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Preface

Computer algebra systems are widely used in pure and applied mathematics,
physics, and other natural sciences, engineering, economics, as well as in higher
and secondary education (see, e.g., [1-5]). For example, many important calcu-
lations in theoretical physics could never be done by hand, without wide use of
computer algebra. Polynomial or trigonometric manipulations using paper and pen
are becoming as obsolete as school long division in the era of calculators.

There are several powerful general-purpose computer algebra systems. The sys-
tem Mathematica is most popular. It contains a huge amount of mathematical knowl-
edge in its libraries. The fundamental book on this system [6] has more than 1,200
pages. Fortunately, the same information (more up-to-date than in a printed book) is
available in the help system and hence is always at the fingertips of any user. Many
books about Mathematica and its application in various areas have been published;
see, for example, the series [7—10] of four books (each more than 1,000 pages long)
or [11]. The present book does not try to replace these manuals. Its first part is
a short systematic introduction to computer algebra and Mathematica; it can (and
should) be read sequentially. The second part is a set of unrelated examples from
physics and mathematics which can be studied selectively and in any order. Having
understood the statement of a problem, try to solve it yourself. Have a look at the
book to get a hint only when you get stuck. Explanations in this part are quite short.

This book! is a result of teaching at the physics department of Novosibirsk State
University. Starting from 2004, the course “Symbolic and numeric computations in
physics applications” is given to students preparing for M.Sc., and an introduction
to Mathematica is the first part of this course (the second part is mainly devoted
to Monte Carlo methods). Practical computer classes form a required (and most
important) part of the course. Most students have no problems with mastering the
basics of Mathematica and applying it to problems in their own areas of interest.

The book describes Mathematica 9. Most of the material is applicable to other
versions too. The Mathematica Book (fifth edition) [6], as well as, e.g., the book

! Work partially supported by the Russian Ministry of Education and Science.
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series [7—10], describes Mathematica 5. The main source of up-to-date information
is the Mathematica Help system.

The whole book (except Lecture 1 and Problems for students) consists of Math-
ematica notebooks. They can be found at

http://www.inp.nsk.su/ “grozin/mma/mma.zip

The zip file is password protected. The password is the last sentence of Lecture 7
(case-sensitive, including the trailing period). The reader is encouraged to experi-
ment with these notebook files. In the printed version of the book, plots use different
curve styles (dashed, dotted, etc.) instead of colors.

The book will be useful for students, Ph.D. students, and researchers in the area
of physics (and other natural sciences) and mathematics.

Novosibirsk, Russia Andrey Grozin
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Part I
Lectures

Catching a lion, the computer-algebra method: catch a cat, put it into the cage and
lock it; then substitute a lion for the cat.



Chapter 1
Computer Algebra Systems

First attempts to use computers for calculations not only with numbers but also with
mathematical expressions (e.g., symbolic differentiation) were made in the 1950s.
In the 1960s research in this direction became rather intensive. This area was known
under different names: symbolic calculations, analytic calculations, and computer
algebra. Recently this last name is most widely used. Why algebra and not, say,
calculus? The reason is that it is most useful to consider operations usually referred
to calculus (such as differentiation) as algebraic operations in appropriate algebraic
structures (differential fields).

First universal (i.e., not specialized for some particular application area) com-
puter algebra systems appeared at the end of the 1960s. Not many such systems
have been constructed; they are shown in the Table 1.1. Creating a universal com-
puter algebra system is a huge amount of work, at the scale of hundreds of man-
years. Some projects of this kind were not sufficiently developed and subsequently
died; they are not shown in Table 1.1.

Table 1.1 Universal computer algebra systems

System Year Implementation |Current Status
language name

REDUCE 1968 Free (BSD)

Macsyma 1969 Maxima Free (GPL)
Lisp Axiom .

Scratchpad [1974 OpenAxiom Free (BSD)

FriCAS

muMATH (1979 Derive Dead

Maple 1983 Proprietary

Mathematica|1988 C.Cit — Propr%etary

MuPAD 1992 symbolic toolbox Proprietary

Theoretical physicist A. Hearn (known to specialists for the Drell-Hearn
sum rule) has written a Lisp program REDUCE to automatize some actions in

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 3
DOI 10.1007/978-3-319-00894-3_1, © Springer International Publishing Switzerland 2014



4 1 Computer Algebra Systems

calculating Feynman diagrams. It quickly grew into a universal system. At first, it
was distributed free (it was sufficient to ask for Hearn’s permission) and became
widely used by physicists. Later it became commercial. At the end of 2008 it has
become free, with a modified BSD license.

Macsyma was born in the MAC project at MIT (1969), the name means MAC
SYmbolic MAnipulator. The project has nothing to do with Macintosh computers,
which appeared much later. Its name had several official meanings (Multiple-Access
Computer, Man And Computer, Machine Aided Cognition) and some unofficial
ones (Man Against Computer, Moses And Company, Maniacs And Clowns, etc.).
The work was done on a single PDP-6, later PDP-10 computer (about 1 MByte
memory; there were no bytes back then, but 36-bit words). One of the first time-
sharing operating systems, ITS, was written for this computer, and many users at
once worked on it interactively. Later this computer became one of the first nodes
of ARPANET, the ancestor if Internet, and users from other universities could use
Macsyma.

The company Symbolics was spun off MIT. It produced Lisp machines—
computers with a hardware support of Lisp, as well as software for these computers,
including Macsyma—the largest Lisp program at that time. Later production of
Lisp machines became unprofitable, because general-purpose workstations (Sun,
etc.) became faster and cheaper. Symbolics went bankrupt; Macsyma business was
continued by Macsyma Inc., who sold Macsyma for a number of platforms and
operating systems. Its market share continued to shrink because of the success of
Maple and Mathematica, and finally the company was sold in 1999 to Andrew
Topping. The new owner stopped Macsyma development and marketing. Then he
died, and the rights to the commercial Macsyma now belong to his inheritors. All
efforts spent on improving this branch of Macsyma are irreversibly lost.

Fortunately, this was not the only branch. Macsyma development at MIT was
largely funded by DOE, and MIT transferred this codebase to DOE who dis-
tributed it. This version was ported to several platforms. All these ports died except
one. Professor William Schelter ported DOE Macsyma to Common Lisp, the new
Lisp standard, and developed this version until he died in 2001. This version was
called Maxima, to avoid trademark problems. In 1998 he obtained permission from
DOE to release Maxima under GPL. He also developed GCL (GNU Common Lisp).
Currently Maxima is an active free software project and works on many Common
Lisp implementations.

Macsyma has played a huge role in the development of computer algebra
systems. It was the first system in which modern algorithms for polynomials,
integration in elementary functions, etc., were implemented (REDUCE and Mac-
syma influenced each other strongly and are rather similar to each other). Macsyma
was designed as an interactive system. For example, if the form of an answer
depends on the sign of a parameter, it will ask the user

Is a positive or negative?

Scratchpad was born in IBM research laboratories (1974). At first it did not
differ from other systems (Macsyma, REDUCE) very much and borrowed chunks
of code from them. It was radically redesigned in the version Scratchpad IT (1985).
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And this design, perhaps, still remains the most beautiful one from a mathematical
point of view. It is a strongly typed system (the only one among universal com-
puter algebra systems). Any object (formula) in it belongs to some domain (e.g.,
it is a single-variable polynomial with integer coefficients). Each domain belongs
to some category (e.g., it is a ring, or a commutative group, or a totally ordered
set). New domains can be constructed from existing ones. For example, a matrix
of elements belonging to any ring can be constructed. It is sufficient to program a
matrix multiplication algorithm once. This algorithm calls the operations of addi-
tion and multiplication of the elements. If matrices of rational numbers are being
multiplied, then addition and multiplication of rational numbers are called; and if
matrices of polynomials—then addition and multiplication of polynomials.

Scratchpad was never distributed to end users by IBM. At last, IBM decided to
stop wasting money for nought (or for basic research) and sold Scratchpad II to the
English company NAG (famous for its numerical libraries). It marketed this sys-
tem under the name Axiom. However, the product did not bring enough profit and
was withdrawn in 2001. Axiom development took about 300 man-years of work of
researchers having highest qualification. All this could easily disappear without a
trace. Fortunately, one of old-time Scratchpad II developers at IBM, Tim Daly, has
succeeded in convincing NAG to release Axiom under the modified BSD license.
Now it is a free software project and still the most beautiful system from mathemat-
ical point of view. But unfortunately, due to incompatible visions of the directions
of the future development, two forks appeared—OpenAxiom and FriCAS. And it is
not clear which one is better.

muMATH (Soft Warehouse, Hawaii, 1979) got to the list of universal computer
algebra systems with some stretch. It was written for microprocessor systems with
a very limited memory (later called personal computers); mu in its name, of course,
means U, i.e., micro. This system never implemented advanced modern algorithms.
It used heuristic methods instead, as taught in university calculus courses: let’s try
this and that, and if you can’t get it, you can’t get it. But it was surprisingly powerful
at its humble size. The system has been essentially rewritten in 1988 and got a menu
interface, graphics, and the new name, Derive. Then Soft Warehouse was bought
by Texas Instruments, who presented a calculator with a (Derive-based) computer
algebra system in 1995. Derive was withdrawn from market in 2007.

All these systems can be referred to the first generation. They are all written
in various dialects of Lisp. They were considered related to the area of artificial
intelligence.

The first representative of the second generation is the Canadian system Maple.
It has a small kernel written in C, which implements an interpreted procedural
language convenient for writing computer algebra algorithms. The major part of
its mathematical knowledge is contained in the library written in this language.
Maple can work on many platforms. It quickly became popular. In 2009 Maplesoft
(Waterloo Maple Inc.) has been acquired by the Japanese company Cybernet Sys-
tems Group; development of Maple is not affected. By the way, numerical program
MathCAD used a cut-down version of Maple to provide some computer algebraic
capabilities.
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In the beginning of the 1980s, a young theoretical physicist Steven Wolfram, an
active Macsyma user, together with a few colleagues, has written a system SMP
(Symbolic Manipulation Program). The project was a failure (I still have a huge
SMP manual sent to me by S. Wolfram). After that, he understood what mass users
want—they want a program to look pretty. He, together with a few colleagues, has
rewritten the system, paying a lot of attention to the GUI and graphics (the symbolic
part was largely based on SMP). The result was Mathematica, version 1 (1988). And
Wolfram got his first million in three months of selling it.

Mathematica heavily relies on substitutions. Even a procedure call is a substitu-
tion. Pattern matching and their replacing by right-hand sides of substitutions are
highly advanced in Mathematica. Often a set of mathematical concepts can be eas-
ily and compactly implemented via substitutions. On the other hand, this can lead
to inefficiency: pattern matching is expensive.

The latest arrival in the list of universal computer algebra systems is MuPAD
(its name initially meant Multi-Processor Algebra Data tool, and indeed early
versions contained experimental support of multiprocessor systems, which later
disappeared). The system was designed and implemented by a research group at the
University of Paderborn in Germany (this is one more meaning of PAD in the name)
in 1992 and later was distributed commercially by the company SciFace. Initially,
MuPAD was quite similar to Maple. Later it borrowed many ideas from Axiom (do-
mains, categories; however, MuPAD is dynamically typed). During a long period, it
was allowed to download and use MuPAD Light for free; it had no advanced GUI,
but its symbolic functionality was not cut down. Funding of the University project
was stopped in 2005; in 2008, SciFace was bought by Mathworks, the makers of
MATLAB. After that, MuPAD is available only as a MATLAB addon.

It seems that Mathematica dominates the market of commercial computer al-
gebra systems, with Maple being number two. Mathematica is highly respected
for the huge amount of mathematical knowledge accumulated in its libraries. It is
not bug-free (this is true for all systems). Often it requires more resources (mem-
ory, processor time) for solving a given problem than other systems. But it is very
convenient and allows a user to do a lot in a single framework.

In addition to universal systems, there are a lot of specialized computer alge-
bra systems. Here we’ll briefly discuss just one example important for theoretical
physics.

In the 1960s, a well-known Dutch theoretical physicist M. Veltman, a future
Nobel prize winner, has written a system Schoonschip in the assembly language of
CDC-6000 computers (in Dutch Schoonschip means “to clean a ship,” in a figura-
tive sense “to put something in order,” “to throw unneeded things overboard”). This
system was designed for handling very long sums (millions of terms) whose size
can be much larger than the main memory and is limited only by the available disk
space. All operations save one are local: they are substitutions which replace a single
term by several new ones. The system gets a number of terms from the disk, applies
the substitution to them, and puts the results back to the disk. The only unavoidable
nonlocal operation is collecting similar terms; it is done with advanced disk sort-
ing algorithms. Built-in mathematical knowledge of the system is very limited; the
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user has to program everything from scratch. Many nontrivial algorithms, such as
polynomial factorization, are highly nonlocal and impossible to implement. On the
other hand, this was the only system which could work with very large expressions,
orders of magnitude larger than in other systems. Later Schoonschip was ported
to IBM-360 (in PL/I; you can guess that this was not done by Veltman :—). Then
Veltman has rewritten it from the CDC assembly language to the 680x0 assembly
language. When 680x0-based personal computers (Amiga, Atari) became extinct, it
became clear that something similar but more portable is needed.

In 1989 another well-known Dutch theoretical physicist, Vermaseren, has writ-
ten (in C) a new system, Form. It follows the same ideology, but many details differ.
It was distributed free of charge as binaries for a number of platforms; recently
it became free software (GPL). Development of Form continues. A parallel ver-
sion for multiprocessor computers and for clusters with fast connections now exists.
Many important Feynman diagram calculations could never have been done without
Schoonschip and later Form.

The percentage of theoretical physicists among authors of computer algebra
systems is suspiciously high. Some of them remained physicists (and even got a
Nobel prize); some completely switched to development of their systems (and even
became millionaires).

In conclusion we’ll discuss a couple of important computer algebra concepts.
For some (sufficiently simple) classes of expressions an algorithm of reduction to
a canonical form can be constructed. Two equal expressions reduce to the same
canonical form. In particular, any expression equal to 0, in whatever form it is writ-
ten, has the canonical form 0.

For example, it is easy to define a canonical form for polynomials of several
variables with integer (or rational) coefficients: one has to expand all brackets and
collect similar terms. What’s left is to agree upon an unambiguous order of terms,
and we have a canonical form (this can be done in more than one way).

It is more difficult, but possible, to define a canonical form for rational
expressions (ratios of polynomials). One has to expand all brackets and to bring the
whole expression to a common denominator (collecting similar terms, of course).
However, this is not sufficient: one can multiply both the numerator and the denom-
inator by the same polynomial and obtain another form of the rational expression.
It is necessary to cancel the greatest common divisor (gcd) of the numerator and
the denominator. Calculating polynomial gcd’s is an algorithmic operation, but it
can be computationally expensive. What’s left is to fix some minor details—an
unambiguous order of terms in both the numerator and the denominator and, say,
the requirement that the coefficient of the first term in the denominator is 1, and we
obtain a canonical form.

A normal form for a class of expressions satisfies a weaker requirement: any
expression equal to 0 must reduce to the normal form 0. For example, bringing to
common denominator (without canceling gcd) defines a normal form for rational
expressions.

For more general classes of expressions containing elementary functions, not
only canonical but even normal form does not exist. Richardson has proved that it
is algorithmically undecidable if such an expression is equal to O.
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Overview of Mathematica

2.1 Symbols

Let’s assign an expression containing a symbol x to a variable a. No value is assigned

to x.

In[ll]:=a=x"2-1

Out[l] = —1 +x%

Now let’s assign some value to x and see what happens to a.

In2]:=x=z+1;a

Out2] = =1+ (1+2z)?

The value of a has not really changed. It is still the same expression containing x.

What if we assign another value to x?

Inf3]:=x=z-1;a

Out[3] = =1+ (—1+42)?

We can delete the value of the variable x, thus returning it to its initial state in which

it means just the symbol x. We see that indeed the value of a has not changed.

In[4] := Clear[x]; a

Out[4] = —1 +x?

Now let’s try to assign an expression containing x to the variable x.

In[5] := $RecursionLimit = 32; x =x+1

$RecursionLimit :: reclim : Recursion depth of 32 exceeded.

Out5]=14+(1+0+0+1+0+1+0+0Q+T+AQ+A+(T+1+(1+
(I+(I4+ (I (I4+(I4+ A+ A+ 1+ I+ (I 4+ 1+ 1+ (14 (14 (1 +Hold[1+
AN

Mathematica complains. What has happened? Mathematica wants to print x, and to

this end it calculates the value of x. It sees x in this value and substitutes the value of

x. In this value, it again sees x and substitutes its value. And so on ad infinitum. In re-

ality, the depth of such substitutions is limited; the default value of the limit is 1,024

(we have temporarily changed it to 32). The value of the expression 1 4 x which

failed to evaluate is returned as the function Hold; we shall discuss it in Sect. 6.9.

In[6] := $RecursionLimit = 1024; Clear|x|

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 9
DOI 10.1007/978-3-319-00894-3_2, © Springer International Publishing Switzerland 2014
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2.2 Numbers

Mathematica can work with arbitrarily long integer numbers.

In[7] := Factorial[100]

Out[7] = 933262154439441526816992388562667004907159682643816214685\
9296389521759999322991560894146397615651828625369792082722375\
8251185210916864000000000000000000000000

When working with a rational number, the greatest common divisors of its numera-

tor and denominator are canceled.

In[8] := a = 1234567890,/987654321
137174210
Out[8] =

"~ 109739369
Calculations with rational numbers are exact.

In[9] := a’5

Out[9] = 48569355286282885522765185491603110100000/
15915207065345784618237986236670245907849

How much is this numerically? Say, with 30 significant digits?

In[10] := N[a,30]

Out[10] = 1.24999998860937500014238281250

Mathematica can work with real (floating-point) numbers having arbitrarily high

precision.

In[11] := a = 1234567890987654321.1234567890987654321

Out[11] = 1.234567890987654321123456789098765432 x 10'8

In[12] := a’5

Out[12] = 2.86797187177160567275921531725363508 x 10%°

Here are 7 and e with 100 significant digits.

In[13] := N[Pi, 100]

Out[13] =3.14159265358979323846264338327950288419716939937510582097\
4944592307816406286208998628034825342117068

In[14] := N[E, 100]

Out[14] =2.71828182845904523536028747135266249775724709369995957496\
6967627724076630353547594571382178525166427

2.3 Polynomials and Rational Functions

Let’s take a polynomial.
In[15]:=a = (x+y+2)"6
Out[15] = (x +y+2)°
Expand it.
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In[16] := a = Expand[d]

Out[16] = x° + 6x°y + 15x*y? + 20xy? 4+ 15x%y* + 6xy° + 0 + 6x°7 + 30x*yz +
60x*y?z 4+ 60x%y’z 4 30xy*z + 6y°7 + 15x* 22 + 60xyz% + 90x%y* 2> +
60xy° 2% + 15y*7% + 2032 + 60x%yz> + 60xy°2> 4+ 20y°2> 4 15x%7% +
30xyz* 4 15y°z* + 6x2° 4 6y +2°

The degree in x.

In[17] := Exponent[a, x]

Out[17] =6

The coefficient of x2.

In[18] := Coefficient[a, x, 2]

Out[18] = 15y* 4 60y z +90y*z> + 60yz> 4 15z

Collect terms with the same power of x together.

In[19] := Collect|a, x|

Out[19] = x° +y° + 6y° 7+ 15y*7% +20y°2> + 15y%2* + 6y2> + 2° + x> (6y + 62) +
x4 (152 4+ 30yz+ 152%) +x° (20y° + 60y*z + 60yz> +202°) +
x* (15y* 4+ 60y°z +90y*2* + 60yz” + 157%) +
(657 + 30y + 6072 + 60y + 3032 + 62°)

Factorize it.

In[20] := a = Factor]a]

Out20] = (x +y+2)°

Suppose we want to factorize polynomials x" — 1 with various n. The parameter n

can be varied from 2 to 10 by dragging the marker with the mouse.
In[21] := Manipulate[Factor[x"n — 1],{n, 2,10, 1, Appearance—>"Labeled”}]

M
n iJ 6

Out21] =
(~1+x)(1+x)(1=x+x2)(1+x+x2)

There exists an algorithm which completely factorizes any polynomial with integer
coefficients into factors which also have integer coefficients.

In[22] := Factor[x"4 — 1]

Out[22] = (—1+x)(1+x) (1+x7)

If we want to get factors whose coefficients come from an extension of the ring of
integers, say, by the imaginary unit i, we should say so explicitly.

In[23] := Factor|x*4 — 1,Extension—>/]

Out[23] = (=1 +x)(—i+x)(i+x)(1 +x)

This polynomial factorizes into two factors with integer coefficients.

In[24] := a = x4 — 4; Factor[q]

Out[24] = (—2+x%) (2+x°)

If coefficients from the extension of the ring of integers by v/2 are allowed—into
three factors.

In[25] := Factor|a, Extension—>Sqrt[2]]

ouf2s] = — (V2 -x) (V2+x) (2+)
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And if the ring of coefficients is extended by both /2 and i—into four factors.
In[26] := Factor[a, Extension—>{Sqrt[2],1}]
ouf26] = — (V2 —x) (V2-ix) (V2+ix) (V2+x)
And this is a rational function.
In[27] := (x"3 —y"3)/(x"2—y"2)
By
xXT=)
It is not canceled by the greatest common divisor of its numerator and denominator;
this should be done explicitly.
In[28] := Cancel[%)]
2 2
Out[2g] = =2+
x+y
(% means the result of the previous calculation). A sum of rational functions.
In[29]:=a= x/(x+))c’) +y/(x—y)
Out[29] = —>— +
X—y x+y
Let’s put it over the common denominator.
In[30] := a = Together|d]

2 42
Out[30] = Xy
. (x=y)x+y)
Partial fraction decomposition with respect to x.

In[31] := Apart|a, x|
Out3l]=1+—2 — 2

X—y Xx+y
In[32] := Clear|a]

2.4 Elementary Functions

Mathematica knows some simple properties of elementary functions.
In[33] := Sin[—x]

Out[33] = —Sin]x]

In[34] := Cos|Pi/4]

1
In[35] := Sin[5 * Pi/6]
Outl3s] = 3
In[36] := Log[1]
Out[36] = 0
In[37] := Log[E]
Out[37] =1
In(38] := Exp[Loglx]]
Out[38] = x

In[39] := Log[Exp[x]]
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Out[39] = Log[e’]

And why not x? Because this simplification is not always correct. Try to substi-
tute 27i.

In[40] := Sqrt[0]

Out[40] =0

In[41] := Sqrt[x]"2

Out[41] =x

In[42] := Sqrt[x"2]

Out[42] = Vx2

And why not x? Try to substitute —1.

In[43] := a = Sqrt[12 xx"2 x y]

Out[43] = 2v/3/x2y

This result can be improved, if we know that x > 0.

In[44] := Simplify[a,x > 0]

Out[44] = 2V/3x,/y

And this is the case x < 0.

In[45] := Simplify[a,x < 0]

Out[45] = —2/3x\/y

Expansion of trigonometric functions of multiple angles, sums, and differences:
In[46] := TrigExpand[Cos|[2 * x]]

Out[46] = Cos[x]* — Sin[x]?

In[47] := TrigExpand|[Sin[x — y]|

Out[47] = Cos[y] Sin[x] — Cos|x] Sin[y]

The inverse operation—transformation of products and powers of trigonometric
functions into linear combinations of such functions—is used more often. Let’s take
a truncated Fourier series.

In[48] := a = al * Cos[x] + a2 * Cos[2 * x] + b1 x Sin[x] + b2 * Sin[2 * x]

Out[48] = al Cos[x] + a2 Cos[2x] + b1 Sin[x] 4+ b2 Sin[2x]

Its square is again a truncated Fourier series.

In[49] := TrigReduce[a"2]

1
Out[49] = = (al® +a2% + b1 +b2? +2al a2 Cos[x] +2b1 b2 Cos[x] +al? Cos[2x] —

b12 Cos[2x] + 2al a2 Cos[3x] — 2b1b2Cos[3x] + a2% Cos[4x] — b22 Cos[4x] —
2a2b1Sin[x] 4+ 2alb2Sin[x] +2al bl Sin[2x] 4+ 2a2bl Sin[3x] +
2al1b2Sin[3x] +2a2b2 Sin[4x])

2.5 Calculus

Let’s take a function.
In[50] := f =Log[x"5+x+1]+1/(x"5+x+1)

Out[SO] = m +Log [1 —|—x—|—x5}

Calculate its derivative.
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In[51] := g = D[f,x]
1+ 5x4 1+ 5x
(14+x+x5)  TH+x+xd
Put over the common denominator.
In[52] := g = Together|g]
(14564 (x+2)
(1+x4x5)°
A stupid integration algorithm would try to solve the fifth degree equation in the
denominator, in order to decompose the integrand into partial fractions. Mathemat-

ica is more clever than that.
In[53] := Integrate[g, x]

053] = s +Log 1 +x+
Out([53] T +Log|l+x+x
Let’s expand our function in x at O up to x'°.
In[54] := Series[f, {x,0,10}]
Out[54] = 1+x2 2x° N 3t 4x N 1120 204 N 38 44)° N

_10 2 3 4 5 6 7 8 9
32

Al ofx"!

Mathematica can calculate many definite integrals even when the corresponding
indefinite integral cannot be taken. Here is an integral from O to 1.
In[55] := In3tegrat§[Log[x]"2/ (x+1),{x,0,1}]

Zet

Out[ss] = 222t03]

Mathematica knows how to sum many series.
In[56] := Sum[1/n"4,{n, 1, Infinity}]

4
Out[56] =

Let’s clear all the garbage we have generated—a very good habit.
In[57] := Clear|f, g]

Out[51] = —

Out[52] =

2.6 Lists

We have already encountered this construct several times:
In[58] :=a = {x,y,2}

Out[58] = {x,y,z}

This is a list. And here are its elements.

In[59] := a[[1]]

Out[59] = x
In[60] := al[2]
Out[60] =y
In[61] := a[[3]]
Out[61] =z

In[62] := Clear|a]
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2.7 Plots

A simple plot of a function.

In[63] := Plot[Sin[x] /x, {x, —10,10}]

Out[63] =

o

A curve given parametrically—x and y are functions of ¢. This particular curve

contains a parameter a, which can be adjusted by the mouse. If you click the small

plus sign near the marker, a control panel will open. There you can start (and stop)

animation.

In[64] := Manipulate[ParametricPlot[{Exp|a 7] * Cos|t], Exp[a * 7] * Sin[t] },
{1,0,20},PlotRange—>{{—10,10},{—10,10}}],{{a,0.1},0,0.2}]

L ] —

Out[64] =

)
&7

A three-dimensional plot of a function of two variables. It can be rotated by the
mouse.
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In[65] := Plot3D[x"2 + y"2, {x,—1,1},{y,—1,1}]

= -1.0
1.0
A three-dimensional curve given parametrically. The parameter a can be adjusted
by the mouse.
In[66] := Manipulate[ParametricPlot3D[{Cos|t], Sin[t],a 1}, {t,0,20},
PIOtRange_>{{_1, l}a {_1’ 1}’ {0’2}}]’ {{a,O.l},o,O.Z}]

a

£33
e

Out[66] =

A surface given parametrically.
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In[67] := ParametricPlot3D[{Sin|t] * Cos[u], Sin[t] * Sin[u], Cos|t]}, {z,0,Pi},
{u,0,2 Pi}]

051
I||_
Il.
out[67] = |
0.0
Il.
L
v
-051
II'
'r
1
L
-1.05.'%
10 e
By
=05 T~
0.0 T
“~_
05 ey
~
1.0

2.8 Substitutions

Substitutions are a fundamental concept in Mathematica, its main working instru-
ment. This substitution replaces f[x] by x2.

In[68] := S = f[x]—>x"2

Out[68] = f[x] — »?

Let’s apply it to the expression f1x].
In[69] := f[x]/.S

Out[69] = x>

We’ve got x, as expected. And what if we apply it to f[y]?
In[70] := fy]/-S
Out[70] = fy]

It hasn’t triggered. The following substitution replaces the function f with an arbi-
trary argument by the square of this argument.
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In[71] := 8§ = flx ]—>x"2
Out[71] = fx_] — x*

Let’s check.

10[72] := {f[x], £, /121} /.5
Out[72] = {x*,y*,4}

In[73] := Clear|S]

2.9 Equations

Here is an equation.
In[74] :=Eq=axx+b==
Out[74] =b+ax==0
Let’s solve it for x.
In[75] := S = Solve[Eq, x]

b

Out[75] = {{x -

We’ve got a list of solutions, in this particular case having a single element. Each
solution is a list of substitutions, which replaces our unknowns by the corresponding
expressions. And how can we extract the value of x from this result? Let’s take the
first (and the only) element of the list S.

In[76] := S1 = First[S]

Out[76] = {x — b
a

And now we apply this list of substitutions (in this particular case, it’s single
element) to the unknown x.
In[77] :=x/.S1
ouf77] = -2

Here is a more advanced example—a quadratic equation. It has two solutions.
In[78)] := S = Solve[a*x"2+bxx+c==0,x]
—b—/b? —4dac —b+Vb* —4dac

2a R 2a

How can we extract the value of x in the second solution? Let’s apply the second
element of the solutions list S (which is a single-element list of substitutions) to the
unknown x.
In[79] := x/. S[[2]]
—b+/b* —4ac

Out[78] ={ { x —

Out[79] =
And here is a system of 2 linear equations.

In[80] :=Eq={a*x+bxy==e,cxx+dxy== f}

Out[80] = {ax+ by == e,cx+dy == [}

It has a single solution.
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In[81] := S = Solve[Eq, {x,y}]
_ de—bf —ce+af
Out[81] =4 Jx— ve—ad” " " he—ad }}
This (first and the only) solution is a list of two substitutions.
In[82] := S1 = S[[1]]
- de—bf —ce+af
Out[82]—{x—> ve—ad” " " he—ad }
How to find the values of x and y in this solution? Apply this list of substitutions to
the unknowns x and y.
In[83] := {x/.S1,y/.S1}
_ de—bf —ce+af
Out[83] = { bc—ad’ bc—ad }
In[84] := Clear[Eq, S, S1]




Chapter 3
Expressions

All objects with which Mathematica works are expressions. There are two classes
of them—atoms and composite expressions.

3.1 Atoms

There are three kinds of atoms—numbers, symbols, and strings.

Numbers

Integer numbers (of unlimited size).

In[1] := 1234567890

Out[1] = 1234567890

A rational number consists of the numerator and the denominator.

In[2] := 1234567890/987654321

137174210
Outl2] = T00730360 o
A complex number consists of the real and imaginary parts.
In[3] :=1+2%1
Out[3] = 1+2i

Real numbers can have arbitrarily high precision.
In[4] := 1234567890.987654321
Out[4] = 1.23456789098765432 x 10°

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 21
DOI 10.1007/978-3-319-00894-3_3, © Springer International Publishing Switzerland 2014
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Symbols

A variable can be in one of two states. Initially it is free—it means itself (a symbol).
In[5] :=x

Out[5] =x

Assigning a value to it, we make it bound.

In[6] :=x=123

Out[6] = 123

Now, when we use it (e.g., just by asking Mathematica to print it), its value is
substituted.

In[7] :==x

Out[7] = 123

How to make it free again?

In[8] := Clear|x|

Let’s check.

In9] :=x

Out[9] = x

Strings

In[10] := "This is a string”
Out[10] = This is a string

3.2 Composite Expressions

A composite expression is a function of a number of arguments, each of which is an
expression (i.e., an atom or a composite expression).

In[11] := a = flg[x, 1], hly;z,2]]

Out[11] = flg[x,1],Aly,z,2]]

Each composite expression has a head—the function which is applied to arguments.
In[12] := Head|a]

Out[12] = f

The number of arguments is given by the function Length.

In[13] := Length[a]

Out[13] =2

Arguments are extracted by the function Part.

In[14] := Part[a, 1]

Out[14] = g[x, 1]

In[15] := Part[a, 2]

Out[15] = hly,z,2]

And this is the first part of the second part of the expression a.
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In[16] := Part[a,2,1]

Out[16] =y

An alternative syntax.

In[17] := a[[2,1]]

Out[l7] =y

Zeroth part of an expression is its head.
In[18] := Part[a, 0]

Out[18] = f

By the way, a head can be any expression, not just a symbol.
n[19] := b= flx|[ 1]

Out[19] = f[|[y, 1]

In[20] := Head|[b]

Out[20] = f[x]

Expressions are trees whose leaves are atoms.
In[21] := TreeForm|[a]

Out[21]//TreeForm =

/ \
/ \

/ \

/ \

/ \

Parts of an expressions can be changed.
In[22] :=q[[1,2]] =0; a

Out[22] = f[g[x,0], A[y,z,2]]

In[23] := a[[0]] = j; a

Out[23] = jlg[x, 0], ay;z,2]]

A group of arguments can be selected, not just a single argument.
In[24] := b = f[x1,x2,x3,x4,x5,x6]
Out[24] = f[x1,x2,x3,x4,x5,x6]
In[25] := Part[b, Span[2,4]]

Out[25] = f[x2,x3,x4]
An alternative syntax.
In[26] := b|[[2;;4])
Out[26] = f[x2,x3,x4]
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From the beginning to 3:
In[27] :=b[[;;3]]

Out[27] = f[x1,x2,x3]
From 4 to the end:

In[28] := b[[4;;]]

Out[28] = f[x4,x5,x6]
From 1 to 5 by 2:

In[29] :=b[[1;;5;;2]]
Out[29] = f[x1,x3,x5]

If such a form is used in the left-hand side of an assignment, each of the selected
arguments will be replaced:
In[30] :=b[[1;;5;;2]] =x; b
Out[30] = f[x,x2,x,x4,x,x6]
In[31] := Clear|a, b]

3.3 Queries

Let’s define an integer number, a rational number, a real (floating point) number,
and a complex number.
In[32] := i = —1234567890; r = —1234567890/987654321;
f=—1234567890987654321.1234567890987654321; c =1 —2x1;
The query AtomQ (Q from Query) returns the symbol True if its argument is an
atom and False if it is a composite expression.
In[33] := {AtomQ|i], AtomQ[r], AtomQ|c], AtomQ[ f[x]] }
Out[33] = {True, True, True, False }
The function Head can be applied even to atoms.
In[34] := {Head|i], Head|r], Head|c], Head| f] }
Out[34] = {Integer, Rational, Complex, Real }
The function FullForm shows the internal form of an expression with which Math-
ematica operates (to some approximation). For example, a rational number has the
head Rational and two arguments—its numerator and denominator.
In[35] := FullForm[r]|
Out[35]//FullForm =
Rational[—137174210,109739369]
A complex number has the head Complex and two arguments—its real and imagi-
nary parts.
In[36] := FullForm|c]
Out[36]//FullForm =
Complex|1, —2]
The internal representation of a floating point number is rather complicated.
It contains the mantissa and the exponent and also the number of significant
(decimal) digits. In this particular case, there are 37 significant digits.
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In[37] := FullForm([f]

Out[37]//FullForm =
—1.2345678909876543211234567890987654321:37.09151497751671 " 18

The query IntegerQ checks if its argument is an integer number.

In[38] := {IntegerQ, IntegerQ[7], IntegerQlc]}

Out[38] = {True, False, False }

The functions Numerator and Denominator extract the parts of a rational number.

In[39] := {Numerator{r], Denominator|r] }

Out[39] = {—137174210,109739369}

The functions Re and Im extract the real and imaginary parts of a complex number.

In[40] := {Re[c],Im[c]}

Out[40] = {1,-2}

In[41] := Clearli,r, f,c]

3.4 Forms of an Expression

FullForm is a very useful function. It shows what Mathematica really thinks about
an expression. Use it often, and you will learn a lot. For example, the following
expression is a sum of 4 terms, one of which is the number —1 multiplied by the
symbol z.
In[42] := FullForm[x +y—z— 1]
Out[42]//FullForm =

Plus[—1,x,y, Times[—1,Zz]]
And this one is a product of 4 factors, among which are the rational number 2 /3 and
the negative power z .
In[43] :=a=2xxxy/(3%2)
Out[43] = v

3z

In[44] := FullForm[d]
Out[44]//FullForm =

Times[Rational[2, 3], x, y, Power|z, —1]]
Nevertheless, the functions Numerator and Denominator work as expected.
In[45] := {Numerator{a], Denominator{a] }
Out[45] = {2xy,3z}
In[46] := Clear|a]
We have already handled lists many times. A list appears to be just the function List
with arguments—elements of the list.
In[47] := FullForm[{x,y,z}]
Out[47]//FullForm =

List[x, y,z]

Any Mathematica command can be written as a function with arguments

(sometimes, it can also be written in some other way). For example, assignment
is the function Set. In order to see this, we’ll have to put an assignment inside
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the function Hold. Otherwise it would be executed immediately, and the function
FullForm would receive only the result returned by the assignment—the symbol x.
In[48)] := FullForm[Hold[a = x]]
Out[48]//FullForm =
Hold[Set[a,x]]

Here is a rational expression.

In[49] := a = Together[x/(x+y) +y/(x —y)]
2 +y?

Out[49] =

(x—y)(x+y)
Its full form:

In[50] := FullForm[d]
Out[50]//FullForm =
Times[Power[Plus[x, Times[—1,y]], — 1], Power[Plus[x, y], — 1],
Plus[Power|x, 2], Power[y, 2]]]
And this is the same expression as a tree.
In[51) := TreeForm|[a]

Out[51]//TreeForm =

Times

|Power| |Power|
IPlus | |Plus| | -1 "Powerl |Power|

In[52] := Clear|a]




Chapter 4
Patterns and Substitutions

Substitution is the most fundamental operation in Mathematica. Its left-hand side is
a pattern. In a given expression, all subexpressions matching the pattern are found
and replaced by the right-hand side of the substitution.

4.1 Simple Patterns

f[x] with a specific argument x.

Inf1] := {f[x], fy]}/ f]—>x"2

out[t] = 1, fil}

f with an arbitrary argument.

In[2] := {flx], £DI}/- fleJ—>x"2

Out[2] = {xz,yz}

f with two identical (arbitrary) arguments.

In[3] := {f[x,x], flx, 3]}/ flx -, x]—>g[x]

Out[3] = {g[x], fx,y[}

An example of a more complicated pattern.

