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Preface

Our purpose in writing a calculus text has been to help students learn at first hand
that mathematics is the language in which scientific ideas can be precisely formu-
lated, that science is a source of mathematical ideas that profoundly shape the de-
velopment of mathematics, and that mathematics can furnish brilliant answers to
important scientific problems. This book is a thorough revision of the text Calculus
with Applications and Computing by Lax, Burstein, and Lax. The original text was
predicated on a number of innovative ideas, and it included some new and nontradi-
tional material. This revision is written in the same spirit. It is fair to ask what new
subject matter or new ideas could possibly be introduced into so old a topic as calcu-
lus. The answer is that science and mathematics are growing by leaps and bounds on
the research frontier, so what we teach in high school, college, and graduate school
must not be allowed to fall too far behind. As mathematicians and educators, our
goal must be to simplify the teaching of old topics to make room for new ones.

To achieve that goal, we present the language of mathematics as natural and
comprehensible, a language students can learn to use. Throughout the text we offer
proofs of all the important theorems to help students understand their meaning; our
aim is to foster understanding, not “rigor.” We have greatly increased the number of
worked examples and homework problems. We have made some significant changes
in the organization of the material; the familiar transcendental functions are intro-
duced before the derivative and the integral. The word “computing” was dropped
from the title because today, in contrast to 1976, it is generally agreed that com-
puting is an integral part of calculus and that it poses interesting challenges. These
are illustrated in this text in Sects. 4.4, 5.3, and 10.4, and by all of Chap. 8. But
the mathematics that enables us to discuss issues that arise in computing when we
round off inputs or approximate a function by a sequence of functions, i.e., uniform
continuity and uniform convergence, remains. We have worked hard in this revision
to show that uniform convergence and continuity are more natural and useful than
pointwise convergence and continuity. The initial feedback from students who have
used the text is that they “get it.”

This text is intended for a two-semester course in the calculus of a single variable.
Only knowledge of high-school precalculus is expected.

v



vi Preface

Chapter 1 discusses numbers, approximating numbers, and limits of sequences
of numbers. Chapter 2 presents the basic facts about continuous functions and de-
scribes the classical functions: polynomials, trigonometric functions, exponentials,
and logarithms. It introduces limits of sequences of functions, in particular power
series.

In Chapter 3, the derivative is defined and the basic rules of differentiation are
presented. The derivatives of polynomials, the exponential function, the logarithm,
and trigonometric functions are calculated. Chapter 4 describes the basic theory of
differentiation, higher derivatives, Taylor polynomials and Taylor’s theorem, and ap-
proximating derivatives by difference quotients. Chapter 5 describes how the deriva-
tive enters the laws of science, mainly physics, and how calculus is used to deduce
consequences of these laws.

Chapter 6 introduces, through examples of distance, mass, and area, the notion
of the integral, and the approximate integrals leading to its definition. The relation
between differentiation and integration is proved and illustrated. In Chapter 7, inte-
gration by parts and change of variable in integrals are presented, and the integral of
the uniform limit of a sequence of functions is shown to be the limit of the integrals
of the sequence of functions. Chapter 8 is about the approximation of integrals;
Simpson’s rule is derived and compared with other numerical approximations of
integrals.

Chapter 9 shows how many of the concepts of calculus can be extended to
complex-valued functions of a real variable. It also introduces the exponential of
complex numbers. Chapter 10 applies calculus to the differential equations govern-
ing vibrating strings, changing populations, and chemical reactions. It also includes
a very brief introduction to Euler’s method. Chapter 11 is about the theory of prob-
ability, formulated in the language of calculus.

The material in this book has been used successfully at Cornell in a one-semester
calculus II course for students interested in majoring in mathematics or science.
The students typically have credit for one semester of calculus from high school.
Chapters 1, 2, and 4 have been used to present sequences and series of numbers,
power series, Taylor polynomials, and Taylor’s theorem. Chapters 6–8 have been
used to present the definite integral, application of integration to volumes and accu-
mulation problems, methods of integration, and approximation of integrals. There
has been adequate time left in the term then to present Chapter 9, on complex num-
bers and functions, and to see how complex functions and calculus are used to model
vibrations in the first section of Chapter 10.

We are grateful to the many colleagues and students in the mathematical commu-
nity who have supported our efforts to write this book. The first edition of this book
was written in collaboration with Samuel Burstein. We thank him for allowing us
to draw on his work. We wish to thank John Guckenheimer for his encouragement
and advice on this project. We thank Matt Guay, John Meluso, and Wyatt Deviau,
who while they were undergraduates at Cornell, carefully read early drafts of the
manuscript, and whose perceptive comments helped us keep our student audience
in mind. We also wish to thank Patricia McGrath, a teacher at Maloney High School
in Meriden, Connecticut, for her thoughtful review and suggestions, and Thomas



Preface vii

Kern and Chenxi Wu, graduate students at Cornell who assisted in teaching calcu-
lus II with earlier drafts of the text, for their help in writing solutions to some of
the homework problems. Many thanks go to the students at Cornell who used early
drafts of this book in fall 2011 and 2012. Thank you all for inspiring us to work on
this project, and to make it better.

This current edition would have been impossible without the support of Bob
Terrell, Maria’s husband and long-time mathematics teacher at Cornell. From TEX-
ing the manuscript to making the figures, to suggesting changes and improvements,
at every step along the way we owe Bob more than we can say.

Peter Lax thanks his colleagues at the Courant Institute, with whom he has dis-
cussed over 50 years the challenge of teaching calculus.

New York, NY Peter Lax
Ithaca, NY Maria Terrell
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Chapter 1
Numbers and Limits

Abstract This chapter introduces basic concepts and properties of numbers that are
necessary prerequisites for defining the calculus concepts of limit, derivative, and
integral.

1.1 Inequalities

One cannot exaggerate the importance in calculus of inequalities between numbers.
Inequalities are at the heart of the basic notion of convergence, an idea central to
calculus. Inequalities can be used to prove the equality of two numbers by showing
that one is neither less than nor greater than the other. For example, Archimedes
showed that the area of a circle was neither less than nor greater than the area of a
triangle with base the circumference and height the radius of the circle.

A different use of inequalities is descriptive. Sets of numbers described by
inequalities can be visualized on the number line.

−3 −2 −1 0 1 2 3

Fig. 1.1 The number line

To say that a is less than b, denoted by a < b, means that b− a is positive. On
the number line in Fig. 1.1, a would lie to the left of b. Inequalities are often used to
describe intervals of numbers. The numbers that satisfy a < x < b are the numbers
between a and b, not including the endpoints a and b. This is an example of an open
interval, which is indicated by round brackets, (a,b).

To say that a is less than or equal to b, denoted by a ≤ b, means that b− a is
not negative. The numbers that satisfy a ≤ x ≤ b are the numbers between a and
b, including the endpoints a and b. This is an example of a closed interval, which
is indicated by square brackets, [a,b]. Intervals that include one endpoint but not

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
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2 1 Numbers and Limits

a b a b a b

Fig. 1.2 Left: the open interval (a,b). Center: the half open interval (a,b]. Right: the closed interval
[a,b]

the other are called half-open or half-closed. For example, the interval a < x ≤ b is
denoted by (a,b] (Fig. 1.2).

The absolute value |a| of a number a is the distance of a from 0; for a positive,
then, |a| = a, while for a negative, |a| = −a. The absolute value of a difference,
|a−b|, can be interpreted as the distance between a and b on the number line, or as
the length of the interval between a and b (Fig. 1.3).

a

|a|

0

|b−a|

b

Fig. 1.3 Distances are measured using absolute value

The inequality

|a− b|< ε

can be interpreted as stating that the distance between a and b on the number line is
less than ε . It also means that the difference between a and b is no more than ε and
no less than −ε:

− ε < a− b < ε. (1.1)

In Problem 1.9, we ask you to use some of the properties of inequalities stated in
Sect. 1.1a to obtain inequality (1.1).

Example 1.1. The inequality |x−5|< 1
2 describes the numbers x whose distance

from 5 is less than 1
2 . This is the open interval (4.5,5.5). It also tells us that the

difference x− 5 is between − 1
2 and 1

2 . See Fig. 1.4. The inequality |x− 5| ≤ 1
2

describes the closed interval [4.5,5.5].

4.5 5 5.5 .5−.5 x−5

Fig. 1.4 Left: the numbers specified by the inequality |x − 5| < 1
2 in Example 1.1. Right: the

difference x−5 is between − 1
2 and 1

2

The inequality |π − 3.141| ≤ 1
103 can be interpreted as a statement about the

precision of 3.141 as an approximation of π . It tells us that 3.141 is within
1

103 of

π , and that π is in an interval centered at 3.141 of length
2

103 .
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π 3.1423.140 3.141

1/103 1/103

Fig. 1.5 Approximations to π

We can imagine smaller intervals contained inside the larger one in Fig. 1.5,
which surround π more closely. Later in this chapter we will see that one way to
determine a number is by trapping it within progressively tighter intervals. This
process is described by the nested interval theorem in Sect. 1.3c.

We use (a,∞) to denote the set of numbers that are greater than a, and [a,∞)
to denote the set of numbers that are greater than or equal to a. Similarly, (−∞,a)
denotes the set of numbers less than a, and (−∞,a] denotes those less than or equal
to a. See Fig. 1.6.

aa aa

Fig. 1.6 The intervals (−∞,a), (−∞,a], [a,∞), and (a,∞) are shown from left to right

Example 1.2. The inequality |x− 5| ≥ 1
2 describes the numbers whose distance

from 5 is greater than or equal to 1
2 . These are the numbers that are in (−∞,4.5]

or in [5.5,∞). See Fig. 1.7.

4.5 5 5.5

Fig. 1.7 The numbers specified by the inequality in Example 1.2

1.1a Rules for Inequalities

Next we review some rules for handling inequalities.

(a) Trichotomy: For any numbers a and b, either a < b or a = b or b < a.
(b) Transitivity: If a < b and b < c, then a < c.
(c) Addition: If a < b and c < d, then a+ c < b+ c and a+ c < b+ d.
(d) Multiplication: If a < b and p is positive, then pa < pb, but if a < b and n is

negative, then nb < na.

(e) Reciprocal: If a and b are positive numbers and a < b, then
1
b
<

1
a

.

The rules for inequalities can be used algebraically to simplify inequalities or to
derive new inequalities from old ones. With the exception of trichotomy, these rules
are still true if < is replaced by ≤. In Problem 1.8 we ask you to use trichotomy to
show that if a ≤ b and b ≤ a, then a = b.
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Example 1.3. If |x− 3|< 2 and |y− 4|< 6, then according to the inequality rule
on addition,

|x− 3|+ |y− 4|< 2+ 6.

Example 1.4. If 0 < a < b, then according to inequality rule on multiplication,

a2 < ab and ab < b2.

Then by the transitivity rule, a2 < b2.

1.1b The Triangle Inequality

There are two notable inequalities that we use often, the triangle inequality, and the
arithmetic–geometric mean inequality. The triangle inequality is as important as it
is simple:

|a+ b| ≤ |a|+ |b|.
Try substituting in a few numbers. What does it say, for example when a = −3
and b = 1? It is easy to convince yourself that when a and b are of the same sign,
or one of them is zero, equality holds. If a and b have opposite signs, inequality
holds.

The triangle inequality can be used to quickly estimate the accuracy of a sum of
approximations.

Example 1.5. Using

|π − 3.141|< 10−3 and |
√

2− 1.414|< 10−3,

the inequality addition rule gives |π −3.141|+ |√2−1.414|< 10−3+10−3. The
triangle inequality then tells us that

|(π +
√

2)− 4.555|= |(π − 3.141)+ (
√

2− 1.414)|

≤ |π − 3.141|+ |
√

2− 1.414| ≤ 2× 10−3.

That is, knowing
√

2 and π within 10−3, we know their sum within 2× 10−3.

Another use of the triangle inequality is to relate distances between numbers on
the number line. The inequality says that the distance between x and z is less than or
equal to the sum of the distance between x and y and the distance between y and z.
That is,

|z− x|= |(z− y)+ (y− x)| ≤ |z− y|+ |y− x|.
In Fig. 1.8 we illustrate two cases: in which y is between x and z, and in which it is
not.
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yzx
|z−x|

|z−y|
|y−x|

zx y
|z−x|

|y−x| |z−y|

Fig. 1.8 Distances related by the triangle inequality

1.1c The Arithmetic–Geometric Mean Inequality

Next we explore an important but less familiar inequality.

Theorem 1.1. The arithmetic–geometric mean inequality. The geometric
mean of two positive numbers is less than their arithmetic mean:

√
ab ≤ a+ b

2
,

with equality only in the case a = b.

We refer to this as the “A-G” inequality. The word “mean” is used in the follow-
ing sense:

(a) The mean lies between the smaller and the larger of the two numbers a and b.
(b) When a and b are equal, their mean is equal to a and b.

You can check that each side of the inequality is a mean in this sense.
A visual proof: Figure 1.9 provides a visual proof that 4ab ≤ (a+ b)2. The A-G

inequality follows once you divide by 4 and take the square root.

a

b

a b

a

b

ab

a

b

a+b

Fig. 1.9 A visual proof that 4ab ≤ (a+b)2, by comparing areas

An algebraic proof: Since the square of any number is positive or zero, it follows
that

0 ≤ (a− b)2 = a2 − 2ab+ b2,

with equality holding only when a = b. By adding 4ab to both sides, we get
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4ab ≤ a2 + 2ab+ b2 = (a+ b)2,

the same inequality we derived visually. Dividing by 4 and taking square roots, we
get √

ab ≤ a+ b
2

,

with equality holding only when a = b.

Example 1.6. The A-G inequality can be used to prove that among all rectangles
with the same perimeter, the square has the largest area. See Fig. 1.10. Proof:
Denote the lengths of the sides of the rectangle by W and L. Its area is WL. The

lengths of the sides of the square with the same perimeter are
W +L

2
, and its area

is

(
W +L

2

)2

. The inequality

WL ≤
(

W +L
2

)2

follows from squaring both sides of the A-G inequality.

Fig. 1.10 Three rectangles measuring 6 by 6, 8 by 4, and 11 by 1. All have perimeter 24. The areas
are 36, 32, and 11, and the square has the largest area. See Example 1.6

The A-G Inequality for n Numbers. The arithmetic and geometric means can be
defined for more than two numbers. The arithmetic mean of a1, a2, . . . , an is

arithmetic mean =
a1 + a2 + · · ·+ an

n
.

The geometric mean of n positive numbers is defined as the nth root of their product:

geometric mean = (a1a2 · · ·an)
1/n.

For n numbers, the A-G inequality is

(a1a2 · · ·an)
1/n ≤ a1 + a2 + · · ·+ an

n
,
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with equality holding only when a1 = a2 = · · · = an. As in the case of a rectangle,
the A-G inequality for three numbers can be interpreted geometrically: Consider the
volume of a box that measures a1 by a2 by a3. Then the inequality states that among
all boxes with a given edge sum, the cube has the largest volume.

The proof of the case for n numbers is outlined in Problem 1.17. The key to the
proof is understanding how to use the result for two numbers to derive it for four
numbers. Curiously, the result for n = 4 can then be used to prove the result for
n = 3. The general proof proceeds in a similar manner. Use the result for n = 4 to
get the result for n = 8, and then use the result for n = 8 to get the result for n = 5,
6, and 7, and so forth.

Here is the proof for n = 4. Let c, d, e, f be four positive numbers. Denote by a
the arithmetic mean of c and d, and denote by b the arithmetic mean of e and f :

a =
c+ d

2
, b =

e+ f
2

.

By the A-G inequality for two numbers, applied three times, we get
√

cd ≤ a,
√

e f ≤ b, (1.2)

and √
ab ≤ a+ b

2
. (1.3)

Combining inequalities (1.2) and (1.3) gives

(cde f )1/4 ≤ a+ b
2

. (1.4)

Since
a+ b

2
=

c+d
2 + e+ f

2

2
=

c+ d+ e+ f
4

,

we can rewrite inequality (1.4) as

(cde f )1/4 ≤ c+ d+ e+ f
4

,

with equality holding only when a = b and when c = d and e = f . This completes
the argument for four numbers. Next we see how to use the result for four to prove
the result for three numbers.

We start with the observation that if a, b, and c are any three numbers, and m is
their arithmetic mean,

m =
a+ b+ c

3
, (1.5)

then m is also the arithmetic mean of the four numbers a, b, c, and m:

m =
a+ b+ c+m

4
.
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To see this, multiply Eq. (1.5) by 3 and add m to both sides. We get 4m = a+ b+
c+m. Dividing by 4 gives the result we claimed. Now apply the A-G inequality to
the four numbers a, b, c, and m. We get

(abcm)1/4 ≤ m.

Raise both sides to the fourth power. We get abcm ≤ m4. Divide both sides by m
and then take the cube root of both sides; we get the desired inequality

(abc)1/3 ≤ m =
a+ b+ c

3
.

This completes the argument for n = 2, 3, and 4. The rest of the proof proceeds
similarly.

Problems

1.1. Find the numbers that satisfy each inequality, and sketch the solution on a num-
ber line.

(a) |x− 3| ≤ 4
(b) |x+ 50| ≤ 2
(c) 1 < |y− 7|
(d) |3− x|< 4

1.2. Find the numbers that satisfy each inequality, and sketch the solution on a num-
ber line.

(a) |x− 4|< 2
(b) |x+ 4| ≤ 3
(c) |y− 9| ≥ 2
(d) |4− x|< 2

1.3. Use inequalities to describe the numbers not in the interval [−3,3] in two ways:

(a) using an absolute value inequality
(b) using one or more simple inequalities.

1.4. Find the arithmetic mean A(a,b) and geometric mean G(a,b) of the pairs
(a,b) = (5,5), (3,7), (1,9). Sketch a square corresponding to each case, as in the
geometric proof. Interpret the pairs as dimensions of a rectangle. Find the perimeter
and area of each.

1.5. Find the geometric mean of 2, 4, and 8. Verify that it is less than the arithmetic
mean.

1.6. Which inequalities are true for all numbers a and b satisfying 0 < a < b < 1?
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(a) ab > 1

(b)
1
a
<

1
b

(c)
1
b
> 1

(d) a+ b < 1
(e) a2 < 1
(f) a2 + b2 < 1
(g) a2 + b2 > 1

(h)
1
a
> b

1.7. You know from algebra that when x and y are positive numbers,

(
√

x−√
y)(

√
x+

√
y) = x− y.

(a) Suppose x > y > 5. Show that
√

x−√
y ≤ 1

4(x− y).
(b) Suppose y is within 0.02 of x. Use the inequality in part (a) to estimate how close√

y is to
√

x.

1.8. Use the trichotomy rule to show that if a ≤ b and b ≤ a, then a = b.

1.9. Suppose |b− a|< ε . Explain why each of the following items is true.

(a) 0 ≤ (b− a)< ε or 0 ≤−(b− a)< ε
(b) −ε < b− a < ε
(c) a− ε < b < a+ ε
(d) −ε < a− b < ε
(e) b− ε < a < b+ ε

1.10.(a) A rectangular enclosure is to be constructed with 16 m of fence. What is
the largest possible area of the enclosure?

(b) If instead of four fenced sides, one side is provided by a large barn wall, what is
the largest possible area of the enclosure?

1.11. A shipping company limits the sum of the three dimensions of a rectangular
box to 5 m. What are the dimensions of the box that contains the largest possible
volume?

1.12. Two pieces of string are measured to within 0.001 m of their true length. The
first measures 4.325 m and the second measures 5.579 m. A good estimate for the
total length of string is 9.904 m. How accurate is that estimate?

1.13. In this problem we see how the A-G inequality can be used to derive various
inequalities. Let x be positive.

(a) Write the A-G inequality for the numbers 1, 1, x, to show that x1/3 ≤ x+ 2
3

.

(b) Similarly, show that x1/n ≤ x+ n− 1
n

for every positive integer n.
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(c) By letting x = n in the inequality in (b), we get

n1/n ≤ 2n− 1
n

.

Explain how it follows that n1/n is always less than 2.

1.14. The harmonic mean is defined for positive numbers a and b by

H(a,b) =
2

1
a +

1
b

.

(a) For the cases (a,b) = (2,3) and (3,3), verify that

H(a,b)≤ G(a,b)≤ A(a,b), (1.6)

i.e.,
2

1
a +

1
b

≤
√

ab ≤ a+ b
2

.

(b) On a trip, a driver goes the first 100 miles at 40 mph, and the second 100 miles
at 60 mph. Show that the average speed is the harmonic mean of 40 and 60.

(c) Deduce H(a,b)≤ G(a,b) from G
(1

a
,

1
b

)≤ A
(1

a
,

1
b

)
.

(d) A battery supplies the same voltage V to each of two resistors in parallel in
Fig. 1.11. The current I splits as I = I1 + I2, so that Ohm’s law V = I1R1 = I2R2

holds for each resistor. Show that the value R to be used in V = IR is one-half
the harmonic mean of R1 and R2.

1 2
R R

I

V R

I

V

Fig. 1.11 Two resistors in parallel with a battery, and an equivalent circuit with only one resistor.
See Problem 1.14

1.15. The product of the numbers 1 through n is the factorial n! = (1)(2)(3) · · · (n).
Their sum is

1+ 2+ 3+ · · ·+ n =
1
2

n(n+ 1).

(a) Show that (n!)1/n ≤ n.

(b) Use the A-G inequality to derive the better result that (n!)1/n ≤ n+ 1
2

.

1.16. If we want to know how much the product ab varies when we allow a and b to
vary independently, there is a clever algebra trick that helps in this:

ab− a0b0 = ab− ab0+ ab0 − a0b0.
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(a) Show that
|ab− a0b0| ≤ |a||b− b0|+ |b0||a− a0|.

(b) Suppose a and b are in the interval [0,10], and that a0 is within 0.001 of a and
b0 is within 0.001 of b. How close is a0b0 to ab?

1.17. Here you may finish the proof of the A-G inequality.

(a) Prove the A-G inequality for eight numbers by using twice the A-G mean in-
equality for four numbers, and combine it with the A-G inequality for two num-
bers.

(b) Show that if a, b, c, d, and e are any five numbers, and m is their arithmetic
mean, then the arithmetic mean of the eight numbers a, b, c, d, e, m, m, and m
is again m. Use this and the A-G inequality for eight numbers to prove the A-G
inequality for five numbers.

(c) Prove the general case of the A-G inequality by generalizing (a) and (b).

1.18. Another important inequality is due to the French mathematician Cauchy and
the German mathematician Schwarz: Let a1, a2, . . . , an and b1, b2, . . . , bn be two
sets of numbers. Then

a1b1 + · · ·+ anbn ≤
√

a2
1 + · · ·+ a2

n

√
b2

1 + · · ·+ b2
n.

Verify each of these steps of the proof:

(a) The roots of the polynomial p(x) = Px2 + 2Qx+R are
−Q±

√
Q2 −PR

P
.

(b) Show that if p(x) does not take negative values, then p(x) has at most one real
root. Show that in this case, Q2 ≤ PR.

(c) Take p(x) = (a1x+ b1)
2 + · · ·+(anx+ bn)

2. Show that

P = a2
1 + · · ·+ a2

n, Q = a1b1 + · · ·+ anbn, and R = b2
1 + · · ·+ b2

n.

(d) Since p(x) defined above is a sum of squares, it does not take negative values.
Therefore, Q2 ≤ PR. Deduce from this the Cauchy–Schwarz inequality.

(e) Determine the condition for equality to occur.

1.2 Numbers and the Least Upper Bound Theorem

1.2a Numbers as Infinite Decimals

There are two familiar ways of looking at numbers: as infinite decimals and as points
on a number line. The integers divide the number line into infinitely many intervals
of unit length. If we include the left endpoint of each interval but not the right, we
can cover the number line with nonoverlapping intervals such that each number a
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belongs to exactly one of them, n ≤ a < n+1. Each interval can be subdivided into

ten subintervals of length
1
10

. As before, if we agree to count the left endpoint but

not the right as part of each interval, the intervals do not overlap. Our number a
belongs to exactly one of these ten subintervals, say to

n+
α1

10
≤ a < n+

α1 + 1
10

.

This determines the first decimal digit α1 of a. For example, Fig. 1.12 illustrates
how to find the first decimal digit of a number a between 2 and 3.

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

a

Fig. 1.12 a is in the interval [2.4,2.5), so α1 = 4

The second decimal digit α2 is determined similarly, by subdividing the interval
[2.4,2.5) into ten equal subintervals, and so on. Figure 1.13 illustrates the example
α2 = 7.

2.4 2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.5

a

Fig. 1.13 a is in the interval [2.47,2.48), so α2 = 7

Thus using the representation of a as a point on the number line and the pro-
cedure just described, we can find αk in a = n.α1α2 . . .αk . . . by determining the
appropriate interval in the kth step of this process. Conversely, once we have the
decimal representation of a number, we can identify its location on the number line.

Example 1.7. Examining the decimal representation
31
39

= 0.7948717 . . ., we see

that

0.79487 ≤ 31
39

< 0.79488.

Repeated Nines in Decimals. The method we described for representing numbers
as infinite decimals does not result in decimal fractions that end with infinitely many
nines. Nevertheless, such decimals come up when we do arithmetic with infinite
decimals. For instance, take the sum

1/3 = 0.333333333 · · ·
+ 2/3 = 0.666666666 · · ·

1 = 0.999999999 · · ·
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Similarly, every infinite decimal ending with all nines is equal to a finite decimal,
such as

0.39529999999 · · ·= 0.3953.

Decimals and Ordering. The importance of the infinite decimal representation of
numbers lies in the ease with which numbers can be compared. For example, which
of the numbers

17
20

,
31
39

,
45
53

,
74
87

is the largest? To compare them as fractions, we would have to bring them to a
common denominator. If we represent the numbers as decimals,

17
20

= 0.85000 . . .

31
39

= 0.79487 . . .

45
53

= 0.84905 . . .

74
87

= 0.85057 . . .

we can tell which number is larger by examining their integer parts and decimal
digits, place by place. Then clearly,

31
39

<
45
53

<
17
20

<
74
87

.

1.2b The Least Upper Bound Theorem

The same process we used for comparing four numbers can be used to find the
largest number in any finite set of numbers that are represented as decimals. Can we
apply a similar procedure to find the largest number in an infinite set S of numbers?
Clearly, the set S of positive integers has no largest element. Suppose we rule out
sets that contain arbitrarily large numbers and assume that all numbers in S are less
than some number k. Such a number k is called an upper bound of S.

Definition 1.1. A number k is called an upper bound for a set S of numbers if

x ≤ k

for every x in S, and we say that S is bounded above by k. Analogously, k
is called a lower bound for S if k ≤ x for every x in S, and we say that S is
bounded below by k.
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Imagine pegs in the number line at all points of the set S. Let k be an upper bound
for S that is to the right of every point of S. Put the point of your pencil at k and move
it as far to the left as the pegs will let it go (Fig. 1.14). The point where the pencil
gets stuck is also an upper bound of S. There can be no smaller upper bound, for
if there were, we could have slid the pencil further to the left. It is the least upper
bound of S.1

PENCIL

k

Fig. 1.14 The least upper bound of a bounded set of numbers

This result is so important it deserves restatement and a special name:

Theorem 1.2. The least upper bound theorem. Every set S of numbers that is
bounded above has a least upper bound.

Proof. We prove the theorem when S is an infinite set of numbers between 0 and 1.
The proof of the general case is similar. Examine the first decimal digits of the
numbers in S and keep only those with the largest first digit. We call the remaining
numbers eligible after the first step. Examine the second digits of the numbers that
were eligible after the first step and keep only those with the largest second digit.
Those are the numbers that are eligible after the second step. Define the number s
by setting its jth digit equal to the jth digit of any number that remains eligible after
j steps. By construction, s is greater than or equal to every number in S, i.e., s is an
upper bound of S.

Next we show that every number that is smaller than s is not an upper bound of S,
i.e., s is the smallest, or least, upper bound of S. Let m = 0.m1m2m3 . . .mn . . . be any
number smaller than s= 0.s1s2s3 . . .sn . . .. Denote by j the first position in which the
digits of s and m differ. That means that for n < j, sn = mn. Since m is smaller than
s, m j < s j. At the jth step in our construction of s there was at least one number x in

1 The story is told that R.L. Moore, a famous mathematician in Texas, asked a student to give
a proof or find a counterexample to the statement “Every bounded set of numbers has a largest
element.” The student came up with a counterexample: the set consisting of the numbers 1 and 2;
it has a larger element, but no largest.
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S that agreed with s up through the jth decimal digit. By comparing decimal digits,
we see that m is less than x. So m is not an upper bound for S. Since no number less
than s is an upper bound for S, s is the least upper bound of S. ��

An analogous theorem is true for lower bounds:

Theorem 1.3. The greatest lower bound theorem. Every set of numbers that
is bounded below has a greatest lower bound.

The least upper bound of set S is also known as the supremum of S, and the
greatest lower bound as the infimum of S, abbreviated as supS and infS respectively.

The least upper bound theorem is one of the workhorses for proving things in
calculus. Here is an example.

Existence of Square Roots. If we think of positive numbers geometrically as rep-
resenting lengths of intervals and areas of geometric figures such as squares, then it
is clear that every positive number p has a square root. It is the length of the edge of
a square with area p. We now think of numbers as infinite decimals. We can use the
least upper bound theorem to prove that a positive number has a square root. Let us
do this for a particular positive number, say

p = 5.1.

A calculator produces the approximation
√

5.1 ≈ 2.2583. By squaring, we see that
(2.2583)2 = 5.09991889. Let S be the set of numbers a with a2 < 5.1. Then S is not
empty, because as we just saw, 2.2583 is in S, and so are 1 and 2 and many other
numbers. Also, S is bounded above, for example by 3, because numbers larger than
3 cannot be in S; their squares are too large. The least upper bound theorem says
that the set S has a least upper bound; call it r.

We show that r2 = 5.1 by eliminating the possibility that r2 > 5.1 or r2 < 5.1.
By squaring, (

r+
1
n

)2

= r2 +
1
n

(
2r+

1
n

)
,

we see that the square of a number slightly bigger than r is more than r2, but not
much more when n is sufficiently large. Also,

(
r− 1

n

)2

= r2 − 1
n

(
2r− 1

n

)

shows that the square of a number slightly less than r is less than r2, but not much
less when n is sufficiently large. So, if r2 is more than 5.1, there is a smaller number

of the form r − 1
n

whose square is also more than 5.1, so r is not the least upper

bound of S, a contradiction. If r2 is less than 5.1, then there is a larger number of
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the form r+
1
n

whose square is also less than 5.1, so r is not an upper bound at all,

a contradiction. The only other possibility is that r2 = 5.1, and r =
√

5.1.

1.2c Rounding

As a practical matter, comparing two infinite decimal numbers involves rounding. If
two decimal numbers with the same integer part have n digits in common, then they
differ by less than 10−n. The converse is not true: two numbers can differ by less
than 10−n but have no digits in common. For example, the numbers 0.300000 and
0.299999 differ by 10−6 but have no digits in common. The operation of rounding
makes it clear by how much two numbers in decimal form differ.

Rounding a number a to m decimal digits starts with finding the decimal interval
of length 10−m that contains a. Then a rounded down to m digits is the left endpoint
of this interval. Similarly, a rounded up to m digits is the right endpoint of the
interval. Another way to round a up to m digits is to round a down to m digits and

then add 10−m. For example,
31
39

= 0.7948717949 . . . rounded down to three digits

is 0.794, and
31
39

rounded up to three digits is 0.795.

When calculating, we frequently round numbers up or down. If after rounding,
two numbers appear equal, how far apart might they be? Here are two observations
about the distance between two numbers a and b and their roundings:

Theorem 1.4. If a and b are two numbers given in decimal form and if one of
the two roundings of a to m digits agrees with one of the two roundings of b to
m digits, then |a− b|< 2 ·10−m.

Proof. If a and b rounded down to m digits agree, then a and b are in the same
interval of width 10−m, and the difference between them is less than 10−m. In the
case that one of these numbers rounded up to m digits agrees with the other number
rounded down to m digits, a and b lie in adjacent intervals of length 10−m, and hence
a and b differ by less than 2× 10−m. ��

Similarly, if we know how close a and b are, we can conclude something about
their roundings:

Theorem 1.5. If the distance between a and b is less than 10−m, then one of the
roundings of a to m digits agrees with one of the roundings of b to m digits.

Proof. The interval between a rounded down and a rounded up to m digits contains
a and is 10−m wide. Similarly, the interval between b rounded down and b rounded
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up to m digits contains b and is 10−m wide. Since a and b differ by less than 10−m,
these two intervals are either identical or adjacent. In either case, they have at least
one endpoint in common, so one of the roundings of a must agree with one of the
roundings of b. ��
Rounding and Calculation Errors. There are infinitely many real numbers, but
calculators and computers have finite capacities to represent them. So numbers are
stored by rounding. Calculations of basic arithmetic operations are a source of error
due to rounding. Here is an example.

In Archimedes’ work Measurement of a Circle, he approximated π by computing
the perimeters of inscribed and circumscribed regular polygons with n sides. There
are recurrence formulas for these estimates. Let p1 be the perimeter of a regular
hexagon inscribed in a unit circle. The length of each side of the hexagon is s1 = 1.
Then p1 = 6s1 = 6. Let p2 be the perimeter of the regular 12-gon. The length of each
side s2 can be expressed in terms of s1 using the Pythagorean theorem. We have in
Fig. 1.15,

D =
1
2

s1, C = s2, and B = 1−A.

By the Pythagorean theorem, A =
√

1−D2 and C =
√

B2 +D2. Combining these,
we find that

s2 =

√√√√√
⎛
⎝1−

√
1−

(
1
2

s1

)2
⎞
⎠

2

+

(
1
2

s1

)2

=

√√√√2− 2

√
1−

(
1
2

s1

)2

.

The same formula can be used to express the side sn of the polygon of 3(2n) sides
in terms of sn−1. The perimeter pn = 3(2n)sn approximates the circumference of the
unit circle, 2π . The table in Fig. 1.15 shows that the formula appears to work well
through n= 16, but after that something goes wrong, as you certainly see by line 29.
This is an example of the catastrophic effect of round-off error.

As we will see, many of the key concepts of calculus rely on differences of num-
bers that are nearly equal, sums of many numbers near zero, or quotients of very
small numbers. This example shows that it is unwise to naively implement an algo-
rithm in a computer program without considering the effects of rounding.

Problems

1.19. What would you choose for m in |√3− 1.7|< 10−m, and why?

1.20. Find the least upper bound and the greatest lower bound of each of the follow-
ing sets. Or if it is not possible, explain why.

(a) the interval (8,10).
(b) the interval (8,10].
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n sn pn

1 1.000000000000000 6.000000000000000
2 0.517638090205042 6.211657082460500
3 0.261052384440103 6.265257226562474
4 0.130806258460286 6.278700406093744
5 0.065438165643553 6.282063901781060
6 0.032723463252972 6.282904944570689
7 0.016362279207873 6.283115215823244
8 0.008181208052471 6.283167784297872
9 0.004090612582340 6.283180926473523

10 0.002045307360705 6.283184212086097
11 0.001022653813994 6.283185033176309
12 0.000511326923607 6.283185237281579
13 0.000255663463975 6.283185290642431
14 0.000127831731987 6.283185290642431
15 0.000063915865994 6.283185290642431
16 0.000031957932997 6.283185290642431
17 0.000015978971709 6.283187339698854
18 0.000007989482381 6.283184607623475

A

B

D

C

1

19 0.000003994762034 6.283217392449608
20 0.000001997367121 6.283173679310083
21 0.000000998711352 6.283348530043515
22 0.000000499355676 6.283348530043515
23 0.000000249788979 6.286145480340079
24 0.000000125559416 6.319612329882269
25 0.000000063220273 6.363961030678928
26 0.000000033320009 6.708203932499369
27 0.000000021073424 8.485281374238571
28 0.000000014901161 12.000000000000000
29 0.000000000000000 0.000000000000000

Fig. 1.15 Left: the regular hexagon and part of the 12-gon inscribed in the circle. Right: calculated
values for the edge lengths sn and perimeters pn of the inscribed 3(2n)-gon. Note that as n increases,
the exact value of pn approaches 2π = 6.2831853071795 . . .

(c) the nonpositive integers.
(d) the set of four numbers 30

279 , 29
263 , 59

525 , 1
9 .

(e) the set 1, 1
2 ,

1
3 ,

1
4 , . . ..

1.21. Take the unit square, and by connecting the midpoints of opposite sides, divide
it into 22 = 4 subsquares, each of side 2−1. Repeat this division for each subsquare,
obtaining 24 = 16 squares whose sides have length 2−2. Continue this process so that
after n steps, there are 22n squares, each having sides of length 2−n. See Fig. 1.16.
With the lower left corner as center and radius 1, inscribe a unit quarter circle into
the square. Denote by an the total area of those squares that at the nth step of the
process, lie entirely inside the quarter circle. For example, a1 = 0, a2 =

1
4 , a3 =

1
2 .

(a) Is the set S of numbers a1,a2,a3, . . . ,an, . . . bounded above? If so, find an upper
bound.

(b) Does S have a least upper bound? If so, what number do you think the least
upper bound is?
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Fig. 1.16 The square in Problem 1.21. Area a3 is shaded

1.22. Use rounding to add these two numbers so that the error in the sum is not more
than 10−9:

0.1234567898765432104567898765432101
+ 9.1111112221112221118765432104567892

1.23. Tell how, in principle, to add the two numbers having the indicated pattern of
decimals:

0.101100111000111100001111100000 · · ·
+ 0.898989898989898989898989898989 · · ·

Does your explanation involve rounding?

1.24. Show that the least upper bound of a set S is unique. That is, if x1 and x2 both
are least upper bounds of S, then x1 = x2.

Hint: Recall that given any numbers a and b, exactly one of the following holds:
a < b, a > b, or a = b.

1.3 Sequences and Their Limits

In Sect. 1.2a we described numbers as infinite decimals. That is a very good theo-
retical description, but not a practical one. How long would it take to write down
infinitely many decimal digits of a number, and where would we write them?

For an alternative practical description of numbers, we borrow from engineering
the idea of tolerance. When engineers specify the size of an object to be used in a
design, they give its magnitude, say 3 m. But they also realize that nothing built by
human beings is exact, so they specify the error they can tolerate, say 1 mm, and
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still use the object. This means that to be usable, the object has to be no larger than
3.001 m and no smaller than 2.999 m.

This tolerable error is called tolerance and is usually denoted by the Greek letter
ε . By its very nature, tolerance is a positive quantity, i.e., ε > 0. Here are some
examples of tolerable errors, or tolerances, in approximating π :

|π − 3.14159| < 10−5

|π − 3.141592| < 10−6

|π − 3.14159265|< 10−8

|π − 3.14159265358979|< 10−14

Notice that the smaller tolerances pinpoint the number π within a smaller interval.
To determine a number a, we must be able to give an approximation to a for

any tolerance ε , no matter how small. Suppose we take a sequence of tolerances
εn tending to zero, and suppose that for each n, we have an approximation an that
is within εn of a. The approximations an form an infinite sequence of numbers a1,
a2, a3, . . . that tend to a in the sense that the difference between an and a tends to
zero as n grows larger and larger. This leads to the general concept of the limit of a
sequence.

Definition 1.2. A list of numbers is called a sequence. The numbers are called
the terms of the sequence. We say that an infinite sequence a1, a2, a3, . . . ,
an, . . . converges to the number a (is convergent) if given any tolerance ε > 0,
no matter how small, there is a whole number N, dependent on ε , such that for
all n > N, an differs from a by less than ε:

|an − a|< ε.

The number a is called the limit of the sequence {an}, and we write

lim
n→∞

an = a.

A sequence that has no limit diverges (is divergent).

A note on terminology and history: When the distinguished Polish mathematician
Antoni Zygmund, author of the text Trigonometric Series, came as a refugee to
America, he was eager to learn about his adopted country. Among other things, he
asked an American friend to explain baseball to him, a game totally unknown in
Europe. He received a lengthy lecture. His only comment was that the World Series
should be called the World Sequence. As we will see later, the word “series” in
mathematics refers to the sum of the terms of a sequence.

Because many numbers are known only through a sequence of approximations,
a question that arises immediately, and will be with us throughout this calculus
course, is this: How can we decide whether a given sequence converges, and if it
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does converge, what is its limit? Each case has to be analyzed individually, but there
are some rules of arithmetic for convergent sequences.

Theorem 1.6. Suppose that {an} and {bn} are convergent sequences,

lim
n→∞

an = a, lim
n→∞

bn = b.

Then

(a) lim
n→∞

(an + bn) = a+ b.

(b) lim
n→∞

(anbn) = ab.

(c) If a is not zero, then for n large enough, an 
= 0, and lim
n→∞

1
an

=
1
a

.

These rules certainly agree with our experience of computation with decimals.
They assert that if the numbers an and bn are close to the numbers a and b, then
their sum, product, and reciprocals are close to the sum, product, and reciprocals of
a and b themselves. In Problem 1.33 we show you how to prove these properties of
convergent sequences.

Next we give some examples of convergent sequences.

Example 1.8. an =
1
n

. For any tolerance ε no matter how small,
1
n

is within ε of

0 once n is greater than
1
ε

. So

∣∣∣∣1
n
− 0

∣∣∣∣< ε for n >
1
ε

, and lim
n→∞

1
n
= 0.

Example 1.9. an =
1
2n . Since 2n > n when n > 2, we see that

1
2n <

1
n
< ε if n is

large enough. So

∣∣∣∣ 1
2n − 0

∣∣∣∣< ε for n sufficiently large, and lim
n→∞

1
2n = 0.

In these two examples the limit is zero, a rather simple number. Let us look at a
very simple sequence whose limit is not zero.

Example 1.10. The limit of the constant sequence an = 5 for all n = 1,2,3, . . . is
5. The terms of the sequence do not differ from 5, so no matter how small ε is,
|an − 5|< ε .

Here is a slightly more complicated example.



22 1 Numbers and Limits

Example 1.11. Using algebra to rewrite the terms of the sequence, we obtain

lim
n→∞

5n+ 7
n+ 1

= lim
n→∞

(
5n+ 5
n+ 1

+
2

n+ 1

)
= lim

n→∞

(
5+

2
n+ 1

)
.

Now by Theorem 1.6,

lim
n→∞

(
5+

2
n+ 1

)
= lim

n→∞
5+ 2 lim

n→∞

1
n+ 1

= 5+ 2(0) = 5.

As we just saw, the arithmetic rules for convergent sequences can help us
evaluate limits of sequences by reducing them to known ones. The next theorem
gives us a different way to use the behavior of known sequences to show conver-
gence.

Theorem 1.7. The squeeze theorem. Suppose that for all n > N,

an ≤ bn ≤ cn,

and that lim
n→∞

an = lim
n→∞

cn = a. Then lim
n→∞

bn = a.

Proof. Subtracting a from the inequalities, we get

an − a ≤ bn − a ≤ cn − a.

