

 MATLAB for Psychologists

Mauro Borgo ● Alessandro Soranzo
Massimo Grassi

MATLAB for Psychologists

Mauro Borgo
Via Marosticana 168
Dueville (VI), Italy

Massimo Grassi
Department of General Psychology
University of Padova
Padova, Italy

Alessandro Soranzo
School of Social Science & Law
University of Teesside
Middlesbrough, UK

ISBN 978-1-4614-2196-2 e-ISBN 978-1-4614-2197-9
DOI 10.1007/978-1-4614-2197-9
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012931943

© Springer Science+Business Media, LLC 2012
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

 To my three women: my wife, Tatiana,
my mother, Angelina, and my grandmother
Emilia

 –Mauro Borgo

 To my father
 –Alessandro Soranzo

 To Viola and Ruggero
 –Massimo Grassi

vii

 Psychological researchers should possess several skills, and one of them is surely
creativity. Creativity is needed at several key points of the research process, such as in
creating experimental stimuli and planning and designing an experiment. Creativity
drives good data analysis, so that numbers can reveal their full potential.

 Much of this creativity is now expressed through a computer program. For exam-
ple, in planning and designing a psychological experiment and in analyzing data, we
use specifi c software that has been dedicated to that particular job. This software
might, however, be a hindrance to creativity, preventing it from permeating research.
This is because in the majority of cases, software is designed to satisfy the average
user and it is not fl exible enough to meet specifi c needs.

 In this sense, MATLAB is exactly the other side of the coin. When we fi rst open
the software, the lack of a graphical interface may be frustrating: at a fi rst glance,
the program may seem diffi cult to use. This book is aimed at helping users in their
fi rst approaches to this software, to aid them in programming their psychological
experiments and consequently in liberating their creativity. And this is MATLAB’s
major advantage: we do not have to adapt our needs to the software; it is the soft-
ware that adapts to our needs.

 MATLAB is an extremely powerful research tool. By means of this single soft-
ware tool we can control every step of our research. We can create stimuli of any
kind (e.g., pictures, sounds), and we can program psychological experiments, calcu-
late statistics, run simulations, and do any kind of signal or biosignal processing.
In brief, the fl exibility of this software lets us to control and customize every con-
ceivable step of our research requiring a computer program. Moreover, knowledge
of MATLAB will help you to fi nd a postdoc in experimental psychology after com-
pleting the Ph.D. In many cases, research groups look for researchers with good
MATLAB programming skills.

 The current text is written to help the newcomer in using MATLAB for research
in experimental psychology. However, the content can be transferred to any applica-
tion. The reader can fi nd the scripts written in this book at the following web page:
http://www.psy.unipd.it/~grassi/matlab_book.html

 Preface

viii Preface

 A fi nal recommendation for the reader: do not begin to work with MATLAB
without a goal. Our teaching experience suggests that having a goal greatly acceler-
ates your learning. Therefore, think immediately about the amazing custom code
you need to complete your state-of-the-art research. That code is here in this book,
waiting to be written by you.

Dueville (VI), Italy Mauro Borgo
Middlesbrough, UK Alessandro Soranzo
Padova, Italy Massimo Grassi

ix

 Thanks to Professor Silvano Pupolin for his support.

 Acknowledgments

xi

 1 Basic Operations ... 1
Variables .. 5
Thinking in a Matrix Way ... 8
Operations ... 15
Summary ... 17
Exercises ... 18
A Brick for an Experiment .. 20
References ... 23
Suggested Readings .. 23

 2 Data Handling ... 25
Types of Variables (Logical Values, Strings, NaN, Structures, Cells) 25

Logical Variables... 25
Strings ... 31
NaN ... 35
Structures .. 35
Cells .. 38

Import/Export .. 40
Summary ... 42
Exercises ... 43
A Brick for an Experiment .. 44

Read the Results .. 44
Reference .. 46
Suggested Readings .. 46

 3 Plotting Data .. 47
Plot Data .. 47
Control the Plot’s Objects: Labels, Legend, Title… 50
Subplot: Multiple Plots in One Figure .. 52
3-D Plots ... 56
Printing and Saving Images .. 58

 Contents

xii Contents

Handle Graphics .. 58
Summary ... 61
Exercises ... 62
A Brick for an Experiment .. 64

Plot the Results ... 64
Reference .. 65
Suggested Readings .. 65

 4 Start Programming ... 67
M-Scripts and Functions ... 67
Control Flow Statements... 70

Cycles and Conditionals: If ... 70
Switch Case ... 72
For Loops ... 74
While .. 78
Break ... 81
Try–Catch ... 82
Loops Versus Matrices and If Versus Logicals 82

Functions ... 83
Scope of Variables ... 86
Change the Number of Inputs and Outputs ... 87

More on Data Import/Export: Script Examples .. 90
Analysis .. 95

Guidelines for a Good Programming Style ... 96
Writing Code ... 96
Debug .. 98

Summary ... 100
Exercises ... 101
A Brick for an Experiment .. 102

Analysis .. 104
References ... 106
Suggested Readings .. 106

 5 A Better Sound ... 107
Generate a Sound .. 107
Multiple Sounds .. 112
Manipulating a Sound’s Level .. 114

Match the Level of Sound with Different Waveforms 115
Stereophonic Sounds for ITD and ILD ... 116
A Sound’s Envelope .. 118
Sound Filtering.. 120
Sound Analysis.. 123
Summary ... 125
Exercises ... 125

xiiiContents

A Brick for an Experiment .. 126
References ... 127
Suggested Readings .. 128

 6 Create and Proccess Images ... 129
Images Basics .. 129

Importing and Exporting Images .. 132
Display Images .. 134

Basic Manipulation of Images .. 135
Point Operations .. 136

Intensity Transformation ... 136
Windowing .. 138

Neighborhood Processing ... 140
The Edges of the Image .. 144

Advanced Image Processing ... 144
Creating Images by Computation ... 144
Summary ... 149
Exercises ... 150
References ... 151
Suggested Readings .. 152

 7 Data Analysis ... 153
Descriptive Statistics ... 153

Measures of Central Tendency .. 153
Measures of Dispersion ... 154

Bivariate and Multivariate Descriptive Statistics 155
Covariance .. 156
Simple and Multiple Linear Regression ... 156
Generalized Linear Model .. 160

Inferential Statistics .. 162
Parametric Statistics .. 162
t-Test ... 163
ANOVA ... 166

Nonparametric Statistics ... 177
Categorical Data .. 177
Ordinal Data .. 179
Signal-Detection Theory (STD) Indexes .. 182

Summary ... 184
Exercises ... 185
A Brick for an Experiment .. 186
References ... 187
Suggested Readings .. 187

xiv Contents

 8 The Charm of Graphical User Interface ... 189
Introduction ... 189
GUIDE .. 189

Starting GUIDE .. 190
The GUI Toolbar ... 190

Adding UiControls to the GUI .. 191
Closing the GUI .. 193

Controlling UiControls from Other UiControls .. 196
The Sum-Two-Numbers Example .. 196
Displaying Graphs and Figures in the GUI ... 202

Saving User Input ... 204
Adding Your Own Functions .. 207

A Brick for an Experiment .. 212
Appendix ... 215

The File Menu ... 216
The Edit Menu .. 216
The View Menu ... 217
The Layout Menu .. 217
Tools Menu ... 218
Help ... 218

Preferences for GUIDE ... 219
Backward Compatibility ... 220
Other Preferences .. 221

Suggested Readings .. 221

 9 Psychtoolbox: Video .. 223
The Screen Function ... 223

Analysis .. 225
How to Use Screen to Get Information ... 225
How to Use Screen to Draw Figures ... 227

Preliminary Notions: Drawing Figures in Three Steps—Opening,
Drawing, and Closing ... 227
Opening the Window .. 227
Drawing: An Introduction ... 229
Closing .. 230

Drawing: Reprise .. 230
Analysis .. 231
Drawing Shapes .. 231

Batch Processing: Drawing Multiple Figures at Once 235
Drawing Text ... 236
Importing Images .. 238

Analysis ... 239
Video Clips .. 240

Analysis ... 240
Analysis ... 241

Drawing Things at the Right Time .. 241

xvContents

Analysis ... 243
Summary ... 243
Exercises ... 244

Exercise 1 .. 244
Solution 1 .. 244
Exercise 2 .. 244
Solution 2 .. 245

A Brick for an Experiment .. 245
References ... 248
Suggested Readings .. 248

10 Psychtoolbox: Sound, Keyboard and Mouse .. 249
Timing ... 249
Priority .. 250
Sound Functions.. 251
Getting Participants’ Inputs: Keyboard and Mouse Functions 253

Keyboard Response .. 253
“Press Any Key to Proceed” ... 254
“Press the Spacebar to Proceed” ... 254
“Press Any Key to Respond” .. 256
Reaction-Time Detection .. 256
Choice Reaction Time ... 258
Go/No-Go Reaction Time ... 259
Reaction Times Within a Video Clip... 260
Mouse Input .. 262

Using Participants’ Input to Manipulate Shape Characteristics 263
Keyboard Manipulations ... 264
Placing Discs with the Mouse ... 266

Summary ... 267
Exercises ... 268

Exercise 1 ... 268
A Brick for an Experiment .. 269
References ... 272
Suggested Readings .. 273

About the Authors ... 275

Index .. 277

1M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_1, © Springer Science+Business Media, LLC 2012

 This chapter gives an overview of MATLAB and compares MATLAB with a scientifi c
calculator. The chapter gives also an overview of basic arithmetic operations and
functions as well as a short introduction to matrices and matrix manipulation.

 It is supposed that you have already installed MATLAB on your computer. When
you start MATLAB, the MATLAB desktop opens, as shown in Fig. 1.1 (or some-
thing similar, depending on your MATLAB version). In this fi rst chapter we refer
only to the Command Window, where the special >> prompt appears. The other
windows have the following meaning:

 The Workspace Window contains a list of variables that are in use in the working •
session.
 The Command History contains the list of all commands you have typed in the •
command window.
 The Current Folder window shows the list of the fi les contained the folder you •
are working on.

 When the prompt >> is visible, this means that MATLAB is waiting for a com-
mand. You can quit MATLAB at any time in either of the following ways:

 1. Select Exit MATLAB from the desktop File menu.
 2. Enter quit or exit after the command window prompt >> , and press the Enter key.

 Alternatively, select File with the mouse from the top menu bar, and then exit
MATLAB.

 Observe that the tab above the Workspace shows the Current Directory Window.
For example, in the Windows operating system, the path might be as follows:
C:\MATLAB\Work, indicating that directory “Work” is a subdirectory of the main
directory “MATLAB,” which is installed in drive C. Clicking on the arrow in the
Current Directory Window shows a list of recently used paths. Clicking on the but-
ton to the right of the window allows the user to change the current directory.
Knowing which is the current path is fundamental: from the Command Window you

 Chapter 1
 Basic Operations

2 1 Basic Operations

have access to the fi le stored in the given directory. It is, of course, possible to
change your working directory.

 Before continuing our introduction to MATLAB, we want to highlight a very
useful window: the HELP Window. This window is the most useful window for
beginning MATLAB users—and for expert users as well: select Help►
PRODUCTHELP from the top bar menu. The Help Window has most of the fea-
tures you would see in any web browser, including clickable links, a back button,
and a search engine. All MATLAB commands and functions are explained with
examples: you have simply to search for the desired word.

 Now let us begin with a description of the MATLAB language. The word
“MATLAB” is the concatenation of the words MATrix LABoratory, meaning that
MATLAB is an interactive software system for numerical computation, especially
designed for computations with matrices. Before going into the details of matrix
computations, let us fi rst see how to use MATLAB to do simple arithmetic opera-
tions: Type 1+1 after the >> prompt, followed by Enter; that is, press the Enter key,
as indicated by <ENTER>

 >> 1+1 <ENTER>

 MATLAB gives its quick answer by displaying the following message:

 ans =
 2

 Fig. 1.1 The MATLAB desktop. MATLAB release 2011b

31 Basic Operations

 You can perform other arithmetic operations, such as multiplication, subtraction, and
division, and MATLAB always returns the correct result. If such is not the case, there
is certainly something wrong with what you typed. For example, you can try the
following operations (type the operation after the >> prompt followed by Enter):

 To TYPE after prompt >>
followed by Enter MATLAB answer Meaning of the operation

 35*12 ans = 420 Multiplication

 2/45 ans = 0.0444 Division

 4−1 ans = 3 Subtraction

 2^3 ans = 8 Exponentiation

 Note that to type numbers such as the Avogadro’s number 6.023 × 10 23 , you can
either write the expression 6.023*10^23 or you can represent the number in scien-
tifi c notation. To enter Avogadro’s number in scientifi c format, type 6.023e23, where
6.023 is the mantissa and 23 is the exponent. Mantissa and exponent must be sepa-
rated by the letter e (or E):

 >> 6.023*10^23 <ENTER>
 ans =

 6.0230e+023

 >> 6.023e23 <ENTER>
 ans =

 6.0230e+023

 Such numbers are also defi ned to be fl oating point.
 MATLAB warns you in the case of in invalid operation or “unexpected” results.

What do you think MATLAB will show us if we type 12/0 or 0/0? Let’s try it:

 To TYPE after prompt >>
followed by Enter MATLAB answer Meaning of the answer

 12/0 ans = Inf You should not divide by zero, but if
you do, the result is Infi nity

 0/0 ans = NaN Unable to fi nd the answer, so the
result is NaN = Not a Number

 11+ ??? 11+
 |

 Error: Expression
or statement is
incomplete or
incorrect

 If you want to perform this
operation, you must complete the
expression with another term

 As you can see, MATLAB is unable to “stay quiet.” It quickly answers your
 commands by displaying something in the command window. In the previous cases,
the answer was a special value such as Inf (Infi nity) or NaN (Not a Number) . You
can use these special values on their own, typing, for example:

 >> 12/Inf <ENTER>
 ans =

 0

4 1 Basic Operations

 MATLAB can be used as a scientifi c calculator, combining several operations in
one expression. The computation of the expression is based on well-known mathe-
matical rules. In particular, some operations are performed before others, based on
precedence rules, which are given in the following table:

 Precedence Operator

 1 Parentheses (round brackets)

 2 Exponentiation, left to right

 3 Multiplication and division, left to right

 4 Addition and subtraction, left to right

 If you want to know the result of the operation {2+[5*3/(7−5) 2]/3} you have to type:

 >> (2+(5*3/(7-5)^2)/3) <ENTER>
 ans =

 3.2500

 In this example, MATLAB fi rst calculates (7−5) = 2, then it squares 2^2 = 4, then
it performs the multiplication 5*3 = 15 (multiplication left to right), and then divides
the result by the previously computed result, i.e., 15/4 = 3.75. The result in brackets
is divided by 3 (3.75/3 = 1.25) and then added to 2, giving the result. Note that in
MATLAB, parentheses are always given by round brackets.

 MATLAB was developed for scientists, and for this reason you can fi nd built-in
operations and functions that are more advanced than the ones we have just looked
at. Considering MATLAB as a sort of scientifi c calculator, you can engage the
“cosine button” simply by typing:

 >> cos(36) <ENTER>
 ans =

 -0.1280

 Other common functions are reported in the following table. Type the operation
after the >> prompt followed by Enter:

 To TYPE after prompt >>
followed by Enter MATLAB answer Meaning of the operation

 cos(12) ans = 0.8439 Cosine of the element in parentheses

 sin(12) ans = −0.5366 Sine of the element in parentheses

 tan(4) ans = 1.1578 Tangent of the element in parentheses

 exp(3) ans = 20.0855 Exponential of the element in parentheses

 log(10) ans = 2.3026 Natural logarithm of the element in parentheses

 log10(12) ans = 1.0792 Base-10 logarithm of the element in parentheses

 We will see in the rest of the book the possibility using many other functions.
Just to introduce some: statistical functions, interpolation functions, linear-algebraic
functions, functions for images and sound elaboration, and last but not least, your
own custom-created functions!

5Variables

 We conclude by giving some hints on creating and editing command lines:

 You can select (and edit) previous commands you have entered using the up-•
arrow and down-arrow keys. Remember to press Enter to execute the
command.
 MATLAB has a useful editing feature called • smart recall . Just type the fi rst few
characters of the command you want to recall, e.g., type the characters lo and
press the up-arrow key—this recalls the most recent command starting with lo .
The result might be, for example, log(10) or log10(12).

 Variables

 Thus far, we have seen the use of MATLAB as a scientifi c calculator. However,
MATLAB is much more than a calculator, and the main difference is the possibility
to use “variables.” In a scientifi c calculator we can save and recall a single number
only. In MATLAB, in contrast (as in other programming languages), we can store
and recall virtually an infi nity of different values called variables . A variable is a
sort of box, having a certain shape, a certain dimension, with a label naming it. In
such a box you can put the (virtual) item you need, for example a number, an image,
and so on.

 Suppose you want to save a number representing your age. You can create your
own variable and store it by simply typing the following command:

 >> age=22 <ENTER>
 age =

 22

 The symbol age is the variable name (the box name), which contains the number
22. Each time you recall (type) such a name, the content of the variable is used; in
this simple case, it is displayed. Type again the variable name:

 >> age <ENTER>
 age=

 22

 You can defi ne other variables, for example the number of your friends. Just type:

 >> Nfriends = 132 <ENTER>
 Nfriends =

 132

6 1 Basic Operations

 At this stage, you may wonder about the shape of the box or its volume. The answer
is not straightforward. However, by typing the whos command, MATLAB prompts
all the variables currently active in the working session:

 >> whos <ENTER>

 Name Size Bytes Class Attributes
 age 1 × 1 8 double
 Nfriends 1 × 1 8 double

 The whos command gives you a list of all the variables created in the workspace
together with their characteristics. In order to understand the meaning of such
characteristics, consider the analogy between variable and box, as presented in the
following table:

 Variable Box Visual interpretation

 Name Name of the box

 Size Number of objects you have put in
(in the previous case, just one
object, i.e., 1 × 1).

 Bytes Total volume of the box. This is the
number of objects multiplied by
the dimension of each (to store
a number you need 8 bytes)

 Class Type of object you can put inside
the box (in the previous case,
it is a number stored with double
precision)

 Attributes Other information

 Note that the variables list obtained using the command whos can readily be seen
in the Workspace Window (see Fig. 1.1).

 One nice thing that MATLAB does when you create a variable is that it automati-
cally selects the most suitable type of box for the variable. You need, however, to
know a few simple rules about variable names:

 1. The variable name must start with a letter.
 2. It may consist only of the letters a–z, the digits 0–9, and the underscore (_). You

cannot have a name with spaces or others symbols (such as +, ^, *).
 3. MATLAB is case-sensitive, which means that it distinguishes between upper-

and lowercase letters. So age is different from AgE or Age .

7Variables

 Try to create the following variables by typing them after the >> prompt fol-
lowed by Enter: N-friends = 12 , $aDay = 60 , 3rd_classifi ed = 11 . What hap-
pens, and why? MATLAB gives you the following error:

 ??? $aDay=60
 |

 Error: The input character is not valid in MATLAB statements or expressions.

 Obviously, in these examples we didn’t follow the aforementioned rules (use of
the character—and $, beginning the name with a number).

 MATLAB has a few predefi ned variable names. Some of these are presented in
the following table:

 To TYPE after prompt >>
followed by Enter MATLAB answer Value contained in the variable

 Pi ans = 3.1416 p

 Esp ans = 2.2204e-016 Floating-point relative accuracy, i.e., the
distance from 1.0 to the next largest
double-precision number

 j ans = 0 + 1.0000i Imaginary unit, i.e., sqrt(−1), used to
enter complex numbers

 I ans = 0 + 1.0000i Imaginary unit, i.e., sqrt(−1), used to
enter complex numbers

 NaN ans = NaN Not a number

 Inf ans = inf Infi nity

 You can redefi ne a variable by simply assigning it a new value:

 >> pi=12 <ENTER>
 pi =

 -12
 >> pi <ENTER>
 pi =

 -12

 Once you have inserted a new value, you cannot recall the previous one. However,
in the special case of predefi ned variables, you can clear the redefi ned variable, and
the predefi ned variable is restored. To clear variables you use the command clear
followed by the variable name (or a list of them). Let’s try:

 >> clear pi <ENTER>

 MATLAB doesn’t give you an answer. However, the command has been executed.
Type the pi variable again, and MATLAB will return the value of p :

 >> pi <ENTER>
 ans =

 3.1416

8 1 Basic Operations

 The command clear can be followed by the specifi cation all , and all the variables
stored in the workspace are deleted. To test whether this is indeed the case, type the
 whos command:

 >> clear all <ENTER>
 >> whos <ENTER>
 >>

 Note that you receive no answer from MATLAB because there is nothing to display.
At the same time, you can see that the Workspace Window (Fig. 1.1) is empty.

 With variables you can type complex expressions and store the result. Let’s try:

 >> number=13; <ENTER>
 >> a=14; <ENTER>
 >> c=pi*((number+a/2)/10); <ENTER>

 MATLAB doesn’t give an answer because you ended the command with the
semicolon (;) which prevents the value of number from being echoed on the screen.
However, number still has the value 13, as you can see by entering its name without
a semicolon (or looking at the Workspace Window):

 >> number <ENTER>
 number =

 13
 >> c <ENTER>
 c =

 6.2832

 Thinking in a Matrix Way

 Our fi rst question about matrices is, “What is a Matrix?” We are not talking about
the fi lm , the sequels, the comic books, or the video games. For us, a matrix isn’t a
complex computer simulation that you have to do battle with to save humanity.
However, you can choose to continue to read the book (in analogy to the blue pill in
the fi lm that allows you to lead your normal life) to learn how use MATrix
LABoratory to create innovative experiments, thereby changing the world with your
discoveries.

 In MATLAB, a matrix is a rectangular array of numbers, as shown in the follow-
ing Fig. 1.2 .

 The horizontal lines of a matrix are called rows, and the vertical lines are called
columns. The numbers in the matrix are called entries. A matrix with m rows and n
columns is called an m × n matrix. A matrix one of whose dimensions equals one is
often called a vector. An m × 1 matrix (one column and m rows) is called a column
vector, and a 1 × n matrix (one row and n columns) is called a row vector.

9Thinking in a Matrix Way

 If you are familiar with the spreadsheet software Excel, you can imagine each
Excel worksheet as a matrix, with rows and columns.

 Now let’s try to defi ne some matrices and vectors in MATLAB. Type the follow-
ing statements as written:

 >> a=[3,5,7,8] <ENTER>
 a =

 5 12 -2 1
 >> b= [4;2;7;1] <ENTER>
 b =

 4
 2
 7
 1

 >> c= [3, 53,6;12,-93,145;4,7,1;0,-21,12] <ENTER>
 c =

 3 53 6
 12 -93 145
 4 7 1
 0 -21 12

 >> whos <ENTER>
 Name Size Bytes Class Attributes

 a 1x4 32 double
 b 4x1 32 double
 c 4x3 96 double
 number 1x1 8 double

 As you can see, after the command whos , each variable is displayed together
with its size expressed in rows × columns. (Note: if you have used other variables
previously, your list of variables could be different). Note that a scalar value, like the
variable number , can be considered a 1 × 1 matrix.

 Fig. 1.2 Matrices of various dimensions

10 1 Basic Operations

 Sometimes we need to know the size of the variables only, instead of the full list
of their properties. In this case, the function size(c) returns the number of rows
and columns of the variable c :

 >> size(c)
 ans =

 4 3

 Another useful function is length(c), which returns the length of the vector c .
If c is a matrix, the function length returns the number of rows only:

 >> length(c)
 ans=

 4

 To put data into a matrix, you must type the values within square brackets, sepa-
rated by spaces or commas for different elements in a row, while the semicolon (;)
is used to indicate the end of the row. Note that the number of elements must be the
same in each row:

 >> x=[1 2 3; 2 5 7] <ENTER>
 x =

 1 2 3
 2 5 7

 If you have not put the same number of elements in each row, MATLAB displays
an error:

 >> x = [2 3; 2 5 7];
 ??? Error using ==> vertcat
 CAT arguments dimensions are not consistent.

 As you can see, MATLAB is not a wizard who tries putting the missing element
in the right place. MATLAB does not know whether you want to put the element 2
and 3 in the fi rst and second columns or in the second and third columns
respectively.

 You can use a matrix or a vector to implement another variable. For example,
type in the following statements:

 >> x = [3 2 1]; <ENTER>
 >> y = [6,7,8]; <ENTER>
 >> z1 = [x -y]; <ENTER>
 >> z2 = [x; -y]; <ENTER>

11Thinking in a Matrix Way

 Can you work out what z1 and z2 will look like before displaying them? In the
following table we present other examples showing how to use variables already
implemented to create new variables:

 Mathematical
representation

 MATLAB (type after the
prompt >> followed by Enter) Dimension

 M=[3,12,pi]; 1 × 3 Row vector

3 12

8 9 10
N

p⎡ ⎤
= ⎢ ⎥

⎣ ⎦

 N=[3,12,pi; 8,9,10]; 2 × 3 Matrix

 Or equivalently, if you have already inserted M:

 N=[M; 8,9,10];

4

2

1

P

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 P=[4;2;−1] 3 × 1 Column

vector

4 4

2 2

1 1

Q

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 Q=[4, −4;2, −2;−1, 1]; 3 × 2 Matrix

 Or equivalently, if you have already inserted P:

 Q=[P;−P];

 If you do not specify any variable content (i.e., any values inside the square
brackets), MATLAB creates a variable of size zero with no value, or more precisely,
a matrix of dimension 0 × 0 with no value in it.

 >> y = []; <ENTER>
 >> whos y <ENTER>
 Name Size Bytes Class Attributes

 y 0x0 0 double

 The Workspace Browser in the desktop provides a handy visual representation of
the workspace. By clicking a variable in the Workspace Browser, we open the Array
Editor, which can be used to view and change values.

 The entry that lies in the i th row and the j th column of a matrix is typically
referred to as the (i , j), or (i , j)th entry of the matrix. For example, the (3,2) entry of
matrix Q in the table above is 1. In mathematical format, it is usually written as Q

3,2
 ,

while in MATLAB you can access to the matrix entries in this way:

 >> Q(3,2) <ENTER>
 ans =

 1

 Note the use of parentheses. For indexing you use parentheses, whereas to defi ne
a matrix, you use square brackets; otherwise, you get an error:

 >>Q[2,3]
 ??? Q[2,3]

 |
 Error: Unbalanced or unexpected parenthesis or bracket.

[]3 12M p=

12 1 Basic Operations

 In the following table you can fi nd other examples:

 Mathematical representation
 MATLAB (type after the
prompt >> followed by Enter)

 3,1Q is equal to −1

 >>Q(3,1)
 ans=

 -1

 2,2N is equal to 9

 >> N(2,2)
 ans=

 9

 1,3M is equal to p

 >> M(1,3)
 ans=

 3.1416

 2,1P is equal to 2

 >> N(2,1)
 ans=

 2

 If P and M are two vectors, it is possible to refer to their entries by referencing
only their single dimension, i.e., you can type M(3) instead of M(1,3), and N(2)
instead of N(2,1).

 If you refer to an element in a nonexistent position, MATLAB gives you an
alert:

 >> Q(3,3) <ENTER>
 ??? Index exceeds matrix dimensions.

 What happens if you want to address more than one element at time? This is pos-
sible in MATLAB using a vector (or a matrix) in the indexing place to express the
selected rows or columns:

 >> Q([1,3],2) <ENTER>
 ans =

 -4
 1

 How many values do you expect MATLAB to display when you type Q([1,3],[1,2]) ?
Two or Four? Let’s try:

 >> Q([1,3],[1,2]) <ENTER>
 ans =

 4 -4
 -1 1

 The answer is four, because MATLAB shows the values in the positions given by
each combination of the specifi ed rows and columns, i.e., Q

11
 , Q

12
 , Q

31
 , Q

32
 .

 Now suppose you have a large matrix from which you want to extract elements
going from the ith row to the jth row in the second column. MATLAB offers a very
effi cient way to this, namely the colon (:) operator. Before seeing how it works, let
us generate a new matrix:

 >> x=[1 2 3; 4 5 6; 7 8 9; 10 11 12; 13 14 15] <ENTER>

13Thinking in a Matrix Way

 x =
 1 2 3
 4 5 6
 7 8 9
 10 11 12
 13 14 15

 Now type:

 >> i=2; j=4; <ENTER>
 >> x(i:j,2) <ENTER>
 ans =

 5
 8
 11

 Note that more than one command has been typed on the fi rst line. This can be
done by separating commands with a semicolon. In addition, note that MATLAB
displays exactly the values from the second row to the fourth row in the second
columns. This is equivalent to:

 >> x([2 3 4],2) <ENTER>
 ans =

 5
 8
 11

 As a matter of fact, using the colon operator is equivalent to generating a vector
going from a given value to another one, possible using a prescribed increment
(step). The rule is:

 Start:Step:Stop

 Type the following commands:

 To TYPE after prompt
>> followed by Enter MATLAB answer Meaning of the operation

 2:5:25 ans =
 2 7 12 17 22

 Generate a vector going from 2 to 25
incremented by 5. Note that 22 + 5 = 27,
which is greater than 25. MATLAB will
generate numbers until it reaches or
exceeds the Stop value (i.e., 25)

 i:j ans =
 2 3 4

 Generate a vector going from 2 to 4. Here
the step value is not specifi ed, and
MATLAB uses the default value 1

 10:−3:−5 ans =
 10 7 4 1 -2 -5

 Generate a vector going from 10 to −5,
increasing the fi rst value by −5. This is
equivalent to generating a vector of
decreasing values

14 1 Basic Operations

 You now have three equivalent ways of accessing the third-row entries of x:

 >> x(3,[1 2 3]) <ENTER>
 ans =

 7 8 9
 >> x(3,1:3) <ENTER>
 ans =

 7 8 9
 >> x(3,:) <ENTER>
 ans =

 7 8 9

 In the last case, you do not need to specify the start and stop values when you use
the colon operator. MATLAB assumes that you mean the entire row. Analogously,
if you need the fi rst column only, you can type either x([1,2,3,4,5],1) or
 x([1:5],1) or x(:,1);

 By using the colon operator together with the empty array, we are able to delete
entire rows or entire columns. For example, to delete the entire second column of
x and then its third and fourth rows, type:

 >> x(:,2) = [] <ENTER>
 x =

 1 3
 4 6
 7 9
 10 12
 13 15

 >> x([3,4],:) =[] <ENTER>
 x =

 1 3
 4 6
 13 15

 Note that you cannot delete a single entry in a matrix because that would lead to
an ambiguity in its dimensions. So a statement like x(1,2)=[] returns an error:

 >> x(1,2)=[]
 ??? Subscripted assignment dimension mismatch.

 We conclude this paragraph by mentioning a way to create a matrix using index-
ing. In contrast to other computer languages, in MATLAB we do not need to
 declare a variable (i.e., tell to MATLAB what type of variable, how large it
is, etc.) before using it. MATLAB creates the variable on the fl y. So if you want to
insert the response time to the stimulus number 10, you can simply type :

 >> AnsTime(10)=1.34
 AnsTime =

 0 0 0 0 0 0 0 0
0 1.3400

15Operations

 MATLAB automatically creates the variable called AnsTime and put the number
you have entered in position 10. The unspecifi ed values are fi lled with zeros by
default.

 Operations

 There are operations that can be applied to modify the contents of a matrix without
changing the number of elements. These operations are matrix addition , scalar mul-
tiplication , and transposition . These form the basic techniques for dealing with
matrices, as displayed in the following table:

 Operation Defi nition Math example Matlab example

 Addition
(subtraction)

 The result of A + B
or (A−B) is calculated
entrywise, i.e., the
element B

i,j
 is added

to (subtracted from)
the element in A

i,j

1 5 2 3
,

2 3 4 1

3 8

6 4

1 2

2

2

A B

A B

A B

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤

+ = ⎢ ⎥
⎣ ⎦

−⎡ ⎤
− = ⎢ ⎥−⎣ ⎦

 >>A=[1,5;2,3];
 >>B=[2,3;4,1];
 >>A+B
 ans =

 3 8
 6 4

 >> A-B
 ans =

 -1 2
 -2 2

 Scalar
multiplication

 The multiplication of
a scalar (= number) s
by a matrix C is
obtained by
multiplying every
entry of C by s

3 2
, 4

4 1

12 8

16 4

C s

s C

⎡ ⎤
= =⎢ ⎥

⎣ ⎦
⎡ ⎤

⋅ = ⎢ ⎥
⎣ ⎦

 >>C=[3,2;4,1];
 >>s=4;
 >>s*C
 ans =

 12 8
 16 4

 Transposition The transpose of an
m × n matrix D is an
n × m matrix denoted
by D T obtained by
turning rows into
columns and columns
into rows

3 12 2

8 9 10

3 8

12 9

2 10

 T

D

D

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 >> D=[2,12,2;8,9,10];
 >> D’
 ans =

 3 8
 12 9
 2 10

 Multiplication of a matrix by another matrix is more complicated. Multiplication
of two matrices is well defi ned only if the number of columns of the left-hand
matrix is the same as the number of rows of the right-hand matrix. Matrix multipli-
cation may seem complex, and perhaps you will not use it very often. However, it
turns out to be useful when one of the matrices is a vector, so we give you the fol-
lowing defi nition:

 If A is an m × n matrix and B is an n × p matrix, then their matrix product AB is
the m × p matrix whose entries are given by the following equation.

 =

= ∑, , ,
1

()
n

i j i r r j
r

AB A B

16 1 Basic Operations

The equation means that each element of the ith row of A is multiplied succes-
sively by each element of the jth column of B . In Fig. 1.3 you can see a visual inter-
pretation of the previous equation.

 We reiterate that a matrix product can be performed only if the number of col-
umns in the fi rst matrix (A) is equal to the number of rows of the second matrix (B).
For example, using the matrices entered in the previous table, it is not possible to
perform the product DC (try to verify this with MATLAB):

 >> D*C
 ??? Error using ==> mtimes
 Inner matrix dimensions must agree.

 However, you can compute the product CD. The result is a matrix having the
same number of rows as the fi rst matrix (C) and the same number of columns as the
second matrix (D). We see, then, that in general, for two matrices CD ¹ DC , and
indeed, one of these products might not even be defi ned. But even if C and D are
square matrices, it is generally the case that CD ¹ DC :

 >> C*D <ENTER>
 ans =

 22 54 26
 16 57 18

 Fig. 1.3 Visual interpretation
of matrix product

17Summary

 An element-by-element operation similar to matrix summation is also available
in MATLAB. Let’s say that we want to multiply the elements of A in position i,j by
the elements of B in the same i,j position using the element-by-element operators ,
as shown in the following table:

 Description MATLAB operator Example

 Element-by-element Multiplication .* >> A.*B
 ans=

 2 15
 8 3

 Element-by-element Right division ./ >> A./B
 ans =

 0.5000 1.6667
 0.5000 3.0000

 Element-by-element Left division .\ >> A.\B
 ans =

 2.0000 0.6000
 2.0000 0.3333

 Element-by-element Exponentiation .^ >> A.^B
 ans =

 1 125
 16 3

 For those who are familiar with matrix equations, MATLAB has a huge number of
other possible operations. Here are some of the basic functions: The inverse function
 inv(A) , the determinant function det(A) , the eigenvalue function eig(A) , the singular
value decomposition function svd(A) , the LU factorization lu(A) .

 Summary

 MATLAB can be thought of as a scientifi c calculator: you can perform opera-•
tions from simple to complex, simply by typing them into the command line of
the command window; operations are calculated immediately.
 The six arithmetic operators for scalars are • + − * \ / and ˆ . They operate
according to rules of precedence. Parentheses have the highest precedence.
 To store numbers or operation results you need variables. •
 Variable names consists only of letters, digits, and underscores, and must start •
with a letter. MATLAB interprets uppercase and lowercase as different letters
(e.g., AgE is different from age) .
 The command • whos lists the variable in the workspace. To delete variables use
 clear followed by the name of variables, or alternatively, clear all to clear
every variable.

18 1 Basic Operations

 MATLAB refers to all variables as matrices:•

 An N × M matrix is an array having N rows and M columns. ◦
 A vector can be a 1 × N matrix (row vector) or an N × 1 matrix (column ◦
vector)
 A scalar is a 1 × 1 matrix ◦

 Vectors and matrices are entered in • square brackets . Elements are separated by
spaces or commas. Rows are separated by semicolons.
 An element of a matrix is referred to by a pair of numbers in • parentheses indicat-
ing its position. An element of a vector can be referenced using simply a number.
A range of elements can be referred to using vectors instead numbers in
parentheses.
 The Colon operator is equivalent to generating a vector going from one value to •
another, possibly using a specifi ed increment (step): start:step:stop
 Pay attention when using Matrix operations especially to the dimensions of the •
matrices involved.
 The basic matrix operations are addition (+), scalar multiplication (*), and trans-•
position (‘).
 Element-by-element operations between matrices of the same dimension can be •
carried out using the operators ./ .\ .* and .^ .

 Exercises

 1. Evaluate the following expressions:

 Mathematical expression
 Solution (to type after
prompt >> followed by Enter) Result

 2.2 4/12*2 2*4/12*2^2 ans = 2.6667

 .2 3+5/2-7. 2*3+5/2−7.5 ans = 1

 16 sqrt(16) ans = 4

.13 3

12-4
 (13*3)/(12−4) ans = 4.875

 () ⎛ ⎞⋅ ⎜ ⎟⎝ ⎠
2 +4 -2 sin

2
12-3

pp ((2*pi+4)−2*sin(pi/4))/(12−3) ans = 0.9854

 22+12

12/3+4

 Try by yourself. The result
must be the same

 ans = 4.2500

 ()22+3 -2 Try by yourself. The result
must be the same

 ans = 4.7958

19Exercises

 2. Create in MATLAB the following variables:

 Mathematical expression Solutions (to type after prompt >> followed by Enter)

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3 4.56 8 7

1= 12 2 1 3

34 2 3p
Mat

 Mat1=[3, 4.56, 8, 7; 12, 2, 1, 3;

pi, 34, 2, 3];

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 0 0

0 0 0
2=

0 0 0

0 0 3

Mat

 Mat2=[1, 0, 0; 0, 0, 0; 0, 0, 0;

0, 0, 3];

 or

 Mat2=1;
 Mat2(4,3)=3;

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

2 4 6 8 10 12 14
3

3 6 9 12 15 18 21
Mat

 Mat3=[2,4,6,8,10,12,14;
3,6,9,12,15,18,21];

 or

 Mat3=2:2:14;
 Mat3(2,:)=3:3:21;

 3. c is a variable containing the second and the third elements of the third row of
Mat1.

 b is a variable containing the fi rst and second elements of the second row of –
Mat3.
 Create a matrix called bbcc with b on top of c. –
 Use the fi rst column of Mat1 and the transpose of the last row of Mat2 to cre- –
ate a new matrix called nice. Multiply the result by the third element in the
fi rst row of Mat3.
 SubMat1 is a matrix obtained from the second and fourth columns of Mat3. –
 SubMat2 is a matrix obtained from the fi rst and last columns of Mat3. –
 NewMat is a 2x4 matrix obtained by using SubMat1 in the fi rst two columns, –
and SubMat2 in the second two columns.

 Solutions:

 To type after prompt >> followed by Enter Display by MATLAB

 c=Mat1(1,2:3)
 or
 c=Mat1(1,[2,3])

 c =
 4.5600 8.0000

 b=Mat3(2,1:2) b =
 3 6

 REsuLT=(b+c)*4 REsuLT =
 30.2400 56.0000

 bbcc=[b;c] bbcc =
 3.0000 6.0000
 4.5600 8.0000

 nice=[Mat1(:,1), (Mat2(4,:))’]*Mat3(1,3) nice =
 18.0000 0
 72.0000 0
 18.8496 18.0000

(continued)

20 1 Basic Operations

 To type after prompt >> followed by Enter Display by MATLAB

 SubMat1=Mat3(:,[2,4]) SubMat1 =
 4 8
 6 12

 Try by yourself SubMat1 =
 2 14
 3 21

 Try by yourself NewMat =
 4 8 2 14
 6 12 3 21

 4. Calculate the sum of b and c and multiply the result by 4. Put the result in the
matrix REsuLT.

 Create a matrix Mol obtained from element-by-element multiplication –
between SubMat1 and SubMat2.
 Change the element in position (2,2) of Mol to 5; –

 To type after prompt >> followed by Enter Display by MATLAB

 REsuLT=(b+c)*4 REsuLT =
 30.2400 56.0000

 Mol=SubMat1.*SubMat2 Mol =
 8 112
 18 252

 PAY ATTENTION: MATLAB can also compute
the product Mol = SubMat1*SubMat2. However,
that is not the element-by-element product

 Mol(2,2) = 5 Mol =
 8 112
 18 5

 A Brick for an Experiment

 In this section of the book we illustrate, step by step, a MATLAB program imple-
menting a behavioral experiment together with the graphical interface for running
the program and the statistical analysis for analyzing the data. The experiment we
are implementing is a classic experiment in audiovisual perception by Sekuler et al.
 (1997) . The effect showed by these authors is one of the most compelling examples
of interaction between audition and vision. It can be observed by comparing the post
coincidence trajectories of two moving objects. The objects are perceived as bounc-
ing off each other or as streaming through each other according to whether a sound
is presented (or not) when the objects overlap during the motion (Sekuler et al. 1997 ;
Watanabe and Shimojo 2001 ; Remijn et al. 2004 ; Kawabe and Miura 2006 ; Kawachi
and Gyoba 2006 ; Zhou et al. 2007 ; Grassi and Casco 2009, 2010 ; Grove and Sakurai
 2009) . The effect is based on a motion display originally proposed by Metzger
 (1934) . Metzger’s display shows two identical objects (e.g., two discs) that move
along the azimuth with uniform rectilinear motion and opposite directions: discs
start their motion, overlap and stop at the other disc’s starting point with uniform

(continued)

21A Brick for an Experiment…

rectilinear motion. This simple two-dimensional display is a complex inverse optics
problem for the visual system (Marr 1982) . The display is equally representative of
two different events in the real three-dimensional world. In both events the two
objects are placed at different depths so that the retinal images of both have identical
size. In one event, the objects start their motion, overlap (i.e., one object occludes the
other), then stream past one another. In the other possible event, in contrast, after the
occlusion, the objects reverse their motion and return to their original starting posi-
tions. In brief, the motion of the discs is bistable because both the streaming and
bouncing percepts are compatible with the proximal stimulus. However, the stream-
ing percept is usually predominant if the motion display is silent, whereas the bounc-
ing is predominant when the sound is presented. We strongly suggest that the reader
read the cited paper to have a clearer idea about the experiment we are going to
implement in the “brick” section.

 Here, we implement the original experiment by Sekuler et al. (1997) . The experi-
ment is a 2 (motion type) by 2 (sound condition) experiment. In the experiment, a
disc’s motion can be continuous, or it can stop for a certain number of frames when
the discs overlap. In addition, the discs’ motion can be accompanied (or not) by a
brief sound that is presented when the discs overlap. The subject’s task is to report
whether s/he perceived the discs as streaming or as bouncing. Usually, in this type
of experiment, the experimenter records the proportion of bounce responses as a
function of the various experimental conditions (the number of streaming responses
is, of course, the reciprocal of the number of bounce responses).

 The experiment by Sekuler et al. (1997) is a classic “fi xed stimuli” experiment.
In other words, we know before the subject participates in the experiment what and
how many stimuli we are going to present. 1 This is an advantage, because we can
prepare many things in advance. For example, a wise thing to do in such cases is to
write an event table, i.e., a table in which we write the exact experimental condition
we are going to present to the subject trial after trial. In the event table all events will
be represented in numbers.

 In this chapter we limit ourselves to writing few variables that will turn out to be
useful later. First of all, let’s write one variable containing the two factors we are
manipulating in the experiment. We will symbolize each factor/condition in
numbers.

 >> conditions = [1, 1; 1, 2; 2, 1; 2, 2];

 if you visualize the content of this variable, it looks like this:

 >> conditions
 conditions =

 1 1
 1 2
 2 1
 2 2

 1 This is not the case of adaptive psychophysical procedures in which the stimuli presented are
selected trial by trial as a function of the subject’s response.

22 1 Basic Operations

 The left column codes as a number the video display we are presenting (e.g.,
1 = continuous motion; 2 = discontinuous motion), the right column codes as a num-
ber the sound associated with the display (1 = no sound; 2 = sound). However, usu-
ally in psychological experiments stimuli are presented more than once, i.e., they
are presented with a certain number of repetitions (say, 20 times each).

 >> repetitions = 20;

 we can now begin to write the event table:

 >> EventTable = [];
 >> EventTable = [EventTable; conditions];
 >> EventTable = [EventTable; conditions];
 >> EventTable = [EventTable; conditions];

 You should repeat the command EventTable = [EventTable; condi-
tions]; 20 times (i.e., the number of repetitions) in order to obtain the complete
event table. In a later chapter we will show how to generate repetitive commands
automatically.

 Now let’s add to the left of the EventTable a new column with the trial number
(note the use of the apostrophe , which transposes the array we are creating, so that
 EventTable becomes a matrix of a few columns but several rows, one row for
each trial of the experiment):

 >> TotalNumberOfTrials = length(EventTable(:, 1));
 >> TrialNumber = (1:TotalNumberOfTrials)’;
 >> EventTable = [TrialNumber, EventTable];

 Now let’s look at the content of the table matrix. At trial number 12, for example,
we know that we are going to present the display 2 (the discontinuous motion)
together with the sound (i.e., 2). At trial number 37, we will present the display 1
(the continuous motion) and no sound (i.e., 1), and so on. However, in the current
experiment, as in the majority of experiments in psychology, we want the stimuli to
be randomized within the block of trials the subject performs. In this way, we avoid
possible unwanted effects such as the serial effects that could arise if we were using,
for example, a fi xed sequence of trials. We can do this by shuffl ing the trial sequence
by means of randperm , which is a MATLAB function that generates a random
permutation of integers from 1 to n, i.e., the input the user has to pass to the func-
tion. (Note that we will transpose the output of the randperm function so that we
have an array with one column and several rows.) Now we substitute the trial
sequence column by the shuffl ed trial sequence column:

 >> RandomTrialSequence = randperm(TotalNumberOfTrials)’;
 >> EventTable(:, 1) = RandomTrialSequence;

 Now let’s sort the EventTable content by the shuffl ed trial number in the fi rst
column:

 >> EventTable = sortrows(EventTable, 1);

23Suggested Readings

 If you now echo in the command window the content of the EventTable matrix,
you will see that the stimuli presentation list is now nicely randomized.

 A part of the commands we have shown will be included in a script that automati-
cally generates the event table in the desired form. This will be shown in Chap. 3 .

 References

 Grassi M, Casco C (2009) Audiovisual bounce-inducing effect: attention alone does not explain
why the discs are bouncing. J Exp Psychol Hum Percept Perform 35:235–243

 Grassi M, Casco C (2010) Audiovisual bounce-inducing effect: when sound congruence affects
grouping in vision. Atten Percept Psychophys 72:378–386

 Grove PM, Sakurai K (2009) Auditory induced bounce perception persists as the probability of a
motion reversal is reduced. Perception 38:951–965

 Kawabe T, Miura K (2006) Effects of the orientation of moving objects on the perception of
streaming/bouncing motion display. Percept Psychophys 68:750–758

 Kawachi Y, Gyoba J (2006) Presentation of a visual nearby moving object alters stream/bounce
event perception. Perception 35:1289–1294

 Marr D (1982) Vision: a computational investigation into the human representation and processing
of visual information. W. H. Freeman, New York

 Metzger W (1934) Beobachtungen über phänomenale Identität. Psychol Forsch 19:1–60
 Remijn GB, Ito H, Nakajiama Y (2004) Audiovisual integration: an investigation of the “stream-

ing-bouncing” phenomenon. J Physiol Anthropol Appl Human Sci 23:243–247
 Sekuler R, Sekuler AB, Lau R (1997) Sound alters visual motion perception. Nature 385:308
 Watanabe K, Shimojo S (2001) When sound affects vision: effects of auditory grouping on visual

motion perception. Psychol Sci 12:109–116
 Zhou F, Wong V, Sekuler R (2007) Multi-sensory integration of spatio-temporal segmentation

cues: one plus one does not always equal two. Exp Brain Res 180:641–654

 Suggested Readings

 Some of the concepts illustrated in this chapter can be found, in an extended way, in the following
books:

 Gilat A (2008) MATLAB: an introduction with applications. Wiley, Mahwah, N.J.
 Hunt BR, Lipsaman RL et al (2006) A guide to MATLAB: for beginners and experienced users,

2nd edn. Cambridge University Press, Cambridge, United Kingdom
 Kattan PI (2008) MATLAB for beginners: a gentle approach, Revised edn. Lulu.com, Raleigh, NC,

United States
 Rosenbaum DA (2007) MATLAB for behavioral scientists. Lawrence Erlbaum Associates,

Hoboken, N.J.

25M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_2, © Springer Science+Business Media, LLC 2012

 MATLAB stores numbers, strings, and logical values into variables. Variables can
be either simple, i.e., referring to one data type only, or complex, i.e., referring to
different data types at the same time. Furthermore, variables can be imported,
exported, and manipulated at will.

 Types of Variables (Logical Values, Strings, NaN,
Structures, Cells)

 In the previous chapter we saw how to store and operate with numbers; however,
sometimes we need to deal with other types of data such as strings, logical values,
and so on. MATLAB can be used to deal with these types of variables as well.

 Logical Variables

 Logical data (or simply logical) represent the logical TRUE state and the logical
FALSE state. Logical variables are the variables in which logical data are stored.
Logical variables can assume only two states:

 False, always represented by 0; •
 True, always represented by a nonzero object. Usually, the digit 1 is used for •
TRUE. However, MATLAB treats any nonzero value as TRUE.

 There are two ways to create a logical variable. The fi rst is to explicitly declare
it using the logical(X) function; this function converts the elements of the array
X into logical data types.