Inf4] := flg[f[x],y], Alf[x])/. flg[x-.¥], hlx J]—>Fx,y]
Out[4] = F[f[x],y]

f with an argument being an arbitrary integer number.
In[S] := {f[x], 2]}/ flx-Integer] —>x"2

Out[S] = {f[x],4}

In fact, such a form of an arbitrary argument checks its head. This substitution
applies when the argument’s head is g.

In[6] := {f[g[x,y]], flalx, 11}/ flx-g]—>x"2

Out[6] = {gx,y]*, flhlx,y]]}

And this one—when the argument is a sum.

In[7] := {f[{x,y}], flx +y]}/. fx-Plus]—>x"2
Out[7] = {f[{x,y}], (x+y)°}

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 27
DOI 10.1007/978-3-319-00894-3_4, © Springer International Publishing Switzerland 2014
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And this one—when the argument is a list. By the way, note what happens when a
list is being squared.
In[8] := {f[{x,y}], flx+y1}/. flx_Lis] —>x"2
out8] = {{x*,y*}, flx+)1}
One more example.

In[9] := a = Sqrt[x]/Sqrt[y]

_ VA
Out[9] = NG
In[10] := a/. {Sqrt[x]—>u,Sqrt[y]—->v}
Out[10] = iy

Why hasn’t the second substitution triggered?
In[11] := FullForm[d]
Out[11]//FullForm =
Times[Power[x, Rational[1,2]], Power[y, Rational[— 1, 2]]]
a does not contain yl/ 2, only y’l/ 2; therefore, the substitution yl/ 2 — v does not
work.

Out[11] = Clear|q]

4.2 One-Shot and Repeated Substitutions

Here is an expression.

In[12] :=a =x"24+y"2

Out[12] = 22 +?

Let’s increase x by 1 in it. This example demonstrates that a substitution is not
applied repeatedly. Mathematica searches for subexpressions matching the pattern
(in this case x) in the expression a. After finding such a subexpression, Mathematica
replaces it by the right-hand side. The result of such a replacement is not searched
again for subexpressions matching the pattern.

In[13]:=a=a/.x—>x+1

Out[13] = (1+x)>+)?

A list of substitutions can be applied to an expression. They are all applied in
parallel—Mathematica searches for subexpressions matching some pattern from
the list and replaces these subexpressions by the corresponding right-hand side.
Therefore two symbols can be interchanged in an expression in this simple way.
In[14] :=a=a/.{x—>y,y—>x}

Out[14] = x* + (1 +y)?

In[15] := Clear|a]

The operator //. (in contrast to /.) applies a substitution repeatedly, while it is
applicable. If several substitutions are applicable to some subexpression, Mathe-
matica first applies the most specific one (it is not always easy to determine which
substitution is more specific and which is more general; in simple cases, this is
clear).
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In[16] := fac[10]//. {fac[0]—>1,fac[n _|]—>n*fac[n — 1]}
Out[16] = 3628800
By the way, what are the real names of /. and //. ?
In[17] := FullForm[Hold[a/.x—>Y]]
Out[17]//FullForm =
Hold[ReplaceAll[a, Rule[x, y]]]
In[18] := FullForm[Hold[a//.x—>Y]]|
Out[18]//FullForm =
Hold[ReplaceRepeated[a, Rule[x, y]]]

4.3 Products

Let’s take a product.
In[19] := FullForm[a = 2 xx * y % 2]
Out[19]//FullForm =

Times|2,x,,7]
The pattern xy is considered contained in this product, though the internal
representation of a does not contain Times|x, y] explicitly.
In[20] :=a/.xxy—>z
Out[20] = 27>
And this product does not contain xy.
In[21] := FullForm[a = 2 *x"2 xy * 2]
Out[21]//FullForm =

Times|[2, Power[x, 2], y, 7]
In[22]:=a/.xxy—>z
Out[22] = 2x%yz

This product contains powers of x and y.

In[23] := FullForm[a = 2 ¥ x"2 x y"3 x 7]
Out[23]//FullForm =

Times[2, Power]x, 2], Power|y, 3], 7]
We want to replace each product of powers of x and y by the function f of these
powers. Such a problem occurs very often. For example, we want to integrate some
class of expressions, and we know the result of integration as a function of powers
of some variables (or subexpressions).
In[24] :=a/.x"n_xy"m_—>f[n,m]
Out[24] = 2zf[2,3]
This works OK. And here?
In[25] := FullForm[a = 2 *x"2 xy * 2]
Out[25]//FullForm =

Times|[2, Power[x, 2], y, 7]
In[26] :=a/.x"n_xy"m_—>f[n,m|
Out[26] = 2xyz
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This doesn’t work. The product a does not contain a product of powers of x and y:
the symbol y is not in the argument of the function Power. In the next example the
substitution works again—as we have seen, Mathematica considers dividing by y as
multiplying by y~!.
In[27)] := FullForm[a = 2 xx2 x z/y]
Out[27]//FullForm =

Times|[2, Power|x, 2], Power[y, —1], 7]
In[28] :=a/.x"n_xy"m_—>f[n,m|
Out[28] = 2zf[2,—1]
Let’s return to the previous expression. How can we instruct Mathematica to
consider y as a particular case of the pattern “y to an arbitrary power”? This is what
an optional arbitrary argument m _. is for. When it is used in an exponent, its default
value (which is used when there is no power at all) is 1.
In[29] := FullForm[a = 2 *x"2 xy * 2]
Out[29]//FullForm =

Times|[2, Power[x, 2], y, 7]
In[30] :=a/.x"n_.xy"m_.—>f[n,m]
Out[30] = 2zf[2,1]
In[31] := FullForm[a =2 xx*y * Z]
Out[31]//FullForm =

Times|2,x,y,Z]
In[32] :=a/.x"n_.xy"m_.—>f[n,m]
Out[32] = 2zf[1,1]
So far so good. But what if the symbol y is absent? Will Mathematica consider this
as a particular case of the pattern “y to an arbitrary power” with the power equal 0?
It will not.
In[33] := FullForm[a = 2 ¥ x"2 x
Out[33]//FullForm =

Times[2, Power|x, 2], 7]
In[34] :=a/.x"n_.xy"m_.—> f[n,m|
Out[34] = 2x*z

The following method will work always. Let’s collect several test expressions to

a list.
In[35] :=a={2xx*y*2,2%x" 2%y x 2,2 % x 2%y 3% 2,2 % x"\2 % 7/, 2 % x"2 % ,

2%z}

2 2
Out[35] = {2xyz,2x2yz,2x2y3z, ﬂ,szz,Zz
y

The method is as follows. Multiply our expression by f[0,0], and apply a list of
substitutions. If f with some arguments is multiplied by an arbitrary power of x,
then the first argument of f is increased by this power. Of course, if x is not raised
to any power, we want to use the default power equal to 1. Powers of y are treated in
the same way. We need to use the repeated substitution //.—after one substitution
from the list has been applied (e.g., the one about x), we want the other one to be
applied to the result (to take y into account).
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In[36) :=s = {x"_.x f[n_,m]—>fln+1,m],y " _.x f[n_,m ]—> fn,m+1]}
Outf36] = {x'=ln—m_] = flL+n,m ¥~ flnm ] = fln, 1 +m]}

In[37] := ax f[0,0]//.s

Out[37] = {2zf[1,1],2zf[2,1],22f[2,3],2zf[2, - 1],2zf[2,0],2zf[0,0] }

In[38] := Clear|a, 5]

4.4 Sums

Substitutions for sums are similar to those for products. They are used much more
rarely. Don’t use them if you can avoid this.

In[39] := FullForm[a = x+y+z+ 2]

Out[39]//FullForm =

Plus[2,x,,7]
In[40] :=a/.x+y—>z
Out[40] = 2 + 2z

In[41] := FullForm[a =2 *x+y+2z+2]
Out[41]//FullForm =
Plus[2, Times|2,x],y, ]
In[42] :=a/.x+y—>z
Out[42] =2+2x+y+z
This substitution replaces a sum of x and y with arbitrary coefficients by the function
f of these coefficients.
In[43] := FullForm[a =2xx+3*y+z+2]
Out[43]//FullForm =
Plus[2, Times|2, x], Times|[3,y], 7]
In[44] :=a/.n_xx+m_xy—>f[n,m|
Out[44] =2 +z+ f[2,3]
In[45] := FullForm[a = 2 xx+y +2z+2]
Out[45]//FullForm =
Plus[2, Times|2,x],y, ]
In[46] :=a/.n_xx+m_xy—>f[n,m]
Out[46] =2+42x+y+z
In[47] := FullForm[a =2 xx—y+2z+2]
Out[47]//FullForm =
Plus[2, Times|2, x], Times[—1,y],Z]
In[48] :=a/.n_xx+m_xy—>f[n,m]
Out[48] =2 +z+ f[2,—1]
Here again an optional arbitrary argument can be used. When it is used as a factor,
a subexpression is considered matching this pattern even if there is no such a factor,
and its value in this case is taken to be 1.
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In[49] := FullForm[a =2 *x+y+z+2]
Out[49]//FullForm =
Plus[2, Times|2,x],y, ]
In[50] :=a/.n_.xx+m_.xy—>f[n,m]
Out[50] = 2+ z+ f[2,1]
In[51] := FullForm[a =x+y+z+2]
Out[51]//FullForm =
Plus|2,x,,7]
In[52] :=a/.n_.xx+m_.xy—>f[n,m]
out[52] =2 +z+ f[1,1]
In[53] := FullForm[a = x+z+ 2]
Out[53]//FullForm =
Plus|2,x,7]
In[54] :=a/.n_.xx+m_.xy—>f[n,m|
Out[54] =2+x+z
And here is our method which always works.
In[55]:=a={x+y+z+2,2*xx+y+2+2,2%x+3%xy+z+2,2%xx—y+2z+2,
x+z+2,z+2}
Out[55] = {2+x+y+z,24+2x+y+2z,2+2x+3y+2,2+2x—y+z,2+x+z,2+7}
[56]:= 5 = {15+ flnm_J=>fln-+ Lml, L.+ y+ fln,m ]—>fln,m -+ 1]}
Out[56] = {fln_m_+xl_.— fll+nm], fln_m|+yl_.— fln,l +m]}
In[57) :=a+ f[0,0]//.s
Out[57] = {2+z+ f[1,1],2+z+ f[2,1],24+z+ f[2,3],2 + z+ f[2,—1],
2+4z+ f[1,0],24z+ f[0,0]}
In[58] := Clear|a, s|

4.5 Conditions

Substitutions which apply only when an arbitrary variable satisfies some condition
are often needed.

In[59] := {f[1.5], £[3/2], f[x/2]}/. f{x-?NumberQ] —>x"2
Out[59] = {2.25,%,]‘ B”

But this method is not very general. It checks a condition depending on a single
variable. The operator /; can be applied to a pattern (or its part). It can be read as
“such that.” The condition in it can depend on several arbitrary variables.
In[60] := s = {fac[0]—>1,fac[n _Integer/;n > 0]—>n = fac[n — 1]}
Out[60] = {fac[0] — 1, fac[n_Integer/;n > 0] — nfac[—1+n]}
In[61] := {fac[10],fac[—10]}//.s
Out[61] = {3628800, fac|—10] }
Internally, this operator is the function Condition.
In[62] := FullForm(s]
Out[62]//FullForm =
List[Rule[fac[0], 1],
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Rule[fac[Condition[Pattern|n, Blank[Integer]], Greater|n, 0]]],
Times|[n, fac[Plus[—1,1]]]]]
In[63] := Clear][s]
One common case is when you want to replace f[x] by g[x] only for some
values of x.
In[64] := fla] + f[b] + flc]/- flx-/;x == al|x == b]—>g[x]
Out[64] = f[c| + gla] + g[b]

4.6 Variable Number of Arguments

A pattern can involve a construct which matches not a single subexpression but an
arbitrary-length subsequence of arguments of a function. This is very convenient for
working with functions having an arbitrary number of arguments. Let’s consider an
example. The function f has any number of arguments. We want to shuffle them in
the opposite order. First, let’s put a fence at the end of the argument list.

In[65] := a = f[x,y,2]

Out[65] = f[x,y,Z]

In[66] := a =a/. f[x--]—> f[x,Fence]

Out[66] = f[x,y,z,Fence]

Now we take the arguments from the left one by one and throw them over the fence
(placing them immediately after the fence).

In[67):=a=a//. f[x_,y--_,Fence,z___]—> f[y,Fence,x,z]

Out[67] = f[Fence,z,y,x]

Now the fence is at the left, and the arguments are after it in the opposite order.
What’s left is to remove the fence.

In[68] := a=a/. f[Fence,x___]—>f[x]

Out[68] = f[z,y,4]

Of course, this method only works when the symbol Fence is not present
among the arguments. Here is the method which always works. Let the part of the
arguments which has not yet been processed be in the first list and the processed
part—in the second one. We take the arguments one by one from the beginning of
the first list and move them to the beginning of the second one.

In[69] :=a =a/. flx_-]—>f[{x},{}]

Out[69] = f[{z,y,x}, {}]

In[70) :=a=a//. fl{{x-,y---}:{z---H->f[{y}, {x.2}]
out[70] = f[{}, {x.y.2}]

Inf71] :=a=a/. f[{},{x--}]->F]

Out[71] = f[x,,2]

In addition to x___ (with three underscores), which means an arbitrary
subsequence of arguments of a function (maybe an empty one), there is also x__
(with two underscores)—an arbitrary nonempty subsequence of arguments. I find
the first construct more useful.



Chapter 5
Functions

5.1 Immediate and Delayed Assignment

This is an ordinary (immediate) assignment. The result of calculation of the
right-hand side (in this case, a quadratic polynomial) is assigned to the variable a.
In[1] := a = Expand[(x+ 1)"2]
Out[1] = 1 4 2x +x*
And this is a delayed assignment. The unevaluated right-hand side (in this case, an
expression with the function Expand) is assigned to the variable b.
In[2] := b := Expand[(x+ 1)"2]
Note that a delayed assignment returns no value (an ordinary assignment returns
the result of calculation of its right-hand side). The difference between a and b can
be seen if we assign something to the variable x. In the first case, the value of x is
substituted into the quadratic polynomial.
Inf3]:=x=z+1;a
Out[3] = 1+ 2(1 42) + (1 +2)?
In the second case, the value of x is substituted into the expression with the function
Expand, and then this expression is calculated.
In[4] :=b
Out[4] =4 +4z+ 2
In[5] := Clear|a, b, x|
The real name of the operator := is SetDelayed.
In[6] := FullForm[Hold[a := x|]
Out[6]//FullForm =

Hold[SetDelayed[a, x]]

Similarly, in addition to ordinary substitutions a—>b (where the right-hand side
is calculated at the moment the substitution is defined), there are delayed substitu-
tions a : >b (where the substitution keeps the right-hand side unevaluated, and it is
calculated each time the substitution is applied).

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 35
DOI 10.1007/978-3-319-00894-3_5, © Springer International Publishing Switzerland 2014
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In[7] := flz+1]/. flx ]—>Expand[(x + 1)"2]
Out[7) = 1+ 2(1 +2) + (1 +2)?

In[8] := f[z+1]/. flx] : >Expand[(x + 1)"2]
Out[8] = 4+ 4z + 7

5.2 Functions

Left-hand side of an assignment can be a pattern, not just a variable. In this case,
in all subsequent calculations, any subexpression matching the pattern will be re-
placed by the right-hand side of the assignment. This can be canceled by the com-
mand Clear. A pattern can contain arbitrary variables. This is how functions are
defined. Here is an example—a function f. In all subsequent calculations, all subex-
pressions of the form f[x] with arbitrary arguments x will be replaced by the right-
hand side (in this case, a quadratic polynomial), in which the value of the actual
argument is substituted for x.

In[9] := f[x_] = Expand[(x+ 1)"2]

Out[9] = 1+ 2x+x*

And this is another function. Its body is an unevaluated expression with Expand.
Expanding brackets will take place each time the function g with some argument is
calculated.

In[10] := g[x_] := Expand[(x+ 1)"2]

Note the difference between them.

In[11]:= {f[z+1],8[z+1]}

Out[11] = {1+2(1+2)+ (1 +2)% 4 +4z+2*}

In[12] := Clear[f, g]

5.3 Functions Remembering Their Values

Let’s consider a useful trick—a function remembering its calculated values. If it is
called again with the same argument, it will not perform calculations, but just return
the remembered result. For example, take the factorial. We know fac|[0].

In[13] :=fac[0] = 1

Out[13] =1

And now attention—the main trick. A delayed assignment to the pattern fac[n _|
(with an arbitrary n). And what do we have in the right-hand side? An immediate
assignment to the pattern fac|n| (for a specific n, namely, the value of the actual argu-
ment with which the function fac was called). What happens when we call fac[10]?
If the function was never calculated with this argument, then this definition for an
arbitrary argument will be used. The right-hand side with 10 substituted for n will
be calculated, namely, an immediate assignment fac[10] = - - -. Its right-hand side is
calculated (it is the factorial of 10), and it is remembered as the value of fac[10].
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The immediate assignment returns the calculated value of its right-hand side, and
this value becomes the result of the function call. If we ask Mathematica to calculate
fac[10] again, then this specific definition for fac[10] (generated during the first cal-
culation) will be used, and not the general definition for fac[n ].

In[14) := fac[n ] := fac[n] = n*fac[n — 1]

What does Mathematica know about the symbol fac?

In[15] :=?fac

Global fac

fac[0] =1

fac[n_] := fac[n] = nfac[n — 1]

Only two definitions—for the argument 0 and for an arbitrary argument. Now let’s
calculate the factorial of 10.

In[16)] := fac[10]

Out[16] = 3628800

And what does Mathematica know about this symbol now?

In[17] :=fac
Global'fac
fac[0] =
fac[l] =1
fac[2] =2
fac[3] =6
fac[4] =24
fac[5] = 120
fac[6] =720
fac[7] = 5040
fac[8] = 40320

[

[

fac[n_] := fac[n] = nfac[n — 1]

In addition to the general definition, we see also specific ones for all integer values of
the argument from O to 10. If we ask for the value of fac for one of these arguments,
then the corresponding specific definition will be used, and the calculation will not

be performed again.
In[18] := Clear|fac]

5.4 Fibonacci Numbers

This method is useful but not vital for the factorial, because the time of calculation
of fac[n] grows linearly with n. For Fibonacci numbers the difference is crucial. For
a naive definition, the calculation time grows exponentially. This means you will
never get a Fibonacci number with a large n. When results are remembered, the
calculation time grows linearly—the result for each value of the argument from 2 to
n is calculated once.
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In[19] := fib[0] = fib[1] = 1

Out[19] =1

In[20] := fib[n_] := fib[n] = fib[n — 1] + fib[n — 2]
In[21] :=2fib

Global fib

fib0] = 1

fib[1] =1

fib[n_] := fib[n] = fib[n — 1] + fib[n — 2]
In[22] :=fib[10]

Out[22] = 89

In[23] :=7fib

Global fib

fib[0] =

In[24] := Clear][fib]

5.5 Functions from Expressions

In most cases, a delayed assignment is used when defining a function. But there
are situations when an immediate assignment is needed. Here is one of them.
Suppose you have derived an expression a containing a symbol x as a result of
some calculation.

In[25] := a = D[Expand[(x+ 1)"3],x]

Out[25] = 3 + 6x+ 3x°

Now you want to calculate it many times with different values of x. This can be done
by substitutions.

In[26]) :=a/.x—>z+1

Out[26] =3+ 6(1+z) +3(1+2)?

But this is not very convenient. It would be nice to have a function f with the
argument x which is given by the calculated expression a. Such a function can be
defined by an immediate assignment. The calculated value is substituted for a in
the right-hand side.
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In[27]:=flx]=a

Out27] = 3 + 6x+3x*

In[28] := flz+1]

Out[28] =3+ 6(1+z) +3(1+2)?
In[29)] := Clear]a, f]

5.6 Antisymmetric Functions

It is often useful to give a partial definition of a function. To this end we write
not just a function with all arguments being arbitrary but a more restrictive pattern
in the left-hand side of an assignment. Then, if the values of the actual arguments
match the pattern, the function is calculated (i.e., replaced by the right-hand side
of the assignment). Otherwise the function remains unevaluated. Here is a simple
example. Let’s define an antisymmetric function of two arguments. If the arguments
are equal, it vanishes.
In[30] := flx_,x]:=0
If they are not equal, we have to decide if they need to be interchanged. The
expressions f[x,y] and f[y,x] should reduce to either the first form or the second
one, for any x and y. It does not matter to which form, as long as the result is
always the same. To this end the function OrderedQ is useful. Its argument is a
list. It returns True if the list is ordered, i.e., each element is “greater than or equal
to” the previous one in the sense of some internal ordering Mathematica uses for
expressions. Details of this ordering are not important.
In[31] := {OrderedQ[{x,y}], OrderedQ[{y,x}], OrderedQ[{x,x}]}
Out[31] = {True, False, True}
Now it is easy to write a substitution which interchanges the arguments if they are
not properly ordered.
In[32] := f[x_,y_]/;Not[OrderedQ[{x,y}]] := —f[y.x]
In[33] := {f(a,a], f[a,b), f[b,a]}
Out[33] = {0, fla,b], — fla, b}
In[34] := {fla+b,a— b, fla—b,a+b]}
Out[34] = {—fla—b,a+Db],fla—b,a+b]}
In[35] := Clear|f]

Of course, a symmetric function can be defined similarly. An odd function of a
single argument can be defined in the same way.
In[36] := f[0] =0
Out[36] =0
In[37) := f[x_]/;Not[OrderedQ[{ —x,x}]] := — f[—x]
In[38] = {f[O]’f[a]’f[_a]}
Out[38] = {0, flal, —/[a]}
In[39] := {f[a—b], f[b—al}
Out[39] = {—f[—a+b], f][—a+b]}
In[40] := Clear|f]
Of course, an even function can be defined similarly.



40 5 Functions

5.7 Functions with Options

You have undoubtedly noted that many Mathematica functions (e.g., Plot) have
options. They can be specified in any order; each option is given by a substitu-
tion with its name in the left-hand side and its value in the right-hand side. If they
are not given, their default values are used. Suppose you want your own function f
to have options. This can be done in the following way. Let’s assign a list of sub-
stitutions giving default values of all options to Options[f]. Define the function f
with some mandatory arguments and an arbitrary sequence of arguments opts___
(it may be empty). At the point in the function body where you need the value of
the option optl use optl/.{opts}/.Options[f]. The operations /. are executed left
to right. Therefore, if the user has included a substitution optl — --- among the
arguments, the left /. will trigger, and the result will be some value which contains
no option names; the right /. will not change it. If the user has not given such a
substitution, the left /. will do nothing, and the right one will replace optl by the
default value of this option.
In[41] := Options[f] = {optl—>1,0pt2—>2}
Out[41] = {opt] — 1,0pt2 — 2}
In[42] := f[x_,opts___| := g[x,optl/. {opts}/.Options[f],

opt2/.{opts} /. Options{f]]
In[43] = {f[a]1f[a1opt2_>0]1f[a1°pt2_>b70ptl_>c]}
Out[43] = {g[a, 1,2],g[a,1,0],g[a,c,D]}
In[44)] := Clear[f]
In recent versions of Mathematica this can also be written as follows:
In[45] := f[x_, OptionsPattern[f]] := g[x, OptionValue[opt1], OptionValue[opt2]]
In[46] := Options[f] = {optl—>1,0pt2—>2};
In[47] = {f[a],f[a,opt2—>0],f[a,opt2—>b,optl—>c]}
Out[47] = {g[a, 1,2],g[a,1,0],g[a,c,D]}
In[48)] := Clear[f]

5.8 Attributes

A function can have attributes which affect simplification of expressions with this
function. The attribute Flat removes nested function calls (e.g., Plus and Times have
this attribute).

In[49] := Attributes[f] = {Flat}

Out[49] = {Flat}

In[SO] = f[x,fb’,Z],U]

Out[50] = f[x,y,z,u]

The attribute Orderless means that the function is symmetric in all arguments, and
Mathematica may interchange them at will (Plus and Times have also this attribute).
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In[51] := Attributes[f] = {Orderless}

Out[51] = {Orderless}

In[52] := {f[x,y,2], flz,x,y], f[» 2,1}

OUt[SZ] = {f[x,y,z],f[x,y,z],f[x,y,z]}

The attribute Listable means that if the first argument is a list, then the function is
applied to each element, and the list of results is returned (Plus and Times have this
attribute, too).

In[53] := Attributes[f] = {Listable}

Out[53] = {Listable}

In[54] = f[{x,y,z}]

Out[s4] = { f[x], £, f12]}

In[55] := f[{x,y,2},4]

Out[55] = {f[x,al, flyal, flz.al}

There exist a few attributes more. Of course, a function can have several attributes at
once. The command Clear[f] removes only substitutions for f (with any arguments),
but not its attributes. In order to remove attributes too, use ClearAll.

In[56] := ClearAll[f]; Attributes[f]

Out[56] = {}

5.9 Upvalues

Suppose we want to define a function f such that f[x]* f[y] is replaced by f[x+y]
for arbitrary x and y. This can be done by the assignment f[x_| x f[y_] := f[x+y].
This definition will be associated with the function Times; Mathematica will have
to check it each time it multiplies something, i.e., very often, and performance will
degrade. It is possible to associate this definition with the function f instead. Then
it will be used only when processing a product containing at least one function f.
In[57] := fx ] * fly ]" := f[Expand[x +)]]
In[58] := f[(x+)"2] * f[(x — y)"2] * f[x"2] * g[y"2]
Out[58] = f [3x* +2y*] g ]
Here the left-hand side is Times[f[x_], f[y]], and the definition is associated with f.
If we want a definition for Times[f[x_], g[y_]], we can associate it with either f or g.
In[59) := £/ : flx] * gly-] := f[Expand|x —y]]
In[60] := f[(x+y)"2] * f[(x — y)"2]  f[x"2] * g[y"2]
Out[60] = f [3x* +y?]
In[61] :=2f
Global f
flxfly-]" = f[Expand[x + y]]
I/ flx-lgly-] := f[Expand[x — y]]

When processing an expression f[gl][...],g2][...],&3[...]], Mathematica uses
definitions associated with f and also definitions associated with g1, g2, g3, and
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having the form f[...] := -+ (upvalues of gl, g2, g3). It does not look deeper,
into arguments of gl, g2, and g3—this would be too inefficient. In addition to the
delayed assignments " := and f/ : lhs := rhs there are also immediate assignments
AN =and f/ :lhs = rhs.

In[62] := Clear[f]



Chapter 6
Mathematica as a Programming Language

6.1 Compound Expressions

A compound expression consists of several expressions separated by the operator ;.
They are calculated left to right. The value of a compound expression is the value
of the last (rightmost) expression. The values of all the other expressions are thrown
away; they are calculated only for side effects. The operator ; has a low priority,
so that it is often necessary to put a compound expression inside brackets. The last
expression may be empty. Its value (and hence the value of the compound expres-
sion) is the symbol Null which is not printed. Therefore, if you want to suppress
printing of the result of some calculation (e.g., because it is lengthy), put ; after it.
In[1] :=fac[0] = 1;
In[2] := fac[n_] := (Print["n=",n]; n*fac[n —1])
In[3] := fac[4]
n=4
n=3
n=2
n=1
Out[3] =24
In[4] := Clear|fac]
In[5] := Null
In[6] := FullForm|x; ]
Out[6]//FullForm =

Null
In[7)] := FullForm[Hold|a; b]|
Out[7]//FullForm =

Hold[CompoundExpression|a, b]]

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 43
DOI 10.1007/978-3-319-00894-3_6, © Springer International Publishing Switzerland 2014
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6.2 Conditional Expressions

If

In[8] :=del[x_,y ] :=If[x ==1y,1,0]
In[9] := del[a, a]

Out[9] =1
In[10] := del[1,2]
Out[10] =0

When Mathematica cannot determine if the condition is true, a conditional
expression is returned unevaluated. If such a possibility will appear later, an
unevaluated If will be simplified.

In[11] := u = dela, b]

Out[l1] =Ifla == b, 1,0]

In[12]:=a=b=x;u

Out[12] =1

And what to do if several actions should be performed in the branches of If? Use
compound expressions, of course! The priority of the operator; is higher than that
of, (which separates function arguments, in particular, those of If).

In[13] := f[x ] := If[x > 0,Print[’x>0"]; 1,Print[’x<=0"]; 0]

In[14] := f]1]
x>0
Out[14] =1

In[15] := Clear[a, b, u,del, f]

Which

This is a choice with many branches. Arguments of the function Which form pairs:
a condition and a result. The conditions are evaluated left to right. As soon as a
true one is found, the corresponding result is evaluated and returned. Often (but
not always) the last condition is True; the corresponding result is returned when
none of the previous conditions is satisfied. When Mathematica cannot decide if the
conditions are true, the function Which returns unevaluated.

In[16] := sign[x_] := Which[x > 0,1,x < 0,—1]

In[17] := sign[0.1]

Out[17] =1

In[18] := sign[0]

In[19)] := sign|a]

Out[19] = Which[a > 0,1,a < 0,—1]

In[20] := Clear[sign]
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Conditions

What can be used as conditions in If and Which? The operator == returns True if its
left-hand side and right-hand side are the same expression. Let’s stress: mathemati-
cally equivalent expressions written in different forms don’t qualify. If the left-hand
side and the right-hand one are not identical, this operator returns unevaluated. It is
used for writing equations, for example, for the function Solve.

In21]) := {a==a,a==b}

Out[21] = {True,a == b}

In contrast to this, the operator === returns False if its arguments are not identical
(even if they are mathematically equivalent).

In[22] := {a ===a,a ===b}

Out[22] = {True, False}

Not[a == b] is written as a!=b, and Notja === b] as a=!=b.

The function NumberQ checks if its argument is a number (integer, rational, real,

complex).

In[23] := {NumberQ|3.14], NumberQ[Pi] }

Out[23] = {True, False}

The function NumericQ returns True also for symbolic mathematical constants.
In[24) := {NumericQ[3.14], NumericQ[Pi] }

Out[24] = {True, True}

The function FreeQ returns True if its first argument contains no subexpressions
given by the second argument. It is often used to check if an expression contains a
given symbol.

In[25) := {FreeQ[Sin[a + b],a], FreeQ[Sin[b + ¢|,a]}

Out[25] = {False, True}

The function MatchQ checks if the expression—its first argument— matches the
pattern, its second argument. When designing a system of substitutions, use this
function often in order to check if your ideas about the structure of expressions
agree with those of Mathematica.

In[26] := MatchQ[x"2,a b _]

Out[26] = True
In[27] := MatchQ[1/x,a b _]
Out[27] = True

In[28] := MatchQ|x,a b _]
Out[28] = False

Switch

The function Switch starts from evaluating its first argument. All the remaining
arguments form couples: a pattern and a result. The first argument is matched against
the patterns from left to right. As soon as a match is found, the corresponding result
is evaluated and returned. Often (but not always) the last pattern is x_ (or just _
because we don’t need the value of x).
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In[29] := f[x_] := Switch[x, _Plus,”A sum”,_Times,”A product”, _,
”Neither a sum nor a product”]

In[30] := fla+b]

Out[30] = A sum

In[31] := fla*b]

Out[31] = A product

In[32] := f[a"b]

Out[32] = Neither a sum nor a product

In[33] := Clear[f]

6.3 Loops
Do

This loop is very convenient to those pupils who were ordered by a teacher to write
“I shall behave well” 100 times.

In[34] := Do[Print[”OK"], {4}]

OK

OK

OK

OK

In this loop the parameter varies from 1 to an upper limit.

In[35] := Do[Print[x"i], {i,4}]

And here—from a lower limit to an upper one.

In[36] := Do[Print[x"i], {i,0,4}]
1

And now with a given step.
In[37)] := Do|Print[x"i], {i,0,4,2}]
1

x2

x4

This loop takes the elements of a list.
In[38] := Do|Print[x"i], {i, {0,1,4}}]
1

X

x4
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While

While the list is not empty, we print and remove its first element.
In[39] :=1={a,b,c};

In[40] := While[/!={}, Print[First[l]]; I = Rest[l]]

a

b

c

In[41] :=1

Out[41] = {}

In[42] := Clear[l]

For

This is a C style loop. First the initialization (the first argument) is executed.
If the condition (the second argument) is satisfied, then the loop body (the fourth
argument) is executed. Then the increment (the third argument) is performed. The

condition is checked again, and so on.
In[43] := For[i = 0,i < 5,i + +, Print[x"\i]]
1

In[44] :=i

Out[44] =5

A loop running through several parameters (or data structures) in parallel can be
easily written.

In[45] :=For[i=0;j = 1,i+ j < 20,i+ +; j*x = 2, Print[x"i + y"\j]]

I+y

X+ y2

X+ y4

X+ y8

In[46] := Clear]i, j]

6.4 Functions

The function Function returns an anonymous function. Its first argument is a formal
parameter (or a list of formal parameters), and the second one is an expression con-
taining these formal parameters. When the function is called, the actual parameters
are substituted for the formal ones in this expression, and the result of its evaluation
is returned as the value of the function. A note for experts: the function Function
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is a A-expression. Of course, an anonymous function can be assigned to a variable.
This is similar to a function defined by f[x_] := ---, but more efficient. The usual
method of assigning a function body to a pattern is more general, because it is pos-
sible to construct a function which is defined only for arguments which satisfy some
condition (such a function returns unevaluated if the conditions are not satisfied).
This is not possible in the case of Function.
In[47] := f = Function[x,x"\2]
Out[47] = Function [x,x’]
An anonymous function can be just applied to some arguments.
In[48] := Function[{x,y},x"2 + y"3][a, ]
Out[48] = a* + b*

The function Map applies the function given by its first argument to each element
of the list given by the second argument and returns the list of results.
In[49] :=Map|[f,{a,b,c}]
Out[49] = {a*,b%,*}
In[50] := Clear[f]
An anonymous function can be the first argument of Map. Any function with argu-
ments (e.g., Plus) can be the second argument, not just a list. The function given
by the first argument is applied to each argument of the expression—the second
argument. An expression having the same Head (as the second argument) and the
calculated results is constructed and returned.
In[51] := Map[Function[x,x2],a+ b+ c]
Oout[51] = a* + b* +¢*

The function Apply[f,!] applies f to the list of arguments /; this simply means
that the Head of [ is replaced by f.
In[52] := Apply([f,{a,b,c}]
Out[52] = fla,b,c]
In[53] := Apply[Times,a+ b+ |
Out[53] = abc

The first argument of the function Select is a list. It returns the list of those
elements which satisfy the condition given by the second argument. In order to
avoid inventing names for such disposable things, anonymous functions are often
used as the second argument.
In[54] := Select[{1,5,3,6},Function[x,x > 4]]
Out[54] = {5,6}

Function Generator

Here’s an interesting example. The function Adder has a formal parameter n and re-
turns a function which adds » to its argument, that is, Adder is a function generator.
In[55] := Adder = Function[n, Function|x, x + n]]

Out[55] = Function[n, Function[x, x + n]]

Specific functions can be obtained from it. This one, for example, adds 2 to its
argument.
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In[56] := Add2 = Adder[2]
Out[56] = Function[x$,x$ + 2]
In[57] := Map[Add2, {3,x}]
Out[57] = {5,2+x}

In[58] := Clear[Add2, Adder]

6.5 Local Variables

When writing a function which can be used as a black box by a user, it is crucial to
use local variables. Assigning a value to a local variable does not change the global
one with the same name (which can store some value precious for the user). To this
end the function Module is used. Its first argument is a list of local variables.

In[59]:=x=1

Out[59] = 1

In[60] := Module[{x},x = 2;x]
Out[60] = 2

In[61] :=x

out[61] = 1

In[62] := Clear[x]

Coding functions like this means inviting big troubles.
In[63] := f = Function[{a,b},x = a;x* b]
Out[63] = Function[{a,b},x = a;xb)

In[64] := f[c,x]
Out[64] = ¢?
In[65] :=x
Out[65] = ¢

In[66] := Clear|f,x]

This is much better.

In[67] := f = Function[{a,b},Module[{x = a},x*b]]
Out[67] = Function[{a,b},Module[{x = a},xb]]
In[68] := flc,x]

Out[68] = cx
In[69] :=x
Out[69] = x

In[70] := Clear[f]

What happens if a local variable escapes from its scope? We can see that Mathe-
matica implements local variables in the most trivial way—by renaming.
In[71] := Module[{x},x]
Out[71] = x$103

The function Block introduces another kind of local variables. As you value your
life or your reason keep away from the function Block. Especially in those dark
hours when the powers of evil are exalted.
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Local Constants

Local variables which cannot be changed after initialization can be introduced. This
is done by the function With. Such local constants can be considered temporary
notations introduced to make writing a single expression easier.

In[72] :=x=1

Out[72] =1

In[73] := With[{x = a+ 1}, Print[x2]]

Out[73] = (1 +a)?

In[74] :=x

Out[74] =1

In[75] := Clear|x]

6.6 Table

The function Table constructs a list of values of an expression where a parameter
varies in a given way (like in the Do loop).
In[76] := Table[0, {4}]

Out[76] = {0,0,0,0}

In[77) := Table[xi, {i,4}]

Out[77] = {x,xz,x3,x4

In[78] := Table[x"i, {i,0,4}]

Out[78] = {1,x,x2,x3,x4}

In[79] := Table[x"i, {i,0,4,2}]

Out[79] = {1,x*,x*}

In[80] := Table[x"i,{i,{0,1,4}}]

Out[80] = {1,x,x*}

Let’s turn the list into a product.

In[81) := Table[x+i,{i,0,4}]/. List—>Times
Out[81] =x(14+x)(24+x)(3+x)(4 +x)

6.7 Parallelization

Now most computers have multi-core processors. The function Parallelize tries to
calculate its argument faster by starting several Mathematica kernels and ordering
them to calculate parts of the expression and then collecting these parts together.
In[82] := Parallelize[Table[$KernelID, {n,0,7}]]

Out[82] = {4,4,3,3,2,2, 1,1}

($KernelID is the number of the kernel in which a particular list element has been
evaluated). In addition to Table, it can handle Mapl[f,{...}| (orf[{...}] where f
is a Listable function) and some other cases. Note that the slave Mathematica
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kernels started by Parallelize don’t know definitions made in the master process;
only built-in functions can be used. If you need a user-defined function f to be
available in slave processes, you should explicitly distribute it.
In[83] := f[n_] := Integrate[x"n * Sin[x], {x, 0, Pi}]
In[84] := DistributeDefinitions[f]
Out[84] = {1}
In[85] := Parallelize[Table[{ f[n], $KernelID}, {n,0,7}]]
Out[85] = {{2,4},{m.4},{-4+7%3} {n(-6+n"),3},{48 — 127 + n* 2},
{m (120 — 207> + 7*) 2}, { 1440 + 3607> — 307" + 7%, 1},
{m (5040 + 840n* — 427* + 7%), 1} }
In[86)] := Clear[f]

6.8 Functions with an Index

Something like an array of functions can be constructed. Let f[1] be the function
adding 1 to its argument and f[2]—the function adding 2 to its argument; f[n] is
undefined for other values of n.

