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Preface

Essential Astrophysics is a book to learn or teach from, as well as a fundamental
reference for anyone interested in astronomy and astrophysics. This unique volume
can be used as a textbook, teaching guide, or reference source for just about
anyone interested in astronomy and astrophysics.

It serves as a comprehensive, introductory text, which takes the student through
the field of astrophysics in lecture-sized chapters of basic physical principles
applied to the cosmos. Undergraduate students with an interest in the physical
sciences, such as astronomy, chemistry, engineering, or physics, will enjoy this
one-semester overview.

The text is of sufficient breadth and depth to prepare the interested student for
more advanced, specialized courses in the future. The clarity and comprehensive
nature of Essential Astrophysics make it a significant resource for the curious
reader that is unfamiliar with astrophysics or for professional astronomers who
may have forgotten the basics.

Astronomical examples are provided throughout the text, to reinforce the basic
concepts and physics, and to demonstrate the use of the relevant formulae. In this
way, the student learns to apply the fundamental equations and principles to
cosmic objects and situations. All of the example problems are solved with the
rough accuracy needed to portray the basic result. Such order-of-magnitude esti-
mates are commonly used in astronomy and astrophysics, where large numbers are
involved, and an understanding of the underlying physics does not require engi-
neering accuracy.

Essential Astrophysics is a serious introduction to astrophysics complete with
the necessary formulae. These equations sometimes include the calculus of inte-
gration, or adding up, and differentiation, that are found in the author’s classic
Astrophysical Formulae and more advanced textbooks. Nevertheless, the end
result in Essential Astrophysics is always a simple algebraic relationship that can
be applied to cosmic objects. These fundamental equations are given in the text
and collected at the end of the book in Appendix III, for future reference and use.
Therefore, only elementary algebra is required to solve any of the example
problems or other numerical conclusions in this book.
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There are two types of intended readers. One type will be interested in broad,
general conclusions, without use of calculus. This reader will be content with the
existing text with no further elaboration. The more mathematically competent
reader will want to use Essential Astrophysics as a foundation for more advanced
considerations, with the guidance of the references, an instructor, or an advanced
textbook, using the formulae found in the text or within set aside Focus Elements
of Essential Astrophysics as a starting point.

The modern SI (International System) units are used in the equations and
example problems, which is another unique aspect of this book when compared to
most previous texts of astrophysics. A conversion table between the SI and c.g.s.
units is provided in the first chapter, to help the reader follow the details of many
papers and textbooks that use the older c.g.s. system. Astronomical and physical
constants, units, and fundamental equations are provided in appendices, for quick
reference.

Essential Astrophysics goes beyond the typical textbook by providing com-
prehensive access to astrophysical discoveries, concepts, and facts that are not
available in any other way. It gives us access to that long-forgotten formula, idea,
or reference, while also providing the material needed to introduce anyone to a
new area of astrophysics. Here, the reader can obtain the background required for a
general understanding and find guidance to the relevant literature including sem-
inal discoveries, original research, and comprehensive up-to-date reviews that will
enable the curious reader to delve deeper into a particular topic. A more extensive
reference compilation of developments in astrophysics, from then to now, can be
found in Astrophysical Formulae.

We are the benefactors of 300 years of cumulative discovery in astronomy and
astrophysics, and Essential Astrophysics helps pass on these fundamental insights
to the next generation. It also reveals both the exciting moments of the past and
relatively recent discoveries. Historical aspects are illuminated through a pro-
gressive flow of chapter topics and by guidance to the earliest ideas, with reference
to the original sources as well as contemporary reviews. Perhaps because of the
rapid pace of modern research, contemporary texts often focus on specialized
topics and overlook these broader perspectives that Essential Astrophysics
provides.

There are 50 set-aside focus elements that enhance and amplify the discussion
with fascinating details. They include the intriguing development of particular
themes, which is missing in most astrophysics textbooks, or provide further
astrophysics or equations for use in examples, problems or further investigations.

In Essential Astrophysics we can rediscover basic physical concepts such as
space, time, radiation, mass, gravity, motion, heat, atoms, radioactivity, and cos-
mic rays, which are required to understand the observable universe. These fun-
damental topics are discussed in the first seven chapters, beginning with the
introductory chapter that describes how astronomers observe the contents of the
universe and how astrophysicists interpret them. The SI units of distance, mass,
time, energy, and luminosity are introduced, together with their astronomical units
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such as the Angstrom, light-year, parsec, and the Sun’s mass, luminosity, and
radius. The magnitude unit is also defined, but used sparingly in examples.

Chapter 2 describes radiation, of both the visible and invisible sort, which
carries messages from the cosmos and tells us much of what we know about it.
Chapter 3 discusses gravity, together with mass that helps determine its strength,
and related tidal phenomena and space curvature. Chapter 4 discusses cosmic
motion, and its balanced equilibrium with gravitation. Chapter 5 discusses the
motion of particles in a gas, together with the related concepts of speed distri-
bution, heat, temperature, and pressure. The inside of the atom is explored in
Chap. 6, where the reader learns about atomic spectral lines and their use in
determining the composition of stars and the measurement of motions and mag-
netic fields. The transformation of elements in both radioactivity and by sub-
atomic bombardment is presented in Chap. 7.

The fundamental concepts described in these first seven chapters provide a
necessary prelude to the rest of the book. It includes the discoveries that the
universe is predominantly hydrogen; that the stars shine by nuclear fusion; that the
stars live and die while new ones continue to be formed; that the interstellar spaces
are not empty but filled with dust, atoms, and molecules; and that the observable
universe is expanding and has a history. The last half of Essential Astrophysics
also includes relatively recent discoveries, such as pulsars, black holes, the three-
degree cosmic microwave background, the formation of stars and galaxies,
invisible dark matter, and the dark energy that is now accelerating the expansion of
the universe.

Chapter 8 provides an account of the nuclear fusion reactions that make the Sun
shine. This is followed in Chap. 9 by modern discoveries of the Sun’s expanding
atmosphere, the solar winds, explosions on the Sun, the solar flares and coronal
mass ejections, and their space—weather threats to spacecraft and humans in space.

Chapter 10 presents an overview of the stars, telling us how far away, bright,
luminous, hot, big, and massive they are. It also includes discussions of stellar
spectra, as well as the evolution of stars and their role in the origin of the chemical
elements.

The space between the stars is discussed in Chap. 11, beginning with bright
stars that illuminate nearby space and continuing with the dust, gas, radio emis-
sion, and molecules within interstellar space. This is naturally followed in
Chap. 12 by the ongoing formation of stars and their planets; recent discoveries of
protoplanetary disks and planets around nearby stars can also be found in this
chapter.

The final destiny of stars, when they have depleted their nuclear resources, is
presented in Chap. 13. It includes planetary nebulae, white dwarf stars, degenerate
pressure, novae, supernovae, neutron stars, pulsars, and stellar black holes.

Our last two chapters discuss the observable universe in its entirety, including
the Milky Way, the receding galaxies, the big bang with its background radiation,
the first atoms, stars, and galaxies, the evolution of galaxies, dark matter and dark
energy, and the ultimate destiny of the universe.
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viii Preface

A total of 69 tables provide vital facts and physical information for the main
types of cosmic objects; students, teachers, and researchers may also consult this
information throughout their careers. In alphabetical order, they include the
physical properties of atmospheres, clusters of galaxies, the cosmic microwave
background radiation, the Earth, emission nebulae, galaxies, our Galaxy, giant
molecular clouds, H I regions, H II regions, interstellar molecules, the Milky Way,
our Moon, neutron stars, novae, planetary nebulae, planets, pulsars, radioactive
isotopes, the Sun, stars, star clusters, supernova explosions, and supernova
remnants.

Our tables also include information about cosmic magnetic fields, cosmic rays,
cosmological parameters, and nuclear fusion processes, as well as the range of
cosmic pressures, cosmic temperatures and stellar luminosity, and the spectral
lines of active galaxies, emission nebulae, stars, the Sun’s corona, and the Sun’s
photosphere.

There are also excellent line drawings, prepared by Kacha Bradonjich, and
several images of astronomical objects from the ground and space that help cement
our newfound knowledge together. They help crystallize a new concept with a
visual excitement that adds another dimension to our understanding.

The author also writes another sort of popular book, filled with personal
anecdotes, the lives of contributors to the field, and human metaphors, without an
equation or reference in sight. For this complementary approach, the reader is
referred to the author’s two books The Life and Death of Stars and Parting the
Cosmic Veil, which deal with many of the same general topics as Essential
Astrophysics in a different, lighter perspective.

I am indebted to Gayle Grant for help in assembling this book, and to the Tufts
Faculty Research Committee for modest support for typing some equations in it.
And last, but not least, the author thanks Ramon Khanna for his skillful editorial
suggestions that have made Essential Astrophysics a better book.

Medford, November 2012 Kenneth R. Lang
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Chapter 1
Observing the Universe

1.1 What Do Astronomers and Astrophysicists Do?

Astronomy is an ongoing, cumulative science in which astronomers either discover
previously unseen constituents of the observable universe or determine physical
properties of known ones. They measure the mass, luminosity, distance, size,
chemical composition, motion, and magnetic fields of planets, stars, galaxies, and
their surroundings.

Astrophysicists apply the laws of physics to celestial objects and events,
thereby interpreting and explaining the astronomical observations. They assume
that the physical laws that apply on Earth are valid throughout the Cosmos, but
often under extreme conditions that cannot be achieved on our planet. The diverse
aspects of physics used in astrophysics include radiation processes and universal
gravitation, cosmic and particle motion, atomic and nuclear physics, and special
and general relativity.

Astronomers and astrophysicists together investigate how everything in the
universe originates, changes, interacts, moves, and radiates. Theoretical studies,
analytical models, and numerical simulations with computers are also employed to
help understand these processes.

Astronomy, and therefore astrophysics, is an instrument-driven science. Many
of the seminal discoveries in astronomy have been accidental and unanticipated,
often made when using unique telescopes, new technology, and novel detection
equipment (Lang 2009). These instruments extend our vision to places that are not
accessible to direct observation, enabling us to “see” the invisible and permitting
us to look at the universe in new ways. Without a telescope, for example, the vast
majority of stars cannot be seen, and all but a very few of the billions of galaxies
and most of the expanding universe are invisible to the unaided eye.

Observations provide the crucial data for our celestial science. Without them,
astrophysicists would have nothing to describe. Fortunately, an astronomical
object can be observed over and over again, in different ways, once it has been

K. R. Lang, Essential Astrophysics, Undergraduate Lecture Notes in Physics, 1
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discovered. These observations require knowledge of our location on the Earth, the
location of the object in the sky, and an understanding of both angular measure and
passing time.

1.2 Our Place on Earth

In order to observe cosmic objects with any accuracy, we must first establish our
bearings here on Earth. In arguments used by Pythagoras (572—479 BC), and
subsequently recorded by Aristotle (384—322 BC), it was shown that the Earth is a
sphere. During a lunar eclipse, when the Moon’s motion carries it through the
Earth’s shadow, observers at different locations invariably saw a curved shadow on
the Moon. Only a spherical body can cast a round shape in all orientations. The
curved surface of the ocean was also inferred by watching a ship disappear over
the horizon; first the hull and then the mast disappear from view.

So we can, to first approximation, assume the Earth is a sphere, and locate
ourselves within a grid of great circles on it. A great circle divides the sphere in
half; the name derives from the fact that no greater circles can be drawn on a
sphere. A great circle halfway between the North and South Poles is called the
Equator because it is equally distant between both poles.

Circles of longitude are great circles that pass around the Earth from pole to
pole, perpendicular to the Equator. Each circle of longitude intersects the equator
in two points that are 180° apart. We halve the great circles of longitude into
semicircles, called meridians. Long ago, in 1884, it was decided that the half-circle

North Pole

Circle of Longitude Greenwich

Prime Meridian

Equator

South Pole

Fig. 1.1 Latitude and longitude Great circles through the North and South Poles of the Earth
create circles of longitude. They are perpendicular to the Equator where they intersect it. The
circle of longitude that passes through Greenwich England is called the Prime Meridian. The
longitude of any point, P, is the angle lambda, 4, measured westward along the Equator from
the intersection of the Prime Meridian with the Equator to the equatorial intersection of the circle
of longitude that passes through the point. The latitude is the angle phi, ¢, measured northward
(positive) or southward (negative) along the circle of longitude from the Equator to the point.
In this figure, the point P corresponds to San Francisco
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of longitude passing through the old Royal Observatory in Greenwich, England,
would mark 0° longitude. It was designated as the “Prime Meridian”, the starting
point of counting longitudes.

The longitude, denoted by the Greek letter 4, of any point on the Earth’s surface
is the angle measured westward from the intersection of the Prime Meridian with
the Equator to the equatorial intersection of the circle of longitude that passes
through the point (Fig. 1.1). The latitude, designated by the symbol ¢, is the angle
measured northward (positive) or southward (negative) along a circle of longitude
from the equator to the point. Sobel (1995) has discussed early determinations of
terrestrial longitude, whereas Carter and Carter (2002) have provided a historical
account of latitude variations. Alder (2002) has discussed early measurements of
the size of the Earth, and the associated beginning of the metric system.

Example: Location and rotation speed on the Earth

The length of the day and the rotation period is the same for every place on
Earth, but the speed of rotation around its axis depends on the surface
location. The surface speed of rotation is greatest at the equator and reduces
to lower values at higher latitudes. Using an equatorial radius of about
6,378 km, the Earth would have to be rotating at a speed of about 464 m g
to spin about its equatorial circumference once every 24 h. To calculate this
speed, just multiply the equatorial radius by 27 to get the equatorial cir-
cumference, and divide by 24 h, where there are 86,400 s per hour. The
constant w = 3.1416. At higher latitudes, closer to the poles, the circum-
ferential distance around the Earth, and perpendicular to a great circle of
longitude, is less, so the speed is less. The speed diminishes to almost
nothing at the geographic poles, which are pierced by the rotation axis.

Every location on the Earth rotates about an axis that pierces the Earth and
extends between its North and South Poles. The period of rotation, and the length
of the day, is everywhere the same, but the rotation speed is fastest at the equator
and systematically lower at higher latitudes.

The geographic description of the location of an observatory includes its height, 4,
in meters above mean sea level. The geodetic coordinates of longitude, latitude and
height, designated 4, ¢, and h, are specified online in The Astronomical Almanac for
all observatories engaged in professional programs of astronomical observations.

The Global Positioning System (GPS) is now used to determine reliable loca-
tion and time information. It is a system of about 30 navigation satellites devel-
oped, maintained and operated by the U.S. Air Force for military and civilian
purposes. Each satellite is constantly beaming radio signals that contain the exact
time. These signals take a few milliseconds to travel from a satellite to the GPS
receiver, and it has a built-in computer that calculates its precise position on Earth
using signal time delays from four or more satellites. The time differences are
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converted into distance by multiplication with the speed of light, and these dis-
tances are translated by triangulation into an exact position accurate to about
100 m.

The numbers after the N (north) notation on the GPS receiver indicate its
latitude, while the numbers after the W (west) notation indicates its longitude. The
GPS devices used in automobiles specify the longitude and latitude of your start
and end points, and map the route between them.

The GPS was initially developed by the military and is still used by them.
Soldiers can use a GPS device to find an enemy objective, even in the dark or
unfamiliar territory; weapons systems can use them to track potential ground and
air targets. All GPS receivers capable of functioning above 18 km in altitude and
moving faster than 515 m s™' are classified as weapons.

1.3 Location in the Sky

You may have watched the stars as they rise at the horizon on one side of the
Earth, slowly move overhead, and eventually set on the other side of the planet,
only to reappear the next night. This slow coursing of stars was initially attributed
to a revolving celestial sphere, which carried its embedded stars about a stationary
Earth, but appearances can be deceiving. The Earth is instead spinning under an
imaginary celestial sphere concentric with the Earth, on which the stars and other
astronomical objects are placed. Such a celestial sphere explains why people
located at different places on Earth invariably see just half of all the stellar sky.
As the Earth rotates, day turns into night and these stars glide by.

Astronomers define points and circles on the celestial sphere (Fig. 1.2). If you
extend the Earth’s rotation axis in both directions, it intersects the celestial sphere
at the north and south celestial poles. They are the pivotal points of the night sky’s
apparent daily rotation. When the plane of the Earth’s Equator is extended outward
in all directions, it cuts the celestial sphere in half, at the celestial equator. The
point where the Sun crosses the celestial equator going northward in spring is
called the Vernal Equinox. The Vernal Equinox is sometimes called the first point
of Aries, and is given the symbol 7).

The projection of the plane of the Earth’s orbit onto the celestial sphere is
known as the ecliptic, and the angular separation between the ecliptic and the
celestial equator is called the obliquity of the ecliptic, designated &, which is about
23.5°. The obliquity is also the angle between the Earth’s rotational axis and a line
perpendicular to its orbital plane. On the standard reference date of January 1.5, or
at noon in January 1, in the year 2000.0, the slowly changing obliquity had the
exact value of:

& =23°26'21.406",
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Fig. 1.2 Celestial coordinates Stars, galaxies, and other cosmic objects are placed on an
imaginary celestial sphere. The celestial equator divides the sphere into northern and southern
halves, and the ecliptic is the annual path of the Sun on the celestial sphere. The celestial equator
intersects the ecliptic at the Vernal Equinox and the Autumnal Equinox. Every cosmic object has
two celestial coordinates. They are the right ascension, designated by the angle alpha, o, or by
R.A., and the declination, denoted by the angle delta, J, or Dec. Right ascension is measured
eastward along the celestial equator from the Vernal Equinox to the foot of the great circle that
passes through the object. Declination is the angular distance from the celestial equator to the
object along the great circle that passes through the object, positive to the north and negative to
the south. Precession results in a slow motion of the Vernal Equinox, producing a steady change
in the celestial coordinates

where the symbol ° denotes angular degrees, the ’ symbol designates minutes of
arc or angle, and the symbol " denotes seconds of arc.

Positions on the celestial sphere are defined by angles along great circles.
By analogy with terrestrial longitude, right ascension, denoted o, is a celestial
object’s longitude, but it is measured eastward along the celestial equator from the
Vernal Equinox. The right ascension is expressed in hours and minutes of time,
with 24 h in the complete circle of 360 degrees, denoted as 360°. For conversion,
1 h of time is equivalent to 15° of angle, or 1 h = 15°; 1 s of time is equal to 15 s
of arc, or I s = 15”; and 1 min of arc equals 4 s of time, or 1’ = 4 s.

Just as latitude is a measure of a one’s distance from the Equator of the Earth,
declination, denoted J, is a celestial object’s angular distance from the celestial
equator. The declination is positive for objects located north of the celestial
equator, and they are observed by inhabitants of the northern hemisphere of the
Earth. Celestial objects in the southern sky have negative declinations, and people
living in the southern half of our planet observe them.
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Example: What can you see in the night sky from where you are?

An observer can see only half of the celestial sphere — the half above the
local horizon. The celestial objects that can be seen depend on only two
things, the observer’s latitude, denoted by ¢, and the object’s declination,
designated . At the Earth’s geographic North Pole, and latitude ¢ = 90°,
the north celestial pole is directly overhead and located near the star Polaris,
and the horizon runs along the celestial equator. This observer can therefore
only see the northern half of the celestial sphere, and objects with positive,
northern declination; all the objects with negative, southern declinations are
forever invisible from this location. For an observer located at different
northern latitudes ¢, stars can be observed with declinations greater than
¢ — 90°, or 0 > ¢ — 90°, for 0 < ¢ < 90°; only these stars rise above the
horizon. The southern half of the celestial sphere is fully visible from the
geographic South Pole, while the northern sky is unseen. At the Equator
where ¢ = 0, the complete range of positive and negative declinations are
visible. Of course, the observer has to wait for the rotating Earth to bring any
potentially observable object above the horizon and into the observable half
of the celestial sphere.

For centuries, astronomers have used catalogues of right ascension, o, and
declination, o, of celestial objects to locate them in the sky (Focus 1.1). Modern
celestial positions of the highest accuracy are referred to the center of mass of all
bodies in the solar system, known as the solar system barycenter, and specified
within an International Celestial Reference System (Kaplan 2005).

Focus 1.1 Astronomical catalogues

The positions, brightness, spectra, angular size, and other data of different
kinds for celestial objects are given in catalogues provided over centuries of
meticulous observations by dedicated astronomers. Stars were the first
celestial objects to be catalogued. Their accurate positions were compiled
and used to discover such things as stellar motions, the planet Uranus, and
the first asteroid. The positions and spectral classification of about 235,000
stars were compiled in the famous Henry Draper Catalogue, published
between 1918 and 1924. The letters “HD” followed by the listed number in
this catalogue often designates a star. Gliese (1969) and Gliese and Jahreiss
(1979) have catalogued the closest stars other than the Sun. Planets are now
being discovered around such nearby stars designated by “GJ” followed by
their number in this catalogue — GJ 581, for example.

The French astronomer Charles Messier (1730—1817) compiled one of
the most famous catalogues (Messier 1781). His list of just over 100 bright
non-stellar objects includes some of the most widely studied objects in the
universe, now known as emission nebulae, galaxies, star clusters, and
supernova remnants. The letter “M” followed by the number in the Messier
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Catalogue indicates them. The Crab Nebula supernova remnant, M 1, is the
first on the list, and M 31 is the closest spiral galaxy, also known as
Andromeda.

In astronomical parlance, a nebula is a diffuse, non-stellar object. Some
extragalactic nebulae, which reside outside our Milky Way, were eventually
designated as galaxies. They contain as many as 100 billion stars, as well as
diffuse gaseous nebulae. An emission nebula consists of interstellar gas
glowing from the ultraviolet light of a nearby luminous star.

William Herschel (1738—1822) dramatically increased the number of
known non-stellar objects to 2,500, during 20 years of systematically
observing the heavens, from 1783 to 1802. This sweep of the sky’s northern
hemisphere was extended to the southern hemisphere by William’s son, Sir
John Herschel (1792—1871), who published data for 5,079 objects in his
General Catalogue in 1864, the combined result of more than half a century
of painstaking observations.

Using the Herschel catalogue as a basis, J. L. E. Dreyer (1852—1926)
published his New General Catalogue (NGC) of nebulae and star clusters,
followed by two Index Catalogues, designated IC. Many galaxies, as well as
emission nebulae and star clusters, are still known by their NGC and IC
numbers.

Later on, the photographic Palomar Sky Survey, using the wide-angle
1.2 m (48 in.) Schmidt telescope on Palomar Mountain, was used to cata-
logue tens of thousands of galaxies; an observatory telescope is often des-
ignated by a name and its diameter in meters or inches. In 1958, George
Abell (1927—1983) used it to create a catalogue of 2,712 rich clusters of
galaxies; the designation “A” followed by the number in his catalogue is still
used today. Millions of galaxies were catalogued in the mid-twentieth cen-
tury using photographs taken using large telescopes, but galaxy catalogues
have now become computerized. An important example is the Sloan Digital
Sky Survey, created from a dedicated, computer-driven 2.5 m (98 in.)
telescope.

Bright radio sources are designated by “3C” followed by the number in
the Third Cambridge Catalogue of Radio Sources published in 1959, a
famous example is 3C 273, the first quasar to be discovered. The most
intense radio and x-ray sources have been named after the constellation they
appear in. For example, Cygnus A is a bright radio galaxy, Cygnus X-1 is a
bright x-ray source and a candidate black hole, and Centaurus X-3 is an
x-ray pulsar.

Specific types of objects, such as pulsars, supernova remnants, and white
dwarf stars, have their own catalogues, and are often designated by letters
like “PSR”, “SNR”, or “WD” followed by their celestial position.
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The international celestial reference frame is defined by a catalogue of
exceedingly accurate positions for extragalactic radio sources observed with
Very Long Baseline Interferometry. At optically visible wavelengths, the
Tycho-2 catalogue of positions for more than 2.5 million stars, observed
from the HIPPARCOS satellite, is used. Accurate positions of major solar
system bodies are given as a function of time in an Ephemerides provided by
the Jet Propulsion Laboratory.

As the Sun moves along the ecliptic, it crosses the celestial equator twice, on its
way north at the Vernal Equinox, on about March 20, and then at the Autumnal
Equinox on about September 23. On either equinox, the Sun lies in the Earth’s
equatorial plane, so the twilight zone that separates night and day then cuts the
Earth in equal parts and the days and nights are equally long. The point at which
the Sun is farthest north, is the Summer Solstice (on about June 21), and its most
southerly point is the Winter Solstice on about December 22. The days in the
northern hemisphere are the longest on the Summer Solstice, and shortest on the
Winter Solstice. So the crossing of the Sun at the equinoxes and solstices mark
the beginning of the seasons in the Earth’s northern hemisphere, and the location
of these points on the celestial sphere are given in Table 1.1.

Right ascension and declination provide celestial bearings in the equatorial
coordinate system. Another celestial coordinate system is the horizon, or hori-
zontal, coordinate system that employs great-circle angles measured with respect
to the observer’s zenith and horizon. The zenith is located above your head,
directly away from the center of the Earth. It is the point of intersection of the
celestial sphere with the upward prolongation of the observer’s plumb line, whose
bob is drawn to the terrestrial center by gravity. If a plane is extended outward
from the observer’s feet, perpendicular to the plumb line, it intersects the celestial
sphere in a great circle known as the horizon. Celestial objects are only visible if
they are above the horizon. The altitude measures the angular distance from the
horizon to the object in question, along a great circle that intersects the object and
the zenith. The azimuth, an angle measured along the horizon, provides the second
dimension to this coordinate system. Angles are used to designate celestial posi-
tions in both types of celestial coordinate systems.

Table 1.1 Celestial positions of the equinoxes and solstices

Position Right ascension o (2000.0) Declination 6 (2000.0)
Vernal (Spring) equinox on 0°

Summer solstice 6" 23° 26/ 21.4"
Autumnal (Fall) equinox 12h 0°

Winter solstice 241 —23°26' 21.4"
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1.4 Measuring Angle and Size

Astronomers measure angles in degrees, designated by the superscript °, and there
are 360° in a circle. They also use the second of arc, or arc second, denoted by the
symbol ”, and the minute or arc, or arc minute, abbreviated by ’, as a units of angle.
The units mimic a clock with 60 s in a minute, or 60" = 1’. A full degree of angle
contains 60 min of arc, so 1° = 60’ = 3,600".

Mathematicians use a different unit of angular measurement called a radian.
The radian is the ratio between the length of an arc and its radius. The ratio of
linear size to distance is expressed in radians, where an angle of one radian, when
viewed from the center of a circle, results in an arc on that circle equal to the radius
of the circle (Fig. 1.3). That is, the radian unit of angular measure is defined such
that an angle of one radian subtended from the center of a unit circle produces an
arc length of one.

A full circle subtends 2mrad and 360°, where 7w = 3.141592654, so
1 rad = 360/(2m) = 57.2958°, and the conversion factors between seconds of arc
and radians are:

1” = 4.848 x 107 rad,

and

1rad = 2.06265 x 10°" = 57.2958°.

ot

Angular

Observer Sun

ass®*®
an

L Size 6,=2Ro/D,, Radius R

Physical
Size 2R

Fig. 1.3 The Sun’s angular size and radius The solar radius can be determined from the Sun’s
angular size and distance. As long as this angle is small, the physical size is only a small arc of a
large circle, denoted by the dashed line, and the angular size is the ratio of the physical size to the
distance. Astronomers specify this angle as a partial arc of a full circle of 360°; for the Sun it is
about 32 min of arc, in which there are 60 min of arc in 1°. This angle has been enlarged to
display it in this illustration. In mathematics, the radian is the standard unit of angular measure. It
describes the angle subtended by a circular arc as the length of the arc divided by the radius of the
arc. When the arc length is equal to the arc radius, the angle is 1 rad. We can convert between
the two methods of describing angles by noting that the circumference of a circle is 27 times its
radius; therefore 1 rad is equal to 360°/(2n), or 57.2958°. For the Sun, the angular size 0, =
2R /D, radians, where R, denotes the Sun’s radius and the mean distance of the Sun, D, is 1
AU. The observed angular size of the Sun corresponds to a radius of 695.5 million meters
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A telescope can be used to measure the angular size, 0., of a celestial source
if the angular resolution of the telescope is smaller than the angular size of the
source. If the source distance, D, is known, then one can infer its linear extent, L,
perpendicular to the line of sight, or if spherical its radius, R, using the angular size
and the relation:

Example: Measuring the size of the Sun

The linear radius of the Sun, denoted by R, can be determined from the
Sun’s angular diameter, denoted by 0, using
0 = ZRo rad
D,

where the mean distance between the Earth and the Sun has a value of
Do =1 AU = 1.496 x 10" m. As illustrated in Fig. 1.3, this expression
uses the mathematician’s radian unit of angular measurement, and it has to
be converted to astronomical measurements of angle. The radian is the ratio
between the length of an arc and its radius.

The mean equatorial angular diameter of the Sun is 6, = 31.97 min of
arc = 31.97 = 1,918.2”, and this is equal to 0.009299 rad, since
1 rad = 206265 s of arc. So the radius of the Sun is given by

2

which is 109 times the radius of the Earth.

Ro =6.956 x 10®m,

By the way, the angular diameter of the Sun is about the same angle as that
subtended by the thumb when viewed at arm’s length. In one of those fascinating
coincidences, the angular diameter of the Sun is also about the same as the angular
diameter of the Moon, which is much closer to us and smaller in radius than the
Sun. Because of this similarity in angular size, the Moon can pass in front of the
Sun during a total solar eclipse, blocking out the sunlight.

1.5 The Locations of the Stars are Slowly Changing

While most stars sweep by as the Earth rotates, a star that is aligned with our
planet’s rotation axis, at the north celestial pole, seems to remain placed in an
unchanging location at 90° north declination. The Earth’s northern rotation axis,
for example, now points close to Polaris, also known as the North Star or the Pole
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Star, which would lie approximately overhead when viewed from the Earth’s
geographic North Pole. The latitude of any location in the Earth’s Northern
Hemisphere is equal, within about 1°, to the angular altitude of Polaris. The
uncertainty is due to the fact that Polaris is not exactly at the north celestial pole,
where the north end of the Earth’s rotation axis pierces the night sky.

We can locate Polaris by following the line joining the two stars farthest from
the handle of the Big Dipper, which accounts for the phrase “follow the drinking
gourd” used by southern slaves escaping to the northern parts of the United States.
Mariners have also used the North Star for navigation, to find the direction of north
and the latitude of their ship.

Nevertheless, everything in the universe is in a state of perpetual change, and
the locations of the so-called fixed stars on the celestial sphere are no exception.
Their change in position is related to the Earth’s elongated shape (Focus 1.2),
which has sent the Earth into a wobbling rotation that resembles a spinning top.
This causes a very slow change of the celestial positions of the north celestial pole,
the Pole Star and all the other stars, called precession. The changing positions of
bright stars on the celestial sphere were first observed by Hipparchus, a Greek
astronomer who lived in the second century BC (Hipparchus, 125 BC); the tele-
scope was not invented until 17 centuries after Hipparchus established the stellar
positions using his eyes.

Focus 1.2 The elongated shape of the Earth

The Earth isn’t precisely spherical in shape. It has a slight bulge around its
equatorial middle and is flattened at its poles, with a shape more like an egg
than a marble or billiard ball. This elongated, oblate shape is caused by the
Earth’s rapid rotation. The outward force of rotation opposes the inward
gravitational force, and this reduces the pull of gravity in the direction of
spin. Since this effect is most pronounced at the equator, and least at the
poles, the solid Earth adjusts into an oblate shape that is elongated along the
equator.

An ellipse of eccentricity, e, and major axis, a,, which is rotated about the
polar axis, defines the Earth’s reference ellipsoid at sea level. The planet’s
equatorial radius is a., and its polar radius, a,. They are given by:

ap = ac(1 —f) = ac(1 = &),
where the flattening factor f = (a, — a,)/a, is related to the eccentricity, e,
by & = 2f — f~.
The mean surface radius of the Earth, (a), is given by:

(a) = (azap)%% 6.371 x 10°m,

which is the radius of a sphere of volume equal to the Earth ellipsoid.
Geophysicists use another definition of mean radius given by (2a, + a,,)/3.
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The radius, r, of the surface of the Earth geoid at any latitude ¢ is given by

r=a,(1 —fsin* ).