Let ε > 0 be any tolerance. Since {an} and {cn} have limit a, there is a number N1

such that when n > N1, an is within ε of a, and there is a number N2 such that when
n >N2, cn is within ε of a. Let M be the largest of N, N1, and N2. Then when n >M,
we get

−ε < an − a ≤ bn − a ≤ cn − a < ε.

So for the middle term, we see that |bn − a|< ε . This shows that bn converges to a.
��

Example 1.12. Suppose
1
2n ≤ an ≤ 1

n
for n > 2. Since lim

n→∞

1
2n = lim

n→∞

1
n
= 0, by

the squeeze theorem, lim
n→∞

an = 0 as well.

Example 1.13. Suppose |an| ≤ |bn| and lim
n→∞

bn = 0. By the squeeze theorem ap-

plied to
0 ≤ |an| ≤ |bn|,

we see that lim
n→∞

|an|= 0. It is also true that lim
n→∞

an = 0, since the distance between

an and 0 is equal to the distance between |an| and 0, which can be made arbitrarily
small by taking n large enough.
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1.3a Approximation of
√

2

Now let us apply what we have learned to construct a sequence of numbers that
converges to the square root of 2. Let us start with an approximation s. How can we

find a better one? The product of the numbers s and
2
s

is 2. It follows that
√

2 lies

between these two numbers, for if both were greater than
√

2, their product would
be greater than 2, and if both of them were less than

√
2, their product would be less

than 2. So a good guess for a better approximation is the arithmetic mean of the two
numbers,

new approximation =
s+ 2

s

2
.

By the A-G inequality, this is greater than the geometric mean of the two numbers,
√

s

(
2
s

)
<

s+ 2
s

2
.

This shows that our new approximation is greater than the square root of 2.
We generate a sequence of approximations s1,s2, . . . as follows:

sn+1 =
1
2

(
sn +

2
sn

)
. (1.7)

Starting with, say, s1 = 2, we get

s1 = 2
s2 = 1.5
s3 = 1.41666666666666 . . .
s4 = 1.41421568627451 . . .
s5 = 1.41421356237469 . . .
s6 = 1.41421356237309 . . .

The first twelve digits of s5 and s6 are the same. We surmise that they are the first
twelve digits of

√
2. Squaring s5, we get

s2
5 ≈ 2.00000000000451,

gratifyingly close to 2. So the numerical evidence suggests that the sequence {sn}
defined above converges to

√
2. We are going to prove that this is so.

How much does sn+1 differ from
√

2?

sn+1 −
√

2 =
1
2

(
sn +

2
sn

)
−
√

2.
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Let us bring the fractions on the right side to a common denominator:

sn+1 −
√

2 =
1

2sn

(
s2

n + 2− 2sn

√
2
)
.

We recognize the expression in parentheses as a perfect square, (sn −
√

2)2. So we
can rewrite the above equation as

sn+1 −
√

2 =
1

2sn

(
sn −

√
2
)2

.

Next we rewrite the right side giving

sn+1 −
√

2 =
1
2

(
sn −

√
2
)( sn −

√
2

sn

)
.

Since sn is greater than
√

2, the factor
( sn −

√
2

sn

)
is less than one. Therefore, drop-

ping it gives the inequality

0 < sn+1 −
√

2 <
1
2

(
sn −

√
2
)
.

Applying this repeatedly gives

0 < sn+1 −
√

2 <
1
2n

(
s1 −

√
2
)
.

We have shown in the previous example that the sequence
1
2n tends to the limit

zero. It follows from Theorem 1.7, the squeeze theorem, that sn+1 −
√

2 tends to
zero. This concludes the proof that lim

n→∞
sn =

√
2.

1.3b Sequences and Series

One of the most useful tools for proving that a sequence converges to a limit is the
monotone convergence theorem, which we discuss next.

Definition 1.3. A sequence {an} is called increasing if an ≤ an+1. It is decreas-
ing if an ≥ an+1. The sequence is monotonic if it is either increasing or decreas-
ing.
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Definition 1.4. A sequence {an} is called bounded if all numbers in the se-
quence are contained in some interval [−B,B], so that |an| ≤ B. Every such
number B is a bound.

If an < K for all n, we say that {an} is bounded above by K. If K < an for
all n, we say that {an} is bounded below by K.

Example 1.14. The sequence an = (−1)n,

a1 =−1, a2 = 1, −1, 1, −1, . . . ,

is bounded, since |an| = |(−1)n| = 1. The sequence is also bounded above by 2
and bounded below by −3.

When showing that a sequence is bounded it is not necessary to find the smallest
bound. A larger bound is often easier to verify.

Example 1.15. The sequence {5+ 2
n+1} is bounded. Since

0 ≤ 2
n+ 1

≤ 1 (n = 1,2,3, . . .),

we can see that
∣∣5+ 2

n+1

∣∣≤ 6. It is also true that
∣∣5+ 2

n+1

∣∣≤ 100.

The next theorem, which we help you prove in Problem 1.35, shows that being
bounded is necessary for sequence convergence.

Theorem 1.8. Every convergent sequence is bounded.

The next theorem gives a very powerful and fundamental tool for proving
sequence convergence.

Theorem 1.9. An increasing sequence that is bounded converges to a limit.

Proof. The proof is very similar to the proof of the existence of the least upper
bound of a bounded set. We take the case that the sequence consists of positive
numbers. For if not, |an| < b for some b and the augmented sequence {an + b} is
an increasing sequence that consists of positive numbers. By Theorem 1.6, if the
augmented sequence converges to the limit c, the original sequence converges to
c− b.

Denote by wn the integer part of an. Since the original sequence is increasing, so
is the sequence of their integer parts. Since the original sequence is bounded, so are
their integer parts. Therefore, wn+1 is greater than wn for only a finite number of n.
It follows that all integer parts wn are equal for all n greater than some number N.
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Denote by w the value of wn for n greater than N. Next we look at the first decimal
digit of an for n greater than N:

an = w.dn . . . .

Since the an form an increasing sequence, so do the digits dn. It follows that the
digits dn are all equal for n greater than some number N(1).

Denote this common value of dn by c1. Proceeding in this manner, we see that
there is a number N(k) such that for n greater than N(k), the integer part and the
first k digits of an are equal. Let us denote these common digits by c1,c2, . . . ,ck, and
denote by a the number whose integer part is w and whose kth digit is ck for all k.
Then for n greater than N(k), an differs from a by less than 10−k; this proves that
the sequence {an} converges to a. ��

We claim that a decreasing, bounded sequence {bn} converges to a limit. To
see this, define its negative, the sequence an = −bn. This is a bounded increasing
sequence, and therefore converges to a limit a. The sequence bn then converges to
−a. Theorem 1.9 and the analogous theorem for decreasing bounded sequences are
often expressed as a single theorem:

Theorem 1.10. The monotone convergence theorem. A bounded monotone
sequence converges to a limit.

Existence of Square Roots. The monotone convergence theorem is another of the
workhorses of calculus. To illustrate its power, we show now how to use it to give a
proof, different from the one in Sect. 1.2b, that every positive number has a square
root. To keep notation to a minimum, we shall construct the square root of the
number 2.

Denote as before by sn the members of the sequence defined by

sn+1 =
1
2

(
sn +

2
sn

)
. (1.8)

We have pointed out earlier that for n > 1, sn is greater than
√

2. Therefore,
2
sn

is

less than
√

2, and hence less than sn. It follows from Eq. (1.8) that

sn+1 <
sn + sn

2
= sn.

This shows that {sn} is a decreasing sequence of positive numbers. We appeal to the
monotone convergence theorem to conclude that the sequence {sn} converges to a
limit. Denote this limit by s. We shall show that s is

√
2.

According to Theorem 1.6, the limit of the sequence on the right side of Eq. (1.8)

is
1
2

(
s+

2
s

)
. This is equal to s, the limit of the left side of Eq. (1.8): s=

1
2

(
s+

2
s

)
.

Multiply this equation by 2s to obtain 2s2 = s2 + 2. Therefore s2 = 2.



1.3 Sequences and Their Limits 27

Geometric Sequences and Series. We define geometric sequences as follows.

Definition 1.5. Sequences of numbers that follow the pattern of multiplying by
a fixed number to get the next term are called geometric sequences, or geometric
progressions.

Example 1.16. The geometric sequences 1,2,4,8, . . . ,2n, . . .,

1
3
,−1

6
,

1
12

,− 1
24

, . . . ,
1
3

(
−1

2

)n

, . . . , and 0.1,0.01,0.001,0.0001, . . .,(0.1)n, . . .

may be abbreviated {2n}, {1
3

(
−1

2

)n

}, {(0.1)n}, n = 0,1,2, . . ..

Theorem 1.11. Geometric sequence. The sequence {rn}
(a) converges if |r|< 1, and in this case, lim

n→∞
rn = 0,

(b) converges if r = 1, and in this case, lim
n→∞

1n = 1,

(c) diverges for r > 1 and for r ≤−1.

Proof. (a) If 0 ≤ r < 1, then {rn} is a decreasing sequence that is bounded, |rn| ≤ 1.
Therefore, by the monotone convergence theorem it converges to a limit a. The
sequence r,r2,r3, . . . has the same limit as 1,r,r2,r3, . . ., and so by Theorem 1.6,

a = lim
n→∞

rn+1 = lim
n→∞

rrn = r lim
n→∞

rn = ra,

and a(r− 1) = 0. Now since r 
= 1, a = 0.
If −1 < r < 0, then each power rn has the same distance to 0 as |r|n, so again
the limit is 0.

(b) For any tolerance ε , |1n − 1|= 0 < ε , so the limit is clearly 1.
(c) To show that {rn} diverges for |r| > 1 or r = −1, suppose the limit exists:

lim
n→∞

rn = a. By the argument in part (a), the limit must be 0. But this is not

possible. We know that |rn −0| ≥ 1 for all n, i.e., the distance between rn and 0
is always at least 1, so rn does not tend to 0. ��

Example 1.17. Recall that n! denotes the product of the first n positive integers,
(1)(2) · · · (n). We shall show that for every number b,

lim
n→∞

bn

n!
= 0.

Take an integer N > |b|, and decompose every integer n greater than N as n =

N + k. Then
bn

n!
=

bN

N!
b

N + 1
· · · b

N + k
. The first factor

bN

N!
is a fixed number, and
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the other k factors each have absolute value less than r =
|b|

N + 1
< 1. Since rk

tends to 0, the limit is 0 by the squeeze argument used in Example 1.12.

Definition 1.6. The numbers of a sequence {an} can be added to make a new
sequence {sn}:

s1 = a1 =
1

∑
j=1

a j

s2 = a1 + a2 =
2

∑
j=1

a j

· · ·
sn = a1 + a2 + · · ·+ an =

n

∑
j=1

a j

· · ·

called the sequence of partial sums of the series
∞

∑
n=1

an. If the limit

∞

∑
j=1

a j = a1 + a2 + a3 + · · ·= lim
n→∞

sn

exists, the series converges. Otherwise, it diverges. The numbers an are called
the terms of the series.

Example 1.18. Take all a j = 1, which gives the series
∞

∑
j=1

1. The nth partial sum

is sn = 1+ · · ·+ 1 = n. Since the sn are not bounded, the series diverges by The-
orem 1.8.

Example 1.18 suggests the following necessary condition for convergence.

Theorem 1.12. If
∞

∑
n=1

an converges, then lim
n→∞

an = 0.

Proof. Let sn = a1 + · · ·+ an. Since
∞

∑
n=1

an converges, the limit lim
n→∞

sn = L exists,

and for the shifted sequence lim
n→∞

sn−1 = L as well. According to Theorem 1.6,

lim
n→∞

an = lim
n→∞

(sn − sn−1) = L−L = 0. ��
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Example 1.19. The series
∞

∑
n=1

(
n

2n+ 1

)
diverges, because lim

n→∞

n
2n+ 1

=
1
2

.

The following is one of the best-known and most beloved series.

Theorem 1.13. Geometric series. If |x|< 1, the sequence of partial sums

sn = 1+ x+ x2+ x3 + · · ·+ xn.

converges, and

lim
n→∞

sn =
∞

∑
n=0

xn =
1

1− x
, (|x|< 1). (1.9)

If |x| ≥ 1, the series diverges.

Proof. By algebra, we see that sn(1− x) = (1+ x + x2 + x3 + · · ·+ xn)(1− x) =
1− xn+1. Therefore,

sn =
1− xn+1

1− x
, (x 
= 1). (1.10)

According to Theorem 1.11, for |x|< 1 we have lim
n→∞

xn = 0 and

lim
n→∞

sn = lim
n→∞

(1+ x+ x2+ x3 + · · ·+ xn) = lim
n→∞

1− xn+1

1− x
=

1
1− x

.

If |x| ≥ 1, then xn does not approach zero, so according to Theorem 1.12, the series
diverges. ��

Comparing Series. Next we show how to use monotone convergence and the arith-
metic properties of sequences to determine convergence of some series. Consider the
series

(a)
∞

∑
n=0

1
2n + 1

, (b)
∞

∑
n=1

1
2n − 1

.

For series (a), the numbers
1

2n + 1
are positive, so the partial sums

m

∑
n=0

1
2n + 1

form

an increasing sequence. Since

1
2n + 1

<

(
1
2

)n

,



30 1 Numbers and Limits

the partial sums satisfy
m

∑
n=0

1
2n + 1

<
m

∑
n=0

(
1
2

)n

. Since
∞

∑
n=0

(
1
2

)n

converges, its se-

quence of partial sums is bounded,

0 ≤
m

∑
n=0

1
2n + 1

<
m

∑
n=0

(
1
2

)n

≤ 2.

By the monotone convergence theorem, the sequence of partial sums of
∞

∑
n=0

1
2n + 1

converges, so the series converges.

For series (b), the numbers
1

2n − 1
are positive, so the partial sums

m

∑
n=1

1
2n − 1

form an increasing sequence. Note that
1

2n − 1
is not less than

1
2n (it is slightly

greater), so we cannot set up a comparison as we did for series (a). We look instead
at the limit of the ratio of the terms,

lim
n→∞

1
2n−1

1
2n

= lim
n→∞

1

1− 1
2n

= 1.

Since the limit of the ratio is 1, the ratios eventually all get close to 1. So for every
R > 1, there is a sufficiently large N such that

1
2n−1

1
2n

< R

for all n > N. Therefore,
1

2n − 1
< R

(
1
2

)n

for all n > N. Since the partial sums of

the series R
∞

∑
n=N+1

(
1
2

)n

are bounded, so are the partial sums of
∞

∑
n=N+1

1
2n − 1

. So

this series converges. But then so does
∞

∑
n=1

1
2n − 1

.

The arguments used for series (a) and (b) can be used to obtain the next two
comparison theorems, which we ask you to prove in Problem 1.45.

Theorem 1.14. Comparison theorem. Suppose that for all n,

0 ≤ an ≤ bn.

If
∞

∑
n=1

bn converges, then
∞

∑
n=1

an converges.
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Theorem 1.15. Limit comparison theorem. Let
∞

∑
n=1

an and
∞

∑
n=1

bn be series of

positive terms. If lim
n→∞

an

bn
exists and is a positive number, then

∞

∑
n=1

an converges

if and only if
∞

∑
n=1

bn converges.

The comparison theorems are stated for terms that are positive or not negative.
The next theorem is a handy result that sometimes allows us to use these theorems
to deduce convergence of series with negative terms.

Theorem 1.16. If
∞

∑
j=1

|a j| converges, then
∞

∑
j=1

a j also converges.

Proof. Since 0≤ an+ |an|, the partial sums sm =
m

∑
j=1

(an+ |an|) are increasing. Since

an + |an| ≤ 2|an|, sm is less than the mth partial sum of
∞

∑
j=1

2|a j|, which converges.

The sequence of partial sums sm is increasing and bounded. Therefore,
∞

∑
j=1

(an+ |an|)

converges. Since a j = (a j + |a j|)−|a j|,
∞

∑
j=1

a j converges by Theorem 1.6. ��

Example 1.20. The series
∞

∑
n=1

1
(−2)nn

does not have positive terms, however

∞

∑
n=1

∣∣∣∣ 1
(−2)nn

∣∣∣∣ =
∞

∑
n=1

1
2nn

does. Since
1

2nn
<

(
1
2

)n

, the series
∞

∑
n=1

∣∣∣∣ 1
(−2)nn

∣∣∣∣ con-

verges by comparison with the geometric series
∞

∑
n=1

(
1
2

)n

. According to Theo-

rem 1.16,
∞

∑
n=1

1
(−2)nn

converges.

The next two examples show that the converse of Theorem 1.16 is not true. That

is, a series
∞

∑
n=1

an may converge while the series
∞

∑
n=1

|an| diverges.

Example 1.21. Consider the series
∞

∑
n=1

1
n

. This is known as the “harmonic series.”

Its sequence of partial sums is

s1 = 1, s2 = s1 +
1
2
= 1+

1
2
, s3 = s2 +

1
3
= 1+

1
2
+

1
3
, . . . .
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By grouping the terms, we can see that

s4 = s2 +
1
3 +

1
4 > 1.5+ 2

4 = 2
s8 = s4 +

1
5 +

1
6 +

1
7 +

1
8 > 2+ 4

8 = 2.5
s16 = s8 +

1
9 + · · ·+ 1

16 > 2.5+ 8
16 = 3

and so forth. So sn is an increasing sequence that is not bounded.

The harmonic series diverges. It is easy to see that the difference between its
successive partial sums, sn+1 − sn =

1
n+1 , can be made as small as we like by taking

n large. However, this is not enough to ensure convergence of the series. We will
revisit the harmonic series when we study improper integrals. The harmonic series
is a good example of a series where the terms of the series a1,a2, . . . ,an, . . . decrease

to zero and the series
∞

∑
n=1

an diverges.

Now let us alternate the signs of the terms, to see that the resulting series does
converge. Consider the series

∞

∑
n=1

(−1)(n−1)1
n
. (1.11)

The sequence of even partial sums s2,s4,s6, . . . ,s2k, . . . is an increasing sequence,

since s2k+2 − s2k =
1

2k+ 1
− 1

2k+ 2
> 0. It is bounded above by

1 > s2k = 1+

(
−1

2
+

1
3

)
+ · · ·+

(
− 1

2k− 2
+

1
2k− 1

)
− 1

2k
.

The sequence of odd partial sums s1,s3,s5, . . . ,s2k+1, . . . is a decreasing sequence,

since s2(k+1)+1 − s2k+1 =− 1
2k+ 2

+
1

2k+ 2+ 1
< 0. It is bounded below by

1
2
< s2k+1 =

(
1− 1

2

)
+

(
1
3
− 1

4

)
+ · · ·+ 1

2k+ 1
.

By the monotone convergence theorem, both {s2k} and {s2k+1} converge. Define
lim
k→∞

s2k = L1 and lim
k→∞

s2k+1 = L2. Then

L2 −L1 = lim
k→∞

(s2k+1 − s2k) = lim
k→∞

1
2k+ 1

= 0.

Therefore, sk converges to L1 = L2, and
∞

∑
n=1

(−1)(n−1)1
n

converges.

The same argument can be used to obtain the following more general result. We
guide you through the steps in Problem 1.46.
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Theorem 1.17. Alternating series theorem. If

a1 ≥ a2 ≥ a3 ≥ ·· · ≥ an ≥ ·· · ≥ 0

and lim
n→∞

an = 0, then
∞

∑
n=1

(−1)nan converges.

Definition 1.7. If
∞

∑
i=1

ai converges and
∞

∑
i=1

|ai| diverges, we say that
∞

∑
i=1

ai con-

verges conditionally. If
∞

∑
i=1

|ai| converges, we say that
∞

∑
i=1

ai converges abso-

lutely.

Example 1.22. In the convergent geometric series

1+
1
3
+

1
9
+

1
27

+ · · ·

replace any number of plus signs by minus signs. According to Definition 1.7,
the resulting series converges absolutely.

Example 1.23. We showed that
∞

∑
n=1

(−1)(n−1)1
n

converges, and in Exam-

ple 1.21, we showed that
∞

∑
n=1

1
n

diverges. Therefore,
∞

∑
n=1

(−1)(n−1)1
n

converges

conditionally.

Example 1.24. Because
1√
n

decreases to 0,
∞

∑
n=1

(−1)n−1 1√
n

converges by the al-

ternating series theorem, Theorem 1.17. Since
√

n ≤ n,
1√
n
≥ 1

n
, and the partial

sums are given by

sm =
m

∑
n=1

1√
n
≥

m

∑
n=1

1
n
.

By Example 1.21, the partial sums of the harmonic series are not bounded.

Therefore, the sm are not bounded either; this shows that
∞

∑
n=1

1√
n

diverges. Thus

∞

∑
n=1

(−1)n−1 1√
n

converges conditionally.
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Further Comparisons. Consider the series

∞

∑
n=1

n
2n . (1.12)

Because the terms an =
n
2n are positive, the sequence of partial sums is increasing.

If the sequence of partial sums is bounded, then the series converges. Let us look at
a few partial sums:

s1 = 0.5
s2 = 1
s3 = 1.375
s4 = 1.625.

We clearly need better information than this. Trying a limit comparison with
∞

∑
n=1

1
2n

yields

lim
n→∞

n
2n

1
2n

= lim
n→∞

n,

which does not exist, and so such a comparison is not helpful. We notice that when

n is large, the terms
n
2n grow by roughly a factor of

1
2

, i.e.,

lim
n→∞

n+1
2n+1

n
2n

= lim
n→∞

n+ 1
n

1
2
=

1
2
.

This suggests comparing the series with a geometric series. Let r be any number

greater than
1
2

and less than 1. Since
an+1

an
tends to

1
2

, there is some N such that for

n > N,

an+1

an
< r.

Multiply by an to get an+1 < ran. Repeating the process gives

aN+k < raN+k−1 < · · ·< rkaN .

Since the geometric series
∞

∑
k=0

rk converges, the partial sums of the series
∞

∑
k=0

aN+k

are bounded,
m

∑
k=0

aN+k ≤ aN

m

∑
k=0

rk.
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Therefore, the partial sums of our series
∞

∑
n=1

an are bounded, and it converges. The

idea behind this example leads to the next theorem.

Theorem 1.18. Ratio test. Suppose that lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= L. Then

(a) If L < 1, the series
∞

∑
n=1

an converges absolutely.

(b) If L > 1, the series
∞

∑
n=1

an diverges.

The case L = 1 gives no information.

In Problem 1.48, we ask you to prove the theorem by extending the argument we

used for
∞

∑
n=1

n
2n .

Example 1.25. Let us determine whether these series converge:

∞

∑
n=1

n5

2n ,
∞

∑
n=1

(−2)n

n!
,

∞

∑
n=1

2n

n2 .

(a) lim
n→∞

(n+1)5

2n+1

n5

2n

= lim
n→∞

1
2

(
n+ 1

n

)5

=
1
2

, so
∞

∑
n=1

n5

2n converges by the ratio test.

(b) lim
n→∞

∣∣∣∣∣∣
(−2)n+1

(n+1)!
(−2)n

n!

∣∣∣∣∣∣= lim
n→∞

2
n+ 1

= 0, so
∞

∑
n=1

(−2)n

n!
converges absolutely by the ratio

test.

(c) lim
n→∞

2n+1

(n+1)2

2n

n2

= lim
n→∞

2

(
n

n+ 1

)2

= 2, so
∞

∑
n=1

2n

n2 diverges by the ratio test.

Example 1.26. The harmonic series
∞

∑
n=1

1
n

diverges, as we know from Example

1.21. This is a case in which the ratio test would have offered no information,
since

1
n+1

1
n

=
n

n+ 1

tends to 1.

We end this section with two very fundamental properties, the nested interval
property and Cauchy’s criterion for sequence convergence.
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1.3c Nested Intervals

We can use the monotone convergence theorem to prove the nested interval property
of numbers:

1I

I2

3I

I4

Fig. 1.17 Nested intervals

Theorem 1.19. Nested interval theorem. If I1, I2, I3, . . . is a sequence of
closed intervals that are “nested,” that is, each In contains In+1 (Fig. 1.17),
then the intervals In have at least one point in common. If the lengths of the
intervals tend to 0, there is exactly one point in common.

Proof. Denote by an and bn the left and right endpoints of In. The assumption of
nesting means that the sequence {an} increases, the sequence {bn} decreases, and
that each bn is greater than every an. So by the monotone convergence theorem, {an}
converges to some limit a, and {bn} to some limit b. By the way we constructed
the limits, we know that an ≤ a and b ≤ bn. Now, a cannot be greater than b, for
otherwise, some an would be larger than some bm, violating the nesting assumption.
So a must be less than or equal to b, and an ≤ a ≤ b ≤ bn. If the lengths of the
intervals In tend to zero as n tends to infinity, then the distance between a and b
must be zero, and the intervals In have exactly one point in common, namely the
point a = b. If the lengths of the In do not tend to zero, then [a,b] belongs to all the
intervals In, and the intervals have many points in common. ��
The AGM of Two Numbers. In Sect. 1.1c, we saw that given two numbers 0 <

g < a, their arithmetic mean is
a+ g

2
= a1, their geometric mean is

√
ag = g1, and

g ≤ g1 ≤ a1 ≤ a. Repeat the process of taking means, letting
a1 + g1

2
= a2 and√

a1g1 = g2. Then
g ≤ g1 ≤ g2 ≤ a2 ≤ a1 ≤ a.

Continuing in this manner, we obtain a sequence of nested closed intervals, [gn,an].
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Let us look at what happens to the width of the interval between g and a and how

that compares to the width of the interval between
√

ag = g1 and
a+ g

2
= a1. Using

a little algebraic manipulation, we see that

a+ g
2

−√
ag =

a− g
2

+ g−√
ag ≤ a− g

2
,

since g ≤√
ag. Thus

a1 − g1 ≤ 1
2
(a− g).

This means that the interval between the arithmetic and geometric means of a and g
is less than or equal to half the length of the interval between a and g. This reduces
the width of the intervals [gn,an] by at least half at each step, and so the lengths of
the intervals tend to 0.

The nested interval theorem says that this process squeezes in on exactly one
number. This number is called the arithmetic–geometric mean of a and g and is
denoted by AGM(a,g):

AGM(a,g) = lim
n→∞

an = lim
n→∞

gn.

The AGM may seem like a mathematical curiosity. Gauss invented the AGM and
used it to give a very fast algorithm for computing π .

1.3d Cauchy Sequences

Sometimes the terms of a sequence appear to cluster tightly about a point on the
number line, but we do not know the specific number they seem to be approaching.
We present now a very general and very useful criterion for such a sequence to have
a limit.

Definition 1.8. Cauchy’s criterion. A sequence of numbers {an} is called a
Cauchy sequence if given any tolerance ε , no matter how small, there is an
integer N such that for all integers n and m greater than N, an and am differ
from each other by less than ε .

Examples of Cauchy sequences abound; you will see in Problem 1.52 that every
convergent sequence is a Cauchy sequence. The next example shows how to verify

directly that the sequence {1
n
} is a Cauchy sequence.

Example 1.27. Let ε be any tolerance and let N be a whole number greater than
1
ε

. Let m > N and n > N. By the triangle inequality,
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m
− 1

n

∣∣∣∣≤ 1
m
+

1
n
≤ 1

N
+

1
N

< 2ε.

This can be made as small as desired. In fact, we can achieve the tolerance
∣∣∣∣ 1
m
− 1

n

∣∣∣∣< ε

if we take n and m greater than
2
ε

. So {1
n
} is a Cauchy sequence.

Theorem 1.20. Every Cauchy sequence converges.

The proof has four steps. First, we show that every sequence has a monotone
subsequence. This first step is worth recognizing as a “lemma,” a key stepping-stone
in the argument. Second, we show that every Cauchy sequence is bounded (and
hence every subsequence as well). Third, we recognize that a Cauchy sequence has
a monotone subsequence that is bounded and therefore converges. Fourth, we show
that a Cauchy sequence converges to the same limit as its monotone subsequence.

Lemma 1.1. Every infinite sequence of numbers has an infinite monotonic sub-
sequence.

Proof (of the Lemma). Let a1,a2, . . . be any sequence. We shall show that it contains
either an increasing or a decreasing subsequence. We start by trying to construct an
increasing subsequence. Start with a1 and take any subsequent term in the original
sequence that is greater than or equal to a1 as the next term of the subsequence. Con-
tinue in this fashion. If we can continue indefinitely, we have the desired increasing
subsequence. Suppose, on the other hand, that we get stuck after a finite number of
steps at a j because an < a j for all n> j. Then we try again to construct an increasing
sequence, starting this time with a j+1. If we can continue ad infinitum, we have an
increasing subsequence. If, on the other hand, we get stuck at ak because an < ak for
all n > k, then we can again try to construct an increasing subsequence starting at
ak+1. Proceeding in this fashion, we either have success at some point, or an infinite
sequence of failures. In the second case, the sequence of points a j,ak, . . . where the
failures occurred constitutes a decreasing subsequence. This completes the proof of
the lemma. ��
Proof (of the Theorem). The lemma we just proved guarantees that a Cauchy se-
quence has a monotone subsequence. Next, we show that a Cauchy sequence is
bounded. Being Cauchy ensures that there exists an N such that the terms from aN

onward are all within 1 of each other. This means that the largest of the numbers

1+ a1, 1+ a2, . . . , 1+ aN
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is an upper bound for {an}, and the smallest of the numbers

−1+ a1, −1+ a2, . . . , −1+ aN

is a lower bound of {an}. Now by the monotone convergence theorem, the monotone
subsequence of {an} converges to a limit a.

Next we show that not only a subsequence but the whole sequence converges to
a. Let us write am for an element of the subsequence and an for any element of the
sequence, and a− an = a− am+ am− an. The triangle inequality gives

|a− an| ≤ |a− am|+ |am − an|.

The first term on the right is less than any prescribed ε for m large, because the
subsequence converges to a. The second is less than any prescribed ε for m and n
both large, because this is a Cauchy sequence. This proves that the whole sequence
also converges to a. ��

Cauchy’s criterion for convergence, that given any tolerance there is a place in
the sequence beyond which all the terms are within that tolerance of each other, is
a stronger requirement than just requiring that the difference between one term and
the next tend to 0. For example, we saw in Example 1.21 that sn+1 − sn tends to 0
but sn does not converge.

Problems

1.25. Find all the definitions in this section and copy them onto your paper. Illustrate
each one with an example.

1.26. Find all the theorems in this section and copy them onto your paper. Illustrate
each one with an example.

1.27. Find the first four approximations s1,s2,s3,s4 to
√

3 using s1 = 1 as a first
approximation and iterating

sn+1 =
1
2

(
sn +

3
sn

)
.

What happens if you use s1 = 2 instead to start?

1.28. In approximating
√

2, we used the fact that if wn+1 <
1
2

wn holds for each n,

then

wn+1 <
1
2n w1.

Explain why this is true.
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1.29. We have said that if s is larger than
√

2, then
2
s

is smaller than
√

2. Show that

this is true.

1.30. If a number s is larger than the cube root 3
√

2, is it true that
2
s2 is smaller?

1.31. Show that if 2 < s2 < 2+ p, then
√

2 < s <
√

2+ q, where q =
p

21.5 .

1.32. Consider the sequences an =−3n+1 and bn = 3n+
2
n

. If we carelessly try to

write lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn, what does it seem to say? What goes wrong

in this example?

1.33. Justify the following steps in the proof of parts of Theorem 1.6. Suppose that
{an} and {bn} are convergent sequences,

lim
n→∞

an = a, lim
n→∞

bn = b.

(a) We want to prove that the sequence of sums {an + bn} converges and that
lim
n→∞

(an + bn) = a+ b. Let ε > 0 be any tolerance. Show that:

(i) There is a number N1 such that for all n > N1, an is within ε of a, and there is
a number N2 such that for all n>N2, bn is within ε of b. Set N to be the larger
of the two numbers N1 and N2. Then for n > N, |an−a|< ε and |bn −b|< ε .

(ii) For every n,

|(an + bn)− (a+ b)| ≤ |an − a|+ |bn− b|.

(iii) For all n > N, an + bn is within 2ε of a+ b.
(iv) We have demonstrated that for n > N, |(an + bn)− (a+ b)| ≤ 2ε . Explain

why this completes the proof.

(b) We want to prove that if a is not 0, then all but a finite number of the an differ
from 0 and

lim
n→∞

1
an

=
1
a
.

Let ε > 0 be any tolerance. Show that:

(i) There is a number N such that when n > N, an is within ε of a.

(ii) There is a number M such that for n > M, an 
= 0 and

∣∣∣∣ 1
an

∣∣∣∣ is bounded by

some α .
(iii) For n larger than both M and N,

∣∣∣∣ 1
an

− 1
a

∣∣∣∣=
∣∣∣∣a− an

ana

∣∣∣∣= |a− an|
∣∣∣∣ 1
an

∣∣∣∣ 1
|a| < ε

α
|a| .

Hence
1
an

converges to
1
a

.
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1.34. Solve x2 − x− 1 = 0 as follows. Restate the equation as x = 1+
1
x

, which

suggests the sequence of approximations

x0 = 1, x1 = 1+
1
x0
, x2 = 1+

1
x1
, , . . . .

Explain the following items to prove that the sequence converges to a solution.

(a) x0 < x2 < x1

(b) x0 < x2 < x4 < · · ·< x5 < x3 < x1

(c) The even sequence x2k increases to a limit L, and the odd sequence x2k+1 de-
creases to a limit R ≥ L.

(d) The distances (x2k+3 − x2k+2) satisfy (x2k+3 − x2k+2)<
1

x4
2

(x2k+1 − x2k).

(e) R = L = lim
k→∞

xk is a solution to x2 − x− 1 = 0.

1.35. Suppose a sequence {an} converges to a. Explain each of the following items,
which prove Theorem 1.8.

(a) There is a number N such that for all n > N, |an − a|< 1.
(b) For all n > N, |an| ≤ |a|+ 1. Hint: an = a+(an− a).
(c) Let α be the largest of the numbers

|a1|, |a2|, . . . |aN |, |a|+ 1.

Then |ak| ≤ α for k = 1,2,3, . . ..
(d) {an} is bounded.

1.36. This problem explores the sum notation. Write out each finite sum.

(a)
5

∑
n=1

an

(b)
4

∑
k=2

3
k

(c)
6

∑
j=2

b j−1

(d) Rewrite the expression t2 + 2t3+ 3t4 in the sum notation.

(e) Explain why
10

∑
n=1

n2 = 105+
9

∑
n=3

n2, and why
20

∑
n=2

an =
18

∑
k=0

ak+2.

1.37. Partial sums s1 = a1, s2 = a1 + a2, and so forth are known to be given by

sn =
n

n+ 2
. Find a1, a2, and

∞

∑
n=1

an.

1.38. Use relation (1.10) to evaluate the sum
n

∑
k=0

1
7k .
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1.39. Find the limit as n tends to infinity of
5
7
+

25
49

+
125
343

+ · · ·+ 5n

7n .

1.40. Find the limit as n tends to infinity of
5
7
+

5
49

+
5

343
+ · · ·+ 5

7n .

1.41. Suppose the ratio test indicates that
∞

∑
n=0

an converges. Use the ratio test to show

that
∞

∑
n=0

nan also converges. What can you say about
∞

∑
n=0

(−1)nn5an?

1.42. Why does the series
∞

∑
n=1

n2

n2 + 1
diverge?

1.43. Show that the infinite series
∞

∑
n=1

1
n2 converges by verifying the following steps:

(a)
1
n2 <

1
n(n− 1)

(b)
1

n(n− 1)
=

1
n− 1

− 1
n

(c)
k

∑
n=2

1
n(n− 1)

= 1− 1
k

1.44. For what numbers t does the sequence

sn = 1− 2t+ 22t2 − 23t3 + · · ·+(−2)ntn

converge? What is the limit for those t?

1.45. Carry out the following steps to prove the comparison theorems, Theorems
1.14 and 1.15.

(a) Let {an} and {bn} be sequences for which 0 ≤ bn ≤ an. Use the monotone con-

vergence theorem to show that if
∞

∑
n=0

an converges, then
∞

∑
n=0

bn also converges.

(b) Let {an} and {bn} be sequences of positive numbers for which lim
n→∞

an

bn
ex-

ists and is a positive number, say L. First show that for n sufficiently large,

an ≤ (L+ 1)bn. Then explain why the convergence of
∞

∑
n=N

(L+1)bn implies that

of
∞

∑
n=0

an.

1.46. Let a1 ≥ a2 ≥ a3 ≥ ·· · ≥ an ≥ ·· · ≥ 0 be a sequence with lim
n→∞

an = 0. Let

sn = a1 − a2 + a3 −·· ·+(−1)n+1an.

(a) Explain why a2k+1 − a2k+2 ≥ 0, and why −a2k + a2k+1 ≤ 0.
(b) Explain why s2,s4,s6, . . . ,s2k, . . . converges, and why s1,s3,s5, . . . ,s2k+1, . . .

converges.
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(c) Show that lim(s2k+1 − s2k) = 0.

(d) Explain why
∞

∑
n=1

(−1)n−1an converges.

1.47. Determine which of the following series converge absolutely, which converge,
and which diverge.

(a)
∞

∑
n=0

(−2)n + 1
3n

(b)
∞

∑
n=1

1
4
√

n

(c)
∞

∑
n=1

(−1)n

4
√

n

(d)
∞

∑
n=0

n√
n2 + 1

(e)
∞

∑
n=0

n√
n4 + 1

(f)
∞

∑
n=1

n2

(1.5)n

1.48. We used series (1.12) to motivate the ratio test, Theorem 1.18. Extend the
argument used in the example to create a proof of the theorem.

1.49. Determine which of the following series converge absolutely, which converge,
and which diverge.

(a) 1+
1
2
− 1

4
+

1
8
+

1
16

− 1
32

+
1

64
+

1
128

− 1
256

+ · · ·

(b)
∞

∑
n=1

10−n2

(c)
∞

∑
n=1

bn

n!
Are there any restrictions on b?

(d)
∞

∑
n=0

n1/n

3n Hint: See Problem 1.13.

(e)
∞

∑
n=0

(
(−1)n
√

n
+

1
2n

)

(f)
∞

∑
n=0

(
(−1)n
√

n
+

1
2

)

1.50. Suppose
∞

∑
n=0

a2
n and

∞

∑
n=0

b2
n both converge. Use the Cauchy–Schwarz inequality

(see Problem 1.18) to explain the following.

(a) The partial sums
k

∑
n=0

anbn satisfy
k

∑
n=0

anbn ≤
√

∞

∑
n=0

a2
n

√
∞

∑
n=0

b2
n.

→∞k
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(b) If the numbers an and bn are nonnegative, then
∞

∑
n=0

anbn converges.

(c)
∞

∑
n=0

anbn converges absolutely.

1.51. Let us set an equal to the n-place decimal expansion of some number x. For
example, if x =

√
2, then we have a1 = 1.4, a2 = 1.41, a3 = 1.414, etc. Is an a

Cauchy sequence?

1.52. Prove that every convergent sequence is a Cauchy sequence.

1.4 The Number e

In your study of geometry you have come across the curious number denoted by the
Greek letter π . The first six digits of π are

π = 3.14159 . . . .

In this section, we shall define another number of great importance, denoted by the
letter e. This number is called Euler’s constant in honor of the great mathematician
who introduced it; its first six digits are

e = 2.71828 . . . .

The number e is defined as the limit of the sequence

en =

(
1+

1
n

)n

as n tends to infinity. To make this a legitimate definition, we have to prove that this
sequence has a limit.

Financial Motivation. Before we turn to the proof, let us first give a financial mo-
tivation for considering this limit. Suppose you invest one dollar at the interest rate
of 100% per year. If the interest is compounded annually, a year later you will re-
ceive two dollars, that is, the original dollar invested plus another dollar for inter-
est. If interest is compounded semiannually, you will receive at the end of the year
(1.5)2 = 2.25 dollars. That is 50% interest after six months, giving you a value
of $1.50, followed by another six months during which you earn 50% interest on
your $1.50. If interest is compounded n times a year, you will receive at the end of

the year

(
1+

1
n

)n

dollars. The more frequently interest is compounded, the higher

your return. This suggests the importance of the number e and indicates that the

sequence

(
1+

1
n

)n

is increasing. Later, we shall show how e can be used to study

arbitrary interest rates.
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Monotonicity of en. Let us do a few numerical experiments before trying to prove
anything about the sequence {en}. Using a calculator, we calculate the first ten terms
of the sequence rounded down to three digits:

e1 = 2.000
e2 = 2.250
e3 = 2.370
e4 = 2.441
e5 = 2.488
e6 = 2.521
e7 = 2.546
e8 = 2.565
e9 = 2.581

e10 = 2.593

We notice immediately that this sequence of ten numbers is in increasing order. Just
to check, let us do a few further calculations:

e100 = 2.704
e1000 = 2.716

e10000 = 2.718

These numbers confirm our financial intuition that more frequent compounding re-
sults in a larger annual return, and that

(
1+ 1

n

)n
is an increasing sequence.

We shall now give a nonfinancial argument that the sequence en increases. We
use the A-G inequality for n+ 1 numbers:

(
a1a2 · · ·an+1

)1/(n+1) ≤ 1
n+ 1

(
a1 + a2 + · · ·+ an+1

)
.

Take the n+ 1 numbers
(

1+
1
n

)
, . . . ,

(
1+

1
n

)
︸ ︷︷ ︸

n times

, 1.

Their product is
(
1+

1
n

)n
, and their sum is n

(
1+

1
n

)
+1= n+2. So their geometric

mean is

(
1+

1
n

)n/(n+1)

, and their arithmetic mean is
n+ 2
n+ 1

= 1+
1

n+ 1
. According

to the A-G inequality, (
1+

1
n

)n/(n+1)

< 1+
1

n+ 1
;
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raising both sides to the power n+ 1 gives

(
1+

1
n

)n

<

(
1+

1
n+ 1

)n+1

,

proving that en is less than en+1. Therefore, the sequence {en} is increasing.

Boundedness of en. To conclude that the sequence converges, we have to show that
it is bounded. To accomplish this, we look at another sequence, { fn}, defined as

fn =

(
1+

1
n

)n+1

.

Using a calculator, we calculate the first ten terms of this sequence, rounded up to
three digits:

f1 = 4.000
f2 = 3.375
f3 = 3.161
f4 = 3.052
f5 = 2.986
f6 = 2.942
f7 = 2.911
f8 = 2.887
f9 = 2.868

f10 = 2.854

These ten numbers are decreasing, suggesting that the whole infinite sequence fn is
decreasing. Further test calculations offer more evidence:

f100 = 2.732
f1000 = 2.720

f10000 = 2.719

Here is an intuitive demonstration that fn is a decreasing sequence: Suppose you
borrow $1 from your family at no interest. If you return all that you owe a year
later, you have nothing left. But if you return half of what you owe twice a year,
you have left (0.5)2 = 0.25. If you return a third of what you owe three times a
year, at the end of the year you have left (2/3)3. If you return (1/n)−th of what you

owe n times a year, you end up with

(
1− 1

n

)n

at the end of the year. This is an

intuitive demonstration that the sequence {
(

1− 1
n

)n

} is increasing. It follows that

the sequence of reciprocals is decreasing:
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1(
1− 1

n

)n =

(
n

n− 1

)n

=

(
1+

1
m

)m+1

, where m = n− 1.

