 2472
doy (Ev.Ee) = (4m)° V oY

(16.54)

To find the lifetime t we now need to carry out the integral (16.51). It is usual to
normalise the energies in terms of the electron rest mass and so define

&o
f(Ey) = / EernJE2—1-(& — E)* dEe, where & = E/mec?.  (16.55)
1

Together with (16.48) this leads to

1 5 4

mec
- = 557 8y + 380) - f(Eo). (16.56)

For (Ey > mec?) we have

&
f(Eo) ~ 30 (16.57)
and so
1 1 5 ,. E}
T e ST (16:3%)

This decrease of the lifetime as the fifth power of Ey is called Sargent’s rule.
In neutron decays E, is roughly comparable to m.c> and the approximation
(16.57) is not applicable. The decay probability is roughly half the size of (16.58):

5

1 E
N (g% +3g3) - —2-.0.47. (16.59)

1
Tn 6073
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Experimental results The neutron lifetime has been measured very precisely in
recent years. The storage of ultra cold neutrons has been a valuable tool in these
experiments [11, 14]. Extremely slow neutrons can be stored between solid walls
which represent a potential barrier. The neutrons are totally reflected since the
refraction index in solid matter is smaller than that in air [12]. With such storage
cells the lifetime of the neutron may be determined by measuring the number of
neutrons in the cell as a function of time. To do this one opens the storage cell for
a specific time to a cold neutron beam of a known, constant intensity. The cell is
then closed and left undisturbed until after a certain time it is opened again and the
remaining neutrons are counted with a neutron detector. The experiment is repeated
for various storage times. The exponential decay in the number of neutrons in the
cell (together with knowledge of the leakage rate from the cell) gives us the neutron
lifetime. The average of the most recent measurements of the neutron lifetime is [15]

7, = 880.0 £ 0.95 . (16.60)

To individually determine g4 and gv we need to measure a second quantity [1, 8].
The decay asymmetry of polarised neutrons is a good candidate here. This comes
from the parity violating properties of the weak interaction: the axial vector
part emits electrons anisotropically while the vector contribution is spherically
symmetric.” The number of electrons that are emitted in the direction of the neutron
spin N1 is smaller than the number NV emitted in the opposite direction. The
asymmetry A is defined by

Nt Nt

v
Nyt - PoA. where f=C (16.61)

This asymmetry is connected to

r=22 (16.62)
8v
by
AL +1)
=-2—. 16.
1+ 3A2 (16.63)

The asymmetry experiments are also best performed with ultra low energy neutrons.
An electron spectrometer with an extremely high spatial resolution is needed [2, 13].
Such measurements yield [15]

A =-0.1176 + 0.0011. (16.64)

2The discovery of parity violation in the weak interaction was through the anisotropic emission of
electrons in the B-decay of atomic nuclei [17].
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Combining this information we have

A = —1.2701 £ 0.0025 ,
gv/(hc)® = +1.153-107°GeV 2,
ga/(hc)®> = —1.454- 107> GeV 2 . (16.65)

A comparison with (16.49) yields very exactly cy = 1, which is the value we
would expect for a point-like quark or lepton. The vector part of the interaction is
conserved in weak baryon decays. This is known as conservation of vector current
(CVCO) and it is believed that this conservation is exact. It is considered to be as
important as the conservation of electric charge in electromagnetism.

The axial vector term is on the other hand not that of a point-like Dirac particle.
Rather than A = —5/3 experiment yields A ~ —1.27. The strong force alters the
spin dependent part of the weak decay and the axial vector current is only partially
conserved (PCAC = partially conserved axial vector current).

Semileptonic hyperon decays The semileptonic decays of the hyperons can be
calculated in a similar way to that of the neutron. Since the decay energies E, are
typically two orders of magnitude larger than in the neutron decay, Sargent’s rule
(16.58) predicts that the hyperon lifetimes should be at least a factor of 10'° shorter.
At the quark level these decays are all due to the decay s — u + e~ +v..