Two of the primary constants of the International Astronomical Union are
(Kaplan 2005):

Equatorial radius of the Earth = a, = 6.3781366 x 10°m,
and
Flattening factor for Earth = f = 0.0033528197 = 1/298.25642.

These values of a. and f give a polar radius for the Earth of
a, = 6.356752 x 10° m, and the difference between the equatorial and polar
radius is 21,385 m or about 21 km.

The world geodetic system, which is the basis of terrestrial locations
obtained from the Global Positioning System, or GPS for short, uses an
Earth ellipsoid with a, = 6.378137 x 10° m and f = 1/298.257223563.

The changing locations of celestial objects are caused by the gravitational
action of the Moon, Sun and planets on the spinning, oblate Earth. As a result of
this gravitational torque, the Earth’s rotation axis is constantly changing with
respect to a space-fixed reference system.

The precessional motion of the Earth’s rotation axis is caused by the tidal action
of the Moon and Sun on the spinning Earth. That is, because the Moon and the Sun
lie in the ecliptic plane, which is inclined by 23.5° to the plane of the Earth’s
Equator, they exert a gravitational force on the Earth’s equatorial bulge. This
causes the rotation axis to sweep out a cone in space, centered at the axis of the
Earth’s orbital motion and completing one circuit in about 26,000 years (Fig. 1.4).

So the Earth is not placed firmly in space; instead it wobbles about causing the
identity of the Pole Star to gradually change over time scales of thousands of years.
The northern projection of the Earth’s rotation axis is currently within about 0.75°
of Polaris and will move slowly toward it in the next century. After that, the north
celestial pole will move away from Polaris and, in about 12,000 years, the Earth’s
rotation axis will point to within 5° of the bright star Vega.

The slow conical motion of precession carries the Earth’s Equator with it; as
that Equator moves, the two intersections between the celestial equator and the
Sun’s path, or ecliptic, move westward against the background stars. One of these
intersections is the Vernal, or Spring, Equinox, from which right ascension is
measured. This equinox point moves forward (westward) along the ecliptic at the
rate of about 50 s of arc, denoted 50", per year, which is equivalent to 3.33 s per
year.

As the Earth’s rotational axis precesses, declinations also change, through a
range of 47°, or twice 23.5°, over 26,000 years.


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR549
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To Polaris/ 26,000 Year To Vega
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Fig. 1.4 Precession The Earth’s rotation axis traces out a circle on the sky once every
26,000 years, sweeping out a cone with an angular radius of about 23.5°. The Greek astronomer
Hipparchus (c. 146 BC) discovered this precession in the second century BC. The north celestial
pole, which marks the intersection of this rotation axis with the northern half of the celestial
sphere, now lies near the bright star Polaris. However, as the result of precession, the rotational
axis will point toward another bright north star, Vega, in roughly 13,000 years. This motion of the
Earth’s rotational axis also causes a slow change in the celestial coordinates of any cosmic object

Because the long period, 26,000 year, conical motion of the Earth’s rotation
axis is caused by the gravitational action of the Moon and Sun, it is called lunisolar
precession. Simon Newcomb (1835—1909) derived the detailed theory for com-
puting the corrections to astronomical coordinates for this precession (Newcomb
1895).

In addition to this steady, progressive motion, there are small, periodic varia-
tions in both precessional speed and axial tilt caused by the gravitational action of
the planets on the Earth’s equatorial bulge. The most important term in this
nutation, first observed by James Bradley (1693—1762), induces an 18.6 year
periodic wobble in the precessional motion with a size of 17" in the direction of
precession and 9" perpendicular to it (Bradley 1748).

Because of positional changes caused by precession and nutation, the equinox, or
reference date, must be given when specifying the right ascension or declination of
any cosmic object. The standard epoch that is now in used for celestial positions is:

J2000.0 = 2000 January 1.5 = JD2451545.0,

where JD denotes Julian Date and the prefix J denotes the current system of
measuring time in Julian centuries of exactly 36,525 days in 100 years, with each
day having a duration of 86,400 s.

The combination of lunisolar and planetary precession is called general pre-
cession, and the astronomical constants at standard epoch J2000.0 include (Kaplan
2005):

General precession in longitude = p = 5,028.796195" per Julian century.


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR749
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The nutation term, N, for that epoch is
Constant of nutation = N = 9.2052331".

Kaplan (2005) provides modern formulas for precession and nutation. They
describe the transformation of celestial coordinates from one date to another, as a
function of time since a reference epoch.

The astronomical constants also include an aberration constant, x, which
accounts for the observed position shift of an astronomical object in the direction
of the Earth’s motion (Focus 1.3). The aberration constant at the standard epoch J
2000.0 is

Constant of aberration = x = 20.49552".

Focus 1.3 Stellar aberration

As the Earth orbits the Sun, the stars all appear to be shifted in the direction
of motion, a phenomenon called stellar aberration, described by James
Bradley (1693—1767) in 1728. Because the speed of light is finite, the
apparent direction of a celestial object detected by a moving observer is not
the same as its geometric direction at the time. For stars, the normal practice
is to ignore the correction for the motion of the celestial object, and to
compute the stellar aberration due to the motion of the observer. This also
gave Bradley a means to improve on the accuracy of previous estimates for
the speed of light (Bradley 1728).

The magnitude 46 of stellar aberration depends on the ratio of the
velocity of the observer, V, to the speed of light, ¢, and the angle, 0, between
the direction of observation and the direction of motion. The displacement,
A0, in the sense of apparent minus mean place, is given by

2 3
L i) — = (X> sin 20 + (K) (sinfcos® @ —0.33sin’ 0) + ...
c 2 \c c
As the Earth orbits the Sun, it is moving at a velocity of approximately
30 km sfl, and the speed of light ¢ ~ 300,000 km sfl, so the term of order
V/e is 10~* rad or 20 s of arc, denoted 20", and the term (V/c)2 has a
maximum value of 0.001 s of arc. Bradley (1728) used aberration obser-

vations to determine the speed of light as approximately 183,000 miles per
second or 294,500 km s

The constant of aberration, x, at standard epoch J2000.0 is given by

. 2na _
Constant of aberration = k = P (1-¢*)72=
»

ol—

o<

=0.9365 x 107 rad,
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which is equivalent to:
K = 20.49552"

Here the constant @7 &~ 3.14592654, the mean distance between the Earth and the
Sun is a=1 AU = 1.49598 x 10!' m, known as the astronomical unit,
e = 0.01671 is the mean eccentricity of the Earth’s orbit, P = 3.1558 x 10’ s is
the length of the sidereal year, ¢ = 2.997925 x 10® m s™' is the speed of light,
and one radian = 2.062648 x 10’ .

When the observer is moving directly at the star, 6 is zero and there is no
aberration shift at all. The shift achieves its greatest value of about 20.5"" when the
observer’s motion is perpendicular to the direction of the star, with 6 = 90°.

1.6 What Time is It?

There are two ways of keeping time in common use today. One is atomic time, the
basis of the Systeéme International, abbreviated SI, second, and the other is based
on the rotation of the Earth (Kaplan 2005; Seidelmann 2005). The SI second is the
fundamental unit of atomic time, which is specified by atomic clocks that use
cesium-beam and other atomic frequency standards to an accuracy of 1.5 x 107",
or to the fourteenth decimal place (Essen 1969). The frequency standards form a
standard timescale known as International Atomic Time, abbreviated TAI for
Temps Atomique International. The time distributed by the Global Positioning
System, or GPS, remains at a constant offset with International Atomic Time. On
21 November 2010, TAI-GPS = 19 s.

The clocks we use in daily life are set to the Earth’s rotation with respect to the
Sun. It establishes our daily rhythm, from sunrise to sunset and back to sunrise
again. The 24 h solar day is the time it takes for the Sun to make one circuit around
the local sky.

By definition:

1 solar day = 24 h = 1,440 min = 86,400 s.

This is known as the unit of Sun time, or solar time. Also by definition, the Julian
century has 36,525 solar days and one day is defined as 86,400 s of International
Atomic Time, or TAI So:

1 Julian year = 365.25 solar days = 8,766 h = 525,960 min = 31,557,600 s

Solar time is the basis of Universal Time, abbreviated UT, which has been
defined to be as uniform as possible despite variation in the Earth’s rotation. The
worldwide system of Civil Time, and the clock on your wall or the watch on your
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arm, are synchronized to Coordinated Universal Time, denoted UTC, which has
been corrected for small variations in the Earth’s rotation, but the atomic clocks in
satellites and the time in the Global Positioning System, abbreviated GPS, are not
corrected in this way.

Because of irregularities in the Earth’s rotation and the lengthening of its
rotation period due to Moon-induced tidal friction, this Sun time does not advance
at a uniform rate, and it increasingly lags behind the SI-second time scale. UTC is
therefore a hybrid time scale using the SI second on the spinning Earth as a
fundamental unit, but subject to occasional 1 s adjustments. The difference
between atomic time and universal time, or TAL — UTC is an integral number of
seconds, which increases by 1 whenever a leap second is introduced into UTC, so
the two kinds of clock share the same seconds tick. When necessary, the adjust-
ments to UTC are introduced at the end of June or December, by international
agreement.

Universal Time is equivalent to the standard Civil Time for 0° longitude, which
is defined to be the Prime Meridian at Greenwich, England. By specifying the
longitude of any other location of the terrestrial globe, we can exactly infer the
local Sun time. For example, the Sun will be overhead at noon in Boston about 4 h
44 min later than noon in Greenwich; because the longitude of Boston is
71.06° = 4.733 h, where 360° equals 24 h. And in the same way, noon in New
York City will occur about 10 min later than in Boston, because New York City is
slightly west of Boston.

The world has been divided into standard time zones based on about 1 h, or 15°,
increments in longitude, so our watches differ from others in hourly increments
and are slightly out of synchronism with the Sun. Standard time is the result of
synchronizing clocks in different geological locations within a time zone. Blaise
(2000) has described the creation of standard time.

Terrestrial Time (TT) is the modern time standard used for time measurements
of astronomical observations from the surface of the Earth. The unit of TT is the SI
second. The Astronomical Almanac uses TT in the tables of positions, or Ephe-
merides, of the Sun, Moon and planets as seen from the Earth. TT is slightly ahead
of atomic time, and can be approximated by

TT ~ TAI + 32.184s,
which is equivalent to
TT ~ GPS + 51.184 s

With the advent of atomic clocks and the exact targeting of planetary space-
craft, measurements of time were further refined with the introduction of the
Barycentric Dynamical Time, or TDB for short. It was adopted to take into
account the relativistic time dilation (Sect. 2.3) when calculating orbits and
astronomical ephemeris, and it applies to the solar-system-barycentric reference
frame. The barycenter is the center of mass of two or more orbiting bodies. The
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difference between TDB and yet another Barycentric Coordinate Time, or TCB, is
about 16.6 s, and

Mean ratio of the TCB second to the TDB second = 1 — Lg,

where Ly = 1.550519767 x 10™®, an exceedingly small number.

In every day life we use Sun time, based on the solar day that is exactly 24 h
long, in solar time. This solar day is the interval between two successive passages
of the Sun across an observer’s meridian. Astronomers also use star time, or
sidereal time. A sidereal day is the time between successive passages of a star
across the local meridian, and this star day is about 4 min less than a solar day.

1.7 Telling Time by the Stars

Astronomers use another sort of time, called sidereal time, to know when and how
to point their telescopes to view a particular star or any other cosmic object. The
term sidereal is derived from the Latin sidus meaning “star.” As with solar time,
this star time is based on the Earth’s rate of rotation, but measured relative to the
fixed stars rather than the Sun.

The sidereal day is the time it takes for a star — or any other celestial objects — to
proceed from its highest point in the sky one day to its highest point the next day.
The Earth makes one rotation about its axis in a sidereal day, but during that time it
moves a short distance along its orbit around the Sun. At the end of a sidereal day,
the Earth therefore needs to rotate a little more before the Sun reaches its highest
point (Fig. 1.5). A solar day is therefore about 4 min longer than the sidereal day.

To be exact:

1 sidereal day = 23h 56m 4.09s = 23.93447h = 86,164.1 s,

where the hours, minutes and seconds are in solar time.

Observatories have two kinds of clocks that tell either the local solar time or the
local star time. The two kinds of time can also be determined using clocks or time
simulators on the web.

At any moment, the Local Sidereal Time equals the right ascension, designated ,
of a celestial object on the local meridian, so this time tells an observer when a given
celestial object with a particular right ascension can be seen, provided its declination
is in the observable range for the observer’s latitude.

Example: When is a celestial object visible in your part of the sky?

For an object with an observable declination, the time at which it can be
observed depends upon the object’s right ascension, o, and the local sidereal
time, abbreviated LST. The object crosses the local meridian when
o = LST, and may be visible for several hours before and after this time.
However, a terrestrial clock or watch is geared to the Sun rather than the
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stars, so it does not keep local sidereal time. A terrestrial clock is equal to the
local sidereal time only at midnight of the Autumnal Equinox, about Sep-
tember 23, and thereafter the local sidereal time gains 2 h on the terrestrial
clock for each succeeding month.

The geographic longitude, denoted /, of the observer relates the Local Sidereal
Time (LST) to the Greenwich Sidereal Time, or GST for short, at the Prime
Meridian by

LST = GST—A(observer),

where the longitude is measured positive westward and can be converted into time
using 24 h = 360°. The local meridian is an imaginary half circle stretching from
the horizon due north, through the zenith, to the horizon due south. The zenith is
directly overhead, an extension of a plumb line from the center of the Earth

Distant
Q Star

Earth
Rotation

SR

Earth
[+ Star Day "“ 4 minutes |
Bl Sun Day = 24 hours

Fig. 1.5 Sun time and star time The Sun reaches its highest point in the daytime sky, its
culmination, at noon, and this happens every 24 h in a solar day. A distant star returns to its
highest point in the night sky every sidereal day of 23 h 56 min 04 s, which is the unit of star
time. The Earth rotates once around its axis in one sidereal day, but during that time the Earth has
moved along its orbit around the Sun (bottom). The star (small circle, top) and the Sun (below
star) are at culmination, crossing the local meridian, at just one time (left). After a sidereal day,
the Earth has to rotate for another 3 min 56 s before the Sun reaches its highest point (right).
A solar day is therefore nearly 4 min longer than a sidereal day
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through the observer to the celestial sphere. The Prime Meridian is the local
meridian for the old Royal Observatory in Greenwich, England.

We define the Local Hour Angle (LHA) of any object on the celestial sphere to
be the time since it last crossed the meridian, or

LHA (object) = LST — a (object) = GST — A(observer) — a(object).

The Local Sidereal Time is equal to zero when the Vernal, or Spring, Equinox
is on the local meridian.
The solar and star times are related by:

One mean solar day = 24 h 03 min 56.555 s of mean sidereal time
One mean solar day = 1.0027379 mean sidereal days,
One mean sidereal day = 23 h 56 min 04.09 s of mean solar time

One mean sidereal day = 0.99726957 mean solar days.

1.8 Optical Telescopes Observe Visible Light

Telescopes collect and magnify electromagnetic radiation from a cosmic object,
and bigger telescopes provide two advantages. They gather more radiation than a
smaller telescope, permitting the detection of fainter objects and providing a
brighter image of any cosmic object for analysis. Big telescopes also provide
greater angular resolution, which is the ability to see the separation between
objects that are close together. Better resolution permits observation of finer detail
on the object emitting the radiation. Kitchin (2013) provides a thorough discussion
of telescopes and the techniques of using them to observe the cosmos.

Regardless of what cosmic object a telescope is pointed at, the object’s radi-
ation that carries information to the Earth travels in rays that are parallel to one
another. A telescope’s lenses and/or mirrors are used to focus and collect visible
radiation, or light. They are described by the science of optics; therefore the study
of visible light from cosmic objects is called optical astronomy. There are two
types of optical telescopes, the refractor and the reflector, which respectively use a
lens and a mirror to gather and focus optically visible light (Fig. 1.6). A tele-
scope’s lens bends the incoming rays by refraction, focusing them to a point where
they meet, called the focal point. A curved mirror reflects the incoming rays,
sending them to the focal point.

In a refractor, light is bent by refraction at the curved surface of a lens, called an
objective, toward a focal point where the different rays of light meet. If we place a
detector at the focal point, in the plane parallel to the lens, we can record an image
of whatever the telescope is observing. The distance from the lens to the focal
point is called the focal length, which determines the overall size of the image.
The critical thing is the diameter, or aperture, of the light-gathering lens.
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Fig. 1.6 Telescopes Light waves that fall on the Earth from a distant object are parallel to one
another, and are focused to a point by the lens or mirror of a telescope. Early telescopes were
refractors (left). The curved surfaces of the convex objective lens bend the incoming parallel light
rays by refraction and bring them to a focus at the center of the focal plane, where the light rays
meet and an image is created. A second smaller lens, called the eyepiece, was used to magnify the
image in the early refractors; later versions placed photographic or electronic detectors at the
focal plane. In 1670, the English physicist Isaac Newton (1643—1727) constructed the first
reflecting telescope (right), which used a large concave, or parabolic, primary mirror to collect
and focus light. A small flat secondary mirror, inclined at an angle of 45° to the telescope axis,
reflected the light sideways, at a place now known as the Newtonian focus. Other light-deflecting
mirror arrangements can be used to obtain any desired focal length, which varies with the
curvature and position of small convex mirrors



1.8 Optical Telescopes Observe Visible Light 21

The larger the aperture, the more light is gathered and the finer the detail that can
be resolved.

The other type of telescope, the reflector, uses a concave mirror with a parabolic
shape to gather and focus the light. The prime focus is back in the path of the
incoming light; so secondary mirrors are sometimes used to reflect the light to
another place of observation. There are three types of secondary mirrors called the
Cassegrain, Coudé, and Newtonian mirrors, which can focus light to different
locations.

Professional astronomers place electronic detectors at the focal point of tele-
scopes. These detectors generate digitized signals that are analyzed, manipulated
and recorded in a computer. A Charge-Coupled Device, or CCD for short, might
be used to efficiently detect the radiation and form an image. Nowadays, CCDs are
used in this way in everything from digital cameras to the Hubble Space Tele-
scope. In some cases, diffraction gratings are used to separate the incoming
radiation into its component wavelengths, dispersing it into fine wavelength
intervals to form a spectrum that can then be recorded by a CCD.

The diameter of this primary mirror determines the telescope’s light-gathering
ability and resolution. The amount of radiation that can be collected is proportional
to the area of the mirror, and the square of its diameter.

Optical telescopes are even named by the diameter of their mirror. The 2.5 m
(100 in.) Hooker Telescope at the Mount Wilson Observatory, California and the
nearby 5 m (200 in.) Hale Telescope at the Palomar Observatory, California are
of great historical importance. Recent large optical telescopes include the four
Very Large Telescopes, each of 8.2 m (323 in.) effective aperture, located at the
Paranal Observatory, Chile, the two 10 m (400 in.) Keck telescopes at the
Mauna Kea Observatory in Hawaii, the 10.4 m (410 in.) Gran Telescopio
Canarias on the Canary Islands and the Large Binocular Telescope located on
Mount Graham in Arizona. It consists of two 8.4 m (330 in.) mirrors on a
binocular mount.

The ability to resolve details is called the resolving power of a telescope. It is
specified by the angular resolution, 6, a quantity that depends on the diameter,
Dy, of the telescope lens or mirror and the wavelength, A, of observation. The
mathematical expression is:

or

Ores = 2.06265 x 10° s of arc,
Dr

where 1 rad is equivalent to 57.2957795° and 206265" (2.06265 x 10° s of arc),
and there are 3,600 s of arc in a degree. This equation tells us that a bigger lens or
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mirror provides finer angular resolution at a given wavelength, and that longer
wavelengths require larger telescopes to achieve the same resolution as a smaller
telescope at shorter wavelength.

Example: What is the smallest source detected on the Sun in optically
visible light?

Due to atmospheric obscuration, the effective angular resolution of a typical
ground-based optical telescope is about 1’ = 4.848 x 107° rad. Thatis pretty
good, for its comparable to seeing the details on a coin with a diameter of
0.5 cm from 1,000 m away. At the Sun’s mean distance of 1.496 x 10'' m,
this corresponds to structures that are 748 km across, about the distance from
Boston to Washington, D.C. and about three-quarters the size of France.

The resolving power of a telescope operating at the wavelengths that we can detect
with our eye, at a yellow wavelength of about 6 x 10~7 m, is about 0.124/D;"" if Dy
is in meters. By way of comparison, the typical angular resolution of the unaided
human eye is about 60", so the eye acts like a lens with a diameter of about 0.002 m,
or only 2 cm. However, some people have sharper vision than the average.

Turbulence in the atmosphere limits the resolution of any telescope operating at
visible wavelengths to about 1 s of arc; therefore, the angular resolution cannot be
improved by building an optical telescope larger than about 0.12 m in diameter.
Similar atmospheric variations cause the stars to “twinkle” at night. This atmo-
spheric limitation to angular resolution at visible wavelengths is called seeing. The
best seeing, of 0.2” in unusual conditions, is found at only a few sites in the world,
and optical observatories are located in most of them. Better visible images with
even finer detail can be obtained from the unique vantage point of outer space,
using satellite-borne telescopes unencumbered by the limits of the atmosphere.

Optical astronomy began about four centuries ago, in 1609, when Galileo
Galilei (1564—1642) turned the newly invented spyglass, or telescope, toward the
night sky, and discovered four previously unknown moons that circle Jupiter. He
also resolved small craters on the Moon, and detected numerous stars in the Milky
Way that cannot be seen by the unaided eye (Galilei 1610). His rudimentary
telescope was a refractor with a lens whose diameter was only 0.04 m, or
1.6 inches and a little smaller than your hand. The angular resolution of his
telescope at a visual wavelength of 6 x 1077 m was 3.1”, and an angular reso-
lution more than about 10 times better than this cannot be achieved with any
optical, or visible light, telescope on the planet.

A bigger lens or mirror also collects more light than a smaller one, permitting
the detection of fainter sources. The human eye, for example, is severely limited by
its inability to gather light. The eye, or rather the brain fed by the eye, can store the
images for no more than a few tenths of a second. That’s fortunate because if it
stored an image for much longer, we couldn’t watch movies. Light collected using
telescopes can be stored for hours or more. This was first done using photographic
plates and more recently by using electronic chips.
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1.9 Telescopes that Detect Invisible Radiation

Telescopes of different designs are used to detect cosmic radiation outside the
optically visible wavelengths. They are used to observe otherwise invisible x-ray,
ultraviolet, infrared and radio wavelengths.

Relatively long radio waves are detected by radio telescopes, also known as
radio antennas, whose shapes of are similar to the reflecting mirror of an optical
telescope. The main reflector, called a dish, is a parabolic metal surface that
gathers the incoming radio waves, reflecting and focusing them to an electronic
receiver at the reflector focus. This receiving system converts the intensity of the
incoming radio signal to numbers that are then transmitted to a computer. The data
is stored in the computer as a matrix of numbers and is then manipulated to form
images.

Our angular resolution equation also applies at radio wavelengths where very
big telescopes are required to achieve significant angular resolution. At a radio
wavelength of 0.1 m, an angular resolution of 1” requires a telescope with a
diameter of 20 km. The advantage of radio signals is that the atmosphere does not
distort them, or limit the angular resolution. We can observe the radio universe on
a cloudy day, and during the day or night, just as radio signals are used to com-
municate with satellites at any time, even when it rains or snows outside.

Since radio waves are millions of times longer than those of light, aradio telescope
needs to be at least a million times bigger than an optical telescope to obtain the same
resolving power. For this reason, the first radio telescopes provided a very myopic,
out-of-focus view. But this limitation was soon overcome when radio astronomers
built successively larger telescopes, culminating in the 100 m, fully steerable par-
abolic dish at Effelsberg, West Germany. Its best angular resolution is about 10",
This may be the largest steerable radio dish that can be built, but a novel way of
building an even larger dish was to cover the floor of a valley with metal screen,
producing a 305 mdish in Arecibo, Puerto Rico. This antenna relies on the rotation of
the Earth to bring different regions of the sky into view.

Nowadays, relatively small radio telescope separated by large distances (called
baselines) are combined and coordinated electronically. This results in radio
images that are as sharp as optical ones (Fig. 1.7). Because it is spread out, an
array of small telescopes has the property that is crucial for high resolving power —
namely, great size relative to wavelength. The technique is known as interfer-
ometry because it analyzes how the waves detected at the telescopes interfere
when they are added together, so the interferometer is an interference meter.
A simple example combines the signals from a pair of telescopes with a computer
to reconstruct the waves and create the image.

The sensitivity of an interferometric array is determined by the combined areas of
the individual elements, and not by their separations. For example, the two-element
interferometer can resolve details that are much finer than its component radio
telescopes can by themselves. But the interferometer’s collecting area is only twice
that of the two individual components, so its sensitivity is just twice as great. Many
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< Distance >

Fig. 1.7 Interferometer When incoming radiation approaches the Earth at an angle, the crests
will arrive at two separated telescopes at slightly different times. This delay in arrival time is the
distance X divided by the speed of light. If X is an exact multiple of the wavelength, then the
waves detected at the two telescopes will be in phase and add up when combined. If not, they will
be out of phase and interfere. The angular resolution of such an interferometer, or interference
meter, is equal to the wavelength divided by the effective baseline. When the object being
observed is directly overhead, the effective baseline is equal to the distance between the two
telescopes

two-element telescope pairs are therefore combined in a full-fledged radio array to
gather more radio radiation. The Very Large Array, abbreviated VLA, is an example
of a modern interferometric radio array that is used to observe the cosmos. Quir-
renbach (2001) provided a review of optical interferometry at visible wavelengths.

Even better angular resolution is obtained using radio signals recorded at
widely separated radio telescopes when they are observing the same cosmic object
at the same time. The recorded signals can be combined to effectively turn the
Earth into a giant radio telescope with transcontinental interferometer baselines
and the sharpest vision of any telescope on the Earth or in space.

Example: Very long baseline interferometry

Ataradio wavelength of 1 = 0.1 m, the diameter, D7, of a telescope needed to
obtain a resolution of O, = 17 is Dy = 2.063 x 10° 1/0,es & 20,000 m
= 20 km. But an interferometer with radio telescopes placed on opposite sides
of the Earth will have a baseline of up to twice the planet’s radius, or about
107 m. That would give it an angular resolution of about 0.0016" at a wave-
length of 0.1 m.

Radio telescopes do not provide the only window on the cosmos. There are also
invisible gamma rays, x-rays, ultraviolet and infrared telescopes. Radiation com-
ing from celestial objects at these wavelengths is absorbed in our atmosphere and
must be collected by telescopes in satellites that orbit the Earth above its
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atmosphere. All of these space telescopes measure the intensity of the incoming
signal and convert these measurements into radio transmissions that are sent to
radio telescopes and receivers on the ground. NASA has, for example, launched
four large Space Telescopes, the Great Observatories named Hubble, Compton,
Chandra and Spitzer, which respectively operate at visible, gamma ray, x-ray and
infrared wavelengths (Focus 1.4). The European Space Agency, abbreviated ESA,
has built and launched the large infrared Herschel telescope that is used at far
infrared and sub-millimeter wavelengths. The American, European and Japanese
space agencies have sent a host of satellites into space with telescopes designed to
observe specific cosmic phenomena, such as activity on the Sun that is observed
from telescopes on SOHO, Hinode, STEREO, and SDO. The distances and motions
of stars have been observed from HIPPARCOS, and the cosmic microwave
background radiation delineated from COBE, WMAP and PLANCK.

Focus 1.4 The great observatories

NASA has sent four large telescopes into orbit around the Earth, designed to
study the universe in both optically visible light and non-visible forms of
radiation. The first in the series was the Hubble Space Telescope, or HST for
short, launched on April 24, 1990 and operating mainly in visible light, the
second was the Compton Gamma Ray Observatory (CGRO), launched into
Earth orbit on April 5, 1991, the third was the Chandra X-ray Observatory,
or CXO, launched on July 23, 1999, and the fourth was the infrared Spitzer
Space Telescope, or SST, launched on August 23, 2003.

The HST is the largest visible-light, astronomical telescope ever put into
space, with a 2.4 m (94.5 in.) primary mirror. The angular resolution of
optically visible light telescopes in space is not limited by the Earth’s
atmosphere, so the HST has an angular resolution as good as 0.05”. It has
observed newly formed galaxies when the universe was less than half its
present age, contributing to our understanding of the age and evolution of the
Cosmos, watched super-massive black holes consuming the material around
them, and helped astronomers determine how a mysterious “dark energy”
has taken over the expansion of the universe. The telescope is named for the
American astronomer Edwin Hubble (1889—1953) who demonstrated that
spiral nebulae are galaxies like our own Milky Way and found that galaxies
move away from us at speeds that increase with their distance.

Chandra investigates the high-energy, x-ray regions of the universe from
objects such as active galactic nuclei, black holes, clusters of galaxies, dark
matter, galaxies, neutron stars, pulsars, quasars, supernova remnants, su-
pernovae, and white dwarfs. It is named after the Indian-American astro-
physicist and Nobel laureate, Subrahmanyan Chandrasekhar (1910—1995).

Instruments aboard Compton detected thousands of energetic, brief
gamma-ray bursts, as well as gamma rays from black holes, pulsars, quasars,
and supernovae. The gamma ray observatory was named after the American
physicist Arthur H. Compton (1892—1962).
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The Spitzer telescope obtains images and spectra of the infrared energy,
or heat, radiated by cosmic objects at wavelengths between 3 and 180
microns, where 1 micron is 10~° m or one-million of a meter. The telescope
has a 0.85 m (33.5 in.) primary mirror. It provides information on the for-
mation, composition and evolution of planets, stars and galaxies, and is
named after the American astrophysicist Lyman Spitzer, Jr. (1914—1997).
Most satellite telescopes, including Hubble, circle our planet outside the
Earth’s atmosphere while remaining nearby to send observations down to the
ground by radio signals, but Spizzer revolves around the Sun, trailing behind
the Earth in its orbit, to avoid heat from the Earth and the Moon. A supply of
liquid helium initially cooled the instrument to almost absolute zero so the
telescope’s heat radiation would not interfere with its detectors.

NASA'’s next Great Observatory, the James Webb Space Telescope, or
JWST for short, is working on a launch date of 2018. It will have a large
mirror, 6.5 m (21.5 feet) in diameter, and will operate at infrared wave-
lengths that will permit the observations of distant galaxies that formed in
the early universe, as well as nearby planet-forming regions.

In the meantime, on May 14, 2009, the European Space Agency, abbre-
viated ESA, launched the Herschel infrared telescope; its primary mirror is
3.5 m (138 in.) in diameter. It is named for the English astronomer Sir
William Herschel (1738—1822), the discoverer of the infrared spectrum and
the planet Uranus, and his sister and collaborator Caroline (1750—1848).
Herschel is used to see deep into star-forming regions, galactic centers and
planetary systems.

Astronomy from space has several advantages over ground-based observations.
The weather in space is always perfectly clear and the atmosphere does not blur
images obtained from telescopes in space. Furthermore, a large telescope is not
needed to observe the short ultraviolet and x-ray wavelengths with high angular
resolution. The aperture must be only 0.002 m across to achieve an angular res-
olution of 1 at an extreme ultraviolet wavelength of 10~ m and only 0.00002 m
for the same resolution at soft x-rays of 10 keV in energy and a wavelength of
10~'% m. Moreover, in space the sky is truly dark, and observations do not need to
be limited to the night.

