Kent D. Lee

Foundations of
Programming
Languages

Second Edition

uTiCS @ Springer

Undergraduate Topics in Computer
Science

Series editor

Tan Mackie

Adyvisory Boards

Samson Abramsky, University of Oxford, Oxford, UK

Chris Hankin, Imperial College London, London, UK

Dexter C. Kozen, Cornell University, Ithaca, USA

Andrew Pitts, University of Cambridge, Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Kongens Lyngby, Denmark
Steven S. Skiena, Stony Brook University, Stony Brook, USA

Tain Stewart, University of Durham, Durham, UK

Undergraduate Topics in Computer Science (UTiCS) delivers high-quality
instructional content for undergraduates studying in all areas of computing and
information science. From core foundational and theoretical material to final-year
topics and applications, UTiCS books take a fresh, concise, and modern approach
and are ideal for self-study or for a one- or two-semester course. The texts are all
authored by established experts in their fields, reviewed by an international advisory
board, and contain numerous examples and problems. Many include fully worked
solutions.

More information about this series at http://www.springer.com/series/7592

Kent D. Lee

Foundations
of Programming
Languages

Second Edition

@ Springer

Kent D. Lee
Luther College

Decorah, 1A

USA

ISSN 1863-7310 ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science

ISBN 978-3-319-70789-1 ISBN 978-3-319-70790-7 (eBook)

https:\\doi.org\10.1007/978-3-319-70790-7
Library of Congress Control Number: 2017958018

1st edition: © Springer International Publishing Switzerland 2014

2nd edition: © Springer International Publishing AG 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

A career in computer science is a commitment to a lifetime of learning. You will not
be taught every detail you will need in your career while you are a student. The goal
of a computer science education is to give you the tools you need so you can teach
yourself new languages, frameworks, and architectures as they come along. The
creativity encouraged by a lifetime of learning makes computer science one of the
most exciting fields today.

There are engineering and theoretical aspects to the field of computer science.
Theory often is a part of the development of new programming languages and tools
to make programmers more productive. Computer programming is the process of
building complex systems with those tools. Computer programmers are program
engineers, and this process is sometimes called software engineering. No matter
what kind of job you end up doing, understanding the tools of computer science,
and specifically the programming languages you use, will help you become a better
programmer.

As programmers it is important that we be able to predict what our programs will
do. Predicting what a program will do is easier if you understand the way the pro-
gramming language works. Programs execute according to a computational model.
A model may be implemented in many different ways depending on the targeted
hardware architecture. While there are currently a number of popular hardware
architectures, most can be categorized into one of two main areas: register-based
central processing units and stack-based virtual machines. While these two types of
architectures are different in some ways, they also share a number of characteristics
when used as the target for programming languages. This text develops a stack-based
virtual machine based on the Python virtual machine called JCoCo.

Computer scientists differentiate programming languages based on three paradigms
or ways of thinking about programming: object-oriented/imperative programming,
functional programming, and logic programming. This text covers these three para-
digms while using each of them in the implementation of a non-trivial programming
language.

vi Preface

It is expected that most readers of this text will have had some prior experience
with object-oriented languages. JCoCo is implemented in Java (hence the J), pro-
viding a chance to learn Java in some detail and see it used in a larger software
project like the JCoCo implementation. The text proceeds in a bottom-up fashion by
implementing extensions to JCoCo using Java. Then, a full-featured functional
language called Small is implemented on top of the JCoCo virtual machine. The
Small language is a subset of Standard ML. Standard ML is first introduced in this
text and then used to implement the Small subset of the Standard ML language,
which really is not that small afterall. Finally, late in the text a type inference system
for Small is developed and implemented in Prolog. Prolog is an example of a logic
programming language.

The text is meant to be used interactively. You should read a section, and as you
read it, do the practice exercises. Each of the exercises is meant to give you a goal
in reading a section of the text.

The text Web site http://www.cs.luther.edu/ ~leekent/PL includes code and
other support files that may be downloaded. These include the JCoCo virtual
machine and the MLComp compiler/type inference system.

I hope you enjoy reading the text and working through the exercises and practice
problems. Have fun with it and get creative!

Acknowledgements

I have been fortunate to have good teachers throughout high school, college, and
graduate school. Ken Slonneger was my advisor in graduate school, and this book
came into being because of him. He inspired me to write a text that supports the
same teaching style he used in his classroom. I’d also like to thank Eric Manley of
Drake University for working with me by trying the projects with his students and
for the valuable feedback he provided to me during the development of this text.
Thanks, Eric.

I’'m also fortunate to have good students working with me. Thanks go to
Jonathan Opdahl for his help in building the Java version of CoCo, a virtual
machine used throughout this text, and named JCoCo both because it is imple-
mented in Java and because Jonathan helped me build it. Thank you Jonathan for
your work on this project. It is greatly appreciated.

For Teachers

This book was written to fulfill two goals. The first is to introduce students to three
programming paradigms: object-oriented/imperative, functional, and logic pro-
gramming. To be ready for the content of this book, students should have some
background in an imperative language, probably an object-oriented language such

Preface vii

as Python, Java, or C++. They should have had an introductory course and a course
in data structures as a minimum. While the prepared student will have written
several programs, some of them fairly complex, most probably still struggle with
predicting exactly what their program will do. It is assumed that ideas such as
polymorphism, recursion, and logical implication are relatively new to students
reading this book. The text assumes that students have little or no experience with
the functional and logic programming paradigms.

The object-oriented language presented in this book is Java. C++ has many
nuances that are worthy of several chapters in a textbook. The first edition of this
text did cover C++ as the object-oriented language, but Java is better suited to the
JCoCo virtual machine implementation presented in this text. However, significant
topics of C++ are contrasted to Java in this text. Notably, the pass-by-value and
pass-by-reference mechanisms in C++ create considerable complexity in the lan-
guage. In addition, the ability of C++ programs to create objects both on the
run-time stack and in the heap is contrasted to Java. Of course the standard
object-oriented concepts including polymorphism and inheritance and a comparison
of templates from C++ and interfaces from Java are covered in this text.

The text uses Standard ML as the functional language. ML has a polymorphic
type inference system to statically type programs of the language. In addition, the
type inference system of ML is formally proven sound and complete. This has some
implications in writing programs. While ML’s cryptic compiler error messages are
sometimes hard to understand at first, once a program compiles it will often work
correctly the first time. That’s an amazing statement to make if your past experience
is in a dynamically typed language such as Lisp, Scheme, Ruby, or Python.

The logic language used in this text is Prolog. While Prolog has traditionally
been an Artificial Intelligence language, it originated as a metalanguage for
expressing other languages. The text concentrates on using Prolog to implement a
type inference system. Students learn about logical implication and how a problem
they are familiar with can be re-expressed in a logic programming language.

The second goal of the text is to be interactive. This book is intended to be used
in and outside of class. It is my experience that we almost all learn more by doing
than by seeing. To that end, the text encourages teachers to actively teach. Each
chapter follows a pattern of presenting a topic followed by a practice exercise or
exercises that encourage students to try what they have just read. These exercises
can be used in class to help students check their understanding of a topic. Teachers
are encouraged to take the time to present a topic and then allow students time to
reflect and practice the concept just presented. In this way, the text becomes a
lecture resource. Students get two things out of this. It forces them to be interac-
tively engaged in the lectures, not just passive observers. It also gives them
immediate feedback on key concepts to help them determine whether they under-
stand the material or not. This encourages them to ask questions when they have
difficulty with an exercise. Tell students to bring the book to class along with a
pencil and paper. The practice exercises are easily identified.

viii Preface

This book presents several projects to reinforce topics outside the classroom.
Each chapter of the text suggests several non-trivial programming projects that
accompany the paradigm being covered to drive home the concepts covered in that
chapter. The projects and exercises described in this text have been tested in
practice, and documentation and solutions are available upon request.

Decorah, USA Kent D. Lee

Introduction. 1
1.1 Historical Perspective i 2
1.2 Models of Computationiie.... 6
1.2.1 The Imperative Model. 7
1.2.2 The Functional Model 9
1.2.3 The Logic Model. 10
1.3 The Origins of a Few Programming Languages 10
1.3.1 A Brief History of Cand C++ 11
1.3.2 A BriefHistory of Java. 12
1.3.3 A Brief History of Python. 14
1.3.4 A Brief History of Standard ML 14
1.3.5 A Brief History of Prolog 16
1.4 Language Implementation. 18
141 Compilation. i 19
1.42 Interpretation.ouueininenennnn.n. 21
143 Virtnal Machines. 23
1.5 Types and Type Checking 25
1.6 Chapter Summary.ttt 27
1.7 Review QueStons. 28
1.8 Solutions to Practice Problems 29
SYNAX 31
2.1 Terminology 31
2.2 Backus Naur Form (BNF) 33
221 BNFExamples 33
222 Extended BNF(EBNF)......................... 34
2.3 Context-Free Grammars 34
2.3.1 The Infix Expression Grammar 35
24 Derivationst 35
241 ADerivation 35
24.2 Types of Derivations. 36
243 Prefix Expressions. 36
24.4 The Prefix Expression Grammar 36

Contents

25 Parse Trees.ot 37
2.6 Abstract Syntax Trees. 38
2.7 Lexical Analysis......... ... 39

2.7.1 The Language of Regular Expressions 39

2.7.2 Finite State Machines 40

273 Lexer Generators.o.ouuuinueneno.. 42
2.8 Parsing 42
29 Top-Down Parsers 43

291 AnLL(l)Grammar.0uuuinin... 43

292 A Non-LL(1) Grammar. 44

2.9.3 An LL(1) Infix Expression Grammar. 45
2.10 Bottom-Up Parsers 45

2.10.1 Parsing an Infix Expression. 46
2.11 Ambiguity in Grammars.t i 49
2.12 Other Forms of Grammars0....... 49
2.13 Limitations of Syntactic Definitions 50
2.14 Chapter SUMmMAary.utt i 51
2.15 Review QUeStioNS. 51
216 EXerCiSes.ot 52
2.17 Solutions to Practice Problems 52
Assembly Language. 57
3.1 Overview of the JCoCo VM. 58
32 Getting Started 61
33 Input/Output. 64
3.4 If-Then-Else Statements 66

34.1 If-Then Statements 69
3.5 While Loops.o 71
3.6 Exception Handling 73
3.7 List Constants.ttt 76
3.8 CallingaMethod 77
39 Tterating Over a List. 79
3.10 Range Objects and Lazy Evaluation...................... 81
3.11 Functions and Closures.t .. 83
312 Recursion i 87
3.13 Support for Classes and Objects. 89

3.13.1 Inheritance............. 92

3.13.2 Dynamically Created Classes. 94
3.14 Chapter SUMMATYottt 98
3.15 Review QUeStiONS. 98
3,16 EXErCiSes.o 99
3.17 Solutions to Practice Problems 100

Contents Xi
4 Object-Oriented Programming. 111
4.1 The Java Environment 114
42 The C++ Environment 116
4.2.1 The Macro Processor. 119

422 TheMake Tool......... 120

4.3 NaAMESPACES . . . v v v vt e et 121
44 Dynamic Linking 122
4.5 Defining the Main Function 123
4.6 VO Streams.ottt 124
4.7 Garbage Collection., 125
48 Threadingt 126
49 The PyToken Class.t 127
49.1 The C++ PyToken Class. 128

4.10 Inheritance and Polymorphism 130
4.11 Interfaces and Adapters. 134
4.12 Functionsas Values i, 136
4.13 Anonymous Inner Classes. 137
4.14 Type Casting and Generics. 138
4.15 Auto-Boxing and Unboxing 141
4.16 Exception Handling in Javaand C++. 142
417 Signals 145
418 JCoCoinDepth i 145
4.19 The Scanner 145
420 The Parserot 148
421 The Assembler 151
422 ByteCode 152
4.23 JCoCo’s Class and Interface Type Hierarchy 155
424 Code.o 157
425 Functionsiit i 158
426 ClasSes . . vttt 160
427 Methods 160
4.28 JCoCo Exceptions and Tracebacks....................... 163
429 Magic Methods. 165
430 Dictionaries.ot 168
4.30.1 Two New Classesiiiiiiiea... 169
4.30.2 Two New Types 171
4.30.3 Two New Instructions. 171

431 Chapter SUMMAryo oottt e e 171
4.32 Review QUESHONS. 172
433 EXEICISES. .« o vt e et e e 173
4.34 Solutions to Practice Problems 175

Xii

Contents

Functional Programming 179
5.1 Imperative Versus Functional Programming 181
5.2 The Lambda Calculus. 182
521 Normal Form......... 182

5.2.2 Problems with Applicative Order Reduction 184

5.3 Getting Started with Standard ML 184
5.4 Expressions, Types, Structures, and Functions 185
5.5 Recursive Functions 187
5.6 Characters, Strings, and Lists 190
5.7 Pattern Matching. 193
5.8 Tuples. . ..o 194
5.9 Let Expressions and Scope. 194
510 Datatypesot 197
5.11 Parameter Passing in Standard ML. 200
5.12 Efficiency of Recursion. 200
5.13 Tail Recursion it 203
504 Currying. . ..ot 204
5.15 Anonymous Functions 206
5.16 Higher-Order Functions 207
5.16.1 CompoSitionoiiiiit 207
5162 Map. . ..o 208
5.16.3 Reduce or Foldright. 209
5.164 Filter. 211

5.17 Continuation Passing Style. 212
5.18 Inputand Output i 213
5.19 Programming with Side-effects. 214
5.19.1 Variables in Standard ML 214
5.19.2 Sequential Execution. 215
5.19.3 Tteration.t 216

5.20 Exception Handling 216
521 Encapsulationin ML 217
5211 Signatures 217
5.21.2 Implementing a Signature 218

522 TypelInference 219
5.23 Building a Prefix Calculator Interpreter 220
5.23.1 The Prefix Calc Parser. 222
5232 The AST Evaluator. 222
5.23.3 Imperative Programming Observations 224

5.24 Chapter SUMMATYottt e e 224
5.25 EXEICISES. . .ot t 225
5.26 Solutions to Practice Problems 228

Contents Xiii
6 Compiling Standard ML. 235
6.1 MLAleX 237
6.2 The Small AST Definition 241
6.3 Using ML-yacc. 243
6.4 Compiling and Running the Compiler 248
6.5 FunctionCalls 252
6.6 Let EXpressionsttt 254
6.7 Unary Negation, 257
6.8 If-Then-Else Expressions, 259
6.9 Short-Circuit Logic. 262
6.10 Defining Functions 265
6.10.1 Curried Functions 267
6.10.2 Mutually Recursive Functions 268

6.11 Reference Variables 269
6.12 Chapter SUMMArYttt 272
6.13 Review QuUeStionS. 273
6.14 EXEICISES. . . .t v it 273
6.15 Solutions to Practice Problems 276
7 Logic Programming 277
7.1 Getting Started with Prolog 279
7.2 Fundamentals 280
7.3 The Prolog Program 281
T4 LSS oot 283
7.5 The Accumulator Pattern 284
7.6 Built-In Predicates 285
7.7 Unification and Arithmetic 285
7.8 Inputand Output 286
7.9 SHUCHUTES . . . ottt 287
7.10 Parsingin Prolog i 289
7.10.1 Difference Lists. 292

7.11 Prolog Grammar Rules. 293
7.12 Building an AST 294
7.13 Attribute Grammars 295
7.13.1 Synthesized Versus Inherited. 298

7.14 Chapter SUMMAIYottt 298
7.15 Review QUeSHONS. 299
716 EXEICISES. . . oottt 299
7.17 Solutions to Practice Problems 301
8 Standard ML Type Inference. 305
8.1 Why Static Type Inference? 306
8.1.1 Exception Program 306

812 ABadFunctionCall........................... 307

Xiv

10

Contents

82 TypeInference Rules 308
83 Using Prolog. 309
8.4 The Type Environment. 312
8.5 Integers, Strings, and Boolean Constants 313
8.6 Listand Tuple Constants 314
87 Identifiers 315
8.8 Function Application 316
8.8.1 Instantiation.................., 319

89 Let EXpressions 319
.10 Patterns.t 321
8.11 Matches 325
8.12 Anonymous Functions 326
8.13 Sequential Execution 327
8.14 If-Then and While-Do 327
8.15 Exception Handling 328
8.16 Chapter Summary.ttt 329
8.17 Review QUEStiONS. 329
8.18 EXEICISeS. 330
8.19 Solutions to Practice Problems 334
Appendix A: The JCoCo Virtual Machine Specification 337
0.1 TYPeS - et 338
9.2 JCoCo Magic and Attr Methods. 339
9.3 Global Built-In Functions 340
9.4 Virtual Machine Instructions. 341
9.5 Arithmetic Instructions 342
9.6 Load and Store Instructions 342
9.7 List, Tuple, and Dictionary Instructions 344
9.8 Stack Manipulation Instructions 345
9.9 Conditional and Iterative Execution Instructions. 345
9.10 Function Execution Instructions 347
9.11 Special Instructions.ttt .. 348
Appendix B: The Standard ML Basis Library 349
10.1 The Bool Structure 349
10.2 The Int Structure.ttt 350
10.3 The Real Structuret 352
10.4 The Char Structure, 357
10.5 The String Structure i 358
10.6 The List Structure. 361
10.7 The Array Structure it 364
10.8 The TextIO Structuret 365

Bibliography 369

Introduction

This text on Programming Languages is intended to introduce you to new ways of
thinking about programming. Typically, computer science students start out learning
to program in an imperative model of programming where variables are created and
updated as a program executes. There are other ways to program. As you learn to
program in these new paradigms you will begin to understand that there are different
ways of thinking about problem solving. Each paradigm is useful in some contexts.
This book is not meant to be a survey of lots of different languages. Rather, its purpose
is to introduce you to the three styles of programming languages by using them to
implement a non-trivial programming language. These three styles of programming
are:

e Imperative/Object-Oriented Programming with languages like Java, C++, Python,
and other languages you may have used before.

e Functional Programming with languages like Standard ML, Haskell, Lisp,
Scheme, and others.

e Logic Programming with Prolog.

The book provides an in-depth look at programming in assembly language, Java,
Standard ML, and Prolog. However, the programming language concepts covered
in this text apply to all languages in use today. The goal of the text is to help you
understand how to use the paradigms and models of computation these languages
represent to solve problems. The text elaborates on when these languages may be
appropriate for a problem by showing you how they can be used to implement a
programming language. Many of the problems solved while implementing a pro-
gramming language are similar to other problems in computer science. The text
elaborates on techniques for problem solving that you may be able to apply in the
future. You might be surprised by what you can do and how quickly a program can
come together given the right choice of language.

© Springer International Publishing AG 2017 1
K.D. Lee, Foundations of Programming Languages, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_1

2 1 Introduction

To begin you should know something about the history of computing, particularly
as it applies to the models of computation that have been used in implementing many
of the programming languages we use today. All of what we know in Computer
Science is built on the shoulders of those who came before us. To understand where
we are, we really should know something about where we came from in terms of
Computer Science. Many great people have been involved in the development of
programming languages and to learn even a little about who these people are is
really fascinating and worthy of an entire book in itself.

1.1 Historical Perspective

Much of what we attribute to Computer Science actually came from Mathematics.
Many mathematicians are programmers that have written their programs, or proofs
in the words of Mathematics, using mathematical notation. In the mid 1800s abstract
algebra and geometry were hot topics of research among mathematicians. In the early
1800s Niels Henrik Abel, a Norwegian mathematician, was interested in solving
a problem called the quintic equation. Eventually he developed a new branch of
mathematics called Group Theory with which he was able to prove there was no
general algebraic solution to the quintic equation. Considering the proof of this
required a new branch of mathematics, much of Abel’s work involved developing
the mathematical notation or language to describe his work. Unfortunately, Abel
died of tuberculosis at twenty six years old.

Sophus Lie (pronounced Lee), pictured in Fig. 1.1, was another Norwegian math-
ematician who lived from 1842-1899 [20]. He began where Abel’s research ended
and explored the connection of Abstract Algebra and Group Theory with Geometry.
From this work he developed a set of group theories, eventually named Lie Groups.
From this discovery he found ways of solving Ordinary Differential Equations by

Fig.1.1 Sophus Lie [21]

1.1 Historical Perspective 3

exploiting properties of symmetry within the equations [8]. One Lie group, the E8
group was too complicated to map in Lie’s time. In fact, it wasn’t until 2007 that
the structure of the E'8 group could be mapped because the solution produced sixty
times more data than the human genome project [1].

While the techniques Lie and Abel discovered were hard for people to learn and
use at the time, today computer programs capable of symbolic manipulation use
Lie’s techniques to solve these and other equally complicated problems. And, the
solutions of these problems are very relevant in the world today. For example, the
work of Sophus Lie is used in the design of aircraft.