 Chapter 2
 Data Handling

26 2 Data Handling

 >> clear all; 1
 >> Test_Logic_Var = logical(1);
 >> x = [0,1,2,3];
 >> x_becomelogic = logical(x)
 x_becomelogic =
 0 1 1 1
 >> whos
 Name Size Bytes Class Attributes
 Test_Logic_Var 1x1 1 logical
 ans 1x4 4 logical
 x 1x4 32 double
 x_becomelogic 1x4 4 logical

 By typing whos at that MATLAB prompt, you can see that Test_Logic_Var is
a 1 × 1 matrix (a scalar value) of logical values. Vector x contains numbers different
from 0 and 1. When the logical function is applied to the vector x , the nonzero
values are marked as 1, that is, TRUE values.

 We can also create logical variables indirectly, through logical operations, such
as the result of a comparison between two numbers. These operations return logical
values. For example, type the following statement at the MATLAB prompt:

 >> 5 > 3
 ans =

 1
 >> 10 > 45
 ans =

 0

 Since 5 is indeed greater than 3, the result of the comparison is true; however,
10 is not greater than 45, and hence the comparison is false. The operator > is a
 relational operator, returning logical data types as a result.

 When a vector or a matrix is involved in a logical or relational expression, the
comparison is carried out element by element . Therefore, if we are checking whether
the content of an array is greater than 5, the comparison is made for each element of
the array, and the resulting logical array has the same length as that of the array we
are checking. The following example shows how this works:

 >> clear all;
 >> a = [1,3,5,9,11];
 >> b = [3,4,5,8,10];
 >> c = a > 3;
 >> D = a > b;
 >> whos a b c d

 1 Ccommand examples are intended followed by the <ENTER> key, i.e.:
 >> clear all
 means: Type clear all after the >> prompt, and press the Enter key.

27Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

 Name Size Bytes Class Attributes
 a 1x5 40 double
 b 1x5 40 double
 c 1x5 5 logical
 d 1x5 5 logical

 Using the command whos you can see that the vectors c and d are logical vectors.
They are not considered by MATLAB as numeric vectors but as vectors of logical
values.

 The following table lists the relational operators used by MATLAB.

 MATLAB
operator Description Example Meaning

 > Greater than >> c = a > 3
 c =

 0 0 1 1 1
 >> d = a > b
 d =

 0 0 0 1 1

 c shows which values of a are greater
than 3

 d shows which values of a are greater than
the values in the same position of b

 >= Greater than
or equal to

 >> e = a >= 3
 e =

 0 1 1 1 1

 >> f = a >= b
 f =

 0 0 1 1 1

 e shows which values of a are greater than
or equal to 3

 f shows which values of a are greater than
or equal to the values in the same position
of b

 < Less than >> g = b < 3
 g =

 0 0 0 0 0

 >> h = a < b
 h =

 1 1 0 0 0

 g shows which values of b are less than 3.

 h shows which values of a are less than
the values in the same position of b

 <= Less than or
equal to

 >> i = b <= 3
 i =

 1 0 0 0 0

 >> j = a <= b
 j =

 1 1 1 0 0

 i shows which values of a are less than or
equal to 3

 j shows which values of a are less than or
equal to the values in the same position
of b

 == Equal to >> k = a == 9
 k =

 0 0 0 1 0

 >> l = a == b
 l =

 0 0 1 0 0

 k shows which values of a are equal to 9

 l shows which values of a are equal to the
values in the same position of b

 Note: the logical operator == is different
from the assign operator = ! Pay attention
when you use it: a = b is different from a
== b

 ~= Not equal to >> k = a ~= 9
 k =

 1 1 1 0 1

 >> l = a ~= b
 l =

 1 1 0 1 1

 k shows which values of a are equal to 9

 l shows which values of a are equal to the
values in the same position of b

28 2 Data Handling

 Logical operators are useful in different occasions, such as in preliminary data
analysis. Let’s say you need to calculate the average of a data set that includes some
outliers, and you want to have the average calculated without them. In this case, you
can use the logical operators to average only the data you want to include and
according to a cutoff value of your choice (later in the text you will see more
examples).

 MATLAB uses several logical operators such as &, |, and ~. The following table
shows their use by considering the vectors a , b , c, and d implemented above.

 MATLAB
operator Description Truth table Example Meaning

 & Logical AND

 >> m = a & b
 m =
 1 1 1 1 1

 >> n= c & d
 n =
 0 0 0 1 1

 m contains the
element-by-element
AND of the vectors a
and b . The values of a
and b are all different
from zero, that is, they
are TRUE values. The
result is a vector of 1s

 n contains the element-
by-element AND of the
logical vectors c and d

 | Logical OR >> o = a | b
 o =
 1 1 1 1 1

 >> p = c | d
 ans =
 0 0 1 1 1

 o contains the element-
by-element OR of
vectors a and b . The
values of a and b are all
different from zero; they
are TRUE values

 p contains the
element-by-element
OR operation of the
logical vector c .

 ~ Logical NOT >> q = ~a
 q =
 0 0 0 0 0

 >> r = ~c
 r =
 1 1 0 0 0

 q contains the element-
by-element NOT.
Values in a are all
different from zero; they
are TRUE values. The
result is a vector of 1s

 r contains the element-
by-element NOT logical
operation of the logical
vector c

 In many cases we need to perform multiple comparisons at once. This is, of
course, possible in MATLAB, but we need to follow the MATLAB rules if we do
not want to get the wrong result. To show this, let’s test whether a variable x falls
within the range from 0 to 2. We might be tempted to prompt: 0 < x < 2. However,

29Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

using this syntax leads to an incorrect result. Indeed, if, let’s say, x is equal to 3,
hence outside our range, MATLAB returns 1, which is TRUE.

 >> x = 3;

 >> 0 < x < 2
 ans =

 1

 Why does MATLAB return an incorrect result? Because MATLAB makes the
comparisons in succession. It fi rst compares x with 0, and because 3 greater than 0,
the result of the comparison is true, i.e., 1. Then MATLAB compares the result, i.e.,
1, with 2. Because 1 is less than 2, the result of the operation is true. So we need to
use a different syntax to obtain the correct result. Multiple comparisons like the
previous one have to be written in the following way:

 >> (0 < x) & (x < 2)
 ans =

 0

 Let us see how to use logical values to target different positions in a vector. We
have already seen in Chap. 1 that the elements of a vector can be referenced by
means of another numeric vector; we can access some of the vector’s elements
using another vector to point to the positions we want. For example, if we want the
elements in the third and fi fth positions of a vector a of size 5, we can use another
vector b as an index vector pointing to the positions we need:

 >> clear all
 >> a=[3, 4, 7, 9, 11];
 >> b=[3,5];
 >> a(b)
 a=

 7 11

 When programming, we use logical index vectors in several contexts. Let’s say
that we have a numeric vector and we want to store in a second vector only the val-
ues outside the range 6–2. We can do so in this way:

 >> clear all;
 >> a = [1, -2, 5, 7, 3, 26];
 >> c = (a>=7) | (a<2)
 c =

 1 1 0 1 0 1
 >> d=a(c)
 d =

 1 -2 7 26

30 2 Data Handling

 d contains those values stored in a that are TRUE according to c . Note, however,
that logical vectors, such as c, can be used to index another vector only when their
sizes are identical. Indexing through logical vectors is a very practical way to
remove elements from a vector. So we can create the vector d with the following
simple command line:

 >> d = a((a>=7) | (a<2))
 d =

 1 -2 7 26

 Logical indexing is very useful when one variable is used to categorize a second
variable. Let’s suppose we have collected some data in the following experiment,
which is based on the Posner cueing paradigm (Posner 1980) . Subjects are asked to
react as fast as possible to the appearance of a target that can appear to either the left
or the right of a central fi xation point. Before the target appears, a cue indicates its
location, but this cue has a limited validity (e.g. 70% of the trials).

 The cue’s validity (or invalidity) can be represented with 1s (or 0s) in the
 CueValidity vector. Subjects’ response times, in seconds are stored in the vector
 RT . And these are the data we have collected so far :

 >> RT = [0.90, 0.55, 1.01, 0.33, 0.442, 0.51, 0.85, 0.44];
 >> CueValidity = logical([0 , 1, 0, 1, 1, 1, 0, 1]);

 Response time can be categorized according to cue validity in the following way:

 >> RTvalid = RT(CueValidity)
 RTvalid =

 0.5500 0.3300 0.4420 0.5100 0.4400

 >> RTinvalid = RT(~CueValidity)
 RTinvalid =

 0.9000 1.0100 0.8500

 MATLAB has a number of logical functions operating on scalars, vectors, and
matrices. Some examples are given in the following table. The examples use the
following vectors:

 >> clear all
 >> a=[1 3 6 3 1 7];
 >> b=a>5;
 >> d=[];

 MATLAB
function Description Example 1 Example 2

 any(x) Return the logical 1 (true) if any element
of the vector is a nonzero number. For
matrices, any(x) operates on the columns
of x, returning a row vector of logical
1s and 0s

 >> any(a)
 ans =

 1

 >> any(b)
 ans =

 1

(continued)

31Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

 MATLAB
function Description Example 1 Example 2

 all(x) Return the logical 1 (true) if all the
elements of the vector are nonzero.
For matrices, all(x) operates on the
columns of x, returning a row vector of
logical 1s and 0s

 >> all(a)
 ans =

 1

 >> all(b)
 ans =

 0

 exist('A') Check whether variables or functions are
defi ned. 0 if A does not exist, 1 if A is a
variable in the workspace

 >> exist('c')
 ans =

 0

 >>
exist('a')
 ans =

 1

 isempty(x) Return the logical 1 (true) for the empty
array

 >> isempty(a)
 ans =

 0

 >>
isempty(d)
 ans=

 1

 Strings

 A string is a variable containing characters instead of numbers. Strings can be used
to record subjects’ names or any other type of textual information. A string is
assigned to a variable by enclosing it within apostrophes as in the following
example:

 >> nameStr = 'Anne';
 >> whos name
 Name Size Bytes Class Attributes
 nameStr 1x4 8 char

 The string ‘Anne’ is composed of four characters, and the variable nameStr is a
1 × 4 row vector of characters. The second letter of the name can be accessed in the
following way:

 >> name(2)
 ans =

 n

 If you want to include a string containing an apostrophe, the apostrophe must be
repeated:

 >> sentence='Anne''s dog is Buddy'
 sentence =
 Anne's dog is Buddy

 Because strings are vectors, they may be linked with square brackets, e.g.,

 >> name ='Andrea';
 >> surname = 'Palladio';
 >> fullname=[name,' ',surname]

(continued)

32 2 Data Handling

 fullname =
 Andrea Palladio
 >> whos name surname fullname
 Name Size Bytes Class Attributes
 fullname 1x15 30 char
 name 1x6 12 char
 surname 1x8 16 char

 Note that we have put a space character between the name and the surname to
separate them. The result is a vector of 15 characters: 6 characters belong to the
name, 8 to the surname, and 1 for the space.

 Now let’s suppose you want to create an array of names, each row for one name.
Because names can differ in length, we need to use the char function. Indeed, if we
implement the variable NameList in the following way, we get an error.

 >> NameList=['John', 'Milly', 'Giovanni'];
 ??? Error using ==> vertcat
 CAT arguments dimensions are not consistent.

 Function char() overcomes the problem:

 >> NameList2=char('John','Milly','Palladio')
 NameList2 =
 John
 Milly
 Palladio

 MATLAB has many functions for working with strings, which are listed in the
following table. Use the string MyString = 'Vision Search' , str1 = 'hello'
and str2 = 'help' to get some practice with them:

 Function Description Example

 int2srtr(n) Convert numeric arguments
into a string

 >> IntStrIng=int2str(25);

 num2str(n) Convert numeric arguments
into a string

 >>
numString=num2str(23.4);

 lower(S) Convert a string into a lowercase
string

 >> lower(MyString)
 ans =
 vision search

 upper(S) Convert a string into an uppercase
string

 >> upper(MyString)
 ans =
 VISION SEARCH

 strcmp(S1,S2) Compare the strings S1 and S2
and return true (1) if strings are
identical, and false (0) otherwise

 >> strcmp(str1,str2)
 ans =

 0

(continued)

33Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

 Function Description Example

 strrep(S1,S2,S3) Replace all the occurrences of the
string S2 in the string S1 with the
string S3

 >> strrep(str1,'llo','avy')
 ans =
 heavy

 fi ndstr(S1,S2) Return the starting indices of any
occurrences of the shorter of the
two strings in the longer

 >> fi ndstr(str1,'l')
 ans =

 3 4

 strmatch(S1,CAR) Look through the character array
CAR to fi nd strings beginning
with the string contained in S1,
returns the matching row indices

 >> strmatch('he',str3)
 ans =

 1
 2

 disp(S1) Displays the array S1, without
printing the array name

 >> disp(str3);
 hello
 help
 >> disp([1 2; 3 4]);

 1 2
 3 4

 To create formatted strings there is another useful function: sprintf(format,
variables) . Let us see an example. Type the following commands:

 >> RTmean=[0.431,0.321];
 >> Pos=char('left', 'right');
 >> sprintf('The RT for objects in %s position is %1.1f sec.',…
 Pos(1,:),RTmean(1))
 ans =
 The RT for objects in left position is 0.4 sec.

 >> sprintf('The RT for objects in %s position is %1.3f sec.',…
 Pos(2,:),RTmean(2))
 ans =
 The RT for objects in right position is 0.321 sec.

 Note that the three ellipsis points … allow you to continue the command in the
next line.

 The function sprintf() contains the format argument and some variables. The
format argument is a string containing ordinary characters and conversion specifi ca-
tions. A conversion specifi cation controls the notation, the alignment, the signifi cant
digits, the fi eld width, and other aspects of the output format. Conversion specifi ca-
tions begin with the % character. There are also special characters beginning with
the / character. Some of these are presented in the following table; however, for a
complete list of them, refer to the MATLAB help.

(continued)

34 2 Data Handling

 Conversion
specifi cation and
special characters Description Example

 %c Single character >> sprintf('character: %c','c')
 ans =
 character: c

 %d Decimal notation (signed).
There is an implicit
conversion from number
to string without use the
int2str function

 >>sprintf('integer: %d',12)
 ans =
 integer: 12

 %f Fixed-point notation.
A decimal number can be
inserted between the % and
f symbols to specify the
size of the integer part and
the fractional part,
respectively

 >> c=5.12345;
 >>sprintf('fl oat: %3.1f',c)
 ans =
 fl oat: 5.1
 >>sprintf('fl oat: %3.3f',c)
 ans =
 fl oat: 5.123

 %s String of characters >> s='test';
 >> sprintf('string: %s',s)
 ans =
 string: test

 \n New line >> sprintf('go to \n new line')
 ans =
 go to
 new line

 \t Horizontal tab >> sprintf('Test the \t tab \t tab')
 ans =
 Test the tab tab

 Another useful function is input() . It waits for input from the keyboard, ending
with the ENTER key. Type the following:

 >> input('How old are you? ')
 How old are you? 35
 ans =

 35

 By default, input() takes numbers as its argument. If we need strings instead,
we need to add the optional argument ‘s’ to the input call:

 >> input('How old are you? ','s')
 How old are you? thirtyfi ve
 ans =
 thirtyfi ve

35Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

 NaN

 NaN means Not a Number . This variable type is used for missing data. For example,
let’s suppose you need to calculate the mean of the elements of a vector but there are
some missing values:

 >> Meanex=[2 NaN 12 4 NaN 3 NaN]

 Meanex =
 2 NaN 12 4 NaN 3 NaN

 >> nanmean(Meanex)
 ans =

 5.25

 MATLAB has few built-in functions for working with NaNs. However, not all
standard MATLAB functions can deal with NaNs. To overcome this limitation we
need to use logical operators. The function isnan(X) fi nds where the NaNs are. It
returns a logical array containing 1s wherever the elements of X are NaNs. To cal-
culate the mean of a vector using the standard mean () function, we need to use the
following syntax:

 >> S=mean(Meanex (~(isnan(Meanex))))
 S =

 5.25

 Note that if you don’t use logical operators, the result you get is a NaN:

 >> S=sum(Meanex)
 S =

 NaN

 Structures

 MATLAB can manage complex variables, that is, variables that are of different
types, at the same time. These variables are called structures. A structure collects
different types of elements under the same name. The elements are called fi elds . For
example, to store the information about the participant of an experiment, we can
create a structure variable called SubjectTest and assign different values to the
various fi elds as follows:

 >> SubjectTest.name='Nelson';
 >> SubjectTest.surname='Cowan';
 >> SubjectTest.age=24;
 >> SubjectTest.TestDone=[1,2,3,6,12];
 >> SubjectTest.Response=[12.3, 11.2, 14.3, 12.2,12.4];
 >> SubjectTest.CorrectConduction=logical([1,1,0,1,1]);

36 2 Data Handling

 >> SubjectTest
 SubjectTest =

 surname: 'Cowan'
 name: 'Nelson'
 age: 24
 TestDone: [1 2 3 6 12]
 Response: [12.3000 11.2000 14.3000 12.2000 12.4000]

 CorrectConduction: [1 1 0 1 1]

 The structure name is SubjectTest , while name, surname, age, TestDone,
Response, CorrectConduction, are the fi elds. Fields are addressed using the
structure name followed by a dot and then the fi eld name. Hence, the second ele-
ment of the Response fi eld can be addressed as follows:

 >> SubjectTest.Response(2)
 ans =

 11.2000

 Structure fi elds are case-sensitive; this means that MATLAB creates additional
fi elds if we do not type the fi eld name correctly. It is also possible to combine struc-
tures to create a matrix of structures. This is useful, for example, when you need to
save the results of different participants. For example, the data of a second partici-
pant can be added to the structure in the following way:

 >> SubjectTest(2).name='Johan';
 >> SubjectTest(2).ResponseTime=[11.9, 11.1, 14.1, 11.8,12.0];
 >> whos SubjectTest
 Name Size Bytes Class Attributes
 SubjectTest 1x2 1045 struct

 As you can see from the whos command, SubjectTest is a 1 × 2 row vector of
 struct :

 >>SubjectTest(2).Name = 'Johan'
 SubjectTest =
 1x2 struct array with fi elds:

 surname
 name
 age
 TestDone
 Response
 CorrectConduction
 ResponseTime
 Name

 If you want to address the second element of the matrix, you can type:

 >> SubjectTest(2)
 ans =

37Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

 surname: []
 name: 'Johan'
 age: []
 TestDone: []
 Response: []
 CorrectConduction: []
 ResponseTime: [11.9000 11.1000 14.1000 11.8000 12]
 Name: 'Johan'

 As you can see, some fi elds are empty; this is because they haven’t been fi lled for
the second participant. It is possible to fi ll them in later. To do this, type:

 >> SubjectTest(2).surname= 'Baptist'
 >> SubjectTest(2).age= 31
 >> SubjectTest(2)
 ans =

 surname: 'Baptist'
 name: 'Johan'
 age: 31
 TestDone: []
 Response: []
 CorrectConduction: []
 ResponseTime: [11.9000 11.1000 14.1000 11.8000 12]
 Name: 'Johan'

 Let’s see how to access an element of a vector that is a fi eld of a structure while
the structure is simultaneously a member of a matrix of structures. To do this, we
have to type the structure name, the index of the structure within parentheses, fol-
lowed by a point and fi nally the fi eld name within parentheses. For example, let’s
suppose you want to display the last of John’s response times:

 >> SubjectTest(2).ResponseTime(5)
 ans =

 12

 Dynamic Field Names

 Another way to access structure data that are embedded in a vector is to use dynamic
fi eld names . Dynamic fi eld names express the fi eld as a string variable. For example,
to extract all the surnames in the vector, you have to type:

 >> StrField='surname'
 >> SubjectTest.(StrField)
 ans =
 Cowan
 ans =
 Baptist

38 2 Data Handling

 You can remove a given fi eld from a structure embedded within a structure array
using the rmfi eld() function:

 >> rmfi eld(SubjectTest,'TestDone')
 ans =
 1x2 struct array with fi elds:

 age
 ResponseTime
 CorrectConduction
 surname
 name

 Cells

 A cell is a variable containing different types of data; it is therefore similar to a
structure, but cells are more general and have notational differences as well. A cell
can contain any data type, from a simple number to a structure or another cell. You
can have even a cell array , i.e., a matrix in which each element is a cell.

 In Fig. 2.1 is reported an example schema which should clarify the concept by
showing a 2 × 3 cell array. In the fi rst row and fi rst column, the cell array contains a
matrix of numbers, while in the fi rst row and second column, the cell array contains
a structure, and in the second row and second column, the cell array contains another
cell array, and so on.

 Let’s see how to create cell arrays and how to insert and retrieve data from them.
Be aware of the notational differences between simple arrays, such as numeric and
character arrays, and cell arrays, because they can be source of confusion (and
errors!).

 Fig. 2.1 An example of cell array

39Types of Variables (Logical Values, Strings, NaN, Structures, Cells)

 To create a cell array there are two methods, called “Cell indexing” and “Content
indexing”:

 Cell Indexing: •

 >> SoundInf={'sine','square','Sting'}
 SoundInf =

 'sine' 'square' 'Sting'
 >> whos SoundInf
 Name Size Bytes Class Attributes
 SoundInf 1x3 210 cell

 Here the curly braces { } are on the right-hand side, and indicate the cell
contents. This is a cell array of strings, which is different from an array of
strings; indeed, strings stored in cell arrays can have different numbers of char-
acters. Let’s add additional values to the cell:

 >> SoundInf(2,3) = {[5, 6; 7, 8] }
 SoundInf =

 'sine' 'ramp' 'sting'
 [] [] [2x2 double]

 The parentheses on the left-hand side of the assignment refer, in the normal
way, to elements in a cell array, while on the right-hand side the curly braces
indicate the content of a cell.

 Let’s see how content indexing differs from cell indexing.
 Content Indexing: •

 >> SoundInf{2,3}=5
 SoundInf =

 'sine' 'ramp' 'sting'
 [] [] [5]

 >> SoundInf{3,3}=[2 3; 7 8]
 SoundInf =

 'sine' 'ramp' 'sting'
 [] [] [5]
 [] [] [2x2 double]

 Here, the index of the cells within curly braces { } and the content are specifi ed
in the standard way after the assignment sign.

 You can access the content of a cell by indexing:

 >> PreferArtist = SoundInf{1,3}
 PreferArtist =
 Sting
 >> whos PreferArtist

 Name Size Bytes Class Attributes
 PreferArtist 1x5 10 char

40 2 Data Handling

 To access an element of an array stored in a cell you have to concatenate curly
braces and parentheses as follows:

 >> SoundInf{2,3}(2,2)
 ans =

 8

 The celldisp() function recursively displays the contents of a cell array. The
function cellplot draws a visualization of a cell array, as shown in Fig. 2.2 .
Nonempty array elements are shaded.

 >> cellplot SoundInf

 We have seen that both structures and cell arrays can contain different element
types. The main difference between them is reported in the following table:

 Structures Cell arrays

 Structures are different data type collections,
 organized in fi elds having their own names

 Cell matrices can contain different data
types. Each cell is indexed by numbers

 Import/Export

 In this section we see how to save and load the variables that have been created and
used in a working session. If we do not save the variables, MATLAB automatically
clears them from the working space when you quit the program. The save com-
mand followed by a fi lename saves all the variables that are in the workspace.

 Fig. 2.2 Output of the cellplot command

41Import/Export

In the following example we create a fi le named test1 containing the vector a, the
number b, and the string f:

 >> clear all;
 >> a=[4,2,1,43; 2,5,1,6];
 >> b= sin(a)+5;
 >> f='test';
 >> save test1

 If we clear all the variables by means of clear all , we will see that these vari-
ables no longer exist in the workspace:

 >> clear all;
 >> whos
 >>

 However, we can retrieve them by means of the load command, followed by the
fi lename:

 >> load test1
 >> whos
 Name Size Bytes Class Attributes
 a 2x4 64 double
 b 2x4 64 double
 f 1x4 8 char

 If you want to save only a subset of the variables you have created, you have to
type the list of variables, separated by blanks (not by commas), that you want to
save after the fi lename:

 >> save prova2 b f
 >> clear all
 >> load prova2
 >> whos
 Name Size Bytes Class Attributes
 b 2x4 64 double
 f 1x4 8 char

 By default, MATLAB saves the variables in a .mat fi le. However, other exten-
sions can be given such as ASCII (save the information in ASCII format so that the
fi le can be editable from a standard text editor) or TAB (delimited with tabs).

 The commands save and load can be seen as functions. The argument of these
functions is a string. The fi rst argument is the fi lename, the others are the variable names.
Let’s suppose you have the matrices RT1 = [0.34,0.45] and RT2 = [0.23,0.39]:

 >> save('test1','RT1');

 MATLAB provides some built-in functions that can import/export numbers and
characters from and to different fi le formats. In the following table the most com-
mon of these formats are presented.

42 2 Data Handling

 File format File content Extension Functions

 MATLAB formatted Saved MATLAB workspace .mat load, save

 Text Text .txt textread

 Comma-separated numbers .csv Csvread
 csvwrite

 Extended markup
language

 XML-formatted text .xml Xmlread
 xmlwrite

 Spreadsheet Excel worksheet .xls Xlsread
 xlswrite

 There are other built-in functions that enable importing images or sound fi les,
and they will be described in the following chapters. If you don’t want to type the
function in the command window, you can simply use the MATLAB Import Wizard
by selecting Import Data in the MATLAB File menu, or equivalently, by typing
 uiimport at the MATLAB command line prompt.

 Summary

 Logical variables can assume only two values: true (not equal to 0) and false •
(equal to 0).
 Logical and relational operators are used to assess whether a statement is true or •
false.
 Logical variables can be defi ned using the function • logical
(variablename) .
 Logical variables are the results of element comparison. •
 Logical variables can be used to select or remove elements from a matrix. Logical •
variables are also useful in categorizing elements.
 Strings are arrays in which each element represents one character. Because •
strings are arrays, all the rows must have the same number of columns.
 Strings are defi ned using apostrophes'. •
 There are many functions operating on strings to compare them, display them, •
etc.
 • sprintf is a useful function to write formatted text.
 • NaN means Not a Number. It is useful for representing missing data.
 • Structures are collections of different data types, organized in fi elds.
 A • cell matrix contains different data types, from simple numbers to structures or
even other cell arrays. Each cell is indexed by numbers.
 There are two ways to insert data into a cell: • Cell indexing (Index the cell array
with the content in curly braces { }) and content indexing (the indices of the cells
are in curly braces { } ; the content is specifi ed in standard way after the = sign).
 To store data in fi les, use the • save command; to retrieve data from fi les, use the
 load command. There are other commands for importing or exporting data in
specifi c formats including xml and xls.

43Exercises

 Exercises

 1. Categorize the elements of the vector x = [− 2 3 0 2 − 6 1 − 2 0 0 − 13 12] as
positive, negative, and zero and store them in three separate vectors. Count the
number of elements in each vector.

 Solution:

 >> pos=x(x>0); neg=x(x<0); zer=x(x==0);
 >> npos=length(pos); nneg=length(neg); nzeros=length(zer);

 or equivalently:

 >> npos=sum(x>0); nneg=sum(x<0); nzeros=sum(x==0);

 where the sum(Z) function calculates the sum of the elements in the vector Z .
 2. Defi ne the following cell matrix:

 NAMES=char(' John ',' Robert ',' James ',' Michael '…

'Mary', 'Tatiana','Jenny', 'William');
 and evaluate the following questions:

 Question Solution Result

 How many names start with the
letter ‘J’?

 >> sum(NAMES(:,1)=='J') ans = 3

 Substitute the string ‘es’
with the string ‘iroquai’ in the
third name

 >> strrep(NAMES(3,:), …
'es','iroquai')

 ans =
 Jamiroquai

 Is the fi rst name equal to
the third?

 >>strcmp(NAMES(1,:),
NAMES(2,:))

 ans =
 0

 Convert the names in the
odd rows to uppercase

 >> odds=[2:2:length(NAMES)];
 >> NAMES(odds,:)=…
 upper (NAMES(odds,:))

 NAMES =
 Joh
 ROBERT
 James
 MICHAEL
 David
 MARY
 Tatiana
 JENNY
 William

 Display the formatted string
‘The best is’ followed by the
name of the seventh name

 >> sprintf('The best is %s,'
 NAMES(7,:));

 ans =
 The best is
Tatiana

 Delete the names starting
with J

 >> NAMES(NAMES(:,1)=='J',:)=[] NAMES =
 Robert
 Michael
 David
 Mary
 Tatiana
 William

44 2 Data Handling

 A Brick for an Experiment

 Read the Results

 We are still in the introductory chapters, and during this brick we will realize a
 program to run a quite complex experiment. In order to use the concepts we have
learned so far, for the brick we need to hypothesize that the experiment is over and
that the data fi le has been safely stored onto the hard drive. In the current brick we
will see how to analyze the data.

 Before showing how to use the concepts learned so far for the current brick, we
need to give you some detail about the data fi le we will write in the successive chapters.
Moreover, we have to inform you about how the data will be stored into this data
fi le. At the end of the experiment we will save a tab-delimited text fi le. This fi le will
be organized in rows and columns. The fi rst row of the fi le contains the header, that
is, a set for strings identifying the content of the column. The data fi le will contain
on the left text data and on the right numeric data. From left to right, the columns
of our data fi le will contain the subject name, the subject sex, a text note about
the subject, the subject number, the subject age, the block number, the trial number, the
motion condition (coded as 1 for continuous motion, 2 for the stop at overlap), the
sound condition (coded as 1 for the no sound condition and 2 for the sound condi-
tion), and the subject’s response, which will be coded as 0 (streaming response) or
1 (bouncing response).

 The fi rst thing we have to do is to import the data written in the data fi le into
MATLAB. As we have seen, MATLAB offers several command line options to do
this. In order to perform this particular operation, a very convenient (and simple)
option is that of using the MATLAB import wizard. If you click on the MATLAB
fi le menu you will see the import data function. An alternative way to call the wiz-
ard is to type uiimport at the MATLAB prompt. In both cases, MATLAB asks you
where the fi le you want to import can be found. You have now to browse your com-
puter and look for the fi le. Let’s suppose that the fi le is placed in the same folder
where we have run the experiment. Once you have selected the data fi le, 2 you should
see a graphical interface similar to the following (Fig. 2.3).

 MATLAB shows you a preview of the fi le content. Click next. At the top of the
import wizard interface there are several options you can select. For example, in our
case, we need to tell MATLAB that the fi le content is tab delimited (but MATLAB
should recognize this). On the right you can tell MATLAB the number of header
rows in the fi le. Our data fi le has one header row. In importing this particular data
fi le, MATLAB will store two variables. One cell type variable and one double type
variable. The reason is simple: our data fi le contains numbers as well as strings.
MATLAB recognizes the fi rst columns as strings (those containing the subject’s
name, sex, and note). However, the successive columns are recognized as numbers

 2 You can download this fi le from the book website (http://www.psy.unipd.it/~grassi/matlab_book.
html). The fi lename is data.txt.

http://www.psy.unipd.it/%7egrassi/matlab_book.html
http://www.psy.unipd.it/%7egrassi/matlab_book.html

45A Brick for an Experiment

(the subject’s age, the subject number, and so on) and are therefore stored into a
matrix of type double.

 The fi rst thing you may want to do is to have a preliminary look at the data, such
as a set of descriptive statistics. For example, we may want to see whether bounce
responses are predominant in the sound condition as well as when the discs stop at
the overlap point. The following commands are suffi cient to highlight the rows
where MATLAB can fi nd the conditions under which we presented the sound and
where the discs stopped at the overlap:

 >> data(:, 5)==1; % continuous motion
 >> data(:, 5)==2; % motion with stop
 >> data(:, 6)==1; % sound absent
 >> data(:, 6)==2; % sound present

 Note the presence of the % character. It is used for comments in MATLAB when
you write an M-script (see Chap. 3). MATLAB takes no action when the % character
is encountered, and it ignores everything that follows it.

 If we want to compute the mean separately for these four conditions, we need to
use the above rows of code when we call for the function mean . In detail, we need
to tell MATLAB to calculate the mean of the column in which we have stored the
dependent variable (i.e., the last column) and to calculate the mean in particular
when the conditions outlined by the independent variables are satisfi ed. To do the
calculation we have to write as follows:

 >> mean(data(data(:, 5)==1, 7)); % continuous motion
 >> mean(data(data(:, 5)==2, 7)); % motion with stop
 >> mean(data(data(:, 6)==1, 7)); % sound absent
 >> mean(data(data(:, 6)==2, 7)); % sound present

 Fig. 2.3 Graphical interface to import data

46 2 Data Handling

 If we substitute the command mean with the command for the standard deviation
(i.e., std), we can also obtain the standard deviations of the four conditions. The
same command lines can be used as well for other descriptive statistics such as min
and max.

 Reference

 Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

 Suggested Readings

 Some of the concepts illustrated in this chapter can be found, in an extended way, in the following
book:

 Hahn BD, Valentine DT (2009) Essential MATLAB for engineers and scientists, 4th edn. Elsevier/
Academic Press, Amsterdam

 Higham DJ, Higham NJ (2005) MATLAB guide. Siam, Philadelphia
 Kattan PI (2008) MATLAB for beginners: a gentle approach, Revised edn. Lulu.com, Raleigh, NC,

United States
 Rosenbaum DA (2007) MATLAB for behavioral scientists. Lawrence Erlbaum Associates,

Mahwah, N.J.

47M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_3, © Springer Science+Business Media, LLC 2012

 MATLAB can display data in high-quality graphs. There are many built-in functions
for creating scatter plots, 2D and 3D bar graphs, pies charts, line graphs, etc. MATLAB
makes it possible to control each characteristic of a graphical object, so that the result-
ing graph shows exactly what you want to show in the way you want to present it.

 Plot Data

 Data can often be better understood if they are represented in a graphical format
rather than in a numerical format. MATLAB is a powerful tool for plotting data,
either in 2D or 3D form. Graphs can be created, edited, and saved for later modifi -
cation or exported as graphics fi les.

 The simplest way to draw a graph is to use the plot function. The following
code creates a plot of the sine function:

 >> x=[0:0.2:7];
 >> y=sin(x);
 >> plot(x,y);

 If no other fi gure is open, the window is automatically named Figure 1, and in
Fig . 3.1 it is reported how it looks like.

 MATLAB assigns a progressive number to the fi gures, so that it is easy to refer
to the different fi gures. The fi gure window contains buttons, such as the zoom in/
zoom out buttons, and above all, the edit button. This button allows you to select the
graph and edit its characteristics such as its color and width. The edit button pro-
vides a graphical and intuitive way to modify the graph. However, it is often better

 Chapter 3
 Plotting Data 1

 1 Note that, although the book fi gures are black and white, the commands reported in the current
chapter generate color fi gures.

48 3 Plotting Data

to modify a fi gure’s appearance using MATLAB code. This is because once the
code is saved, it can be used again to draw similar graphs with different data.

 The main function for plotting 2D fi gures is plot , and it takes many arguments.
The following table shows some examples. Before running the examples, make sure
you have saved in the workspace the x and y variables as implemented above.

 Syntax and description Example Graphical result

 plot(Y) Plot(y) 1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
0 10 20 30 40 50 60 70 80

 Plot the columns of Y versus
the Y vector indexes

 plot(X1,Y1,…) plot(x,y,x,cos(x)) 1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
0 1 2 3 4 5 6 7

 Plot all lines defi ned by the
Xn-Yn pairs

 Fig. 3.1 Layout of the plot function

(continued)

49Plot Data

 Syntax and description Example Graphical result

 plot(X1,Y1,LineSpec,…) plot(x,y,’-.ro’) 1

0.8

0.6

0.4

0.2

0

−0.2

−0.4

−0.6

−0.8

−1
0 1 2 3 4 5 6 7

 Plot all lines defi ned by the
Xn- Yn, LineSpec triplets.
LineSpec is a string specify-
ing the line type, marker
symbol, and color
of the plotted lines

 Let us see in more detail how to use the LineSpec string, which is the argument
specifying the property of the line drawn in the plot. The following table lists all the
LineSpec options.

 Color Marker Line style

 Charact. Description Charact. Description Charact. Description Charact. Description Charact. Description

 B Blue m Magenta . Point * Star - Solid

 G Green y Yellow o Circle s Square : Dotted

 R Red k Black x x-mark d Diamond -. Dashdot

 C Cyan + Plus V Triangle

(down)

 -- Dashed

 ̂ Triangle

(up)

 < Triangle

(left)

 > Triangle

(right)

 Note that plot() generates a graph that connects the x-y coordinates written in
the input vectors with a line. Therefore, the graphic result is not necessarily a con-
tinuous graph. In the fi rst example the sinusoidal curve appears continuous because
the x points were very close to each other; however, the following example shows
that the line can be fragmented if the coordinates are not contiguous:

 Example Graphical result Description

 >> x=[1,4,2,6,5];
 >> y=[2,3,1,8,4];
 >> plot(x,y);

8

7

6

5

4

3

2

1
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

 The fi rst point coordinates are
1 and 2; it is connected to the
second point, having as
coordinates 4 and 3. Then this
second point is connected to a
third one having coordinates
2 and 1, and so on

(continued)

50 3 Plotting Data

 It is possible to add curves to the same fi gure by freezing the fi gure. This can be
done using the hold on command . Once hold on has been activated, the plot
commands add curves to the same fi gure. For example, the following lines add one
curve to another one:

 >> plot(x,y)
 >> hold on;
 >> plot(x,cos(x));

 The same result can be obtained by means of the following complex line:

 plot(x,y,x,cos(x));
 MATLAB also has a function enabling plotting two curves with different y-axes

within the same fi gure. This function is called plotyy:

 >> plotyy(x,sin(x),x, 2*cos(x));

 Here, the cosine is multiplied by 2. If you plot the graph, you will see that the left
y-axis ranges from −1 to +1, whereas the right y axis ranges from −2 to +2.

 Control the Plot’s Objects: Labels, Legend, Title…

 When a plot is made, the axes are automatically scaled to include the minimum
and the maximum values. However, it is possible to customize the axes limits using
 axis([xmin, xmax, ymin, ymax]). For example, type:

 >> axis([1, 6, -1.5, 1.5]);

 The command axis has other specifi cations, such as the command axis equal,
which makes unit increments along the x - and y -axes of the same length. If you do
not need the axes, you can turn them off using the command axis off . To turn the
axis on again, use the command axis on .

 There are other useful functions enabling the customization of the plots: it is
possible to add labels, titles, legend, text, and so on. The most frequently used of
these functions are listed in the following table:

 Function Description Examples

 xlabel(STR)
 ylabel(STR)
 zlabel(STR)
 xlabel(STR,'FontSize',fs)
ylabel(STR,'FontSize',fs)
zlabel(STR,'FontSize',fs)

 Add the content of the
string STR along the X,
Y, Z axes. The font size
is set by the fs value if
the property ' FontSize'
is specifi ed

 xlabel('time')

 ylabel('record level')

 xlabel('time','FontSize',16)

 title(STR)
 title(STR,'FontSize',fs)

 Add the content of the
string STR at the top of
the graph. The font size
is set by fs if the
property ' FontSize' is
specifi ed

 title('Sine experiment)

 title('Sine experiment'
'FontSize',18)

(continued)

51Control the Plot’s Objects: Labels, Legend, Title…

 Function Description Examples

 text(posx,posy,STR) Write the content of the
string STR at the point
specifi ed by posx and
 posy . Note that posx
and posy relate to the
current axis

 text(2,3,'very nice
exp!');

 gtext(STR) Write the content of the
string STR in the
graphics window at the
position pointed to by
the mouse

 gtext('A comparison');

 legend(S1, S2,… SN)

 legend(S1,S2,…
 'location',LOC)

 Add a legend to the
graph using the
specifi ed strings as
labels. The association
of the strings with the
curves follows the order
in which the curves
were plotted

 legend('sine','cosine')

 legend('sin','cos',…
 'location','Best')

 Sometimes it is useful
to specify the legend
position with respect to
the axes. This can be
done using the
specifi cation
' Location' and then a
string LOC such as
' Best'

 For further details see
the help

 Grid Add/remove the grid to/
from the current graph

 grid;

 Let’s plot a sine and a cosine function ranging from 0 to 12 with step 0.2; then
we shall add a legend, a title, and labels:

 Example Graphical result

 >> x=[0:0.2:12]; y1=sin(x);
y2=cos(x);
 >> plot(x,y1,'r',x,y2,'b:');
 >> xlabel('time','FontSize',16);
 >> ylabel('Value');
 >> axis([0,12,-1.5,1.5]);
 >> grid;
 >> legend('sine','cosine',
'location',…
'North');
 >> title('Sine and cosine
comparison',… 'FontSize',18);
 >> text(2.5,0.75,'sine');
 >> text(5,0.1,'cosine');

(continued)

52 3 Plotting Data

 If you want to close a fi gure, you use close followed by the fi gure number.
Alternatively, if you want to close all the fi gures, you use close all.

 To open an empty window in which to add graphical data, use the command
 fi gure. It is a good idea to open a new window before creating a plot. If you don’t,
every time you plot new data, the new data are plotted on the existing fi gure, over-
writing the previous data.

 Subplot: Multiple Plots in One Figure

 It is possible to display multiple plots within the same fi gure using
 subplot(Nrows,Ncolumns,CurSub) . This function divides the fi gure into
 Nrows rows and Ncolumns columns . Each part of the fi gure is identifi ed by the
 CurSub value; this value increases by row (top to bottom) and from left to right. For
example, if your fi gure has four subplots, two at the top and two at the bottom, num-
ber 1 identifi es the top-left graph, number 2 identifi es the top-right one, number 3
the bottom-left, and number 4 the bottom-right graph, as in Fig. 3.2 .

 Let’s suppose we want two rows and three columns of subplots. We want to plot
in row 1, column 3 a sine wave ranging from 0 to 6. Moreover, we want to plot in
row 2, column 2 a cosine wave ranging from 6 to 9. This is how it can be done:

 Fig. 3.2 Subplot layout

53Subplot: Multiple Plots in One Figure

 Example Graphical result

 >> xs=[0:0.2:6];
 >> xc=[6:0.2:9];
 >> fi gure;
 >> subplot(2,3,3);
 >> plot(xs,sin(xs));
 >> xlabel(‘time’);
 >> title(‘Sine test’);
 >> axis([0 6 -1.2 1.2]);
 >> subplot(2,3,5);
 >> plot(xc,cos(xc));
 >> xlabel(‘time in seconds’);
 >> title(‘test the subplot’);
 >> axis([6 9 -1.2 1.2]);

1

0.5

0

−0.5

−1

0 2 4
time

Sine test

test the subplot

time in seconds
76 8

1

9

0.5

0

−0.5

−1

6

 Each time you use subplot , all the commands you write refer to the part of
fi gure identifi ed by CurSub . A common mistake is to use two consecutive subplot
commands with different numbers of rows and columns. If you do so, everything
you have plotted after the fi rst subplot command is overwritten by the second one.

 The subplots within a fi gure do not need to be all of the same size. For example,
you can have one plot that extends over the space of two (or more) subplots. To do
this, pass a vector to CurSub . The following table shows how to divide the fi gure
into three parts, in which the length of one graph occupies the same amount of space
as the other two combined.

 Example Graphical result

 >> xs=[0:0.2:6];
 >> fi gure;
 >> subplot(2,2,[1 2]);
 >> plot(xs,sin(xs));
 >> title('Sine');
 >> subplot(2,2,4);

 >> plot(xs,cos(xs));
 >> title('Cosine');
 >> subplot(2,2,3);

 >> plot(rand(1,30));
 >> title('Random ');

54 3 Plotting Data

 As can be seen from the table, CurSub is a vector telling MATLAB that the fi rst
subplot spans from position 1 to position 2.

 Although plot is a useful function, MATLAB is provided with additional func-
tions to represent data. The following table lists the most common types of graphs
together with the functions used to draw them. Since we do not have data here, we
have used the useful rand function to create them. The command rand(r,c) cre-
ates a, r by c matrix with uniformly distributed random numbers. There is also
 randn(r,c), which creates an r by c matrix with normal Gaussian distributed
random numbers. 2

 Function Description Examples

 bar(X,Y,W)
 barh(X,Y,W)

 Draw the columns of
the M by N matrix Y as
M groups of N vertical
bars. X gives the
position of the values
in Y. If X is omitted,
the default value of
X=1:M is used. W
specifi es the width of
the bars (0.8 by default)

 >> bar(rand(10,5),'stacked');
 >> colormap(cool);
 4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
1 2 3 4 5 6 7 8 9 10

 bar(…,'stacked')
produces a vertical
stacked bar chart

 barh is the same as bar
but plots the bars
horizontally

 errorbar(X,Y,Err,
'LSp')

 Plot Y versus X with
error bars [Y−Err
Y+Err]. Here 'LSp' is
a string specifying the
line style as for the
 plot function and can
be omitted

 x=[1,4,5,8];
RT=[1.2,1.4,1.9,2.3];
 SD=[0.1,0.15,0.25,0.4];
 bar(x,RT,'w'); hold on;
 errorbar(x,RT,SD,'.k');
 3

2.5

2

1.5

1

0.5

0
1 4 5 8

 2 The functions rand and randn will be documented more fully in the chapter on statistical
analysis.

(continued)

55Subplot: Multiple Plots in One Figure

 Function Description Examples

 [Nel,xc]=hist(y);
 [Nel,xc]=hist(y,Ndiv);

 [N,xc]=hist(y)
places the elements of y
into ten equally spaced
containers and returns
in Nel the number of
elements in each
container. In xc can be
found the positions of
the bin centers

 Ages=[22,25,23,22,45,12,34,33,21];
 [N,xc]=hist(Ages,3);
 bar(xc,N);
 5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
10 15 20 25 30 35 40 45

 Once we obtain the
number of events of
each bin and the bin
center using hist, the
distibution of events
can be plotted using
bar or plot

 pie(X)
 pie(X,explode)
 pie(…,labels)

 PIE draws a pie chart of
the normalized data in
the vector X. explode
is a (logical) vector of
the same size as X,
specifying which slices
have to be pulled out
from the pie. The cell
array labels contains
strings. The number of
cells must be equal to
the size of X

 x=[2 4 6 3 5];
 pie(x,[0 0 1],…
 {'Tom','Anne','Milly'});
 colormap(spring);

 explode and labels
can be omitted

 colormap(CM);
 colormap(srt);

 Set the color lookup
table. You can set up a
color map matrix CM
on your own. CM may
have any number of
rows, but it must have
exactly three columns
(the RGB color
combination; see
Chap. 5). In any case,
you can use the
predefi ned colormap
(e.g., str=’cool’) or
create one using
the function
 colormapeditor

 x=[2,5]; y= rand(2,3);
 barh(x,y, 0.9);
 colormap([1 0 0; 1 0.5 0.5; 0,1,0]);

5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 For more details on
 colormap refer to
Chap. 5

(continued)

56 3 Plotting Data

 3-D Plots

 MATLAB can also handle 3-D plots, including lines and various types or surfaces.
For a 3-D plot you need three dimensions; therefore, you need to pass to the func-
tion data points with three coordinates. The basic command is plot3 . It works like
 plot , except that it takes three vectors instead of two, one for the x -coordinate, one
for the y -coordinate, and one for the z -coordinate.

 Here we report an example of a 3-D a line connecting fi ve points:

 Example Graphical result

 >> x=[1,4,5,1,3];
 >> y=[2,6,2,4,3];
 >> z=[1,2,3,4,2];
 >> plot3(x,y,n);
 >> axis square;
 >> grid on;
 >> xlabel ('X');
 >> ylabel('Y');
 >> zlabel('N');

4

3.5

3

2.5

2

1.5

1
6

5

4

3

2 1
2

3
4

5

y

N

x

 In the example, the fi rst point has coordinate x = 1 , y = 2 , and z = 1 . Note that you
can add a label for the z -axes using the command zlabel.

 MATLAB can also display 3-D surfaces using the commands mesh and surf :
the mesh function gives a transparent “mesh” surface, whereas surf gives an
opaque shaded surface.

 Usually a 3-D surface is a set of z values associated to a set of (x,y) coordi-
nates. For example if we have a set of coordinates

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4
(,) ,

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

x y

the (x, y) pairs can be split into two matrices:

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

1 1 1 1 1 2 3 4

2 2 2 2 1 2 3 4

3 3 3 3 1 2 3 4

4 4 4 4 1 2 3 4

x y

 MATLAB provides a function called meshgrid that can be used to simplify the
generation of x and y matrix arrays used in 3-D plots. It is invoked using the form

573-D Plots

 [X,Y]=meshgrid(a,b) , where a and b are vectors that specify the region in
which the coordinates, defi ned by element pairs of the matrices x and y , will lie. To
obtain the x , y matrix you can do as follows:

 >> a=[1:4];
 >> b=[1:4];
 >> [x,y]=meshgrid(a,b)
 x =
 1 2 3 4
 1 2 3 4
 1 2 3 4
 1 2 3 4
 y =
 1 1 1 1
 2 2 2 2
 3 3 3 3
 4 4 4 4

 Now it is simple to obtain the z=f(x,y) values as a function of each (x,y) pair
as shown in the following example:

 Example Graphical result

 >> a=[-3:0.25:3];
 >> b=[-3:0.25:3];
 >> [X,Y]=meshgrid(a,b);
 >> Z= X.*exp(-X.^2-Y.^2);
 >> surf(X,Y,Z);

0.5

0

−0.5
3

3
2

21
10

0−1 −1−2 −2
−3 −3

 MATLAB has equivalent 3-D functions to obtain 3-D bar graphs and 3-D pie
charts. Here we show an example of these functions. For further details, please refer
to online help.

 >> y=rand(3,5);
 >> bar3(y);
 >> colormap(winter);

 >> y=rand(5,1);
 >> pie3(y);
 >> axis square; grid off;

58 3 Plotting Data

 Printing and Saving Images

 Figures can be saved or printed by means of the print function. The structure of
the function is print –dformat fi leName –options , where –dformat stands
for the specifi ed graphics format (such as JPEG) and fi lename is the fi lename.

 The following table lists some of the formats that can be used to print and save
fi gures.