The two independent measurements to determine the semileptonic decay prob-
abilities of the hyperons are their lifetimes 7 and the branching ratio Vien;. of the
semileptonic channels. From

—1 X |Mﬁ|2 .
Mﬁ 2 and Ve = 17 tsemil.
T I | semil. |/\/l ‘|2

we have the relationship

Vsemil.

o | M2 - (16.66)

The lifetime may most easily be measured in production experiments. High
energy proton or hyperon (e.g., ¥~ ) beams with an energy of a few hundred GeV
are fired at a fixed target and one detects the hyperons which are produced. One
then calculates the average decay length of the secondary hyperons, i.e., the average
distance between where they are produced (the target) and where they decay. This
is done by measuring the tracks of the decay products with detectors which have a
good spatial resolution and reconstructing the position where the hyperon decayed.
The number of hyperons decreases exponentially with time and this is reflected in
an exponential decrease in the number N of decay positions a distance / away from
the target:

N = Nye /™ = Nye /" (16.67)
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The method of invariant masses must, of course, be used to identify which sort of
hyperon has decayed. The average decay length L is then related to the lifetime 7 as
follows

L=yvr, (16.68)

where v is the velocity of the hyperon. With high beam energies the secondary
hyperons can have time dilation factors y = E/mc? of the order of 100. Since the
hyperons typically have a lifetime of around 107! s the decay length will typically
be a few metres — which may be measured to a good accuracy.

The measurement of the branching ratios is much more complicated. This is
because the vast majority of decays are into hadrons (which may therefore be used to
measure the decay length). The semileptonic decays are only about one thousandth
of the total. This means that those few leptons must be detected with a very high
efficiency and that background effects must be rigorously analysed.

The experiments are in fact sufficiently precise to put the Cabibbo theory to the
test. The method is similar to that which we used in the case of the -decay of the
neutron. Using the relevant matrix element and phase space factors one calculates
the decay probability of the decay under consideration. The calculation, which still
contains cy and ca, is then compared with experiment.

Consider the strangeness-changing decay 2~ — A’ + e~ + V.. The matrix
element for the Fermi decay is

3
G
Myl = 7 [uds] Y- Tie|dss)] (16.69)

i=1

where we have assumed that the coupling constant cy = 1 is unchanged. Applying
the operator T+ to the flavour eigenstate |s) yields a linear combination of |u)
and |c). Just as was the case for the f-decay of the neutron the matrix element
thus contains a Cabibbo factor, here sin 8c. The Gamow-Teller matrix element is
obtained from

3
ga GF
(Miler = o V [(uds | Y " T;yoy|dss)] . (16.70)

i=1

Of course the evaluation of the o operator depends upon the wave functions of the
baryons involved in the decay.

The analysis of the data confirms the assumption that the ratio A = ga/gv has the
same value in both hyperon and neutron decays. The axial current is hence modified
in the same way for all three light-quark flavours.
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16.7 How Good Is the Constituent-Quark Concept?

We introduced the concept of constituent quarks so as to describe the meson and
baryon mass spectrum as simply as possible. We thus viewed constituent quarks
as the effective building blocks from which the hadrons can be constructed. This
means, however, that we should be able to derive all the hadronic quantum numbers
from these effective constituents. Furthermore we have tacitly assumed that we
are entitled to treat constituent quarks as elementary particles whose magnetic
moments, just like the electrons’, obey a Dirac relation (16.13). That these ideas
work has been seen in the chapters treating the meson and baryon masses and the
magnetic moments. Various approaches led us to constituent-quark masses which
were in good agreement with each other and furthermore the magnetic moments
of the model were generally in very good agreement with experiment. Constituent
quarks are not, however, fundamental elementary particles as we understand the
term. This role is reserved for the “naked” valence quarks which are surrounded
by a cloud of virtual gluons and quark-antiquark pairs. It is not at all obvious why
constituent quarks may be treated as though they were elementary.

We can view the constituent-quark model as an extension of the model for the
heavy quarkonia to mesons and baryons composed of light quarks. As we have
seen, the excited states of the quarkonia allow us to construct the potential between
the quarks and antiquarks using non-relativistic quantum mechanics. The potential
has two components, the short-distance part with the 1/r dependence and the
confinement part at distances greater than approximately 0.2 fm. The simplicity of
the quarkonia states is the consequence of the large masses of the charm and bottom
quarks. The quark and antiquark move predominantly in the short-distance potential
and their velocities are well non-relativistic. The bare masses of the charm and
bottom quarks are determined from production experiments; only slightly higher
constituent-quark masses are obtained from the best fits to the quarkonia spectra.