In Problem 1.54, we guide you through a nonfinancial argument for the inequality
fn > fn+1.

The number fn is 1+
1
n

raised to the power n+ 1; it is larger than en, which is

1+
1
n

raised to the lower power n:

en < fn.

Since { fn} is a decreasing sequence, it follows that

en < fn < f1 = 4.

This proves that the sequence {en} is monotonically increasing and bounded. It fol-
lows from the monotone convergence theorem, Theorem 1.10, that {en} converges
to a limit; this limit is called e.

The sequence { fn} is monotone decreasing and is bounded below by zero. There-
fore it, too, tends to a limit; call it f . Next we show that f equals e. Each fn is greater
than en, so it follows that f is not less than e. To see that they are equal, we estimate
the difference of fn and en:

fn − en =

(
1+

1
n

)n+1

−
(

1+
1
n

)n

=

(
1+

1
n

)n(
1+

1
n
− 1

)
=

en

n
.

As we have seen, en is less than 4. Therefore, it follows that

fn − en <
4
n
.

Since e is greater than en and f is less than fn, it follows that also f − e is less than
4
n

. Since this is true for all n, f − e must be zero.

Even though the sequences en and fn both converge to e, our calculations show
that e1000 and f1000 are accurate only to two decimal places. The sequences {en}
and { fn} converge very slowly to e. Calculus can be used to develop sequences that
converge more rapidly to e. In Sect. 4.3a, we show how to use knowledge of calculus
to develop a sequence

gn = 1+ 1+
1
2!

+
1
3!

+ · · ·+ 1
n!

that converges to e much more rapidly. In fact, g9 gives e correct to six decimal
places. In Problem 1.55, we lead you through an argument, which does not use
calculus, to show that gn converges to e. In Sect. 10.4, we shed some light on the
sequences en and fn and offer another way to use calculus to improve on them.
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Problems

1.53. Explain the following items, which prove that lim
n→∞

n1/n = 1.

(a) Use the fact that the sequence en =

(
1+

1
n

)n

increases to e to show that(
1+

1
n− 1

)n

< 6.

(b) Deduce that the sequence n1/n is decreasing when n ≥ 6.
(c) 1 ≤ n1/n. Therefore, r = lim

n→∞
n1/n exists.

(d) Consider (2n)1/(2n) to show that r > 1 is not possible.

1.54. Apply the A-G inequality to the n+ 1 numbers

(
1− 1

n

)
, . . . ,

(
1− 1

n

)
,1 to

conclude that (
1− 1

n

)n/(n+1)

<
n

n+ 1
.

Take this inequality to the power n+ 1 and take its reciprocal to conclude that

(
1+

1
n− 1

)n

= fn−1 > fn =

(
1+

1
n

)n+1

.

1.55. Set gn = 1+ 1+
1
2!

+
1
3!

+ · · ·+ 1
n!
. Here are the first ten values:

g0 = 1
g1 = 2
g2 = 2.5
g3 = 2.6666666666666
g4 = 2.7083333333333
g5 = 2.7166666666666
g6 = 2.7180555555555
g7 = 2.7182539682539
g8 = 2.7182787698412
g9 = 2.7182815255731

We know that en =

(
1+

1
n

)n

converges to the limit e = 2.718 . . . as n tends to

infinity. Explain the following steps, which show that gn also converges to e, that is,

e =
∞

∑
n=0

1
n!
.

(a) n! is greater than 2n−1. Explain why gn < 1+ 1+
1
2
+

1
4
+ · · ·+ 1

2n−1 . Explain

why gn < 3, and why gn tends to a limit.
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(b) Recall the binomial theorem (a+ b)n =
n

∑
k=0

(
n
k

)
akbn−k. Let a =

1
n

and b = 1

and show that

en = 1+
n

∑
k=1

n(n− 1) · · ·(n− (k− 1))
k!

1
nk

.

Show that the kth term in en is less than the kth term in gn. Use this to conclude
that en < gn.
In parts (c) and (d), we show that for large n, en is not much less than gn.

(c) Write the difference gn − en as

gn − en =
∞

∑
k=2

nk − n(n− 1) · · ·(n− (k− 1))
nkk!

,

and explain why this is less than
∞

∑
k=2

nk − (n− k)k

nkk!
=

∞

∑
k=2

1− (
1− k

n

)k

k!
.

(d) In this last part you need to explain through a sequence of steps, outlined below,
why gn − en is less than 4

n and hence tends to 0. First recall that for 0 < x < 1,
we have the inequality

1− xk = (1− x)(1+ x+ · · ·+ xk−1)< (1− x)k.

Let x= 1− k
n

. Explain why gn−en <
1
n

∞

∑
k=2

k2

k!
. Using the convention that 0!= 1,

we have
k2

k!
=

k
k− 1

1
(k− 2)!

. Recall that
1

(k− 2)!
is less than

1
2k−2 . Explain why

gn − en <
1
n

∞

∑
k=2

2
2k−2 .

Explain why gn − en <
4
n
, and why this completes the proof that the sequences

gn and en have the same limit.

1.56. Let us find a way to calculate e to a tolerance of 10−20. Let gn denote the
numbers in Problem 1.55. Explain why

e− gn <
1
n!

(
1

n+ 1
+

1
(n+ 1)2 +

1
(n+ 1)3 + · · ·

)
.

Then explain how that gives e− gn <
1
n!

1
n
. Finally, what would you take n to be so

that gn approximates e within 10−20?



Chapter 2
Functions and Continuity

Abstract Calculus is the study of the rate of change and the total accumulation of
processes described by functions. In this chapter we review some familiar notions
of function and explore functions that are defined by sequences of functions.

2.1 The Notion of a Function

The idea of a function is the most important concept in mathematics. There are many
sources of functions, and they carry information of a special kind. Some are based
on observations, like the maximum daily temperature T in your town every day last
year:

temperature = T (day).

Some express a causal relation between two quantities, such as the force f exerted
by a spring as a function of the displacement:

force = f (displacement).

Research in science is motivated by finding functions to express such causal rela-
tions. A function might also express a purely arbitrary relationship like

F =
9
5

C+ 32,

relating the Fahrenheit temperature scale to the Celsius scale. Or it could express a
mathematical theorem:

r =−b
2
+

√
b2 − 4

2
,

where r is the larger root of the quadratic equation x2 + bx+ 1= 0.
Functions can be represented in different ways. Some of these ways are familiar

to you: graphs, tables, and equations. Other methods, such as representing a function

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 2, © Springer Science+Business Media New York 2014
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through a sequence of functions, or as a solution to a differential equation, are made
possible by calculus.

Rather than starting with a definition of function, we shall first give a number of
examples and then fit the definition to these.

Example 2.1. The vertical distance h (measured in kilometers) traveled by a
rocket depends on the time t (measured in seconds) that has elapsed since the
rocket was launched. Figure 2.1 graphically describes the relation between t
and h.

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8

t

h

Fig. 2.1 Vertical distance traveled by a rocket. The horizontal axis gives the time elapsed since
launch, in seconds. The vertical gives distance traveled, in kilometers

Example 2.2. The graph in Fig. 2.2 shows three related functions: U.S. consump-
tion of oil, the price of oil unadjusted for inflation (the composite price), and the
price of oil adjusted for inflation (in 2008 dollars).

million bbl/day

$/bbl

2008 $/bbl

22

20

18

16

14
75 79 83 87 91 95 99 03 07

$120

$100

$80

$60

$40

$20

Fig. 2.2 Oil consumption, price, and inflation adjusted price

Example 2.3. The distance d traveled by a body falling freely from rest near the
surface of the Earth, measured in meters, and t the time of fall measured in sec-
onds.

d = 4.9t2.
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Example 2.4. The national debt D in billions of dollars in year y.

y 2004 2005 2006 2007 2008 2009 2010
D 7,354 7,905 8,451 8,951 9,654 10,413 13,954

In contrast, this is the table that appeared in the first edition of this book.

y 1955 1956 1957 1958 1959 1960 1961
D 76 82 85 90 98 103 105

Example 2.5. The volume V of a cube with edge length s is V = s3.

Adjusted gross income Tax rate (%)
0–8,375 10

8,375–34,000 15
34,000–82,400 25

82,400–171,850 28
171,850–373,650 33

373,650 and above 35

 0.35
 0.33

 0.28
 0.25

 0.15

 0.1

 373.65 171.85 82.4 34

tax rate

income (thousands)

Fig. 2.3 Left: a table of tax rates in Example 2.6. Right: a graph of the tax rate by income level

Example 2.6. The Internal Revenue Service’s 2010 tax rates for single-filing sta-
tus are given in the table in Fig. 2.3. The tax rates can be described as a function.
Let x be adjusted gross income in dollars, and f (x) the rate at which each dol-
lar within that income level is taxed. The function f can be described by the
following rule

f (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.10 for 0 ≤ x ≤ 8,375

0.15 for 8,375 < x ≤ 34,000

0.25 for 34,000 < x ≤ 82,400

0.28 for 82,400 < x ≤ 171,850

0.33 for 171,850 < x ≤ 373,650

0.35 for 373,650 < x.

The graph in Fig. 2.3 makes the jumps in tax rate and the levels of income subject
to those rates easier to see. (To compute the tax on 10,000 dollars, for example,
the first 8,375 is taxed at 10%, and the next 10,000− 8,375= 1,625 is taxed at
15%. So the tax is (0.15)(1,625)+ (0.10)(8,375)= 1,121.25.)
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f(x)x f

Fig. 2.4 A function can be thought of as a device in a box, with input and output

We can also think of a function as a box, as in Fig. 2.4. You drop in an input x,
and out comes f (x) as the output.

Definition 2.1. A function f is a rule that assigns to every number x in a col-
lection D, a number f (x). The set D is called the domain of the function, and
f (x) is called the value of the function at x. The set of all values of a function
is called its range. The set of ordered pairs (x, f (x)) is called the graph of f .

When we describe a function by a rule, we assume, unless told otherwise, that
the set of inputs is the largest set of numbers for which the rule makes sense. For
example, take

f (x) = x2 + 3, g(x) =
√

x− 1, h(x) =
1

x2 − 1
.

The domain of f is all numbers. The domain of g is x ≥ 1, and the domain of h is
any number other than 1 or −1.

2.1a Bounded Functions

Definition 2.2. We say that a function f is bounded if there is a positive number
m such that for all values of f , −m ≤ f (x) ≤ m. We say that a function g is
bounded away from 0 if there is a positive number p such that no value of g
falls in the interval from −p to p.

In Fig. 2.5, f is bounded because −m ≤ f (x) ≤ m for all x, and g is bounded away
from 0 because 0 < p ≤ g(x) for all x.

−m

m

0 0

g(x)f(x)

p

xx

Fig. 2.5 Left: f is a bounded function. Right: g is bounded away from 0
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A function that is not bounded, or is not bounded away from 0, may have one or
both of those properties on a subset of its domain.

Example 2.7. Let h(x) =
1

x2 − 1
. Then h is not bounded. It has arbitrarily large

values (both positive and negative) as x tends to 1 or −1. Furthermore, h is not
bounded away from 0, because h(x) tends to 0 as x becomes arbitrarily large
(positive or negative). However, if we restrict the domain of h to, say, the interval
[−0.8,0.8], then h is both bounded and bounded away from 0 on [−0.8,0.8]. See
Fig. 2.6 for the graph of h.

-10

 10

-1  1

x

1/(x2-1)

Fig. 2.6 The function h(x) = 1
x2−1

is neither bounded nor bounded away from 0

2.1b Arithmetic of Functions

Once you have functions, you can use them to make new functions. The sum of
functions f and g is denoted by f + g, and the difference by f − g:

( f + g)(x) = f (x)+ g(x), ( f − g)(x) = f (x)− g(x).

The product and quotient of functions f and g are denoted by f g and
f
g

:

( f g)(x) = f (x)g(x),
f
g
(x) =

f (x)
g(x)

when g(x) 
= 0.

In applications, it makes sense to add or subtract two functions only if their values
are measured in the same units. In our example about oil consumption and price,
it makes sense to find the difference between the inflation-adjusted price and the
nonadjusted price of oil. However, it does not make sense to subtract the price of oil
from the number of barrels consumed.



56 2 Functions and Continuity

Polynomials. Starting with the simplest functions, the constant functions

c(x) = c

and the identity function

i(x) = x,

we can build more complicated functions by forming sums and products. All func-
tions that are obtained from constant and identity functions through repeated addi-
tions and multiplications are of the form

p(x) = anxn + an−1xn−1 + · · ·+ a0,

where the a’s are constants and n is a positive integer. Such a function is called a

polynomial. A quotient of two polynomials,
p(x)
q(x)

, is called a rational function.

Linear Functions. A simple but highly important class of functions is that of linear
functions. In Chap. 3, we show how to use linear functions to approximate other
functions. Every linear function � is of the form

�(x) = mx+ b,

where m and b are some given numbers. A linear function is certainly simple from
a computational point of view: to evaluate it, we need to perform one multiplication
and one addition. Linear functions have the property that

�(x+ h) = m(x+ h)+ b= �(x)+mh,

which means that when the input x in increased by h, the output changes by an
amount that does not depend on x. The change in the output of a linear function is
m times the change in the input (Fig. 2.7),

�(x+ h)− �(x) = mh.

Example 2.8. In changing temperature from Celsius to Fahrenheit, we use the
formula

F =
9
5

C+ 32.

A change in temperature in degrees Celsius produces a change in temperature in

degrees Fahrenheit that is always
9
5

as large, independent of the temperature.
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h

h

b

mh

 mx+b

mh
x

Fig. 2.7 The graph of a linear function �(x) = mx+ b. The change in the output is m times the
change in the input

You can completely determine a linear function if you know the function values
at two different points. Suppose

y1 = �(x1) = mx1 + b and y2 = �(x2) = mx2 + b.

By subtracting, we see that y2 − y1 = m(x2 − x1). Solving for m, we get

m =
y2 − y1

x2 − x1
.

The number m is called the slope of the line through the points (x1,y1) and (x2,y2).
Then b is also determined by the two points, because

b = y1 − y2 − y1

x2 − x1
x1 (x1 
= x2).

In addition to visualizing a linear function graphically, we can look at how numbers
in the domain are mapped to numbers in the range. In this representation, m can be
interpreted as a stretching factor.

Example 2.9. Figure 2.8 shows how the linear function �(x) = 3x− 1 maps the
interval [0,2] onto the interval [−1,5], which is three times as long.

10

20 1

3 4 5−1 2

 3x−1

x

Fig. 2.8 The linear function �(x) = 3x−1 as a mapping from [0,2] to [−1,5]

There are many more important examples of functions to explore. We invite you
to work on some in the Problems.
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Problems

2.1. For each of these functions, is f bounded? is f bounded away from zero?

(a) f (x) = x− 1
x
+ 25

(b) f (x) = x2 + 1

(c) f (x) =
1

x2 + 1
(d) f (x) = x2 − 1

2.2. Plot the national debt as given in Example 2.4 for the years 1955–1961. Is the
national debt a linear function of time? Explain.

2.3. Let

f (x) =
x3 − 9x
x2 + 3x

, g(x) =
x2 − 9
x+ 3

, and h(x) = x− 3.

(a) Show that

f (x) = g(x) = h(x) when x 
= 0,−3.

(b) Find the domains of f , g, and h.
(c) Sketch the graphs of f , g, and h.

2.4. Let h(x) =
1

x2 − 1
with domain [−0.8, 0.8]. Find bounds p and q on the range

of h:

p ≤ 1
x2 − 1

≤ q.

2.5. Use the tax table or graph in Example 2.6 to find the total tax on an adjusted
gross income of $200,000.

2.6. The gravitational force between masses M and m with centers separated by
distance r is, according to Newton’s law,

f (r) =
GMm

r2 .

The value of G depends on the units in which we measure mass, distance, and force.
Take the domain to be r > 0. Is f rational? bounded? bounded away from 0?

2.7. Here is a less obvious example of a linear function. Imagine putting a rope
around the Earth. Make it nice and snug. Now add 20 m to the length of the rope
and arrange it concentrically around the Earth. Could you walk under it without
hitting your head?
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2.2 Continuity

In this section, we scrutinize the definition of function given in the previous section.
According to that definition, a function f assigns a value f (x) to each number x
in the domain of f . Clearly, in order to find the value of f (x), we have to know x.
But what does knowing x mean? According to Chap. 1, we know x if we are able to
produce as close an approximation to x as requested. This means that we never (or
hardly ever) know x exactly. How then can we hope to determine f (x)? A way out
of this dilemma is to remember that knowing f (x) means being able to give as close
an approximation to f (x) as requested. So we can determine f (x) if approximate
knowledge of x is sufficient for approximate determination of f (x). The notion of
continuity captures this property of a function.

Definition 2.3. We say that a function f is continuous at c when:
for any tolerance ε > 0, there is a precision δ > 0 such that f (x) differs from
f (c) by less than ε whenever x differs from c by less than δ (Fig. 2.9).

f(c)+ε

f(c)−ε

c

f(c)

c−δ c+δ

Fig. 2.9 Left: for any ε > 0, Right: we can find a δ > 0

As a practical matter, f is continuous at c if all the values of f at points near
c are very nearly f (c). This leads to a useful observation about continuity: If f is
continuous at c and f (c) < m, then it is also true that f (x) < m for every x in some
sufficiently small interval around c. To see this, take ε to be the distance between
f (c) and m, as in Fig. 2.10. Similarly, if f (c) > m, there is an entire interval of
numbers x around c where f (x) > m.

Driver: “But officer, I only hit 90 mph for one instant!”
Officer: “Then you went more than 89 for an entire interval of time!”

Example 2.10. A constant function f (x) = k is continuous at every point c in its
domain. Approximate knowledge of c is sufficient for approximate knowledge
of f (c) because all inputs have the same output, k. As you can see in Fig. 2.11,
for every x in the domain, f (x) falls within ε of f (c). No function can be more
continuous than that!
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c

x

f(x)

f(c) = m−
m

Fig. 2.10 If f is continuous, there will be an entire interval around c in which f is less than m

c

f(x) = k

k+

k−
k

x

Fig. 2.11 A constant function

Example 2.11. The identity function f (x) = x is continuous at every point c. Be-
cause f (c) = c, it is clear that approximate knowledge of c is sufficient to deter-
mine approximate knowledge of f (c)! Figure 2.12 shows that the definition for
continuity is satisfied by letting δ = ε .

x

f(x) = x

Fig. 2.12 For f (x) = x, δ = ε will do

A function can be continuous at some points in its domain but not at others.

Example 2.12. The graph of f in Fig. 2.3 shows the IRS 2010 tax rates for single
filers. The rate is constant near 82,000. Small changes in income do not change
the tax rate near 82,000. Thus f is continuous at 82,000. However, at 82,400, the
situation is very different. Knowing that one’s income is approximately 82,400
is not sufficient knowledge to determine the tax rate. Near 82,400, small changes
in income result in very different tax rates. This is exactly the kind of outcome
that continuity prohibits.
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Inequalities and absolute values can be used to rewrite the definition of continuity
at a point:

Restated definition. We say that a function f is continuous at c when:
for any tolerance ε > 0, there is a precision δ > 0 such that

| f (x)− f (c)| < ε

whenever
|x− c|< δ .

The precision δ depends on the tolerance ε .

2.2a Continuity at a Point Using Limits

The concept of the limit of a function gives another way to define continuity at a
point.

Definition 2.4. The limit of a function f (x) as x tends to c is L,

lim
x→c

f (x) = L,

when:
for any tolerance ε > 0, there is a precision δ > 0 such that f (x) differs from L
by less than ε whenever x differs from c by less than δ , x 
= c.

By comparing the definitions of limit as x tends to c and continuity at c, we find
a new way to define continuity of f at c.

Alternative definition. We say that a function f is continuous at c when:

lim
x→c

f (x) = f (c).

If f is not continuous at c, we say that f is discontinuous at c.

The limit of f (x) as x tends to c can be completely described in terms of the
limits of sequences of numbers. In fact, in evaluating lim

x→c
f (x), we often take a se-

quence of numbers x1, x2, . . . , xn, . . . that tend to c and we see whether the sequence
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f (x1), f (x2), . . . , f (xn), . . . tends to some number L. In order for lim
x→c

f (x) to exist,

we need to know that all sequences {xi} that tend to c result in sequences { f (xi)}
that tend to L. In Problem 2.11, we ask you to explore the connection between the
limit of a function at a point and limits of sequences of numbers. It will help you
see why the next two theorems follow from the laws of arithmetic and the squeeze
theorem, Theorems 1.6 and 1.7, for convergent sequences.

Theorem 2.1. If lim
x→c

f (x) = L1, lim
x→c

g(x) = L2, and lim
x→c

h(x) = L3 
= 0, then

(a) lim
x→c

(
f (x)+ g(x)

)
= L1 +L2,

(b) lim
x→c

(
f (x)g(x)

)
= L1L2, and

(c) lim
x→c

f (x)
h(x)

=
L1

L3
.

Theorem 2.2. Squeeze theorem. If

f (x)≤ g(x)≤ h(x)

for all x in an open interval containing c, except possibly at x = c, and if
lim
x→c

f (x) = lim
x→c

h(x) = L, then lim
x→c

g(x) = L.

Combining Theorem 2.1 and the limit definition of continuity, one can prove the
next theorem, as we ask you to do in Problem 2.12.

Theorem 2.3. Suppose f , g, and h are continuous at c, and h(c) 
= 0. Then

f + g, f g, and
f
h

are continuous at c.

We have noted before that any constant function, and the identity function, are
continuous at each point c. According to Theorem 2.3, products and sums built from
these functions are continuous at each c. Every polynomial

p(x) = anxn + an−1xn−1 + · · ·+ a0

can be constructed by taking sums and products of functions that are continuous
at c. This shows that polynomials are continuous at each c. It also follows from the

theorem that a rational function
p(x)
q(x)

is continuous at each number c for which

q(c) 
= 0.
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Example 2.13. Examples 2.10 and 2.11 explain why the constant function 3 and
the function x are continuous. So according to Theorem 2.3, the rational function

f (x) = x2 − 1
x
− 3 =

x3 − 1− 3x
x

is continuous at every point except 0.

3

6

Fig. 2.13 The graph of f (x) = x2−9
x−3

Sometimes a function is undefined at a point c, but the limit of f (x) as x tends to
c exists. For example, let

f (x) =
x2 − 9
x− 3

.

Then f is not defined at 3. Notice, however, that

for x 
= 3, f (x) =
x2 − 9
x− 3

= x+ 3.

The graph of f looks like a straight line with a small hole at the point x = 3. (See

Fig. 2.13.) The functions
x2 − 9
x− 3

and x+ 3 are quite different at x = 3, but they are

equal when x 
= 3. This means that their limits are the same as x tends to 3:

lim
x→3

x2 − 9
x− 3

= lim
x→3

(x+ 3) = 6.

Example 2.14. Let d(x) be defined as follows:

d(x) =

{
x for x ≤ 1,

x− 2 for 1 < x.

Then d is not continuous at x = 1, because d(1) equals 1, yet for x greater than
1 and no matter how close to 1, d(x) is negative. A negative number is not close
to 1. See Fig. 2.14.

It is useful to have a way to describe the behavior of f (x) as x approaches c from
one side or the other. If f (x) tends to L as x approaches c from the right, c < x, we
say that the right-hand limit of f at c is L, and write

lim
x→c+

f (x) = L.
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PENCIL

1 20

Fig. 2.14 The function d(x) in Example 2.14 is not continuous at x = 1

If f (x) tends to L as x approaches c from the left, x < c, we say that the left-hand
limit of f at c is L, and write

lim
x→c− f (x) = L.

If f (x) becomes arbitrarily large and positive as x tends to c, we write

lim
x→c

f (x) = ∞,

and say that f (x) tends to infinity as x tends to c. If f (x) becomes arbitrarily large
and negative as x tends to c, we write

lim
x→c

f (x) =−∞,

and say that f (x) tends to minus infinity as x tends to c. Neither of these limits exists,
but we use the notation to describe the behavior of the function near c. We also use
the one-sided versions of these notations, as in Example 2.15.

Example 2.15. Let f (x)=
1
x

for x 
=0. Then limx→0− f (x)=−∞, limx→0+ f (x)=∞.

It is also useful to have a way to describe one-sided continuity. If lim
x→c− f (x) = f (c),

we say that f is left continuous at c. If lim
x→c+

f (x) = f (c), we say that f is right

continuous at c.

Example 2.16. The function d in Example 2.14 (see Fig. 2.14) is left continuous
at 1, and not right continuous at 1:

lim
x→1−

d(x) = 1 = d(1), lim
x→1+

d(x) =−1 
= d(1).

Left and right continuity give us a way to describe continuity on an interval that
includes endpoints. For example, we say that f is continuous on [a,b] if f is con-
tinuous at each c in (a,b) as well as right continuous at a, and left continuous at b.

2.2b Continuity on an Interval

Now we return to the question we considered at the start of this section: Is approx-
imate knowledge of x sufficient for approximate knowledge of f (x)? We have seen
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that functions can be continuous at some points and not at others. The most inter-
esting functions are the ones that are continuous at every point on an interval where
they are defined.

Example 2.17. Let us analyze the continuity of the function f (x) = x2 on the
interval [2,4]. Let c be any point of this interval; how close must x be to c in
order for f (x) to differ from f (c) by less than ε? Recall the identity

x2 − c2 = (x+ c)(x− c).

On the left, we have the difference f (x)− f (c) of two values of f . Since both x
and c are between 2 and 4, we have (x+ c)≤ 8. It follows that

| f (x)− f (c)|= |x+ c||x− c| ≤ 8|x− c|.

If we want x2 to be within ε of c2, it suffices to take x within
ε
8

of c. That is, take

δ =
ε
8

or less. This proves the continuity of f on [2,4].

Example 2.18. In Chap. 1, we defined the number e through a sequence of
approximations. Our intuition and experience tell us that we should get as
good an approximation to e2 as we desire by squaring a number that is
close enough to e. But we do not need to rely on our intuition. Since e
is between 2 and 4, the previous example shows that f (x) = x2 is contin-

uous at e. This means that if we want x2 to be within ε =
1

104 of e2, it

should suffice to take x within δ =
ε
8
=

1
8(104)

of e; in particular, δ <
1

105

should suffice. The list below shows squares of successively better decimal
approximations to e. It confirms computationally what we proved theoretically.

(2.7)2 = 7.29
(2.71)2 = 7.3441
(2.718)2 = 7.387524

(2.7182)2 = 7.38861124
(2.71828)2 = 7.3890461584

(2.718281)2 = 7.389051594961

Uniform Continuity. In Example 2.17, we showed that the difference between the
squares of two numbers in [2,4] will be within ε as long as the two numbers are

within
ε
8

of each other, no matter which two numbers in [2,4] we are dealing with.

Here is the general notion.

Definition 2.5. A function f is called uniformly continuous on an interval I if
given any tolerance ε > 0, there is a precision δ > 0 such that if x and z are in
I and differ by less than δ , then f (x) and f (z) differ by less than ε .
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Clearly, a function that is uniformly continuous on an interval is continuous at
every point of that interval. It is a surprising mathematical fact that conversely, a
function that is continuous at every point of a closed interval is uniformly continuous
on that interval. We outline the proof of this theorem, Theorem 2.4, in Problem 2.21.

Uniform continuity is a basic notion of calculus.

Theorem 2.4. If a function f is continuous on [a,b], then f is uniformly con-
tinuous on [a,b].

On a practical level, uniform continuity is a very helpful property for a function
to have. When we evaluate a function with a calculator or computer, we round off
the inputs, and we obtain outputs that are approximate. If f is uniformly continuous
on [a,b], then once we set a tolerance for the output, we can find a single level of
precision for all the inputs in [a,b], and the approximate outputs will be within the
tolerance we have set.

2.2c Extreme and Intermediate Value Theorems

Next, we state and prove two key theorems about continuous functions on a closed
interval.

Theorem 2.5. The intermediate value theorem. If f is a continuous function
on a closed interval [a,b], then f takes on all values between f (a) and f (b).

The theorem says in a careful way that the graph of f does not skip values.

a c b

f(a)

m
f(b)

Fig. 2.15 The proof of the intermediate value theorem shows that there exists at least one number
c between a and b at which f (c) = m

Proof. Let us take the case f (a) > f (b); the opposite case can be treated analo-
gously. Let m be any number between f (a) and f (b), and denote by V the set of
those points x in the interval a < x < b where f (x) is greater than m. This set con-
tains the point a, so it is not empty, and it is contained in [a,b], so it is bounded.
Denote by c the least upper bound of the set V . We claim that f (c) = m (Fig. 2.15).
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Suppose f (c) < m. Since f is continuous at c, there is a short interval to the left
of c where f (x) < m as well. These points x do not belong to V . And since c is an
upper bound for V , no point to the right of c belongs to V . Therefore, every point of
this short interval is an upper bound for V , a contradiction to c being the least upper
bound.

On the other hand, suppose f (c)>m. Since f (b) is less than m, c cannot be equal
to b, and is strictly less than b. Since f is continuous at c, there is a short interval
to the right of c where f (x) > m. But such points belong to V , so c could not be an
upper bound for V .

Since according to the two arguments, f (c) can be neither less nor greater than
m, f (c) must be equal to m. This proves the intermediate value theorem. ��

Example 2.19. One use of the intermediate value theorem is in root-finding. Sup-
pose we want to locate a solution to the equation

x2 − 1
x
− 3 = 0.

Denote the left side by f (x). With some experimentation we find that f (1) is
negative and f (2) is positive. The function f is continuous on the interval [1,2].
By the intermediate value theorem, there is some number c between 1 and 2 such
that f (c) = 0. In other words, f has a root in [1,2].

Now let us bisect the interval into two subintervals, [1,1.5] and [1.5,2]. We
see that f (1.5) = −1.416 . . . is negative, so f has a root in [1.5,2]. Bisecting
again, we obtain f (1.75) = −0.508 . . ., which is again negative, so f has a root
in [1.75,2]. Continuing in this manner, we can trap the root in an arbitrarily small
interval.

Theorem 2.6. The extreme value theorem. If f is a continuous function on a
closed interval [a,b], then f takes on both a maximum value and a minimum
value at some points in [a,b].

One consequence of the extreme value theorem is that every function that is
continuous on a closed interval is bounded. Although the extreme value theorem
does not tell us how or where to find the bounds, it is still very useful.

Let us look at the graph of f and imagine a line parallel to the x-axis slid vertically
upward until it just touches the graph of f at some last point of intersection, which is
the maximum. Similarly, slide a line parallel to the x-axis vertically downward. The
last point of intersection with the graph of f is the minimum value of f (Fig. 2.16).

We supplant now this intuitive argument by a mathematical proof of the existence
of a maximum. The argument for a minimum is analogous.
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Proof. Divide the interval [a,b] into two closed subintervals of equal length. We
compare the values of f on these two subintervals. It could be the case that there is a
point on the first subinterval where the value of f is greater than at any point on the
second subinterval. If there is no such point, then it must be the case that for every
point x in the first subinterval there is a point z in the second subinterval where the
value of f is at least as large as the value of f at x.

ba

f

Fig. 2.16 A horizontal line moves down, seeking the minimum of a continuous function. The
extreme value theorem guarantees that there is a last value where you can stop the moving line,
keeping it in contact with the graph

In the first case, we choose the first subinterval, and in the second case, the second
subinterval, and denote the chosen subinterval by I1.

Key property of I1: for every point x in [a,b] but not in I1, there is a point in I1

where f is at least as large as f (x).
Then we repeat the process of subdividing I1 into two halves and choosing one of

the halves according to the principle described above. Call the choice I2. In this way,
we construct a sequence of closed intervals I1, I2, . . . , and so on. These intervals are
nested; that is, the nth interval In is contained in the interval In−1, and its length is
one-half of the length of In−1. Because of the way these intervals were chosen, for
every point x in [a,b] and every n, if x is not in In, then there is a point z in In where
the value of f is at least as large as f (x).

We appeal now to the nested interval Theorem 1.19, according to which the
subintervals In have exactly one point in common; call this point c. We claim that
the maximum value of the function f is f (c). For suppose, to the contrary, that there
is a point x in [a,b] where the value of f is greater than f (c). Since f is continuous
at c, there would be an entire interval [c− δ ,c+ δ ] of numbers around c where f is
less than f (x). Since the lengths of the intervals In tend to zero, it follows that for n
large enough, In would be contained in the interval [c− δ ,c+ δ ], so the value of f
at every point of In would be smaller than f (x). We can also take n sufficiently large
that x is not in In. But this contradicts the key property of the intervals In established
above. ��
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The extreme value theorem can be extended to open intervals in two special
cases.

Corollary 2.1. If f is continuous on an open interval (a,b) and f (x) tends to
infinity as x tends to each of the endpoints, then f has a minimum value at some
point in (a,b).

Similarly, if f (x) tends to minus infinity as x tends to each of the endpoints,
then f has a maximum value at some point in (a,b).

We invite you to prove this result in Problem 2.18.

Problems

2.8. Evaluate the following limits.

(a) lim
x→4

(
2x3 + 3x+ 5

)

(b) lim
x→0

x2 + 2
x3 − 7

(c) lim
x→5

x2 − 25
x− 5

2.9. Evaluate the following limits.

(a) lim
x→0

x3 − 9x
x2 + 3x

(b) lim
x→−3

x3 − 9x
x2 + 3x

(c) lim
x→1

x3 − 9x
x2 + 3x

2.10. Let f (x) =
|x|
x

when x 
= 0, and f (0) = 1.

(a) Sketch the graph of f .
(b) Is f continuous on [0,1]?
(c) Is f continuous on [−1,0]?
(d) Is f continuous on [−1,1]?

2.11. The limit of a function can be completely described in terms of the limits of
sequences. To do this, show that these two statements are true:

(a) If lim
x→c

f (x) = L and xn is any sequence tending to c, then lim
n→∞

f (xn) = L.

(b) If lim
n→∞

f (xn) = L for every sequence xn tending to c, then lim
x→c

f (x) = L.

Conclude that in the discussion of continuity, lim
x→c

f (x) = f (c) is equivalent to

lim
n→∞

f (xn) = f (c) for every sequence xn tending to c.
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2.12. Suppose that functions f , g, and h are each defined on an interval containing

c, that they are continuous at c, and that h(c) 
= 0. Show that f + g, f g, and
f
h

are

continuous at c.

2.13. Let f (x) =
x32 + x10 − 7

x2 + 2
on the interval [−20,120]. Is f bounded? Explain.

2.14. Show that the equation
x6 + x4 − 1

x2 + 1
= 2

has a solution on the interval [−2,2].

 0

0.2

0.4

0.6

0.8

1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

x6

Fig. 2.17 Graphs are shown for x6, x6 + 1
20 , x6 − 1

20 , and for the constant functions ± 1
20 on

[−0.7,1]. See Problem 2.15

2.15. In Fig. 2.17, estimate the largest interval [a,b] such that x6 and 0 differ by less
than 1

20 on [a,b].

2.16. Let f (x) =
1
x

. Show that on the interval [3,5], f (x) and f (c) do not differ by

more than 1
9 |x− c|. Copy the definition of uniform continuity onto your paper, and

then explain why f is uniformly continuous on [3,5].

2.17. You plan to compute the squares of numbers between 9 and 10 by squaring
truncations of their decimal expansions. If you truncate after the eighth place, will
this ensure that the outputs are within 10−7 of the true value?

2.18. Prove the first statement in Corollary 2.1, that if f is continuous on (a,b) and
f (x) tends to infinity as x tends to each of a and b, then f has a minimum value at
some point in (a,b).

2.19. Explain why the function f (x) = x2 − 1
x
− 3 =

x3 − 1− 3x
x

is uniformly con-

tinuous on every interval [a,b] not containing 0.
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2.20. Let f (x) = 3x+ 5.

(a) Suppose each domain value x is rounded to xapprox and |x−xapprox|< 1
10m . How

close is f (xapprox) to f (x)?

(b) If we want | f (x)− f (xapprox)|< 1
107 , how close should xapprox be to x?

(c) On what interval can you use the level of precision you found in part (b)?

2.21. Explain the following steps to show that a function that is continuous at every
point of a closed interval is uniformly continuous on that interval. It will be a proof
by contradiction, so we assume that f is continuous, but not uniformly continuous,
on [a,b].

(a) There must be some ε > 0 and for each n = 1,2,3, . . ., two numbers xn, yn in

[a,b] for which |xn − yn|< 1
n

and | f (xn)− f (yn)| ≥ ε .

(b) Use Lemma 1.1 and monotone convergence to show that a subsequence of the
xn (that is, a sequence consisting of some of the xn) converges to some number
c in [a,b].

(c) To simplify notation, we can now take the symbols xn to mean the subsequence,

and yn corresponding. Use the fact that |xn −yn|< 1
n

to conclude that the yn also
converge to c.

(d) Use continuity of f and Problem 2.11 to show that lim
n→∞

f (xn) = f (c).

(e) Show that lim
n→∞

f (xn) = lim
n→∞

f (yn), and that this contradicts our assumption that

| f (xn)− f (yn)| ≥ ε .

2.3 Composition and Inverses of Functions

In Sect. 2.1, we showed how to build new functions out of two others by adding,
multiplying, and dividing them. In this section, we describe another way.

2.3a Composition

We start with a simple example:
A rocket is launched vertically from point L. The distance (in kilometers) of the

rocket from the launch point at time t is h(t). An observation post O is located
1 km from the launch site (Fig. 2.18). To determine the distance d of the rocket from
the observation post as a function of time, we can use the Pythagorean theorem to
express d as a function of h,

d(h) =
√

1+ h2.



72 2 Functions and Continuity

1

d

OL

R

h

Fig. 2.18 Tracking the rocket from the observation post

Therefore, the distance from R to O at time t is

d(h(t)) =
√

1+(h(t))2.

The process that builds a new function in this way is called composition; the result-
ing function is called the composition of the two functions.

Definition 2.6. Let f and g be two functions, and suppose that the range of g
is included in the domain of f . Then the composition of f with g, denoted by
f ◦ g, is defined by

( f ◦ g)(x) = f (g(x)).

We also say that we have composed the functions.

The construction is well described by Fig. 2.19.

fg g(x)x f(g(x))

Fig. 2.19 Composition of functions, using the box picture of Fig. 2.4

Example 2.20. Let g and f be the linear functions y = g(x) = 2x + 3, and
z = f (y) = 3y+ 1. The composition z = f (g(x)) = 3(2x+ 3)+ 1 = 6x+ 10 is
illustrated in Fig. 2.20.

We saw in Fig. 2.8 that the linear function mx+ b stretches every interval by a
factor of |m|. In Fig. 2.20, we see that when the linear functions are composed, these
stretching factors are multiplied.

Example 2.21. The effect of composing a function f with g(x) = x+ 1 depends
on the order of composition. For example f (g(x)) = f (x+ 1) shifts the graph of
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10 11 12 13 14 15 16

x

y

g(x) = 2x+3

f(y) = 3y+1

f(g(x)) = 6x+10

3 4 5

10

Fig. 2.20 A composition of two linear functions

f one unit to the left, since the output of f at x is the same as the output of f ◦ g
at x−1. On the other hand, g( f (x)) = f (x)+1 shifts the graph of f up one unit.
See Fig. 2.21.

f(x)

1

10

f(x+1)

f(x)+1

Fig. 2.21 Composition with the translation x+ 1, in Example 2.21. It makes a difference which
function is applied first

Example 2.22. Let h(x) = 3x. The graph of f (h(x)) looks as though the domain
of f has been compressed by a factor of 3. This is because the output of f at x is

the same as the output of f ◦h at
x
3

. If we compose f and h in the opposite order,

the graph of h( f (x)) = 3 f (x) is the graph of f stretched by a factor of three in
the vertical direction. See Fig. 2.22.

Example 2.23. Let h(x) = −x. The graph of h( f (x)) = − f (x) is the reflection
of the graph of f across the x-axis, while the graph of f (h(x)) = f (−x) is the
reflection of the graph of f across the y-axis.

Example 2.24. If f (x) =
1

x+ 1
and g(x) = x2, then

( f ◦ g)(x) =
1

x2 + 1
and (g ◦ f )(x) =

(
1

x+ 1

)2

=
1

x2 + 2x+ 1
.
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x

f(x)

3f(x)
f(3x)

Fig. 2.22 Composition with multiplication 3x results in stretching or compressing the graph. See
Example 2.22

Notice that f ◦ g and g ◦ f are quite different functions. Thus composition is not
a commutative operation. This is not surprising: using the output of g as input for f
is quite different from using the output of f as input for g.

Theorem 2.7. The composition of two continuous functions is continuous.

Proof. We give an intuitive proof of this result. We want to compare the values of
f (g(x)) with those of f (g(z)) as the numbers x and z vary. Since f is continuous,
these values will differ by very little when the numbers g(x) and g(z) are close. But
since g is also continuous, those values g(x) and g(z) will be close whenever x and
z are sufficiently close. ��

Here is a related theorem about limits, which we show you how to prove in
Problem 2.33.

Theorem 2.8. Suppose f ◦ g is defined on an interval containing c, that
lim
x→c

g(x) = L, and that f is continuous at L. Then lim
x→c

( f ◦g)(x) = f (L), that is,

lim
x→c

f
(
g(x)

)
= f

(
lim
x→c

g(x)
)
.

2.3b Inverse Functions

We look at some examples of compositions of functions that undo each other.

Example 2.25. For f (x) = 2x+ 3 and g(x) =
1
2

x− 3
2

, we see that

f (g(x)) = 2

(
1
2

x− 3
2

)
+ 3 = x and g( f (x)) =

1
2
(2x+ 3)− 3

2
= x.
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Example 2.26. Let f (x) =
1

x+ 1
when x 
= −1, and g(x) =

1− x
x

when x 
= 0.

Then if x 
= 0, we have

f (g(x)) =
1( 1−x

x

)
+ 1

=
1

1−x
x + x

x

= x.

You may also check that when x 
=−1, we have g( f (x)) = x.

In both of the examples above, we see that f applied to the output of g returns
the input of g, and similarly, g applied to the output of f returns the input of f . We
may ask the following question about a function: if we know the output, can we
determine the input?

Definition 2.7. If a function g has the property that different inputs always
lead to different outputs, i.e., if x1 
= x2 implies g(x1) 
= g(x2), then we can
determine its input from the output. Such a function g is called invertible;
its inverse f is defined in words: the domain of f is the range of g, and
f (y) is defined as the number x for which g(x) = y. We denote the inverse
of g by g−1.

By the way in which it is defined, we see that g−1 undoes, or reverses, g: it
works backward from the output of g to the input. If g is invertible, then g−1 is also
invertible, and its inverse is g. Furthermore, the composition of a function and its
inverse, in either order, is the identity function:

(g ◦ g−1)(y) = y and (g−1 ◦ g)(x) = x.