Example: The size of optical, x-ray and radio telescopes, and resolving
features on the Sun or Moon

The angular resolution, 0, of a telescope with a diameter D7 operating at a
wavelength / is given by 0 = 1/Dy rad, where 1 rad = 2.06265 x 10" and
" denotes second of arc with 1’ = 4.848 x 10~° rad. The angular resolution
of most ground-based, visible light, or optical, telescopes is limited by tur-
bulence in the Earth’s atmosphere to about 1”, or under excellent seeing
conditions at remote mountain tops to perhaps 0.25” = 1.212 x 107 rad,
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which is also the angular resolution of the Solar Optical Telescope on the
Hinode mission. The size of a telescope required to give this angular resolution
at a yellow wavelength of 4 = 580 nm is Dy = /0 ~ 0.5 m. The Hinode
mission also has an x-ray instrument, operating at a wavelength of
J = 1.24 x 107'° m, corresponding to 10 keV in photon energy (see Sect. 2.6
for definition of photon energy). The size of the x-ray telescope for the same
angular resolutionis Dy = 1/0 ~ 0.0001 m. A ground-based radio telescope
is not limited in angular resolution by the atmosphere, but to achieve an angular
resolution of 0.25" at a radio wavelength of A = 1 m, the telescope diameter
would have tobe Dy = 1/6 ~ 10° m or a million meters, comparable in size
to a large country and about one sixth the radius of the Earth.

The smallest linear size, L, that can be resolved on the Sun with any tele-
scope with this angular resolution is L = D x 6, where the mean distance
between the Earth and the Sunis D = 1 AU = 1.496 x 10'" m, and therefore
L ~ 181 km for an angular resolution of 0.25" = 1.212 x 10~° rad. By
way of comparison, the angular resolution of the human eye is about 60" so the
smallest sunspot that the eye can resolve has a size of L = AU x

60" x 4.848 x 107® ~ 4.35 x 10’ m ~ 6.8 R where the radius of the
Earth R = 6,378 km. The tallest mountain that can be observed at the limb,
or edge, of the Moon with the unaided human eye will have a height
H = D x 0 where the mean distance of the Moon is 3.844 x 10® m and for
0 = 60" we have a mountain height of H = 1.12 x 10° m, much taller than
Mount Everest, whose elevation is 8.848 x 10 m. In other words, we could
not see mountains on the Moon until telescopes were used.

1.10 Units Used by Astronomers and Astrophysicists

By any terrestrial standard, the scale of astronomical objects is enormous in mass,
luminosity, distance, size and age. Astronomers and astrophysicists use the Sun’s
values of these quantities as benchmark units that reflect their large amount. Any
solar value is denoted by a subscript symbol ©®, a circle with a dot in the center.

The mass of the Sun, denoted by the symbol M, is often used as the unit of
celestial mass. Its value is

M. = 1.989 x 10¥kg,

where kg denotes a kilogram, or 1,000 g. The mass of most stars lies in a narrow
range of between 0.1 M, and 100 M, just as the mass of newborn children varies
by a relatively small amount. Galaxies typically contain about 100 billion, or 100
thousand million, stars, so the stellar mass of a galaxy is about 10'' M, but a
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galaxy often contains even more mass in invisible dark matter that lies beyond the
visible stars.

The rate at which radiation carries energy away from a cosmic object is known
as its luminosity, designated by L. Luminosity has the units of energy per unit
time, which is also the unit of power. The SI unit of luminosity is a joule per
second (J s™"), where joule is the unit of energy, and one watt of power is equal to
one joule per second, or 1 Js™! =1 W.

The unit of luminosity used by astronomers is often the Sun’s luminosity,
denoted L. Its value is:

Lo =3.828 x 10%°Js7!,

where J s~! denotes joule per second. Stars vary by many orders of magnitude in
their luminosity, from 0.001 L to a million L or from 1072 Ly to 10° L. The
luminosity of a galaxy is roughly 10" L.

In astronomy and astrophysics, temperatures are measured on the kelvin scale,
named after Lord Kelvin (1824—1907) who proposed it (Kelvin 1848). This
temperature unit is written kelvin, with a lower case k, and assigned the unit
symbol capital K. The freezing temperature of water is 273.15 K and the boiling
temperature of water at sea level on Earth is 373.15 K. The kelvin scale is an
absolute, thermodynamic temperature scale where absolute zero is the temperature
at which all thermal motion ceases. Nothing can move at a temperature of 0 K. For
conversion to the degrees Centigrade, denoted by C, and degrees Fahrenheit,
abbreviated by F, we have K = C + 273.15 = (5F/9) + 255.22, withC = K —
273.15 and F = (9 K/5) — 459.67 = (9C/5) + 32.

Astronomers use the astronomical unit (AU) as the unit of distance within the
solar system. It is the mean distance between the Earth and the Sun, with a value of

1 AU = 149597870691 m ~ 1.496 x 10''m.

To be exact, astronomers now use the speed of light, denoted by the lower case
letter ¢, as a defining constant for distance, with

Speed of light = ¢ = 299792458 m s~ ! ~2.9979 x 108 m s,
with the derived value of the light travel time, 7,4, for 1 AU
T4 = 499.0047863852s ~ 499s.

This is the time it takes for radiation to travel from the Sun to the Earth.
The unit of stellar size is the radius of the Sun, denoted R, given by

Ro = 6.955 x 108 m.

The supergiant stars can be as large as 1,000 R, in radius, giant stars are about
10 times smaller, and the smallest stars that shine by nuclear reactions are about
0.1 R, in radius. Collapsed white dwarf stars are about as big as the Earth, whose
radius is 6.378 x 10° m and about 0.01 R,
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The distances between stars are expressed in a unit called the parsec, or pc for
short, where

Ipc = 3.08567758128 x 10'®m = 206265 AU ~ 3.086 x 10'®m,
which is also equivalent to
Ipc = 3.261564 light-year ~ 3.26 light-year,

where a light-year is the distance light travels in one year at the speed of light, ¢, or

1 light-year = 9.4607304726 x 10" m ~ 9.461 x 10> m.

As we shall subsequently see, the term parsec is derived from the parallax
method of determining distance, where one parsec is a parallax of one second of
arc.

Example: How far away and long ago was starlight emitted?

The Sun is located at a mean distance of 1 AU = 1.496 x 10'' m. Traveling
at the speed of light ¢ =2.9979 x 10°ms~!, it takes a time
7 = AU/c = 499 s for radiation to travel from the Sun to the Earth, so the
sunlight we see this very moment was emitted 499 s ago. The nearest star
other than the Sun is Proxima Centauri, and it takes 4.286 light-years for
starlight to travel from this star to the Earth. Since 1 year = 3.156 x 10" s,
the ratio of the distance to Proxima Centauri and the distance to the Sun is
about 4.286 x 3.156 x 107/499 ~ 271,000. The first stars were formed
shortly after the big bang, which occurred about 13.7 billion years ago. So
these first stars are located at a distance of about 13.7 billion light-years.
Using the conversion of 1 parsec = 1 pc = 3.26 light-years and 1 light-year
= 9461 x 107 m, these first stars are located at a distance of about
4.2 x 10° pc and 1.3 x 10%° m, almost 1 million billion times further away
than the Sun.

The extent of a galaxy is measured in units of kiloparsec, or kpc for short, where 1
kpc = 10® pc. The distance between the Sun and the center of our Galaxy is, for
example, about 8.5 kpc. Nearby galaxies are separated by about a million parsecs,
denoted as a megaparsec and abbreviated Mpc, where 1 Mpc = 10° pc =
3.0857 x 10%* m. The nearest large spiral galaxy, Andromeda or M 31, is located at
adistance of 0.78 Mpc, while a very remote galaxy might be at a distance of a billion
parsec, denoted as a gigaparsec and abbreviated as Gpc, where 1 Gpc = 10° p.

Astronomers use the second, abbreviated by the lower case letter s, for small
time scales and the year, or yr for short, for large ones. The orbital period of the
Earth around the Sun is one year, with a value of

lyr=3.156 x 10"s = 365.25d,
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Table 1.2 Principal SI units and their conversion to corresponding c.g.s. units

Quantity SI units Conversion to c.g.s. units

Length? Meter (m) 100 centimeters (cm)

Mass® Kilogram (kg) 1,000 grams (g)

Speed® Meter per second (m sh 100 centimeters per second (cm s7h
Energy Joule (J) 10,000,000 erg = 107 erg

Power Watt (W) =17 s7! 10,000,000 erg s =107 erg s7!
Temperature Kelvin (K) degrees Centigrade = C = K—273
Magnetic flux density Tesla (T) 10,000 gauss (G) = 10* G

Force Newton (N) = kg m s~' 100,000 dyn = 10° dyn

Pressure Pascal (Pa) = N m™2 10 dyn cm™2

% One nanometer (nm) is 1 nm = 107° m;1A=1A=10"" m; 1 mile = 1.609 km;

and 1.0 in. = 2.54 cm

" 1ton =22401b = 1.016 047 x 10°> kg ~ 10° kg

¢ Speed is the magnitude of velocity. 1 m s7! =3.600 km h™' = 2.237 miles per hour, and 1
mile per hour = 44,704 cm s™!

4 The energy of high-energy particles and x-ray radiation are often expressed in units of kilo-
electron volts, or keV, where 1 keV = 10° eV = 1.602 x 107! J, or MeV = 1,000 keV, with
1eV =1.602 176 487 x 107" J ~ 1.602 x 107" J

and 1 day = 1 d = 86,400 s. A pulsar might rotate with a period of 1 s, the Earth
is 4.6 billion years, or 4.6 Gyr, old and the expanding universe originated about
14 billion years ago. The International System of Units (Systeme International,
abbreviated SI, is used in this book. It includes the length unit of meter (m), the
mass unit of kilogram (kg), and the time unit of second (s). The SI units of energy,
luminosity, temperature, and magnetic field strength, are joule (J), watt (W, or
J s_l), kelvin (K), and tesla (T), respectively.

Many astronomers and astrophysicists have often used, and still use, the c.g.s.
units of centimeter (cm), gram (g), second (s) in their professional papers.
Conversions from the SI units to the c.g.s. units are given in Table 1.2.

1.11 Physical Constants

Since the fundamental laws of physics apply throughout the universe, the physical
constants used in the equations that describe these laws are thought to be universal
and unvarying in space or time. These constants include the speed of light, c, the
Newtonian gravitational constant, designated G, the Boltzmann constant, denoted
by k and the Planck constant, designated h.

The speed of light, c, is independent of the frame of reference in space or time.
It provides an upper speed limit affecting any object in the entire universe, and has
a value of

¢ = speed of light = 299,792,458 m s ' ~2.9979 x 10*m s~!
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The gravitational constant G enters into Newton’s universal law of gravitation,
expressing the force of gravity F = GMm/D2 between two bodies of mass M and
m separated by a distance D. If the law of gravitation is universal, applying to all
objects in the universe, than G must be independent of time, position, mass and the
nature of the bodies. It has a value of

G = gravitational constant = 6.67428 x 10~!' N m? kg2
~ 6.674 x 107" N m? kg 2.

The Boltzmann constant k£ and the Planck constant . are quantum constants
used to describe the macroscopic properties of exceedingly small things. Atoms in
“thermal” equilibrium are characterized by a single temperature 7, and an energy
E ~ kT, where

k = Boltzmann constant = 1.3806504 x 1072 J K ' ~ 1.3806 x 107227 KL,

Astrophysicists measure temperature on the kelvin scale, where the symbol K
denotes degrees kelvin. The Boltzmann constant k appears in the statistical
description of the velocities of atoms that are in thermal equilibrium and in the
ideal gas law that specifies the pressure of a gas at a given temperature.

The Planck constant 4 is used to describe the particle, or photon, nature of
radiation, specifying the photon energy E = hv for radiation of frequency v, where

h = Planck constant = 6.626069 x 1073*J s &~ 6.6261 x 1077 s.

This constant appears in the description of thermal (blackbody) radiation, and
when describing the interaction of radiation with matter.

Additional universal constants, listed at http://physics.nsit.gov/, include the
electric and magnetic constants:

&y = electric constant = permittivity of vacuum = (1077 /(36m)
=8.8542 x 107 *Fm™'

1y = magnetic constant = permeability of vacuum = 47 x 107’
=1.2566 x 10 °N A™".
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Chapter 2
Radiation

2.1 Electromagnetic Waves

The physical perception of the universe is governed almost solely by the elec-
tromagnetic radiation received from cosmic objects. This radiation carries energy
and moves through space in periodic waves at the speed of light, designated by the
lower case letter c¢. The speed of light in empty space is a universal constant,
independent of reference in space and time. The radiation is called electromagnetic
because it propagates by the interplay of oscillating electric and magnetic waves.

Our understanding of electricity and magnetism is founded upon the experi-
mental investigations of the English scientist Michael Faraday (1791-1867), who
invented the first rotating electric motor and discovered electromagnetic induction,
the principle behind the electric transformer and generator (Faraday 1843). His
experiments led Faraday to propose that electromagnetic forces extend into empty
space around charged bodies, electrical conductors, and magnets; these invisible
forces are now called electromagnetic fields.

The Scottish mathematician and theoretical physicist James Clerk Maxwell
(1831-1879) was able to express Faraday’s results in a precise mathematical form,
now known as Maxwell’s equations (Maxwell 1865). These four partial differential
equations depend on variations of the force fields in four dimensions — three for
space and one for time.

In regions with no charge or currents, such as a vacuum, Maxwell’s equations
describe sinusoidal electromagnetic waves (Focus 2.1). The waves described by
this electromagnetic wave equation have a speed equal to the speed of light,
leading Maxwell to comment, “light is an electromagnetic disturbance propagated
through the field according to electromagnetic laws.” The changing magnetic field
creates a changing electric field that, in turn, creates a changing magnetic field.
The electric and magnetic field directions are orthogonal to each other and to the
direction of travel.

K. R. Lang, Essential Astrophysics, Undergraduate Lecture Notes in Physics, 33
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2 Radiation

Focus 2.1 Plane waves of electromagnetic radiation

For the electric field, E, and the magnetic field, B, in free space, Maxwell’s
equations take the form (Maxwell 1865):

V- E=0
V-B=0
ot
OF
VXB—,Ll86—t7

where V- is the divergence operator, with units of m~ !, Vx is the curl
operator, with units of s~ and 9 /0t is the partial derivative with respect to
time, ¢. These equations can be written as second-order partial differential

equations:
1 &E
2
E—— — |]=0
(V 2 or? )

(2.2)

that describes the propagation of electromagnetic waves through a medium
or a vacuum. Here c is the speed of light in the medium. In a vacuum:

=2.99792458 x 103ms™!, (2.3)

Hoo

where the electric constant, or vacuum permittivity, & = 8.854187817 x
1002 Fm! ~ 8854 x 100> Fm™', and the magnetic constant, or
vacuum  permeability, g, = 1.256632061 x 107° N A™? ~ 1.257 x
107 N A~2. In a medium with refractive index n:

1 1
= =S =
nyeoly /HeE

where ¢ is the electric permittivity of the medium and p is the magnetic
permeability of the medium.
There are sinusoidal, plane-wave solutions of these equations written as:

(2.4)

E(r,t) = Epcos(wt — k - r)

B(r,t) = Bycos(wt — k - 1), (2.5)

where 7 is the time variable, and the angular frequency, o, is related to the
wavenumber, k, by the dispersion relation
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2.1

between successive crests or successive troughs (Fig. 2.1). Different types of

Electromagnetic Waves

= (2.6)

where / is the wavelength, v = w/2m = ¢/ is the frequency in s, and the
constant  ~ 3.154159.
The energy flux, S, and energy density, U, in the plane wave are
c e

S=—, /-E 2.7
g \/ 10 (2.7)

which is directed along the direction of wave propagation, and

¢E}
—— 2.8
4n (28)

Maxwell realized that ¢ equals the speed of light, which others had pre-
viously measured, and concluded that light is a form of electromagnetic
radiation.
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In common with any wave, electromagnetic radiation has a wavelength, usually
denoted by the lowercase Greek letter lambda, A. The wavelength is the distance

electromagnetic radiation differ in their wavelength, although they propagate at the
same speed. Like waves on water, electromagnetic waves have crests and troughs;
but, unlike water waves, electromagnetic waves can propagate in vacuous empty
space.

In ST units, the wavelength is measured in meters, abbreviated m. Other units of

wavelength are the nanometer, or nm for short, where 1 nm = 107° m, the
Angstrom, abbreviated A where 1 A = 107" m = 0.1 nm, and the micron,

denoted p where 1 p = 10~° m. Radio astronomers might specify the wavelength

in meters or centimeters, abbreviated cm where 1 cm = 1072 m.

Electric
Field

W =
Magnetic Direction of
Field Wave Motion

Fig. 2.1 Electromagnetic waves All forms of radiation consist of electrical and magnetic fields
that oscillate at right angles to each other and to the direction of travel. They move through empty
space at the speed of light. The separation between adjacent wave crests is called the wavelength
of the radiation and usually is designated by the lowercase Greek letter lambda, 4
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Sometimes radiation is described by its frequency, denoted by the lower case
Greek letter nu written v. The frequency indicates how fast the radiation oscillates,
or moves up and down. The frequency of a wave is the number of wave crests
passing a stationary observer every second, measured in Hertz, abbreviated Hz.
One Hertz is equivalent to one cycle per second, or 1 Hz = 1s~'. Radio
astronomers use a frequency unit of megahertz, abbreviated MHz, where
1 MHz = 10° Hz. Radio stations that transmit frequency modulated, or FM, sig-
nals, are denoted by their call letters and the frequency of their broadcasts in MHz.
The frequency range of FM radio broadcasts is 88—-108 MHz. Amplitude modu-
lated, or AM, radio signals are broadcast in several bands of frequency between
0.150 and 30 MHz.

Electromagnetic waves all travel through empty space at the same constant
speed — that is, the speed of light in a vacuum ¢ = 299,792,458 m s~ or about
2.9979 x 10® m s™'. The product of wavelength, /, and frequency, v, is equal to
the speed of light, ¢, or

AxXv=c. (2.9)

So, radiation at shorter wavelengths has a higher frequency and a longer
wavelength corresponds to a lower frequency. Any electromagnetic wave,
regardless of wavelength or frequency, travels though empty space at the speed of
light, and it is the maximum speed possible (Focus 2.2).

Focus 2.2 Light, the fastest thing around

It was once thought that light moves instantaneously through space. But we
now know that it travels at a very fast but finite speed. This was first inferred
from observations of Jupiter’s moon Io in the 17th century. The King of
France had directed Giovanni Domenico Cassini (1625-1712), director of
the Paris Observatory, to use such observations to improve knowledge
of terrestrial longitude and maps of France. Both the Danish astronomer Ole
Rgmer (1644-1710), who also worked at the observatory, and Cassini
noticed a varying time between eclipses of Io by the Jupiter (Rgmer 1677).
Although the time between lo eclipses was approximately 42 h, it varied by
an amount of up to 22 min.

Both astronomers concluded that it was not the orbit of Io around Jupiter
that changed, but the time it took Jupiter’s light to travel from Io to the Earth,
which depended on the Earth’s position in its orbit around the Sun. When the
Earth was on the side of its orbit that is closest to Jupiter, the observed
eclipse period for Io was shortest, and when the Earth was on the opposite
side of its annual orbit around the Sun, Io’s apparent eclipse period was
largest.

Neither astronomer gave a value for the speed of light, which would have
been equal to the diameter of the Earth’s orbit divided by the time difference
between the longest and shortest observed Io period, or a velocity of
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¢=2 AU/22 min and approximately 2.27 x 105m s, where 1

AU = 1.496x 10"" m is the mean distance between the Earth and the Sun. At
Cassini’s time this distance was not well known (see following Sect. 2.5).

Jupiter orbits the Sun at a mean distance of 5.203 AU and Jupiter’s natural
satellite Io orbits Jupiter with a period of 1.769 Earth days. It is eclipsed by
the planet with that period. Observations of changes in the eclipse period
were interpreted as differences, At, in the time, ¢ that light takes to travel
from Jupiter to Earth. When Jupiter is furthest from Earth, its distance will
be 6.203 AU, since the Earth is 1.00 AU from the Sun, and when Jupiter is
closest to the Earth, the giant planet’s distance will be 4.203 AU. So the total
change in Io’s apparent orbital period, from longest to shortest, will be
At = (6.203-4.203)/c =2 AU/c = 998 s = 16.63 min = 0.0116 Earth
days, where ¢ = 2.9979 x 10° m s ' is the speed of light. This is a rela-
tively small change in the Io’s actual orbital period of 1.769 Earth days.

The English astronomer James Bradley (1693—1762) unexpectedly dis-
covered the aberration of starlight about half a century later. It is a change in
the observed position of a star that depends on the ratio of the velocity of the
Earth and the speed of light. Using then current estimates for the Earth’s
orbital motion around the Sun, Bradley used his aberration measurements to
infer a speed of light of about 294,500 m s~' (Bradley 1728).

More refined laboratory measurements during subsequent centuries
indicated that light is always moving at a constant speed with the precise
velocity of ¢ = 299,792,458 m s~ '. Light emitted by any star moves at this
speed through empty space for all time. It never stops or slows down, and it
never comes to rest. Nothing outruns light; it is the fastest thing around.

Electromagnetic radiation has no way of marking time, and it can persist for-
ever. As long as its rays pass through empty space and encounter no atoms or
charged particles like electrons, it will survive unchanged. Radiation emitted from
any star or galaxy today might therefore travel for all time in vacuous space,
bringing its message forward to the end of the universe. Astronomers on Earth
intercept just a small part of this radiation, which is streaming away from both
known and unknown objects located throughout the cosmos.

2.2 The Electromagnetic Spectrum

Most of us remember the colorful display of a rainbow, which is sunlight bent into
separate wavelengths by droplets of water. In the mid-17th century, the English
scientist Isaac Newton (1642—-1727) showed that sunlight could also be broken into
its colors using a prism — a specially cut chunk of glass (Newton 1671, 1704).
Furthermore, each color could not be divided into other colors. A crystal
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Table 2.1 Approxima;te Color Wavelength (nm = 10" m =10 A)
wavelengths of colors -

Violet 420

Blue 470

Green 530

Yellow 580

Orange 610

Red 660

% Approximate wavelengths good to about 10 nm

chandelier or compact disk also displays the spectrum of visible light, arranging
the colors by their different wavelengths.

From short to long waves, the colors in the spectrum of visible light correspond
to violet, blue, green, yellow, orange and red (Table 2.1). Their wavelengths might
be specified in nanometers, abbreviated nm, where 1 nm = 10°m or in
Angstréms, abbreviated A, where 1 A = 0.1 nm = 107" m. Light from the Sun
or an incandescent light bulb often is called white light, because it contains all of
the colors, whereas black denotes the absence of color when we see no light.

The electromagnetic spectrum describes the types and wavelengths of elec-
tromagnetic radiation (Fig. 2.2). From short wavelengths to long ones, this spec-
trum includes gamma rays, x-rays, ultraviolet radiation, visible light, infrared
radiation and radio waves (Table 2.2).

Our eyes detect a narrow range of wavelengths, which include the visible
colors. It comprises just one small segment of the much broader electromagnetic
spectrum. This band of light is also termed visible radiation, to distinguish it from
invisible radiation that cannot be seen with the eye. The radiation we can see is
also known as optically visible radiation, since the science of optics is used to
describe the lenses and mirrors used to detect the light. The most intense radiation
of the Sun and many other stars is emitted at these optically visible wavelengths,
and our atmosphere permits it to reach the ground. Other types of radiation, like
the invisible x-rays, are absorbed in our atmosphere and do not reach the Earth’s
surface.

The invisible domains include infrared and radio waves — with wavelengths
longer than that of red light — and the ultraviolet (UV) rays, x-rays, and gamma (7))
rays, whose wavelengths are shorter than violet light. They all are electromagnetic
waves and part of the same family, and they all move in empty space at the speed
of light, but we cannot see them.

Gamma rays are the shortest and most energetic electromagnetic waves. Their
wavelengths are as small as the nucleus of an atom, or about 1071 m, and their
waves are so energetic that they can pass through a thick iron plate.

The x-ray region of the electromagnetic spectrum extends from a wavelength of
100 billionth (1071 1) of a meter, which is about the size of an atom, to the short-
wavelength side of the ultraviolet. The German physicist Wilhelm Rontgen
(1845-1923) discovered x-rays, producing them with an electrical discharge in a
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Fig. 2.2 Electromagnetic spectrum Radiation from cosmic objects can be emitted at
wavelengths from less than 107'2 m to greater than 10* m, where m denotes meters. The
visible spectrum that we see with our eyes is a very small portion of the entire range of
wavelengths. Lighter shading indicates a greater transparency of the Earth’s atmosphere to
cosmic radiation. It only penetrates the Earth’s atmosphere at visible and radio wavelengths,
respectively represented by the narrow and broad white areas. Electromagnetic radiation at short
gamma ray, X-ray and ultraviolet wavelengths, represented by the dark areas, is absorbed in our
atmosphere. The universe is now observed in these spectral regions from above the atmosphere in
Earth-orbiting satellites

Table 2.2 The

. Region Wavelength range (m)
electromagnetic spectrum - -
Radio 107°-10
Microwave 107321
Infrared 7 x 1077-1072
Visible 4 x 10777 x 1077
Ultraviolet 10784 x 1077
X-ray 10711-1078
Gamma ray Less than 107"

glass vacuum tube (Rontgen 1896). He used the energetic x-rays to penetrate skin
and muscle, detecting human bones and revolutionizing medicine.

The wavelength of ultraviolet radiation, abbreviated UV, is just a bit longer,
between 1073 and 4 x 1077 m, with extreme ultraviolet radiation, denoted EUV,
lying in the short wavelength part of this range. Most of the ultraviolet radiation
from the Sun is absorbed in our air, but prolonged exposure to the amount that
reaches the ground can burn your skin.

The infrared part of the electromagnetic spectrum is located at wavelengths
between 7 x 107 and 10> m. The German-born English astronomer William
Herschel (1738-1822) discovered infrared radiation when he put a beam of sun-
light through a prism to spread it into its spectral components. He noticed that an
unseen portion of sunlight warmed a thermometer placed beyond the red edge of
the visible spectrum (Herschel 1800). The thermometer recorded higher
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temperatures in the invisible infrared sunlight than in normal visible sunlight.
Herschel called them calorific rays because of the heat they generated. The term
infrared did not appear until the late 19th century.

Humans “glow in the dark,” emitting infrared radiation, but we cannot see the
heat; it is outside our range of vision. Soldiers can locate the enemy at night by
using night-vision goggles with infrared sensors that detect their heat, and spy
satellites use infrared telescopes to detect heat radiated by rocket exhaust and by
large concentrations of troops and vehicles.

Atmospheric molecules such as carbon dioxide and water vapor absorb infrared
radiation. So the air that looks so transparent to our eyes is opaque to much of the
infrared radiation coming from outer space. Telescopes located above part of
the atmosphere, on the tops of mountains in dry climates, can catch some of the
incoming infrared radiation before it is completely absorbed. The atmosphere
similarly blocks the heat radiation from the Earth’s surface, keeping it warmer than
it would otherwise be. This warming of the ground is known as the greenhouse
effect.

The atmosphere effectively absorbs most of the ultraviolet and infrared radia-
tion from cosmic objects and all of their x-rays and gamma rays, which never
reach the ground. To look at the universe at these invisible wavelengths, we must
loft telescopes above the atmosphere. This was done first by using balloons and
sounding rockets, followed by Earth-orbiting satellites with telescopes that view
the cosmos at invisible ultraviolet, infrared, x-ray and gamma ray wavelengths.

Radio waves are between 0.001 and 1,000 m long, too long to enter the eye and
not energetic enough to affect vision. The German physicist Heinrich Hertz
(1857-1894) discovered radio waves by building equipment to both produce and
detect the invisible electromagnetic signals (Hertz 1887). The unit of frequency
v =c/A is now named the Herrz in his honor; this unit is abbreviated Hz.
Microwaves have wavelengths in the short part of the radio-wave region, between
0.001 and 1.0 m.

Radio waves are the only type of invisible radiation that is not absorbed in the
Earth’s atmosphere. Radio waves even can pass through rain clouds; therefore, the
radio universe can be observed on cloudy days and in stormy weather, just as a
home or car radio works even when it is raining or snowing. Cosmic radio waves
that are longer than about 10 m are nevertheless reflected by an ionized layer in the
Earth’s atmosphere, called the ionosphere; so these longer radio waves cannot
reach the ground and must be observed from space.

2.3 Moving Perspectives

Motion changes our perspective, and observations depend on our relative motion
with respect to the object being observed. These moving perspectives are descri-
bed using inertial frames of reference, which move at a constant velocity, never
accelerating or decelerating. The Dutch physicist Hendrik A. Lorentz (1853-1928)
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derived the coordinate transformation of Maxwell’s equations from one inertial
system to another, showing that the equations are invariant when subjected to this
transformation. The Lorentz transformation utilizes a parameter y, now known as
the Lorentz factor, which is given by (Lorentz 1904):

)= [1—‘;—22] o - (2.10)

where V is the relative velocity of the two inertial frames of reference, § = V/c
and ¢ = 2.99792458 x 10° m s~ ' is the speed of light.

The German-born physicist Albert Einstein (1879-1955) generalized the
Lorentz transformation in the Principle of Relativity (Einstein 1905a, b), which
states that the laws of nature and the results of experiments performed in an inertial
frame are independent of the uniform velocity of the system. Einstein additionally
proposed that there exists in nature a limiting, invariant speed, the speed of light, c,
now known as a universal constant.

The unvarying speed of light was first demonstrated in the late 19th century by
the American physicist Albert A. Michelson (1852-1931), assisted by his friend
the chemist Edward W. Morley (1838-1923), when they attempted to precisely
measure how the speed of light depends on the Earth’s motion through a hypo-
thetical, space-filling medium, the ether, in which light waves were supposed to
propagate and vibrate.

As the Earth moves through the stationary ether, a wind would be generated,
and the observed speed of light would vary, like the speed of a sailboat going with
or against the wind. But Michelson and Morley found that there was no detectable
difference in the speed of light measured in the direction of the Earth’s motion or
at right angles to it (Michelson and Morley 1887). So the experiment meant that
there was no light-carrying ether. It also implied that the speed of light is constant,
exactly the same in all directions and at all seasons, and independent of the motion
of the observer (Focus 2.3).

Focus 2.3 The Michelson-Morley experiment

Many experiments have been carried out to confirm the unvarying speed of
light, but the most famous one was conducted in a basement laboratory at the
Case School of Applied Science in Cleveland, Ohio in 1887, when the
American scientists Albert A. Michelson and Edward W. Morley attempted
to use an interferometer to precisely measure how the speed of light depends
on the Earth’s motion through space.

Scientists of that time firmly believed in an imaginary luminiferous ether,
an invisible, frictionless, and unmoving medium that was supposed to per-
meate all of space. Its presence explained how light waves could travel at
high speed through the apparent emptiness of space, providing the medium
in which they propagate. Light was supposed to be transmitted in space by
the vibrations of the hypothetical, invisible ether.
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If the Earth moved through the stationary ether, a wind would be gen-
erated and the observed speed of light would vary, like the speed of an
airplane moving with or against the wind. But Michelson and Morley found
that there was no detectable difference in the interference pattern produced
when a beam of light was sent into the ether wind in the direction of the
Earth’s motion or directed at right angles to it. Moreover, there was no
difference in the measured speed of light when the Earth was traveling
toward the Sun and away from it half a year later. That is, Michelson and
Morley could measure no difference, Ac, in the speed of light, ¢, in two
perpendicular paths of equal length, in the direction of the Earth’s motion or
transverse to it, with a precision of Ac/c <0.0001 (Michelson 1881;
Michelson and Morley 1887). Roy J. Kennedy, at the California Institute of
Technology, subsequently refined the experiment and improved the mea-
surement precision by a factor of ten (Kennedy 1926; Kennedy and
Thorndike 1932).

So the Michelson-Morley experiment meant that there was no light-car-
rying ether. It also meant that the speed of light is always constant and
everywhere the same. In 1907 Michelson was awarded the Nobel Prize in
Physics for his optical precision instruments and the spectroscopic and
metrological investigations carried out with their aid.

The speed of light, c, enters into Albert Einstein’s (1879-1955) Special Theory
of Relativity through the Lorentz factor y = [1 — (V/ ¢)?1”""* for an object moving
at an observed velocity, V. We normally regard time as absolute and immutable,
with nothing disturbing its relentless, steady tick. But for Einstein, time was rel-
ative and variable. In rapid travel, the rate at which time flows decreases, so
moving clocks run slower by the factor y. Lengths are diminished at high speed,
shrinking in the direction of motion by the amount y. At very high velocities, mass
is also relative, and it increases with the speed by the same infamous y factor.