 Example Description

 print –dmeta Saves the active fi gure in the clipboard. This command is
equivalent to the copy command that can be used via the mouse
or keyboard

 print –dpng pippo Saves the active fi gure in the fi le named pippo.png The fi le is
saved in the Portable Network Graphics (png) format

 print –depsc pluto Saves the active fi gure in the fi le named pluto.eps. The fi le is
saved in the Encapsulated Postscript Color (epc) format

 print –djpeg83 Minnie Save the active fi gure in the fi le Minnie.jpg . The fi le is saved
in jpeg format with quality 83%. To obtain a different quality
(=compression), the last number can be changed: e.g., print
 -djpeg25 Minnie2 saves a jpeg image named Minnie2.jpg
with quality 25%

 Handle Graphics

 In this chapter we have seen the MATLAB functions that enable the production of
simple graphs and how to set many parameters such as the color of the axes, the line
thickness, the position of the plot, the font size, and so on. However, MATLAB allows
us to control many of the graph’s characteristics by getting and setting some of the
properties for each object in the fi gure window (lines, axes, text, surfaces, etc.).

 Each object in the fi gure window has a unique identifi er (a number) called a handle .
The handle is used with the commands get and set to read the current properties of
the object and to change and set these properties according to your needs.

 Everything will be clarifi ed by the following example:

 Example Graphical result

 >> fi gure;
 >> x=[0:0.1:2*pi];
 >> h=plot(x,cos(x),'r.-');
 >> hl=xlabel('time [s]');

59Handle Graphics

 Here h is the handle of the line object, while h1 is the handle of the axes object.
Now, if you type the following get commands, you obtain a list of the line properties
and a list of the axes properties:

 Example 1 Example 2

 >> get(h)
 Color: [1 0 0]

 EraseMode: 'normal'
 LineStyle: '-'
 LineWidth: 0.5000

 Marker: '.'
 MarkerSize: 6

 MarkerEdgeColor: 'auto'
 MarkerFaceColor: 'none'

 XData: [1x63 double]
 YData: [1x63 double]
 ZData: [1x0 double]

 BeingDeleted: 'off'
 ButtonDownFcn: []

 Children: [0x1 double]
 Clipping: 'on'

 CreateFcn: []
 DeleteFcn: []

 BusyAction: 'queue'
 HandleVisibility: 'on'

 HitTest: 'on'
 Interruptible: 'on'

 Selected: 'off'
 SelectionHighlight: 'on'

 Tag: ''
 Type: 'line'

 UIContextMenu: []
 UserData: []

 Visible: 'on'
 Parent: 158.0052

 DisplayName: ''
 XDataMode: 'manual'

 XDataSource: ''
 YDataSource: ''
 ZDataSource: ''

 >> get(hl)
 BackgroundColor = none
 Color = [0 0 0]
 EdgeColor = none
 EraseMode = normal
 Editing = off
 Extent = [3.12 -1.21 0.69 0.09]
 FontAngle = normal
 FontName = Helvetica
 FontSize = [10]
 FontUnits = points
 FontWeight = normal
 HorizontalAlignment = center
 LineStyle = -
 LineWidth = [0.5]
 Margin = [2]
 Position = [3.48 -1.13 1.00]
 Rotation = [0]
 String = time [s]
 Units = data
 Interpreter = tex
 VerticalAlignment = cap

 BeingDeleted = off
 ButtonDownFcn =
 Children = []
 Clipping = off
 CreateFcn =
 DeleteFcn =
 BusyAction = queue
 HandleVisibility = off
 HitTest = on
 Interruptible = on
 Parent = [158.005]
 Selected = off
 SelectionHighlight = on
 Tag =
 Type = text
 UIContextMenu = []
 UserData = []
 Visible = on

 You can change each property using the command set . For example, let’s try to
change the font size of the xlabel object and the size of the line object by typing
the following commands:

 >> set(hl,'FontSize',18);
 >> set(h, 'LineWidth',3);

60 3 Plotting Data

 3 This property and the associated value are listed by MATLAB using the command get .

 The way to use the set function is the following: the fi rst argument of the function
is the handle (a number that refers to the specifi c object), and the second argument
is the property name (in our case the “FontSize”), 3 and fi nally the third argument is
the value that is assigned to the property.

 To really understand how to manage the MATLAB graphical objects, you must
know that they are arranged according to the hierarchy shown in Fig. 3.3 .

 The object immediately above another is called a parent, and the objects below
another are called children. In general, children inherit their handle graphics proper-
ties from their parent. For example, the position of a line on a plot depends on the
position of the axes, which, in turn, depends on the position of the fi gure window.
The Root object is the computer screen, and there can only be one Root object.

 The UI objects are graphical user interface elements that are discussed in Chap.
 8 of this book.

 A parent can have any number of children. For example, the Root can have many
 Figures , a Figure can have many Axes , and a set of Axes can have many plot objects,
such as lines , surfaces , and so on. If a parent has many children, one of them is
designated to be the current one. For example, the current set of axes is the one that
will be updated the next time you run a command. You can also make an object cur-
rent by clicking on it with the mouse. The following functions return the handles of
the current object:

 Function Description

 Gcf Return the handle of the current fi gure. The current fi gure
is the last fi gure created, modifi ed, selected or clicked on

 Gca Get the handle of the current axes . The current axes is
typically the last axes used for plotting or the last axes
clicked on by the mouse. Pay attention: do not confuse
axes with the command axis

 Gco Get the handle of the current graphics object, which is the
last graphics object created, modifi ed or clicked on

Root

Figure

AxesUI Objects

Core Objects Plot Objects Group Objects Annotation Objects

Hidden
Annotation Axes

 Fig. 3.3 MATLAB graphical object hierarchy

(continued)

61Summary

 Function Description

 h=fi ndobj('PropName',PropVal) Return the handles of all graphics objects having the property
 PropName , set to the value PropValue . You can specify more
than one property/value pair, in which case, fi ndobj returns
only those objects having all specifi ed values

 We have no wish to describe every MATLAB object’s property here. The proper-
ties can be viewed using the online MATLAB help. We want to call your attention
to the fact that every object’s properties can be changed at will. The following
example shows a few of the possible changes.

 Example Graphical result

 >> fi gure;
 >> plot(1:6,10:10:60)
 >> set(gca,'XTick',[1,3,5])
 >> set(gca,'XTickLabel',…

 {'one' ,'three','fi ve'})
 >> set(gca,'XMinorTick','on')
 >> set(gca,'Xgrid','on')
 >> set(gca,'YTick',[17,27,37,54])
 >> h=fi ndobj('Type','line');
 >> set(h,'color','k')
 >> set(h, 'LineWidth',3);
 >> set(gca,'FontSize', 20);

 As you can see, there are many ways to change the appearance of a fi gure. As we
wrote at the beginning of the chapter, it is possible also to change all a fi gure’s properties
by clicking “edit” in the fi gure menu bar and then by selecting one of the alterna-
tives (Figure Properties, Axes Properties, etc.), or clicking on the arrow button in
the fi gure menu and selecting the desired item (line, axis, title, etc.). However, in the
long run, the possibility of writing a short code to create a fi gure and edit the fi gure’s
characteristics turns to be useful for researchers.

 Summary

 • plot is the basic function for 2-D plots.
 Graphs can be customized with • text, title, xlabel, ylabel, grid, etc .
 Axes limits are implicitly calculated. However, they can be modifi ed using the •
 axis function.
 Multiple graphs can be obtained using • subplot.
 • hist, bar, errorbar, pie , are other functions to plot 2-D graphs.
 • plot3, bar3, surf, surfc, mesh, meshc , are the functions to plot 3-D
graphs.
 • meshgrid is useful to defi ne the x-y points for 3-D plots.

(continued)

62 3 Plotting Data

 Figures can be printed in fi les or directly to printer output using the command •
 print .
 A handle is a number associated to a graphical object. It is used with the • set and
 get commands to obtain or change an object’s properties.
 The handles can be obtained when an object is created or by using one of the •
following commands: gcf (gets the handle of the current picture), gca (gets
the handle of the current axes), gco (gets the handle of the current object).

 Exercises

 1. Create a vector x of values from 1 to 10. Then create a vector y containing the
squares of the elements of x. In vector z put the values of x multiplied by 9.

 (a) In Figure 1 plot the vector y versus x using a red line with squares as
markers.

 (b) In Figure 5 plot the vector z versus x using a black dash-dot line having tri-
angles as markers.

 (c) In Figure 3, plot the vector y versus x using a green line and the vector z
using a magenta line. Provide a title and a legend.

 2. Create the fi gure of a hypothetical perceptual learning experiment divided in two
graphs. At the top, plot the performance (i.e., the threshold) vs. the session
number using the circle symbol. The session number goes from 1 to 100. The
threshold is given by the following command: th=1000*[1:100].^(−1/4)+
randn(1,100)/5; Set the y-axis to display values from 0 to 10. On the bottom
part, plot the histogram of thresholds, subdividing the data intp 40 bins. Add
legends, a title, and grids.

 Solution Graphical result

 th=10*[1:30].^(-1/4)+randn(1,30)/5;
 fi gure;
 subplot(2,1,1);
 plot(th,'o');
 axis([1 30 0 10]);
 ylabel('Participant''s threshold');
 xlabel('Session number');
 grid;
 title('Perceptual learning
curve','FontSize',14);
 subplot(2,1,2);
 hist(th,20)
 xlabel('Threshold');
 title('Threshold distribution',…

 'FontSize',12);

63Exercises

 3. Create a fi gure divided into two parts. On the left side, display fi ve horizontal
bars with the following values: horbarValue = [34,12,45,41,55]. On the
right side, display two graphs. The upper part will contain a 3-D pie, with three
pieces named “left,” “center,” “right,” with values val=[12, 45, 23]. In the
bottom part place an error bar. The mean is equal to mv=[3,2,5] , and the stan-
dard deviation is equal to stdval=[0.4, 1.1, 0.8].

 Solution Graphical result

 >> horbarValue = [34,12,45,41,55];
 >> val=[12, 45, 23];
 >> mv=[3,2,5];
 >> stdval=[0.4, 1.1, 0.8];
 >> fi gure;
 >> subplot(2,2,[1 3]);
 >> barh(horbarValue);
 >> subplot(2,2,2)
 >> pie(val,[0 0 1],
{'Left','Center','Right'});
 >> subplot(2,2,4);
 >> errorbar(mv,stdval,'xr');

 4. Given the 4 × 5 matrix Temp = [2 3 5 7 8; 20 23 28 25; 14, 13, 12, 7;
6 2 −3 2] , display its values using a 3-D bar graph. Title the fi gure “Season
Temperature.” Place on the y-axis the labels ‘Spring’, ‘Summer’, ‘Autumn’,
‘Winter’. Label the x-, y-, and z-axes “Season,” “Measures,” and “Temperature.”

 Solution Graphical result

 >> Temp = [2, 3, 5, 7, 8; …
 20, 23, 28, 25, 22; …
 14, 13, 12, 7, 8; …
 6, 2, -3, -1, 2];

 >> bar3(Temp)
 >> set(gca,'yTickLabel',…
 {'Spring','Summer','Autumn','Winter'});
 >> ylabel('Seasons','FontSize',15)
 >> xlabel('Measures','FontSize',15)
 >> zlabel('Temperatures',
'FontSize',15)
 >> title('Season Temperature',
'FontSize',20)

 5. Display the function y=tan(sin(x))−sin(tan(x)) , where x=−pi:pi/10:pi .
Change the color line to red, use stars (*) as a marker, with a marker size equal
to 10. Set the graph background color to green. Set the axis font size to 20.

64 3 Plotting Data

 Solution Graphical result

 >> x=-pi:pi/10:pi;
 >> y=tan(sin(x))-sin(tan(x));
 >> fi gure;
 >> H=plot(x,y);
 >> set(H, 'linewidth',5);
 >> set(H,'markersize',20);
 >> set(gca,'fontsize', 20);
 >> set(gca, 'color', 'green');

 A Brick for an Experiment

 Plot the Results

 MATLAB is a powerful tool for graphics. However, this brick requires a relatively
simple graph. Usually, the results of experiments like that of Sekuler et al. (1997) are
represented with bar graps. Here too we will represent the results with a bar graph.
We will draw a plot where the discs’ motion (continuous versus with stop) is repre-
sented along the x-axis and bars are grouped by presence (or absence) of sound.

 First, we need to get the means and the standard errors of the data we want to
represent. We proceed as in the previous chapter. But fi rst, we store the number of
subjects we have run within the variable N.

 >> N = 10;
 >> m=zeros(2, 2);
 >> m(1, 1) = mean(data(data(:, 5)==1 & data(:, 6)==1, 7)); %
continuous motion no sound
 >> m(1, 2) = mean(data(data(:, 5)==1 & data(:, 6)==2, 7)); %
motion with stop
 >> m(2, 1) = mean(data(data(:, 5)==2 & data(:, 6)==1, 7)); % sound
absent
 >> m(2, 2) = mean(data(data(:, 5)==2 & data(:, 6)==2, 7)); % sound
present
 >> err=zeros(2, 2);
 >> err(1, 1) = std(data(data(:, 5)==1 & data(:, 6)==1, 7))/
sqrt(N); % continuous motion
 >> err(1, 2) = std(data(data(:, 5)==1 & data(:, 6)==2, 7))/
sqrt(N); % motion with stop

65Suggested Readings

 >> err(2, 1) = std(data(data(:, 5)==2 & data(:, 6)==1, 7))/
sqrt(N); % sound absent
 >> err(2, 2) = std(data(data(:, 5)==2 & data(:, 6)==2, 7))/
sqrt(N); % sound present

 The brick plot will be made using a function that can be freely downloaded from
MATLAB central. The function is called barweb. 4 The reason for using barweb is the
following: this function combines within the same function two different functions:
bar and errorbar. In other words, barweb simplifi es the creation of a bar graph with
error bars. We can now fi ll all the necessary fi elds and have a fi nal look at the data:

 >> barweb(m, err, [], {′without stop′, ′with stop′}, [], {′kind
of motion′}, {′percent bouncing′}, [], [], {′no sound′,
′sound′})

 Finally, you may want to export the fi gure as a graphic fi le. This can be done as
follows. In the fi le menu of the plot fi gure you can “save as” the fi gure as a jpg, tif,
gif, PostScript, or one of various other graphics formats. Alternatively, you can use
the print option at the MATLAB prompt. For example:

 >> fi gure(1);
 >> print –depsc fi nalresult.eps

 Reference

 Sekuler R, Sekuler AB, Lau R (1997) Sound alters visual motion perception. Nature 385:308

 Suggested Readings

 Some of the concepts illustrated in this chapter can be found, in an extended way, in the following
book:

 Marchand P, Holland OT (2003) Graphics and GUIs with MATLAB. CRC press. Boca Raton, FL
 Siciliano A (2008) MATLAB: data analysis and visualization. World Scientifi c, Singapore
 Wallisch P, Lusignan M, Benayoun M, Baker TI, Dickey AS, Hatsopoulos NG (2009) MATLAB

for neuroscientists: an introduction to scientifi c computing in MATLAB. Elsevier/Academic
Press, Amsterdam

 4 You can also download the fi le from the book website.

67M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_4, © Springer Science+Business Media, LLC 2012

 This chapter outlines the Basic programming concepts in MATLAB such as loop
generation and program fl ux control. Programming style and debugging techniques
are also presented.

 M-Scripts and Functions

 When we manage long and complex lists of operations, it is inconvenient to type them
directly into the MATLAB prompt. It is preferable in such cases to write scripts, which
are text fi les containing lists of commands. Because scripts are text fi les, they can be
written in any text editor. However, MATLAB provides a built-in text editor that offers
many advantages over conventional text editors. For example, the MATLAB editor
highlights the commands, automatically indents the script, shows where loops start
and end, identifi es rows with numbers to aid in locating errors, etc. This editor can be
opened by typing edit at the MATLAB prompt or by selecting File->New -> M-fi le.

 The Fig. 4.1 highlights some of the key icons of the MATLAB editor 1 (e.g., open
a fi le, create a new script, save a script, run). Type into the editor the script shown in
the fi gure (it is also presented in the text) and save it with the name MyFirstProgram.m
(do not type the numbers, they refer to the script lines).

 Listing 4.1

 Chapter 4
 Start Programming

 1 The appearance of the window can differ depending on Matlab version you are using.

68 4 Start Programming

 The semicolon after each command prevents MATLAB from echoing the com-
mand output in the command window. This echoing can be annoying, especially
when the echoed content is large. To insert comments in your script, just type % at
the beginning of the line you want to comment; this line is not executed by MATLAB.
Note that comments are colored green in the MATLAB editor. Comments can also
be written in the same row of a MATLAB command, as in the following case:

 >> a=1; % the comment can be written at the right of a MATLAB command

 Once you have written a script, you can save it with any name you like. However,
we recommend saving scripts with meaningful fi lenames. Moreover, we recom-
mend starting the script with some comments explaining what the script does. These
comments are very useful especially when you open the script after a period of time.
MATLAB scripts (M-scripts) are saved with the .m extension in the directory where
you are working. Once the script is saved, the script name appears in the editor
window title.

 To run/test the M-script, press the run icon or the F5 key of the keyboard. The
example above should output in the command window the following text:

 The cosine of 5.00 is 0.28

 It is possible to run a script directly from the command window by typing the
fi lename of the script. In our case we should type:

 >> MyFirstProgram
 The cosine of 5.00 is 0.28

 An M-script can be saved in any directory of your computer; however, to run the
script from the MATLAB prompt you need either to be in the directory where you
saved the script or to tell MATLAB where to fi nd your M-script. MATLAB looks
for scripts within the directory where you are working and within any directories

 Fig. 4.1 MATLAB editor window

69M-Scripts and Functions

defi ned in the search path. There are two possible ways to add the directory where
you are working to the MATLAB default search path:

 1. Click on the FILE menu, and then select the SET PATH option.
 2. By means of the path command from the MATLAB command window or

within an M-script fi le. The path command uses the following syntax:
 path(path,′newpath′) (for example path(path,′C:\myFiles′)) .

 Let’s see how to write an M-script fi le that draws a graph so that every time we
want to plot the same type of graph we do not need to retype all the commands. We
do this in the following example. Save the script with the name plotLC in the current
directory.

 Listing 4.2

 At the beginning of the script we have inserted the commands close all and
 clear all to close all fi gures and then to be sure that no variable can affect the
script behavior. After this script is run, a fi gure appears, and the sentence The
cosine of 5.00 is 0.28 appears in the MATLAB command window .

 MATLAB is provided with an excellent debugger to warns us if we have made
any errors. Let’s suppose, for example, that at line 7 of the script we have forgotten
to add the dot after the number 10, in this way.

 7 y=10/exp(x);

 In this case, MATLAB returns the following error:

 ??? Error using ==> mrdivide
 Matrix dimensions must agree.
 Error in ==> PlotLR at 7
 y=10/exp(x);

70 4 Start Programming

 The debugger explains what type of error terminated the script prematurely, the
fi lename of the corrupted script, and the line where the error is located (unfortu-
nately, errors are not always so easy to pinpoint).

 Control Flow Statements

 In the previous scripts (i.e., Listing 4.1 or 4.2), MATLAB executed the instructions
as they were typed directly in the command window. This programming style,
however, is not always effi cient. For example, it does not solve such problems as the
execution of repetitive tasks and the control of operation fl ow. MATLAB, like other
programming languages, has fl ow control statements, which we now explain.

 Cycles and Conditionals: If

 The if command is used to control the execution of a script or a function (see later
in this chapter). Frequently, the if command is used together with the else com-
mand in the following form:

 if condition
 DoSomething

 else
 DoSomethingElse

 end

 The if command checks whether condition is satisfi ed (i.e., whether it is true
or false). If the condition is true, MATLAB executes DoSomething , while if the
condition is false, MATLAB executes DoSomethingElse , which represents the
alternative statements. Note the indentation of the text. The indentation helps in
visualizing the scope of the if – else – end structure. Let’s see an example with the
following script:

 Listing 4.3

71Control Flow Statements

 Save the script with the name TestIf1 and run it (by typing the name in the
command window or by clicking the Run button in the editor window); the word
“false” appears in the command window:

 >> TestIf1
 false

 Because 0 is smaller than 1, the comparison between the variable a and the
number 1 returns the value false. The condition of an if command very often
contains a combination of relational and logical operators (see Chap. 2), which
returns a logical result: true or false.

 Now, try to replace line 4 with the following statement and run the script again:

 4 if 1

the result is also “true.” Why this counterintuitive result? We have to keep in mind
that the condition after the if statement is a logical value (true or false). In MATLAB,
every numerical value different from zero is interpreted as true (see Chap. 2).
Therefore, the condition “if 1” is always true. By the same token, the condition
becomes false if you replace “1” with “0”.

 In many circumstances you can have more than two conditions to test. In such
cases you can use elseif :

 if condition1
 Statements1

 elseif condition2
 Statements2

 elseif condition3
 Statements3

 else
 Statements4

 end

 if condition1 is false, MATLAB tests condition2 . If it is false, MATLAB tests
 condition3 , etc.

 As we wrote in the previous chapter, be careful when you want to verify whether
a value is within a certain range. For example, if you want to display the string
‘mean score’ when the MemoryScore variable is between 50 and 100, you cannot
write the if statement as follows:

 If you save and run the above script (use the TestIf2 name), the result is

 >> TestIf2
 mean score

72 4 Start Programming

 which is wrong. As we have seen in the previous chapters, the statement in line 2 is
always true (the output of 50 < MemoryScore can be either 0 or 1, which are both
less than 100). The appropriate way to write the statement is the following:

 Or alternatively, you can write the script in a nested way:

 In this nested structure, when the fi rst if statement is true, everything between
 if and end is executed. Then at line 3, there is another if . In case of a true condi-
tion, everything between the if (on line 3) and the associated end (on line 5) is
executed, and so on. On the other hand, in the case of a false condition, MATLAB
skips to the line after the end on line 5 , which is the end on line 6 .

 Switch Case

 An alternative to the if – else form is the switch – case form. The advantage of the
 switch – case form is that in some situations, it yields a code that is more readable.
The switch – case form has the following syntax:

 switch condition
 case fact1

 Statements1
 case fact2

 Statements2
 case fact3

 Statements3
 otherwise

 StatementsOtherwise
 end

 the condition after the switch command is evaluated and compared successively
with fact1 , fact2 , etc. When a comparison is true, the corresponding statement is
executed. Then MATLAB skips to the fi rst line after the end. If no match is found
among the case statements, then MATLAB skips to the otherwise statement, if
present, and executes StatementsOtherwise or else to the end statement. Note
that the otherwise statement is optional.

73Control Flow Statements

 Let’s see an example. Write the following M-script and save it with the name
 ArrOrder .

 Listing 4.4

 Now let’s test the how the script works by typing the following:

 >> clear all
 >> k = 27
 >> ArrOrder
 Next time is going to be better!

 Note that if you do not defi ne the variable k (in the command window or inside
the M-script) MATLAB returns an error:

 >> clear all
 >> ArrOrder
 ??? Input argument “k” is undefi ned.
 Error in ==> ArrOrder at 7
 switch k

 Multiple expressions can be handled in a single case by enclosing the fact to
compare within a cell array. For example substitute the lines 10, 11, 12 and 13 with
the following lines:

74 4 Start Programming

 If you test the function with k = 2 or k = 3 , the text displayed at the MATLAB
prompt is always the same.

 >> k=2;
 >> ArrOrder
 You are on the podium, but… not in fi rst position!
 >> k=3;
 >> ArrOrder
 You are on the podium, but… not in fi rst position!

 For Loops

 Often, there is the need to repeat a block of statements a fi xed number of times. For
example, let us suppose we want to display the fi rst ten responses to a questionnaire,
which are contained within an array of numbers. A possible (but ineffi cient) solu-
tion is to repeatedly write the statement we need to run to see the scores. Another
(more elegant and effi cient) solution is to use a loop structure. The for structure is a
loop structure that makes it possible to repeat a block of statements a fi xed number
of times. The for format is:

 for counter = list_of_values;
 statements

 end

 The counter variable consecutively assumes the value of each column of the
list from the fi rst value to the last. The counter variable is often used within the loop
as an index to address the content of a vector or as a variable for other calculations.
Let’s see how the for loop works by writing and executing the following M-script.

 Listing 4.5

75Control Flow Statements

 Once you have saved the fi le (we named it “FirstForTest”) and run it, the result is:

 First Test
 1
 2
 3
 4

 Second Test
 1
 2
 3
 4

 As you can see, the result of lines from 6 to 8 and from 11 to 13 are identical, i.e.,
the display of the fi rst four integers. This is because the statement 1:4 at line 11
generates a vector equivalent to the ListOfvalues vector. Note that the disp
command is repeated four times, without the necessity of repeatedly writing the
statement.

 The most common format of the for loop is shown below. It may be simpler to
understand the for loop when it is represented in a fl ow chart graphical format.

 Format Graphical interpretation

 for count = start:step:stop;
 statements

 end;

 The variable count is the counter. At the fi rst cycle it is set to the start value (the
fi rst element of the vector). MATLAB verifi es whether the counter count is still
less than or equal to the stop value, thus that the variable count has not yet reached
the last element of the vector. If this is true, MATLAB adds to the counter count
the step value (count assumes the value of the next element in the vector) and exe-
cutes the statements. At the next cycle, MATLAB checks whether the counter
 count is still less than or equal to the stop value. If this is false, the next command
to be executed is the command after the end command. Please note that the counter
should not be changed inside the loop.

76 4 Start Programming

 Now suppose you need to obtain the average of the values stored in the vector X.
You can write an M-script using a for loop as follows:

 Listing 4.6

 Analysis

 Line 7: The number of elements in X is obtained.

 Line 8: The vector meanX is initialized to zero. This initialization is necessary
because the variable is used as an accumulator to store the partial sum of the
elements.

 Line 11: Here is the for command. First, the variable index is set to 1, then it is
compared to Nelem . Next, on line 12, the partial sum is obtained by summing the
value of X indexed by index and the previous partial sum value contained in
the meanX variable. Line 12 is repeated till index is less than or equal to Nelem.
The fl ow chart represented in the fi gure illustrates what we have just described.
Let’s test the M-script (named LoopMean) by typing the following:

 >> X= [3 4 6 2 7 1 9 11 4 7];
 >> LoopMean
 the X mean is 5.40

 The for structure can be nested into another for structure. For example, here we
nest two for structures to calculate the mean of a 2-dimensional matrix.

77Control Flow Statements

 Listing 4.7

 Note here that the counter indr is used to address the matrix rows, while indc
is used to address the matrix columns. The counter indc changes in the inner loop,
which means that before increasing the indr value, all the columns (= indc values)
have to be considered.

 If we save the script (name it NestedFor) and run it, we get:

 >> X2=[4 5 6; 4 7 8];
 >> NestedFor
 Nrows =

 2
 Ncols =

 3
 the X mean is 5.67

 You can write the for loop in a single command line. Here we show the general
form:

 for index = j :m :k , statements, end

 Remember: do not forget the commas (or semicolons, which are preferable to
commas because they prevent the echoing of output in the command window). If
you forget, them you will receive an error message. The word statements represents
one or more statements, separated by commas or semicolons. Remember to “close”
the for loop with the end statement .

78 4 Start Programming

 Be careful when you use the counter to address the cells of a matrix. For example,
do not set the counter so that it starts from 0. If you do so, you will encounter the
following problem:

 >> for i=0:10; a(i)=i; end;
 ??? Subscript indices must either be real positive integers or logicals.

 Clearly, the index of a vector cannot be zero. You can, however, run the loop with
no error if you modify it slightly, as follows:

 >> for i=0:10; a(i+1)=i; end;
 >> a
 a =
 0 1 2 3 4 5 6 7 8 9 10

 While

 Like the for structure, the while structure can be used to repeat a number of state-
ments. The difference between the while and the for structures is that while allows
one to repeat the statements an indefi nite number of times until a certain condition
is true. The while format is as follows:

 Format Graphical interpretation

 while condition

 statements

 end

 The while construct repeats the statements while its condition remains true.
The condition is tested each time before the statements within the loop are repeated.
Note that the condition should refer to the statements within the loop otherwise the
loop would never end. While loops are complex to deal with, especially when you
start programming, because often MATLAB enters in an infi nite loop. If this hap-
pens, you can press the buttons CTRL+C and force-quit the loop.

 If we use a counter, we can copy the functionality of for loop with a while loop.
Here, for example, we translate the for loop of the LoopMean function example into
a while loop.

79Control Flow Statements

 Listing 4.8

 Analysis

 Line 9: We defi ne the variable index used as a counter and initialize it to 1.

 Line 12: Here is the while command; the condition index < = Nelem is evalu-
ated. If it is true, then (line13) the value of X indexed by index is added to the
previous partial sum in the meanX variable.

 Line 14: the counter is increased. Note here the difference between the while and for
loops. In the for loop, the counter is “automatically” increased and “compared” at
each cycle. In contrast, in the while loop, you have to increase the counter inside the
loop. Then MATLAB goes to line 13 and evaluates whether index < = Nelem , etc.
The fl ow chart gives you a better picture of what is happening here.

 At fi rst glance, it may seem that the while command is not as useful as the for
structure. For example, the majority of experiments in psychology use a fi xed num-
ber of trials. In other words, before the subject begins the experiment, we know
exactly how many trials the subject is going to run. In the MATLAB language this
suggests that one implement a for loop (see also the brick section for an extensive
example): for the desired number of trials we present the stimulus to the subject and
collect the subject’s answer. The counter, in this case, is the trial number, which is
increased of one unit every time the subject completes one trial. When the current
trial number exceeds the total number of trials, we exit the for loop.

80 4 Start Programming

 However, there are experiments in which we do not know in advance how many
trials the subject is going to run. The adaptive procedures used in psychophysics are
a typical example of experiments that use a variable number of trials (Gescheider
 2003) . The simplest example is the method of limits (Fechner 1889 , but see also
Boring 1961) . Let’s suppose we use this method to estimate the subject’s absolute
threshold for the intensity of a 1-kHz pure tone. We may proceed as follows. We
start the experiment by presenting one tone of a given intensity to the subject. The
subject has to respond whether s/he can hear the stimulus (by pressing 1) or not (by
pressing any other number, e.g., 2). Every time the subject’s answer is positive, we
halve the intensity of the tone . At a certain trial n , the subject’s answer will be nega-
tive because s/he is not able to hear the tone. At this point we have just reached the
subject’s absolute threshold for the tone’s intensity.

 We can implement the example just described with a while loop. In detail, while
 the answer of the subject is 1 (equivalently, until the answer is not 1), we play the
tone to the subject and collect the answer. The answer is evaluated in the logical
statement that keeps the while loop running. While the answer is TRUE (equiva-
lently, until the answer if FALSE) we repeat the while loop. At the fi rst negative
answer we quit the loop.

 Listing 4.9

 Analysis

 The sound functions used in the script are described in detail in the chapter dedi-
cated to sound. Let’s see the rest of the script:

 Lines 1–4: The variables needed to synthesize the sound are created and set.

 Lines 5–7: The tone is synthesized.

81Control Flow Statements

 Line 9–10: We play the tone for the fi rst time to the subject and store the answer in
the variable “answer”.

 Line 12–16: The while loop. We evaluate the answer of the subject. While the
answer of the subject is positive (i.e., equal to 1) we halve the intensity of the tone
(line 14) and play the tone at the halved intensity (line 15). Then we repeat the ques-
tion to the subject.

 Lines 17–18: the subject has pressed a button different from “1” and the last inten-
sity value is used to calculate the subject’s threshold.

 Break

 The break command is used to terminate in advance the execution of a while loop
or that of a for loop. In nested loops, break terminates the innermost loop only. If
you want to program with a good programming style you should avoid the use of the
break command. In fact, it is important to know that the break command can be
always substituted by for or else statements.

 Here we present a variation of the WhileMean M-script without the comments at
the beginning.

 Listing 4.10

 Note that the condition of the while loop (i.e., 1) is always true, and therefore the
loop above is a never-ending loop. This happens because MATLAB interprets every
value different from zero as a true logical value. The rows 9, 10, and 11 are there
exactly with the aim of terminating the loop. You can try to insert the break command
in Listing 4.10 to obtain the same result.

82 4 Start Programming

 Try–Catch

 The try–catch statement is not used to control elements; rather it tries to execute a
statement or statements and catch any errors that may occur. The try–catch statement
takes the following form:

 try
 statements

 catch
 statements

 end

 The try–catch statement is useful when you are running scripts that can return
anomalous responses, such as importing data from a fi le or using the psychtoolbox
commands (see later chapters). When you use the psychtoolbox, it can sometimes
happen that your computer seems to crash. In such cases, the CTRL+C command is
insuffi cient to restore the command window. If you want to avoid such behavior, you
should write the psychtoolbox commands between try and catch commands.

 Here is an example of how the try–catch statement works. Save the following
M-script in the fi le named trycatchExample and run it:

 Listing 4.11

 >> trycatchExample
 Something strange happened!

 This example shows clearly the use of the try/catch statement. The for loop
generates an error because the i counter is used as index for the vector a. But i
starts from 0, and therefore MATLAB cannot read the fi rst datum of a. Because the
error is generated within the try portion of the script, the program continues and
goes to the catch part, where it returns the sentence “Something strange happened!.”
If you want to see the error returned by MATLAB, you have to type the command
 lasterror at the prompt.

 Loops Versus Matrices and If Versus Logicals

 Once people have learned how to use the for , the while and the if structures, they
tend to forget the power of using matrices in MATLAB. Let’s take a look at the

83Functions

following two statements. These statements do the same thing: they look into a matrix
 A and return the number of elements whose value is included between 0.2 and 0.3.

 As you can see, if you “think in the matrix way,” the program you have to write
is much shorter. Moreover, the example on the left runs faster than the example on
the right: MATLAB is optimized to work with matrices. Therefore, we recommend
the use of matrices and logicals whenever possible.

 Functions

 Scripts work with variables that are defi ned within the same script or in the command
window. However, sometimes we want scripts to receive data as input and return
results as output. Such scripts are called functions . We have already seen several
built-in MATLAB functions, such as sin, sum, and length. However, MATLAB
makes it possible to create your own functions.

 If we want to write a function, the script must start with the reserved word
 function, and the M-fi le name has to match the function name. The difference
between M-scripts and function scripts is that functions communicate with
MATLAB through input and output arguments . We will stress this concept
further throughout the chapter.

 Before highlighting the function properties, type the following example as a new
script. Remember to save the script with the same name you use to call the function.
In this case, the name must be “statistic.m”

 Listing 4.12

84 4 Start Programming

 The aim of our statistic function is to calculate the mean and the variance of a
vector passed as argument to the function. Note that we also benefi ted from the
MATLAB built-in function sum(x), which calculates the sum of the elements of
vector x , and the MATLAB built-in function length (x), which returns the number
of elements of the vector. When we save this script, MATLAB automatically
suggests a fi lename that is identical to the function name; in our case the fi lename is
 statistic . Let us test the function in the command window by typing the
following:

 >> randnum=rand(100,1);
 >> [m,v]= statistic(randnum)
 m =

 0.4753
 v =

 0.3103

 Finally, type help statistic at the MATLAB prompt. If you do so, you will
see the comments we added at the beginning of the script:

 >> help statistic
 [mea, vari] = statistic(x)

 The function returns the mean and the standard deviation
 of the input vector.

 INPUT: x vector of numbers. Do not use with matrices.
 OUTPUT: mea = is the mean of the input vector x
 var = is the variance of vector x
 Author: Borgo, Soranzo, Grassi 2012

 Let’s see the general form of a function:
 When you write a function, the fi rst line must start with the keyword function.

The general form of a function is the following:

 function [out1, out2, …] = fun_name(inp1, inp2, …)
 % comments to be displayed go here
 …
 out1 = … ;
 …
 out2= …;

 • Keyword function : The function must start with the keyword function . As
you have seen, the statistic function starts with the keyword function .
 • Output argument : For more than one output argument, the output arguments
must be separated by commas and enclosed in square brackets. However, if the
function returns only one output variable, this output can be written without
square brackets.
 • The function name : usually the function line name should be identical to the
fi lename (in the previous example function line name statistic was saved in

85Functions

the fi le named “statistic.m”). If the fi lename and the function defi nition line
name are different, the latter name is ignored.
 • Input argument : The input variables are written within parentheses. For more
than one input argument, commas must separate the input arguments.

 Input and output variables can be of any kind: numerical, logical, text, structures,
cells. However, the input and output variables are “dummies” and serve to
defi ne a way for the function to communicate with the workspace . What happens
is that the workspace input arguments are copied into the dummy input arguments
within the function when the function is invoked. For example, the variables mea,
vari, and x exist only within the function and not outside of it (i.e., in the work-
space). This can be seen simply by typing the command who in the command
window:

 >> who
 Your variables are:
 m randnum v

 This does not happen for input and output variables only, but for all the variables
that are defi ned within the function, such as, for example, Nelem . In fact, if we type
 Nelem at the MATLAB prompt, we get the following error:

 >> Nelem
 ??? Undefi ned function or variable ′Nelem′.

 In the lines after the fi rst, there are some comments. These lines will be displayed
if you type help fun_name at the MATLAB prompt (e.g., help statistic in
our case). It is useful to comment your function so that you know exactly what the
function does. Consider also writing comments about the input and the output vari-
ables, about who wrote the script and when it was made. After the comments, there
are some command lines calculating the mean and the variance of the input vector.

 All the output variables have to assume a value. If this does not happen, MATLAB
informs you that you have not assigned a value to (at least) one variable. Let’s test
this by commenting the line vari=sum(x.^2)/Nelem; i.e., insert the % symbol at
the beginning of the line. Save the function script and call the function from the
command window:

 >> [m,v]= statistic(randnum)
 Error in ==> statistic at 13
 Nelem = length(x);

 ??? Output argument “vari” (and maybe others) not assigned during call to
 “/Users/Script/statistic.m (statistic)”.

 MATLAB informs you that you have forgotten to assign a value to the output
argument. Note that MATLAB returns another error at line 13. However, this error
does not exist. It is an artifact of the fact that MATLAB stopped the execution of the
function; it gives you the reference of the fi rst useful script line.

86 4 Start Programming

 Scope of Variables

 As we have written above, when a function is called from the workspace or from
another function, the variables defi ned in the function are created and live only
within the function. Usually in computer programming, the term scope is used (but
not limited) to defi ne the visibility or accessibility of variables from different parts
of the program. The variables within a function are called local variables . The scope
of Local variables is that they exist only within the function where they are defi ned.
However, there are other types of variables, for example global variables and persis-
tent variables, and these work in a different way from local variables:

 1. Global variables : They are ubiquitous, or better, they exist everywhere. When
you defi ne them in the workspace, they exist not only in the workspace but also
inside functions. The scope of the variable is to be globally accessible. It is a good
practice to use capital letters for global variable names so to identify them easily.
Global variables are generated through the global command. For example:

 >> global DEUSVAR

 2. Persistent variables : Once they are created, they “live in the space” where they
have been created. While local variables normally stop existing when a function
returns its value, persistent variables remain in existence between function calls,
keeping the value they had after the last manipulation. The following example
should clarify this.

 Listing 4.13

 Analysis

 Line 4: we defi ne the variable RemCount as a persistent variable

 Line 5: The isempty() function returns true if the variable within parentheses is
empty . For example, test the function with empty text and with text that is not
empty:

 >> txt1 = ′′;
 >> txt2 = ′hallo′;
 >> isempty(txt1)

87Functions

 ans =
 1

 >> isempty(txt2)
 ans =

 0

 Once you save the function as TestPersistence.m, run it repeatedly from the
command window; you should see something like this:

 >> TestPersistent
 RemCount =

 1
 >> TestPersistent
 RemCount =

 2
 >> TestPersistent
 RemCount =

 3

 The fi rst time you run the TestPersistence function, the variable RemCount
does not exist . The command persistence RemCount creates a new empty variable.
The result of isempty is true, so line 6 is executed, RemCount=0 . Next line 7 is
executed, and RemCount becomes 1 . By calling again TestPersistence , 1 is
added to the last value, so RemCount becomes 2; and so on. This happens because in
contrast to local variables, RemCount exists when the function TestPersistent is
called, and it also remembers its previously assigned values.

 Generally, the most-used variables are those with local and global scope.

 Change the Number of Inputs and Outputs

 Sometimes we need to write functions that can take a different number of input
arguments, such as the plot function, which we have described in the previous
chapter. It is possible to pass as inputs a variable number of arguments. If we need
to write a function with such characteristics, we need to use the varargin and
 nargin commands, which stand for, respectively, var iable arg uments in and n um-
ber of arg uments in . But if necessary, we can also write a function that returns a
variable number of outputs. In this case we have to use the varargout and nargout
commands.

 Let’s see the use of nargin and varargin and nargout and varargout by
extending the statistic function outlined in List ing 4.12. That function returned
the mean and the variance of an input vector. Now we want to add the optional pos-
sibility to exclude the outliers from the computation and to return the variance as an
option. Therefore, we implement the statTwo function, which takes an “optional”
argument, a logical vector, indicating the values that have to be excluded from the
computation because they are outliers. The standard output is the mean of the

88 4 Start Programming

function. However, the variance can be returned optionally. This function can be
written as follows:

 Listing 4.14

 Save the function statTwo and run it from the command window in this way:

 >> aa=[2 5 4 7 6];
 >> bb=[1 0 0 0 1];
 >> cc=[1 2 5 1 1];
 >> m = StatTwo(aa)
 Number of input: 1
 Number of output: 1
 m =

 4.8000

 As you can see, MATLAB returns the number of input arguments (in this case
there is only the vector aa) and the number of output arguments (in this case only
one). The result of the function is stored in the variable m .

 >> m = StatTwo(aa,bb)
 Number of input: 2
 Number of output: 1
 m =

 4

89Functions

 In this second case, there are two inputs (the vectors aa and bb) and again one
output, now the mean is calculated considering only the values 2 and 6. Let’s see
what happens if we change again the number of inputs and outputs:

 >> [m,v] = StatTwo(aa,bb)
 Number of input: 2
 Number of output: 2
 m =

 4
 v =

 20
 >>
 >> [m,v] = StatTwo(aa)
 Number of input: 1
 Number of output: 2
 m =

 4.8000
 v =

 26

 Let’s see what happens if we pass either multiple inputs or multiple outputs:

 >> m=StatTwo(aa,bb,cc)
 Number of input: 3
 Number of output: 1
 m =

 4.8000
 >>
 >> [m,v,boh]=StatTwo(aa,bb)
 Number of input: 2
 Number of output: 3
 ??? Error using ==> statTwo
 Too many output arguments.

 Error in ==> statTwo

 If we pass multiple inputs, the function works because the vector c is ignored. In
contrast, if we pass multiple outputs, the function assigns only two variables at the
output. MATLAB does not know what values to store in the vector boh, so it returns
an error. We now describe in detail the statTwo function.

 Analysis

 Line 1: In the fi rst line there are two input arguments; one is the variable x , and the
other is varargin . varargin is a cell matrix, which can contain many values,

90 4 Start Programming

and therefore it can also contain any number of input variables. varargin is a
 cell matrix variable that collects all the inputs’ indices with the same input order.
In the previous example, when we have called the function m=statTwo(aa,bb,cc) ,
a copy of a was put in the variable x , a copy of b was put in the cell varargin{1},
and a copy of c was put in the cell varargin{2} .

 varargin must appear at the end of the argument lists. In the same way, the
outputs are the variable mea , and varargout . varargout is a cell matrix that
collects all the outputs.

 Lines 13–14: The number of input and output arguments is displayed. Here, we use
the commands nargin and nargout , which return, respectively, the numbers of
inputs and outputs of the called function.

 Line 15: the i vector is initialized in case there is only one input argument. The
vector i is used as a logical, so that all the values in the vector x are considered in
evaluating the mean and the variance.

 Line 16: Here is used again the command nargin . In brief, in this line we evaluate
how many input arguments there are. If and only if the number of input arguments
is 2, line 17 is executed. In fact, when the number of input arguments differs from
2, line 17 is not executed. If you want always to use the second input argument of
the function (when present), you should change line 16 as follows:

 if nargin >= 2

 Line 17: Use the second input argument as a logical vector.
 If you need for a function to return an indefi nite number of output variables, you

can use nargout and varargout . This is the case in the example.

 Line 19: verify how many outputs are required. If there are two output values, the
variance is computed on line 20 and the result is stored in the fi rst element of the cell
matrix varargout.

 You can use the functions nargchk and nargoutchk inside an M-fi le function
to check that the desired number of input and output arguments is specifi ed in the
call of that function.

 For further information, please refer to MATLAB help.

 More on Data Import/Export: Script Examples

 The current section shows how to write a script (M-script or function) that retrieves
data from an unknown fi le format (e.g., data saved in ASCII form by an old EEG
machine, or collections of data, organized in different fi les that you want to rear-
range in a unique dataset). Moreover, the current section teaches you how to save a
fi le in a format that is readable by some other software.

91More on Data Import/Export: Script Examples

 Before we begin to write some examples, we introduce a few new commands
especially dedicated to accessing the content of a fi le. These commands are presented
in the following table. Usage examples are given within the next example scripts.

 MATLAB function Description

 fi d=fopen(fi lename)
 fi d=fopen(fi lename,perm)

 fopen(fi lename) open a fi le specifi ed by the string

 fi lename . perm specifi es how the fi le is opened,
according to the following characters:

 • ‘r’ read
 • ‘w‘ write (create the fi le if necessary)
 • ‘a’ append (create the fi le if necessary)

 The function returns a value called fi le identifi er .
Usually the variable fi d is used to collect it. This
variable must be used by other input/output commands

 If the returned value is equal to −1, the fi le cannot be
opened

 fclose(fi d) It closes the fi le associated by the fi le identifi er fi d.
The function r eturns 0 if successful or −1
if not

 feof Return 1 when the end-of-fi le of the fi le identifi ed by
 fi d is reached, and 0 otherwise

 fprintf(fi d, format, A,…) Write formatted data into a fi le identifi ed by fi d . The
 format string is created in the same way as the
 sprintf format. A is the variable we write into the fi le
according to the format specifi ed in format

 The function returns the count of the number of bytes
written

 fscanf(fi d, format) This function reads data from the fi le specifi ed by fi d
and converts it according to the specifi ed format
string. Moreover, the fi le content is returned in a
matrix. The format string has the same property of
the format string for functions fprintf and sprintf

 fgetl(fi d) This function returns a string with the content of the
next line of the fi le associated to the fi le identifi er fi d
 When the function encounters the end-of-fi le indicator
it returns − 1

 fgets Same as fgetl , but it contains the line terminators

 textscan(fi d, 'format') This function reads data from an open text fi le
identifi ed by the fi le identifi er fi d and returns the data
into a cell. The format input is a string enclosed in
single quotes

 These conversion specifi ers determine the type of each
cell in the output cell array. The number of specifi ers
determines the number of cells in the cell array. Some
of the specifi ers are equal to the sprintf formats

 Note that testscan stops when the format is different
from the specifi ed one

92 4 Start Programming

 Here we write an example that displays the content of a fi le in the command
window.

 Listing 4.15

 Note in the example the use of the try–catch statement: the catch is useful for
closing the fi le in case something goes wrong. Let’s suppose an error occurs before
the script closes the fi le. In this case, you can have no more access to the fi le because
the operating system acts as though someone were still using it.

 We test the function by reading the fi le howmany2.m and then by reading a
nonexistent fi le.

 >> DisplayFile(′howmany2.m′)
 function[b]= howmany2(A)
 b=0;
 for i=1:size(A,1);

 for j=1:size(A,2)
 if A(i,j)>0.2 & A(i,j)<0.3;

 b=b+1;
 end

 end
 end

 >> DisplayFile(′LotsOfMoney′)
 Unable to open fi le ′LotsOfMoney′

93More on Data Import/Export: Script Examples

 The previous function explains how to obtain a string from each line. With such
a string it is then possible to do all the processing you need. However, let’s suppose
you want to obtain the data in a matrix, ready for computation. This can be done, but
it is important to know how the content of the fi le is formatted. For this reason we
show here a function that saves the data in a specifi c format, and then we show a
function that reads these data.

 Let’s suppose you run an experiment that investigates iconic memory (Sperling
 1960) . In the experiment we present to the subject an n by m matrix on the screen.
During the trials, certain cells of the matrix are fi lled with an arbitrary symbol (e.g.,
a cross). The matrix stays on the screen for just a short time, and the subject has to
tell, by means of a mouse click, the locations of the crosses presented on the screen.
At each mouse click we save the mouse position and the time interval (in millisec-
onds) between the moment the matrix disappeared and the mouse click. Let’s
suppose we store our data in a structure named STIM , with the following fi elds:
 nStim , time , and Mpos . We can save the data in a readable manner using the
following function.

 Listing 4.16

94 4 Start Programming

 The function has the same structure of the previous one. The difference is in the
use of “open” at line 16, where it is specifi ed that the fi le is open to write something
into it (we added the “w” perm character). Pay attention as well to the multiple use
of the fprintf function to write the data into a fi le in a formatted way.

 We test this function in two steps: we fi rst create the data, then we write the data
into a fi le. We then repeatedly look into the fi le using the function DisplayFile
that we created earlier. We use a custom fi le extension.

 >> STIM.nStim=1; STIM.time=[123 576 1034];
 >> STIM.MPos=[23, 45; 345,15; 256,176];
 >> SaveStrangeFormat(′TestSave.myf′, STIM);
 File saved correctly!
 >> DisplayFile(′TestSave.myf′)
 Stimolous number: 1

 Time (ms) Mouse Position
 123 x= 23 y= 45
 576 x= 345 y= 15
 1034 x= 256 y= 176

 If you copied the example with no errors, everything should work properly. Here,
we want to go back to the function and outline the fprintf format at line 24.
Type:

 >> STIM
 STIM =

 nStim: 1
 time: [123 576 1034]
 MPos: [3x2 double]

 Note that MPos is a double matrix, which is why in the fprintf format we uses
the %f identifi er.