In[87) := f[1] = Function[x,x+ 1]

Out[87] = Function[x,x + 1]

In[88] := f[2] = Function[x,x + 2]

Out[88] = Function[x,x + 2]

In(89] := {f[1][a], f[2][a], f[n][a]}

Out[89] ={1+a,2+a, f[n][a]}

In[90] := Clear[f]

6.9 Hold and Evaluate

Assignment

Assignment does not evaluate its left-hand side. This is natural: the value of the
right-hand side is assigned to the variable given by the left-hand side, not to its
value.

In91):=a=x
Out[91] =x
In[92] :=a=y
Out[92] =y
In[93] :=a
Out[93] =y
In[94] :=x

Out[94] = x
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The attribute HoldFirst is responsible for this.

In[95] := Attributes[Set]
Out[95] = {HoldFirst, Protected, SequenceHold }

Evaluate

It is possible to assign a value to the value of the left-hand side. To this end the
function Evaluate is used.

In[96] :=a=x

Out[96] = x

In[97] := Evaluate[a] =y
Out[97] =y

In[98] := x

Out[98] =y

In[99] :=a

Out[99] =y

In[100] := Clear|x]; a
Out[100] = x

In[101] := Clear[d]

Delayed Assignment

Delayed assignment does not evaluate also its right-hand side. The attribute HoldAll
is responsible for this.

In[102] := Attributes[SetDelayed]

Out[102] = {HoldAll, Protected, SequenceHold }
You can use these attributes for your functions, too.
In[103]:=x=1;y=2;z=3;

In[104] := Attributes[f] = {HoldAll}; f[x,y,Z]
Out[104] = f[x,y,7]

In[105] := Attributes[f] = {HoldFirst}; flx,y,z]
Out[105] = f[x,2,3]

In[106] := Clear|x, y, 7]

In[107] := ClearAll[f]

The First Argument of the Function Plot

The function Plot does not evaluate its arguments.

In[108] := Attributes[Plot]

Out[108] = {HoldAll, Protected }

The first argument f[x] can be meaningful only for numerical values of x, not for
symbolic x. Therefore it is better not to evaluate f[x] before the function Plot will
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call it for numerical values of x. But if the first argument is a command which
generates the list of expressions to draw, it will not work. We want the command to

be executed; to this end Evaluate is used.
In[109] := Plot[Evaluate[Table[Sin[n x x],{n, 1,3}]], {x,0,2 * Pi}]

LOF

oski /o0

Out[109] = iy

~0sf [

Hold

The function Hold suppresses evaluation of its argument.
In[110]:=a=x

Out[110] = x

In[111] := b = Hold|a]

Out[111] = Hold[a]

This suppression can be removed by the function ReleaseHold.
In[112] := ReleaseHold[b]

Out[112] =x

The function Hold is simple—it has the attribute HoldAll, i.e., it does not evaluate
its arguments.

In[113] := Attributes[Hold]

Out[113] = {HoldAll, Protected }

In[114] := Clear]a, b]



Chapter 7
Grobner Bases

7.1 Statement of the Problem

In this lecture we shall consider (in a slightly vulgarized form, without rigorous
mathematical terms) an important mathematical achievement of the second half of
the last century—Grdbner bases, the Buchberger algorithm (which constructs them),
and their applications (see [12, 13] for an introduction).

Suppose we have n variables xi,..., x,. They are not independent, but satisfy
some polynomial equations p; = O0,..., p,, = 0 (p; are polynomials of x;). Let’s
consider some polynomial g of the same variables. It is natural to ask if this poly-
nomial is equal to O due to the constraints on our variables or not. If there is another
polynomial g, there is the question of their equality.

These questions would become very easy if we had an algorithm reducing
polynomials of dependent variables to a canonical form. Two equal polynomials
reduce to the same canonical form; a polynomial equal to 0 reduces to the canonical
form 0.

We can try to use the equations p; = 0 for simplifying the polynomial g, i.e., for
replacing its more complicated terms by combinations of simpler ones. But to do so
we first have to accept some convention in which terms are more complicated and
which are more simple.

7.2 Monomial Orders

We need a total order of monomials (i.e., products of powers of the variables
X' +-xm). An order is total if for any monomials s and ¢ either s <7 or s > 7 or
s =1 is true. An order is admissible if two properties are satisfied:

e | < s for any monomial s.
e Ifs <t thensu < tu for any monomial u.

Three admissible orders are most popular.

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 55
DOI 10.1007/978-3-319-00894-3_7, © Springer International Publishing Switzerland 2014
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Lexicographic

Anybody who has ever seen a dictionary knows what is lexicographic order. We are
comparing two monomials: s = x|'x)? - - x and r = x|"' x5 - - - x If the degree of
the main variable x; in s is larger than in ¢ (n; > my), then s > ¢. If it is smaller
(ny <my), then s <t.If ny = m;, we compare the degrees of the next variable x,: if
ny > my, then s > t; if np < my, then s < t; if np, = my, we compare the degrees of

x3; and so on.

By Total Degree than Lexicographic

First we compare the total degree n = n| +ny + - - - + n, of the monomial s and the
total degree m = m| +my + - - - +m,, of the monomial z. If n > mthen s > t;if n <m
then s < ¢; if the total degrees are equal, we compare s and ¢ lexicographically.

By Total Degree than Reverse Lexicographic

First we compare the total degrees. If they are equal, then we begin from the junior
variable x;,: if its degree in s is larger than in ¢ (n, > my), then s < ¢; if it is smaller
(n, < my), then s > t; if n, = m,, we compare the degrees of the previous variable
Xxn—1; and so on, that is, this is (within some total degree) the reverse lexicographic
order with respect to the reverse list of variables.

7.3 Reduction of Polynomials

Let’s fix some admissible monomial order. We’ll write polynomials in descending
order: the leading term first, followed by the rest ones. We’ll normalize all
polynomials p; in such a way that the coefficient of the leading term is 1. Now
they can be used as substitutions which replace the leading term by minus sum
of the remaining ones, that is, if some term of a polynomial g is divisible by the
leading term of some polynomial p;, we remove this leading term and insert minus
sum of the remainder terms of p; instead. This is called reduction of the polynomial
q with respect to the set of polynomials p;; if none of the substitutions is applicable,
the polynomial ¢ is called reduced. For example, let’s consider a set of polynomials
In[1]:=pl =x"2+4+y"2-1; p2=xxy—1/4;

Let’s try to reduce the polynomial

In[2) := g =x"2xy;

(we use the lexicographic order with x > y). This can be done in different ways.
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Let’s first reduce g with respect to p;:
In[3] := PolynomialReduce[g, {p1}, {x,y}]
out3] = {{y},y—»’}
The result means that if we subtract the polynomial p; multiplied by y from ¢, then
the reduced polynomial y — y? is obtained. This is what we are interested in.
Inf4) := q1 = %[[2]]
Out[4] =y -y’
Now let’s reduce g with respect to p;:
In[5] := PolynomialReduce(q, {p2}, {x,y}]
outs] = {{x}.3 }
In[6] := q2 = %[[2]]
Outle] = %
So, we have obtained two different results, g; and g;. In fact they are equal due to
p1 =0 and p, = 0, but this is not evident. Every time when more than one substi-
tution can be applied to a term of a polynomial ¢ (in this particular case, we can
replace either x> or xy in x”y), a fork appears; maybe, its branches join later, but
maybe, they don’t (as in this case).

A set of polynomials py,..., p, is called a Grobner basis (for a given monomial
order) if reduction of any polynomial g with respect to this set is unique.

This definition is not constructive: it does not say how to check if a given set
of polynomials forms a Grobner basis. Presently we shall formulate Buchberger
algorithm which transforms a set of polynomials (constraints on variables) into an
equivalent system of constraints which is a Grobner basis.

7.4 S-Polynomials

In our example, the constraints p;y = 0 and p, = 0 allow us to simplify the
monomials x*> and xy. Do these constraints contain an extra information usable for
simplification but not obvious? Yes, they do! Let’s multiply p; and p, by monomials
(i.e., products of powers of variables) in such a way that their leading terms become
identical (equal to the least common multiple of the leading terms of p; and p»).
Then we subtract the second polynomial from the first one. The leading terms can-
cel, and we get a new polynomial with a new leading term which can be used for
simplifying terms in g (because this new polynomial also vanishes). This polynomial
is called the S-polynomial S [p1, p»] (from the word subtraction). In our example
In[7] := S = Expand[y * p1 — x * p2]

Out[7] = % —y+y

This polynomial can be added to the system of constraints p; = 0, p» = 0. Let’s
normalize its leading coefficient to 1:

In[8] := p3 = Expand[4 x §]

Out[8] = x — 4y + 4y

In[9] := Clear(S]
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Now we have a new possibility for reduction:
In[10] := PolynomialReduce[q2, {p3}, {x,y}]

Out[10] = {{%} ,y—y3}

Now we’ve got the same result g;. The polynomials {pi, p2, p3} form a Grébner
basis. This set can be simplified by reducing them with respect to each other:
In[11] := PolynomialReduce[p1, {p3}, {x,y}]

Out[11] = {{x+4y 43} —14 1752 = 32" + 16y }

In[12] :=pla= Expand[%[[2]]/16]

Out[12] = _11_6 + % —2y* 40

In[13] := PolynomialReduce[p2, {p3}, {x,y}]

Out[13] = {{y},}t (—1+16y*— 16y*)

In[14] :=p2a= Expand[—%[[2]] /4]

Out[14] = 16 —y 4y

In[15] : PolynomlalReduce[pla, p2a,{x,y}]

Out[15] = {{-1+y"},0}

The polyn0m1a1 P1q reduces to 0, and hence it can be excluded from the system
of constraints on our variables x, y. The polynomials p,, and p3 form a reduced
Grobner basis (with respect to the lexicographic order with x > y). Reduced Grobner
basis is unique (for a given monomial order), if we accept the convention that the
coefficients of the leading terms are 1.

7.5 Buchberger Algorithm

Generalizing this example, we can formulate an algorithm for construction of the
Grobner basis of a set of n polynomials P = {p;}:

1. S = {the set of pairs (p;,p;) of these polynomials with i < j < n}
2. while S is not empty

choose and remove some pair (p;, p;) from S;

calculate the S-polynomial S [p;, p;];

reduce it with respect to P;

if the result is not 0, add this polynomial to P,

and the corresponding pairs to S.

kW

The set of pairs S alternatingly shrinks and grows. But it can be proved that this
process terminates after a finite number of steps and produces a Grobner basis P.
Reducing these polynomials with respect to each other and throwing zeros away,
one can get the reduced Grdbner basis. Some variations can improve the efficiency
of the algorithm. For example, when adding a new polynomial to the set P, we
can reduce all polynomials already in P with respect to the new one; if some of
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them changes, reduce other ones with respect to them, and so on (throwing zeros
away while doing so). The order in which pairs are selected from the set S is very
important—a good choice can reduce the amount of computations drastically.

Let’s ask Mathematica to construct the Grobner basis for the system {p1,p>}
with respect to the lexicographic order with x > y:
In[16] := B = GroebnerBasis[{p1,p2}, {x,y}]
Out[16] = {1 —16y* + 16y* x — 4y +4y°}
Let’s reduce the polynomial g to the canonical form, i.e., reduce it with respect to
the Grobner basis (the result is unique).
In[17] := PolynomialReduce|g, B, {x,y}]

Out[17]:{{ x 1

3
Za Z +xy o, y—y

It is difficult to predict the complexity of the Buchberger algorithm. In worst
cases it can be very high, i.e., constructing the Grébner basis of a moderately large
system can require a huge amount of calculations. The complexity strongly depends
on the monomial order being used. In the case of ordering by the total degree (and
then something) reduction tries to lower the total degree of a polynomial. The num-
ber of possible terms in a polynomial of a low total degree is small. In the case of the
lexicographic order, a polynomial of y of an arbitrarily large degree is considered
simpler than x to the first power. Therefore reduction does not lower the number of
terms in a polynomial as strongly as in the case of total-degree orders, and the com-
plexity of Grobner basis calculations is higher. On the other hand, a reduced Grobner
basis with respect to a lexicographic order provides more information useful for
solving the system, as we shall see soon. Mathematica knows how to construct
Grobner bases with respect to monomial orders we discussed.
In[18] := B = GroebnerBasis[{p1,p2}, {x,y},

MonomialOrder — DegreeLexicographic|

Out[18] = {—1 +4xy, —1 + x> +y* x — 4y +4y*}
In[19] := PolynomialReduce[q, B, MonomialOrder — DegreeLexicographic]

X X
Out[19] = {{Z’O’O} , Z}
In[20] := Clear[p1,p2,p3,pla,p2a,q,q1,q2, B|

7.6 Is the System Compatible?

Consider the system

In[21]:=pl =x"2*xy+4%y"2—17; p2 =2xx*xy—3%y"3+8;
p3=xxy"2—5xxxy+1;

Let’s construct its Grobner basis—an equivalent system of equations.

In[22] := GroebnerBasis[{p1,p2,p3},{x,y,z}]

Out[22] = {1}

This system contains the equation 1 = 0. This means that it has no solutions. If the

Grobner basis contains 1, the system is incompatible. The inverse statement can be
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also proved—the Grobner basis of an incompatible system always contains 1 (if we
normalize all leading coefficients to 1; otherwise, just some nonzero constant).
In[23] := Clear[pl,p2,p3]

7.7 Grobner Bases with Respect to Lexicographic Order

Reduction with respect to the lexicographic order first of all tries to lower the degree
of the main variable (x in our examples), and if possible, down to 0. Therefore
usually there is a subset of polynomials in a reduced Grobner bases which don’t
contain x. When x is absent, reduction tries to lower the degree of y, and if possible,
down to 0. Therefore usually among these polynomials there are those which don’t
contain y, and so on. In other words, a lexicographic Grobner bases has a triangular
structure. For example,
In[24] := B = GroebnerBasis[{x"2 + y"2 + 22, x +y — 2,y + 22}, {x,y,2}]
Out[24] = {z2 +2+ty+A -z zz}
The polynomial
In[25] := p1 = BI[1]]
out)25] = 22 4+2° +7*
depends only on the most junior variable z. This means that projections of all
solutions of our system on the z axis form a finite set of points—roots of this equa-
tion. In our example, they are z =0 and
In[26] := p1 = Expand[p1/z*2]; s = Solve[pl ==0,2]
ou26] = {{z = ~(-1)"/*} {z = (-1}
In[27] := z1 = ComplexExpand|z/. s[[1]]]
Out27] = —% - %
In[28] := z2 = ComplexExpand|z/. s[[2]]]
Out[28] = —% + ?
Substituting any of these z values to
In[29] := p2 = B[[2]]
Out[29] = y + 2
we find the corresponding y value. Substituting these z and y into
In[30] := p3 = B[[3]]
Out[30] =x—z—z°
we find the corresponding x value. Thus solving any system of polynomial equations
with several unknowns reduces to solving single-variable polynomial equations
sequentially, thanks to lexicographic Grobner bases. Even when some of them
cannot be solved in radicals, it is easy to solve them numerically to any desired
precision.
In[31] := Clear|B, p1,p2,p3,z1,22]

And here is another example.
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In[32] := B = GroebnerBasis[{x"2 — 2 *xxy+2*y"2 — 1, xxy—y*z+27'2—1,
xxz+y"2—yxz—1},{x,2}]
Out[32] = {1 — Y =22 +y* P+ v+ Yty -2,
x—y—2z+y2+2}
Now we have no equations with a single variable z; there are 2 equations containing
zand y:
In[33] := p1 = Factor([B][1]]]
Out[33] = (=1 +2)(1+2z) (1 +y*+2%)
In[34] := p2 = Factor[B|[[2]]]
Out[34] = (y—2) (=1 +)*+2°)
The common set of their solutions is the circle y> 4 z> = 1. Substituting a point on
this circle into
In[35] := p3 = B[[3]]
Out[35] = x—y — 274y +2°
we find the corresponding x value, that is, the set of solutions of this system is
one-dimensional.
In[36] := Clear|B,pl1,p2,p3]
For solving a system of polynomial equations it is useful to construct its Grobner
basis and then to factorize its elements.

7.8 Is the Number of Solutions Finite?

Grobner bases with respect to other monomial orders don’t have such simple
triangular structure. But any Grobner basis can tell us not only if the system is
compatible but also if the number of its solutions is finite. Let’s consider the same
examples.
In[37] := GroebnerBasis[{x"2 +y"2 +z"2,x+y — z,y + 22}, {x,y,2},
MonomialOrder — DegreeLexicographic]
Outf37] = {x+y—z,y+2, —y+»* —yz}
The leading terms of the polynomials forming this basis are x, z%, and y*. What is the
dimensionality of the space of polynomials which cannot be reduced with respect to
this basis? Only monomials which are not divisible by these leading terms cannot be
reduced, namely, 1, y, and z. So the space of polynomials reduced to the canonical
form is three-dimensional for our system of constraints on the variables. Therefore
our system has 3 solutions (there explicit form can be obtained more easily from the
lexicographic Grobner basis, as we have seen).

If each variable raised to some power is the leading term of some element of a
Grobner basis, then any monomials with this (or higher) degree of this variable are
reducible. Irreducible monomials are inside the parallelepiped bounded by these
powers, and their number is finite. Therefore the space of polynomials reduced
to the canonical form is finite-dimensional, and the system has a finite number of
solutions.
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And here is our second example:
In[38] := GroebnerBasis[{x"2 —2 xx*xy+2xy"2 — L,xxy—y*z+72—1,
xxz+y"2—y*z—1},{x,y,z},MonomialOrder — DegreeLexicographic|
Out[38] = {—1 + ¥ 4 xz—yz, — 1 +xy —yz+ 22, =3+ x> 42y — 2yz+ 277,
X—y—224y2+2,x—2y+)y —z+yzz}
The leading terms are xz, xy, x°, y>z, and y>. Among them there are powers of x
and of y, but not of z. Therefore the space of polynomials in the canonical form (i.e.,
reduced with respect to this basis) is infinite-dimensional. This space contains, e.g.,
the directions 1, z, 72, Z°. ... (and not only them). This means that the set of solutions
of our system is infinite.

So, the criterion works in the opposite direction, too. If there exists a variable
no power of which appears as the leading term of some element of the Grobner
basis (not being multiplied by some other variable), then all powers of this variable
are irreducible, and the space of polynomials in the canonical form is infinite-
dimensional. And hence the set of solutions of the equation system is infinite.

Knowing the reduced Grobner basis (for any monomial order) one can also find
the dimensionality of the set of solutions [14]. Consider sets of variables satisfying
the following condition: none of the leading terms of the elements of the basis is
a product of powers of these variables. The number of variables in the longest set
gives the dimensionality of the set of solutions. In our example there is just one such
set—{z}. Therefore the set of solutions of this system is one-dimensional.



Chapter 8
Calculus

8.1 Series

Let’s expand a function in x at the point x = 0 up to the fifth order.
In[1] := s = Series[Exp|[x], {x,0,5}]
PSR A 6
Out[l] = 1+x+3+g+ﬁ+m+0[x]
How are series represented in Mathematica? By the function SeriesData. Its first ar-
gument is the expansion variable; the second one—the expansion point; the third
one—the list of coefficients; the fourth one—the minimum degree (here 0); the
fifth one—the power of O[x]; the sixth one is 1 for series with integer degrees (all
degrees are divided by it if it’s not 1). Thus a series is not a sum (Plus) in spite of its
appearance.
In[2] := FullForm(s]
Out[2]//FullForm =
SeriesDatal[x, 0, List[1, I, Rational[1, 2], Rational[1, 6], Rational[1, 24],
Rational[1,120]],0,6,1]
Coefficients are extracted by the function SeriesCoefficient.
In[3] := Do|Print[SeriesCoefficient[s, n]], {n,0,5}]

—_—

|,_oﬂ —N | =

24
1

120
This series begins with degree —1.

In[4] := s = Series[Cot[x], {x,0,5}]

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 63
DOI 10.1007/978-3-319-00894-3_8, © Springer International Publishing Switzerland 2014
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In([5] := FullForm|[s]
Out[5]//FullForm =
SeriesDatal[x, 0, List[1,0,Rational[—1, 3],0, Rational[—1,45], 0,
Rational[—2,945]],—1,6, 1]
This is a series with half-integer degrees.
In[6] := s = Series[Sqrt[x* (1 — x)],{x,0,5}]
32 5/2 .1)2 9/2
Ouﬂ6]::vg——f%;——ié———fl;——sx/
In[7] := FullForm([s]
Out[7]//FullForm =
SeriesData[x, 0, List[1, 0, Rational[— 1, 2], 0, Rational[— 1, 8], 0,
Rational[—1, 16],0,Rational[—5,128]],1,11,2]
This is an expansion at infinity.
In[8] := s = Series[Log[x + 1], {x, Infinity,4}]
outlgl — teal ]l L1 1 :
ue(8] = — °gH i e tie Tt H
In[9] := FullForm([s]
Out[9]//FullForm =
SeriesData[x, DirectedInfinity[1], List[Times[—1,Log[Power[x, —1]]], 1,
Rational[—1,2],Rational[1, 3], Rational[—1,4]],0,5, 1]
Coefficients of a series in x may depend on x, but only weakly, weaker than any

degree.
In[10] := s = Series[x"x, {x,0,3}]
Out[10] = 1 + Log[x]x+ %Log[x]zx2 + éLog[xPx3 + Ox]*
In[11] := FullForm(s]
Out[11]//FullForm =
SeriesDatal[x, 0, List[1, Log[x], Times[Rational[1, 2], Power[Log|x], 2]],
Times[Rational[l, 6], Power[Log|[x],3]]],0,4, 1]
In[12] := Clear][s

0[)6]11/2

Operations with Series

Let’s take three series.
In[13] := sinx = Series[Sin[x], {x,0,7}]
3 7

ouf13] =x— 2+ X % ok
In[14] := cosx = Series[Cos[x], {x,0,7}]
2 6

-t 8
Out[14] =1 2+24 720+0[x]

In[15] := tanx = Series[Tan[x],{x,0,7}]
o2 17

R e Wi 8
Out[15] =x+ 3 + 15 + 315 + O[y]
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Series can be added, multiplied, divided, etc.
In[16] := tanx * cosx
3 + .
t[16] =x——+— —
Out[16] = x 6 + 20 504O+0[x]
In[17] := sinx /cosx
X2 17y
17 =x+ =4 "—+—— 8
Out[17] = x+ 3 + 15 + 315 + O[x]
In[18] := sinx2 + cosx”2
Out[18] = 1+ O[x]*
If a series occurs as an argument of a function, the function is expanded
automatically.

In[19] := Exp][sinx]

©oox oy

— oy o x o ox r 8
Out[19] =1+4x+ > 8 15 240+ 90+0[x]
In[20] := (1 — cosx)/x2

2

1 x x* 6
Out[ZO] = 5 — ﬁ + m + O[X]
Here is an interesting method to expand a function in x.
In[21] := X = Series|x, {x,0,7}]
Out21] = x+ Ox]®
In[22] := Sin[X]
X x x’ 3

Out[22] = x— 3 + 120 ~ 5040 + O[y]
In[23] := Clear[X]

Series can be differentiated and integrated.
In[24] := D|cosx, x]

3

X X
t24] = —x+— — — !
Out[24] X+ G 120+0[x]
In[25] := Integrate[tanx, x|
2oox x0 1nd

t25] = —+ —=+— ?

Ou[S]. 2+1.2-l.-45+2520+0[x] . .

A series (beginning from a small term) can be substituted for the expansion

variable of another series. This is Sin[Tan[x]].

In[26] := st = sinx/.x—>tanx

X 55x ]8

Out[26]:%+€—ﬁ—m O[X
An alternative syntax.
In[27] := ComposeSeries[sinx, tanx]

S 55¢

X
Out27] =x+———— Ox]®

WRTI= e 46 os T o
Let’s subtract Tan[Sin[x]]; this expression is expanded automatically, i.e., series are
contagious.

In[28] := st — Tan[Sin[x]]
7

Out28] = —;—0 ok

In[29] := Clear]st|
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Series inversion—solving the equation tanx =y for x as a series in y.
In[30] := atany = InverseSeries|tanx, ]
3005 7
Out[30] =y — y? + yg - y7 +op)®
The result should be the arctangent.
In[31] := Series[ArcTan[y],{y,0,7}]
3005 7
Oouf31] =y— =+ - =+ op°
In[32] := ComposeSeries|tanx, atany]
Out[32] =y +Opy]®
It is not allowed to substitute a numerical value for the expansion variable into a
series. The function Normal converts a series into a normal expression by dropping
+OIx]". Here is a plot of sine and a few truncations of its series.
In[33] := Plot[Evaluate[Prepend[Table[Normal[Series[Sin[x], {x,0,n}]],{n, 1,5,2}],
Sm[x]]]7 {x1 _Pia Pl}]

In[34] := Clear[sinx, cosx, tanx, atany|

You should work with series as long as possible, converting them into normal
polynomials only at the very end. Then terms of too high orders of smallness are
dropped automatically. At any moment you know exactly what is the order of the
neglected term Olx]".

Arbitrary-Order Term

The function SeriesCoefficient can also be used in this way.

In[35] := SeriesCoefficient[Exp[x], {x,0,4}]
1
Out[35] = ﬁ

This is the 4th coefficient in the expansion of Exp[x] in x at 0. The number of the
series term can be given symbolically.
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In[36] := cn = SeriesCoefficient[Exp[x], {x,0,n}]
Ln>0

Out[36] = { O Troe

In[37] := Sum[cn *x"n, {n,0, Infinity}]

Out[37] =¢*

In[38] := cn = SeriesCoefficient[Cos|[x], {x,0,n}]
i”(1+25;1)”) n>0

Out[38] = { o ™ n

In[39] := Sum[cn *x"n, {n,0, Infinity}]

Out[39] = Cos|x]

In[40] := Clear|cn]

8.2 Differentiation

In[41] := f = x*Sin[x+y]

Out[41] = xSin[x+y]

The derivative in x; in y; in x and y; the second derivative in x; the second derivative

in x and the first one in y:

In[42] := {D[f,x],D[f,y], D[f,x,], D[f,{x,2}], D[f,{x,2},»1}

Out[42] = {xCos[x+y] + Sin[x + y],xCos[x + y], Cos[x + y] — x Sin[x +y],
2Cos[x+y| — xSin[x +y], —xCos[x + y] — 2 Sin[x + y|}

In[43] := Clear[f]

Unknown Functions

Expressions with unknown functions can be differentiated.
In[44] := D[x* f[x"2],]
Out44] = f [¥*] + 227" [+]
Mathematica represents the first derivative of an unknown function f as the operator
Derivative|[1] applied to f.
In[45) := FullForm[%]
Out[45]//FullForm =

Plus|f[Power]x, 2]], Times[2, Power|[x, 2], Derivative[1][ f][Power[x, 2]]]]
And this is the second derivative.
In[46] := Expand[D|x * f[x"2], {x,2}]]
Out[d6] = b6xf’ [x*] +4x° f [?]
In[47] := FullForm[%]
Out[47]//FullForm =

Plus[Times[6,x, Derivative[1][f][Power]x, 2]]],

Times[4, Power]x, 3], Derivative[2][ f][Power[x, 2]]]]
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Derivative[2, 3] means the second derivative in the first argument and the third one
in the second.
In[48] := D[f[x,y], {x,2}, {»3}]
Out[d8] = >3 [x,y]
In[49)] := FullForm[%]
Out[49]//FullForm =
Derivative[2, 3][f][x,]

Defining Derivatives

Let’s tell Mathematica that the derivative of the function f is g.
In[50] := f'[x.] := g[x]
In[51] := Dx* f[x"2],x]
Out[51] = f [x*] +2x7g [¥*]
The second derivative is not substituted automatically.
In[52] := Expand[D[x  f[x"2], {x,2}]]
Out[52] = 6xg [xz] +4x3f" [xz}
we can tell Mathematica that a; ){ (g‘z)y L is a function g.
In[53) := Derivative[1,2][f][x_,y-] := g[x,y]
In[54] := D[x* f[x,y], {x,2},{»,2}]
Out[54] = 2g[x,y] +x/*?[x,]

8.3 Integration

Indefinite Integrals

In[55] := Integrate[1 /(x* (x"2 — 2)"2),x]
Out[s5] = 1 Log[x] 1

Ti (2o s ghee [2-]
In[56] := Integrate[1/(Exp[x] + 1),x]
Out[56] = x — Log|[1 +¢]
In[57] := Integrate[x/(Exp[x] + 1),x]

2

out[57] = % — xLog|[1 +¢"] — PolyLog 2, —¢]
In[58)] := Integrate[Log|x], x|
Out[58] = —x+xLog[x]
In[59] := Integrate[1 /Log[x],x]
Out[59] = LoglIntegral[x]
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In[60] := Integrate[Exp[x"2],x]
Out[60] = %\/% Erfi[x]
In[61] := Integrate[x x Exp[x/\2], ]

Out[61] = =

In[62] := Integrate[1/Sqrt[(1 —x"2) * (1 — k"2 xx"'2)], ]
V1= x2V1— 2 EllipticF [ArcSin[x], k%]
V(=1+x2) (=1 +k%x2)
In[63] := Simplify[Integratefx/Sqrt[(1 —x*2) * (1 — k"2 % x*2)], 2], x > 1]
Log {k (k\/—l +x2+vV-1 +k2x2)}
k

Out[62] =

Out[63] =

Definite Integrals

Here Mathematica produces a result with some assumptions about the parameter n.
In[64] := Integrate[x"n, {x,0,1}]

1
Out[64] = ConditionalExpression [F,Re [n] > —1
n

Let’s tell it thatn > —1.
In[65] := Integrate[x"n, {x,0,1}, Assumptions—>{n > —1}]

1
Out[éS] = r

n
In[66] := Integrate[Expl[a * Sin[x]], {x,0,2 * Pi}]
Out[66] = 2w Bessell[0, d]
In[67] := Integrate[Log[x] /(1 — x),{x,0,1}]
2

out[67] = — %

The default value of the option Assumptions for Simplify, Integrate, etc. can be
given in the variable $Assumptions.
In[68] := $Assumptions = {t >0, < 1,a>—-1,b> —1};
In[69] := Integrate[x"a * (1 —x)"b* (1 —txx)"¢,{x,0,1}]
Out[69] = —(nCsclan] Gamma[l + b]|Hypergeometric2F1Regularized[1 + a,—c,
2+ a+ b,t])/Gammal—d]
Now we can clear $Assumptions.
In[70] := $Assumptions = True;

Multiple integral
In[71] := Intggratell/ (1+x*y),{x,0,1},{y,0,1}]

Out[71] = %
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8.4 Summation

Finite Sums

In[72] := Sum(n,{n,0,k}]
out[72] = %k(l +k)
In[73] := Sum[n"2, {n,0,k}]
Out[73] = ék(l +)(1420)
In[74] := Sum[x"n, {n 0,k}]
—1 4 xIHk
Out[74| = ———
“14x

In[75] := Sum[Binomial[k, n], {n,0,k}]

Out[75] = 2F

In[76] := Sum[(—1)"n x Binomial[k,n],{n,0,k}]
Out[76] = KroneckerDelta[k|

In[77) := Sum[Binomial[k,n]"2, {n,0,k}]
Out[77] = Binomial[2k, k|

Series

In[78] := Sum[1/n"2, {n, 1, Infinity}]
Out[78] = —2

In[79] —Sum[l/n’\4 {n, 1, Infinity}]
Out[79] =

In[80] := Sum[(—l)"n/n"Z, {n, 1, Infinity}]
Out[s0] = —

In[81] := Sum[x"n/n!, {n,0,Infinity}]
Out[81] =¢*

8.5 Differentiol Equations

A first-order differential equation.
In[82] : DSolve[D[x[t] t] + x[t] == 0,x]t],]
Out[82] = {{x[t] = e 'C[1]}}

8 Calculus

The solutlon contains an arbitrary constant C[1]. Let’s add an initial condition:
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In[83] := DSolve[{D[x[f], 1] + x[t] == 0,x[0] == 1}, x[t], 1]
Out[83] = {{x[t] e '}}
A second-order differential equation.
In[84) := DSolve[D[x[t], {t,2}] + x[t] == 0,x[t],?]
;)ut[814] = C~1{{x[t] — C[1]Cos[t] + C[2] Sin[t] } }
nitial conditions.
In[85] := DSolve[{D[x[f], {t,2}] +[t] == 0,x[0] == 0,'[0] == 1},[t], 1]
Out[85] = {{x[t] — Sin[r]}}
Boundary conditions.
In[86] := DSolve[{D[xf], {t,2}] +x[f] == 0,x[0] == 0,x[1] == 1},x[f],1]
Out[86] = {{x[t] — Csc[1]Sin[¢]}}
A system of differential equations.
In[87] := DSolve[{D[x[],#] == p[t], D[p[t],t] == —x[r]}, {x[t], p[t]} 1]
Out[87] = {{plt] = C[1] Cos[t] — C[2] Sin[],x[t] = C[2] Cos[t] + C[1] Sin[¢]} }



Chapter 9
Numerical Calculations

9.1 Approximate Numbers in Mathematica

Mathematica usually works with exact numbers, either symbolic (, e) or rational,
and derives exact analytical results. However, it can also perform approximate
numerical calculations. Many problems cannot be solved analytically, but numerical
solution is possible. On the other side, an analytical result can depend on symbolic
parameters; in order to do a numerical calculation, you have to substitute some
numerical values for all parameters. It is often useful to check the correctness of
a complicated analytical derivation by a direct numerical calculation for a few sets
of values of the parameters.

There are two kinds of approximate real numbers in Mathematica. The first one
is machine numbers.
In[1] := p = N[Pi]
Out[1] =3.14159
In[2] := FullForm[p]
Out[2]//FullForm =

3.141592653589793

Precision is the number of significant decimal digits. For machine numbers it is
a symbolic constant:
In[3] := Precision|p]
Out[3] = MachinePrecision
In[4] := N[MachinePrecision|
Out[4] = 15.9546
It is 53 bits (or about 16 decimal digits) of precision. In other languages (C, Fortran)
such numbers are usually called double precision. Operations with such numbers in
Mathematica are performed by hardware, as in C or Fortran. They are less efficient
than in these languages, but nevertheless rather efficient.
In[5] := MachineNumberQ|p]
Out[5] = True

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 73
DOI 10.1007/978-3-319-00894-3_9, © Springer International Publishing Switzerland 2014
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There are also arbitrary-precision numbers. Operations with them are imple-
mented in software and are far less efficient.
In[6] := p = N[Pi,25]

Out[6] = 3.141592653589793238462643

In[7] := FullForm|p]

Out[7]//FullForm =
3.14159265358979323846264325.

In|[8] := Precision|p]

Out[8] = 25.

Precision is a part of a value, not of a variable, as in some other languages. If it
is equal to n, then the estimated relative error of the value is 107". There is also
accuracy—the number of significant decimal digits after the point. If it is equal to
m, then the estimated absolute error of the value is 107",

In[9] := Accuracy|p|
Out[9] = 24.5029

When approximate numbers are added or subtracted, the absolute errors are
added. The difference of two approximately equal numbers has a lower precision
than the operands.

In[10] := g = N[355/113,20]

Out[10] = 3.1415929203539823009
In[11] := Accuracy|q]

Out[11] = 19.5029
In[12]:=d=p—¢q

Out[12] = —2.667641890624 x 10~
In[13] := {Precision[d], Accuracy[d]}
Out[13] = {12.929,19.5028}

When approximate numbers are multiplied or divided, the relative errors are added.
(4] :=r=p/q

Out[14] = 0.9999999150863285520
In[15] := {Precision[r], Accuracy[r|}
Out[15] = {20.,20.}

In[16] := Clear[p,q,d,r]

This error handling sometimes may be too pessimistic. Let’s consider an
example [15]. The sequence x,, = f (x,—1), x1 = 1,

n[17] := flx ] := (2 +4)/(2+x)
converges to 2. With machine numbers
In[18] := f[x_,n_] := Module[{t = Table[x, {n}]},
Dole[[if] = £[[li— 11, {i-2,n}]: 1
In[19] :=x = f[1.0,60];
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In[20] := ListPlot[x, PlotRange—>{0.95,2.55},
PlotMarkers—>{ Automatic, Medium}]

[ ®
241

22f

2.0; CO0000000000000000000000000000000000000000000000000000000

1.0 '\ P L P | P—— P - P P P 1
0 10 20 30 40 50 60

this is indeed so. Now let x| be 1.0 with 17-digits precision:

In[21] :=x = f[1.0°17,60);

In[22] := ListPlot[x, PlotRange—>{—0.05,2.55},
PlotMarkers— >{ Automatic, Medium}]

25 @

201 Goeeee8000000000000000000000000000000000000000000000000

0.5+

10 20 30 40 50

In[23] := ListPlot[Map|Precision, x],
PlotMarkers— >{ Automatic, Medium}]




76 9 Numerical Calculations

The tail of this list is

In[24] := x[[55;;60]]

Out[24] = {2.,2.,0.,0., ComplexInfinity, Indeterminate}
In[25] := Map|[Precision, x[[55;;60]]]

Out[25] = {0.84866,0.54763,0.2466,0.,c0, 0}

The initial precision is completely lost in 58 iterations.
In[26] := Clear|f,x]

9.2 Solving Equations

NSolve tries to solve equations numerically. They must not contain symbolic

parameters, only numbers and unknowns. Only very limited classes of equations

can be solved analytically; numerical solution is possible nearly always. The option

Reals says to find only real roots.

In[27] := NSolve[x"5 +x+ 1 == 0,x]

Out[27] = {{x — —0.754878},{x — —0.5— 0.866025i}, {x — —0.5+ 0.866025i},
{x —0.877439 — 0.744862i},{x — 0.877439 + 0.744862i} }

In[28] := NSolve[x"5 +x+ 1 == 0, x,Reals]

Out[28] = {{x — —0.754878}}

We can add an interval in which we want to find solutions.