As mathematicians’ problem solving techniques became more sophisticated and
the problems they were solving became more complex, they were interested in finding
automated ways of solving these problems. Charles Babbage (1791-1871) saw the
need for a computer to do calculations that were too error-prone for humans to
perform. He designed a difference engine to compute mathematical tables when he
found that human computers weren’t very accurate [27]. However, his computer was
mechanical and couldn’t be built using engineering techniques known at that time.
In fact it wasn’t completed until 1990, but it worked just as he said it would over a
hundred years earlier.

Charles Babbage’s difference engine was an early attempt at automating a solution
to a problem, but others would follow of course. Alan Turing was a British mathe-
matician and one of the first computer scientists. He lived from 1912—-1954. In 1936
he wrote a paper entitled, “On Computable Numbers, with an Application to the
Entscheidungsproblem” [23]. The Entscheidungsproblem, or decision problem, had
been proposed a decade earlier by a German mathematician named David Hilbert.
This problem asks: Can an algorithm be defined that decides if a statement given in
first order logic can be proved from a set of axioms and known truth values? The
problem was later generalized to the following question: Can we come up with a
general set of steps that given any algorithm and its data, will decide if it terminates?
In Alan Turing’s paper, he devised an abstract machine called the Turing Machine.
This Turing Machine was very general and simple. It consisted of a set of states and
a tape. The set of states were decided on by a programmer. The machine starts in
the start state as decided by the programmer. From that state it could read a symbol
from a tape. Based on the symbol it could write a symbol to the tape and move to
the left or right, while transitioning to another state. As the Turing machine ran, the
action that it took was dictated by the current state and the symbol on the tape. The
programmer got to decide how many states were a part of the machine, what each
state should do, and how to move from one state to another. In Turing’s paper he
proved that such a machine could be used to solve any computable function and that
the decision problem was not solvable by this machine. The more general statement
of this problem was named the Halting Problem. This was a very important result in
the field of theoretical Computer Science.

In 1939 John Atanasoff, at lowa State University, designed what is arguably the
first computer, the ABC or Atanasoff-Berry Computer [28]. Clifford Berry was one of
his graduate students. The computer had no central processing unit, but it did perform
logical and other mathematical operations. Eckert and Mauchly, at the University of

4 1 Introduction

Pennsylvania, were interested in building a computer during the second world war.
They were funded by the Department of Defense to build a machine to calculate
trajectory tables for launching shells from ships. The computer, called ENIAC for
Electronic Numerical Integrator and Computer, was unveiled in 1946, just after the
war had ended. ENIAC was difficult to program since the program was written by
plugging cables into a switch, similar to an old telephone switchboard.

Around that same time a new computer, called EDVAC, was being designed. In
1945 John von Neumann proposed storing the computer programs on EDVAC in
memory along with the program data [26]. Alan Turing closely followed John von
Neumann’s paper by publishing a paper of his own in 1946 describing a more com-
plete design for stored-program computers [24]. To this day the computers we build
and use are stored-program computers. The architecture is called the von Neumann
architecture because of John von Neumann’s and Alan Turing’s contributions. While
Turing didn’t get the architecture named after him, he is famous in Computer Science
for other reasons like the Turing machine and the Halting problem.

In the early days of Computer Science, many programmers were interested in
writing tools that made it easier to program computers. Much of the programming
was based on the concept of a stored-program computer and many early programming
languages were extensions of this model of computation. In the stored-program
model the program and data are stored in memory. The program manipulates data
based on some input. It then produces output.

Around 1958, Algol was created and the second revision of this language, called
Algol 60, was the first modern, structured, imperative programming language. While
the language was designed by a committee, a large part of the success of the project
was due to the contributions of John Backus pictured in Fig. 1.2. He described the
structure of the Algol language using a mathematical notation that would later be
called Backus-Naur Format or BNF. Very little has changed with the underlying
computer architecture over the years. Of course, there have been many changes in
the size, speed, and cost of computers! In addition, the languages we use have become

Fig. 1.2 John Backus [3]

1.1 Historical Perspective 5

even more structured over the years. But, the principles that Algol 60 introduced are
still in use today.

Recalling that most early computer scientists were mathematicians, it shouldn’t
be too surprising to learn that there were others that approached the problem of
programming differently. Much of the initial interest in computers was spurred by the
invention of the stored-program computer and many of the early languages reflected
this excitement. The imperative style was closely tied to the architecture of a stored
program computer. Data was read from an input device and the program acted on
that data by updating memory as the program executed. There was another approach
developing at the same time. Back in 1936, Alonzo Church, a U.S. mathematician
who lived from 1903—-1995, was also interested in the decision problem proposed
by David Hilbert. To try to solve the problem he devised a language called the
lambda calculus, usually written as the A-calculus. Using his very simple language
he was able to describe computation as symbol manipulation. Alan Turing was a
doctoral student of Church and while they independently came up with two ways to
prove that the decision problem was not solvable, they later proved their two models
of computation, Turing machines and the A-calculus, were equivalent. Their work
eventually led to a very important result called the Church-Turing Thesis. Informally,
the thesis states that all computable problems can be solved by a Turing Machine or
the A-calculus. The two models are equivalent in power.

Ideas from the A-calculus led to the development of Lisp by John McCarthy,
pictured in Fig. 1.3. The A-calculus and Lisp were not designed based on the principle
of the stored-program computer. In contrast to Algol 60, the focus of these languages
was on functions and what could be computed using functions. Lisp was developed
around 1958, the same time that Algol 60 was being developed.

Logic is important both in Computer Science and Mathematics. Logicians were
also interested in solving problems in the early days of Computer Science. Many
problems in logic are expressed in the languages of propositional or predicate logic.

Fig.1.3 John McCarthy [14]

6 1 Introduction

Of course, the development of logic goes all the way back to ancient Greece. Some
logicians of the 20th century were interested in understanding natural language and
they were looking for a way to use computers to solve at least some of the problems
related to processing natural language statements. The desire to use computers in
solving problems from logic led to the development of Prolog, a powerful program-
ming language based on predicate logic.

Practice 1.1 Find the answers to the following questions.

1. What are the origins of the three major computational models that early computer
scientists developed?

2. Who were Alan Turing and Alonzo Church and what were some of their contri-

butions to Computer Science?

What idea did both John von Neumann and Alan Turing contribute to?

What notation did John Backus develop and what was one of its first uses?

What year did Alan Turing first propose the Turing machine and why?

What year did Alonzo Church first propose the A-calculus and why?

Why are Eckert and Mauchly famous?

Why are the history of Mathematics and Computer Science so closely tied

together?

g2 = e ©n g B

You can check your answer(s) in Section 1.8.1.

1.2 Models of Computation

While there is some controversy about who originally came up with the concept of
a stored program computer, John von Neumann is generally given credit for the idea
of storing a program as a string of 0’s and 1’s in memory along with the data used by
the program. Von Neumann’s architecture had very little structure to it. It consisted
of several registers and memory. The Program Counter (PC) register kept track of
the next instruction to execute. There were other registers that could hold a value or
point to other values stored in memory. This model of computation was useful when
programs were small. However, without additional structure, anything but a small
program would quickly get hard to manage. This was what was driving the need for
better and newer programming languages. Programmers needed tools that let them
organize their code so they could focus on problem solving instead of the details of
the hardware.

1.2 Models of Computation 7

1.2.1 The Imperative Model

As programs grew in size it was necessary to provide the means for applying addi-
tional structure to them. In the early days a function was often called a sub-routine.
Functions, procedures, and sub-routines were introduced by languages like Algol
60 so that programs could be decomposed into simpler sub-programs, providing
a way for programmers to organize their code. Terms like top-down or bottom-
up design were used to describe this process of subdividing programs into simpler
sub-programs. This process of subdividing programs was often called structured
programming, referring to the decomposition of programs into simpler, more man-
ageable pieces. Most modern languages provide the means to decompose problems
into simpler subproblems. We often refer to this structured approach as the imperative
model of programming.

To implement functions and function calls in the von Neumann architecture, it
was necessary to apply some organization to the data of a program. In the imperative
model, memory is divided into regions which hold the program and the data. The
data area is further subdivided into the static or global data area, the run-time stack,
and the heap as pictured in Fig. 1.4.

In the late 1970s and 1980s people like Niklaus Wirth and Bjarne Stroustrup were
interested in developing languages that supported an additional level of organization
called Object-Oriented Programming, often abbreviated OOP. Object-oriented pro-
gramming still uses the imperative model of programming. The addition of a means
to describe classes of objects gives programmers another way of organizing their
code into functions that are related to a particular type of object.

When a program executes it uses a special register called the stack pointer (SP) to
point to the top activation record on the run-time stack. The run-time stack contains
one activation record for each function or procedure invocation that is currently
unfinished in the program. The top activation record corresponds to the current

i

Activation _
Record
Activation |
Record
Program Activation
Record
Activation
Record

The Run-time Stack Static
Data

Fig. 1.4 Imperative model

8 1 Introduction

function invocation. When a function call is made an activation record is pushed
onto the run-time stack. When a function returns, the activation record is popped by
decrementing the stack pointer to point to the previous activation record.

An activation record contains information about its associated function. The local
variables of the function are stored there. The program counter’s value before the
function call was made is stored there. This is often called the return address. Other
state information may also be stored there depending on the language and the details
of the underlying von Neumann architecture. For instance, parameters passed to the
function may also be stored there.

Static or global data refers to data and functions that are accessible globally in
the program. Global data and functions are visible throughout the program. Where
global data is stored depends on the implementation of the compiler or interpreter. It
might be part of the program code in some instances. In any case, this area is where
constants, global variables, and possibly built-in globally accessible functions are
stored.

The heap is an area for dynamic memory allocation. The word dynamic means
that it happens while the program is running. All data that is created at run-time is
located in the heap. The data in the heap has no names associated with the values
stored there. Instead, named variables called pointers or references point to the data
in the heap. In addition, data in the heap may contain pointers that point to other
data, which is also usually in the heap.

Like the original von Neumann architecture, the primary goal of the imperative
model is to get data as input, transform it via updates to memory, and then produce
output based on this imperatively changed data. The imperative model of computation
parallels the underlying von Neumann architecture and is used by many modern
languages. Some variation of this model is used by languages like Algol 60, C++,
C, Java, VB.net, Python, and many other languages.

Practice 1.2 Find the answers to the following questions.

What are the three divisions of data memory called?

When does an item in the heap get created?

What goes in an activation record?

When is an activation record created?

When is an activation record deleted?

What is the primary goal of imperative, object-oriented programming?

O S

You can check your answer(s) in Section 1.8.2.

1.2 Models of Computation 9

1.2.2 The Functional Model

In the functional model the goal of a program is slightly different. This slight change
in the way the model works has a big influence on how you program. In the functional
model of computation the focus is on function calls. Functions and parameter passing
are the primary means of accomplishing data transformation.

Data is generally not changed in the functional model. Instead, new values are
constructed from old values. A pure functional model wouldn’t allow any updates
to existing values. However, most functional languages allow limited updates to
memory in the imperative style.

The conceptual view presented in Fig. 1.4 is similar to the view in the functional
world. However, the difference between program and data is eliminated. A function
is data like any other data element. Integers and functions are both first-class citizens
of the functional world.

The static data area is still present, but takes on a minor role in the functional model.
The run-time stack becomes more important because most work is accomplished
by calling functions. Functional languages are much more careful about how they
allow programmers to access the heap and as a result, you really aren’t aware of
the heap when programming in a functional language. Data is certainly dynamically
allocated, but once data is created on the heap it is not modified in a pure functional
model. Impure models might allow some modification of storage but this is the
influence of imperative languages creeping into the functional model as a way to
deal with performance issues. The result is that you spend less time thinking about
the underlying architecture when programming in a functional language.

Lisp, Scheme, Scala, Clojure, Elixir, Haskell, Caml, and Standard ML, which is
covered in this text, are all examples of functional languages. Functional languages
may be pure, which means they do not support variable updates like the imperative
model. Scheme is a pure functional language. Most functional languages are not
pure. Standard ML and Lisp are examples of impure functional languages. Scala is
a recent functional language that also supports object-oriented programming.

Practice 1.3 Answer the following questions.

1. What are some examples of functional languages?

2. What is the primary difference between the functional and imperative models?

3. Immutable data is data that cannot be changed once created. The presence of
immutable data simplifies the conceptual model of programming. Does the imper-
ative or functional model emphasize immutable data?

You can check your answer(s) in Section 1.8.3.

10 1 Introduction

Heap

A Single Database of
Program Filles

Fig. 1.5 Logic model of computation

1.2.3 The Logic Model

The logic model of computation, pictured in Fig. 1.5, is quite different from either the
imperative or functional model. In the logic model the programmer doesn’t actually
write a program at all. Instead, the programmer provides a database of facts or rules.
From this database, a single program tries to answer questions with a yes or no
answer. In the case of Prolog, the program acts in a predictable manner allowing
the programmer to provide the facts in an order that determines how the program
will work. The actual implementation of this conceptual view is accomplished by a
virtual machine, a technique for implementing languages that is covered later in this
text.

There is still the concept of a heap in Prolog. One can assert new rules and retract
rules as the program executes. To dynamically add rules or retract them there must
be an underlying heap. In fact, the run-time stack is there too. However, the run-time
stack and heap are so hidden in this view of the world that it is debatable whether
they should appear in the conceptual model at all.

Practice 1.4 Answer these questions on what you just read.

1. How many programs can you write in a logic programming language like Prolog?
2. What does the programmer do when writing in Prolog?

You can check your answer(s) in Section 1.8.4.

1.3 The Origins of a Few Programming Languages

This book explores language implementation using several small languages and
exercises that illustrate each of these models of computation. In addition, exercises
within the text will require implementation in four different languages: assembly

1.3 The Origins of a Few Programming Languages 1

language, Java (or alternatively C++), Standard ML, and Prolog. But where did
these languages come from and why are we interested in learning how to use them?

1.3.1 ABrief History of Cand C++

The Unix operating system was conceived of, designed, and written around 1972.
Ken Thompson was working on the design of Unix with Dennis Ritchie. It was their
project that encouraged Ritchie to create the C language. C was more structured than
the assembly language most operating systems were written in at the time and it was
portable and could be compiled to efficient machine code. Thompson and Ritchie
wanted an operating system that was portable, small, and well organized.

While C was efficient, there were other languages that had either been developed or
were being developed that encouraged a more structured approach to programming.
For several years there had been ideas floating around about how to write code
in object-oriented form. Simula, created by Ole-Johan Dahl and Kristen Nygaard
around 1967, was an early example of a language that supported Object-Oriented
design. Modula-2, created by Niklaus Wirth around 1978, was also taking advantage
of these ideas. Smalltalk, an interpreted language, was object-oriented and was also
developed in the mid 1970s and released in 1980.

In 1980 Bjarne Stroustrup, pictured in Fig. 1.6, began working on the design of
C++ while working at Bell Labs. He envisioned C++ as a language that would allow
C programmers to keep their old code while new code could be written using these
Object-Oriented concepts. In 1983 he named this new language C++, as in the next
increment of C, and with much anticipation, in 1985 the language was released.
About the same time Dr. Stroustrup released a book called The C++ Programming
Language [19], which described the language. The language is still evolving. For
instance, templates, an important part of C++ were first described by Stroustrup in
1988 [17] and it wasn’t until 1998 that it was standardized as ANSI C++. Today
an ANSI committee oversees the continued development of C++. The latest C++
standard was released in 2014 as of this writing. The previous standard was released

Fig. 1.6 Bjarne Stroustrup [18]

12 1 Introduction

in 2011. C++ is a mature language, but is still growing and evolving. The 2017
standard is currently in the works with comments presently being solicited by the
standards committee.

1.3.2 A Brief History of Java

C++is a very powerful language, but also demands that programmers be very careful
when writing code. The biggest problem with C++ programs are memory leaks. When
objects are created on the heap in C++, they remain on the heap until they are freed.
If a programmer forgets to free an object, then that space cannot be re-used while the
program is running. That space is gone until the program is stopped, even if no code
has a pointer to that object anymore. This is a memory leak. And, for long-running
C++ programs it is the number one problem. Destructors are a feature of C++ that
help programmers prevent memory leaks. Depending on the structure of a class in
your program, it may need a destructor to take care of cleaning up instances of itself
(i.e. objects of the class) when they are freed.

C++ programs can create objects in the run-time stack, on the heap, or within
other objects. This is another powerful feature of C++. But, with this power over the
creation of objects comes more responsibility for the programmer. This control over
object creation leads to the need for extra code to decide how copies of objects are
made. In C++ every class may contain a copy constructor so the programmer can
control how copies of objects are made.

In 1991 a team called the Green Team, was working for a company named Sun
Microsystems. This group of software engineers wanted to design a programming
language and run-time system that could be used in the next generation of personal
devices. The group was led by a man named James Gosling. To support their vision,
they designed the Java Virtual Machine (i.e. JVM), a program that would interpret
byte code files. The JVM was designed as the run-time system for the Java program-
ming language. Java programs, when compiled, are translated into bytecode files that
run on the JVM.

The year 1995 brought the birth of the world wide web and with it one of the first
web browsers, Netscape Navigator, which later became Mozilla Firefox. In 1995 it
was announced that Netscape would include Java technology within the browser.
This led to some of the initial interest in the language, but the language has grown
way beyond web browsers. In fact, Java is not really a web browser technology
anymore. Itis used in many web backends, where Java programs wait for connections
from web browsers, but it doesn’t run programs within web browsers much these
days. Another language, Javascript, is now the primary language of web browsers.
Javascript is similar to Java in name, but not its technology. Javascript was licensed
as a name from Sun Microsystems in its early days because of the popularity of
Java [22].

The original intention of Java was to serve as a means for running software for
personal devices. Java has become very important in that respect. It now is the basis
for the Android operating system that runs on many phones and other personal
devices like tablets. So, in a sense, the original goal of the Green Team has been
realized, just fifteen or so years later.

1.3 The Origins of a Few Programming Languages 13

When the original Green Team was designing Java they wanted to take the best
of C++ while leaving behind some of its complexity. In Java objects can only be
created in one location, on the heap. Sticking to one and only one memory model for
objects simplifies many aspects of Java. Objects are never copied by the language. So,
copy constructors are unnecessary in Java. When an object is passed to a function, a
reference to an object is passed without making a copy of the object. When one object
wants to contain another object, it keeps a reference to that object. Java objects are
never stored inside other objects. Simplifying the memory model for objects means
that in Java programs we don’t have to worry about copying objects.

Objects can still be copied in Java, but making copies of objects is the responsibility
of the programmer. The Java language does not make copies. Programmers make
copies by calling a special method called clone.

Java also includes garbage collection. This means that the Java Virtual Machine
takes care of deciding when the space that an object resides in can be reclaimed. It
can be reclaimed when no other objects or code have a reference to it anymore. This
means that programmers don’t have to write destructors. The JVM manages this for
them.

So, while C++ and Java share a lot of syntax, there are many differences as well.
Java has a simpler memory model. Garbage collection removes the fear of memory
leaks in Java programs. The Java Virtual Machine also provides other advantages to
writing Java programs. This does not make C++ a bad language by any means. It’s
just that Java and C++ have different goals. The JVM and Java manage a lot of the
complexity of writing object-oriented programs, freeing the programmer from these
duties. C++ on the other hand, gives you the power to manage all the details of a
program, right down to the hardware interface. Neither is better than the other, they
just serve different purposes while the two languages also share a lot of the same
syntax.

Fig.1.7 Guido van Rossum [25]

14 1 Introduction

1.3.3 A Brief History of Python

Python was designed and implemented by Guido van Rossum, pictured in Fig. 1.7. He
started Python as a hobby project during the winter months of 1989. A more complete
history of this language is available on the web at http://python-history.blogspot.com.
Python is another object-oriented language like C++ and Java. Unlike C++, Python
is an interpreted language. Mr. van Rossum designed Python’s interpreter as a virtual
machine, like the Java Virtual Machine (i.e. JVM). But Python’s virtual machine is
not accessible separately, unlike the JVM. The Python virtual machine is an internal
implementation detail of the Python interpreter. Virtual machines have been around
for some time including an operating system for IBM mainframe computers, called
VM. Using a virtual machine when implementing a programming language can make
the language and its programs more portable across platforms. Python runs on many
different platforms like Apple’s Mac OS X, Linux, and Microsoft Windows. Virtual
machines can also provide services that make language implementation easier.