 Now let’s make a further step and import the data from an odd fi le format, like
the previous one. We want to highlight that it is necessary to know exactly how data
are formatted and their meaning to import them correctly. Let’s take a look at the
following function.

95More on Data Import/Export: Script Examples

 Listing 4.17

 Analysis

 Line 22: The textscan function is used. textscan skips the string ‘Stimulus
number:’ and reads the number. It converts the number as described by the specifi er
(%d) and then puts the number in the cell sn . On line 23, the value is stored in the
structure.

 Line 24: We skip the fi le line containing the string ‘ Time (ms) Mouse
Position ′.

 Line 25: We read the following numbers according to the specifi ed format. Note that
since textscan fi nds the same format, it reads multiple lines. The result is put in
a cell.

 Line 26 and 27: The cell values are put into the structure.

 Line 28: The counter NStmp is updated.

96 4 Start Programming

 Now test the function by typing the following lines:

 >> STIM1= ImportStrangeFormat(′TestSave.myf′);
 STIM1 =

 nStim: 1
 time: [3x1 int32]
 MPos: [3x2 double]

 >> STIM.MPos-STIM1.MPos
 ans =

 0 0
 0 0
 0 0

 As you can see, the data are loaded correctly (remember that STIM was defi ned
to test the SaveStrangeFormat function).

 Guidelines for a Good Programming Style

 Here we report a few guidelines for a good programming style. When you begin to
write a new program, fi rst you have to address the problem and fi nd out a way to
solve it, i.e., the algorithm. This means that you have to decide on the basic tools
you need to solve the problem. Then you have to follow a design process that
decomposes the problem into subordinate problems. This helps you to spot the
recursive tasks of your problem and the functions that you need to create. Finally,
you have to translate or convert the algorithm into a MATLAB script and test it. This
type of approach is called top-down . Your ability to use all of MATLAB’s potential
is limited by your experience. The more you increase your knowledge, the more you
will be creative and effi cient in solving problems.

 In any case, it is important to follow at least some general guidelines that can be
learned from expert programmers. Sometimes you can be impatient to get on with
your job. However, just a little attention to your programming style can help you
later in your work. The goal of these guidelines is to help you in producing code that
is clearer and easier to understand and update. If the code can be easily read and
understood by yourself and by other users, you can probably quickly modify it and
control it to spot where any errors are. These recommendations apply to any pro-
gramming language. Here, they are simply adapted to the development and writing
of MATLAB scripts.

 Writing Code

 As we wrote previously, the best way to write a long and complex program is to
assemble it from well-designed small programs (usually functions). The idea is an
IKEA-like programming style: a lot of small parts, each specialized for a specifi c
task, that can be assembled modularly.

97Guidelines for a Good Programming Style

 So the basic points for modularity are:

 Small and well-designed functions are more likely to be reused by other applica-•
tions and programs.
 Make the interaction clear: defi ne well the input and output arguments and their •
format. Structures can be used to avoid a long list of input or output arguments.
 Use a defensive programming approach. This means that the input variables •
should be controlled. Check whether the input variable is of a type that the func-
tion is expecting. For example, if you are writing a function that works with
numbers, check whether the input variable is a number, a logical, or a string. This
can be done using the conditional structures (i.e., if–else, switch–case) at the
beginning of the script. For example:

 Insert a default condition if necessary. •
 Communicate the errors to the user. •

 A good visual appearance of your code also helps you to focus on the structure
of your script. Therefore:

 Use indentation. Indentation helps you to fi nd where the loops and the conditionals •
begin and end. MATLAB has a built-in smart indenting tool. Just select the code
you are writing, right-click the mouse button, and select smart indent .
 Comment your script. Write a comment at the beginning of the script that tells •
you what the script does. In addition, comment the crucial points of the program.
In any case, pay attention to the following:

 Comment while you are writing your code. Comments that are added later are –
often confusing. Commenting while you are programming helps you to orga-
nize your algorithm/code.
 Avoid useless or unnecessary comments like: –

 num = 2; % set num equal to 2

 Variables often have a meaning. Therefore:•

 Use meaningful variable names. For example, use the names in use in your –
research fi eld.
 Use long variable names if necessary. The variable names can be as long as –
you desire. In this book we use the capital letters to separate parts of a com-
pound variable name: responseTime . The same result can be obtained with
the underscore (e.g., response_time) .

98 4 Start Programming

 Debug

 Errors, like death and taxes, are certain: you will surely produce them. The process
of detecting and correcting errors is called debugging . MATLAB has an effi cient
tool for debugging your script. Before explaining this tool, let’s have a look at the
most frequent errors in MATLAB. They are mainly of three types:

 Typos (e.g., sim(t) rather than sin(t)); •
 Syntax errors in function calls (e.g., wrong number of parameters) •
 Algorithmic errors. •

 The most diffi cult errors to spot and fi x are the algorithmic ones. Basically, if you
make an algorithmic error, you obtain unexpected results when you run your script.
Such a type of error is also known as a “run-time error.” They are diffi cult to detect
because the function’s local workspace is lost when the error forces the return to the
MATLAB workspace. However, the MATLAB debugging tool overcomes this
problem.

 The MATLAB debugger can be activated in the MATLAB editor by putting one
(or more) breakpoints in the script. When you run your script, MATLAB stops
temporarily at the line where the breakpoint was positioned. Once MATLAB stops,
the prompt k> > appears in the workspace . Now you can see the values of all the
variables of your program, type commands, etc. Then you can resume the execution
of your script until the next breakpoint.

 Setting breakpoints is simple. Just go to the left of the target line and click on –
(just to the right of the number line). Here we show how the debugger works using
the function statTwo .

 Action and description Graphical visualization

 Set one breakpoint at line 20 of the
script statTwo. A red circle appears to
the right of the line in the MATLAB
editor

 In the editor:

 Test the function In the command window type:
 >> statTwo(rand(1,20))

 MATLAB runs the function and stops at
line 20

 In the editor:

 In the command window:
 >> statTwo(rand(1,20))
 20 mea=sum(x(i))/Nelem;
 K>>

 At line 20 a green arrow appears,
indicating that MATLAB has temporary
stopped at line 20. In the command
window appears the number of the line
followed by the commands on that line
 The k>> prompt waits for your
(possible) input

(continued)

99Guidelines for a Good Programming Style

 Action and description Graphical visualization

 You can show the values of the variables
used in the function. Line 19 has
already been computed by MATLAB,
so the variable Nelem exists, while the
variable mea does not exist yet

 In the command window:
 K>> Nelem
 Nelem =

 20
 K>> mea
 ??? Undefi ned function or variable ‘mea’.

 Now, you can run your function line by
line. Just click on the step by step button

 In the Editor:

 The debugger goes to the next command
line. The mea variable is created and
calculated

 In the Editor:

 In the command window

 K>> mea

 mea =
 0.4972

 You can continue in step-by-step mode,
or run the function or script till the next
breakpoint. If there are no more
breakpoints, the script is executed till
the end

 In the editor:

 To clear the breakpoints click on the red
circles or on the clear breakpoints
button

 In the editor:

 MATLAB also provides other tools to help you in writing and managing your
M-fi les. These tools are M-Lint Code Check and Profi ler Reports. They are briefl y
described in the following paragraphs:

 The M-Lint Code Check Report displays a message for each line of an M-fi le and •
determines whether the program can be improved. For example, a frequent
M-Lint message is that a variable is defi ned but never used in the M-fi le. To acti-
vate this tool just select TOOLS and then M-LINT report in the MATLAB tool-
bar. For further information refer to the MATLAB online help.
 The Profi ler helps you to improve the performance of your M-fi les. When you •
run a MATLAB statement or an M-fi le, the Profi ler produces a report about the
time spent by each function and step of your code. To activate the Profi ler just
type profi le on at the prompt. Then you have to type profi le viewer to stop
the Profi ler and display the results in the Profi ler window. Try to type the follow-
ing statements:

 >> A = rand(10);
 >> profi le on;
 >> howmany2(A);
 >> profi le viewer;

(continued)

100 4 Start Programming

 A window opens and displays the time used to execute the function howmany2.
If the M-script calls more than one function, a list of all these functions also appears.
You can look into each function by clicking on the function name. For further infor-
mation refer to MATLAB help.

 Summary

 A script is a list of commands. Use the MATLAB editor to write, edit, and save •
your scripts. The extension of a MATLAB script is .m
 Comments are useful for understanding what a script does. Comments are pre-•
ceded by the % character.
 An M-script can be run by typing its fi lename at the MATLAB prompt. •
 A script starting with the keyword • function is a function. A function can have
input and output arguments. Input and output arguments are the way the function
communicates with the variables in the workspace.
 Comments after the fi rst line of a function are displayed in the command window •
when the help of the function is called for.
 The variables used within a function are • local : they exist only within the func-
tion. In contrast, a global variable can be used everywhere .
 The command • nargin indicates how many input arguments are used in a par-
ticular function call, while varargin is a cell matrix variable that collects all the
inputs.
 • if-else executes different groups of statements according to whether a condi-
tion is true or false.
 • switch allows the script to make choices between different cases.
 • try-catch attempts to execute a block of statements and catch errors.
 The for loop repeats a set of commands a fi xed number of times. The for form •
is:

 for start:step:stop
 Statements
 end

 The while loop repeats a set of commands an undefi ned number of times as long •
as the specifi ed condition is satisfi ed. The while form is:

 while condition
 Statements
 end

 Loops can be nested. The • break command can be used to quit the (innermost)
loop.
 Use logicals and matrix operations whenever possible. •

101Exercises

 It is possible to import/export data in specifi c formats using commands dedicated •
to fi le management: fopen, fclose, fprintf, textread.
 Use your own programming style, but remember to write your code as clearly as •
possible. Clear scripts are more maintainable. Prefer many short functions to a
few large ones (i.e., use modular programming).
 Use the MATLAB debugger, profi ler, and M-Lint tools to support your program-•
ming and to fi nd errors.

 Exercises

 1. Write an M-script that executes the following for loops:

 Question Solution

 1.1. Write a loop that generates a
column vector A with ten random
numbers. Then create a 10 × 4 matrix
having A as its fi rst column, with the
remaining columns the product of the
fi rst column and the column number

 1.2. Write the vector

 color=[2,1,3,0,1,3,1,0,2]

 Write a loop to display in the command
window the corresponding color name
as follows: 0 = yellow; 1 = red; 2 = green;
3 = blue

 Note: The values of the color vector are used as
index for the cName cell. However, the vector
also contains zeros, and for this reason a +1 is
used

 1.3 Generate a cell with ten element.
Each element is a vector of random
length (between 1 and 10) containing
ones if the length is odd and zeros
if the length is even

 Note: To obtain a random number between 1
and 10, we create a random number between 0
and 1 (using rand), then we multiply it by 10,
and take the fl oor to obtain an integer

 2. Repeat Exercise 1.2 using a while loop.
 3. Repeat Exercise 1.2 by substituting line 4 with the switch-case command.
 4. Exit from the for loop of Exercise 1.3 if the vector length is equal to 7 (use if

and break).
 5. Rewrite Exercise 4 using while .
 6. Write a function that displays the bar and the error bar graphics in the same

 fi gure having as input the x value, the y value, the color of the bar and the length
of the error. Inside your function use the MATLAB function bar and errorbar.

102 4 Start Programming

 A Brick for an Experiment

 Now we have suffi cient knowledge to write the brick script. As we wrote previously
in this chapter, when you plan to program an experiment, there are two choices: you
can write a single long program or you can write several subprograms and one main
program that calls each of the subprograms. For the brick we use an approach simi-
lar to the second.

 Let’s begin by writing an M-script with only comments in it and save it as
 SexulerExp.m:

 Listing 4.18

 Remember that comments are important. It is important to comment your pro-
gram so that you know, when you read your code after a certain time, what the vari-
ous parts of the code were there for. Here, the comments highlight the crucial points
of the program.

 Now we can write one of the corollary functions and program a function that
writes an event table. As we have written in this chapter, the majority of experiments
in psychology are fi xed-stimuli experiments, i.e., we know in advance the stimuli
we are going to present, how many times we are going to present them, and even the
random sequence of trials that we will present to the subject. This is an event table:
the storyline of the sequence of events that occur during the experiment, in other
words, a place where the particular stimulus we have to present in each successive
trial is written. In MATLAB, the event table is a matrix organized in rows and
columns, where each row represents one trial and each column represents one vari-
able. The event table we design here has the trial number in the leftmost column and
in the right columns, one variable that represents the kind of disc motion (continu-
ous or with the stop) and one variable that represents the presence/absence of
the sound. Once we have set and written the event table, when we are running the
experiment, at the moment we have to present a stimulus to the subject, we read
the content of the event table for that specifi c trial so that we know which stimulus
is to be presented.

103A Brick for an Experiment

 Let’s write the function GenerateEventTable . This function will receive as
input the conditions of the experiment, the number of repetitions for each condition,
and a logical value that informs the function whether the trials are to be written in a
random or fi xed order. 2 The conditions have to be passed to the function in matrix
form. We defi ne a matrix in which each row represents one combination of factors
and each column represents one factor. In brief, for the experiment that we implement
in the brick, the variable “conditions” could be written as follows:

 >> cond = [1, 1; 1, 2; 2, 1; 2, 2]

 Here the 1, 1 content of the fi rst row represents the continuous motion (1, left
column) without sound (1, right column), the 1, 2 content of the second row
represents the continuous motion (1, left column) with sound (2, right column),
and so on.

 Listing 4.19

 2 It is often useful to run an experiment in fi xed order, in particular when you are debugging the
experiment.

104 4 Start Programming

 Analysis

 Let’s analyze the function. As you can see, at lines 14–17, the function
 GenerateEventTable repeatedly copies the condition variable to itself. This is
done for the number of times the stimuli will be repeated during the experiment.
This copying process returns a variable that is very similar to the fi nal event table
(although without the trial number). At line 19 we calculate the number of trials.
The number of trials is equal to the number of rows of the EventTable variable
created at line 16. Lines 21–28 control the isfi xed variable, and according to its
value, write the fi nal event table. If isfi xed is equal to 1, the function appends to the
left of the event table a successive number (i.e., the trial number) but leaves the rest
of the EventTable variable unchanged. In contrast, if isfi xed is equal to 0 (i.e., the
event table has to be sorted in random order), the function fi rst generates a random
sequence of TotalNumberOfTrials by means of the function randperm (see row
n. 26). Successively, the function appends to the left of the EventTable matrix the
vector just created (row 26). Finally, the content of the EventTable matrix is sorted
according its leftmost column (column number 1), i.e., the column that contains the
trial number written in random order. This sorting randomizes the rows of the event
table, i.e., randomizes the trial sequence of our experiment.

 Now let’s return to the main script (i.e., SekulerExp) and modify it as follows:

 Listing 4.20

 We add the settings (rows 7–8), we call for the GenerateEventTable function
(row 9), and calculate the number of trials by reading the event table (row 10).

 Let’s take the script a step further. As we have written in this chapter, fi xed-
stimuli experiments can be programmed with a for loop. We can now write the
main for loop driving the experiment. In the for loop, each time we make one cycle,
the subject performs one trial. Therefore, each time we make one cycle we generate

105A Brick for an Experiment

the appropriate audio/video stimulus that we have to present by reading the content
of the EventTable matrix:

 Listing 4.21

 At rows 14–23 there is a for loop that keeps the experiment running trial after
trial. At rows 17–18, within the for loop, we read the event table to know the stimu-
lus that we have to generate and present to the subject. Note that we use the step
variable “trial” as index to read the content of the event table matrix. Moreover, in
the script we introduced a feature that may help the experimenter (see rows 9–11).
Often, when we run an experiment, it may be useful to have the possibility to run a
short version of it. Let’s insert this option in our program (lines 9–11). Here we use
a rule that is similar to that used in the E-Prime and MEL software (Schneider 1990 ;
Schneider et al. 2002) . If the subject number is equal to zero, the subject runs the
complete experiment (i.e., s/he observes all stimuli) but each stimulus is repeated
only once and no data will be written in the data fi le (see later bricks).

 Note that for the moment, there is no way to tell the program the subject number
as well as the isfi xed value. These will be given later through the graphical inter-
face. Note also that we wrote the conditional if after the number of repetitions has
been declared and before the GenerateEventTable function. Otherwise, the
operation would have no effect.

106 4 Start Programming

 References

 Boring EG (1961) Fechner: inadvertent founder of psychophysics. Psychometrika 26:3–8
 Fechner GT (1889) Elemente der Psychophysik, 2nd edn. Breitkopf & Härtel, Leipzig
 Gescheider GA (2003) Psychophysics: the fundamentals, 3rd edn. Lawrence Erlbaum Associates,

Hillsdale
 Schneider W (1990) MEL user’s guide: computer techniques for real time psychological

experimentation. Psychology Software Tools, Pittsburgh
 Schneider W, Eschman A, Zuccolotto A (2002) E-prime user’s guide. Psychology Software Tools,

Pittsburgh
 Sperling G (1960) The information available in brief visual presentations. Psychol Monogr

74:1–29

 Suggested Readings

 Hahn BD, Valentine DT (2009) Essential MATLAB for engineers and scientists, 4th edn. Elsevier/
Academic Press, Amsterdam

 Sayood K (2007) Learning programming using MATLAB. Morgan & Claypool, San Rafael, CA
 Singh YK, Chaudhuri BB (2008) MATLAB programming. Prentice-Hall of India, New Delhi

107M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_5, © Springer Science+Business Media, LLC 2012

 MATLAB is an extremely powerful tool for dealing with sounds. You can use
MATLAB for sound synthesis as well as for sound analysis. It is possible to create
your own custom sound from scratch, and it is also possible to edit at will an exist-
ing sound. Furthermore, MATLAB can be used to understand several acoustical
characteristics of digital sounds. This chapter shows how to do all of these.

 Generate a Sound

 First, let’s generate a white noise (i.e., a random succession of amplitude values)
having a duration of 1 s and a sample rate of 44,100 Hz and then play it. 1

 Listing 5.1

 Lines 1 and 2 set the sample rate and the sound duration. Line 3 implements the
vector noise; to the rand() function we have passed the product of the sample rate
and the duration of the sound in seconds. This operation will be repeated several
times in this chapter; it returns the array length of the digital sound, at the desired
sample rate. To prevent MATLAB warnings such as “Warning: Size vector

 Chapter 5
 A Better Sound

 1 Although MATLAB enables the generation of sounds at several sample rates, 44,100 Hz is the
most used. This is, for example, the sample rate of an audio CD.

108 5 A Better Sound

should be a row vector with integer elements”, it may be convenient
to round the result of this multiplication. Lines 4 and 5 expand and translate the
amplitude values of the white noise within the −1/+1 range. We need to do this
because MATLAB wants sounds to range within the −1/+1 limits.

 The next thing we may wish to do is to synthesize a pure tone, i.e., a sinusoidal
tone. We now synthesize a pure tone of 1,000 Hz and 1 sec duration (a must in
psychoacoustics).

 Listing 5.2

 In Listing 5.2, we calculate the sine of an argument that completes f cycles (i.e.,
 2*pi) in time t . The time t has been represented digitally, with an array starting at
 0 and arriving at the specifi c sample rate (44,100 Hz) at the overall sound’s dura-
tion. With these few command lines, we can create different pure tones by changing
 f and d .

 Now let’s play the tone twice using the command sound twice in rapid
succession.

 >> sound(tone, sr)
 >> sound(tone, sr)

 If your fi ngers were fast enough you could hear a single unpleasant tone rather
than two tones in succession. This is because the sound function works asynchron-
ically; in other words, the second tone would be played while the fi rst tone is still
playing.

 There are two ways to avoid this. The fi rst is to use (wavplay) 2 which lets you
decide whether you want to work synchronically (‘sync’ parameter) or asynchron-
ically (‘ async ’ parameter). Use the function in the following way to play the tones
synchronically (i.e., the second tone is played only after the fi rst tone has ended).

 wavplay(tone, sr, ‘sync’);
 wavplay(tone, sr);

 If you pass the parameter ‘async’ instead of ‘sync’ , you will get the same
unpleasant output resulting from the use of sound() . Another way to avoid the
asynchrony problem is to use the sound functions included in PsychToolbox. These
functions will be described in the chapters dedicated to this toolbox.

 The tone we have created can be saved in your computer as a wav fi le by means of
the wavwrite() function. wavwrite() transforms the array into a wav sound fi le.

 2 Note that wavplay is only for use with windows machines.

109Generate a Sound

Note that if you do not want a clipped sound, the array’s values should range
between −1 and +1. wavwrite() quantizes the values of the given vector accord-
ing to the number of bits you are using (16 by default). This means that if you are
working at 16 bits, the lower value without clipping is −1 + 1/(2 nbit−1). In the pure
tone example, the sin() function returns values in the range −1 to +1, and there-
fore all −1s are clipped when playing the fi le. If you multiply the sound array by the
minimum possible quantized value, i.e., −1 + 1/(2 nbit−1), then the sound amplitude
will be compressed into a sound fi le without clipping.

 >> wavwrite(tone, sr, ‘my_fi rst_tone’)
 Warning: Data clipped during write to fi le:my_fi rst_tone
 > In wavwrite>PCM_Quantize at 247

 In wavwrite>write_wavedat at 267
 In wavwrite at 112

 Matlab clips the lower values and gives a warning message. For
common usage, the error is insignifi cant (a quantization step).
If you wish not to obtain a warning message, you can rescale
the signal using the following formula:

 >> nbits=16; tone=tone*(1-1/(2^nbits-1));
 >> wavwrite(tone, sr, ‘my_fi rst_tone’)

 We are now ready for something more complex: let’s build a harmonic tone that
is the sum of two or more pure tones having a harmonic relation. Let’s create a
complex tone with three harmonics and with a fundamental frequency of 250 Hz:

 Listing 5.3

 In Listing 5.3 we have generated three sine waves (lines 5, 6, and 7) and then
added the simple tones together to create a complex tone. Line 9 needs a bit of clari-
fi cation. Since the complex variable implemented in line 7 results from the sum of
three components, its amplitude exceeds the −1/+1 range. Therefore, if we play the
tone as it is, it will result in a distorted sound (and MATLAB does not warn you
about this distortion!). To avoid any distortions, we need to normalize the sound,
which is what line 8 does. The normalization is done by dividing the harmonic vari-
able by its maximum absolute value.

110 5 A Better Sound

 Another solution to the distortion problem is to use the soundsc() function,
which automatically scales the sound’s amplitude within the −1/+1 range no matter
how “large” the sound’s amplitude is. So lines 8 and 9 could have been replaced by
the following code:

 soundsc(harmonic, sr);

 We are now able to produce pure and complex tones of any desired frequency
and duration. By the same token, we can now produce an inharmonic tone, i.e., a
tone whose frequency components are not in a harmonic relation.

 Listing 5.4 generates an inharmonic tone:

 Listing 5.4

 In this example, we have solved the distortion problem by using soundsc()
instead of normalizing the sound. Let’s now change the timbre of the complex tone by
changing its waveform so that the sound is, for example, a sawtooth wave. In sawtooth
waves, the amplitude of each successive harmonic is half of the amplitude of the pre-
vious harmonic. Therefore, we have to multiply the amplitude of each successive
harmonic by a factor ½, ¼, 1/8 and so on. Let us start with the following code:

 Listing 5.5

 If we plot the fi rst 10 ms of the sound (i.e., the fi rst 441 samples, since we are
working at a sample rate of 44,100 Hz), we see that the waveform does not look like
a sawtooth wave (Fig. 5.1):

 plot(complex(1:441))

111Generate a Sound

 This is because of the limited number of harmonics we have used to generate the
wave. However, if we make the complex tone with, let’s say, 20 harmonics, then the
waveform’s shape will be more sawtooth-like. The following code listing shows
how to do it by means of a for cycle:

 Listing 5.6

 In each for cycle, the amplitude of successive components is halved. If you now
plot the fi rst 441 samples, you can check that the waveform is much smoother than
the previous one. Moreover, if we plot some of the single components (the fi rst
three, for example), we can get an idea of the summation process we have imple-
mented. Listing 5.7 does the job.

 Fig. 5.1 A sawtooth wave with a limited number of harmonics

112 5 A Better Sound

 Listing 5.7

 Multiple Sounds

 Sometimes it can be useful to create short melodies, i.e., sequences of tones. In
order to do this, we have to concatenate the various arrays of the tones (and silences)
we want to put in our little tune. Listing 5.8 plays the notes middle C, D, and E, fol-
lowed by a pause of 1 s and then the note C again.

 Listing 5.8

 Let’s run a more “psychological” example: let us play the pulsation threshold
example. The pulsation threshold (Houtgast 1972) is a case of auditory continuity.
The stimulus we need to synthesize is a succession of brief noises and tones, for
example a noise followed by a tone, followed by a noise, and so on. If the intensity
of the tone is low in comparison with that of the noise, the tone is heard as continu-
ous, i.e., the tone is heard even within the noise (even though there is no tone within
the noise).

113Multiple Sounds

 Let’s synthesize the tone and the noise:

 >> sr = 44100;
 >> f = 1000;
 >> d = .2;
 >> t = linspace(0, d, d*sr);
 >> tone = sin(2*pi*f*t);
 >> noise = (rand(1, sr*d)*2)-1;

 We have now to reduce the amplitude level of the tone. Here, we fi rst reduce the
tone’s amplitude 1/100 (i.e., 40 dB) from its original amplitude and successively
create the noise–tone sequence:

 >> tone = tone * .01;
 >> sequence = [noise, tone];
 >> sequence = [sequence, sequence]; % sequence of 4 sounds
 >> sequence = [sequence, sequence]; % sequence of 8 sounds
 >> sequence = [sequence, sequence]; % sequence of 16 sounds
 >> sequence = [sequence, sequence]; % sequence of 32 sounds
 >> sound(sequence, sr)

 You should be able to hear the tone as continuous within the noise bands (although
you should be well aware that there is no tone within the noise bands!).

 Let’s suppose you need to synthesize a number of tones sounding together in
time, but one (or more) of the tones needs to have just a little onset asynchrony so
that it can be heard as popping out from the other tones sounding together (Darwin
and Ciocca 1992) . Here we implement this example with three tones and add a little
onset asynchrony to the second and third tones. First, we add three tones together so
that they begin simultaneously in time.

 >> sr = 44100;
 >> f1 = 300;
 >> f2 = 550;
 >> f3 = 640;
 >> d = 5;
 >> t = linspace(0, d, d*sr);
 >> tone1 = sin(2*pi*f1*t);
 >> tone2 = sin(2*pi*f2*t);
 >> tone3 = sin(2*pi*f3*t);
 >> complex = tone1+tone2+tone3;
 >> soundsc(tone1+tone2+tone3, sr)

 Now we add the temporal offset to the second and third tones:

 >> offset_dur = .5;
 >> offset = zeros(1, sr*offset_dur);
 >> tone1 = [tone1, offset, offset];
 >> tone2 = [offset, tone2, offset];
 >> tone3 = [offset, offset, tone3];
 >> soundsc(tone1+tone2+tone3, sr)

114 5 A Better Sound

 If you listen to the sound, you may note that the individual components are
indistinguishable in the fi rst example. However, in the second example they can be
easily distinguished. This is because of the onset asynchrony of the tones.

 Manipulating a Sound’s Level

 With MATLAB, it is possible to manipulate precisely the relative levels of sounds.
In fact, the absolute level of a sound depends on several factors such as the sound
card of your computer, the headphones, the loudspeakers, the amplifi ers, and so on.
The digital synthesis moves within a dynamic range of 2^bits (2^16, i.e., 96 dB, is
a very common dynamic range for most PCs). In digital audio, 0 is arbitrarily set as
the maximum level, and all softer levels are represented with negative numbers. In
practice, a sound whose level is 0 dB is louder than a sound whose level is −10 dB.
For example, let us play a tone twice but the second time 10 dB softer:

 Listing 5.9

 When you are working with a sound’s amplitude, you should use the sound()
function rather than the soundsc() function, because soundsc() normalizes the
sound’s amplitude before playing the sound. Therefore, any manipulation you have
done on the sound’s amplitude is ineffective if you use soundsc .

 The same amplitude attenuation can be done with a noise:

 Listing 5.10

 In Listing 5.10, the level of the second noise is 20 dB lower than that of the
fi rst one.

115Manipulating a Sound’s Level

 Match the Level of Sound with Different Waveforms

 In this section we show how to match the levels of sounds of differing waveforms.
Let’s suppose that we need to play several environmental sounds during an experi-
ment. Let’s also suppose that we want these (very different) sounds to be perceived
as similarly loud. These sounds have different waveforms. Therefore, the sound
pressure of each sound will be different. There are two options for matching the
levels of sounds having different waveforms. The fi rst option is to normalize the
amplitude of the sounds. For example, let’s suppose that we have two sounds stored
in two arrays (s1 and s2) in our workspace. To normalize the amplitude of the two
sounds, we need to increase their amplitudes so that the peak for both sounds is
equal to one. This can be done in this way:

 >> s1 = s1/max(abs(s1));
 >> s2 = s2/max(abs(s2));

 A simpler alternative could be, once again, that of using the sounsc() function,
which normalizes the sounds’ amplitudes before playing them.

 The second option is to match the two sounds using the root mean square (RMS)
amplitude. This process is often more effi cient than normalization, in particular
when the sounds are very different. Listing 5.11 shows how to do this.

 Listing 5.11

 Analysis

 The root mean square of each sound can be calculated as in lines 1 and 2. If the fi rst
sound is on average greater in amplitude than the second, we need to attenuate its
amplitude (lines 4–6). In contrast, we may need to amplify the amplitude of the
second (lines 7–9).

 The two sounds now have identical mean amplitudes. In fact, if we recalculate
the RMS amplitude, we will fi nd out that the second sound has the same mean
amplitude as the fi rst.

116 5 A Better Sound

 Stereophonic Sounds for ITD and ILD 3

 We can use MATLAB to create sounds with simulated interaural time difference
(ITD) or interaural level difference (ILD). First, let’s create a pure tone of 3,000 Hz
and 500 ms duration (recall that ILD cues are relevant at relatively high frequencies
in particular, Moore 2003) .

 >> sr = 44100;
 >> f = 3000; % the tone’s frequency (in Hz)
 >> d = .5;
 >> t = linspace(0, d, sr*d); % a time vector
 >> tone = sin(2*pi*f*t);

 All the sounds we have created so far are monophonic, and monophonic sounds
are useful in the majority of psychological applications. If the monophonic sound is
coded within a single array, the corresponding stereophonic sound will be coded
within two arrays, the fi rst containing the sound for the left channel and the second
containing the sound for the right channel. Therefore:

 >> stereo_tone = [tone’, tone’];
 >> sound(stereo_tone, sr);

 Note that both arrays need to be rotated. This is because the sound() function
wants as input a stereophonic matrix having two columns, one for the left channel
and one for the right channel. This can be tested by playing one channel at time. In
the following example, we play the sound, but we multiply the amplitude of the left
channel by zero:

 >> sound([tone’*0, tone’], sr)

 Because the left channel consists entirely of 0s, it is silent. You can make the
right channel silent by passing 0s to the right column of the matrix in this way:

 >> sound([tone’, tone’*0], sr)

 Let’s suppose we want an ILD of 10 dB that simulates a sound source at your left
side. What we need to do is to attenuate the right channel by 10 dB, as follows:

 >> stereo_tone = [tone’, tone’*10^(-10/20)];
 >> sound(stereo_tone, sr)

 You can hear that the tone is louder in the left channel than in the right channel.
Mutatis mutandis, the same operations (inverting the matrix columns) can be used
to create a sound that is perceived as coming from the right.

 It is only somewhat more complex to add interaural phase difference (ITD) to
our sounds. To get ITD into our sounds we need to control the sound’s phase.
Theoretically, the ITD is a temporal difference, usually expressed in microseconds, in

 3 We recommend to use headphones for better appreciating the sounds described in this section.

117Stereophonic Sounds for ITD and ILD

the arrival of the sound at the two ears. However, because of this temporal difference,
the sound arrives at each ear with a different phase. This phase difference is called
interaural phase difference (IPD). In digital synthesis, it is easier to create a phase
difference than a temporal difference. The IPD cue is important for sound localiza-
tion along the azimuth for frequencies up to 1,500 Hz (Moore 2003) . Let’s fi rst
write a command for controlling a tone’s phase. It can be done as follows:

 >> sr = 44100;
 >> f = 250;
 >> d = .5;
 >> t = linspace(0, d, sr*d);
 >> phase = 0; % starting phase of the tone in radians
 >> tone = sin(2*pi*f*t+phase);

 Now let’s suppose we want to create a sound that seems to originate from the
right channel. This channel leads, and it is followed after a certain ITD by the sound
that arrives at the left ear. Suppose that we want to simulate an ITD of 0.4 ms, i.e.,
4*10^–4:

 >> ITD = 4*10^–4;
 >> IPD = 2*pi*f*ITD;
 >> phase_left = 0;
 >> phase_right = IPD;
 >> tone_left = sin(2*pi*f*t+phase_left);
 >> tone_right = sin(2*pi*f*t+phase_right);
 >> sound([tone_left’, tone_right’], sr)

 As you can hear, the tone seems to be originating from your right.
 We are now ready to do something more complex. Let’s say that we want to play

13 sounds starting from the left channel and slowly moving to the right one. Listing
5.12 does this:

 Listing 5.12

118 5 A Better Sound

 At every iteration of the for loop, we synthesize a stereo tone and play it. The
ITD variable content is changed at every iteration by multiplication of the variable
 i, and this results in a different ITD value every time i changes its value.

 A Sound’s Envelope

 You may have noticed that in all the sounds we have played so far, there were
audible clicks both at the beginning and at the end of the sounds. This is because the
amplitude of the sound at onset and offset started abruptly. To remove these disturb-
ing clicks, we need to modulate the amplitude of the very fi rst and very last portions
of the sound with an onset and offset ramp, whereas we need to leave unmodulated
the middle portion of the sound. In other words, we need to smooth the onset and
offset a bit so that the clicks will be inaudible. This smoothing is a very common
operation, and usually ramps of 10 ms are suffi cient to smooth the sound. In the
majority of cases, onset and offset are modulated with raised cosine ramps, i.e., half
of a cosine cycle, and precisely the half ranging from p to 2 p :

 >> sr = 44100
 >> gatedur = .01; % the duration of the gate in seconds (i.e., 10 ms)
 >> gate = cos(linspace(pi, 2*pi, sr*gatedur));

 Let’s now generate a tone:

 >> f = 250; % frequency of the tone in Hz
 >> d = .5; % duration of the tone in seconds
 >> time = linspace(0, d, sr*d); % a time vector
 >> tone = sin(2*pi*f*time);

 If we play it, we can hear the onset and offset clicks:

 >> sound(tone, sr)

 If we want to modulate the amplitude of the tone’s onset and offset, we need to
multiply the tone by an envelope. The envelope of a sound is an imaginary line con-
necting all the positive (or negative) peaks of the sound. In digital synthesis, the
envelope’s values must lie within the 0/+1 range. Therefore, we now need to adjust
our modulator (the gate variable created previously) so that its range is within the
0/+1 limits:

 >> gate = gate+1; % this operation translates all the values
of the modulator to the 0/+2 range
 >> gate = gate/2; % this operation compresses the values within
the 0/+1 range

119A Sound’s Envelope

 Now the gate is within the correct range. We can now easily create the offset gate
by fl ipping the array containing our onset gate as follows:

 >> offsetgate = fl iplr(gate);

 The last thing we need to do is to create the “sustain” portion of our envelope, in
other words, the portion that will not modulate the sound’s amplitude. Because we
are going to perform a multiplication, if we want the tone’s central part unchanged
after the multiplication, we need to create an array of ones, the neutral factor for the
multiplication. The length of the sustain portion will be equal to the tone’s length
minus the lengths of the onset and offset gates. In this way, the length of our enve-
lope (i.e., onset gate, sustain, and offset gate) will be identical to that of the tone:

 >> sustain = ones(1, (length(tone)-2*length(gate)));
 >> envelope = [gate, sustain, offsetgate];
 >> smoothed_tone = envelope .* tone;

 If we now play the tone, we no longer hear any clicks. Moreover, a graph showing
the original tone, the envelope, and resulting smoothed tone may explain visually
what we have done so far (Fig . 5.2).

 >> sound(smoothed_tone, sr)
 >> subplot(3, 1, 1); plot(t, tone)
 >> subplot(3, 1, 2); plot(time, envelope, 'o')
 >> subplot(3, 1, 3); plot(time, smoothed_tone)

 Fig. 5.2 At the top part of the fi gure you can see the original sound. At the center is shown the
envelope that was used to modulate the sound’s onset and offset. At the bottom of the fi gure is
displayed the resulting modulated sound. Note that the onset and offset are not abrupt as in the top
left graph

120 5 A Better Sound

 Sound Filtering

 In this section we describe how to fi lter sounds. One of the purposes of fi ltering is
to generate noises of various kinds (e.g., lowpass, highpass, bandpass). In this sec-
tion we will see how to fi lter a noise and how to generate any kind of fi ltered noise.
The fi rst thing we have to do is to create a white noise 4 :

 >> sr = 44100;
 >> d = 1; % the duration of the noise (in sec)
 >> noise = (rand(1, sr*d)*2)-1;
 >> sound(noise, sr);

 In order to fi lter our noise, we need to look at our sound in the frequency domain,
i.e., we need to apply a fast Fourier transform (FFT):

 >> fnoise = fft(noise);

 The magnitude spectrum of our noise looks almost fl at along the frequency axis,
as it should for white noises.

 Command Graphical result

 >> plot(20*log10(abs(fnoise(1:22050))))

 As you can see, the FFT command returns an array as long as the original
noise array. However, the new array contains complex numbers. This array is
our original noise. However, now we are looking at it from the frequency domain
rather than from the time domain. Therefore, if in the original array each element
represented a given amplitude value in time, in the new array, each element
represents a frequency with its relative amplitude and phase (note that we are
dealing with complex numbers, i.e., numbers having a real and an imaginary
part). In the array returned by the FFT, all frequencies up to the half of the sampling
rate (i.e., the Nyquist frequency) will be represented twice and symmetrically
(see below).

 4 Note that it is possible to generate white noises according to various distributions. For example,
the rand function returns random and uniformly distributed numbers. Therefore, our white noise
would be a “uniform white noise.” If we use randn , a function that generates random numbers
according to the normal distribution, we would have a Gaussian white noise instead. See, for
instance, Wikipedia for further details.

121Sound Filtering

 If we want to fi lter the noise, we need to create a fi lter array as long as our noise
array. The fi lter array will contain elements ranging from 0 to 1. Later, we will con-
volve this fi lter array on the noise array. The frequencies convoluted with elements
smaller than 1 will be fi ltered, and the fi ltering will be greater, the closer the value
of the fi lter is to 0. The frequencies convoluted with 1 will, however, be untouched.
Now let’s suppose we want to create a low-pass fi lter with a cutoff frequency of
5 kHz. We have to proceed as at lines 3–7 of the following script:

 Listing 5.13

 Listing 5.13 creates the fi lter. Note that the fi lter is symmetric because frequen-
cies are represented twice and symmetrically within the noise array. Specifi cally,
we have convolved 5 our fi lter to the noise (line 10) and plotted the spectrum of the
fi ltering (line 11) process. As you can see, a large band of frequency components
is now missing (what was removed by the fi lter). Moreover, you can see the sym-
metric representation of frequency. If we want to listen to our fi ltered noise, there
are a couple of more things to do. The fi ltered noise is represented in the fre-
quency domain, but we need to represent it in the time domain. To do this, we fi rst
apply the inverse of the FFT, and then we extract the real part of the complex
number array:

 >> fnoise = ifft(fnoise);
 >> fnoise = real(fnoise);
 >> fnoise = fnoise/max(abs(fnoise));
 >> sound(fnoise, sr)

 Note that we have normalized the noise’s amplitude before playing it. This is
because the fi ltering can return a sound whose amplitude exceeds the −1/+1 range.

 5 Convolution is an operation done in time. Thanks to Fourier transform properties, the convolution
operation in time become a simple product in frequency between the Fourier transform of the noise
and the fi lter frequency response.

122 5 A Better Sound

 In Listing 5.14 we include a plot to represent the fi ltering, step by step. In the
example, we band-pass fi lter a Gaussian white noise and keep the frequency
components from 2,000 to 6,000 Hz:

 Listing 5.14

123Sound Analysis

 Sound Analysis

 The analysis of the sound’s acoustical characteristics can range from very simple to
very complex (see Giordano and McAdams 2006 for a list of possible sophisticated
analyses). In this section we show only some simple analyses because these are the
most common in psychology. The fi rst things we may want to know are the digital
characteristics of the sound. These characteristics are returned by the wavread()
function, which takes as argument the wav fi lename. Let’s see how this function
works, assuming that we have saved a sound in mywavefi le.wav:

 >> [s, sr, bits] = wavread(‘mywavefi le’);

 Here s is a vector variable containing the sound. The sr and bits variables are
the sound’s sample rate in hertz and the sound’s resolution in bits, respectively. The
sound’s duration can be obtained by dividing the length of the sound vector by the
sample frequency:

 >> duration = length(s)/sr;

 The root mean square power of a sound can be obtained by squaring sound’s
array and then calculating the average of the resulting values. Finally, we calculate
the square root. Because the returned value is linear, we may want to transform it
into decibel units.

 >> s2 = s^2;
 >> ms2 = mean (s2);
 >> rms = sqrt(ms2);
 >> dB_rms = 20*log10(rms);

124 5 A Better Sound

 If we want to know the peak amplitude of the fi le, we just need to calculate the
maximum absolute value of the sound vector as follows:

 >> peak = max(abs(s));
 >> peak_dB = 20*log10(peak);

 We may want to look at the sound’s magnitude spectrum in order to obtain its
frequency content. We fi rst calculate the fast Fourier transform (FFT) of the sound,
and then obtain the absolute value to plot the magnitude spectrum. The magnitude
spectrum repeats itself. Therefore, we have to plot only the fi rst half of the data:

 >> s_fft = fft(s);
 >> s_fft = abs(s);
 >> s_fft = s_fft(1:length(s_fft)/2);
 >> plot(s_fft)

 We now may want to see the amplitude of the various frequency components on
a decibel scale rather than on a linear scale. Moreover, we may want to have a more
meaningful x-axis as well as to add labels to the plot (Fig. 5.3):

 Fig. 5.3 Magnitude spectrum of “chirp.” The following spectrum was plotted by loading the vari-
able “chirp” and then by performing the operations written in the text. Note that when you load
chirp, the sound array automatically gets the variable name y, whereas the sample rate gets the
variable name Fs. Therefore, the following lines must be written at the beginning of the script: load
chirp; s = y; sr = Fs; Note that the spectrum of the chirp shows peaks at 500 Hz, 1,500 Hz, 2,500 Hz,
showing an evident harmonic structure of the spectrum

125Exercises

 >> f = linspace(0, sr/2, length(s_fft));
 >> plot(f, 20*log10(s_fft))
 >> xlabel(‘frequency (Hz)’)
 >> ylabel(‘dB’)

 Summary

 Sounds are represented by arrays and should lie within the −1/+1 range. •
 White noises (and noises in general) are generated by means of the • rand (or
 randn) function.
 Pure tones are generated by means of the • sin function.
 Complex tones are generated by adding two or more simple tone arrays. •
 Silences can be generated with arrays of zeros. •
 Sounds can be played with the sound, • soundsc, and wavplay functions.
 soundsc scales normalize the sound’s amplitude automatically. Wavplay is the
only MATLAB command that makes it possible to work synchronically.
 A sound’s sequences are generated by concatenating the sound’s arrays. •
 A sound’s level can be manipulated by multiplying the sound’s array by the •
desired factor of attenuation/amplifi cation.
 Stereophonic sounds use matrices containing two columns (i.e., two sound •
arrays).
 A sound’s envelope can be manipulated by multiplying the sound’s array by an •
envelope array. The envelope array must contain values within the 0–1 range.
 Sounds can be fi ltered by means of the • fft function.

 Exercises

 1. Synthesize a 2-kHz, 2-s duration pure tone.
 2. Synthesize a white noise of 0.5 s duration.
 3. Synthesize a white noise of 0.5 s duration followed by 0.1 s of silence and then

the noise again.
 4. Synthesize a 200-Hz four-harmonic complex tone (0.5 s duration), followed by

the same tone attenuated by 30 dB.
 5. Write the previous tone to a wav fi le.
 6. Open the fi le just created and calculate the root mean square of the fi rst half of

the sound and of the second half of the sound and calculate the level difference
between the two tones in dB.

 7. Synthesize the following stimulus for a forward masking experiment: a band-
pass noise of 200 ms followed by a sinusoidal signal of 1,000 Hz. The noise
frequency content must range within the 500–2,000 Hz limits.

 8. Synthesize a pure tone (300 Hz, 0.2 s duration) with 600 m s of ITD.
 9. Synthesize a 500-ms low-pass fi ltered noise (cutoff frequency 5,000 Hz) and

smooth the onset and the offset of the noise with 50-ms raised cosine ramps.

126 5 A Better Sound

 A Brick for an Experiment

 In the experiment developed by Sekuler et al. (1997), the visual display of a disc’s
motion is accompanied by a sound. The authors actually used more than one sound
in the various conditions of the experiment. The sound, described in greater detail,
is a tone of 440 Hz and 100 ms duration. No other details are provided. For our brick
experiment we can use a sine wave of 440 Hz and of 50 ms duration (the effect
observed by Sekuler et al. is more compelling if the sound has a short duration),
gated on and off with two 5-ms raised cosine ramps, just to prevent clicks at the
onset and offset of the sound. Let’s create this sound:

 % stimuli (creation)
 sr = 44100;
 d = .05;
 f = 440;
 % tone synthesis
 t = linspace(0, 0.1, sr*d);
 tone = sin(2*pi*f*t);
 % ONSET AND OFFSET GATING
 gatedur = .005; % the duration of the gate in seconds (i.e., 5-ms)
 ongate = cos(linspace(pi, 2*pi, sr*gatedur));
 ongate = ongate+1;
 ongate = ongate/2;
 offgate = fl iplr(ongate);
 sustain = ones(1, (length(tone)-2*length(ongate)));
 envelope = [ongate, sustain, offgate];
 tone = tone .* envelope;

 This code needs to be extended for our purposes. In our experiment the sound
needs to be switched on while the discs are in motion, and in particular, when the
discs overlap. In later chapters, we will see that this is going to happen at frame 70
(i.e., at the x coordinate of 140). We have to append, at the beginning of the sound,
a silence for the duration we have to wait before switching on the sound. To do that,
we need to anticipate the use of the screen function. This function will be exten-
sively described later. The screen is the most important function of the psychtoolbox
functions and can do several things. One of the things that this function does is to
interrogate the video card to know the refresh rate that is currently set in your com-
puter. Here we use screen to get the refresh rate of your monitor.

 refreshrate = FrameRate(screennumber); % get the frame rate of
the monitor
 silencepre_dur = (1/refreshrate) * 70;
 silencepre = zeros(1, round(sr * silencepre_dur));
 SoundToPlay = [silencepre, tone];

127References

 Now write everything within a single GenerateSound() function. This func-
tion receives as argument a digit representing the sound we want to play (1 for no
sound, 2 for the sound) that is stored in the EventTable and a screen number (see
later chapters). The function’s output will be a sound array. Note that the input
number is used at the end of the function to decide whether to return silence or
the tone.

 Listing 5.15

 References

 Darwin CJ, Ciocca V (1992) Grouping in pitch perception: effects of onset asynchrony and ear of
presentation of a mistuned component. J Acoust Soc Am 91:3381–3390

 Giordano BL, McAdams S (2006) Material identifi cation of real impact sounds: effects of size
variation in steel, glass, wood, and plexiglas plates. J Acoust Soc Am 119:1171–1181

 Houtgast T (1972) Psychophysical evidence for lateral inhibition in hearing. J Acoust Soc Am
51:1885–1894

 Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic, San Diego
 Sekuler R, Sekuler AB, Lau R (1997) Sound alters visual motion perception. Nature 385: 308

128 5 A Better Sound

 Suggested Readings

 There are a number of MATLAB tools developed by researchers that can be used in audition. Here
is a certainly incomplete list of the available tools:

 Grassi M, Soranzo A (2009) MLP: a MATLAB toolbox for rapid and reliable auditory threshold
estimations. Behav Res Methods 41:20–28 (This paper implements several psychoacoustic
experiment together with sound generators and modifi ers.)

 Peeters G, Giordano BL, Susini P, Misdariis N, McAdams S (2011) The Timbre Toolbox: Extracting
audio descriptors from musical signals. J Acoust Soc Am 130:2902–2916 (This paper shows a
toolbox for the analysis of musical signals.)

 Malcom Stanley has released a toolbox that implements several popular auditory models:

 http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/
 Pérez E, Rodriguez-Esteban R (2006) Oreja: a MATLAB environment for the design of psychoa-

coustic stimuli. Behav Res Methods 38:574–578 (The Oreja software package was designed to
study speech intelligibility. It is a tool that allows manipulation of speech signals to facilitate
study of human speech perception.)

 Readers interested in MATLAB tools for audition should take a look at the following journals:
 Behavior Research Methods and the Journal of Neuroscience Methods . Both journals often publish
MATLAB tools for audition.

 Readers Interested in more technical and advanced audio processing should read the following
book:

 McLoughlin I (2009) Applied speech and audio processing: With Matlab examples. Cambridge:
Cambridge University Press

http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/

129M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_6, © Springer Science+Business Media, LLC 2012

 MATLAB is a powerful tool for image processing. You can use MATLAB to create
visual stimuli either by importing/exporting images or by drawing them from scratch
in a quite simple manner. In this chapter, we give an introduction to image drawing
and image manipulation.

 Images Basics

 A digital image may be defi ned as a two-dimensional function f(x,y) . Here x and y
are spatial coordinates and f(x,y) is the intensity of the image at the particular coor-
dinates. For example, in a grayscale image, f(x,y) is the intensity of the gray at the
particular x and y position.