In[29] := NSolve[{Exp[—x] == Sin[x],0 < x < Pi},x]

Out[29] = {{x — 0.588533},{x — 3.09636} }

In[30] := Plot[{Exp[—x], Sinx]}, {x,0,Pi}]

1.0

0.8 i
0.6 i
Out[30] =

0.4

0.2
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9.3 Numerical Integration and Summation

The function Nlntegrate integrates numerically, without trying to do it analytically
first—it uses an appropriate numerical method right away. Of course, integration
limits must be numbers, and there must be no symbolic parameters.
In[31] := NIntegrate[Sin[x] /x, {x,0, Infinity }]
Out[31] = 1.5708
The option PrecisionGoal states the desired precision of the result. If the result is
close to 0 due to strong cancellations, it may be difficult to attain a high precision
(i.e., a small relative error). Then it is better to specify AccuracyGoal, i.e., the
desired absolute error. The option WorkingPrecision specifies the precision level
at which internal calculations are done; it must be > PrecisionGoal.
In[32] := Nintegrate[Exp[—x"2], {x, 0, Infinity }, WorkingPrecision—>30]
Out[32] = 0.886226925452758013649083741785
The integration method is selected automatically; however, we can specify it:
In[33] := NIntegrate[1/(1 +xxy),{x,0,1},{,0,1},
Method—>*“AdaptiveMonteCarlo”)
Out[33] = 0.822237
In[34] := i = Nintegrate[Log[x]"2/(x + 1), {x,0, 1}, PrecisionGoal—>30,
WorkingPrecision—>35]
Out[34] = 1.8030853547393914280996072422671750
Suppose we suspect that the integral i is a linear combination of {(3) and 1 with
rational coefficients. FindIntegerNullVector tries to find integer coefficients such
that the linear combination vanishes:
In[35) := FindIntegerNullVector[{i, Zeta[3],1}]
Out[35] ={2,-3,0}
This means that 2i —3¢(3) = 0, i.e., our integral is 3 {(3). Of course, this is not a
mathematical proof. However, if we increase precision, and the linear combination
stays the same, we can be practically sure that the result is correct (this is called
experimental mathematics).
NSum is similar.
In[36] := s = NSum[1/n"4, {n, 1, Infinity}, PrecisionGoal—>30,
WorkingPrecision—>35, NSumTerms—>30)
Out[36] = 1.0823232337111381915160036965412
If we suspect that the sum s is a linear combination of 7* and 1 with rational coeffi-
cients, we can do
In[37] := FindIntegerNullVector[{s,Pi*4,1}]
Out[37] = {90,—-1,0}
This means that our sum is, probably, g—g.

In[38)] := Clear(i,s]
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9.4 Differential Equations

NDSolve solves differential equations numerically, for a finite interval of the

independent variable. It returns results in terms of InterpolatingFunction; this result

can be numerically evaluated for any value of the independent variable in the given

interval.

In[39):=a=1/2;

In[40] := ns = NDSolve[{y"[t] + a*y/[t] + y[t] == 0,)/[0] == 0,y[0] == 1},
¥i1l,{1,0,10}]

Out[40] = {{y[t] — InterpolatingFunction[{{0.,10.} }, <>][¢]}}

In[41] := Plot]y[r] /. ns[[1]], {#,0,10}]

10F
0.8}
0.6
0.4

Out[41] =

02}

—02f

—04F

Let’s compare with the analytical solution.

In[42] := s = DSolve[{y”[t] + a*y[t] + y[t] == 0,)[0] == 0,y[0] == 1}, y[t],1]

SRt

1
Out[42] = { < y[t] = I

In[43] := Plotly[r]/. s[[1]], {z,0, 10}]

Lo}
0.8
0.6
04

Out[43] =

02k

—02F

—04l

In[44] := Clear|a, s, ns]



Chapter 10
Risch Algorithm

We were taught at calculus classes that integration is an art, not a science (in contrast
to differentiation—even a monkey can be trained to take derivatives). And we were
taught wrong. The Risch algorithm (which is known for decades) allows one to find,
in a finite number of steps, if a given indefinite integral can be taken in elementary
functions, and if so, to calculate it. This algorithm has been constructed in works
by an American mathematician Risch near 1970; many cases were not analyzed
completely in these works and were later considered by other mathematicians. The
algorithm is very complicated, and no computer algebra system implements it fully.
Its implementation in Mathematica is rather complete, even with extensions to some
classes of special functions, but details are not publicly known. Strictly speaking, it
is not quite an algorithm, because it contains algorithmically unsolvable subprob-
lems, such as finding out if a given combination of elementary functions vanishes.
But in practice computer algebra systems are quite good in solving such problems.
Here we shall consider, at a very elementary level, the main ideas of the Risch algo-
rithm; see [16] for more details.

10.1 Rational Functions

We begin with a very simple case—integration of rational functions. Better methods
than the partial fraction decomposition exist for this problem. And these methods
can be generalized to much wider classes of integrands. Let’s consider an integral

M0,
D(x)
where N(x) and D(x) are polynomials. If degN > degD, we can divide with

remainder; integration of a polynomial is trivial. Therefore we’ll assume degN <
deg D. The integration result consists of a rational part and a logarithmic one:

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 79
DOI 10.1007/978-3-319-00894-3_10, © Springer International Publishing Switzerland 2014
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N P e
/de—m—f—ZC,log( ,),

where a; are the roots of the denominator D(x), and ¢; are constants. If

D(x) = H (x— a[)di ,
then
Dix)=]] - a)i

Indeed, at x — a; the rational part has a pole of the order d; — 1; when differentiated,
it becomes a pole of the order d;, as needed. The numerator P(x) is a polynomial of
degree degP < degD:

P(x) =Y pux".

Substituting all these parts and differentiating, we can find the unknown coefficients
¢; and p, by solving a linear system.
For example, let’s calculate

/xl(;bi 1) - % +c1log(x) + colog(x —1).
In[1] := Res = p[0] /x+ c[1] * Loglx] +¢[2] * Log[x — 1]

Out[1] = c[2]Log[~ 1 + ] + c[1]Logl] + 2%

In[2] := Eq = Together[x"2 * (x— 1) *D[Rgs,x] —1]

Out[2] = —1 —xc[1] + x*c[1] +x%c[2] + p[0] — xp[0]

In[3] := Eqs = Table[Coefficient[Eq,x,n] ==0,{n,0,2}]

Out3] = {—1+ p[0] == 0, —c[1] — p[0] == 0,c[1] + ¢[2] == 0}
Infd] := Sol = Solve[Egs, {pl0], c[1],c[21}[[1]

Out[4] = {p[0] — 1,c[1] = —1,c[2] = 1}

In[5] :=Res/.Sol

Out[5] = % +Log[—1+x] — Log|x]

In[6] := Clear[Res, Eq, Egs, Sol]

10.2 Logarithmic Extension
Now we begin to extend the class of integrands and consider

N(,Y)
[ B o

D(x,
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where y depends on x (in a nonrational way). The extension is called algebraic if y
is a root of a polynomial equation p(x,y) = 0. For example, y = {/p(x)/q(x) is a
root of the equation g(x)y" — p(x) = 0. An algorithm for integration of expressions
belonging to algebraic extensions has been constructed, but it requires an advanced
mathematical apparatus [17], and we shall not discuss it here.

Extensions which are not algebraic are called transcendental. There are two
important classes of such extensions. A logarithmic extension y = logr(x) (where
r(x) is a rational function) is characterized by the property y' = r//r. An exponential
extension y = expr(x)—by y = r'y.

If an integral of an expression from a logarithmic extension with some y =
logr(x) can be taken in elementary functions, it has the form

N(x,y) x
dx = — + C,’lqu,’,
D(x,y) D(x,y) 2

where
p=[Ip" = D=I]p{",

gi are the irreducible factors of all D;, ¢; are constants,

P(x,y) = pu(x)y" = punx"y"

is a polynomial with unknown (so far) coefficients. Differentiating this general
form of the result, putting everything over a common denominator, and equating
coefficients of x™y", we obtain a linear system for finding all unknown coefficients.
If this system is incompatible, this means that the integral cannot be taken in ele-
mentary functions.

Example 1

We shall consider several examples. Let y = logx so that y' = 1/x. Let’s calculate
the integral

/ydx=pz(X)y2+p1(X)y+po(X)~

When differentiated, the degree in y reduces by 1, so that the result is quadratic in y
(there is no denominator, and hence no ¢;).

In[7] :==y[x]:=1/x

In[8] :=Res = Sum(p[n][x] xy[x|"n, {n,0,2}]

Out(8] = p{0][x] + y[x]p{1] (x| + ylx|p[2)

In[9] := Eq = D[Res,x] — y[x]

o] =yt + AL | 2P

——— + [0 + ¥l p[1) Ix] + y1x)p[2) ]
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In[10] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,2}]
Out[10] = {@ +pl0)x] ==0,—-1+ 2p2lkd +p[1][x] == 0,p[2] [x] == 0}

X

We see that p,(x) is a constant:
In[11] := p[2]x] := p[2,0]; Eqs
Out[11] = {—pm M 0 == 0,—1+
X
Since pj(x) is a polynomial, the second equation can be satisfied only if pyo = 0:
In[12] := p[2,0] = 0; Eqs
_ P[] N 0 /1
Out[12] = § —— 4 p[0]'[x] == 0, -1+ p[1])'[x] == 0, True
X
The second equation gives
In[13] := p1][x] :=x+p[1,0]
Now the first equation
In14] = Bql = Expand AllEgs{1]
Out[14] =1+ @ +pl0]'[x] ==0
gives pjo =0:
In[15] := p[1,0] = 0; Eql
Out[15] = 1 + p[0)'[x] ==

ZP[ij] + p[1)'[x] == 0, True

Therefore po(x) = —x (omitting the integration constant):
In[16] := p[0][x_] := —x; Eql

Out[16] = True

In[17] :=Res

Out[17] = —x +xy|x]|
In[18] := Clear[Res, Eq,Egs,Eql, p]

We have derived the well-known result
/log(x)dx = xlog(x) —x.

Consider the integrals

in a similar way.

Example 2

Let’s calculate the integral

/ )y-c dx = pa(x)y* + p1 (x)y + po(x).
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Here D = 1; it seems that there is a single g, namely x, but log(x) =y, so that the
logarithmic part contributes nothing new.

In[19] := Res = Sum|p[n][x] * y[x]"n, {n,0,2}];

In[20] := Eq = D[Res,x] — y[x]/x
ouzo) = 22 4 PR | DRIP4 yiapiayi + yix2pl2) I
In[21] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,2}]

outz] = { 2 1 ppoyg —— 0. L4 2B 1 g — 0,211 —o

In[22] := p[2][x.] := p[2,0]; Eqgs

Out[22] = {@ + p[0)'[x] ==0, —% + w +p[1]'[x] == O,True}

From the second equation, pog = 1/2; then p; is a constant:
In[23] := p[2,0] = 1/2; Eqs[[2]

Out[23] = p[1]'[x] ==

In[24] := p(1][x_] = p[1,0]; Egs

Out[24] = {@ + p[0]'[x] == 0, True, True

From the first equation, p19 = 0; then py is a constant (which may be omitted):

In[25] := p[1,0] = 0; Eas][1]]

Out[25] = p[0]'[x] ==

In[26] := p[0][x_] := 0; Res
2

Out[26] = y[%]

In[27] := Clear[Res, Eq, Egs, p|
We have derived the well-known result

/de: %logz(x).

X

Example 3

Let’s change the previous integral a little:

[ 2= pay? 4 pr )y + pof) + clogle+1).

In[28] := Res = Sum|[p|n][x] * y[x]"n, {n,0,2}] + ¢ * Log[x + 1]

Out[28] = ¢, Log[1 +2] + p[0][x] + y[x]p[1] (] + y[x]*p[2] ]

In[29] := Eq = D[Res,x] —y[x]/(x+1)

ouas] — ¢ 0, plilb] | sk
I+x 14x X X

Yedp(2) ]

+ p[0]'[x] + y[xlp[1)[x] +
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In[30] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,2}]

ous0) = { 1+ P oy =0, 1+ 2B 4 g ——o,
pl2ylil o]

As in the previous examples, p,(x) is a constant:

In[31] := p[2][x] := p[2,0]; Eqs

Outf31] = {ﬁ + —p[lj[x] + p[0)[ == 0, ix + 2"[5’0] +p[1]'[] ==0,
True

A polynomial p;(x) satisfying the second equation does not exist. Therefore, this
integral cannot be taken in elementary functions.
In[32] := Clear[Res, Eq, Egs, p|

Example 4

Let’s consider

/dyx = p1(x)y + po(x) + clog(y)

(it is not quite clear what the degree of the right-hand side in y should be; we shall
see in a moment that this is irrelevant).

In[33] := Res = Sum|[p[n][x] * y[x]"n,{n,0,1}] + ¢ * Log[y[x]]

Out[33] = ¢, Log[y[x] + p[0](x] + y[x]p[1]1x]

In[34] := Eq = Expand[y[x] * D[Res,x] — 1]

c yxlp[l]x
Out34] = 1+ &+ Py pogpfop a4 y1a2p1)
In[35) := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,2}]

1
Ouas] = {1+ £ =020 ¢ o/ == 0,p117 ) —
From the last equation, p;(x) is a constant. The previous equation shows that it is
0, and po(x) is a constant (it may be set to 0). It is clear that if we started from
some other degree in y, we would all the same find that all p,(x) = 0. And the first
equation cannot be solved for c.
In[36)] := Clear[Res, Eq, Eqs]

Consider the integrals

dx / dx
xy’ y+1

in a similar way.
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10.3 Exponential Extension

Now we shall consider an exponential extension with some y = expr(x). If an
integral of an expression from this extension can be taken in elementary functions,
it has the form

N(xy) . P(xy) logd;
/D(x,y)dx y) +ZC,1 29i,

D(x,
di A — di

p=[[p{ = D=]]D{,
where cf, = d; — 1 always except the case D; =y in which cfl = d;. This is because
the derivative of 1/y is proportional to 1/y, the degree of y in the denominator
does not increase. We exclude y from the list of the factors ¢; (if it was present, of
course) because logy = r(x) is a rational function, and such a contribution is already
accounted for. As usual, we differentiate the result and equate to the integrand to
obtain a linear system. If it cannot be solved, then the integral does not exist in
elementary functions.

Example 1

Lety=-e":
In[37] := y'[x ] :=y[]

Let’s calculate
/ ydx = pi(x)y+ po(x)

(the degree in y does not change when differentiating; therefore the polynomial in y
in the right-hand side should have the same degree as the integrand).
In[38] := Res = Sum|[p|[n][x] * y[x]"n, {n,0,1}]

Out[38] = p[0][x] + ylx]p[1][x]

In[39] := Eq = D[Res, x] — y[x]

Out[39] = —y[x] + y[x|p[1]x] -+ p[0) [x] + ylx] p[1) ]

In[40] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,1}]
Out[40] = { p[0]'x] == 0.~ 1+ p[1][x] + p[1]'[x] == 0}

In[41] := p[1][x_] := Sum([p[1,m] xx"m, {m,0,1}]; Eqs[[2]]

Out[41] = —1+ p[1,0] + p[L,1] +xp[1,1]==0

From this equation:

In[42] = p[I’ 1] =0; p[l,O] =1; Egs

Out[42] = { p[0]'[x] == 0, True}

Therefore py(x) is a constant (which may be omitted):

In[43] := p[0][x_] := 0; Res

Out[43] = y[x]
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We’ve got the expected result.
In[44] := Clear[Res, Eq, Egs, p|

Example 2

Now let’s calculate

[xvdr=pi(oy+ pole).

In[45) := Res = Sum|[p|[n][x] * y[x]"n,{n,0,1}]

Out[45] = p[0][x] +y[x]p[1][x]

In[46] := Eq = D[Res,x] — x*y|[x]

Out[46] = —xy[x] + y[x]p[1][x] + p[0)'[x] + y[x]p[1]'[x]
In[47] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,1}]
Out47] = {p[0] x) == 0, -+ p[1]d| + pl1]x] == 0}
48] := p{1]fx.] := Sum{p[1,m] x"m, {m, 0, 1}]; Eqs{[2]
Out[48] = —x+ p[1,0]+ p[1, 1] +xp[l,1] ==

From this equation:

In[49] = p[I’ 1] =1 p[l,O] =—1; Eqgs

Out[49] = { p[0]'[x] == 0, True}

In[50] := p[0][x_] := 0; Res

Out[50] = (=1 +x)y[x]

And without integration by parts!

In[51] := Clear[Res, Eq, Egs, p|

Consider
/ *Xydx

in a similar way.

Example 3

Now let’s try to calculate
2 de=proy+ pole) + clog.

In[52] := Res = Sum|[p(n][x] * y[x]"n, {n,0,1}] + ¢ * Log[x]
Out[52] = ¢, Log[x] + p[0][x] + y[x| p[1][x]
In[53] := Eq = D[Res,x] — y[x]/x

ous3] = €~ 3 12)pl1]ie + pl0] 14 + 5011 o

10 Risch Algorithm
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In[54] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,1}]
Outf54] = { <+ plOY == 0, + p[1]] + pl1][x] ==

A polynomial p;(x) satisfying the second equation does not exist. Therefore this
integral cannot be taken in elementary functions.

In[55] := Clear[Res, Eq, Eqgs]

Example 4

Let’s calculate
/' dx _ pi(x)y+po(x)
y y

(here D= v, and there are no g;). Of course, we could denote e™* as y, and the
problem would reduce to the Example 1 with trivial modifications; but we want to
observe how the algorithm works in this new case.

In[56] := Res = Sum|p[n][x] xy[x]"n,{n,0,1}]/ylx]

ous) - 2Pl

In[57] := Eq = Expand[y[x] * D[Res,x] — 1]

Out[57] = —1 — p[0][x] + p[0]'[x] + y[x] p[1]'[x]

In[58] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,1}]

Out[s8] = {1 — p{0][x] + pl0]'[x] == 0, p[1)'[x] == 0}

From the second equation, p;(x) is a constant, which may be omitted—this is the
integration constant.

In[59] := p[1][x]:=0

In[60] := p[0][x_] := Sum([p[0,m] *x"m,{m,0,1}]; Eqs[1]]

Out[60] = —1 — p[0,0] + p[0,1] —xp[0,1]==0

Therefore
In[61] := p[0,1] = 0; p[0,0] = —1; Res
Out[61] = ——

yix
In[62] := Clear[Res, Eq,Eqs, p]

Example 5

Let’s consider

/)% = P1(x)y+pol(x) +clog(y—1)

(now D = 1, and there is a single ¢, namely y — 1).
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In[63] := Res = Sum|[p|n][x] * y[x]"n, {n,0,1}] + ¢ * Logly[x] — 1]

Out[63] = ¢, Log[—1+y[x]] + p[0][x] + y[x]p[1][x]

In[64] := Eq = Cancel[(y[x] — 1) x D[Res,x]] — 1

Out[64] = —1 +cy[x] — vl p[1] ] + y[*p[1][x] — p[0)'[¥] + y[x] p[0) ] —
Y p[1)'[x] + v p[1]' [

In[65] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,2}]

Out[65] = {~1 - p[0)'[x] == 0,c — p[1][x] + p[0]'[x] - p[1]'[x] ==0,
(1]l + p[1)'[x] == 0}

In[66] := p(1][x_] := Sum([p[1,m] *x"m,{m,0,1}]; Eqs[3]]

Out[66] = p[1,0] + p[1,1] +xp[1,1]==0

Therefore

In[67] = P[l, 1] =0; P[170] =0; Egs

Out[67] = {—1 — p[0]'[x] == 0,c + p[0]'[x] == 0, True}

From the first equation, po(x) = —x (omitting the integration constant).

In[68] := p[0][x_] := —x; Eqs

Out[68] = {True, —1 + ¢ == 0, True}

In[69] := ¢ =1; Res

Out[69] = —x + Log[—1 + y[x]]

In[70] := Clear[Res, Eq, Egs, p, ]

Consider

X
dx
/y—l

in a similar way and demonstrate that this integral does not exist in elementary
functions.

Example 6

Of course, the method can be also used for other exponential extensions. For exam-
ple, let y = expx’:

In[71] :=y/[x ] := 2 xxxy[x]

Let’s consider

/ydx: p1(x)y+ po(x).

In[72] := Res = Sum|[p(n][x] * y[x]"n, {n,0,1}];

In[73] := Eq = D[Res, x] — y[x]

Out[73] = —y[x] + 2xy[x] p[1][x] + p[0)'[x] + y[x] p[1]'[x]

In[74] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,1}]

Out(74] = { p[0]'[x] == 0,— 1 + 2xp[1] [x] + p[1]'[x] == 0}

In[75] := p[1][x] := Sump{1,m] x x*m, {m,0,1}]; ExpandAll[Eqs[[2]]

Out[75] = — 1+ 2xp[1,0] + p[1,1] +2x°p[1,1] ==

This equation cannot be solved. A larger degree of p;(x) does not help. Therefore
this integral cannot be taken in elementary functions.

In[76] := Clear[Res, Eq,Eqs, p]
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Example 7

And what about
/xydx = p1(xX)y+ po(x)?

In[77] := Res = Sum|[p|[n][x] * y[x]"n, {n,0,1}];

In[78] := Eq = D[Res,x] — x*y|[x]

Out[78] = —xylx] + 20[x]p[1][x] + plO} (] + y{xlp[1] 4

In[79] := Eqs = Table[Coefficient[Eq, y[x],n] == 0,{n,0,1}]

Out(79] = { p[0)/[x] == 0, —x+ 2xp{1][x] + p[1][x] =—

In[80] := p(1][x-] := Sum[p[1,m] xx"m, {m,0, 1}]; ExpandAll[Eqs|[2]]]

Out[80] = —x+2xp([1,0] + p[1, 1] +2+%p[1,1] == 0

From this equation, pj; =0, pjo = 1/2. The first equation says that po(x) is a con-
stant (it may be omitted).

In[81] := p[1,1] = 0; p[1,0] = 1/2; p[0][x_] := O; Res

Out[81] = )%
In[82] := Clear[Res, Eq, Egs, p]
Consider

/xzydx, /de
. J x

in a similar way.

10.4 Elementary Functions

A tower of extensions can be constructed. We start from the set of rational functions
N(x)/D(x). Then we introduce y;, which is either a root of a polynomial equation
p(x,y1) =0, or logarithm or exponent of some rational function of x, and we obtain
a first extension—the set of functions N (x,y1) /D (x,y1). Then we introduce y,,
which is either a root of a polynomial equation p (x,y;,y2) = 0, or logarithm or ex-
ponent of some function from the previous extension, and we get a next extension—
the set of rational functions of x, y;, y». And so on. We should take care that an
extension which seems transcendental is not in fact algebraic; if we neglect this,
the methods designed for transcendental extensions may break down, e.g., produce
divisions by 0. For example, if y; = e*, then it would not be a good idea to introduce
the exponential extension with y, = ¢**, because y, is not algebraically independent:
Vo = y%. Similarly, if y; = logx, then it’s not reasonable to introduce the logarithmic
extension with y, =1log2x, because y, = y; +1log?2 (in this case the field of constants
needs to be extended by the transcendental number log2). In simple cases such re-
strictions are obvious, but in complicated ones it is necessary to decide if some
function from some extension is identical 0, and this problem is algorithmically
unsolvable in general.
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Such towers of algebraic, logarithmic, and exponential extensions include all
functions called elementary. And even some extra ones: an algebraic extension can
be defined, e.g., by a root of a fifth degree polynomial unsolvable in radicals. Indeed,
trigonometric functions reduce to exponentials, and inverse trigonometric ones—to
logarithms. For each elementary function there exists a tower of extensions to which
it belongs (it is not unique).

Suppose we want to integrate an elementary function. We construct a tower of
extensions to which it belongs. If the indefinite integral exists in elementary func-
tions, it belongs to some further extension of our tower by some extra logarithms
(their number may be zero). The Risch algorithm allows one to decide in a finite
number of steps if the result exists in this further extension, and if so, to find it; if it
does not exist, the algorithm proves this fact. In its classical form, the algorithm is re-
cursive in extensions—it calls itself for solving integration subproblems in previous
(smaller) extensions, until rational functions. There is a simpler and more efficient
version of the Risch algorithm—to write down the general form of the result with
unknown coefficients, differentiate it and equate to the integrand. Then the problem
reduces to solving a linear system. This approach is guaranteed to be correct if we
know upper bounds on the degrees of the polynomial P (x,y1,y2,...) in its variables.
But such upper bounds are not always known (as we have seen in the examples, they
are known if there is no denominator). Therefore some heuristic rules to bound the
degrees of P are used. This can give a situation when no result is found, though it
really exists (but has a larger degree in some variables).

The Risch algorithm is an outstanding achievement of mathematics in the
twentieth century. But it does not solve all problems with indefinite integration. The
answer that no result exists in elementary functions is not very useful. It would
be much better to get the result with some special functions. There were attempts
to generalize the Risch algorithm to some special functions (the error function,
polylogarithms). Some of them are implemented in Mathematica.



Chapter 11
Linear Algebra

11.1 Constructing Matrices

A matrix in Mathematica is a list of lists; all the lists—rows of the matrix—must
have the same length.
In(l] := M = {{a,b},{c,d}}
out(1] = {{a,b},{c.d}}
MatrixForm is used to print a matrix nicely.
In[2] := MatrixForm[M]
Out[2]//MatrixForm =
ab
cd
If the (i, j)th element of a matrix is given by an expression depending on i and j,
this matrix can be constructed by the function Table.
In[3] := A = Tableafi, j}, {i, 1,2}, {j,1,2}]
Out[3] = {{a[1,1],a[1,2]},{a[2,1],a[2,2]}}
In[4] := B =Table[1/(i+j+1),{i,1,2},{j,1,2}]

11 11
oud={ {55 {3}]
In[5] := MatrixForm[A]
Out[5]//MatrixForm =

(a[L 1] a[1,2]>
al2,1] a[2,2)

In[6] := MatrixForm[B]

Out[6]//MatrixForm =

The function Array is similar, but its first argument is a function of two parameters,
not an expression. It may be just a symbol or an anonymous function (Function).
In7] := A = Array(a, {2,2}]

Out[7] = {{a[1,1],a[1,2]},{a[2,1],a[2,2]}}

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 91
DOI 10.1007/978-3-319-00894-3_11, © Springer International Publishing Switzerland 2014
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In[8] := B = Array[Function[{i, j},1/(i+ j+1)],{2,2}]

11 11
outs = { {33} {33} )
Mathematica does not distinguish column vectors and row vectors; both are
just lists.
In[9] := V = Table[v[i], {i,1,2}]
Out(9] = {v[1],v[2]}
In[10] :=V = Array|v,2]
Out[10] = {v[1],v[2]}
In[11] := U = Array|u,2]
Out[11] = {u[1],u[2]}

11.2 Parts of a Matrix

A matrix element.
In[12] := A[[1,2]]
Out[12] = a[1,2]
A row.
In[13] := A[[1]]
Out[13] = {a[1,1],a[1,2]}
A column.
In[14] := A[[A1L,2]]
Out[14] = {a[1,2],a[2,2]}
A new value can be assigned to a matrix element.
In[15] := M([[1,2]] =0
Out[15] =0
In[16] := MatrixForm[M]
Out[16]//MatrixForm =
a0
cd
Add 1 to the first row.
In[17] := M[[1]] ++
Out[17] = {a,0}
In[18] := MatrixForm[M]
Out[18]//MatrixForm =
I1+al
c d
Add the second column to the first one.
n[19] := MI[ALL 1]|+ = M([AIL,2]
Out[19] ={2+a,c+d}
In[20] := MatrixForm[M)|
Out[20]//MatrixForm =

2+al
c+dd
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11.3 Queries

The function VectorQ checks if its argument is a vector, i.e., a list whose elements
are not lists.
In[21] := {VectorQ[V], VectorQ[M] }
Out[21] = {True, False}
The function MatrixQ checks if its argument is a matrix, i.e., a list of same-length
lists.
In[22) := {MatrixQ[V], MatrixQ[M], MatrixQ[{{a, b}, {x,»,2}}]}
Out[22] = {False, True, False }
The argument of the function Dimensions must be a matrix. This function returns
a two-element list—the numbers of rows and columns of the matrix.
In[23] := Dimensions[M]
Out[23] ={2,2}
It can be conveniently used for simultaneous assignment to two variables.
In[24] := {n1,n2} = Dimensions[{{a,b,c},{x,y,2}}]

out]24] = {2,3}
In[25] :=nl
Out[25] =2
In[26] :=n2
out[26] = 3

In[27] := Clear[M,n1,n2]

11.4 Operations with Matrices and Vectors

Vectors can be added and multiplied by scalar expressions.
In[28] :=2xV+U
Out[28] = {u[1] + 2v[1],u2] +2v[2]}
Matrices can be added and multiplied by scalar expressions.
In[29] := MatrixForm|[A + 2 * B]
Out[29]//MatrixForm =
(%—i—a[l, 1] %—l—a[l,Z])
5 +a2,1] £ +al2,2]

The scalar product of two vectors.
In[30] :=V.U
Out[30] = u[1]v[1] 4 u[2]v[2]
The product of a matrix and a column vector.
In[31]:=AV
Out[31] = {a[1,1]v[1] +a[1,2]v[2],a[2, 1]v[1] +a[2,2]v[2]}
The product of a row vector and a matrix.
In32] :=V.A
Out[32] = {a[1, 1]v[1] + a[2, 1]v[2],a[1,2]v[1] +a[2,2]v]2]}
The product of two matrices.
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In[33] := MatrixForm|A.B|
Out[33]//MatrixForm =
ta[l,1]+ 4a[1 2] ta[l, 1]+
3a2,1]+ 1a[2,2] 7a[2,1]+
It is not commutative.
In[34) := MatrixForm[A.B — B.A]
Out[34]//MatrixForm =
( 1a[1,2] — 1a[2,1] all,1] —Ba[l,Z]—%a[2,2]>
—1a[l, 1]+ &a[2,1]+ 1a[2,2] —1a[1,2]+ 1a[2,1]
Determinant (the matrix must be square).
In[35] := Det[A]
Out[35] = —a[l,2]a[2,1] +a[1,1]a[2,2]
Trace (the matrix must be square).
In[36)] := Tr[A]
Out[36] = a[l,1] +a|2,2]
Transposing.
In[37] := MatrixForm[Transpose[A]]
Out[37]//MatrixForm =
a[l,1] a[2,1]
(a[172] al2,2) >
The inverse matrix.
In[38)] := MatrixForm|Inverse[A]]
Out[38]//MatrixForm =

| —n|—
Q
™=
DO
N———

Bl—

al2,2] _ all,2]
[T [T TaR2] ~ ~ali2Jal 1T vall ]M)
a2, al11]
T —a[1.2]al2,1]+a[1,1]a[2,2] —a[l,2]a[2,1]+a[1,1]a[2,2]

A square matrix can be raised to an integer power.
In[39] := MatrixForm[MatrixPower[B, 3||
Out[39]//MatrixForm =
197 1009
(7 40 )

14400 6000
The power —1 is the inverse matrix.
In[40] := MatrixForm|[MatrixPower|B, —1]|
Out[40]//MatrixForm =

48 —60

—60 80

This is the solution of the linear system A.X =V.
In[41] := Together[Inverse[A].V]
af2,2]v[1] —af1,2]v[2] al2,1]v[1] —af1,1]v[2]
Out[41] = ,
—all,2]a[2,1]+a[1,1]a[2,2] a[1,2]a[2,1] —a[1,1]a[2,2]

The same can be done using LinearSolve.
In[42] := LinearSolve[A, V]

_ [ al2,2p[1] -4
Outld2 =\ =i 2+ a
In[43] := Clear[A,B,U,V]

1,2]v[2] al2,1]v[1] —a[1,1]v[2] }
[1,1]a[2,2] a[l1,2]al2,1] —a[1,1]a[2,2]
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11.5 Eigenvalues and Eigenvectors

Here is some symbolic matrix.
In[44] := MatrixForm[M =
{{(1 =x)"3%(3+x),4*%xx(1-x"2), 2% (1 —x"2)x(3—x)},
{4xx%x(1=x"2),—(14+x)"3%(3—x),2% (1 —x"2)*(3+x)},
{=2%(1=x"2)%(3—x),2% (1 —x"2) % (3+x),16xx}}]
Out[44]//MatrixForm =
(1—x)3(3+x) dx(1-x*)  —2(3—x)(1—x?)
4x(1-x%) —(B=x)(1+x)° 23+x)(1-x%)
—2(3—x) (1—-x?) 2(3+x) (1—x?) 16x
It is singular.
In[45] := Det[M]

Out[45] =0

Its rank.

In[46] := MatrixRank[M]
Out[46] =2

The function NullSpace returns a list of vectors forming a basis of the null space of
the matrix, i.e., the subspace of vectors nullified by the matrix.
In[47] := s = NullSpace[M]

ouit - ({22 )}

In this case, the null space is one-dimensional—it has a single basis vector. Let’s
check it.
In[48)] := Together[M.s|[1]]]
Out[48] = {0,0,0}

The function Eigenvalues returns a list of eigenvalues of a matrix.
In[49)] := Simplify[Eigenvalues[M], Element[x, Reals]]
ouf4s] = {0, (3 +%)",— (3+)°}
We have added the second argument to Simplify which informs Mathematica that
the variable x is real. The function Eigenvectors returns the list of the corresponding
eigenvectors (in the same order).

In[50] := Simplify[Eigenvectors[M], Element[x, Reals]]

2 2 —14+x 1—x 1+x 1+4+x
Out|50] = — 1 1 1
u[ ] {{ _1+x71+x7 }7{ 1+X 9 2 ) }a{ 2 7_1+x7 }}

The function Eigensystem returns both. It is convenient for simultaneous assignment
to two variables.

In[51] := {val, vec} = Simplify[Eigensystem|[M], Element[x, Reals]|;

Let’s check.

In[52] := Do[Print[Simplify[M.vecl[i]] — val[[i]] + vec[[il]]], {i, 1,3}]

{0,0,0}

{0,0,0}

{0,0,0}

In[53] := Clear[M, s, val, vec]
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11.6 Jordan Form

Here is a matrix of rational numbers.
In[54] := MatrixForm[M =
{{13/97 _2/91 1/314/972/3}7
{-2/9,10/9,2/15,-2/9,—11/15},
{1/5,-2/5,41/25,-2/5,12/25},
{4/9,-2/9,14/15,13/9,-2/15},
{-4/15,8/15,12/25,8/15,34/25} }]
Out[54]/ /MatrixForm =

Bo_21 4 2
0 3 %
[T R TS
5 5 25 5 25
1 38192
% 2 B¢ P

The functilgn .lli)r(%aslnlil)secoirslposition returns a pair of matrices—the Jordan form J
and the transformation matrix P which reduces our matrix to its Jordan form.
In[55] := {P,J} = JordanDecomposition[M];

In[56] := MatrixForm[J]

Out[56]//MatrixForm =

100 0 O
021 0 O
002 0 O
0001-1 O
000 0 141

In[57] := MatrixForm[P]
Out[57]//MatrixForm =

5 5i
2 11 0 T%i _511_é
_p_lpg_3 3
0 ()2 6 _g _6§
11 (5)—é si'
6 6
9
0 0 5 1 1
Let’s check.

In[58] := MatrixForm[P.J.Inverse[P] — M]
Out[58]//MatrixForm =

00000

00000

00000

00000

00000

Here are the eigenvalues and the eigenvectors of our matrix. Note that only

one eigenvector corresponds to the eigenvalue 2, because the corresponding Jordan
block has the size 2 x 2. The eigenvectors are the columns of the transformation
matrix P.
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In[59] := {val, vec} = Eigensystem|[M];

In[60] := val
Out[60] = {2,2,1+i,1 —1i,1}
In[61] := vec
1 5 51 3 5i
OUt[él] - {{15_5707 170}7{070707070}7 {_Ea€7_17€7 1}7

5 51 3 Si
{Ea_g7_17_ga 1}7{_21_2707170}}

In[62] := Clear[M, J, P, val, vec]

11.7 Symbolic Vectors, Matrices, and Tensors

Let’s inform Mathematica that u, v, and w are symbolic three-dimensional vectors
with real components. The scalar product is u.v, and the vector product is Cross|u, v].
The function TensorReduce simplifies expressions with vectors.

In[63] := $Assumptions = Element[u|v|w, Vectors[3, Reals]]

Out[63] = (u|v|w) € Vectors[3,Reals]

In[64] := TensorReduce[u.v — v.u|

Out[64] = 0
In[65] := TensorReduce[Cross|u, v] + Cross[v, u]]
Out[65] = 0

In[66] := TensorReduce[u.Cross[v, w] + v.Cross[w, u] + w.Cross[u, V]|
Out[66] = 3u x v.w
In[67] := TensorReduce|[Cross|u, Cross[v, w]||
Out[67] = —wu.v+vu.w
In[68] := TensorReduce[u.(2 v+ 3 xw)]
Out[68] = 2u.v+ 3u.w

Now let’s say that # and v are d-dimensional vectors, and S and A are d x d
matrices, S symmetric and A antisymmetric.
In[69] := $Assumptions = {Element[u|v, Vectors[d,Reals]|,

Element[S, Matrices[{d,d},Reals, Symmetric[{1,2}]]],
Element[A,Matrices[{d,d},Reals, Antisymmetric[{1,2}]]]};

In[70] := TensorReduce([v.A.(u + v)]
Out[70] = —u.A.v
In[71] := TensorReduce[u.S.v + v.S.u
Out[71] = 2u.S.v
The tensor product S; ;Ay; is contracted in j and k and in 7 and /.
In[72] := TensorReduce|[TensorContract[TensorProduct[S,A],{{2,3},{1,4} }]]
Out[72] =0

The Riemann curvature tensor has the properties R; jx; = —Rjjx; and R; i =
Reiij-
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In[73] := $Assumptions = Element[R, Arrays[{4,4,4,4}, Reals,
{{{2, 1,3,4}, _1}1 {{3141 112}7 1}}]]

Out[73] = R € Arrays[{4,4,4,4},Reals, {{Cycles[{{1,2}}],— 1},
{Cycles[{{1,3}, {2,411, 1}, {Cycles[{{3,4}}], ~ 1}}]

In[74] := TensorReduce[TensorContract|[R, {{1,2} }]]

Out[74] = 0

The Ricci tensor.