Here is another example:

Example 2.27. Let g(x) = x2, and restrict the domain of g to be x ≥ 0. Since
the squares of two different nonnegative numbers are different, g is invertible.
Its inverse is g−1(x) =

√
x. Note that if we had defined g(x) = x2 and taken its

domain to be all numbers, not just the nonnegative ones, then g would not have
been invertible, since (−x)2 = x2. Thus, invertibility depends crucially on what
we take to be the domain of the function (Fig. 2.23).

Monotonicity. The graph of a function can be very helpful in determining whether
the function is invertible. If lines parallel to the x-axis intersect the graph in at most
one point, then different domain values are assigned different range values, and the
function is invertible. Two kinds of functions that pass this “horizontal line test” are
the increasing functions and the decreasing functions.
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Fig. 2.23 Left: x2 is plotted with the domain all numbers. Right: the domain is the positive numbers.
Only one of these functions is invertible

Definition 2.8. An increasing function is one for which f (a)< f (b) whenever
a < b. A decreasing function is one for which f (a) > f (b) whenever a < b.
A nondecreasing function is one for which f (a) ≤ f (b) whenever a < b. A
nonincreasing function is one for which f (a)≥ f (b) whenever a < b.

Example 2.28. Suppose f is increasing and f (x1)> f (x2). Which of the follow-
ing is true?

(a) x1 = x2

(b) x1 > x2

(c) x1 < x2

Item (a) is certainly not true, because then we would have f (x1) = f (x2). Item
(b) is consistent with f increasing, but this does not resolve the question. If item
(c) were true, then f (x1)< f (x2), which is not possible. So it is (b) after all.

Fig. 2.24 Two graphs of monotonic functions. Left: increasing, Right: decreasing

Figure 2.24 shows the graphs of an increasing function and a decreasing function.
Both pass the horizontal line test and both are invertible.
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Definition 2.9. Functions that are either increasing or decreasing are called
strictly monotonic. Function that are either nonincreasing or nondecreasing are
called monotonic.

If f is strictly monotonic, then the graph of its inverse is simply the reflection of
the graph of f across the line y = x (Fig. 2.25).

y = f(x)

y

x

y = g(x)

y

x

y = f(x) and x = g(y)

Fig. 2.25 Left: graphs of an increasing function f and its inverse g. Right: if you write f (x) = y
and x = g(y), then the graph of f (x) = y is also the graph of g(y) = x

The Inversion Theorem. The graphs suggest the following theorem:

Theorem 2.9. Inversion theorem. Suppose that f is a continuous and strictly
monotonic function defined on an interval [a,b]. Then its inverse g is a continu-
ous strictly monotonic function defined on the closed interval between f (a) and
f (b).

Proof. A strictly monotonic function is invertible, because different inputs always
result in different outputs. The inverse is strictly monotonic, as we ask you to show
in Problem 2.30.

What remains to be shown is that the domain of the inverse function is precisely
the closed interval between f (a) and f (b), no more no less, and that f−1 is contin-
uous. According to the intermediate value theorem, for every m between f (a) and
f (b), there is a number c such that m = f (c). Thus every number between f (a)
and f (b) is in the domain of the inverse function. On the other hand, the value f (c)
of a strictly monotonic function at the point c between a and b must lie between
f (a) and f (b). This shows that the domain of f−1 is precisely the closed interval
between f (a) and f (b).

Next, we show that f−1 is continuous. Let ε be any tolerance. Divide the interval

[a,b] into n subintervals of length less than
ε
2

, with endpoints a= a0, a1, . . . , an = b.
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The values f (ai) divide the range of f into an equal number of subintervals. Denote
by δ the length of the smallest of these. See Fig. 2.26. Let y1 and y2 be numbers in
the range that are within δ of each other. Then y1 and y2 are in either the same or
adjacent subintervals of the range. Correspondingly, f−1(y1) and f−1(y2) lie in the
same or adjacent subintervals of [a,b]. Since the lengths of the subintervals of [a,b]

were made less than
ε
2

, we have

| f−1(y1)− f−1(y2)|< ε.

Thus we have shown that given any tolerance ε , there is a δ such that if y1 and y2

differ by less than δ , then f−1(y1) and f−1(y2) differ by less than ε . This shows that
f is uniformly continuous on [a,b], hence continuous. ��

1a a
2

a ...

f(a)
f(a )1

f(a )
2

b=a
n

f(a  ) = f(b)n

Fig. 2.26 The inverse of a continuous strictly monotonic function is continuous

As an application of the inversion theorem, take f (x) = xn, n any positive integer.
Then f is continuous and increasing on every interval [0,b], so it has an inverse g.
The value of g at a is the nth root of a and is written with a fractional exponent:

g(a) = a1/n.

By the inversion theorem, the nth-root function is continuous and strictly monotonic.
Then powers of such functions, such as x2/3 = (x1/3)2, are continuous and strictly
monotonic on [0,b]. Figure 2.27 shows some of these functions and their inverses.

We shall see later that many important functions can be defined as the inverse of a
strictly monotonic continuous function and that we can make important deductions
about a function f from properties of its inverse f−1.

Problems

2.22. Find the inverse function of f (x) = x5. Sketch the graphs of f and f−1.
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1
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4

0 1 2 3 4

xx3/2x3x8

x2/3

x1/3

x1/8

Fig. 2.27 The power functions

2.23. The volume of water V in a bottle is a function of the height H of the water,
say V = f (H). See Fig. 2.28. Similarly, the height of the water is a function of the
volume of water in the bottle, say H = g(V ). Show that f and g are inverse functions.

0

H

Fig. 2.28 A bottle of water for Problem 2.23

2.24. Let f (x) = x, g(x) = x2, h(x) = x1/5, and k(x) = x2 + 5. Find formulas for the
compositions

(a) (h ◦ g)(x)
(b) (g ◦ h)(x)
(c) ( f ◦ g)(x)
(d) (k ◦ h)(x)
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(e) (h ◦ k)(x)
(f) (k ◦ g ◦ h)(x)

2.25. Is there a function f (x) = xa that is its own inverse function? Is there more
than one such function?

2.26. Show that the function f (x) = x− 1
x

, on domain x > 0, is increasing by ex-

plaining each of the following items.

(a) The sum of two increasing functions is increasing.

(b) The functions x and −1
x

are increasing.

2.27. Tell how to compose some of the functions defined in Problem 2.24 to produce
the functions

(a) (x2 + 5)2 + 5
(b) (x2 + 5)2

(c) x4 + 5

2.28. The graph of a function f on [0,a] is given in Fig. 2.29. Use the graph of f to
sketch the graphs of the following functions.

(a) f (x− a)
(b) f (x+ a)
(c) f (−x)
(d) − f (x)
(e) f (−(x− a))

0 a
x

Fig. 2.29 The graph of the function f in Problem 2.28

2.29. Use the intermediate value theorem to show that the equation

√
x2 + 1 =

3
√

x5 + 2

has a solution in [−1,0].

2.30. (a) Show that the inverse of an increasing function is increasing. (b) Then state
the analogous result for decreasing functions.
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2.31. (a) Suppose f is increasing. Is f ◦ f increasing? Give a proof or a counterex-
ample. (b) Suppose f is decreasing. Is f ◦ f decreasing? Give a proof or a coun-
terexample.

2.32. Assume that functions f and g are increasing. Is f g increasing? If so give a
proof, and if not, explain why not.

2.33. Prove Theorem 2.8 by explaining the following.

(a) Given any ε > 0, there is a δ > 0 such that if |z−L|< δ , then | f (z)− f (L)|< ε .
(b) For the δ in part (a), there is an η > 0 such that if |x−c|<η , then |g(x)−L|< δ .
(c) Given any ε > 0, there is an η > 0 such that if |x− c| < η , then | f (g(x))−

f (L)| < ε .
(d) lim

x→c
f (g(x)) = f (L).

2.4 Sine and Cosine

It is often asserted that the importance of trigonometry lies in its usefulness for
surveying and navigation. Since the proportion of our population engaged in these
pursuits is rather small, one wonders what kind of stranglehold surveyors and navi-
gators have over professional education to be able to enforce the universal teaching
of this abstruse subject. Or is it merely inertia? The answer, of course, is that the
importance of trigonometry lies elsewhere: in the description of rotation and vibra-
tion. It is an astonishing fact of mathematical physics that the vibration of as diverse
a collection of objects as:

springs
strings

airplane wings
steel beams

light beams
and water streams

building sways
ocean waves

and sound waves . . .

and many others are described in terms of trigonometric functions. That such diverse
phenomena can be treated with a common tool is one of the most striking successes
of calculus. Some simple and some not so simple examples will be discussed in the
next chapters.

One also learns from older texts that there are six trigonometric functions:

sine, cosine, tangent, cotangent
secant, and cosecant.

This turns out to be a slight exaggeration. There are only two basic functions,
sine and cosine; all the others can be defined in terms of them, when necessary.
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Furthermore, sine and cosine are so closely related that each can be expressed in
terms of the other; so one can say that there is really only one trigonometric function.

Geometric Definition. We shall describe the functions sine and cosine geometri-
cally, using the circle of radius 1 in the Cartesian (x,y)-plane centered at the origin,
which is called the unit circle (Fig. 2.30).

(0,0) (x,0)

(x,y)

1

s
1

0

P(s)

s1

P(0)=P0

Fig. 2.30 Left: the unit circle. Right: measuring along the circumference using the same scale as
on the axes is called radian measure

Let (x,y) be any point on the unit circle. The triangle with vertices (0,0), (x,0),
and (x,y) is a right triangle. By the Pythagorean theorem,

x2 + y2 = 1.

Let P0 be the point (1,0) on the unit circle. Let P(s) be that point on the unit circle
whose distance measured from P0 counterclockwise along the arc of the unit circle
is s.

You can imagine this distance along the arc with the aid of a very thin string of
length s. Fasten one of its ends to the point P0, and wrap the string counterclockwise
around the circle. The other end of the string is at the point P(s).

The two rays from the origin through the points P0 and P(s) form an angle. We
define the size of this angle to be s, the length of the arc connecting P0 and P(s).
Measuring along the circumference of the unit circle using the same scale as on the
axes is called radian measure (Fig. 2.30). An angle of length 1 therefore has measure

equal to one radian, and the radian measure of a right angle is
π
2

.

Definition 2.10. Denote the x- and y-coordinates of P(s) by x(s) and y(s). We
define

coss = x(s), sins = y(s).

One immediate consequence of the definition is that coss and sin s are continuous
functions: The length of the chord between P(s) and P(s+ ε) is less than ε . The
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differences Δx and Δy in the coordinates between P(s) and P(s+ ε) are each less
than the length of the chord. But these differences are also the changes in the cosine
and sine:

|Δx|= |cos(s+ ε)− coss|< ε, |Δy|= |sin(s+ ε)− sins|< ε.

See Fig. 2.31.

y

x
P(s)

P(s+  )ε

Fig. 2.31 A small arc of the unit circle with corresponding x and y increments. Observe that the x
and y increments are smaller than the arc increment

We list this fact of continuity together with some other properties:

(a) The cosine and sine functions are continuous.
(b) cos2 s+ sin2 s = 1. This is because the cosine and sine are the coordinates of a

point of the unit circle, where x2 + y2 = 1.
(c) Since the circumference of the whole unit circle is 2π , when a string of length

s+ 2π is wrapped around the unit circle in the manner described before, the
endpoint P(s+ 2π) coincides with the point P(s). Therefore,

cos(s+ 2π) = coss, sin(s+ 2π) = sins.

This property of the functions sine and cosine is called “periodicity,” with period
2π . See Fig. 2.32.

(d) cos0 = 1, and the value coss decreases to −1 as s increases to π . Then coss
increases again to 1 at s = 2π . sin0 = 0 and sins also varies from −1 to 1.

(e) P
(π

2

)
lies one quarter of the circle from P0. Therefore, P

(π
2

)
= (0,1), and

cos
(π

2

)
= 0, sin

(π
2

)
= 1.

(f) The point P
(π

4

)
is halfway along the arc between P0 and P

(π
2

)
. By sym-

metry, we see that x
( π

4

)
= y

(π
4

)
. By the Pythagorean theorem,

(
x
(π

4

))2
+(

y
(π

4

))2
= 1. It follows that (cos π

4 )
2 = (sin π

4 )
2 = 1

2 , and so

cos
(π

4

)
=

√
1
2
, sin

(π
4

)
=

√
1
2
.
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(g) For angles s and t, there are addition formulas

cos(s+ t) = cosscost − sinssin t,
sin(s+ t) = sinscos t + cosssin t,

which will be discussed later.

-1

 1

-8 -6 -4 -2 2 4 6 8

cos x

Fig. 2.32 Part of the graph of the cosine

Problems

2.34. On a sketch of the unit circle, mark the circumference at six equally spaced
points. Are these subdivisions more, or less, than one radian each?

2.35. Which of the following pairs of numbers could be the cosine and sine of some
angle?

(a) (0.9,0.1)
(b) (

√
0.9,

√
0.1)

2.36. Sketch the unit circle, and on it, mark the approximate location of points hav-
ing angles of 1, 2, 6, 2π , and −0.6 from the horizontal axis.

2.37. The ancient Babylonians measured angles in degrees. They divided the full
circle into 360 angles of equal size, each called one degree. So the size of a right
angle in Babylonian units is 90 degrees. Since its size in modern units is π

2 radians, it

follows that one radian equals
90
π
2
= 57.295 . . . degrees. Let c(x) = cos

( x
57.295 . . .

)
which is the cosine of an angle of x degrees. Sketch the graph of c as nearly as you
can to scale, and explain how it differs from the graph of the cosine.
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2.38. Which of the following functions are bounded, and which are bounded away
from 0?

(a) f (x) = sinx
(b) f (x) = 5sinx

(c) f (x) =
1

sinx
for x 
= nπ , n = 0,±1,±2, . . .

2.39. A weight attached to a Slinky (a weak spring toy) oscillates up and down. Its
position at time t is y = 1+0.2sin(3t) meters from the floor. What is the maximum
height reached, and how much time elapses between successive maxima?

2.40. Use the intermediate value theorem to prove that the equation

x = cosx

has a solution on the interval [0, π
2 ].

2.41. Show that sins is an increasing function on [− π
2 ,

π
2 ], and therefore has an

inverse. Its inverse is denoted by sin−1.

sin s

10 cos s

(1, tan s)

s

Fig. 2.33 The tangent of s. See Problems 2.42 and 2.43

2.42. Define the tangent function by tans =
sins
coss

whenever the denominator is not

0. Refer to Fig. 2.33 to show that tans is an increasing function on (− π
2 ,

π
2 ). Show

that tanx has a continuous inverse on (−∞,∞). Its inverse is denoted by tan−1.

2.43. Set z = tans and y = sins in Fig. 2.33.

(a) Show that sin(tan−1(z)) =
z√

1+ z2
.

(b) Express cos(sin−1(y)) without using any trigonometric functions.
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2.5 Exponential Function

We present two examples of naturally occurring functions f that arise in modeling
growth and decay and satisfy the relation

f (t + s) = f (t) f (s). (2.1)

We shall then show that all continuous functions satisfying this relation are expo-
nential functions. Further natural examples of exponential functions are given in
Chap. 10.

2.5a Radioactive Decay

Radioactive elements are not immutable. With the passage of time, they change into
other elements. It is important to know how much of a given amount is left after
time t has elapsed. To express this problem mathematically, we describe the decay
by the following function:

Let M(t) denote the fraction of material of a unit mass remaining after the elapse
of time t. Assume that M is a continuous function of time, M(0) = 1, and that
0 < M(t)< 1 for t > 0.

How much will be left of an initial supply of mass A after the elapse of time t?
The number of atoms present does not affect the likelihood of any individual atom
decaying. A solitary atom is as likely to decay as one buried among thousands of
other atoms. Since M(t) is the fraction of material left of a unit mass after time t,
AM(t) is the amount left after time t if we start with mass A:

(amount left at time t) = AM(t) (2.2)

How much will be left of a mass A of material after time s + t has elapsed? By
definition of the function M, the amount left is AM(s+ t). But there is another way
of answering this question. Observe that after time s has elapsed, the remaining
mass is AM(s), and then after an additional time t has elapsed, the amount left is(
AM(s)

)
M(t). These two answers must be the same, and therefore,

M(s+ t) = M(s)M(t). (2.3)

Since M(s) and M(t) are less than 1, M is decreasing, and M(t) tends to zero as
t tends to infinity. We assumed that M is a continuous function, and M(0) = 1.
According to the intermediate value theorem, there is a number h for which M(h) =
1/2. Since M is decreasing, there is only one such number. Setting s = h in relation
(2.3), we get that

M(h+ t) =
1
2

M(t).

In words: starting at any time t, let additional time h elapse, then the mass of the
material is halved. The number h is called the half-life of the radioactive material.
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For example, the half-life of radium-226 is about 1601 years, and the half-life of
carbon-14 is about 5730 years.

2.5b Bacterial Growth

We turn to another example, the growth of a colony of bacteria. We describe the
growth by the following function:

Let P(t) be the size of the bacterial population of initial unit size after it has
grown for time t. Assume that P is a continuous function of time, P(0) = 1, and that
P(t)> 1 for t > 0.

If we supply ample nutrients so that the bacteria do not have to compete with
each other, and if there is ample room for growth, then it is reasonable to conclude
that the size of the colony at any time t is proportional to its initial size A, whatever
that initial size is:

(size at time t) = AP(t), (2.4)

What will be the size of a colony, of initial size A, after it has grown for time
s+ t? According to Eq. (2.4), the size will be AP(s+ t). But there is another way of
calculating the size of the population. After time s has elapsed, the population size
has grown to AP(s). After an additional time t elapses, the size of the population
will, according to Eq. (2.4), grow to

(
AP(s)

)
P(t) = AP(s)P(t). The two answers

must be the same, and therefore,

P(s+ t) = P(s)P(t). (2.5)

Since P(t)> 1, P is an increasing function, and P(t) tends to infinity as t increases.
We assumed that P is continuous and P(0) = 1, so by the intermediate value theo-
rem, there is a value d for which P(d) = 2. Since P is an increasing function, there
is only one such value. Setting s = d in Eq. (2.5) gives

P(d + t) = 2P(t);

d is called the doubling time for the bacterial colony. Starting from any time t, the
colony doubles after additional time d elapses.

2.5c Algebraic Definition

Next we show that every continuous function f that satisfies

f (x+ y) = f (x) f (y) and a = f (1)> 0,

must be an exponential function f (x) = ax. For example, P(t) and M(t) in the last
section are such functions.



88 2 Functions and Continuity

The relation f (x+ y) = f (x) f (y) is called the functional equation of the expo-
nential function. If y = x, the equation gives

f (x+ x) = f (2x) = f (x) f (x) = ( f (x))2 = f (x)2,

where in the last form we have omitted unnecessary parentheses. When y = 2x,
we get

f (x+ 2x) = f (x) f (2x) = f (x) f (x)2 = f (x)3.

Continuing in this fashion, we get

f (nx) = f (x)n. (2.6)

Take x = 1. Then
f (n) = f (n1) = f (1)n = an.

This proves that f (x) = ax when x is any positive integer. Take x =
1
n

in Eq. (2.6).

We get f (1) = a= f
(1

n

)n. Take the nth root of both sides. We get f
(

1
n

)
= a1/n. This

proves that f (x) = ax when x is any positive integer reciprocal. Next take x =
1
p

in

Eq. (2.6); we get

f
( n

p

)
= f

( 1
p

)n
=
(
a1/p)n

= an/p.

So we have shown that for all positive rational numbers r =
n
p

,

f (r) = ar.

In Problem 2.52, we ask you to show that f (0) = 1 and that f (r) = ar for all negative
rational numbers r. Assume that f is continuous. Then it follows that f (x) = ax for
irrational x as well, since x can be approximated by rational numbers.

The algebraic properties of the exponential functions ax extend to all numbers x
as well, where a > 0:

• axay = ax+y

• (ax)n = anx

• a0 = 1

• a−x =
1
ax

• ax > 1 for x > 0 and a > 1
• ax < 1 for x > 0 and 0 < a < 1

We can use these properties to show that for a > 1, f (x) = ax is an increasing

function. Suppose y > x. Then y− x > 0, and ay−x > 1. Since ay−x =
ay

ax , it fol-

lows that ay > ax. By a similar argument when 0 < a < 1, we can show that ax is
decreasing.
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2.5d Exponential Growth

Though it has a precise mathematical meaning, the phrase “exponential growth” is
often used as a metaphor for any extremely rapid increase. Here is the mathematical
basis of this phrase:

Theorem 2.10. Exponential growth. For a > 1, the function ax grows faster
than xk as x tends to infinity, no matter how large the exponent k = 0,1,2,3 . . . .

In other words, the quotient
ax

xk
tends to infinity as x tends to infinity

(Fig. 2.34).

20100.01

x-2ex

Fig. 2.34 The function
ex

x2 plotted on [0.01,20]. The vertical scale is compressed by a factor of

100,000

Proof. We first consider the case k = 0: that ax tends to infinity for all a greater
than 1. This is certainly true for a= 10, because 102 = 100, 103 = 1000, etc., clearly
tend to infinity. It follows that ax tends to infinity for all a greater than 10.

Consider the set of all numbers a for which ax is bounded for all positive x. The

set is not empty, because, for example, a = 1, and a =
1
2

have this property. The set

has an upper bound, because every number larger than 10 is not in the set. So the set
of such a has a least upper bound. Denote the least upper bound by c. Since a = 1
lies in the set, c is not less than 1. We claim that c is 1. For suppose that c were
greater than 1. Then b, the square root of c, and d, the square of c, would satisfy the
inequalities

b < c < d.

Since d is greater than the least upper bound c, dx tends to infinity with x. Since by
definition, d is b4, b4x = dx tends to infinity with x. But since b is less than the least
upper bound c, its powers remain bounded. This is a contradiction, so c must be 1.
Therefore, ax tends to infinity for all a greater than 1.
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Next we consider the case k = 1:
ax

x
tends to infinity as x tends to infinity. Denote

the function
ax

x
by f (x). Then

f (x+ 1) =
ax+1

x+ 1
=

ax

x
a

1+ 1
x

= f (x)
a

1+ 1
x

. (2.7)

We claim that for large x, the factor
a

1+ 1
x

is larger than 1: we know that a > 1, so

in fact, a > 1+
1
m

for some integer m. Write b =
a

1+ 1
m

. Then for all x ≥ m,

a

1+ 1
x

≥ a

1+ 1
m

= b > 1,

as claimed. Then by Eq. (2.7),

f (x+ 1)≥ f (x)b,

f (x+ 2)≥ f (x)b2,

and continuing in this way, we see that

f (x+ n)≥ f (x)bn

for each positive integer n. Every large number X can be represented as some num-
ber x in [m,m+ 1] plus a large positive integer n. Denote by M the minimum value
of f in [m,m+ 1]. Then

f (X) = f (x+ n)≥ f (x)bn ≥ Mbn.

Since b > 1, this shows that f (X) tends to infinity as X does.
In the cases k > 1, we argue as follows. Using the rules for the exponential func-

tion, we see that
ax

xk =

(
sx

x

)k

, where sk = a. (2.8)

Since a is greater than 1, so is s. As we have already shown,
sx

x
tends to infinity as

x does. Then so does its kth power. ��
Later, in Sect. 4.1b, we shall give a much simpler proof of the theorem on exponen-
tial growth using calculus.
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Fig. 2.35 Left: graphs of 2x and log2 x. Right: graphs of

(
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and log1/2 x

2.5e Logarithm

For a greater than 1, ax is an increasing continuous function, and for 0 < a < 1,
ax is decreasing. Hence for a 
= 1, ax has a continuous inverse function, called the
logarithm to the base a, which is defined by

loga y = x when y = ax.

If a > 1, loga is an increasing function. If 0 < a < 1, loga is a decreasing function.
In either case, the domain of loga is the range of ax, all positive numbers (Fig. 2.35).

The exponential function is characterized by

axay = ax+y.

Applying the function loga, we get

loga(a
xay) = x+ y.

Take any two positive numbers u and v and denote their logarithms by x and y:

x = loga u, ax = u, y = loga v, ay = v. (2.9)

We get
loga(uv) = loga u+ loga v. (2.10)

Calculations. The logarithm was invented by the Scottish scientist John Napier
and expounded in a work published in 1614. Napier’s logarithm was to the base e. In
English, this is called called the “natural logarithm,” a phrase that will be explained
in the next section.
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The base-10 logarithm, called the “common logarithm” in English, was intro-
duced by Henry Briggs in 1617, based on Napier’s logarithm. The significance of
base ten is this: every positive number a can be written as a = 10nx (recall scientific
notation a = x× 10n, where n is an integer and x is a number between 1 and 10).
Then log10 a = n+ log10 x. Therefore, the base-ten logarithms for numbers between
1 and 10 are sufficient to determine the base-ten logarithms for all positive numbers.

Table 2.1 is part of a traditional table of base-10 logarithms. It shows numbers
1.000 through 9.999, the last digit being read across the top row. We know that
log10(9.999) is nearly log10(10) = 1, and this tells us how to read the table: the
entry in the lower right-hand corner must mean that log10(9.999) = 0.99996.

We illustrate multiplication by an example:

Example 2.29. What is the product of a = 4279 and b = 78,520? Write a = 4.279×
103. According to Table 2.1,

log10(4.279) = 0.63134.

Therefore, log10 a = 3.63134. Similarly, b = 7.852× 104. According to the table,
then,

log10(7.852) = 0.89498,

and therefore, log10 b = 4.89498. To multiply a and b we use the fundamental prop-
erty (2.10) of logarithms to write

log10 ab = log10 a+ log10 b = 3.63164+ 4.89498= 8.52632.

By the table, the number whose base-10 logarithm is 0.52632 is, within a toler-
ance of 2× 10−4, equal to 3.360. This shows that the product ab is approximately
336,000,000, within a tolerance of 2× 104.

Using a calculator, we get ab= 335,987,080, which is quite close to our approx-
imate value calculated using base-10 logarithms.

No. 0 1 2 3 4 5 6 7 8 9
100 00000 00043 00087 00130 00173 00217 00260 00303 00346 00389
· · · – – – – – – – – – –
335 52504 52517 52530 52543 52556 52569 52582 52595 52608 52621
336 52634 52647 52660 52673 52686 52699 52711 52724 52737 52750
· · · – – – – – – – – – –
427 63043 63053 63063 63073 63083 63094 63104 63114 63124 63134
428 63144 63155 63165 63175 63185 63195 63205 63215 63225 63236
· · · – – – – – – – – – –
526 72099 72107 72115 72123 72132 72140 72148 72156 72165 72173
· · · – – – – – – – – – –
785 89487 89492 89498 89504 89509 89515 89520 89526 89531 89537
· · · – – – – – – – – – –
999 99957 99961 99965 99970 99974 99978 99981 99987 99991 99996
No. 0 1 2 3 4 5 6 7 8 9

Table 2.1 Excerpt from the log10 tables in Bowditch’s practical navigator, 1868. We read, for
example, log10(3.358) = 0.52608 from row no. 335, column 8
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Division is carried out the same way, except we subtract the logarithms instead
of adding them.

One cannot exaggerate the historical importance of being able to do arithmetic
with base-ten logarithms. Multiplication and division by hand is a time-consuming,
frustrating activity, prone to error.1 For 350 years, no scientist, no engineer, no
office, no laboratory was without a table of base-ten logarithms. Because of the
force of habit, most scientific calculators have the base-ten logarithm available, al-
though the main use of those logarithms is to perform multiplication and division.
Of course, these arithmetic operations are performed by a calculator by pressing a
button. The button labeled “log” often means log10. In the past, the symbol logx,
without any subscript, denoted the logarithm to base ten; the natural log of x was
denoted by lnx. Since in our time, multiplication and division are done by calcula-
tors, the base-ten logarithm is essentially dead, and rather naturally, logx has come
to denote the natural logarithm of x.

Why Is the Natural Logarithm Natural? The explanation you will find in the
usual calculus texts is that the inverse of the base-e logarithm, the base-e exponen-
tial function, is the most natural of all exponential functions because it has special
properties related to calculus. Since Napier did not know what the inverse of the nat-
ural logarithm was, nor did he know calculus (he died about 25 years before Newton
was born), his motivation must have been different. Here it is:

Suppose f and g are functions inverse to each other. That is, if f (x) = y, then
g(y) = x. Then if we have a list of values f (x j) = y j for the function f , it is also
a list of values x j = g(y j) for the function g. As an example, take the exponential
function f (x) = (10)x = y. Here is a list of its values for x = 0, 1, 2, . . . , 10:

x 0 1 2 . . . 9 10
y 1 10 100 . . . 1,000,000,000 10,000,000,000

The inverse of the function (10)x = y is the base-10 logarithm, log10 y = x. We
have listed above its values for y = 1, 10, 100, . . . , 10,000,000,000. The trouble
with this list is that the values y for which log10 y is listed are very far apart, so we
can get very little information about log10 y for values of y in between the listed
values.

Next we take the base-2 exponential function f (x) = 2x = y. Here is a list of its
values for x = 0, 1, 2, . . . , 10:

x 0 1 2 . . . 9 10
y 1 2 4 . . . 512 1024

The inverse of the function 2x = y is the base-2 logarithm, log2 y = x. Here the
values y for which the values of log2 y are listed are not so far apart, but they are still
quite far apart.

1 There is a record of an educational conference in the Middle Ages on the topic, “Can one teach
long division without flogging?”
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Clearly, to make the listed values of the exponential function lie close together,
we should choose the base small, but still greater than 1. So let us try the base
a = 1.01. Here is a list of the values of y = (1.01)x for x = 0, 1 . . . 100. Note that
the evaluation of this exponential function for integer values of x requires just one
multiplication for each value of x:

x 0 1 2 . . . 99 100
y 1 1.01 1.0201 . . . 2.6780 2.7048

The inverse of the function (1.01)x = y is the base-1.01 logarithm, log1.01 y = x. The
listed values y of the base-1.01 logarithm are close to each other, but the values of
the logarithms are rather large: log1.01 2.7048 = 100. There is an easy trick to fix
this. Instead of using 1.01 as the base, use a = (1.01)100. Then

(
(1.01)100)x

= (1.01)100x.

We list values of ax now for x = 0, 0.01, 0.02, . . . , 1.00, which gives a table almost
identical to the previous table:

x 0 0.01 0.02 . . . 0.99 1.00
y 1 1.01 1.0201 . . . 2.6780 2.7048

To further improve matters, we can take powers of numbers even closer to 1 as a
base: Take as base 1+ 1

n raised to the power n, where n is a large number. As n tends

to infinity,
(
1+

1
n

)n
tends to e, the base of the natural logarithm.

Problems

2.44. Use the property ex+y = exey to find the relation between ez and e−z.

2.45. Suppose f is a function that satisfies the functional equation f (x + y) =
f (x) f (y), and suppose c is any number. Define a function g(x) = f (cx). Explain
why g(x+ y) = g(x)g(y).

2.46. A bacteria population is given by p(t) = p(0)at , where t is in days since the
initial time. If the population was 1000 on day 3, and 200 on day 0, what was it on
day 1?

2.47. A population of bacteria is given by p(t) = 800(1.023)t, where t is in hours.
What is the initial population? What is the doubling time for this population? How
long will it take to quadruple?

2.48. Let P0 be the initial principal deposited in an account. Write an expression for
the account balance after 1 year in each of the following cases.

(a) 4 % simple interest,
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(b) 4 % compounded quarterly (4 periods per year),
(c) 4 % compounded daily (365 periods per year),
(d) 4 % compounded continuously (number of periods tends to infinity),
(e) x % compounded continuously.

2.49. Calculate the product ab by hand, where a and b are as in Example 2.29.

2.50. Solve e−x2
= 1

2 for x.

2.51. Suppose f (x) = max, and we know that

f
(
x+

1
2

)
= 3 f (x).

Find a.

2.52. Use the functional equation f (x+ y) = f (x) f (y) and f (1) = a 
= 0 to show
that

(a) f (0) = 1,
(b) f (r) = ar for negative rational numbers r.

2.53. Suppose P satisfies the functional equation P(x+y) = P(x)P(y), and that N is
any positive integer. Prove that

P(0)+P(1)+P(2)+ · · ·+P(N)

is a finite geometric series.

2.54. If b is the arithmetic mean of a and c, prove that eb is the geometric mean of
ea and ec.

2.55. Knowing that e > 2, explain why

(a) e10 > 1000,
(b) log1000 < 10,
(c) log1,000,000< 20.

2.56. Let a denote a number greater than 1, a = 1+ p, where p is positive. Show
that for all positive integers n, an > 1+ pn.

2.57. We know that
ex

x2 tends to infinity as x does. In particular, it is eventually more

than 1. Substitute y = x2 and derive that

logy <
√

y

for large y.

2.58. Use the relation log(uv) = logu+ logv to show that log
(x

y

)
= logx− logy.
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2.6 Sequences of Functions and Their Limits

We saw in Chap. 1 that we can only rarely present numbers exactly. In general, we
describe them as limits of infinite sequences of numbers. What is true of numbers is
also true of functions; we can rarely describe them exactly. We often describe them
as limits of sequences of functions. It is not an exaggeration to say that almost all
interesting functions are defined as limits of sequences of simpler functions. Therein
lies the importance of the concept of a convergent sequence of functions.

Since most of the functions we shall study are continuous, we investigate next
what convergence means for sequences of continuous functions. It turns out that
with the right definition of convergence, continuity is preserved under the operation
of taking limits.

First we look at some simple examples.

2.6a Sequences of Functions

Example 2.30. Consider the functions

f0(x) = 1, f1(x) = x, f2(x) = x2, f3(x) = x3, . . . , fn(x) = xn, . . .

on [0,1]. For each x in [0,1], we get the following limits as n tends to infinity:

lim
n→∞

fn(x) =

{
0 0 ≤ x < 1,

1 x = 1.

Define f to be the function on [0,1] given by f (x) = limn→∞ fn(x). The sequence
of functions fn converges to f , a discontinuous function. See Fig. 2.36.
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Fig. 2.36 Left: the functions fn(x) = xn for n = 1, 3, 5, 7, and 9 are graphed on the interval [0,1].
Right: the discontinuous limit f . See Example 2.30
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Example 2.30 shows that a sequence of continuous functions can converge to a
discontinuous function. This is an undesirable outcome that we would like to avoid.

Example 2.31. Consider the functions gn(x) = xn on [0, 1
2 ]. The functions gn are

continuous on [0, 1
2 ] and converge to the constant function g(x) = 0, a continuous

function.

These examples prompt us to make two definitions for sequence convergence.
For a sequence of continuous functions f1, f2, f3, . . . to converge to f , we certainly
should require that for each x in their common domain, lim

n→∞
fn(x) = f (x).

Definition 2.11. A sequence of functions simply means a list f1, f2, f3, . . . of
functions with a common domain D. The sequence is said to converge pointwise
to a function f on D if

lim
n→∞

fn(x) = f (x) for each x in D.

Uniform Convergence. We saw in Example 2.30 that a sequence of continuous
functions may converge pointwise to a limit that is not continuous. We define a
stronger form of convergence that avoids this trouble.

Definition 2.12. A sequence of functions f1, f2, f3, . . . defined on a common
domain D is said to converge uniformly on D to a limit function f if given any
tolerance ε > 0, no matter how small, there is a whole number N depending on
ε such that for all n > N, fn(x) differs from f (x) by less than ε for all x in D.

To illustrate some benefits of uniform convergence, consider the problem of eval-
uating f (x) = cosx. For instance, how would you compute cos(0.5) without using a
calculator? We will see in Chap. 4 that one of the important applications of calculus
is a method to generate a sequence of polynomial functions

pn(x) = 1− x2

2!
+

x4

4!
−·· ·+ kn

xn

n!
(kn = 0, n odd, and kn = (−1)n/2, n even)

that converges uniformly to cosx on every closed interval [−c,c]. This means that
once you set c and the tolerance ε , there is a polynomial pn such that

|cosx− pn(x)|< ε for all x in [−c,c].

In Chap. 4 we will see that we can get |cosx− pn(x)| < ε for all x in [−1,1] by

taking n such that n! >
1
ε

. For example, cos(0.3), cos(0.5), and cos(0.8) can each

be approximated using p4(x) = 1− x2

2!
+

x4

4!
, and since the convergence is uniform,
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the error in doing so will be less than
1

24
in all cases. Evaluating cosx at an irrational

number in [−1,1] introduces an interesting complication. For example, cos
( e

3

)
is

approximated by

p4
( e

3

)
= 1− 1

2

( e
3

)2
+

1
24

( e
3

)4
.

Now we need to approximate p4
( e

3

)
using some approximation to

e
3

, such as

0.9060939, which will introduce some error. Thinking ahead, there are many ir-
rational numbers in [−1,1] at which we would like to evaluate the cosine. Happily,
p4 is uniformly continuous on [−1,1]. We can find a single level of precision δ for
the inputs, so that if z is within δ of x, then p4(z) is within ε of p4(x).

Looking at the big picture, we conclude that for a given tolerance ε , we can find

n so large that |cosx− pn(x)|< ε
2

for all x in [−1,1]. Then we can find a precision

δ such that if x and z are in [−1,1] and differ by less than δ , then pn(x) and pn(z)

will differ by less than
ε
2

. Using the triangle inequality, we get

|cosx− pn(z)| ≤ |cosx− pn(x)|+ |pn(x)− pn(z)|< ε
2
+

ε
2
= ε.

Finding the right n and δ to meet a particular tolerance can be complicated, but we
know in theory that it can be done. In short, approximate knowledge of the inputs
and approximate knowledge of the function can be used to determine the function
values within any given tolerance.2 This is good news for computing.

Knowing that a sequence of continuous functions converges uniformly on [a,b]
guarantees that its limit function is continuous on [a,b].

Theorem 2.11. Let { fn} be a sequence of functions, each continuous on the
closed interval [a,b]. If the sequence converges uniformly to f , then f is con-
tinuous on [a,b].

Proof. If fn converges uniformly, then for n large enough,

| fn(x)− f (x)|< ε

for all x in [a,b]. Since fn is continuous on [a,b], fn is uniformly continuous on
[a,b] by Theorem 2.4. So for x1 and x2 close enough, say

|x1 − x2|< δ ,
2 There once was a function named g,

approximated closely by p.
When we put in x nearly,
we thought we’d pay dearly,

but g(x) was as close as can be. –Anon.

This limerick expresses that
∣∣g(x)− p(xapprox)

∣∣≤ |g(x)− p(x)|+ ∣∣p(x)− p(xapprox)
∣∣.
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fn(x1) and fn(x2) will differ by less than ε . Next we see a nice use of the triangle in-
equality (Sect. 1.1b). The argument is that you can control the difference of function
values at two points x1 and x2 by writing

f (x1)− f (x2) = f (x1)− fn(x1)+ fn(x1)− fn(x2)+ fn(x2)− f (x2)

and grouping these terms cleverly. We have, then, by the triangle inequality that

| f (x1)− f (x2)| ≤ | f (x1)− fn(x1)|+ | fn(x1)− fn(x2)|+ | fn(x2)− f (x2)|

Each of these terms is less than ε if |x1−x2|< δ . This proves the uniform continuity
of f on [a,b]. ��

We now present examples of uniformly convergent sequences of continuous
functions.

Example 2.32. The sequence of functions fn(x) = xn on [−c,c], where c is a pos-
itive number less than 1, converges pointwise to the function f (x) = 0, because
for each x in [−c,c], xn tends to 0 as n tends to infinity. To see why the sequence
converges uniformly to f , look at the difference between fn(x) = xn and 0 on
[−c,c]. For any tolerance ε , we can find a whole number N such that cN < ε , and
hence cn < ε for every n > N as well. Let x be any number between −c and c.
Then

| fn(x)− 0|= |xn| ≤ cn < ε.

Therefore, the difference between xn and 0 is less than ε for all x in [−c,c]. That
is, the sequence of functions converges uniformly. Note that the limit function,
f (x) = 0, is continuous, as guaranteed by the theorem (Fig. 2.37).

-1e-05

-5e-06

 0

 5e-06

 1e-05

-0.1 -0.05  0  0.05  0.1x

Fig. 2.37 The functions fn(x) = xn for n = 5, 6, and 7 are graphed on the interval [−0.1,0.1]. Note
that the graph of f7 is indistinguishable from the x-axis
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Geometric Series. Consider the sequence of functions { fn} given by

fn(x) = 1+ x+ x2+ · · ·+ xn−1,

where x is in the interval [−c,c] and 0 < c < 1. The sum defining fn(x) is also given
by the formula

fn(x) =
1− xn

1− x
.

For each x in (−1,1), fn(x) tends to f (x) =
1

1− x
, so the sequence fn converges

pointwise to f . To see why the fn converge uniformly in [−c,c], form the difference
of fn(x) and f (x). We get

f (x)− fn(x) =
xn

1− x
.

For x in the interval [−c,c], |x| is not greater than c, and |xn| is not greater than cn.
It follows that

| f (x)− fn(x)|= |x|n
1− x

≤ cn

1− c
for all x in [−c,c].

Since cn tends to zero, we can choose N so large that for n greater than N,
cn

1− c
is

less than ε , and hence f (x) differs from fn(x) by less than ε for all x in [−c,c]. This

proves that fn tends to f uniformly on the interval [−c,c], c < 1. Note that
1

1− x
is

continuous on [−c,c], as guaranteed by the theorem (Fig. 2.38).

 8

 4

-4

 2 1 0-1

1/(1-x)

1/(1-x)

1+x

1+x+x 2 +x3

1+x+x 2 +x3 +x4 +x5

Fig. 2.38 The sequence of functions fn(x) = 1+x+ · · ·+xn converges uniformly to 1
1−x on [−c,c]

when c < 1
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Operations on Convergent Sequences of Functions. We can combine uniformly
convergent sequences of continuous functions.

Theorem 2.12. Suppose fn and gn are uniformly convergent sequences of con-
tinuous functions on [a,b], converging to f and g. Then

(a) fn + gn converges uniformly to f + g.
(b) fngn converges uniformly to f g.

(c) If f 
= 0 on [a,b], then for n large enough, fn 
= 0 and
1
fn

tends to
1
f

uni-

formly.
(d) If h is a continuous function with range contained in [a,b], then gn ◦ h con-

verges uniformly to g ◦ h.
(e) If k is a continuous function on a closed interval that contains the range of

each gn and g, then k ◦ gn converges uniformly to k ◦ g.

Proof. We give an outline of the proof of this theorem. For (a), use the triangle
inequality:

|( f (x)+ g(x))− ( fn(x)+ gn(x))| ≤ | f (x)− fn(x)|+ |g(x)− gn(x)|.