 Digital images differ from analog images (e.g., analog photos) because x, y coor-
dinates and the f(x,y) intensity values are discrete instead of continuous. In digital
images, a single (x,y) point is called a pixel. The intensity f(x,y) depends on the
number of bits used to represent it. Usually the intensity is represented with 8 bits,
yielding 2 8 values. As an example, a gray-scale image has intensity values within
the 0–255 range, or in other words, the gray can assume 256 different levels from
black (0) to white (255). Often, the range is normalized within the 0–1 range (i.e.,
the intensity values are divided by 255) (Fig . 6.1).

 To get a color image, we need to superpose different colors, for example Red ,
 Green , and Blue in the RGB system. In color images, each coordinate has n intensity
values, one for each of color of the system in use. For example, each pixel of an
RGB image is a triplet of intensity values, one for red, one for green, and one for
blue. By default, MATLAB represents these triplets with 8 bits, for a total of 24 bits,
yielding 224 colors. This type of image is usually called TrueColor .

 Chapter 6
 Create and Proccess Images 1

 1 Note that, although the book fi gures are black and white, the commands reported in the current
chapter generate color fi gures.

130 6 Create and Proccess Images

 There is also another method of treating color images: indexing images . Each
pixel has a value that represents not a color but the index in a color map matrix. The
 color map (or color palette) is a list of all the colors used in that image. Such index-
ing images occupy less memory than RGB images, so they are a good option for
saving space. The indexing concept is graphically illustrated in Fig. 6.2 . 2 Each
image has a zoomed area of 17 × 17 pixels. Each zoomed area shows the intensity
for the gray-scale image and the RGB values for the color image. The indexed image
is obtained from the RGB image using a palette with the 60 colors included in
the RGB image.

 MATLAB uses indexing images by default, and has a default color map from
which it gets the colors for plotting fi gures such as histograms, pies charts, and 3-D
graphs. Let’s see the fi rst fi ve rows of the default color map by typing the following
statement:

 >> colormap('default');
 DefColMap = colormap;
 >> whos DefColMap
 Name Size Bytes Class Attributes
 DefColMap 64x3 1536 double
 >> DefColMap(1:5,:)
 ans =
 0 0 0.5625
 0 0 0.6250
 0 0 0.6875
 0 0 0.7500
 0 0 0.8125

 The colormap(cmap) function can be used to set the color map to the matrix
cmap. In our case, colormap sets the matrix color map to the default one. If we
write the statement colormap as is, MATLAB returns the current color-map matrix.
Here we saved the current color map into the DefColMap variable. As can be seen,
the default color map has 64 colors (number of rows) and three columns: the fi rst
column corresponds to the color red, the second to green, and the third to blue. For
example, in the fi rst row of DefColMap there is 0% red, 0% green, and 56.25% blue
(the values of the default color map are normalized), so the fi rst fi ve rows corre-
spond to a variation of the blue color only.

 Fig. 6.1 An example of a
5 × 5 gray-scale image. The
fi rst pixel in position (1, 1)
has intensity equal to 32

 2 The image is copyrighted by the artist Mirta Caccaro.

131Images Basics

 Fig. 6.2 Three different digital representations of the same image

132 6 Create and Proccess Images

 Let’s acquire a better understanding of the color map by creating a custom color
map. Let’s suppose we want to create a color map whose fi rst color is red, the second is
green, the third is blue, the fourth corresponds to a light azure, and the fi fth corresponds
to orange. Then we create a 3 × 5 indexed image with 3 × 5 = 15 pixels using the colors
of the color map. In the following example we write code that does the job:

 Example Graphical result

 >> Mycolormap = [1 0 0; 0 1 0; 0 0 1;…
 0 1 1; 1 0.5 0];
 >> im = [5 4 3 2 1; 3 2 1 5 4; 1 3 5 4 2]
 >> image(im)
 >> colormap(Mycolormap)

 0.5

1

1.5

2

2.5

3

3.5
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

 As you can see, the top leftmost pixel is orange, which corresponds to the index
(row) 5 in the color map, or equivalently to the combination of 100% red, 50%
green, and 0% blue.

 You can change the color map just created using the command colormapeditor;
it displays the current fi gure’s color map as a strip of rectangular cells in the color-
map editor. Node pointers are colored cells below the color-map strip that indicate
points in the color map where the rate of the variation of R, G, and B values changes.
Please refer to MATLAB help for detailed information.

 Example Graphical result

 >> colormap(‘default’)
 >> colormapeditor;

 Importing and Exporting Images

 The function that enables one to load images into the MATLAB workspace is
 imread. A = imread(fi lename, fmt) reads a gray-scale or color image from the

133Images Basics

fi le specifi ed by the string fi lename and stores the result in the matrix A . The text
string fmt specifi es the format of the fi le by its standard fi le extension. However, it
is not necessary to write the extension if the fi lename already has the standard exten-
sion. If the image is an RGB image, the matrix A is a cube, i.e., an Nrows × Ncolumns × 3
matrix. For indexed images, the function imread returns the specifi c color map of
the image.

 If you need to write an image to a fi le, the function imwrite.
imwrite(A,fi lename,fmt) writes the image A into a fi le with the specifi ed fi le-
name and in the format specifi ed by the string fmt. For indexed images, such as gif
fi gures, for example, the function is imwrite(X,map,fi lename,fmt). The function
accepts other input parameters as well, such as the quality of jpeg images or the
transparency matrix for png images. For further information, refer to the online
MATLAB help.

 An additional way to export your images is through the print function. The
 print function can be used as described in Chapter 3 , once the image is displayed
(see next section). Alternatively, select Copy Figure from the fi gure window’s Edit
menu. This action copies the image to the clipboard. Then you can paste the fi gure
wherever you like.

 MATLAB handles different image formats, the most common of which are
presented in the following table:

 File
format Extention Description Function use

 TIFF TIFF
image

 Color, gray-scale, or
indexed image(s). The
tiff format was
originally created in the
1980s to support data
output from scanners.
This format can contain
information about
colorimetry calibration,
etc.; examples occur
with remote sensing

 Tim=imread(fi lename, 'tiff');
 [Tim, TColMap]=imread(fi lename,’tiff’);
 imwrite(Tim,fi lename,'tiff');

 PNG PNG
image

 True color, gray-scale,
and indexed image(s).
Very effi cient lossless
compression, support-
ing variable
transparencies

 Pim=imread(fi lename,’png’);
 [Pim, PColMap]=imread(fi lename,’png’);
 imwrite(Pim,fi lename,'png');

 BMP BMP
image

 True color or indexed
image native format for
Microsoft Windows.
Can support up to 24-bit
color. Originally
uncompressed

 Bim=imread(fi lename,’bmp’);
 [Bim, BColMap]=imread(fi lename,’bmp’);
 imwrite(Bim,fi lename,’bpm’);

(continued)

134 6 Create and Proccess Images

 File
format Extention Description Function use

 JPEG JPEG
image

 True color or gray-scale
image. 24-bit (true
color) support. Created
to support the photo-
graphic industry with
various levels of
compression.
Compression can result
in noticeable loss of
image quality in some
images

 Jim=imread(fi lename,’jpg’);
 imwrite(Bim,fi lename,’jpg’);

 GIF GIF
image

 Indexed image, Very
common and used
extensively in the
Internet. It works well
for illustrations or
clip-art that have large
areas of fl at colors.
Limited to 256 colors

 [Gim, GColMap]=imread(fi lename,’gif’);
 imwrite(Gim,fi lename,’jpg’,’Quality’,75);

 Display Images

 If you need to display an image, use the function image. Now let’s try to load an
image and display it as in the following example:

 Example Graphical result

 >> [Trees,mapTrees] = imread
('trees.tif');
 >> image(Trees);
 >> axis off;
 >> size(mapTrees)
 ans =
 256 3

 The image you see seems to have the wrong colors. The reason is the following.
The image was indexed with its own custom color map. However, MATLAB does

(continued)

135Basic Manipulation of Images

not load the image color map but uses the default color map instead. To show the
correct image, you need to change the color map as follows:

 >> colormap(mapTrees)

 Note that mapTrees is the color-map matrix obtained using the command
 imread .

 If you have the MATLAB image-processing toolbox, there is another function
for displaying images: imshow(X,map), where X is the image and map is the color
map. Use only one argument in case of true-color or gray-scale images.

 If you need to obtain the gray-scale version of the previous image, you need to
change the color map. You can do it in either of two ways, by editing a new custom
color map or by using the function gray(M) . The function gray(M) returns an
M-by-3 matrix containing a linear gray-scale color map. Use gray as in the follow-
ing example:

 Example 1 Example 2 Example 3

 colormap(gray(100));

 colormap(gray(450));

 >> colormap(gray(256));

 The effect of using a color map with fewer (or more) colors than those we are
starting with (= 256 in this case) can give unexpected results. The color map can
have up to a maximum of 256 entries (= rows). If we create a color map with only
100 rows, all the indices with values greater than 100 will not know which color
refer to. MATLAB automatically sets all the indexes greater than 100 to point at the
last row, i.e., the 100th row. This is why the image in Example 1 appears lighter. In
contrast, Example 2 shows a darker image. This is because only the fi rst 256 colors
are used (which correspond to darker grays).

 Note that for true color images, the image data will be read as a three-dimen-
sional array. In such a case, image will ignore the current color map, and assign
colors to the display based on the values in the array.

 Basic Manipulation of Images

 In MATLAB, images are treated as numbers embedded in matrices; therefore, they
can be manipulated like any other array. Each intensity value is related to a pixel of
the images and can be changed with a simple transformation. Such single-pixel
transformations are generally called point operations . A different approach is to
consider not only a single pixel but also a set of neighboring pixels. There is usually

136 6 Create and Proccess Images

a strong correlation between the intensity values of a set of pixels that are close to
each other. For example, we can change the gray level of a given pixel according to
the values of the gray levels in a small neighborhood of pixels surrounding the given
pixel. These transformations are called neighborhood processing. The current sec-
tion shows some simple processing functions.

 Point Operations

 Intensity Transformation

 Within the point operations, the intensity transformation is the simplest form of
processing. Let’s suppose we have an indexed gray-scale image. If the gray scale is
linear, the index of a pixel is equivalent to its intensity. Such a value (the intensity)
can be added/subtracted or multiplied/divided by a constant value. If we refer to
indices, it is important to round the result (to obtain an integer where necessary) of
the operation and to “clip” the values when they are greater than the maximum or
lower than the minimum.

 Let’s load an image (The fi le mandrill contains the image X variable and the
color-map map variable) and add a constant equal to 128 to each pixel’s intensity
value:

 >> load mandrill
 >> Y = X +128;
 >> Y(9,1)
 ans =
 270

 as you can see, the pixel intensity value in position (9,1) is greater than 255
(= 28). In this case we need to “clip” the value and set it to 255. The operation can
be done effi ciently by selecting the minimum between the actual value and 255.

 >> Y(9,1)=min(Y(9,1) , 255);
 >> Y(9,1)
 ans =
 255

 We now use the function fl oor to round the result (if necessary) to obtain an
integer. The fl oor function returns the greatest integer less than or equal to the input
argument.

 In the same way, if we need to be sure the values of an intensity matrix are
greater than 0, we should type:

 >> Y=fl oor(max(Y,0));

 We show here the code to obtain the aforementioned intensity transformation
with the MATLAB image called mandrill (Fig. 6.3).

137Point Operations

 Listing 6.1

 Fig. 6.3 Intensity variations applied to the same image

138 6 Create and Proccess Images

 Note that we are providing an example with a gray-scale image. For color images,
all the intensity matrices (e.g., the red, green, and blue matrix for RGB images)
should be changed with the same function, or equivalently, by changing the color
map. In any case, the most useful intensity transformations are brightening and
contrasting. There are two built-in functions that operate within the color map
and do these jobs: the brighten and the contrast functions. They are present
in the following table.

 Function Description

 Brighten(beta) Brighten increases or decreases the
color intensities in the current
color map. The modifi ed color map
is:

 - brighter if 0 < beta < 1
 - darker if –1 < beta < 0.

 cmap = contrast(X) The contrast function enhances the
contrast of an image. It creates a
new gray color map, cmap, that has
an approximately an equal intensity
distribution. All three elements in
each row are identical

 The MATLAB Image Toolbox gives a simple graphical interface to explore, dis-
play, and perform common image-processing tasks. The Image Tool provides access
to several other tools. For example, you can get information about single pixels and
distances, and you can adjust the contrast of an image or crop a portion of it. Type
 imtool(fi lename) at the MATLAB prompt to use these tools. You can try out
these tools with the image of the trees by typing imtool(′trees.tif′).

 Windowing

 The concept of windowing is the multiplication of an image matrix by a matrix of
the same size having values within the range from 0 to 1. The “window” can be

139Point Operations

thought of as another image. It is often used to smooth edges or to highlight certain
parts of the image. Here we show an example:

 Listing 6.2

 The matrix SqWindow is a matrix of ones and zeros. If you multiply it by the
original image, the resulting image in unchanged only where the window is equal to
one. However, the resulting image will change in those pixels where the value of the
window is less than one (i.e., zero in this case). The result of this windowing is
shown in Fig. 6.4 . This type of windowing works best with gray-scale images. Keep
in mind that in the case of or RGB images, the windowing has to be applied to each
color. Such a windowing type is useful for creating gabor patches.

140 6 Create and Proccess Images

 Neighborhood Processing

 In the previous section we have seen how to modify images by applying a transfor-
mation of the intensity to each pixel. In this section we extend such an approach by
including as well a neighborhood of each pixel. Overall, the neighboring pixels
belong to a mask centered on the pixel where we want to obtain the new intensity
value. The new intensity is calculated by combining all the intensities of the mask.
Such an operation is called space fi ltering. In Fig. 6.5 , the concept is illustrated
graphically.

 Spatial fi ltering requires two steps:

 1. Place the mask over the current pixel,
 2. Calculate the intensity combination of all the pixel intensities within the mask.

 Here we give a simple example: a fi lter that gives the average of the nearest
pixel. The mask is a matrix of 3 × 3 pixels. The operation to obtain the new pixel
intensity is simple: multiply each intensity in the mask by 1/9 (9 is the total number
of pixels in a mask) and sum them. The operation is performed for each image pixel
using the function fi lter2.

 Fig. 6.4 Windowing concept. Two different windows are applied to the same fi gure

 Fig. 6.5 Neighborhood processing concept

141Neighborhood Processing

 Listing 6.3

 The result is shown in Fig. 6.6 .
 At line 10 we used the function fi lter2, which is a function that fi lters the data

in the second argument with the FIR fi lter (the mask and the values of such a mask)
in the fi rst argument. The third argument of the function controls how the edges are
treated. You may have noticed that the fi ltered image has artifacts on the edges.
These artifacts are explained in the following section.

 If you have the MATLAB image toolbox, use imfi lter() instead of
 fi lter2() .

 Fig. 6.6 Image fi ltering example

142 6 Create and Proccess Images

 There are many types of fi lters, e.g. low-pass, high-pass. The fi ltering action is
always the same, but the difference lies in the fi lter’s design. Here we do not want
to explore the world of fi lter design. However, we would like to give you just another
example: the Gaussian fi lter.

 Listing 6.4

 The result of Listing 6.4 is shown in Fig. 6.7 . On the right we show the fi lter
values.

 As we mentioned before, fi lter design is not simple. However, the MATLAB
image toolbox has a function called fspecial that helps you to create 2-D fi lters.
The function h = fspecial(type) creates a two-dimensional fi lter h of the
specifi ed type, which is the appropriate form to use with imfi lter . Here type is
a string having one of the following values: ‘average’, ‘disk’, ‘gaussian’,
‘laplacian’, ‘log’, ‘motion’, ’prewitt’, ’sobel’ and ’unsharp’ .
Each type needs some other specifi c values (i.e., mask dimension and other param-
eters). For example, in order to create a Gaussian fi lter similar to the one we have
used in the previous example, type the following:

 >> FilterGSpecial = fspecial('gaussian', 21, 4);

 FilterGSpecial is a rotationally symmetric Gaussian fi lter of size 21 pixels
with standard deviation of 4 pixels. For further information please refer to the
MATLAB help.

143Neighborhood Processing

50

Original Image Filtered Image

100

150

200

250

300

350

400

450

500

50

100

150

200

250

300

350

400

450

500

100

0.012

0.01

0.008

0.006

0.004

0.002

0
25

2520
2015

1510 105 5
0 0

200 300

Filter Values

100 200 300

 Fig. 6.7 A lunar image fi ltered with a Gaussian fi lter. The Gaussian (spatial) fi lter values are given
on the right

 We conclude this section by reminding you that the resizing procedure is also a
form of neighborhood processing. The imresize function does image resizing.
When you resize an image, you specify the image you want to resize and the mag-
nifi cation factor. To enlarge an image, specify a magnifi cation factor greater than 1.

144 6 Create and Proccess Images

To reduce an image, specify a magnifi cation factor between 0 and 1. Here there is
an example to reduce the image by 50%:

 >> TreesRes = imresize(Trees,0.5);
 >> image(TreeRes);

 The Edges of the Image

 When we fi lter an image, there is a problem at the edges, where the mask partly falls
outside them. There is a number of different approaches to solve this problem:

 • Ignore the edges. The mask is applied only to those pixels of the image where the
mask fully lies within the image. This results in an output image that is smaller
than the original. To obtain this result, you should specify 'valid' as the third
argument of the fi lter2 function.
 • Pad with zeros . The missing values in the neighborhood of edge pixels are set to
zero. This gives us a complete set of values to work with, and the result will be
an output image of the same size as the original, but it may have the effect of
introducing unwanted artifacts around the image. To obtain this result, you
should specify 'same' as the third argument of the fi lter2 function.

 Advanced Image Processing

 The aforementioned methods are not straightforward. However, these methods are
useful if you need to create and modify images. If you need more complex images
processing, perhaps it is simpler to use the MATLAB image toolbox.

 There are also devoted software packages for working with images, such as
Adobe Photoshop. However, MATLAB can be useful when you need to modify
repeatedly a certain number of images in the same way: writing a MATLAB script
could be less time-consuming than repeatedly performing the same operation with
Photoshop. Moreover, starting from version CS3, MATLAB and Photoshop (using
Photoshop Extended) are connected: MATLAB can use Photoshop functions (and
vice versa). For further information please read the Photoshop Manual.

 Creating Images by Computation

 In this section we see how to design and plot simple images. There is a partial over-
lap between the way to plot images in the current section and the way to plot images
using the PsychToolbox as explained in the following chapters. However, it is useful
to know both, so that you can use the best method according to your specifi c needs.

145Creating Images by Computation

 It is quite simple to plot images using the plot command. However, MATLAB
has other simple functions to plot in 2-D (lines and polygons) and 3-D (spheres,
cylinders, etc.). In the following table the main plotting commands are presented:

 Function Description

 line(x,y)
 line(x,y,z)

 Plot a multiline to the current fi gure. x and y
are vectors of the same size specifying the
endpoints of the line. line(X,Y,Z) creates
lines in 3-D coordinates

 fi ll(x,y,c) Fills the 2-D polygon defi ned by vectors x
and y with the color specifi ed by c . c can be a
string (such as a plot color specifi cation) or an
RGB vector. If c is a vector of numbers of the
same length as x and y, its elements are used
as indices into the current color map to
specify colors at the vertices; the color within
the polygon is obtained by bilinear interpola-
tion of the vertex colors

 fi ll3(x,y,z,c) This is equivalent to fi ll but in 3-D space

 cylinder(r,n)
 [x,y,z]=cylinder(r,n)

 Forms a 3-D unit “cylinder” with n equally
spaced vertices around the circumference of
radius r. If r is a vector, the resulting fi gure is
the connection between successive vertices at
different radii, expressed by the vector r. It
returns three matrices to be used with the
function surf

 ellipsoid(xc,yc,zc,xr,yr,zr,n)
 [X,Y,Z]=ellipsoid(xc,yc,zc,xr,yr,zr,n)

 Plot an ellipsoid with center at xc , yc, and zc
and radii xr , yr , zr . It returns three matrices
to be used with the function surf . n is the
number of surfaces used to form the ellipsoid

 Here we provide a simple script to show the simultaneous lightness contrast
effect [which is the condition whereby a gray patch on a dark background appears
lighter than an identical patch on a light background; see Kingdom (1997) for a
historical review of this perceptual phenomenon] and the successive color contrast
effect, which is the condition whereby the perception of currently viewed colors is
affected by previously viewed ones (see, for example, Helmholtz (1866/1964)),
using some of the commands presented previously.

146 6 Create and Proccess Images

 Listing 6.5

 If you run the above script, you should see the images in Fig. 6.8 .
 Not all images can be designed using lines or polygons. Let’s suppose that you

want a two-dimensional sinusoidal image with a frequency of eight cycles per
image, rotated by a certain angle. The following function does the job.

 Fig. 6.8 Example of contrast and successive contrast effect images

147Creating Images by Computation

 Listing 6.6

 Now save it with the name Sinusoid2D and test it with the following
parameters.

 Example 1 Example 2

 A=Sinusoid2D(301,0,3,0);
 >> imagesc(A)
 >> colormap(gray)

 A=Sinusoid2D(301,30,5,0);
 >> imagesc(A)
 >> colormap(gray)

148 6 Create and Proccess Images

 If we want to obtain a Gabor patch (i.e., a sine-wave grating in a gaussian
 window) we need to apply a gaussian window to the sinusoidal images we gener-
ated previously. The following function does it for you:

 Listing 6.7

 You can rearrange the scripts and put all the operations in a single code listing.

Here we show some examples, using the function Gabor2D :

149Summary

 Example 1 Example 2

 >> A=Gabor2D(301,0,4,0,70);
 >> imagesc(A)
 >> colormap(gray)
 >> axis square

 >> A=Gabor2D(301,45,5,90,70,30);
 >> imagesc(A)
 >> colormap(gray)
 >> axis square

 Now that we have drawn a Gabor Patch, it should be quite simple to realize
Gabor patches randomly distributed on the screen. Simply use the Gabor2D func-
tion as fi lter! Let’s have a look:

 Example Graphical result

 >> F=zeros(500);
 >> GaborFilter=Gabor2D(51,0,3,90,10);
 >> for i=1:20;
 >> F(fl oor(rand*500),fl oor(rand*500))=1;
 >> end;
 >> RandIm=fi lter2(GaborFilter,F,’valid’);
 >> imagesc(RandIm);
 >> colormap(gray);

 Here, each single point is set to 1 at a random position, and it is fi ltered with a
Gabor patch created using Gabor2D function. The result is simply the displacement
of the gabor patches of the screen. As you can see, you have a complete tool to work
with Gabor patches.

 Summary

 Digital pictures consist of a discrete number of • pixels.
 Each pixel is associated with a value:•

 In gray-scale images the value corresponds to a gray level. ◦
 For color images, the color in the pixel is represented by n values, one for ◦
each basic color (i.e., for RGB images, one intensity for red, one intensity for
green, and one intensity for blue).
 For indexed images, the value corresponds to the index of a color-map table. ◦

150 6 Create and Proccess Images

 The function • colormap sets and retrieves the current color map used for indexed
images.
 The function • imread reads an image from a fi le, while the function imwrite
writes an image fi le.
 The • point operation changes each pixel value by modifying its intensity value
using direct transformations. The brighten and the contrast functions are
two useful point operations.
 • Windowing is a point operation whereby there is a multiplication between two
matrices: the image matrix and the window matrix. It is often used to create
smooth edges, or to highlight certain parts of the image.
 The • neighborhood operation changes each pixel’s intensity value by considering
the intensity of a certain number of pixels, generally in a mask around the pixel
to be changed. Such an operation is called space fi ltering.
 Space fi ltering is done using the function • fi lter2. Alternatively, you can use the
function imfi lter.
 Using specifi c commands like • line, cylinder, fi ll, fi ll3, ellipsoid,
it is possible to create simple 2-D and 3-D images.
 Gabor patches are created using windowing and fi ltering techniques. •

 Exercises

 1. Write an M-script to create a color map of seven colors. Create a picture of seven
circles. Each circle should be fi lled with a different color taken from the color
map. Display another fi gure having seven circles but in gray scale (i.e., change
the color map)

 Solution Graphical result

 Ncirc = 7;

 % create a random colormap
 Mycolormap = rand(Ncirc,3)

 Npoint=30;
 x=[1:Npoint]./Npoint*2*pi;

 fi gure;
 hold on;
 for i = 1:7
 fi ll(sin(x),cos(x)+(i-1)*2,i);
 end
 axis equal
 % Apply the colormap
 colormap(Mycolormap);

 fi gure;
 hold on;
 for i = 1:7
 fi ll(sin(x),cos(x)+(i-1)*2,i);
 end
 axis equal
 % Apply the grayscale
 colormap(gray(7));

151References

 2. Read the image ‘forest.tif’, display it, and increase its brightness using a beta of
0.2. Resize it to 75% of its original size. Then save it with the new name
‘MyForest.tif’.

 Solution Graphical result

 >> [X1,map1]=imread(‘forest.tif’);
 >> image(X1);
 >> colormap(map1);
 >> brighten(0.2);
 >> X1res = imresize(X1,0.75);
 >> image(X1res);
 >> print –dtiff myforest;

 3. Load the fi le clown (i.e., type load clown) and use a gray-scale color map.
Apply a sinusoidal window with a frequency of three cycles per image. You can
create the window using the function Sinusoid2D in Listing 6.6. Apply to the
original image a fi lter created with fspecial of type ‘motion’, with length 25
and an angle of 45°. Use the MATLAB help to see how to apply fspecial. Display
the three (gray) images.

 Solution Graphical result

 >> load clown;
 >> SinWin=Sinusoid2D(size(X),0,3,0);
 >> h = fspecial(‘motion’, 25, 45);
 >> Xfi ltered=fi lter2(h,X);
 >> fi gure;
 >> subplot(3,1,1);
 >> image(X);
 >> subplot(3,1,2);
 >> image(X.*SinWin);
 >> subplot(3,1,3);
 >> image(Xfi ltered);
 >> colormap(gray(length(map)));

 References

 Helmholtz HV (1866/1964) Helmholtz’s treatise on physiological optics. Optical Society of
America, New York

 Kingdom F (1997) Simultaneous contrast: the legacies of Hering and Helmholtz. Perception
26(6):673–677

152 6 Create and Proccess Images

 Suggested Readings

 Some of the concepts illustrated in this chapter can be found, in an extended way, in the following
books:

 Gonzalez RC, Woods RE, Eddins SL (2009) Digital image processing using MATLAB. Gatesmark
Publishing

 Poon T-C, Banerjee PP (2001) Contemporary optical image processing with MATLAB.
New York: Elsevier Science Ltd

153M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_7, © Springer Science+Business Media, LLC 2012

 This chapter outlines the main statistics used by psychologists. Some of the functions
described here are included in the Statistics toolbox, a toolbox specifi cally devoted to
statistical analysis. Moreover, the chapter presents how to get some of the signal
detection theory indexes.

 The purpose of this chapter is to help the reader to build upon existing statisti-
cal knowledge in order to support its application in MATLAB. Most of the func-
tions detailed here are included in the Statistics toolbox, a devoted MATLAB
toolbox for statistics. In addition, a number of fi les and functions running statisti-
cal analysis can be found in fi le exchange section of the Mathworks website at the
following link (see the brick for an example): http://www.mathworks.com/matlab-
central/fi leexchange/

 The fi rst part of the chapter outlines statistics, fi rst descriptive statistics and then
the inferential statistics. The last part outlines the signal detection theory indexes.

 Descriptive Statistics

 Measures of Central Tendency

 The most-used measures of central tendency, such as the mean, the mode, and the
median, are provided by built-in MATLAB functions. Specifi cally, mean(),
mode(), and median() return the measures of the central tendency of a data
 vector. When the argument is a matrix, the functions return the measure of central
tendency for each column . Table 7.1 shows these functions.

 Additional descriptive measures can be acquired through the Statistics toolbox.
For example, the toolbox includes functions for calculating the geometric mean, the
harmonic mean, and the trimmed mean. Table 7.2 lists these functions. Note that
with these functions, too, when the argument is a matrix, the function outputs the
measure of central tendency for each column.

 Chapter 7
 Data Analysis

http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/matlabcentral/fileexchange/

154 7 Data Analysis

 Measures of Dispersion

 Range, standard deviation, variance, and standard error are the most-used measures
of dispersion. Range, standard error, and interquartile difference, are built-in
MATLAB functions. Additional dispersion measures are included in the Statistics
toolbox [for example, range() and iqr()]. Table 7.3 shows the main dispersion
measures assuming that the vector v = 1:10 is the input argument.

 By default, these functions adopt the unbiased estimator of dispersion (i.e., N−1).
If you need the second moment of the function, pass the optional argument 1.
For example, std(v,1) returns the second moment of the standard deviation
(i.e., uses N instead of N−1).

 Table 7.1 Principal measures of central tendency
 MATLAB function Description

 mean() For vectors, mean(v) returns the arithmetic mean of the elements
in v . For matrices, mean(X) returns the arithmetic mean of each
 column

 mode() For vectors, mode(v) returns the most frequent of the elements in v .
For matrices, mode(X) returns the most repeated of the elements in
each column

 median() For vectors, median(v) returns the median value of the elements in
 v . For matrices, median(X) returns a the median of the elements in
each column

 Table 7.2 Additional measures of central tendency provided by the Statistics toolbox
 Statistical toolbox function Description

 Goemean() Geometric mean of the input variable

 harmmean() Harmonic mean of the input variable

 trimmean(v,percent) m = trimmean(v,percent) calculates the mean of the
variable v excluding the highest and lowest (percent/2%) of
the observations

 Table 7.3 Principal measures of dispersion

 MATLAB function Description
 Output considering the vector
 v = 1:10;

 max(v)−min(v) Range >> max(v)-min(v)
 ans = 9

 std(v) Standard
deviation

 >> std(v)
 ans = 3.0600

 var(v) Variance >> var(v)
 ans = 9.3636

 std(v)/sqrt(length(v)) Standard
error

 >> std(v)/sqrt(length(v))
 ans = 0.9226

 median(v(fi nd(v>median(v))))-
 median(v(fi nd(v<median(v))))

 Inter-quartile
range

 >> median(v(fi nd(v>median(v))))-
median(v(fi nd(v<median(v))))
 ans = 6

155Bivariate and Multivariate Descriptive Statistics

 Bivariate and Multivariate Descriptive Statistics

 Correlation and covariance are the most used-statistics to measure the strength of
the relationships among variables. corrcoef() returns the correlation between
two input vectors. If a matrix is passed instead, then corrcoef() calculates the
correlation among all the columns of the matrix. By default, corrcoef() returns
only a matrix of correlation coeffi cients. However, additional outputs can be
requested such as:

 1. A matrix of p -values indicating the correlation’s signifi cance;
 2. Two matrices of the lower and the upper bounds of the 95% confi dence interval

for each regression coeffi cient.

 The following MATLAB code returns the correlation matrix R , the correlation
 p -values P , matrices RLO and RUP for the lower and upper bound confi dence inter-
vals for each coeffi cient in R:

 >>[R,P,RLO,RUP] = corrcoef(X);

 Let us suppose that a psychologist wants to fi nd out whether there is a correlation
between listening span (e.g., the number of remembered sentences of a story) and
the number of errors in an arithmetic test in 7-year-old children. Twenty children
participate in the study and the data are as presented in Table 7.4 .

 Listing 7.1 runs the correlation analysis on the data.

 Listing 7.1

 Listing 7.1 outputs the following arguments:

 1. The correlation matrix R, showing that there is a negative correlation between
the two variables: the higher the listening span, the lower the number of errors in
the arithmetic test.

 R =
 1.0000 -0.6214
 -0.6214 1.0000

 Table 7.4 Hypothetical data of a correlation study. The table reports the listening span (measured
as the number of remembered sentences of a story) and number of errors in an arithmetic test of 20
seven years old children

 Child id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Span 2 4 4 4 5 5 3 3 2 1 2 6 6 6 5 4 4 4 3 3

 Errors 4 2 2 4 3 4 3 2 2 6 5 1 2 1 1 2 2 1 2 3

156 7 Data Analysis

 2. The probability matrix P , showing that the probability is only 0.0035 of getting
a correlation of −0.6214 by random chance when the true correlation is zero.

 P =
 0.0035

 3. The interval bounds matrices RLO and RUP showing that the lower and the upper
bounds for a 95% confi dence interval of the correlation coeffi cient are −0.8344
and −0.2467, respectively.

 RLO =
 1.0000 -0.8344
 -0.8344 1.0000

 RUP =
 1.0000 -0.2467
 -0.2467 1.0000

 Covariance

 The covariance matrix of a set of data X can be obtained by typing cov(X) at the
MATLAB prompt. The diagonal of the output matrix contains the variance of each
variable. The variances of a number of variables can be obtained using the diag()
function in combination with the cov() function, in the following way:
 diag(cov(X)) . With this function, too, we can pass the optional argument 1 to get
the second moment of the function.

 Simple and Multiple Linear Regression

 There are different ways to run a linear regression analysis in MATLAB. Perhaps
the easiest one is to use regstats(), which is included in the Statistics toolbox.
The function takes the dependent variable as fi rst argument and a matrix of predic-
tors as second argument. It is also possible to pass an optional third argument for
nonlinear regressions. If you type

 regstats(y,X);

 MATLAB displays a GUI listing the diagnostic statistics that can be saved into
the workspace (Fig. 7.1).

 The diagnostic statistics can be saved in a structure in this way:

 s = regstats(y,X); saves the diagnostic statistics in structure s.

 Imagine that a psychologist wants to discover a regression model for a class of
13 students by knowing their IQs and the number of hours they study per week.
Table 7.5 lists the data:

157Bivariate and Multivariate Descriptive Statistics

 Fig. 7.1 GUI output by the
 regstats() function

158 7 Data Analysis

 Listing 7.2 runs the regression analysis on these data.

 Listing 7.2

 By inspecting the structure s , we can see that the regression coeffi cients
are − 5.3178 and 0.0505 0.1125 (s.beta), that they are all signifi cant at an
alpha level of 0.05 (s.tstat) and that the amount of variance explained by the
predictors is 90.8% (s.rsquare). Figure 7.2 shows the scatterplots for both
the predictors with the regression lines.

 The regression line can also be obtained through the built-in fi tting feature: after
plotting the data, select Tools > Basic Fitting from the Figure menu bar. This will
show the GUI presented in Fig. 7.3 .

 As can be seen from Fig. 7.3 , different polynomials can be fi tted.
 The next table shows the main functions fi tting different polynomials.

 Fig. 7.2 Linear regression plot resulting from code listing 7.2

 Table 7.5 Hypothetical data for a regression analysis. The table lists the grade, the IQ, and the
number of hours studied per week by 13 students

 Student id 1 2 3 4 5 6 7 8 9 10 11 12 13

 Grade 1 1.6 1.2 2.1 2.6 1.8 2.6 2 3.2 2.6 3 3.6 1.9

 IQ 110 112 118 119 122 125 127 130 132 134 136 138 125

 StudyTime 8 10 6 13 14 6 13 12 13 11 12 18 7

159Bivariate and Multivariate Descriptive Statistics

 Fig. 7.3 The built-in
MATLAB feature for Basic
fi tting. Plot the data and select
Tools > Basic Fitting from the
menu bar to fi t different
polynomials to the data

160 7 Data Analysis

 Generalized Linear Model

 The Statistics toolbox includes the glmfi t() function, which computes the general-
ized linear model regression of different distributions; that is, in addition to the
default normal distribution, it is possible to use the binomial, the gamma, the inverse
Gaussian, and the Poisson distributions.

 Besides the regression coeffi cients, glmfi t() returns the deviance of the fi t at the
solution vector and a structure with several pieces of information about the analysis,
such as a t -test for each coeffi cient (t), the signifi cance of each coeffi cient (p), and
different types of residuals.

 MATLAB function Description

 p, S] = polyfi t(X,y,n) Finds the coeffi cients of a polynomial p(x) of degree n that
fi ts the data in a least squares sense. p is a vector of length
 n ; each value is the polynomial coeffi cient. S is for use
with polyconf to obtain error estimates or predictions

 y = polyval(p,x) Returns the value of a polynomial of degree n (having
coeffi cient p) evaluated at x

 y,delta] = polyconf(p,X,S) Returns the value of a polynomial p evaluated at x . Use the
optional output S created by polyfi t to generate 95%
prediction intervals. If the coeffi cients in P are least squares
estimates computed by polyfi t and the errors in the data
input to polyfi t were independent, normal, with constant
variance, then there is a 95% probability that y ± delta
will contain a future observation at x

 The next example (Listing 7.3) shows how to use each of these functions.

161Bivariate and Multivariate Descriptive Statistics

 Let’s see an example of the use of glmfi t() . In a hypothetical change blindness
experiment, 1 a psychologist wants to arrive at the regression function for predicting
the probability of detecting a change within 5 s of the stimulus presentation
(detected = 1; not-detected = 0) as a function of the contrast of the whole scene (low-
contrast = 1; medium-contrast = 2; high-contrast = 3). Twenty participants took part
in the study, and the data presented in Table 7.6 have been collected.

 The following code runs the logistic regression analysis on the data of
Table 7.6 .

 >> contr = [1 2 2 3 3 1 3 2 2 1 1 1 2 1 1 2 2 1 2 3];%levels
of the contrast IV
 >> detection = [0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0];%DV
 >> [b dev stats]=glmfi t(contr’, detection’, ‘binomial’)
 b =

 -1.3421
 0.7483

 dev =
 26.2642

 stats =
 beta: [2x1 double]
 dfe: 18
 sfi t: 1.0581
 s: 1
 estdisp: 0
 covb: [2x2 double]
 se: [2x1 double]
 coeffcorr: [2x2 double]
 t: [2x1 double]
 p: [2x1 double]
 resid: [20x1 double]
 residp: [20x1 double]
 residd: [20x1 double]
 resida: [20x1 double]
 >> stats.p
 ans =

 0.2763
 0.2431

 1 See Simons and Chabris (1999) for a funny example of change blindness.

 Table 7.6 Hypothetical data for a logistic regression analysis on a change blindness experiment.
Detection is the binomial Dependent Variable (DV) indicating whether participants have detected
the change within 5 s or not. Contrast is the Independent Variable (IV) of the scene contrast with
three levels: low, medium, and high
 Participant id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 Detection 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0

 Contrast 1 2 2 3 3 1 3 2 2 1 1 1 2 1 1 2 2 1 2 3

162 7 Data Analysis

 This code outputs:

 Vector • b = [−1.3421; 0.7483] indicates that the regression coeffi cient is
0.7483 and the value of a regression constant is −1.3421;
 Scalar • dev = [26.2642] indicates the deviance of the fi t;
 Structure • stat; shows, among others things, that our regression coeffi cients are
not statistically signifi cant (stats.p = [0.2763; 0.2431]).

 Inferential Statistics

 Once we have described the data, we are interested in making inferences on these
data, that is, to test our hypothesis. The Statistics toolbox includes several statistical
tests for this purpose. The main parametric and nonparametric tests are outlined in
the following sections.

 Parametric Statistics

 This section outlines the main MATLAB functions for parametric statistical analy-
sis. However, in order to run a parametric analysis, parametric assumptions (e.g., a
normality test on the data) have to be ascertained.

 Assessing the Parametric Assumptions

 To check for normality, we can look at the histograms and we can inspect their
shape using the hist() function. The kurtosis() function returns the kurtosis of
the distribution of the input vector. The function takes the optional argument zero
(0), whether you want to correct for bias; by default there is no correction. The
 skewness() function returns a measure of the asymmetry. To test whether the data
are normally distributed, the kstest() function performs a Kolmogorov–Smirnov
test that compares the data to a standard normal distribution. It outputs 1 when
the null hypothesis can be rejected. The probability of the test can be obtained
as an additional output. For small sample sizes it might be preferable to use the
 lillietest() function, which performs a Lillilifors test of the default null hypothesis
that the sample in the vector argument comes from a normal distribution, against
the alternative hypothesis that it does not. Alternatively, the jbtest() function
performs a Jarque–Bera test. The null hypothesis is that the sample comes from a
normal distribution with unknown mean and variance.

 z -Test

 The Statistics toolbox includes the ztest(v,m,sigma) function for performing
the z -test. The function takes as fi rst argument a data vector v whose mean is equal
to m (the second argument), and whose standard deviation is equal to sigma (the third

163Inferential Statistics

argument). In practice, this function is rarely used in psychology, since we normally
do not know in advance the actual mean and standard deviation of the population.
Much more common is, instead, the t -test.

 t -Test

 The Statistics toolbox includes two functions that perform the t -test: ttest() and
 ttest2(). The former is used to run both the one-sample t -test and the related
 t -test, while the latter is used to run a two-sample unrelated t -test. The signifi cance
level of the test and the direction of the hypotheses can be specifi ed in both func-
tions as optional parameters. The next section shows how to perform a one-sample
 t -test by means of the ttest() function; the following section details how to per-
form a two-sample t -test either through ttest() or through ttest2() depending
on whether the data are related or unrelated, respectively.

 One-Sample t -Test

 The ttest() function tests the hypothesis that a vector’s mean is different from
zero. If the experimental hypothesis is against a different value, an additional argu-
ment has to be passed to the function specifying the desired value. The hypothesis
that the mean is different from zero is performed against the default signifi cance
level of 0.05. A different value can be passed as third argument. In addition, the
“tail” parameter, specifying the direction of the test, can be passed when you have a
directional hypothesis. Pass ‘left’ when you are expecting that the mean is less than
0 (or the desired value); pass ‘right’ otherwise. By default, this optional argument is
set to ‘both’ indicating that the test is bidirectional.

 The function returns the test result in binary form: 1 means that the null hypothesis
 can be rejected; 0 means that it cannot be rejected. Additional outputs can be requested:
(1) the probability of the test; (2) the confi dence interval; and (3) a structure whose
fi elds are the t value, the degrees of freedom, and the sample standard deviation.

 To show how to use the t -test, we test whether the mean of 20 randomly generated
numbers (ranging from 0 to 1) is actually different from 0.

 >> [H, p, CI, stats]=ttest(rand(20, 1)) ;
 H =

 1
 p =

 2.6460e-06
 CI =

 0.3360
 0.6491

 stats =
 tstat: 6.5860

 df: 19
 sd: 0.3345

164 7 Data Analysis

 H = 1 indicates that the null hypothesis can be rejected; p = 2.6460e-06 : the
probability of fi nding these results by random chance is extremely low; CI = 0.3360
0.6491 : the confi dence intervals of the mean are within these values. Finally, the
function returns a structure with the details of the analysis.

 Two-Sample t -Test

 The Statistics toolbox includes two functions performing the two-sample t -test: (1)
 ttest() for the paired, or repeated measure, t -test, and (2) ttest2() for the
unrelated, or independent measure, t -test.

 The fi rst two arguments to be passed to both functions are data vectors. Each
vector represents either a condition, in the ttest() case, or a group, in the
 ttest2() case. Hence, the same ttest() function performing the one-sample
 t -test also performs the paired t -test. When this function receives as argument one
vector only, or one vector and one scalar, it performs the one-sample t -test. When
instead two vectors are passed, it performs the paired t -test. In this latter case, the
participants’ scores have to be in the same position in the two vectors, and the vec-
tors should be of the same length. This constraint does not apply to the ttest2()
function, where the two vectors might have different lengths.

 ttest2() has the same default arguments as those of ttest() . Hence, the
signifi cance level is set to 0.05; again, a different value can be passed as third argu-
ment. In addition, the “tail” parameter, specifying the direction of the test, can be
set. Pass 'left' when you are expecting that the mean difference between the fi rst
and second samples is less than 0; pass 'right' otherwise ('both' is the
default).

 ttest2() shares the same outputs as ttest() . That is, both functions return the
test result in binary form: 1 to signify that the null hypothesis can be rejected; 0 to
signify that the null hypothesis cannot be rejected. Additional outputs can be requested:
(1) the probability of the test; (2) the confi dence interval; and (3) a structure whose
fi elds are the t value, the degree of freedom, and the sample standard deviation.

 Let us suppose that a psychologist wants to run an experiment to test the effects
of a probe color on Reaction Times (RTs). Specifi cally, the psychologist is inter-
ested in fi nding out whether RTs decrease when the color of a probe is red instead
of yellow at an alpha level of 0.01. Ten participants are tested, and RTs, in milli-
seconds, are collected as shown in Table 7.7 .

 Table 7.7 Hypothetical data of ten participants where RTs are measured with both a red and a
yellow probe

 Participant id 1 2 3 4 5 6 7 8 9 10

 Yellow 300 287 301 400 211 399 412 312 390 412

 Red 240 259 302 311 210 402 390 298 347 380

165Inferential Statistics

 Listing 7.4 runs the related t -test analysis on these data.

 Listing 7.4

 Since the alpha level is 0.01, we pass this number as a third argument. In addi-
tion, there is an expected direction of the test: we are expecting that RTs in the “red”
condition should be faster than in the “yellow” condition. If we pass the vector “yel-
low” as a fi rst argument, then we are expecting that the difference between the
means should be larger than 0. Hence, the right argument has to be passed to the
function.

 Let’s inspect the code’s output.

 h =
 1

 p =
 0.0067

 ci =
 2.3241 Inf

 stats =
 tstat: 3.0719

 df: 9
 sd: 29.3381

 h = 1 indicates that the null hypothesis can be rejected at the alpha level of 0.01;
indeed, the probability of fi nding these results by random chance is equal to 0.0067
(p). ci = 2.3241 – Inf is the confi dence interval (since the hypothesis is directional,
one bound is Infi nite); fi nally, stats is the structure with the t -test results.

 If there were two different groups of participants, that is, one group was tested
with the yellow probe only and the other group with the red probe only, then we
would need ttest2() as follows:

 >> [h p ci stats]=ttest2(yellow,red, 0.01,'right')
 h =

 0
 p =

 0.1787
 ci =

 -48.5131 Inf
 stats =

 tstat: 0.9446
 df: 18
 sd: 67.4690

166 7 Data Analysis

 In contrast to the within-subjects case, the null hypothesis cannot be rejected at
the alpha level of 0.01. By looking at the p value, we fi nd out that the probability of
obtaining these results by chance with independent samples is 17.87%.

 ANOVA

 The Statistics toolbox includes three different functions for runing Analysis of
Variance (ANOVA) analysis: anova() ; anova1(), and anova2() . anova1() is
used when there is one independent variable in between-subjects experiments;
 anova2() performs a balanced two-ways ANOVA in between-subjects experi-
ments; anovan() performs both balanced and unbalanced ANOVA in between-
subjects experiments with two or more factors; in addition, it performs ANOVAs in
within-subjects experiments. Hence, both anova2() and anovan() can be used to
run balanced two-ways ANOVAs . However, since anovan() has a broader appli-
cation, its use is more common than anova2() .

 One-Way ANOVA

 The Statistics toolbox includes the anova1() function to run a one-way, indepen-
dent-samples ANOVA. The function can take as argument a matrix: the matrix’s
cells are scores, and the matrix’s columns are the groups [anova1(X)].
Alternatively, you can pass two arguments: the dependent variable and the group
 [anova1(dv, group)] . The latter way is useful when groups do not have the
same size.

 When groups have the same size, the group vector can be implemented directly
in the function call to increase readability in the following way:

 anova1([group1' group2' group3' …])

 Unless otherwise specifi ed, anova1() displays two fi gures: the ANOVA table
and a box plot. In addition, it returns the following arguments: (1) the p -value; (2) a
text version of the ANOVA table; (3) a structure with values that can be used for a
multicomparison analysis (see below).

 To show how the function works, consider the experiment on the effects of the
probe color on RTs (see the independent t -test section). Imagine that in that experi-
ment, a third group is tested in which participants’ RTs are measured when pre-
sented with a black probe.

 The experiment’s results are listed in Table 7.8 .

 Table 7.8 Hypothetical data of three groups made by ten participants each. RTs are measured as
a function of probe color (three levels: yellow, red, and black)

 Yellow 300 287 301 400 211 399 412 312 390 412

 Red 240 259 302 311 210 402 390 298 347 380

 Black 210 230 213 210 220 208 290 300 201 201

167Inferential Statistics

 The following vectors are therefore implemented:

 >> yellow = [300 287 301 400 211 399 412 312 390 412];
 >> red = [240 259 302 311 210 402 390 298 347 380];
 >> black = [210 230 213 210 220 208 290 300 201 201];

 Since the number of participants per group is the same, anova1() can be used
in both its ways. Let’s see both of them. The fi rst is to pass as fi rst argument a matrix
whose columns are the results of the groups (as observed above, this matrix can be
implemented directly in calling the function). We also pass to the function an
optional argument ‘names’ to improve output readability.

 >> names = [{'yellow'} ; {'red'}; {'black'}];
 >> [p table stats]=anova1([yellow' red' black'], names);

 Figures 7.4 and 7.5 show the ANOVA table and the box plot outputted by the
above code.

 Fig. 7.4 ANOVA table resulting from the hypothetical probe color example

400

350

300

250

200

V
al

ue
s

 Fig. 7.5 Box plot resulting from the hypothetical probe color example

168 7 Data Analysis

 An alternative way of using anova1() is to pass as arguments a single vector
with all RTs (i.e., of length 30) and a second vector having the same size as the fi rst
one, specifying the group type. Keep in mind that this is the only possible way of
using the function when group sizes differ.

 First, we merge the three groups’ RTs into a single vector:

 X=[yellow red black]';

 Second, the vector with the groups’ names has to be implemented in such a way
that each group type is repeated for the number of participants belonging to the
group (in this case the number of participants is the same for the three groups).

 n_yellow=repmat({'yellow'},10,1);
 n_red=repmat({'red'},10,1);
 n_black=repmat({'black'},10,1);
 group= [n_yellow' n_red' n_black']’;

 We added “n_” in front of the cell array’s name to specify that these are names.
Note the use of the apostrophe to transpose the vectors when the group vector is
implemented.

 Finally, we run the ANOVA test, whose results should be the same as in the pre-
vious case.

 [p table stats]=anova1(X,group);

 By looking at the function outputs, the null hypothesis can be rejected: there is a
signifi cant effect of the probe color on RTs.