Programmers world-wide have embraced Python and have developed many
libraries for Python and written many programs. Python has gained popularity among
developers because of its portability and the ability to provide libraries to others.
Guido van Rossum states in his history of Python, “A large complex system should
have multiple levels of extensibility. This maximizes the opportunities for users,
sophisticated or not, to help themselves.” Extensibility refers to the ability to define
libraries of classes to solve problems from many different application areas. Python
is used in internet programming, server scripting, computer graphics, visualization,
Mathematics, Computer Science education, and many, many other application areas.

Mr. van Rossum continues, saying “In many ways, the design philosophy I used
when creating Python is probably one of the main reasons for its ultimate success.
Rather than striving for perfection, early adopters found that Python worked “well
enough” for their purposes. As the user-base grew, suggestions for improvement
were gradually incorporated into the language.” Growing the user-base has been
key to the success of Python. As the number of programmers that know Python
has increased so has interest in improving the language. Python now has two major
versions, Python 2 and Python 3. Python 3 is not backward compatible with Python
2. This break in compatibility gave the Python developers an opportunity to make
improvements in the language. Chapters 3 and 4 cover some of the implementation
details of the Python programming language.

1.3.4 A Brief History of Standard ML

Standard ML originated in 1986, but was the follow-on of ML which originated in
1973 [16]. Like many other languages, ML was implemented for a specific purpose.
The ML stands for Meta Language. Meta means above or about. So a metalanguage
is a language about language. In other words, a language used to describe a language.
ML was originally designed for a theorem proving system. The theorem prover was
called LCF, which stands for Logic for Computable Functions. The LCF theorem

http://python-history.blogspot.com
http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_4

1.3 The Origins of a Few Programming Languages 15

Fig. 1.8 Robin Milner [15]

prover was developed to check proofs constructed in a particular type of logic first
proposed by Dana Scott in 1969 and now called Scott Logic. Robin Milner, pictured
in Fig. 1.8, was the principal designer of the LCF system. Milner designed the first
version of LCF while at Stanford University. In 1973, Milner moved to Edinburgh
University and hired Lockwood Morris and Malcolm Newey, followed by Michael
Gordon and Christopher Wadsworth, as research associates to help him build a new
and better version called Edinburgh LCF [9].

For the Edinburgh version of LCF, Dr. Milner and his associates created the ML
programming language to allow proof commands in the new LCF system to be
extended and customized. ML was just one part of the LCF system. However, it
quickly became clear that ML could be useful as a general purpose programming
language. In 1990 Milner, together with Mads Tofte and Robert Harper, published
the first complete formal definition of the language; joined by David MacQueen,
they revised this standard to produce the Standard ML that exists today [16].

ML was influenced by Lisp, Algol, and the Pascal programming languages. In
fact, ML was originally implemented in Lisp. There are now two main versions of
ML: Moscow ML and Standard ML. Today, ML’s main use is in academia in the
research of programming languages. But, it has been used successfully in several
other types of applications including the implementation of the TCP/IP protocol
stack [4] and a web server as part of the Fox Project. A goal of the Fox Project was
the development of system software using advanced programming languages [10].

ML is a very good language to use in learning to implement other languages.
It includes tools for automatically generating parts of a language implementation
including components called a scanner and a parser which are introduced in Chap. 6.
These tools, along with the polymorphic strong type checking provided by Standard
ML, make implementing a compiler or interpreter a much easier task. Much of the
work of implementing a program in Standard ML is spent in making sure all the
types in the program are correct. This strong type checking often means that once a

http://dx.doi.org/10.1007/978-3-319-70790-7_6

16 1 Introduction

program is properly typed it will run the first time. This is quite a statement to make,
but nonetheless it is often true.
Important Standard ML features include:

e ML is higher-order supporting functions as first-class values. This means functions
may be passed as parameters to functions and returned as values from functions.

e Strong type checking (discussed later in this chapter) means it is pretty infrequent
that you need to debug your code. What a great thing!

e Pattern-matching is used in the specification of functions in ML. Pattern-matching
is convenient for writing recursive functions.

e The exception handling system implemented by Standard ML has been proven
type safe, meaning that the type system encompasses all possible paths of execu-
tion in an ML program.

1.3.5 A Brief History of Prolog

Prolog was developed in 1972 by Alain Colmerauer, pictured in Fig.1.9, with
Philippe Roussel. Colmerauer and Roussel and their research group had been work-
ing on natural language processing for the French language and were studying logic
and automated theorem proving [7] to answer simple questions in French. Their
research led them to invite Robert Kowalski, pictured in Fig. 1.10, who was working
in the area of logic programming and had devised an algorithm called SL-Resolution,
to work with them in the summer of 1971 [11,29]. Colmerauer and Kowalski, while
working together in 1971, discovered a way formal grammars could be written as
clauses in predicate logic. Colmerauer soon devised a way that logic predicates could
be used to express grammars that would allow automated theorem provers to parse
natural language sentences efficiently. This is covered in some detail in Chap. 7.

Fig. 1.9 Alain Colmerauer [6]

http://dx.doi.org/10.1007/978-3-319-70790-7_7

1.3 The Origins of a Few Programming Languages 17

Fig.1.10 Robert Kowalski [12]

In the summer of 1972, Kowalski and Colmerauer worked together again and
Kowalski was able to describe the procedural interpretation of what are known as
Horn Clauses. Much of the debate at the time revolved around whether logic pro-
gramming should focus on procedural representations or declarative representations.
The work of Kowalski showed how logic programs could have a dual meaning, both
procedural and declarative.

Colmerauer and Roussel used this idea of logic programs being both declarative
and procedural to devise Prolog in the summer and fall of 1972. The first large
Prolog program, which implemented a question and answering system in the French
language, was written in 1972 as well.

Later, the Prolog language interpreter was rewritten at Edinburgh to compile
programs into DEC-10 machine code. This led to an abstract intermediate form
that is now known as the Warren Abstract Machine or WAM. WAM is a low-level
intermediate representation that is well-suited for representing Prolog programs.
The WAM virtual machine can be (and has been) implemented on a wide variety
of hardware. This means that Prolog implementations exist for most computing
platforms.

Practice 1.5 Answer the following questions.

1. Who invented C++? C? Standard ML? Prolog? Python? Java?
2. What do Standard ML and Prolog’s histories have in common?
3. What do Prolog and Python have in common?

4. What language or languages is Standard ML based on?

You can check your answer(s) in Section 1.8.5.

18 1 Introduction

1.4 Language Implementation
There are three ways that languages can be implemented.

e A language can be interpreted.
e A language can be compiled to a machine language.
e A language can be implemented by some combination of the first two methods.

Computers are only capable of executing machine language. Machine language is
the language of the Central Processing Unit (CPU) and is very simple. For instance,
typical instructions are fetch this value into the CPU, store this value into memory
fromthe CPU, add these two values together, and compare these two values and if they
are equal, jump here next. The goal of any programming language implementation
is to translate a source program into this simpler machine language so it can be
executed by the CPU. The overall process is pictured in Fig. 1.11.

[Source Program]

Intermediate Representation

Machine Language

"
Operating System

CPU

Y

Raw Hardware 1/O Devices

Fig.1.11 Language implementation

1.4 Language Implementation 19

All language implementations translate a source program to some intermediate
representation before translating the intermediate representation to machine lan-
guage. Exactly how these two translations are packaged varies significantly from
one programming language to the next, but luckily most language implementations
follow one of a few methodologies. The following sections will present some case
studies of different languages so you can see how this translation is accomplished
and packaged.

1.4.1 Compilation

The most direct method of translating a program to machine language is called
compilation. The process is shownin Fig. 1.12. A compiler is a program that internally
is composed of several parts. The parser reads a source program and translates it
into an intermediate form called an abstract syntax tree (AST). An AST is a tree-
like data structure that internally represents the source program. We’ll read about
abstract syntax trees in later chapters. The code generator then traverses the AST
and produces another intermediate form called an assembly language program. This
program is not machine language, but it is much closer. Finally, an assembler and
linker translate an assembly language program to machine language making the
program ready to execute.

This whole process is encapsulated by a tool called a compiler. In most instances,
the assembler and linker are separate from the compiler, but normally the com-
piler runs the assembler and linker automatically when a program is compiled so
as programmers we tend to think of a compiler compiling our programs and don’t
necessarily think about the assembly and link phases.

Programming in a compiled language is a three-step process.

e First, you write a source program.
e Then you compile the source program, producing an executable program.
e Then you run the executable program.

When you are done, you have a source program and an executable program that
represent the same computation, one in the source language, the other in machine
language. If you make further changes to the source program, the source program and
the machine language program are not in sync. After making changes to the source
program you must remember to recompile before running the executable program
again.

Machine language is specific to a CPU architecture and operating system. Com-
piling a source program on Linux means it will run on most Linux machines with a
similar CPU. However, you cannot take a Linux executable and put it on a Microsoft
Windows machine and expect it to run, even if the two computers have the same
CPU. The Linux and Windows operating systems each have their own format for
executable machine language programs. In addition, compiled programs use operat-
ing system services for printing, reading input, and doing other Input/Output (I/O)
operations. These services are invoked differently between operating systems. Lan-

20 1 Introduction

| Source Program I

Code
Generator

Assembly Language

[Operating System]
CPU

Raw Hardware 1/0 Devices

Fig.1.12 The compilation process

guages like C++ hide these implementation details from you in the code generator,
but the end result is that a program compiled for one operating system will not work
on another operating system without being recompiled.

C, C++, Pascal, Fortran, COBOL and many others are typically compiled lan-
guages. On the Linux operating system the C compiler is called gcc and the C++
compiler is called g++. The g in both names reflects the fact that both compilers
come out of the GNU project and the Free Software Foundation. Linux, gcc, and
g++ are freely available to anyone who wants to download them. The best way to
get these tools is to download a Linux distribution and install it on a computer. The
gcce and g++ compilers come standard with Linux.

There are implementations of C and C++ for many other platforms. The web site
http://gcc.gnu.org contains links to source code and to prebuilt binaries for the g++
compiler. You can also download C++ compilers from Apple and Microsoft. For
Mac OS X computers you can get C++ by downloading the XCode Developer Tools.

http://gcc.gnu.org

1.4 Language Implementation 21

You can also install g++ and gcc for Mac OS X computers using a tool called brew.
If you run Microsoft Windows you can install Visual C++ Express from Microsoft.
It is free for educational use.

1.4.2 Interpretation

An interpreter is a program that is written in some other language and compiled
into machine language. The interpreter itself is the machine language program. The
interpreter itself is written to read source programs from the interpreted language
and interpret them. For instance, Python is an interpreted language. The Python
interpreter is written in C and is compiled for a particular platform like Linux, Mac
OS X, or Microsoft Windows. To run a Python program, you must download and
install the Python interpreter that goes with your operating system and CPU.

When you run an interpreted source program, as depicted in Fig. 1.13, you are
actually running the interpreter. Your program is not running because your program
is never translated to machine language. The interpreter is the machine language
program that executes all the programs you write in the interpreted language. The
source program you write controls the behavior of the interpreter program.

Programming in an interpreted language is a two step process.

e First you write a source program.
e Then you execute the source program by running the interpreter.

Each time your program is executed it is translated into an AST by a part of the
interpreter called the parser. There may be an additional step that translates the
AST to some lower-level representation, often called bytecode. In an interpreter, this
lower-level representation is still internal to the interpreter program. Then a part of
the interpreter, often called a virtual machine, executes the byte code instructions.

Not every interpreter translates the AST to bytecode. Sometimes the interpreter
directly interprets the AST but it is often convenient to translate the source program’s
AST to some simpler representation before executing it.

Eliminating the compile step has a few implications.

e Since you have one less step in development you may be encouraged to run your
code more frequently during development. This is a generally a good thing and
can shorten the development cycle.

e Secondly, because you don’t have an executable version of your code, you don’t
have to manage the two versions. You only have a source code program to keep
track of.

e Finally, because the source code is not platform dependent, you can usually easily
move your program between platforms. The interpreter insulates your program
from platform dependencies.

Of course, source programs for compiled languages are generally platform indepen-
dent too. But, they must be recompiled to move the executable program from one

22 1 Introduction

| Source Program l

|
@ o e

Bytecode Instructions

[Operating System]
) CPU

Raw Hardware 1/0 Devices

Fig.1.13 The interpretation process

platform to another. The interpreter itself isn’t platform independent. There must
be a version of an interpreter for each platform/language combination. So there is
a Python interpreter for Linux, another for Microsoft Windows, and yet another
for Mac OS X. Thankfully, because the Python interpreter is written in C the same
Python interpreter program can be compiled (with some small differences) for each
platform.

There are many interpreted languages available including Python, Ruby, Standard
ML, Unix scripting languages like Bash and Csh, Prolog, and Lisp. The portability of
interpreted languages has made them very popular among programmers, especially
when writing code that needs to run across multiple platforms.

One huge problem that has driven research into interpreted languages is that
of heap memory management. Recall that the heap is the place where memory is
dynamically allocated. As mentioned earlier in the chapter, C and C++ programs are
notorious for having memory leaks. Every time a C++ programmer reserves some
space on the heap he/she must remember to free that space. If they don’t free the

1.4 Language Implementation 23

space when they are done with it the space will never be available again while the
program continues to execute. The heap is a big space, but if a program runs long
enough and continues to allocate and not free space, eventually the heap will fill up
and the program will terminate abnormally. In addition, even if the program doesn’t
terminate abnormally, the performance of the system will degrade as more and more
time is spent managing the large heap space.

Most, if not all, interpreted languages don’t require programmers to free space
on the heap. Instead, there is a special task or thread that runs periodically as part
of the interpreter to check the heap for space that can be freed. This task is called
the garbage collector. Programmers can allocate space on the heap but don’t have
to be worried about freeing that space. For a garbage collector to work correctly,
space on the heap has to be allocated and accessed in the right way. Many interpreted
languages are designed to insure that a garbage collector will work correctly.

The disadvantage of an interpreted language is in speed of execution. Interpreted
programs typically run slower than compiled programs. In a compiled program,
parsing and code generation happen once when the program is compiled. When
running an interpreted program, parsing and code generation happen each time the
program is executed. In addition, if an application has real-time dependencies then
having the garbage collector running at more or less random intervals may not be
desirable. As you’ll read in the next section some steps have been taken to reduce
the difference in execution time between compiled and interpreted languages.

1.4.3 Virtual Machines

The advantages of interpretation over compilation are pretty significant. It turns out
that one of the biggest advantages is the portability of programs. It’s nice to know
when you invest the time in writing a program that it will run the same on Linux,
Microsoft Windows, Mac OS X, or some other operating system. This portability
issue has driven a lot of research into making interpreted programs run as fast as
compiled languages.

As discussed earlier in this chapter, the concept of a virtual machine has been
around quite a while. A virtual machine is a program that provides insulation from
the actual hardware and operating system of a machine while supplying a consistent
implementation of a set of low-level instructions, often called bytecode. Figure 1.14
shows how a virtual machine sits on top of the operating system/CPU to act as this
insulator.

There is no one specification for bytecode instructions. They are specific to the
virtual machine being defined. Python has a virtual machine buried within the inter-
preter. Prolog is another interpreter that uses a virtual machine as part of its imple-
mentation. Some languages, like Java have taken this idea a step further. Java has a
virtual machine that executes bytecode instructions as does Python. The creators of
Java separated the virtual machine from the compiler. Instead of storing the bytecode
instructions internally as in an interpreter, the Java compiler, called javac, compiles
a Java source code program to a bytecode file. This file is not machine language
so it cannot be executed directly on the hardware. It is a Java bytecode file which

24 1 Introduction

Operating System

Raw Hardware 1/O Devices

Fig.1.14 Virtual machine implementation

is interpreted by the Java virtual machine, called java in the Java set of tools. Java
bytecode files all end with a .class extension. You may have noticed these files at
some point after compiling a Java program.

Programs written using a hybrid language like Java are compiled. However, the
compiled bytecode program is interpreted. Source programs in the language are not
interpreted directly. By adding this intermediate step the interpreter can be smaller
and faster than traditional interpreters. Very little parsing needs to happen to read
the program and executing the program is straightforward because each bytecode
instruction usually has a simple implementation.

Languages that fall into this virtual machine category include Java, ML, Python,
C#, Visual Basic .NET, JScript, and other .NET platform languages. You might notice
that Standard ML and Python were included as examples of interpreted languages.
Both ML and Python include interactive interpreters as well as the ability to compile
and run low-level bytecode programs. Python bytecode files are named with a .pyc
extension. Standard ML compiled files are named with a -platform as the last part of

1.4 Language Implementation 25

the compiled file name. In the case of Python and Standard ML the virtual machine
is not a separate program. Both interpreters are written to recognize a bytecode file
and execute it just like a source program.

Java and the .NET programming environments do not include interactive inter-
preters. The only way to execute programs with these platforms is to compile the
program and then run the compiled program using the virtual machine. Programs
written for the .NET platform run under Microsoft Windows and in some cases
Linux. Microsoft submitted some of the .NET specifications to the ISO to allow
third party software companies to develop support for .NET on other platforms. In
theory all .NET programs are portable like Java, but so far implementations of the
NET framework are not as generally available as Java. The Java platform has been
implemented and released on all major platforms. In fact, in November 2006 Sun, the
company that created Java, announced they were releasing the Java Virtual Machine
and related software under the GNU Public License to encourage further develop-
ment of the language and related tools. Since then the rights to Java have now been
purchased by Oracle where it continues to be supported.

Java and .NET language implementations maintain backwards compatibility of
their virtual machines. This means that a program compiled for an earlier version of
Java or NET will continue to run on newer implementations of the language’s virtual
machine. In contrast, Python’s virtual machine is regarded as an internal design issue
and does not maintain backwards compatibility. A .pyc file compiled for one version
of Python will not run on a newer version of Python. This distinction makes Python
more of an interpreted language, while Java and .NET languages are truly virtual
machine implementations.

Maintaining backwards compatibility of the virtual machine means that program-
mers can distribute application for Java and .NET implementations without releasing
their source code. .NET and Java applications can be distributed while maintaining
privacy of the source code. Since intellectual property is an important asset of compa-
nies, the ability to distribute programs in binary form is important. The development
of virtual machines made memory management and program portability much easier
in languages like Java, Standard ML, and the various .NET languages while also pro-
viding a means for programmers to distribute programs in binary format so source
code could be kept private.

1.5 Types and Type Checking

Every programming language defines operations that can be used to transform data.
Data transformation is the fundamental operation that is performed by all program-
ming languages. Some programming languages mutate data to new values. Other
languages transform data by building new values from old values. However the
transformation takes place, these data transformation operations are defined for cer-
tain types of data. Not every transformation operation makes sense for every type of
value. For instance, addition is an operation that makes sense for numbers, but does

26 1 Introduction

not make any sense for customers. How would you add two customers together and
what would that mean?

Since programming languages define data transformation operations, they simi-
larly define types to specify which operations make sense on which types of data.
Types in programming languages include integers, booleans, real numbers (i.e. some-
times called floating point numbers), strings, lists, tuples, and user-defined types like
customers. Transformation operations are defined operators on these values. The
plus sign (e.g. +) often defines addition. String concatenation might also be denoted
by the plus sign. Or it might be some other symbol.

One of the jobs of a programming language implementation is to determine which
operation is meant when, for instance, the plus sign is written in a program. Does
it mean the addition of two numbers, string concatenation, or is it an error because
you can’t add two customers together? Determining if the plus sign makes sense in
the context of its operands (i.e. the two things being added together) is the job of a
programming language implementation. More generally, the programming language
implementation is responsible for checking that the operations performed on its data
types are defined and the programming language is responsible for invoking the
correct operation.

There are two different times that this type checking might occur. Some pro-
gramming languages defer all type checking until the last possible second when
the program is actually executing. When the next operation occurs, a programming
language implementation may terminate a program and report that the next opera-
tion to be executed is not defined. This is called a dynamically typed programming
language.

Python is a dynamically typed programming language. You don’t find out that an
operation is undefined until the operation is about to be executed. No earlier warning
is given. When the code is executed, if you try to add two customers together, you
find out that this has not been defined.

Other programming languages report any operation that is not defined before the
program begins execution. In this case the programming language is statically typed.
A statically typed language goes through a step during before execution where type
checking is performed to see if the operations are defined for the given types of
operands. This type checking step is performed in languages like Java and C++.
These languages are statically typed.

An important facet of Standard ML is the strong type checking provided by the
language. The type inference system, commonly called Hindley-Milner type infer-
ence, statically checks the types of all expressions and operations in the language.
In addition, the type checking system is polymorphic, meaning that it handles types
that may contain type variables. The polymorphic type checker is sound. It will
never say a program is typed correctly when it is not. Interestingly, the type checker
has also been proven complete, which means that all correctly typed programs will
indeed pass the type checker. No correctly typed program will be rejected by the
type checker. We expect soundness out of type checkers but completeness is much
harder to prove and it has been proven for Standard ML.