For all x in [a,b], the terms on the right are smaller than any given tolerance, pro-
vided that n is large enough. Figure 2.39 shows the idea. We guide you through the
details of proving part (a) in Problem 2.61.

f

g

f+g

a b

Fig. 2.39 Functions fn are within ε of f for n > N1, and the gn are within ε of g for n > N2. The
sums fn +gn are then within 2ε of f +g for n larger than both N1 and N2
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For (b), use

| f (x)g(x)− fn(x)gn(x)|= |( f (x)− fn(x))g(x)+ fn(x)(g(x)− gn(x))|

≤ | f (x)− fn(x)||g(x)|+ | fn(x)||g(x)− gn(x)|.
We can make the factors | f (x)− fn(x)| and |g(x)− gn(x)| small by taking n large.
We check the factor | fn(x)|. By the extreme value theorem (Theorem 2.6), | f | has a
maximum value M, so −M ≤ f (x)≤ M. Since the fn converge to f uniformly, they
are within distance 1 of f for large n, and −M− 1 ≤ fn(x) ≤ M + 1 for all x. Thus
we have

| f (x)g(x)− fn(x)gn(x)| ≤ | f (x)− fn(x)||g(x)|+(M+ 1)|g(x)− gn(x)|

for large n, and this can be made arbitrarily small by taking n sufficiently large.
For (c): If f is not zero on an interval, then it is either positive at every point or

negative at every point. For if it were positive at some point c and negative at another
point d, then according to Theorem 2.5, the intermediate value theorem, f (x) would
be zero at some point x between c and d, contrary to our assumption about f . Take
the case that f is positive. According to Theorem 2.6, the extreme value theorem,
f (x) takes on its minimum at some point of the closed interval [a,b]. This minimum
is a positive number m, and f (x) ≥ m for all x in the interval. Since fn(x) tends
uniformly to f (x) on the interval, it follows that for n greater than some number N,
fn(x) differs from f (x) by less than 1

2 m. Since f (x) ≥ m, fn(x)≥ 1
2 m. We use

1
fn(x)

− 1
f (x)

=
f (x)− fn(x)

fn(x) f (x)
.

The right-hand side is not more than
| f (x)− fn(x)|( 1

2 m
)
m

in absolute value, from which

the result follows.
For (d) we use that g(y)−gn(y) is uniformly small for all y, and then take y= h(x)

to see that g(h(x))− gn(h(x)) is uniformly small for all x.
For (e) we use that g(x)−gn(x) is uniformly small for all x, and then use uniform

continuity of k to see that k(g(x))− k(gn(x)) is uniformly small for all x.
This completes the outline of the proof. ��
The beauty of Theorem 2.12 is that it allows us to construct a large variety of

uniformly convergent sequences of functions. Here are a few examples.

Example 2.33. Let gn(x) = 1+ x+ x2+ · · ·+ xn, and let h(u) = −u2, where u is
in [−c,c], and 0 < c < 1. Then

gn(h(u)) = 1− u2+ u4 − u6 + · · ·+(−u2)n

converges uniformly in [−c,c] to
1

1+ u2 .
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Example 2.34. Let r > 0, a any number, and set

kn(x) = 1+
x− a

r
+ · · ·+

(
x− a

r

)n

.

Then kn(x) = gn
(

x−a
r

)
, where gn is as in Example 2.33. The kn converge uni-

formly to
1

1− x−a
r

=
r

r− x+ a

on every closed interval contained in (a− r,a+ r). This is true by part (d) of
Theorem 2.12.

Example 2.35. Let h(t) =
1
2

cost, where gn(x) is as in Example 2.33. Then

gn(h(t)) = 1+
1
2

cost +

(
1
2

cost

)2

+ · · ·+
(

1
2

cost

)n

converges uniformly to
2

2− cost
for all t.

2.6b Series of Functions

Definition 2.13. The sequence of functions { fn} can be added to make a new
sequence {sn}, called the sequence of partial sums of { fn}:

sn = f0 + f1 + f2 + · · ·+ fn =
n

∑
j=0

f j .

The sequence of functions {sn} is called a series and is denoted by

∞

∑
j=0

f j .

If lim
n→∞

sn(x) exists, denote it by f (x), and we say that the series converges to

f (x) at x. We write
∞

∑
j=0

f j(x) = f (x).

If the sequence of partial sums converges uniformly on D, we say that the series
converges uniformly on D.
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We saw earlier that the sequence of partial sums of the geometric series

sn(x) = 1+ x+ x2+ · · ·+ xn =
1− xn+1

1− x

converges uniformly to
1

1− x
on every interval [−c,c], if 0 < c < 1. We often write

∞

∑
k=0

xk = 1+ x+ x2+ x3 + · · ·= 1
1− x

(|x|< 1).

This series is of a special kind, a power series.

Definition 2.14. A power series is a series of the form

∞

∑
k=0

ak(x− a)k.

The numbers an are called the coefficients. The number a is called the center of
the power series.

Consider the power series

∞

∑
n=1

xn

n
= x+

x2

2
+

x3

3
+ · · · .

For what values of x, if any, does the series converge? To find all values of x for
which the series converges, we use the ratio test, Theorem 1.18. We compute the
limit

lim
n→∞

∣∣∣∣∣
xn+1

n+1
xn+1

n+1

∣∣∣∣∣= lim
n→∞

|x|n+ 1
n

= |x|.

According to the ratio test, if the limit is less than 1, then the series converges ab-

solutely. Therefore,
∞

∑
n=1

xn

n
converges for |x| < 1. Also, if the limit is greater than

1, then the series diverges, in this case for |x| > 1. The test gives no information
when the limit is 1, in our case |x| = 1. So our next task is to investigate the con-

vergence (or divergence) of
∞

∑
n=1

xn

n
when x = 1 and when x = −1. At x = 1, we get

∞

∑
n=1

1
n

, the well-known harmonic series. We saw in Example 1.21 that it diverges. At

x = −1 we get the series
∞

∑
n=1

(−1)n

n
. It converges by the alternating series theorem,

Theorem 1.17.



2.6 Sequences of Functions and Their Limits 105

Therefore,
∞

∑
n=1

xn

n
converges pointwise for all x in [−1,1). We have not shown that

the convergence is uniform, so we do not know whether the function f (x) =
∞

∑
n=1

xn

n
is continuous.

Sometimes a sequence of functions converges to a function that we know by
another rule. If so, we know a great deal about that limit function. But this is not
always the case. Some sequences of functions, including power series, converge
to functions that we know only through sequential approximation. The next two
theorems give us important information about the limit function of a power series.
The first tells us about its domain. The second tells us about its continuity.

Theorem 2.13. For a power series
∞

∑
n=0

cn(x− a)n, one of the following must

hold:

(a) The series converges absolutely for every x.
(b) The series converges only at x = a.
(c) There is a positive number R, called the radius of convergence, such that

the series converges absolutely for |x−a|< R and diverges for |x−a|> R.

In case (c), the series might or might not converge at x= a−R and at x = a+R.

Proof. Let us first point out that if the series converges at some x0 
= a, then it
converges absolutely for every x that is closer to a, that is, |x − a| < |x0 − a|.
Here is why: The convergence of

∞

∑
n=0

cn(x0 − a)n implies that the terms cn(x0 − a)n

tend to 0. In particular, there is an N such that |cn(x0 − a)n| < 1 for all n > N.

If 0 < |x− a|< |x0 − a|, set r =
|x0 − a|
|x− a| . Then r < 1, and we get

∞

∑
n=N+1

|cn(x− a)n|=
∞

∑
n=N+1

|cn(x− a)n|
∣∣∣∣ (x0 − a)n

(x0 − a)n

∣∣∣∣ (2.11)

=
∞

∑
n=N+1

|cn(x0 − a)n|
∣∣∣∣ (x− a)n

(x0 − a)n

∣∣∣∣≤
∞

∑
n=N+1

rn.

Therefore,
∞

∑
n=0

cn(x − a)n converges absolutely by comparison with a geometric

series.
Now consider the three possibilities we have listed in the theorem. It might hap-

pen that the series converges for every x. If so, it converges absolutely for every x
by what we have just shown. This covers the first case.
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The other possibility is that the series converges for some number x0, but not for
every number. If there is only one such x0, then it must be a, since the series

c0 + c1(a− a)+ c2(a− a)2 + · · ·= c0

certainly converges. This covers the second case.
Finally, there may be an x0 
= a for which the series converges, though the series

does not converge for every number. We will use the least upper bound principle,
Theorems 1.2 and 1.3, to describe R. Let S be the set of numbers x for which the
series converges. Then S is not empty, because a and x0 are in S, as well as every
number closer to a than x0. Also, S is bounded, because if there were arbitrarily
large (positive or negative) numbers in S, then all numbers closer to a would be in
S, i.e., S would be all the numbers. Therefore, S has a least upper bound M and a
greatest lower bound m, which means that if

m < x < M,

then the series converges at x. We ask you in Problem 2.65 to show that m and M
are the same distance from a:

m < a < M and a−m = M− a

and that the convergence is absolute in (m,M). Set R = M − a. This concludes the
proof. ��

Theorem 2.14. A power series
∞

∑
n=0

an(x− a)n converges uniformly to its limit

function on every closed interval |x− a| ≤ r, where r is less than the radius of
convergence R.

In particular, the limit function is continuous in (a−R,a+R).

Proof. If the radius of convergence of
∞

∑
n=0

an(x− a)n = f (x) is R = 0, the series

converges at only one point, x = a. The series is then just f (a) = a0+0+ · · · , which
converges uniformly on that domain.

Suppose R> 0 or R is infinite, and take any positive r < R. Then the number a+r

is in the interval of convergence, so according to Theorem 2.13,
∞

∑
n=0

anrn converges

absolutely. Then for every x with |x− a| ≤ r,
∣∣∣∣∣ f (x)−

k

∑
n=0

|an(x− a)n|
∣∣∣∣∣≤

∞

∑
n=k+1

|an(x− a)n| ≤
∞

∑
n=k+1

|anrn|.
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The last expression is independent of x and tends to 0 as k tends to infinity. There-
fore, f is the uniform limit of its partial sums, which are continuous, on |x−a| ≤ r.
According to Theorem 2.11, f is continuous on [a− r,a+ r].

Since every point of (a−R,a+R) is contained in such a closed interval, f is
continuous on (a−R,a+R). ��

The radius of convergence, R, of a power series can often be found by the ratio
test. If that fails, there is another test, called the root test, which we describe in
Problem 2.67.

Example 2.36. To find the interval of convergence of
∞

∑
n=0

2n(x− 3)n, we use the

ratio test:

lim
n→∞

∣∣∣∣2n+1(x− 3)n+1

2n(x− 3)n

∣∣∣∣= lim
n→∞

2|x− 3|= 2|x− 3|.

When 2|x−3|< 1, the series converges absolutely. When 2|x−3|> 1, the series
diverges. What happens when 2|x− 3|= 1?

(a) At x = 2.5, 2(x− 3) =−1, and
∞

∑
n=0

2n(x− 3)n =
∞

∑
n=0

(−1)n diverges.

(b) At x = 3.5, 2(x− 3) = 1, and
∞

∑
n=0

2n(x− 3)n =
∞

∑
n=0

1n diverges.

Conclusion: f (x) =
∞

∑
n=0

2n(x− 3)n converges for all x with 2|x− 3| < 1, i.e., in

(2.5,3.5). Also, according to Theorem 2.14, the series converges uniformly to f

on every closed interval |x− 3| ≤ r <
1
2

, and f is continuous on (2.5,3.5).

Example 2.37. To find the interval of convergence of
∞

∑
n=0

xn

n!
, we use the ratio test:

lim
n→∞

∣∣∣∣∣∣
xn+1

(n+1)!
xn

n!

∣∣∣∣∣∣= lim
n→∞

|x|
n+ 1

= 0 < 1.

Since 0 < 1 for all x, the series converges for all x. It converges uniformly on

every closed interval |x− 0| ≤ r. So f (x) =
∞

∑
n=0

xn

n!
is continuous on (−∞,∞).

In Chap. 4, we will see that this power series converges to a function that we
know by another rule.

2.6c Approximating the Functions
√

x and ex

We close this section by looking at three examples of sequences of functions { fn}
that are not power series that converge uniformly to the important functions

√
x,

|x|, and ex. In the case of ex, we use the sequence of continuous functions en(x) =(
1+

x
n

)n
, and thus we prove that ex is a continuous function.
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Approximating
√

x. In Sect. 1.3a, we constructed a sequence of approximations
s1,s2,s3, . . . that converged to the square root of 2. There is nothing special about
the number 2. The same construction can be used to generate a sequence of numbers
that tends to the square root of any positive number x. Here is how:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.5  1  1.5  2

x

s_0(x)

s_1(x)
s_4(x)

Fig. 2.40 The functions sn(x) converge to
√

x. The cases 0 ≤ n ≤ 4 are shown. Note that
√

x is not
plotted

Suppose s is an approximation to the square root of x. To find a better approxi-

mation, we note that the product of s and
x
s

is x. If s happens to be larger than
x
s

,

then s2 > s
x
s
= x >

(x
s

)2
, so s >

√
x >

x
s

, that is, the square root of x lies between

these two. A similar argument shows that
x
s
>

√
x > s if s happens to be less than

x
s

. So we take as the next approximation the arithmetic mean of the two:

new approximation =
1
2

(
s+

x
s

)
.

Rather than start with an arbitrary first approximation, we start with s0 = 1 and
construct a sequence of approximations s1, s2, . . . as follows:

sn+1 =
1
2

(
sn +

x
sn

)
.

The approximations sn depend on the number x whose square root we seek; in other
words, sn is a function of x. How much does sn+1 differ from

√
x?

sn+1 −
√

x =
1
2

(
sn +

x
sn

)
−√

x.
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We bring the fractions on the right to a common denominator:

sn+1 −
√

x =
1

2sn
(s2

n + x− 2sn
√

x). (2.12)

The expression in parentheses on the right is a perfect square, (sn −√
x)2. So we

can rewrite Eq. (2.12) as

sn+1 −
√

x =
1

2sn
(sn −

√
x)2, (n ≥ 0). (2.13)

This formula implies that sn+1 is greater than
√

x except when sn =
√

x.
Since the denominator sn on the right in Eq. (2.13) is greater than sn −√

x, we
deduce that

sn+1 −
√

x <
1
2
(sn −

√
x).

Applying this inequality n times, we get

sn+1 −
√

x <
1
2n (s1 −

√
x) =

(
1
2

)n(1+ x
2

−√
x

)
. (2.14)

Note that in Eq. (2.14), the factor
1+ x

2
−√

x is less than
1+ c

2
whenever x ≤ c.

Therefore, inequality (2.14) implies

sn+1(x)−
√

x ≤ 1+ c
2n .

It follows that the sequence of functions sn(x) converges uniformly to the function√
x over every finite interval [0,c] of the positive axis (Fig. 2.40). The rate of con-

vergence is even faster than what we have proved here, as we discuss in Sect. 5.3c.

Example 2.38. We show how to approximate f (x) = |x| by a sequence of rational
functions. Let fn(x) = sn(x2), where sn is the sequence of functions derived in
the preceding example that converge to

√
x. The sn(x) converge uniformly to

√
x,

and x2 is continuous on every closed interval. By Theorem 2.12, sn(x2) converges
uniformly to

√
x2 = |x|.

We indicate in Fig. 2.41 the graphs of s2(x2), s3(x2), and s5(x2), which are ratio-
nal approximations to |x|.
Approximating ex. Take the functions en(x) =

(
1+

x
n

)n
. We shall show, with your

help, that they converge uniformly to the function ex over every finite interval [−c,c]
(Fig. 2.42).
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 1

 1 0

Fig. 2.41 Rational approximations of |x| in Example 2.38
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ex

e4(x)

e16 (x)

Fig. 2.42 The exponential function ex and the functions en(x) =
(
1+ x

n

)n
for n = 4 and n = 16 are

graphed on the interval [−1,1]

Let us return to Sect. 1.4. There, we showed that the sequence of numbers

en =

(
1+

1
n

)n

is increasing and bounded, and therefore, by the monotone con-

vergence theorem, it has a limit, a number that we have denoted by e.
We can show by similar arguments (see Problems 2.73 and 2.74) that for every

positive x, the sequence of numbers en(x) is increasing and bounded, whence by
the monotone convergence theorem, it converges pointwise to a number e(x) that
depends on x. Note that en(1) = en, so e(1) = e.

It remains to show that the limit function e(x) is the exponential function ex, and
that convergence is uniform over every finite interval. To do this, we first show that
e(x) = ex when x is rational. We do this by showing that

e(r+ s) = e(r)e(s)

for every pair of positive rational numbers r and s. We know from Sect. 2.5c that
this relation implies that e(x) is an exponential function for rational numbers.
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Let r and s be any positive rational numbers. We can find a common denominator
d such that

r =
p
d
, s =

q
d

and p, q, and d are positive whole numbers. By manipulating r+ s algebraically, we
obtain

e(r+ s) = e
( p

d
+

q
d

)
= e

(1
d
(p+ q)

)
.

We claim that

e(kx) =
(
e(x)

)k
(2.15)

for positive integers k. Here is a proof of the claim. Since
(

1+
x
n

)n
converges to

e(x), for every positive integer k,

(
1+

kx
n

)n

converges to e(kx). Set n = km; we get

that

(
1+

kx
km

)km

=
(

1+
x
m

)mk
tends to e(x)k. This proves Eq. (2.15).

Set x = 1/d and k = p+ q in Eq. (2.15). We get

e
(1

d
(p+ q)

)
=
(

e
(1

d

))p+q
=
(

e
(1

d

))p(
e
(1

d

))q
= e

( p
d

)
e
(q

d

)
= e(r)e(s).

This concludes the proof that e(x) is an exponential function ax for x rational. Since
e(1) = e, it follows that e(x) = ex.

We turn now to showing that en(x) converges uniformly to e(x) on every finite
interval [−c,c]. Our proof that the sequence en(x) converges for every x as n tends
to infinity used the monotone convergence theorem. Unfortunately, this gives no
information as to how fast these sequences converge, and therefore it is useless in
proving the uniformity of convergence. We will show that

if − c ≤ x ≤ c, then e(x)− en(x)<
k
n
,

for some constant k that depends on c. This is sufficient to prove the uniform con-
vergence.

We make use of the following inequality:

an − bn < (a− b)nan if 1 < b < a. (2.16)

First we prove the inequality: We start from the observation that for all a and b,

an − bn = (a− b)(an−1+ an−2b+ an−3b2 + · · ·+ bn−1),

which we see by carrying out the multiplication on the right-hand side. Then in
the case 0 < b < a, we have for each power that bk < ak, so in the factor (an−1 +
an−2b+an−3b2 + · · ·+bn−1), there are n terms each less than an−1. This proves that
an−bn < (a−b)nan−1. In the case 1 < a, we may append one more factor of a, and
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this proves the inequality. We will use this inequality twice in two different ways to
show uniform convergence.

Since en(x) is an increasing sequence,

e(x)≥
(

1+
x
n

)n
.

Take the nth root of this inequality and use Eq. (2.15) with k = n to express the nth
root of e(x). We get

e
( x

n

)
=
(
e(x)

) 1
n ≥ 1+

x
n
≥ 1.

The first use of inequality (2.16) will be to show that for n > x,

e
( x

n

)
<

1
1− x

n

. (2.17)

Set a = 1+
x
n

and b = 1 in Eq. (2.16). We get

an − bn = en(x)− 1 < (a− b)nan =
x
n

n
(

1+
x
n

)n
= xen(x).

Letting n tend to infinity, we get in the limit e(x)− 1 < xe(x), or (1− x)e(x) < 1.

Thus if x < 1, then 1− x is positive, and we get e(x) <
1

1− x
. But if n > x, then

x
n
< 1, whence e

( x
n

)
<

1
1− x

n

. This proves Eq. (2.17).

For the second use of inequality (2.16), set a = e
( x

n

)
and b = 1+

x
n

. We get

e(x)− en(x) =
(

e(
x
n
)
)n −

(
1+

x
n

)n
= an − bn ≤ (a− b)nan

=
(

e
( x

n

)
−
(

1+
x
n

))
n
(

e(
x
n
)
)n

=
(

e
( x

n

)
−
(

1+
x
n

))
ne(x). (2.18)

Combining the two results, set Eq. (2.17) into the right side of Eq. (2.18) to get

e(x)− en(x)<

(
1

1− x
n

−
(

1+
x
n

))
ne(x) =

(
x2

n2

1− x
n

)
ne(x). (2.19)

So for n greater than x,

e(x)− en(x)≤ 1
n

x2e(x)
1− x

n

. (2.20)

For n > 2x, the denominator on the right in Eq. (2.20) is greater than 1
2 , so

e(x)− en(x)<
1
n

2e(x)x2 <
2
n

e(c)c2



2.6 Sequences of Functions and Their Limits 113

for every x in [−c,c]. This shows that as n tends to infinity, en(x) tends to e(x)
uniformly on every finite x-interval. This concludes the proof. ��

Example 2.39. We know that gn(x) =
(

1+
x
n

)n
converges uniformly to ex for x

in any interval [a,b]. By Theorem 2.12, then,

(a)

(
1+

x2

n

)n

= gn(x
2) converges uniformly to ex2

;

(b)
(

1− x
n

)n
= gn(−x) converges uniformly to e−x;

(c) log(gn(x)) = n log
(

1+
x
n

)
converges uniformly to log(ex) = x.

Problems

2.59. Use the identity 1+ x+ x2 + x3 + x4 =
1− x5

1− x
to estimate the accuracy of the

approximation

1+ x+ x2+ x3 + x4 ≈ 1
1− x

on − 1
2 ≤ x ≤ 1

2 .

2.60. In this problem, we explore another geometric meaning for geometric series.
Refer to Fig. 2.43, where a line is drawn from the top point of the unit circle through
the point (x,y) in the first quadrant of the circle. The point z where the line hits the
axis is called the stereographic projection of the point (x,y). The shaded triangles
are all similar. Justify the following statements.

(a) z =
x

1− y
.

(b) The height of the nth triangle is y times the height of the (n− 1)st triangle.

(c) z is the sum of the series z = x+ xy+ xy2+ xy3 + · · ·= x
1− y

.

2.61. We gave an outline of the proof of part (a) of Theorem 2.12. Let us fill in the
details.

(a) Explain why
∣∣ f (x)+ g(x)− (

fn(x)+ gn(x)
)∣∣≤ | f (x)− fn(x)|+ |g(x)− gn(x)|

for all x.
(b) Explain why given any tolerance ε > 0, there is an N1 such that | f (x)− fn(x)|<

ε
2 for all x when n > N1, and why there is an N2 such that |g(x)−gn(x)|< ε

2 for
all x when n > N2.
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x

(0,1) (x,y) (x+xy,y  )

z

2

Fig. 2.43 Stereographic projection is the sum of a geometric series

(c) Explain why given any tolerance ε > 0, there is a number N such that

| f (x)− fn(x)|+ |g(x)− gn(x)|< ε

for all x whenever n > N.
(d) Explain why given any tolerance ε > 0, there is a number N such that

∣∣ f (x)+ g(x)− (
fn(x)+ gn(x)

)∣∣< ε

for all x whenever n > N.
(e) Explain why fn + gn converges uniformly to f + g.

2.62. Use Theorem 2.12 to find an interval a ≤ t ≤ b on which the convergence

1+ e−t + e−2t + e−3t + · · ·= 1
1− e−t

is uniform.

2.63. A power series f (x) =
∞

∑
n=0

an(x− 2)n is known to converge at x = 4. At what

other values of x must it converge? Find the largest open interval on which we can
be sure that f is continuous.

2.64. For each pair of series, which one has the larger radius of convergence? In two
cases, they have the same radius.

(a)
∞

∑
n=0

xn or
∞

∑
n=0

3nxn

(b)
∞

∑
n=0

xn or
∞

∑
n=0

xn

n!

(c)
∞

∑
n=0

n(x− 2)n or
∞

∑
n=0

(x− 3)n

(d) 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · · or

x3

3!
+

x4

4!
+

x5

5!
+ · · ·
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2.65. Fill in the missing step that we have indicated in the proof of Theorem 2.13.

2.66. Which of these series represent a continuous function on (at least) [−1,1]?

(a)
∞

∑
n=0

xn

(b)
∞

∑
n=0

(
1

10

)n

xn

(c)
∞

∑
n=0

(
1

10

)n

(x− 2)n

(d) 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

2.67. Consider a power series
∞

∑
n=0

anxn. Suppose the limit L = lim
n→∞

|an|1/n exists and

is positive. Justify the following steps, which prove that 1/L is the radius of conver-
gence of the series. This is the root test.

(a) Let
∞

∑
n=0

pn be a series of positive numbers for which lim
n→∞

p1/n
n = � exists and

� < 1. Show that there is a number r, 0 < � < r < 1, such that for N large

enough, pn < rn, n > N. Conclude that
∞

∑
n=0

pn converges.

(b) Let
∞

∑
n=0

pn be a series of positive numbers for which lim
n→∞

p1/n
n = � exists and

� > 1. Show that there is a number r, 1 < r < �, such that for N large enough,

pn > rn, n > N. Conclude that
∞

∑
n=0

pn diverges.

(c) Taking pn = |anxn| for different choices of x, show that 1/L is the radius of

convergence of
∞

∑
n=0

anxn.

2.68. Suppose {pn} is a positive sequence whose partial sums p1 + · · ·+ pn are less
than nL for some number L. Use the root test (Problem 2.67) to show that the series

∞

∑
n=1

(p1 p2 p3 · · · pn)x
n converges in |x|< 1/L.

2.69. Suppose the root test (Problem 2.67) indicates that a series
∞

∑
n=0

anxn has radius

of convergence R. Show that according to the root test,
∞

∑
n=0

nanxn also has radius of

convergence R. (See Problem 1.53.)

2.70. For each of the following series, determine (i) the values of x for which the
series converges; (ii) the largest open interval on which the sum is continuous.
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(a)
∞

∑
n=0

xn

2n

(b)
∞

∑
n=0

(x− 3)2n

(2n)!

(c)
∞

∑
n=0

√
nxn

(d)
∞

∑
n=0

(
xn

2n +
√

nxn
)

(e)
∞

∑
n=1

2n + 7n

3n + 5n xn

2.71. For some of the following series it is possible to give an algebraic formula for
the function to which the series converges. In those cases, give such a formula, and
state the domain of the function where possible.

(a) 1− t2+ t4 − t6 + · · ·
(b)

∞

∑
n=3

xn Note the 3.

(c)
∞

∑
n=0

√
nxn

(d)
∞

∑
n=0

(
tn

2n + 3nt2n
)

2.72. Our sequence of functions sn(x) approximating
√

x was defined recursively.
Write explicit expressions for s2(x) and s3(x), and verify that they are rational
functions.

2.73. Use the method explained in Sect. 1.4 to show that for each x> 0, the sequence

en(x) =
(

1+
x
n

)n
is increasing.

2.74. Show that for each x > 0, the sequence {en(x)} is bounded. Hint: For x < 2,

en(x)<

(
1+

2
n

)n

. Set n = 2m to conclude that em(x)< e2.

2.75. Find a sequence of functions that converges to e−x on every interval [a,b] by

composing the sequence en(x) =
(

1+
x
n

)n
with a continuous function.



Chapter 3
The Derivative and Differentiation

Abstract Many interesting questions deal with the rate at which things change.
Examples abound: What is the rate at which a population changes? How fast does
radioactive material decay? At what rate is the national debt growing? At what rate
does the temperature change as you move closer to a hot object? In this chapter, we
define and discuss the concept of rate of change, which in mathematics, is called the
derivative.

3.1 The Concept of Derivative

Among the instruments on the dashboard of a car there are two that indicate quan-
titative measurements: the odometer and the speedometer. We shall investigate the
relation between these two (Fig. 3.1). To put the matter dramatically: Suppose your
speedometer is broken; is there any way of determining the speed of the car from the
readings on the odometer (so that, for example, you don’t exceed the speed limit)?

Suppose the mileage reading at 2 o’clock was 5268, and 15 minutes later, it was
5280; then your average speed during that quarter-hour interval was

distance covered(miles)
time interval(hours)

=
5280− 5268

0.25
=

12
0.25

= 48
miles
hour

.

Denote by m the mileage reading as a function of time, i.e., the mileage reading at
time t is m(t). Then the average speed at time t, averaged over a time interval of a
quarter of an hour is

m(t + 0.25)−m(t)
0.25

.

More generally, let h be any time interval. The average speed over a time inter-
val h is

m(t + h)−m(t)
h

.

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 3, © Springer Science+Business Media New York 2014
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00005268

00005280

Fig. 3.1 Two readings from the instrument panel

The (unbroken) speedometer shows instantaneous speed, which is the limit of the
average speed as h tends to 0.

left − f(t) right +

Fig. 3.2 The position x = f (t) of the center of a car along a road marked as a number line

Velocity. Let f (t) represent our position along a number line at time t (Fig. 3.2).

The quotient
f (t + h)− f (t)

h
is the average velocity during the time interval. This

results in positive average velocity if the net change in position from an earlier to a
later time is to the right, negative velocity if the net change in position is to the left,
and zero when the positions are the same.

Example 3.1. Suppose the position function f (t) is described by the formula

f (t) = 5000+ 35t+ 2.5t2.

Then the average velocity during the interval between t and t + h is

f (t + h)− f (t)
h

=
5000+ 35(t+ h)+ 2.5(t+ h)2 − (5000+ 35t+ 2.5t2)

h

=
35h+ 5th+ 2.5h2

h
= 35+ 5t+ 2.5h.

Observe that as h tends to 0, the average velocity tends to 35+ 5t. This quantity,
the limit of average velocity over progressively shorter time intervals, is called
the instantaneous velocity.

The process described above that derives velocity from position as a function of
time is called differentiation. We now define this process without any reference to a
physical model.
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Definition 3.1. A function f is called differentiable at a if the difference quo-
tient

f (a+ h)− f (a)
h

tends to a limit as h tends to 0. This limit is called the derivative of f at a and
is denoted by f ′(a):

f ′(a) = lim
h→0

f (a+ h)− f (a)
h

. (3.1)

Equation (3.1) can be interpreted as saying that the average rates of change in f
computed over progressively smaller intervals containing a tend to a number f ′(a),
the instantaneous rate of change in f at a.

The derivative of f , at points where it exists, yields another function f ′. As we did
for continuity, we extend the definition of derivative to allow for a right derivative
at a, lim

h→a+

f (a+h)− f (a)
h = f ′+(a), and a left derivative at a, lim

h→a−
f (a+h)− f (a)

h = f ′−(a).

We say that f is differentiable on [a,b] if f ′(x) exists for each x in (a,b) and both
f ′+(a) and f ′−(b) exist. If f is differentiable at every x in an interval I, we say that
f is differentiable on I. If f is differentiable at every number x, we say that f is
differentiable.

Next we look at examples where the derivative exists and can be easily
found.

Example 3.2. Let f (x) = c be any constant function. Using the definition to
compute f ′(x), we see that

f ′(x) = lim
h→0

f (x+ h)− f (x)
h

= lim
h→0

c− c
h

= 0.

Every constant function is differentiable, and its derivative is zero.

Example 3.3. Let �(x) = mx+b. Using the definition of the derivative, we obtain

�′(x) = lim
h→0

�(x+ h)− �(x)
h

= lim
h→0

m(x+ h)+ b− (mx+ b)
h

= lim
h→0

mh
h

= lim
h→0

m = m,

the slope of the graph.

Example 3.4. Let f (x) = x2. Then

f ′(x) = lim
h→0

(x+ h)2 − x2

h
= lim

h→0

x2 + 2xh+ h2− x2

h
= lim

h→0
(2x+ h) = 2x.
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3.1a Graphical Interpretation

We saw in Example 3.3 that the derivative of a linear function � is the slope of the
graph of �. Next we explore various graphical interpretations of the derivative for
other functions.

Let f be differentiable at a. The points (a, f (a)) and (a+ h, f (a+ h)) determine
a line called a secant. The slope of the secant is

f (a+ h)− f (a)
h

.

Since f is differentiable at a, these slopes tend to f ′(a) as h tends to 0, and the
secants tend to the line through the point (a, f (a)) with slope f ′(a), called the line
tangent to the graph of f at (a, f (a)) (Fig. 3.3).

(a, f(a))

f (a+h, f(a+h))

a+ha
x

Fig. 3.3 A secant line and the tangent line through point (a, f (a))

If a function f is not differentiable at a, the limit of the slopes of secants does not
exist. In some cases, the limit fails to exist because the secant slopes tend to ∞ or to
−∞. (See Fig. 3.4.) Then we say that the tangent line is vertical at (a, f (a)). If the
limit fails to exist for some other reason, then there is no tangent line to the graph at
(a, f (a)).

Example 3.5. f (x)= x1/3 is not differentiable at x= 0, because lim
h→0

(0+h)1/3−01/3

h =

lim
h→0

1
h2/3 does not exist. As h tends to zero,

1

h2/3
tends to positive infinity. There-

fore, f ′(0) does not exist. Looking at the graph in Fig. 3.4, we see that the graph
of f appears nearly vertical at (0,0).

Example 3.6. The absolute value function

|x|=
{

x, x ≥ 0,

−x, x < 0,
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-1

1

-1 1

1/3x

x

Fig. 3.4 The function x1/3 is not differentiable at 0. See Example 3.5

is not differentiable at x = 0:

|0+ h|− |0|
h

=

{
h
h = 1, h > 0,
−h
h =−1, h < 0,

Therefore, lim
h→0+

|0+h|−|0|
h = 1 and lim

h→0−
|0+h|−|0|

h =−1. The left and right limits do

not agree, and lim
h→0

|0+h|−|0|
h does not exist. Looking at the graph of |x| in Fig. 3.5,

we see that to the left of (0,0), the slope of the graph is −1, to the right the slope
is 1, and at (0,0) there is a sharp corner.

|x|

x

Fig. 3.5 The absolute value function is continuous, but it is not differentiable at 0. See Exam-
ples 3.6 and 3.8

Definition 3.2. The linear function

�(x) = f (a)+ f ′(a)(x− a)

is called the linear approximation to f at a.

One reason for calling � the linear approximation to f at a is that it is the only
linear function that has the following two properties:

(a) �(a) = f (a),
(b) �′(a) = f ′(a).
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Example 3.7. Let us find the linear approximation to f (x) = x2 at −1 (Fig. 3.6).
Since f ′(x) = (x2)′ = 2x, we have f ′(−1) =−2 and

�(x) = f (−1)+ f ′(−1)(x− (−1)) = (−1)2 − 2(x+ 1) =−2x− 1.

-4

-3

-2

-1

 0

 1

 2

-1.5 -1 -0.5  0  0.5  1  1.5

x2

-2x-1

Fig. 3.6 The function f (x) = x2 in Example 3.7 and its linear approximation �(x) = −2x− 1 at
−1. The graph of � is the tangent line at (−1,1)

Figure 3.7 reveals another reason we call �(x) = 2x+ 1 the linear approximation
to x2 at x =−1. The closer you look at the graph of x2 near x =−1, the more linear
it appears, becoming nearly indistinguishable from the graph of �(x) = 2x+ 1.

0

0.5

1

1.5

2

-1.4 -1.2 -1 -0.8 -0.6
0.8

0.85
0.9

0.95
1

1.05
1.1

1.15
1.2

-1.1 -1.05 -1 -0.95 -0.9

Fig. 3.7 A linear approximation to x2 at −1 is seen at two different scales, as with a microscope.
See Example 3.7
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3.1b Differentiability and Continuity

It is not hard to see that a function that is differentiable at a is continuous at a. Dif-
ferentiability requires that f (a+h) tend to f (a) at a rate proportional to h, whereas
continuity merely requires that f (a+ h) tend to f (a) as h tends to zero.

Theorem 3.1. Differentiability implies continuity. A function that is differen-
tiable at a is continuous at a.

Proof. Since

f ′(a) = lim
h→0

f (a+ h)− f (a)
h

exists, the numerator must approach 0, and so f (a+ h) tends to f (a) as h tends to
0. This is the definition of continuity of f at a. ��

Next we show that continuity does not imply differentiability.

Example 3.8. The absolute value function is continuous at 0: as h tends to 0, |h|
does also. But as we saw in Example 3.6, |x| is not differentiable at 0.

Example 3.9. The function f (x) = x1/3 is continuous at x = 0, but f ′(0) does not
exist, as we have seen in Example 3.5.

Example 3.10. Consider the function

f (x) = xsin
(π

x

)
when x 
= 0, f (0) = 0.

The graph of f is shown in Fig. 3.8. When x 
= 0,

−|x| ≤ xsin
(π

x

)
≤ |x|.

As x tends to 0, both −|x| and |x| tend to 0. Therefore, by the squeeze theorem,
Theorem 2.2,

lim
x→0

f (x) = lim
x→0

xsin
(π

x

)
= 0 = f (0),

and f is continuous at 0. On the other hand, the difference quotient

f (h)− f (0)
h

=
hsin

(π
h

)− 0

h
= sin

(π
h

)
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takes on all values between 1 and −1 infinitely often as h tends to 0. Thus

lim
h→0

sin
(π

h

)
does not exist. Therefore, f is continuous at 0, but f ′(0) does not

exist.

 1

-1

 1-1

f(x)

x

Fig. 3.8 The graph of f (x) = xsin
( π

x

)
, f (0) = 0. The function f is continuous but not differen-

tiable at 0. See Example 3.10

In fact, a continuous function may fail to be differentiable at many points (See
Fig. 3.9).

10975

10980

10985

10990

10995

11000

11005

11010

9 10 11 12 13 14 15 16

Fig. 3.9 A function tracking share prices in a stock market between 9:00 AM and 4:00 PM appears
to have no derivative at any point
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3.1c Some Uses for the Derivative

The Derivative as Stretching. Let f (x) = x2. Figure 3.10 compares the length of
the interval from x to x+ h to the length of the interval from x2 to (x+ h)2:

(x+ h)2 − x2

h
=

x2 + 2xh+ h2− x2

h
=

2hx+ h2

h
= 2x+ h.

For small h, the interval [x2,(x+ h)2] is about 2x times as long as the interval from
[x,x+ h], so f ′(x) is sometimes interpreted as a stretching factor.

x x+h

x
2
+2xh+h

2
x

2

Fig. 3.10 The effect of squaring the numbers in a short interval

The Derivative as Sensitivity to Change. The derivative can be used to estimate
how a small change in the input affects the output of f . When h is near zero,
f (a+ h)− f (a)

h
is nearly f ′(a), and so f (a+ h)− f (a) is approximately h f ′(a).

The product h f ′(a) is called a differential, and it depends on both h and a. Let us
look at an example.

Suppose we square 1.000 instead of 1.001, and 10,000 instead of 10,000.001.
In each case, we have changed the inputs by 0.001. How sensitive is the output
to a change in the input? Using our knowledge that (x2)′ = 2x and the estimate
f (a+ h)− f (a)≈ h f ′(a), we see that

(1.001)2 − (1)2 ≈ 2(1)(0.001) = 0.002
(10000.001)2− (10000)2 ≈ 2(10000)(0.001)= 20.

The function f is more sensitive to a change in the input at x = 10,000 than at x = 1.
If we visualize the graph of x2, we see why. The graph is much steeper at x = 10,000
than at x = 1.

The Derivative as a Density. Consider a rod of unit cross-sectional area, made
from some material whose properties may vary along its length. Let R(x) be the
mass of that portion of the rod to the left of point x. Then the average density of the
rod [mass/length] between x and x+ h is

R(x+ h)−R(x)
x+ h− x

=
R(x+ h)−R(x)

h
=

the mass within interval [x,x+ h]
h

.
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So the density at the point x is the limit of the average density taken over smaller
thicknesses:

lim
h→0

R(x+ h)−R(x)
h

= R′(x).

The function R′(x) is called the linear density of the rod at the point x (Fig. 3.11).

x+hx

Fig. 3.11 The mass of the rod between x and x+h is R(x+h)−R(x)

Volume of Revolution and Cross-Sectional Area. Consider a solid of revolution
as shown in Fig. 3.12.

Fig. 3.12 Left: A region to be revolved around an axis to produce a solid of revolution. Right: The
solid of revolution

Let V (x) be the volume of the solid that lies to the left of the plane through x
perpendicular to the axis of rotation, as in Fig. 3.13. Let A(x) be the cross-sectional
area of the solid at x and assume that A varies continuously with x. By the extreme
value theorem, A has a maximum value AM and a minimum Am on the interval
[x,x+ h]. Consider the quotient

V (x+ h)−V(x)
x+ h− x

=
V (x+ h)−V(x)

h
,

which is the volume of the solid between the planes divided by the distance between
the planes.

Since this segment of the solid fits between larger and smaller cylinders, the
numerator is bounded by the cylinder volumes

Amh ≤V (x+ h)−V(x)≤ AMh
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A(x)

x

V(x)

x x+h

V(x+h)−V(x)

Fig. 3.13 Left: V (x) is the volume to the left of x, and A(x) is the area of the cross section at x.
Right: V (x+h)−V (x) is the volume between x and x+h

(taking h > 0), so

Am ≤ V (x+ h)−V(x)
h

≤ AM.

Because A(x) is continuous, AM and Am both tend to A(x) as h tends to zero.
Therefore,

V ′(x) = A(x).

An Application of the Tangent to a Curve. Let us use our ability to find the
tangent to a curve to investigate reflections from a mirror located in the (x,y)-plane
whose parabolic shape is described by the equation

y = x2.

First we state the laws of reflection.

• In a uniform medium, light travels in straight lines.
• When a ray of light impinges on a straight mirror, it is reflected; the angle i that

the incident ray forms with the line perpendicular to the mirror equals the angle
r that the reflected ray forms with the perpendicular; see Fig. 3.14. The angle i is
called the angle of incidence; r, the angle of reflection.

• The same rule governs the reflection of light from a curved mirror:

angle of incidence = angle of reflection;

in this case, the line perpendicular to the mirror is defined as the line perpendic-
ular to the tangent to the mirror at the point of incidence.

In Sect. 5.4, we shall use calculus to deduce the laws of reflection from Fermat’s
principle that light takes the path that takes the least time.

We consider light rays that descend parallel to the y-axis, approaching a parabolic
mirror as indicated in Fig. 3.15. We wish to calculate the path along which these rays
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i r

Fig. 3.14 A light ray incident on a mirror, i = r

are reflected. In particular, we wish to calculate the location of the point F where
such a reflected ray intersects the y-axis. First a bit of geometry. Denote by P the
point of incidence and by G the point where the tangent at P intersects the y-axis.
The following geometric facts can be read off the figure:

• The angle FPG is complementary to the angle of reflection r.
• Since the incident ray is parallel to the y-axis, the angle FGP is equal to an angle

that is complementary to the angle of incidence i.

G

F

P

x

r

i

aO

Fig. 3.15 The graph of f (x) = x2, considered as a reflecting mirror. An incident light ray enters
vertically from above and reflects to point F , also known as the focus. “Focus” is Latin for fireplace,
and you can use a parabolic mirror to ignite an object at F

Since according to the law of reflection, r equals i, we conclude that the triangle
FGP is isosceles, the angles at P and G being equal. From this, we conclude that
the sides opposite are equal:

PF = FG.
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Here PF denotes the distance from P to F . We shall calculate the length of these
sides. We denote the x-coordinate of P by a. Since y = x2, the y-coordinate of P is
a2. We denote the y-coordinate of the point F by k. By the Pythagorean theorem,

(PF)2 = a2 +(a2 − k)2.