 The next step is to run a multicomparison analysis to fi nd out the differences
among groups. multcompare() is the function we want. It works together with the
 anova1() function and takes as argument the third argument returned by anova1() .
The multicomparison test is returned by multcompare(stats) in the form of a
fi ve-column matrix. The fi rst two columns indicate the group pair being compared,
the third column is the estimated difference in means, and the last two columns are
the interval for the difference.

 In addition, the function returns an interactive fi gure. By clicking on the group
symbol at the bottom, in part of the fi gure is displayed the group(s) from which the
selected one statistically differs. In addition to the structure argument, some other argu-
ments may be passed. The second one is the desired alpha level; the third is whether to
display a plot, which can be set on or off. The fourth, which is more interesting, indi-
cates the comparison type we need. There are several options: 'hsd' for Tukey’s
honestly signifi cant difference criterion (default); 'lsd' for Tukey’s least signifi cant
difference procedure; 'bonferroni' for the Bonferroni adjustment to compensate
for multiple comparisons; 'dunn-sidak' for the Dunn and Sidák adjustment for
multiple comparisons; and sheffe() for critical values from Scheffé’s procedure.

169Inferential Statistics

 Let’s suppose that we want to run a multicomparison test on the stats structure
resulting from the previous ANOVA, using Bonferroni correction and that we are
happy with the other defaults. The following code will do the job:

 multcompare(stats,[],[],'bonferroni');

 The interactive fi gure outputted by this code is shown in Fig. 7.6 .

 Two- and n-Way ANOVA

 The anova2() function performs a balanced two-way ANOVA in a between-subjects
experiment. It takes as fi rst argument a matrix in which data of different columns rep-
resent changes in the fi rst factor, while data in the rows represent changes in the second
factor. If there is more than one observation for each combination of factors, an optional
second argument can be passed to the function indicating the number of replicates in
each position, which must be the same and a multiple of the number of rows.

 Let’s see how to use anova2() with an example. Imagine again the experiment
on the effects of the probe color on RTs, but now we consider an additional factor
that is probe size with two levels: small and large.

 The data that have been collected for the six experimental groups are displayed
in Table 7.9 .

yellow

red

black

180 200 220
The means of groups red and black are significantly different

Clik on the group you want to test

240 260 280 300 320 340 360 380

 Fig. 7.6 Interactive plot resulting from multicomparison with Bonferroni correction

170 7 Data Analysis

 Listing 7.5 performs a two-way ANOVA on the above data. Note that since we
have ten participants per group, reps = 10. When implementing the matrix to be
passed to anova2(), we need to be careful. Specifi cally, each column of the matrix
has to be made in such a way that the corresponding rows indicate a score of the
same level of the second variable, which is organized in rows. Since in this case
the second variable has two levels, the fi rst 10 scores belong to its fi rst level, while
the last 10 scores belong to the second one (Fig. 7.7).

 Listing 7.5

 Table 7.9 Hypothetical data of six groups made by ten participants each. RTs are measured as a
function of probe color (three levels: Yellow, Red, and Black); and as a function of probe size (two
levels: Small and Big)

 Small Yellow 300 287 301 400 211 399 412 312 390 412

 Small Red 240 259 302 311 210 402 390 298 347 380

 Small Black 210 230 213 210 220 208 290 300 201 201

 Big Yellow 289 289 300 402 251 389 422 332 360 422

 Big Red 210 229 300 301 200 340 350 290 317 320

 Big Black 226 220 253 218 260 228 380 300 221 211

 Fig. 7.7 Two-way ANOVA table output

171Inferential Statistics

 As can be seen from the table, the results show a signifi cant effect of the Color
variable (organized in columns) and no signifi cant effect of the Size variable (orga-
nized in rows). The interaction between the two variables is not signifi cant. However,
the use of anova2() is uncommon; generally, anovan() is used when there is
more than one Independent variable, because it can be used with both balanced and
unbalanced data.

 anovan()

 anovan() performs both balanced and unbalanced multiple-way ANOVA for com-
paring the means of the observations in X (the fi rst argument vector) with respect to
different groups (the second argument). Hence, it works in a similar way to the
 anova1() function when group sizes are different. The fi rst vector argument has to
be carefully implemented. In detail, the position of the factors’ levels has to corre-
spond to the group name in the second vector argument. For example, if the fi rst
factor has three levels, the numbers in the vector should be organized in triplets. The
second argument is a cell array containing the name of the conditions. Hence, with
two factors, the code is as follows:

 anovan(X,{IV1 IV2})

 Note that the second argument is a cell array passed to the function by means of
the curly braces.

 anovan() receives many further optional arguments, including the ‘alpha’ level,
the ‘model’ type (the interaction type is very often used in psychology because we
are interested not only in the main effects of the factors but also in their interac-
tions), and the ‘names’ cell array containing the names of the factors.

 anovan() outputs the same arguments as anova1(), as well an additional
vector with the main and interaction terms. The following example illustrates
 anovan() use.

 Example

 To show the use of anovan() , let’s return to the experiment on the effects of the
probe color on RTs that we have used to study anova1() . Listing 7.6 rearranges the
data of Table 7.10 to be used with anova1() .

 Table 7.10 Hypothetical data of one group of ten participants. In a repeated-measure design, RTs
are measured as a function of probe color (three levels: Yellow, Red, and Black)

 Participant id 1 2 3 4 5 6 7 8 9 10

 Yellow 300 287 301 400 211 399 412 312 390 412

 Red 240 259 302 311 210 402 390 298 347 380

 Black 210 230 213 210 220 208 290 300 201 201

172 7 Data Analysis

 Listing 7.6

 Code listing 7.6 has been implemented for general purposes. Indeed, in this hypo-
thetical experiment all groups have the same size, and there was no need to imple-
ment different variables for each group size (rows 9–14). This code could have been
written in many different ways. For example, it is possible, and quicker, to assign a
number to each group rather than a label. However, these changes would have
reduced the output’s legibility. Figure 7.8 shows the results of the ANOVA analysis.

 Fig. 7.8 ANOVA table output from listing 7.6

173Inferential Statistics

 By looking at the ANOVA table we can conclude that there is a signifi cant effect
of the color variable, while there is no effect of the probe dimension on RTs (results
are exactly the same as those obtained with anova1()) .

 One-Way Repeated-Measure ANOVA Analysis with anova1()

 Let’s reconsider the experiment on the effects of the probe color on RTs. However,
imagine that the data come from a repeated-measure design in which the same par-
ticipants have been tested with probes of different colors. Hence, the hypothetical
data are the same as before, as displayed in Table 7.10 .

 To run a one-way repeated-measure ANOVA, we use the anovan() function by
passing the variable Subject as a second factor having random effects, whose levels
are the participants. To do this, we add the optional argument 'random' specifying
that the second variable has random effects. Since there are two variables only, it
would be not necessary to specify that the variable Subject has random effects.
However, for the sake of clarity, it is better to specify that these variables’ effects are
not fi xed. In addition, we familiarize ourselves with the use of the optional argu-
ment ‘random’, whose use becomes necessary in ANOVAs designs with more than
one factor. Hence, we have to implement two factors: the fi rst, Color, with three
levels (yellow, red, and black) and the second, Subject, with ten levels (the ten
participants).

 Listing 7.7 will do the job:

 Listing 7.7

 Two-Way Repeated-Measure ANOVA

 Listing 7.8 shows how to run a two-way repeated-measure ANOVA using anovan() .
For this purpose, we will use again the experiment on the effects of probe size and
color on RTs, but now we hypothesize that the experimental design was within
subjects (i.e. that the same participants run all the conditions) .

174 7 Data Analysis

 Listing 7.8

 Note the use of the “‘random’, 3” argument in anovan() to specify that the third
factor has random effects. Note also the use of the argument “ ‘dimension’, [1 2] ”
in multcompare() to specify that we want to run a multiple comparisons test between
the fi rst two variables.

 Three-Way Mixed-Measures ANOVA

 To conclude the anovan() overview, let’s see how to run an ANOVA with mixed
models, when some factors are within subjects, and others are between subjects. To
do this, we have to pass to anovan() an additional optional argument, “nesting”.
Indeed, if one factor is between subjects in an otherwise repeated-measure design,
then it can be said that the variable “subjects” is “nested” within the between-subjects
variable. For example, let’s consider again the experiment on the effects of color and
size of a probe on RTs. The experimenter wants to test also whether there is a
difference in RTs between males and females. In this case, we say that the variable
‘Subjects’ is “nested” within the sex variable. We have to pass to anvoan() an addi-
tional argument specifying which is the nested variable. To do this, we need to
implement a square matrix whose dimensions are equal to the number of factors, and
each row and column represents a factor in the same order in which they are passed
to the function. So row 1 and column 1 represent factor 1; row 2 and column 2 rep-
resent factor 2; and so on. Each matrix cell represents the nesting relationship
between each pair of variables. The cell value will be 0 when there is no nesting
relationship and 1 otherwise. Specifi cally, it will be 1 when the factor represented by
the row is nested within the IV represented by the column. If the third factor is nested
within the fourth, then cell 3,4 will be 1. The implementation of this matrix may be
slightly laborious; at the end of the chapter we will see a way to make it simpler.

175Inferential Statistics

 In addition, since a three-way mixed-measures design is quite a complex one,
modeling the interactions might be laborious as well. We will see a shortcut for the
implementation of this argument. But fi rst, let’s analyse code Listing 7.9 to see how
to implement both the “nesting” and “modeling” variables and how to pass them to
anovan(). Data are the same as in the two-way repeated-measures example above,
but now we also take into account the Gender of the participants as an independent
variable: the fi rst fi ve subjects were males, and the remaining fi ve were females, and
we are interested in testing whether there is any difference in the RTs between these
two groups.

 Listing 7.9

 Figure 7.9 shows that there was a signifi cant effect of Gender on RTs, while the
interactions with both the Size and Color factors were not statistically signifi cant.

 Let’s return to Listing 7.9 and see how we can implement the two matrices for
modeling and nesting in a simpler way. Regarding the modeling matrix, we could
have passed the “interaction” label to the “model” argument [i.e.: anovan(....
'model', 'interaction',…)] . However, when used in this way, anovan()
computes all the fi rst-term interactions without computing the interactions among
more than two variables. Hence, the remaining error is larger, since it is not explained
by the interactions among more than two factors. Hence, unless you do not have
good theoretical reasons to assume that some interactions have to be omitted, this is

176 7 Data Analysis

not always a good option. A handy shortcut to model the interactions, however,
might be to pass to the “model” argument a scalar corresponding to the number of
the not-nested factors [in this way: anovan(....'model', 3)] . The drawback
of doing this is negligible: the error is wrongly attributed to the interaction among
all the variables, and therefore the “real” error of the statistic will be set to 0.
Figure 7.10 shows the output of the same listing as above, but the anovan() call is
the following:

 [p table stats terms]=anovan(X,{Size Color Gender Subj }, 'random',4,
 'model',3,' nested',nesting,'varnames',{'Size' 'Color' 'Gender'
'Subj'});

 As can be seen from Fig. 7.10 , the last interaction term is actually the error shown
in Fig. 7.9 .

 The shortcut that we can suggest to implement the matrix specifying the nesting
relationship among the variables is the following. Remember to pass to anovan()
the variable “Subjects” and the nesting variable as the last one and the second from
the last, respectively. Implement the “nesting” matrix with all zeros and then replace
with 1 the cell whose coordinates are [number of variables, number of variables−1].
Hence, in Listing 7.9, line 24 could have been replaced by:

 Ivnumber=4;
 nesting=zeros(IVnumber,IVnumber);
 nesting(IVnumber,IVnumber-1)=1;

 Fig. 7.9 ANOVA table output from listing 7.9

177Nonparametric Statistics

 Obviously, this shortcut can be applied only if you have only one between
(nested) subjects variable in an otherwise repeated-measure design. If your design
includes more than one nested Independent variable, a more general shortcut to the
full implementation of the matrix might be the following:

 nesting=zeros(factornumber,factornumber);
 for i = 1: NestedNumber

 nesting(factornumber,factornumber-i)=1;
 end

 where factornumber and NestedNumber are the number of factors and the number
of between-subjects factors, respectively. It has to be remembered that this solution
can be applied only when the variable Subjects is passed to anovan() as the last
argument and the nested variables are passed just before it.

 Nonparametric Statistics

 Categorical Data

 Binomial Distribution

 The fi rst categorical statistic we see in this section is the binomial distribution,
which is used when each independent trial results in one of two mutually exclusive
outcomes (Bernoulli trial). The probability of getting x (usually called “success”)

 Fig. 7.10 The last interaction term is actually the error term in Fig. 7.9 (see text for details)

178 7 Data Analysis

out of n trials given the probability p of a success on any one trial is given by the
number of combinations of n objects taken x at a time. We use the MATLAB built-
in function nchosek(n,x), which computes the combinations of n things taken x
at a time. The following code returns the probability of x successes out of n trials:

 nchoosek(n,x)*p^x*(1-p)^(n-x)

 The same result can be obtained using the binopdf(x,n,p) function (which is
included in the Statistics toolbox).

 Chi2

 The chi-square statistic is often used to understand whether the distribution of the
results is consistent with a theoretical distribution. In this case, we use the
 chi2gof() function, which tests the goodness of fi t between a theoretical distribu-
tion and empirical data. By default, chi2gof() returns 1 when the null hypothesis
can be rejected and 0 otherwise. We can ask for further outputs such as the probabil-
ity of the test and for a structure, whose fi elds are:

 • chi2stat , is the value of the chi square statistic;
 • dof , degrees of freedom;
 • edges , vector of categories’ edges that have been used to calculate the
frequencies;
 • O , observed frequency for each category;
 • E , expected frequencies for each category according to our theoretical
distribution.

 (Expected values can be taken from any function. The default function used by
 chi2gof() is the normal distribution, but we can ask for a different function by
passing it as optional argument).

 Let’s see an example of the chi2gof() function in action. A psychologist is
interested in fi nding out whether there is any systematic preference for a specifi c
display position to pick an object at will (for example, for an object that is at eye
level). Each stimulus display consists of fi ve identical objects placed in fi ve differ-
ent positions. Let us assume that both participants’ choices and frequencies of posi-
tion are uniformly distributed (i.e., we do not expect there is any specifi c preference
for any of the positions of the display). Listing 7.10 runs the test.

 Listing 7.10

179Nonparametric Statistics

 This code returns the following variables:

 h = 1
 p = 0.0197
 st =

 chi2stat: 11.7000
 df: 4
 edges: [0.5000 1.5000 2.5000 3.5000 4.5000 5.5000]
 O: [14 28 25 23 10]
 E: [20 20 20 20 20]

 h informs that the null hypothesis can be rejected. p shows that the probability if
fi nding these results by chance is equal to 0.0197. Then the structure st shows the
chi2 value, the degrees of freedom, the vector of categories’ edges that have been
used to calculate the frequencies, and the observed and expected frequencies.

 The chi2gof() function has several options; each one is written in string form
(e.g., "expected" in the previous example) that is followed by the function’s
optional values (in the above example, an array with the expected frequencies).

 Ordinal Data

 Rank data are used with ordinal data or when the parametric assumptions to run
parametric tests are not met.

 Wilcoxon Signed Rank Test

 The signrank() function performs the Wilcoxon signed rank test and tests the
hypothesis that the median of the vector argument is signifi cantly different from
zero. Similarly to the ttest() function, it is possible to pass an additional second
argument specifying a different median value of the experimental hypothesis. When
the second optional argument is a vector, the function tests the hypothesis that the
median for the two vectors is different. Use this option with paired samples. If your
samples are independent, use ranksum() instead.

 To show an example of the Wilcoxon signed rank test, let us consider a boundary
extension (BE) experiment, where BE is the tendency to remember scenes as if they
included information beyond the boundaries (Intraub and Richardson 1989) . A psy-
chologist wants to test the hypothesis that alcohol consumption favors this phenome-
non. In a repeated-measures design, participants were presented with ten pictures on
two different days (with and without alcohol consumption). In a recognition task,
participants were presented with ten pictures, and after 1 min they were asked to select
from two pictures which one had been presented before. One of these two pictures
was the original one, while in the other the boundary was extended . The number of BE
occurrences has been recorded in the two vectors shown in Table 7.11 .

180 7 Data Analysis

 Listing 7.11 runs the nonparametric test on the hypothetical data presented in
Table 7.1 .

 Listing 7.11

 Listing 7.11 outputs h = 1 and p = 0.0391 . Hence, the Wilcoxon signed rank test
indicates that we can reject the null hypothesis at level 0.05 of signifi cance: alcohol
consumption affects BE occurrences.

 Mann–Whitney U Test (or Wilcoxon Rank Sum Test)

 The ranksum() function performs the Mann–Whitney U test. It is the equivalent
of the ttest2() function for parametric data. It tests the hypothesis that the median
of the two independent groups is equal. It takes the same optional arguments as
 ttest2().

 Again, we use the same data we used for the Wilcoxon signed rank test (see
Listing 7.11), but now let us say that the data come from two independent groups.
The following line of code runs the analysis:

 >> [p,h,stats]= ranksum(Alcohol , NoAlcohol)

 This code outputs h = 0 and p = 0.1864. Hence, the Mann–Whitney U indicates
that we cannot reject the null hypothesis. By looking at the p value, we can see that
the probability of fi nding these results by chance with independent samples is
18.64%.

 Kruskal–Wallis Test

 kruskalwallis() is used when there are more than two independent groups. It is
therefore similar to the anova1() function. Similarly to anova1() , it can be passed
either a single matrix in which each column represents a variable, or two vectors,
the data vector and the group vector. The latter method has to be used when the
groups’ sizes differ.

 Table 7.11 Hypothetical data of ten participants, where BE occurrences (out of ten pictures) are
measured after alcohol consumption or without alcohol consumption

 Part id 1 2 3 4 5 6 7 8 9 10

 Alcohol 6/10 4/10 5/10 6/10 3/10 3/10 6/10 7/10 8/10 2/10

 No alcohol 1/10 3/10 3/10 6/10 3/10 2/10 5/10 6/10 6/10 3/10

181Nonparametric Statistics

 kruskalwallis() returns the same arguments as anova1() . Hence, we can
run a multicomparison test through the multcompare() function in the same way
we did for anova1() .

 Let’s consider again the BE experiment, but now there is a third group, which has
been given a placebo instead of alcohol.

 Table 7.12 shows the data for the three groups.
 The following code tests the hypothesis that alcohol assumption affects BE when

there are three groups of participants and data are not parametric.

 >> Alcohol = [6/10 4/10 5/10 6/10 3/10 3/10 6/10 7/10 8/10 2/10];
 >> NoAlcohol =[1/10 3/10 3/10 6/10 3/10 2/10 5/10 6/10 6/10 3/10];
 >> Placebo=[1/10 4/10 4/10 6/10 3/10 3/10 6/10 6/10 5/10 3/10];
 >> [p table stats]= kruskalwallis (Alcohol, NoAlcohol, Placebo)

 Figure 7.11 shows the output of this code.

 Friedman’s Test

 friedman() is used when there are two balanced independent variables. It takes as
fi rst argument a matrix in which data in different columns represent changes in the
fi rst factor, while data in the rows represent changes in the second factor. If there is
more than one observation for each combination of factors, an optional second
argument can be passed to the function indicating the number of replicates in each
position, which must be the same and a multiple of the number of rows. Hence, this
function works exactly in the same way as anova2(). However, although the col-
umn effects are weighted for row effects, the effect of rows is not considered by the

 Table 7.12 Hypothetical data of three groups of ten participants each. BE occurrences are mea-
sured as a function of alcohol consumption (three levels: alcohol, no alcohol, and placebo)

 Alcohol 6/10 4/10 5/10 6/10 3/10 3/10 6/10 7/10 8/10 2/10

 No alcohol 1/10 3/10 3/10 6/10 3/10 2/10 5/10 6/10 6/10 3/10

 Placebo 1/10 4/10 4/10 6/10 3/10 3/10 6/10 6/10 5/10 3/10

 Fig. 7.11 Kruskal–Wallis ANOVA table

182 7 Data Analysis

Friedman test, and they represent nuisance effects that need to be taken into account
but are not of any interest.

 To show its use, let’s consider again the data presented in Table 7.12 but let
assume that for each group, the fi rst fi ve participants are females and the other fi ve
are males. The following code runs the Friedman test on two variables: Alcohol
consumption and Gender.

 >> [p table stats]= friedman ([Alcohol' NoAlcohol' Placebo'], 5)

 Figure 7.12 shows the output of this code.
 As can be seen from Fig. 7.12 , the results are different from those obtained with

the Kruskal–Wallis test because the gender effects have been removed.

 Signal-Detection Theory (STD) Indexes

 In yes/no psychophysics experiments, data can be interpreted according to signal-
detection theory (Green and Swets 1966 ; Stanislaw and Todorov 1999) . In particu-
lar, participants’ responses can be coded as hits and false alarms, and the
signal-detection indexes d ¢ (sensitivity index), b , and c (bias indexes) can be calcu-
lated. Of course, MATLAB allows this calculation. Again, the Statistics toolbox
includes functions devoted to this, but we can derive some of these functions by
working on the MATLAB built-in functions. In the next sections, we see the para-
metric indexes d ¢ , b , and c; in the following section we show how to calculate the
nonparametric indexes A ¢ and B″.

 Fig. 7.12 Friedman’s ANVOA table

183Nonparametric Statistics

 d ¢

 d ¢ is found by subtracting the z score corresponding to the false-alarm proportion
from the z score that corresponds to the hit proportion. The Statistics toolbox
includes the norminv() function, which can be used to calculate the z scores. If the
variable pHit contains the hits proportion and pFA contains the false alarms propor-
tion, then d ¢ can be calculated 2 with the following code:

 zHit = norminv(pHit) ;
 zFA = norminv(pFA) ;
 d = zHit-zFA;

 However, we can obtain the same results using MATLAB built-in functions in
the following way:

 zHit = -sqrt(2)*erfcinv(2*pHit) ;
 zFA = -sqrt(2)*erfcinv(2*pFA) ;
 d = zHit-zFA;

 b

 b is the most-used index for estimating the subject’s bias. Using the Statistics tool-
box, it can be calculated as follows:

 >> B= exp((norminv(pHit)^2 - norminv(pFA)^2)/2);

 If you want to get the same result using the MATLAB built-in erfcinv function,
then you can write the following command:

 >> norminv (x) = -sqrt(2)*erfcinv(2*x);

 c

 Another useful index to estimate subjects’ bias is c. It can be calculated as follows:

 >> c= -(norminv(pHits) + norminv(pFA))/2;

 A ¢ and B″

 A ¢ and B″ are the nonparametric indexes for the measure of sensitivity and bias
(Pollack and Norman 1964 ; Grier 1971) . They are very easy to calculate without
using any specifi c function.

 2 Note that if the proportion of hits or false alarms is equal to 0 or 1, the calculation of the signal-
detection indexes is undetermined. In these cases, the proportion of hits and false alarms has to be
calculated in a particular way (see Hautus 1995 for further details).

184 7 Data Analysis

 The following sensitivity_A function takes Hits and False Alarms rates and
returns the sensitivity measure A ¢ . Here we have implemented the formula sug-
gested by Snodgrass and Corwin (1988) :

 Listing 7.12

 The bias_B function shown in Listing 7.13 takes the Hit and False Alarm rates
and returns the bias measure B″. Once again we have implemented the formula
 suggested by Snodgrass and Corwin (1988) :

 Listing 7.13

 Summary

 MATLAB is a powerful tool for statistical analysis. •
 Statistics can be implemented in MATLAB using the Statistics toolbox. •
(Nevertheless, keep in mind that any statistic can be implemented by writing a
custom function.)
 Several custom functions can be found at the MATLAB central web site. •

185Exercises

 MATLAB can be used to calculate descriptive statistics, bivariate statistics, mul-•
tivariate statistics, and inferential statistics, either parametric or nonparametric.
 MATLAB can also be used to calculate all indexes of signal-detection theory. •

 Exercises

 1. Calculate the standard deviation of n (n = 2 1 , 2 2 ,… 2 10) random numbers taken
from a normal distribution and plot the absolute value of the results. You should
see how the standard deviation becomes closer to unity as n becomes larger.

 Solution:

 for i=1:10
 StdDev(i)=std(randn(2^i, 1));

 end
 plot(abs(StdDev))

 2. Suppose your subject has a hit rate of .9 and a false alarm rate of .5. Calculate the
d ¢ and c indexes of signal-detection theory associated with proportions.

 Solution:

 d'=1.28, c=-.64
 dprime=norminv(.9)-norminv(.5);
 c=-(norminv(.9)+norminv(.5))/2

 3. Calculate a one-sample t -test (against zero) for 20 random numbers generated
from a normal distribution. Try also to have all possible results returned by the
function.

 Solution:

 numbers = randn(20, 1);
 [H, p, CI, stats] = ttest(numbers);

 4. Suppose three groups of subjects (named A, B, and C) have produced the follow-
ing results: scoresA = rand(10, 1); scoresB = rand(20, 1)*3; sco-
resC = rand(15, 1); calculate a one-way analysis of variance and test whether
the three groups were different from one another. Moreover, try to get all possi-
ble outputs of the function.

 Possible solution:

 scoresA = rand(10, 1);
 scoresB = rand(20, 1)*3;
 scoresC = rand(15, 1);
 GroupsCoding = zeros(length(scoresA)+length(scoresB)+length(scoresC), 1);
 GroupsCoding(1:10) = 1;
 GroupsCoding(11:30) = 2;
 GroupsCoding(31:45) = 3;
 [p, AnovaTab, Stats] = anova1([scoresA; scoresB; scoresC], GroupsCoding);

186 7 Data Analysis

 A Brick for an Experiment

 In Chap. 2 , we saw how to import a data fi le and how to calculate simple statistics
on the data of our brick experiment. However, we need to perform a more complex
statistical analysis to understand the real outcome of the experiment. The experi-
ment described in the brick is a 2 by 2 within-subjects design experiment. We can
therefore see whether there are differences in the number of bounce responses
observed for the continuous vs. stopped motion display as well as for the silent vs.
with sound display. We can do this with a two-way analysis of variance. To perform
the analysis of the brick experiment we will use a function that is freely available
from the MATLAB central web site (http://www.mathworks.com/matlabcentral/).
This web site is a large community of MATLAB users who exchange function fi les
as well as problems (and often the problems’ solutions). The function can be found
by searching “two way repeated measures ANOVA” in the search engine. The func-
tion’s name is rm_anova2. This function expects fi ve input parameters. The fi rst
four parameters are numbers, and they are all single-dimensional arrays. One array
contains the dependent variable (i.e., the probability of bounce responses of each
subject). The other three arrays contain the variables’ coding and the number of
repetitions (i.e., the subjects). All arrays must have identical lengths. Now we write
a short code that stores and sorts all four arrays. Here we hypothesize that we have
run ten subjects.

 Listing 7.14

http://www.mathworks.com/matlabcentral/

187Suggested Readings

 Now data within the X array are sorted according to the variable codes contained
within the f1, f2, and repetitions variables. We have now to run the analysis of
variance.

 >> stats = rm_anova2(X, repetitions, factor1, factor2, {'motion',
'sound'});

 Note that motion and sound are two labels that later become useful for easily
reading the results of the analysis returned by the function. These labels need to be
passed to the function within a cell type variable. If you now type stats at the
MATLAB prompt, you will see the results of the experiment.

 References

 Green DM, Swets JA (1966) Signal-detection theory and psychophysics. Wiley, New York
 Grier JB (1971) Nonparametric indexes for sensitivity and bias: computing formulas. Psychol Bull

75:424–429
 Hautus MJ (1995) Corrections for extreme proportions and their biasing effects on estimated val-

ues of d ¢ . Behav Res Methods Instrum Comput 27:46–51
 Intraub H, Richardson M (1989) Wide-angle memories of close-up scenes. J Exp Psychol Learn

Mem Cogn 15:179–187
 Pollack I, Norman DA (1964) A nonparametric analysis of recognition experiments. Psychon Sci

1:125–126
 Simons DJ, Chabris CF (1999) Gorillas in our midst: sustained inattentional blindness for dynamic

events. Perception 28:1059–1074
 Snodgrass JG, Corwin J (1988) Pragmatics of measuring recognition memory: applications to

dementia and amnesia. J Exp Psychol Gen 117:34–50
 Stanislaw H, Todorov N (1999) Calculation of signal detection theory measures. Behav Res

Methods Instrum Comput 31:137–149

 Suggested Readings

 The journals Psychological Methods and Behavior Research Methods often suggest statistical
tools that are either implemented in that MATLAB environment or can be easily implemented in
MATLAB.

 Martinez WL, Martinez AR (2005) Exploratory data analysis with MATLAB. Boca Raton, FL:
Chapman & Hall/CRC

 Marques de Sa JP (2007) Applied statistics using SPSS, STATISTICA, MATLAB and R, 2nd edn.
Springer

189M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_8, © Springer Science+Business Media, LLC 2012

 In this chapter we introduce the use of GUIDE, which is the MATLAB Graphical
User Interface Development Environment. This tool enables the user to create
Graphical User Interfaces (GUI) that can be used to facilitate interaction with your
programs.

 Introduction

 Nowadays we are used to interacting with programs through windows with menus,
buttons, drop-down lists, etc. Such interaction tools constitute a graphical user
interface (GUI). Graphical user interfaces are simple to use but relatively diffi cult
to program. MATLAB provides a tool, called GUIDE, that helps you in program-
ming a graphical interface.

 GUIDE

 The GUIDE Layout Editor makes it possible to design GUIs easily by clicking and
dragging the GUI components—such as panels, buttons, text fi elds, sliders, menus,
and so on—into the GUI Layout Area. When you create a GUI, GUIDE generates
two fi les: a FIG-fi le and an application M-fi le. The FIG-fi le contains a description
of the GUI appearance, whereas the M-fi le contains the code that controls the behav-
ior of the GUI. FIG- and M-fi les need to be stored in the same folder. GUIs are
governed by callback functions, which are routines within the M-fi le that are exe-
cuted when a specifi c event occurs in any of the elements of the GUI (i.e., button,
drop-down list, etc.). GUI’s elements are called UiControls.

 Chapter 8
 The Charm of Graphical User Interface

190 8 The Charm of Graphical User Interface

 Starting GUIDE

 Start GUIDE by typing guide at the MATLAB prompt or by selecting File -> New
-> GUI from the menu bar. MATLAB displays the GUIDE Quick Start dialog box,
as shown in Fig. 8.1 . From the Quick Start dialog, you can choose from among four
different GUIDE templates, that is, prebuilt GUIs that can be later modifi ed at your
convenience.

 Choose the Blank GUI (Default) and ignore the ‘Save on startup as’ option at the
bottom left corner of the box. A GUI is displayed in the Layout Editor, which is
the control panel for all of the GUIDE tools. Figure 8.2 shows the Layout Editor
for the blank GUI template. (If there are no names in your GUI component palette,
don’t panic, read the preferences for GUIDE section, later in this chapter.)

 We can design the GUI by dragging components, such as panels, pushbuttons,
pop-up menus, or axes, from the component palette on the left side of the Layout
Editor into the layout area. Before going into the details of these components, we will
go through the key menus, providing a short description of the main menu items.

 The GUI Toolbar

 GUIs come with a Toolbar with a number of shortcuts so that you can reach directly
some of the options that are otherwise available from the Menu Bar. Figure 8.3
shows the icons in the GUI toolbar with their meanings.

 Fig. 8.1 GUIDE Quick Start dialog form

191The GUI Toolbar

 Adding UiControls to the GUI

 Once we have created the GUI, it’s time to insert the UiControls in the layout area
to implement the GUI’s behavior. Table 8.1 shows what the GUI UiControls do:

 In addition to the Callback functions associated to each component, GUIDE gen-
erates three further functions within the application M-fi le. The fi rst has the name of
the GUI and we usually do not act on it. The other two functions are nameOfFile_
OpeningFcn() and nameOfFile_OutputFcn(); we need to operate on these
two functions to save users’ inputs. Refer to the Saving users’ inputs section to see
how this can be done.

 Fig. 8.2 Layout Editor for the blank GUI template

 Fig. 8.3 The GUI toolbar

192 8 The Charm of Graphical User Interface

 Table 8.1 The component palette
 Component palette UiControl Description

 Select Restores the mouse pointer to selection mode

 Push button This component creates a button that is used to take
action in the GUI. Most of the GUIs you’ll create will
contain pushbuttons such as Cancel, OK, or Save

 Slider This component creates a UiControl that can be
manipulated with the mouse

 Radio button A radio button together with an accompanying label is
created by this component. Use this component if you
need to choose one option within a pool of options. When
two or more radio buttons are grouped within a button
area, the selection of one of them causes the other to be
automatically deselected.

 Check box With this component you create a check box together
with an accompanying label. You can select or clear the
check box to turn on or off the behavior that has been
programmed for this component

 Edit text This component creates a text box into which the user can
type text. You can also use a text box to display text to the
user, or to provide text for the user to copy and paste
elsewhere. A text box can contain either one line or multiple
lines. In this latter case, a vertical scroll bar will also appear

 Static text With this component you create a label, text used to identify
a part of the GUI or to show information to the user

 Pop-up menu With this component you create a box from which the
user can choose from a list of options. They are much
like the menus on the menu bar; except that they can be
placed anywhere in the GUI

 List box With this component you create a list box, which is a
component that lists a number of values. The user can
pick one value from the list, but can’t enter a new value

 Toggle button With this component you create a button that is used for
taking action in the GUI. Unlike the pushbutton, the
toggle button remains selected after being pressed,
signaling whether the option is active

 Axes With this component you create a box in which a plot can
be inserted

 Panel With this component you create a frame, an area of the GUI
surrounded by a thin line together with an accompanying
label. Use a panel to group related elements in the GUI

 Button group With this component you create a frame as with the Panel
component, but button groups manage exclusive selection
for radio buttons and toggle buttons. That is, when a
button group contains a number of radio buttons or toggle
buttons, by selecting one of them all the others within its
area are automatically deselected

 ActiveX This control opens a select ActiveX control box in which
you can select an ActiveX control to insert into your GUI
(for Windows users only)

193The GUI Toolbar

 Closing the GUI

 As a fi rst example, let us implement a Cancel pushbutton; that is a UiControl that
just closes the GUI. Run guide from the command line and chose Blank GUI
(Default) from the GUIDE Quick Start box. The GUI is now opened in the Layout
Editor. Select the pushbutton icon in the component palette and place it in the GUI
layout area as shown in the Fig . 8.4 .

 By default, GUIDE names pushbuttons “ Push Button ”. By double clicking on
the pushbutton, the Properties Inspector box appears. Now change both the String
and the Tag property to Cancel (Fig. 8.5).

 This step needs to be commented. Do not confuse String and Tag properties. The
String property is the string that will appear on the pushbutton. The Tag property,
instead, is the actual name of the UiControl within the MATLAB code. In other
words, when you need to refer to a UiControl, you have to call it with its Tag, not
with its String.

 To keep things simple, we can give to both the Tag and the String property the
same name, but this is not always possible. For example, in the String property you
can use any character you like (including periods, commas, and symbols). In con-
trast, in the Tag property you are restricted to letters of the alphabet.

 There is another important thing to notice. After saving the GUI to the hard drive,
the GUIDE automatically renames the Callback property from the default “ %auto-
matic ” to fi lename(′Cancel_Callback′,gcbo, [] ,guidata(gcbo)).

 Fig. 8.4 Placing a Push Button

194 8 The Charm of Graphical User Interface

 Figure 8.6 shows what happens to the Property Inspector box after you save the
GUI to the hard drive, naming it ClosingGUI.

 This makes the fi nding of the Callback function for the Cancel pushbutton within
the application M-fi le easier. The following lines of code were generated by GUIDE
after saving the GUI.

 Fig. 8.5 Change both the String and Tag property in “Cancel”

195The GUI Toolbar

 % --- Executes on button press in Cancel.
 function Cancel_Callback(hObject, eventdata, handles)
 % hObject handle to Cancel (see GCBO)
 % eventdata reserved - to be defi ned in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)

 Fig. 8.6 After saving the GUI with a specifi c name and after naming the Tag property of the
pushbutton, GUIDE automatically updates the callback function name accordingly

196 8 The Charm of Graphical User Interface

 Select the Cancel pushbutton and choose, from the View menu items, Callbacks->
Callback. You are directly pointed into the Cancel_Callback function in the
 application M-fi le.

 After the automatically generated comments, add delete(gcf); as shown:

 % --- Executes on button press in Cancel.
 function Cancel_Callback(hObject, eventdata, handles)
 % hObject handle to Cancel (see GCBO)
 % eventdata reserved - to be defi ned in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)
 delete (gcf);

 The gcf command returns the handle to the current fi gure (see Chap. 5), i.e., the
GUI image, and the delete function deletes the argument that is passed to it.

 Now we are ready to run the GUI.
 Select Tools -> run or press Ctrl+T, or click on the icon in the Tool Bar.

MATLAB will ask you to save the changes. Say yes, and your fi rst GUI is running.
When you click on the Cancel button, the GUI closes!

 This is not very exciting, but you should have now an idea on how GUIs work.
In the next sections we will see something more relevant, such as controlling the
appearance of UiControls from other UiControls, inserting fi gures and graphs in
the GUI, and saving participants’ input.

 Controlling UiControls from Other UiControls

 In this section we see how to sum two numbers that have been typed by the user
using a pushbutton. This is a very instructive example because it shows how the
various components of the GUI communicate with one another.

 The Sum-Two-Numbers Example

 Create a GUI and place the Cancel button, as we have done before. (It is always a
good habit to insert a Cancel button into your GUIs. It might happen that you decide
not to run the program after all.) Proceed as in the previous section:

 1. Run GUIDE from the command line;
 2. Choose Blank GUI (Default) from the GUIDE Quick Start box;
 3. Select the pushbutton icon from the component palette;
 4. Change the name of both the Tag and the String property to ‘Cancel’;
 5. Select the pushbutton and add delete(gcf); in the Cancel_Callback function

in the application M-fi le.
 6. Save and name the GUI SumTwoNumbers.

197Controlling UiControls from Other UiControls

 From the component palette select the Edit Text component and drag it into the
GUI Layout Editor as shown in Fig. 8.7 .

 By default, “Edit Text” appears in the text box. We do not need that text. To
delete the text, look at the properties of the text box within the Property Inspector
box and cancel the “Edit text” value from the String property. You now have a blank
Edit Text component in the GUI Layout Editor.

 As you can see from the Property Inspector window, the default Tag for this
component is “edit1”. Because there will be more than one edit text component in
this GUI, change the name to “FirstNumber” (Fig. 8.8).

 From the Component palette select a Static Text component and drag it just
below the FirstNumber component. Replace its String property from “static text” to
“First Number”. Since we are not going to work with this component, we can leave
its Tag property as “text1”. Select both the FirstNumber and the text1 components
and use the Align Objects tool to horizontally align them (Fig. 8.9).

 Repeat the procedure twice to add another Edit Text and Static Text component
pair. From the Property Inspector box, delete the String property of the fi rst Edit
Text component and replace its Tag from “edit2” to “SecondNumber”. Replace the
Tag of the other Edit Text component from “edit3” to “Total”. Select the fi rst Static
Text component so that the Property Inspector box shows its properties and replace
its String property from “static text” to “SecondNumber”. Replace the String prop-
erty of the other Static Text component from “static text” to “Total”. Use the Align
Objects tool to vertically align and distribute these components. The GUI now
should look similar to the one shown in Fig. 8.10 .

 Fig. 8.7 Add an Edit Text component into the GUI Layout Editor

198 8 The Charm of Graphical User Interface

 The last component we need is another pushbutton, and this will be biggest part
of the job. Follow the same procedure that you followed to create the Cancel push-
button. Name both its Tag and its String properties “Sum”.

 Fig. 8.8 Delete the default “Edit Text” in the String property and change the Tag property from
“edit1” to “FirstNumber”

199Controlling UiControls from Other UiControls

 Fig. 8.9 Add a static text component and change its String property from edit1 to First Number

 Fig. 8.10 Add other two Edit Text and Static Text components

200 8 The Charm of Graphical User Interface

 The design of the GUI is now complete and should look similar to the one shown
in Fig. 8.11 .

 You are now ready to program the GUI’s behavior. Select the Sum button and
from the View menu item choose View Callbacks -> Callback. You are directed to
the application M-fi le, into the Move_Callback function.

 After the comments, type the following line of code as shown:

 function Sum_Callback(hObject, eventdata, handles)
 % hObject handle to Sum (see GCBO)
 % eventdata reserved - to be defi ned in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)

 FirstNumber = str2double(get(handles.FirstNumber,′String′));
 SecondNumber = str2double(get(handles.SecondNumber,′String′));
 sum=FirstNumber+SecondNumber;
 set(handles.Total,′String′,sum);

 FirstNumber and SecondNumber are variables that have been created to store
user inputs. User input is character type; since we need numbers instead of charac-
ters, we change it by means of the str2double() function. The get() function,
together with its counterpart set() function, is a very important one because it is
used to get the values of the property that we are referring to. In this case, we want
to get the ‘String’ values that have been typed in the FirstNumber and
 SecondNumber UiControls. Note that to refer to these components, we used the
handles structure (which is passed to the callback function as argument), followed

 Fig. 8.11 The GUI Layout Editor with all the components you need for this task

201Controlling UiControls from Other UiControls

by a dot and then the Tag. To refer to the property we need, we add a comma
 followed by the property name within quotation marks.

 In the third line, we saved the sum of the numbers in the sum variable. Finally, in
the last line we used the set() function to set the String property of the Total
UiControl to the sum of the two numbers.

 While running, this GUI should appear as in Fig. 8.12 .
 In this example we have seen how to get and set the properties of one component

from the Callback function of another component. It is also possible to set and get
the property of one component from within its own Callback function. In this case,
instead of using the handles structure, we use hObject , which is the fi rst argu-
ment that is passed to Callback functions.

 We can improve the SumTwoNumber GUI by changing the background color of
the Sum pushbutton when it is pressed. In this way, the user knows whether it has
been pressed at least once.

 Within the same Sum_Callback(hObject, eventdata, handles) add the
following line of code:

 set(hObject,′BackgroundColor′,′red′)

 Run the GUI again and press the Sum button. As you can see, besides summing
the numbers, now the Sum button is turned to red (Fig. 8.13).

 We could have done the same job using the handles argument of the same
 Sum_Callback function. However, when using the hObject argument, we do not
need to specify the UiControl Tag.

 Fig. 8.12 The SumTwoNumbers GUI running. After typing two numbers, press the Sum button to
display their sum in the Total edit box

202 8 The Charm of Graphical User Interface

 Displaying Graphs and Figures in the GUI

 Among the components, it is the axes component that serves to display graphs and
fi gures. Graphs are quite easy to understand. The following example shows how to
plot a line in the axes component by pressing a button.

 Create a GUI and place the Cancel button. •
 Save and name the GUI DisplayGraph. •

 From the component palette select the components and drag them into the GUI
Layout Editor as shown in Fig. 8.14 .

 From the Property Inspector box, name the Tag for the upper Edit Text “To” and
the bottom one “From”. Name the fi rst pushbutton “Display”. Add the following
lines of code in the Display_Callback function:

 myfrom = str2double(get(handles.From,′String′)) ;
 myto = str2double(get(handles.To,′String′));
 plot(myfrom:myto);

 When the Display graph pushbutton is pressed, a line is plotted in the axes
component.

 This example is not very appealing. However, you get the picture now; you can
plot any type of graph you like following these instructions. Displaying fi gures is
another interesting feature of GUI. To explain how this works, in the following
example we show how to display pictures representing visual illusion, into our GUI.

 Fig. 8.13 The update SumTwoNumbers GUI. When the Sum button is pressed, it turns red

203Controlling UiControls from Other UiControls

Place your favorite visual illusion in the current directory in JPEG format (any other
format will do). In MATLAB create a GUI and place a large axes component, the
usual Cancel button, and a pushbutton whose tag is ShowNextIllusion (see
Fig. 8.15).

 Fig. 8.14 GUI to display a graph

 Fig. 8.15 GUI to show visual illusion saved in the current directory

204 8 The Charm of Graphical User Interface

 In the ShowIllusions_OpeningFcn function add the following line of code that
implements the variable count.

 Global count;

 In the ShowNextIllusion_Callback function add the following lines of code
to display the JPEG fi gure that you have in your current directory.

 global count
 count=count+1;
 illusions=dir(fullfi le(cd,′*.jpeg′));
 if count>size(illusions,1)

 msgbox(′Sorry, no more illusions to show′)
 else

 illusionToshow=illusions(count).name;
 img=imread(illusionToshow);
 image(img)

 end

 Saving User Input

 When running experiments, psychologists need to save participants’ input. There
are different ways of doing this. The simplest is to include a save() function within
a pushbutton Callback function. You then retrieve participants’ data using the
 load() (see Chap. 2) function from outside the GUI. However, you may want to
save and retrieve participants’ input while running the experiment, so you want to
send participants’ input to different M-fi les or to the MATLAB console. In these
cases, there are a few steps to follow, and various functions of the application M-fi le
have to be manipulated.

 To show how this works, we consider the SumTwoNumbers GUI again, but now
we want to store the numbers that have been typed by the user. We could do this
within the Sum_Calback function, but to make it clearer, it is perhaps better to cre-
ate another pushbutton and name both its Tag and its String “Save” as shown in
Fig. 8.16 .

 The GUI design is now complete. Now we need to program its behavior.
 There are three steps to follow:

 Step 1
 In the OpeningFcn function uncomment the %uiwait(handles.fi gure1); line
as shown.

 function SumTwoNumbers_OpeningFcn (hObject, eventdata, handles, varargin)
 % This function has no output args, see OutputFcn.
 % hObject handle editto fi gure
 % eventdata reserved - editto be defi ned in a future version of MATLAB

205Saving User Input

 % handles structure with handles and user data (see GUIDATA)
 % varargin command line arguments editto SumTwoNumbers (see VARARGIN)

 % Choose default command line output for SumTwoNumbers handles.output = hObject;
 % Update handles structure
 guidata(hObject, handles);

 % UIWAIT makes SumTwoNumbers wait for user response (see UIRESUME)
 uiwait(handles.fi gure1);

 The uwait() function puts the GUI in standby mode. To understand what this
means can be helpful in clarifying what happens when this command is commented.
Without this command, MATLAB jumps directly into the SumTwoNumbers_
OutputFcn function without waiting for the user’s input. You do not want this to
happen, because you want the OutputFcn function to be called only after the users
have typed their numbers, so that this function “knows” what has been typed.

 Step 2
 In the SumTwoNumbers_OutputFcn function, replace varargout{1} = handles.
output; with varargout{1} = handles; and add “de lete(gcf); ” , as
follows:

 function varargout = SumTwoNumbers_OutputFcn(hObject, eventdata, handles)
 % varargout cell array for returning output args (see VARARGOUT);
 % hObject handle editto fi gure
 % eventdata reserved - editto be defi ned in a future version of MATLAB

 Fig. 8.16 Create a Save pushbutton into the SumTwoNumbers GUI Layout editor

206 8 The Charm of Graphical User Interface

 % handles structure with handles and user data (see GUIDATA)

 % Get default command line output editfrom handles structure
 varargout{1} = handles;
 delete(gcf);

 This code allows for saving different variables in a structure. By substituting
 handles.output with handles , we are instructing the OutputFcn function to
output our own structure (we will come back to this point shortly). The delete
(gcf); command is the same as the one within the Cancel_Callback function.
By adding the command here as well, we are closing the GUI when the Save push-
button is pressed.

 Now the program is ready to save anything we want and to close the GUI after
the save operation. The last step is to tell GUIDE what we want to save. In the
 Save_Callback function add the following lines of code:

 Step 3

 function Save_Callback(hObject, eventdata, handles)
 % hObject handle to Save (see GCBO)
 % eventdata reserved - to be defi ned in a future version of MATLAB
 % handles structure with handles and user data (see GUIDATA)
 handles.Number1 = get(handles.FirstNumber,′String′);
 handles.Number2 = get(handles.SecondNumber,′String′);
 guidata(hObject, handles);
 uiresume(handles.fi gure1);

 The handles.Number1 = get(handles.FirstNumber,′String′); and
 handles.Number2 = get(handles.SecondNumber,′String′); commands
save the two numbers into the new Number1 and Number2 fi elds in the handles
structure.

 The guidata(hObject, handles); command updates the handles structure
with the new fi eld.

 Finally, uiresume() reactivates the GUI so that the OutputFcn function can
be executed. Note that if we close the GUI here, by means of the delete() func-
tion instead of using uiresume(), we do not save anything, because the OutputFcn
function needs to get the updated handles structure to output it.

 Let us now see how the program works. From the MATLAB command prompt
type:

 mystruct = SumTwoNumbers;

 Now the program is running; type any number in the two edit box components
and then press the Save pushbutton. When you do this, the GUI closes, and a struc-
ture named mystruct has been created in the MATLAB workspace. To retrieve the
numbers that have been typed, just use the mystruct.Number1 and mystruct.
Number2 variables.

207Saving User Input

 Adding Your Own Functions

 To conclude this chapter, it has to be noted that within the M-fi le you can insert any
additional functions you want, and of course, you can pass to these functions both
the hObject and the handles structures as arguments. Refer to Exercise 2 for an
example.

 Summary

 GUIDE generates two fi les that save and launch the GUI: a FIG-fi le and an appli-•
cation M-fi le.
 GUIDE owns a number of dedicated preferences that can be set from the •
Preferences dialog box in the File menu.
 GUIs are shaped by dragging components from the component palette into the •
layout area.
 A component’s properties are set from the Properties Inspector box. •
 GUIs benefi t from Object Orienting Programming (OOP) technology, and their •
 UiControls are governed by means of callback functions.
 Callback functions receive three arguments • : hObject, eventdata,
handles.
 The • get() and set() functions are used to get and set, respectively, a compo-
nent’s properties.
 The • uiwait() and uiresume() functions are used to stop and reactivate the
GUI.
 The • Filename_OutputFnc() function returns to MATLAB any input the user
provides.