1.5 Types and Type Checking 27

There are trade-offs between statically and dynamically typed languages. Typi-
cally there is more overhead to programming with a statically typed language. Types
in C++ and Java must be declared so that static type checking can be performed.
But this is not always the case. Standard ML infers the types of most values in the
language without requiring the types of its values to be declared.

Dynamically typed languages typically require less overhead in declaring values.
In Python you don’t declare the value of any object, except through the creation of
that object. Writing

X = 6
print (x+x)

results in x referring to an integer value. Then printing x + x will result in 12 being
printed because + is determined to be a valid operation on integers at run-time, as
x + x is computed.

The problem with dynamically typed languages comes from the lateness of deter-
mining if the operation is defined on the objects. If the operation is only determined
to be valid right before it is executed, then every single line of a program must be
tested to determine if the program is correct or not. While static typing tells you
whether operations are defined or not before the program executes, dynamically
typed languages don’t help you with that. They only tell you that an operation is not
defined if you actually try to execute that line of code.

So, which is better, dynamically or statically typed languages? It depends on the
complexity of the program you are writing and its size. Static typing is certainly
desirable if all other things are equal. But static typing typically does increase the
work of a programmer up front. On the other hand, static typing is likely to decrease
the amount of time you spend testing as evidenced by the Fox Project [10] at Carnegie
Mellon.

1.6 Chapter Summary

The history of languages is fascinating and a lot more detail is available than was
covered in this chapter. There are many great resources on the web where you
can get more information. Use Google or Wikipedia and search for “History of
your_favorite_language” as a place to begin. However, be careful. You can’t believe
everything you read on the web and that includes Wikipedia. While the web is a great
source, you should always research your topic enough to independently verify the
information you find there.

While learning new languages and studying programming language implementa-
tion it becomes important to understand models of computation. A compiler translates
a high-level programming language into a lower level computation. These low-level
computations are usually expressed in terms of machine language but not always.
More important than the actual low-level language is the model of computation. Some
models are based on register machines. Some models are based on stack machines.
Still other models may be based on something entirely different. Chapters 3 and 4
explore stack-based virtual machines in much more detail.

http://dx.doi.org/10.1007/978-3-319-70790-7_3
http://dx.doi.org/10.1007/978-3-319-70790-7_4

28 1 Introduction

The next chapter provides the foundations for understanding how the syntax of a
language is formally defined by a grammar. Then chapter three introduces a Python
Virtual Machine implementation called JCoCo. JCoCo is an interpreter of Python
bytecode instructions. Chapter three introduces assembly language programming
using JCoCo, providing some insight into how programming languages are imple-
mented.

Subsequent chapters in the book will again look at language implementation to
better understand the languages you are learning, their strengths and weaknesses.
While learning these languages you will also be implementing a compiler for a high
level functional language called Small which is a robust subset of Standard ML. This
will give you even more insight into language implementation and knowledge of
how to use these languages to solve problems.

Finally, in the last two chapters of this text, you will learn about type checking
and type inference using Prolog, a language that is well-suited to logic problems like
type inference. Learning how to use Prolog and implement a type checker is a great
way to cap off a text on programming languages and language implementation.

A great way to summarize the rest of this text is to see it moving from very
prescriptive approaches to programming to very descriptive approaches to program-
ming. The word prescriptive means that you dwell on details, thinking very carefully
about the details of what you are writing. For instance, in a prescriptive approach
you might ask yourself, how do you set things up to invoke a particular type of
instruction? In contrast, descriptive programming relies on programmers describing
relationships between things. Functional programming languages, to some extent,
and logic programming languages employ this descriptive approach to programming.
Read on to begin the journey from prescriptive to descriptive programming!

1.7 Review Questions

1. What are the three ways of thinking about programming, often called program-
ming paradigms?

2. Name at least one language for each of the three methods of programming
described in the previous question.

3. Name one person who had a great deal to do with the development of the impera-
tive programming model. Name another who contributed to the functional model.
Finally, name a person who was responsible for the development of the logic
model of programming.

4. What are the primary characteristics of each of the imperative, functional, and
logic models?

5. Who are recognized as the founders of each of the languages this text covers:
Java, C++, Python, Standard ML, and Prolog?

6. Name a language, other than Python, C++, or Java, that is imperative object-
oriented in nature.

7. Name a language besides Standard ML, that is a functional programming lan-

guage.

1.7 Review Questions 29

8. What other logic programming languages are there other than Prolog? You might
have to get creative on this one.
9. Why is compiling a program preferred over interpreting a program?
10. Why is interpreting a program preferred over compiling a program?
11. What benefits do virtual machine languages have over interpreted languages?
12. What is a bytecode program? Name two languages that use bytecode in their
implementation.
13. Why are types important in a programming language?
14. What does it mean for a programming language to be dynamically typed?
15. What does it mean for a programming language to be statically typed?

1.8 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

1.8.1 Solution to Practice Problem 1.1

1. The origins of the three models are the Turing Machine, the A-calculus, and
propositional and predicate logic.

2. Alan Turing as a PhD student of Alonzo Church. Alan Turing developed the Turing
Machine and Alonzo Church developed the A-calculus to answer prove there were
somethings that are not computable. They later proved the two approaches were
equivalent in their power to express computation.

3. Both von Neumann and Turing contributed to the idea of a stored-program com-
puter.

4. Backus developed BNF notation which was used in the development of Algol 60.

5. 1936 was a big year for Computer Science.

6. So was 1946. That was the year ENIAC was unveiled. Eckert and Mauchly
designed and built ENIAC.

7. The problems in Mathematics were growing complex enough that many mathe-
maticians were developing models and languages for expressing their algorithms.
This was one of the driving factors in the development of computers and Computer
Science as a discipline.

1.8.2 Solution to Practice Problem 1.2

1. The run-time stack, global memory, and the heap are the three divisions of data
memory.
2. Data on the heap is created at run-time.

30

1 Introduction

e

. An activation record holds information like local variables, the program counter,

the stack pointer, and other state information necessary for a function invocation.
An activation record is created each time a function is called.

An activation record is deleted when a function returns.

The primary goal of imperative, object-oriented programming is to update mem-
ory by updating variables and/or objects as the program executes. The primary
operation is memory updates.

1.8.3 Solution to Practice Problem 1.3

Functional languages include Standard ML, Lisp, Haskell, and Scheme.

. In the imperative model the primary operation revolves around updating memory

(the assignment statement). In the functional model the primary operation is
function application.

. The functional model emphasizes immutable data. However, some imperative

languages have some immutable data as well. For instance, Java strings are
immutable.

1.8.4 Solution to Practice Problem 1.4

. You never write a program in Prolog. You write a database of rules in Prolog that

tell the single Prolog program (depth first search) how to proceed.

. The programmer provides a database of facts and predicates that tell Prolog

about a problem. In Prolog the programmer describes the problem instead of
programming the solution.

1.8.5 Solution to Practice Problem 1.5

. C++ was invented by Bjourne Stroustrup. C was created by Dennis Ritchie. Stan-

dard ML was primarily designed by Robin Milner. Prolog was designed by Alain
Colmerauer and Philippe Roussel with the assistance of Robert Kowalski. Python
was created by Guido van Rossum. Java was the work of the Green team and James
Gosling.

. Standard ML and Prolog were both designed as languages for automated theorem

proving first. Then they became general purpose programming languages later.

. Both Python and Prolog run on virtual machine implementations. Python’s virtual

machine is internal to the interpreter. Prolog’s virtual machine is called WAM
(Warren Abstract Machine).

. Standard ML is influenced by Lisp, Pascal, and Algol.

Syntax

Once you’ve learned to program in one language, learning a similar programming
language isn’t all that hard. But, understanding just how to write in the new language
takes looking at examples or reading documentation to learn its details. In other
words, you need to know the mechanics of putting a program together in the new
language. Are the semicolons in the right places? Do you use begin...end or do you
use curly braces (i.e. { and })? Learning how a program is put together is called
learning the syntax of the language. Syntax refers to the words and symbols of a
language and how to write the symbols down in some meaningful order.

Semantics is the word that is used when deriving meaning from what is written.
The semantics of a program refers to what the program will do when it is executed.
Informally it is much easier to say what a program does than to describe the syntactic
structure of the program. However, syntax is a lot easier to formally describe than
semantics. In either case, if you are learning a new language, you need to learn
something about both the syntax and semantics of the language.

2.1 Terminology

Once again, the syntax of a programming language determines the well-formed or
grammatically correct programs of the language. Semantics describes how or whether
such programs will execute.

e Syntax is how programs look
e Semantics is how programs work

Many questions we might like to ask about a program either relate to the syntax
of the language or to its semantics. It is not always clear which questions pertain to

© Springer International Publishing AG 2017 31
K.D. Lee, Foundations of Programming Languages, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_2

32 2 Syntax

syntax and which pertain to semantics. Some questions may concern semantic issues
that can be determined statically, meaning before the program is run. Other semantic
issues may be dynamic issues, meaning they can only be determined at run-time.
The difference between static semantic issues and syntactic issues is sometimes a
difficult distinction to make.

The code

a=b+c;

is correct syntax in many languages. But is it a correct C++ statement?

1. Do b and c have values?

2. Have b and c been declared as a type that allows the + operation? Or, do the
values of b and c support the + operation?

3. Is a assignment compatible with the result of the expression b + ¢?

4. Does the assignment statement have the proper form?

There are lots of questions that need to be answered about this assignment statement.
Some questions could be answered sooner than others. When a C++ program is
compiled it is translated from C++ to machine language as described in the previous
chapter. Questions 2 and 3 are issues that can be answered when the C++ program
is compiled. However, the answer to the first question might not be known until
the C++ program executes in some cases. The answers to questions 2 and 3 can
be answered at compile-time and are called static semantic issues. The answer to
question 1 is a dynamic issue and is probably not determinable until run-time. In
some circumstances, the answer to question 1 might also be a static semantic issue.
Question 4 is definitely a syntactic issue.

Unlike the dynamic semantic issues, the correct syntax of a program is statically
determinable. Said another way, determining a syntactically valid program can be
accomplished without running the program. The syntax of a programming language
is specified by a grammar. But before discussing grammars, the parts of a grammar
must be defined. A ferminal or token is a symbol in the language.

e C++, Java, and Python terminals: while, for, (, ;, 5, b
e Type names like int and string

Keywords, types, operators, numbers, identifiers, etc. are all tokens or terminals in
a language.

A syntactic category or nonterminal is a set of phrases, or strings of tokens,
that will be defined in terms of symbols in the language (terminal and nonterminal
symbols).

e C++,Java, or Python nonterminals: <statement>, <expression>, <if-statement>,
etc.

e Syntactic categories define parts of a program like statements, expressions, dec-
larations, and so on.

2.1 Terminology 33

A metalanguage is a higher-level language used to specify, discuss, describe, or
analyze another language. English is used as a metalanguage for describing pro-
gramming languages, but because of the ambiguities in English, more formal meta-
languages have been developed. The next section describes a formal metalanguage
for describing programming language syntax.

2.2 Backus Naur Form (BNF)

Backus Naur Format (i.e. BNF) is a formal metalanguage for describing language
syntax. The word formal is used to indicate that BNF is unambiguous. Unlike English,
the BNF language is not open to our own interpretations. There is only one way to
read a BNF description.

BNF was used by John Backus to describe the syntax of Algol in 1963. In 1960,
John Backus and Peter Naur, a computer magazine writer, had just attended a confer-
ence on Algol. As they returned from the trip it became apparent that they had very
different views of what Algol would look like. As a result of this discussion, John
Backus worked on a method for describing the grammar of a language. Peter Naur
slightly modified it. The notation is called BNF, or Backus Naur Form or sometimes
Backus Normal Form. BNF consists of a set of rules that have this form:

<syntactic category> ::= a string of terminals and nonterminals

The symbol ::= can be read as is composed of and means the syntactic category is
the set of all items that correspond to the right hand side of the rule.

Multiple rules defining the same syntactic category may be abbreviated using the |
character which can be read as “or”” and means set union. That is the entire language.
It’s not a very big metalanguage, but it is powerful.

2.2.1 BNF Examples

Here are a couple BNF examples from Java.

<primitive-type> ::= boolean
<primitive-type> ::= char

BNF syntax is often abbreviated when there are multiple similar rules like these
primitive type rules. Whether abbreviated or not, the meaning is the same.

<primitive-type> ::= boolean | char | byte | short | int | long | float |
<argument -list> ::= <expression> | <argument-list> , <expression>
<selection-statement> ::=

if (<expression>) <statement>

if (<expression>) <statement> else <statement> |

switch (<expression>) <block>

<method-declaration> ::=
<modifiers> <type-specifier> <method declarator> <throws-clause> <method-body> |
<modifiers> <type-specifier> <method-declarator> <method-body> |

34 2 Syntax

<type-specifier> <method-declarator> <throws-clause> <method-body> |
<type-specifier> <method-declarator> <method-body>
This description can be described in English: The set of method declarations is the
union of the sets of method declarations that explicitly throw an exception with those
that don’t explicitly throw an exception with or without modifiers attached to their
definitions. The BNF is much easier to understand and is not ambiguous like this
English description.

2.2.2 Extended BNF (EBNF)

Since a BNF description of the syntax of a programming language relies heavily on
recursion to provide lists of items, many definitions use these extensions:

. item? or [item] means the item is optional.

. item* or {item} means zero or more occurrences of an item are allowable.
. item+ means one or more occurrences of an item are allowable.

. Parentheses may be used for grouping

AW N =

2.3 Context-Free Grammars

A BNF is a way of describing the grammar of a language. Most interesting grammars
are context-free, meaning that the contents of any syntactic category in a sentence are
not dependent on the context in which it is used. A context-free grammar is defined
as a four tuple:

G=W,T,P,S)

where

N is a set of symbols called nonterminals or syntactic categories.

7T is a set of symbols called terminals or tokens.

P is a set of productions of the form n — a where n € N and o € {N U T}*.
S € N is a special nonterminal called the start symbol of the grammar.

Informally, a context-free grammar is a set of nonterminals and terminals. For each
nonterminal there are one or more productions with strings of zero or more non-
terminals and terminals on the right hand side as described in the BNF description.
There is one special nonterminal called the start symbol of the grammar.

2.3 Context-Free Grammars 35

2.3.1 The Infix Expression Grammar

A context-free grammar for infix expressions can be specified as G = (N, 7, P, E)
where

N ={E,T, F}
T = {identifier, number, +, —, *, /, (,)}
P is defined by the set of productions

E—-E+T|E-T|T
T—-TsxF|T/F|F
F — (E) |identifier | number

2.4 Derivations

A sentence of a grammar is a string of tokens from the grammar. A sentence belongs
to the language of a grammar if it can be derived from the grammar. This process
is called constructing a derivation. A derivation is a sequence of sentential forms
that starts with the start symbol of the grammar and ends with the sentence you are
trying to derive. A sentential form is a string of terminals and nonterminals from
the grammar. In each step in the derivation, one nonterminal of a sentential form,
call it A, is replaced by a string of terminals and nonterminals, 8, where A — B
is a production in the grammar. For a grammar, G, the language of G is the set of
sentences that can be derived from G and is usually written as L(G).

2.4.1 A Derivation

Here we prove that the expression (5 *x) 4 y is a member of the language defined by
the grammar given in Sect.2.3.1 by constructing a derivation for it. The derivation
begins with the start symbol of the grammar and ends with the sentence.

ESE+T=T+T=F4+T=E+T=O)+T=T+F)+T
S (FsF)+T = G+ F)+T=Gsx)+T = Gxx)+F= Gxx)+y

Each step is a sentential form. The underlined nonterminal in each sentential form is
replaced by the right hand side of a production for that nonterminal. The derivation
proceeds from the start symbol, E, to the sentence (5 % x) + y. This proves that
(5 *x x) 4+ y is in the language L(G) as G is defined in Sect.2.3.1.

36 2 Syntax

Practice 2.1 Construct a derivation for the infix expression 4 + (a — b) * x.
You can check your answer(s) in Section 2.17.1.

2.4.2 Types of Derivations

A sentence of a grammar is valid if there exists at least one derivation for it using
the grammar. There are typically many different derivations for a particular sentence
of a grammar. However, there are two derivations that are of some interest to us in
understanding programming languages.

e Left-most derivation - Always replace the left-most nonterminal when going from
one sentential form to the next in a derivation.

e Right-most derivation - Always replace the right-most nonterminal when going
from one sentential form to the next in a derivation.

The derivation of the sentence (5 * x) + y in Sect.2.4.1 is a left-most derivation. A
right-most derivation for the same sentence is:

ESE+T=E+F=E+y=>T+y=F+y=>(E +y=>({T)+y
>T+«F)+y=Tx*xx)+y=F=*x)+y=0GE*x)+y

Practice 2.2 Construct a right-most derivation for the expression x % y + z.
You can check your answer(s) in Section 2.17.2.

2.4.3 Prefix Expressions

Infix expressions are expressions where the operator appears between the operands.
Another type of expression is called a prefix expression. In prefix expressions the
operator appears before the operands. The infix expression 4 + (a — b) * x would
be written +4 x —abx as a prefix expression. Prefix expressions are in some sense
simpler than infix expressions because we don’t have to worry about the precedence
of operators. The operator precedence is determined by the order of operations in
the expression. Because of this, parentheses are not needed in prefix expressions.

2.4.4 The Prefix Expression Grammar

A context-free grammar for prefix expressions can be specifiedas G = (N, 7, P, E)
where

2.4 Derivations 37

N ={E}
T = {identifier, number, +, —, *, /}
P is defined by the set of productions

E—-+EE|—EE|*«xEE|/EE]|identifier | number

Practice 2.3 Construct a left-most derivation for the prefix expression +4 *
—abx.
You can check your answer(s) in Section 2.17.3.

2.5 ParseTrees

A grammar, G, can be used to build a tree representing a sentence of L(G), the
language of the grammar G. This kind of tree is called a parse tree. A parse tree is
another way of representing a sentence of a given language. A parse tree is constructed
with the start symbol of the grammar at the root of the tree. The children of each
node in the tree must appear on the right hand side of a production with the parent
on the left hand side of the same production. A program is syntactically valid if there
is a parse tree for it using the given grammar.

While there are typically many different derivations of a sentence in a language,
there is only one parse tree. This is true as long as the grammar is not ambiguous.
In fact that’s the definition of ambiguity in a grammar. A grammar is ambiguous if
and only if there is a sentence in the language of the grammar that has more than one
parse tree.

The parse tree for the sentence derived in Sect.2.4.1 is depicted in Fig. 2.1. Notice
the similarities between the derivation and the parse tree.

Practice 2.4 What does the parse tree look like for the right-most derivation
of S*xx)+ y?
You can check your answer(s) in Section 2.17.4.

Practice 2.5 Construct a parse tree for the infix expression 4 + (a — b) * x.
HINT: What has higher precedence, “4” or “x”? The given grammar auto-
matically makes “x” have higher precedence. Try it the other way and see
why!
You can check your answer(s) in Section 2.17.5.

38 2 Syntax

000004
vab

=
&

Fig.2.1 A parse tree

Practice 2.6 Construct a parse tree for the prefix expression +4 x —abx.
You can check your answer(s) in Section 2.17.6.

2.6 Abstract Syntax Trees

There is a lot of information in a parse tree that isn’t really needed to capture the
meaning of the program that it represents. An abstract syntax tree is like a parse tree
except that non-essential information is removed. More specifically,

e Nonterminal nodes in the tree are replaced by nodes that reflect the part of the
sentence they represent.
e Unit productions in the tree are collapsed.

For example, the parse tree from Fig.2.1 can be represented by the abstract syntax
tree in Fig.2.2. The abstract syntax tree eliminates all the unnecessary information
and leaves just what is essential for evaluating the expression. Abstract syntax trees,
often abbreviated ASTs, are used by compilers while generating code and may be
used by interpreters when running your program. Abstract syntax trees throw away
superfluous information and retain only what is essential to allow a compiler to
generate code or an interpreter to execute the program.

2.6 Abstract Syntax Trees 39

R@

O O

Fig.2.2 An AST

Practice 2.7 Construct an abstract syntax tree for the expression 44-(a —b)*x.
You can check your answer(s) in Section 2.17.7.

2.7 Lexical Analysis

The syntax of modern programming languages are defined via grammars. A grammar,
because itis a well-defined mathematical structure, can be used to construct a program
called a parser. A language implementation, like a compiler or an interpreter, has
a parser that reads the program from the source file. The parser reads the tokens,
or terminals, of a program and uses the language’s grammar to check to see if the
stream of tokens form a syntactically valid program.