In[75] := R2 = TensorContract[R, {{1,3}}]

Out[75] = TensorContract[R,{{1,3}}]

In[76] := {TensorRank[R2], TensorDimensions[R2], TensorSymmetry[R2] }

Out[76] = {2,{4,4},Symmetric[{1,2}]}

RijkiRijri+Rijki Rerji + Rijri Rikji-

In[77] := TensorReduce[
TensorContract[TensorProduct[R, R], {{1,5},{2,6},{3,7},{4,8} }]+
TensorContract[TensorProduct[R,R],{{1,7},{2,8},{3,6},{4,5}}]+
TensorContract|[TensorProduct([R, R], {{1,5},{2,7},{3,6},{4,8} }]]

Out[77] = TensorContractR ® R, {{1,5},{2,7},{3,6},{4,8}}]

Unfortunately, Mathematica cannot take R; jx; + R;x; j + R;; jx = 0 into account.

In[78)] := $Assumptions = True;



Chapter 12
Input-Output and Strings

12.1 Reading and Writing .m Files

When developing any nontrivial Mathematica program, it is better to write it in a
text file, using a text editor, and then to read it into a fresh Mathematica session.
In this way, your actions will be reproducible. You can fix a bug and see what has
changed. Suppose we have a text file called wrong.m. It contains the text

In[1] := FilePrint["wrong.m”]

a=x"242%x*y+y"\2;

b=x"3+3#*x"\2*y

+3#xty 24y"3;

We can read it. Now the variables a and b have values:

In[2] := <<wrong.m

In[3] := {a,b}

Out[3] = {x* + 2xy +y%,x* +3x%y}

The value of b is not what we expected. Why? When Mathematica sees an end of a
line, it checks if the text read so far forms a syntactically correct expression. If so, the
expression is considered complete; the next line starts a new expression. Otherwise,
the next line is considered a continuation of the current expression. Thus our file
wrong.m contains not two but three expressions: two assignments (to a and b) and
a separate polynomial consisting of two terms. One way to prevent such unintended
splitting of multiline expressions is to place a binary operator (e.g., + or —) at the
end of each line. Mathematica always writes its result in such a way. But it is easy
to forget about it when writing a long expression in a text editor. Also, if we paste
results from some other system into a Mathematica program, it would be tedious
and error-prone to bring long expressions to such a form by hand. It is better to
enclose each multiline expression in extra parentheses, then any incomplete subset
of lines is not syntactically correct. Therefore we edit our wrong.m and obtain a file
right.m:

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 99
DOI 10.1007/978-3-319-00894-3_12, © Springer International Publishing Switzerland 2014
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In[4] := FilePrint[ right.m”]
a=x"242%x*y+y"\2;

b=(x"3+3*x" 2%y

+3¥x%y 2+y"3);

Now everything’s all right:

In[5] := <<right.m

In[6] := {a, b}

Out[6] = {x* + 2xy +y*,x° + 3%y +3xy* +)°}
In[7] := Clear|a, b]

Let us modify the file:

In[8] := FilePrint[’right2.m"”]

a=x"242%x*y+y"2;

(x"'3+3*x/ 2%y

+3#xty"\ 24y"3)

Now the last expression is not an assignment, but just a polynomial. What happens
if we read it?

In[9] := <<right2.m

Out[9] = x> +3x%y + 3xy* +°

In[10] :=a

Out[10] = x? + 2xy + y*

The operator << (its full name is Get) returns the value of the last expression.
Therefore, we can use it in an assignment (or as an argument of any other function):
In[11] := b = <<right2.m
Out[11] = x> + 3x%y + 3xy> +»°
In[12] := {a,b}

Out[12] = {xz +2xy + 3%, + 3%y +3xy° + y3}
In[13] := Clear[b]

The function Get tries to find the file in all directories in the list $Path. Its default
value contains, in particular, the current directory “.”. You can add more directories
to it using list operations, such as Append, Prepend, or Join.

And this operator (its full name is Put) writes the value of an expression into a file.
The value is written in the input form, and hence can be later read by Mathematica.
In[14] := a>>result.m
In[15] := FilePrint[ result.m”]

x"\2 + 2¥x*y + y"'2

In[16] := Clear[d]

In[17] := a = <<result.m
Out[17] = x* + 2xy +y*
In[18]:=a

Out[18] = x* + 2xy +y*

The function >> writes just an expression, not an assignment to some variable.
Often it is more useful to write an assignment (or several of them) which defines
some variable (or function). Suppose we have

In[19] := f[0] = 1; fln ] :=nxfln—1]
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We can save the definition of the function f into a file:
In[20] := Save[*f.m”, f]
In[21] := FilePrint[’f.m”

fl0]=1

fln ] =i fla— 1]
In[22] := Clear|f]
In[23] := <<f.m

In[24] := £[10]
Out[24] = 3628800
In[25) := Clear[f]

12.2 Output

The function Print prints expressions (including strings, plots, etc.). It does not sep-
arate them by spaces, so that it is usually a good idea to insert ” ” between expres-
sions. It adds a newline at the end.

In[26] := s = A strings\nwith a newline”;

In[27] =p= PIOBD[a, {x) _1, 1}, {}’, _11 1}]’

In[28] := Printfs,” ",a,” ", p]

Out[28] = A strings

with a newline x> + 2xy + y?

In[29] := Clear|p]

The function Print is most useful when you want to know what happens at some
point deep inside your own function when it is called. If you want to write expres-
sions to a file instead, use Write:

In[30] := f = OpenWrite[res.m”
Out[30] = OutputStream|res.m, 19]
In[31] := Write[f, s]; Write[f,a]
In[32] := Close|[f]

Out[32] = res.m

In[33] := FilePrint[ res.m”]
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A strings\nwith a newline

x"\2 + 2%x*y 4+ y/'2

Expressions are written in the input form and can be read later.
In[34] := Clears,a]

12.3 C, Fortran, and TgX Forms

Suppose you have derived analytically a valuable expression a:
In[35) := a = Sin[x]"2/x"2 -1
)

Out[35] = —1 + Sm[zx ]
Now you want to c)lco some large-scale numerical calculations with it. In order to
avoid possible errors when translating this expression into a form suitable to inclu-
sion into a numerical program, it is a good idea to do this step automatically. The
function CForm converts an expression into a form which can be inserted into a C
(or C++) program.
In[36] := CForm|[d]
Out[36] = -1 + Power(Sin(x),2)/Power(x,2)
The macros Power, Sin, and friends are defined in the file mdefs.h which is supplied
with Mathematica. If the expression contains special functions, you will need some
extra C libraries which can calculate them numerically. Of course, it is better to
write the C form of an expression into a file and then insert it into your program. For
those old-fashioned enough to do numerical computations in Fortran, there is also
FortranForm.
In[37] := FortranForm|a]
Out[37] = -1 + Sin(x)**2/x**2

At last, all computations are done, and you are writing an article to be submitted
to a scientific journal. You want to include your valuable expression a and to avoid
errors in process of doing so. Scientific articles are written in IATEX (in most cases).
The function TeXForm converts an expression into a form which can be inserted
into a ISTEX file.
In[38)] := TeXForm|[a]
Out[38] = \frac{\sin "2(x) }{x"2}-1
In[39)] := Clear|a]

12.4 Strings

The simplest string operation is concatenation:
In[40] := s1 ="This”; s2 = "is” ; s3 = "a string”;
Inf[4]]:=5s=51<>""<>s2<>""<>53
Out[41] = This is a string
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In[42] := FullForm(s]
Out[42]//FullForm =
”This is a string”
In[43) := StringLength(s]
Out[43] =16
In[44] := Clear][s,s1,s2,s3]
Mathematica has string patterns and substitutions.
In[45] := StringReplace[ abcabd”, ”ab” — ”AB”]
Out[45] = ABcABd
Xx_means an arbitrary (single) character.
In[46] := StringReplace[ alb a2b a3c”,a ~~ x_~~b — A ~~ x ~~ B|
Out[46] = A1B A2B a3c
In[47] := StringReplace[alb2 al2b”,
ar~~x_~~vbr~y 5 Ay~ B o]
Out[47] = A2B1 al2b
Internally, these patterns are the function StringExpression.
In[48] := FullForm[a ~~ x|
Out[48]//FullForm =
StringExpression|[a, Pattern|x, Blank[]]]
A pattern with two identical arbitrary characters.
In[49] := StringReplace[ albl alb2 a2b2”,
a~~x_~~bA~~x.— A~ x o x o Bl
Out[49] = A11B alb2 A22B
b|c means b or c.
In[50] := StringReplace[ abcd abcd”, bjc — X]
Out[50] = aXXd aXXd
X__means any nonempty sequence of characters.
In[51] := StringReplace[ab”,a ~~ x__~~b~~x__— A~ x ~v B ooy
Out[51] = ab
In[52] := StringReplace[al2b12”,
a~~x__~~be~v x5 A~ x o~ B
Out[52] = A12B12
Xx___means any sequence of characters (including empty).
In[53] := StringReplace[’ab”,a ~~ x___~~b o~ x_ o — A~ x oo B o]
Out[53] = AB
In[54] := StringReplace[a12b12”,
a~~xX___~~bra~xo_ 5 A~ x s~ B
Out[54] = A12B12
As in the case of general patterns, /; means a condition (such that).
In[55] := StringReplace[albl alb2”,
a~~x_~~bA~y [ixl=y = A~ x v~y s B
Out[55] = albl A12B
The function StringMatchQ tests if a string matches a pattern.
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In[56] := {StringMatchQ["alb1”,a ~~ x_~~b ~~ x ],
StringMatchQ["alb2”,a ~~ x_ ~~ b~ x ],
StringMatchQ["alblc”,a ~~ x_~~b ~~x_]}
Out[56] = {True, False, False }
The function StringFreeQ tests if there are no substrings matching a pattern.
In[57] := {StringFreeQ[’albl1”,a ~~ x_~~b ~~x ],
StringFreeQ[’alb2”,a ~~x_~n~b ~~x ],
StringFreeQ|[’alblc”,a ~~ x_~~b ~~x_|}
Out[57] = {False, True, False }
The function StringSplit splits a string at each occurrence of a pattern; if the
second argument is not given, then at each white space.
In[58] := StringSplit[*xxalbyya2bzz”,a ~~ x_~~ b]
Out[58] = {xx,yy,zz}
In[59] := StringSplit[*xx yy zz\nuu\tvv\t\t ww”
Out[59] = {xx,yy,zz,uu, vv,ww}
Mathematica contains many more string manipulation functions and additional
powerful features of string patterns and can be used for text processing instead of
Perl. For more details, see the online help.
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Packages

13.1 Contexts

When writing a large program, it is easy to accidentally use one symbol for two
different quantities in different parts of the program. This leads to difficult-to-find
bugs. This is especially true if parts of the program are written by different per-
sons (in particular, when some packages from the standard library, or third-party
packages, are used). To avoid such problems, contexts are used.

In Mathematica, a full symbol name consists of two parts: the context and the
short name. Two symbols in different contexts may have the same short name. For
example, the global symbol x and the symbol x in the contexts a and b are unrelated.
Inl] :=x=1; ax=2; {x,a'x,b'x}

Out[l] ={1,2,b'x}

Contexts may be nested. Here the variable x lives in the context b which lives in the
context a (and thus is unrelated to the global context b used above).

In2] :=a'b'x

Out[2] =ab'x

The current default context is held in the variable $Context. It is used when a

new symbol is created without specifying its context.

In[3] := $Context

Out[3] = Global’

When a symbol without an explicit context is used, it is being searched in contexts
specified in $ContextPath.

In[4] := $ContextPath

Out[4] = {PacletManager’, QuantityUnits’, WebServices, System", Global }

Built-in symbols live in the context System'.

In([5] := {Context[x], Context[a'x], Context[b’x], Context[a'b'x], Context[Pi] }

Out[5] = {Global',a",b",a'b", System’ }

You can change $ContextPath using standard list functions. The function Remove
removes symbols from the system.

In[6] := Clear|x,a’x]; Remove[a'x,b'x,a'b'x]

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 105
DOI 10.1007/978-3-319-00894-3_13, © Springer International Publishing Switzerland 2014
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13.2 Packages

Mathematica comes with a library of packages extending its built-in functionality.
A package can be loaded by
In[7] := <<Quaternions'
Now this context is prepended to $ContextPath.
In[8] := $ContextPath
Out[8] = {Quaternions’, PacletManager', QuantityUnits", WebServices,
System’, Global }
Short names will be searched in this context first, possibly shadowing variables and
functions from Global.
In[9] := Context[Quaternion]
Out[9] = Quaternions’
The package Quaternions lives in the directory Quaternions, which lives in the stan-
dard library directory.

Many additional packages are available at
http://library.wolfram.com/infocenter/MathSource/. You can download them and in-
stall somewhere in your $Path.

You can instruct Mathematica to load a package whenever any function defined
in it is used.

In[10] := DeclarePackage[’NumericalCalculus™,
{”EulerSum”,”NLimit”,”ND”,”NSeries”, "NResidue}|

Out[10] = NumericalCalculus’

In[11] := ND[x"2,x,1.0]

Out[l1] =2.

13.3 Writing Your Own Package

Begin, End

93 99

Begin[’a”] changes the default $Context; all symbols defined after this will live in
this context.
In[12] := Begin["a™]

Out[12] =a

In[13] := $Context

Out[13] =a

In[14] := z = 0; Context(z]

out[14] = @

End][] restores the previous $Context.
In[15] := End]]

Out[15] =a


http://library.wolfram.com/infocenter/MathSource/
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In[16] := $Context
Out[16] = Global
In[17] :=a’z
Out[17] = 0

BeginPackage, EndPackage

5 N9y

BeginPackage[’a™”| sets $Context and changes $ContextPath in such a way that only
the contexts @ and System' are available.

In[18] := BeginPackage[”a"]

Out[18] =a
In[19)] := $Context
out[19] = &

In[20] := $ContextPath
Out[20] = {a, System'}
In21):=u=1;

EndPackage]] restores the previous $Context; ContextPath gets its old value
prepended by a, so that symbols defined after BeginPackage[a'] remain available.
In[22] := EndPackage]]

In[23] := $Context

Out[23] = Global'

In[24] := $ContextPath

Out[24] = {a’,NumericalCalculus’, Quaternions’, PacletManager’,
QuantityUnits’, WebServices', System’, Global }

In[25) :=u

Out[25] =1

In[26] := Clear|z, u]

A Typical Package

A simple package looks like this.
In[27] := FilePrint[”APackage.m”
BeginPackage[” APackage™]
f::usage = ”f squares its argument”

Begin["Private™]

glx]=x"2

f[x ] = Expand[glx]
End[]

EndPackage]]

After BeginPackage[”APackage™], publicly available functions and variables of
the package are introduced, usually by assignments to their usage messages.
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Implementation of the package is done in the context APackage Private’, which
may contain additional functions and variables (not seen by users of the package).
In[28] := <<APackage’

In[29] :=2f

Out[29] = f squares its argument

In[30] := fla+b]

Out[30] = a* + 2ab + b*



Part I1
Computer Classes

Before spending your time and effort on catching a lion, check: maybe, somebody
has already caught it, and it is available for download at http://library.wolfram.
com/infocenter/MathSource/


http://library.wolfram.com/infocenter/MathSource/
http://library.wolfram.com/infocenter/MathSource/

Chapter 14
Plots

After typing a Mathematica command in its notebook interface, you can send it to
the kernel (which performs calculations) by pressing Shift-Enter. The result appears
in the output cell which follows your input cell. Both are nested in an outer cell
representing a calculation step. Later you can return to this input cell, edit the com-
mand, and execute it again. The old output will be replaced by the new result. It is
allowed to type several commands in a single input cell, but this is not convenient—
don’t do so unless you have good reasons.

Mathematica Help contains all the necessary information. The Help menu con-
tains Documentation Center, Function Navigator, and Virtual Book (among other
things). You can quickly get help for a specific function if you select it with the
mouse and press F1.

14.1 2D Plots

Function Plot

See Help — Virtual Book — Visualization and Graphics — Graphics and Sound —
Basic Plotting, and Help — Function Navigator — Visualization and Graphics —
Function Visualization — Plot for more details.

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 111
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In[1] := Plot[Sinx], {x,—10,10}]

out[l] = - ‘

-10 -5 L 5 10

- 05 -

Several Functions

In[2] := Plot[{Sin[x], Cos[x]}, {x,~10,10}]

1.0/
/ .

You can set colors and styles of the curves (Virtual Book — Visualization and
Graphics — Graphics and Sound — Options for Graphics; Function Navigator —
Visualization and Graphics — Options and Styling — Plotting Options — Plot-
Style).
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In[3] := Plot[{Sin[x], Cos|[x]}, {x,—10, 10}, PlotStyle— >{Red, { Blue, Dashed} }|

1.0
/ .

Unbounded Function
In[4] := Plot[Tan[x], {x,—10,10}]
or
2f
Out[4]:_‘]/{{““7‘5‘ ;1‘0
ol
_al
6l

Mathematica has chosen some y scale. How to set it? Find in the Help.
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In[5] := Plot[Tan[x], {x, —10, 10}, PlotRange—>{—3,3}]

3~

w

Out[S]:_l/SlO

Logarithmic Scale

If our function is positive and varies by orders of magnitude in our region, it is
convenient to use logarithmic scale in y. If the independent variable also varies by
orders of magnitude, the x-axis scale also should be logarithmic (Function Navigator
— Visualization and Graphics — Function Visualization — LogPlot, LogLogPlot).
In[6] := LogPlot[Exp[x] + 1, {x,—10,10}]

104 F

1000 -

Out[6] =

100 £
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In[7] := LogLogPlot[x"3 + 2 xx, {x, 10" — 2,10"2}]

106,

10*

Out[7] = o

0.1 1 10 100

Parametric Curve

Lissajous figures.

In[8] := Manipulate[ParametricPlot[{Sin[a ¢ + ¢], Sin[b ]}, {t,0,2 % Pi}],
{a,1,10,1, Appearance—>"Labeled”},
{b, 1, 10, ]-,Appearance_>”l‘abeled”}z {{C, Pi/2},0,Pi/2}]

a S 3
b—G =2
¢ [}.

Out[8] =
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Implicit Plots

In[9] := ContourPlot[x"2 + y*2 ==1,{x,—1,1},{y,—1,1}]

Lo T T T T — 1]

0.5 —
Out[9] = oo i

-0.5 -

Sog oy e

-1.0 -0.5 0.0 0.5 1.0

In[10] := ContourPlot[x x y, {x, —4,4},{y, —4,4},Contours—>{1,2,3,4}]

4+

Out[10] = o888
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Experimental Points

In real life they are being read from a file. We don’t have such a file at hand, and
therefore we’ll generate a list of “experimental” points according to some formulas.
In[11] := I = Table|[N[Sin[Pix*n/20]],{n,0,20}]

Out[11] = {0.,0.156434,0.309017,0.45399,0.587785,0.707107,0.809017,
0.891007,0.951057,0.987688,1.,0.987688,0.951057,0.891007,0.809017,
0.707107,0.587785,0.45399,0.309017,0.156434,0.}

Function Navigator — Visualization and Graphics — Data Visualization — List-

Plot.

In[12] := p1 = ListPlot[l]

1oF .o
0.8 ° M
0.6 - . .
Out[12] =
0.4
0.2
- n n n 1 n n n n 1 n n n n 1 n n n n 1 "
5 10 15 20

Let’s try to fit these points by a quadratic polynomial.
In[13] := f =Fit[l, {1,x,x2},x]

Out[13] = —0.24953 +0.222936x — 0.0101334x>
In[14] := p2 = Plot[f, {x,1,21}]

1.0~

0.8 -

Out[14] =

L S S S I
10 15 20

And now the curve and the points on a single plot (Function Navigator — Visualiza-
tion and Graphics — Data Visualization — Annotation & Combination — Show).
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In[15] := Show[p1,p2]
1.0+

0.8+

0.6;
Out[15] =

0.4+

.

In[16] := Clear|l, f,pl,p2]
Inequalities

Function Navigator — Visualization and Graphics — Function Visualization —
RegionPlot.
In[17] := RegionPlot[x"2 + y"2 < 1&&x+y > 0,{x,—1,1},{y,—1,1}]

1.0 -

0.5+ -

Out[17] = oo i

-0.5- -
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Vector Fields

In[18] := VectorPlot[{y + 0.5 xx,—x+ 0.5y}, {x,—1,1},{y,—1,1}]

Out[18] = ool

\\\\«(/ ¥
A S N 'S

F R R O w— w— o & g Y
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A S & I IS4

RAAS X B 'S
4.0—\\*%4/[//// /

A S S o e o Sy
| 1 1 1 1 | 1 1 1 1 | 1 1 1

out[19] = oo \\ \{\\\ \K\NG::\\Q\\:\\\
| \\\\\éﬁfz\ fi

wwwwwwwwwwwwwwwwwwwww
1.




120 14 Plots

14.2 3D Plots

Hat

Let’s draw a hat with a wavy pent. First define a function.

In[20] := f[x_,y ] := With[{r = Sqrt[x"2 +"2]}, Sin[r] /r]

Virtual Book — Visualization and Graphics — Three-Dimensional Surface Plots;
Function Navigator — Visualization and Graphics — Function Visualization —
Plot3D.

In[21] = PIOBD[f[x,y], {x’ _10, 10}, {y, _101 10}]

And why is the top of the hat cut off?
In[22] := Plot3D|f[x,y], {x, —10,10},{y,—10,10}, PlotRange—>All]
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All 3D plots can be rotated by the mouse. If you press Shift, the mouse will move
the plot; and if you press Ctrl, then it will resize it.
In[23] := Clear|f]

Sphere

In[24] := ParametricPlot3D[{Sin[6] x Cos[¢], Sin[60] * Sin[¢], Cos[6]},
{O,O’Pi}» {¢»0»2 *Pi}]

05

Y

05

10

Donut

Take a point on the x-axis at a distance R from the origin; draw a circle of a radius r
around it in the x, z plane; and rotate it around the z axis. You will get a donut (torus).
Let R be 1; r can be tuned by the mouse from O to 1, with the initial value 0.3.
In[25]:=R=1;
In[26] := Manipulate|
ParametricPlot3D|
{(R+ r=Cos[6]) * Cos[@], (R + r+ Cos[6]) * Sin[¢], r  Sin[6] },
{6,0,2xPi},{9,0,2xPi}],
{{r.0.3},0,1}]
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Out[26] =

In[27] := Clear|R]

Spiral

ParametricPlot3D can draw curves, too.
In[28] := Manipulate[ParametricPlot3D[{Cos|t], Sin[t],a 1}, {t,0,20},
PIOtRange_>{{_1, 1}, {_ 1, 1}, {0,2}}],
{{a,0.1},0,0.2}]

054"

Out[28] =

14 Plots
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Implicit Surface

123

In[29] := ContourPlot3D[x"2 + y"2 + 22 == 1, {x, —1,1},{y,—1,1},{z,—1,1}]

1.0

05
Fad

05!
Out[29] =
-0.5
00> _~
“';.-.MH' .,
o
Inequalities

In[30] := RegionPlot3D[x"2 + y*2 + 22 < 1&&x+y+2> 0,
{x’ _1, 1}, {)’, _ls l}s {Zs _1, 1},
ViewPoint—>{—2,—10,2}, PlotPoints—>100]

0s

Out[30] =

1 00

105
05"
00%,
X
05 =10

iD - o5 T



Chapter 15
Trigonometric Functions

Statement of the Problem

Mathematica can calculate Cos and Sin for many arguments equal to 7 times ratio-
nal numbers. For example,
In[l] := Table[Cos[Pi/n] {n,1,12}]

1
Out[l]_{ 1 0 27 4(1+\/_) \/_ Cos{ } Cos{8} Cos{g}
5 5
— _|_ \/——,COS |:£:| 7M
8 8 2v2
But it does not apply the half-angle formulas in all possible cases. We’ll write
our own cos function which does this; then

In[2] :=sin|x_] := cos[x — Pi/2]

Simple Cases

These cases should be considered separately because Mathematica does not treat
them as rational numbers times 7.

In[3] := cos[0] = 1; cos[Pi] = —

In[4] := cos[n_Integer x Pi] := (—1)"n

General Case
In[5] := cos[r_Rational * Pi] := Which[r < 0,cos[—r *Pi],

r > 2, cos|FractionalPart[r/2] x 2 ¥ Pi],r > 1,cos[(2 — r) x Pi],
r>1/2,—cos[(1—r)xPi,

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 125
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EvenQ[Denominator{r]], Simplify[Sqrt[(1 + cos[2  r x Pi]) /2]],
True, Cos|[r* Pi]

For example,
In[6] := {Eos[Pi/ 32],cos[—65 = Pi/32],cos[3 x Pi/32],cos[33 * Pi/32]}

Out[6 {—\/2+\/2+ 242, \/2+\/2+ 2+\/_
%\/2+\/2+\/2\/_,%\/2+\/2+\/2+\/§}

In[7] := {cos[Pi/48],cos|5 * Pi/48],cos[7 x Pi/48]}

- (oo o i oo
%W}

In[8] := {cos[Pi/40],cos[3 * Pi/40]}

Check

In[9] := check[d_,n_] := Module[{e = 0,x,ex},
Do|x = i/d * Pi; ex = Abs|N|[cos[x] — Cos|[x]]]; Iflex > e,e = ex],
{i,—d*n,dxn}];
el
In[10] := {check[128, 5],check[192, 5], check[320, 5]}
Out[10] = {2.220446049250313 x 1071%,6.106226635438361 x 1016,

1.861358289723114 x 10*15}



Chapter 16
Quantum Oscillator

Catching a lion, the Schrodinger’s method: At any moment,
there is a nonzero probability that a lion is inside the cage. Sit
and wait.

16.1 Lowering and Raising Operators

The Hamiltonian of the harmonic oscillator is [18]

- ﬁ+mw2£2
2m 2

There is a dimensionful constant 7 in quantum mechanics; therefore, two quanti-
ties m and @ define a scale of length /%/(m ®), momentum /iim @, energy # @,
and any other quantity of any dimensionality. They have the meaning of the charac-
teristic amplitude, momentum, and energy of zero oscillations. We shall putz = 1,
m =1, and w = 1, thus choosing these characteristic scales as units for measurement
of corresponding quantities. Then

FI 7 pf\2 4 £2
2
Let’s introduce the operator
. X+ip
a =
V2
and its Hermitian conjugate
T 4
V2
The commutation relation [p,£] = —i implies for them
la,a%] =1.
A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 127
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The Hamiltonian is expressed via these operators as

N 1
H=ata+ -
a"a-+ R
from where we obtain [H,4] = —d, [H,a"| = a*. Therefore, if |y> is an eigen-

state of H with the energy E: H |y> = E |y>, then a|y> and a* |y> are also
eigenstates of A with the energies E — 1 and E 4 1:

Haly>= (aH —a) ly>=(E—aly>, Ha'|ly>=(E+1)a"|y>

(if only these states don’t vanish). Hence the eigenvalues of A form an arithmetic
progression with step equal to 1. It is bounded from below because H is a positive
definite operator. Therefore, there exists a state |0> with the lowest energy that
cannot be lowered any more:

alo>=o0.
Its energy is equal to %:

A 1 1
H|0>=(a"a+=)[0>==0>
| (a it 2) 0>= 5|
(this is the zero oscillations energy). Acting on |0> by the raising operator a4+ n
times, we obtain a state |n > with the energy

1
E”:n—f—z

Hence, H [n> = (a*a+3) [n>= (n+3) |[n> or
ataln>=nln>,

i.e., @ a acts as an operator of the level number.

We have d|n> = ¢, |n — 1>; it is possible to make ¢, real and positive by tuning
the phases of the states |n>. These coefficients can be found from the normaliza-
tion condition: |c,|? = <n|a*a|n> = n. The action of the operator a* follows from
Hermitian conjugation:

aln>=+/nln—1>, atln>=vVn+1jn+1>.

From this we again have a*d|n> = n|n>.
In the coordinate representation

. .d
=—i—.
5 p i

I=x

Let’s implement the operators & and @™ in Mathematica.
In[1] := a[f -] := Together|(x* f + D[f,x])/Sqrt[2]]
In[2] := ac[f ] := Together|(x * f — D[f,x])/Sqrt[2]]
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16.2 Ground State

This is the state which cannot be lowered by a.

In[3] := Eq = a[yolx]] ==

Out[3] — x‘VO[x]\/‘; W()[x] —=0

In[4] := s = DSolve [Eq, yy|[x],x]
Out[4] = { {l[/o[x] —e 7C[1]

InfS] := yo = yolxl/.s[[1]

Out[5] = e~ 2 C[1]

In[6] := Clear|Eq]

The normalization integral.

In[7] := NI = Integrate [yp"2, {x, —Infinity, Infinity }]
out[7] = v/zC[1]?

In[8] := s = Solve[NI == 1,C[1]]

Outl8] = {{cm o —ﬁ} , {C[l] R #}}
Inf9] := %,=ﬁ vo/-s((2]]

e 2
Out[9] = W

In[10] := Clear|NI, s]

16.3 Excited States

In[11] := 0] = yo;
In[12] := y(n_] := y[n] = ac[y[n — 1]]/Sqrt[n]
The wave functions of a few first states.
In[13] := Table[w{n], {n,0,10}]

X2 X2
e T Ve Tx e T (—1422) e Tx(-3+2)
T4 gla V2rl/4 ’ V3rl/4 ’

X2 X2
e 7 (3—12x%+4x%) e Tx(15—20x7 +4x*)
2\/6ml/4 ’ 2\/E7r21/4 ’
e 7 (—15+90x> — 60x* +8x°) e~ 7T x (—105+210x> — 84x* + 8x°)
12V/571/4 ’ 6+/70m!/4 ’
e T (105 — 840x% + 840x* — 224x° + 16x%)
24+/70m1/4 ’

Out[13] =

[S]

[S]
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e Tx (945 —2520x + 1512x* — 288x6 + 16x%)
721/3571/4 ’
e 7 (—945+9450x — 12600x* 4 5040x° — 720x* + 32x'7)
720V/7m' /4

And here the level number can be set by the mouse.
In[14] := Manipulate[y/[n], {n,0, 10, 1, Appearance—>"Labeled}]

[S]

Out[14] = | e x (-3+2x?)
\/§n1/4

The wave functions of a few first states.

In[15] := Plot[Evaluate[Table[y|n],{n,0,3}]], {x,—5,5}]

And this is a live plot: the level number can be set by the mouse.
In[16] := Manipulate[Plot[y[n], {x, —5,5},PlotRange — {—0.8,0.8}],
{n,0,10,1, Appearance—>"Labeled”}]



16.4 Some Properties 131

Out[16] =

16.4 Some Properties

Orthogonality and normalization.

In[17] := Distribute[y]

Out[1l7] =y

In[18] := Parallelize[Table[Table[Integrate[y/[n] * y[m], {x, —Infinity, Infinity }],
{n,0,10}], {m,0,10}]]

Out[18] = {{1,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0},
{0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0},
{0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0},
{0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0, 1,0},
{0,0,0,0,0,0,0,0,0,0,1}}

Wave functions in the momentum representation (Fourier transforms) are the same

as in the coordinate one, up to phase factors.

In[19)] := Parallelize[Table[

Cancel[Integrate[y/[n] x Exp[—I * p * x|, {x, —Infinity, Infinity }] /
Sqrt[2 +Pi]/(y[n]/.x = p)],
{n,0,10}]]

Out[19] ={1,—i,—1,i,1,—i,—1,i,1,—i,—1}

The probability density.

In[20] := Manipulate[Plot[y[n]"2,{x, —6,6},PlotRange — {0,0.6}],
{{n,10},0,10,1, Appearance—>"Labeled’}]
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06
sk
04f
Out[20] = i

03F

s\

0

Why is it larger near the boundaries?



Chapter 17
Spherical Harmonics

17.1 Angular Momentum in Quantum Mechanics

The angular momentum operator J is defined [18] in such a way that U =
exp (—i.7 . 6(p) is the operator of an infinitesimal rotation with the angle §¢: if |y>
is a state, then U |y> is the same state rotated by 5¢. Therefore, the average value
V' of a vector operator V over U |yw> is related to its average value V over |y> by
the formula V/ =V + 8¢ x V and hence UTVU =V +i[J-69,V] =V + 5 x V.
Therefore, for any vector operator V the commutation relation [V,,f ] ig; jka
holds. The average value of a scalar operator $ does not change at rotations; hence
[S Ji ] 0. In particular, the angular momentum J is a vector operator, and its square

7 :J:f—l—fyz—i-ff is a scalar one:
[‘ilafj} :lgljkfka |:'727‘,Al:| =0.

Therefore, a system of common eigenstates of .72 and J; exists. Let’s introduce
the operators fi = fx :l:ify, fj: = J;F; we have [J;,fi} = :l:fi. This means that
if |[y> is an eigenstate of J, (J;|w> = m|y>), then J; |y> are also eigenstates
of J;: JoJy |w> = (m+1)J5 |y> (if they don’t vanish). Therefore, eigenvalues m
of J, form a progression with unit step, and the ladder operators J.. increase and
decrease m. ”

Let’s consider states with a given eigenvalue of J . For these states, eigenvalues

of J; are bounded from above and from below because the operator J - J? =72 —l—fy2
is positive definite. Let |m1> be the eigenstates with the maximum and the mini-
mum eigenvalues of J, equal to m.. Then these eigenvalues cannot be further in-
creased and decreased by the operators J; correspondingly: /.. [m+ > = 0. We have

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 133
DOI 10.1007/978-3-319-00894-3_17, © Springer International Publishing Switzerland 2014
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Therefore, f;fi |me>=0= [.?2 —my (my £ 1)} |my>, i.e., the eigenvalue of the

operator 7 for these states (as well as for all the other states being considered)
is my (my+1)=m_(m_—1). Hence (my +m_)(my —m_+ 1) = 0; taking into
accountmy > m_ we obtain m_ = —m or my = £ j. The number j must be integer
or half-integer because m4 and m_ differ by an integer.

Finally, we have a system of common eigenstates |j,m> of the operators .72
and J.:
A2 L ; . ;
J|jm>=jj+1)|j,m>, Jo|jm>=m|j,m>,

where j is integer or half-integer, and m varies from —j to j by 1. The operators J..
increase and decrease m correspondingly: /1. |j,m> = a.(j,m)|j,m= 1>. Tuning
the phases of |j,m> we can make a(j,m) real and positive. They can be found
from the normalization: |a(j,m)> = <j,m|J=Jr|jm> = j(j+1) —m(m+1).
Finally we arrive at

Jeljm>=/j(j+1)—mmE1)|jm+1>=/(jtm+1)(jFm)|jm+1>.

The orbital angular momentum of a particle I=rx p (where p = —iV in the
coordinate representation) is an example of angular momentum. In spherical coor-
dinates

. A . d d
= ]— = il(p —_— 1 —_—
L i—, Iy =e (j:ae—klcoteaq)) .

The eigenfunctions of l; are e”?; they must not change at ¢ — ¢ + 27; hence

m must be integer. The common eigenfunctions of I” and l; are called spherical
harmonics:

~2 ~
l Ylm(ev(p):l(1+1)Ylm(97(p)v lelm(Q,(p):mY;m(Q,(p),

where [ is integer, and m varies from —/ to I by 1; ¥;,,(8, ) = P;,,(0)el"?. They are
orthonormalized:

/Y,i‘m,(e,<p)Y,m(e,<p)dQ = 5,8,

Here are the operators I in Mathematica:
In[1] := 1p[f ] := Together[Exp[I * @] * (D[f, 6] + I+ Cot[6] + D[f, ¢])]
In[2] := Im[f ] := Together[Exp[—I x @] * (—D[f, 8] + I« Cot[6] x D[f, @])]

17.2 Y,(6, 9)

The angular momentum projection of this state cannot be raised by I

In[3] := Eq = Ip[Exp[I x /  §] * P[6]] ==
Out[3] = —'?"1'¢ (1, Cot[0]P[0] — P'[0]) ==0
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In[4] := s = DSolve[Eq, P[6], 6]

Out[d] = {{p[e] — C[l]sm[e]l}}

Ins] := P= P{6]/.s[[1]

Out[5] = C[1]Sin[6]!

The normalization integral.

In[6] := NI = 2 * Pi x Integrate[P"2 x Sin[6], { 0,0, Pi}, Assumptions—>{I > 0}] /.