In the Special Relativity, motions and events are described by coordinates in
space (x, y, z) and time, ¢, within an inertial frame of reference that moves at a
constant velocity. The length of an object moving with the reference frame of an
observer is called the proper length, and the time read in a clock in that frame is the
proper time.

If proper time, ¢, and time interval, Af, between two events at one location are
measured in system K, then the time interval, Az’, between the events as measured
in system K’ moving with uniform velocity V is:

V2 o At
A=Al ——==—. 2.11
Vi—==3 1)

A moving clock will therefore appear to go slower to an observer in the moving
system, which is known as time dilation.
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Time dilation can prolong the decay time of fast-moving, unstable cosmic ray
particles by several orders of magnitude, and noticeably lengthen the lifetime of
elementary particles produced in man-made particle accelerators.

Atomic clocks have been flown around the world, first eastward and then
westward, and compared with the time recorded by a reference atomic clock on the
ground. As predicted by Special Relativity, the flying clocks lost time (aged
slower) during the eastward trip, in the direction of the Earth’s rotation, and gained
time (aged faster) during the westward trip (Hafele and Keating 1972).

Lengths are also diminished at high speed, shrinking in the direction of motion.
For proper spatial separation or length, Ax, in system K, there is a Lorentz con-
traction or shortening, Ax’, in the moving K’ system given by:

V2 Ax
AX = Ax l——=—. (2.12)
¢ Y
Thus, both space and time are relative in the Special Theory of Relativity.
Mass is also relative, for it increases with the speed. If a particle or object has
rest mass, m1, in a non-moving frame, the mass increases in the moving one to '
given by:

P E— (2.13)

V2
-

The rest-mass energy E = moc? increases in the moving frame to the energy E’
given by:

E = —— = ymyc’. (2.14)

This expression has been verified in high-energy particle experiments that
demonstrate that the energy of a subatomic particle can increase with its speed.
The equation also shows that an infinite amount of work would be required to
accelerate a particle to the speed of light, with V = ¢, implying that no physical
object can move faster than the speed of light in an inertial frame. The mass grows
without bound when an object moves as fast as light, and there is nothing that can
propel it so fast.

Light is especially difficult to describe using this theory, for any specification of
mass, size, or time intervals are undefined when moving at light’s speed.

In the Special Theory of Relativity, which applies to the non-accelerating and
non-gravitational laws of physics, distance is measured by a metric, or line
element, ds, that combines space, X, y, z, and time, t. It was first proposed by
Einstein’s former teacher, Hermann Minkowski (1864-1909) and is given by
Minkowski (1908):

ds* = —c2dr* + dx* + dy* + dZ, (2.15)
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where the speed of light, c, is used to give the units of space from time and the all-
important negative sign indicates time passing. In spherical coordinates r, 6, ¢ the
metric ds is written

ds* = —c*df* + dr* + r*d0” + r* sin® 0d¢p’. (2.16)

In this description, two events don’t have a uniquely defined separation in either
space or time. Instead, they are separated in space-time. So, the concepts of space
and time are interwoven.

Space and time manage to join together in a detectable way when objects move
exceptionally fast, approaching the speed of light. In these special circumstances,
there is no space without time and no time without space; they are fused together.
If the motion is fast enough, it will change the size and shape of things, or slow the
passing of time. But these effects only become significant at exceptionally high
speeds, close to the speed of light. We never encounter these experiences in
normal circumstances, and they are not directly applicable to our everyday lives.

2.4 Thermal (Blackbody) Radiation

An ideal thermal radiator is known as a blackbody. By definition, a blackbody
absorbs all the radiation that falls upon it and reflects none — hence the term black.
A black shirt will similarly absorb most of the visible sunlight falling on it and
reflects no colors.

Thermal radiation is emitted by a gas in thermal equilibrium, and arises by
virtue of an object’s heat, or temperature. A single temperature characterizes
thermal radiation.

Any hot gas that is in thermal equilibrium, with a temperature above absolute
zero, will attempt to radiate its energy away. The emission from such a thermal
radiator is found at all wavelengths, or frequencies, but with a varying intensity
that depends on the temperature (Fig. 2.3). As the temperature increases, more
energy is radiated at all wavelengths. Moreover, the wavelength of maximum
radiation shifts toward the shorter wavelengths when the temperature rises.

Since the emission of thermal radiation is present at all wavelengths, astrono-
mers say it emits a continuum spectrum. A display of its radiation intensity as a
function of wavelength, known as the spectrum, shows no gaps, breaks or sudden
increases or decreases. It is an unbroken continuum ascending to peak intensity
and then dropping again as the wavelength increases.

No real object emits a perfect thermal, or blackbody, spectrum, but the Sun
shines with roughly such a spectrum. It closely matches the radiation spectrum of a
blackbody at a temperature of 5,780 K.

The German physicist Max Planck (1858-1947) derived the formula for the
spectrum of a perfect absorber, or blackbody, introducing the idea that it radiates
energy in fundamental indivisible units, which he called quanta, whose energy is
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Fig. 2.3 Blackbody radiation The spectral plot of blackbody radiation intensity as a function of
wavelength depends on the temperature of the gas emitting the radiation. The German physicist
Max Planck (1858-1947) derived the formula that describes the shape and peak of this spectrum
in 1900. He proposed that the radiation energy was quantized, which provided a foundation for
quantum theory. At higher temperatures the wavelength of peak emission shifts to shorter
wavelengths, and the thermal radiation intensity becomes greater at all wavelengths. At a
temperature of 6,000 degrees on the kelvin scale, or 6,000 K, the thermal radiation peaks in the
visible, or V, band of wavelengths. A hot gas with a temperature of 100,000 K emits most of its
thermal radiation at ultraviolet, or UV, wavelengths, whereas the emission peaks in X-rays when
the temperature is 1 million to 10 million K

proportional to the frequency of the radiation (Planck 1901, 1910, 1913). The
constant of proportionality between the frequency and energy of the radiation is
now known as the Planck constant, designated by the lower case letter 4. It has a
value of h = 6.626 069 57 x 107>* J's, or about & ~ 6.626 x 107>* J s. This
marked the beginning of quantum physics, whose history is discussed by Kragh
(2002).

Planck found that a blackbody with temperature 7 emits a continuum spectrum
of radiation characterized by a brightness distribution, B,(T), which depends only
on the frequency v and temperature 7 and is given by:

2hv3 1

Js™'m ?Hz ' steradian™' 2.17
& exply /) — 1] s~ m “Hz " steradian (2.17)

where the Planck constant & ~ 6.626 x 1073* ] s, the Boltzmann constant
k ~ 1.381 x 1072 J K™, and a steradian is the dimensionless SI unit of solid
angle, which is related to the area an angle cuts out. The solid angle of a full sphere
is 47 and that of a hemisphere is 27, where = = 3.13159.

The Planck distribution can also be written per unit wavelength, B;(T), where
the wavelength A = ¢/v and:
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dv
di.

2hc? 1
= B,(T) e Js7'm?m™! steradian™".

B,(T) =B, 22T exp[(e) — 1]

(2.18)

The blackbody spectrum is markedly asymmetric. It falls off very rapidly with
decreasing wavelength on the short wavelength side of the maximum and
decreases gradually with increasing wavelength at long wavelengths. At short
wavelengths, or high frequencies, we have the so-called Wien tail of the distri-
bution, derived by the German physicist Wilhelm Wien (1864—1928) near the end
of the 19th century. It is given by (Wien 1893):

—h
7 exp (k—TV) for hv > KT. (2.19)

Two English physicists, Lord Rayleigh (John Strutt, 1842-1919) and James
Jeans (1877-1946) derived an expression for the brightness of thermal radiation at

long wavelengths, or low frequencies. For wavelength A this Rayleigh-Jeans law is
(Rayleigh 1900, 1905; Jeans 1905, 1909):

20kT
B,(T) = 34 for he < 2kT (2.20)
or at frequency v:
22kT
B,(T) = = forhv < kT, (2.21)

These equations are applicable at radio wavelengths or frequencies for most
temperatures.

The Rayleigh—Jeans law agrees with experimental results at large wavelengths,
with 1> hc/(kT), or, equivalently, at low frequencies v < kT /h, but strongly
disagrees at the short ultraviolet wavelengths (or high frequencies). This incon-
sistency between observations and the predictions of classical physics is com-
monly known as the ultraviolet catastrophe; Planck (1901) explained the
inconsistency when he introduced radiation quanta.

The blackbody, or thermal, spectrum has a maximum intensity at a wavelength,
Amax,» Which can be found by taking the derivative of the Planck distribution and
setting the equation to zero, or from dB,(T)/dA = 0, giving:

. _b_ 000289777
‘max — T - T

where b is the Wien displacement constant and T is the temperature on the kelvin
scale, abbreviated K. This expression is called the Wien displacement law, after the
German physicist Wilhelm Wien (1864-1928) who formulated the relationship
based on a thermodynamic argument (Wien 1893). It is known as a displacement
law because the wavelength peak Ay, is displaced when the temperature, 7, is

29
meters, (2.22)

~
~
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changed. The expression indicates that colder objects radiate most of their energy
at longer wavelengths, and that hotter objects are most luminous at shorter
wavelengths. In other words, as the temperature of a gas increases, most of its
thermal radiation is emitted at shorter and shorter wavelengths.

Example: The most intense thermal radiation at different temperatures

The Sun radiates its most intense radiation in the visible colors. At an orange
wavelength of 1 = 500 nm, the effective temperature of the Sun’s photo-
sphere is T = 0.0029/(5.00 x 1077) ~ 5,800 K. The average body tem-
perature of a human is about 7 = 310 K. From the Wien displacement law,
the wavelength of maximum thermal radiation at this temperature is
Amax = 0.0029/310 ~ 9.35 x 107° m, corresponding to infrared wave-
lengths. This heat radiation can be detected by rattlesnakes and by night-
vision goggles. The primary mirror of the Spitzer Space Telescope has a
diameter of Dy = 0.85 m, and its angular resolution 6 at this infrared
wavelength is 0 = 2/Dy ~ 1.1 x 10> rad ~ 2.27”, where 1 rad =
2.06265 x 10°”. Suppose this telescope was pointed down at the ground to
act as a spy satellite from a geosynchronous orbit where the orbital period is
equal to the Earth’s rotation period of 24 h. The semi-major axis of such an
orbit is equal to a = 42,164 km, so the altitude H above the ground in
H=a— Rg=3579 x 107 m, where the radius of the Earth is
Rz = 6,371 km (see Sect. 4.1). The smallest feature this telescope could
resolve on the ground would have a linear size of L = H x 0 ~ 394 m,
bigger than a human but comparable to a convoy of vehicles. An x-ray
telescope operating at a wavelength of 4 = 1.24 x 10~° m would detect the
thermal radiation of a gas at a temperature of 7 = 0.0029/1 ~2.3 x 10° K,
or about 2 million K. In contrast, the cosmic microwave background radi-
ation has a temperature of 7 = 2.725 K, and the wavelength at which its
emission is most intense is max = 0.0029/2.725 ~ 0.001 m or 1 mm.

The Wien displacement law helps explain why stars have different colors. Since
red wavelengths, at about 660 nm, are longer than blue wavelengths, at around
470 nm, you would expect that the visible disk of a red star would be cooler than
the disk of a blue star. The Wien displacement law yields effective disk temper-
atures of about 4,400 K for the red star and roughly 6,200 K for the blue star.

However, the radiation from exceptionally hot stars, which peaks at short,
invisible ultraviolet wavelengths, also enhances the radiation intensity at adjacent
blue wavelengths. A star that is most intense at an unseen ultraviolet wavelength of
30 nm might have a disk temperature as great as 100,000 K, and such a star will
also emit more radiation in blue visible light than a cooler star (Fig. 2.4). Careful
spectral calibration of stellar colors indicates that blue stars, of spectral class O,
can indeed have disk temperatures as high as 280,000 K, while the red stars of
spectral class M can be about 100 time cooler, at 2,800 K (Sect. 10.10).


http://dx.doi.org/10.1007/978-3-642-35963-7_4
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Fig. 2.4 Ultraviolet overflow The continuum spectrum of a star’s thermal radiation changes
with the effective temperature of the stellar disk, and this results in different star colors within the
visible range of wavelengths, from 400 to 700 nm (middle). They range from blue stars, at
relatively short visible wavelengths to red stars, at the longer wavelengths detected by our eyes.
The thermal radiation of a star with an effective disk temperature of about 4,000 degrees on the
kelvin scale, denoted K, peaks at the red wavelengths, and a hotter star with a temperature of
about 6,000 K emits its most intense emission at blue wavelengths. A much hotter star at 100,000
K will be most intense at invisible ultraviolet wavelengths (leff), but because the total energy
emitted by a star increases dramatically with temperature, the very hot star will also appear bright
at blue wavelengths

In terms of frequency, Wien’s displacement law for the maximum frequency,
Vmax> 18  determined from dB,(T)/dv=0 and is given by:
Vmax ~ 2.8kT /h ~ 5.8 x 10'° T Hz.

Because the spectrum of blackbody radiation per unit frequency interval, B,(T),
differs from the Planck distribution per unit wavelength, B;(T), the vy.x does not
equal ¢/ Amax-

The energy density, u,(T), of blackbody radiation, per unit frequency interval, is

4n 8mv? hv
u,(T) = TBV(T) =3 exp[(%) — l} . (2.23)
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Table 2.3 Radiation constants

a = Radiation density constant = 87°k*/(15¢31) = 4o /c = 7.5657 x 107" JK™* m~?

o = Stefan-Boltzmann constant = 2°k*/(15¢2h%) = ac/4 = 5.6704 x 1078 J s ' m2 K™*
¢, = First radiation constant = 2nhc? = 3.741771 x 107y ' m?

¢, = Second radiation constant = hc/k = 0.0143877 m K

b = JmaxT = Wien displacement law constant = 0.002897768 m K =~ 0.002898 m K

The energy density has SI units of J m~> Hz™'. The radiation is isotropic, or the
same in all directions, and the solid angle of a full sphere is 4n sr, where the
constant © ~ 3.14159. When this expression is integrated over all frequencies, we
obtain the total energy density, u, of a blackbody:

[o.¢]
U= / u,(T)dv = aT*, (2.24)
0

where the radiation constant a is given by
8mk*

a = ——

1563h3

The radiant flux, f,(T), of energy flowing out of the blackbody over = sr, or over
the hemisphere facing an observer, is

~757x 107" JK*m™? (2.25)

£,(T) =nB,(T)Js ' m2Hz !, (2.26)

in units of energy per unit time per unit area per unit frequency interval. The radiant
flux is what is observed from astronomical objects. When integrating the flux over all
frequencies one obtains the total radiant output per unit area, f, given by:

oo

f= /fv(T)dV = / nB,(T) dv = ?T4 = oT", (2.27)
0

0

where the Stefan-Boltzmann constant, g, is given by: ¢ = ac/4 = 5.6704 x 1078
Js'm2K™

This and other radiation constants are given in Table 2.3.

We can add up, or integrate, the contributions to the blackbody spectrum at
every wavelength to obtain the total luminosity of a thermal radiator. This results
in the Stefan-Boltzmann law in which the luminosity increases with the square of
the radius and the fourth power of the effective temperature. Luminosity is
intrinsic to a star, establishing its power and energy output per unit time.

The Stefan-Boltzmann law states that the total power, or intrinsic luminosity L,
at the visible disk of a star or other astronomical object with radius, R, and
effective temperature, Ty, is:

L=4noR* Tk, (2.28)
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where 7 = 3.1416 and the Stefan-Boltzmann constant ¢ = 27°k*/(15¢*h%) =
5.6704 x 1078 Js~! m~2 K*. The effective temperature, T.g, is the disk tempera-
ture that the object would have if it were a perfect blackbody radiating at lumi-
nosity L.

The unit of energy is the joule, and the unit of luminosity is joule per second,
abbreviated J s~!. Power is often expressed in units of watts, where 1 watt =
IW=17Js"".

The Stefan-Boltzmann law indicates that at a given effective temperature,
bigger stars have a greater luminosity than smaller stars, and at the same size,
hotter stars are intrinsically more luminous than cooler stars. The Austrian phys-
icist Joseph Stefan (1835-1893) obtained this law using experimental measure-
ments made by the English physicist John Tyndall (1820-1893), and Stefan’s
student Ludwig Boltzmann (1844-1906) derived it from theoretical consider-
ations, using thermodynamics (Stefan 1879; Boltzmann 1872).

The intensity of radiation striking a unit area decreases as the radiation spreads out
into an increasing volume. The area of an imaginary sphere located at a distance, D,
from the Sun or any other star is given by 4mD?, so the intensity per unit area,
designated by [, is given by [ = L/(4nD?), which falls off as the inverse square of the
distance. You can notice this effect when watching the increased brightness of a car’s
headlight when the car approaches you and its distance decreases, or when watching
the car’s taillights dim as it moves away to greater distance.

The radiant flux, f, of a blackbody, thermal radiator of radius R and absolute
luminosity, L, and temperature 7, observed at a distance, D, is

L oRTY

1=~ 2

. (2.29)

2.5 How Far Away is the Sun, and How Bright, Big
and Hot is it?

2.5.1 Distance of the Sun

How far away is the Sun? The mean distance separating the Earth and the Sun is
known as the astronomical unit, abbreviated AU, and it provides the crucial unit of
planetary distance. Yet, for a very long time no one knew exactly how big it was.
We now know that it is about 149.6 million km.

By the end of the 17th century, astronomers and other scientists had a good
understanding of how the planets move around the Sun, but they could produce a
scale model of the solar system that only provided relative distances of the planets
from the Sun. The true distances and speeds of motion of the planets remained
unknown.


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR1000
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR151
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Fig. 2.5 Distance to the Sun Values of the solar parallax obtained from measurements of the
parallaxes of Venus, Mars, and the asteroid Eros between 1850 and 1970. The solar parallax,
designated by 7, is half the angular displacement of the Sun viewed from opposite sides of the
Earth. The error bars denote the probable errors in the determination; the points for 1941, 1950
and 1965 all have errors smaller than the plotted points. In the 1960s, the newly developed radar
(i.e., radio detection and ranging) technology enabled determination of the Sun’s distance with an
accuracy of about 1,000 m. The radar value of the solar parallax is 8.79405 s of arc

It is no wonder then that obtaining a precise value for the Sun—Earth distance
played an important role in the astronomy of the 18th and 19th century. The quest
for accurately measuring that distance involved hundreds of trips to remote
countries, tens of thousands of observations and photographs, and the lifetime
work of several astronomers. They first determined the separations of the Earth
and a nearby planet, such as Venus or Mars, and then used this planetary distance
to infer the separation of the Earth and the Sun.

The distance of a nearby planet can be estimated by measuring the angular
separation in the apparent direction of the planet when observed simultaneously
from two widely separated locations on the Earth. This angle is known as the
parallax, from the Greek parallaxis, meaning the “value of an angle.” If both the
parallax and the separation between the two observers are known, then the distance
of a planet can be determined by triangulation. This is based on the geometric fact
that if we know the length of one side of a triangle and the angles of the two
corners, then all of the other dimensions can be calculated.

Since angular measurements were involved, the astronomical unit was naturally
specified by an angle called the solar parallax, which is defined as half the angular
separation of the Sun as viewed from opposite sides of the Earth. More than a
century of estimates for the solar parallax are shown in Fig. 2.5 and discussed in
Focus 2.4 — also see Hirshfeld (2001) and Van Helden (1985).


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR487
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR1078
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Focus 2.4 The solar parallax and the Sun’s distance

The distance separating the Earth and the Sun, known as the astronomical
unit or AU for short, is determined by first estimating the distance between
the Earth and a nearby planet. This planetary distance then can be used to
specify the AU. The distance of Venus from the Sun, for example, is equal to
one half of the distance between the Earth and Venus when it is closest and
farthest away, on the other side of the Sun. When the Venus—Sun distance is
known, we can infer the distance of any other planet from the Sun using
Kepler’s third law (see Sects. 3.1, 3.2), which relates the orbital periods and
orbital distances of the planets.

For more than a century, the distances of Venus and Mars were deter-
mined by triangulation from different points on the Earth. It involved
measurements of the parallax, or angular difference in the apparent direction
of the planet, as observed from widely separated locations. The solar par-
allax, designated by the symbol 7, was then inferred. It is defined mathe-
matically by sinn, = Rg/AU, where the equatorial radius of the Earth is
Ry = 6.378 x 10®* m. The ratio of Rz and the AU provided an angle in
radian units, and one radian is equivalent to 2.06265 x 10° " where the
symbol // denotes a second of arc or an arc second.

In 1672, Giovanni Domenico Cassini (1625—-1712), an Italian astronomer
and the first director of the Paris Observatory, obtained an early triangulation
of Mars, combining his observations from Paris with those taken by his
colleague Jean Richer (1630-1696) from Cayenne, French Guiana. The
planet was then in opposition, at its closest approach to the Earth. From the
two sets of observations of Mars, made from opposite sides of the Earth and
about 7,200 km apart, it was possible to estimate the distance to Mars and to
infer an approximate value of 9.5” for the solar parallax (Van Helden 1985).

Astronomers in the 18th and 19th century attempted to improve the
measurement accuracy of the Sun’s distance during the rare occasions when
Venus crossed the face of the Sun in 1761 and 1769, with an estimate for the
solar parallax of 8.57” 4 0.04” and in 1874 and 1882 with a wide range of
results between 8.76” and 8.88” from world-wide observations. The method
also involved comparison of observations from widely separated locations to
determine the distance by triangulation.

In 1877, David Gill (1843-1914), an unemployed Scottish astronomer
with no university degree, traveled to the small island of Ascension near the
equator where he could use the Earth’s rotation to view the near approach of
Mars from different directions, obtaining a solar parallax of 8.78” 4 0.01".

Subsequent determinations of the distance to the nearby asteroid named
433 Eros, during its closest approaches to the Earth in 1900-1901 and
1930-1931, resulted in respective estimates for the solar parallax of
8.807" £ 0.0027” and 8.790” £ 0.001".


http://dx.doi.org/10.1007/978-3-642-35963-7_3
http://dx.doi.org/10.1007/978-3-642-35963-7_3
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Significant improvements in the precision of planetary distances came in
the late 1960s by bouncing pulsed radio waves off of Venus and timing the
echo. The round-trip travel time — about 276 s when Venus is closest to the
Earth — was measured using atomic clocks, and a precise distance to Venus
then was obtained by multiplying half of the round-trip time by the speed of
light.

The distance of Venus from the Sun is equal to one half of the difference
between the Earth and Venus when it is closest and farthest away, on the
other side of the Sun. The resulting radar value for the solar parallax was
8.79405”. The corresponding value of the astronomical unit, inferred from
the radar determination of the distance of Venus, is 149,597,870 km, with an
accuracy of about 1 km, or for the accuracy required in most astronomical
calculations 1 AU = 1.496 x 10'"" m (Ash et al. 1967; Muhleman 1969).

Nowadays the accuracy of the mean Earth—Sun distance is fixed by the
exact value for the speed of light. The Earth—Sun light travel time, Taoy — or
the time for light to travel across 1 AU — is given as a primary astronomical
constant and has the value 1oy = 499.0047863852 s, with a derived value
for the mean Earth-Sun distance of 1AU = ctay = 1.495978707 x 10'' m,
where the speed of light ¢ = 299792458 m s~'. The derived value of the
solar parallax is mo = 8.7941433” where /7 denotes second of arc.

The time for light to travel from the Sun to the Earth is used now as a primary
astronomical constant. It is approximately 499 s, which corresponds to an AU of
about 149.6 million km or 1.496 x 10'' m, and approximately 10,000 times the
diameter of the Earth. Once scientist’s determined the Sun’s distance, they could
determine the Earth’s mean orbital velocity, by assuming — to a first approximation —
a circular orbit and dividing the Earth’s orbital circumference by its orbital period of
Pz = one year = 3.1557 x 10’ s. The Earth’s velocity is 2n AU/Pg =
29,800 m s~ ', which is equivalent to approximately 107,000 km per hour, much
faster than the fastest airplane or car.

By way of comparison, the light travel time from the next nearest star other than
the Sun to the Earth is 4.24 years, or approximately 134 million s. This star is
called Proxima Centauri and it is located at a distance of 4.01 x 10'® m and
268,000 AU.

Therefore, the Sun is about a quarter million times closer to the Earth than the
next nearest star. Because of this closeness, the Sun is approximately 100 billion
times brighter than any other star. This brilliance and proximity permit detailed
investigations that are not possible for any other star. As a result, studies of the Sun
provide the foundation and benchmark for an understanding of other stars.

Although our unaided eyes can see about six thousand stars in the night sky, and
telescopes reveal hundreds of billions of them in the Milky Way, our own daytime
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star, the Sun, is a special star. It is the source of all our power. Its radiation
energizes our planet, warms the ground and sea, lights our days, strengthens our
bodies, and sustains life on Earth.

The life-sustaining Sun also links us to the other stars, and to understand how
the Sun or any other star operates, we must examine their radiation, which spreads
out and carries energy in all directions.

2.5.2 How Big is the Sun?

Any incandescent body shines because it is hot. The wire filament in an incan-
descent light bulb is, for example, heated to a white-hot temperature of about
3,000 K to produce its luminous glow. As it turns out, the visible solar disk is just
about twice that hot, and it owes its much greater luminosity to its vastly larger
size.

The solar radius, denoted R, can be determined from observations of the Sun’s
angular size and distance, and these measurements indicate that the solar radius
R = 6.955 x 10® m, which is 109 times the radius of the Earth (see Sect. 1.4).

2.5.3 The Unit of Energy

The joule is the unit of energy in the International System of units, abbreviated by
SI from the French Systéme International d’unites. The SI unit of energy is named
after the English physicist James Prescott Joule (1818-1889), who described the
relationship of heat to mechanical work (Joule 1847), leading to the theory of
conservation of energy. When an SI unit is spelled out in English, it begins with a
lower case letter, like joule, but it is abbreviated with a capital version of the first
letter, such as J.

A joule is the work required to produce one watt of power for one second, so a
power of 1 Js™' is equivalent to one watt.

One joule is twice the kinetic energy of a mass of one kilogram, abbreviated
1 kg, moving at a speed of one meter per second, or 1 m s™'. This amount of
energy is a very small number as far as the mass and speed of cosmic objects are
concerned. The Sun, for example, has a mass of about 2,000 billion billion billion
kg, or 2 x 10°° kg, and moves though space at a speed of about 220,000 m s~ .

Even an ordinary table lamp with a 100 watt light bulb uses just 100 J s~*,
whereas the Sun liberates a lot more power, some 382.8 million billion billion
J 5" written 3.828 x 10*°Js7".
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2.5.4 The Sun’s Luminosity

The Sun emits radiation in all directions, and as the solar radiation spreads out into
space, it is dispersed into an ever-increasing volume. The distant Earth therefore
collects only a small fraction of the total energy radiated by the Sun. The solar
constant specifies the amount of the Sun’s radiation that arrives at our planet. It is
denoted by the symbol f;, and is precisely defined as the total amount of radiant
solar energy per unit time per unit area reaching the top of the Earth’s atmosphere
at the Earth’s mean distance from the Sun. (Any physical parameter of the Sun is
denoted by a subscript ©, a circle with a dot at the center.)

Artificial satellites have been used to accurately measure the Sun’s total irra-
diance, or radiant flux, just outside the Earth’s atmosphere, establishing the value
of the solar constant (Kopp et al. 2005):

fo=1361Ts""m™2. (2.30)

We can use the solar constant and Earth-Sun distance to determine the total
amount of energy radiated by the Sun every second. At the Earth’s mean distance
of 1 AU from the Sun, the solar radiation per unit area is diminished by 4n (AU)z,
the surface area of a sphere at this distance. We therefore infer the Sun’s lumi-
nosity, denoted L., by multiplying the solar constant with this area to obtain:

Lo = 4nf,(AU)* = 3.828 x 10%° Js~!. (2.31)
where 1 AU = 1.496 x 10" m.

2.5.5 Taking the Sun’s Temperature

The Sun, like any incandescent body, shines because it is hot. How hot? Once we
know the radius and luminosity of the Sun, we can determine the temperature of
the Sun’s visible disk. Using the Stefan-Boltzmann law, the effective temperature,
Tetro, of the visible solar disk is given by:

L1\
} ~ 5,780K, (2.32)

Tegto = |—r
effe [4710'Ré

where the Stefan-Boltzmann constant ¢ = 5.670 x 1078 J m K™! sfl, and the
Sun’s radius is R, = 6.955 x 10% m. At this temperature, all elements in the Sun
are present in gaseous form. The Sun is only about twice as hot as the wire filament
in an incandescent light bulb, so its much greater luminosity is due to its vastly
larger size.

Astronomers use the kelvin temperature scale that starts from absolute zero, the
temperature at which atoms and molecules cease to move. The unit for this scale is
written kelvin, without a capital K, or just denoted by a capital K. Water freezes at


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR583
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273 K and boils at 373 K, and to convert to degrees Celsius, abbreviated by C, just
subtract 273, or C = K — 273. The conversion to degrees Fahrenheit, denoted
by F, is more complicated, with F = (9 K/5) — 459.4.

2.5.6 How Hot are the Planets?

Solar radiation warms a planet’s surface, and as we would expect, the heat is
greatest for objects that are closest to the Sun. That is because the intensity of
sunlight falls off as the inverse square of distance from the Sun.

We can make an initial estimate for the temperature of a planet by assuming
that the surface of a terrestrial planet or the cloud tops of a giant planet are not
noticeably warmed by heat rising from the planet’s interior and that there is no
atmosphere above them. The planet is then heated solely by the Sun’s radiation,
and we can calculate the planet’s effective temperature, T.p, from the relation
T, =279 (AU/DI,)“ 2 K, where D, is the planet’s distance from the Sun and the
mean distance between the Earth and the Sun is 1 AU = 1.496 x 10" m.

To derive this expression, notice that the radiant energy per unit time, Lp that a
planet of radius Rp receives from the Sun is:

R’L, oRATH
Lp=nRbf =L =nR) —2 Js! 2.33
P n Pf 4D127 T P D% S ( )

where Rp is the radius of the planet, f is the total amount of radiant solar energy
perunit time per unit area reaching the top of the planet’s atmosphere, Dp is the
planet’s  distance from the Sun, the Stefan-Boltzmann constant
6 =5670 x 1078 T m 2K *s~!, the solar radius Rs = 6.955 x 10% m, and the
effective temperature of the visible solar disk is 7, = 5,780 K.

The Stefan-Boltzmann law can also be applied to a planet, giving its radiant
luminosity, Lp, or the amount of radiation energy lost per unit time, as a function
of its radius and effective temperature, T,

Lp = 4ng RpT:Js™ . (2.34)

Assuming thermal equilibrium between energy lost and received, so
Lp = nR},f , and combining equations we obtain:

L L, RTY 1 AU\?
Th=—l =2 =09 135x107( ) ~603x10°(—),
P 4moR’: 16nDpc  4Dj D Dp

(2.35)



2.5 How Far Away is the Sun, and How Bright, Big and Hot is it? 57

or

AUN 12
T, ~ 279 <> K, (2.36)
Dp

where 1 AU = 1.496 x 10'' m is the mean distance of the Earth from the Sun.

Notice that the effective temperature is independent of the planet’s radius, and
that the effective temperature for planets around other stars depends upon the star’s
disk temperature and the square root of the star’s radius, as well as the planet’s
distance from the star, or on the star’s absolute luminosity and the planet’s distance
from the star. This is of interest in determining the habitable zone, in which the
planet surface temperature might permit liquid water, at temperatures between 273
and 373 K; it is located closer to a star that is less luminous.

This expression assumes that all of the sunlight falling on the planet is absor-
bed, but some of it is always reflected. The extent to which a planet or satellite
reflects light from the Sun is specified by its albedo, A, the percentage of reflected
light. The visual albedo measures the fraction of incoming visible sunlight that is
reflected directly into space, on a scale of 0.0-1.0. Rocky bodies like the planet
Mercury or the Earth’s Moon absorb a lot of incident sunlight, while clouds or icy
surfaces reflect it. Thus, the Moon and Mercury have a visual albedo of 0.12, while
cloud-covered Venus has an albedo of 0.65, helping to make it the brightest planet
we detect with our eyes.