For a parser to do its job, it must be able to get the stream of tokens from the
source file. Forming tokens from the individual characters of a source file is the job
of another program often called a tokenizer, or scanner, or lexer. Lex is the Latin
word for word. The words of a program are its tokens. In programming language
implementations a little liberty is taken with the definition of word. A word is any
terminal or token of a language. It turns out that the tokens of a language can be
described by another language called the language of regular expressions.

2.7.1 The Language of Regular Expressions

The language of regular expression is defined by a context-free grammar. The context-
free grammar for regular expressions is RE = (N, 7, P,E) where

N ={E,T,K, F}
T = {character, *,+, ., (,)}
P is defined by the set of productions

40 2 Syntax

E—-E+T|T

T —>TK|K

K— Fx|F

F — character | (E)

The + operator is the choice operator, meaning either E or T, but not both. The
dot operator means that T is followed by K. The % operator, called Kleene Star
for the mathematician that first defined it, means zero or more occurrences of F.
The grammar defines the precedence of these operators. Kleene star has the highest
precedence followed by the dot operator, followed by the choice operator. At its most
primitive level, a regular expression may be just a single character.

Frequently, a choice between many different characters may be abbreviated with
some sensible name. For instance, letfer may be used to abbreviate A + B 4 --- +
Z +a+b+---zand digit may abbreviate 0+ 14+2+3+44+54+6+7+8+49.
Usually these abbreviations are specified explicitly before the regular expression is
given.

The tokens of the infix grammar are identifier, number, +, —, %, /, (, and). For
brevities sake, assume that letter and digit have the usual definitions. We’ll also
put each operator character in single quotes so as not to confuse them with the
metalanguage. Then, these tokens might be defined by the regular expression

letter.letter* + digit.digit® + ‘“+" + ‘—+ % + </ 4+ ‘(“ +)

From this regular expression specification a couple of things come to light. Identifiers
must be at least one character long, but can be as long as we wish them to be.
Numbers are only non-negative integers in the infix expression language. Floating
point numbers cannot be specified in the language as the tokens are currently defined.

Practice 2.8 Define a regular expression so that negative and non-negative
integers can both be specified as tokens of the infix expression language.
You can check your answer(s) in Section 2.17.8.

2.7.2 Finite State Machines

A finite state machine is a mathematical model that accepts or rejects strings of
characters for some regular expression. A finite state machine is often called a finite
state automaton. The word automaton is just another word for machine. Every regular
expression has at least one finite state machine and vice versa, every finite state
machine has at least one matching regular expression. In fact, there is an algorithm
that given any regular expression can be used to construct a finite state machine for
it.
Formally a finite state automata is defined as follows.

2.7 Lexical Analysis 41

M= (%, S, F,so,8) where ¥ (pronounced sigma) is the input alphabet (the characters
understood by the machine), S is a set of states, F' is a subset of S usually written as
F C S, s¢ is a special state called the start state, and § (pronounced delta) is a function
that takes as input an alphabet symbol and a state and returns a new state. This is usually
writtenas § : X x § — S.

A finite state machine has a current state which initially is the start state. The machine
starts in the start state and reads characters one at a time. As characters are read, the
finite state machine changes state. Each state has transitions to other states based
on the last character read. Each time the machine transitions to a new state, another
character is read from the stream of characters.

After reading all the characters of a token, if the current state is in the set of final
states, F', then the token is accepted by the finite state machine. Otherwise, it is
rejected. Finite state machines are typically represented graphically by drawing the
states, transitions, start state, and final states. States in a graphical representation are
depicted as nodes in a graph. The start state has an arrow going into it with nothing at
the back side of the arrow. The transitions are represented as arrows going from one
state to another and are labelled with the characters that trigger the given transition.
Finally, final or accepting states are denoted with a double circle.

letter

\

digit

letter

Start State

Fig.2.3 A finite state machine

42 2 Syntax

Figure 2.3 depicts a finite state machine for the language of infix expression tokens.
The start state is 1. Each of states 2 through 9 are accepting states, denoted with a
double circle. State 2 accepts identifier tokens. State 3 accepts number tokens. States
4 to 9 accept operators and the parenthesis tokens. The finite state machine accepts
one token at a time. For each new token, the finite state machine starts over in state 1.

If, while reading a token, an unexpected character is read, then the stream of tokens
is rejected by the finite state machine as invalid. Only valid strings of characters are
accepted as tokens. Characters like spaces, tabs, and newline characters are not
recognized by the finite state machine. The finite state machine only responds with
yes the string of tokens is in the language accepted by the machine or no it is not.

2.7.3 Lexer Generators

It is relatively easy to construct a lexer by writing a regular expression, drawing a
finite state machine, and then writing a program that mimics the finite state machine.
However, this process is largely the same for all programming languages so there
are tools that have been written to do this for us. Typically these tools are called
lexer generators. To use a lexer generator you must write regular expressions for the
tokens of the language and provide these to the lexer generator.

A lexer generator will generate a lexer program that internally uses a finite state
machine like the one pictured in Fig.2.3, but instead of reporting yes or no, for each
token the lexer will return the string of characters, called the lexeme or word of
the token, along with a classification of the token. So, identifiers are categorized as
identifier tokens while ‘4’ is categorized as an add token.

The lex tool is an example of a lexical generator for the C language. If you are
writing an interpreter or compiler using C as the implementation language, then
you would use lex or a similar tool to generate your lexer. lex was a tool included
with the original Unix operating system. The Linux alternative is called flex. Java,
Python, Standard ML, and most programming languages have equivalent available
lexer generators.

2.8 Parsing

Parsing is the process of detecting whether a given string of tokens is a valid sentence
of a grammar. Every time you compile a program or run a program in an interpreter
the program is first parsed using a parser. When a parser isn’t able to parse a program
the programmer is told there is a synfax error in the program. A parser is a program
that given a sentence, checks to see if the sentence is a member of the language of
the given grammar. A parser usually does more than just answer yes or no. A parser
frequently builds an abstract syntax tree representation of the source program. There
are two types of parsers that are commonly constructed.

2.8 Parsing 43

(Source) () Assembly

Fig.2.4 Parser data flow

e A top-down parser starts with the root of the parse tree.
e A bottom-up parser starts with the leaves of the parse tree.

Top-down and bottom-up parsers check to see if a sentence belongs to a grammar by
constructing a derivation for the sentence, using the grammar. A parser either reports
success (and possibly returns an abstract syntax tree) or reports failure (hopefully
with a nice error message). The flow of data is pictured in Fig.2.4.

2.9 Top-Down Parsers

Top-down parsers are generally written by hand. They are sometimes called recursive
descent parsers because they can be written as a set of mutually recursive functions. A
top-down parser performs a left-most derivation of the sentence (i.e. source program).

A top-down parser operates by (possibly) looking at the next token in the source
file and deciding what to do based on the token and where it is in the derivation.
To operate correctly, a top-down parser must be designed using a special kind of
grammar called an LL(1) grammar. An LL(1) grammar is simply a grammar where
the next choice in a left-most derivation can be deterministically chosen based on the
current sentential form and the next token in the input. The first L refers to scanning
the input from left to right. The second L signifies that while performing a left-most
derivation, there is only / symbol of lookahead that is needed to make the decision
about which production to choose next in the derivation.

2.9.1 AnLL(1) Grammar

The grammar for prefix expressions is LL(1). Examine the prefix expression grammar
G =W,T,P,E) where

N = {E}
T = {identifier, number, +, —, x, /}
P is defined by the set of productions

44 2 Syntax

E—-+EE|—-EE|xEE|/EE]|identifier | number

While constructing any derivation for a sentence of this language, the next production
chosen in a left-most derivation is going to be obvious because the next token of the
source file must match the first terminal in the chosen production.

2.9.2 A Non-LL(1) Grammar

Some grammars are not LL(1). The grammar for infix expressions is not LL(1).
Examine the infix expression grammar G = (N, 7, P, E) where

N ={E,T, F}
T = {identifier, number, +, —, *, /, (,)}
P is defined by the set of productions

E—-E+T|E-T|T
T—>TxxF|T/F|F
F — (E) |identifier | number

Consider the infix expression 5 * 4. A left-most derivation of this expression would
be

E=T=>TxF=F«xF=5«F=5x%4

Consider looking at only the 5in the expression. We have to choose whether to use
the production E — E + T or E — T. We are only allowed to look at the 5 (i.e.
we can’t look beyond the 5 to see the multiplication operator). Which production do
we choose? We can’t decide based on the 5. Therefore the grammar is not LL(1).

Just because this infix expression grammar is not LL(1) does not mean that infix
expressions cannot be parsed using a top-down parser. There are other infix expres-
sion grammars that are LL(1). In general, it is possible to transform any context-free
grammar into an LL(1) grammar. It is possible, but the resulting grammar is not
always easily understandable.

The infix grammar given in Sect.2.9.2 is left recursive. That is, it contains the
production £ — E + T and another similar production for terms in infix expressions.
These rules are left recursive. Left recursive rules are not allowed in LL(1) grammars.
A left recursive rule can be eliminated in a grammar through a straightforward
transformation of its production.

Common prefixes in the right hand side of two productions for the same nontermi-
nal are also not allowed in an LL(1) grammar. The infix grammar given in Sect.2.9.2
does not contain any common prefixes. Common prefixes can be eliminated by intro-
ducing a new nonterminal to the grammar, replacing all common prefixes with the
new nonterminal, and then defining one new production so the new nonterminal is
composed of the common prefix.

2.9 Top-Down Parsers 45

2.9.3 AnLL(1) Infix Expression Grammar

The following grammar is an LL(1) grammar for infix expressions. G = (N, 7T,
P,E) where

N ={E, RestE, T, RestT, F}
T = {identifier, number, +, —, *, /, (,)}
P is defined by the set of productions

E — T RestE

RestE — + T RestE | — T RestE | €
T — F RestT

RestT — x F RestT | /| F RestT | €
F — (E) |identifier | number

In this grammar the € (pronounced epsilon) is a special symbol that denotes an empty
production. An empty production is a production that does not consume any tokens.
Empty productions are sometimes convenient in recursive rules.

Once common prefixes and left recursive rules are eliminated from a context-free
grammar, the grammar will be LL(1). However, this transformation is not usually
performed because there are more convenient ways to build a parser, even for non-
LL(1) grammars.

Practice 2.9 Construct a left-most derivation for the infix expression 4 + (a —
b) * x using the grammar in Sect.2.9.3, proving that this infix expression is in
L(G) for the given grammar.

You can check your answer(s) in Section 2.17.9.

2.10 Bottom-Up Parsers

While the original infix expression language is not LL(1) itis LALR(1). In fact, most
grammars for programming languages are LALR(1). The LA stands for look ahead
with the / meaning just one symbol of look ahead. The LR refers to scanning the
input from left to right while constructing a right-most derivation. A bottom-up parser
constructs a right-most derivation of a source program in reverse. So, an LALR(1)
parser constructs a reverse right-most derivation of a program.

Building a bottom-up parser is a somewhat complex task involving the computa-
tion of item sets, look ahead sets, a finite state machine, and a stack. The finite state
machine and stack together are called a pushdown automaton. The construction of
the pushdown automaton and the look ahead sets are calculated from the grammar.
Bottom-up parsers are not usually written by hand. Instead, a parser generator is used

46 2 Syntax

Parser

Source
| Grammar ' Program) (AST]

Fig.2.5 Parser generator data flow

to generate the parser program from the grammar. A parser generator is a program
that is given a grammar and builds a parser for the language of the grammar by
constructing the pushdown automaton and lookahead sets needed to parse programs
in the language of the grammar.

The original parser generator for Unix was called yacc, which stood for yet another
compiler compiler since it was a compiler for grammars that produced a parser for
a language. Since a parser is part of a compiler, yacc was a compiler compiler. The
Linux version of yacc is called Bison. Hopefully you see the pun that was used
in naming it Bison. The Bison parser generator generates a parser for compilers
implemented in C, C++, or Java. There are versions of yacc for other languages
as well. Standard ML has a version called ml-yacc for compilers implemented in
Standard ML. ML-yacc is introduced and used in Chap. 6.

Parser generators like Bison produce what is called a bottom-up parser because
the right-most derivation is constructed in reverse. In other words, the derivation is
done from the bottom up. Usually, a bottom-up parser is going to return an AST
representing a successfully parsed source program. Figure2.5 depicts the dataflow
in an interpreter or compiler. The parser generator is given a grammar and runs once
to build the parser. The generated parser runs each time a source program is parsed.

A bottom-up parser parses a program by constructing a reverse right-most deriva-
tion of the source code. As the reverse derivation proceeds the parser shifts tokens
from the input onto the stack of the pushdown automaton. Then at various points
in time it reduces by deciding, based on the look ahead sets, that a reduction is
necessary.

2.10.1 Parsing an Infix Expression

Consider the grammar for infix expressions as G = (N, T, P, E) where

N ={E,T, F}
T = {identifier, number, +, —, *, /, (,)}
P is defined by the set of productions

http://dx.doi.org/10.1007/978-3-319-70790-7_6

2.10 Bottom-Up Parsers 47

(IWE—-E + T
QE—>T
BT —>T x F
MHT—F
(5) F — number
6) F — (E)

Now assume we are parsing the expression 5 * 4 4 3. A right-most derivation for
this expression is as follows.

E=SFE+T=E4+F=E43=T4+3=>T+xF4+3=Tx443= F*x443 = 5%x443

A bottom-up parser does a right-most derivation in reverse using a pushdown automa-
ton. It can be useful to look at the stack of the pushdown automaton as it parses the
expression as pictured in Fig. 2.6. In step A the parser is beginning. The dot to the left
of the 5 indicates the parser has not yet processed any tokens of the source program
and is looking at the 5. The stack is empty. From step A to step B one token, the 5 is
shifted onto the stack. From step B to C the parser looks at the multiplication operator
and realizes that a reduction using rule 5 of the grammar must be performed. It is
called a reduction because the production is employed in reverse order. The reduction
pops the right hand side of rule 5 from the stack and replaces it with the nonterminal
F. If you look at this derivation in reverse order, the first step is to replace the number
5 with F.

The rest of the steps of parsing the source program follow the right-most derivation
either shifting tokens onto the stack or reducing using rules of the grammar. In step
O the entire source has been parsed, the stack is empty, and the source program is
accepted as a valid program. The actions taken while parsing include shifting and
reducing. These are the two main actions of any bottom-up parser. In fact, bottom-up
parsers are often called shift-reduce parsers.

Practice 2.10 For each step in Fig.2.6, is there a shift or reduce operation

being performed? If it is a reduce operation, then what production is being

reduced? If it is a shift operation, what token is being shifted onto the stack?
You can check your answer(s) in Section 2.17.10.

Practice 2.11 Consider the expression (6 4+ 5) * 4. What are the contents of
the pushdown automaton’s stack as the expression is parsed using a bottom-up
parser? Show the stack after each shift and each reduce operation.

You can check your answer(s) in Section 2.17.11.

48 2 Syntax

.5*4+3 5.*443 5.%"4+3 5.*4+3 5*.4+43

5*4.+3 5*4.+3 5*4.+3 5*4.+3 5*4+4.3

.' ~—’

S5*4+3. S*4+3. 5%*4+3, S*4+3, S*443.

Fig.2.6 A pushdown automaton stack

2.11 Ambiguity in Grammars 49

2.11 Ambiguity in Grammars

A grammar is ambiguous if there exists more than one parse tree for a given sentence
of the language. In general, ambiguity in a grammar is a bad thing. However, some
ambiguity may be allowed by parser generators for LALR(1) languages.

A classic example of ambiguity in languages arises from nested if-then-else state-
ments. Consider the following Pascal statement:

if a<b then
if b<c then
writeln ("a<c")
else
writeln ("?")

Which if statement does the else go with? It’s not entirely clear. The BNF for an
if-then-else statement might look something like this.
<statement> ::= if <expression> then <statement> else <statement>

| if <expression> then <statement>
| writeln (<expression>)

The recursive nature of this rule means that if-then-else statements can be arbitrarily
nested. Because of this recursive definition, the else in this code is dangling. That is,
it is unclear if it goes with the first or second if statement.

When a bottom-up parser is generated using this grammar, the parser generator
will detect that there is an ambiguity in the grammar. The problem manifests itself
as a conflict between a shift and a reduce operation. The first rule says when looking
at an else keyword the parser should shift. The second rule says when the parser is
looking at an else it should reduce. To resolve this conflict there is generally a way
to specify whether the generated parser should shift or reduce. The default action is
usually to shift and that is what makes the most sense in this case. By shifting, the
else would go with the nearest if statement. This is the normal behavior of parsers
when encountering this if-then-else ambiguity.

2.12 Other Forms of Grammars

As a computer programmer you will likely learn at least one new language and
probably a few during your career. New application areas frequently cause new
languages to be developed to make programming applications in that area more
convenient. Java, JavaScript, and ASP.NET are three languages that were created
because of the world wide web. Ruby and Perl are languages that have become
popular development languages for database and server side programming. Objective
C is another language made popular by the rise of iOS App programming for Apple
products. A recent trend in programming languages is to develop domain specific
languages for particular embedded platforms.

50 2 Syntax

Programming language manuals contain some kind of reference that describes
the constructs of the language. Many of these reference manuals give the grammar
of the language using a variation of a context free grammar. Examples include CBL
(Cobol-like) grammars, syntax diagrams, and as we have already seen, BNF and
EBNF. All these syntax metalanguages share the same features as grammars. They
all have some way of defining parts of a program or syntactic categories and they all
have a means of defining a language through recursively defined productions. The
definitions, concepts, and examples provided in this chapter will help you understand
a language reference when the time comes to learn a new language.

2.13 Limitations of Syntactic Definitions

The concrete syntax for a language is almost always an incomplete description. Not
all syntactically valid strings of tokens should be regarded as valid programs. For
instance, consider the expression 5 4+ 4/0. Syntactically, this is a valid expression,
but of course cannot be evaluated since division by zero is undefined. This is a
semantic issue. The meaning of the expression is undefined because division by zero
is undefined. This is a semantic issue and semantics are not described by a syntactic
definition. All that a grammar can ensure is that the program is syntactically valid.

In fact, there is no BNF or EBNF grammar that generates only legal programs in
any programming language including C++, Java, and Standard ML. A BNF grammar
defines a context-free language: the left-hand side of each rules contains only one
syntactic category. It is replaced by one of its alternative definitions regardless of the
context in which it occurs.

The set of programs in any interesting language is not context-free. For instance,
when the expression a + b is evaluated, are a and b type compatible and defined
over the + operator? This is a context sensitive issue that can’t be specified using a
context-free grammar. Context-sensitive features may be formally described as a set
of restrictions or context conditions. Context-sensitive issues deal mainly with dec-
larations of identifiers and type compatibility. Sometimes, context-sensitive issues
like this are said to be part of the static semantics of the language.

While a grammar describes how tokens are put together to form a valid program
the grammar does not specify the semantics of the language nor does it describe the
static semantics or context-sensitive characteritics of the language. Other means are
necessary to describe these language characteristics. Some methods, like type infer-
ence rules, are formally defined. Most semantic characteristics are defined informally
in some kind of English language description.

These are all context-sensitive issues.

e In an array declaration in C++, the array size must be a nonnegative value.

e Operands for the && operation must be boolean in Java.

e In a method definition, the return value must be compatible with the return type
in the method declaration.

2.13 Limitations of Syntactic Definitions 51

e When a method is called, the actual parameters must match the formal parameter
types.

2.14 Chapter Summary

This chapter introduced you to programming language syntax and syntactic descrip-
tions. Reading and understanding syntactic descriptions is worthwhile since you
will undoubtedly come across new languages in your career as a computer scientist.
There is certainly more that can be said about the topic of programming language
syntax. Aho, Sethi, and Ullman [2] have written the widely recognized definitive
book on compiler implementation which includes material on syntax definition and
parser implementation. There are many other good compiler references as well. The
Chomsky hierarchy of languages is also closely tied to grammars and regular expres-
sions. Many books on Discrete Structures in Computer Science introduce this topic
and a few good books explore the Chomsky hierarchy more deeply including an
excellent text by Peter Linz [13].

In the next chapter you put this knowledge of syntax definition to good use learning
anew language: the JCoCo assembly language. JCoCo is a virtual machine for inter-
preting Python bytecode instructions. Learning assembly language helps in having a
better understanding of how higher level languages work and Chap. 3 provides many
examples of Python programs and their corresponding JCoCo assembly language
programs to show you how a higher level language is implemented.