Gamma[—I]—> — Pi/(Sin[Pi * /] * Gamma[l + 1])

273/2C[1)*Gammal[1 + []

Outlé] = Gamma [% —|—l}

In[7] := s = Solve[NI == 1,C[1]]

1/ Gamma [% + l} }

V2m3/4, /Gammal[l + ]

Gamma [% + l}
= V2m3/4,/Gammal[l + ]

In[8] :=P="P/.s[[2]]
\/Gamma [3 + 7] Sin[6]/

V2m3/4,/Gamma[l + ]
The phase can be chosen arbitrarily. According to Landau—Lifshitz [18]:
In[9] :=Y[l_,1] = (—I)M * PxExp[l ¥ * @]
(—i)'el’?/Gamma [3 + 1] Sin[0]!
V2r3/4\/Gammal[l + ]
In[10] := Clear[Eq, s, P)

out[7] =4{ { 1] = -

Out[8] =

Out[9] =

17.3 Y;,,(6, 9)

These states can be obtained from Y;;(6, @) by the lowering operator I
In[11] := § = Cos[x ]*n_.—>(1 — Sin[x]"2)"Quotient[n, 2] * Cos[x]"Mod|n, 2];
In[12] :=Y[l.,m]/sm<1:=Y[l,m| =

Factor[Expand[lm[Y [I,m + 1]] /Sqrt[(I — m) * (I4+m+1)]/.S]]
In[13] := Table[Table[Y [l,m], {m,l,—1,—1}], {l 0,4}]

Out[l3]:{{#},{—liew\/;sm \/7Cos -1e‘¢\/7sln[e]},
1 Zup\/» sinfo]2, 1 "P\/> Cos|[6]Sin[6 \/? (~2+3Sin[6]?),
—Ee“"\/j cOs[e]sm[e],_j-leZi‘P\/gSin[e]z},
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{816 \/ nSln[B] gl 1/ o Cos[0]Sin[0]",

— éiei% / z—nlsm[e] (—4+58Sin[6]?) ,%i ZCOS[@] (—2+58in[6]%),

1. ., [21 1.
gie 7/ —sin6] (—4+5$in[9]2),—zie’2"” ——Cos[6]Sin[6]?,

. 3 (8 —40Sin[0]? + 35Sin[0]*
Eel‘p\/ECOS[G]Sin[G] (—4+7Sin[6]?), ( in[O]* +35Sin[0]%)
8 V7 16y7
- ge*ifp %COS[@]Sin[@] (—4+7Sin[6]?),

3 72i(p 5 . 2 . 2 3 73i(p 35 . 3

LAY anm[@] (—6-+7Sin[6] ),8e \/ nCos[G]Sm[G] :

3 74i(p 35 . 4
T anm[G]

In[14) := Manipulate[Manipulate[Y [/, m],
{m,—1,1,1, Appearance— >"Labeled}|, {I,0,4, 1, Appearance—>"Labeled’}]

[ n 2
L&}

ad

Out[14] =

_Lle-io[15 :
e
5 > Cos[6]Sin[6]

Orthogonality of ¥;,,,,, and Y}, ,,, with my # mj is evident; let’s check all the rest.
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In[15] := Table[Table[Table[
Integrate[Y [11,m] « Conjugate[Y [12, m]] * Sin[6], { ¢,0,2 + Pi},{0,0,Pi}],
{m,12,-12,—1}],{12,0,11}],{11,0,4}]

Out[15] = {{{1}},{{0}, {1, 1,1}},{{0},{0,0,0}, {1, 1, 1,1,1}},
{{0},{0,0,0},{0,0,0,0,0},{1,1,1,1,1,1,1}},
{{0},{0,0,0},{0,0,0,0,0},{0,0,0,0,0,0,0},{1,1,1,1,1,1,1,1,1}}}



Chapter 18

Adding Angular Momenta in Quantum
Mechanics

Let J; and J, be two angular momentum operators commuting with each other

Then the basis |ji,m1; j2,ma> of common eigenstates of the operators Jl, Jizs JZ,
JZZ exists. On the other hand, the total angular momentum J=17 1 +J2 is also an
angular momentum operator. Therefore, linear combinations |j,m> of the states
|j1,m1; jo,mp> at given jj, j, can be constructed in such a way that they are eigen-

states of J ? and J.. This problem [18] is called addition of the angular momenta j
and j».
We always have m = m + my because fz = flz + sz. The following figure illus-
trates addition of j; and j, (it assumes j; = j»).
In[1] := Figfjl _,j2] := If[j1 < j2, Fig[i2,1],
With[{d = 0.75xj2,d2 = 0.1 %j2,d3 = 0.15%j2,r = 0.05 j2},
Graphics[Join[{Line[{{j2,j1 +.]2}’ {12’.]2 _j1}7 {—j2, _jl _j2}7
{_jz’jl _j2}’ {j2’j1 +J2'}}]7
Line[{{0,—j1 —j2—d},{0,j1+j2+d}}],
Lme[{{_j2 - d,O}, {j2 + d1 0}}],
Line[{{_d2’j1 +j2}’ {d2’j1 +J2'}}];
TCXt[jl +j2’{_d3’j1 +J2'}, {170}] )
Line[{{_d2, _jl —j2}, {d2, _jl _12}}],
TCXt[_ (]1 +.i2) ) {d?’, —j1 _j2}1 {_1,0}] ’
Line[{{—d2,j1 —j2},{d2,j1—j2}}],
Text[j1 — j2,{d3,j1 —j2},{-1,1}],
Line[{{—d2,j2—j1},{d2,j2—j1}}],
TCXt[_ (.ll _j2) ) {_d3’j2_j1}’ {1’ _1}] )
Text[—j», {—j2 — d2,—d2},{1,1}], Text[j, {j2+ d2,—d2},{—1,1}],
Text [m ) {_d27j1 +.12 + d}1 {110}] , Text [mZa {j2 +d, —d2}, {0, 1}]}1
Join[Table[{Dlsk[{mZ, m}a r]}7 {m7j1 _j2+ l,jl +j2}, {m2,m _j17j2}]]7
JOin[Table[DiSk[{mZ’ m}’ r], {m7 _jl _j2»j2 _jl - 1}’ {m2’ _j2,m +j1}]]a
Join[Table[Disk[{m2, m}’ r], {m7.]2 _j1’j1 _j2}7 {m2’ _.12,]2}]]]]]]

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 139
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In[2] := Show|Fig[4,2]]

Out2] =

—+ =U1+j2)

In[3] := Clear|[Fig]

There is one state with m = j| + jo, two states with m = j; + j, — 1, etc. Such an
increase of the number of states occurs up to m = j; — jp; further on it is constant
up to m = — (j; — j») and then decreases to one at m = — (j; + j»). Therefore, the
maximum angular momentum resulting from adding j; and j, is j = j; + j». One
state in the two-dimensional space of states with m = j; + j, — 1 refers to the same
angular momentum, and the other one is the state with the maximum projection for
the angular momentum j = j; + j,» — 1. Continuing such reasoning, we see that all
angular momenta up to j; — j, appear. In general, adding angular momenta j; and
Jo results in the angular momenta j from |j; — j2| to ji + j» in steps of 1.
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This description naturally leads to the algorithm implemented below. We start
from the only state with m = j; + j, namely the state |j;, ji; j2,j2>. It has ] =
1 J1+ ]2, i.e., itis |ji + j2, /1 + jo>. Repeatedly acting by the ladder operator Jo=
Ji_ +J>_ (and dividing by the appropriate normalization factor) we construct all
the states with the total angular momentum j = j; + jo: |j1 + jo, 1 +jo— 1>, ...,
|71 + j2,— (j1 4 j2) >. Then we turn to the projection m = j; + j, — 1 and choose
the state orthogonal to the already constructed one |j; + ja, ji + jo — 1>. It has
J=ji1+Jj—1,1e,itis |ji +j2 —1,j1 + j» — 1>. Using the ladder operator we

construct all the states with j = j; + j» — 1.

Then we proceed in a similar way. At the beginning of each step, when consider-
ing a new value of the projection m, we need to construct the state orthogonal to all
the states with the same m already constructed. This is achieved as follows: we start
from an arbitrary state, say, |ji,ji;j2,m — ji1>, subtract its components along the
already constructed states, and finally normalize the result. Then we construct all
the states with the same total angular momentum from this state repeatedly acting
by J_.

The function AddJ constructs the states | j,m> (denoted Ket[j,m]) as linear com-
binations of the states |ji,my; jo,my> (denoted ket[m1, m2]). It uses two local func-
tions: Jm is the lowering operator /_ and ScaP is the scalar product. The procedure
returns its local Ket, so that later the user will be able to inquire about Ket[j,m] for
specific values of j, m; in addition to this, the procedure prints all its results.

In[4] := AddJ = Function[{j1,j2},If[j2 > j1,AddJ[j2,j1],
Module[{Ket, j,J,m,
Jm = Function[{k},
Expand|[k/.ket[m1 _,m2_|—>
Sqrt[(j1 — m1+ 1) * (j1 4+ m1)] xketiml — 1,m2]+
Sqrt[(j2 — m2+ 1) * (2 + m2)] * ket[m1,m2 — 1]]],
ScaP = Function[{k1,k2},
Expand[k1 xk2]/.
{ket[m1 ,m2 _]"2—>1,ket[ml_,m2 ] xket(M1_,M2_]—>0}]},
DolKet]j, j] = ket[j - j2,j2];
Do[Ket]j, jl— = Expand[ScaP[Ket]j, ], Ket{J, ]+ KetlJ, ],
{J,i1+32,j+1,~1}];
Print[”KCt[, 7.’.1”’”7 ji”] = ”7
Ket[j, j] = Expand[Ket[j, j]/Sqrt[ScaP[Ket[j, j], Ket[j, j]l||};
Do|Print["Ket[”, j,”,”,m,”] =",
Ket[j,m] = Expand[Im[Ket[j,m -+ 1]}/Sart{(j —m) * (j-+m+ D[]},
{m’j_ 1’_.,’ 1}]’
{]7j1 +J21]1 _j27 _1}];
Ket]]];
In[S] := AddJ[1/2,1/2]

1
Ket|l,1] =ket | =, =
a1, 1) e[z,z

Ket[1,0] =
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Ket[l,—1] = ket [_% __}

ket 44 ket [d,—4]

Out[5] = Ket$668
In[6] := AddJ[1,1/2]

Ket %, %} = ket [1, H

Ket %,H = \/gket [0,%} ket [\1/73_%]
Ket %,—%} = ket [\;_1’%] + \/gket [O,—ﬂ
Ket _%,—%} = ket [—1,—%]

Ket %H - ket\[% 3] \/gket {1,—%]
Ket %,—%} = \/gket {—1,%] _ ket [\%_%}

Out[6] = Ket$669

In[7] := AddJ[1,1]

Ket[2,2] = ket[1, 1]

Ket[2,1] = ket\[/()él] n ket[1,0]

Rel2, 1] = ==+ =
Ket[2, —2] = ket[—1,—1]
~ ket[0,1]  ket[1,0]
Ket[1,1] = 7 %
Ket[1,0] = ket[_ﬁl’ 1_ ket[\l/vi—l]
_ ket[=1,0]  ket[0,~1]
et|—1, et|0, et[1, —

Ket[0,0] = o NG 4 :
Out[7] = Ket$670
In[8] := AddJ[2,1]
Ket[3,3] = ket[2,1]

2 ket[2,0]

Ket[3,2] = 4/ = ket[1,1] +

(O8]

Ket[3,1] = 1/ Zket[0,1] +2

(L1 \S)
STob
|
[¢]

-+
F‘
=)
_|_

7

-

QV“N
|

=
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Ket[3,0] = % - \/gket[o,o] + %

 ket[-2,1] 2 \/5
Ketf3, ~1] = = 72 424 ket =1,0)+ Sketlo, -1
Ket[3, —2] = Ket=2.01 \/gket[—l,—l]

b

Ket[3, 3] = ket[\—/g, 1]

Ket[2,2] = ket\[/lg’l] - %ket[Z,O]

Ket[2,1] = ket\[/o;] _ ket\[/léo] _ ket[\Z/,g—l]
Ket[2,0] = ket[‘ﬁl’ 1_ ket[\l/vz—ll

Ket[2,—1] = ket[—\/;, . ket[—61,0] B ket[\o/,i—u
Ket[2, 2] = \/gket[—Z,O] - %

3 3
Ket[1,1] = o \/mket[l,O] + gket[2, —1]

Ket[1,0] = 4/ %ket[—l, 1]- \/gket[0,0] +4/ %ket[l, —1]

Ket[1,
Out[8] = Ket$671



Chapter 19
Classical Nonlinear Oscillator

19.1 Statement of the Problem

Let’s consider one-dimensional motion of a particle with mass m near a minimum
of an arbitrary smooth potential [19]

U(x)zT—i—V(x), V(x)=0(x)
(we have chosen the origin of x and the zero energy level to be at the minimum).

If we neglect V (x), then the equation of motion

d%x dU
m—s =——
dr? dx
becomes )
dox 2 , k
@'ﬁ‘(ﬂo.x:o, (DO:E,

and has the solution
x(t) = a cos wpt + b sin wyt .

Now we consider the effect of

V(x) = i e

n=1

Choosing units of measurement in such a way that m = 1 and k = 1, we have the
equation of motion

d%x dv

— +x=R(x)=——.

dr? () dx
Its solution x(¢) is a periodic function of ¢. If we choose the time origin at a
maximum of x(¢), then x(¢) is an even function, due to reversibility. In the zeroth

approximation x(f) = a cost.

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 145
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In[1] := V = Series[c[1] *x"3, {x,0,3}]
Out[1] = ¢[1]x* + O[x]*

In2] :=R=—DI|V,x]

Out[2] = —3¢[1]x® + O[x]?

In[3] := x[t] = Series|a * Cos[t],{a,0,1}]
Out[3] = Cos[t]a + Ola]?

The equation of motion is satisfied at O(a).
In[4] := D[x{t], {#,2}] +x[r]

Out[4] = O[a)?

19.2 The First Correction

Now we want to take terms of order a? into account. The right-hand side is
In[5] :=R1 =R/.x—>x[t]
Out[5] = —3 (c[1]Cos[t]*) a* + Ola]?
Let’s expand it in harmonics.
In[6] := R1 = Map|TrigReduce,R1]
Outl6] = —%(c[l] + e[1]Cos[21])a? + Ofa]®
That is, the “driving force” contains zeroth and second harmonics. This means that
we should add such harmonics to x(¢). We’ll not add the solution of the homoge-
neous equation—the first harmonic: by definition of the amplitude a, it is completely
given by the leading term a cost.
In[7] := x[t] = Series|a * Cos[t]+
a"2xSum[b[2, j] * Cos[jx1],{},0,2,2}],{a,0,2}]
Out[7] = Coslt]a + (b[2,0] + b[2,2]Cos[2t])a* + Ola]’
Now we substitute this form of the solution into the equation of motion.
In[8) := Eq = D[x[r], {r,2}] +x[r] - (R/.x—>x[r])
Out[8] = (b[2,0] + 3¢[1]Cos[t]* — 3b[2,2]Cos[2¢]) a* + Ola]’?
In[9] := Eq = Map[TrigReduce, Eq]

Out[9] = %(219[2,0] +3c[1] — 6b[2,2]Cos[2] 4 3¢[1]Cos[2t])a* + O[a]?
In[10] := Eq2 = SeriesCoefficient[Eq, 2]
Out[10] = %(21)[2, 0]+ 3¢[1] — 6b[2,2]Cos[2¢] + 3c[1]Cos[2t])

This expression should vanish. How can we separate harmonics? Let’s help Mathe-
matica a little.

In[11] := Eq2 = Eq2/.Cos[j . ¥t]—>z"j

1
Out(11] = (2b[2,0] — 62%b[2,2] + 3¢[1] + 32%[1])
The coefficients of z° and z2 should vanish.

In[12] := Eq20 = Coefficient[Eq2,z,0]
Out[12] = %(219[2,0] +3¢[1))
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In[13] := Eq22 = Coefficient[Eq2,z,2]
Out[13] = %(—6[7[2,2] +3¢[1])

We can find 5[2,0] from the first equation and b[2,2] from the second one.
In[14] := b[2,0] = b[2,0]/.Solve[Eq20 == 0,5[2,0]][[1]]

out14] = — <1
In15] := b[2,2] = b[2,2] /. Solve[Eq22 == 0, 5[2, 2]|[[1]]
Out[15] = %

Now we know the solution.
In[16] := x[r] = x[t]
3cfl] 1 ) 3

Out[16] = Cos[t]la+ | — > + Ec[l]Cos[Zt] a”+ O[d]
Let’s check energy conservation.
In[17] := Et = D[x[t],1]2/2 + x[t]"2/2 + (V /.x—>x[t]);
In[18] := Map[TrigReduce, Et]

2
Out[18] = % +0[a*
In[19] := Clear|b]

19.3 The Second Correction

Now we want to find two corrections.
In[20] :=n=2;
In[21] := V = Series[Sum|[c[i] *x"(i + 2), {i, 1,n}], {x,0,n + 2}]
Out21] = c[1]x* + c[2)x* + Ox]
In[22] :=R=—DIV,x]
Out[22] = —3c[1]x* — 4c[2]x* + Ox)*
This is x[¢] up to a.
In[23) := x[t] = Series|a * Cos[t]+
a"2xSum[b[2, j] * Cos[jx1],{;,0,2,2}],{a,0,n}]
Out[23] = Cos|t]a + (b[2,0] + b[2,2]Cos[2¢])a* + Ola]’
The right-hand side of the equation of motion.
In[24] := R1 = Map|TrigReduce, ExpandAll[R/.x—>x[t]]]
Out[24] = —%(c[l] +c[1]Cos[21])a*+
(—6b[2,0]c[1]Cos[t] — 3D[2,2]c[1]Cos[t] — 3¢[2]Cos|t]—
3b[2,2]c[1]Cos[3t] — ¢[2]Cos[3t])a*+
Ola]*

There are the first and the third harmonics at the order a3, that is, there is a
resonant term in the “driving force” which would lead to an unbounded growth of
the solution. This means we have forgotten something. Namely, we have forgotten
that the oscillation period depends on the amplitude (unless the potential is strictly
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parabolic). And our solution should contain cos(jot). If we denote T = t, then the
equation of motion is
d’x
2

Let’s suppose that the variable 7 in the program really means 7 and denote ®” = w.
It is a series in a? beginning with 1.
In[25] := w = Series[1 + Sum[u[i] xa’i, {i,2,n+1,2}],{a,0,n + 1}]
Out25] = 1 +u[2]a* + Ola]*
Now we are able to cancel the first harmonic in the @’ term of the equation of motion.
And the third one should be added to the general form of the solution.
In[26] := x[t] = Series[a * Cos[t] + a2 * Sum[b[2, j] x Cos[j *1],{,0,2,2}]+

a3 % Sum[b3, | * Coslj*], {j,3,3,2}], {a,0,n + 1}]
Out[26] = Cos|r]a + (b[2,0] + b[2,2]Cos[2t])a* + b[3,3]Cos[3]a® 4 O[a]*
The equation of motion is
In[27] := Eq = Map[TrigReduce,

ExpandAlljw * D[x[t], {t,2}] + x[t] — (R/.x—>x[t])]]
Out[27] = %(2]9[2, 0] + 3c[1] — 6b[2,2]Cos[2t] + 3c[1]Cos[2t])a*+

(6b[2,0]c[1]Cost] +3b[2,2]c[1]Cos[t] + 3c[2]Cost]—

8b[3,3]Cos[3t] + 3b[2,2]c[1]Cos[31] + c[2]Cos[3] — Cos[t]u[2])a’+

Ola]*
We already know how to solve it at the order a”.
In[28] := Eq2 = SeriesCoefficient[Eq,2]/.Cos[j -. ¥ t]—>z"j

1

Out[28] = 5 (2b[2,0] — 62%b[2,2] + 3c[1] + 32%[1])
In[29] := Do[Print[b[2, j] = b[2, j]/- Solve[Coefficient[Eq2, z, j] == 0,b[2, j]][[1]]],

{j,0,2,2}]
 3c(1]

2
e[t

2
At the order a*:

In[30] := Eq3 = SeriesCoefficient[Eq, 3] /.Cos[j -. ] —>2z"j

1
Out[30] = —82°h[3,3] — ;Zc’[l]2 + %z%[l]z +3z¢[2] + 2¢[2] — zu[2]
This is the coefficient of the first harmonic, i.e., of z':

In[31] := Eq31 = Coefficient[Eq3,z,1]
Out[31] = —gc[l]z +3c[2] — u2]

It can be nullified by choosing u[2].
In[32] := u[2] = u[2]/.Solve[Eq31 == 0,u[2]][[1]]

Out[32] = —% (5c[1]* —2¢[2])

And this is the coefficient of the third harmonic, i.e., of Z°:
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In[33] := Eq33 = Coefficient[Eq3, z, 3]

Out[33] = —8b[3,3] + salls 2]
It can be nullified by choosing b[3,3].
In[34] := b[3,3] = b[3,3]/. Solve[Eq33 == 0, 5[3, 3]][[1]]

1
Out[34] = (3c[1]*+2¢[2))
Now we know the oscillation frequency

In[35]:=w=w
Out[35] =1 — % (5c[1]* —2¢[2]) a* + O[a]*
and x[z]:

In[36] := x[t] = x|t]

1
Out[36] = Cos[t]a + <— 362[ ]
% (3¢[1]2 +2¢[2]) Cos[34]a’ + Ofal*
Let’s check energy conservation.

In[37] := Et = Map[TrigReduce,
ExpandAll[w * D[x[t],£]"2/2 +x[t]"2/2 + (V /.x—>x]1])]]
2
Out[37] = % + % (=37c[1)* + 18¢[2]) a* + Ola)®
In[38] := Clear[b, u

+ %c[l]Cos[Zt]) a+

19.4 The nth Correction

Now we’ll write a program which can find n corrections in a to the particle mo-
tion for any n. Just a single line should be changed for the calculation with a new
value of n.

In[39]:=n=4;

The correction to the potential and the “driving force.”

In[40] := V = Series[Sum|c[i] *x"(i +2), {i, 1,n}],{x,0,n +2}]

Out40] = c[1]x* + c[2]x* + ¢[3]%° + c[4]x® + O[x]

In[41] := R=—D|V,x|

Out[41] = —3c[1]x* — 4c[2]x® — 5¢[3]x* — 6¢[4]x° + O[x]°

The frequency squared is a series in a’.

In[42] := w = Series[1 + Sum[u[i] xa’i, {i,2,n+1,2}],{a,0,n + 1}]

Out[42] = 1 + u[2)a* 4 u[4]a* + O[a]®

The general form of the solution. The order a’ contains harmonics up to the ith one.
They are all even at even values of i and odd at odd values. The first harmonic never
appears—by definition, it is entirely contained in the leading term a cost.
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In[43] := x[t] = Series|a * Cos[t]+
Sum[a"i * Sum(b[i, j] * Cos[j 1], {j, If[EvenQli], 0,3],4,2}], {i,2,n + 1}],
{a,0,n+1}]
Out[43] = Cos|r]a + (b[2,0] + b[2,2]Cos[2t])a’ + b[3,3]Cos[31]a* +
(b[4,0] + b[4,2]Cos[2t] + b[4,4]Cos[4t])a*+
(b[5,3]Cos[3] + b][5,5]Cos[5t])a’ + O[a]°®
The equation of motion.
In[44] := Eq = Map[TrigReduce,
ExpandAlljw * D[x[t],{t,2}] + x[t] — (R/.x—>x[t])]]
Out[44] = %(2]9[2, 0] + 3c[1] — 6b[2,2]Cos[21] + 3¢[1]Cos[2t])a*+
(6b[2,0]c[1]Cost] +3b[2,2]c[1]Cos[t] + 3c[2]Cost]—
8b[3,3]Cos[3t] + 3b[2,2]c[1]Cos[31] + c[2]Cos[3] — Cos[t]u[2])a’+
(8b[4,0] +24b[2,0]%c[1] + 12b[2,2]%c[1] +48b[2,0]c[2] +24b[2,2]c[2]+

15¢[3] — 24b[4,2]Cos[2¢] -+ 48b[2,0]b[2, 2]c[1]Cos[2¢] +
24b[3,3]c[1]Cos[2t] + 48b[2,0]c[2]Cos[2t] + 48D[2,2]c[2]Cos[2t]+
20c[3]Cos|2¢] — 120b[4,4]Cos[4t] + 12b[2, 2]2c[1]Cos[41] +
24b[3,3]c[1]Cos[4t] 4 24D[2,2]c[2]Cos[4t] 4 5¢[3]Cos[4t] —
32b[2,2]Cos[21]u[2]) a*+

<3b[2,2]b[3,3]c[1]Cos[t] +6b[4,0]c[1]Cos[r] + 3b[4,2]c[1]Cos[t]+

00| ==

125[2,0]¢[2]Coslr] + 12b[2,0]b[2,2]c[2]Cos|t] + 6b[2,2]*c[2]Cos]r]+
3b[3,3]c[2]Cos[t] + 15b[2,0]c[3]Cos[t] + 105[2,2]c[3]Cos[t]+

14—5c[4]cOs[t] — 8b[5,3]Cos[3t] + 6b[2,0b[3, 3]c[1]Cos[3¢]+

3b[4,2]c[1]Cos[31] + 3b[4,4]c[1]Cos[3t] + 12b[2,0]b[2,2]c[2]Cos[3t]+
3b[2,2]2¢[2]Cos[31] + 6b[3, 3]c[2]Cos[3] + 5b[2, 0]c[3]Cos[31] +

%b[Z, 2]c[3]Cos|31] + §C[4]COS[3I] —24b]5,5]Cos|5t]+
3b[2,2]b[3,3]c[1]Cos[5¢] + 3b[4,4]c[1]Cos[5¢] + 3b[2,2]*c[2]Cos|[5]+
3b[3,3]c[2]Cos[51] + ;b[Z,Z]cB]Cos[St] + %c[4]Cos[5t]—

9b(3,3]Cos[3t]u[2] — Cos[t]u[4]) @+

0la)®
All terms of the orders @’ for i from 2 to n+ 1 must vanish. If i is odd, the first har-
monic is present; a correction to the frequency squared is found from the condition
that this harmonic vanishes. All other harmonics give us coefficients in x(z).
In[45) := Do[Eqi = SeriesCoefficient[Eq,i]/.Cos[j . *1]—>z"j;
1f{0ddQ(i],
ufi — 1] = u[i — 1]/.Solve[Coefficient[Eqi, z, 1] == 0,u[i — 1]][[1]]];
Do[b[i, j] = b[i, j]/-Solve[Coefficient[Eqi,z, j] == 0,bi, 1| [1]],
{j’ If[EVCDQ[l] ’ 07 3] ’ i7 2}] ’
{i,2,n+1}]
Now we know the frequency squared.
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In[46] :=w=w

Out[46] = 1 — % (Sc[1]* —2¢[2]) a*—
3
32

and x()

In[47] := x[t] = xft]

Out[47] = Cos[t]a+ (

(335¢[1]* — 572¢[1]%¢[2] — 4c[2]* + 280c(1]c[3] — 40c[4]) a* + O[a]®

‘362[1] + %6[1]Cos[2t]> “2+11—6 (3¢[1]? +2¢[2]) Cos[3r]a’+

(—% (19¢[1] — 20¢[1]e[2] +5¢[3]) +

% (177¢[1]° - 186¢[1]c[2] +40¢[3]) Cos[2r]+
1
yrs

(i (237¢[1]* — 172¢[1]%¢[2] — 28¢[2]* — 12¢[1]c[3] +20c[4]) Cos[37]+

(3c[1]? + 6¢[1]c[2] + 2c[3])Cos[4t]> a*+

256
%68 (15¢[1]* +60c[1]%c[2] + 12¢[2]* + 44c[1]c[3] + 12c[4]) COS[SI]) a+
Ola]®
Let’s check energy conservation.
In[48)] := Et = Map[TrigReduce,
ExpandAll[w + D[x[t],1]"2/2 + x[1]"2/2+ (V/.x—>x{t])]]
2

1
Out[48] = % + 1 (=37c[1 + 18]y a'+

ﬁ (—9309¢[1]* + 17796¢[1]*c[2] +300c[2]* — 10880c(1]c[3]+
1920c[4]) a®+
Ola)’
It is easy to write a function with the parameter n which can be used as a black box.
It should use only local variables.
Now we save the results for the energy Et and the frequency squared w to a file;

later we’ll compare them to the similar results in quantum mechanics.
In[49] := Ec = Normal[Et] /.a—>Sqrt[2 x A];

Wc = Normal[Simplify[Sqrt[w]]] /.a—>Sqrt[2 x A];

Save[”class.m”, {Ec,Wc}]



Chapter 20
Quantum Nonlinear Oscillator

20.1 Perturbation Theory

Suppose we know eigenvalues and eigenstates of a Hamiltonian Ay and want to find
them for a Hamiltonian H = Hy+V in the form of series in V [18]. Let’s concentrate
on a non-degenerate eigenstate of the unperturbed Hamiltonian

ﬂ()|l[/()> =E0|l[/()>.

After switching the perturbation on it transforms to a similar eigenstate of the full
Hamiltonian
Hly>=E|y>, E=Ey+dE.

Let’s normalize |y> in such a way that <yp|y> = 1, then |y> = |yp> + [Oy>,
<yp|6y> = 0. We need to solve the equation

Hy|ly>+V|y>=E|y>.

Let’s separate its components parallel and orthogonal to |yp>. The parallel part is
singled out by multiplying by <yp|:

SE = <y|V]y>.
The orthogonal part is singled out by the projector P = 1 — |yo><wp|:
Hy|Sy>+PV |y>=E|Sy>,

or

Sy>=DV|y>, D= .
3% 1% E_@,

Solving this equation by iterations, we obtain
|8y> =DV |yo>+DVDV [yo> +--- |

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 153
DOI 10.1007/978-3-319-00894-3_20, © Springer International Publishing Switzerland 2014
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and
SE = <y |V|wo>+ < wo|VDV |wo> + <yo|[VDVDV |[yo> + - - .
Note that D contains E = Ey + 8E and should be expanded in §E:
p
Eo—Hy

A

D=G6-GSEG+GSEGSEG — - -, G=

20.2 Nonlinear Oscillator

We are going to apply the perturbation theory to the nonlinear oscillator

A2 A2 oo
=" =Yl
k=1

The oscillation amplitude is ~ 1 if n ~ 1; therefore, c; ~ a*, where a ~ 1 /L 1,
L is the characteristic length of the potential in the oscillator units. If n > 1, the
amplitude is /n times larger, and the real expansion parameter is a+/n.

We concentrate on the eigenstate |n> of Hy having the energy Eg = n + % In
order to calculate O up to the Mth order of the perturbation theory, we need to sum
all expressions of the form

A

(VkN)n,n+jN71 éﬂﬂ'zvq (AAkal )n+jN71,n+jN72 Gntjya

éﬂﬂ'z (AAkZ)n+j27n+j1 G"+j1 (Vkl )n+j1,n )

where A is V or —8E and the sum of the orders of smallness ki+ky+ - +ky <
M; the sum over all nonzero ji, jp,... jy—1 is assumed. The following procedure
prepares the values V[k, j] of (Vk)nJr/"n (x[k, j] means ()?k)nﬂ“n):
In[1] := Prepare[m ] := (M = m; x[1,1] = Sqrt[(n+ 1) /2]; x[1,—1] = Sqrt[n/2];

x[1,0] =0;

Dolx[k, j] =If[j < k—1,(x[1,1]/.n = n+ j)*x[k— 1, j+1],0]+

If[j > 1—k,(x[1,—1]/.n > n+ j)xx[k—1,j—1],0],
{k727m+2}1{j7 _kik}]’
Do[V[k, j] = Simplify[c[k] *x[k+2, j]|, {k, 1,m},{j,—k — 2,k +2,2}])

20.3 Energy Levels

The expressions we want to generate and calculate can be visualized as paths in the
following graph:



20.3 Energy Levels

In[2] := ParametricPlot[{{z,3 — 3z}, {t,—3+3 1},
{t/2,3/2xt},{t/2,-3/2x1}},{1,0,1},
PlotRange — {{0,1},{—3,3}}, AxesLabel — {1, j},
Ticks — {{0,{1/2,M/2},{1,M}},
{{-3,-3+M},{-3/2,-3/2xM},0,{3/2,3/2xM},{3,3xM}}}]
J
3IM

out2] = 0 !

3IM

-3M
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Here [ is the number of orders of smallness we need to distribute. We start at
the point / = M, j = 0. At each step we consider all possible Ag. If we choose
(Vk)n +jing e move k steps to the left and i steps vertically. If we choose —0 E,
we move k steps to the left horizontally (this choice is not allowed as the first or
the last step). Whenever we hit the j = 0 axis, we have a complete expression for
a contribution to §E. The fastest movement along j at varying [ occurs when V) is
used, and its velocity is 3. Hence, in order to have enough time to return to j = 0,
we should not leave the rhombus in the figure.

Suppose we have already generated a right-hand part a of the expression up to
some G,,+ ;j inclusively, and there remain / orders of smallness to distribute. The
procedure considers all possible (AAk)n Citing which can be inserted to the left of
a. It may be —8E;, with all possible values of k (if we are not at the very first step

| = M), the maximum k is obtained from the rhombus. Or it may be (Vk)n Sitint)

with all possible values of k and i. Vi = cx&5t2 has nonzero matrix elements for i
from —k—2to k+2 in steps of 2. The limits of the i loop follow from the intersection
of this range with the rhombus, and the k loop terminates when this intersection
disappears. If we happen to return to the initial state (j + i = 0), this means that
the generation of an expression is complete, and it should be added to the element
of the list d which accumulates contributions to 0E (this contribution may contain
lower-order 6 E, = de[k]). In all other cases, the procedure is called recursively, with
I replaced by [ —k, j by j+i, and a multiplied by (Ay) and Gy 1.
In[3] :=v[l_, j_,a] := (If[l == M,d = Table[0,{M}],

Dol[v[l —k, j,a+de[k]/ j],{k,2,] — Abs[j]/3,2}]];

Do(If[j+i==0,d[[M —l+k]]+ =ax (V[k,i]/.n = n+ j),
vl =k, j+i,—ax(Vki/.n—n+j)/(i+D)]],

{i,Max[—k—2,-3 % (I— k) — j],Min[k+2,3 % (I — k) — j],2}])
In[4] := Prepare[6)]; v[M,0,1];
Now we substitute lower-order 8 E into expressions for higher-order ones, to get
explicit formulas.
In[5] := Do[de[k] = Simplify[d[[k]]]; Print[Collect[de[k],c[], Factor]], {k,2,M,2}]

% (=11 —30n—30n%) c[1]*+ Z (1+2n+2n%) c[2]

n+j+in+j

—;—2(1 +2n) (31 +47n+47n) c[1]* + %(1 +2n) (19 +25n+25n%) c[1]*¢[2]—
1
g(1+2n) (214 17n+ 17n%) c[2)* — g(l +2n) (13 + 14n+ 14n%) c[1]c[3]+
é(1 +2n) (3+2n+2n%) c[4]

oo

1
% (—39709 — 1624051 —278160n* — 231510n° — 115755n%) c[1]°+

3
o (15169 + 593851 + 981601 + 775501 + 38775n") c[1]*c[2]+

3
Tg (111 +347n+4720% 42500 4 125n%) 2]+
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—4517 — 168157 — 26580n> — 19530n° — 9765n") c[1]3c[3]+

°°| GSI HEI -

(—449 — 14001 — 20301 — 1260n° — 630n*) c[3]*—
(12 +35n+46n% +22n° + 11n*) c[2]c[4]+
2

1]

a

2+
( — 11827 — 434790 — 68424n* — 49890n" — 24945n*) c[2]+

T (323+1125n+1668n +1086n° + 543n%) c[4 ])+

3
c[1] <§ (474 + 16251 + 24300 + 1610n° + 8051*) c[2]c[3]—

105
16

(5+16n+22n*+ 12n° + 6n*) [5]>+
35
6 (3+8n+ 100> +4n° +2n*) c[6]

20.4 Correspondence Principle

At n>> 1 the expansion parameter of the perturbation series is a\/n where ¢; ~ a*.
Keeping only the highest powers of # in each order, we have
In[6] := Eq = Series[n+
Sum|[(Expand|[(de[2 * (j — 1)]/.n — 1/a) xa"j]/.a — 0) xn"j,
{j,2,M/2+1}],

{n,0,M/2+1}]
Out[6] =n+ < 145 [1]2+3CT[2]) -
% (—705¢[1]* 4 900¢[1]*c[2] — 68¢[2]* — 280c[1]c[3] + 40c[4])n* —

1izs (23151¢[1]® — 46530c[1]*c[2] + 19956¢[1]*c[2]* — 600c[2]*+

15624¢[1]°¢[3] — 7728¢[1]c[2]c[3] 4 504¢[3]* — 4344c[1]%c[4]+
528¢[2]c[4] + 1008¢[1]c[5] — 112¢[6])n*+
o[n]®
Bohr’s correspondence principle must hold. From the quantum point of view, the
particle at the nth energy level can radiate a photon, jumping to the (n— 1)th one, or
more generally to the (n — k)th one. The frequency of this photon is E, — E,,_, or
approximately d(ﬁ” k. From the classical point of view, the frequencies of the emit-

ted light are equal to the oscillation frequency @ and its harmonics. Therefore, the
oscillation frequency is

dE,
dn
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In[7) := Wq = D[Eq,n|

Out[7 ]_1+2( 145 [1]2+3CT[2]) n+

(=705¢[1]* +900¢[1]%c[2] — 68¢[2]* — 280c[1]¢[3] + 40c[4] )n* —

)
(23151¢[1]° — 46530c[1]*c[2] + 19956¢[1]*c[2]* — 600c[2]*+

15624c¢(1]3¢[3] — 7728¢[1]c[2]c[3] 4 504¢[3]* — 4344c[1]*c[4]+
528¢[2]c[4] + 1008¢[1]c[5] — 112¢[6])n*+
oln]*

We want to compare it with the result of the calculation in classical mechanics. But
the quantum expression for @ is in terms of n and the classical one in terms of the
oscillation amplitude a. We need to re-express both of them via the same quantity,
the energy E.
In[8] := ne = InverseSeries[Eq, ]

Out[8] = e + Z (5c[1]* —2¢[2]) e+

Bz e T

15—6(231c[1]4 —252¢[1]%c[2] +28¢[2]* + 56¢(1]c[3] — 8c[4] )e*+
1325 2 (7293¢[1]° — 12870c[1]*c[2] + 5148¢([1]%c[2]* — 264c[2]*+
3432¢[1¢[3] — 1584c[1]c[2]c[3] + 72¢[3)* — 792¢[1]c[4]+
144c(2]c[4] + 144c[1]c[5] — 16¢[6])e*+
Ole]®
In[9] := Wqe = Simplify[Wq/.n — ne]

Out[9] =1+ <—§c[1]2 + 342]) e—
(855c[ J* — 1020c[1]%¢[2] + 92¢[2)? + 280c[1]c[3] — 4Oc[4])e2+

(—164805¢[1]°+311670¢c[1]*c[2] — 94920¢[1]*c[3]—
180c[1]? (715¢[2]* — 134¢[4]) + 5040¢[1](9¢[2]¢[3] — ¢[5])+
8 (633¢[2]® — 315¢[3])* — 450c(2]c[4] + 70c[6]) ) >+
Olef*
Now we read the classical results for the energy Ec and the frequency Wc (written
in terms of A = 4? / 2, where the amplitude a is defined as the coefficient of the first
harmonic cos @t).
In[10] := <<class.m;
In[11] := Ec = Series|[Ec, {A,0,3}]
7
outt1] = A+ (= Lepipp 4 221 a2y
4 2
1 4
9 (—9309¢[1]*+ 17796¢[1]
o[Al*

3|"‘ox|°’

2¢[2] +300c[2]* — 10880c[1]c[3] + 1920c[4]) A+
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In[12] := Wc = Series[Wc,{A,0,2}]

Out[12] =1+ (—gc[l]2 + 3C[2]> A—

13—6 (485¢[1]* — 692¢[1]%¢[2] + 20c[2]* + 280c(1]¢[3] — 40c[4]) A%+
oy’

In[13] := Ae = Simplify[InverseSeries|Ec, e]]

Out[13] =e+ (”CTW - 9CT[2]) e+
14055¢[1]* 4147 623c[2]> 170
TEmT: c[1%c[2] + 6 3 clllel3 - 10c[4]>e3+

Olel*
In[14] := Wce = Simplify[Wc/.A — Ae]

Out[14] = 1+ <—12—Sc[1]2 + 3c[2]> e—

13—6 (855¢[1]* — 1020c[1]%¢[2] + 92¢[2]* + 280c(1]c[3] — 40c[4]) >+
Ole)?