The situation in the light-quark domain is dramatically different. The three
bare quarks defining the baryon properties have all together a mass of less than
20MeV/c?, while the nucleon mass is 938 MeV/c?. Thus, approximately 98 % of
the nucleon mass is coming from something else. From deep-inelastic scattering
experiments we learned that this mass is due to gluons and quark-antiquark pairs.
We denote the quantum mechanical state of these gluons and quark-antiquark pairs
confined in the nucleon as a condensate in analogy to different degenerated states
of bosons in solid state physics. What these condensates exactly are is one of the
outstanding problems of non-perturbative QCD.

In constituent-quark models one ascribes the nucleon mass equally distributed
to the constituent quarks without any theoretical justification. Constituent quarks
with masses of 330 MeV/c?> move predominantly in the confinement potential and
cannot be treated non-relativistically. As we do not know the effective masses of the
constituent quarks we cannot separate their fitted masses into a mass and a kinetic
energy term. From deep-inelastic scattering and other experiments we obtained two
additional informations: the distribution of the light u- and d-antiquarks in the quark
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sea of the nucleon is not flavour symmetric, i.e., in the proton there is an excess
of d compared to @i; furthermore, only about one third of the nucleon’s spin can
be attributed to the spins of the quarks. The excess of the d-antiquarks can be
interpreted by finding a 7 T -meson with a certain probability (~15 %) in the proton.
By isospin symmetry, we have the same probability of finding a 7~ -meson in the
neutron that also can be related to the neutron’s negative charge density at large
radii that we have derived from its electric form factor. This large probability of
finding a pion in the nucleon can explain the dominance of the pion exchange in
low-energy nucleon-nucleon interactions. The missing quark angular momentum to
the nucleon’s spin is an additional hint that the structure of the nucleon is more
complicated than assumed by being composed of three constituent quarks.

Problems

1. Particle production and identification

A liquid hydrogen target is bombarded with a |p| =12GeV/c proton beam.
The momenta of the reaction products are measured in wire chambers inside
a magnetic field. In one event six charged particle tracks are seen. Two of them
go back to the interaction vertex. They belong to positively charged particles.
The other tracks come from two pairs of oppositely charged particles. Each of
these pairs appears “out of thin air” a few centimetres away from the interaction
point. Evidently two electrically neutral, and hence unobservable, particles were
created which later both decayed into a pair of charged particles.

(a) Make a rough sketch of the reaction (the tracks).

(b) Use Tables 15.2, 15.3 and 16.1 as well as [15] to discuss which mesons
and baryons have lifetimes such that they could be responsible for the two
observed decays. How many decay channels into two charged particles are
there?

(c) The measured momenta of the decay pairs were:

(1) |py| =0.68GeV/c, |p_| =0.27GeVic, 3 (py,p_) =11°%
() |p4| =025GeVic, |p_| =2.16GeVic,3(p,, p_) = 16°.

The relative errors of these measurements are about 5 %. Use the method
of invariant masses (16.1) to see which of your hypotheses from (b) are
compatible with these numbers.

(d) Using these results and considering all applicable conservation laws produce
a scheme for all the particles produced in the reaction. Is there a unique
solution?
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2. Baryon masses
Calculate expressions analogous to (16.11) for the mass shifts of the ¥ and X*
baryons due to the spin-spin interaction. What value do you obtain for e (0)|?
if you use the constituent-quark masses from Sect. 16.3?

3. Isospin coupling
The A hyperon decays almost solely into A’ —p + 7~ and A° —n + 7°. Apply
the rules for coupling angular momenta to isospin to estimate the ratio of the two
decay probabilities.

4. Muon capture in nuclei
Negative muons are slowed down in a carbon target and then trapped in atomic
1 s states. Their lifetime is then 2.02 s which is less than that of the free muon
(2.097 ws). Show that the difference in the lifetimes is due to the capture reaction
2C+p~ — '”B + v,,. The mass difference between the '?B and '“C atoms is
13.37 MeV/c? and the lifetime of >B is 20.2 ms. '?B has, in the ground state, the
quantum numbers J* = 17 and T = 20.2 ms. The rest mass of the electron and
the nuclear charge may be neglected in the calculation of the matrix element.

5. Quark mixing
The branching ratios for the semileptonic decays ¥~ — n+e~ + V. and £~ —
A® + e~ + V. are 1.02- 1073 and 5.7 - 107 respectively — a difference of more
than an order of magnitude. Why is this? The decay ¥ — n + e + v, has not
yet been observed (upper bound: 5 - 107°). How would you explain this?