2.15 Review Questions

What does the word syntax refer to? How does it differ from semantics?
What is a token?
What is a nonterminal?
What does BNF stand for? What is its purpose?
What kind of derivation does a top-down parser construct?
What is another name for a top-down parser?
What does the abstract syntax tree for 3 x (4 + 5) look like for infix expressions?
What is the prefix equivalent of the infix expression 3 % (4 + 5)? What does the
prefix expression’s abstract syntax tree look like?
9. What is the difference between lex and yacc?
10. Why aren’t all context-free grammars good for top-down parsing?
11. What kind of machine is needed to implement a bottom-up parser?
12. What is a context-sensitive issue in a language? Give an example in Java.
13. What do the terms shift and reduce apply to?

P_NANE W=

http://dx.doi.org/10.1007/978-3-319-70790-7_3

52 2 Syntax

2.16 Exercises

DN —

(O8]

Rewrite the BNF in Sect.2.2.1 using EBNF.

. Given the grammar in Sect. 2.3.1, derive the sentence 3% (4+5) using a right-most

derivation.

Draw a parse tree for the sentence 3 * (4 + 5).

Describe how you might evaluate the abstract syntax tree of an expression to get

a result? Write out your algorithm in English that describes how this might be

done.

. Write a regular expression to describe identifier tokens which must start with a

letter and then can be followed by any number of letters, digits, or underscores.

Draw a finite state machine that would accept identifier tokens as specified in the

previous exercise.

. For the expression 3 * (4 + 5) show the sequence of shift and reduce operations
using the grammar in Sect.2.10.1. Be sure to say what is shifted and which rule
is being used to reduce at each step. See the solution to practice problem?2.1 for
the proper way to write the solution to this problem.

. Construct a left-most derivation of 3 % (4 + 5) using the grammar in Sect.2.9.3.

2.17 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

2

.17.1 Solution to Practice Problem 2.1

This is a left-most derivation of the expression. There are other derivations that would
be correct as well.

E=FE+T=>TH+T=>F4+T=244+T=2>44TxF =4+ F+xF =>4+ (E)x F
544+ (E-T)«F=244+ T -T)xF=4+F -T)xF=4+@—-T)*xF =>

44+ @—F)sF=44(@—b)xF =>4+ (a—>b)*x

2

.17.2 Solution to Practice Problem 2.2

This is a right-most derivation of the expression x * y + z. There is only one correct

ri

ght-most derivation.

E=E+T=E+F=E+z=>TH+z=>T*xF+z=>T*xy+z= Fxy+z=>x*y+z

2.17 Solutions to Practice Problems 53

2.17.3 Solution to Practice Problem 2.3
This is a left-most derivation of the expression +4 x —abx.

F = +FFE = +4F = +4x FE = +4x —EEFFE = +4 %« —aEE = +4%
—abE = +4 x —abx

2.17.4 Solution to Practice Problem 2.4

Exactly like the parse tree for any other derivation of (5 * x) 4+ y. There is only one
parse tree for the expression given this grammar.

2.17.5 Solution to Practice Problem 2.5

g
908

OREN0/0l0
GOF

@ ¢
© ©
©

54

2 Syntax

2.17.6 Solution to Practice Problem 2.6

EX:
g

2.17.7 Solution to Practice Problem 2.7

2.17.8 Solution to Practice Problem 2.8

In order to define both negative and positive numbers, we can use the choice operator.

letter.letter® + digit.digit* + ‘-“.digit.digit* “+" + -+ “*" + /" + ‘(" + °)

2.17 Solutions to Practice Problems 55

2.17.9 Solution to Practice Problem 2.9

E = T RestE = F RestT RestE = 4 RestT RestE = 4 RestE =

44T RestE = 4+ F RestT RestE = 4+ (E) RestT RestE = 4+ (T RestE)RestT RestE
= 4+ (F RestT RestE) RestT RestE = 4+ (a RestT RestE)RestT RestE =

4+ (a RestE) RestT RestE = 4+ (a — T RestE) RestT RestE =

4+ (a — F RestE) RestT RestE = 4+ (a — b RestE) = 4+ (a — b) RestT RestE

= 4+ (a—Db)* F RestT RestE = 4+ (a —b) xx RestT RestE = 4+ (a — b) xx RestE
=4+ (a—>b)*xx

2.17.10 Solution to Practice Problem 2.10

In the parsing of 5 x 4 4 3 the following shift and reduce operations: step A initial
condition, step B shift, step C reduce by rule 5, step D reduce by rule 4, step E shift,
step F shift, step G reduce by rule 5, step H reduce by rule 3, step I reduce by rule
2, step J shift, step K shift, step L reduce by rule 5, step M reduce by rule 4, step N
reduce by rule 1, step O finished parsing with dot on right side and E on top of stack
so pop and complete with success.

2.17.11 Solution to Practice Problem 2.11

To complete this problem it is best to do a right-most derivation of (6 + 5) * 4 first.
Once that derivation is complete, you go through the derivation backwards. The
difference in each step of the derivation tells you whether you shift or reduce. Here
is the result.

E=T=>TxF=>Tx4=Fx4=(E)x4=(E+T)*x4=(E+F) x4
S(E+3)*4=>T +5) 4= (F+5)*x4=(6+5) x4

We get the following operations from this. Stack contents have the top on the right
up to the dot. Everything after the dot has not been read yet. We shift when we must
move through the tokens to get to the next place we are reducing. Each step in the
reverse derivation provides the reduce operations. Since there are seven tokens there
should be seven shift operations.

Initially: . (6 +5) % 4
Shift: (.6 +5) x4
Shift: (6. +5) x4

Reduce by rule 5: (F.+5) x4
Reduce by rule4: (T.+5) x4
Reducebyrule2: (E.+5) %4
Shift: (E+.5) x4

NN AE RN -

56

2 Syntax

. Shif: (E+5.) x4

. Reducebyrule5: (E4+F.) %4
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

Reducebyrule4: (E+T.) %4
Shift: (E+T). x4

Reduce by rule 1: (E) . x4
Reduce by rule 6: F . x 4
Reduce by rule 4: T . x 4

Shift: T x . 4

Shift: T 4 .

Reduce by rule 5: T« F.
Reduce by rule 3: T .

Reduce by rule 2: E .

Assembly Language

Python is an object-oriented, interpreted language. Internally to the Python inter-
preter, a Python program is converted to bytecode and interpreted using a virtual
machine. Most modern programming languages have support for high-level abstrac-
tions while the instructions of a virtual machine are closer to the machine language
instructions supported by hardware architectures, making the interpretation of byte-
code easier than interpretation of the original source program. The advantage of
virtual machine implementations results from dividing the mapping from high-level
abstractions to low-level machine instructions into two parts: high-level abstractions
to bytecode and bytecode to machine instructions.

While bytecode is a higher level abstraction than machine language, it is not greatly
s0. As programmers, if we understand how the underlying machine executes our
programs, we better equip ourselves to make good choices about how we program.
Just as importantly, having an understanding of how programs are executed can help
us diagnose problems when things go wrong.

This chapter introduces assembly language programming in the bytecode lan-
guage of the Python virtual machine. The Python virtual machine is an internal
component of the Python interpreter and is not available to use directly. Instead, a
bytecode interpreter called JCoCo has been developed that mimics a subset of the
behavior of the Python 3.2 virtual machine. Instead of writing bytecode files directly,
JCoCo supports a Python virtual machine assembly language.

While learning assembly language, we’ll limit ourselves to a subset of Python.
JCoCo supports boolean values, integers, strings, floats, tuples, lists, and dictionaries.
It supports class and function definitions and function calls. It also supports most
of the instructions of the Python virtual machine including support for conditional
execution, iteration, and exception handling. It does not support importing modules
or module level code. JCoCo differs from Python by requiring a main function where
execution of a JCoCo assembled program begins.

© Springer International Publishing AG 2017 57
K.D. Lee, Foundations of Programming Languages, Undergraduate Topics
in Computer Science, https://doi.org/10.1007/978-3-319-70790-7_3

58 3 Assembly Language

To run an assembly language program it must first be assembled, then it can be
executed. The JCoCo virtual machine includes the assembler so assembly isn’t a
separate step. An assembly language programmer writes a program in the JCoCo
assembly language format, providing it to JCoCo, which then assembles and inter-
prets the program.

The main difference between JCoCo assembly language and bytecode is the pres-
ence of labels in the assembly language format. Labels are the targets of instructions
that change the normal sequence of execution of instructions. Instructions like branch
and jump instructions are much easier to decipher if it says “jump to loop1” rather
than “jump to address 63”. Of course, bytecode instructions are encoded as numbers
themselves, so the assembler translates “jump to loop1” to something like “48 63
which of course would require a manual to decipher.

Learning to program in assembly isn’t all that hard once you learn how constructs
like while loops, for loops, if-then statements, function definitions, and function calls
are implemented in assembly language. String and list manipulation is another skill
that helps if you have examples to follow. A disassembler is a tool that will take a
machine language program and produce an assembly language version of it. Python
includes a module called dis that includes a disassembler. When you write a Python
program it is parsed and converted to bytecode when read by the interpreter. The dis
module disassembler produces an assembly language program from this bytecode.
JCoCo includes its own disassembler which uses the Python dis module and produces
output suitable for the JCoCo virtual machine.

The existence of the disassembler for JCoCo means that learning assembly lan-
guage is as easy as writing a Python program and running it through the disassembler
to see how it is implemented in assembly language. That means you can discover
how Python is implemented while learning assembly language! Because Python’s
virtual machine is not guaranteed to be backwards compatible, you must use Python
3.2 when disassembling programs so make sure that version 3.2 is installed on your
system. To test this you can try typing “python3.2” in a terminal window in your
favorite operating system. If it says command not found, you likely don’t have Python
3.2 installed. In that case you can download it from http://python.org or directly from
the JCoCo website at http://cs.luther.edu/~leekent/JCoCo. The rest of this chapter
introduces you to assembly language programming using the JCoCo virtual machine.

You can download the full binary implementation of the JCoCo virtual machine
by going to http://cs.luther.edu/~leekent/JCoCo. Download the zip file containing a
coco shell script which runs the Java Virtual Machine on the JCoCo jar file. You can
also go to github and get the source code for the reduced functionality JCoCo project
at http://github.com/kentdlee/JCoCo.

3.1 Overview of the JCoCo VM

JCoCo, like Python, is a virtual machine, or interpreter, for bytecode instructions.
JCoCo is written in Java using object-oriented principles and does not store its
instructions in actual bytecode format. Instead, it reads an assembly language file

http://python.org
http://cs.luther.edu/~leekent/JCoCo
http://cs.luther.edu/~leekent/JCoCo
http://github.com/kentdlee/JCoCo

3.1 Overview of the JCoCo VM 59

and assembles it building an internal representation of the program as a sequence of
functions each with their own sequence of bytecode instructions. CoCo is another
implementation of this virtual machine, implemented in C++. You can find documen-
tation on the C++ version at http://cs.luther.edu/~leekent/CoCo. JCoCo is backwards
compatible with CoCo, but JCoCo does provide some additional functionality includ-
ing the ability to define classes, create objects, and utilize single inheritance which
are not used extensively in this text. Additionally, JCoCo provides an interactive
command-line debugger that can be used for debugging JCoCo assembly language
programs.

Most of the material presented in this chapter is true of either JCoCo or CoCo.
Chap. 6 again revisits JCoCo as a target language for Small, but either JCoCo or
CoCo will work as the Small compiler target.

A JCoCo program, like programs in other programming languages, utilizes a
run-time stack to store information about each function called while the program
is executing. Each function call in a JCoCo program results in a new stack frame
object being created and pushed onto the run-time stack. When a function returns, its
corresponding stack frame is popped from the run-time stack and discarded. Figure
3.1 depicts four active function calls. Function A called function B, which called
function C, which called function D before any of the functions returned. The top of
the stack is at the top of Fig.3.1. Each stack frame contains all local variables that
are defined in the function. Each stack frame also contains two additional stacks, an
operand stack and a block stack.

JCoCo, like the Python virtual machine, is a stack based architecture. This means
that operands for instructions are pushed onto an operand stack. Virtual machine
instructions pop their operands from the operand stack, do their intended operation,
and push their results onto the operand stack. Most CPUs are not stack based. Instead
they have general purpose registers for holding intermediate results. Stack based
architectures manage the set of intermediate results as a stack rather than forcing the
programmer to keep track of which registers hold which results. The stack abstraction
makes the life of an assembly language programmer a little easier. The operand
stack is used by the virtual machine to store all intermediate results of instruction
execution. This style of computation has been in use a long time, from Hewlett
Packard mainframe computers of the 1960’s through the 1980’s to calculators still
made by Hewlett Packard today. The Java Virtual Machine, or JVM, is another
example of a stack machine.

The other stack utilized by JCoCo is a block stack. The block stack keeps track
of exit points for blocks of code within a JCoCo function. When a loop is entered,
the exit address of the loop is pushed onto the block stack. The instructions of each
function are at zero-based offsets from the beginning of the function, so we can think
of each function having its own instruction address space starting at 0. By storing
each loop’s exit point address on the block stack, if a break instruction is executed
inside a loop, the exit point of the loop can be found and the execution of the break
instruction will jump to that address. Exception handlers also push the address of the
handler onto the block stack. If an exception occurs, execution jumps to the exception

http://cs.luther.edu/~leekent/CoCo
http://dx.doi.org/10.1007/978-3-319-70790-7_6

60 3 Assembly Language

Program Code

Function D's
Instructions

Function C's
Instructions

Function B's
Instructions

Function A's
Instructions

Fig.3.1 The JCoCo virtual machine

3.1 Overview of the JCoCo VM 61

handler by popping the address from the block stack. When a loop or try block is
exited, the corresponding block stack address is popped from the block stack.

A program counter, or PC, is responsible for holding the address of the next
instruction to be executed. The machine proceeds by fetching an instruction from
the code, incrementing the PC, and executing the fetched instruction. Execution
proceeds this way until a RETURN_VALUE instruction is executed or an exception
occurs. When a function call is executed, the current program counter is stored in
the stack frame until the called function returns, when the PC is restored to the next
instruction in the current stack frame. This is depicted in Fig.3.1 with the arrows
from the stack frames to the code of their corresponding functions.

When an exception occurs, if no matching exception handler is found, execution
of the function terminates and control is passed to the previously called function
where the exception continues to propagate back until a matching exception handler
is found. If no matching handler is found, the complete traceback of the exception is
printed. If no exception occurs during the running of a program, execution terminates
when the main function executes the RETURN_VALUE instruction.

The specification for JCoCo, including all instructions, global functions, and the
complete assembly language BNF supported by JCoCo can be found in Appendix
A. The rest of this chapter examines various Python language constructs and the
corresponding assembly language that implement these constructs. JCoCo assembly
language can be learned by examining Python code and learning how it is imple-
mented in assembly language. The rest of this chapter proceeds in this fashion.

3.2 Getting Started

JCoCo includes a disassembler that works with Python 3.2 to disassemble Python
programs into JCoCo assembly language programs, providing a great way to learn
assembly language programming using the JCoCo virtual machine. Consider the
following Python program that adds 5 and 6 together and prints the sum to the
screen.

from disassembler import *
import sys

1

2

3

4+ def main () :
5 x=5

6 v=6

7 Z=X+Yy

8 print (z)

o if len (sys.argv) == 1:
1 main ()

2 else:

13 disassemble (main)

62 3 Assembly Language

Running this with python 3.2 as follows produces this output. Note that the 1 argument
is required to get assembly output because of the code on lines 10-13 of the Python
program.

MyComputer > python3 .2 addtwo.py 1

Function: main/O0

Constants: None, 5, 6

Locals: x, y, z

Globals: print

BEGIN
LOAD_CONST
STORE_FAST
LOAD_CONST
STORE_FAST
LOAD_FAST O
LOAD_FAST 1
BINARY_ADD
STORE_FAST 2
LOAD_GLOBAL O
LOAD_FAST 2
CALL_FUNCTION 1
POP_TOP
LOAD_CONST O
RETURN_VALUE

=N o R

END
MyComputer > python3 .2 addtwo.py 1 > addtwo.casm

The disassembler prints the assembly language program to standard output, which is
usually the screen. The second run of the addtwo.py program redirects the standard
output to a file called addtwo.casm. The casm is the extension chosen for JCoCo
assembly language files and stands for CoCo Assembly. This CASM file holds all
the lines between the two MyComputer prompts above. To run this program you can
invoke the JCoCo virtual machine as shown here.

MyComputer > coco -v addtwo.casm

Function: main/O0

Constants: None, 5, 6

Locals: x, vy, z

Globals: print

BEGIN
LOAD_CONST
STORE_FAST
LOAD_CONST
STORE_FAST
LOAD_FAST
LOAD_FAST
BINARY_ADD
STORE_FAST
LOAD_GLOBAL
LOAD_FAST
CALL_FUNCTION
POP_TOP

o kR NOoR

PN o N

3.2 Getting Started 63

LOAD_CONST 0
RETURN_VALUE

END

11

MyComputer > coco addtwo.casm

11

MyComputer >

The first run invokes coco which assembles the program producing the assembled
output and then runs the program producing the 11 that appears below the assembled
output. The assembled output is shown because the -v option was used when invoking
coco. The assembled output is printed to a stream called standard error which is
separate from the standard output stream where the 11 is printed. To only print the
exact output of the program, the -v option can be omitted.

In this JCoCo program there is one function called main. The assembly indicates
main has 0 formal parameters. Constants that are used in the code include None, 5,
and 6. There are three local variables in the function: x, y, and z. The global print
function is called and so is in the list of globals. Every function in JCoCo has these
categories of identifiers and values within each defined function. Sometimes one or
more of these categories may be empty and can be omitted in that case.

The instructions follow the begin keyword and preceed the end keyword.
LOAD_CONST loads the constant value at its index (zero based and 1 in this case)
into the constants onto the operand stack. JCoCo is a stack machine and therefore all
operations are performed with operands pushed and popped from the operand stack.

The STORE_FAST instruction stores a value in the locals list, in this case at
offset 0, the location of x. LOAD_FAST does the opposite of STORE_FAST, push-
ing a value on the operand stack from the locals list of variables. BINARY_ADD
pops two operands from the stack and adds them together, pushing the result.
CALL_FUNCTION pops the number of arguments specified in the instruction (1
in this case) and then pops the function from the stack. Finally, it calls the popped
function with the popped arguments. The result of the function call is left on the
top of the operand stack. In the case of the print function, None is returned and left
on the stack. The POP_TOP instruction pops the None from the stack and discards
it only to have the main function push a None on the stack just before returning.
RETURN_VALUE pops the top argument from the operand stack and returns that
value to the calling function. Since main was the only function called, returning from
it ends the coco interpretation of the program.

To run this code, you must have the coco executable somewhere in your path.
Then you can execute the following code to try it out.

MyComputer > python3 .2 addtwo.py 1 > addtwo.casm
MyComputer > coco addtwo.casm

64 3 Assembly Language

3.3 Input/Output

JCoCo provides one built-in function to read input from the keyboard and several
functions for writing output to this screen or standard output. The following program
demonstrates getting input from the keyboard and printing to standard output.

import disassembler

1

2 def main ():

3 name = input ("Enter your name: ")

4 age = int (input ("Enter your age: "))

5 print (name + ", a year from now you will be", age+l, "years old.")
6 #main ()

7 disassembler .disassemble (main)

In the Python code in Sect. 3.3, the input function is called. Calling input requires
a string prompt and returns a string of the input that was entered. Calling the int
function on a string, as is done in the line that gets the age from the user, returns the
integer representation of the string’s value. Finally, the print function takes a random
number of arguments, converts each to a string using the __str__ magic method,
and prints each string separated by spaces. The first argument to print in the code of
Sect.3.3 is the result of concatenating name and the string”, a year from now you
will be”. String concatenation was used because there shouldn’t be a space between
the name value and the comma.

The assembly language that implements the program in Sect.3.3 is given in
Fig.3.2. Notice that built-in functions like input, int, and print are declared under
the Globals list. The name and age variables are the locals.

Line 9 pushes the input function onto the operand stack. Line 10 pushes the string
prompt for input. Line 11 calls the input function with the one allowed argument
given to it. The / in line 11 is the number of arguments. When the input function
returns it leaves string entered by the user on the operand stack. Line 12 stores that
string in the name location in the locals.

Line 13 prepares to convert the next input to an integer by first pushing the int
function on the operand stack. Then line 14 loads the input function. Line 15 loads
the prompt like line 10 did previously. Line 16 calls the input function. The result
is immediately passed to the int function by calling it on line 17. The int function
leaves an integer on the top of the operand stack and line 18 stores that in the age
variable location.