In[15] := Wqe — Wce

Out[15] = Ole]?

20.5 States

The following procedure accumulates contributions to §E in elements of the list d
and to |0 y> in the list dp. Now we have to consider the large triangle in the figure,
not just the rhombus.
In[16] :=v2[l_, j_,a_] := (dp[[M —I]|+ = axket[n + j];
If{l < M,Do[v2[l —k, j,a*de[k]/j],{k,2, —1,2}]];
Do[lf[j +i==0,d[[M — I+ k]|+ =ax (V[k,i]/.n = n+ j),
V2l =k, j+i,—ax(V[kil/.n—n+j)/(i+i)]],
{k,1},{i,—k—2,k+2,2}])
In[17] := Prepare[2]; d = Table[0, {M}]; dp = Table[0, {M}];
Clear|de]; v2[M,0,1];
In[18] := Dolde[k] = Simplify[d[[K]]l:
Print[Collect{dplK], ket]J, Simplify]], {k, M}]
V=24 ny/=1+ny/nc[l]ket|—3 +n] N 3n3/2¢[1]ket[—1 +n]

62 2v2
3(1+n)3c[1]ket[1 + 7] _ V1+nv2+ny3+nc[l]ket[3 +n]
2v2 62

ﬁ\/—S + V=4 +nV=3+nvV=2+nv—1+ny/nc1]*ket[—6 + n|+

%\/—3 + 1V =2+ nvV=1+nv/n ((=3+4n)c[1]* + 2¢[2]) ket[—4 + n]+
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1
E‘/_l +ny/n (1= 1924 7n?) c[1)* +4(—1+2n)c[2]) ket[-2 + n]+
1
E‘/l +nv2+n((27+33n+7n%) c[1]* — 4(3 + 2n)c[2] ) ket[2 + n]+

3izx/l + V2 +nV3+nVA+n((7+4n)c[1]* - 2¢[2]) ket[4 +n]+

ﬁ\/l +nvV2+nV3+ V4 +nV/5 +nvV6 + nel1] ket [6 + 1]

As an additional problem, calculate the average values of £ over the states just
obtained, for several k. At n > | compare them to the classical averages obtained
from the particle’s motion x(7).



Chapter 21
Riemann Curvature Tensor

Catching a lion, the Einstein’s method: Enter the cage and lock
it from inside. Then the Universe will be subdivided into two
disjoint regions in such a way that you are in one of them and
the lion is in the other one. It depends on one’s point of view
whom to consider caught; for convenience, let’s say it’s the
lion.

Suppose we have a coordinate system x* in a region of an n-dimensional Rie-
mann (or pseudo-Riemann) manifold [20]. Components of the metric tensor g,y are
given as functions of x*. We want to calculate the Riemann curvature tensor RH ;g
and related quantities (the Ricci tensor Ry, the scalar curvature R).

The metric tensor is symmetric; therefore, it is reasonable to ask the user to pro-
vide only the components with ¢t > v. If the user gives an argument having a wrong
shape, we print an error message and abort the calculation. We shall also need the
contravariant metric tensor g*¥ defined by gt* g, = 85
In[1] := Metric[g0_] := Module[{n = Length[g0], g, gu},

Do[If[Length[gO[[1]]]=!=u,Message[Metric :: shape]; Abort[]], {u,n}];
g = Table[ifu > v, g0[[u, V], 0[[v, u]l], {1, n}, {v,n}];
gu = Simplify[Inverse[g]]; {n,g,gu}]
In[2] := Metric :: shape = “Wrong shape of the argument”;
Next we calculate the Christoffel symbols

1
F/l/,tv = E (auglv'f‘avglp - a/lguv)

and I'* v = g Ipuv. They are symmetric in 4 and v; therefore, we calculate them
only at v < u and reuse the calculated values at v > . If the optional parameter
PrintNonZero is True, nonzero components are printed (following the tradition, in
the printed results all indices vary from O to n — 1).
In[3] := Christoffel[{n_,g_, gu_},OptionsPattern[|] := Module[{I",I"u},

I' = T'u =Table[0,{A,n},{u,n},{v,n}];

Do[I"[[A, u, V]| = Simplify[(D{g[[A, V], x[u]] + Dlg[[A, u]],x[V]] -

Dig([u, vIl,x[2]))/2];

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 161
DOI 10.1007/978-3-319-00894-3_21, © Springer International Publishing Switzerland 2014
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Iffu # v,C[[A,v,u]] = T[4, 1, V]I,
{A.n},{u,n}, {v,u}];
Do[I'u[[A, 1, v]] = Simplify[Sum(gu([A, p]] x [([p, 1, V]I, {p,n}]l;
Iffu # v,Tu([A, v, p]] = Tu[[A, u, V]]],
{A.n}, {s,n},{v,u};
If[OptionValue[PrintNonZero|,
Do[If[r[[A',#, V]]=!=0,Print[”1"”,l - lay' - 11 V- 1,” ”’r[[a'il“", V]]]],
{A,n}, {u,n}, {v,u}l;
Do[If[Tu[[A, u, v]]=!=0,Print["Tu”,A — 1,u — 1,v—1," ", Tu[[A, u, v]]]],
{A,n}, {p,n},{v,u}]l;
{r,Tu}]
In[4] := Options|Christoffel] = {PrintNonZero — True};
Finally, we calculate the Riemann tensor

ocﬁuv—goc)k (8;1F ﬁv_avr Bu)+ra)\ur Bv — oc)LvF Bu>

the Ricci tensor Ryy = g*P Ry . and the scalar curvature R = gHVRyy. The Rie-
mann tensor has the properties

Rocﬁuv = _Rﬁocuv = _Rocﬁvu = Ruvocﬁ ’
and we use them to avoid unnecessary calculations.
In[5] := Riemann[{n_, g_, gu_}, OptionsPattern(]| := Module[{I",I"u,
R =Table[0, {t,n},{B,n}, {u,n},{v,n}],R2 = Table[0, {1, n}, {v,n}],RO},
{I',I'u} = Christoffel[{n, g, gu}];
DO[R[[aaﬁaﬂa V]] = R[[ﬁ, a,v, “]] = Slmpth[Sllm[
glle, A]] * (D[I"u[[4, B, V], x[u]] — D[T"u[[4, B, u]],x[V]])
+F[[a,l7”]] *Fu[[)"ﬁaV]] _F[[a’)"V]] *FU[[l,ﬁ,u]],{l,n}]];
R[[ﬂ) o,u, V]] = R[[a7ﬂ7 v, ”]] = _R[[a7ﬂ7”’ V]];
If[y' # aaR[[ﬂa v, a»ﬁ]] = R[[V,ﬂ,ﬁ, a]] = R[[a,ﬁ,u, V]];
R{[v,p, e, B]] = R([n, v, B, o] = —R[[e, B, u,V]]]
{a,2,n},{B,a—1},{n,2,a},{v,lflu ===, B,n - 1]}];
Do[R2([u, v]] = Simplify[Sum(gu[[a, B]] + R[[et, 1, B, V]] {a,n},{B,n}]};
If{u # v,R2[[v, u]] = R2[[u, V]]],
{u,n},{v,u}];
RO = Simplify[Sum(gu([u, v]] * R2([u, V]| * If[u # v, 2,1], {ut,n}, {v, u}]];
If[OptionValue[PrintNonZero],
Do[If[R[[e, B, 1, V]]="=0,
Print[R,a— 17ﬂ - 1’”_ l,V— 11” ”7R[[a7ﬂ7”’V]]]]’

{a727n}7 {ﬂ) a— 1}7 {”’2’ a}7 {V,If[[.l === a7ﬂ7” - 1]}];
Do[If[R2[[u, v]]=!=0,Print["R”, p — 1,v — 1,” ”,R2[[, V]]]], {#,n}, {v, u}];
If[RO=!=0, Print["R ”,RO]]];

{R,R2,RO}]
In[6] := Options[Riemann] = {PrintNonZero — True};
Let’s consider an example: the Schwarzschild metric

2 _ o 2 dr? 2 2, 2 2
ds“=(1——)dr —l—m—r (d@ 4+ sin Gd(p)
r _nh
-



21 Riemann Curvature Tensor 163

First we give names to the coordinates.

In[7] := Evaluate[Table[x[u], {u,4}]] = {t,,0, 0};

Setting the Schwarzschild radius ry = 1, we obtain

In[8] := Riemann|[Metric[{{1 —1/r},{0,—-1/(1-1/r)},{0,0,—r"2},
{0,0,0,—r"2+ Sin[6]"2} }]];

1
Io10 —
2r2

1
Iio0 — —
2r2

ri22r

I'133 rSin[6]?

r221 —r

1233 r*Cos[6]Sin[6]
331 —rSin[6)?
I'332 — r*Cos[6]Sin[6)]
Tol0 s,
—1+r

T'ul00
4 273

T'ul33 — (—1+r)Sin[6]?
T'u221 l

[u233 — Cos[6]Sin[0]
T'u331 l

u332 Cot[6]

R1010 rl3

—1+r

R2020 — 3
’

_ ; 2
R3030 _ (=1 +7)Sin[6]"
2r2

Sin[0]?

R3131 — 3o

R3232 — rSin[6)?

The Ricci tensor (and hence the scalar curvature) vanishes. Therefore, the
Schwarzschild metric satisfies the vacuum Einstein equation.




Chapter 22
Multi-{ Functions

22.1 Definition

The Riemann {-function is defined by

Cs: i

s
n>0 n

Mathematica knows this function; it can be expressed via powers of 7 for even

integer values of s.
In[1] := Table[Zeta][s], {s,2,6}]
2 4

Out[1] = {”—,Zeta[s], T Zeta[s), 9%}

6 90
Let’s define
1 1
b= X =mr  Gms= X T
ny>mp>0 M M2 ny>mp>ny>0 11 My 13

and so on. These series converge at s; > 1. Mathematica does not know these multi-
¢ functions. The sum sy + 53 + - - - + s is called the weight. All relations we shall
discuss contain terms of the same weight (the weight of a product is the sum of the
weights of its factors).

22.2 Stuffling Relations

Suppose we want to multiply s, s,:

1
Cs Cs s = S8
192 2 nsny' n3?
n>0
ny>np>0
A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 165
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Here n can be anywhere with respect to ny, ny. There are five contributions:

1
Yl T2 CYY]YQ}
n>ny>ny >0 n nyn

55152 CS+S17827
n=ny>np>

Z Yl ?2 CYlﬂza

ny>n>ny>0 n nl

n>n=ny>0 1772
1
1.8 CK1S2Y

This process reminds shuffling cards. The order of cards in the upper deck, as well
as in the lower one, is kept fixed. We sum over all possible shufflings. Unlike real
playing cards, however, two cards may be exactly on top of each other. In this case
they are stuffed together: a single card (which is their sum) appears in the result-
ing deck. A mathematical jargon term for such shuffling with (possible) stuffing is
stuffling.

In[2] := Show([Import[’c1.jpg”]]

out]2] =
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Let’s implement this in Mathematica. The multi-§ function will be called {; it
can have any number of arguments. The function Stuffling first of all transforms
products of { functions (including squares) to a local function z with three list pa-
rameters: the first two contain the arguments of the initial { functions, and the third
one is empty. These are our two decks for shuffling and the resulting deck, initially
empty. All the work is done by the following repeated substitution. Let the two un-
processed decks be nonempty: the first one contains some front “card” a_ and the
remainder A ___; the second one—the front “card” b _ and the remainder B___. Then
there are three possibilities: either we move the front “card” from the first deck (a)
to the resulting deck, or we move the front “card” from the second deck (b) to the
resulting deck, or we take the front “cards” from both decks and put their sum to
the resulting deck (stuffing). We need to use a delayed substitution : > here to ensure
that the command Expand in its right-hand side is executed when the substitution
is applied. In addition to this, we should take care of the situations when one of the
source decks becomes empty. In this case we can just append the other source deck
to the resulting one and yield the result.

This process can also be described as the following. The final result is a sum
of many { functions with various argument lists. During intermediate steps, the
function z[deckl,deck2,res| represents the sum of a subset of terms of the result
whose argument lists begin with res. At each step we subdivide this sum into three
parts, according to three possible values of the next argument.

In[3] := Stuffling[x | := Module[{y,z},y = x/.
{C1A__1"2—>[{A},{A},{}]. CIA-_ ]+ {[B__|—>z[{A},{B}, {}]};

y//-{zl{},{B--_}.{C--}]->CIC,B],z[{A--_}, {},{C--}]->C[C,A],
{a A} {bB__}{C__}]:>
Expand([z[{A},{b,B},{C,a}] +z[{a,A},{B},{C,b}]+
z[{A},{B},{C,a+b}]|}]

In[4] := Map[Stuffling, {{[x]"2, {[x] * £ ], £ [x] * [y, 2]}]

Out[4] = {[2x] + 28 [x,x], Clx+y] + Cx, ] + Ey, A,
Chvx+2+ Clx+y, 2+ S,y 2 + Sy x, 2 + Ly z,x]}

22.3 Integral Representation

It is easy to check the integral representation of the {-function of an integer
argument

= [ Gm e dn

I>x1>>x>0

Let’s denote
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All integrals will always have the integration region 1 > x; > --- > x; > 0. Then

&= / oy oy

This representation can be generalized to multi-{ functions:

S1— 1 52— 1 ‘l 1 §3— 1
Corsr = / o0 01, Gy = / o op ojo) o,

and so on. Let’s write functions for transforming { with integer arguments to such
integral representation and back. The integral representation i takes an arbitrary
number of arguments equal to O or 1 corresponding to @y, ®;.
In[5] := s2i[x ] := Module{[{y, z},y = x/.§[A - ]->2[{A}, {}];
y//-{zl{},{B---}]->{i[B],
{{a,A__},{B__}]:>
z[{A}, Append[Join[{B}, Table[0, {a — 1}]], 1]]}]
In[6] := I = Map|s2i,{{[2], {[2,3]}]
Out[6] = {¢i]0, 1], £i[0,1,0,0,1]}
In[7)] := i2s[x_] := Module[{y, z},y = x/.CilA__ ] —>z[{A}, {1}];
y//-{zl{1},{B--}]->{[B],
{aA_-},{B.__b}]: >
Ifla ==0,z[{A},{B,b+1}],2[{A},{B,b,1}]]}]
In[8] := Map]i2s, []
Out[8] = {{[2], ¢[2,3]}
In[9] := Clear(/|

22.4 Shuffling Relations
Suppose we want to multiply &, - &s:

/ Wy - / Wy .

1>x1>x>0 1>x)>x,>0

The order of primed and non-primed integration variables is not fixed. There are six
contributions:

1>X1>XQ>XI1>XI2>OZ /a)owla)owlzng;
1>x1>x/1>x2>x/2>0: /ababwlw1=C31;

1>x1>x’1>x’2>x2>0: /ababwlw1=C31;
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1>x>x>x>x,>0: /wowowlw1:C31;
I>x>x>x,>x0>0: /a)oa)ow1w1=C31;

I>x] >x,>x >x>0: /(1)()(1)1(1)()(1)1:C22.

Now we are multiplying integrals, not sums. Therefore our “cards” are now in-

finitely thin and cannot be exactly on top of each other. There are just two kinds of

“cards”: wp and ®;, and we sum over all possible shufflings of two decks.

In[10] := Show(Import[”c2.jpg”]]

Out[10] =

In[11] := shuffling[x_] := Module[{y,z},y = x/.
{Gi[a__1"2—>z[{A},{A},{}],
GilA__]*Ci[B__|—>z[{A},{B},{}]};
y/ [ A{al{}{B---}{C--_}—>Ci[C,B],z[{A___}, {},{C--_}]->Ci[C,4],
{aA__},{bB___},{C__}]:>
Expand[z[{A}, {b, B},{C,a}] +z[{a,A},{B},{C,b}]]}]
In[12] := Shuffling[x | := i2s[Expand[shuffling[s2i[x]]]]
In[13] := Map[Shuffling, {£[2]"2, £[2] = £[3], £[2] * £[2,1]}]
Out[13] = {2§[2,2] +4¢[3,1],¢[2,3] +38[3,2] + 644, 1],
C[2,1,2]+3¢[2,2,1]+6[3,1,1]}
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22.5 Duality Relations

The integral representation allows us to derive another set of useful relations, even
simpler than shuffling—duality relations. Let’s make the substitution x; — 1 — x;.
Then wy +— o; to preserve the order 1 > x; > --- > x; > 0, we have to arrange
all the w factors in the opposite order. In other words, after writing down an integral
representation for a multi-§ value, we may read it in the Arabic fashion, right to left,
simultaneously replacing @y «— ;. Duality relations are the only known relations
which say that two multi-{ values with distinct arguments are just equal to each
other.
In[14] := duality[x ] := Module[{y, z},y = x/. Ci[A___]—>z[{A}, {}];

}’// {Z[{}, {B---}]_>Ci[B]’z[{a-,A---}7 {B---}]—>Z[{A}, {1 - a’B}]}]
In[15] := Duality[x .| := i2s[duality[s2i[x]]]
In[16] := Map[Duality, {£[3], £[4], £[5], £[4, 11, £[3,2], £ 2, 3])]
Out[16] = {¢[2,1],¢[2,1,1],&[2,1,1,1],&[3,1,1],§[2,2,1],&[2,1,2]}

22.6 Weight 4

There are four converging multi-§ series of weight 4: {4, {31, 2, and {p11. Due to
duality, two of them are equal to each other.
In[17] := Duality[£ 4]
Out[17] = {[2,1,1]
We can express {4 via sz using their explicit values:
In[18] := S = {[4] —>Zeta[4] /Zeta[2]"2 * {[2]"2
242

Out[18] = ¢[4] - =~

Two equations for sz follow from stuffling
In[19] := eql = {[2]"2 == Stuffling[{[2]"2]
Out[19] = ¢2]* == ¢ [4] +2¢[2,2]
and shuffling
In[20] := eq2 = {[2]"2 == Shuffling[{[2]"2]
Out[20] = {[2)* == 2¢[2,2] +4¢[3,1]
They can be solved for §; and {3, (taking the expression for {4 into account).
In[21) = s = Solvef{eql . 5,eq2}, (£ [2,2),£[3, UN[1)
out21] = {g[z 2 36L2E iy ﬂ}
’ 10 7 10
Thus we have demonstrated that all multi-{ values of weight 4 can be expressed
via £3.
In[22] := Clear|S]
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22.7 Weight 5

There are four distinct multi-§ values of weight 5,

In[23] := Map(Duality, {{[5], {4, 1],£[3,2],£[2,3]}]

Out[23] = {¢[2,1,1,1},¢[3,1,1],§[2,2,1],&[2,1,2]}

due to duality. The stuffling relation for {, 3:

In[24] := eql = {[2] + £[3] == Stuffling[£ 2] * £ [3]]

out24] = {2163 == ¢[5]+ £ [2,3]+ £ [3,2]

A similar equation where {3 is written in the dual form.

In[25) := eq2 = Stuffling[£[2] + Duality[§[3]]]

Out[25] = {[2,3] + {[4,1] + §[2,1,2] +2£[2,2,1]

In[26] :=eq2 =eq2/. {C[2’ 1’2] : >DuahtY[C[2’ 172]]7
£[2,2,1] : >Duality[£[2,2,1]]}

Out[26] = 2([2,3] +28[3,2] + {4, 1]

In[27] :=eq2 = §[2] # §[3] == eq2

Out[27] = §[2]¢[3) == 2&[2,3] +2¢&[3,2] + {[4, 1)

The shuffling relation for {,{5:

In[28] := eq3 = §[2] + {[3] == Shuffling[¢[2] + {[3]]

Out[28] = {[2]¢[3] == €[2,3] +3¢8[3,2] + 644, 1]

This system can be solved for {1, {32, and {p3.

In[29] := s = Solve[{eql,eq2,eq3}, {[4,1],£[3,2], £[2,3]}][[1]]

Out[29] = {C[‘h 1] = —CRIEBI+2£15],813,2] = 3¢ 26 3] - ——

2
¢12.3] - 251+ 252

Thus we have demonstrated that all multi- values of weight 5 can be expressed via

283 and Gs.



Chapter 23
Rainbow

23.1 Statement of the Problem

We consider scattering of light by a spherical water drop in geometrical optics. For
small drops, diffraction becomes significant; our analysis is only valid for drops
which are not too small. Let the drop radius be 1. The ray with the impact parameter
p splits into the reflected ray and the refracted one. Their directions are given by the
Snell law
In[1] := Snell = {&—>ArcSin[p], B—>ArcSin[p /n]};
where the refraction index of water is
In[2] := Water = n—>1.333;
In[3] := col = {RGBColor|1,0,0], RGBColor|0,0, 1], RGBColor|0, 1,0],
RGBColor([1,0,1],RGBColor|0, 1,1],RGBColor(1,1,0] };
In[4] := With[{y = 0.6},
With[{oe = a/.Snell/.p—>y, B = B/.Snell/. p—>y/. Water,
x=—Sqrtf1 2]},
With[{p=mr—a, 9 =n—-2xa},Withi{y =@ +2+ —n},
Graphics[{Black, Circle[], Line[{{—2,0},{1.2,0} }],
Line[{{0,0}, {2 x Cos[¢],2 x Sin[¢]} },
Line[{{0,0}, {Cos[y],Sin[y]}}],
Line[{{x,y}, {x,0}}], col[[1]], Line[{{~2,y}, {x,y}}],
col[[2]],Line[{{x,y},{x+ 1.5 % Cos[8],y + 1.5 Sin[1¥] } }],
col[[3]], Line[{{x,y}, {Cos[w], Sin[y]}}],
Black, Inset[Style[a”,24], { —0.25,0.1}],
Inset[Style[a”,24],{x— 0.25,y+0.1}],
Inset[Style[”a”,24],{x—0.15,y +0.25}],
Inset[Style[”B”,24],{x+ 0.35,y — 0.15}],
Inset[Style[’p”,24], {x+0.1,0.5xy}]}]]]l]

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 173
DOI 10.1007/978-3-319-00894-3_23, © Springer International Publishing Switzerland 2014



174 23 Rainbow

The incident ray hits the drop at the point {Cos[¢], Sin[@]}, where ¢ = m — 0.
The reflected ray has the direction ©+ = w — 2¢. The refracted ray hits the drop
surface again at { Cos[y/], Sin[y]}, where y = ¢ + 2 — 7.

The incident light has two polarizations, with the electric field orthogonal to the
scattering plane or lying in this plane. The reflection coefficients for these polariza-
tions are given by the Fresnel formulas [21] (they don’t depend on the direction, i.e.,
are the same for a ray entering water and a ray leaving it).

In[5] := Rs = (Sin[a — B]/Sin[er + B])"2; Rp = (Tan[ex — B]/Tan[ex + B])"2;

23.2 0 Ray Segments Inside the Drop

First let’s consider rays reflected by the drop immediately after they hit its surface.
In[6] := RayO[y_,a_] := With[{a = a/.Snell/.p—>y,
B = B/.Snell/.p—>y/. Water,x = —Sqrt[1 —y"2]},
With{{9 = 7 —2x a}, {col[[1]], Line[{{—1 — a,3}, {x,y}}]
col[[2]], Line[{{x,y}, {x+axCos[8],y+axSin[5]} }]}]]
In[7] := Manipulate[Graphics[Join[{Black, Circle[| },Ray0][y,a]],
PlotRange—>{{—1—a,1.1},{—1.1,a+0.7}}],
{{»,0.6},0,1},{{a,2},1,10}]
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Out[7] =

In[8] := Manipulate[

Graphics|

Join[{Black, Circle[] },

With[{5 = (pmax — pmin)/M},
If{8 > 0, Apply[Join, Table[RayOly,a], {y, pmin + /2, pmax, 8}]], { }]1],

PlotRange—>{{—1—a,1.1},{—1.1,a+0.7}}],
{{pmin,0},0,1},{{pmax,1},0,1},
{{M,10}, Tableli, {i,30}]},{{a,2},1,10}]
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pmin -B
pmax D.

Out[8] =

H

W

The scattering angle is
In9]:=90=n—-2*a;

In[10] := Plot[Evaluate[©0/. Snell], {p,0,1}]
3.0 ;
25

Out[10] =

15F

0.5F

P T S Y NS S S S S St
0.2 0.4 0.6 0.8 1.0

In order to calculate the differential cross section, we need to express p via the
scattering angle ¥:
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In[11] := so0l0 = Simplify[Solve[(30/.Snell) == 9¥,p],0 < ¥ < 7]

Out[11] = {p — Cos {g

In[12] := p0 = p/.s0l0[[1]]

Out[12] = Cos [g]

In[13] := Clear[sol0]

The angles o and 3 are

In[14] := Snell0 = {&—>(x — ®)/2, f—>ArcSin[Sin[] /n]};

The area of the ring in the transverse plane corresponding to the scattering angles

between ¢ and ¥ +dd, divided by dQ = 27 Sin[¥]dd, is

In[15] := 60 = Simplify[—D[p0"2, 9] /(2 * Sin[8])]

Out[15] = i

Therefore, the cross sections for the two polarizations are

In[16] := 00s[® ] = Simplify[c0*Rs//.Snell0/. Water];
o0p[9 ] = Simplify[c0*Rp//. Snell0/. Water];

In[17] := Plot[{50s[9], 60p[0], (60s[9] + 00p[])/2}, {9, 0,7},
PlotRange—> All, PlotStyle—>col]

025
0.20
0A15:

Out[17] =

0.10f

0.05

Note that there is a scattering angle ¢ at which the scattered light is completely
polarized: its electric field is orthogonal to the scattering plane. This happens when
o is equal to the Brewster angle aB
In[18] := aB = ArcTan[n|; aB/. Water
Out[18] = 0.927175
In this case
In[19] := BB = ArcTan[1 /n];
so that aB + BB = 1 /2 —the refracted ray is perpendicular to the reflected one:
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In[20] = Graphics[{Line[{{—l,O}, {110}}],Lme[{{oz _l}» {0» l}}]a
col[[l]],Lme[{{0,0}, {_11 l/n}}],
col[[2]), Line[{{0,0},{1,1/n}}],
COI[[3]] ’ Line[{{o, 0}7 {1/n7 -1 }}] ’
Black, Inset[Style["a”, 24], {—0.06,0.13}], Inset[Style[*a”, 24], {0.06,0.13}],
Inset[Style["B”, 24], {0.06,—0.13}]}]/. Water

Out[20] =

When the incoming light with the electric field in the scattering plane reaches water,
electric dipoles in it oscillate along the direction perpendicular to the refracted ray;
they don’t radiate in the direction along this axis, i.e., don’t produce the reflected
ray: Rp=0.

In[21] := Plot[c0p[8],{¥,0, 7}, PlotRange—>{0,0.01}]

0.010 -
0.008 ;
0.006 ;
outl] = |

0.004 -

0.002 -

P B
0.0 0.5

In[22] := 90/..—>aB/. Water
Out[22] = 1.28724
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23.3 1 Ray Segment Inside the Drop

In[23] := Rayl[y_,a.] := With[{a = /. Snell/.p—>y,
B = B/.Snell/.p—>y/. Water,x = —Sqrt[1 —y"2]},
With[{p=m—a, 8 =2x(B— )}, With[{y =9 +2xf —r},
With[{x1 = Cos[y],y1 = Sin[y]}, {col([1]], Line[{{—1—a,y},{x,y} }],
col([3]], Line[{{x,y}, {xL,y1}}],
col[2]], Line[{{x1,y1},{x1+a*Cos[d],y1 +a*Sin[5]} }] }]]]]
In[24] := Manipulate[Graphics[Join[{Black, Circle[] },Ray1[y,a]],
PlotRange—>{{—1—a,1+a},{—1.1,1.1}}],{{y,0.6},0,1},
{{a,2},1,10}]

Y
—}
a—

J

Out[24] =

When entering water, the ray is deflected by o — 8 clockwise; when leaving water,
it is deflected by the same angle again. The direction of the outgoing ray is
In[25]:=91=2% (B —a);
In[26] := Manipulate|
Graphics|
Join[{Black, Circle[| },
With[{$ = (pmax — pmin) /M},
If[5 > 0, Apply[Join, Table[Ray1[y,a], {y, pmin + § /2, pmax, 8}]], {}]]],
PlotRange—>{{—1—a,1+a},{-1.1,1.1}}],
{{pmin,0},0,1},{{pmax,1},0,1},
{{M,10}, Tablefi, {i,30}]},{{a,2},1,10}]

pmin{}
pmax i
10
M M
a —{—-
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The scattering angle © is obtained by reducing 1 to the interval [—x, 7] and then
taking Abs; in the present case, it is just —9 1.
In[27] := Plot[Evaluate[—11/. Snell/. Water], {p,0,1}]

1.4

Out[27] = 08f
06
04f

02f

0.2 0.4 0.6 0.8 1.0

It varies from O to
In[28] := ¥ 1m = Simplify[—1/.Snell/.p—>1]

Out[28] = w — 2 ArcSin F]

In[29] := ¥1m/. Water
Out[29] = 1.4449
Now we have to solve the equation @ — 8 = ©/2 for p.
In[30] := eql = (TrigExpand[Sin[a — B]] /. {Sin[a]—>p, Cos[a] —>Sqrt[1 — p/2],
Sin[B]—>p/n,Cos[B]—>Sqrt[1 — (p/n)"2]}) == Sin[9/2]

py1-p? p> - [v
Out[30]:_T+p\/l_ﬁ::SIH E
In[31] := soll = Solve[eql, p]
B n* — n?Cos[ 9]

V2,14 —2nCos[8] |

b n* — n?Cos| 9] s n* — n?Cos| 9]
\/5\/1+n2—2nC05[%] 7 \/z\/l—l-nz—i—ZnCOS[%] 7

n* — n?Cos| 9]
p—
{ \/5\/1+n2+2nC05[%]}}
We discard the negative solutions. The positive ones evaluated at ¥ 1m are
In[32] := Simplify[p/.sol1[[{2,4}]]/. ®—>O1m,n > 1]
—1+n?

"\ 3+n2

Out[31] = p—

out[32] =< 1
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So, the right solution is number 2:
In[33] := p1 = Simplify[Simplify[p/.sol1[[2]],{n > 1,0 < ¥ < @}]/.
Cos[0]—>1—2xSin[8/2]"2,{n > 1,9 > 0,9 < }]
nSin 4]
1+n2—2nCos[3]
In[34] := Clear[eq1, sol1]
The geometrical cross section for ¥ between ¥ and ¥ + d¥, divided by d{2, is
In[35) := 61 = Simplify[D[p1°2, 9] /(4 xc2*s2)/.
{Cos[¥/2]—>¢c2,Sin[8} /2] —>s2}]
n* (c2—2c2%n+c2n? —ns2?)
4c2 (1-2c2n+n2)?
where ¢2 = Cos[®/2], s2 = Sin[1}/2]. The angles o and 3 are
In[36] := Snelll = {&—>ArcSin[p1],B—>ArcSin[p1/n]};
The differential cross sections for the two polarizations are
In[37)] := cs2 = {c2—>Cos[¥/2],s2—>Sin[8} /2] };
In[38] := o1s[¥ ] = Simplify[c'1 * (1 — Rs)"2/.Snelll/.cs2/. Water];
o1p[® ] = Simplify[c'1 * (1 —Rp)"2/.Snelll/.cs2/. Water];
(the transmission coefficient is 7 = 1 — R, and transmission happens twice).
In[39)] := Plot[{ 61s[88], 61p[V], (01s[9] + o1p[B])/2},{,0,91m/. Water},
PlotRange—> All, PlotStyle—>col]

Out[33] =

Out[35] =

23.4 2 Ray Segments Inside the Drop

In[40] := Ray2[y_,a_] := With[{a = a/.Snell/.p—>y,
B = B/.Snell/.p—>y/.Water,x = —Sqrt[1 —y"2]},
With[{9 =4xB —2*xa— 1},
Module[{¢ = & — o, R = {col[[1]], Line[{{—1 —a,y}, {x,y}}]},
x1 =x,yl =y,x2,y2,y},

181
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v =@+2x%f—m; x2=Cos[y]; y2 = Sin[y];
R = Join[R, {col[[3]], Line[{{x1,y1},{x2,y2} }]}];
o=y;x1=x2;yl =y2; y=@+2xf —m; x2=Cos[y]; y2 = Sin[y];
R = Join[R, {col[[4]], Line[{{x1,y1},{x2,y2} }]}];
Join[R, {col([2]], Line[{{x2,y2},{x2+a* Cos[}],y2 +a* Sin[8]} }] }]]]]
In[41] := Manipulate[Graphics[Join[{Black, Circle[| },Ray2[y,d]],
PlotRange—>{{—1—a,1.1},{—1-0.7%a,1.1}}],
{{»,0.6},0,1},{{a,2},1,10}]

7
[

y
a—Q

Out[4l] =

The second segment of the ray inside the drop is obtained from the first one by
rotating by the angle = — 23 clockwise; hence the outgoing ray is obtained from the
one in the previous section by the same rotation:
In[42]:=92=4xB—2x0—m;
In[43] := Manipulate|
Graphics|
Join[{Black, Circle[]},
With[{$ = (pmax — pmin) /M},
If[5 > 0, Apply[Join, Table[Ray2([y,a], {y, pmin + /2, pmax, 8}]], {}]1],
PlotRange—>{{—1—a,1.1},{—1—-0.7%a,1.1}}],
{{pmin,0},0,1},{{pmax,1},0,1},
{{M, 10}, Table[i,{i,30}]}, {{a,2},1,10}]
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r min-[j

r max o}

M IOM

Ry

/
/

Out[43] = ]

=)

The real scattering angle is ¥ = —92:
In[44] := Plot[—¥2/.Snell/. Water, {p,0,1}]

Out[44] =~

I S S S P ol
0.2 0.4 0.6 0.8 1.0

It has a minimum at
In[45) := s2r = Solve[D[¥2/. Snell, p] == 0, p]

Out[45]_{{p—>— 7 AP — 7
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In[46] := p2r = p/.s2r[[2]]
2

i

—n
Out|46] =
ut[46] 7
equal to
In[47] := 92r = —92/.Snell/.p—>p2r
4 — n2 A — n2
Out[47] = 7+ 2 ArcSin ‘t/g” — 4 ArcSin l j/gn” ]

In[48] := {p2r, ¥2r} /. Water
Out[48] = {0.860835,2.40719}

Rays from a relatively wide ring around p2r have practically the same scattering
angle ¥2r. This contribution to the cross section tends to o at this angle. When an
observer sees a cloud of water drops illuminated by the sun, especially bright light
rays arrive along the cone with angle © — ¥2r. Usually, only a part of the circle is
seen (the full circle can be sometimes observed from an airplane).