Next we use calculus to calculate the y-coordinate of the point G. Since G is the
intersection of the tangent with the y-axis, the y-coordinate of G is the value at x = 0
of the linear approximation � to f at a,

�(x) = f (a)+ f ′(a)(x− a).

At x = 0,
�(0) = f (a)− f ′(a)a.

In our case, f (x) = x2, so f ′(x) = 2x, and

�(0) = f (a)− f ′(a)a = a2 − 2a2 =−a2.

The length FG is the difference of the y-coordinates of F and G:

FG = k− (−a2) = k+ a2.

Since PF = FG, we get

a2 +(a2 − k)2 = (PF)2 = (FG)2 = (k+ a2)2.

Now carry out the squarings, cancel common terms, and add 2a2k to both sides. The

result is a2 = 4a2k. So k =
1
4

. This gives the surprising result that the location of

the point F is the same for all points P, i.e., the reflections of all rays parallel to the

y-axis pass through the point (0,
1
4
). This point is called the focus of the parabola.

Rays coming from a very distant object such as one of the stars are very nearly
parallel. Therefore, if a parabolic mirror is pointed so that its axis points in the
direction of a star, all the rays will be reflected toward the focus; this principle is
exploited in the construction of telescopes.

The rays from the sun are nearly parallel, and therefore they can be focused quite
accurately by a parabolic mirror. This principle is exploited in the construction of
solar furnaces.

Importance of the Derivative. One could argue persuasively that changes in mag-
nitudes are often more important than the magnitudes themselves, and therefore,
the rate at which the value of a function changes from point to point or moment
to moment is more relevant than its actual value. For example, it is often more
useful to know whether the outside temperature tomorrow is going to be higher,
lower, or the same as today, than to know tomorrow’s temperature without knowing
today’s.
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Theoretical weather predictions are based on theories that relate the rate of
change of meteorologically relevant quantities such as temperature, atmospheric
pressure, and humidity to factors that cause the change. The mathematical formu-
lation of these theories involves equations relating the derivatives of these meteoro-
logical variables to each other. These are called differential equations. A differential
equation is one that relates an unknown function to one or more of its derivatives.
Almost all physical theories and quantities arising in mechanics, optics, the theories
of heat and of sound, etc., are expressed as differential equations. We shall explore
examples from mechanics, population dynamics, and chemical kinetics in Chap. 10.

We conclude with a brief dictionary of familiar rates of change:

• Speed ↔ rate of change of distance as a function of time.
• Velocity ↔ rate of change of position as a function of time.
• Acceleration ↔ rate of change of velocity as a function of time.
• Angular velocity ↔ rate of change of angle as a function of time.
• Density ↔ rate of change of mass as a function of volume.
• Slope ↔ rate of change of height as a function of horizontal distance.
• Current ↔ rate of change of the amount of electric charge as a function of time.
• Marginal cost ↔ rate of change of production cost as a function of the number

of items produced.

That so many words in common use denote rates of change of other quantities is
an eloquent testimony to the importance of the notion of derivative.

Problems

3.1. Find the line tangent to the graph of f (x) = 3x− 2 at the point a = 4.

3.2. Find the line tangent to the graph of f (x) = x2 at an arbitrary point a. Where
does the tangent line intersect the x-axis? the y-axis?

3.3. The linear approximation to f at a = 2 is �(x) = 5(x− 2)+ 6. Find f (2) and
f ′(2).

3.4. A metal rod lies along the x-axis. The mass of the part of the rod to the left of x
is R(x) = 25+ 1

5 x3. Find the average linear density of the part in [2,5].

3.5. For each function f given below, find f ′(a) by forming the difference quotient
f (a+ h)− f (a)

h
, and taking the limit as h tends to 0. Then find the line tangent to

the graph of f at x = a.

(a) f (x) =
√

x, a = 4.
(b) f (x) = mx2 + kx, a = 2.
(c) f (x) = x3, a =−1.
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0

a
a+h

A

V

Fig. 3.16 A bottle of water for Problem 3.6

3.6. The volume of water in a bottle is a function of the depth of the water. Let V (a)
be the volume up to depth a. Let A(a) be the cross-sectional area of the bottle at
height a.

(a) What does V (a+ h)−V(a) represent? (h > 0).
(b) Use Fig. 3.16 to put the following quantities in order:

A(a+ h)h, A(a)h, V (a+ h)−V(a).

Write your answer using an inequality.

(c) Using your inequality from part (b), explain why the quotient
V (a+ h)−V(a)

h
tends to A(a) as h tends to 0.

3.7. Find a line that is tangent to the graphs of both functions f (x) = x2 and g(x) =
x2 − 2x.

3.8. Find the point of intersection of the tangents to the graphs of f1(x) = x2 − 2x
and f2(x) =−x2 + 1 at the points (2,0) and (1,0), respectively.

3.9. The temperature of a rod at a given time varies along its length. See Fig. 3.17.
Let T (x) be the temperature at point x.

(a) Write an expression for the average rate of change in the temperature between
points a and a+ h on the rod.

(b) Suppose T ′(a) is positive. Is it hotter to the left or to the right of a?
(c) If it is cooler just to the left of a, would you expect T ′(a) to be positive or

negative?
(d) If the temperature is constant, what is T ′?
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a+ha

T(a+h)T(a)

Fig. 3.17 The temperature varies along the rod in Problem 3.9

3.10. Atmospheric pressure varies with height above the Earth’s surface. See
Fig. 3.18. Let p(x) be the pressure in “atmospheres” at height x in meters.

(a) Find the average rate at which the pressure changes when you move from an
elevation of 2000 m to an elevation of 4000 m.

(b) Repeat (a) for a move from 4000 to 6000.
(c) Use your answers to parts (a) and (b) to make an estimate for p′(4000).

3.11. Which of the functions f (x) = 5x, g(x) = x2 would you say is more sensitive
to change near x = 3?

3.12. Find all tangents to the graph of f (x) = x2 −x that go through the point (2,1).
Verify that no tangent goes through the point (2,3). Can you find a geometric ex-
planation for this?

2000 4000 6000 8000 10000
altitude  (m)

.8

.6

.4

.2

1
pressure p (atmospheres)

0

Fig. 3.18 Atmospheric pressure as a function of altitude, in Problem 3.10

3.13. Let g(x) = x2 sin
(π

x

)
, g(0) = 0.

(a) Sketch the graph of g on −1 ≤ x ≤ 1.
(b) Show that g is continuous at 0.
(c) Show that g is differentiable at 0 and find g′(0).
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3.14. Show that a function that is not continuous at a cannot be differentiable at a.

3.15. Let f (x) = x2/3. Does the one-sided derivative f ′+(0) exist? Is f differentiable
on [0,1]?

3.2 Differentiation Rules

We often have occasion to form new functions out of given functions by addition,
multiplication, division, composition, and inversion. In this section, we show that
the sums, products, quotients, compositions, and inverses of differentiable functions
are likewise differentiable, and we shall see how to express their derivatives in terms
of the component functions and their derivatives.

3.2a Sums, Products, and Quotients

Theorem 3.2. Derivative of sums, differences, and constant multiples. If f
and g are differentiable at x, and c is any constant, then f + g, f − g, and c f
are differentiable at x, and

( f + g)′(x) = f ′(x)+ g′(x)
( f − g)′(x) = f ′(x)− g′(x)

(c f )′(x) = c f ′(x)

Proof. The proofs of all three assertions are straightforward and are based on limit
rules (Theorem 2.1) and observations that relate the difference quotients of f + g,
f − g, and c f to those of f and g. We also use the existence of the derivatives f ′(x)
and g′(x) (Fig. 3.19):

( f + g)′(x) = lim
h→0

(
f (x+ h)+ g(x+ h)− ( f (x)+ g(x))

h

)

= lim
h→0

(
f (x+ h)− f (x)

h
+

g(x+ h)− g(x)
h

)

= lim
h→0

f (x+ h)− f (x)
h

+ lim
h→0

g(x+ h)− g(x)
h

= f ′(x)+ g′(x).

The proof that ( f − g)′(x) = f ′(x)− g′(x) is similar. Next

(c f )′(x) = lim
h→0

c f (x+ h)− c f (x)
h

= c lim
h→0

f (x+ h)− f (x)
h

= c f ′(x).

��
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f+g

g

f

x x+h

Fig. 3.19 The slope of the graph of f +g at x is the sum of the slopes of the graphs of f and g

Quite analogously, the sum of finitely many functions that are differentiable at x
is differentiable at x.

Theorem 3.3. Product rule. If f and g are differentiable at x, then their prod-
uct is differentiable at x, and

( f g)′(x) = f (x)g′(x)+ f ′(x)g(x). (3.2)

Proof. For the first two steps see Fig. 3.20.

( f g)′(x) = lim
h→0

f (x+ h)g(x+ h)− f (x)g(x)
h

= lim
h→0

f (x+ h)g(x+ h)− f (x+ h)g(x)+ f (x+ h)g(x)− f (x)g(x)
h

= lim
h→0

(
f (x+ h)

g(x+ h)− g(x)
h

+
f (x+ h)− f (x)

h
g(x)

)

= lim
h→0

f (x+ h) lim
h→0

g(x+ h)− g(x)
h

+

(
lim
h→0

f (x+ h)− f (x)
h

)
g(x)

= f (x)g′(x)+ f ′(x)g(x).

In the last two steps we used that f and g are differentiable at x, and that f is
continuous at x. ��

Example 3.11. Note that the function x2 is a product. By the product rule,

(x2)′ = (xx)′ = xx′+ x′x = x+ x = 2x.

Example 3.12. The function x3 is also a product, so

(x3)′ = (x2)′x+ x2x′ = 2xx+ x2 = 3x2.
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f(x)
f(x+h)

g(x)
g(x+h)

Fig. 3.20 The difference of the products f (x+ h)g(x+ h)− f (x)g(x) was expressed as a sum of
the two shaded areas in the proof of Theorem 3.3

Theorem 3.4. Power rule. For every positive integer n,

(xn)′ = nxn−1. (3.3)

Proof. We use mathematical induction. We prove the inductive step: if the result
holds for n− 1, then it holds for n. Since the result holds for n = 1, namely (x)′ =
1x0, its validity will then follow for n = 2,3, . . .. This is the type of step we made in
Example 3.12, in going from knowledge of (x2)′ to (x3)′.

To prove the inductive step, we write xn = xn−1x and apply the product rule:

(xn)′ = (xn−1x)′ = (xn−1)′x+ xn−1x′.

Using the assumed validity of (xn−1)′ = (n− 1)xn−2, we get

(xn)′ = (xn−1)′x+ xn−1x′ = (n− 1)xn−2x+ xn−1 = (n− 1)xn−1+ xn−1 = nxn−1.

��
Let p be a polynomial function of the form

p(x) = anxn + an−1xn−1 + · · ·+ a0.

Using the rules for differentiating a sum, a constant multiple, and the formula al-
ready verified for the derivative of xn, we obtain

p′(x) = nanxn−1 +(n− 1)an−1xn−2 + · · ·+ a1.

Example 3.13. If p(x) = 2x4 + 7x3 + 6x2 + 2x+ 15, then

p′(x) = 4(2)x3 + 3(7)x2 + 2(6)x+ 1(2)x0+ 0 = 8x3 + 21x2+ 12x+ 2.

The functions p and p′ are graphed in Fig. 3.21.
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-10

 10

 20

 30

-3 -1  1

p(x) = 2x4+7x3+6x2+2x+15

p’(x) = 8x3+21x2+12x+2

Fig. 3.21 Graphs of the polynomial p(x) and its derivative p′(x) in Example 3.13

We now turn to division.

Theorem 3.5. Reciprocal rule. If f is differentiable at x and f (x) 
= 0, then
1
f

is differentiable at x, and

(1
f

)′
(x) =− f ′(x)(

f (x)
)2 . (3.4)

Proof.

(
1
f

)′
(x) = lim

h→0

1
f (x+h) − 1

f (x)

h
. By adding the fractions in the numerator and

regrouping terms, we get

(
1
f

)′
(x) = lim

h→0

f (x)− f (x+h)
f (x+h) f (x)

h
= lim

h→0

f (x)− f (x+ h)
h f (x+ h) f (x)

= lim
h→0

(
f (x+ h)− f (x)

h
−1

f (x) f (x+ h)

)
= lim

h→0

f (x+ h)− f (x)
h

lim
h→0

−1
f (x) f (x+ h)

,

assuming that these last two limits exist. The left limit exists and is f ′(x). For the
limit on the right, f is continuous at x, and f (x) 
= 0. Hence there is an interval

around x where f is not 0, so lim
h→0

−1
f (x+ h)

=
−1
f (x)

. By the limit laws, the product is

equal to f ′(x)
−1

f (x) f (x)
=− f ′(x)

( f (x))2 . ��
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Example 3.14. By the reciprocal rule,

(
1

x2 + 1

)′
=− (x2 + 1)′

(x2 + 1)2 =− 2x
(x2 + 1)2 .

Example 3.15. We use the reciprocal rule to calculate (x−3)′ when x 
= 0:

(x−3)′ =
(

1
x3

)′
=− (x3)′

(x3)2 =− 3x2

(x3)2 =−3x−4.

Example 3.16. The power rule can be extended to negative integers by the recip-
rocal rule when x 
= 0:

(x−n)′ =
(

1
xn

)′
=− (xn)′

(xn)2 =−nxn−1

(xn)2 =−nx−n−1.

This shows that the power rule, previously known for positive integer exponents,
is also valid when the exponent is a negative integer.

More generally, any quotient may be viewed as a product:
f
g
= f

1
g
. So if

g(x) 
= 0, by the product rule we have

(
f
g

)′
(x) = f (x)

−g′(x)
(g(x)2)

+ f ′(x)
1

g(x)
=

g(x) f ′(x)− f (x)g′(x)
(g(x))2 .

This proves the quotient rule:

Theorem 3.6. Quotient rule. If f and g are differentiable at x and g(x) 
= 0,
then their quotient is differentiable at x, and

(
f
g

)′
(x) =

g(x) f ′(x)− f (x)g′(x)
(g(x))2 .

Since we know how to differentiate polynomials, we can use the quotient rule to
differentiate any rational function.

Example 3.17. For f (x) = x and g(x) = x2 + 1, the derivative of the quotient is

(
x

x2 + 1

)′
=

(x2 + 1)(x)′ − x(x2 + 1)′

(x2 + 1)2 =
(x2 + 1)1− x(2x)

(x2 + 1)2 =
1− x2

(x2 + 1)2 .
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3.2b Derivative of Compositions of Functions

As we saw in Sect. 2.3a, when we compose linear functions, the rates of change,
i.e., the derivatives, are multiplied. Roughly speaking, this applies for all functions
(Fig. 3.22).

10 11 12 13 14 15 16

x

y

g(x) = 2x+3

f(y) = 3y+1

f(g(x)) = 6x+10

3 4 5

10

Fig. 3.22 A composite of two linear functions. The rate of change of f ◦ g is the product of the
rates of change: ( f ◦g)′ = f ′g′ = (3)(2) = 6

For continuous f and g, recall the continuity of f (g(x)): a small change in x
causes a small change in g(x), and that causes a small change in f (g(x)). Now with
differentiable f and g we can quantify these small changes.

Theorem 3.7. Chain rule. If f is differentiable at g(x) and g is differentiable
at x, then f ◦ g is differentiable at x and

( f ◦ g)′(x) = f ′(g(x))g′(x). (3.5)

Proof. We distinguish two cases:

(a) g′(x) 
= 0
(b) g′(x) = 0

In case (a), g(x+ h)− g(x) is not zero for h small enough. Let

k = g(x+ h)− g(x),

and write

f (g(x+ h))− f (g(x))
h

=
f (g(x)+ k)− f (g(x))

k
g(x+ h)− g(x)

h
. (3.6)

The first factor on the right tends to f ′(g(x)), and the second factor to g′(x), giving
formula (3.5).
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In case (b), the chain rule will be confirmed if we show that
(

f (g(x))
)′ is zero,

that is, if we show that the left-hand side of Eq. (3.6) tends to zero as h tends to
zero. The problem is the k in the denominator of the first factor on the right side of
Eq. (3.6). When k is not zero, the factors on the right tend to the product of f ′(g(x))
and g′(x), and therefore tend to zero. Now if k is zero, the difference between
g(x+ h) and g(x) is zero, and so the difference quotient of the left is zero. So as
h tends to zero, k tends to zero or is zero sometimes, and in either event the left side
of Eq. (3.6) tends to zero. ��

Example 3.18. (x2 − x+5)4 is f ◦g, with g(x) = x2 − x+5 and f (y) = y4. Using
the power rule and the chain rule, we get

(
(x2 − x+ 5)4)′ = 4(x2 − x+ 5)3(x2 − x+ 5)′ = 4(x2 − x+ 5)3(2x− 1)

Derivative of the Inverse of a Function. Suppose f is a strictly monotonic func-
tion whose derivative is not zero on some open interval, and that f and g are inverse
to each other,

f (g(x)) = x.

In Problem 3.35, we help you to verify that g is differentiable. Anticipating this
result, differentiate both sides. By the chain rule, we obtain

f ′(g(x))g′(x) = 1.

Therefore, the derivative of g at x is the reciprocal of the derivative of f at g(x):

g′(x) =
1

f ′(g(x))
(3.7)

0

 0.5

1

0 1 2

x

g(x)=x 1/2
y

f(y)=y 2

Fig. 3.23 The graph of a function g and its inverse f , viewed together. See Example 3.19

Example 3.19. Let f (y) = y2. Then f is invertible on the interval y > 0. The
inverse is (Fig. 3.23)

y = g(x) = x1/2 =
√

x.
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Since f ′(y) = 2y, Eq. (3.7) gives

g′(x) =
1

f ′(g(x))
=

1
2g(x)

=
1

2
√

x
.

Therefore, (
x1/2)′ = 1

2
x−1/2.

This shows that the power rule (xn)′ = nxn−1 holds for n =
1
2

.

Previously, we proved the power rule for integer exponents only.

Example 3.20. The graph of the function f (x) =
√

1− x2 = (1− x2)1/2, defined
on the interval −1 ≤ x ≤ 1, is a semicircle with radius 1, centered at the origin.
See Fig. 3.24. By the chain rule and the power rule for the exponent n = 1

2 , we
have

f ′(x) =
1
2
(1− x2)−1/2(−2x) =

−x

(1− x2)1/2
(−1 < x < 1).

The slope of the tangent at the point (a,
√

1− a2) is then
−a

(1− a2)1/2
. The slope

of the line through the origin and the point (a,
√

1− a2) is

√
1− a2

a
. The product

of these two slopes is

− a√
1− a2

·
√

1− a2

a
=−1.

Two lines whose slopes have product −1 are perpendicular. Thus we have given
an analytic proof of the following well-known fact of geometry: the tangent to a
circle at a point is perpendicular to the radius of the circle through that point.

x

f

a 10−1

Fig. 3.24 The graph of f (x) =
√

1− x2 on (−1,1) is half of the unit circle. The tangent line at
(a, f (a)) is perpendicular to the radial line through (a, f (a)), as in Example 3.20
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Example 3.21. Let f (y) = yk, k a positive integer. This function is invertible on
y > 0. Its inverse is

g(x) = x1/k.

We have f ′(y) = kyk−1, so by Eq. (3.7),

g′(x) =
1

f ′(g(x))
=

1
kg(x)k−1 =

1
k

1

(x1/k)k−1
=

1
k

1

x1−1/k
=

1
k

x(1/k)−1.

This shows that the rule (3.3) for differentiating xn holds for n =
1
k

.

Theorem 3.8. Power rule for rational exponents. For every rational number
r 
= 0 and for every x > 0, (xr)′ = rxr−1.

Proof. Write r =
p
q

, where p and q are integers and q > 0. By Example 3.21, the

chain rule, and the power rule for integers, we have

(xr)′ = ((xp)1/q)′ =
1
q
(xp)(1/q)−1(pxp−1) =

p
q

x(p/q)−p+p−1 = rxr−1.

��
Example 3.22. The function (x3 + 1)2/3 is a composition of f with g, where
g(x) = x3 + 1, f (y) = y2/3. Using the power rule for rational exponents and the
chain rule, we get

(
(x3 + 1)2/3

)′
=

2
3
(x3 + 1)−1/3(x3 + 1)′ =

2
3
(x3 + 1)−1/33x2 =

2x2

(x3 + 1)1/3
.

3.2c Higher Derivatives and Notation

Functions may be written in very different ways, and it is helpful to have different
ways to denote the derivative. If we use y to represent the function y = f (x), then
we can represent f ′(x) in any of the following ways:

f ′(x) = y′ =
dy
dx

=
d
dx

f (x). (3.8)

When we want to indicate the variable with respect to which we are differentiating,

we may use the
d
dx

notation. Let u and v be differentiable functions of x. Here are

differentiation rules rewritten in this notation:
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(a)
d
dx

(u+ v) =
du
dx

+
dv
dx

.

(b) If c is constant, then
d
dx

(cu) = c
du
dx

, and more generally,
d
dx

(uv) = u
dv
dx

+ v
du
dx

.

(c)
d
dx

(u
v

)
=

v du
dx − u dv

dx

v2 .

(d) If u is a function of y, and y is a function of x, then
du
dx

=
du
dy

dy
dx

.

For example, the volume of a right circular cylinder with base radius r and height
h is given by the formula V = πr2h.

(a) If the height remains constant, then the rate at which V changes with respect to

r is
dV
dr

= 2πrh.

(b) If the radius remains constant, then the rate at which V changes with respect to

changes in h is
dV
dh

= πr2.

(c) If both the radius and height change as functions of time, then the rate at which
V changes with respect to t is

dV
dt

=
d
dt

(
πr2h

)
= π

(
r2 dh

dt
+ h

d
dt
(r2)

)
= π

(
r2 dh

dt
+ 2hr

dr
dt

)
.

Part (c) used first the product rule, then the chain rule.

When the derivative of the derivative of f exists at x, it is called the second
derivative of f and is written in any of the following ways:

( f ′)′(x) = f ′′(x) = y′′ =
d
dx

(
dy
dx

)
=

d2y
dx2 =

d2

dx2 f (x).

Similar notation is used with higher derivatives, sometimes with superscripts to in-

dicate the order. If u is a function of x, the higher derivatives in the
d
dx

notation are

written

u′′′ =
d
dx

(
d
dx

(
du
dx

))
=

d3u
dx3 , u′′′′ = u(4) =

d4u
dx4 , . . . , u(k) =

dku
dxk

.

Example 3.23. Let f (x) = x4. Then

f ′(x) = 4x3, f ′′(x) = 12x2, f ′′′(x) = 24x, f (4)(x) = 24, f (5)(x) = 0.

It is sometimes useful to be able to give meaning to dy and dx so that their quo-

tient
dy
dx

equals f ′(x). We do this by making the following definition. Let dx be a

new independent variable and define dy = f ′(x)dx. We call dy the differential of y,
and it is a function of both x and dx.
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Problems

3.16. Find the derivatives of the following functions:

(a) x5 − 3x4 + 0.5x2− 17

(b)
x+ 1
x− 1

(c)
x2 − 1

x2 − 2x+ 1

(d)

√
x

x+ 1

3.17. Find the derivatives of the following functions:

(a)
√

x3 + 1
(b)

(
x+ 1

x

)3

(c)
√

1+
√

x
(d) (

√
x+ 1)(

√
x− 1)

3.18. Calculate
d
dx

(
1− x2

1+ x2

)
by the quotient rule and

d
dx

(
(1− x2)(1+ x2)−1) by

the product rule and show that the results agree.

3.19. A particle is moving along a number line, and its position at time t is x =
f (t) = t − t3.

(a) Find the position of the particle at t = 0 and at t = 2.
(b) Find the velocity of the particle at t = 0 and at t = 2.
(c) In which direction is the particle moving at t = 0? at t = 2?

3.20. Find the acceleration f ′′(t) of an object whose velocity at time t is given by
f ′(t) = t3 − 1

2 t2.

3.21. Find the first six derivatives f ′, . . . , f (6) for each of these functions. In which
cases will the seventh and higher derivatives be identically 0?

(a) f (x) = x3

(b) f (t) = t3 + 5t2

(c) f (r) = r6

(d) f (x) = x−1

(e) f (t) = t−3 + t3

(f) f (r) = 6+ r+ r8

3.22. Derive a formula for the derivative of a triple product by applying the product
rule twice: show that if f , g, and h are differentiable at x, then f gh is too, and

( f gh)′(x) = f (x)g(x)h′(x)+ f (x)g′(x)h(x)+ f ′(x)g(x)h(x).
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3.23. Use the chain rule to find the derivatives indicated.

(a) f (t) = 1+ t + t2. Find ( f (t)2)′ without squaring f .
(b) If g′(3) = 0, find

(
g(t)6

)′
when t = 3.

(c) If h′(3) = 4 and h(3) = 5, find
(
h(t)6

)′
when t = 3.

4

Fig. 3.25 The folium of Descartes, in Problem 3.24

3.24. The set of points (x,y) that satisfy x3 + y3 −9xy = 0 lie on the curve shown in
Fig. 3.25.

(a) Suppose a portion of the curve is the graph of a function y(x). Use the chain rule

to show that y′ =
−x2 + 9y
y2 − 9x

.

(b) Verify that (2,4) is on the curve. If y(x) is a function having y(2) = 4, find y′(2)
and use the linear approximation of y to estimate y(1.97).

(c) Verify that each line y = mx other than y =−x intersects the curve at one point.
Find the point.

(d) Find the other two points (2,y) on the curve besides (2,4). For functions y(x)
passing through those points, does y′(2) have the same value as you found for
(2,4)?

3.25. The gravitational force on a rocket at distance r from the center of a star is

F =−GmM
r2 , where m and M are the rocket and star masses, and G is a constant.

(a) Find
dF
dr

.

(b) If the distance r depends on time t according to r(t) = 2000000+ 1000t, find

the time rate of change of the force,
dF
dt

.

(c) If the distance r depends on time t in some manner yet to be specified, express

the derivative
dF
dt

in terms of
dr
dt

.
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3.26. Verify that the gravitational force in Problem 3.25 can be written F =−φ ′(r),

where φ(r) =
GmM

r
is called the potential energy. Explain the equation

dF
dt

=−d2φ
dr2

dr
dt
.

3.27. Suppose that the volume V of a spherical raindrop grows at a rate, with respect
to time t, that is proportional to the surface area of the raindrop. Show that the radius
of the raindrop changes at a constant rate.

r

θ

Fig. 3.26 The areas of a sector of a circle varies with θ and r. See Problem 3.28

3.28. The area of a sector of a circle is given by A = 1
2 r2θ , where r is the radius of

the circle and θ is the central angle measured in radians. See Fig. 3.26.

(a) Find the rate of change of A with respect to r if θ remains constant.
(b) Find the rate of change of A with respect to θ if r remains constant.
(c) Find the rate of change of r with respect to θ if A remains constant.
(d) Find the rate of change of θ with respect to r if A remains constant.
(e) Suppose r and θ change with time. Find the rate of change of A with respect to

time in terms of r, θ ,
dr
dt

, and
dθ
dt

.

3.29. The air–fuel mixture is compressed in an engine. The pressure of the mixture
is given by P = kρ7/5, where ρ is the density of the mixture and k is a constant.

Write a relation between the rates of change with respect to time,
dP
dt

and
dρ
dt

.

3.30. The line tangent to the graph of f at (2,7) has slope 1
3 . Find the equation of

the line tangent to the graph of f−1 at (7,2).

3.31. Let f (x) = x3 + 2x2 + 3x+ 1, and denote by g the inverse of f . Check that
f (1) = 7 and calculate g′(7).
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3.32. Let f (x) =
√

x2 − 1 for x > 1, and g(y) =
√

y2 + 1 for y > 0.

(a) Show that f and g are inverses.
(b) Calculate f ′ and g′.
(c) Verify that f ′(g(y))g′(y) = 1 and g′( f (x)) f ′(x) = 1.

3.33. In this problem, all the numbers are positive. What is the relation between a
and b so that the functions f (x) = xa and g(y) = yb are inverses? Show that if

1
p
+

1
q
= 1,

then the derivatives of
xp

p
and

yq

q
are inverses.

3.34. A function f is called even if f (−x) = f (x) for all x in the domain of f , and it
is called odd if f (−x) =− f (x). Let f be a differentiable function. Show that

(a) If f is even, then f ′ is odd.
(b) If f is odd, then f ′ is even.

3.35. Suppose f is strictly monotonic and f ′(x) 
= 0 on an open interval. In this ex-
ercise we ask you to prove that the inverse of f is differentiable. Denote the inverse
of f by g, set y = f (x), and denote f (x+ h)− f (x) by k.

(a) Explain why g(y+ k) = x+ h.
(b) Show that if h 
= 0, then k 
= 0.
(c) Explain why

g(y+ k)− g(y)
k

=
h
k
=

h
y+ k− y

=
h

f (x+ h)− f (x)

tends to
1

f ′(x)
as k tends to 0.

3.3 Derivative of ex and logx

3.3a Derivative of ex

We show now that ex has a special property.

Theorem 3.9. (ex)′ = ex.

Proof. Since exey = ex+y, we can write the difference quotient as

ex+h − ex

h
=

exeh − ex

h
= ex eh − 1

h
.
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Taking the limit as h tends to zero, we see that the derivative of ex at x is ex times
the derivative of ex at 0. That is,

e′(x) = e(x)e′(0), (3.9)

where e(x) denotes the function ex.

We have therefore only to determine the value e′(0), which is the limit of
eh − 1

h
as h tends to 0. Recall that in Sect. 1.4, the number e was defined using an increasing

sequence en =

(
1+

1
n

)n

and a decreasing sequence fn =

(
1+

1
n

)n+1

. So we have

inequalities (
1+

1
n

)n

< e <

(
1+

1
n

)n+1

<

(
1+

1
n− 1

)n

(3.10)

for all integers n > 1. Since these approximations contain integer powers, we first

take h =
1
n

as a special sequence of h tending to zero. Raise each term in Eq. (3.10)

to the power h. We get

1+
1
n
≤ eh ≤ 1+

1
n− 1

.

Subtract 1 from each term:

1
n
≤ eh − 1 ≤ 1

n− 1
.

Divide each term by h =
1
n

:

1 ≤ eh − 1
h

≤ n
n− 1

.

As n tends to infinity, the right-hand term tends to 1, so by the squeeze theorem,
Theorem 1.7, the center term tends to 1 also. In other words, the derivative of ex at
x = 0 is equal to 1, that is, e′(0) = 1. Setting this into relation (3.9), we deduce that

(ex)′ = e′(x) = e(x)e′(0) = e(x) = ex.

The derivative of the function ex is ex itself!
This does not quite finish the proof that e′(0) = 1, since we have taken h to be of

the special form h =
1
n

. In Problem 3.51, we guide you to fill this gap. ��

By the chain rule, (
ekx)′ = ekx(kx)′ = kekx (3.11)

for every constant k.
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Let a be any positive number. To find the derivative of ax, we write a as eloga.
Then ax = (eloga)x = e(loga)x. Using the chain rule and the fact that the derivative of
ex is ex, we get that

(ax)′ =
(
e(loga)x)′ = (loga)e(loga)x = (loga)ax.

3.3b Derivative of logx

Next we show how to use our knowledge of the derivative of ex and the chain rule
to compute the derivative of logx. We know that the natural logarithm is the inverse
function of ex,

x = elogx (x > 0).

The expression elogx is a composition of two functions, where the logarithm is
applied first and then the exponential. Thus by the chain rule,

1 = (x)′ =
(

elogx
)′

= elogx(logx)′ = x(logx)′.

Solving for (logx)′, we get

(logx)′ =
1
x
, x > 0.

The function logx is a rather complicated function, but its derivative is very simple.

When x is negative, we have
(

log(−x)
)′
=

1
−x

(−x)′ =
1
x

. So we see more gen-

erally that

(log |x|)′ = 1
x
, x 
= 0.

The derivative of logx can be used to compute the derivative of loga x: We have
the identity x = aloga x. Applying the function log to each side, we get logx =
(loga)(loga x). Hence

loga x =
1

loga
logx.

Differentiate to get

(loga x)′ =
1

loga
(logx)′ =

1
loga

1
x
.

Now that we know the derivatives of ex and logx, we may use the chain rule to
compute the derivatives of many more functions.

Example 3.24. The function ex2+1 is a composition f (g(x)), where g(x) = x2 +1
and f (x) = ex. By the chain rule,

(ex2+1)′ = ex2+1(x2 + 1)′ = ex2+12x.
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In the
d
dx

notation, if y = ex2+1 and u = x2 + 1, then

dy
dx

=
dy
du

du
dx

= eu(2x) = ex2+12x.

More generally,
(e f (x))′ = e f (x) f ′(x)

for any differentiable function f . Similarly, by the chain rule,

( f (ex))′ = f ′(ex)ex

for any differentiable function f .

Example 3.25. (
√

1− ex)′ = 1
2 (1− ex)−

1
2 (1− ex)′ = 1

2 (1− ex)−
1
2 (−ex).

Using the chain rule, we also see that

(
log | f (x)|)′ = 1

f (x)
f ′(x) =

f ′(x)
f (x)

, f (x) 
= 0,

and

( f (log |x|))′ = f ′(log |x|)1
x
, x 
= 0.

Example 3.26. (log(x2 + 1))′ =
1

x2 + 1
(x2 + 1)′ =

1
x2 + 1

2x.

In the
d
dx

notation, if y = logu and u = x2 + 1, then
dy
dx

=
dy
du

du
dx

=
1
u

2x =

2x
x2 + 1

.

Example 3.27. For x > 1, we have logx positive, and

(log(logx))′ =
1

logx
(logx)′ =

1
logx

1
x
.

3.3c Power Rule

Recall that we have proved the power rule for rational exponents. We now present a
proof valid for arbitrary exponents.

Theorem 3.10. If r 
= 0 and x > 0, then xr is differentiable and

(xr)′ = rxr−1.



150 3 The Derivative and Differentiation

Proof. For x > 0, xr = elog(xr) = er logx, so

(xr)′ = (er logx)′ = er logx(r logx)′ = er logx r
x
= xr r

x
= rxr−1.

��
Example 3.28.

(xπ)′ = πxπ−1, (xe)′ = exe−1.

3.3d The Differential Equation y′ = ky

At the end of Sect. 3.3a, we showed that the function y = ekx satisfies the differential
equation

y′ = ky. (3.12)

For any constant c, y = cekx satisfies the same equation. We show now that these are
the only functions that satisfy Eq. (3.12).

Theorem 3.11. Suppose y is a function of x for which

dy
dx

= ky,

where k is a constant. Then there is a number c such that y = cekx.

Proof. We need to show that the function
y

ekx is a constant. For this reason, we

consider the derivative

d
dx

( y
ekx

)
=

d
dx

(
ye−kx

)
=

dy
dx

e−kx − yke−kx =

(
dy
dx

− ky

)
e−kx = 0.

In Sect. 4.1, we will show that the only functions having derivative equal to 0 on

an interval are the constant functions. Now, since
d
dx

( y
ekx

)
is 0 for all x, there is a

constant c such that y
ekx = c.

So y = cekx, as claimed. ��
Example 3.29. We find all solutions to the equation y′ = y having y = 1 when
x = 0. By Theorem 3.11, there is a number c such that y = cex for all x. Take
x = 0. Then y = 1 = ce0 = c. Since c = 1, there is only one such function, y = ex.
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We close this section with an example of how to deduce properties of functions
from knowledge of the differential equations they satisfy. Here we deduce from the
differential equation y′ = ky, the addition formula ax+m = axam for the exponential
functions.

Let y = ax+m, where m is any number and a > 0. By the chain rule,

y′ = ax+m(loga) = (loga)y.

So y satisfies the differential equation y′ = ky, where k is the constant k = loga. By
Theorem 3.11, there is a number c such that

y = ce(loga)x = cax.

Since y = ax+m, this shows that

ax+m = cax. (3.13)

To determine c, we set x = 0 in Eq. (3.13), giving

am = c.

Setting this into Eq. (3.13), we get

ax+m = amax,

the addition formula for exponential functions.
This result shows that y′ = ky is the basic property of exponential functions.

Problems

3.36. Compute the first and second derivatives of

(a) ex

(b) e3x

(c) e−3x

(d) e−x2

(e) e−1/x

3.37. Write an expression for the nth derivative
(
e−t/10

)(n)
.

3.38. Find the length marked h in Fig. 3.27 in terms of the length k shown there. The
length of the horizontal segment is 1.
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k

ex

1

x

h

Fig. 3.27 A graph of ex and one of the tangent lines, for Problem 3.38

3.39. Find the derivative (x2 + e2 + 2e + 2x + ex + xe)′.

3.40. Find the linear function �(x) = mx+ b whose graph is the tangent line to the
graph of e−x at x = 0.

3.41. Compute the derivatives of the following functions.

(a) log |3x|
(b) log(x2)
(c) log(3x)− logx
(d) e−ex

(e) log(1+ e−x)

3.42. Compute the derivatives of the following functions.

(a) (logx)′
(b) (log(logx))′
(c) (log(log(logx)))′
(d) (log(log(log(logx))))′

3.43. Find the equation of the line tangent to the graph of logx at x = 1.

3.44.

(a) Find all the solutions to the differential equation f ′(t) =− 1
10 f (t).

(b) Find the solution if f (0) = 2.
(c) Find the solution if f (10) = 5.

3.45. Suppose that at time t = 1, the population of a bacterial colony is 100, and that
at any time, the rate at which the population grows per hour is 1.5 times the size of
the population. Find the population at time t = 3 h.
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3.46. Suppose that at time t = 0, the amount of carbon-14 in a sample of wood is
100, and that the half-life of carbon-14 is 5730 years. Find the amount of carbon-14
at time t = 10,000 years.

3.47. Suppose f and g are positive functions. Obtain the product rule for ( f g)′ by
differentiating log( f g) = log f + logg.

3.48. The product rule for a product of many functions can be deduced inductively
from the product formula for two functions. Here is an alternative approach. Justify
each step of the following argument.

(a) Suppose y= f (x)g(x)h(x)k(x). Then |y|= | f ||g||h||k|, and when all are nonzero,

log |y|= log | f |+ log |g|+ log |h|+ log|k|.

(b)
1
y

y′ =
1
f

f ′+
1
g

g′+
1
h

h′+
1
k

k′.

(c) y′ = f ′ghk+ f g′hk+ f gh′k+ f ghk′.

3.49. Evaluate
d
dx

log

(√
x2 + 1 3

√
x4 − 1

5
√

x2 − 1

)
.

3.50. Define two functions by y(x) =
1

ex + e−x and z(x) = ex − e−x. Verify the alge-

braic equation z2 =
1
y2 − 4 and the following differential equations.

(a) y′ =−zy2 and z′ =
1
y

.

(b) Use part (a) and the chain rule to show that y′′ = y− 8y3.

3.51. This problem fills the gap in the proof that e′(0) = 1. Recall from Eq. (3.10)
that e is between the increasing sequence en and the decreasing sequence fn. Explain
the following items.

(a) If h > 0 is not of the form
1
n

, then there is an integer n for which
1
n
< h <

1
n− 1

.

(b) Using Eq. (3.10), one has

(
1+

1
n

)nh

< eh <

(
1+

1
n− 2

)(n−1)h

.

(c) (n− 1)h < 1 < nh.

(d) 1+
1
n
< eh < 1+

1
n− 2

.

(e) n− 1 <
1
h
< n, and

n− 1
n

<
eh − 1

h
<

n
n− 2

.

Conclude from this that
eh − 1

h
tends to 1 as h tends to zero.
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3.4 Derivatives of the Trigonometric Functions

We saw in Sect. 2.4 that the sine and cosine functions are continuous and periodic.
These functions often arise when we study natural phenomena that fluctuate in a
periodic way, for example vibrating strings, waves, and the orbits of planets. The
derivatives of the sine and cosine have special properties, as was the case with the
exponential function, and they solve important differential equations.

3.4a Sine and Cosine

Recall that we defined cost and sin t to be the x- and y-coordinates of the point P(t)
on the unit circle, so that the arc from (1,0) to P(t) is t units along the circle. This
definition with a bit of geometry will help us find the derivatives of sine and cosine.

Theorem 3.12. sin′ t = cost and cos′ t =−sin t.

1O

t

h

P(t+h)

P(t+h/2)

P(t)
R

Fig. 3.28 The two right triangles are similar because their corresponding sides are perpendicular

Proof. In Fig. 3.28, P(t) is on the unit circle at distance t along the circle from the
point (1,0), and P(t+h) is another point on the unit circle at distance t+h along the
circle from (1,0). Draw a vertical line from the point P(t +h), and a horizontal line
from the point P(t). Denote their intersection by R. The three points form a right
triangle, as indicated. The horizontal leg has length cos(t)− cos(t + h). Denote the
length of the hypotenuse by c, the distance between P(t +h) and P(t). As h tends to

zero, the ratio
h
c

tends to 1.

Consider another right triangle whose vertices are O, P
(
t + h

2

)
, and the inter-

section of the vertical line drawn from P
(
t + h

2

)
with the x-axis. The sides of this
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triangle are perpendicular to the sides of the small triangle considered before, and
the two triangles are similar. Therefore,

sin
(
t + h

2

)
1

=
cost − cos(t + h)

c
=

cost − cos(t + h)
h

h
c
.

As h tends to zero, sin
(
t +

h
2

)
tends to sin t. The first factor on the right tends to

−cos′ t, and the second factor tends to 1. Therefore, cos′ t =−sin t.
To find the derivative of sin t, use a similar argument:

cos
(
t + h

2

)
1

=
sin(t + h)− sint

c
=

sin(t + h)− sint
h

h
c
.

As h tends to 0, we have cost = sin′ t. ��
Once you have the derivatives of sine and cosine, the derivatives of the tangent,

cotangent, secant, and cosecant functions are easily derived using the quotient rule.

Example 3.30.

(tan t)′ =
(

sin t
cost

)′
=

cost cost − sint(−sin t)
(cost)2 =

1
(cost)2 = sec2 t.

When trigonometric functions are composed with other functions, we use the
chain rule to compute the derivative.

Example 3.31.
(

sin(ex)
)′
= cos(ex)

(
ex
)′
= ex cos(ex).

Example 3.32.
(
esinx

)′
= esinx

(
sinx

)′
= esinx cosx.

Example 3.33.
(

log(tanx)
)′
=

1
tanx

1
cos2 x

=
1

cosx sinx
.

We close this section with an alternative way of determining the derivatives of
the sine and cosine functions, based on the interpretation of derivative as a velocity.
Suppose a particle Q moves with velocity 1 along a ray that makes angle a with the
x-axis, as shown in Fig. 3.29. Then the shadow of the particle on the x-axis travels
with velocity cosa. Similarly, the shadow of Q on the vertical axis travels with
velocity sina.