6. Parity

(a) The intrinsic parity of a baryon cannot be determined in an experiment; it is
only possible to compare the parity of one baryon with that of another. Why
is this?

(b) It is conventional to ascribe a positive parity to the nucleon. What does this
say about the deuteron’s parity (see Sect. 17.2) and the intrinsic parities of
the u- and d-quarks?

(c) If one bombards liquid deuterium with negative pions, the latter are slowed
down and may be captured into atomic orbits. How can one show that they
cascade down into the 1s shell (K shell)?

(d) A pionic deuterium atom in the ground state decays through the strong
interaction via d + 1~ — n + n. In which 2*!L; state may the two neutron
system be? Note that the two neutrons are identical fermions and that angular
momentum is conserved.

(e) What parity follows from this for the pion? What parity would one expect
from the quark model (see Chap. 15)?

(f) Would it be inconsistent to assign a positive parity to the proton and a
negative one to the neutron? What would then be the parities of the quarks
and of the pion? Which convention is preferable? What are the parities of the
A and the A, according to the quark model?
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Chapter 17
The Nuclear Force

Unfortunately, nuclear physics has not profited as much from
analogy as has atomic physics. The reason seems to be that the
nucleus is the domain of new and unfamiliar forces, for which
men have not yet developed an intuitive feeling.

V. L. Telegdi [15]

The enormous richness of complex structures that we see all around us (molecules,
crystals, amorphous materials) is due to chemical interactions. The short-distance
forces through which electrically neutral atoms interact can and do produce large
scale structures.

The interatomic potential can generally be determined from spectroscopic data
about molecular excited states and from measuring the binding energies with
which atoms are tied together in chemical substances. These potentials can be
quantitatively explained in non-relativistic quantum mechanics. We thus nowadays
have a consistent picture of chemical binding based upon atomic structure.

The nuclear force is responsible for holding the nucleus together. This is an
interaction between colourless nucleons and its range is of the same order of
magnitude as the nucleon diameter. The obvious analogy to the atomic force is,
however, limited. In contrast to the situation in atomic physics, it is not possible
to obtain detailed information about the nuclear force by studying the structure of
the nucleus. The nucleons in the nucleus are in a state that may be described as
a degenerate Fermi gas. To a first approximation the nucleus may be viewed as a
collection of nucleons in a potential well. The behaviour of the individual nucleons
is thus more or less independent of the exact character of the nucleon-nucleon force.
It is therefore not possible to extract the nucleon-nucleon potential directly from
the properties of the nucleus. The potential must rather be obtained by analysing
two-body systems such as nucleon-nucleon scattering and the proton-neutron bound
state, i.e., the deuteron.

There are also considerably greater theoretical difficulties in elucidating the
connection between the nuclear forces and the structure of the nucleon than for
the atomic case. This is primarily a consequence of the strong coupling constant o
being two orders of magnitude larger than «, its electromagnetic equivalent. We will
therefore content ourselves with an essentially qualitative explanation of the nuclear
force.
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17.1 Nucleon-Nucleon Scattering

Nucleon-nucleon scattering at low energies, below the pion production threshold, is
purely elastic. At such energies the scattering may be described by non-relativistic
quantum mechanics. The nucleons are then understood as point-like structureless
objects that nonetheless possess spin and isospin. The physics of the interaction can
then be understood in terms of a potential. It is found that the nuclear force depends
upon the total spin and isospin of the two nucleons. A thorough understanding
therefore requires experiments with polarised beams and targets, so that the spins of
the particles involved in the reaction can be specified, and both protons and neutrons
must be employed.

If we consider nucleon-nucleon scattering and perform measurements for both
parallel and antiparallel spins perpendicular to the scattering plane, then we can
single out the spin triplet and singlet parts of the interaction. If the nucleon spins
are parallel, then the total spin must be 1, while for opposite spins there are equally
large (total) spin 0 and 1 components.

The algebra of angular momentum can also be applied to isospin. In proton-
proton scattering we always have a state with isospin 1 (an isospin triplet) since the
proton has I3 = +1/2. In proton-neutron scattering there are both isospin singlet
and triplet contributions.

Scattering phases Consider a nucleon coming in “from infinity” with kinetic
energy E and momentum p which scatters off the potential of another nucleon.
The incoming nucleon may be described by a plane wave and the outgoing nucleon
as a spherical wave. The cross-section depends upon the phase shift between these
two waves.