The next part of the program prints the output. To prepare for calling the print
function, the arguments must be evaluated first, then print can be called. Line 19
pushes the print function onto the stack but does not call print. There are three
arguments to the print function. The first argument is the result of concatenating
two strings together. Line 20 pushes the name variable’s value on the stack. Line
21 pushes the string”, a year from now you will be” onto the stack. Line 22 calls
the __add__ magic method to concatenate the two strings. The BINARY_ADD
instruction pops two operands from the stack, calls the __add__ method on the first
object popped with the second object as the argument which is described in more
detail in Appendix A.

Lines 23-25 add together age and I to get the correct age value to pass to print.
Line 26 pushes the last string constant on the operand stack and line 27 finally calls

3.3 Input/Output

65

Fig.3.2 JCoCo I/O

the print function leaving None on the operand stack afterwards. Line 28 pops the
None value and immediately None is pushed back on the stack in line 29 because
the main function returns None in this case, which is returned in line 30, ending the

Function:
Constants:

main/0
None,

"Enter your age:
", a year from now you will be",

1’ n
Locals:
Globals:
BEGIN

END

years old."
name, age
input, int,

LOAD_GLOBAL
LOAD_CONST
CALL_FUNCTION
STORE_FAST
LOAD_GLOBAL
LOAD_GLOBAL
LOAD_CONST
CALL_FUNCTION
CALL_FUNCTION
STORE_FAST
LOAD_GLOBAL
LOAD_FAST
LOAD_CONST
BINARY_ADD
LOAD_FAST
LOAD_CONST
BINARY_ADD
LOAD_CONST
CALL_FUNCTION
POP_TOP
LOAD_CONST
RETURN_VALUE

iotest.casm program’s execution.
A few important things to learn from this section:

Getting input and producing output rely on the built-in functions input and print.

"
>

print

"Enter your name:

WONRFErEFEPEFELNOROREL O

[

>

Before a function can be called, it must be pushed on the operand stack. All
required arguments to the function must also be pushed onto the stack on top of
the function to be called.
e Finally, when a function returns, it leaves its return value on the operand stack.

66 3 Assembly Language

Practice 3.1 The code in Fig. 3.2 is a bit wasteful which often happens when
compiling a program written in a higher level language. Optimize the code in
Fig.3.2 so it contains fewer instructions.

You can check your answer(s) in Section 3.17.1.

3.4 If-Then-Else Statements

Programming languages must be able to execute code based on conditions, either
externally provided via input or computed from other values as the program executes.
If-then statements are one means of executing code conditionally. The code provided
here isolates just an if-then statement to show how it is implemented in JCoCo
assembly.

1 import disassembler

2 def main () :

3 x=5

4 v=6

5 if x > vyv:

6 zZ=X

7 else :

8 z=y

9 print (z)

10 disassembler.disassemble (main)

Disassembling this Python code results in the code in Fig. 3.3. There are new instruc-
tions in Fig. 3.3 that haven’t been encountered until now, but just as importantly, there
are labels in this code. A label provides a symbolic target to jump to in the code.
Labels, like label00 and labelOl, are defined by writing them before an instruction
and are terminated with a colon. A label to the right of an instruction is a target
for that instruction. Labels are a convenience in all assembly languages. They let
assembly language programmers think of jumping to a target in a program, rather
than changing the contents of the PC register, which is what actually happens. When
a program is executed using JCoCo the labels disappear because JCoCo assembles
the code, replacing the labels with the actual PC target addresses. The JCoCo code
in Fig. 3.4 shows the JCoCo code after it has been assembled. The assembled code
is printed by coco when the program is executed.

The first instruction, the LOAD_CONST, is at offset 0 in the code. The instructions
of each function are at zero-based offsets from the beginning of the function, so we
can think of each function as having its own address space starting at zero. In the
code in Figs.3.3 and 3.4 the line number of the first instruction is 6, so 6 can be
subtracted from the line numbers to determine any instruction’s address within the
function and 6 can be added to any target to determine the line number of the target

3.4 If-Then-Else Statements 67

1 Function: main/0

2 Constants: None, 5, 6
3 Locals: x, y, 2z

4 Globals: print

5 BEGIN
6

-

8

9

LOAD_CONST 1
STORE_FAST 0
LOAD_CONST 2
STORE_FAST 1
10 LOAD_FAST 0
11 LOAD_FAST 1
12 COMPARE_OQOP 4
13 POP_JUMP_IF_FALSE 1label0O
14 LOAD_FAST 0
15 STORE_FAST 2
16 JUMP_FORWARD 1labelO1l
17 labelOO: LOAD_FAST 1
18 STORE_FAST 2
19 labelO1: LOAD_GLOBAL 0
20 LOAD_FAST 2
21 CALL_FUNCTION 1
22 POP_TOP
23 LOAD_CONST 0
24 RETURN_VALUE

25 END

Fig.3.3 If-Then-Else assembly

location. In Fig. 3.4 the target of line 13 is 11 which corresponds to line 17. Looking
at Fig. 3.3 this corresponds to the line where labelO0 is defined. Likewise, the target
of the JUMP_FORWARD instruction in Fig.3.4 is label0] which is defined on line
19. Subtracting 6, we expect to see 13 as the target PC address in the assembled code
of Fig.3.4.

Consulting the JCoCo BNF in Appendix A, there can be multiple labels on one
instruction. In addition, instruction addresses have nothing to do with which line
they are on. That only appears to be the case in Fig.3.4 because the instructions
are on consecutive lines. But, adding blank lines to the program would do nothing
to change the instruction addresses. So, we could have a program like this where
one instruction has two labels. These three instructions would be at three addresses
within the program even though there are four lines in the code.

onelabel: LOAD_FAST 1
STORE_FAST 2

twolabel:
threelabel: LOAD_GLOBAL 0

68 3 Assembly Language

1 Function: main/0

2 Constants: None, 5, 6
3 Locals: x, y, z

4 Globals: print

5 BEGIN
6

-

8

9

LOAD_CONST 1
STORE_FAST 0
LOAD_CONST 2
STORE_FAST 1
10 LOAD_FAST 0
11 LOAD_FAST 1
12 COMPARE_OQOP 4
13 POP_JUMP_IF_FALSE 11
14 LOAD_FAST 0
15 STORE_FAST 2
16 JUMP_FORWARD 13
17 LOAD_FAST 1
18 STORE_FAST 2
19 LOAD_GLOBAL 0
20 LOAD_FAST 2
21 CALL_FUNCTION 1
22 POP_TOP
23 LOAD_CONST 0
24 RETURN_VALUE

25 END

Fig.3.4 Assembled code

Labels can be composed of any sequence of letters, digits, underscores, or the @
character, but must start with a letter, underscore, or the @ character. They can be
any number of characters long.

In Fig.3.3, lines 6-11 load the two values to be compared on the stack. The
COMPARE_OP instruction on line 12 has an argument of 4. Consulting the COM-
PARE_OP instruction in Appendix A reveals that a 4 corresponds to a greater than
comparison. The comparison is done by calling the __g# _ magic method on the
second item from the top of the operand stack and passing it the top of the operand
stack. The two operands are popped by the COMPARE_OP instruction and a boolean
value, either True or False, is pushed on the operand stack as the result.

The next instruction jumps to the target location if the value left on the operand
stack was False. Either way, the POP_JUMP_IF_FALSE instruction pops the top
value from the operand stack.

Take note of line 16 in Fig.3.3. In assembly there is nothing like an if-then-
else statement. Line 15 is the end of the code that implements the then part of the
statement. Without line 16, JCoCo would continue executing and would go right
into the else part of the statement. The JUMP_FORWARD instruction is necessary
to jump past the else part of the code if the then part was executed. Line 17 begins

3.4 If-Then-Else Statements 69

the else code and line 18 is the last instruction of the if-then-else statement. The
label definition for labelO] is still part of the if-then-else statement, but labels the
instruction immediately following the if-then-else statement.

Practice 3.2 Without touching the code that compares the two values, the
assembly in Fig.3.4 can be optimized to remove at least three instructions.
Rewrite the code to remove at least three instructions from this code. With a
little more work, five instructions could be removed.

You can check your answer(s) in Section 3.17.2.

3.4.1 If-Then Statements

Frequently if-then statements are written without an else clause. For instance, this
program prints x if x is greater than y. In either case y is printed.

import disassembler

1
2

3 def main () :

4 x = 5

5 vy = 6

6 if x > y:

7 print (x)
8

9 print (y)

1 disassembler.disassemble (main)

Disassembling this code produces the program in Fig.3.5. The code is very similar
to the code presented in Fig.3.3. Line 13 once again jumps past the then part of the
program. Lines 14-17 contain the then code. Interestingly, line 18 jumps forward to
line 19. Comparing this to the code in Fig.3.3 where the jump forward jumps past
the else part, the same happens in Fig.3.5 except that there is no else part of the
statement.

Some assembly languages do not have an equivalent to POP_JUMP_IF_FALSE.
Instead, only an equivalent to POP_JUMP_IF_TRUE is available. In that case, the
opposite of the condition can be tested and the jump will be executed if the opposite
is true, skipping over the then part. For instance, if testing for greater than is the
intent of the code, less than or equal to can be tested to jump around the then part
of an if-then-else statement.

70 3 Assembly Language

1 Function: main/0

2 Constants: None, 5, 6
3 Locals: x, y

4 Globals: print

5 BEGIN
6

-

8

9

LOAD_CONST 1
STORE_FAST 0
LOAD_CONST 2
STORE_FAST 1
10 LOAD_FAST 0
11 LOAD_FAST 1
12 COMPARE_OQOP 4
13 POP_JUMP_IF_FALSE 1label0O
14 LOAD_GLOBAL 0
15 LOAD_FAST 0
16 CALL_FUNCTION 1
17 POP_TOP
18 JUMP_FORWARD label0OO
19 labelOO: LOAD_GLOBAL 0
20 LOAD_FAST 1
21 CALL_FUNCTION 1
22 POP_TOP
23 LOAD_CONST 0
24 RETURN_VALUE

25 END

Fig.3.5 If-Then assembly

Whether testing the original condition or the opposite, clearly the
JUMP_FORWARD is not needed in the code in Fig.3.5. As was seen in practice
3.1, the Python compiler generated a wasteful instruction. It isn’t wrong to jump
forward, it’s just not needed. The convenience of writing in a language like Python
far outweighs the inconvenience of writing in a language like JCoCo assembly lan-
guage, so an extra instruction now and then is not that big a deal. In this case though,
the Python compiler could be written in such a way as to recognize when the extra
instruction is not needed.

Practice 3.3 Rewrite the code in Fig.3.5 so it executes with the same result

using POP_JUMP_IF_TRUE instead of the jump if false instruction. Be sure to

optimize your code when you write it so there are no unnecessary instructions.
You can check your answer(s) in Section 3.17.3.

3.5 While Loops 71

3.5 While Loops

Consider this code which computes the Fibonacci number for the value stored in the
variable f. The sequence of Fibonacci numbers are computed by adding the previous
two numbers in the sequence together to get the next number. The sequence consists
of 1,1, 2,3,5, 8, 13, 21, and so on, the eighth element of the sequence being 21.

i1 import disassembler

> def main () :

3 £f=8

4 i=1

5 j=1

6 n=1

7 while n < f:

8 n=n+1

9 tmp = J

10 j=j+1

1 i = tmp

12 print ("Fib("+str (n)+") is",i)
3 disassembler.disassemble (main)

The JCoCo assembly for this program implements the while loop of the Python
program using JUMP_ABSOLUTE and POP_JUMP_IF_FALSE instructions. Prior
to the loop, the SETUP_LOOP instruction’s purpose is not readily apparent. In
Python a loop may be exited using a break instruction. Using break inside aloop is not
a recommended programming style. A break is never needed. It is sometimes used
as a convenience. To handle the break instruction when it is executed there must be
some knowledge about where the loop ends. In the code in Fig. 3.6 the first instruction
after the loop is on line 33, where label02 is defined. The SETUP_LOOP instruction
pushes the address of that instruction on the block stack. If a break instruction is
executed, the block stack is popped and the PC is set to the popped instruction
address.

Lines 15-18 of Fig. 3.6 implement the comparison of n < f similarly to the way
if-then-else comparisons are performed. The first line of this code is labeled with
label00 because the end of the loop jumps back there to see if another iteration
should be performed. A while loop continues executing until the condition evaluates
to False so the POP_JUMP_IF_FALSE instruction jumps to label0I when the loop
terminates.

The instruction at labelOI labels the POP_BLOCK instruction. This instruction
is needed if the loop exits normally, not as the result of a break statement. The block
stack is popped, removing the loop exit point from it. When exiting as a result of
a break, execution jumps to the instruction at line 33, skipping the POP_BLOCK
instruction since the break statement already popped the block stack.

An important thing to notice is that a while loop and an if-then-else statement
are implemented using the same instructions. There is no special loop instruction
in assembly language. The overall flow of a while loop is a test before the body
of the loop corresponding to the while loop condition. If the loop condition is not

72

3 Assembly Language

1 Function:
Constants:

2
3 Locals:
4 Globals:
5 BEGIN
6

7

8

9

15 labelOO:

31
32 labelO1:
33 labelO2:
34

35

36

37

38

39

40

41

42

43

44

45

46 END

Fig.3.6 While loop assembly

print,

main/0
None ,8,1,"Fib (" ,")
i, J, tmp

isll
n}
str

LOAD_CONST
STORE_FAST
LOAD_CONST
STORE_FAST
LOAD_CONST
STORE_FAST
LOAD_CONST
STORE_FAST
SETUP_LOOP 1labelO2
LOAD_FAST
LOAD_FAST
COMPARE_OQOP 0

WNNNDEPENO -

o W

POP_JUMP_IF_FALSE 1labelO1l

LOAD_FAST 3
LOAD_CONST 2
BINARY_ADD

STORE_FAST

LOAD_FAST

STORE_FAST

LOAD_FAST

LOAD_FAST

BINARY_ADD

STORE_FAST

LOAD_FAST

STORE_FAST
JUMP_ABSOLUTE 1labelOO
POP_BLOCK

LOAD_GLOBAL
LOAD_CONST
LOAD_GLOBAL

LOAD_FAST
CALL_FUNCTION
BINARY_ADD

LOAD_CONST 4
BINARY_ADD

LOAD_FAST 1
CALL_FUNCTION 2
POP_TOP

LOAD_CONST 0
RETURN_VALUE

= NN W

NN

[

= WP Wwo

3.5 While Loops 73

met, execution jumps to the next instruction after the loop. After the body of the
loop a jump returns execution to the while loop condition code to check if another
iteration of the body will be performed. This idiom, or pattern of instructions, is
used to implement loops and similar patterns are used for loops in other assembly
languages as well.

Practice 3.4 Write a short program that tests the use of the BREAK_LOOP
instruction. You don’t have to write a while loop to test this. Simply write some
code that uses a BREAK_LOOP and prints something to the screen to verify
that it worked.

You can check your answer(s) in Section 3.17.4.

3.6 Exception Handling

Exception handling occurs in Python within a try-except statement. Statements within
the try block are executed and if an exception occurs execution jumps to the except
block of statements. If main were called on the Python program given here, any error
condition would send it to the except block which simply prints the exception in this
case. The except block is only executed if there is an error in the try block. Errors
that could occur in this program would be a conversion error for either of the two
floating point number conversions or a division by zero error. The code catches an
exception if a zero is entered for the second value.

import disassembler

1

> def main () :

3 try :

4 x = float (input ("Enter a number: "))
5 y = float (input ("Enter a number: "))
6 z=x/y

7 print (x,"/",y,"=",2)

8 except Exception as ex:

9 print (ex)

10 disassembler.disassemble (main)

Implementing exception handling in JCoCo is similar in some ways to implementing
the BREAK_LOOP instruction. The difference is that the exception causes the pro-
gram to jump from one place to the next instead of the BREAK_LOOP instruction.
Both exception handling and the break instruction make use of the block stack. When
a loop is entered, the SETUP_LOOP instruction pushes the exit point of the loop
onto the block stack; the exit point being an integer referring to the address of the
first instruction after the loop.

To distinguish between loop exit points and exception handling, the
SETUP_EXCEPT instruction pushes the negative of the except handler’s address

74 3 Assembly Language

(i.e. —I*address). So a negative number on the block stack refers to an exception
handler while a positive value refers to a loop exit point. In the code in Fig.3.7 the
exception handler’s code begins at label00.

The try block code begins on line 7 with the SETUP_EXCEPT. This pushes
the handler’s address for label0O on the block stack which corresponds to a —27.
Execution proceeds by getting input from the user, converting the input to floats,
doing the division, and printing the result. The print completes on line 24 where
None, which is returned by print, is popped from the operand stack.

If execution makes it to the end of the #ry block, then no exception occurred and
line 25 pops the —27 from the block stack, ending the try block. Line 26 jumps past
the end of the except block.

If an exception occurs, three things are pushed onto the operand stack before any
handling of the exception occurs. The fraceback is pushed first. The traceback is a
copy of the run-time stack containing each function call and the stored PC of all
pending functions including the current function’s stack frame and PC. Above the
traceback there are two copies of the exception object pushed on the operand stack
when an exception occurs.

If an exception occurs in the try block, JCoCo consults the block stack and pops
values until a negative address is found corresponding to some except block. Multiple
try-except statements may be nested, so it is possible that the block stack will contain
more than one negative address. When a negative address is found, the PC is set to
its positive value causing execution to jump to the except block. In Fig.3.7, that’s
line 27. The traceback and two copies of the exception are pushed onto the stack
prior to line 27 being executed.

Why are three objects pushed on the operand stack when an exception occurs?
Python’s RAISE_VARARGS instruction describes the contents of the operand stack
as TOS2 containing the traceback, TOS1 the parameter, and TOS the exception
object. In the JCoCo implementation the parameter to an exception can be retrieved
by converting the exception to a string, so the object at TOS1 is simply the exception
again. For the sake of compatibility with the Python disassembler JCoCo pushes
three operands pushed onto the operand stack when an exception is raised.

Exception handlers in Python may be written to match only certain types of
exceptions. For instance, in Python a division by zero exception is different than a
float conversion error. The JCoCo virtual machine currently only has one type of
exception, called Exception. It is possible to extend JCoCo to support other types
of exceptions, but currently there is only one type of exception object that can be
created. The argument to the exception object can be anything that is desired. The
program in Fig. 3.7 is written to catch any type of exception, but it could be written to
catch only a certain type of exception. Line 27 duplicates the exception object on the
top of the operand stack. Line 35 loads a global Exception object onto the stack. The
COMPARE_OP 10 instruction compares the exception using the exception match
comparison which calls the __excmatch__ magic method to see if there is a match
between the thrown exception and the specified pattern. If there is not a match, line
30 jumps to the end of the except block. The END_FINALLY instruction on line 47
detects if the exception was handled and if not, it re-throws the exception for some
outer exception handling block.

3.6 Exception Handling

1 Function: main/0
2 Constants: None,
3 "Enter a number: ", "/",6 "="
4 Locals: x, y, 2z, ex

5 Globals: float,input,print,Exception
6

7

8

9

BEGIN
SETUP_EXCEPT 1labelOO
LOAD_GLOBAL 0
LOAD_GLOBAL 1
10 LOAD_CONST 1
11 CALL_FUNCTION 1
12 CALL_FUNCTION 1
13 STORE_FAST 0
14 C
15 BINARY_TRUE_DIVIDE
16 STORE_FAST 2
17 LOAD_GLOBAL 2
18 LOAD_FAST 0
19 LOAD_CONST 2
20 LOAD_FAST 1
21 LOAD_CONST 3
22 LOAD_FAST 2
23 CALL_FUNCTION 5
24 POP_TOP
25 POP_BLOCK
26 JUMP_FORWARD label03
27 label00: DUP_TOP
28 LOAD_GLOBAL 3
29 COMPARE_OP 10
30 POP_JUMP_IF_FALSE label0O2
31 POP_TOP
32 STORE_FAST 3
33 POP_TOP
34 SETUP_FINALLY labelO1l
35 LOAD_GLOBAL 2
36 LOAD_FAST
37 CALL_FUNCTION 1
38 POP_TOP
39 POP_BLOCK
40 POP_EXCEPT
4 LOAD_CONST 0
42 labelO1: LOAD_CONST 0
43 STORE_FAST 3
44 DELETE_FAST 3
45 END_FINALLY
46 JUMP_FORWARD label03
47 label02: END_FINALLY
48 label03: LOAD_CONST 0
49 RETURN_VALUE
so0 END

Fig.3.7 Exception handling assembly

76 3 Assembly Language

If the exception was a match, execution of the handler code commences as it does
on line 31 of the program. The top of the operand stack contains the extra exception
object so it is thrown away by line 31. Line 32 takes the remaining exception object
and makes the ex reference point to it. Line 33 pops the traceback from the operand
stack.