Taking the albedo, A, into account, we have:

AU 1/2
Tep = 279(1 — A)'/* (D—) K. (2.37)
P

There are two kinds of albedo, the Bond albedo (Bond 1863), which measures
the total proportion of electromagnetic energy reflected, and the visual geometric

Table 2.4 Distances, visual albedos, effective temperatures, and mean temperatures of the
planets®

Planet  Average distance,  Visual geometric Effective temperature, Mean
Dp (AU) albedo, A Tegr (K) Temperatureb (K)

Mercury  0.387 0.106 436 440

Venus 0.723 0.65 252 730

Earth 1.000 0.367 249 281

Mars 1.524 0.150 217 210

Jupiter  5.203 0.52 102 165

Saturn 9.537 0.47 77 134

Uranus 19.19 0.51 53 76

Neptune 30.07 0.41 45 73

“ Distance and mean temperature from the Jet Propulsion Laboratory. Effective temperatures are
calculated from the visual geometric albedos, which are from http://ssd.jpl.nasa.gov

® The mean surface temperatures for the terrestrial planets and the mean cloud-top temperatures
for the giant planets
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albedo that refers only to electromagnetic radiation in the visible spectrum.
The geometric albedo of an astronomical body is the ratio of its actual brightness
to that of an idealized flat, fully and isotropically reflecting disk with the same
cross-sectional area. The Bond albedos for Mercury, Venus, Earth and Mars are
0.119, 0.75, 0.29, and 0.16, respectively, while their visual geometric albedos are
0.106, 0.65, 0.367, and 0.150. When our formula is applied to the Earth we obtain
T., (Earth) ~ 256 K using the Bond albedo and T, (Earth) ~ 249 K using the
visual geometric albedo. The Bond albedo for the Earth’s Moon is 0.123, so its
effective temperature would be higher, at about 270 K.

The effective temperatures of the planets are compared to their mean observed
surface or cloud-top temperatures in Table 2.4. The surface of Venus is much hotter
than expected, and the surface of the Earth is somewhat hotter, both a consequence
of the greenhouse effect (Focus 2.5). The giant planets are also hotter, due to the heat
left over from their formation or to helium raining down inside them.

Focus 2.5 Global warming by the greenhouse effect

The surface temperature of a terrestrial planet can increase when its atmo-
sphere traps heat near the surface, warming it to a higher temperature than
would be achieved by the Sun’s radiation in the absence of an atmosphere.
Incoming sunlight is partly reflected by clouds, but the rest passes through
the atmosphere to warm the planet’s surface. Much of the surface heat is
re-radiated in the form of long infrared waves that are absorbed by atmo-
spheric molecules such as carbon dioxide or water vapor. Some of the
trapped heat is re-radiated downward to warm the planet’s surface and the air
immediately above it. The atmosphere thus acts as a one-way filter, allowing
the warmth of sunlight in, and holding it close to the planet’s surface and
elevating the temperature there.

The idea that our atmospheric blanket might warm the Earth was sug-
gested by the French mathematician Jean-Baptiste Fourier (1768—1830) and
developed by the Irish scientist John Tyndall (1820-1893). Fourier won-
dered how the Sun’s heat could be retained to keep the Earth hot, concluding
that sunlight passes through the atmosphere, which also prevents the escape
of heat from the planet’s surface (Fourier 1824, 1827).

Tyndall built an instrument to measure the heat-trapping properties of
various gases, examining the transmission of infrared radiation through
them. He found that the main constituents of our atmosphere — oxygen and
nitrogen — were transparent to both visible and infrared radiation. Oxygen
molecules, denoted O,, account for 21 % of our atmosphere, while nitrogen
molecules, designated N,, accounts for 78 %. These diatomic, or two-atom,
molecules are incapable of absorbing any noticeable amounts of infrared
heat radiation.

Tyndall also found that water vapor, designated H,O, and carbon dioxide,
denoted CO,, absorb significant heat even though they are minor ingredients
of the Earth’s atmosphere (Tyndall 1861, 1863). As Tyndall realized, these
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gases are transparent to sunlight, which warms the ground, but partially
opaque to the infrared rays, which are trapped near the surface and warm our
globe. Water vapor and carbon dioxide molecules consist of three atoms and
are more flexible and free to move in more ways than diatomic molecules, so
they absorb the heat radiation.

Global warming by heat-trapping gases in the air is now known as the
greenhouse effect, but this is a misnomer. The air inside a garden greenhouse
is heated because it is enclosed, preventing the circulation of air currents that
would carry away heat and cool the interior. Nevertheless, the term is now so
common that we continue to use it to designate the process by which an
atmosphere traps heat near a planet’s surface.

As Tyndall pointed out, our environment would be much colder at
nighttime in the absence of the greenhouse effect, and the Earth might
otherwise be covered with frost. The warming is crucial to life on Earth. If
the Earth had no atmosphere, it would be directly heated by the Sun’s light to
temperatures below the freezing point of water. Fortunately, the extra heat
from the greenhouse effect keeps the oceans, lakes and streams from turning
into ice.

Nevertheless, humans have increased global warming by burning coal,
oil, and gas and releasing carbon dioxide into the atmosphere. This extra
warming has been rising ever since the industrial revolution. The effect was
suggested by the Swedish scientist Svante Arrhenius (1859-1927), realized
as an environmental threat by the American scientists Roger Revelle
(1909-1991) and Hans E. Suess (1909-1920), and documented by Charles
D. Keeling’s (1928-2005) measurements of the atmospheric carbon dioxide
(Arrhenius 1896; Revelle and Suess 1957; Keeling 1960, 1978, 1997). Weart
(2008) describes the discovery of global warming.

The Nobel Peace Prize was awarded in 2007 jointly to the Intergovern-
mental Panel on Climate Change and to Albert Arnold (Al) Gore Jr. (1948-)
for their efforts to build up and disseminate greater knowledge about man-
made climate change, and to lay the foundations for the measures that are
needed to counteract such change. The film entitled An Inconvenient Truth
(2006) documents Gore’s campaign to make the issue of global warming, by
human emissions of heat-trapping gases, a recognized problem.

2.6 The Energy of Light

When radiation moves in space from one place to another, it will behave like trains
of waves. But when radiation is absorbed or emitted by atoms, it behaves not as a
wave but as a package of energy, or like a particle, a photon. A photon is a discrete
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quantity of energy associated with electromagnetic radiation. Thus, light has a
wave-particle duality; it can act light a wave and a particle depending on the
situation (De Broglie 1923).

Photons have no electric charge and travel at the speed of light. They are
created whenever a material object emits electromagnetic radiation, and they are
consumed when matter absorbs radiation. And each atom, ion, or molecule can
only absorb and radiate at a very specific set of photon energies. (An ion is an atom
that has lost one or more electrons.)

The ability of radiation to interact with matter is determined by the energy of its
photons.

Photon energy depends on the wavelength or frequency of the radiation. Waves
with shorter wavelengths, or higher frequencies, correspond to photons with higher
energy. That is, the energy, E, transported by a particular photon is directly pro-
portional to the radiation frequency, v, and inversely proportional to the radiation
wavelength, 1. The photon energy, E, is given by:

ke

3
A

E=nhv , (2.38)
where % is the Planck constant with the value h = 6.626 x 1073* ] s, the
frequency is given in Hz or s~', and the wavelength is in m.

The idea that light acts like a particle, the photon, when interacting with matter
originated when Albert Einstein (1879-1955) explained the photoelectric effect, in
which some metals release a current of electrons when light shines on them.
Measurements of this effect indicated that the kinetic energy of the individual
escaping electrons increases with the frequency of the incoming light wave.
Einstein explained the observations by supposing that individual electrons are not
hit by a continuous stream of light energy, but by an individual photon of light
with an energy hv (Einstein 1905a, b).

Einstein was awarded the 1921 Nobel Prize in Physics for his services to
theoretical physics, and especially for his discovery of the law of the photoelectric
effect. The American scientist Robert A. Millikan (1868-1953) subsequently
endorsed the photon interpretation, despite his initial reservations, and used the
effect to measure the value of Planck’s constant 4 (Millikan 1916); he received the
1924 Nobel Prize in Physics for his work on the elementary charge of electrons
and on the photoelectric effect.

The amount of energy transported by a single photon is quite small. For yellow
light, the wavelength /2 = 580 nm, so the frequency v = 5.17 x 10'* Hz, and the
photon energy, E, is only 3.42 x 107'" . A hundred-watt light bulb radiates a
power of 100 J sfl, so it sends out an incredible 2.9 million million million, or
2.9 x 10'®, photons every second.

Radio waves have even smaller photon energy, when compared with the
photons of visible light. The low energies of the radio photons cannot easily excite
the atoms of our atmosphere, so radio photons easily pass through the air. Visible
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radiation can also slip through the Earth’s atmosphere with little trouble. Its
photons are too energetic to resonate with molecular vibrations and they are too
feeble to excite atoms.

Ultraviolet photons are sufficiently energetic to tear off electrons from atoms
and many molecules in the Earth’s atmosphere, particularly in the ozone layer.
That’s a good thing, since most of these ultraviolet photons cannot reach the
ground. If they did they would cause lots of damage to our skin and eyes.

Astronomers often describe energetic, short-wavelength radiation, such as
X-rays or gamma rays, in terms of their energy rather than their wavelength or
frequency. At the atomic level, the natural unit of energy is the electron volt,
or eV. One electron volt is the energy an electron gains when it passes across the
terminals of a 1-volt battery. A photon of visible light has an energy of about two
electron volts, or 2 eV. Much higher energies are associated with nuclear pro-
cesses; they are often specified in units of millions of electron volts, denoted MeV.
A somewhat lower unit of energy is 1,000 electron volts, called kilo-electron volts
and abbreviated keV; it is often used to describe x-ray radiation. For conversion
between energy units, 1 eV = 1.602 x 107'° Jand 1 keV = 1.602 x 107'® J.

The x-ray region lies between 1 and 100 keV of energy. There are soft x-rays
with relatively low energy and modest penetrating power, with energies of
1-10 keV. The hard x-rays have higher energy and greater penetrating power, at
10-100 keV. Gamma rays are even more energetic than x-rays, exceeding
100 keV in energy.

2.7 Radiation Scattering and Transfer

2.7.1 Why is the Sky Blue and the Sunsets Red?

Our atmosphere is a colorless gas, as you can see in looking at the air in your
room, but the sky is usually blue and sunsets are red. The incident sunlight
contains all colors, but molecules in our atmosphere scatter blue light from the
Sun more than they scatter red sunlight. John Tyndall (1820-1893) discovered
the effect when passing light through a clear fluid holding small particles in
suspension (Tyndall 1861), and Lord Rayleigh (1842—-1919) derived the relevant
equations for atmosphere molecules a decade later. When the Sun is overhead,
the light that reaches us is mostly scattered sunlight, and this causes the sky to
appear blue. When the Sun sets, its rays pass through a maximum amount of
atmosphere, and most of the blue light is scattered out before it reaches us. The
setting Sun is therefore reddened, and atmospheric dust also contributes to its
apparent red color.
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2.7.2 Rayleigh Scattering

The scattering of radiation by a particle depends on the size, a, of the particle and
the wavelength, 4, of the radiation. When the particle is much smaller in size than
the wavelength, or a < 4, then the effect is known as Rayleigh scattering, named
after Lord Rayleigh (1842-1919). It applies to gas molecules that scatter visible
sunlight, explaining why the sky is blue and why a sunset red.

The intensity of Rayleigh scattered radiation, /, by a spherical particle of radius
a at wavelength / for an incident wave of intensity /; is (Rayleigh 1871, 1899):

8ntab [n? — 177 2
~ S [112—4—2] Io(1 + cos®0), (2.39)
where D is the distance from the sphere to the observation point, the scattering
angle 0 is the angle between the direction of propagation of the incident wave and

the direction of observation, and n is the relative index of refraction n =

[e2000/ (€1 ,ul)]l/ % between the sphere, denoted by subscript 2, and the surrounding
medium, labeled with subscript 1, the ¢ denotes the dielectric constant and p is the
magnetic permeability.

The amount of Rayleigh scattering from a single particle can also be expressed
as a scattering cross section, og given by (Rayleigh 1871):

12 5,6 2_12
_ﬂ[" ] (2.40)
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The major molecular constituent in our atmosphere, nitrogen, has
os = 5.1 x 107*" m? in green light at a wavelength of A = 530 nm.
The strong wavelength dependence of the Rayleigh scattering, which varies as

/174, means that the shorter blue wavelengths are scattered much more than the
longer, red wavelengths. Since the molecules in our atmosphere are much smaller
than the wavelengths of colored light, the blue component of sunlight is more
strongly scattered down to our eyes than the other colors, creating our bright blue
sky. At sunset the Sun’s rays pass through a maximum amount of atmosphere;
most of the blue sunlight is then scattered out of our viewing direction, and the
setting Sun is colored red. Dust in the air also helps redden the sunset.

Dust particles are larger than molecules, and comparable in size to the wave-
length of visible light. The equations that describe the scattering are then more
complicated; it is known as Mie scattering after the German physicist Gustav Mie
(1869-1957) who first published its mathematical equations. They are used to

describe the scattering of starlight by interstellar dust, which reddens the light of

distant stars and has a relatively weak dependence on wavelength, varying as 2.
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2.7.3 Thomson and Compton Scattering

Electromagnetic radiation can be scattered by a free electron, which is unattached
to an atom. The electric field of the incident wave accelerates the electron, which
moves in the direction of the oscillating electric field and emits radiation at the
same wavelength, or frequency, as the incident wave. The scattering is described
by the Thomson scattering cross section, which is independent of the wavelength,
or frequency, of the incident radiation.

Thomson scattering is very important deep within the Sun, where the temper-
atures are high enough to ionize the atoms, producing numerous free electrons that
scatter radiation produced by nuclear fusion reactions in the solar core and
determine how that radiation works it way out to the visible disk of the Sun (see
Sect. 8.5). It also establishes the upper limit to the luminosity of a star, known as
the Eddington luminosity, which is related to the largest mass a star may have
(Sect. 10.1, Focus 10.2).

The English physicist Joseph John Thomson (1856-1940) first provided the
expression for the total scattered power, P, or the energy scattered per unit time in
all directions (Thomson 1903, 1906), which is given by:

P =orcU, (2.41)

where U is the energy density of the incident radiation, c is the speed of light, and
the Thomson scattering cross section, o, is given by:

oy T 8 & 2—66525><1o—29m2 (2:42)
T3~ 3 \dnggmyc2) 7 .

where the classical electron radius r, = 2.818 x 107" m, the electron charge
e = 1.602 x 107'° C, the electric constant in vacuum g = 8.854 x 1072 Fm™!,
the rest mass of the electron m, = 9.1094 x 107! kg, and the speed of light
¢ =2.9979 x 10® m s~'. Notice that the free electron acts as if it had the classical
electron radius when interacting with radiation.

The Thomson scattered radiation is polarized along the direction of the elec-
tron’s motion, or along the direction of the oscillating electric field of the incident
radiation. The power scattered per unit solid angle, dP/dQ, therefore depends on
the angle 6 between the direction of the electron’s motion and the direction of the
observer, or:

j—g = %GTUsinz 0. (2.43)

Shortly after the big bang origin of the expanding universe, it was so hot that
the universe was completely opaque to electromagnetic radiation as the result of
Thomson scattering. The cosmic microwave background radiation, dating back to
shortly after the big bang, is thought to be linearly polarized as a result of Thomson
scattering (see Sect. 15.2).
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The Thomson scattering cross section is applicable whenever the incident
photon energy is much less than the rest mass energy of the electron, for radiation
frequency v < m,c?/h ~ 10?° Hz. When the photon energy of the incident elec-
tromagnetic radiation is comparable to, or larger than, the rest mass energy of the
free electron, or for frequencies v > 10?° Hz, the incident radiation transfers energy
to the electron, and the scattered photon has less energy, or a lower frequency and
longer wavelength, than the incident one. The effect is named Compton scattering
or the Compton effect, after the American physicist Arthur H. Compton
(1892-1962) who first observed and explained it, receiving the 1927 Nobel Prize
in Physics for his discovery. The change in wavelength, A4, caused by Compton
scattering from an electron that is at rest, or not moving, is given by (Compton
1923a, b):

Al=1ly— 2 = h (1 —cosf) = Ac(1 —cos B), (2.44)

MmeC

where 4, is the wavelength of the incident radiation, 4, is the wavelength of the
Compton scattered radiation, 4 is the Planck constant, m, is the rest mass of the
electron, c is the speed of light, and 0 is the scattering angle, or the angle by which
the incident radiation is deflected. The quantity ic = h/(m,c) = 2.426 x 10~2m
is known as the electron Compton wavelength. The Compton wavelength for any
other subatomic particle is given by the same expression with m, replaced by the
mass of the particle.

In the inverse Compton effect, the electrons are not at rest, and may be moving
at high speeds. These high-energy electrons scatter low energy photons, and the
photons now gain energy in the Compton interaction and the electrons lose energy.
When the electron’s speed is large, approaching that of light, the scattered fre-
quency, v,, for incident radiation of frequency v; is given by:

va & 2y for yhvy < mec?, (2.45)

the scattering cross section is g5 = yzaT for Thomson scattering cross section o7,
and the total energy radiated per unit time, P, by an electron passing through
radiation of energy density U is given by

P~ y*o7cU, (2.46)

where the energy of the electron is ym,.c® and y is the Lorentz factor y = [1 —
v/ ¢)*17 " for an electron moving at velocity V.

The scattered radiation from high-energy electrons with Lorentz factors
v = 1,000 has a frequency that is a million times that of the incident radiation.
Thus radio radiation becomes ultraviolet radiation, infrared radiation becomes
x-rays and optical radiation becomes gamma rays.

When the electron velocity is high and yhv; > m,c?, all of the electron energy
is transferred into the scattered radiation regardless of the incident photon
frequency and v, = e /hfor yhvy > mec?.
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Inverse Compton scattering can quench the synchrotron radiation of cosmic
radio sources, which is emitted by high-speed electrons, and the effect can be
important in the x-ray radiation of relativistic electrons being accreted by a black
hole. Longair (2011) has provided applications of scattering formulae to astro-
nomical objects in high-energy situations.

2.7.4 Radiation Transfer

Once radiation is emitted from an astronomical object, it must pass through inter-
vening space before it reaches the observer. The radiation can be absorbed when
passing through a layer or cloud of matter, and the same material can also emit
radiation. The material’s effect on the radiation is therefore characterized by an
absorption coefficient per unit length o, at frequency v and emission coefficient ¢, at
frequency v. For matter in thermodynamic equilibrium at temperature 7,

& = a,B,(T), (2.47)

a result derived by Gustav Kirchhoff (1824-1887) and hence known as Kirchhoff’s
law (Kirchhoff 1860). Here B,(T) is the Planck distribution for thermal, or black-
body, radiation discussed in the previous Sect. 2.4, and the emission coefficient ¢, is
the power per unit volume per unit frequency interval per unit solid angle.

The optical depth, denoted by t,, characterizes the absorption capability of the
intervening matter at radiation frequency v. It is given by:

L
Ty :/ocvdx (2.48)
0

for a cloud or layer of thickness L in the x direction and an absorption coefficient
per unit length ¢,. For radiation of incident intensity 7,(0), the intensity of radi-
ation, I,(L), on leaving the cloud will be:

I(L) = 1,(0) exp(—1,) + ;— [l — exp(—1,)], (2.49)
and the intensity I, (cloud) of the thermal radiation emitted by the cloud is given by:
L
I,(cloud) = /av exp(—oyx)dx = By(T)[1 — exp(—1y)], (2.50)
0
with B, (T) = &, /o,. If the cloud or layer has negligible radiation at frequency v, its

emission coefficient is effectively zero and:

1,(L) = 1,(0) exp(—1,). (2.51)
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Observer Cloud Line of Sight Sun

Fig. 2.6 Looking through a cloud When an interstellar cloud happens to lie along the line of
sight to a star, the observed temperature, denoted Tp, can differ from the star’s temperature,
abbreviated Ts. That is because the cloud, with temperature Tc, will shine like any hot gas,
emitting its own radiation, and the cloud can also absorb and scatter the star’s radiation that is
passing through it. A thick, dense cloud can absorb all the incident star’s radiation, so you don’t
even see the star; just the cloud is detected. In contrast, a thin, rarefied cloud can be transparent;
therefore, you look right through it, detecting the star as if the cloud wasn’t even there. The cloud
is characterized by its optical depth, denoted by the symbol t,, which depends on the substance in
the cloud, the thickness of the cloud along the line of sight, and the observation frequency,
designated by v. An optically thin cloud is transparent to the radiation at this frequency and the
cloud optical depth 7, < 1. An optically thick cloud, with 7, > 1 is opaque, and at this frequency
we cannot observe anything behind the cloud

The term optical depth implies that we are talking about radiation at the visible
wavelengths we detect with our eyes. If the optical depth 7, > 1, along a ray path
through a cloud or layer, then that cloud or layer is known as optically thick. On
the other hand, a transparent cloud or layer is known as optically thin if 7, < 1. It
follows that an optically thick object extinguishes the light of a source behind it,
whereas an optically thin object absorbs negligible amounts of light passing
through it. More generally, the terms optically thick and optically thin roughly
mean opaque and transparent at the wavelength or frequency of electromagnetic
radiation we are considering.

When the emission coefficient is not zero, the brightness, B¢, (T), of the thermal
emission from the intervening cloud or layer is given by:

Bey(T) = By(T)[1 — exp(—1,)]
= B,(T) if 7, > 1 (optically thick) (2.52)
= 1,B,(T) if 7, < 1 (optically thin),

where B¢, (T) denotes the cloud brightness at frequency v and temperature 7.

The observed brightness and temperature of a source that lies behind a cloud
will depend on the temperature of the source, the temperature of the cloud, and the
optical depth of the cloud (Fig. 2.6). When the cloud is transparent at the obser-
vation wavelength or frequency, which corresponds to the completely optically
thin situation, the source temperature is observed. If the cloud is opaque, or
optically thick, the cloud’s temperature is observed.

If a source of brightness, Bs(T), at frequency, v, and temperature, T, is irra-
diating a cloud or layer of temperature, T, the total observed brightness
Boy(Tror) is given by
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Bov(Tror) = Bsy(Ts) exp(—1,) + Bew(Tc), (2.53)
where
Tror = Tsexp(—1,) + Tc[l — exp(—1,)]. (2.54)

For the optically thin case 7, < 1 the total observed temperature would be
given by:

TTOT = Ts(] — ‘L'v) + T\,vTc. (255)



Chapter 3
Gravity

3.1 Ceaseless, Repetitive Paths Across the Sky

Look up at the Sun as it glides across the bright blue sky, or watch the Moon’s
nightly voyage. On dark, moonless nights you also might notice a bright planet
traveling against the stars.

Ancient astronomers thought that the Moon, Sun, and planets all moved in
circles, forever wheeling around the central, unmoving Earth, and the Moon does
indeed revolve about our planet. But the Earth and other planets revolve about the
Sun, and the Sun does not revolve around the Earth.

So, motion is a matter of perspective. It is always relative, perceived only in
relation to something else, by comparison with another object that is either at rest
or moving in a different way.

The earliest Sun-centered theories of planetary motion had one fatal flaw; they
also initially assumed that the planets move in circular orbits. This explanation
couldn’t be reconciled with careful observations of the changing positions of the
planets in the sky that were meticulously carried out by the Danish astronomer,
Tycho Brahe (1546-1601). Johannes Kepler (1571-1630), Brahe’s assistant and
eventual successor, found that the architecture of the solar system had to be
described by noncircular shapes.

After 8 years of computations, Kepler found in 1609 that the observed plane-
tary orbits could be described by ellipses with the Sun at one focus (Kepler 1609).
This ultimately became known as Kepler’s first law of planetary motion. Although
the planetary orbits are nearly circular, they are slightly elliptical in shape.

At about the same time, Kepler described how a planet moves at different
speeds as it travels along its elliptical orbit. He was able to state the relationship in
a precise mathematical form now called Kepler’s second law, which can be
explained with the help of Fig. 3.1. Imagine a line drawn from the Sun to a planet.
As the planet swings about its elliptical path, the line (which will increase and
decrease in length) sweeps out a surface at a constant rate. This also is known as
the law of equal areas. During the three equal time intervals shown in Fig. 3.1, the
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Fig. 3.1 Kepler’s first and second laws The German astronomer Johannes Kepler (1571-1630)
published his first two laws of planetary orbital motion in 1609. His first law states that the orbit
of a planet about the Sun is an ellipse with the Sun at one focus. The other focus of the ellipse is
empty. According to Kepler’s second law, the line joining a planet to the Sun sweeps out equal
areas in equal times. This is also known as the law of equal areas, and is represented by the
equality of the three shaded areas ABS, CDS, and EFS. It takes as long to travel from A to B as
from C to D and from E to F. A planet moves most rapidly when it is nearest the Sun, at
perihelion; a planet’s slowest motion occurs when it is farthest from the Sun, at aphelion

planet moves through different arcs because its orbital speed changes, but the areas
swept out are identical.

So, a planet moves faster when it is closer to the Sun, and the modern expla-
nation for this involves one of the fundamental concepts of physics, known as the
conservation of angular momentum (Focus 3.1).

Focus 3.1 Moving along an elliptical trajectory

According to Kepler’s first law, the planets move in elliptical orbits
(Fig. 3.2). A planet’s closest point to the Sun, when the planet moves most
rapidly, is called the perihelion; and its most distant point is the aphelion,
where the planet moves most slowly. The distance between the perihelion
and aphelion is the major axis of the orbital ellipse. Half that distance is
called the semi-major axis, designated by the symbol, a. The semi-major
axis of the Earth’s elliptical orbit about the Sun is called the astronomical
unit, abbreviated AU. It sets the scale of the solar system, and when com-
bined with the Earth’s yearlong orbital period permits the determination of
the Sun’s mass and the Earth’s orbital velocity, but only after astronomers
had found out how large the AU is.
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The distances to the solar focus and the shape of an ellipse are determined
by its eccentricity, e. At perihelion the distance between the planet and the
Sun is [a (1 — e)] and at aphelion that distance is [a (1 + e)]. If e = O its
shape is a circle. The ellipse becomes more elongated and squashed as its
eccentricity increases toward e = 1.0. The eccentricity of the planetary
ellipse has been greatly exaggerated in Fig. 3.2, with an eccentricity of about

e =0.5.
With the exception of Mercury, all of the major planets have orbits that

are nearly circular, with eccentricities of less than e = 0.1. This means that
the Sun is very near the center of each orbital ellipse. For Mercury,
a = 0.387 AU and e = 0.206, so its distance from the Sun is just 0.307 AU
at perihelion and quite a lot greater at aphelion, at 0.467 AU.
Conservation of angular momentum explains why a planet keeps on
whirling around the Sun, and why its speed is fastest at perihelion. For a
planet of mass, M, orbiting the Sun at speed or velocity, V, and a distance, D,

Angular momentum = M x V x D. (3.1)

By the way, in physics velocity has an amount, its magnitude, and a
direction. Speed is the magnitude of the velocity. In astronomy the velocity
is often just given by its observed magnitude in a given direction, the speed,
so the orbital velocity is given as its speed along the orbit.

The conservation law states that as long as no outside force is acting on a
planet, its angular momentum cannot change. This means that a planet
continues moving along without anything pushing or pulling it. The mass
does not change, so when the distance from the Sun decreases, at perihelion,
the velocity increases to compensate and keep the angular momentum
unchanged; at aphelion the distance from the Sun increases so the speed
must decrease.

Kepler’s third law took another 10 years of work to discover (Kepler 1619). In
this musical pattern, each planet produces its own unique “note” as it moves
around the Sun, with an orbital period that increases with a planet’s distance from
the Sun. Kepler’s harmonic relationship states that the squares of the planetary
periods are in proportion to the cubes of their average distances from the Sun. If Pp
denotes the orbital period of a planet measured in years and ap describes its semi-
major axis measured in AU, then Kepler’s third law states that P% = a}. This
expression is illustrated in Fig. 3.3, for the major planets and for the brighter
moons of Jupiter. It also implies that a more distant planet moves with a slower
speed. For a circular orbit, the planet’s uniform velocity Vp = 2nap/Pp = con-

stant X a;” 2, which falls off as the inverse square root of ap.


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR569
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Fig. 3.2 Ellipse Each planet moves in an ellipse with the Sun at one focus. The length of a line
drawn from the Sun, to a planet and then to the empty focus, denoted by the dashed line, is
always 2a, or twice the semi-major axis, a. The eccentricity, or elongation, of the planetary
ellipse has been greatly overdone in this figure; planetary orbits look much more like a circle
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Fig. 3.3 Kepler’s third law The orbital periods of the major planets in years are plotted against
the semi-major axes of their elliptical orbits in astronomical units (AU), using a logarithmic scale.
The straight line that connects the points has a slope of 3/2, thereby verifying Kepler’s third law
that states that the square of the orbital periods increase with the cubes of the planetary distances.
The German astronomer Johannes Kepler (1571-1630) published this third law in 1619. This type
of relation applies to any set of bodies in elliptical orbits, including Jupiter’s four largest satellites
shown in the inset, with a vertical axis in units of days and a horizontal axis that gives the
distance from Jupiter in AU units
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These were amazing discoveries, but no one yet had explained what holds up
the Moon and planets in their orbits. The explanation awaited the discovery of
gravity, a principle that rules the universe.

3.2 Universal Gravitational Attraction

What moves the planets within their well-defined orbits? Kepler supposed that
some invisible magnetic force emanated from the rotating Sun, and that this force
pushed the planets through space. The farther the planet is from the Sun, the
weaker the solar force and the slower a planet’s motion — as described by Kepler’s
harmonic relationship.

Roughly half a century later, the great English scientist Isaac Newton
(1643-1727) proposed another unseen agent, the invisible gravitational force of
the Sun. Newton showed that the pull of gravity is universal, with an unlimited
range and capacity to act on all matter, thereby holding the Moon, comets, and
planets in their orbits.

Gravitation is the driving and organizing force of the universe (see Mac Dougal
2013); that is why it is known as universal gravitation. It binds stars and galaxies
together and is responsible for their formation. The pull of gravity keeps our feet
on the ground, so we rotate with the spinning Earth and stay on it. The atmosphere
and oceans similarly are held close to the planet by its relentless gravitational pull.

It is gravity that explains why and how things fall. We might suppose, as
Aristotle once did, that a heavy object will fall faster than a lighter one, in direct
proportion to its weight, but that is not the case. Unless some outside force is
involved, such as wind, all objects fall at the same rate, regardless of their weight.
Galileo Galilei (1564-1642) stated the idea in his Discoursi (Galilei 1638), and
apparently the same idea was stated 17 centuries before that by the Roman poet
Lucretius (c. 99 BC—c. 55 BC) in De rerum natura (Lucretius 55 BC).

Galileo also proposed that any undisturbed body will fall with uniform accel-
eration, and he showed that the distance traveled by an object falling from rest is
proportional to the square of the elapsed time. The distance, d, after time, ¢, is
given by d = gf* /2, where g ~ 9.8 m s~ 2 is the local acceleration of gravity on
the Earth. In these ways Galileo provided a scientific foundation for Newton’s
subsequent theory of universal gravitation.

Newton realized that the power of gravity, whose pull influences the motion of
falling bodies, seems undiminished even at the top of the highest mountains. He
therefore argued that the Earth’s gravitational force extends to our Moon, and
showed that this force can pull the Moon into its orbit.

Newton showed that motions everywhere, whether in the celestial heavens on
the ground, are described by the same concepts and that all material objects are
subject to gravitation. Therefore, everything in the observable universe moves in
predictable and verifiable ways. The basic ideas are that a moving body will
continue to move in a straight line, unless acted on by an outside force, and that
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every object attracts every other object as the result of universal gravitation. These
insights resulted in Sir Isaac Newton becoming the first person in England to be
knighted for his scientific work.

It was his friend, the English astronomer Edmond Halley (1656-1742), who
persuaded the secretive Newton to write his greatest work, the Philosophiae
naturalis principia mathematica, or the Mathematical Principles of Natural Phi-
losophy, commonly known as the Principia (Newton 1687). It was presented to the
Royal Society of London in 1686, which withdrew from publishing it due to
insufficient funds; Halley, a wealthy man, paid for the publication the following
year.