In[49] := With[{R = —Tan[02r/. Water] }, Graphics3D|
Join[{Opacity[0.1], Yellow, Cone[{{1,0,0},{0,0,0} },R]},
Apply[Join, Table[
Module[{x = 0.5 * (Random[] + 1), @ = 2 * £« Random(],y, z},
y=Rx*xxCos[@]; z=Rx*xx*Sin[g];
{Red, Line[{{0,y,2}, {x,y,2} }], Blue, Line[{{x,y,2},{0,0,0} }]}],
{n,503]]],
Boxed—>False, ViewPoint—>{—10,—30,0}]]

Out[49] =
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In[50] := Show(Import[ rainbow.jpg”]]

The scattering angle at p = 1 is
In[51] := ¥2m = —92/.Snell/.p—>1

1
Out[51] =27 — 4 ArcSin | —
n

In[52] := {¥2rw, 92mw} = {92r,92m} /. Water;
Now we have to solve the equation oc — 28 = (¥ — m) /2 for p.
In[53] := eq2 = (TrigExpand|[Sin[ct — 2 x 8]]/.
{Sin[a] = p,Cos[c] — Sqrt[1 — ,
Sin[B] — p/n,Cos[B] — Sqrtll —(p/n)"2]}) == —Cos[89/2)]
3 2p\/1—p% /185 2
outjs3) = 2P +p (1 - p_2) —= —Cos P}
n n 2
In[54] := so0l2 = Solve[eq2, p],
The solution number 3 is the smaller one; number 4 is the larger one (1 and 2 are
negative).
In[55] := p2a = p/.sol2[[3]]; p2b = p/.sol2[[4]];
In[56] := Clear[eq2, sol2]
In[57] := p2a = ParametricPlot[{ 9}, p2a/. Water}, {9, 92r/. Water, 7},
PlotStyle — Blue];
p2b = ParametricPlot[{ ¥, p2b/. Water}, {8, 92r/. Water, 2m/. Water},
PlotStyle — Red];
Show([p2a, p2b, PlotRange — {{92r/. Water,n},{0,1}}]
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Out[57] =

2.5 2.6 2.7 2.8 2.9 3.0 3.1

In order to scatter between ¥ and ¥ + d4J, the incident ray has to hit one of the two
rings, 62a or (if ¥ < ¥2m) o2b.
In[58] := 62a = —(D[p2a’2,9]/(4 *c2*s2)/.{Cos[¥/2] — ¢2,Sin[}/2] — 2,
Cos[09] — 22 — 22, Sin[9]—>2 x 2 ¥52});
62b = D[p2b"2,9]/(4xc2*s2)/.{Cos[8/2] — ¢2,Sin[8}/2] — 52,
Cos[0] — c2"2 — 22, Sin[9]—>2 xc2 *s2};
The angles & and f in these two cases are
In[59] := Snell2a = {&t—>ArcSin[p2a], B—>ArcSin[p2a/n|};
Snell2b = {t—>ArcSin[p2b], B—>ArcSin[p2b/n]};
The differential cross sections for the two polarizations are
In[60] := 62as[® ] = 62a* (1 —Rs)"2xRs/.Snell2a/.cs2/. Water;
62ap[¥ | = 62a* (1 —Rp)*2 xRp/.Snell2a/.cs2/. Water;
02bs[0 ] = 62b* (1 —Rs)*2 xRs/.Snell2b/.cs2/. Water;
62bp[¥ ] = 62bx (1 —Rp)*2 xRp/.Snell2b/.cs2/. Water;
In[61] := 02s[® ] :=If[¥ > ¥2rw, 62as[¥] + If[¥ < ¥2mw, 62bs[1],0],0];
62p[¥ | :=If[® > ¥2rw, 62ap[V] +If[¥ < ¥2mw, 62bp[¥],0],0];
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In[62] := Plot[{ 62s[83], 62p[83], (02s[9}] + 62p[B}]) /2}, {¥}, ¥2rw +0.001, 7},
PlotRange—>{0, 1}, PlotStyle—>col|

1.0

0.8

Fl
LI
|
il
|
|
|

Out[62] =

The considered contributions (0, 1, 2 ray segments inside the drop) to the cross
sections with the s, p polarizations, as well as their sums, are
In[63] := {Plot[{60s[0], c1s[9], 62s[9], 60s[¥] + o 1s[9] + 62s[D]},{ 9,0, 7},
PlotRange—>{0, 1}, PlotStyle—>col],
Plot[{0p[8], 61p[®], 62p[B], 60p[®] + & 1p[B] + 62p[B]}, {B,0, 7},
PlotRange—>{0, 1}, PlotStyle—>col|}

08 b

Out[63] =

Of course, there are also higher contributions, not included here. The cross section
is small for scattering angles below the rainbow peak; i.e., the sky just outside the
rainbow is darker.
Near the rainbow peak, the last contribution (2 ray segments) is dominant; the

ratio of the s and p polarizations is
In[64] := Rs2 = Simplify[TrigExpand[Rs/. Snell/. p—>p2r],n > 1];

Rp2 = Simplify[TrigExpand[Rp/. Snell/. p—>p2r],n > 1];

P2 = Simplify[(1 — Rs2)"2 xRs2/((1 —Rp2)*2xRp2),n > 1]

(2 + nz) 6
7294 (=2 + n2)?
In[65] := P2/. Water
Out[65] = 25.3347

Out[64] =
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The rainbow light is highly linearly polarized, with the electric field orthogonal to
the scattering plane, i.e., along the rainbow. The reason is that the incidence angle
B of the ray which is about to reflect from the inner surface of the drop

In[66] := B/.Snell/.p—>p2r/. Water

Out[66] = 0.702055

is close to the Brewster angle

In[67] := BB/. Water

Out[67] = 0.643621

23.5 L Ray Segments Inside the Drop

Repeating the arguments from the previous sections, we obtain the direction of the
outgoing ray 9L =2(f —a) — (L—1)(n—2pB):
In[68] := 9L =2xLxB—2xa— (L—1)*m;
In[69] :=Ray[L_,y_,a_] := With[{a = a/.Snell/.p—>y,
B =PpB/.Snell/.p—>y/. Water},
Module[{R = {col[[1]], Line[{{—1—a,y}, {—Sqrt[1 - y"2],y} }]},
o=n—0,pl,0=2+Lxf—-2xa—(L—1)*x},
Do[pl =@ +2xp—m;
R = Join[R, {col|[m + 2]}, Line[{{Cos[¢], Sin[¢]},{ Cos[@1], Sin[@1]} }]}];
¢ =ol,{m,L}];
Join[R, {col[[2]],
Line[{{Cos[¢], Sin[¢]}, {Cos[¢] +a * Cos[d], Sin[@] +a Sin[5]} }]}]]]
In[70] := ®[L_,p -] = YL/.Snell/. Water;
In[71] := Manipulate[{
Manipulate[
Graphics[Join[{Black, Circle[] },Ray[L,y,d]],
PlotRange—>{{—1—a,1+a},{-1—a,1+a}}],
{{»,0.6},0,1},{{a,2},1,10}],
Manipulate[
Graphics[Join[{Black, Circle[] },
With[{8 = (pmax — pmin)/M},
If[8 > 0, Apply[Join, Table[Ray[L,y,a], {y, pmin + 8 /2, pmax, §}]], {}]1,
PlotRange—>{{—1—-a,1+a},{—1—a,1+a}}],
{{pmin,0},0,1}, {{pmax,1},0,1},
{{M, 10}, Tablels.{i, 301}, {{a,2}, 1, 10}],
Plot[Abs[Mod[d(L, p], 2 * m, —x]],{p,0,1}]},
{{L,3}, Tableli, {i,0,4}]}]
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0123 4

a—3—-

Out[71] =

pminf—

pmax—— [}
M 10y
a—{—-

Scattering angles for L =0, 1, 2, 3, 4 as functions of p are
In[72] := Plot[Evaluate[Table[Abs[Mod[¥ (L, p],2 x w, —=]], {L,0,4}]],{p,0,1},
PlotStyle—>col|
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Naturally, those with even L start from 7 at p = 0; for odd L they start from 0. For
L > 2 each one has a single extremum:
In[73] := sol = Solve[D[HL/.Snell, p] == 0, p]

12 —n? 12 —n?
oulr3l= {{’H‘ﬁ}’{”*ﬁ}}
In[74] :== pL = p/.sol][2]]

N

out[74] = Y2
ui74] V-1+12
In[75] := ¥r = OL/.Snell/.p->pL

2_ 2 12 2
Out[75] = —(—1+ L) — 2 ArcSin | ——— | +2LArcSin | ——
73] ( ) [\/—1+L2 l\/—l-i-LG

These extrema produce rainbows at the angles (in degrees)

In[76] := Table[(n — Abs[Mod[dr/. Water,2 x , —]]) /Degree, {L,2,4}]
Out[76] = {42.0781,50.8908, 138.263}

The angles at which an observer sees the first and the second rainbow are

In[77] := {912,913} = {m+ (¥r/.L—>2),— — (¥r/.L—>3)}

a4 —n2 a4 —n2
Out[77] = { —2AreSin | | +4ArcSin | |,
\/§ \/§n
£\/Q _ 2 /O _ 2
x4 2ArcSin | Y2 | 6 Aresin | Yo
2v2 2v/2n

The sky is somewhat darker between the first rainbow and the second one, because
neither rays with L = 2 nor those with L = 3 come from these directions.

Until now, we discussed monochromatic light. Then each rainbow is just a bright
arc of the same color. In fact, the refraction index of water n depends on the color
(wavelength) of light (dispersion). It is larger for violet light than for red one. There-
fore the positions of the maxima of intensity of the scattered light also depend on
the color.

In[78] := Plot[{¥r2/Degree, 913 /Degree},{n,1.325,1.335},PlotStyle—>col]

50 - -

Out[78] =

46

44 -

L PR L
1.328 1.330 1.332 1.334
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We see that the order of colors in the second rainbow is opposite to that in the first
one; and the second rainbow is wider.
The ratios of s and p polarizations at the rainbow peaks are

In[79] := RsO = Simplify[TrigExpand[Rs/.Snell/.p—>pL],{n > 1,L > 1}]

Out[79] = (=140
(14L)?
In[80] := Rp0 = Simplify[TrigExpand[Rp/.Snell/.p—>pL],{n > 1,L > 1}]
(L)’
Out[80] = L)

In[81] := P = Simplify[(1 — Rs0)"2 * Rs0" (L — 1) /((1 — Rp0)"2 * Rp0* (L — 1)),
{n>1,L>1}
( (—14+L)?2(L+n2)° ) ’ 12— n*)?
(1+L)2(L—n?) (L% —n
(—1412)%n*
In[82] := Table[P/. Water, {L,2,4}]
Out[82] = {25.3347,9.36736,8.10737}
Higher rainbows are not so strongly polarized as the first one, because the incidence
angle for the reflections inside the drop is not so close to the Brewster angle.

Out[81] =



Chapter 24
Cyclohexane

24.1 Statement of the Problem

Cyclohexane molecule contains 6 C atoms connected cyclically by single chemical
bonds; 2 H atoms are attached to each carbon one. Single bonds of a C atom have a
fixed length and form fixed angles: if the C atom is put to the center of a tetrahedron,
then its single bonds point to its vertices. The problem is: how many geometrical
configurations (conformations, as chemists call them) of the cyclohexane molecule
exist—one, several, or infinitely many (and if so, what is the dimensionality of this
set).

Tetrahedron

What is the angle between single bonds? The unit vectors a[l],... a[4] (blue) are
directed from the center of the tetrahedron (red) to its vertices.
In[1] := a[0] = {0,0,0}; a[1] = {0,0,1}; a[2] = {2+ Sqrt[2],0,—1}/3;
a[3] = {—Sqrt[2], Sqrt[6], —1}/3; a[4] = {—Sart[2], —Sqrt[6], —1}/3;
In[2] :=rc =0.025; rs =0.1;
In[3] := Graphics3D[{Blue, Cylinder[{a[0],a[1]},rc], Cylinder[{a[0],a[2]},rc],
Cylinder[{a[0], a[3]},rc], Cylinder[{a[0],a[4]},1c],
Red, Cylinder[{al[1],a[2]},rc], Cylinder{{a[1],a[3]},rc],
Cylinder[{a[1], a[4]},rc], Cylinder[{a[2],a[3]},c],
Cylinder[{a[2], a[4]},rc], Cylinder[{a[3],a[4]},c],
Sphere(a[1],rs], Sphere[a[2], rs], Spherea[3], rs|, Sphere]a[4], s] },
Boxed—>False, ViewPoint—>{10, 10,4}

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 193
DOI 10.1007/978-3-319-00894-3_24, © Springer International Publishing Switzerland 2014
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Out[3] =

Let’s check: the vectors are indeed unit and form equal angles with each other; hence
all edges have equal lengths, so this is indeed a tetrahedron.

In[4] := MatrixForm[Table[a[i].a[j], {i,1,4},{j,1,4}]]

Out[4]//MatrixForm =

0|00 =] =
W] —0]—
—_
—

Cosine of the angle between these vectors is —1/3.
In[5] := Clear]a, rc, rs]

24.2 First Steps

Thus we have 6 vectors al[l], ..., a[6] drawn from each C atom to the next one.
They form a closed hexagon: a[l] + - -- + a[6] = 0. Let the length of a single C—C
bond be 1, then all the vectors are unit. Scalar products of neighboring vectors are
1/3 (the sign has changed because now one of the vectors points in, not out). In
order not to deal with the overall orientation of the molecule, let’s consider invariant
quantities—cosines of the angles c[i, j] = ali].a[j]-

In[6] = C[i-,j.]/;i >ji= C[],l]

In[7] = DO[C[i,i] = 17{i’ 1;6}]

In[8] := Dolcli,i+1] = 1/3,{i,1,5}]; c[1,6] = 1/3;
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In[9] := MatrixForm[M = Array[c, {6,6}]]
Out[9]//MatrixForm =
1 c[l
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Linear Equations

Multiplying the vector equality a[l] + --- 4 a[6] = O by each vector ali], we get 6
linear equations for c[i, j].
In[10] := Eq = Table[Sumc[i, ], {j,1,6}] == 0, {i, 1,6}]

Out[10] = {g +c[1,3] 4+ ¢[1,4] +¢[1,5] ==0, g +c[2,4] 4 ¢[2,5] + ¢[2,6] == 0,

2 el 3]+ ¢f3,5] 3,6 == 0,3 +e[1,4] +c[2,4] + ¢4, 6] == 0

§+c[1,5] +¢[2,5]+¢[3,5]==0, % +¢[2,6] +¢[3,6] + c[4,6] == o}

Let’s take x = ¢[1,3], y = ¢[3,5], z = ¢[5, 1] as independent variables and express the
remaining ones via them.

In[11] :=¢[1,3] = x; ¢[3,5] =y; ¢[1,5] =z

In[12] := s = Solve[Eq, {c[1,4],c[2,4],¢[2,5],c[2,6],c[3,6],c[4,6]}][[1]]

Out[12] = {c[1,4] — —% —x—z,c[2,4] = z,¢[2,5] = —g —y—2z,c[2,6] =y,

c[3,6] — —g —x—y,c[4,6] —>x}

In[13] := ¢[1,4] = c[1,4]/.s; c[2,4] = ¢[2,4]/.s; ¢[2,5] = c[2,5]/.s;
c[2,6] = ¢[2,6]/.s; c[3,6] = ¢[3,6]/.s; c[4,6] = c[4,6]/.s;

In[14] := Clear][s]

In[15) := MatrixForm[M = M|

Out[15]//MatrixForm =

1 1
3 ! 3 S D A A

x 3 ! 3 S
—3—Xx—z z 3 1 3 x
5 1 1
S A 3 ! 3
3 y 3T x-y oo« 3 1
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24.3 Equations

Generating Combinations

Now let’s recall that our vectors a[l],..., a[6] live in 3-dimensional space. Any
4 of them are linearly dependent. First we have to find a way to generate all 4-
element lists made of the numbers from 1 to 6 in the increasing order. We shall
accumulate them in the list L. The main work is done by the recursive function Gen.
Its parameters: [—part of the list which has been already constructed; n—how many
elements are to be added; a and b—boundaries of the interval from which numbers
can be taken. If everything has been done (n = 0), the constructed list / is appended
to the list of results L. Otherwise, we add each number i from the allowed interval
to [ and call Gen recursively to add n — 1 numbers. The upper limit of the loop is
determined by the requirement to have at least n — 1 numbers in the interval from
i+1tob.
In[16]:=L={};
In[17) := Gen|[l _,n_,a_,b_] :=If[n < 0,L = Append|L, 1],
Do[Gen[Append[l,i],n - 1"+ l’bla {i’a’b —n+ 1}]]
In[18] := Gen[{},4,1,6]; L
Out[18] = {{1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},{1,2,5,6},
{1,3,4,5},{1,3,4,6},{1,3,5,6},{1,4,5,6},{2,3,4,5},{2,3,4,6},
{2,3,5,6},{2,4,5,6},{3,4,5,6}}
It works. There are 15 4-combinations of 6 numbers.

Nonlinear Equations

For each set of 4 vectors, the determinant of the corresponding 4 x 4 submatrix of
the matrix M (it is the square of the 4-dimensional volume spanned by these vectors)
should be equal to 0.

In[19] := Eq = Table[Det[M[[1, ]]], {1,L}]

5 34x 23x* 34z 20xz  2¢%z 2377 2 5,
Out[19] =y - ——_-— -~~~ “——=, =7° == =%
u[]{39 9o 9 9 T3 g Tz treL
2x 16x* 40y 10xy 10x%y 23y 2xy*  , , 40z
[, Tt Eh S _ _
To T L9 3 9 J; 3 J;” 9 "
10xz  10x"z  32yz = 10xyz 2 2377 2xz 20
_ 2 o/
9 + 3 i 9 + 3 + 2xyz 29 + ; xX°z",
5 34x 232 34y 20xy 2 232 2
T N VT e 2 I N
3.9 9 9 9 3 9 3,
7 50x 16x= 50y 98xy 10x7y 16y= 10xy 5 2 20z
3t 9t to 3 o tz tHyEt

118xz+10xzz 118yz  40xyz
9 3 9 3

10y%z
+2x%yz + Ty +2xy*z + 42+
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20xz22 5, 20y7

+x7z7 4+ 3 4—2xyz2 +y222,
40x  23x% 2y 10xy 2x%y 16y?

1002 | oo 40

_p_ =7
9 9 + 9 + 9 ) 3 9 ) ) 9
32xz  10yz 10xyz 10y°z o 2377 2yz 20
2 -/ 2
9 9 3 + 3 +2xy°z 9 + 3 +yz,
_5 3y By 3z Wi W BL WD 5,
3 9 92 9 9 23 92 32 ’
40x  23x= 2y  10xy 2x7y 16y= 10xy 5 2 40z
T 2 o
9 9+9+923+923t”9
32xz  10yz 10xyz 10y°z o 2377 2yz 20
2 /e 2
9 "9 3 3+2x”29+23 +ye
7 20x » 50y 118xy 20xy 16y~ 10xy 22 30z
Rty 4 uan
3+3+x+29+ 9 3 9 23 +xy+92+
118xz  20x“z  98yz 40xyz 2 10y“z 5 16z
2 —— 42 —
92+ 3 92 3 +2x"yz+ 3 +xyz+9+
10 10
;CZ —i—xzzz—i-%—i—nyzz—i—yzzz,
L, d0x 232 40y 32y 23 2 10w 280 10w,
9 92 9 ) 9 ) 9 9 29 3 9
10xyz =~ 2y“z = 16z= 10xz 2 10yz )
_— —+ — — 42
3 3 9 3 T+ 3 +2xyz"+y°77,
5 34x 232 34z 20xz  2x%z 2372 2x7?
___________|__ —_— —_— xzzz
3 9 9 9 9 3 9 3 ’
5 34y 23y? 34z 20yz  2y%z 2377 2y7° 22
B A it A it Wi e Wi z

39 9 9 9 3 9

3 )

40x  23x%> 40y 32xy 23y* 2z  10xz 2x%z  10yz

9 9 9 9 9 9
10xyz  2y%z 1622 10x22  , ,  10yZ

3 3 9 3 ct3
7 50x 16x* 20y 118xy  10x%

2
Tt o+ ——+ 0+ A+

39 9 3 9 3
98xz+ 10x22+ 118yz  40xyz
9o = 3 o
10 10
1uxz™ 2zz+%+2xyzz+y2z2,

2_x 16x2 @ 10xy 10x%y  23y?

9o "3 o °

+ 2xyz2 + yzzz,

Oxyz ) SOZ
3 +x7y" + 9 +

20y? 162
+2x%yz+ % +2xy°z+ Tz—i—

2y° 55 40z

9T o "9 3 9
10xz  10x%z  32yz N 10xyz
9 3 9

5 34x 23x2 34y 20xy 247y 23y?

i

2322 2
+ 2x2yz T + 3 +X222,

2xy?
— + + y+x2y2}

39 9 9 9 3 9
These 15 polynomials of 3 variables must be equal to 0.

In[20] := Clear[L]

3

197



198 24 Cyclohexane

Grobner Basis

Let’s find a simpler set of polynomials having the same solution set—the Grobner
basis.
In[21] := GB = GroebnerBasis[Eq, {z,y,x}]
Out[21] = {—15 — 34x — 23x* — 34y — 20xy + 627y — 23y + 6xy” + 9x%y?,
— 102 — 400x — 284x” + 18x* — 69y — 212xy + 18x%y + 108>y + 27x*y—
69z — 212xz+ 18x°z+ 108x'z +27x"z,
18 4 54x + 18x> — 67 + 21y 4+ 41xy — 9x%y — 9%y + 2174+ 41xz—
9%z — 9z + 20yz,
— 15— 34x — 23x% — 34z — 20xz + 6x%z — 237% + 6x2% + 9x°Z% }
Do they factorize?
In[22] := GB = Map|Factor, GB]
Out[22] = {—15 — 34x — 23x% — 34y — 20xy + 6x%y — 23y* + 6xy” + 9x*)?,
(3 4x) (1 +3x) (=34 — 20x + 6x7 — 23y + 6xy -+ 9x%y — 23z + 6x2 + 9xz) ,
18+ 54x + 18x% — 6 + 21y 4+ 41xy — 9x%y — 9’y + 217+ 41xz — 9x%s—
9%z 4 20yz,
— 15— 34x — 23x7 — 34z — 20xz + 6x°z — 2377 + 6x2% + 9x°27 }
In[23] := pl = GBJ[[1]]; p2=GBJ[2]]/(3+x)/(1+3*x);
p3 = GB[3]]; p4 = GB[[4]];

24.4 Projection onto the x, y Plane

Allowed Region

First let’s find the projection of the solution set onto the x, y plane. What part of this

plane are we interested in? First, x and y should lie between —1 and 1; second,

In[24] :=¢[3,6]

Out[24] = —% —x=y

should also lie between —1 and 1.

In[25] := RegionPlot[—1 <x < 1&& - 1<y<1&&-1<¢[3,6] <1,
{x,—-1,1},{»,—-1,1}]
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1oH m

0.5 -

Out[25] = oo |

-0.5 - -

L 1 L 1 1 1
-1.0 -0.5 0.0 0.5 1.0

That is, the allowed region is the triangle with the vertices (—1,—1), (—1,1/3), and

(1/3,-1).

Solutions with x = —1/3

The second equation is satisfied at x = —1/3. What about the other ones?
In[26] := Eq = {p1,p3,p4} /.x—> — 1/3
56 80y 5 20 20y 20z 56 80z 2
Out26) = ¢ ——————-24y", —+ —+ —+20yz, —— —— — 24
“[]{9 R B B T

In[27] := GB = GroebnerBasis[Eq, {z,y}]

Out[27] = {7+ 30y +27y% 1 + 3y +3z+9yz,7+ 30z +277°}

In[28] := GB = Map|Factor, GB]

Out[28] = {(143y)(7+9y), (1 +3y)(1+3z2),(1+3z)(7+92)}

So, we have found the solutions x=y=z=—1/3;x=y=—1/3,z=—-7/9; and
x=z=-1/3,y=-7/9.

In[29] := Eq/.{y—>—1/3,z—>—1/3}

Out[29] = {0,0,0}

In[30]) :=Eq/.{y—>—1/3,z—>—-17/9}

Out[30] = {0,0,0}
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In[31]:= Eq/. {y—>—17/9,2—>—1/3}
Out[31] ={0,0,0}

It is clear from the symmetry argument that y =z = —1/3, x = —=7/9 is also a
solution.

In[32] = {PI,PZaP3,P4}/- {x_> _7/97y_> - 1/37Z_> - 1/3}

Out[32] ={0,0,0,0}

Other Solutions

The first equation contains only x and y.

In[33] :=pl

Out[33] = —15 — 34x — 23x% — 34y — 20xy 4 6x%y — 23y” + 6:xy° + 9x°y?
In[34] := P1 = ContourPlot[pl == 0, {x,—1,0},{y,—1,0}]

00l T T T u|

-02- -
~041- -
Out[34] = | |

—0.6 — -

-0.8 - -

Lo [ [ [ [ 1

-1.0 -0.8 -0.6 -04 -0.2 0.0

This equation is quadratic in y.

In[35) := Doc[i] = Coefficient[pl,y,i],{i,0,2}]
Does c[2] vanish somewhere?

In[36] := s = Solve[c[2] == 0,x]

Out[36] = {{x—> 3 (—1—2\/6)},{x—> 3 (—1+2\/6)}}
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In[37] :==N]|x/.s]

Out[37) = {—1.96633,1.29966}

In our region ¢[2] > 0. The discriminant:
In[38] := d = Factor[c[1]"2 — 4 c[0] * ¢[2]]
Out[38] = 32(—1 +x)(7 +9x) (1 + 6x + 3x?)
In[39] := s = Solve[d == 0,x]

Out[39] = {{x%—;},{x% l},{x—> 3 (—3—\/6)},

{x—>%(—3+\/5)}}

In[40] := N[x/.s]

Out[40] = {—0.777778,1,—1.8165,—0.183503}
The discriminant is positive between x = —7/9 and
In[41] := xmax = x/.s[[4]]

Out41] = % (-3+6)

In[42] := Clear]s]

Two values of y (with pm = £1) correspond to each x from this interval.
In[43] := y1 = (—c[1] + pm=* Sqrt[d]) /(2 * c[2])

Out[43] = (34+20x— 6x2+4\/§pm\/(—1 +x)(7+9%) (1 +6x+3x2)) /

(2(—23+6x+9x%))
In[44) := Clear[d]
Do the points we found earlier lie on this curve?
In[45] := {p1/. {x—>—1/3,y—> — 1/3},pl/. {x—> — 1/3,y—> —7/9},
pl/.{x—>-7/9,y—>—1/3}}
Out[45] = {0,0,0}
Yes, they do. Let’s denote these points A, B, C.
In[46) := pA = {-1/3,-1/3}; pB ={-1/3,-7/9}; pC={-7/9,-1/3};
So, all solutions we are interested in project onto this curve in the x, y plane.
We shall need a few extra points on this curve. Let’s find the second intersection
with the diagonal x = y (the first one is the point A).
In[47] := s = Solve[(p1/.y—>x) == 0,x]

Out(47] = {{x—) —3},{x—> —1},{x—> % (3—2\/6)},

{x—>%(3+2\/€)}}

In[48] := N[x/.s]

Out[48] = {—3.,-0.333333,—0.632993,2.63299}
In[49] := x0 = x/.s[[3]]

Outf49] = % (3-2v6)

Let’s call this point D.

In[50] := pD = {x0,x0};

In[51] := Clear[s, x0]
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Finally, let’s introduce some additional point between A and B (rather arbitrarily;
e.g., letit have x = —1/4) and call it E. Let its mirror image be the point F.

In[52] :=x0=—1/4;

In[53] := y0 = Simplify[y1/. {x—>x0,pm—>1}]

Out[53] = 31@ (—229 - 10\/3_8)

In[54] := pE = {x0,y0}; pF = {y0,x0};

In[55] := Clear[x0, y0]

This is shown in the plot.

In[56] := P2 = Graphics[{PointSize[Large],
Red, Point[pA], Text[Style[A, Large],pA, {—1,—1}],
Point[pB], Text[Style[B, Large],pB, {0,1}],
Point[pC], Text[Style[C, Large],pC, {1,0}],
Darker|Green], Point[pD], Text[Style[D, Large],pD, {1,1}],
Point[pE], Text[Style[E, Large], pE, {—1,1}],
Point[pF], Text[Style[F, Large], pF, {1, 1}]}];

In[57] := Show|[P1,P2]

00 ‘ T T b e
-02F F -
L A ]
C
-0.4 B
Out[57] =
-0.6 - -
D

~0s | B E .
o T
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

What’s the reason for introducing the points D, E, F? Now it is easy to write
down our curve parametrically. For ¢ € [0,1] let the point move from F to A, the
motion along x being uniform.

In[58] := pFA[t ] := With[{xt = (1 — ) * pF[[1]] + 1 pA[[1]]},
{xt,yl/.{x—>xt,pm—> —1}}]
In[59] := P1 = ParametricPlot[pFA[t],{t,0, 1}, PlotRange— >{{—1,0},{—1,0} }];
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In[60] := Show[P1,P2]

F/\ —02F
G A
Out[60] =
Do
].3 E —0s}

-1.0-

For 7 € [1,2] let the point move from A to E; this segment is mirror-symmetric to

the previous one.

In[61] := pAE[r ] := With[{y0 = (2 —7) *pA[[2]] + ( — 1) * pE[[2]]},
{y1/.{x—>y0,pm—> —1},y0}]

In[62] := P1 = ParametricPlot[pAE|t],{t,1,2},PlotRange—>{{—1,0},{—1,0}}];

In[63] := Show[P1,P2]

F —0.2:
° A H
G L
-04f
Out[63] =

-0.6—

°

D
3 E o}
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For t € [2,3] the point moves from E to D, the motion along x being uniform.

In[64] := pEDJr ] := With[{x0 = (3 —#) * pE[[1]] + ( — 2) * pD[[1]]},
{x0,y1/.{x—>x0,pm—>1}}]

In[65] := P1 = ParametricPlot[pED|t],{t,2,3},PlotRange—>{{—1,0},{—1,0}}];

In[66] := Show[P1,P2]

F. —o.2j
G A
Out[66] = T
D\*/‘
B E 0.8

-1.0-

Finally, for ¢ € [3,4] the point moves from D to F; this segment is mirror-symmetric
to the previous one.
In[67) := pDF[t .| := With[{y0 = (4 — 1) *pD[[2]] + (r — 3) * pF[[2]]},

{yl/‘ {x_>y0’pm_>1},y0}]
In[68] := P1 = ParametricPlot[pDF[t], {t,3,4},PlotRange—>{{—1,0},{—1,0} }];
In[69)] := Show[P1,P2]

*l.‘O — 7‘0.8‘ “ *(‘].6‘ “ *(‘).4‘ “ *‘0.2‘ “

F 70.2:

c & |

—04

Out[69]=
06l
D
1ok
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Later we shall join these segments and construct a parametric curve in the 3-
dimensional space x, y, z.

24.5 Complete Analysis of the Solutions

How to find the value (or values) of z corresponding to some point.x, y on our curve?
It is easiest to use the second equation—it is linear in z.

In[70] := p2

Out[70] = —34 — 20x 4 6x% — 23y + 6xy + 9x%y — 237+ 6x2 4 9x’z

In[71] := Doc[i] = Coefficient[p2,z,i],{i,0,1}]

Does c[1] vanish somewhere in our region?

In[72] := s = Solve[c[1] == 0,x]

Out[72] = {{)H % (—1—2\/5)},{x—> % (—1+2\/€)}}

In[73] :=N]|x/.s]
Out[73] = {—1.96633,1.29966}
No, it does not.
In[74] := Clear][s
So there is a single solution:
In[75] := z1 = —¢[0]/c[1]
34 4 20x — 6x% + 23y — 6xy — 9x?y
Out(75] = 231 6x 1 922
And what about the third and fourth equations?
In[76) := p3 = Numerator|Together[p3/.z—>z1]]
Out[76] = —20 (—15 — 34x — 23x — 34y — 20xy + 6x°y — 23y* + 6xy” + 9x%y?)
In[77] := p4 = Numerator|Together[p4/.z—>z1]]
Out[77] = —15 — 34x — 23x* — 34y — 20xy + 6x%y — 23y* + 6xy> 4 9x%)?
In[78)] := Cancel[p3/p1]

Out[78] = —20
In[79] := Cancel[p4/p1]
Out[79] = 1

They are satisfied automatically. What z corresponds tox =y = —1/3?
In[80]) :=z1/.{x—>—1/3,y—>—1/3}
7
Out[80] = —§
So, one of the solutions found earlier, namely x = y = z = —1/3, does not belong to
our one-dimensional family of solutions. To summarize: we have found one isolated
solution plus a one-dimensional family of solutions. In the parametric form:
In[81] := xyz[t .| := With[{xy = Which[r < 1,pFA[t],7 < 2,pAE[t],
t < 3,pEDJt], True, pDFt]]},

{xy[[1]],xy[[2]], 21/ {x=>xy[[1]], y—>xy[[2]]}}]
In[82] := P1 = ParametricPlot3D[xyz[t],{t,0,4},

PlotRange—>{{-1,0},{—1,0},{—1,0}}, ViewPoint—>{10, 11, 12}];
In[83] = po = {_1/37_1/31 _1/3};
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In[84] := P2 = Graphics3D[{Darker|Green], PointSize[Large], Point[p0] };
In[85] := Show|P1,P2]

-1.0 -1.0
-0.5

0.0
0.0

Out[85] =

-0.5

You can rotate this plot with your mouse to understand it better.

24.6 Shape of the Molecule

What does the cyclohexane molecule look like? Let’s direct the x-axis along a[1]:
In[86] := a[1] = {1,0,0}
Out[86] = {1,0,0}
Let a[2] lie in the x, y plane:
In[87] := a[2] = {1/3,2 % Sqrt[2]/3,0}
12V2

Out[87] = {g, T,O
That is, the unit vector along y is a combination of a[1] and a[2]:
In(88] := (3 *a[2] - a1])/(2 + Sqrt[2])
Out[88] = {0,1,0}
The projections of a[3] onto x and y are ¢[1,3] = x and
Inf89] == (3 c[2,3] —c{1, 3])/ (2 Sar2))

1—x
Out[89] Wil
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The projection of a[3] onto the z axis can be found from normalization:
In[90] :=a[3] = {x, (1 —x)/(2*Sqrt]2]),
pm* Sqrt[(1 —x) * (7+ 9 xx)]/(2*Sqrt[2]) }
1—x pmy/(1—x)(749x)
2v2' 2v2
where pm = £1. Two molecule shapes correspond to a single set of values of x, y, z;
they differ by the mirror reflection of the z coordinates. We shall discuss this matter

in a moment.
In[91] := Table[Expand[a[i].a[3]]/.pm”"2—>1,{i,1,3}]
out[91] = {x,%,l}
That is, the unit vector along the z axis is a combination of a[1], a[2], a[3]:
In[92] := Simplify[2 x Sqrt[2] /Sqrt[(1 — x) * (7 + 9 xx)]*

(a[3] —3/8* (1 —x) xa[2] + (1 —9*x)/8xa[l])]
Out[92] = {0,0,pm}
The rest is easy.
10[93] := Do[Print{afi] = Simplity[{c[1,, (3 c[2,i] —c[1,)/(2 «Sart2]),

2 % Sqrt[2] * pm/Sqrt[(1 —x) * (7 + 9 *x)]*
(c[3,i] —3/8* (1 —x) *c[2,i] + (1 —9*x) /8xc[1,i]) }]],
{i,4,6}]

Out[90] = < x,

BER hh: pm(1+9x2—4z+2x(7+6z))}
3 Co2v2 2V2V7+2x - 92
{z C5+3y+4z _pm(—S—11y—4z+x(5+3y+12z))}
o2v2 2v2V7+2x— 922

37 6v2 227 + 2x — 922

Let’s write a function which constructs the molecule for a given values of x, y, z
and of the sign pm.
In[94] :=rc = 0.1; rs = 0.25;
In[95] := Molecule[xyz -, s ] := Module[{r = {0,0,0},r2,/ = {Blue},
§ = {x—>xyz{[1]],y—>xyz[[2]], z—>xyz{[3]], pm—>s}},
Do[r2 = r+ (ali]/.S); I = Append[l, Cylinder[{r,12},rc]]; r =12,{i,1,6}];
r=1{0,0,0}; I = Append[l/,Red];
Do[r2 = r+ (a[i]/.S); I = Append[l,Sphere[r,rs]]; r =12, {i,1,6}];
Graphics3D[/]]
This is the isolated conformation of the cyclohexane molecule withx =y =z =
—1/3. Use your mouse to understand it better.
In[96] := Show[Molecule[p0, 1], ViewPoint—>{15,—5,5}, Boxed—>False]

{1 —1+49y pm(—13—11y+x(—11+3y))}
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Out[96] =

And this is the one-parameter family of conformations. To ensure smooth de-
pendence on ¢, it is necessary to flip the sign pm when passing through the point C
(where the expression under the radical sign vanishes). This happens at

In[97] :=t0 = (621 — 8 % Sqrt[6]) /159

out[97] = % (621-8v6)
So, the molecule returns to its initial shape after we traverse the loop in the x, y,
Z space twice. You can see this conformation family especially clearly if you start
animation.
In[98] := Manipulate[Show|
Molecule(If[t > 4,xyz[t — 4], xyz[t]], If[t > t0&&? < t0+4,—1,+1]],
PlotRange—>{{—0.7,1.7},{—0.5,1.9},{-1.7,1.7}},
ViewPoint—>{10,—10,4}, Boxed— >False],

{1,0,8}]

0

Out[98] =




Chapter 25
Problems for Students

1. Write a procedure which returns the hydrogen wave function (in spherical coor-
dinates, i.e., an expression containing r, 8, ¢) for given quantum numbers n, [, m.
Write a procedure to calculate the rate of the electric dipole transition [22] from the
state n, [, m to the state n’, I, m'.

2. Calculate Poisson brackets of the Hamiltonian, the angular momentum com-
ponents, and the Runge-Lenz vector components [19] for a particle in the
Coulomb field U = —a/r. Calculate commutators of the same quantities in quantum
mechanics [18].

3. The hypergeometric function [23, 24, 27] is defined as the sum of the series

where (x), = x(x+ 1)---(x+n— 1) is the Pochhammer symbol. In many cases it
can be expressed via simpler functions. Write a list of substitutions for simplifying
hypergeometric functions. It is sufficient to consider only simplifications valid for
an arbitrary x (not for specific values) where results are expressed via elementary
functions. More general substitutions should be near the beginning of the list, then
their particular cases can be eliminated.

4. Consider indefinite integrals of the form

/ A(x)log B(x) dx,

where A(x) and B(x) are rational functions of x. Mathematica can calculate such
integrals, but often produces results in which some terms have imaginary parts in
the region of x we are interested in. It is not easy to trace their cancellations. We’ll
suppose that A(x) and B(x) contain no parameters (except x), only numbers. We’ll
also suppose that Mathematica is able to find all roots of the denominator of A(x),
as well as of the numerator and the denominator of B(x), and all these roots are real.

A. Grozin, Introduction to Mathematica® for Physicists, Graduate Texts in Physics, 209
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We are interested in a neighborhood of some point xp; we want to get a result all
terms of which are real near this point (if this is possible, of course). Implement the
following obvious approach:

e Expand A(x) into partial fractions with respect to x.

Replace log B(x) by a combination of terms log(x — a;) and log(a; — x) (plus a
constant) in such a way that they are all real near xy.

Multiply.

Take integrals of x"log(x —a) (n > 0), log(x —a)/(x —b)" (n > 2) by parts to
eliminate the logarithm. Don’t use the Mathematica integrator—it can produce
log(x — a) where log(a — x) is needed.

We are left with the most difficult terms of the forms log(x — a)/(x — b) and
log(a —x)/(x — b). By linear substitutions they reduce to 3 cases:

[EE D gy — Lis(y),
/@dy = log(y) log(y— 1) +Li(1 —y),
/@dy— ~Lix(y),

where y is positive near x = xg (the third formula is the definition of Li,(y); the
first one follows from it using the substitution y — —y; the second one—using
integration by parts).

The result must be real (log(x) is real at x > 0; Lip (x)—at x < 1). If this is impossi-
ble, print an error message.

5. Implement the algebra of Boolean expressions. They consist of the constants true
and false, variables, the function not (one argument), and the functions and, or (an
arbitrary number of arguments). The last two functions are commutative and asso-
ciative. Take into account simplifications when one of the arguments is true or false;
when two arguments coincide or equal to a and not[a]. Expressions should be re-
duced to the disjunctive normal form: “or” at the top level; its arguments can be
“and”; their arguments can be “not” or variables.

6. Implement the algebra of quaternions.

7. Implement Dirac y-matrix expressions, including trace calculations (in 4 dimen-
sions [22] or in the general case of dimensional regularization, see, e.g., [24]). Pay
no attention to efficiency.

8. Implement calculation of color factors of Feynman diagrams for the color group
SU (N, ) using the Cvitanovié¢ algorithm [27] (see also [24]).

9. Write a procedure to calculate two-loop massless propagator diagrams using in-
tegration by parts (see, e.g., [24]). Results should be linear combinations of the two
basis integrals.
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10. Hypergeometric functions whose argument is 1 and whose parameters contain
a small parameters € and tend to integers at € — 0 can be expanded in series in €.
The algorithm is described, e.g., in [24]; implement it.

11. Any polynomial over the field of complex numbers can be factorized into linear

factors:
px) =TT(x—a)*,

where a; are its roots and d; are their multiplicities (to simplify formulas, we have
assumed that the leading coefficient is 1). Let’s group factors with equal d;:

px) =TTrf",

where all d; are distinct and the polynomials p;(x) have only simple zeros (are
square-free). This square-free factorization can be obtained by a simple algorithm
which uses only gcd (this is much simpler than the full factorization). Namely,

ged(p.p) =TI " "

Indeed, the polynomial p(x) has zero of the order d; at x — a;, and its derivative p/(x)
has zero of the order d; — 1. Write a function to calculate square-free factorization
using only gcd.
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