Should an exception occur while executing an exception handler, then JCoCo must
clean up from the exception. Line 34 executes the SETUP_FINALLY instruction to
push another block stack record to keep track of the end of the exception handler.
Lines 35-38 print the exception named ex in the code.

Line 39 pops the exit address that was pushed by the SETUP_FINALLY instruc-
tion. The POP_EXCEPT instruction on line 40 then pops the block stack address
for the exception handler exit address. Line 41 pushes a None on the operand stack.

Line 42 is either the next instruction executed or it is jumped to as a result of an
exception while executing the handler code for the previous exception. Either way,
the ex variable is made to refer to None. The DELETE FAST instruction doesn’t
appear to do much in this code. It is generated by the disassembler, but appears to
delete None which doesn’t seem to need to be done.

The last instruction of the handler code, the END_FINALLY instruction checks
to see if the exception was handled. In this case, it was handled and the instruction
does nothing. If execution jumps to line 47 then the exception handler did not match
the raised exception and therefore the exception is re-raised. Line 48 wraps up by
setting up to return None from the main function.

Practice 3.5 Write a short program that tests creating an exception, raising it,
and printing the handled exception. Write this as a JCoCo program without
using the disassembler.

You can check your answer(s) in Section 3.17.5.

3.7 List Constants

Building a compound value like a list is not too hard. To build a list constant using
JCoCo you push the elements of the list on the operand stack in the order you want
them to appear in the list. Then you call the BUILD_LIST instruction. The argument
to the instruction specifies the length of the list. This code builds a list and prints it
to the screen.

i1 import disassembler

> def main () :

3 lst = ["hello", "world"]

4 print (1st)

5 disassembler.disassemble (main)

3.7 List Constants 77

1 Function: main/0

2 Constants: None, "hello", "world"
3 Locals: 1lst

4 Globals: print

5 BEGIN
6

7

8

9

LOAD_CONST 1
LOAD_CONST 2
BUILD_LIST 2
STORE_FAST 0
10 LOAD_GLOBAL 0
11 LOAD_FAST 0
12 CALL_FUNCTION 1
13 POP_TOP
14 LOAD_CONST 0
15 RETURN_VALUE

16 END

Fig.3.8 Assembly for building a list

The assembly language program in Fig. 3.8 builds a list with two elements: [‘hello’,
‘world’]. Lines 6 and 7 push the two strings on the operand stack. Line 8 pops the
two operands from the stack, builds the list object, and pushes the resulting list on the
operand stack. Python defines the __sfr__ magic method for built-in type of value,
which is called on the list on line 12.

If you run this program using the JCoCo interpreter you will notice that [‘hello’,
‘world’] is not printed to the screen. Instead, [hello, world] is printed. This is because
currently the __str__ method is called on each element of the list to convert it to
a string for printing. This is not the correct method to call. Instead, the __repr__
magic method should be called which returns a printable representation of the value
retaining any type information. In the next chapter there will be an opportunity to
fix this.

3.8 Calling a Method

Calling functions like print and input was relatively simple. Push the function name
followed by the arguments to the function on the operand stack. Then, call the
function with the CALL_FUNCTION instruction. But, how about methods? How
does a method like split get called on a string? Here is a program that demonstrates
how to call split in Python.

78 3 Assembly Language

1 Function: main/0

2 Constants: None,"Enter integers:"
3 Locals: s, 1lst

4 Globals: input, split, print

5 BEGIN
6

7

8

9

LOAD_GLOBAL 0
LOAD_CONST 1
CALL_FUNCTION 1
STORE_FAST 0
10 LOAD_FAST 0
11 LOAD_ATTR 1
12 CALL_FUNCTION 0
13 STORE_FAST 1
14 LOAD_GLOBAL 2
15 LOAD_FAST 1
16 CALL_FUNCTION 1
17 POP_TOP
18 LOAD_CONST 0
19 RETURN_VALUE

20 END

Fig.3.9 Assembly for Calling a method

import disassembler

1

2 def main () :

3 s = input ("Enter integers:")
4 lst = s.split ()

5 print (1st)

¢ disassembler.disassemble (main)

Line 6 of the assembly language code in Fig. 3.9 prepares to call the input function
by loading the name input onto the operand stack. Line 7 loads the argument to
input, the prompt string. Line 8 calls the input function leaving the entered text on
the operand stack. Calling split is done similarly.

In this Python code the syntax of calling input and split is quite different. Python
sees the difference and uses the LOAD_ATTR instruction in the assembly language
instructions to get the split attribute of the object referred to by s. Line 10 loads the
object referred to by s on the stack. Then line 11 finds the split attribute of that object.
Each object in JCoCo and Python contains a dictionary of all the object’s attributes.
This LOAD_ATTR instruction examines the dictionary and with the key found in the
globals list at the operands index. It then loads that attribute onto the operand stack.
The CALL_FUNCTION instruction then calls the method that was located with the
LOAD_ATTR instruction.

The STORE_ATTR instruction stores an attribute in an object in much the same
way that an attribute is loaded. JCoCo does not presently support the STORE_ATTR
instruction but could with relatively little effort. The ability to load and store object

3.8 Calling a Method 79

attributes means that JCoCo could be used to implement an object-oriented language.
This makes sense since Python is an object-oriented language.

Practice 3.6 Normally, if you want to add to numbers together in Python,
like 5 and 6, you write 5+6. This corresponds to using the BINARY_ADD
instruction in JCoCo which in turn calls the magic method __add__ with the
method call 5.__add__(6). Write a short JCoCo program where you add two
integers together without using the BINARY ADD instruction. Print the result
to the screen.

You can check your answer(s) in Section 3.17.6.

3.9 Iterating Over a List

Iterating through a sequence of any sort in JCoCo requires an iterator. There are
iterator objects for every type of sequence: lists, tuples, strings, and other types of
sequences that have yet to be introduced. Here is a Python program that splits a string
into a list of strings and iterates over the list.

from disassembler import *

1

> def main () :

3 x = input ("Enter a list: ")
4 lst = x.split ()

5 for b in 1lst:

6 print (b)

7 disassemble (main)

Lines 6-8 of the assembly code in Fig. 3.10 gets an input string from the user, leaving
it on the operand stack. Line 9 stores this in the variable x. Lines 10-12 call the split
method on this string, leaving a list object on the top of the operand stack. The list
contains the list of space separated strings from the original string in x. Line 13 stores
this list in the variable Ist.

Line 14 sets up the exit point of a loop as was covered earlier in this chapter. Line
15 loads the Ist variable onto the operand stack. The GET_ITER instruction creates
an iterator with the top of the operand stack. The /st is popped from the operand
stack during this instruction and the resulting iterator is pushed onto the stack.

An iterator has a __next__ magic method that is called by the FOR_ITER instruc-
tion. When FOR_ITER executes the iterator is popped from the stack, __next__ is
called on it, and the iterator and the next value from the sequence are pushed onto
the operand stack. The iterator is left below the next value in the sequence at TOS1.
When __next__ is called on the iterator and there are no more elements left in the
sequence, the PC is set to the label of the FOR_ITER instruction, ending the loop.

When the loop is finished the block stack is popped to clean up from the loop.
Line 25 loads the None on the stack before returning from the main function.

80 3 Assembly Language

1 Function: main/O

> Constants: None, "Enter a list: "
3 Locals: x, 1lst, b

4 Globals: input, split, print

5 BEGIN

6 LOAD_GLOBAL 0
7 LOAD_CONST 1
8 CALL_FUNCTION 1
9 STORE_FAST 0
10 LOAD_FAST 0
11 LOAD_ATTR 1
12 CALL_FUNCTION 0
13 STORE_FAST 1
14 SETUP_LOOP labelO2
15 LOAD_FAST 1
16 GET_ITER

17 labelOO: FOR_ITER 1labelO1

18 STORE_FAST 2
19 LOAD_GLOBAL 2
20 LOAD_FAST 2
21 CALL_FUNCTION 1
22 POP_TOP

23 JUMP_ABSOLUTE 1label0O
2 labelO1: POP_BLOCK

25 label02: LOAD_CONST 0
26 RETURN_VALUE

27 END

Fig.3.10 List iteration assembly

Practice 3.7 Write a JCoCo program that gets a string from the user and
iterates over the characters of the string, printing them to the screen.
You can check your answer(s) in Section 3.17.7.

3.10 Range Objects and Lazy Evaluation 81

3.10 Range Objects and Lazy Evaluation

Indexing into a sequence is another way to iterate in a program. When you index
into a list, you use a subscript to retrieve an element of the list. Generally, indices
are zero-based. So the first element of a sequence is at index 0, the second at index
1, and so on.

There are two versions of Python in use today. Version 2, while older is still widely
used because there are many Python programs that were written using it and there is a
cost to converting them to use Python 3. Python 3 was created so new features could
be added that might be incompatible with the older version. One difference was in
the range function. In Python 2, the range function generated a list of integers of the
specified size and values. This is inefficient because some ranges might consist of
millions of integers. A million integers takes up a lot of space in memory and takes
some time to generate. In addition, depending on how code is written, not all the
integers in a range may be needed. These problems are a result of eager evaluation of
the range function. Eager evaluation is when an entire sequence is generated before
any element of the sequence will actually be used. In Python 2 the entire list of
integers is created as soon as the range function is called even though the code can
only use one integer at a time.

Python 3 has dealt with the eager evaluation of the range function by defining a
range object that is lazily evaluated. This means that when you call the range function
to generate a million integers, you don’t get any of them right away. Instead, you get
a range object. From the range object you can access an iterator. When __next__
is called on an iterator you get the next item in the sequence. When _ _next__ is
called on a range object iterator you get the next integer in the range’s sequence.
Lazy evaluation is when the next value in a sequence is generated only when it is
ready to be used and not before. This code creates a range object. The range object
is designed to provide lazy evaluation of integer sequences.

i1 from disassembler import *

> def main () :

3 x = input ("Enter list: ")

4 lst = x.split ()

5 for i in range (len (1lst)-1,-1,-1):
6 print (1st[il)

7 disassemble (main)

This Python code uses indices to iterate backwards through a list. In this case an
iterator over the range object yields a descending list of integers which are the indices
into the list of values entered by the user. If the use enters four space separated values,
then the range object will yield the sequence [3, 2, 1, 0]. The first argument to range
is the start value, the second is one past the stop value, and the third argument is the
increment. So the sequence in the Python code in Sect. 3.10 is a descending sequence
that goes down one integer at a time from the length of the list minus one to zero.
The JCoCo assembly code in Fig. 3.11 implements this same program. Lines 15—
23 set up for calling the range function with the three integer values. Lines 15-20
call the len function to get the length of the list and subtract one. Lines 21 and 22 put

82 3 Assembly Language

1 Function: main/O

2 Constants: None,"Enter list: ",1,-1,-1
3 Locals: x, 1lst, i

4 Globals: input,split,range,len,print

5 BEGIN
6
-
8
9

LOAD_GLOBAL 0
LOAD_CONST 1
CALL_FUNCTION 1
STORE_FAST 0
10 LOAD_FAST 0
11 LOAD_ATTR 1
12 CALL_FUNCTION 0
13 STORE_FAST 1
14 SETUP_LOOP 1labelO2
15 LOAD_GLOBAL 2
16 LOAD_GLOBAL 3
17 LOAD_FAST 1
18 CALL_FUNCTION 1
19 LOAD_CONST 2
20 BINARY_SUBTRACT
21 LOAD_CONST 3
22 LOAD_CONST 4
23 CALL_FUNCTION 3
24 GET_ITER
25 labelO00: FOR_ITER labelO1l
26 STORE_FAST 2
27 LOAD_GLOBAL 4
28 LOAD_FAST 1
29 LOAD_FAST 2
30 BINARY_SUBSCR
31 CALL_FUNCTION 1
32 POP_TOP
33 JUMP_ABSOLUTE 1labelOO
34 labelO1: POP_BLOCK
35 label02: LOAD_CONST 0
36 RETURN_VALUE

37 END

Fig.3.11 Range assembly

two —1 values on the operand stack. Line 23 calls the range function which creates
and pushes a range object onto the operand stack as its result.

Line 24 creates an iterator for the range object. As described in the last section,
the FOR_ITER instruction calls the _ _next__ magic method on the iterator to get the
next integer in the range’s sequence. The lazy evaluation occurs because an iterator
keeps track of which integer is the next value in the sequence. Line 26 stores the next
integer in the variable i.

3.10 Range Objects and Lazy Evaluation 83

The BINARY_SUBSCR instruction is an instruction that has not been encountered
yet in this chapter. Line 28 loads the list called /sz onto the operand stack. Line 29
loads the value of i onto the operand stack. The BINARY_SUBSCR instruction indexes
into [st at position i and pushes the value found at that position onto the operand
stack. That value is printed by the print function call on line 31 of the program.

Lazy evaluation is an important programming language concept. If you ever find
yourself writing code that must generate a predictable sequence of values you prob-
ably want to generate that sequence lazily. Iterators, like range iterators, are the
means by which we can lazily access a sequence of values and range objects define
a sequence of integers without eagerly generating all of them.

3.11 Functions and Closures

Up to this point in the chapter all the example programs have been defined in a
main function. JCoCo supports the definition of multiple functions and even nested
functions. Here is a Python program that demonstrates how to write nested functions
in the Python programming language. The main function calls the function named
f which returns the function g nested inside the f function. The g function returns
x. This program demonstrates nested functions in JCoCo along with how to build a
closure.

i1 import disassembler

> def main ():

3 x = 10

4 def f(x):

5 def g():

6 return x

7 return g

8 print (£(3) ())

9 disassembler.disassemble (main)

Notice the Python code in section 3.11 calls the disassembler on the top-level function
main.Itisnotcalled onf or g because they are nested inside main and the disassembler
automatically disassembles any nested functions of a disassembled function.

The format of the corresponding JCoCo program in Fig.3.12 is worth noting as
well. The top level main function is defined along the left hand side. Indentation has
no effect on JCoCo but visually you see that f is nested inside main. The function g
is nested inside f because it appears immediately after the first line of the definition
of f on line 3. The rest of the definition of f starts again on line 10 and extends to
line 21. The definition of g starts on line 3 and extends to line 9.

The number of arguments for each function is given by the integer after the slash.
The f71 indicates that f expects one argument. The main and g functions expect zero
arguments. These values are used during a function call to verify that the function is
called with the required number of arguments.

84

3 Assembly Language

Function: main/0

Function:

f/1

Function: g/0

Constants:

None

FreeVars: x

BEGIN

END
Constants:
Locals: x,
CellVars:

LOAD_DEREF
RETURN_VALUE

None ,

g
X

code (g)

Constants: None, 10,

BEGIN
LOAD_CLOSURE
BUILD_TUPLE
LOAD_CONST
MAKE_CLOSURE
STORE_FAST
LOAD_FAST
RETURN_VALUE

END

Locals: x, f

Globals:

print

BEGIN

END

LOAD_CONST
STORE_FAST
LOAD_CONST
MAKE_FUNCTION
STORE_FAST
LOAD_GLOBAL
LOAD_FAST
LOAD_CONST
CALL_FUNCTION
CALL_FUNCTION
CALL_FUNCTION
POP_TOP
LOAD_CONST
RETURN_VALUE

Fig.3.12 Nested functions assembly

code (f),

S

= = O B B O

P O R, WK OF ON O -

3.11 Functions and Closures 85

Examine the Python code in section 3.11 carefully. The main function calls the
function f which returns the function g. Notice that f returns g, it does not call g.
In the print statement of main the function f is called, passing 3 to the function that
returns g. The extra set of parens after the function call f{3) calls g. This is a valid
Python program, but not a common one. The question is: What does the program
print? There are two possible choices it seems: either 10 or 3. Which seems more
likely?

On the one hand, g is being called from the main function where x is equal to 10. If
the program printed 10, we would say that Python is a dynamically scoped language,
meaning that the function executes in the environment in which it is called. Since
g is called from main the value of x is 10 and in a dynamically scoped language
10 would be printed. The word dynamic is used because if g were called in another
environment it may return something completely different. We can only determine
what g will return by tracing the execution of the program to the point where g is
called.

On the other hand, g was defined in the scope of an x whose value was 3. In that
case, the environment in which g executes is the environment provided by f. If 3
is printed then Python is a statically scoped language meaning that we need only
understand what the environment contained when g was defined, not when it was
called. In a statically scoped language this specific instance of g will return the same
value each and every time it is called, not matter where it is called in the program.
The value of x is determined when g is defined.

Dynamically scoped languages are rare. Lisp, when it was first defined, was
dynamically scoped. McCarthy quickly corrected that and made Lisp a statically
scoped language. It is interesting to note that Emacs Lisp is dynamically scoped.
Python is statically scoped as are most modern programming languages.

To execute functions in a statically scoped language, two pieces are needed when a
function may return another function. To execute g not only is the code for g required,
but so also is the environment in which this instance of g was defined. A closure is
formed. A closure is the environment in which a function is defined and the code for
the function itself. This closure is what is called when the function g is finally called
in main.

Take a look at the JCoCo code for this program in Fig.3.12. Line 14 begins
creating a new closure object in the body of function f by loading the cell variable
named x onto the stack. A cell variable is an indirect reference to a value. Figure
3.13 depicts what is happening in the program just before the x is returned in the
function g. A variable in Python, like Java and many other languages, is actually a
reference that points to a value. Values exist on the heap and are created dynamically
as the program executes. When a variable is assigned to a new value, the variables
reference is made to point to a new value on the heap. The space for values on the
heap that are no longer needed is reclaimed by a garbage collector that frees space
on the heap so it can be re-used. In Fig. 3.13 there are three values on the heap, a 10,
a 3, and one other value called a cell in JCoCo and the Python virtual machine.

Because the function g needs access to the variable x outside the function f, the
3 is indirectly referenced through a cell variable. The LOAD_CLOSURE instruction

86 3 Assembly Language

The Run-time Stack

The Heap

Fig.3.13 Execution of nested.casm

pushes that cell variable onto the stack to be used in the closure. Since only one
value is needed from the environment, the next instruction on line 15 builds a tuple
of all the values needed from the environment. Line 16 loads the code for g onto the
stack. Line 17 forms the closure by popping the function and the environment from
the stack and building a closure object.

The variable x is a local variable for the function f. But, because x is referenced
in g and g is nested inside f, the variable x is also listed as a cell variable in f. A
cell variable is an indirect reference to a value. This means there is one extra step to
finding the value that x refers to. We must go through the cell to get to the 3.

The LOAD_DEREF instruction on line 7 is new. A LOAD_DEREF loads the
value that is referenced by the reference pointed to in the list of cellvars. So, this
instructions pushes the 3 onto the operand stack. Finally, line 35 calls the closure
consisting of the function and its data.

In the function g the freevars refer to the tuple of references in the closure that was
just called, so the first instruction, the LOAD_DEREF, loads the 3 onto the operand
stack. Figure 3.13 depicts this state right before the RETURN_VALUE instruction is
executed.

To finish up the execution of this program a 3 is returned from the call to g and
its frame is popped from the run-time stack. Control returns to main where the 3 is

3.11 Functions and Closures 87

printed. After returning from main its frame is also popped from the run-time stack
which ends the program.

Practice 3.8 The program in Fig. 3.12 would work just fine without the cell.

The variable x could refer directly to the 3 in both the f and g functions without

any ramifications. Yet, a cell variable is needed in some circumstances. Can

you come up with an example where a cell variable is absolutely needed?
You can check your answer(s) in Section 3.17.8.

3.12 Recursion

Functions in JCoCo can call themselves. A function that calls itself is a recursive
function. Recursive functions are studied in some detail in Chap. 5 of this text. Learn-
ing to write recursive functions well is not hard if you follow some basic rules. The
mechanics of writing a recursive function include providing a base case that comes
first in the function. Then, the solution to the problem you are solving must be solved
by calling the same function on some smaller piece of data while using that result to
construct a solution to the bigger problem.

Consider the factorial definition. Factorial of zero, written 0!, is defined to be 1.
This is the base case. For integer n greater than 0, n/ = n*(n—1)!. This is a recursive
definition because factorial is defined in terms of itself. It is called on something
smaller, meaning n—/ which is closer to the base case, and the result is used in
computing n/. Here is a Python program that computes 5/.

import disassembler

1

2> def factorial (n):

3 if n==

4 return 1

5 return n*factorial (n-1)

¢ def main () :

7 print (factorial (5))

8

9 disassembler.disassemble (factorial)

10 disassembler.disassemble (main)

The JCoCo implementation of this program is given in Fig. 3.14. The program begins
in main by loading 5 on the operand stack and calling the factorial function. The
result is printed to the screen with the print function.

Calling factorial jumps to the first instruction of the function where » is loaded
onto the operand stack, which in