 Exercises

 Exercise 1

 Using Radio Buttons grouped within a Button Group component, alter the visible
property of two Static Text components so that they appear either to the left or to the
right of the GUI.

 Solution

 Place the components as shown in Fig. 8.17 .

208 8 The Charm of Graphical User Interface

 Assign the Tags to the Static text components “Left” and “Right”. Assign the
Visible property of both of them to “off”. Name the Tags for the two radio buttons
ShowLeft and ShowRight. Place the following lines of code within uipanel1_
SelectionChangeFcn function:

 function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
 switch get(hObject,′Tag′)

 case ′ShowLeft′
 set(handles.Left,′Visible′, ′on′)
 set(handles.Right,′Visible′, ′off′)

 case ′ShowRight′
 set(handles.Left,′Visible′, ′off′)
 set(handles.Right,′Visible′, ′on′)

 end

 Since the two Radio buttons are within the Button Group component, when the
GUI is executing, selecting one Radio button automatically deselects the other.

 Exercise 2

 Suppose you are doing a memory experiment and that a participant has been pre-
sented with a sample of fi gures. Program a GUI to present a collection of fi gures
(some of which where presented in the original sample and others that weren’t)
within the Axes component and add two pushbuttons. The participant has to press

 Fig. 8.17 Example of a GUI as required by Exercise 1

209Saving User Input

one or the other pushbutton depending on whether the fi gure that is shown was
present in the original sample or not. The participants’ responses are to be collected
and coded as right or wrong.

 Solution

 There are many different ways to solve this exercise. The one that we present here
makes use of the handle structure created by GUIDE (but other solutions are pos-
sible) and creates a new function (named “ savedata ”) in the application M-fi le
that has been created by GUIDE, which takes as arguments both the handles and the
answer that has been given by the participant.

 Place the fi gures you want to present in the current directory and name them in
such way that is easy for you to recall whether they were present in the original
sample (for example, “A1.jpeg ” for the fi rst “Absent” fi gure and “P1.jpeg” for the
fi rst Present fi gure). Create a GUI like the following one (Fig. 8.18).

 Here is the code for this GUI. Call this fi le from the MATLAB prompt and save
the structure in the mystruct variable. mystruct.response and mystruct.
fi gure are cell arrays containing participants’ answers and fi gure names, respec-
tively. We will then analyze these data by comparing participants’ answers with the
initials (either A or P) of the fi gure names.

 Fig. 8.18 GUI example as required by the exercise

210 8 The Charm of Graphical User Interface

 Listing 8.1

211Saving User Input

(continued)

212 8 The Charm of Graphical User Interface

 A Brick for an Experiment

 We just read how we can build a graphical interface. We may want to build a graphical
interface to drive our experiment. For example, we may want to have a graphical inter-
face that allows us to collect the subject’s identifying information (e.g., the name, sex,
age, as well as the number we assign to the subject) as well as an optional text note
about the subject (e.g., is the subject naive or expert? right-handed or left-handed?).
Additionally, we may want to have a button to “START” the experiment. We may want
also to have the possibility to run instead of the complete experiment, only an abbrevi-
ated version of it with a few trials (one for each experimental condition) so that we can
run a few practice trials if we need to. We may want/need to add further items to our
graphical interface. For example, it could be useful to set within it the name of the fi le
where we are going to save the data or the block number if the experiment we run is
subdivided into more than one block. And we could insert other parameters as well, for
example if we want stimuli to be presented in fi xed or random order. Of course, the
number of things you can control through a graphical interface has no limit.

 The graphical interface we build is rather standard, so that we will set the follow-
ing parameters: subject’s number; subject’s name; subject’s sex; subject’s age; sub-
ject’s note; the block number; the datafi le’s name; the possibility to run the
experiment in a fi xed or random order; one “start experiment” button; one “start
practice” button; one “cancel” button. Now launch the guide command and begin to
draw a graphical interface that looks more or less like the following one:

Listing 8.1 (continued)

213A Brick for an Experiment

 Now edit the text properties of the various objects you have created as follows,
and in addition, change the bottom-right pushbutton background color to red:

 Now change the tag properties of your “Edit Text” slots and give them (more)
meaningful names such as nsub, subname, subsex, subage, nblock, subnote, and
fi lename. Now change the tag properties of your pushbuttons into QuitExp,
RunPractice, and RunExp. Finally, change the tag property of your check box into
isfi xed.

 The fi rst thing we do is to activate the “QUIT EXPERIMENT” button. We saw
how to do this above. Just insert the command line delete(gcf) into the QuitExp_
Callback function. Now activate the GUI for the user’s input by uncommenting the
uiwait(handles.fi gure1) command (see the Save user input section). In this way, the
GUI now waits for user input. We now have to replace “varargout{1}=handles.
output;” with “varargout{1}=handles;” so that we can get all the data we input each
time we run the experiment within a structure called “handles”. Immediately after
this command , we write again the delete(gcf) command. In this way, we close the
GUI if we press the “RUN EXPERIMENT” button. Do the same after the
RunPractice_Callback function. Now we move to the end of the RunExp_Callback
function. Here, after the comments, we have to add the following lines of code:

 handles.nsub = str2num(get(handles.nsub,′String′));
 handles.subname = get(handles.subname,′String′);
 handles.subsex = get(handles.subsex,′String′);
 handles.subage = str2num(get(handles.subage,′String′));
 handles.nblock = str2num(get(handles.nblock,′String′));
 handles.subnote = get(handles.subnote,′String′);
 handles.fi lename = get(handles.fi lename,′String′);
 handles.isfi xed = get(handles.isfi xed,′Value′) == get(handles.
isfi xed,′Max′);
 guidata(hObject, handles);
 uiresume(handles.fi gure1);
 delete(gcf)

214 8 The Charm of Graphical User Interface

 Now save as “RunExp” your GUI. Note that we converted nsub and subage
from strings to numbers, whereas subname and subsex are strings. Go to the com-
mand line and type the following command (remember to comment temporarily
delete(gcf) fi rst):

 >> UserInputs = RunExp

 Now input a set of hypothetical subjects’ details and press the button “RUN
EXPERIMENT”. MATLAB should echo the contents of a structure. Within this
content there are also the subject’s number, the subject’s name, the subject’s sex,
and so on.

 Now that we have collected all the user’s inputs, we have to pass them to the
main program that runs the experiment. This program was introduced in Chap. 4
(Listing 4.19). To do this, we need to transform that script into a function that
receives as input the data structure created through the graphical interface. So, add
the following line at the top of that listing:

 function SekulerExp(InputDataStruct)

 Now let us return to the graphical interface. There, we need to add a further com-
mand line that will be executed when we press the “RUN EXPERIMENT” button
at the end of the RunExp_Callback function (i.e., just after the lines of code we
wrote previously):

 SekulerExp(handles);

 In practice, when we press the “RUN EXPERIMENT” button, we will launch
the SekulerExp function, which receives a structure as input data. Within this struc-
ture will be all the subject’s details, as well as the datafi le name, the isfi xed value,
and so on. The last thing we do is to make the “run practice” button effective. Add
the following lines after the RunPractice_Callback function:

 handles.nsub = 0;
 handles.isfi xed = get(handles.isfi xed,′Value′) == get(handles.isfi xed,′Max′);
 SekulerExp(handles);

 You can see that here, rather than getting the data that the user inputs in the GUI,
we directly set the nsub variable to zero. In the SekulerExp function, by convention,
when the subject number is set to zero, the program runs a practice experiment, an
experiment with one repetition for each of the stimuli.

 The graphical interface is ready. Within the SekulerExp function, we can get the
input data by adding the following lines at the beginning of the code.

 % EXPERIMENT’S SETTINGS
 % get input data from the structure passed through the interface
 nsub = InputDataStruct.nsub;
 subname = InputDataStruct.subname;
 subsex = InputDataStruct.subsex;
 subage = InputDataStruct.subage;

215Appendix

 nblock = InputDataStruct.nblock;
 subnote = InputDataStruct.subnote;
 isfi xed = InputDataStruct.isfi xed;
 fi lename = InputDataStruct.fi lename;

 Let’s now take a look at the renovated SekulerExp function:

 Listing 8.2

 Appendix

 Referring to Fig. 8.2 , we give a short description of the remaining menu items that
weren’t previously defi ned. You can fi nd the same information in the MATLAB
help; we have given them here for quick reference.

216 8 The Charm of Graphical User Interface

 The File Menu

 As you might guess, the File menu provides commands for handling fi les. Here’s a
sketch of the items in the File menu.

 New (Ctrl+N) Displays the GUIDE Quick Start dialog box again; that is, you can
create more than one GUI at a time.

 Open (Ctrl+O) Displays the usual open dialog box to open FIG-fi les you have
already created.

 Close (Ctrl+W) Closes the GUI.

 Save (Ctrl+S) and Save as… save the current GUI to disk. This item will appear as
Save and the name of the GUI, so you can clearly tell from the menu which open
GUI it is being saved. It should be noted that when a GUI is saved, two fi les are
automatically saved: The FIG-fi le and the M-fi le, both with the same name. However,
once it is saved, to run our GUI we need only to prompt its name without any exten-
sions (or you can double click in the FIG-fi le icon).

 Export… This item is very helpful if you want to save one M-fi le only instead of
both an M-fi le and a FIG-fi le. When you select this option, MATLAB fi rst saves the
current GUI to disk, that is, both the M- and FIG-fi les. Then it saves another M-fi le
whose code creates the GUI from scratch. The default name for this M-fi le is the
same as that of the saved M-fi le plus the “_export” suffi x. You can change it accord-
ing to your needs.

 Preferences… displays the same dialog box that is displayed from the Preferences
item in the MATLAB main windows (see the Preferences for GUIDE section in this
chapter).

 Print (Ctrl+P) Displays the Print dialog box for printing the GUI fi gure.

 The Edit Menu

 The Edit menu provides commands for working in the GUI. Most of these com-
mands are standard to mainstream applications.

 Undo (Ctrl+Z) undoes the previous action. GUIDE supports multiple undo opera-
tions; simply continue undoing to undo further actions.

 Redo Redoes the last undone action. Again, GUIDE supports multiple redo opera-
tions, up to the number of undo operations that have been done.

 Cut (Ctrl+X) Deletes the selected UiControl from the GUI and copies it into the
Clipboard, allowing for pasting it in a different position of the same GUI or into
another GUI.

217Appendix

 Copy (Ctrl+C) Copies the selected UiControl to the Clipboard, allowing for pasting
a copy of it in a different position of the same GUI or into another GUI.

 Paste (Ctrl+V) Pastes the UiControl from the Clipboard into the current GUI.

 Clear Deletes the selected UiControl.

 Select All (Ctrl+A) Selects all the UiControls in the current GUI.

 Duplicate (Ctrl+D) Duplicates the selected UiControl.

 The View Menu

 The View menu provides the means for displaying and moving the various windows
of the GUI. Some of these windows are context sensitive, that is, the displayed
window differs according to the selected UiControl. Here are the View menu
items:

 Property inspector Displays the Property inspector window. Property inspector is
an interactive tool for exploring and modifying a UiControl’s property values.

 Object browser displays a hierarchical list of the UiControls in the GUI. You can
select any UiControl from here.

 M-File editor displays the application M-fi le connected with the GUI. If you haven’t
already saved the GUI, the Save as dialog box will fi rst appear.

 View Callbacks is similar to the previous one because it displays the application
M-fi le connected with the GUI, but here you have the opportunity to jump directly
into the callback function that you need. For example, if you need to change a call-
back function of a given pushbutton, you fi rst select it and then, from the View
Callback menu item, you jump directly into its callback function prototype.

 The Layout Menu

 The layout menu works on the selected UiControls by snapping them to the grid or
by moving them backward and forward. We use this last feature when there are
UiControls overlapping each other.

 Snap to grid ties UiControls to the grid square borders when moved. (The Tools ->
Grid and Rulers… menu item allows for displaying the grid and changing its size.)

 Bring to Front (Ctrl+F) moves the selected UiControl(s) in front of the others.

 Send to Back (Ctrl+B) moves the selected UiControl(s) to the back of the others.

 Bring Forward moves the selected UiControl(s) forward by one level, that is, not in
front of all UiControl, as Bring to Front does, but only in front of the one overlapping

218 8 The Charm of Graphical User Interface

it. Hence, if you have three overlying uincontrols and you want to bring the last one
in the second level, this is the item you need to use.

 Send Backward moves the selected UiControl(s) back by one level, that is, behind the
UiControl directly behind it, but not behind all UiControls, as Send to Back does.

 Tools Menu

 The Tools menu provides commands for running the GUI, to align UiControls, to
display and regulate the grid and the ruler, to create Menus into the GUI, to display
the Tab Order editor box, and to set the GUI options.

 Run (Ctrl+T) starts running the current GUI.

 Align Objects… displays the Align Objects box. This tool allows for aligning and
distributing the UiControls within the GUI both vertically and horizontally. Facility
with this tool will save considerable time. In practice, when you want to align or
distribute two or more UiControls, you fi rst to select them, you then click onto the
self-explanatory icon in the Align Objects box, and fi nally you press the Apply but-
ton. The Align option aligns the selected UiControls to the same reference line,
while the Distribute option spaces the selected UiControls uniformly with respect to
each other. By default, the UiControls are spaced within the bounding box, but you
can also space them to a specifi ed value in pixels by selecting the Set spacing option
and specifying the pixel value.

 Grid and Rulers… displays the Grid and Rulers box. This tool allows for displaying
the rulers and the grid in the GUI background. You can also regulate the Grid Size
by selecting the desired pixel value for each square from the Grid Size pop-up
menu. In this box there is also a duplicate of the snap-to-grid option that we have
already discussed in the Layout Menu item. Of course, neither the ruler nor the grid
will appear in run mode.

 Menu Editor… displays the Menu Editor box. With this option you add Menus and
menu items, in addition to context menus into your GUIs. Menus, menu items, and
context menus work similarly to UiControls; that is, they perform the action defi ned
in their Callback functions. As for the UiControls, for menus as well, prototype
Callback functions are automatically created in the M-fi le by GUIDE.

 Help

 The help menu provides two items for help and information.

 Using the Layout editor displays a starting guide on “Creating graphical user inter-
faces.” It is a sort of index from which you can select many different subguides.

219Preferences for GUIDE

 Creating GUIs displays a list of sections on how to create graphical user interfaces
(GUIs) using GUIDE.

 Preferences for GUIDE

 There are a number of preferences that you can set for GUIDE. These preferences
can be found in three different locations within the Preferences dialog box, which
can be invoked from the File menu.

 Confi rmation preferences:
 GUIDE can display a confi rmation dialog box when “saving changes” is needed for
GUIDE to proceed. Basically, before running (activating) the GUI and before
exporting it, any change that has been done has to be saved. If you think that you
may not want to keep these changes, then from the MATLAB fi le menu, select
General -> Confi rmation Dialogs to access the GUIDE confi rmation preferences
and tick on “ prompt to save on activate ” and/or “ prompt to save on
export ” as shown in Fig. 8.19 .

 Fig. 8.19 Confi rmation preferences

220 8 The Charm of Graphical User Interface

 Backward Compatibility

 If you created a GUI with MATLAB 7.0 or an earlier version, and you need to run
it also with older MATLAB versions, then this is the preference that you want.

 From the MATLAB File menu, select Preferences and then click on Ensure
backward compatibility (-v6) in the Preferences dialog box under
General > MAT-Files (Fig. 8.20).

 Fig. 8.20 Ensure backward compatibility (-v6)

221Suggested Readings

 Other Preferences

 Finally, fi ve additional preferences for the Layout Editor interface and for M-fi le
comments can be set from the Preferences dialog box, by selecting GUIDE in the
left-hand panel. These preferences are self-explanatory. Unless you are already
familiar with GUIs, it might be useful to click on “Add comments” for newly gener-
ated callback functions (Fig. 8.21).

 Suggested Readings

 Marchand P, Holland OT (2002) Graphics and GUIs with MATLAB. Boca Raton, FL: Chapman
& Hall/CRC

 Smith ST (2006) MATLAB: Advanced GUI development. Indianapolis, IN: Dog Ear Pub

 Fig. 8.21 GUIDE preferences

223M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_9, © Springer Science+Business Media, LLC 2012

 The Psychophysics Toolbox (PTB) is a package for psychophysics research developed
by David Brainard and Denis Pelli (Brainard 1997 ; Pelli 1997) and recently by
Mario Kleiner (Kleiner et al. 2007) . The PTB toolbox can be freely downloaded
from the follwing website http://psychtoolbox.org/PsychtoolboxDownload . This
toolbox has been used extensively over the last decade (the fi rst version was released
in 1995), and it is very useful for running experiments needing audiovisual stimuli.
PTB routines treat the computer (Linux, Mac, or Windows) as a display device, i.e.,
a frame buffer, a portion of memory generally placed within the graphics card where
images are temporally stored. To do this, PTB interfaces MATLAB with a low-level
computer language such as C. Hence, besides a number of .m functions, PTB
includes low-level information included in MEX fi les. The most important MEX
fi le is Screen.mex, which will be described in the current chapter.

 PTB includes a great number of functions, whose documentation is displayed at
 http://docs.psychtoolbox.org/Psychtoolbox .

 The Screen Function

 As you may have anticipated, the core of PTB is the Screen function. It includes a
number of subfunctions allowing for accurate control of the images presented on
the computer screen. To see all the subfunctions of Screen (and a partial help), type
“ Screen ” with no arguments at the MATLAB prompt (if you type “ help Screen ”
you get a general introduction about the function). Each time you call the Screen
function it outputs, at the MATLAB prompt, information about your graphics hard-
ware. Before running any experiment it is important to read this information to
make sure you are equipped for your needs. However, you may not want to have

 Chapter 9
 Psychtoolbox: Video

http://docs.psychtoolbox.org/Psychtoolbox
http://docs.psychtoolbox.org/Psychtoolbox

224 9 Psychtoolbox: Video

this information repeatedly prompted each time the Screen function is called. In this
case, you can use the following code 1 to suppress it:

 Screen(′Preference′,′SuppressAllWarnings′,1);

 The general call of the Screen function is the following:

 [v1, v2, …] = Screen(‘Sub-functionName’, parameter1, parameter2, …)

 The Screen function always needs the sub-function name together with the
parameters of the sub-function. Moreover, the function returns a number of
variables (from zero to many) according to the specifi c subfunction. The help of its
subfunctions can be seen by typing Screen(‘Sub-functionName?’) at the
MATLAB prompt. For example:

 Screen(‘OpenWindow?’)
 Screen(‘FillRect?’)

 Or equivalently

 Screen OpenWindow?
 Screen FillRect?

 In the displayed help, optional input arguments are preceded by a comma,
whereas nonoptional arguments are not. For example:

 [VBLTimestamp StimulusOnsetTime FlipTimestamp Missed Beampos] = Screen('Flip',

windowPtr [, when] [, dontclear] [, dontsync] [, multifl ip]);

 Here when , dontclear , dontsync and, multifl ip are optional arguments (i.e.,
they have default values), whereas windowPtr is not. Since the order of the func-
tion arguments cannot be modifi ed, empty square brackets can be used to reach the
desired position. Hence, in the above example, to change the dontsync default
value, we need to write:

 Screen(‘Flip’, windowPtr, [], [], dontsync)

 The following is an unsorted list of the things that can be done with Screen , which
are usually done by a specifi c subfunction. Screen can be used to get information
about the screen such as the refresh rate or the size in pixels. Screen can also be used
to show strings (very useful in psycholinguistics experiments), to draw shapes such as
lines, ovals, rectangles, or any other kind of geometrical shape you may want to draw.
 Screen can also import pictures from graphics fi les (such as .jpg, or .tif) saved on the
hard drive and can be used to create video clips. But probably the most interesting
feature of Screen is that everything is done with maximal timing accuracy. This is
because the stimulus presentation is synchronized with the monitor refresh rate.

 In the current chapter we fi rst show how to use Screen to get information about
the hardware and software characteristics. Then we show how to draw fi gures and

 1 Please note that the codes presented in this book works with Psychtoolbox from version 3.

225How to Use Screen to Get Information

text, and how to import pictures from external fi les. Finally, we show how to create
a sequence of events and how to present them with great timing accuracy.

 As anticipated, the Screen function, the main function of PTB, is written in a
low-level computer language. Because of this, when you use Screen , if your code
crashes it may be diffi cult to go back into your script or to the MATLAB prompt (for
example, you might need to quit MATLAB from the task manager or, even worse,
to switch off your computer!). To avoid this problem, we recommend writing all
code within a try and catch block (see Chap. 3). This trick bypasses some of the
problems that may arise if your program crashes. The following example shows
how you should use the try–catch commands.

 Listing 9.1

 Analysis

 Lines: 1, 3–6 are to catch any error after a Screen has been opened.

 Line 2: the script written in the chapter.

 Lines 4–5: closes all screens in case the program written in the try section crashes.
Moreover, it reports the last error found in the try section. This is useful for debugging
the code.

 Another option is to use an auxiliary monitor so to keep the MATLAB command
window on one monitor and display the fi gures created with PTB on the other one.
In this way, if the code crashes, it would be possible reading at the MATLAB prompt
the error generating the crash and, in most of the cases, it would be possible to
“close” the screen code.

 How to Use Screen to Get Information

 The function Screen can be used to get information about the PTB itself as well as
the characteristics of the computer in use. In particular, the Screen subfunctions are
useful for increasing a program’s portability. For example, if you are displaying a
video clip, it is important to get the screen refresh rate of the computer in use to
produce the same visual effect in terms of timing when different machines are
used. The following table explains some of these subfunctions.

226 9 Psychtoolbox: Video

 Sub function Command Example

 Version struct=Screen(′Version′); Return a structure
with the characteris-
tics of the PTB

 Computer comp=Screen(′Computer′); Return a structure
with the characteris-
tics of the computer

 Screen screens=Screen(′Screens′); Return an array of
numbers (0, 1, 2, …).
Each number
identifi es one screen
connected to the
computer. The default,
0, is the screen with
the menu bar

 Rect rect=Screen(‘Rect’, screenNumber); Return an array with
the top left corner
(always 0, 0) and the
bottom right corner (n,
m) coordinates of the
screen. The number of
the bottom right
corner coincides with
the screen’s resolution
(e.g., 1,024 × 768).
ScreenNumber is a
pointer (i.e., the one
returned by the
Screens subfunction)
that tells the function
which screen-rect is to
be returned

 FrameRate hz=Screen(‘FrameRate’, screenNumber); Returns the refresh
rate of the screen
identifi ed by the
pointer screenNumber

 GetFlipinterval [monitorFlipInterval
nrValidSamples
stddev]=Screen(‘GetFlipInterval’,
windowPtr
[, nrSamples] [, stddev]
[, timeout]);

 Returns the fl ip
interval (in seconds),
i.e., the interval in
seconds between two
consecutive vertical
retraces of the screen
identifi ed by the
pointer. This
subfunction has to be
run after the
OpenWindow
subfunction

227How to Use Screen to Draw Figures

 How to Use Screen to Draw Figures

 Preliminary Notions: Drawing Figures in Three
Steps—Opening, Drawing, and Closing

 The main thing Screen is used for is to draw fi gures and to present them with maxi-
mal timing accuracy. Generally speaking, there are three main fi gure types: fi gures
drawn with PTB, imported fi gures (e.g., .jpg, .tif, …) and text fi gures. Independently
from the type of fi gure you are drawing, the drawing is done in three steps that we
can call opening, drawing, and closing. These steps are normally found in any pro-
gram that displays fi gures.

 Opening the Window

 The “opening” step is controlled by the subfunction ′OpenWindow′ :

 [MyScreen, rect] = screen(‘OpenWindow’, 0, [0, 255, 0]);

 When the opening is done, we take control of the screen where we are going to
draw the fi gure. The fi rst argument of the ′OpenWindow’ subfunction indicates the
screen we want to refer to. Indeed, many screens can be connected to the same
computer at the same time. The screen with the menu bar is identifi ed with the
default number “0”.

 Therefore, with the command line above, we get control of the screen with the
menu bar. To this particular screen we also assign a name (i.e., the returned pointer
 MyScreen). Therefore, later in the code, every time we need to access this screen,
we use screen’s name (MyScreen) rather than 0. The above code paints the whole
screen in green color using the RGB triplet [0, 255, 0] . In the Screen function,
the color argument is passed either with a single gray value (i.e., 0–255) or with a
RGB triplet. By default, if the color argument is omitted, the screen is white, i.e., the
default value for this argument is [255 255 255] . Last but not least, ‘ OpenWindow ’
returns the screen size, which above we saved in the rect variable. The rect vari-
able is an array of the screen coordinates in pixels. The fi rst two coordinates are
those of the top left corner; the second two coordinates are those of the bottom right
corner. The top left coordinates are 0,0, whereas those of the bottom right depend
on screen resolution.

228 9 Psychtoolbox: Video

 The full list of arguments for the OpenWindow subfunction is the following:

 Screen(‘OpenWindow’,0[,color][,rect][,pixelSize][,numberOfBuffers]…
 [,stereomode][,multisample][,imagingmode]);

 The following table outlines the use of these arguments.

 Opt. argument Color

 Description Can be a scalar, if you want an achromatic screen or a 1 × 3 vector with the
unnormalized RGB values (i.e. 1–256). For an RGB color description, refer
to Chap. 5

 Example Screen('OpenWindow', 0, [255,0,0])
 % it turns the screen red

 Opt. argument Rect

 Description Specifi es the size, in pixels, of your window (this option works better under
Mac OS). This is a 1 × 4 vector with the coordinates of the window. The fi rst
two numbers refer to the x and y coordinates (in pixels) of the upper left
corner, respectively; the last two numbers refer to the x and y coordinates
of the bottom right corner of the window, respectively. Hence, there is the
possibility to draw the stimuli even in a portion of your screen instead of
the whole screen, although you’ll probably never use it. The following
example turns the screen red using the specifi ed coordinates

 Example Screen('OpenWindow', 0, [255, 0, 0],
[250,250,450,650])

 Opt. argument pixelSize

 Description Specifi es the number of bits per pixel devoted to creating colors in the
screen. Usual numbers of bits are 8, 16, or 32 per pixel, corresponding to
256, thousands, or millions of colors, respectively. This depends on the
graphics card. If you do not know how many bits per pixel your graphics
card can use, you can ask PTB using the Screen subfunction PixelSizes. By
default, PTB works with 8 bits, and therefore colors are coded within the
0–255 (i.e., 2^8) range. If a different number of bits is used, the range defi n-
ing the color also changes. For example, with 16 bits, the triplet for the red
color is [65535, 0, 0]

 Example Screen('Openwindow',0,[],[],16)

 Opt. argument numberOfBuffers

 Description Determines the number of buffers to use. You normally use one or two
buffers (see next chapter) to run your experiments, so you don’t change
this parameter except for testing or debugging reasons

 Example Screen('Openwindow',0,[],[],[],2)

(continued)

229How to Use Screen to Draw Figures

 Opt. argument Stereomode

 Description PTB offers different stereo possibilities. The default value of this argument
is 0, that is, Monoscopic viewing. If you are equipped with stereo hard-
ware, such as shutter glasses, you can opt for values from 1 to 3 of stereo-
mode according to where you want the images for the left and right eyes
appearing on the screen

 If you want a stereogram, then set stereomode to 4. In this way you split
the screen into two halves, where the left view is for the left eye; set stereo-
mode to 5 for cross-fusion. If you are equipped with color glasses for
anaglyph stereo vision, then set stereomode to 6, 7, 8, or 9 for different
combinations of colors

 Finally, set stereomode to 10 if you have two monitors: you will have one
image per monitor

 Example Screen('Openwindow',0,[],[],[],[],4)

 Opt. argument “multisample”

 Description This parameter enables an antialiasing procedure. In brief, when you
design your stimuli for a screen, aliasing is a problem that occurs when
the approximation due to pixel size is not good enough. When you draw a
disc, for example, its smoothness can be very poor if the resolution of the
screen in not high enough. Or, when you create video clips, you may have
a temporal aliasing problem resulting from the limited frame rate. When
multisample is greater than 0, PTB looks for the best antialiasing solution
that can be obtained by your hardware. This will improve the quality of
the stimuli; however, the downside in doing this is the increase of video
memory use, leading to loss of precision in terms of time. You might not
want this if you are collecting reaction times

 Example Screen('Openwindow',0,[],[],[],[],[],5)

 Opt. argument Imagingmode

 Description This parameter enables PTB’s internal image-processing pipeline. The
pipeline is off by default. By setting this parameter to 1, you enable this
feature to perform image-processing operations that are executed on the
graphics processor itself

 Example Screen('Openwindow',0,[],[],[],[],[],[],0)

 Drawing: An Introduction

 This is the step where we actually design the fi gures. We’ll see later in the chapter
how to program some fi gures that may be drawn directly within the PTB environ-
ment. But fi rst, we have to introduce another subfunction. Indeed, in order for a
drawing to be effective, it has to be followed by the subfunction Flip .

 The fi gure is automatically drawn in the background memory (also called back-
buffer), which is not visible. The Flip subfunction moves the previously drawn fi g-
ure from the backbuffer to the foreground memory (the frontbuffer) so that it becomes
visible on screen. This “fl ip” of the fi gure from the backbuffer to the frontbuffer

(continued)

230 9 Psychtoolbox: Video

occurs at a specifi c time, which is the fi rst available vertical retrace of the screen.
The fl ip action is performed on any fi gure found in the background memory. In other
words, if you have drawn, let’s say, a square, a circle, and a triangle and you want to
show them on the screen, you do not need to fl ip each object, but instead, you can fl ip
all objects at once. The Flip subfunction needs to be addressed to a particular screen
(i.e., to a particular screen pointer). In everyday situations, the screen we address to
is the only screen connected to the computer. However, if you are using two or more
screens, you could decide on which screen the fi gure has to be fl ipped. When the
Flip subfunction is executed, the background memory is cleared. Therefore, if you
have nothing in the background and you call the Flip subfunction, everything that is
currently in your foreground is deleted, because it is replaced with an empty object.

 The complete Flip command is the following:

 [VBLTimestamp StimulusOnsetTime FlipTimestamp Missed Beampos] = Screen('Flip',
 windowPtr [, when] [, dontclear] [, dontsync] [, multifl ip]);

 We will see later how to use some of the Flip options to control the timing of
the stimuli.

 Closing

 Closing ends the code, and in the majority of cases may look simply like the follow-
ing command:

 screen(′CloseAll′);

 The CloseAll subfunction closes all the fi gures created during code execution
and sets the screen back to normality, returning control to MATLAB. It is important
to close everything, otherwise, the control is not returned to MATLAB. In PTB, you
can close all objects at once (for example, with the subfunction CloseAll) or close
only specifi c objects (remember, however, that at the end of your code you need to
close all the objects created). This can be done as follows:

 screen(‘Close’, objectPointer)

 where objectPointer is the pointer to the object you want to close. The possibility of
closing selected objects is particularly interesting if the code you are writing needs
a lot of memory. Overall, the amount of memory you are using depends on the num-
ber of objects and on their size. If memory consumption becomes critical for your
program, then it might be helpful closing the objects no longer in use.

 Drawing: Reprise

 Now that the preliminaries are out of the way, we can have a go at doing some
drawing. Replace the text comment in the try–catch example (presented in Listing 9.1)
as in Listing 9.2.

231Drawing: Reprise

 Listing 9.2

 Analysis

 This short script does a few things:

 On line 2: It looks for how many screens are connected to the computer.

 On line 3: if there is more than one screen, it selects one of them without the menu bar
and assigns an arbitrary name to it. Later, we’ll open this screen and turn it green.

 On line 4: the screen assumes the name myscreen (i.e., its pointer), and we save the
coordinates of the screen in the variable rect . Moreover, we paint the full screen
 myscreen green.

 On line 5: we make the program wait for a key-press event. This is done by means
of the KbWait command, which stops the execution of the code until the user
presses a keyboard key.

 On line 6: The subfunction “ CloseAll ” returns control to MATLAB.
 In the previous example, we did not draw any fi gures on the screen. In the next sec-
tion we will extend the code by drawing some objects.

 Drawing Shapes

 To understand how to draw geometric shapes on the screen, we extend Listing 9.2
to make the stimulus for a color afterimage. To do this, we want to draw a red square
(400 by 400 pixels) on a green background, and to do this we use the subfunction
 FillRect, which draws a fi lled rectangle; use the subfunction FrameRect to get
a framed rectangle. Both the FillRect and FrameRect subfunctions take as
parameters the screen pointer followed by the color (in RGB triplet form) and fi nally
the coordinates of the rectangle we want to draw. When the FillRect or FrameRect
subfunctions are called, a rectangle is drawn in the backbuffer. To actually see the
rectangle on the screen, we need to call the Flip subfunction.

232 9 Psychtoolbox: Video

 Listing 9.3

 Now if you look at the red square long enough (e.g., 20 s) and then move your
eyes to a white sheet of paper, you can see the afterimage of the red color.

 You may have noticed in the script above that we used the very handy function
 CenterRect . It calculates the coordinates to include one fi gure within the center of
another one whose coordinates are known. In the example, the external fi gure is the
entire screen; therefore, the function centers the fi gure within the screen.

 CenterRect and the other functions for manipulating coordinates (type help
 PsychRets at the MATLAB prompt or see below) can also be used in a nested way.
Let us now display a simultaneous lightness contrast display. We divide the screen
into two sectors, one white and one black, and at the center of each sector we need
to place a gray square. Everything is done in the following example.

 Listing 9.4

233Drawing: Reprise

 The script is very similar to Listing 9.3. In the example, we also introduced the
 AdjoinRect function which adds a rectangle at the right of the specifi ed sector .
Note also that here we used CenterRect in a nested way, because now “center” is
the center of the defi ned sector, not the center of the screen. When you are drawing
the stimuli for your experiment, our suggestion is to proceed as follows. First, set
the size of the shape, regardless of its position on the screen, by setting its size start-
ing from the top-left corner. Then use the PsychRect function to defi ne the actual
coordinates on the screen.

 In the following table can be found a complete list of the functions that can be
used to simplify your work that uses the rect coordinates. Please refer to the
Psychtoolbox help for more complete information on how to use them.

 Function Description

 AdjoinRect Moves a rect next to another one

 AlignRect Aligns a rect over another one

 ArrangeRects Arranges an array of rects in a pleasant way

 CenterRect Centers a rect within a second one

 CenterRectOnPoint Centers a rect around given x,y coordinates

 CenterRectOnPointd Centers rect around an x,y coordinate pair

 ClipRect Returns the intersection of two rects

 ClipRect Returns the intersection of two rects

 InsetRect Shrinks/expands rect by additive insets

 IsEmptyRect Returns 1 if empty, returns 0 otherwise

 IsInRect Is the point inside a rect?

 OffsetRect Shifts rect vertically and horizontally

 RectBottom Returns index of yBottom entry of a rect

 RectCenter Returns the integer x,y coordinates of center

 RectCenterd Returns the exact x,y coordinates of center

 RectOfMatrix Accept an image as a matrix and returns a PTB rect specifying
the bounds

 RectHeight Returns the height of a rect

 RectLeft Returns index of xLeft entry of a rect

 RectRight Returns index of xRight entry of a rect

 RectTop Returns index of yTop entry of a rect

 RectWidth Returns width of a rect

 RectSize Returns the width and the height of a rect

 ScaleRect Scales a rect by multiplicative factors

 SetRect Creates a rect (i.e., a vector) from four input coordinates

 SizeOfRect Accepts a Psychtoolbox rect [left, top, right, bottom] and
returns the size [rows columns] of a MATLAB array (i.e.
image) just big enough to hold all the pixels

 UnionRect Smallest rect containing two given rects

234 9 Psychtoolbox: Video

 To draw fi lled ovals (including circles) we use the subfunction FillOvals
instead of the subfunction FillRects . The counterpart of FrameRect is
 FrameOvals . In the following table, we present a list of the shapes that can be
drawn with PTB. More-complex graphical shapes can be drawn by combining two
or more fi gures.

 Sub/Function Command Description

 DrawLine Screen(′DrawLine′, win-
dowPtr [,color], fromH,
fromV, toH, toV
[,penWidth]);

 draws a line

 DrawArc Screen(′DrawArc′,windowPtr
,[color],[rect],startAngle
,arcAngle)

 draws a circular
arc unfi lled with
color (i.e., a
Pac-Man-like fi gure)

 FrameArc Screen(′FrameArc′,windowPtr
,[color],[rect],startAngle
,arcAngle[,penWidth]
[,penHeight] [,penMode])

 as above

 FillArc Screen(′FillArc′,windowPtr
,[color],[rect],startAngle
,arcAngle)

 as above but fi lled
with color

 FillRect Screen(′FillRect′, win-
dowPtr [,color] [,rect]);

 draws a rectangle
fi lled with color

 FrameRect Screen(′FrameRect′, win-
dowPtr [,color] [,rect]
[,penWidth]);

 draws a rectangle
unfi lled with color

 FillOval Screen(′FillOval′, win-
dowPtr [,color] [,rect]
[,perfectUpToMaxDiame-
ter]);

 draws a fi lled oval

 FrameOval Screen(′FrameOval′, win-
dowPtr [,color] [,rect]
[,penWidth] [,penHeight]
[,penMode]);

 draws a framed oval

 FramePoly Screen(′FramePoly′, win-
dowPtr [,color], pointList
[,penWidth]);

 draws a framed
polygon

 FillPoly Screen(′FillPoly′, win-
dowPtr [,color], pointList
[, isConvex]);

 draws a fi lled
polygon

235Batch Processing: Drawing Multiple Figures at Once

 Batch Processing: Drawing Multiple Figures at Once

 It is often useful to be able to draw multiple fi gures at once. This operation is not
only useful, but it is also an effi cient operation to do with PTB 3. The repeated
drawing is achieved using the functions that we have used so far. Instead of writing
repeatedly the same drawing subfunctions:

 Screen(′FillRect′, win, [red1 green1 blue1], [left1 top1 right1 bot1]);
 Screen(′FillRect′, win, [red2 green2 blue2], [left2 top2 right2 bot2]);
 …
 Screen(‘FillRect’, win, [redn greenn bluen], [leftn topn rightn
botn]);

 you can write in the following:

 mycolors = [red1, red2,… ; green1, green2,… ; blue1, blue2,…];
 myrects = [xtop_1, xtop_2,…; ytop_1, ytop_2,…; xbottom_1, xbottom_2,…;
ybottom_1, ybottom_2,…];
 Screen(′FillRect′, win, mycolors, myrects);

 In other words, you fi rst write a 3 × n matrix for the RGB values, and then a 4 × n
matrix for the fi gures’ coordinates. These matrices are then passed to the desired
subfunction to draw the shapes. In the 3 × n color matrix, each row identifi es the
RGB values for the corresponding fi gure. In the same way, in the 4 × n matrix for the
fi gures’ coordinates, each column identifi es the coordinates of the corresponding
fi gure; odd rows are the x coordinates, and even rows are the y coordinates.

 In the following example, we draw a setting that could be used for a Posner-like
experiment by drawing three frames placed one after the other in the middle of the
screen. The left and the right frames are gray, while the middle frame is black so that
it cannot be seen. Note that colors and coordinates are transposed when they are
passed to the FrameRect subfunction.

 Listing 9.5

236 9 Psychtoolbox: Video

 Drawing Text

 ‘DrawText’ is the subfunction to draw text on the screen. The subfunction’s
options are the following:

 [newX,newY]=Screen(′DrawText′, windowPtr, text [,x] [,y] [,color]
[,backgroundColor] [,yPositionIsBaseline]);

 where windowPtr is the pointer to the screen, and text is the string of text you want
to draw. Optional arguments are the x and y coordinates where the text starts (these
coordinates refer to the top left corner) and the text color. Note that in this subfunc-
tion the color argument is passed after the coordinates, instead of before, as was the
case for rectangles and ovals. Further optional arguments are backgroundColor
and yPositionIsBaseline . backgroundColor is the color behind the text
(It does not seem to work properly under Windows and Linux. However, this prob-
lem can be easily solved by drawing a colored rectangle before drawing the text.)
 yPositionIsBaseline is a logical value; if true, the y coordinate for the text
refers to the bottom, instead of the upper, part of the text.

 The Drawtext subfunction returns the x and y coordinates of the end of the text.
This is useful because the strings you are writing could be of a different lengths,
covering a different number of pixels. Therefore, knowledge of the ending coordi-
nates of a string is important for arranging two or more strings of text. If you simply
need to write one string in the middle of the screen, you can use the function
 DrawFormattedText :

 [nx, ny, textbounds] = DrawFormattedText(win, tstring [, sx][, sy][, color]
[, wrapat][, fl ipHorizontal][, fl ipVertical][, vSpacing])

 DrawText accepts not only coordinates expressed in pixels but also the option
′ center ′, which can be used to center the text on the screen either on the horizontal or
vertical axis. The following code writes a string starting from the middle of the screen.

 Listing 9.6

237Drawing Text

 PTB provides additional writing subfunctions specifying the style, font, mode,
and size of the text. To get these features the corresponding subfunctions have to be
called before DrawText or DrawFormattedText is called. These subfunctions
allow for getting and setting text features at the same time; that is, the same function
 gets the type of text that is currently on and sets the desired text type. Let us see how
they work.

 ‘TextStyle’ specifi es the text style. 0 is normal, 1 is bold, 2 is italic, 3 is bold
and italic, 4 is underline, 5 is bold and underline, 6 is italic and underline, and 7 is
italic, bold, and underline.

 For example, the command:

 previous_style = Screen(’TextStyle’, w, 2);

 returns the style that was previously in use (0 is the default style) and sets the
style to bold for next text.

 ‘TextFont’ specifi es the text font; it can be invoked by passing the font name
or via the font number. The subfunction returns two arguments, which are the num-
ber and name of the font that is currently in use (this is because to each font there
also corresponds a number). Use the following syntax:

 [previousFontName, previousFontNumber] = Screen (′TextFont′,w, ’Verdana’);

 The function returns both previous name and number style and sets Verdana as
the style for future text.

 ′TextMode′ specifi es the text mode; there are 16 different modes, ranging from
normal to dashed, dot-dashed, and so on. It works only with Mac OS. Use the fol-
lowing syntax to get the previous mode and to set the new one:

 previous_mode = Screen(’TextMode’, w,10);

 ‘TextSize’ specifi es the text size. Use the following syntax to get the previous
size and to set the new one:

 previous_size=Screen(′TextSize′, w,40) ;

 Finally, there is the ‘ TextWidth ’ subfunction, which returns the horizontal off-
set, that is, the change in the horizontal pen position that will be produced by the
string. That is, if you are not sure how many bytes your string is, use ‘ TextWidth ’
to get it. Use the following syntax:

 Width=Screen(’TextWidth’, w, mystring);

 where mystring is the string that you are to type. It returns a negative number of
bytes if you write from right to left. Mystring may include 2-byte characters (e.g.,
Chinese).

238 9 Psychtoolbox: Video

 The following code listing shows how to use some of these subfunctions.
Moreover, it provides an example of changing text. The word MATLAB is written
three times in three different colors that are continuously changing. The word is also
vertically and horizontally fl ipped using some of the options of
 DrawFormattedText .

 Listing 9.7

 Importing Images

 Screen can be used to import and to show images stored on the hard drive. Images
are shown in three steps. First you need to load the image in the MATLAB work-
space (see Chap. 5); then, you need to create a texture of the picture, and fi nally, you
can show the texture on the screen. Let us analyze these steps by running the code
in Listing 9.8.

239Importing Images

 Listing 9.8

 Analysis

 On lines 2 and 3 we load the image, get its size, and store it in the MATLAB
workspace.

 On line 4 we set a rectangle as large as the picture, and change its coordinates so that
it is set at the center of the screen.

 On line 7 we change the indexed image format into an RGB format using the
MATLAB function ind2rgb. We need to do this because PTB works with inten-
sity matrices (i.e., gray-scale or RGB) instead of indexed matrices.

 On line 8 we multiply the resulting RGB matrix by 256. This is because PTB expects
integers ranging from 0 to 255, while the values returned by ind2rgb are in the 0–1
range.

 On line 9 we transform the picture into a PTB texture. PTB uses OpenGL 2 com-
mands, and a texture can be seen as a sort of image in OpenGL. A discussion of
OpenGL technology is beyond the scope of the present text. However, it is
important to know that we need to ‘remap’ every image into a texture element.

 On line 10 we draw the texture image in the background memory.

 On line 11 we show the picture on the screen.
 It has to be stressed that the matrix of an image cannot be directly displayed: the

matrix has to be converted into a texture before being displayed.

 2 OpenGL’s main purpose is to render two- and three-dimensional fi gures into a frame buffer. These
fi gures are described as sequences of vertices (which defi ne geometric objects) or pixels (which
defi ne images). OpenGL performs several processing steps on these data to convert them into
pixels to create the image in the frame buffer.

240 9 Psychtoolbox: Video

 Video Clips

 PTB functions can be used to create video clips such as a fi gure moving along the
screen, where a video clip is a succession of static pictures. Each picture is called
frame. The possibility of drawing video depends on the refresh rate and on the pixel
size. These two factors affect the granularity of the motion. A displacement cannot
be lower than the size of one pixel. Similarly, frames cannot be presented at a faster
rate than the refresh rate.

 In the majority of cases, video clips are drawn using for loops, as in the following
example. Here, a black disc on a white background moves horizontally from left to
right on the screen.

 Listing 9.9

 Analysis

 On line 6 we implement the variable disc , which is a quadruplet of coordinates for
the disc; on lines 7 and 8 we implement rectinrect, which is a quadruplet of the
coordinates for the frame within which the disc will move.

 From line 10 to line 14 we implement the “for loop” in which the x coordinates
of the disc change. At the fi rst iteration (i = 0) the disc is placed at the left border of
the frame. When i equals 1, the x coordinate of the disc is augmented of one unit;
therefore the disc is drawn 1 pixel further to the right than the previous disc. When
 i equals 2, the shift of the discs becomes 2 pixels, and so on up to i = 600, when
the discs disappear behind the frame.

 In practice, every time you iterate a loop you need to redraw the object you
want to move in a different position by specifying the new x and y coordinates
where you want the fi gure to be drawn. Of course you can set into motion any
fi gure you want. Moreover, motion can be done not only along a straight line but

241Drawing Things at the Right Time

also with a certain fuzziness. Here the string “hello” moves from left to right in an
“uncertain” way.

 Listing 9.10

 Analysis

 In the current example, the x and y coordinates of the string “hello world!” are
modulated by a random factor (using the function rand on lines 13 and 14). On line
14, y is made to change by either −1 (a displacement to the upper part of the screen),
0 (no displacement), or +1 (a displacement toward the bottom part of the screen).
Therefore, on average, the fi gure oscillates along the y axis without progressing in
any particular direction. However, on line 13, the x coordinate can change by −1, 0,
+1, +2, or +3. Negative changes move the string toward the left, whereas positive
changes move the string toward the right. Because the randomly generated number
is more likely to be positive than negative, the string eventually moves toward the
right of the screen.

 Drawing Things at the Right Time

 Up to now, we have not paid yet much attention to timing. However, on many occa-
sions, timing is an important issue for our stimuli, because we need to be able to
control their duration.

 Timing is intrinsically connected to the screen refresh rate. For example, you
cannot present objects whose duration lasts less than one refresh per cycle. By the
same token, you cannot present a stimulus for a duration that is not an exact

242 9 Psychtoolbox: Video

multiple of the screen refresh rate. The reason is the following. Let’s suppose you
are showing one stimulus (s1) and that this stimulus has to be replaced by the next
stimulus (s2). If the duration of s1 on screen is not a multiple of the refresh rate, it
may happen that the drawing of s2 begins when s1 is still on screen. Therefore,
when you are deeply concerned about timing, always use durations that are multi-
ples of the screen refresh rate.

 Independently from the stimulus type, timing is controlled by two optional argu-
ments of the subfunction Flip . These arguments are “ when ” and “ VBLTimestamp ”.
“ when ” tells the fl ip subfunction when the fl ip from foreground to background is to
be done. “ VBLTimestamp ” is the time when the fl ip has actually been done. Both
“ when ” and “ VBLTimestamp ” are expressed in seconds and refer to the system
time, a timer that is switched on when you switch on your computer.

 The following example illustrates how to control the timing. We fi rst generate a
fi xation point which stays on the screen for 0.5 seconds and then a red square
appears. After 0.75 seconds the red square is cleared, and after 1 seconds a green
square appears for 0.6 seconds.

 Listing 9.11

243Summary

 Analysis

 In the example, the timing is achieved by getting the onset/offset times of each
stimulus. For example:

 On line 15 we fl ip the fi rst stimulus at a time that is the sum of the onset of the fi xa-
tion point and 0.5 s.

 On line 17 we fl ip again after a period of 0.75 s. However, because there is nothing
in the background, the screen is cleared after such a period. In this way, the presence
of the fi rst stimulus on the screen is controlled by this second fl ip.

 On line 24 the second stimulus is switched 1 s after the offset time of the fi rst
stimulus.

 On line 26 the second stimulus is cleared after 0.6 s due to the second fl ip.

 Note the use of the subfunction ‘GetFlipInterval’ on line 6. This subfunction
returns an estimate of the monitor fl ip interval for the specifi ed onscreen window.
This allows for maximum control of the display time. We use such slack in the com-
putation of the “ when ” time in the fl ip subfunction.

 Finally, there is another operation you can do to obtain maximal timing accuracy.
When we use the computer there are several software processes running at the same
time. The CPU does calculations for all of them. These activities reduce the resources
that are available to MATLAB and PTB. PTB, however, has a set of functions for
redirecting all available CPU resources to MATLAB to improve timing accuracy.
These functions will be presented in the next chapter.