The enormous reach of gravity can be traced to two causes. First, gravitational
force decreases relatively slowly with distance, which gives gravity a much greater
range than other natural forces, such as the strong force that holds the nucleus of an
atom together. Second, gravitation has no positive and negative charge, like
electricity, or opposite polarities like magnets. This means that there is no grav-
itational repulsion between masses. That is, the force of gravity acting between
two objects always pulls them together and never pushes them apart. The attractive
forces among unlike electrical charges in an atom cancel one another, shielding it
from the electrical forces of any other atom.

The gravitational force is mutual, so any two objects attract each other, and
every atom in the universe feels the gravitational attraction of every other atom.
Their attraction is proportional to the product of their masses, which possess
inertia, the tendency to resist any change in motion. Mass is an intrinsic aspect of
an object. It is different from weight, which decreases with distance from the main
source of gravity. An astronaut, for example, weighs less after leaving the Earth,
but his or her mass is just the same.

As expected, the strength of the gravitational force decreases with increasing
distance, and Newton used Kepler’s relationship between a planet’s orbital period
and distance to show that the force of gravity falls off as the inverse square of the
distance from the center of the main source of gravity, the Sun.

Newton also demonstrated that the force of gravity at the Earth’s surface is the
same as the force, diminished by distance, which holds our Moon in place during
its endless journey around the Earth. In effect our planet’s gravity is forever
pulling on the Moon, so it is perpetually falling toward the Earth while maintaining
the same mean distance from it. Without the Earth’s gravitational pull, the Moon
would not orbit our planet but instead would travel out into space, never returning
to Earth. The Sun’s gravity similarly deflects the moving planets into their curved
paths, so they forever revolve around the Sun (Newton 1687).

The gravitational power of an individual object depends on its mass and
diminishes with distance from it. Expressed mathematically, any mass, M, pro-
duces a gravitational force, F;, on another mass, M,, given by the expression:

~ GMM,

s (3.2)

G
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where the wuniversal gravitational constant denoted G, has the value
G ~ 6.674 x 107" N m? kg2, and D is the distance between the centers of the
two masses. This expression for the force is sometimes called an inverse square
law, since the force of gravity is inversely proportional to the square of the dis-
tance or separation. The SI unit of force is appropriately called the newton,
abbreviated N, and it is equal to the amount of net force required to accelerate a
mass of 1 kg at a rate of 1 m every second squared, so I N = 1 kg m s™2, and we
can express the universal constant of gravitation with the units
G~ 6674 x 107" m?kg™! s72

Any two masses attract one another with a gravitational force that varies in
proportion to the product of the masses and the inverse square of the separation
between their centers. The constant of proportionality — the universal gravitational
constant G — was not measured until 71 years after Newton’s death, and then
indirectly by Henry Cavendish (1731-1810). Cavendish’s aim was to determine
the mass density of the Earth and because the planet’s radius was known, he could
effectively weigh the world. After nearly a year of meticulous observations,
Cavendish (1798) announced that the Earth has a mass density of
pr = 5,488 & 33 kg m—> (when corrected for a small arithmetical error in his
paper). His result meant that the mass of the Earth is Mg = 4nR}pp/3 ~
6 x 10** kg, where the approximate radius of the Earth, R; ~ 6.4 x 10° m, was
known at the time. (Distances part way around the surface of the Earth had been
found by the surveying technique of triangulation, and combined to determine the
Earth’s circumference and a radius of about 6,400 km.) In Cavendish’s time, mass
and weight were assumed to be equal and, as he stated in his correspondence, he
succeeded in weighing the world. It weighed in at a little more than 6 billion
trillion metric tons. (A metric ton is 1,000 kg or 2,205 pounds).

Although he didn’t specifically determine the gravitational constant, the value
implied from Cavendish’s work is G = 6.754 x 10~"' m® kg™' s (Brush and
Holton 2001). A very precise value of G, accurate to more than the third decimal
place, is still unknown, since gravity is a relatively weak force when compared to
other forces that might act on the relevant experimental apparatus (Heyl 1930;
Rose et al. 1969; Luther and Towler 1982; Gillies 1997, Fixler et al. 2007). The
currently accepted value is:

G =6.67428 x 107" Nm? kg2 = 6.67428 x 10" m kg~ ' s 72, (3.3)

with an uncertainty of 1 part in 10*. For computations involving the orbits of either
the natural or the artificial satellites around planets, and the trajectories of
spacecraft visiting them, astronomers use the product of G and the planet’s mass
Mp, since GMp is known more accurately than either term alone. The geocentric
gravitational constant, GMg, is, for example, a primary astronomical constant:

GMg = 3.986004391 x 10" m’ s~ (3.4)

where My = 5.9736 x 10°* kg is the mass of the Earth, which is given together
with other physical properties of the planet in Table 3.1.
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Example: How fast are the Moon and planets moving, and how do we
measure the mass of the planets?

Assuming a circular orbit at a distance D with period P, the average orbital
speed will be V = 2nD/P, where © = 3.14159. The mean distance of our
Moon from the Earth is D = 384,400 km = 3.844 x 10% m and its orbital
period around the Earth is P = 27.3 Earth days, where 1 day = 86,400 s,
and its average orbital speed is about 1.02 km s'. For the Earth’s orbit
around the Sun, D =1 AU = 1.496 x 10'"' m and P=1 yr =3.156
x 10”'s, with an average orbital speed of V = 27D/P = 29.78 km s~ ';
since one hour 3,600 s, the Earth is moving at about 107,200 km/h, a lot
faster than a vehicle on the highway. Jupiter is located at a distance of about
5.2 AU from the Sun, so from Kepler’s third law, in which the square of the
orbital periods scale as the cubes of the planetary distance, the orbital period
P; of Jupiter about the Sun will be P, = (5.2 AU/1.0 AU)3/2 = 11.86 years.
Its average orbital speed is about 13 km s~ ', which is about three times

slower than the Earth’s orbital speed.
We can estimate the mass of a planet, M, from the motion of one of its moons,

or natural satellites, using Kepler’s third law, M = 47°D’ /(GP?), where the
Newtonian constant of gravitation G = 6.674 x 10~'' m® kg~' s~2. For our
Moon, with the distance D and orbital period P given just above, we infer a mass
of the Earth Mz ~ 6.0 x 10°* kg. The orbital parameters for Jupiter’s natural
satellite To are D = 421,700 km = 4.217 x 10°m and P = 1.77 Earth
days = 1.53 x 10° s, and with these parameters we obtain the mass of Jupiter
M; ~ 19 x 10*" kg ~ 318 Mp.

Any object has a gravitational potential stored within it due to its efforts at
overcoming relentless gravity. Two separated objects, for example, have worked
against the gravitational attraction that pulls them together, achieving a reserve of
energy and a potential for future action.

According to the conservation of energy, a fundamental law of physics, energy
cannot be created or destroyed, just transformed. So the energy that went into
overcoming the pull of gravity is stored in any object, and this stored potential
energy can be converted into the kinetic energy of motion.

This gravitational potential energy is due to an object’s position and is asso-
ciated with the gravitational force. It depends on the height of the object, its mass,
and the strength of the gravitational field it is in. For a very small mass m, as tiny
as a point, the gravitational potential energy U when separated by a distance r in
the gravitational field of another point mass M is:

GM.
v=_2"" (3.5)

r
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Table 3.1 Earth’s orbital and physical properties
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Orbital characteristics

Po = orbital period of Earth about Sun = 365.25636 days = 1.000 sidereal year

Vo = average orbital speed of Earth about Sun = 2.9783 x 10* m s™' = 107,200 km h™'

ar = AU = astronomical unit = mean Earth-Sun distance = 1.495 9787 x 10" m

7, = solar parallax = arcsin (a,/AU) ~ a,/AU ~ 8.794143 seconds of arc (for Earth’s
equatorial radius a, = 6.3781 x 10° m)

e = eccentricity = 0.01671

ag (1 + €) = aphelion = 1.52 098 232 x 10" m = 1.01671388 AU

ag (1 — e) = perihelion = 1.47 098 290 x 10" m = 0.98329134 AU

Physical characteristics

Age = 4.6 x 10° year

My = mass = 5.9736 x 10°* kg

M. /Mg =inverse mass = 332 946

a, = equatorial radius = 6.3781 x 10° m

a, = polar radius = 6.3568 x 10° m

f=(a. — a,)/a, = flattening = 0.0033528 = 1/298.25642

Ry = mean radius = (a,fa,,)l/3 ~ 6371 x 10° m

pp = mean mass density = 3Mg/(4nR}) = 5515 kg m™>

GMj = geocentric gravitational attraction = 3.986 x 10'* m® s=2

ge = equatorial gravitational acceleration = GM /a}, = 9.780ms™>

Ve = surface escape velocity of Earth = (2GMg/Rg)'* ~ 1.1186 x 10°ms~! ~ 11.2kms!

B = magnetic field strength of Earth (equator to poles) = 0.3-0.6 G = (3-6) x 107> T
(magnetic field poles reverse every 250,000 years)

P, = rotation period = 24 h = 8.64 x 10* s

dP,/dt = slow down of rotation = 0.002 s century

o = angular velocity of rotation = 7.292 x 107> radians s~

V, = equatorial rotation velocity = 465.12 m s™' = 1,674.4 km h™"

A = albedo (Bond) = 0.306 or albedo (geometric) = 0.367

T = mean surface temperature = 287.2 K

Atmosphere

P = mean surface pressure at sea level = 1 bar = 1.01 x 10° Pa

N, = nitrogen molecule = 78.08 % by volume

O, = oxygen molecule = 20.95 % by volume

Ar = argon = 0.92 %

CO, = carbon dioxide = 0.038 %

H,0 = water vapor ~ 1 % variable

1
1

The negative sign is a convention, not important for most physical purposes

where differences in energy are used.

This expression can be used to determine the escape velocity from the gravity
of an object of radius R; just equate the Kinetic energy mV? /2 to GMm/R to get the

velocity V of escape, or V.., given by:

1/2
Ve‘vc = <2G1W) ) (3 6)

R

which is independent of the small mass m.
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For a self-gravitating sphere of uniform mass density, rather than a point mass,
the gravitational potential energy is given by integrating the potential energy over
all parts of the sphere, resulting in:

—3GM?
U= 3.7
. (37)
where R is the radius of the sphere and the mass, M is given by
4
M:§nR3p, (3.8)

for a mass density p.

The gravitational binding energy of a sphere held together by its gravity is
3GM? /(5R), without the minus sign; it is the amount of energy required to pull all
of the material apart and the amount of energy released, mainly by heat, during its
formation.

Because a precise value of the gravitational constant, G, is only known to three
significant figures, the orbits of the planets are calculated using the Gaussian
constant of gravitation, denoted by the symbol k, first proposed by the German
mathematician Carl Friedrich Gauss (1777-1855). It is given by (Gauss 1809):

2,3
) 4ncay,

T Pi(Mp+ M)’ )

where ay is the semi-major axis of the Earth’s orbit about the Sun, the orbital
period of the Earth, Pp, is one year, and My and M, respectively denote the mass
of the Earth and the Sun. Here ary = AU is the astronomical unit, while the symbol
a, with a lowercase subscript e, is the equatorial radius of the Earth. The
ap = 1.496 x 10" m and M. = 1.989 x 10*° kg. By using this constant Gauss
was able to simplify the calculation of planetary orbits; he had previously used it in
his 1801 prediction of the orbit of the first asteroid, Ceres, which had been lost
from view.

The Canadian-American astronomer Simon Newcomb (1835-1909) determined
the value of k£ with such great precision (Newcomb 1895) that it is still used in
computing the planetary ephemerides and is one of the defining astronomical
constants. This value is:

k = 0.01720209895(AU)**M_"/*(D) ", (3.10)

where AU denotes the astronomical unit and the mean solar day D = 86,400 s.
Thus, k* is the Newtonian constant of gravitation expressed in units of the
astronomical unit, the solar mass, and the day. The derived, heliocentric, or Sun-
centered, gravitational constant, GM, is given by GMy = (AU)3k2 /D2 = 1.327
244 x 10 m’ s
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For objects near the Earth, the local acceleration of gravity g can be considered
to be approximately constant and the expression for the gravitational potential
energy relative to the Earth’s surface becomes:

U = mgh, (3.11)

where £ is the height above the Earth’s surface and g is the surface value of the
acceleration of gravity, or g = 9.780 m s~ 2 at the Earth’s equator. The local
acceleration of gravity, g, determines how things fall. For an object of mass, M,
and radius, R, we have:

(3.12)

where the universal constant of gravitation G = 6.674 x 10~'" m® kg™ s™2. For
the Earth, the local acceleration of gravity at the equator is gz = 9.780 m s,
increasing to about 9.832 m s at the poles. The detailed mathematical expres-
sions for the variation of g with altitude and latitude on the Earth are given in

Focus 3.2.

Focus 3.2 The Earth’s gravity

The gravitational acceleration of the Earth, g, depends on the distance
from the planet’s center. The value g at altitude H above the Earth’s
mean radius, Rg, is given by:

goR%
(Re +H)*’

where the standard gravity g, = 9.8331 ms ™2 at Rz = 6.371 x 10° m.

8H = (3.13)

As we previously discussed in Chap. 1, Focus 1.2, the surface of the Earth
is not perfectly round, being extended at the equator and squashed at the
poles. The surface radius r at latitude ¢ of the Earth geoid is:

r=a,(1—fsin’¢), (3.14)

where the equatorial radius a, = 6.378 140 x 108 m, and the flattening
factor fis given by
a,—a, 3

1
f= =—J, +=m = 0.0033528 = 1/298.25642. (3.15)
a, 2 2

The polar radius ap = 6.356755 x 10° m; the dynamical form factor J;
for the Earth is given by

J> = 0.0010826359. (3.16)
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The effective gravity of the Earth is reduced by its rotation, and this
reduction is greatest at the equator. The ratio m of centrifugal acceleration at
the equator to the gravitational acceleration at the equator is given by:

A3
_wae

"~ GMg

m = 0.00346 (3.17)
where the angular velocity of the Earth’s rotation @ = 2n radians/
86,400 s = 7.292 x 107 rad s~ '. Therefore, the effective gravity of the
Earth is reduced by rotation, but at most by about 3 % and near the equator.

At sea level, then we can estimate the surface gravitational acceleration,
g, at latitude, ¢, from the formula derived by the French astronomer and
mathematician Alexis Claude de Clairault (1713-1765). Known as Claira-
ult’s theorem, it is (Clairault 1743):

5
o= {1 + <7’" f> sians] (3.18)
where the surface equatorial acceleration of gravity is given by:
GM, 3
8e = TE (1 + EJZ = m) =9.780327 ms 2. (3.19)

Expressed numerically, Clairault’s theorem becomes:
g = 9.780327(1 + 0.0053024sin>¢ — 0.0000058sin°2¢)) ms ™2,  (3.20)

at latitude ¢.

3.3 Mass of the Sun

The concept of universal gravitation, and Newton’s expression for the gravitational
force, can be used to derive Kepler’s third law in the form (see Chap. 4):

2
2 4n 3

P,=— 3.21
P G(MP+M®)GP’ (3:21)

where the constant 1 = 3.14159, the universal gravitational constant G ~ 6.674 X
107" m® kg™' s72, the ap is the semi-major axis of the planet’s orbital ellipse in
meters, Pp is the orbital period in seconds, and Mp and M, respectively denote the
mass of the planet and the mass of the Sun in kilograms.

Within the solar system, the dominant mass is that of the Sun, which far
surpasses the mass of any other object there. That is why we call it a solar system,
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governed by the central Sun. The sum (Mp + M) is therefore, to the first
approximation, a constant equal to the Sun’s mass, M, regardless of the planet
under consideration, and Kepler’s third law becomes:

472 3
= ap.
GM,,

P (3.22)

Since any planet mass, M,,, is much smaller than the Sun’s mass, M, we have:

2.3
_drntap

o= ——P (3.23)
GP?

where and © = 3.141592.

We can use the Earth’s orbital motion at a mean distance of one astronomical
unit, or 1 AU = 1.496 x 10" m and its orbital period of one year, or
1 year = 3.1556926 x 107 s to infer the mass of the Sun, M., from:

M. = 4n*(AU)? / [G(lyr)z} = 1.989 x 10%kg. (3.24)

It is the benchmark unit for specifying the mass of the stars and galaxies.
The ratio of the mass of the Earth, Mg, to the mass of the Sun, M, which is
independent of G, is given by

Mg 1
M. 332,946

(3.25)

The Sun is about 333,000 times more massive than the Earth, and contains more
than 99.9 % of the mass of the entire solar system, so our assumption that our
planet’s motion is controlled by the massive Sun is amply justified.

The first person to estimate the mass of the Sun was Newton, in the Principia,
where he calculated that the ratio of the mass of the Earth to the mass of the Sun was
1/28,700. After an improved value for the distance to the Sun was available, he
revised his result to obtain a ratio of 1/169,282 in the third edition of the Principia.
The modern value is of 1/332,946 is a result of improved determinations of the AU.

3.4 Tidal Effects
3.4.1 The Ocean Tides

While walking along the beach we might notice that the waves are rising farther
and farther up the shore, steadily advancing and enlarging the bounds of the sea.
The tide is flooding the beach. But several hours later it retreats and goes down
again. We say that the tide is rising and falling, while the sea runs in and out, and
Newton showed that the Moon’s attraction is the main cause of the ocean tides.
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Fig. 3.4 Cause of the Earth’s ocean tides The Moon’s gravitational attraction causes two tidal
bulges in the Earth’s ocean water, one on the closest side to the Moon and one on the farthest
side. The Earth’s rotation twists the closest bulge ahead of the Earth—Moon line (dashed line),
which produces a lag between the time the Moon is directly overhead and the time of highest tide.
The Moon pulls on the nearest tidal bulge, slowing down the Earth’s rotation. At the same time,
the tidal bulge nearest the Moon produces a force that tends to pull the Moon ahead in its orbit,

causing the Moon to spiral slowly outward

Table 3.2 Orbital and physical properties of the Moon

Orbital characteristics

D), = mean distance of Moon = 3.844 x 10 m = 384,400 km

Vs = mean orbital speed of Moon = 1.022 x 10> m s~' = 1.022 km s~!

V.sce = escape velocity of Earth at Moon’s distance = ZGME/D,MO,,)I/ 2=144 x 10°m s~
dD,,/dr = rate of increase of Moon’s distance = 0.0382 £ 0.0007 m year ™'

1

Py, = orbital period of Moon = 27.3216 days = sidereal month = fixed star to fixed star (time

from new moon to new moon is 29.530589 days = synodic month)

e = eccentricity = 0.0549

Dy (1 + e) = apogee = 405,410 km

Dy (1 — e) = perigee = 362,570 km

Physical characteristics

Age = 4.6 x 10° year

My, = mass = 7.348 x 10> kg

M. /My = inverse mass = 27,068,708.7
M/M,, = Earth-Moon mass ratio = 81.30056

U = My;/Mp = Moon-Earth mass ratio = 0.0123
Ry = mean radius = 1.737 x 10° m

py = mean mass density = 3MM/ (471:R?\,,) = 3346.4 kg m—>

gm = equatorial surface gravity = 1.622 m s>

Vesem = escape velocity from surface = (2GMM/RM)1/2 ~ 238 x 10°ms™' =238 km s~

P, = sidereal rotation period = 27.3216 days (synchronous)

A = albedo = 0.136

T = mean equatorial surface temperature = 220 K (Temperature range at lunar equator

100-390 K)




3.4 Tidal Effects 83

Spring Tide
\\ | / / Earth
—
- ~
/ | W\
Sun
Moon at
Neap Tide Third Quarter
~ —
- ~
7/ | W
Sun

Fig. 3.5 Earth’s spring and neap ocean tides The height of the tides and the phase of the Moon
depend on the relative positions of the Earth, Moon, and Sun. When the tide-raising forces of the
Sun and the Moon are in the same direction, they reinforce one another, making the highest high
tides and the lowest low tides. These spring tides (fop) occur at either new or full Moon. The
range of tides is least when the Moon is at first or third quarter and the tide-raising forces of the
Sun and the Moon are at right angles to one another. The tidal forces are then in opposition,
producing the lowest high tides and the highest low tides, or the neap tides (bottom). In this
diagram, the height of the tides is greatly exaggerated in comparison to the size of the Earth

Because the Moon’s gravitational force decreases with increasing distance, the
Moon pulls hardest on the ocean facing it and least on the opposite ocean, whereas
the Earth between is pulled with an intermediate force. In this way, the Moon’s
gravity draws out the ocean into the shape of an egg and creates two high tides. As
the Earth’s rotation carries the continents past the two tidal humps, we experience
the rise and fall of water, the ebb and flow of the tides, twice every day (Fig. 3.4).

To understand the Moon’s tidal producing force, we need to know its mass and
distance, and they are given with other physical information about the Moon in
Table 3.2.

The Moon creates most of the ocean waves, but the Sun also contributes to the
size and rhythm of the waves. Although more massive than the Moon, our Sun also
is much farther away; as a result the tide-producing force of the Moon is about
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2.2 times that of the Sun. Near both full and new Moons, the tide-raising forces of
the Sun and the Moon are in the same direction, producing the spring tide
(Fig. 3.5). They reinforce one another’s tides and produce high tides that can be a
few times higher than normal. Two weeks later, the two tidal forces are in
opposition and interfere with one another, and the range of these neap tides is then
lower than any others.

Example: Moon tides and Sun tides

We can estimate the tide-producing capability of the Moon from the dif-
ference AF), of its gravitational force, Fy;, on the near and far sides of the
Earth from:

GMyMg GMyMg ~ 4GMyMgRg

AFy = - - , (3.26)
(Dy — Re)*  (Du + Re)? Dy

assuming Dy > Rg, where the Newtonian gravitational constant G = 6.674
x 107" m? kg_1 s_z, the mass of the Moon M,, = 7.348 x 10%2 kg, the
mass of the Earth My = 5.974 x 10?4 kg, the mean radius of the Earth
R = 6.371 x 10° m, and the average distance of the Moon from the center of
the Earth is Dy, = 3.844 x 10® m.

The ratio of the Moon’s tide-producing force AFy to the Sun’s tide-
producing force AFy is:

AFy My (Do)’
—M_TM(ZD) — 28, (3.27)
AF, M. \Dy

where the mass of the moon is M;, = 7.348 x 10?2 kg, the Sun’s mass
M, = 1989 x 10*° kg, the mean distance of the moon is
Dy, = 3.844 x 108 m, and the mean Sun-Earth distance is Dy = 1
AU = 1.496 x 10'' m. In other words, the Moon tides are about twice the

Sun tides when they are in the same direction in the sky.
The Moon is now moving away from the Earth at a rate of

0.038 m year ', so its tide-producing force is gradually weakening, while
the Sun remains at the same mean distance from the Earth with an
unchanging tidal effect. The Moon tides will be equal to the Sun tides when
the Moon has moved out to a distance of D,, ~ 4.98 x 108 m, or an
additional 1.14 x 10® m beyond its current distance. At the current rate of
recession, that will happen about 3 billion years from now.
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3.4.2 Tidal Locking into Synchronous Rotation

A planet’s gravitational force pulls any natural satellite, or moon, into a slightly
elongated shape along an axis pointing toward the planet. That is, a planet’s
gravitation produces two tidal bulges in the solid body of the satellite; one on the
closest side to the planet and one on the satellite’s farthest side. If the satellite’s
rotation twists the closest bulge ahead of the planet-satellite line, the planet pulls
back on it. As a result, one hemisphere of the satellite always faces the planet, and
the satellite takes as long to rotate as it does to orbit the planet. Then we say that
the satellite has been tidally locked into synchronous rotation with the planet.

The Moon is in synchronous rotation about the Earth, so the Moon’s rotation
period is the same as the time it takes for the Moon to orbit the Earth, which is
27.32 Earth days. As a result, from Earth we always see the Moon’s near side and
never its far side. Only when a spacecraft passes beyond the Moon and looks back
at it can we see the far side of the Moon. Most of the major moons, or large natural
satellites, in the solar system have synchronous rotation with their planet.

If the mass of two orbiting bodies is comparable and their physical separation is
relatively small, they both may be tidally locked to one another. This is the case for
Pluto and its nearby large moon, Charon. Mutual tidal locking also occurs for close
binary stars.

3.4.3 The Days are Getting Longer

As the Earth rotates, the bulge raised on its surface by the Moon’s gravity is
always a little ahead of the Moon rather than directly under it. The Moon pulls
back on the bulge and, in the process, slows down the planet.

When the ocean tides flood and ebb, they create eddies in the water, producing
friction on the ocean floor, which heats the water ever so slightly and dissipates
energy at the expense of the Earth’s rotation. The tides therefore act as brakes on
the spinning Earth, slowing it by friction. As a result of this tidal friction, the
rotation of the Earth is slowing down and the day is becoming longer at a rate of
2 ms, or 0.002 s, per century (Focus 3.3). In other words, the days are getting
longer at the rate of 1 s every 50,000 years, and tomorrow will be 60 billionths of
a second longer than today.

Focus 3.3 Tidal friction slows the rotation of the Earth

In most of the ocean, the tidal currents are confined to the top of the deep
sea, never reaching its bottom. Most of the tidal energy is therefore dissi-
pated in shallow seas near land, where the turbulent tidal water reaches the
ocean bottom, at depths of 100 m or less.
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When the tide moves toward a beach at velocity, V, the frictional energy,
AE, dissipated by tidal currents on the sea bottom per unit time, A¢, per unit
area, 4A, is

AE

ATAA ypV3 ~2)s'm2, (3.28)

where the density of sea water is p ~ 1,000kgm—3, a typical velocity V ~
Ims~!, and the stress on the sea bottom is ypV? with an empirical drag
coefficient y =~ 0.002 for wind stress on the ground and a river’s stress on its
bed as well as tidal currents in the bottom of the sea.

In 1919, Sir G. L. Taylor (1886—1975), a British expert on turbulence in air
and water, used this equation to obtain AE/At ~ 10'J s~! for the Irish Sea
alone, and in the following year Sir Harold Jeffreys (1891-1989) estimated
that the total rate of energy loss by tidal friction in the shallow seas sur-
rounding Europe, Asia, and North and South America is
AE/ At = 10" J 57! (Taylor 1919; Jeffreys 1920). This is comparable to the
estimate obtained by considering the flux of energy convected into the
shallow seas by tidal currents. Jeffreys (1975), Munk and MacDonald (1960,
1975), and Lambeck (1978, 1980) have discussed both the flux and bottom
friction methods.

The lost energy comes from the Earth’s rotational energy, which is equal to

(3.29)

where the mass of the Earth My = 5.9736 x 10%* kg, Vior = 2nRg/Pg, the
constant 7 &~ 3.14159, the mean radius of the Earth Ry = 6.371 x 10° m,
and the rotation period of the Earth P; = 24 h = 8.640 x 10*s. For a
period change AP in time interval A, the loss in rotational energy is:

(3.30)

~

1 1 A’ MER2APE

3 2 N E

27'[ MERE P_2 — ) P3 .
£ (Pe+ APg) E

Setting this equal to the 4E and collecting terms, we obtain:

APg Py AE

——=-——FE "7 ~67x10 Pss7! ~0.002 t 3.31
N AR M X Ss s per century, (3.31)

for AE/At = 10" J s~' and one century 100 years = 3.156 x 10’ s.

The long term increase in the length of the day of roughly 2 ms per century has
been documented over the past 2,700 years from historical records of occultations
of stars by the Moon and solar and lunar eclipses (Stephenson and Morrison 1984).


http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR1026
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR534
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR536
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR742
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR742
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR604
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR605
http://dx.doi.org/10.1007/978-3-642-35963-7_16#CR1002

3.4 Tidal Effects 87

Paleontologists have made indirect historical measurements of the Earth’s rotation
through studies of fossil corals. The growth patterns of these corals consist of
annual bands and fine daily ridges, produced by the effects of seasonal and daily
changes of water temperature on the growth rate. The days were shorter in the past,
but the year was the same, so the number of days per year increases as we go back
in time. Ancient corals confirm this, and they show a greater number of daily
ridges per annual band than modern corals. Careful counting reveals that the day
was only 22 h long when we look back 400 million years. Studies of daily grown
increments have been extended to fossilized algae called stromatolites, which
indicate that the day may have been only 10 h long about 2 billion years ago
(Wells 1963; Mazzullo 1971).

3.4.4 The Moon is Moving Away from the Earth

The Moon pulls the Earth’s oceans, and the oceans pull back, in accord with
Newton’s third law that every action has an equal and opposite reaction. The net
effect is to swing the Moon outward into a more distant orbit. This is because the
tidal bulge on the side facing the Moon is displaced ahead of the Moon and this
bulge pulls the Moon forward.

As the Earth slows down, the angular momentum it loses is transferred to the
Moon, which speeds up in its orbit around us. It is not hard to see that this will swing
the Moon away from the Earth if we look at the key equations (Focus 3.4). When we
do the arithmetic, we find that the change of 0.002 s per century in the length of a day
implies an outward motion of the Moon, amounting to about 0.04 m yr~'. Small as it
is, this value is just measurable with the laser light sent to corner reflectors, called
corner cubes, placed on the Moon by the Apollo astronauts. Pulses of light are sent
from the Earth to the tiny reflecting mirrors on the Moon, and the time for the light to
travel to the Moon and return to Earth is measured. The distance to the Moon is the
product of this round-trip light travel time and the speed of light. The lunar laser
ranging data indicate that the Moon is moving away from the Earth at a rate of
0.0382 + 0.0007 m year™ ' (Dickey et al. 1994).

Focus 3.4 Conservation of angular momentum in the Earth-Moon
system

According to one of the unbreakable conservation laws, the angular
momentum, or the product of mass, M, velocity, V, and radius, R, is
unchanged in a closed system, which is not subject to an outside force. Thus:

Conservation of Angular Momentum = M X V X R = constant.

This means that the angular momentum that the Earth loses in slowing down
will be transferred to the Moon. For the Earth, the angular momentum is
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rotational, with V = 27 Rp/Pg, where Pg is the Earth’s rotation period of
one day and the subscript £ denotes the Earth. So, we have:

Earth’s Rotational Angular Momentum = 27'EMER% /PE.

Since the length of the Earth’s day is increasing by the amount APy as
time goes on, the Earth’s rotational angular momentum is decreasing by the
amount:

1 1
Decrease in Rotational Angular Momentum = 27, ,;R,zE _——
Pr  (Pg+ APg)
7}% . .

The loss has to be made up by an equivalent gain somewhere else in order
to conserve angular momentum. This is done by an increase in the Moon’s
orbital angular momentum, which is given by:

Moon’s Orbital Angular Momentum = Mj; X Vy; X Dy, (3.33)

where M,, is the mass of the Moon, D,, is the distance between the Earth and
the Moon, and the orbital velocity of the Moon can be estimated
from Kepler’s third law with the mass of the Earth and the Moon’s dis-
tance from it, or by:

Vi = 21Dy /Py ~ (GMg/Dy)"?, (3.34)

where G = 6.674 x 107" m® kg~' s72 is the universal gravitational con-
stant. Substituting this velocity expression into the angular momentum
relation, we obtain:

Moon’s Orbital Angular Momentum = MMDM(GME/DM)]/2. (3.35)

Since the mass of the Moon and the mass of the Earth do not change, the
Moon’s distance has to increase by an amount 4Dy, to provide an increase in
the angular momentum.

oM\ /2
Increase in Orbital Angular Momentum = My; ADy, ( 5 ) . (3.36)
M

Setting the loss in rotational angular momentum equal to the gain in
orbital angular momentum and collecting terms we obtain

2nMg R% AP
ADy = —EZESLE o 18 % 10 °ms ! ~ 0.057myr !, (3.37)
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where My = 5974 x 10** kg, Rp= 6371 x 10°m, APz ~ 6.7 x
1073 s 57!, My, = 7.348 x 10** kg, Pr=24h=8.640 x 10*s,
G=06674x 107" m* kg™ s7% Dy, = 3.844 x 10  mand 1 yr = 3.156 x
107 s. This is the approximate amount, of 0.04 m yr~', measured by sending
laser pulses from the Earth to the corner reflectors left on the Moon by astronauts
(Dickey et al. 1994).