Suppose that particle P travels with velocity 1 on the unit circle, starting at the
point (1,0) and moving in a counterclockwise direction. Then its position at time t
is (cost,sin t), and its shadows on the x- and y-axes are cost and sin t respectively.
We now find the velocities of these shadows, i.e., cos′ t and sin′ t.

Let s be a particular time, and denote by L the tangent line to the unit circle at the
point (coss,sin s). Denote by Q(t) the position of a particle Q that passes through the
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sin a

cos a

a

1

Q

L

s
QP

s+   /2π

Fig. 3.29 Left: Q moves with velocity 1 along a line. Right: P moves with velocity 1 along a circle.
At time s, the velocities of particles P and Q are equal

point of tangency at time s and travels along L with velocity 1. At time s, particles P
and Q are at the same point (coss,sin s) and are moving in the same direction with
unit velocity. Hence at time s, the shadows of P and Q on the x-axis travel at the
same velocity, and the shadows of P and Q on the y-axis travel at the same velocity.

The tangent to the circle at (coss,sin s) is perpendicular to the line through the
origin and P(s). Therefore, the tangent line makes the angle s+ π

2 with the horizontal
ray. The shadows of Q on the horizontal and vertical axes travel with the constant
velocities cos

(
s+ π

2

)
and sin

(
s+ π

2

)
respectively. These are the velocities at which

the shadows of P travel at time s. Therefore, at time s,

cos′ s = cos
(
s+

π
2

)
=−sins, sin′ s = sin

(
s+

π
2

)
= coss.

3.4b The Differential Equation y′′+ y = 0

We turn to some other interesting properties of sine and cosine. Recall that we saw
earlier that y = et is the only solution to y′ = y satisfying y = 1 when t = 0. We shall
derive a similar relation for the sine and cosine. Differentiating the expressions for
the derivatives of sine and cosine, we get

sin′′ t =
(

sin′ t
)′
= cos′ t =−sin t, and cos′′ t =

(
cos′ t

)′
= (−sin t)′ =−cost.

Here we have used the notation f ′′ to denote the derivative of the derivative of f ,
called the second derivative of f . Notice that the equation

f ′′+ f = 0 (3.14)

is satisfied by both f (t) = sin t and f (t) = cost.
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Consider the function f (t) = 2sin t − 3cost. Then

f ′ = 2cost + 3sint, f ′′ =−2sin t + 3cost =− f ,

so we have f ′′+ f = 0.
More generally, every function of the form f (t) = ucost + vsint, with u and v

constant, solves Eq. (3.14). Next we address the question whether there are any other
solutions to the differential equation f ′′+ f = 0. We will see that there are no others.

First we shall derive some properties of solutions of Eq. (3.14). Multiply the
equation by 2 f ′. We obtain

2 f ′ f ′′+ 2 f ′ f = 0. (3.15)

We recognize the first term on the left as the derivative of ( f ′)2, and the second term
as the derivative of f 2. So the left side of Eq. (3.15) is the derivative of ( f ′)2 + f 2.
According to Eq. (3.15), this derivative is zero. As we noted already using Corol-
lary 4.1 of the mean value theorem, a function whose derivative is zero over the
entire real line is a constant. So it follows that every function f that satisfies the
differential equation (3.14) satisfies

( f ′)2 + f 2 = constant. (3.16)

Theorem 3.13. Denote by f a solution of Eq. (3.14) for which f (c) and f ′(c)
are both zero at some point c. Then f (t) = 0 for all t.

Proof. We have shown that all solutions f of Eq. (3.14) satisfy Eq. (3.16) for all t.
At t = c, both f (c) and f ′(c) are zero, so it follows that the constant in Eq. (3.16) is
zero. But then it follows that f (t) is zero for all t. ��

Theorem 3.14. Suppose f1 and f2 are two solutions of

f ′′+ f = 0

and that there is a number c for which f1(c) = f2(c) and f ′1(c) = f ′2(c). Then
f1(t) = f2(t) for every t.

Proof. Since f1 and f2 are solutions of Eq. (3.14), so is their difference f = f1 −
f2. Since we have assumed that f1 and f2 are equal at c and also that their first
derivative are equal at c, it follows that f (c) and f ′(c) are both zero. According to
Theorem 3.13, f (t) = 0 for all t. It follows that f1(t) = f2(t) for all t. ��

Let f be any solution of Eq. (3.14). Set f (0) = u, f ′(0) = v. We saw earlier that
g(t) = ucost + vsint is a solution of Eq. (3.14). The values of g and g′ at t = 0 are

g(0) = u, g′(0) = v.
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The functions f (t) and g(t) are both solutions of Eq. (3.14), and f (0) = g(0),
f ′(0) = g′(0). According to Theorem 3.14, f (t) = g(t) for all t. This shows that
all solutions of Eq. (3.14) are of the form g(t) = ucost + vsint.

Next we see that we can deduce properties of the sine and cosine functions from
our knowledge of the differential equation that they solve, f ′′+ f = 0.

Theorem 3.15. Addition law for the cosine and sine.

cos(t + s) = cosscost − sinssin t (3.17)

and
sin(t + s) = sin scost + cosssin t. (3.18)

Proof. If you differentiate the addition law (3.17) for the cosine with respect to s,
you obtain (the negative of) the addition law for the sine. So it suffices to prove the
addition law for the cosine.

We have seen that every combination of the form ucost + vsin t is a solution of
Eq. (3.14). Take any number s, and set u = coss, v = sins. Then the function

b(t) = cosscost − sinssin t

is a solution of Eq. (3.14). We next show that

a(t) = cos(s+ t),

viewed as a function of t, is also a solution. The chain rule gives

a′(t) = cos′(s+ t)
d(s+ t)

dt
=−sin(s+ t),

a′′(t) = −sin′(s+ t)
d(s+ t)

dt
=−cos(s+ t) =−a(t).

Compare then a(t) with b(t). We have

a(0) = coss = b(0)

and
a′(0) =−sins = b′(0).

By Theorem 3.14, then, a(t) is identically equal to b(t). Since a(t) is the function
on the left side of Eq. (3.17) and b(t) is the function on the right side, this concludes
the proof. ��
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3.4c Derivatives of Inverse Trigonometric Functions

Inverse Sine. Over the interval [− π
2 ,

π
2 ], the sine function is increasing. Therefore,

it has an inverse, called the arcsine function, denoted by sin−1.

-1

 1

-1  1

x

sin-1x

1 x t

1−x2

Fig. 3.30 Left: The graph of the inverse sine function. Right: For t = sin−1 x, cos t =
√

1− x2

To find the derivative of sin−1(x), we differentiate

sin(sin−1 x) = x

with respect to x, giving

cos(sin−1 x)
(

sin−1 x
)′
= 1.

This shows that

(
sin−1 x

)′
=

1

cos(sin−1 x)
, −1 < x < 1.

The expression cos(sin−1 x) can be simplified. Let t = sin−1 x. Then x = sin t. Since
cos2 t + sin2 t = 1, we get (See Fig. 3.30)

cos(sin−1 x) = cost =±
√

1− sin2 t =
√

1− x2.

For − π
2 ≤ t ≤ π

2 , cost ≥ 0, so we have used the positive root,

(
sin−1 x

)′
=

1√
1− x2

, −1 < x < 1. (3.19)

Notice that sin−1 is differentiable on the open interval (−1,1). The slope of its graph
approaches infinity at x tends to 1 from the left, and also as x tends to −1 from the
right.
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Inverse Tangent. Similarly, the tangent function restricted to the interval − π
2 <

t < π
2 has an inverse, called the arctangent function, or tan−1.

 1

 1  4

x

tan-1x
x

t

1

1+x2

Fig. 3.31 Left: The graph of the inverse tangent function. Right: For t = tan−1 x, cos t =
1√

1+ x2

To find the derivative of tan−1 x for −∞ < x < ∞, we differentiate

tan(tan−1 x) = x

with respect to x:
sec2(tan−1 x)(tan−1 x)′ = 1,

so (tan−1 x)′ = cos2(tan−1 x). Let t = tan−1 x. (See Fig. 3.31.) Then

x2 = tan2 t =
sin2 t
cos2 t

=
1− cos2 t

cos2 t
=

1
cos2 t

− 1.

This shows that cos2(tan−1 x) =
1

1+ x2 . Therefore,

(tan−1 x)′ =
1

1+ x2 .

Example 3.34.
(

tan−1 ex)′ = 1
1+(ex)2 (e

x)′ =
ex

1+ e2x .

Example 3.35.
(

sin−1 x2)′ = 1√
1− (x2)2

(x2)′ =
2x√

1− x4
.

Example 3.36.
(

log(sin−1 x)
)′
=

1

sin−1 x

(
sin−1 x

)′
=

1

sin−1 x

1√
1− x2

.

In Problem 3.59, we guide you through a similar derivation of

(sec−1 x)′ =
1

x
√

x2 − 1
, (0 < x <

π
2
).



3.4 Derivatives of the Trigonometric Functions 161

3.4d The Differential Equation y′′ − y = 0

We shall show that the differential equation y′′ − y = 0 plays the same role for ex-
ponential functions as the differential equation y′′ + y = 0 does for trigonometric
functions. We introduce two new functions.

Definition 3.3. The hyperbolic cosine and hyperbolic sine, denoted by cosh and
sinh, are defined as follows:

coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
. (3.20)

Their derivatives are easily calculated, as we ask you to check in Problem 3.61:

cosh′ x = sinhx, and sinh′ x = coshx. (3.21)

Therefore,
cosh′′ x = coshx and sinh′′ x = sinhx.

That means that cosh and sinh are solutions to the differential equation

f ′′ − f = 0. (3.22)

For any constants u and v, the functions ucoshx and vsinhx also satisfy f ′′ − f = 0,
as does their sum f (x) = ucoshx+ vsinhx:

(ucoshx+ vsinhx)′′ = (usinhx+ vcoshx)′ = ucoshx+ vsinhx.

The value of f (x) = ucoshx+ vsinhx and of its derivative f ′(x) at x = 0 are

f (0) = u, f ′(0) = v.

We show now that ucoshx+ vsinhx is the only solution of Eq. (3.22) with these
values at x = 0. The proof is based on the following theorem.

Theorem 3.16. Suppose f1 and f2 are two solutions of

f ′′ − f = 0

having the same value and derivatives at x = a: f1(a) = f2(a) and f ′1(a) =
f ′2(a). Then f1(x) = f2(x) for every x.

Proof. Set g = f1 − f2. Then g′′ − g = 0, and g(a) = g′(a) = 0. It follows that

(g′+ g)′ = g′′+ g′ = g+ g′.
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We appeal now to Theorem 3.11, which says that if a function y satisfies the equation
y′(x) = ky(x) for all x, then y = cekx. Since we have shown that y = g+ g′ satisfies
y′ = y, it follows that g+g′ = cex. But both g and g′ are zero at x = a. It follows that
the constant c is 0, and therefore g+ g′ = 0. We appeal once more to Theorem 3.11
to deduce that g(x) is of the form be−x. But since g(a) = 0, b must be zero, which
makes g(x) = 0 for all x. Since g was defined as f1 − f2, it follows that f1 and f2 are
the same function. ��

3

2

1

210-1-2

cosh x

1+(1/2)x2

Fig. 3.32 The graphs of cosh x and 1+ 1
2 x2

A graph of cosh is shown in Fig. 3.32. Just as the cosine and sine satisfy the rela-
tion cos2 x+ sin2 x = 1 and are sometimes called “circular” functions, the functions
coshx and sinhx satisfy the algebraic relation

cosh2 x− sinh2 x = 1, (3.23)

suggesting the name “hyperbolic.” We ask you to verify Eq. (3.23) in Problem 3.63
(Fig. 3.33).

The following addition laws can be deduced from the addition law for the expo-
nential function, or from the differential equation f ′′ − f = 0, as we ask you to try
in Problem 3.68:

cosh(x+ y) = coshxcoshy+ sinhxsinhy,

sinh(x+ y) = sinhxcoshy+ coshxsinhy. (3.24)

Formulas (3.21), (3.23), and (3.24) are very similar to corresponding formulas
for sine and cosine; they differ only by a minus sign in Eqs. (3.21) and (3.23). This
indicates a deep connection between the trigonometric functions and the exponential
function. The nature of this deep connection will be explored in Chap. 9.



3.4 Derivatives of the Trigonometric Functions 163

2 2

y

x

x  −y   =1

Fig. 3.33 For each t , the point (cosh t, sinht) lies on the hyperbola x2 − y2 = 1

Problems

3.52. Find the derivatives of the following functions.

(a) (cosx)′
(b) (cos(2x))′
(c) (cos2 x)′

3.53. Find the derivatives of the following functions.

(a) log |sinx|
(b) etan−1 x

(c) tan−1(5x2)
(d) log(e2x + 1)
(e) e(logx)(cosx)

3.54. Find the derivatives of the following functions.

(a) log | tanx|
(b) tan−1(e2x)
(c) (ekx)2

(d) 1+ sin2 x
(e) 1− cos2 x

3.55. Use the product and quotient rules and your knowledge of sin′ and cos′ to
prove

(a) (secx)′ =
(

1
cosx

)′
= secx tanx

(b) (cscx)′ =
(

1
sinx

)′
=−cscxcotx
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(c) (cotx)′ =
(

sinx
cosx

)′
=−csc2 x

3.56. The periodicity of cost follows from Theorem 3.14 and the differential equa-
tion f ′′+ f = 0:

(a) Show that the function f (t) = cos(t + 2π) satisfies the equation.
(b) Using the values cos(2π) = 1 and sin(2π) = 0, show that cos(t + 2π) = cost.

3.57. Determine the function y(x) satisfying y′′+ y = 0, y(0) =−2, and y′(0) = 3.

3.58. The angle between two curves is the angle between their tangents at the point
of intersection. If the slopes are m1 and m2, then the angle of intersection θ is

θ = tan−1
(

m2 −m1

1+m1m2

)
.

(a) Use Theorem 3.15 to derive the formula for θ .
(b) Find the angles at which the graphs of y = x3 + 1 and y = x3 + x2 intersect.

3.59. Derive the derivatives for additional inverse trigonometric functions.

(a) Give a description of the inverse secant function sec−1 similar to our presenta-

tion of tan−1. Explain why secx is invertible for 0 ≤ x <
π
2

and for
π
2
< x ≤ π

and sketch the graph of sec−1 y, |y|> 1. Then show that

(sec−1 y)′ =
1

|y|
√

y2 − 1
, (|y|> 1).

(b) Use the equation sin−1 x+ cos−1 x =
π
2

to find (cos−1 x)′.

(c) Use the equation sec−1 x+ csc−1 x =
π
2

to find (csc−1 x)′.

(d) Use the equation tan−1 x+ tan−1 (1
x

)
=

π
2

to find

(
tan−1 1

x

)′
. Compare your

answer to the answer you would obtain using the chain rule.

3.60. Evaluate or simplify the following.

(a) cosh(log2)

(b)
d
dt

(
cosh(6t)

)
(c) cosh2(5t)− sinh2(5t)
(d) cosh t + sinht
(e) sinhx+ sinh(−x)

3.61. Derive the formulas sinh′ x = coshx and cosh′ x = sinhx from the definitions
of cosh and sinh.
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3.62. Verify that at x = 0, the functions coshx and 1+
1
2

x2 and their first two deriva-

tives are equal. (See Fig. 3.32.)

3.63. Verify cosh2 x− sinh2 x = 1 using the definitions of cosh and sinh.

3.64. Use the definitions

tanht =
sinh t
cosh t

=
et − e−t

et + e−t , secht =
1

cosh t
=

2
et + e−t

to verify that
tanh ′t = sech2t = 1− tanh2t.

3.65. Suppose y is a differentiable function of x and that

y+ y5 + siny = 3x2 − 3.

(a) Verify that the point (x,y) = (1,0) satisfies this equation.

(b) Explain why
dy
dx

+ 5y4 dy
dx

+ cosy
dy
dx

= 6x.

(c) Use the result of part (b) to find
dy
dx

when x = 1, y = 0.

(d) Sketch the line tangent to the curve at (1,0).
(e) Estimate y(1.01).

3.66. The function sinhx is increasing, so it has an inverse.

(a) Derive the formula
sinh−1 y = log

(
y+

√
1+ y2

)

by writing first
ex − e−x

2
= y as (ex)2−1= 2yex, and then treating this expression

as a quadratic equation in ex.

(b) Deduce that
(

sinh−1 )′y = 1√
1+ y2

.

3.67. Determine the function y(x) having y′′ − y = 0, y(0) =−2, and y′(0) = 3.

3.68. Use a method similar to the proof of Theorem 3.15 to prove the addition law

cosh(x+ y) = cosh(x)cosh(y)+ sinh(x)sinh(y).

Differentiate the result with respect to x to deduce the addition law

sinh(x+ y) = sinh(x)cosh(y)+ cosh(x)sinh(y).

Use the two addition laws to prove that

tanh(x+ y) =
tanhx+ tanhy

1+ tanhx tanhy
,

where the hyperbolic tangent function tanh is defined in Problem 3.64.



166 3 The Derivative and Differentiation

3.5 Derivatives of Power Series

We saw in Chap. 2 that uniform convergence of a sequence of functions interacts
well with continuity, that is, if a sequence of continuous functions fn converges
uniformly to f , then f is continuous. Now we ask a similar question about differ-
entiability: If the fn are differentiable, do the f ′n converge to f ′? Unfortunately, in
general the answer to these questions is no. Here is an example.

Example 3.37. Let fn(x) =
sinnx

n1/2
. Since −n−1/2 ≤ fn(x) ≤ n−1/2, the limit

lim
n→∞

fn(x) = f (x) is equal to 0 for all x. In fact, | fn(x)| ≤ n−1/2 shows that fn

converges uniformly to f . Note that f ′(x) = 0. Now f ′n(x) = n1/2 cosnx, and for
x = 2π/n, we see that f ′n(x) = n1/2 does not tend to 0. So f ′n(x) does not even
converge pointwise to f ′(x). Thus

(
lim
n→∞

fn(x)
)′ 
= lim

n→∞
f ′n(x).

However, we are in luck if we restrict our attention to power series. For simplicity,
we consider the case that the center of the power series is a = 0.

Theorem 3.17. Term-by-term differentiation. If the power series

f (x) =
∞

∑
n=0

anxn

converges on −R < x < R, then f is differentiable on (−R,R) and

f ′(x) =
∞

∑
n=1

nanxn−1.

Proof. Let x be in (−R,R) and choose δ > 0 small enough that |x|+ δ is also in

(−R,R). According to Theorem 2.13,
∞

∑
n=0

|an(|x|+ δ )n| converges. We ask you in

Problem 3.72 to verify that for n large enough,

|nxn−1| ≤ (|x|+ δ )n.
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Therefore, for n large enough, |nanxn−1| ≤ |an(|x|+ δ )n|, and so
∞

∑
n=1

|nanxn−1| con-

verges by comparison with
∞

∑
n=0

|an(|x|+ δ )n|. We conclude that

g(x) =
∞

∑
n=1

nanxn−1, −R < x < R,

converges.
Next we show that f is differentiable at each x in (−R,R) and that f ′(x) = g(x).

We need to show that the difference quotient of f tends to g:

∣∣∣∣ f (x+ h)− f (x)− g(x)h
h

∣∣∣∣=
∣∣∣∣∣

∞

∑
n=1

an(x+ h)n − anxn − nanxn−1h
h

∣∣∣∣∣
≤ 1

|h|
∞

∑
n=1

|an||(x+ h)n − xn − nxn−1h|.

The next step in the proof was written up by R. Výborny in the American Mathemat-
ical Monthly, 1987, and we guide you through the details in Problem 3.71. Let H be

chosen such that 0 < |h|< H and |x|+H is in (−R,R). Then K =
∞

∑
n=0

|an(|x|+H)n|
converges and is positive. By the binomial theorem and some algebra, you can show
in Problem 3.71 that

|(x+ h)n − xn − nxn−1h| ≤ |h|2
|H|2 (|x|+H)n.

Using this result, we get

∣∣∣∣ f (x+ h)− f (x)− g(x)h
h

∣∣∣∣≤ 1
|h|

|h|2
|H|2

∞

∑
n=0

|an(|x|+H)n|= |h| K
|H|2 .

As h tends to 0, the right-hand side tends to zero, so the left-hand side tends to 0 and
f ′(x) = g(x). ��

Example 3.38. To find the sum of the series
∞

∑
n=0

n(n− 1)
2n , notice that it is f ′′

( 1
2

)
,

where

f (x) =
∞

∑
n=0

xn =
1

1− x
, f ′(x) =

∞

∑
n=1

nxn−1, f ′′(x) =
∞

∑
n=2

n(n− 1)xn−2 =
2

(1− x)3 .

Therefore,
∞

∑
n=0

n(n− 1)
2n =

2

(1− 1
2)

3
= 16.
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Example 3.39. f (x) =
∞

∑
n=0

xn

n!
converges for all x. According to Theorem 3.17,

f ′(x) =
∞

∑
n=1

n
xn−1

n!
=

∞

∑
n=1

xn−1

(n− 1)!
=

∞

∑
n=0

xn

n!
,

so f is its own derivative. We saw in Theorem 3.11 that the only functions that
satisfy y′ = y are of the form y = kex. Since f (0) = 1, f (x) = ex. In Sect. 4.3a,

we will show by a different argument that
∞

∑
n=0

xn

n!
= ex.

Example 3.40. Let f (x) = x− x3

3!
+

x5

5!
+ · · · =

∞

∑
n=0

(−1)n x2n+1

(2n+ 1)!
, which con-

verges for all x. According to Theorem 3.17,

f ′(x) = 1− x2

2!
+

x4

4!
−·· · and f ′′(x) =−x+

x3

3!
−·· ·=− f (x).

In Theorem 3.14 of Sect. 3.4b, we have shown that a function that satisfies
f ′′ = − f is of the form f (x) = ucosx+ vsinx for some numbers u and v. In
Problem 3.69, we ask you to determine u and v. In Sect. 4.3a, we will show by a
different argument that f (x) = sinx and f ′(x) = cosx.

Problems

3.69. Find the numbers u and v for which x− x3

3!
+

x5

5!
−·· ·= ucosx+ vsinx.

3.70. Use the technique demonstrated in Example 3.38 to evaluate the following
series.

(a)
∞

∑
n=1

n
2n

(b)
∞

∑
n=1

n
2n−1

(c)
∞

∑
n=1

n2

2n−1

3.71. Explain the following steps that are used in the differentiation of power series.

(a) (x+ h)n − xn − nxn−1h =

(
n
2

)
xn−2h2 +

(
n
3

)
xn−3h3 + · · ·+ hn.
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(b) Let 0 < |h|< H. Then

|(x+h)n−xn−nxn−1h| ≤
(

n
2

)
|x|n−2 |h|2

H2 H2+

(
n
3

)
|x|n−3 |h|3

H3 H3+ · · ·+ |h|n
Hn Hn.

(c) Therefore

|(x+ h)n − xn − nxn−1h| ≤ |h|2
H2

((
n
2

)
|x|n−2H2 +

(
n
3

)
|x|n−3H3 + · · ·+Hn

)
.

(d) The last expression in part (c) is less than or equal to
|h|2
H2 (|x|+H)n.

3.72. Explain why for n large enough, |nxn−1| ≤ (|x|+ δ )n.
Hint: You will need the limit of n1/n from Problem 1.53.

3.73. Differentiate the geometric series to show that
∞

∑
n=1

nxn−1 =
( ∞

∑
n=0

xn)2
. For what

numbers x does this hold?



Chapter 4
The Theory of Differentiable Functions

Abstract In this chapter, we put the derivative to work in analyzing functions. We
will see how to find optimal values of functions and how to construct polynomial
approximations to the function itself.

4.1 The Mean Value Theorem

At the beginning of Chap. 3, we posed a question about traveling with a broken
speedometer: “Is there any way of determining the speed of the car from readings
on the odometer?” In answering the question, we were led to the concept of the
derivative of f at a, f ′(a), the instantaneous rate of change in f at a. Next we exam-
ine implications of the derivative. The mean value theorem for derivatives provides
an important link between the derivative of f on an interval and the behavior of f
over the interval. The mean value theorem says that if the distance that we traveled
between 2:00 p.m. and 4:00 p.m. is 90 miles, then there must be at least one point in
time when we traveled at exactly 45 mph. The conclusion that the average velocity
over an interval must be equal to the instantaneous velocity at some point appears
to be just common sense, but some of the most commonsensible theorems require
somewhat sophisticated proofs. So it is with the mean value theorem, which we now
state precisely.

Theorem 4.1. Mean value theorem. Suppose that a function f is continuous
on the closed interval [a,b] and differentiable on the open interval (a,b). Then
there exists a number c in the interval (a,b) where

f ′(c) =
f (b)− f (a)

b− a
.

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 4, © Springer Science+Business Media New York 2014
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172 4 The Theory of Differentiable Functions

The theorem has an interesting geometric interpretation: Given points (a, f (a))
and (b, f (b)) on the graph, there is a point between them, (c, f (c)), at which the
tangent is parallel to the secant through (a, f (a)) and (b, f (b)) (Fig. 4.1).

cc1 2 c3

f(x)

ba

x

Fig. 4.1 Move the secant vertically as far as possible without breaking contact with the graph

To see how such a point c may be found, take a duplicate copy of the secant line
and raise or lower it vertically to the point at which it loses contact with the graph.
We notice two things about this point. First: that it occurs at a point (c, f (c)) on the

graph of f that is farthest from the secant line. Second: that f ′(c) =
f (b)− f (a)

b− a
.

This suggests the key observation in the proof of the mean value theorem: that we
find the desired point c by finding the point on the graph that is farthest from the
secant line. The proof of the mean value theorem relies on the following result,
which is important enough to present separately as a lemma.

Lemma 4.1. Suppose a function f is defined on an open interval (a,b) and
reaches its maximum or minimum at c. If f ′(c) exists, then f ′(c) = 0.

Proof. We show that f ′(c) = 0 by eliminating the possibilities that it is positive or

negative. Suppose that f ′(c) > 0. Since the limit of
f (c+ h)− f (c)

h
as h tends to

0 exists and is positive, it follows that for h small enough,
f (c+ h)− f (c)

h
is also

positive. This implies that for all h small enough and positive,

f (c+ h)> f (c).

But for h small enough, c+h belongs to (a,b), so that the above inequality violates
the assumption that f (c) is the maximum of f on (a,b). Therefore, it is not possible
that f ′(c)> 0.

Similarly, we show that f ′(c)< 0 is not possible. Suppose that f ′(c) is negative.

Then for all small h,
f (c+ h)− f (c)

h
is also negative. Taking small negative h, then

the numerator f (c+ h)− f (c) is positive, c+ h is in (a,b), and

f (c+ h)> f (c).
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This contradicts the assumption that f (c) is a maximum.
So only f ′(c) = 0 is consistent with f achieving its maximum at c. A similar

argument shows that if the minimum of f on (a,b) occurs at c, then f ′(c) = 0. ��
Now we are ready to prove the mean value theorem.

Proof. Let �(x) = f (a)+
f (b)− f (a)

b− a
(x−a) be the linear function that is the secant

through (a, f (a)) and (b, f (b)). Define d to be the difference between f and �:

d(x) = f (x)− �(x) = f (x)− (
f (a)+

f (b)− f (a)
b− a

(x− a)
)
.

Since f (x) and �(x) have the same values at the endpoints, d(x) is zero at the end-
points a and b. Since both f and � are continuous on [a,b] and differentiable on
(a,b), so is d. By the extreme value theorem, Theorem 2.6, d has a maximum and a
minimum on [a,b]. We consider two possibilities. First, it may happen that both the
maximum and the minimum of d occur at the endpoints of the interval. In this case,
every d(x) is between d(a) and d(b), but both of these numbers are 0, so this would

imply that d(x) = 0 and that f (x) = �(x). In this case, f ′(x) =
f (b)− f (a)

b− a
for all

x between a and b. Thus every number c in (a,b) satisfies the requirements of the
theorem.

The other possibility is that either the maximum or the minimum of d occurs at
some point c in (a,b). Since d is differentiable on (a,b), we have by Lemma 4.1
that d′(c) = 0:

0 = d′(c) = f ′(c)− �′(c) = f ′(c)− f (b)− f (a)
b− a

.

it follows that

f ′(c) =
f (b)− f (a)

b− a
. ��

Let us see how the mean value theorem provides a way to use information about
the derivative on an interval to get information about the function.

Corollary 4.1. A function whose derivative is zero at every point of an interval
is constant on that interval.

Proof. Let a 
= b be any two points in the interval. The function is differentiable at
a and b and every point in between. So by the mean value theorem, there exists at
least one c between a and b at which f (b)− f (a) = f ′(c)(b−a). Since f ′(c) = 0 for
every c, it follows that f (a) = f (b). Since f has the same value at any two points in
the interval, it is constant. ��

If two functions have the same derivatives throughout an interval, then f ′ − g′ =
( f − g)′ = 0 and f − g is a constant function. In Chap. 3, we used this result to find
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all the solutions to the differential equations y′ = y, y′′+y = 0, and y′′ −y = 0. Here
are some additional ways to use this corollary.

Example 4.1. Suppose f is a function for which f ′(x) = 3x2. What can f be? One
possibility is x3. Therefore, f (x)− x3 has derivative zero everywhere. According
to Corollary 4.1, f (x)− x3 is a constant c. Therefore, f (x) = x3 + c.

Example 4.2. Suppose again that f is a function for which f ′(x) = 3x2, and that
we now know in addition that f (1) = 2. By the previous example, we know that
f (x) = x3 + c for some number c. Since

f (1) = 2 = 13 + c,

it follows that c = 1, and f (x) = x3 + 1 is the only function satisfying both re-
quirements.

Example 4.3. Suppose f is a function for which f ′(x) = −x−2. What can f be?
The domain of f ′ does not include 0, so two intervals to which we can apply the
corollary are x positive, and x negative.

Arguing as in Example 4.1, we conclude that f (x) =
1
x
+ a for x positive, and

f (x) =
1
x
+ b for x negative, where a and b are arbitrary numbers.

The mean value theorem also enables us to determine intervals on which a func-
tion f is increasing, or on which it is decreasing, by considering the sign of f ′.

Corollary 4.2. Criteria for Monotonicity. If f ′ > 0 on an interval then f is
increasing on that interval. If f ′ < 0 on an interval then f is decreasing on that
interval. If f ′ ≥ 0 on an interval then f is nondecreasing on that interval. If
f ′ ≤ 0 on an interval thin f is nonincreasing on that interval.

Proof. Take any two points a and b in the interval such that a < b. By the mean

value theorem, there exists a point c between a and b such that f ′(c) =
f (b)− f (a)

b− a
.

Since b > a, it follows that the sign of f (b)− f (a) is the same as the sign of f ′(c).
If f ′ > 0, then f (b)− f (a)> 0, and f is increasing. If f ′ < 0, then f (b)− f (a)< 0,
and f is decreasing. The proof for the nonstrict inequalities is analogous. ��

4.1a Using the First Derivative for Optimization

Finding Extreme Values on a Closed Interval. The next two examples show how
to apply Lemma 4.1 to find extreme values on closed intervals.
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Example 4.4. We find the largest and smallest values of

f (x) = 2x3 + 3x2 − 12x on [−4,3].

By the extreme value theorem, f must attain a maximum and a minimum on the
interval. The extreme values can occur either at the endpoints, x =−4 and x = 3,
or in (−4,3). At the endpoints, we have f (−4) =−32 and f (3) = 45. If f attains
a maximum or minimum at c in (−4,3), then by Lemma 4.1, the derivative f ′(c)
must be equal to 0. Next, we identify all points at which the derivative is 0: we
have

0 = f ′(x) = 6x2 + 6x− 12= 6(x+ 2)(x− 1)

when x =−2 or x = 1. Both of these lie in (−4,3). The possibilities for extreme
points are then

f (1) =−7, f (−2) = 20, f (−4) =−32, f (3) = 45.

The left endpoint yields the smallest value of f on −4,3, and the right endpoint
yields the largest value. See Fig. 4.2.

-40

-20

0

20

40

3-4

2x3+3x2-12x

x

Fig. 4.2 The maximum and minimum of f on [−4,3] occur at the endpoints in Example 4.4

Example 4.5. Suppose we change the domain of f (x) = 2x3 + 3x2 − 12x to
[−3,3]. Then the possibilities are

f (1) =−7, f (−2) = 20, f (−3) = 9, f (3) = 45.

The maximum is at the right endpoint, and the minimum is now at x = 1.

Example 4.6. Find the largest and smallest values of

f (x) = x2/3 on [−1,1].
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0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

x2/3

x

Fig. 4.3 The maximum occurs at both endpoints, and the minimum occurs at a point at which the
derivative does not exist, in Example 4.6

The graph of f is shown in Fig. 4.3. We note that f is continuous on [−1,1], and
so it has both a maximum and a minimum value on [−1,1]. The extreme values
can occur at the endpoints or at an interior point c in (−1,1) where f ′(c) = 0 or
where f ′(c) does not exist. The derivative f ′(x) = 2

3 x−1/3 does not exist at x = 0.
There are no points where f ′(x) = 0. So the only candidates for the maximum
and minimum are

f (−1) = 1, f (1) = 1, and f (0) = 0.

So f attains its maximum value at both endpoints and its minimum at x = 0,
where the derivative fails to exist.

Local and Global Extrema. The graph of the function f in Fig. 4.2 shows that
there may be points of interest on a graph that are not the maximum or minimum of
f , but are relative or local extrema.

Definition 4.1. Local and global extrema. A function f has a local maximum
f (c) at c if there is a positive number h such that f (x)≤ f (c) whenever c−h ≤
x ≤ c+ h. A function f has a local minimum f (c) at c if there is a positive
number h such that f (x)≥ f (c) whenever c−h≤ x≤ c+h. A function f has an
absolute, or global, maximum f (c) at c if f (x)≤ f (c) for all x in the domain of
f . A function f has an absolute, or global minimum f (c) at c if f (x) ≥ f (c)for
all x in the domain of f .

Most functions we encounter in calculus have nonzero derivatives at most points
in their domains. Points at which the derivative is zero or does not exist are called
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critical points of the function. Endpoints of the domain (if there are any) and critical
points subdivide the domain into smaller intervals on which the derivative is either
positive or negative. Next we show how the monotonicity criteria can be used to
identify points in the domain of f at which f has extreme values. This result is often
called the first derivative test.

Theorem 4.2. First derivative test. Suppose that f is continuous on an inter-
val containing c, and that f ′(x) is positive for x less than c, and negative for x
greater than c. Then f reaches its maximum on the interval at c.

A similar characterization holds for the minimum.

The proof follows from the criterion for monotonicity and the definitions of max-
imum and minimum. We ask you to write it out in Problem 4.6. Figure 4.4 shows
some examples. Whether an extremum on an interval is local or absolute depends
on whether the interval is the entire domain.

f ’ < 0 f ’ > 0

c

f ’ > 0 f ’ < 0

c

Fig. 4.4 An illustration of the first derivative test. Left: f has a maximum at c. Right: f has a
minimum

Example 4.7. Consider the quadratic function

f (x) = x2 + bx+ c.

We can rewrite this by “completing the square”:

f (x) = x2 + bx+ c=
(
x+

1
2

b
)2 − 1

4
b2 + c. (4.1)

We see at a glance that the minimum of f (x) is achieved at x = − 1
2 b. We next

show how to derive this result by calculus. First we look for critical points of
f : f ′(x) = 2x+ b is zero when x = − 1

2 b. Next, we check the sign of the first
derivative:

f ′(x)

⎧⎪⎨
⎪⎩
< 0 for x <− 1

2 b,

= 0 for x =− 1
2 b,

> 0 for x >− 1
2 b.

By the first derivative test, f achieves an absolute minimum at x =−1
2

b.
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Fig. 4.5 Example 4.8 illustrated. Three cylinders have the same surface area A = 2π , but un-
equal volumes. Top left : r = 7

8 , V = 0.6442 . . . Center : r = 2
3 , V = 1.1635 . . . Right : r = 1

4 , V =
0.7363 . . .

Example 4.8. We determine the shape of the closed cylinder that has the largest
volume among all cylinders of given surface area A.

We plan to accomplish this by expressing the volume as a function of one
variable, the radius r. Let h be the height. Then the surface area is

A = 2πr2 + 2πrh = 2πr(r+ h), (4.2)

and the volume is V = πr2h. We have expressed V as a function of two variables,
r and h, but we can eliminate one by means of the constraint (4.2). Solving for h,

we see that h =
A

2πr
− r, so that

V = f (r) = πr2( A
2πr

− r
)
=

Ar
2

−πr3, r > 0.

The derivative f ′(r) = 1
2 A− 3πr2 is zero when r = r0 =

√
A

6π
. Since f ′ > 0 for

smaller values of r, and f ′ < 0 for larger r, f has an absolute maximum at r0. To
determine the shape of this cylinder, evaluate h in terms of r0: the height of the
cylinder of largest volume is

h =
A

2πr
− r =

6πr2
0

2πr0
− r0 = 2r0.

That is, for cylinders of a given surface area, the volume is greatest when the
diameter of the cylinder equals the height. See Fig. 4.5.
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The surface area of the cylinder is proportional to the amount of material
needed to manufacture a cylindrical container. The above shape is optimal in
the sense that it encloses the largest volume for a given amount of material.
Examine the cans in the supermarket and determine which brands use the optimal
shape.

4.1b Using Calculus to Prove Inequalities

Next, we show how calculus makes it easier to derive some inequalities that we
obtained before we had calculus.

Exponential Growth. We showed in Theorem 2.10 that as x tends to infinity, the
exponential function grows faster than any power of x, in the sense that for a fixed

n,
ex

xn tends to infinity as x tends to infinity. Here is a simple calculus proof of

this fact.

Differentiate f (x) =
ex

xn . Using the product rule, we get

f ′(x) =
ex

xn − n
ex

xn+1 = f (x)− n
f (x)

x
= f (x)

x− n
x

. (4.3)

This shows that the derivative of f (x) is negative for 0 < x < n and is positive for x
greater than n. So f (x) is decreasing as x goes from 0 to n and increasing from then
on. It follows that f (x) reaches its minimum at x = n. This means that

f (x) =
ex

xn ≥ en

nn , (x > 0).

Multiply this inequality by x. It follows that

ex

xn−1 ≥ x
en

nn .

The number
en

nn is fixed by our original choice of n, so the function on the right tends

to infinity as x tends to infinity. Therefore, so does the function on the left. Since n
is arbitrary, this proves our contention.

The A-G Inequality. Recall from Sect. 1.1c that the arithmetic–geometric inequal-
ity says that for any two positive numbers a and b,

a+ b
2

− (ab)1/2 > 0, (4.4)

unless a = b. Let us see how to use calculus to obtain Eq. (4.4). Let a be the smaller
of the two numbers: a < b. Define the function f (x) to be
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f (x) =
a+ x

2
− (ax)1/2. (4.5)

Then f (b) =
a+ b

2
−(ab)1/2, f (a) is zero, and the A-G inequality can be formulated

thus:

f (b) is greater than f (a).

Since a < b, this will follow if we can show that f (x) is an increasing function
between a and b. The calculus criterion for a function to be increasing is for its
derivative to be positive. The derivative is

f ′(x) =
1
2
− 1

2
a1/2

x1/2
,

which is positive for x greater than a. This completes the proof of the A-G inequality
for two numbers.

How about three numbers? The A-G inequality for three positive numbers a, b,
and c states that

a+ b+ c
3

− (abc)1/3 > 0, (4.6)

unless all three numbers a, b, c are equal.
Rewrite Eq. (4.6) as

abc ≤
(

a+ b+ c
3

)3

and divide by c:

ab ≤ 1
c

(
a+ b+ c

3

)3

. (4.7)

Keep a and b fixed and define the function f (x) as the right side of Eq. (4.7) with c
replaced by x, where x > 0:

f (x) =
1
x

(
a+ b+ x

3

)3

. (4.8)

As x tends to 0, f (x) tends to infinity, and as x tends to infinity, f (x) tends to infinity.
Therefore, f (x) attains its absolute minimum for some x > 0. We shall use the cal-
culus criterion to find that minimum value. Differentiate f . Using the product rule
and chain rule, we get

f ′(x) =
1
x

(
a+ b+ x

3

)2

− 1
x2

(
a+ b+ x

3

)3

.
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We see that f ′(x) is zero if

x =
a+ b+ x

3
,

so the minimum occurs at x = 1
2 (a+ b). The value of f at this point is

f
(1

2
(a+ b)

)
=

2
a+ b

(
a+ b+ 1

2(a+ b)

3

)3

=

(
a+ b

2

)2

.

According to the A-G inequality for n = 2, this is greater than or equal to ab.
So at its minimum value, f (x) is not less than ab. Therefore, it is not less than
ab at any other point c. This completes the proof of the A-G inequality for three
numbers.

The A-G inequality can be proved inductively for every n by a similar argument,
and we ask you to do so in Problem 4.15.

4.1c A Generalized Mean Value Theorem

At the start of this section, we noted that the mean value theorem guarantees that
if there is an interval over which your average velocity was 30 mph, then there was
at least one moment in that interval when your velocity was exactly 30 mph. In
this section we see that the mean value theorem can be used to prove a somewhat
surprising variation: If during an interval of time you have traveled five times as far
as your friend, then there has to be at least one moment when you were traveling
exactly five times as fast as your friend.

Theorem 4.3. Generalized mean value. Suppose f and g are differentiable on
(a,b) and continuous on [a,b]. If g′(x) 
= 0 in (a,b), then there exists a point c
in (a,b) such that

f ′(c)
g′(c)

=
f (b)− f (a)
g(b)− g(a)

.

Proof. Let

H(x) =
(

f (x)− f (a)
)(

g(b)− g(a)
)− (

g(x)− g(a)
)(

f (b)− f (a)
)
.

Then H is differentiable on (a,b) and continuous on [a,b], and H(a) = H(b) = 0.
By the mean value theorem, there exists a point c in (a,b) where

0 =
H(b)−H(a)

b− a
= H ′(c) = f ′(c)

(
g(b)− g(a)

)− g′(c)
(

f (b)− f (a)
)
,
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and so f ′(c)
(
g(b)− g(a)

)
= g′(c)

(
f (b)− f (a)

)
. Since g′ 
= 0 in (a,b), neither of

g′(c),
(
g(b)− g(a)

)
is 0. To complete the proof, divide both sides by g′(c)

(
g(b)−

g(a)
)
. ��

This variation of the mean value theorem can be used to prove the following
technique (l’Hospitals’ rule) for evaluating some limits.

Theorem 4.4. Suppose lim
x→a

f (x) = 0, lim
x→a

g(x) = 0, and that lim
x→a

f ′(x)
g′(x) exists.