 Summary

 The Psychophysics Toolbox (PTB) is a package specifi cally developed for psy-•
chophysics research.
 The core of the PTB is the • Screen function.
 PTB uses a double buffering system (back and front buffers = ‘background and •
foreground memory’) that provides great timing control for visual stimuli.
 PTB can be used to draw objects (geometric fi gures, fi gures imported from •
graphics fi les or text) onscreen. The drawing of objects onscreen is performed in
three steps: opening, drawing, and closing.
 The spatial arrangements of objects can be manipulated with the PsychRects •
functions, and the drawing can be done in batch-processing mode.
 The Screen subfunction fl ip can be used to control the timing of your stimuli and •
to synchronize the drawing with the screen’s vertical retrace.
 The Screen function can be used to create movies. •

244 9 Psychtoolbox: Video

 Exercises

 Exercise 1

 Draw the Kanizsa triangle by designing three Pac-Men shaping the illusory contour.

 Solution 1

 Exercise 2

 Draw a Kanizsa triangle equal to the previous one but “dishonestly” (by shaping a
white triangle on a white background whose vertex covers three black discs).
Besides reviewing how to draw polygons, the purpose of this exercise is to realize
that depending on where in your code listing you put a function, it can give rise to
different results. Indeed, to solve this exercise, the triangle has to be drawn after,
instead of before, the discs.

245A Brick for an Experiment

 Solution 2

 A Brick for an Experiment

 The stimulus for our experiment is simple: two discs that move with identical
motions (one rightward, one leftward) and that start from one position and each end
at the other disc’s starting point. A stimulus similar to this has been shown previ-
ously in this chapter. Here we just reduce the size of the frame within which the
discs are moving so that is a square of 300 by 300 pixels. The following script
(slightly optimized in comparison to that of the chapter) shows the motion display
used by Sekuler et al. (1997). In the example, two discs move: disc1 moves from
left to right, disc2 from right to left.

246 9 Psychtoolbox: Video

 A few comments about this script. First of all, please note how we set the starting
coordinates of all objects in a nested way. The coordinates of the frame within
which the movement takes place are calculated according to the screen coordinates.
The starting coordinates of the discs are calculated according to the coordinates of
the frame. Note also that we fl ipped once before the for loop showing the motion.
This simple operation enables us to synchronize the subsequent for loop (thus the
successive fl ips) with the refresh rate. In a certain sense, we could say that we are
“getting the pace” of the refresh rate. Note also how the i index is changed: in 2-unit
steps. This increases the velocity of the motion (2 pixels per frame) in comparison
to that originally shown in the chapter. The x coordinates of disc1 are increased by
i (so that the discs moves toward the right), whereas the x coordinates of discs2 are
decreased by i (so that the disc moves toward the left). At the end of the for loop, we
again fl ip the frame only (but not the disc) so that the frame does not disappear after
the motion.

 We have now to build the second motion display, where the discs at the overlap
point stop the motion for a few frames. Here we will stop the motion for two frames.
In order to do this, we need the i index to remain for more than one cycle at the value
140. When i is equal to 140, the discs overlap completely. Everything can be done
simply by modifying the beginning of the for loop as follows:

 for i = [0:2:140, 140, 140:2:280]

 Now the i index, the variable that lets us move the discs, increases from 0 to 140
(when the discs overlap), then is equal to 140, then increases from 140 to 280.

 We can now write everything into the scripts and the function we wrote for
the previous bricks. The opening and closing operations will be written into the
SekulerExp function. The generation/presentation of the motion display will
be written in a separate script that will be called MakeVideoStimulus.m. In this way
we will not overload the text content of the SekulerExp function.

 This is the script:

247A Brick for an Experiment

 The following is the modifi ed SekulerExp function. Note that we have written the
KbWait command after the presentation of the stimulus.

 In the next chapter we will play the sound and substitute the command KbWait
with a more appropriate command that will enable us to get the participant’s
response. Moreover, we will see how to get maximal priority before running a
movie, and fi nally, we will see how to get rid of the mouse pointer, which is unnec-
essary (and perhaps annoying) in the current experiment.

248 9 Psychtoolbox: Video

 References

 Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436
 Kleiner M, Brainard DH, Pelli DG (2007) What’s new in psychtoolbox-3? Perception (ECVP

Abstract Supplement) 14
 Pelli DG (1997) The VideoToolbox software for visual psychophysics: transforming numbers into

movies. Spat Vis 10:437–442
 Sekuler R, Sekuler AB, Lau R (1997) Sound alters visual motion perception. Nature 385:308

 Suggested Readings

 Tutorials for the Psychtoolbox can be found at the following web pages:

 http://psychtoolbox.org/wikka.php?wakka=HomePage
 http://psychtoolbox.org/wikka.php?wakka=PsychtoolboxTutorial

http://psychtoolbox.org/wikka.php?wakka=HomePage
http://psychtoolbox.org/wikka.php?wakka=PsychtoolboxTutorial

249M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9_10, © Springer Science+Business Media, LLC 2012

 PTB has a number of functions that can be useful to program behavioral experiments.
Although their number is high, there is a relatively small number of core functions
that we need to know to program a large spectrum of experiments. These core func-
tions are presented in this chapter.

 Timing

 PTB has many functions dedicated to timing issues; probably the simplest one is
 WaitSecs() , which waits the number of seconds specifi ed in the input argument.
 WaitSecs() can be used to set the pauses within trials (or blocks of trials) of your
experiment. By running the following script, the monitor will remain white for 10 s
before returning to its normal appearance.

 Listing 10.1

 Another useful function to manage timing is GetSecs(), which returns the
time (in seconds) elapsed between when you switched on the computer and when

 Chapter 10
 Psychtoolbox: Sound, Keyboard and Mouse

250 10 Psychtoolbox: Sound, Keyboard and Mouse

 GetSecs() has been called. In the following example, code listing 10.1 is extended
to calculate the time elapsed between the two GetSecs() calls.

 Listing 10.2

 GetSecs() is useful in several contexts, for example when it is used together
with the functions controlling the keyboard and the mouse.

 Priority

 When we are running experiments, we want to allocate all the computer’s resources
(e.g., memory and CPU) for the experiment only. PTB lets you do this thanks to the
priority functions. You should know that when you use a computer, although you
may have only one application open and visible on the monitor (e.g., MATLAB),
there are several applications running in the background. All these applications use
the CPU and computer memory, and therefore they reduce the available resources.
This might be a problem if we are interested in getting the exact time a participant
in our experiment has pressed a button. PTB allows for allocating the maximal pri-
ority to the event we want. However, this maximal priority can be kept for only a
few seconds. For this reason it is better to get it just before calling this event and
then setting the computer priority back to normal. The levels of priority are identi-
fi ed by integers, which depend on the operating system. To fi nd out the number
corresponding to the maximum priority level in your system, use the MaxPriority
function. The following script shows its use.

251Sound Functions

 Listing 10.3

 Let us analyze the script. Before calling the fl ip subfunction, we have interro-
gated the system about the maximal priority available and stored the returned value
in the priorityLevel variable. Then, we set the priority to its maximum level, and
as soon as the fl ip is over we set the priority back to zero. Zero is the default priority
that is normally attributed to all applications running on the computer. In other
words, during normal usage, the priority of all application is equal to zero.

 Sound Functions

 PTB includes also some functions that can be used for synthesizing and playing
sounds. These functions are particularly suitable for psychological experiments
because they use drivers that are highly time-effi cient in comparison to the native
sound drivers of Windows or those of other operating systems. The main sound func-
tion in PTB is the PsychPortAudio function. This function can work both synchron-
ically and asynchronically. The way you call this function is similar to the Screen
function. The function name must be followed by the subfunction name and by a vari-
able list of parameters that varies according to the subfunction. In the following table
we present the most important PsychPortAudio subfunctions. In the table, the input
parameters given within square brackets are optional:

 Sub Function Command Explanation

 Version struct = PsychPortAudio
(′Version′)

 return the version
of PsychPortAudio
in a struct

 Verbosity oldlevel = PsychPortAudio
(′Verbosity′ [,level]);

 Set level of
verbosity for
error/warning/
status messages

(continued)

252 10 Psychtoolbox: Sound, Keyboard and Mouse

 Sub Function Command Explanation

 GetOpenDeviceCount count = PsychPortAudio
(′GetOpenDeviceCount′);

 Return the number
of currently open
audio devices

 Open pahandle = PsychPortAudio(′Open′
[, deviceid][, mode][, reqla-
tencyclass][, freq][, channels]
[, buffersize][, suggestedLa-
tency][, selectchannels]);

 Open a PortAudio audio
device and initialize it.
Returns a ‘pahandle’
device handle for the
device

 Close PsychPortAudio(′Close′ [,
pahandle]);

 Close a PortAudio audio
device

 FillBuffer [underfl ow, nextSampleStart
Index, nextSampleET-
ASecs] = PsychPortAudio(′FillBuffer′,
pahandle, bufferdata [, stream-
ingrefi ll = 0][,
startIndex = Append]);

 Fill audio data playback
buffer of a PortAudio
audio device. ‘pahandle’
is the handle of the
device whose buffer is to
be fi lled

 CreateBuffer bufferhan-
dle = PsychPortAudio(′CreateBuffer′
[, pahandle], bufferdata);

 Create a new dynamic
audio data playback
buffer for a PortAudio
audio device and fi ll it
with initial data

 DeleteBuffer result = PsychPortAudio(′DeleteBu
ffer′[, bufferhandle] [,
waitmode]);

 Delete an existing
dynamic audio data
playback buffer

 Start startTime = PsychPortAudio
(′Start′, pahandle [, repeti-
tions = 1] [, when = 0] [, wait-
ForStart = 0] [, stopTime = inf]);

 Start a PortAudio audio
device

 GetStatus status = PsychPortAudio
(′GetStatus′, pahandle);

 Returns ‘status’, a struct
with status information
about the current state of
device ‘pahandle’

 Stop [startTime endPositionSecs
xruns estStopTime] =
 PsychPortAudio(′Stop′, pahandle
[, waitForEndOfPlayback = 0]
[, blockUntilStopped = 1]
[, repetitions] [, stopTime]);

 Stop a PortAudio audio
device. The ‘pahandle’ is
the handle of the device
to stop

 The help of each subfunction can be viewed in the same way you can view the
help of the Screen function, i.e., by typing a question mark at the end of the subfunc-
tion name (e.g., PsychPortAudio(‘Open?’)). For an overview of the function,
type PsychPortAudio() or “ help PsychPortAudio ”.

 The usage of PsychPortAudio is the following. First, you need to open the
audio device. Second, you need to fi ll a sound buffer with your sound. Third, you
need to play the sound. Moreover, PTB developers suggest that you call

(continued)

253Getting Participants’ Inputs: Keyboard and Mouse Functions

 InitializePsychSound before the fi rst invocation of PsychPortAudio . If you
omit this call, the initialization of the driver may fail, and MATLAB may return
some “ Invalid MEX fi le ” error.

 Here we present an example showing another useful sound function:
 MakeBeep(). Makebeep synthesizes a pure tone of a given frequency, duration,
and sample rate. Note that in the following example, PsychPortAudio works syn-
chronically. To effect this, we use the subfunction “ Stop ”, which has an optional
parameter. This parameter enables us to specify when to stop the beep’s playback.
Therefore, in the example this parameter is set equal to “ d ”, i.e., the overall duration
of the beep.

 Listing 10.4

 Getting Participants’ Inputs: Keyboard and Mouse Functions

 When we run behavioral experiments we usually collect responses from our partici-
pants. In the majority of these experiments the response is collected through either
the keyboard or the mouse.

 Keyboard Response

 There are two classes of functions for capturing keyboard events. The fi rst class is
 keypress -oriented. The second is character -oriented. The former fulfi ll the majority
of an experimental psychologist’s needs; hence we describe this set of functions
only. Kbwait() and KbCheck() are the main keypress-oriented functions. They
work in a similar way; however, KbWait waits for user input, whereas KbCheck
does not. In other words, KbWait stops the script until the user presses a key on the

254 10 Psychtoolbox: Sound, Keyboard and Mouse

keyboard, whereas KbCheck checks whether a key-press event has occurred when
the function is called. Therefore, if at that moment no key is been pressed, the script
continues. Because of the different characteristics of these functions we recommend
using KbCheck for collecting responses such as high-accuracy response times, and
to use KbWait for other kinds of responses.

 “Press Any Key to Proceed”

 In many circumstances, we need the participant to press a key to proceed with the
experiment. For example, the key press can follow the presentation of instructions.
 KbWait can be used in such circumstances when it is called with no input argument.

 Listing 10.5

 “Press the Spacebar to Proceed”

 In other circumstances, we want the participant to press a specifi c key to proceed.
For example, we may want the participant to press the spacebar to go further with
the experiment. To do this, we need to know something more about the keyboard.
Both KbWait and KbCheck return as output the argument keycode . keyCode is a
256-element array in which every key is mapped to a number. The key that has been
pressed is identifi ed by the fact that its corresponding position in the array turns
from the default 0 to 1. For example, in the Mac OS, the “return” key is mapped to
the 40th position and the spacebar to the 44th. In contrast, the same keys are mapped
to positions 13 and 32, respectively, under Windows. To know the position of a

255Getting Participants’ Inputs: Keyboard and Mouse Functions

specifi c key in the array, use the KbName function. The following table outlines this
function:

 Usage Explanation

 KbName(′s′) Return the keycode of the indicated key (inputted as a
string). Special keys such as spacebar, return, and so on,
are also passed as a string (e.g., ′space′, ′return′)

 KbName(keyCode) Return the label of the key identifi ed by keyCode

 KbName Waits 1 s and then calls KbCheck. KbName then returns
a cell array holding the names of all keys that were
down at the time of the KbCheck call

 KbName(′KeyNames′) Print out a table of all keycodes->keynames mappings

 KbName(′KeyNamesOSX′) Print out a table of all keycodes->keynames mappings
for MacOS-X

 KbName(′KeyNamesOS9′) Print out a table of all keycodes->keynames mappings
for MacOS-9

 KbName(′KeyNamesWindows′) Print out a table of all keycodes->keynames mappings
for MS-Windows

 KbName(′KeyNamesLinux′) Print out a table of all keycodes->keynames mappings
for GNU-Linux, X11

 Now that we have mastered keyboard events, let’s deal with the case in which the
program waits the participant to press the spacebar.

 Listing 10.6

 The core of this script lies in the while loop. Before the loop we check the keyboard.
Furthermore, we store the key pressed by the participant in the variable keyCode .
As long as the participant presses any key on the keyboard other than the spacebar
(or presses no key at all), the while loop is repeated. However, as soon as the partici-
pant presses the spacebar, the loop quits. In the script, the number corresponding to
the spacebar is taken using KbName . Because keyCode is the second output argument
returned by KbWait, we need to save the secs argument fi rst.

256 10 Psychtoolbox: Sound, Keyboard and Mouse

 “Press Any Key to Respond”

 In many tasks, we ask the participants to produce a binary response. The following
example extends the previous one to allow for a binary response.

 Listing 10.7

 This script fi rst opens a PTB window with ‘ OpenWindow ’, then echoes “ press
any key to proceed ”. After the participant presses any key, the function KbName
gets the “ y ” and “ n ” key progressive numbers. Next, we present the stimulus (the
words) within a for loop. Note that we use WaitSecs to pause the experiment when
passing from one trial to the next. Then we check the keyboard within the for loop,
by means of a while loop. The check is done as in the previous example, with the
difference that by means of the AND logical condition, the program stops until the
participant presses either “ y ” or “ n ”. Finally, we store the response in a numeric array
in which 1 stands for y and 0 for n. This might be useful for later statistical analysis.

 Reaction-Time Detection

 The simplest reaction time to implement is that of detection (aka simple reaction
time). In the detection reaction time, the participant has to press a key as soon as s/he

257Getting Participants’ Inputs: Keyboard and Mouse Functions

detects something (e.g., a visual stimulus is presented on the screen). We recommend
using KbCheck rather than KbWait . This is because KbWait checks the keyboard
every 5 ms. Therefore, it adds an 5 extra ms of uncertainty to measurements. The
same problem does not occur with KbCheck .

 In the following example, we ask the participant to press the spacebar as soon as
a stimulus appears on the screen.

 Listing 10.8

 This script is similar to the previous examples in that it waits until the a keypress
event occurs. We then run fi ve trials in a for loop . In each trial, the program fi rst
waits for 1 s, then, by means of the FrameOval subfunction, a fi xation point appears.
Then a red square, the target stimulus, appears at a random time interval after the
fi xation point has disappeared. As soon the target stimulus fl ips, GetSecs stores the
onset time of the stimulus in the t0 variable. KbCheck checks the keyboard until
the participant presses the spacebar. At that time, the reaction time is stored.
It should be kept in mind that KbCheck registers the time in seconds from when
the computer has been switched on. Hence, to get the actual reaction time we need
to calculate the difference between secs and t0 , i.e., the difference between

258 10 Psychtoolbox: Sound, Keyboard and Mouse

the moment the spacebar has been pressed and the stimulus onset. Finally, note that
when calling KbCheck we collect also the variable keyIsDown . keyIsDown is the
fi rst output argument of KbCheck, and it is a logical value (i.e., 0–1) that is equal
to 1 when the user presses one key at the moment KbCheck is called.

 Choice Reaction Time

 A second kind of reaction time is called choice . The participant has to press one button
in response to a particular stimulus and another button in response to another stimulus.
In the following example, the participant has to press “ r ” for a red and “ g ” for a green
square. Furthermore, we save the participant’s response to check its accuracy.

 Listing 10.9

259Getting Participants’ Inputs: Keyboard and Mouse Functions

 As a difference from the previous script, here the color of the square has to be
monitored trial by trial; hence we save the color in the colorsequence variable.
Moreover, we declare the response variable where we store the response of the
participant. In the if function, embedded in the for loop, the color of the square that
will appear in the trial is set. Finally, in the while loop that collects the participant’s
response we include as valid response both the “ r ” and the “ g ” keys. When the
response is collected, we store both the reaction time, as in the previous example,
and the key that has been pressed by the participant.

 Go/No-Go Reaction Time

 In some cases, a participant has to react selectively to different stimuli. The follow-
ing example shows the go/no-go reaction-time paradigm by modifying the previous
example. The participant’s task is to press the spacebar when a red square appears
and to do nothing when a green square appears.

Listing 10.10

 The main difference between this example and the previous one is the condition
that has to be satisfi ed to exit from the while loop in which the response is collected.
Here, the while loop is exited in two cases: either when the user presses the spacebar

260 10 Psychtoolbox: Sound, Keyboard and Mouse

or when the stimulus stays on screen for more than the 2 s. This second condition is
controlled by the onset_stimulus and secs variables. The fi rst variable is the
square onset time; the second is a time value that continuously updates every time
the keyboard is checked.

 Reaction Times Within a Video Clip

 So far, we have seen how to collect a reaction time for static stimuli. How can we
collect reaction times when a video clip is being played? This is a particular case,
and it requires a different technique to collect the reaction time. Indeed, in previous
examples, the while loop where kbCheck gets the timing stopped the execution of
any other command. Therefore, if we were inserting the while loop within a for
cycle used to create a video clip, we would stop the clip until a key is pressed. To
solve this problem we need to call KbCheck once every refresh cycle. The limit of
this approach is that the accuracy of the reaction time is linked to the refresh rate:
the higher the refresh rate, the greater the accuracy of the response time. Of course,
we need to call GetSecs just before showing the video clip so that the reaction is
calculated as a difference between the motor reaction and the moment the video
starts. The following example shows how to do it.

 Listing 10.11

 However, this technique has a problem. When the participant presses the key, the
participant’ s fi nger stays on the key for a certain time, and obviously the key-touch
is not instantaneous. We do not exactly know the duration of this time, but let’s
assume that the fi nger stays on the key for about 50 ms. Let’s suppose we are work-
ing at a refresh rate of 100 Hz and therefore KbCheck checks the keyboard every
10 ms. When the user fi rst presses the response key, the reaction time is calculated.
Then, the next iteration of the for loop occurs. Because the fi nger is still on the key,
the reaction time is calculated twice, and then there is a new iteration of the for loop;
the video clip continues, and the fi nger is still on the key and the reaction time is
calculated once again, and so on. In practice, if we were using the script above we
would be calculating the reaction time based on the key-release motor action instead

261Getting Participants’ Inputs: Keyboard and Mouse Functions

of the key strike motor action. Therefore, when you are measuring the reaction time
within a video clip, the conditional if has to be written differently:

 Listing 10.12

 In the example, we added the variable fi rsttouch, which is set to 0 and becomes
equal to 1 when the participant fi rst touches the keyboard. In this way, in the follow-
ing for loop the response time is not recalculated because the variable fi rsttouch
is now 1 .

 Now let’s combine everything into a working example. A disc is placed in the
middle of the screen and the participant has to detect when the disc starts its motion.
In order to prevent anticipations due to fi xed timing, the start of the disc’s motion is
controlled by a random parameter.

 Listing 10.13

262 10 Psychtoolbox: Sound, Keyboard and Mouse

 Mouse Input

 The mouse is not used as often as the keyboard to collect the participant’s response.
However, PTB is provided with functions enabling for this possibility. Before
describing these functions, let us present two very simple (but extremely useful)
functions: HideCursor and ShowCursor . These functions can be called with no
input argument. They hide the mouse pointer and show it, respectively. Here is an
example of how to use them.

 Listing 10.14

 The most important functions contained in PTB to deal with the mouse are
 GetMouse , GetClick, and SetMouse. SetMouse places the mouse cursor at the
desired x and y coordinates. Therefore, the function waits for at least two input
parameters (i.e., the desired x and y positions of the mouse). A third optional parameter
can be passed to the function which is a screen pointer. In the current example, the
mouse cursor is placed in the middle of the screen every 2 s. Try to move the mouse
while the example is running:

 Listing 10.15

263Using Participants’ Input to Manipulate Shape Characteristics

 GetMouse() returns three arguments: The fi rsts two are the x and y mouse
coordinates in pixels. The third is a logical vector whose length corresponds to the
number of mouse buttons. When a button is pressed, the corresponding bit in the
vector is set to 1, so it is easy to start a procedure when a specifi c button is pressed.
This function receives, as optional argument, the pointer to the screen (in case you
have more than one screen).

 GetClicks() is similar to GetMouse() and takes three arguments. The fi rst is
the number of mouse clicks that the user performed within a time interval. The time
interval is set by the variable ptb_mouseclick_timeout. The other two are the
x and y current positions in pixel coordinates, respectively, of the cursor position
when the fi rst click has been executed.

 In the following example we capture the position of the mouse click with
 GetClicks, and each time we display the x-y coordinates of the click.

 Listing 10.16

 Note that GetClicks is called in a similar way to KbCheck . The function returns
four output arguments. The fi rst is a logical value informing whether any click
occurred. We call GetClicks with a while loop as well as KbCheck . Here, however,
we proceed (i.e., the program continues) as soon as the user presses the mouse.

 Using Participants’ Input to Manipulate Shape Characteristics

 In chapter 9 we saw how to design simple fi gures using PTB, how to write text into
the destination window, while in this chapter we have seen how to capture partici-
pant input. The aim of this section is to combine these things to allow the user to

264 10 Psychtoolbox: Sound, Keyboard and Mouse

manipulate the characteristics of shapes. This may be useful, for example, when you
adopt the adjustment method as the psychophysics method for your experiments.
In this case, you want the participants to adjust a shape characteristic to match the
same characteristic of another shape. The following code listing shows how to use
the participants’ inputs to manipulate the color of a rectangle.

 Keyboard Manipulations

 As stated in Chap. 6 , the simultaneous lightness contrast is probably the most
studied phenomenon in lightness perception [see Kingdom (1997) for a historical
review]. Listing 10.17 shows how to measure, in RGB values, this phenomenon
through the adjustment method using the keyboard.

 Listing 10.17

265Using Participants’ Input to Manipulate Shape Characteristics

 Analysis

 Line 2 hides the cursor to avoid any unwanted interference.

 Lines 4–6 implement the variables for color They are scalar because only achro-
matic colors will be used. The variable adjustable is the color for the adjustable
patch.

 Lines 7–13 implement variables for the positioning and coordinates of the shapes.
Please read these lines carefully to familiarize yourself with screen coordinates and
shape positioning.

 Line 14 sets the text size to 12.

 Lines 15, 16 implement the instructions that will be displayed in the destination
window.

 Lines 17, 32 implement the while loop in which the user will adjust the color of a
patch.

 Lines 18–22 draw in the backbuffer shapes and texts.

 Line 23 fl ips from backbuffer to frontbuffer to display the shapes and texts.

 Line 24 implements the KeyCode and KeyIsDown variables that will be used to
manipulate the color of the right-hand square.

 Lines 25–31 implement the conditional loop to change the color of the right-hand
square. Note that the variable adjustable increases or decreases its value by 1
depending on KeyCode . You can use larger values than 1 for quicker changes. These
lines are very important, since they are commonly used to manipulate shape charac-
teristics. In this code we used KeyCode . As outlined above, this is a logical array
containing all zeros except for the bit corresponding to the key that has been pressed.
Each time the code runs to line 23, all KeyCode bits are set to zero until a key-
press event occurs. In this code listing we have used the ASCII code correspond-
ing to the left, right, and esc keys. If you do not want to remember these numbers,
you can get the same code behavior using KbName(KeyCode) . For example, line 28
can be replaced with the following:

 if strcmp(KbName(keyCode), 'esc')

 Of course, this option takes more time, but if time is not an issue for your experi-
ment, then use it to increase readability.

 Line 33 writes to the backbuffer the last RGB value that has been assigned by the user.

 Line 35 clears the buffer from any keypress . This trick is necessary because
otherwise, the following Kbwait doesn’t work, since the keyboard has been pressed
to adjust the square color.

 Line 36 waits for the user to press a key to display the string.

 Line 37 shows the cursor again.

266 10 Psychtoolbox: Sound, Keyboard and Mouse

 Placing Discs with the Mouse

 In this section we see how to place a disc on the screen and use the mouse to indicate
where the disc is to appear. To do this, we will measure the Müller-Lyer illusion
(Müller-Lyer 1889) . It is one of the best-known geometric optical illusions consisting
of two arrows, one with ends pointing in, and the other with ends pointing out. The
next code is aimed at measuring the illusion magnitude in the arrows with ends
pointing out, taking the participants’ mouse button press.

 Listing 10.18

267Summary

 Analysis

 Lines 3–4 use the rect argument to determine the screen-center pixel coordinates.

 Lines 5–8 implement the variables for shaping the standard line. Please read these
lines carefully to familiarize yourself with screen coordinates and shape positioning.

 Line 9 implements the variable myx for mouse positioning.

 Lines 10, 11 implement the instructions that will be displayed in the destination
window.

 Line 12 sets the text size to 12.

 Line 13 sets the cursor to the cross-hairs shape.

 Line 14 places the mouse in the right-hand side of the screen, in the middle y
position.

 Lines 15–18 implement variables to collect user button press.

 Lines 19, 31 implement the while loop during which the user will click the mouse
buttons.

 Lines 20–26 draw in the backbuffer shapes and texts.

 Lines 28–32 if the user has clicked the mouse, then draw the disc at the clicked posi-
tion and save the y position in the Userdata variable to be displayed at the end of
the experiment.

 Line 33 fl ips from backbuffer to frontbuffer to display shapes and texts.

 Line 34 gets user mouse click.

 Line 36 writes in the backbuffer the length that has been assigned by the user.

 Line 37 fl ips from backbuffer to frontbuffer.

 Line 38 clears the buffer from any keypress . This trick is necessary because oth-
erwise the following Kbwait doesn’t work, since the keyboard has been pressed to
adjust the square color.

 Summary

 PTB has many subsidiary functions that are useful in programming behavioral •
experiments.
 PTB makes it possible to get participants’ responses from the keyboard. •
 The keyboard response can be speeded up or not. •
 PTB enables you to get the participants’ responses from the mouse. •
 Mouse and keyboard functions can also be used for letting the participant inter-•
act with the stimulus.

268 10 Psychtoolbox: Sound, Keyboard and Mouse

 Exercises

 Exercise 1

 In Listing 10.18 we have programmed a code to measure the Müller-Lyer illusion in
the condition in which the arrow’s ends point out and it was presented to the left.
Program a code in which the arrow’s ends point in and it is presented to the right.

 Solution

269A Brick for an Experiment

 Analysis

 Lines 1, 9–12: are to catch any error after a Screen has been opened.

 Line 2: implements the two arguments returned by the Screen Openwindow
subfunction: w is the pointer to the window; rect is a vector containing the coordi-
nates in pixels of the screen.

 Line 3: implements the vector col having the three RGB values to get the red color.

 Line 4: implements the variable myWidth that will be used to supply the line width
to the DrawLine subfunction.

 Lines 5–6: draw in the backbuffer a wide red line running diagonally across the
screen.

 Line 7: fl ips from backbuffer to frontbuffer to display the line.

 Line 8: Kbwhait waits for user’s input.

 Line 9 closes the w window.

 A Brick for an Experiment

 In our experiment, during each trial, the subject reports whether s/he perceived the
discs as streaming or bouncing. Here in the brick this will be done using the func-
tion KbWait (because the response is not a reaction time). The fi rst thing you need
to do is to check how your response keys are coded. In the brick experiment the
participant will press “ b ” if s/he sees the discs as bouncing and “ s ” if s/he sees the
discs as streaming.

 % set the keys we use in the experiment
 bKey = KbName(′b′);
 sKey = KbName(′s′);

 Now we can get the subject’s response with a while loop as we have seen previ-
ously in the chapter.

 [secs, keyCode] = KbWait;
 while keyCode(bKey)==0 && keyCode(sKey)==0

 [secs, keyCode] = KbWait;
 end

 Moreover, once the subject has pressed the key, we have to code the response.
We could, for example, keep the response as is and have in the fi nal data a long list
of “r” and “s” values associated with each stimulus to which the subject has
responded. However, it may be more convenient to code the subject’s response as

270 10 Psychtoolbox: Sound, Keyboard and Mouse

“probability of bounce response” as in the original paper (Sekuler et al. 1997). If we
decide to do this, we can encode the response as ‘1’ (i.e., the probability of bounce
response is ‘1’) when the subject presses “b”. As an alternative, and there is only
one possible alternative, i.e., when the subject presses “s”, we encode the response
as ‘0’ (i.e., the probability of bounce response is ‘0’). Therefore:

 if keyCode(bKey) == 1
 pbounce = 1;

 else
 pbounce = 0;

 end

 Now let’s write everything into our SekulerExp function. Note that the rows of
code we just wrote will be distributed in different places in the SekulerExp function.
For example, the response keys variables sKey and bKey are declared at the begin-
ning of the function. There is, in fact, no need to declare them during each trial before
the response is collected. Note also that we have added the variable “response” to
store the participant’s response (i.e., pbounce) during the trials of the experiment.

 Listing 10.19

(continued)

271A Brick for an Experiment

 We now further modify the script to play the sound (rows 32–33, 42–43, 59)
hide/show the cursor (rows34, 60) and save the data (rows 62–64):

 Listing 10.20

Listing 10.19 (continued)

(continued)

272 10 Psychtoolbox: Sound, Keyboard and Mouse

 References

 Kingdom F (1997) Simultaneous contrast: the legacies of Hering and Helmholtz. Perception
26(6):673–677

 Müller-Lyer FC (1889) Optische Urteilstäuschungen. Archiv für Physiologie , Supplement Volume,
263–270

 Sekuler R, Sekuler AB, Lau R (1997) Sound alters visual motion perception. Nature 385:308

Listing 10.20 (continued)

273Suggested Readings

 Suggested Readings

 Tutorials on the Psychtoolbox can be found at the following web pages:

 http://psychtoolbox.org/wikka.php?wakka=HomePage
 http://psychtoolbox.org/wikka.php?wakka=PsychtoolboxTutorial

http://psychtoolbox.org/wikka.php?wakka=HomePage
http://psychtoolbox.org/wikka.php?wakka=PsychtoolboxTutorial

275

 About the Authors

 Mauro Borgo received his B.A. and his Ph.D. in Electronic and Telecommunication
Engineering in 1999 and in 2003 respectively, both from the University of Padova,
Italy. His interests are in signal and data processing for wireless communication.
He adapted his skills in signal processing to multisensor/multiactuator cellular
 systems. He has an international patent on “multisite–single-cell electroporation.”
He was a lecturer in electrical communication and in MATLAB at the University of
Padova (Italy).

 Alessandro Soranzo received his B.A. in experimental P\psychology in 1999 and
his Ph.D. in experimental psychology in 2004, both from the University of Trieste,
Italy. He also completed a postdoc in vision sciences at Glasgow Caledonian
University (Glasgow, UK). He is senior lecturer in cognitive psychology at Teesside
University in Middlesbrough (UK). His research interests are in color perception
and psychophysical methods.

 Massimo Grassi received his B.A. in experimental psychology in 1997 and his
Ph.D. in experimental psychology in 2003, both from the University of Padova
(Italy). He has also been a visiting scientist at the University of Sussex (UK). He
is a lecturer in sensation and perception at the University of Padova (Italy). His
research interests are in sound perception, cross-modal perception, and
psychophysical methods.

M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9, © Springer Science+Business Media, LLC 2012

277

 A
 Analysis of Variance (ANOVA)

 anovan () function , 171–173
 description , 166
 one-way (see One-way ANOVA)
 three-way repeated-measure , 174–177
 two- and n-way (see Two- and n-way

ANOVA)
 two-way repeated-measure , 173–174

 AnsTime , 14–15

 B
 Barweb , 65
 Bonferroni correction , 169
 Boundary extension (BE)

experiment , 176, 181

 C
 Cells

 arbitrary symbol , 93
 arrays , 38, 39, 73, 171
 de fi ned , 38
 input and output variables , 85
 matrix variable , 90, 100, 166, 174
 output, cellplot command , 40

 Chi-square (Chi2) , 178–179
 Code

 anovan () function , 171
 ASCII , 265
 Bonferroni correction , 169
 Friedman test , 182
 harmonic, factor , 110
 indentation , 97
 Kruskal–Wallis test , 181, 182
 linear regression plot , 158

 logistic regression analysis , 161
 MATLAB , 155, 193
 M- fi le , 189
 modularity , 97
 monophonic and stereophonic sound , 116
 onset and offset, sound , 126
 outputs, ANOVA table and box plot , 167
 SelectionChangeFcn function , 208
 soundsc () function , 110
 switch–case form , 72
 variables , 179

 Computation
 anovan () function , 175
 expression , 4
 image creation , 144–149
 matrix , 2
 nchosek (n , x) function , 178
 numerical , 2
 poly fi t function , 160
 statistics toolbox , 160

 Computer
 factors, sound , 114
 languages , 14, 223, 225
 PTB routines , 223
 resources allocation , 250
 simulation , 8
 wavwrite () function , 108–109

 Covariance , 156
 Creativity , 96, 218, 219
 Cycles

 code , 111
 and conditionals

 for loop , 104
 memoryscore , 71
 visualization, scope , 70

 cosine , 118
 sine, argument , 108

 Index

M. Borgo et al., MATLAB for Psychologists,
DOI 10.1007/978-1-4614-2197-9, © Springer Science+Business Media, LLC 2012

278 Index

 D
 Data

 analysis , 20
 handling (see Data handling)
 import/export , 90–96
 matrix , 10
 plot (see Plot data)
 psychtoolbox commands , 82
 SekulerExp function , 214
 structure , 214

 Data handling
 experiment , 44–46
 import/export , 40–42
 variables

 cells , 38–40
 logical , 25–31
 NaN , 35
 strings , 31–34
 structures , 35–38

 3-D plots , 56–57

 E
 Experiment

 adaptive procedures , 80
 analysis , 104–105
 ANOVA , 168
 barweb , 65
 boundary extension (BE) , 179, 181
 brick , 126–127
 calculation, column mean , 45
 corollary functions , 102
 discs movements , 245
 event table , 22–23
 “ fi xed stimuli” experiment , 21
 graphical interface , 45, 212
 hypothetical data, logistic

regression analysis , 161
 hypothetical perceptual learning , 62
 iconic memory , 93
 MATLAB , ,20, 64, 214
 memory , 208
 M-script , 102
 objects , 20–21
 psychology , 79
 RTs , 164
 SekulerExp function , ,246–247, 270–272
 text properties, objects , 213
 ttest () function , 163, 179
 user input , 204–207

 Export
 image , 132–133
 script examples

 analysis , 95–96
 commands , 91
 fprintf functions , 94
 howmany2.m , 92–93
 nStim , time , and Mpos functions , 93
 try–catch statement , 92

 F
 Fast Fourier transform

(FFT) , 120, 121, 124, 125
 FFT See Fast Fourier transform (FFT)
 “Fixed stimuli” experiment , 21
 Friedman’s Test , 181–182

 G
 Generalized linear model

 glm fi t () function , 160
 hypothetical data, logistic regression

analysis , 161–162
 Graphical user interfaces (GUI)

 built-in MATLAB, fi ting , 158, 159
 Edit menu , 216–217
 File menu , 216
 GUIDE

 layout editor , 190, 191
 M- fi le , 189
 quick start dialog form , 190

 GUI toolbar
 adding UiControls , 191–192
 cancel_callback function , 196
 change string and tag property,

“cancel” , 193, 194
 component palette , 191, 192
 property inspector box , 194, 195
 push button , 193

 Help menu , 218–219
 interaction tools , 189
 Layout menu , 217–218
 mystruct variable , 209
 output, regstats () function , 156, 157
 Radio button , 208
 RunExp , 214
 saving user input

 adding own functions , 207
 sum_calback function , 204

279Index

 text properties , 213
 Tools menu , 218
 Uicontrols

 align objects tool , 197, 199
 displaying graphs and fi gures , 202–204
 layout editor , 197
 static text components , 197, 199
 string property , 198, 201
 ‘string’ values , 200
 sum-two-numbers , 196

 View menu , 217
 Graphics

 handle , 58–61
 MATLAB , 64
 png format , 58

 GUI See Graphical user interfaces (GUI)

 I
 ILD See Interaural level difference (ILD)
 Images

 Adobe Photoshop , 144
 built-in functions , 42
 colormap (cmap) and DefColMap , 130
 colormapeditor , 132
 computation

 contrast and successive
contrast effect , 146

 Gabor2D function , 148–149
 Gaussian window , 148
 plotting commands , 145
 PsychToolbox , 144
 Sinusoid2D , 147

 de fi ned, digital , 129
 digital representations , 130, 131
 display , 134–135
 example, 5 × 5 gray-scale , 129, 130
 import and export , 132–134
 importing , 238–239
 indexing , 130
 manipulation

 neighborhood processing , 136
 point operations , 135

 MATLAB , 130
 neighborhood processing

 concept , 140
 de fi ned, fi ltering , 140
 edges , 144
 example , 141
 fi lter2 function , 141
 FilterGSpecial , 142
 fspecial function , 142
 imresize function , 143

 lunar, Gaussian , 142, 143
 types , 142

 point operations
 intensity transformation , 136–138
 windowing , 138–140

 printing and saving , 58
 retinal , 21

 Import
 data , 90–96
 fi le formats , 41–42
 images , 132–134, 238–239
 variables subset , 41

 Interaural level difference (ILD) , 116
 Interaural time difference (ITD) , 116
 ITD. See Interaural time difference (ITD)

 K
 Keyboard

 manipulations , 264–265
 and mouse functions

 input , 262–263
 instructions presentation , 254
 reaction-time , 256–261
 response , 253–254, 256
 spacebar , 254–255

 Kruskal-Wallis Test
 ANVOA table , 181
 de fi ned , 180
 Friedman’s , 181–182
 hypothetical data, BEs , 181

 L
 Labels

 cell array , 55
 customization, plots , 50
 function analysis , 186
 interaction , 175

 Legend , 50–52
 Linear regression, simple and multiple

 built-in MATLAB,
basic fi tting , 158, 159

 diagnosis, structure , 156
 GUI output , 156, 157
 hypothetical data , 158
 plots , 158
 polynomials , 158–160
 regstats () function , 156

 Loops
 for , 74, 256, 257, 259–261
 while structure , 78, 255, 256, 259, 260,

263, 265, 267, 269

280 Index

 M
 Mann-Whitney U Test , 180
 MATLAB

 Avogadro’s number , 3
 command lines , 5
 desktop , 1, 2
 experiment , 20–23
 functions , 4
 matrix , 8–15
 operations

 element-by-element operators , 17
 multiplication , 15–16
 techniques, matrices , 15
 visual interpretation,

matrix product , 16
 precedence rules , 4
 use , 2
 variables , 5–8
 windows , 1

 Matrix
 [anova1(X)] , 166
 AnsTime , 14–15
 cell , 42
 cell matrix variable , 90
 color map , 55
 colormap (cmap) function , 130
 commands , 13
 corrcoef () function , 155
 covariance , 156
 2-D , 76
 3-D plots , 56–57
 function , 10
 Gaussian distributed

random numbers , 54
 image, jpg and png , 133
 intensity , 138
 mapTrees , 135
 measure, central tendency , 153–154
 rectangular array, numbers , 8, 9
 RGB image , 133
 RGB values , 235, 239
 SqWindow , 141
 structures , 36, 37
 varargin , 89–90
 variables

 creation , 11
 implementation , 10

 and vectors , 9
 windowing , 150

 Mouse
 input , 262–263
 placing discs with , 266–267

 N
 Nonparametric statistics

 categorical data
 binomial distribution , 177–179

 ordinal data
 Kruskal–Wallis test , 180–182
 Mann–Whitney U test , 180
 Wilcoxon signed rank test , 179–181

 STD index (see Signal-detection theory
(STD))

 Not a Number (NaN) , 3, 35

 O
 Object orienting programming (OOP)

technology , 207
 One-way ANOVA

 anova1 () function , 166
 ANOVA table , 166
 hypothetical data, RTs , 166
 interactive plot, Bonferroni correction , 169
 multcompare () function , 168–169
 table and box plot, hypothetical probe , 167

 P
 Pictures , 62, 79, 149, 179, 202
 Plot data

 control objects , 50–52
 3-D , 56–57
 handle graphics

 fi gure’s characteristics , 61
 graphical object hierarchy , 60
 line and axes properties , 59
 production, simple graphs , 58

 layout, function , 47, 48
 LineSpec string , 49
 MATLAB , 47
 multiple plots, fi gure , 52–55
 printing and saving images , 58
 sinusoidal curve , 49

 Png See Portable network graphics (Png)
 Point operations

 intensity transformation
 description , 136
 “ fl oor ” function , 136
 MATLAB Image Toolbox , 138
 use , 138
 variations , 136, 137

 windowing
 concept , 138, 140
 SqWindow matrix , 139

281Index

 Portable network graphics (Png) , 58
 Printing , 58, 216
 Programming

 control fl ow statements
 break , 81
 cycles and conditionals , 70–72
 for loops , 74–78
 loops vs. matrices and if vs. logicals ,

82–83
 switch case , 72–74
 try–catch , 82
 while , 78–81

 data import/export
 ASCII form , 90
 cell values , 95
 content, fi le , 91
 DisplayFile , 94
 iconic memory , 93
 test function , 96
 try–catch statement , 92

 functions
 cell matrix variable , 90
 input and output arguments , 83
 MATLAB built-in function , 84
 scope, variables , 86–87
 script line , 85
 statistic , 87
 statTwo , 88, 89

 guidelines, good style
 debug , 98–100
 design process , 96
 writing code , 96–97

 M-scripts and functions , 67–70
 Programs

 key-press event , 231
 OOP technology , 207
 portability , 225
 and statistical analysis , 20

 Psychological experiments
 anovan () function , 171
 chi2gof () function , 178
 glm fi t () function , 161
 PTB functions , 251
 regression model , 156
 RTs , 164

 Psychophysics toolbox (PTB)
 analysis , 241
 batch processing , 235
 control, timing , 242
 description , 223
 drawing fi gures

 closing , 230
 Flip subfunction , 229–230
 window opening , 227–229

 drawing, text , 236–238
 experiment , 245–247, 269–272
 getting information, screen uses , 225–226
 importing images , 238–239
 keyboard and mouse functions

 input , 262–263
 instructions presentation , 254
 reaction-time , 256–258
 response , 253–254, 256
 spacebar , 254–255

 for loops , 240
 onset/offset times , 243
 priority , 250–251
 reprise

 analysis , 231
 drawing shapes , 231–234

 screen function
 analysis , 225
 optional and unoptional input argu-

ments , 224
 try-catch commands , 225

 screen refresh rate , 241–242
 shape characteristics manipulation, partici-

pants’ input
 description , 263–264
 discs placing, mouse , 266–267
 keyboard , 264–265

 sound functions , 251–253
 timing , 249–250

 PTB. See Psychophysics toolbox (PTB)

 R
 Reaction times (RTs)

 anova1 () and anova2 () function , 168, 169
 choice , 258–259
 description , 164
 detection , 256–258
 Go/No-Go , 259–260
 hypothetical data , 164, 166
 techniques , 260

 Research , 97, 223, 243
 RMS. See Root mean square (RMS)
 Root mean square (RMS) , 115
 RTs. See Reaction times (RTs)

 S
 Signal detection theory (STD). See also Statis-

tical analysis
 bias indexes (b and c) , 182, 183
 description , 182
 nonparametric indexes (A� and B�) , 183, 184
 sensitivity index (d�) , 182, 183

282 Index

 Simulation , 8
 Software

 characteristics , 224–225
 processes , 243

 Sounds
 analysis

 acoustical characteristics , 123
 FFT , 124
 magnitude spectrum, “chirp” , 124, 125
 sr and bits variables , 123

 anharmonic tone , 110
 condition , 44, 45
 discs’ motion , 21
 envelope

 digital synthesis , 118
 graphs , 119–120
 offsetgate = fl iplr (gate); , 119
 smoothing , 118
 sound (tone , sr) , 118

 fi ltering
 description , 120
 Gaussian white noise , 122–123
 noise = fft (noise); , 120, 121

 functions
 MakeBeep() function , 253
 subfunctions, PsychPortAudio ,

251–252
 manipulation, level

 factors, MATLAB , 114
 soundsc () function , 114
 waveforms , 115

 MATLAB warning , 107–108
 M-script and graphical result , 111
 multiple

 noise–tone sequence , 113
 pulsation threshold , 112
 temporal offset , 113–114
 tone and noise synthesis , 113

 sawtooth wave , 110, 111
 sinusoidal tone , 108
 soundsc (harmonic , sr); , 110
 stereophonic, ITD and ILD

 description , 116
 digital synthesis , 117
 loop iteration , 118
 microsecond expression , 116–117
 mutatis mutandis , 116

 wavplay () function , 108
 wavwrite () function , 108
 white noise , 107–112

 Statistical analysis
 bivariate and multivariate

 arguments , 155–156
 covariance , 156
 de fi ned, correlation and covariance , 155
 generalized linear model , 160–162
 hypothetical data , 155
 linear regression, simple and multiple ,

156–160
 central tendency

 measures , 153, 154
 toolbox , 153, 154

 dispersion
 measures , 154
 unbiased estimator , 154

 inferential
 ANOVA , 166–177
 parametric , 162–163
 t -test , 163–166

 nonparametric
 categorical data , 177–179
 ordinal data , 179–182
 STD (see Signal-detection theory

(STD))
 Statistics , 45, 46, 54, 84, 87 See also Statistical

analysis
 STD. See Signal detection theory (STD)
 Strings

 conversion speci fi cation and special char-
acters , 34

 creation, formatted strings , 33
 de fi ned , 31
 functions , 32–33
 linespec , 48, 49
 “static text” , 197
 and tag properties , 193
 Uicontrol , 193
 variable implementation , 32

 Structures
 anova1 () function , 166
 cell values , 95
 con fi dence intervals , 164
 diagnostic statistics , 156
 dynamic fi eld names , 37–38
 for , 74
 guidata , 208
 harmonic spectrum , 124
 if – else – end , 70
 input/output arguments , 97
 loop , 74

283Index

 MATLAB , 214
 multicomparison test , 169
 mystruct variable , 211
 OutputFcn function , 208
 regression coef fi cients , 158, 160
 SubjectTest variable , 35–36
 t -tests , 165
 while , 78

 T
 t -Test

 functions , 163
 one-sample

 binary form , 163–164
 de fi ned , 163

 two-sample
 hypothetical data, RTs , 164–165
 ttest2 () , 164

 Two- and n-way ANOVA
 anova2 () function , 169
 hypothetical data, RTs , 169, 171
 signi fi cance, variables , 171
 table output , 170

 V
 Variables

 anovan () function , 173
 cell matrix , 89–90
 cells , 38–40
 clear command , 7, 8
 correlation and covariance , 155
 counter , 74
 DefColMap , 130
 de fi ned , 5
 dependent (DV) , 161
 diagonal, output matrix , 156
 digital synthesis , 118
 Friedman test , 182
 geometric and harmonic mean , 154
 global , 86

 independent (IV) , 161
 input and output , 85
 ITD , 118
 kruskalwallis () function , 180
 logical

 categorization, response time , 30
 creation , 25–26
 functions , 30–31
 relational operators , 26–27
 vectors , 29–30

 magnitude spectrum, chirp , 124
 mandrill and map , 136
 MATLAB prompt , 209
 memoryscore , 71
 multcompare () function , 174
 NaN , 35
 persistent , 86
 PNG image , 133
 prede fi ned names , 7
 regstats () function , 156, 157
 response keys , 270
 rules, variable names , 6
 scope , 86–87
 sine waves , 109
 “ sr and bits ” , 124
 strings , 31–34
 structures , 35–38
 two-way repeated-measures , 175
 user inputs , 200
 whos command uses , 6

 W
 Waveforms

 sawtooth wave, harmonics , 110, 111
 sound level , 115
 timbre, complex tone , 110

 Wilcoxon signed rank test , 179–180

 Z
 z -test , 162–163

	MATLAB for Psychologists
	Preface
	Acknowledgments
	Contents
	Chapter 1: Basic Operations
	Chapter 2: Data Handling
	Chapter 3: Plotting Data 1
	Chapter 4: Start Programming
	Chapter 5: A Better Sound
	Chapter 6: Create and Proccess Images 1
	Chapter 7: Data Analysis
	Chapter 8: The Charm of Graphical User Interface
	Chapter 9: Psychtoolbox: Video
	Chapter 10: Psychtoolbox: Sound, Keyboard and Mouse
	About the Authors
	Index