Example: How close was the Moon to the Earth in their youth?

The mean distance of the Moon is now D,y = 3.844 x 10 m, and laser
signals to the Moon’s corner reflector mirrors indicate that the Moon is
moving away from the Earth at the rate of dD,,p./dt = 0.0382myr~!. The
age of the Earth is 4.6 billion year. Assuming that the Moon was formed
when the Earth was in its youth, and that the Moon has always been moving
away from the Earth at the presently observed rate, then the Moon has
moved over a distance of 4D,,,,, = 0.0382 x 4.6 x 10° = 1.76 x 10% m,
or about half its present distance. If the Moon moved away from the Earth at
a faster rate when it was young, then it could have been formed by a collision
with the newly formed Earth.

Will the Moon’s outward motion carry it away from the Earth altogether? Only
the intrusion of a massive third body could achieve that. What will ultimately
happen is the following. The combination of the slowing Earth and the receding
Moon means that the Earth’s day will eventually catch up with the length of the
month. When the day and the month are equal, the Moon-induced tides will cease
moving; from then on the oceans will rise and fall much more gently under the
influence of the Sun. The Moon will hang motionless in the sky, and will be visible
from only one hemisphere. At that stage the recession of the Moon will stop.

Then, billions of years from now, the Sun’s tidal action will take over; slowing
the Earth’s rotation even further, until the day becomes longer than the month. At
this point, angular momentum will be drawn from the Moon, and it will begin
approaching the Earth, heading on a course of self-destruction until it is finally torn
apart by the tidal action of the Earth. Perhaps it will form a ring around our planet.
In any case, it will probably end its years where it apparently began — close to the
Earth. By this time, however, the brighter Sun will have boiled the oceans away,
and the Earth will have become a dry and barren place.
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3.4.5 A Planet’s Differential Gravitational Attraction
Accounts for Planetary Rings

One might expect the numerous particles of a planetary ring to have accumulated
long ago into larger satellites. But the interesting feature of these rings — and a clue
to their origin — is that they do not coexist with large moons. Planetary rings are
also usually closer to the planets than their large satellites.

The rings normally are confined to an inner zone where the planet’s tidal forces
would stretch a large moon until it fractured and split apart, while also preventing
small bodies from coalescing to form a larger moon (Fig. 3.6). The outer radius of
this zone in which rings are found is called the Roche limit after the French
mathematician Edouard A. Roche (1820-1883), who described it (Roche 1849,
1850, 1851).

Planet

Direction of

Satellite Motion

- - 1

Fig. 3.6 Roche limit A large satellite (fop) that moves well within a planet’s Roche limit
(dashed curve) will be torn apart by the tidal force of the planet’s gravity. This was first
investigated in 1849 by the French mathematician Edouard A. Roche (1820-1883). The side of
the satellite closer to the planet feels a stronger gravitational pull than the side farther away, and
this difference works against the self-gravitation that holds the body together. A small solid
satellite (bottom) can resist tidal disruption because it has significant internal cohesion in addition
to self-gravitation
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For a rigid satellite with the same mass density as its planet, the Roche limiting
distance from the center of the planet is 1.26 times the planet’s radius (Focus 3.5).
The Roche limit for a solid body is 1.38 times that radius (Aggarwal and Oberbeck
1974), and Roche’s initial calculation, for fluid objects, was 2.446 times the planetary
radius. Anywhere inside this distance, a large moon can no longer remain intact, but
instead gets torn apart by planetary tides. Nevertheless, because of their material
strength and cohesion, small moons less than 100 km across can exist inside the
Roche limit without being tidally disrupted, just as the ring particles can.

The sharp edges of planetary rings can be formed by small satellites, which can
pass within the Roche limit with enough internal cohesion to withstand the planet’s
differential gravitational forces. These smaller bodies can also confine ring par-
ticles within narrow boundaries. Goldreich and Tremaine (1982) have reviewed
the dynamics of planetary rings.

Focus 3.5 The Roche limit

To visualize the significance of the Roche limit, consider two particles of
equal mass, m, separated by a distance, R, and located at a distance, D, from
a planet of mass, Mp. The gravitational pull of the planet on the particle
closest to it will be greater than the pull on the more distant particle. If the
difference in pull on the near and far particles, the tidal force, exceeds the
mutual gravitational attraction between the two particles, they cannot remain
close to each other and will disperse. The outcome of the tug-of-war between
the tidal force and the mutual attraction is primarily decided by the particles’
distance from the planet. At distances less than the Roche limit, Dg,cpe,
particles are pulled apart, and this prevents the accumulation of larger
moons. The tidal force will also tear apart any large moon-like object that

ventures within the Roche limit.
The gravitational force, F'p, of a planet of mass, Mp, on a smaller mass, m,

whose center is located at a distance, D, from the center of the planet is:

GMpm
Fp :T’

where G is the universal constant of gravitation. The planet will pull harder
on the side of the object that is closer to it and less hard on the side that is
further away. The difference, AF, between the force felt by one side and the
center of the mass, m, is

(3.38)

2 | (D=R,)? (D+R,)’ D3

AF R, (3.39)

where the factor of 'z arises because the center of mass is located midway
between the two forces, and R,, is the radius of the smaller object. If it
approaches the planet, D becomes smaller and this tidal disruptive force will
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increase, eventually pulling the object apart at a critical distance Dg,j. from

the center of the planet.
The gravitational binding force, Fp, which attracts the opposite sides of

the object and holds it together, is Gm/ RZ, per unit mass, or for the total mass

Gm?

Fp=—H.
B Rl%1

(3.40)

The Roche limit is reached when the tidal disruptive force, AF, equals the
binding force, Fg, and when we set these two expression equal and collect
terms we obtain:

M 1/3
DRoche = ( mP> Rm- (341)

This result is expressed in terms of R,,, the radius of the small object, but by
using the mass densities pp and p,, for the planet and small mass respec-
tively, with Mp = 4nppR3 /3 and m = 4mp,,R3 /3, we obtain the Roche limit
in terms of the planet radius, Rp:

25\ 1/3
DRoche = <ﬂ> RPa (342)

which for a planet and smaller object of the same mass density becomes

Dgrocrhe = 1.26 Rp (Jeans 1917).
The calculation by Roche used liquid objects whose shapes can distort

continuously, and his result is (Roche 1849, 1850, 1851):

1/3
Droche = 2.446 (p—f’> Rp ~ 2.446 Rp. (3.43)

m

For a satellite with no internal strength and whose density is the same as the
planet, the Roche limit is 2.446 times the planetary radius, or about 175,000 km
for Jupiter, 147,000 km for Saturn, 62,000 km for Uranus, and 59,000 km for
Neptune. Jupiter’s insubstantial dusty ring, the magnificent ice particles of
Saturn’s rings, and the dark boulders in the narrow rings encircling Uranus and
Neptune all lie within the Roche limit for the relevant planet. The Earth’s Roche
limit is 15,584 km, and if our Moon ever ventured within this distance from the
Earth’s center, it would be pulled apart by tidal forces and our planet would have
rings. Nevertheless, the Moon is much farther away from the Earth, at a mean
distance of approximately 384,400 km.
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Perihelion
advances ff

Planet O

Fig. 3.7 Precession of Mercury’s perihelion Instead of always tracing out the same ellipse, the
orbit of Mercury pivots around the focus occupied by the Sun. The point of closest approach to
the Sun, the perihelion, is slowly rotating ahead of the point predicted by Newton’s theory of
gravitation. This at first was explained by the gravitational tug of an unknown planet called
Vulcan that was supposed to revolve about the Sun inside Mercury’s orbit, but we now know that
Vulcan does not exist. Albert Einstein (1879-1955) explained Mercury’s anomalous motion in
1915 by inventing a new theory of gravity in which the Sun’s curvature of nearby space makes
the planet move in a slowly revolving ellipse

3.5 What Causes Gravity?

We cannot see the force of gravity and Newton did not know how it was exerted.
Albert Einstein (1879-1955) subsequently explained it by supposing that a mas-
sive body like a star bends nearby space. This bending of space is the cause of the
star’s gravity. However, such effects are noticeable only in extreme conditions
near a very massive cosmic object like a star, and the differences between
Newton’s and Einstein’s theories of gravity are indistinguishable in everyday life.

One result of the Sun’s curvature of nearby space is that planetary orbits are not
exactly elliptical. This solved a perplexing problem with the motion of Mercury,
the nearest planet to the Sun. Instead of returning to its starting point to form a
closed ellipse in one orbital period, Mercury moves slightly ahead in a winding
path that can be described as a rotating ellipse (Fig. 3.7). As a result, the point of
Mercury’s closest approach to the Sun, the perihelion, advances by a small
amount — only 43 s of arc per century, beyond the location predicted using
Newton’s theory.

This anomalous twist in Mercury’s motion was discovered in 1854 and rec-
ognized as an unexplained problem in 1859 by the French astronomer Urbain Jean
Joseph LeVerrier (1811-1877). It was not explained for more than a half-century,
when Einstein (1915) proposed that the planet is directed along a path in curved
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Fig. 3.8 Space curvature A e o o i
massive object creates a 1 T
curved indentation on the fl—/’—fl—i—f"‘f’—f—f—l‘“i?—{—#
“flat” space described by
Euclidean geometry, which
applies in our everyday life
on the Earth, where we do not
directly encounter
astronomical amounts of
matter. Notice that the
amount of space curvature is
greatest in the regions near a
cosmic object like a star,
whereas farther away, the
effect is lessened
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space (Fig. 3.8), making the planet overshoot its expected location. Observations
of Mercury trace out the invisible curvature. Roseveare (1982) has discussed
Mercury’s perihelion from Le Verrier to Einstein; also see Nobili and Will (1986).

In the very paper that explained Mercury’s anomalous motion, Einstein showed
that the curvature of space near the Sun also deflects the path of light from other
stars (Fig. 3.9). The otherwise straight trajectory of starlight is bent by the Sun’s
gravity. The effect can be measured during a solar eclipse when stars pass behind
the darkened Sun.

Newton previously had speculated that massive bodies might bend nearby light
rays under the assumption that light has mass, and the German astronomer Johann
George von Soldner (1726—1833) estimated the amount of light bending produced
by the Sun using Newtonian gravity (Soldner 1801). In 1911, Einstein confirmed
Soldner’s result; however, when he took space curvature into account, the
expected deflection was doubled (Einstein 1915).

The successful measurement of this deflection of starlight during the total solar
eclipse on 29 May 1919 (Dyson et al. 1920), made Einstein famous, practically
overnight. The initial measurements were not exact, and amounted to just a factor
of two; nevertheless, the Sun’s curvature of nearby space has now been measured
with increasingly greater precision for nearly a century, confirming Einstein’s
prediction to two parts in a hundred thousand, or to the fifth decimal place. His
General Theory of Relativity (Einstein 1916), which replaces the Sun’s gravity
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Fig. 3.9 Sun bending starlight As the Earth orbits the Sun, an observer’s line of sight to a star
or other cosmic object can pass near to the Sun or far from it. The massive Sun curves nearby
space, bending the trajectory of starlight passing near to it, and this produces an apparent change
in a star’s position. The amount of bending and change in stellar position that were predicted by
Einstein’s General Theory of Relativity was first confirmed in 1929 during a total eclipse of the
Sun

with geometry, has been verified by so many solar experiments that it now is
widely accepted.

Natdrio (2011) provides a good description of the General Theory of Relativity
without calculus, whereas Will (1993) has reviewed observational verification of
the theory.

The solar curvature of space has been measured with increasingly greater
precision for nearly a century, confirming Einstein’s prediction. According to
Einstein’s theory, a light ray passing a minimum distance R, from the center of a
star of mass M will be deflected by the angle

GM
0=2(1+7y) Roc? radians, (3.44)

where G = 6.674 x 107" m?® kg~' s72 is the universal gravitational constant, the
speed of light is ¢ = 2.9979 x 10° m s7! and y = 1.000000000, or exactly one,
in Einstein’s theory of gravitation. Newton’s theory of gravitation implies y = 0.
For the Sun, with the mass M. = 1.989 x 10°° kg, the light bending is:

Ro\ (1
0=175(— Ll seconds of arc, (3.45)
Ry )\ 2
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where the Sun’s radius is Ro = 6.955 x 105 m and we have used I
radian = 2.06265 x 10° "/, and " denotes second of arc.

In one test, radio astronomers have combined observations of distant quasars
from telescopes located on opposite sides of the world, turning the Earth into a
gigantic interferometer that accurately measures the positions of radio sources as
our line of sight to them nears the Sun (Fomalont and Sramek 1976). The change
in position determines the amount of space curvature, as with the solar eclipse
results for stars, but with much greater accuracy and without a total solar eclipse,
since the Sun is a relatively weak interferometric radio source. Such Very Long
Baseline Interferometry, abbreviated VLBI, has confirmed the predicted deflection
of radio waves by the Sun to the 0.0003, or 0.03 %, level (Robertson et al. 1991;
Shapiro et al. 2004; Fomalont et al. 2009).

Another test of Einstein’s theory of gravitation measures the time required for a
radar signal to make a round trip between the Earth and a planet (Shapiro et al.
1971), or the time for a radio signal to travel from a spacecraft home (Shapiro et al.
1971; Reasenberg et al. 1979). When the line of sight passes near the Sun, the
radio waves travel along a curved path and take slightly longer to return to Earth.
The measurements require extremely precise clocks, for the extra time delay
caused by the Sun’s curvature of nearby space amounts to only one ten-thousandth
of a second. Radio links with the Cassini spacecraft, for example, indicate that
9 = 1.00000 £ 2.1 x 107, or precisely unity with an accuracy of 2 parts in
100,000 (Bertotti et al. 2003).

A modern, extended test of Einstein’s theory involves the measurement of the
periastron advance and light bending of a binary pulsar that has much stronger
gravitational fields than found in our solar system, with additional indication of
gravitational radiation from observations of its orbital decay (Focus 3.6).

Focus 3.6 Testing relativity with the binary pulsar

The American radio astronomers Russell A. Hulse (1950 ) and Joseph H.
Taylor, Jr. (1941- ) discovered the now famous binary pulsar PSR
B1913 + 16 in 1974, during a deliberate search for new pulsars using the
latest computer technology with the 305 m radio antenna at Arecibo, Puerto
Rico (Hulse and Taylor 1975; Hulse 1994). Their mini-computer was pro-
gramed to scan a range of possible pulsar periodicities, pulse durations, and
frequency dispersions, registering a signal whenever a pulsar passed through
the telescope beam. After 14 months at Arecibo, and the discovery of 40
pulsars, Hulse, a graduate student at the University of Massachusetts at
Ambherst, found the enigmatic PSR B1913 + 16, a pulsar in a binary system.
PSR denotes pulsar, B designates a binary companion, and 1913 + 16
describes the position of the pulsar in the sky.

The pulsar rotates on its axis 17 times a second, so the pulse repetition
period is about 0.059 s. Moreover, the period changes, by about 0.00003 s,
and the period change is itself cyclical, increasing and decreasing, rising and
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falling every 7.75 h. This meant that the pulsar was in orbital motion at this
longer period, with the pulses being compressed together when the pulsar
approached the Earth and pulled apart when moving away. A pulsar is also a
neutron star, which has a mass of about the mass of the Sun collapsed to a
radius of about 10 km, and as it turned out, the radio pulsar PSR
B1913 + 16 was in rapid orbit with another neutron star that did not emit
detectable radio pulses, perhaps because its radiation beam is not aimed at
the Earth.

Hulse completed his degree, and left the field of radio astronomy just a
few years later. So, precise timing of the radio pulses from PSR B1913 + 16
were continued by Hulse’s advisor, Joe Taylor, and his other graduate stu-
dents, permitting a determination of the orbital parameters of the system, as
well as measurements of the mass of the pulsar and its silent companion. The
minimum separation of the two neutron stars at periastron is about 1.1 Ry
and the maximum separation at apastron is 4.8 R; where the Sun’s radius
R = 6.955 x 10® m. The periastron shift was enormous, at 4.2266 degrees
per year, compared with Mercury’s 43 s of arc per century, and this per-
mitted the astronomers to infer a mass of M = 2.828 M, solar masses for
the binary system, where the Sun’s mass M. = 1.989 x 10°* kg. The
individual masses could be determined from another relativistic effect, and
they weighed in at 1.441 M and 1.387 M., as would be expected for two
neutron stars (Taylor and Weisberg 1989).

More importantly, after four years of measurements and the analysis of
about 5 million pulses, Taylor and his colleagues found that the orbital
period was slowly becoming shorter, implying a slow shrinking of the
average orbit size. The rate of decrease of the orbital period was 76.5 mil-
lionths of a second per year or 7.65 x 107> s year™ ', indicating that the two
stars are drawing closer and closer to each other, approaching at about 2.5 m
per year. This rate of orbital decay is just the change expected if their orbital
energy is being radiated away in the form of gravitational waves, which had
never been seen before (Taylor 1992, 1994; Taylor and Weisberg 1982;
Weisberg and Taylor 2005).

Einstein (1916) predicted such gravitational radiation, showing that any
accelerating mass would emit it — as ripples in the curvature of space-time.
Gravity waves travel at the speed of light, as electromagnetic radiation does.
But while electromagnetic waves move through space, gravity waves are an
undulation of space itself.

Gravity waves are produced whenever a mass moves, but they are
exceedingly faint when generated and become diluted as they propagate into
the increasing volume of space. They are so weak, and their interaction with
matter so feeble, that Einstein himself questioned whether they would ever
be detected. The gravitational radiation loss of the orbital energy of PSR
B1913 4 16 nevertheless exactly matches the amount predicted by
Einstein’s theory, providing clear and strong evidence for the existence of
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gravitational radiation — for which Hulse and Taylor received the 1993

Nobel Prize in Physics.
Neither Einstein nor anyone else ever predicted that two neutron stars

would be found that emit gravitational waves detected by timing the pulsar
emission of one of them, and Taylor, Hulse, and their colleagues did not set
out to find a binary neutron star, let alone detect gravitational waves. It was
another one of those serendipitous discoveries that make astronomy so
wonderfully unexpected and surprising.

A double radio pulsar has also been used to test special and general relativity.
Designated PSR B0737-3039, the system also has strong gravitational fields, a
rapid perihelion precession of 16.90 degrees per year, and an orbital decay
attributed to gravitational radiation (Lyne 2004; Kramer et al. 2006; Breton et al.
2008). Unlike the binary pulsar PSR B1913 + 16, this new system contains two
pulsars, attributed to two rotating neutron stars that emit radio pulses. They orbit
each other at a speed of 300 km s~' and complete one orbit every 2.4 h.

Joss and Rappaport (1984) have reviewed neutron stars in interacting binary
systems. Backer and Hellings (1986) and Taylor (1994) have provided reviews of
pulsar timing and general relativity. Kramer and Stairs (2008) have summarized
knowledge of the double pulsar, and Hughes (2009) has discussed gravitational
waves from merging compact binaries.
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Chapter 4
Cosmic Motion

4.1 Motion Opposes Gravity

4.1.1 Everything Moves

All that exists, from atoms to planets and stars to galaxies, is always moving. This
motion keeps cosmic objects suspended in space.

Galileo Galilei (1564-1642) imagined an ideal world in which there are no
external forces acting on an object, and supposed that such an object will keep on
moving at constant speed (Galilei 1632). Isaac Newton (1643—1727) extended the
idea in his first law of motion, which states that every object continues in its state
of rest, or of uniform velocity in a straight line, as long as no net force acts on it
(Newton 1687). In other words, a moving object continues in motion with the same
speed and in the same direction unless an external force is applied to it.

The most significant outside force in the universe is that of gravity, and it is
motion that opposes gravitational attraction. Motion and gravity together shape the
universe, giving it form and structure. So everything moves, and the way cosmic
objects move is governed by the rules of motion and gravitation.

4.1.2 Escape Speed

The energy of motion is known as kinetic energy, and for a mass m moving at
speed V, the kinetic energy is sz/Z, so the faster something moves the more
kinetic energy it has. If an object moves fast enough, and its kinetic energy
becomes large enough, it can overcome the gravitational forces acting upon it and
move out of their sphere of influence.

The minimum speed required to counteract and overcome the gravitational
force on an object is known as the escape speed, since the object can then escape
into surrounding space. The escape speed, denoted V., needed for a small body of
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mass, m, to break away from the gravitational pull of a larger mass, M, is obtained
by equating the kinetic energy of the small mass to the gravitational potential
energy holding it in (Sect. 3.2). That is:

1 GM,
Kinetic energy = —mV> = orm

FMVese =~ = Gravitational potential energy,  (4.1)

or

= =75~ (4.2)

L, [26m : hGM
esc D

where D is the distance between the centers of the larger and smaller mass, and the
Newtonian constant of gravitation G = 6.674 x 10~ "' m?® kg™' s72.

Although the escape speed is often called the escape velocity, the escape speed
does not depend on the direction of motion, whereas strictly speaking a velocity
includes both the speed and direction. No matter what the direction of travel is, an
object moving at the escape speed can break away from another object’s gravi-
tational force, provided, of course, that it isn’t directed into the surface of the
larger mass.

The escape speed is independent of the small mass m, and it is dependent only
on the distance D of the small mass and the value of the big mass M. At larger
distances the escape speed becomes smaller because the strength of the gravita-
tional force exerted by the big mass is less.

Any object, from an atom to a rocket, must move faster than the escape speed at
a planet’s surface if it is to move off into surrounding space. The reason why there
is no hydrogen in the Earth’s atmosphere, for example, is that at large altitudes, up
in the ionosphere, the temperature is so high that the light-weight hydrogen atoms
move at speeds greater than our planet’s escape speed, and evaporate off into
space. To obtain the surface escape speed of an object at its radius R, just let
D = R in the expression for escape speed.

Example: Escape speed of the Earth, Moon, and Sun

What is the minimum speed needed for a rocket to escape from the gravi-
tational pull of the Earth, V,..z, and from the Moon, V,,.,? We can use the
expression V,,. = 2GM /R)l/ 2, where the Newtonian gravitational constant
G = 6.674 x 107" m® kg~! s7%, the M is the mass of the object, R is its
radius, and the "2 superscript denotes the square root. For the Earth, the mass
My = 5.9736 x 10** kg and the mean radius R = 6.371 x 10° m, to give
Voer = 1.12 x 10* ms™'. For the Moon, we have a mass of
M,p0n = 71.348 x 10*? kg and a mean radius of R,,,,,, = 1.737 X 10° m, to
give Vo = 2.38 x 10> m s~'. That explains why a lunar lander requires
much less rocket propulsion to leave the Moon to rejoin its orbiting com-
mand module than either spacecraft needs to leave the Earth. If the command
module was orbiting the Moon in synchronous orbit, to remain always above
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the same point on the Moon, it would have to have an orbital period equal to
the Moon’s rotation period of 27.3 Earth days = 2.36 x 10°s, and the
orbital distance, D, of the command module would be D = [GM,,,,n
P2/(4n2)]1/ 3 ~ 8.8 x 10’ m, which is a substantial portion of the mean
distance between the Earth and the Moon, of 3.844 x 108 m, resulting in
poor visibility of the lunar surface from the command module. It has to move
much faster around the Moon and closer to it. It is the Sun that dominates the
mass of the solar system, with a mass of M, = 1.989 x 10°° kg. The escape
velocity at the visible disk of the Sun is V., = 2GM /R®)1/ 2 x 6.18 x
10° m s—!, where the Sun’s radius R = 6.955 % 10® m. The most distant
comets reside in a remote reservoir, known as the Oort cloud, located at a
distance of D ~ 100,000 AU = 10° AU. The orbital period of such a comet
will be (10°)*? ~ 32 million years, and its orbital speed will be about
V=21D/P ~ 94 ms~', a very slow and leisurely motion by cosmic
standards; note 1 AU = 1.496 x 10! m and 1 year = 3.156 x 107 s. This
makes sense, for the orbital speed will fall as the inverse square root of the
distance. The Earth orbits the Sun at an average orbital speed of about
30 km s = 30,000 m s~

Using the mass and radius of the Earth, the Sun, and the Earth’s Moon, we
obtain respective escape speeds of 11.2, 618 and 2.38 km s~ '. If you want to send
a rocket off into interplanetary space, it has to move faster than the escape speed at
the Earth’s surface, about 11.2 km s™' = 1.12 x 10* m s™'. Owing to its larger
mass, the escape velocity of the Sun is about 54 times larger than that of the Earth
in spite of the Sun’s larger radius. At the visible disk of the Sun, we have
Vysewy = 6.117 x 10° m s~ '. The escape speed from the surface of the Moon is
just 2.38 x 10> m s, which explains why the relatively small Lunar Module
spacecraft could land on the Moon and blast off it with relatively low rocket
propulsion, returning to its larger, mother spacecraft, the Lunar Command Module,
that was orbiting the Moon and was launched from the Earth with considerably
greater rocket thrust. The Moon’s low escape speed also helps explain why it has
no atmosphere to speak of.

The mass, radius, and escape speeds of representative planets and stars are
given in Table 4.1.

4.2 Orbital Motion

A planet would continue going the way it started, moving along a straight line, if it
were not for the Sun’s gravitational force that deflects the planet into a curved
solar orbit. Therefore, it is the Sun’s gravitational attraction that keeps the planets
forever moving along their orbital paths. But why doesn’t the enormous solar
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Table 4.1 Mass, radius and escape speed of some cosmic objects

Object Mass (kg) Radius (m) Escape speed (km sfl)
Ceres, largest asteroid 1.17 x 10*! 3.8 x 10° 0.64

Earth’s moon 7.348 x 10% 1.737 x 10° 238

Earth 5.9736 x 10%* 6.371 x 10° 11.2

Jupiter 1.90 x 107 7.15 x 107 59.5

Sun 1.989 x 10%° 6.955 x 108 618

Sirius B, white dwarf star 2 x 10 1 x 107 5,200

Neutron star 2 x 10 1 x 104 2 x 10°

gravity pull all of the planets into the Sun? Motion holds the planets in their orbits,
opposing the relentless pull of the Sun’s gravity and keeping the planets from
falling into the Sun.

Each planet is moving in a direction perpendicular to an imaginary line con-
necting it to the Sun, at exactly the speed required to overcome the Sun’s gravi-
tational pull, maintaining an equilibrium between motion and gravitation that
keeps the planets in perpetual motion.

For the planetary orbits, or any other orbit of small eccentricity, the length of
the orbit is close to a circular one. The mean orbital speed, Vp, of a planet in
circular motion about the Sun at a distance Dp, is:

(4.3)

where © = 3.14159, the circumference of a circle with radius Dp is 2nDp and Pp is
the orbital period. The mean orbital velocity of the Earth around the Sun is, for
example, is 29.8 km s =298 x 10* m s™!, where the mean Earth-Sun distance
is 1 AU = 1496 x 10" m and the orbital period is 1 year = 3.1557 x
107 s.

When there are two objects orbiting a common center of mass, and one of them
has a very small mass when compared to the mass of the other one, as is the case of
planets orbiting the massive Sun, the orbital speed depends only on the dominant
mass and the distance of the orbiting object from it. For the planets, the orbital
speed depends only on the Sun’s mass M., = 1.989 x 10°° kg and the distance of
the planet, or:

GM"? Vo
@] s »

R
which follows from Kepler’s third law assuming a circular orbit or one of small
eccentricity. It tells us that the more distant planets move at a slower speed. The
orbital speed is independent of the planet’s mass, which is why the planetary
realm, known as the solar system, is dominated by the Sun.

This equation also indicates that the escape speed is \/ 2 times larger than the
orbital speed of a body. The \/ 2 factor is a very small number, just 1.414, so the
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orbital speed is very close to the escape speed at the relevant distance. Of course, a
planet couldn’t be moving just as fast as the escape speed, or any faster than that,
for it would then escape from the solar system, moving off into interstellar space;
and if the planet moved any slower than its orbital speed, it would be pulled into
the Sun and consumed by it.

We can square both sides of the previous two equations and collect terms to
obtain

472

Pp = GM.,

D; (4.5)

which is the Newtonian expression for Kepler’s third law (Sect. 3.3).

Example: How fast does the Moon move around the Earth?

The Moon orbits our planet at a mean distance from the Earth of
Dy, = 3.844 x 10 m with an orbital period P, of 27.32 days, where
1 day = 86,400 s. This is the Moon’s sidereal orbital period, from fixed star
to fixed star. For a circular orbit, the Moon’s mean orbital speed about the
Earth would be Vpy = 21Dyy/ Py = 1.02 x 10° m s~!. We can compare
this orbital speed to the escape speed, V.., from the Earth’s gravity at the
Moon’s mean distance, V .z = (2GME/DM)”2 = 1.44 x 10° m s~', where
the mass of the Earth is My = 5.9736 x 10°* kg and the Newtonian grav-
itational constant is G = 6.674 x 107" m® kg~' s™2. The mean orbital
speed of the Moon Vy,, is just equal to V,..z/ \/ 2 at the Moon’s distance,
which shows that the Moon is bound to the Earth by its gravitational pull,
diminished by the distance to the Moon, and that the Moon is perpetually
falling toward the Earth while moving around it.

Calculations of the speed of an orbiting object also apply to communications,
military, and weather satellites, which might be launched into geosynchronous
orbits with an orbital period equal to the Earth’s rotation period.

Example: Geosynchronous orbits

In a geosynchronous orbit, a satellite’s orbital period equals the Earth’s
rotation period, so the satellite stays in the same location above the planet’s
surface. The distance, Dgg, of this kind of satellite above the center of the
Earth can be obtained from a rearrangement of Kepler’s third law:

GMzP2"?
E } , (4.6)

Des = [ 472
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where the gravitational constant G = 6.674 x 10~'" m® kg™' s72, the mass

of the Earth My = 5.9736 x 10** kg, the rotation period of the Earth is
P, =24 h = 86,400 s, and the constant 7 = 3.14159. Substitution into this
formula gives Dgg ~ 4.22 % 10’ m. The more exact value of
Dgs = 42164 x 10’ m is obtained using the Earth’s sidereal rotation per-
iod of P, = 86,164 s. For a geosynchronous satellite orbiting the Earth’s
equator, the altitude H of the satellite above sea level will be H = Dgg —

a, = 3.5786 x 10’ m, where the equatorial radius of the Earth is
a, = 6.3781 x 10° m.

When two orbiting objects have comparable mass, as is the case for some
binary stars, then the mean orbital velocity, Vo, of an object of mass M, orbiting
another mass M, at a distance a is given by:

vor= [ e ] (@7)

(M1—|-M2

Here a is the separation of the two objects. If r; and r, denote their respective
distances from a common center of mass, and we assume circular orbits, then
I"]M[ = r2M2 with a = r+rn=r (Ml + M2)/M2

Astronomers record the spectral lines of a star, and look for periodic variations
in the observed line-of-sight velocity, Vops1 = Vo sin i, where i is the inclination
angle between the perpendicular to the orbital plane and the line of sight. The
observed period of variations in the detected radial velocity along the line of sight
is the orbital period, P, given by Kepler’s third law:

5 4n’a’

P = Gt i (4.8)

We can use these equations to obtain an expression for the mass, M,:
PV}
M3 sin® i = — 985V (M, + M) 4.9
] SO5SL (M, + M) (49)

When the mass of object 1 greatly exceed the mass of object 2, as is the case
when looking for previously unseen exoplanets orbiting a nearby star, or when
M; > M,,

RNE
M, sin i ~ <ﬁ> Vopst M?, (4.10)

and the mass of the star, M/, can be inferred from other observations (Sect. 10.1).
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4.3 The Moving Stars
4.3.1 Are the Stars Moving?

Each night the stars rise, move slowly across the dark sky, and then disappear from
view; but this slow apparent movement of the stars is not due to the motions of the
stars themselves. It is caused by the rotating Earth, which spins beneath the
celestial sphere. Despite eons of stellar observations in antiquity, there was no
evidence that any of these stars were moving.

Yet, if the stars were motionless, their mutual gravitation eventually would pull
them together into a single mass. Without motion, there would be nothing to keep
the stars apart, and they could not be suspended in space. So there is no star that is
completely at rest, and the stars must be moving ever so slightly from their
apparent places in the night sky.