For states with well defined spin and isospin the cross-section of nucleon-nucleon
scattering into a solid angle element d2 is given by the scattering amplitude f(6) of
the reaction

d
o =OF (17.1)

For scattering off a short ranged potential a partial wave decomposition is used to
describe the scattering amplitude. The scattered waves are expanded in terms with
fixed angular momentum £. In the case of elastic scattering the following relation
holds at large distances r from the centre of the scattering:

1 & s
£(0) = Z g (2€ + 1) € sind; Py(cos ), (17.2)

where

[\
S

1 | pl
o 5 (17.3)
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is the wave number of the scattered nucleon, §; a phase shift angle and Py, the
angular momentum eigenfunction, an £-th order Legendre polynomial. The phase
shifts §; describe the phase difference between the scattered and unscattered waves.
They contain the information about the shape and strength of the potential and
the energy dependence of the cross-section. The fact that §, appears not only as
a phase factor but also in the amplitude (sin é¢) follows from the conservation of
the particle current in elastic scattering. This is also known as unitarity. The partial
wave decomposition is especially convenient at low energies since only a few terms
enter the expansion. This is because for a potential with range a we have

RS (17.4)

The phase shift §, of the partial waves with £ = 0 (i.e., s waves) is decisive
for nuclear binding. From (17.4) we see that the s waves dominate proton-proton
scattering (potential range 2 fm) for relative momenta less than 100 MeV/c. The
Legendre polynomial Py is just 1, i.e., independent of 6. The phase shifts §y as
measured in nucleon-nucleon scattering are separately plotted for spin triplet and
singlet states against the momentum in the centre-of-mass frame in Fig. 17.1. For
momenta larger than 400 MeV/c &, is negative, below this it is positive. We learn
from this that the nuclear force has a repulsive character at short distances and an
attractive nature at larger separations. This may be simply seen as follows.

Consider a, by definition, spherically symmetric s wave v (x). We may define a
new radial function u(r) by u(r) = ¥ (r) - r which obeys the Schrodinger equation

d?u(r) n 2m(E —V) 4

s - (r)=0. (17.5)

Fig. 17.1 The phase shift &y A
as determined from
experiment both for the spin
triplet-isospin singlet 3S; and
for the spin singlet-isospin
triplet 'Sy systems plotted
against the relative momenta
of the nucleons. The rapid
variation of the phases at
small momenta is not plotted
since the scale of the diagram
is too small 0.25 T
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Fig. 17.2 Sketch of the scattering phase for a repulsive (leff) and an attractive (right) potential.
The dashed curves denote unscattered waves, the continuous ones the scattered waves

If we now solve this equation for a repulsive rectangular potential V with radius b
and V — oo (Fig. 17.2 (left)), we find

8o = —kb . (17.6)

The scattering phase is negative and proportional to the range of the potential. A
negative scattering phase means that the scattered wave lags behind the unscattered
one.

For an attractive potential the scattered wave runs ahead of the unscattered one
and §y is positive (Fig. 17.2 (right)). The size of the phase shift is the difference
between the phase of the wave scattered off the edge of the potential a and that of
the unscattered wave:

E V2mc2(E + |V]) - V2mc2E -
8o = arctan tan Y- (E+|V])-a B o 4. 17.7)
E+ V| hc

he

The phase shift §, is then positive and decreases at higher momenta. If we
superimpose the phase shifts associated with a short ranged repulsive potential and
a longer ranged attractive one we obtain Fig. 17.3, where the effective phase shift
changes sign just as the observed one does.

The relationship between the scattering phase 8y and the scattering potential
V is contained, in principle, in (17.6) and (17.7) since the wave number £ in the
region of the potential depends both upon the latter’s size and shape and upon the
initial energy E of the projectile. A complete scattering phase analysis leads to
the nuclear potential shown in Fig. 17.4 which has — as remarked above — a short
ranged repulsive and a longer ranged attractive nature. Since the repulsive part of
the potential increases rapidly at small 7 it is known as the hard core.

The nucleon-nucleon potential We may obtain a general form of the nucleon-
nucleon potential from a consideration of the relevant dynamical quantities. We
will, however, neglect the internal structure of the nucleons, which means that
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Fig. 17.3 Superp