Moreover, the speeds of the moving stars are not modest. Observations indicate
that the stars are moving at speeds of about 10 km s~ relative to their stellar
neighbors. The Sun, for example, is currently traveling at a speed of about
20 km s~ !, or 20,000 m s~ !, relative to other nearby stars. This is about 1,000
times faster than a car moves on a highway.

Stars also move together at larger speeds in directed motions. Both the Sun and
nearby stars, for example, are whirling about the remote center of the Milky Way
at a speed of 220 km s~ '. If these stars traveled at faster speeds, they would move
off into space, even out of the Milky Way; if they were moving at slower speeds,
they would be pulled by gravitation into the center of the Milky Way. But because
they are so far away, the stars seem to be moving slowly through space, only
gradually changing their apparent separation and grouping.

4.3.2 Components of Stellar Velocity

Stars seem to be moving here, there and everywhere, so it is not easy to figure out
where they are going. However, a star’s motion manifests in two ways, depending
on the method used to observe it, and these two components of velocity can be
combined to give the direction of motion (Fig. 4.1). The “sideways” velocity
component is directed perpendicular or transverse to the line of sight, with a speed
designated by V,, where the subscript L denotes perpendicular. The other com-
ponent, a radial velocity with a speed denoted by V,, is the velocity moving toward
or away from us along the line of sight to a star. When these two velocity com-
ponents are known, we can determine the speed and direction of a star in three
dimensions. The Pythagorean theorem gives the magnitude of the star’s space
velocity, its true speed in space, Vg, given by VS2 = Vf + Vi.

A star’s motion across the line of sight produces an angular change in position,
called proper motion, which depends on both the star’s distance and the
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Proper
Motion,
A Line of Sight Now .

e D >

Fig. 4.1 A star moves The space velocity, Vg of a star relative to an observer can be resolved
into two mutually perpendicular components: (1) the radial velocity, V,, directed along the line of
sight; and (2) the tangential velocity, V,, which is perpendicular or transverse to the line of sight.
From the Pythagorean theorem V§ = Vf + Vi‘ Over a given interval of time, shown here as one
year, the star will move through a proper motion angle u, which depends on V, and the star’s
distance, D, from the observer. In this figure, the proper motion u = V /D is exaggerated greatly
by more than 10,000 for even the closest star. At a distance of only 6 light-years, Barnard’s star
has the largest known proper motion of 10.3 s of arc per year

perpendicular speed V. The radial velocity is observed through the Doppler
effect, which measures how the star’s spectral lines appear to shorten or lengthen
in wavelength depending on the relative velocity of the star and the observer, and
whether the motion is toward or away from the observer. When a star is moving
directly away, then there is no perpendicular component to its motion, and if the
star is moving directly across the line of sight, then the radial component of the
star’s motion is reduced to zero.

It is difficult to judge a star’s speed if it is headed straight toward or away from
us, just as it is difficult to determine how fast a distant car is moving on a highway.
However, if a star crosses at right angles to our line of sight, we could see a change
in its position. To detect that change, astronomers needed to look at the nearest
stars where the angular change in position is greatest.

Given enough time, the displacement of a nearby star’s celestial position can be
detected. The English astronomer Edmond Halley (1656—1742) first noticed the
change when he compared the positions of extremely bright stars, such as Sirius
and Arcturus, with those measured by the Greek astronomer Hipparchus around
150 BC and recorded in Ptolemy’s reproduction of Hipparchus’ catalogue.
Halley’s comparison indicated that at least three stars had changed position and
moved (Halley 1717).

So it took more than 1,800 years before anyone noticed that a star could move.
Nowadays, with vastly improved technology and observations from spacecraft, the
motions of many tens of thousands of stars are known with great accuracy.
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4.3.3 Proper Motion

The stellar motion that Halley detected is an angular change in a star’s position
over time, due to its velocity transverse or perpendicular to the line of sight. The
angular rate of change is known as proper motion, which is intrinsic to the star and
belongs to it, in contrast to any improper motion that might be caused by the
Earth’s movement in space.

Proper motion is not a velocity; it is the angular rate at which a star moves
across the sky over years or centuries, and it does not by itself determine the speed
of motion. To convert a star’s proper motion into a velocity or speed, we must
know the star’s distance, and in Halley’s time no one knew the distance of any star
other than the Sun.

For a star located at distance D, the proper motion u is:

w=V,/Drad s, (4.11)

where 1 rad = 2.06265 x 10° " and " denotes seconds of arc. Proper motion is
designated by the Greek letter mu, or the symbol u. The speed perpendicular to the
line of sight, V|, is known as the transverse velocity. If V, is given in units of
km s~' and D is in units of parsecs, we have:

Annual Proper Motion = u = 0.211V, /D " yr™!, (4.12)

and

V, =474 uDkms™", (4.13)

where 1 yr = 3.156 x 107 s, and the yu in this case is called the annual proper
motion. One parsec is abbreviated 1 pc, and 1 pc = 3.08568 x 10'® m is the
typical separation between adjacent stars. The coefficient 0.211 comes from
2.06265 x 3.156/3.08568 in the various conversion factors, and 4.74 =
1.0/0.211.

4.3.4 Radial Velocity

The other component of a star’s velocity, the radial velocity directed along the line
of sight, can be measured using the Doppler shift of a spectral feature in the star’s
radiation. Such a feature, called a spectral line, has a definite, well-known
wavelength(Sect. 6.1).

Just as a source of sound can vary in pitch or wavelength, depending on its
motion, the wavelength of electromagnetic radiation shifts when the emitting source
moves with respect to the observer. Such a shift is named after the Austrian scientist,
mathematician, and schoolteacher Christiaan Doppler (1803—1853) who discovered
it more than one and a half centuries ago (Doppler 1842; Andrade 1959). If the
motion is toward the observer, the shift is to shorter wavelengths; when the motion is
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Stationary Star

Moving Star
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Fig. 4.2 Doppler effect A stationary source of radiation (fop) emits regularly spaced light waves
that get stretched out or scrunched up if the source moves (bottom). Here a star moving away
(bottom right) from the observer (bottom left) is shown. The stretching of light waves that occurs
when the source moves away from an observer along the line of sight is called a redshift, because
red light waves are relatively long visible light waves; the compression of light waves that occurs
when the source moves along the line of sight toward an observer is called a blueshift, because
blue light waves are relatively short. The wavelength change, from the stationary to moving
condition, is called the Doppler shift, and its size provides a measurement of radial velocity, or
the speed of the component of the source’s motion along the line of sight. The Doppler effect is
named after the Austrian physicist Christiaan Doppler (1803—1853), who first considered it in
1842

away, the wavelength becomes longer (Fig. 4.2). We notice the effect for sound
waves when listening to the changing pitch of a passing ambulance siren. The tone of
the siren is higher as the ambulance approaches and lower when it moves away.

If the spectral line is emitted at a specific wavelength, A,,,i.q» DY a source at
rest, the wavelength, ,psveq» Observed from a moving source is given by the
relation:

)vobxerved — Aemitted o Vr

g = obered  Temited _ T forV, < c, (4.14)
C

lemitted
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where the quantity z is known as the redshift, V, is the speed of the source’s radial
motion along the line of sight away from the observer; since the speed and
direction are known, V, denotes the radial velocity. The speed of light
¢ =12.9979 x 10® m s™'. The parameter z is called the redshift since the Doppler
shift is toward the longer, redder wavelengths in the visible part of the electro-
magnetic spectrum. When the motion is toward the observer, V, is negative and
there is a blue shift to shorter, bluer wavelength. The greater the speed along the
line of sight in either direction, the bigger the wavelength shifts.

The notation V, < ¢ in our equation for the redshift, z, means that the formula
applies for radial velocities, V,, much less than the speed of light, c¢. This is the
case for the motions of stars in our Milky Way. Nevertheless, remote collections of
billions of stars, the galaxies, are moving at radial velocities that increase with
their distance, and the exceptionally remote ones can have radial velocities that
approach the speed of light, or V,, & c. In this case our equation has to be modified
(see Sect. 14.3).

4.3.5 Observed Proper Motions of Stars

The star with the largest proper motion races across the sky at about 10.4 s of arc,
denoted as 10.4”, each year. This is Barnard’s star, named after the American
astronomer Edward E. Barnard (1857-1923) who discovered it (Barnard 1916). In
our lifetime this star will move by roughly half the angular diameter of the Moon;
however, because it is a dim, faint star a telescope is required to see it. Barnard’s
star is 1/27th of the brightness of the faintest star that can be seen with the unaided
eye. It is a relatively nearby star, located at a distance of just 5.98 light-years, or
1.834 pc, and its large proper motion is attributed to both a high transverse speed
and the closeness of the star.

Barnard’s star moves across the line of sight at a speed of V|, = 90.4 km s™'.
When combined with its radial velocity of V, = —110.6 km s~ ', with the negative
sign indicating that the star is approaching us, a space velocity of
Vs = 142.7 km s~ relative to the Sun is obtained, from V2 = V2 + V2. At its
radial velocity, Barnard’s star will move one light-year closer to us in about
2,100 years, using 1 light-year = 9.461 x 10'> m and 1 year = 3.156 x 10" s to
convert between units.

Example: How fast does Barnard’s star move?

Barnard’s star has an annual proper motion of u = 10.4” year . Its dis-
tance, D, inferred from its parallax (see Sect. 10.1) is D = 5.98 light-
years = 1.834 pc, where 1 pc = 3.26 light-years. The star’s transverse
velocity, perpendicular to the line of sight, is V, =4.74 uD =
90.4 km s~ !. The star’s redshift is z = —3.689 x 107* = —0.0003689, so
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its radial velocity is V, = z x ¢ = —110.6 km s~ ', where the speed of light
¢ =29979 x 10° km s~ !. The space velocity, Vg, of Barnard’s star is
inferred from Vz = V3 + V2, or Vg = 142.8 km s~ .

The closest star, Proxima Centauri, is just 4.24 light-years away, and at a
distance of 5.98 light-years Barnard’s star is nearly that close. However, Proxima
Centauri is also moving closer, with a radial velocity of —21.7 km s~ ", so it will
keep its status as the closest star for a very long time to come. The proper motion
of Proxima Centauri is 3.85" year .

The star with the second largest proper motion, at 8.7 yr™, is Kapteyn’s star,
named for the Dutch astronomer Jacobus C. Kapteyn (1851-1922), who first
catalogued it (Kapteyn 1898). It has a distance of 12.8 light-years or 3.92 pc, so it
is moving across the line of sight at a speed of V|, = 162 km s~ '. Kapteyn’s star
has a radial velocity of V, = 245.5 km s™', giving it a true space velocity relative
to the Sun of Vg = 293.6 km s~ . This intriguing star moves around the center of
the Milky Way in the opposite direction to the other nearby stars. It may have
originated outside the Milky Way disk and is now hurtling through it.

Most proper motions are exceedingly small and usually measured in seconds of
arc per century, or milliarcseconds per year, which means the same thing. Due to
atmospheric blurring the angular resolution of the best telescope at the best
location on the Earth is only about 0.2”, and we would have to wait more than
20 years to measure a proper motion of this size. However, the effect is cumu-
lative; therefore successive generations of astronomers can measure proper
motion. After 20 centuries, the proper motion of many stars might be 20", which
explains why Halley was able to detect the effect using ancient observations.

It is much easier to measure proper motion from space, outside the Earth’s
atmosphere. Instruments aboard the HIPPARCOS satellite have pinpointed the
positions and established the proper motions of more than 100 thousand stars with
an astonishing precision of 0.001”. The stellar distances are inferred from parallax
measurements, and that explains the spacecraft’s name, an acronym for High
Precision PARallax Collecting Satellite. The perpendicular velocities can be
determined from the proper motions and distances.

Astronomers specify the proper motion i, in right ascension « and the proper
motion y; in declination . The magnitude of the total proper motion, u, is given
by the vector addition of its components > = 13 + y2 cos? 5, where the cos &
factor accounts for the projection of p, on the celestial sphere. The components of
proper motion and the radial velocities of stars with exceptionally high proper
motion are listed in Table 4.2, where the proper motions are in units of milli-
arcseconds per year, or 107> ! year™ !, and abbreviated mas year™', and the + or
— sign of the radial velocity indicates motion away or toward the observer,
respectively.

1
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Table 4.2 Stars with the highest proper motion®

Star 1,C080 (mas s (mas Parallax Radial velocity
year_') year_l) (mas) (km s_l)
Barnard’s star —798.71 1,0337.77 549.30 —110.6
Kapteyn’s star 6,500.34 —5,723.17 255.12 +245.5
Groombridge 4,003.69 5,814.64 109.22 —98.0
1830
Lacaille 9352 6,766.3 1,327.99 303.89 +9.7
Gliese 1 (GJ 1)  5,633.95 —2,336.69 229.32 +23.6

2 The designation mas is short for milliarcseconds or 0.001 = 1072 s of arc

4.3.6 Motions in Star Clusters

Gravitation can constrain the paths of stars that are congregated within star clusters
(Table 4.3). As many as 1 million stars, for example, are crowded together in a
typical globular star cluster. The cluster is tightly bound by gravity, which gives it
a distended spherical shape and relatively high stellar density toward the center
(Figs. 4.3, 4.4). The name of this category of star cluster is derived from the Latin
globules, for “a small sphere”. Another type of stellar grouping, known as an open
star cluster, includes up to a few thousand stars that were formed at the same time,
but are only bound loosely to one another by mutual gravitational attractions
(Fig. 4.5). Unlike globular star clusters, which can be held together by its stars’
mutual gravitational pull for tens of billions of years, an open star cluster will
disperse within a few million years.

The stars in a globular cluster are moving around like a swarm of bees, or like
hot, subatomic particles inside a star. The stellar motions oppose the combined
gravitational attraction of all of the stars, preventing them from gathering together
and collapsing to the center of the star cluster.

In a short elegant discussion, the great British astronomer Arthur Stanley
Eddington (1882-1944) demonstrated that the internal kinetic energy of a star
cluster is half its gravitational potential energy (Eddington 1916). He also pointed
out that this result could have been obtained at once from what is known as the
virial theorem, a formula whose previous use had been almost entirely restricted to
gases. In Eddington’s application, stars replace the atoms and molecules of a gas.

The virial theorem describes the stability of a finite, self-gravitating collection
of particles, either atoms or stars, which is bound by gravitational forces. It states
that the total kinetic energy averaged over time is just equal to half the total

Table 4.3 Physical properties of star clusters

Open star cluster Globular star cluster

Ng = total number of stars = 100 to 1,000 Ny = total number of stars = 10* to 10°
Rc = radius = 1to 10 pc &~ (3 to 31) x 10'*m R¢ = radius = 10 to 100 pc ~ (3 to 31) x 10'" m
Age = 107 to 10° year Age = (10 to 14) x 10° year = 10 to 14 Gyear
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Fig. 4.3 Globular star cluster NGC 6934 Several hundred thousand stars swarm around the
center of the globular star cluster NGC 6934, which lies at a distance of about 50,000 light-years
from the Earth. These ancient stars are estimated to be about 10 billion years old. This sharp
image, obtained from the Hubble Space Telescope, is about 3.5 min of arc and 50 light-years
across. (Courtesy of NASA/ESA.)

gravitational potential energy. For Ny stars of individual mass Mg the star cluster
has a total mass of M- = Ng Mg, and it will be gravitationally bound together in a
stable configuration if:

1 GMcMj
“Mg<Vg>2=—"2"2 4.15
2SS 2Rc (4.15)
and
GNeM1'? v,
<Vg> = [SS] = (4.16)
Rc V2
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Fig. 4.4 Faint stars in a
globular cluster This five-
day exposure from an
instrument aboard the Hubble
Space Telescope includes the
faintest detectable stars in the
globular star cluster NGC
6397, which is located about
8,500 light-years away from
the Earth. Some of these
objects are white dwarf stars,
the collapsed, burned-out
relics of former stars like the
Sun. White dwarfs cool down
at a predictable rate, which
can be used to measure the
age of this globular cluster,
estimated to be about

12 billion years. The crossed
lines radiating from the bright
stars are diffraction spikes
caused by the struts that
support the telescope mirror.
(Courtesy of

NASA/ESA /Harvey Richer,
University of British
Columbia.)

where V., denotes the escape velocity of the cluster, R¢ is the radius of the star
cluster, Vy is a star’s velocity and the brackets < > denote a time average with a
time-averaged stellar speed of <Vg>, and the Newtonian gravitational constant
G =6.674 x 107" m* kg~' s7%

Example: How fast do stars move in a bound star cluster?

The number of stars, N, in a globular star cluster can be about a million, or
Ng = 106, each with a mass, Mg, about equal to that of the Sun
Mg = M. = 1989 x 10*° kg. They are apparently bound together in a
sphere with a radius of Rc = 10 pc = 3.086 x 10" m. According to the
virial theorem, the kinetic energy of the stars, moving at an average star
velocity <Vg>, must balance just half the gravitational pull of all the stars on
any one star, or that Mg <V¢>>/2 = GNsM3/(2R(), where the Newtonian
gravitational constant G = 6.674 x 10'' m® kg™' s™2. Substituting the
numbers into this equation we obtain <V¢>=2.07 x 10* ms™' =
20.7 km s~ .
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Fig. 4.5 Open star cluster NGC 265 A brilliant cluster of bright blue stars is located in the
Small Magellanic Cloud, about 200,000 light-years away and about 65 light-years across. This
Hubble Space Telescope image subtends an angle of about 70 s of arc. (Courtesy of
NASA/ESA/E.Olszewski University of Arizona.)

If the stars move on average at a slower speed than <Vg>, they will be pulled
gravitationally into each other and the cluster will collapse. If the stars move at an
average speed that is faster than <Vg>, they eventually will disperse because the
cluster cannot hold together. This is what is happening to open star clusters, and to
star associations that are bound even more loosely. In fact, some stars are moving
out of certain stellar associations at unexpectedly rapid speeds.

4.3.7 Runaway Stars

Some stars race through space with an abnormally high velocity relative to the
surrounding interstellar medium. These high-speed stars are known as runaway
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Fig. 4.6 Runaway star A
high-speed star slams into
dense interstellar gas,
creating a bow shock wave
that may be a million
kilometers wide. The star is
thought to be relatively
young, only millions of years
old. Moving at a speed of
about 100 km s, it has
journeyed 160 light-years
since its birth, most likely in a
loosely bound stellar
association. (Courtesy of
NASA/ESA/R. Sahai/JPL.)

stars, because they are moving away from their place of origin. They are former
members of very loose star clusters, known as stellar associations, containing
bright, and relatively hot, massive and young stars, that are designated as O and B
stars.

As first noticed by the Armenian astronomer and statesman Viktor Ambartsumian
(1908-1996), these O and B stars are expanding away from one another and from a
common origin at speeds of about 10 km s~' (Ambartsumian 1949). The associa-
tions are now dispersing and disintegrating, but still moving together in a roughly
spherical shape due to their relatively young age. They are not expected to stay
together for longer than a few tens of millions of years.

Runaway stars are moving with faster speeds than other stars in the OB asso-
ciations but with proper motions that often point away from the stellar association
to which they once belonged. These runaways are most likely escaped members of
former binary star systems that once belonged in the association, until one of the
two stars exploded. As described by the Dutch astronomer Adriaan Blaauw
(1914-2010), runaway stars are very massive stars whose high space velocities are
comparable to the orbital velocities expected for massive binary-star systems
(Blaauw and Moran 1954; Blaauw 1961, 1964). Because massive stars burn their
thermonuclear fuel faster, and have a shorter lifetime than normal stars, one
member of such a binary system will quickly exhaust its thermonuclear reserves
and explode as a supernova, thereby releasing the other member as a high-velocity
star. The evolution and explosive fate of such massive stars is considered in
Sect. 13.5.

The Hubble Space Telescope has captured striking images of runaway stars
plowing through regions of dense interstellar gas and creating brilliant bow-shock
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structures and trailing tails of glowing gas (Fig. 4.6). These features are formed
when the stars’ powerful stellar winds slam into the surrounding gas. The shocks
indicate that the runaway stars are traveling at speeds between 50 and 100 km s~
relative to the dense gas through which they are moving. This is five or ten times
faster than the expansion speeds of the stellar associations or the average speeds of
stellar motions with respect to nearby stars or the local interstellar medium.

4.4 Cosmic Rotation

In addition to moving through space, an astronomical object also rotates or spins
about its axis. This rotation often can be traced back to an origin from a more
distended object of slower spin, but sometimes it is related to a glancing collision
in the past.

The period of rotation is the time it takes to complete one revolution, or the
time for the planet or star to spin into the same orientation in space. For the planets
and the Sun, this intrinsic rotation period is known as the sidereal rotation period,
from fixed star to fixed star; it has been corrected for any observational effects such
as the Earth’s orbital motion around the Sun.

4.4.1 Unexpected Planetary Rotation

For solid rocky planets, the rotation period is everywhere the same on the planet’s
surface. The Earth, for example, rotates once very 24 h or 86,400 s at all latitudes,
or at every angular distance north or south of the equator. As a result, all points of
the globe take the same amount of time to complete one rotation and a day lasts
24 h everywhere on the planet. If the rotation period differed at different latitudes,
the solid planet would break apart.

You might think that it’s easy to determine the rotation period of a planet. All
you need to do is watch how long it takes for a prominent surface feature to spin
around behind the planet and reappear. But this was not the case for Mercury,
which is so close to the Sun that most people have never even seen the planet,
let alone resolved anything on its surface. And the situation was even worse for
cloud-covered Venus, whose surface can never be seen.

Astronomers once supposed that solar tides in the body of Mercury would cause
the planet to rotate on its axis once every 87.97 Earth days, in step with its orbital
period. Just as the Earth’s Moon always presents the same face to the Earth, it was
thought that one side of Mercury was always turned toward the Sun. To test this
idea, the Italian astronomer Giovanni Schiaparelli (1835-1910) monitored
Mercury’s surface markings seen though his 0.46-m (18-inch) telescope, and he
concluded that the same side of the planet did, indeed, always face the Sun
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Fig. 4.7 Radar probes of Mercury A radio signal spreads out as a spherical wave, and Mercury
intercepts a small fraction of them. As the wave sweeps by the planet, it is reflected in spherical
wavelets whose wavelengths are Doppler-shifted by the rotational motion of Mercury’s surface.
The waves from the receding side are red-shifted toward longer wavelengths and those from the
approaching side are blue-shifted to shorter wavelengths. The total amount of wavelength change,
from red to blue, reveals the speed of rotation, and the rotation period can be obtained by dividing
the planet’s circumference by this speed

(Schiaparelli 1889; Defrancesco 1988). For three-quarters of a century, telescopic
observers agreed with his conclusion. All of these astronomers were dead wrong!

In 1967, Mercury’s true rotational period was determined with radio signals that
rebounded from the planet (Dyce et al. 1967). The world’s largest radio telescope,
located in Arecibo, Puerto Rico, was used to transmit 2 million watts of pulsed
radio power at the planet, and to receive the faint echo. This technique is known as
radio detection and ranging, abbreviated radar, and it is also used to locate and
guide airplanes near airports.

Each pulse was finely tuned, within a narrow range of wavelengths around 0.497 m,
and emitted for only about a millisecond. Upon hitting the planet, its rotation de-tuned
the pulse, slightly spreading it over a wider range of wavelengths (Fig. 4.7). One side of
the globe was rotating away from the Earth, while the other side was rotating toward
our planet. These motions produced slight changes in the wavelength of the echo,
which arrived back at Arecibo shortly before the next radar pulse was sent. The
rotational velocity and period were calculated from the broadened, wavelength-shape
of the return echo, using the well-known expression for the Doppler effect.

A rotating object will produce a blueshift on the side spinning toward an
observer, and a redshift on the opposite side. Their combined effect will broaden a
narrow spectral line or a finely tuned radio pulse at wavelength A by an amount A4
given by the expression:

A/’L _ Vrot
;L o C '
The period, P, of rotation for an object of radius R is P = 2nR/V,,;, and V,,, is the
rotation velocity.

(4.17)
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The radar result for Mercury came as an unexpected surprise. Its rotation period
was 58.646 Earth days, or exactly two-thirds of the 87.969-day period that had
been accepted so long. Thus, with respect to the stellar background, Mercury spins
on its axis three times during two full revolutions about the Sun, which follows
from 3 x 58.646 = 2 x 87.969, and it is technically known as spin—orbit cou-
pling. In comparison, the Earth’s Moon has a 1:1 spin—orbit resonance in which its
rotation period is equal to its orbital period.

The Italian scientist Giuseppe Colombo (1930-1984) provided an explanation
for this result in terms of the Sun’s varying tidal forces as Mercury revolves about
its elongated orbit (Colombo and Shapiro 1966; Goldreich and Peale 1966). The
solar gravity pulls hardest on Mercury when the planet is closest to the Sun, at
perihelion, and least at the opposite side of its eccentric orbit, at aphelion. This
extra gravitational pull of the Sun at perihelion gives an abrupt twist to Mercury’s
non-spherical body, speeding up the rotation rate and forcing it into synchronism
at perihelion with the 3:2 resonance. If Mercury’s orbit around the Sun were much
closer to a circular shape, like the nearly round orbit of the Moon around the Earth,
then the Sun’s tidal forces would have slowed Mercury’s rotation into synchro-
nism with its orbital motion, in a 1:1 resonance with a rotation period equal to its
orbital period.

No human eye has ever gazed on the surface of Venus, which is forever hidden
by a thick overcast of impenetrable clouds, but radio waves can penetrate this
obscuring veil and touch the landscape hidden beneath. By bouncing pulses of
radio radiation off the surface of Venus, the radar astronomers also discovered in
1967 that this planet spins in the backward direction, opposite to that of its orbital
motion. That is, unlike the other terrestrial planets, Venus does not rotate in the
direction in which it orbits the Sun.

The radar observations also showed that Venus spins with a period longer than
any other planet, at 243.018 Earth days. This rotation period is even longer than
the planet’s 224.7 Earth-day period of revolution around the Sun, so the day on
Venus is longer than its year. Tides raised by the Sun in the planet’s thick
atmosphere may explain why Venus turns very slowly and in the wrong way, but it
might have alternatively been knocked into a backwards rotation by a collision
with a planet-sized object in the early epochs of the solar system, when such
collisions were more common.

Unlike the rocky terrestrial planets, the gaseous giant planets do not rotate at a
uniform rate, and this results in a non-spherical shape. The outward force of
rotation opposes the inward gravitational force, and this reduces the pull of gravity
in the direction of spin. As a result, the giant planets rotate faster in their equatorial
middle, where there is a perceptible bulge, and slower at the flattened poles. So
they have an oblate shape that is elongated along the equator (Table 4.4). The
same thing even happens to the Earth, but by a relatively small amount since it is
solid instead of gaseous inside.

The apparent outward force that draws a rotating body away from the center of
gravitational acceleration is known as centrifugal force, from the Latin centrum
meaning “center” and fugere, meaning “to flee”. It tends to push the equatorial
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Table 4.4 Oblateness of the giant planets and the Earth®

Planet Equatorial radius, R, (km) Polar radius, R, (km) Oblateness (R.—R;,)/R.
Earth 6,378.140 6,356.755 0.003353

Jupiter 71,492 66,854 0.0649

Saturn 60,268 54,364 0.0980

Uranus 25,559 24,973 0.0229

Neptune 24,766 24,342 0.0171

% The radii are given in units of kilometers, abbreviated km. The radii of the giant planets are
those at the level where the atmospheric pressure is equal to one bar, the pressure of air at sea
level on Earth

regions out. The ratio of the centrifugal acceleration at the equator to the gravi-
tational acceleration at the equator is

o’R? 47’R3
~ GM  P*GM
for a planet rotating at an angular velocity @ = 2n/P, rotation period P, radius
R and mass M, where the universal constant of gravitation G = 6.674 x
107" m® kg™ s

The rapid rotation of a planet or star might push the equatorial regions out so far
that it rips the object apart, and this provides an upper limit to the possible rotation
speed and a lower limit to the rotation period (Focus 4.1). If the rotation is too fast,
and the equatorial push is too much, there is nothing left to rotate.

m

(4.18)

Focus 4.1 How fast can a planet or star rotate?

The rotation of a planet or star forces its equatorial regions out, and if the
speed of rotation is too fast the object will fall apart. This will happen if the
equatorial rotation velocity of the star, V,,, exceeds the escape velocity,
V.se» which for an object with mass, M, and radius, R, occurs when:

2nR 2G6M\ /?
Viot = 2 Vese = y 4.1
=2 v () (4.19)

where the symbol > denotes greater than or equal, the constant
m ~ 3.14159 and the Newtonian gravitation constant G = 6.674 X
107" m® kg~ 's™2. Collecting terms in this equation, we see that the break
up happens for rotation periods P of

2p3\ 1/2
P< (22 AI; ) : (4.20)

where the symbol < denotes less than or equal. We would obtain the same
condition, within a factor of the square root of two, or \/ 2, if we set the ratio
of the centrifugal acceleration at the equator equal to the gravitational
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acceleration at the equator. For a planet or star of uniform mass density
p = M/(4nR* /3), the mass per unit volume, the upper limit to the period of

rotation 1is:
8 \ /2 8
p<(2) = |2 (4.21)
3Gp 3Gp

For a rocky planet with a mass density of 3,000 kg m_3, like that of the
Earth’s crust, the fastest possible rotation period is P ~ 6,470 s ~ 1.8 h.
Most asteroids, for example, do not rotate faster than once every 2.2 h.

Stars with a mean mass density like that of the Sun, at 1,410 kg m73,
would be expected to rotate with periods longer than about 2.6 h, but stars do
not have a uniform mass density. Moreover, collapsed stars, like neutron
stars and pulsars have very high mass densities approaching nuclear densi-
ties of 5 x 10'7 kg m~2, which is what happens when you press a solar mass
into a star about 10* m in radius. Our equation then shows that the fastest
pulsar probably has a period of about 0.5 ms, or 0.5 x 1077 s, and thus
rotates about 2,000 times a second. Such stars also have exceptionally high
escape velocities owing to their compact size.

The instability of uniformly rotating spherical masses was first described
by the Scottish mathematician Colin Maclaurin (1698-1746), and the gen-
eral result ever since then (Maclaurin 1742) is that a rotating sphere becomes
unstable when the angular rotational velocity @ = 27 /P rises above (Gp)l/ 2
(Tassoul 1978). The detailed theory for rotating fluid masses, as well as
gaseous ones, has a long, rich history that can be found in Todhunter (1962)
and Chandrasekhar (1969).

Despite its great size, Jupiter rotates so fast that day and night each last about
5 h and its full day is less than one-half Earth day. The precise rotation period of
9.9249 h is found by tracking radio bursts that are linked to the planet’s spinning
magnetic field, which emerges from deep within the planet. Saturn rotates with a
day of only 10.6562 h, which is also inferred from the observed periodic modu-
lation in Saturn’s radio emission, generated in its spinning magnetic fields. The
visible clouds at different latitudes on both giant planets rotate at different speeds
and even in different directions. The rotation periods of the some planets and stars,
including the Sun, are given in Table 4.5.

4.4.2 The Sun’s Differential Rotation

Observations of sunspots have long indicated that the visible solar disk rotates
differently at different latitudes, with a faster rate at the equator than at higher
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Table 4.5 Rotation periods and rotation velocities of some planets and stars

Object Rotation period Radius® (m) Rotation velocity® (m s™')
Earth 0.99727 Earth days® 6.378 x 10° 4.651 x 10°
Earth’s Moon 27.322 Earth days® 1.738 x 10° 4.627
Mercury 58.6462 Earth days 2.440 x 10° 3.026
Venus —243.018 Earth days 6.052 x 10° 1.81

Jupiter 9.9249 h 7.149 x 107 1.26 x 10*
Saturn 10.6562 h 6.027 x 107 9.87 x 10°
Sun (equator) 25.67 Earth days 6.955 x 108 1.97 x 10°
Vega 125 h 1.933 x 10° 2.7 x 10°
White dwarf star? 186.5 s 6.378 x 10° 2.1 x 10°
Crab pulsar 0.033 s 10* 1.9 x 10°

# The equatorial radius is given when the object has a known oblate shape, and in this situation
the equatorial rotation velocity is provided

° One Earth day is defined as the time for our planet to revolve onc