Then

lim
x→a

f (x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

Proof. Since lim
x→a

f ′(x)
g′(x)

exists, there is an interval around a (perhaps excluding a)

where f ′(x) and g′(x) exist and g′(x) 
= 0. Define two new functions F and G that
agree with f and g for x 
= a, and set F(a) = G(a) = 0. By Theorem 4.3 applied to
F and G, there is a point c between a and x such that

f (x)
g(x)

=
F(x)
G(x)

=
F(x)−F(a)
G(x)−G(a)

=
F ′(c)
G′(c)

=
f ′(c)
g′(c)

.

Since c is between a and x and lim
x→a

f ′(x)
g′(x)

exists, it follows that lim
x→a

f ′(x)
g′(x)

=

lim
x→a

f ′(c)
g′(c)

= lim
x→a

f (x)
g(x)

. ��

Example 4.9. The limit lim
x→1

logx
x2 − 1

satisfies lim
x→1

logx = 0 and lim
x→1

(x2 − 1) = 0,

and both logx and x2 − 1 are differentiable near 1. Therefore,

lim
x→1

logx
x2 − 1

= lim
x→1

(logx)′

(x2 − 1)′
,

provided that the last limit exists. But it does exist, because

lim
x→1

(logx)′

(x2 − 1)′
= lim

x→1

1/x
2x

=
1
2
.

Therefore, lim
x→1

logx
x2 − 1

=
1
2

. See Fig. 4.6.

Another version of this theorem may be found in Problem 4.23.
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1

1
x

x2-1

log x

Fig. 4.6 Graphs of the functions in Example 4.9. The ratio of values is equal to the ratio of slopes
as x tends to 1

Problems

4.1. Suppose f (2) = 6, and 0.4 ≤ f ′(x) ≤ 0.5 for x in [2,2.2]. Use the mean value
theorem to estimate f (2.1).

4.2. Suppose g(2) = 6 and −0.6≤ g′(x)≤−0.5 for x in [1.8,2]. Use the mean value
theorem to estimate g(1.8).

4.3. If h′(x) = 2cos(3x)− 3sin(2x), what could h(x) be? If, in addition, h(0) = 0,
what could h(x) be?

4.4. If k′(t) = 2− 2e−3t , what could k(t) be? If, in addition, k(0) = 0, what could
k(t) be?

4.5. Consider f (x) =
x

x2 + 1
.

(a) Find f ′(x).
(b) In which interval(s) does f increase?
(c) In which interval(s) does f decrease?
(d) Find the minimum value of f in [−10, 10].
(e) Find the maximum value of f in [−10, 10].

4.6. Justify the following steps to prove the first derivative test, Theorem 4.2. Sup-
pose that f ′(x) is positive for x < c and negative for x > c. We need to show that f
reaches its maximum at c.

(a) Explain why f is increasing for all x < c, and why f is decreasing for all x > c.
(b) Use the continuity of f at c and the fact that f is increasing when x < c to explain

why f (x) cannot be greater than f (c) for any x < c. Similarly explain why f (x)
cannot be greater than f (c) for any x > c.

(c) Explain why f (c) is a maximum on S.
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(d) Revise the argument to show that if f ′(x) is negative for all x less than c and
f ′(x) is positive for all x greater than c, then f reaches its minimum at f (c).

4.7. Rework Problem 1.10 using calculus.

4.8. Find the maximum and minimum values of the function

f (x) = 2x3 − 3x2 − 12x+ 8

on each of the following intervals.

(a) [−2.5,4]
(b) [−2,3]
(c) [−2.25,3.75]

x

y

Fig. 4.7 In Problem 4.9 we find a slope to fit given data

4.9. Suppose an experiment is carried out to determine the value of the constant m
in the equation

y = mx

relating two physical quantities. Let (x1,y1), (x2,y2), . . . ,(xn,yn) be the measured
values. Find the value of m, in terms of the xi and yi, that minimizes E , the sum of
the squares of the errors between the observed measurements and the linear function
y = mx:

E = (y1 −mx1)
2 +(y2 −mx2)

2 + · · ·+(yn −mxn)
2.

See Fig. 4.7.

4.10. Consider an open cardboard box whose bottom is a square of edge length x,
and whose height is y. The volume V and surface area S of the box are given by

V = x2y, S = x2 + 4xy.

Among all boxes with given volume, find the one with smallest surface area. Show
that this box is squat, i.e., y < x.

4.11. Consider a particle of unit mass moving on a number line whose position at
time t is given by x(t) = 3t − t2. Find the time when the particle’s position x is
maximal.
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4.12. Find the point on the graph of y = 1
2 x2 closest to the point (6,0).

4.13. What is the largest amount by which a positive number can exceed its cube?

4.14. Find the positive number x such that the sum of x and its reciprocal is as small
as possible,

(a) Using calculus, and
(b) By the A-G inequality.

4.15. Use calculus to prove, by induction, the A-G inequality for n positive numbers.

4.16. Let w1, . . . ,wn be positive numbers whose sum is 1, and a1, . . . ,an any positive
numbers. Prove an extension of the A-G inequality:

aw1
1 aw2

2 · · ·awn
n ≤ w1a1 +w2a2 + · · ·+wnan,

with equality only in the case a1 = a2 = · · · = an. Try an inductive proof with one
of the a’s as the variable.

4.17. Suppose g′(x) ≤ h′(x) for 0 < x and g(0) = h(0). Prove that g(x) ≤ h(x) for
0 < x.

4.18. Here we apply Problem 4.17 to find polynomial bounds for the cosine and
sine.

(a) Show that g′(x)≤ h′(x) for g(x) = sinx and h(x) = x and deduce that

sinx ≤ x (x > 0). (4.9)

(b) Rewrite Eq. (4.9) as
(− cosx

)′ ≤ (x2

2
− 1

)′
and deduce that 1− x2

2
≤ cosx.

(c) Continue along these lines to derive

1− x2

2
≤ cosx ≤ 1− x2

2
+

x4

4!
,

and in particular, estimate cos(0.2) with a tolerance of 0.001.
(d) Extend the previous argument to derive

1− x2

2
+

x4

4!
− x6

6!
≤ cosx ≤ 1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
.

4.19. Denote the exponential function ex by e(x). Use e′ = e and Problem 4.17 to
show the following.

(a) For x > 0, 1 < e(x).
(b) 1 < e′(x) for 0 < x, and deduce that 1+ x < e(x).
(c) Rewrite this as 1+ x < e′(x), and deduce that 1+ x+ 1

2 x2 < e(x) for 0 < x.

(d) For all n and all x > 0, 1+ x+
x2

2
+ · · ·+ xn

n!
< e(x).
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4.20. Evaluate lim
x→0

sinx
x

, first using the mean value theorem to write sinx = sinx−
sin0 = cos(c)x, and then using Theorem 4.4.

4.21. Evaluate lim
x→0

x
ex − 1

, first by recognizing the quotient as a reciprocal deriva-

tive, and then using Theorem 4.4.

4.22. Evaluate lim
x→0

sinx− xcosx
x3 using Theorem 4.4 twice.

4.23. Substitute f (x) = F(1/x) and g(x) = G(1/x) into Theorem 4.4 to prove the
following version of Theorem 4.4.

Suppose lim
y→∞

F(y) = 0, lim
y→∞

G(y) = 0, and that lim
y→∞

F ′(y)
G′(y) exists. Then

lim
y→∞

F(y)
G(y)

= lim
y→∞

F ′(y)
G′(y)

.

You will need to take a = 0 in the theorem. Explain how to extend f and g as odd
functions, so that the theorem can be applied.

4.24. Use the result of Problem 4.23 and the exponential growth theorem where
needed to evaluate the following limits.

(a) lim
y→∞

e−1/y

(b) lim
y→∞

y2e−y

(c) lim
y→∞

e−y

1− e−1/y

4.2 Higher Derivatives

Many of the functions f we have presented in examples so far have the property that
their derivatives f ′ also turned out to be differentiable. Such functions are called
twice differentiable. Similarly, we define a three-times differentiable function f as
one whose second derivative is differentiable.

Definition 4.2. A function f is called n times differentiable at x if its (n− 1)st
derivative is differentiable at x. The resulting function is called the nth derivative
of f and is denoted by

f (n) or
dn f
dxn .
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Definition 4.3. A function f is called continuously differentiable on an interval
if f ′ exists and is continuous on the interval. A function f is n times continu-
ously differentiable if the nth derivative exists and is continuous on the interval.

As we saw in Chap. 3, if x(t) denotes the position of a particle at time t, then

the rate of change of position
dx
dt

is the velocity v of the particle. The derivative of

velocity is called acceleration. Thus

acceleration =
dv
dt

=
d2x
dt2 ;

in words, acceleration is the second derivative of position.
The geometric interpretation of the second derivative is no less interesting than

the physical interpretation. We note that a linear function f (x) = mx+b has second
derivative zero. Therefore, a function with nonzero second derivative is not linear.
Since a linear function can be characterized as one whose graph is a straight line, it
follows that if f ′′ 
= 0, then the graph of f is not flat but curved. This fact suggests
that the size of f ′′(x) measures in some sense the deviation of the graph of f from a
straight line at the point x.

f

r−r 0

r

Fig. 4.8 The second derivative illustrated: large r corresponds to small curvature. The dotted arc
has a larger value of r. See Example 4.10

Example 4.10. The graph of the function

f (x) = r−
√

r2 − x2, −r < x < r,

is a semicircle of radius r; see Fig. 4.8. The larger the value of r, the closer this
semicircle lies to the x-axis, for values of x in a fixed interval about the origin, as
illustrated in Fig. 4.8. We have

f ′(x) =
x√

r2 − x2
, f ′′(x) =

1√
r2 − x2

+
x2

(r2 − x2)3/2
=

r2

(r2 − x2)3/2
.
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The value of f ′′ at x = 0 is f ′′(0) =
r2

(r2)3/2
=

1
r
. The larger r is, the smaller is

the value of f ′′(0), so in this case, the smallness of f ′′(0) indeed indicates that
the graph of f is close to a straight line.

What Does f ′′ Tell Us About f ? The goal of this section is to explain the fol-
lowing result: over a short interval, every twice continuously differentiable function
can be exceedingly well approximated by a quadratic polynomial. Note the simpli-
fication implied here, that a complicated function can sometimes be replaced by a
simple one.

We shall use the monotonicity criterion to relate knowledge about f ′′ to knowl-
edge about f . For example, if f ′′ > 0, then by monotonicity, f ′ is increasing. Graph-
ically, this means that the slopes of the tangents to the graph of f are increasing
as you move from left to right. Similarly, if f ′′ < 0, then f ′ is decreasing, and the
slopes of the tangents to the graph of f are decreasing as you move from left to right.
In Fig. 4.9, some quick sketches of tangent lines with increasing (and decreasing)
slopes suggest that the graph of the underlying function opens upward if f ′′ > 0,
and that it opens downward if f ′′ < 0.

Rather than trust a few sketches, we shall investigate this question: if we have
information about f ′′, what can we say about f itself? Suppose we have an estimate
for f ′′,

m ≤ f ′′(x)≤ M on [a,b]. (4.10)

Fig. 4.9 Left: f ′′ > 0 and increasing slopes. Right: f ′′ < 0 and decreasing slopes

The inequality on the right is equivalent to M − f ′′(x) ≥ 0. Note that M − f ′′(x)
is the derivative of Mx− f ′(x). So by the monotonicity criterion, Mx− f ′(x) is a
nondecreasing function, and we conclude that

Ma− f ′(a)≤ Mx− f ′(x) on [a,b].

This inequality can be rewritten as follows:

f ′(x)− f ′(a)≤ M(x− a) on [a,b].

Note that the function on left-hand side is the derivative of f (x)− x f ′(a), and the
function on the right-hand side is the derivative of 1

2 M(x− a)2. Taking their dif-
ference, again by the monotonicity criterion it follows that 1

2 M(x− a)2 − ( f (x)−
x f ′(a)) is a nondecreasing function. Since a is less than or equal to x, we have
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1
2

M(a− a)2 − ( f (a)− a f ′(a))≤ M
2
(x− a)2 − ( f (x)− x f ′(a)).

Rewrite this last inequality by taking the term f (x) to the left-hand side and all other
terms to the right-hand side, giving

f (x) ≤ f (a)+ f ′(a)(x− a)+
M
2
(x− a)2.

Remark. This is the first step in our stated goal, since the function on the right-hand
side is a quadratic polynomial.

By an analogous argument we can deduce from m ≤ f ′′(x) and repeated uses of
monotonicity that

f (a)+ f ′(a)(x− a)+
m
2
(x− a)2 ≤ f (x)

for all x in [a,b]. We can combine the two inequalities into one statement. If f ′′(x)
is bounded below by m and above by M on [a,b], then f itself is bounded below and
above by two quadratic polynomials:

f (a)+ f ′(a)(x−a)+
m
2
(x−a)2 ≤ f (x)≤ f (a)+ f ′(a)(x−a)+

M
2
(x−a)2. (4.11)

The upper and lower bounds differ inasmuch as one contains the constant m and the
other M. It follows that there is a number H between m and M such that

f (x) = f (a)+ f ′(a)(x− a)+
H
2
(x− a)2. (4.12)

Suppose next that f ′′ is continuous on [a,b] and that m and M are the minimum and
maximum values of f ′′ on the interval. Take x = b in Eq. (4.12). It follows again
from the intermediate value theorem that there is a point c between a and b such
that

f (b) = f (a)+ f ′(a)(b− a)+
1
2

f ′′(c)(b− a)2.

This equation provides a rich source of observations about f , and we obtain the
following generalization of the mean value theorem:

Theorem 4.5. Linear approximation. Let f be twice continuously differen-
tiable on an interval containing a and b. Then there is a point c between a and
b such that

f (b) = f (a)+ f ′(a)(b− a)+
f ′′(c)

2
(b− a)2. (4.13)

We proved the linear approximation theorem for a < b. It is also true for a > b.
The proof is outlined in Problem 4.32.
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Example 4.11. Let us use Theorem 4.5 to estimate log(1.1). Let

f (x) = log(1+x). Then f ′(x) =
1

1+ x
and f ′′(x) =− 1

(1+ x)2 . Taking a = 0 and

b = 0.1, we get f (0) = 0, f ′(0) = 1, and

log(1.1) = 0+ 1(0.1− 0)− 1
(1+ c)2

(0.1)2

2
,

where c is a number between 0 and 0.1. Since − 1
(1)2 ≤ f ′′(c) ≤ − 1

(1.1)2 , we

get

0.095 = 0.1− 0.01
2

≤ log(1.1)≤ 0.1− 1
(1.1)2

0.01
2

= 0.0958 . . . < 0.096.

See what your calculator says about the natural logarithm of 1.1.

Example 4.12. Let f (x) = log(1+ x). We approximate f by two quadratic poly-
nomials on [0,0.5]. From Example 4.11, we have f (0) = 0, f ′(0) = 1, the mini-

mum of f ′′(x) on [0,0.5] is −1, and the maximum is − 1
(1+ 0.5)2 =−4

9
. There-

fore (See Fig. 4.10),

x− x2

2
≤ log(1+ x)≤ x− 4

9
x2

2
, (0 ≤ x ≤ 0.5).

In the linear approximation theorem, suppose b is close to a. Then c is even closer
to a, and since f ′′ is continuous, f ′′(c) is close to f ′′(a). We express this by writing

f ′′(c) = f ′′(a)+ s,

-0.5

 0.5 0.1-0.1-0.5

x

Fig. 4.10 The graphs of log(1+ x) and the two quadratic polynomials of Example 4.12
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where s denotes a quantity that is small when b is close to a. Substituting this into
Eq. (4.13), we get

f (b) = f (a)+ f ′(a)(b− a)+
1
2

f ′′(a)(b− a)2+
1
2

s(b− a)2.

This formula shows that for b close to a, the first three terms on the right are a
very good approximation to f (b). Therefore, it follows from the linear approxima-
tion theorem, as we have stated, that over a short interval, every twice continu-
ously differentiable function can be exceedingly well approximated by a quadratic
polynomial.

4.2a Second Derivative Test

The linear approximation theorem, Theorem 4.5, has applications to optimization.
The next two theorems are sometimes referred to as the second derivative test for
local extrema:

Theorem 4.6. Local minimum theorem. Let f be a twice continuously differ-
entiable function on an open interval containing a, and suppose that f ′(a) = 0
and f ′′(a)> 0. Then f has a local minimum at a, i.e.,

f (a)< f (b)

for all points b 
= a sufficiently close to a.

Proof. We have f ′′(a) > 0, so by the continuity of f ′′, f ′′(x) > 0 for all x close
enough to a. Choose b so close to a that f ′′(c) > 0 for all c between a and b.
According to the linear approximation theorem, since f ′(a) = 0 and f ′′(c) > 0,
we get

f (b) = f (a)+
f ′′(c)

2
(b− a)2 > f (a),

as asserted. ��
We suggest a way for you to prove the analogous maximum theorem in

Problem 4.38:

Theorem 4.7. Local maximum theorem. Let f be a twice continuously differ-
entiable function defined on an open interval containing a, and suppose that
f ′(a) = 0 and f ′′(a)< 0. Then f has a local maximum at a, i.e.,

f (a)> f (b)

for all points b 
= a sufficiently close to a.
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0.5

-0.5

 1-1

f(x) = x3-x5

x

Fig. 4.11 A local maximum and a local minimum, in Example 4.13

Example 4.13. The polynomial f (x) = x3 − x5 has f ′(x) = x2(3− 5x2), which is

0 at three numbers x1 = −
√

3
5 , x2 = 0, and x3 =

√
3
5 . The second derivative is

f ′′(x) = 6x− 20x3 = 2x(3− 10x2). So

f ′′(x1) =−2

√
3
5
(3− 6)> 0, f ′′(x2) = 0, f ′′(x3) = 2

√
3
5
(3− 6)< 0.

We conclude that f has a local minimum at x1 and a local maximum at x3. How-
ever, f ′′(x2) = 0 does not give any information about the possibility of local
extrema at x2. The graph of f is drawn in Fig. 4.11.

4.2b Convex Functions

We give further applications of the linear approximation theorem.
Suppose f ′′ is nonnegative in an interval containing a and b. Then the last term

on the right in Eq. (4.13) is nonnegative, so omitting it yields the inequality

f (b)≥ f (a)+ f ′(a)(b− a).

This inequality has a striking geometric interpretation. We notice that the quantity
on the right is the value at b of the linear function

l(x) = f (a)+ f ′(a)(x− a).

The graph of this linear function is the line tangent to the graph of f at (a, f (a)). So

f (b)≥ f (a)+ f ′(a)(b− a)

asserts that the graph of f lies above its tangent lines.
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Definition 4.4. A function whose graph lies above its tangents is called convex.

In this language, the inequality says that every function whose second derivative
is positive is convex. Convex functions have another interesting property:

Theorem 4.8. Convexity theorem. Let f be a twice continuously differentiable
function on [a,b], and suppose that f ′′ > 0 there. Then for every x satisfying
a < x < b,

f (x) < f (b)
x− a
b− a

+ f (a)
b− x
b− a

. (4.14)

This theorem has an illuminating geometric interpretation. Denote by �(x) the
function on the right-hand side of inequality (4.14). Then � is a linear function whose
values at x = a and at x = b agree with the values of f at these points. Thus the
graph of � is the secant line of f on [a,b]. Therefore, inequality (4.14) says that
the graph of a convex function f on an interval [a,b] lies below the secant line
(Fig. 4.12).

x

ba0

f

Fig. 4.12 The graph of a convex function lies above its tangent lines and below the secant on [a,b]

Proof. We wish to show that f (x)− �(x) ≤ 0 on [a,b]. According to the extreme
value theorem, Theorem 2.6, f − � reaches a maximum at some point c in [a,b].
The point c could be either at an endpoint or in (a,b). We show now that c is not in
(a,b). For if it were, then the first derivative of f − � would be zero at c. The second
derivative of f (x)− �(x) at c is given by

f ′′(c)− �′′(c) = f ′′(c)− 0,

since � is linear. We have assumed that f ′′ is positive. According to the local
minimum theorem, Theorem 4.6, the function f − � has a local minimum at c.
This shows that the point c where the maximum occurs cannot be in the interior
of [a,b].

The only alternative remaining is that c is one of the endpoints. At an endpoint,
f and � have the same value. This shows that the maximum of f − � is 0, and that at
all points x of [a,b] other than the endpoints,

f (x)− �(x)< 0.



194 4 The Theory of Differentiable Functions

This completes the proof of the convexity theorem. ��

Definition 4.5. A function whose graph lies below its tangent is called concave.

The following analogues of results for convex functions hold: every function
whose second derivative is negative is concave, and the graph of a concave function
lies above its secant (Fig. 4.13).

x

ba0

f

Fig. 4.13 The graph of a concave function f lies above the secant on [a,b], and below each of the
tangent lines

Example 4.14. We have seen in Example 4.11 that the second derivative of the
function log(1+ x) is negative. It follows that log(1+ x) is a concave function.

Problems

4.25. A particle has position x = f (t), and at time t = 0, the position and velocity
are 0 and 3, respectively.. The acceleration is between 9.8 and 9.81 for all t. Give
bounds on f (t).

4.26. Recall from the chain rule that if f and g are differentiable inverse functions,
f (g(x)) = x, then

f ′(g(x)) =
1

g′(x)
.

Find a relation for the second derivatives.

4.27. Find all local extreme values of f (x) = 2x3 − 3x2 + 12x. On what intervals is
f convex? concave? Sketch a graph of f based on this information.
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4.28. Over which intervals are the following functions convex?

(a) f (x) = 5x4 − 3x3 + x2 − 1

(b) f (x) =
x+ 1
x− 1

(c) f (x) =
√

x

(d) f (x) =
1√
x

(e) f (x) =
√

1− x2

(f) f (x) = e−x2

4.29. Are the linear approximations to f (x) = x2−3x+5 above or below the graph?

4.30. Is the secant line for f (x) =−x2 − 3x+ 5 on [0,7] above or below the graph?

4.31. Find an interval (0,b) where e−1/x is convex. Sketch the graph on (0,∞).

4.32. We proved the linear approximation theorem, Theorem 4.5, for a twice con-
tinuously differentiable function f on an interval containing a and b, where a < b,

f (b) = f (a)+ f ′(a)(b− a)+
f ′′(c)

2
(b− a)2. (4.15)

In this problem we show how the case a > b follows from this. Given f ′′ continuous
on [a,b], define the function g as g(x) = f (a+ b− x).

(a) Show that g is defined in the interval [a,b].
(b) Show that g′′ is continuous in [a,b].
(c) Show that

g(a) = f (b), g′(a) =− f ′(b), g′′(a) = f ′′(b),

g(b) = f (a), g′(b) =− f ′(a), g′′(b) = f ′′(a).

(d) Write equation (4.15) for the function g. Then use results from part (c) to con-
clude that Eq. (4.15) holds for b < a.

4.33. Is e f convex when f is convex?

4.34. Give an example of convex functions f and g for which f ◦ g is not convex.

4.35. Show, using the linear approximation theorem, that for f ′′ continuous on an
interval containing a and b,

f (a)+ f (b)
2

differs from f
(a+ b

2

)
by less than

M
8
(b− a)2,

where M is an upper bound for | f ′′| on [a,b].
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4.36. Suppose f ′′ is continuous on an interval that contains a and b. Use the linear
approximation theorem to explain why

f (b)− f (a)
b− a

=
f ′(b)+ f ′(a)

2
+ s(b− a),

where s is small when b is close to a.

4.37. Let f have continuous first and second derivatives in a < x < b. Prove that

(a) f ′(x) = lim
h→0

f (x+ h)− f (x− h)
2h

(b) f ′′(x) = lim
h→0

f (x+ h)− 2 f (x)+ f (x− h)
h2

4.38. Prove Theorem 4.7 by applying Theorem 4.6 to the function − f .

2−5 5−3

1

−1

Fig. 4.14 The graph of f in Problems 4.39 and 4.40

4.39. The graph of a function f is given on [−5,5] in Fig. 4.14. Use the graph to
find, approximately, the intervals on which f ′ > 0, f ′ < 0, f ′′ > 0, f ′′ < 0.

4.40. Use approximations (see Problem 4.37)

f ′(x)≈ f (x+ h)− f (x− h)
2h

, f ′′(x)≈ f (x+ h)− 2 f (x)+ f (x− h)
h2 ,

with h = 1, to estimate f ′(−1) and f ′′(0.5) for the function graphed in Fig. 4.14.

4.41. Let f (x) = e−
x2
2 for all x and g(x) = e−1/x for x > 0.

(a) Use your calculator or computer to graph f and g.
(b) Use calculus to find the intervals on which f is increasing, decreasing, convex,

concave, and locate any extreme values or critical points.
(c) Use calculus to find the intervals on which g is increasing, decreasing, convex,

concave.
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4.3 Taylor’s Theorem

We saw in Sect. 4.2 that bounds on the second derivative, m ≤ f ′′(x) ≤ M in [a,b],
enabled us to find two quadratic polynomial functions that bound f :

f (a)+ f ′(a)(x− a)+
m
2
(x− a)2 ≤ f (x) ≤ f (a)+ f ′(a)(x− a)+

M
2
(x− a)2.

Now we are ready to tackle the general problem: if we are given upper and lower
bounds for the nth derivative f (n)(x) on [a,b], find nth-degree polynomial functions
that are upper and lower bounds for f (x). Generalizing the result we obtained for
second derivatives, we surmise that the following result holds:

Theorem 4.9. Taylor’s inequality. Suppose that f is an n-times continuously
differentiable function on [a,b], and denote by m and M the minimum and max-
imum, respectively, of f (n) over [a,b]; that is,

m ≤ f (n)(x)≤ M, x in [a,b].

Then Taylor’s inequality

f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+ · · ·+ f (n−1)(a)

(n− 1)!
(x−a)n−1+

m
n!
(x−a)n

(4.16)

≤ f (x)

≤ f (a)+ f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2 + · · ·+ f (n−1)(a)

(n−1)!
(x−a)n−1 +

M
n!

(x−a)n

holds for all x in [a,b].

The polynomials on the left and right sides of Taylor’s inequality (4.16) are
identical up through the next-to-last terms. We call the identical parts Taylor
polynomials.

Definition 4.6. If f is n times differentiable at a, the Taylor polynomials at a are

t0(x) = f (a)
t1(x) = f (a)+ f ′(a)(x− a)

t2(x) = f (a)+ f ′(a)(x− a)+ f ′′(a)
(x− a)2

2!· · ·
tn(x) = f (a)+ f ′(a)(x− a)+ f ′′(a)

(x− a)2

2!
+ · · ·+ f (n)(a)

(x− a)n

n!· · ·
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Proof of Theorem 4.9. We prove Taylor’s inequality for all n inductively, i.e., we
first show that it is true for n = 1, and then we show that if the result is true for any
particular number n, then it is true for n+ 1. By the mean value theorem, we know
that for some c between a and x,

f (x) = f (a)+ f ′(c)(x− a).

Since f ′ is continuous on [a,b], it attains a maximum M and minimum m on that
interval. Then since a ≤ x, it follows that

f (a)+m(x− a)≤ f (x)≤ f (a)+M(x− a), (a ≤ x ≤ b).

Thus the theorem holds for n = 1. Next, we show that if the result holds for n, then
it holds for n+ 1. Assume that Taylor’s inequality holds for every function whose
nth derivative is bounded on [a,b]. If f is (n+ 1) times continuously differentiable,
then there are bounds

m ≤ f (n+1)(x)≤ M, (a ≤ x ≤ b).

Since f (n+1) is the nth derivative of f ′, we can apply the inductive hypothesis to the
function f ′ to obtain

f ′(a)+ f ′′(a)(x−a)+ · · ·+ m
n!
(x−a)n ≤ f ′(x) ≤ f ′(a)+ f ′′(a)(x−a)+ · · ·+ M

n!
(x−a)n.

The sum on the right is the derivative of

tn(x)+
M

(n+ 1)!
(x− a)n+1.

Since
(

tn(x)+
M

(n+ 1)!
(x− a)n+1

)′
− f ′(x)≥ 0,

we see that (
tn(x)+

M
(n+ 1)!

(x− a)n+1
)
− f (x)

is a nondecreasing function on [a,b]. At x = a, the difference

(
tn(a)+

M
(n+ 1)!

(a− a)n+1
)
− f (a)

is zero. So for x > a,

0 ≤
(

tn(x)+
M

(n+ 1)!
(x− a)n+1

)
− f (x).
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It follows that

f (x) ≤ tn(x)+
M

(n+ 1)!
(x− a)n+1,

which is the right half of Taylor’s inequality. The left half follows in a similar
manner. Thus, we have shown that if Taylor’s inequality holds for n, it holds for
n+1. Since the inequality holds for n = 1, by induction it must hold for all positive
integers. ��

Example 4.15. We write Taylor’s inequality for f (x) = sinx on [0,4], where a= 0
and n = 5. The first four derivatives are

f ′(x) = cosx, f ′′(x) =−sinx, f ′′′(x) =−cosx, f ′′′′(x) = sin x.

Evaluate at a = 0: f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −1, f ′′′′(0) = 0.

Then the fourth Taylor polynomial t4(x) = x− x3

3!
. We have f (5)(x) = cosx, so

−1 ≤ f (5)(x)≤ 1 on [0,4]. Therefore,

x− x3

3!
− x5

5!
≤ sinx ≤ x− x3

3!
+

x5

5!
.

Figure 4.15 contains the graphs of the three functions.

 1

-1

 3 2 1 x

sin(x)

Fig. 4.15 Taylor’s inequality for the case in Example 4.15: x− x3

6
− x5

120
≤ sinx ≤ x− x3

6
+

x5

120
,

where 0 ≤ x ≤ 4

Example 4.16. Let us write Taylor’s inequality for f (x) = logx on the interval
[1,3], where a = 1 and n = 4:

f ′(x) =
1
x
, f ′′(x) =− 1

x2 , f ′′′(x) = 2!
1
x3 , f ′′′′(x) =−3!

1
x4 ,

f (1) = 0, f ′(1) = 1, f ′′(1) =−1, f ′′′(1) = 2,
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and since f ′′′′(x) is increasing, −3! ≤ f ′′′′(x) ≤ −3!
1
34 . According to Taylor’s

inequality (see Fig. 4.16),

(x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − 1

4
(x− 1)4

≤ logx ≤ (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − 1

344
(x− 1)4.

Just as we saw in Sect. 4.2, the upper and lower bounds in Taylor’s inequality
differ inasmuch as one contains the constant m and the other M. So, given x > a,
there is a number H between m and M such that

 2

 1

 0

-1

 3 2 1 x

log(x)

Fig. 4.16 Taylor’s inequality for logx as in Example 4.16

f (x) = tn−1(x)+H
(x− a)n

n!
.

According to the intermediate value theorem, every number H between the mini-
mum m and maximum M of the continuous function f (n) is taken on at some point c

between a and b. Now when x= b, f (b) = tn−1(b)+ f (n)(c)
(b− a)n

n!
. The difference

f (b)− tn−1(b) = f (n)(c)
(b− a)n

n!

is called the remainder. We express our results with the following theorem.

Theorem 4.10. Taylor’s formula with remainder. Let f be an n-times contin-
uously differentiable function on an interval containing a and b. Then
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f (b) = f (a)+ f ′(a)(b− a)+ · · ·+ f (n−1)(a)
(b− a)n−1

(n− 1)!
+ f (n)(c)

(b− a)n

n!
,

(4.17)
where c lies between a and b.

In the derivation of this theorem we have exploited the fact that a < b. It is not
hard to show that the theorem remains true if a > b. We ask you to do so in Prob-
lem 4.50. Here are some applications of Taylor’s formula.

Example 4.17. Let f (x) = xm, m a positive integer. Then

f (k)(x) = m(m− 1) · · ·(m− k+ 1)xm−k.

In particular, f (m)(x) = m!, and higher derivatives are 0. Therefore, according to
Taylor’s formula with b = 1+ y, a = 1, and any n ≥ m,

(1+ y)m = 1+my+
m(m− 1)

2!
y2 + · · ·+ ym =

m

∑
k=0

(
m
k

)
yk.

Example 4.17 is nothing but the binomial expansion, revealed here as a special
case of Taylor’s formula.

Taylor’s inequality

tn−1(x)+m
(x− a)n

n!
≤ f (x)≤ tn−1(x)+M

(x− a)n

n!

is an approximation to f on [a,b]. The polynomials on the left- and right-hand sides
of Taylor’s inequality differ only in the last terms. That difference is due to the
variation in the maximum and minimum value of f (n) on [a,b], which leads to the
next definition.

Definition 4.7. Denote by Cn the oscillation of f (n) on the interval [a,b], i.e.,

Cn = Mn −mn,

where Mn is the maximum, mn the minimum of f (n) over [a,b].

We derive now a useful variant of Taylor’s inequality. Taylor’s formula (4.17),

f (b) = f (a)+ f ′(a)(b− a)+ · · ·+ f (n−1)(a)
(b− a)n−1

(n− 1)!
+ f (n)(c)

(b− a)n

n!
,

differs from Taylor’s polynomial

tn(b) = f (a)+ f ′(a)(b− a)+ · · ·+ f (n−1)(a)
(b− a)n−1

(n− 1)!
+ f (n)(a)

(b− a)n

n!
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in that the last term has f (n) evaluated at c rather than a. Since f (n)(c) and f (n)(a)
differ by at most the oscillation Cn, we see that

| f (x)− tn(x)| ≤ Cn

n!
(x− a)n ≤ Cn

n!
(b− a)n for all x in [a,b]. (4.18)

Suppose the function f is infinitely differentiable, i.e., has derivatives of all orders.
Suppose further that

lim
n→∞

Cn

n!
(b− a)n = 0. (4.19)

Then as n gets larger and larger, tn(x) tends to f (x). We can state this result in the
following spectacular form.

Theorem 4.11. Taylor’s theorem. Let f be an infinitely differentiable function
on an interval [a,b]. Denote by Cn the oscillation of f (n), and suppose that

lim
n→∞

Cn

n!
(b− a)n = 0. Then f can be represented at every point of [a,b] by the

Taylor series

f (x) = lim
n→∞

tn(x) =
∞

∑
k=0

1
k!

f (k)(a)(x− a)k,

and the Taylor polynomials converge uniformly to f on [a,b]. There is an anal-
ogous theorem for the interval [b,a] when b < a.

Proof. The meaning of the infinite sum on the right is this: Form the nth Tay-
lor polynomials tn(x) of f at a and take the limit of this sequence of functions

as n tends to infinity. Since | f (x)− tn(x)| ≤ Cn

n!
(b− a)n and lim

n→∞

Cn

n!
(b− a)n = 0,

the sequence tn(x) tends to f (x) as n tends to infinity. The convergence is uni-
form on [a,b], because the estimate that we derived for | f (x)− tn(x)| does not
depend on x.

We ask you to verify the proof of the theorem in the case b < a in Problem 4.50.
��

4.3a Examples of Taylor Series

The Sine. Let f (x) = sinx and a = 0. The derivatives are

f (x) = sinx, f ′(x) = cosx, f ′′(x) =−sinx, f ′′′(x) =−cosx, f ′′′′(x) = sinx,

and so forth. So at 0,

f (0) = 0, f ′(0) = 1, f ′′(0) = 0, f ′′′(0) =−1, f ′′′′(0) = 0, f (5)(0) = 1,

etc. The nth Taylor polynomial at a = 0 for sinx is (Fig. 4.17)

tn(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ sin(n)(0)

xn

n!
,
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1

-1 8642-2-4-6-8

sin(x)

t7(x)

Fig. 4.17 Graphs of sinx and the Taylor polynomial t7(x) = x− x3

3!
+

x5

5!
− x7

7!

where the last coefficient is 0, 1, or −1, depending on n. The oscillation Cn is equal
to 2, because the sine and cosine have minimum −1 and maximum 1. Then on [0,b],

Cn
(b− a)n

n!
= 2

bn

n!
.

For any number b, the terms on the right tend to 0 as n tends to infinity by
Example 1.17. Therefore, the Taylor series for sinx at a = 0,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · , (4.20)

converges for all x in [0,b] for every b, and therefore on [0,∞). By a similar argu-
ment, sinx converges for all x in [b,0] when b < 0, and therefore on (−∞,∞).

The Logarithm. Let f (x) = logx and a = 1. As we saw in Example 4.16, the
derivatives follow a pattern,

f (x) = logx, f ′(x) = x−1, f ′′(x) =−x−2, f ′′′(x) = 2!x−3, f ′′′′(x) =−3!x−4, . . . .

At a = 1,

f (1) = 0, f ′(1) = 1, f ′′(1) =−1, f ′′′(1) = 2!, f ′′′′(1) =−3!, . . . .

The nth Taylor polynomial of logx at a = 1 is

tn(x) = (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 + · · ·+ (−1)n−1

n
(x− 1)n.
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In contrast to the case of the sine, the oscillation of f (n)(x) on [1,b] depends on the
value of b. Each derivative f (n)(x) = (−1)n−1(n− 1)!x−n is monotonic, so

Cn = | f (n)(1)− f (n)(b)|= (n− 1)!|1− b−n|.

On [1,b],

|log(x)− tn(x)| ≤Cn
(b− 1)n

n!
= |1− b−n| (b− 1)n

n
. (4.21)

Since b > 1, the first factor |1− b−n| tends to 1 as n tends to infinity. How
(b− 1)n

n

behaves depends on the size of b: for 1 < b≤ 2,
(b− 1)n

n
tends to 0 as n tends to in-

finity. If b > 2, then (b−1)> 1, and we know from the exponential growth theorem,

Theorem 2.10, that
(b− 1)n

n
tends to infinity. Hence the Taylor series converges to

logx in [1,2].
We show by another method in Example 7.35 that | logx− tn(x)| also tends to 0

for 0 < x ≤ 1. Given that future result, we have

logx =
∞

∑
n=1

(−1)n−1 (x− 1)n

n
(0 < x ≤ 2).

Figure 4.18 shows part of the graphs of logx and t4(x).

 0

-1

 2 1 0.2
x

log(x)

Fig. 4.18 Graphs of logx and the Taylor polynomial t4(x) = (x−1)− (x−1)2

2 + (x−1)3

3 − (x−1)4

4

Remark. According to the ratio test, using

lim
n→∞

∣∣∣∣∣∣
(x−1)n+1

n+1
(x−1)n

n

∣∣∣∣∣∣= |x− 1|< 1,

we see that the Taylor series for the logarithm, lim
n→∞

tn(x) =
∞

∑
n=1

(−1)n−1 (x− 1)n

n
,

converges uniformly on every closed interval in (0,2). Checking the endpoints, we
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see that the power series converges at x= 2 (alternating series theorem) and diverges
at x = 0 (harmonic series). But this does not tell us that tn(x) converges to logx for

0< x ≤ 2. To show that a Taylor series
∞

∑
n=0

f (n)(a)
(x− a)n

n!
converges to the function

f from which it is derived, it is necessary to show that | f (x)− tn(x)| tends to 0 as n
tends to infinity. Examining the oscillation is one way to do this. Another way is to
examine the behavior of the remainders

| f (b)− tn(b)|=
∣∣∣∣ f (n+1)(c)

(b− a)n+1

n+ 1!

∣∣∣∣
from Taylor’s formula, as we do in the next example. After we study integration in
Chap. 7, we will have an integral formula for the remainder that gives another way
to estimate the remainder.

The Exponential Function. Let f (x) = ex and a = 0. Since f (n)(x) = ex, it follows
that

f (0) = 1, f ′(0) = 1, f ′′(0) = 1, f ′′′(0) = 1, . . . ,

and the nth Taylor polynomial for ex at a = 0 is

tn(x) = 1+ x+
x2

2!
+

x3

3!
+ · · ·+ xn

n!
.

We want to show that lim
n→∞

|ex − tn(x)|= 0 for all x. According to Taylor’s formula,

|ex − tn(x)|=
∣∣∣∣ec xn+1

n+ 1!

∣∣∣∣
for some c between 0 and x. Suppose x is in [−b,b]. Then

|ex − tn(x)| ≤ eb bn+1

n+ 1!
.

We saw in Example 1.17 that lim
n→∞

bn

n!
= 0 for every number b. Hence eb bn+1

n+ 1!
tends

to 0. The Taylor series

∞

∑
k=0

xk

k!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

converges to ex for all x in [−b,b]. Since b is arbitrary, the series converges to ex for
all x. Figure 4.19 shows graphs of ex, t3(x), and t4(x).

The Binomial Series. Here we point out that the binomial expansions as in Exam-
ple 4.17 have a generalization to every real exponent. We prove the following.
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 3

 2

 1

 10-1 x

ex

t4(x)

t3(x)

Fig. 4.19 Graphs of ex with Taylor polynomials t3(x) = 1+x+
x2

2!
+

x3

3!
and t4(x) = t3(x)+

x4

4!
on

[−2.5,1.5]

Theorem 4.12. The binomial theorem. If � is any number and |y|< 1, then

(1+ y)� =
∞

∑
k=0

(
�

k

)
yk,

where the binomial coefficients are defined by
(
�

0

)
= 1,

(
�

k

)
=

�(�− 1) · · ·(�− k+ 1)
k!

(k > 0).

Proof. Let f (y) = (1+ y)�. The nth derivative of f is

f (n)(y) = �(�− 1) · · ·(�− n+ 1)(1+ y)�−n. (4.22)

If |y|< 1, the power series

g(y) =
∞

∑
k=0

(
�

k

)
yk =

∞

∑
k=0

�(�− 1) · · ·(�− k+ 1)
k!

yk

converges by the ratio test, since

lim
k→∞

∣∣∣∣∣
( �

k+1

)
yk+1(�

k

)
yk

∣∣∣∣∣= lim
k→∞

�(�−1)···(�−k)
(k+1)! yk+1

�(�−1)···(�−k+1)
k! yk

= lim
k→∞

∣∣∣∣ �− k
k+ 1

∣∣∣∣ |y|= |y|.

We want to show that g(y) = (1+ y)� for |y| < 1. According to Theorem 3.17, we
can differentiate g(y) term by term to get
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g′(y) =
∞

∑
k=0

�(�− 1) · · ·(�− k+ 1)
k!

Lyk−1 =
∞

∑
k=0

(
�

k− 1

)
yk−1.

Multiply g(y) by y and add g′(y) to get

(1+ y)g′(y) =
∞

∑
k=0

(
(k+ 1)

(
�

k+ 1

)
+ k

(
�

k

))
yk =

∞

∑
k=0

�

(
�

k

)
yk = �g(y).

Now let us examine

d
dy

g(y)
(1+ y)�

=
(1+ y)�g′(y)− g(y)�(1+ y)�−1(

(1+ y)�
)2

=
�(1+ y)�−1

(1+ y)2�

(
(1+ y)g′(y)− �g(y)

)
= 0.

Therefore,
g(y)

(1+ y)�
is constant. But at y = 0, we know that

g(0)
(1)�

= 1. Therefore,

the power series g(y) equals (1+ y)� for |y|< 1. ��
This generalization of the binomial theorem to noninteger exponents was de-

rived by Newton. This shows that Newton was familiar with Taylor’s theorem, even
though Taylor’s book appeared 50 years after Newton’s.

Problems

4.42. Find the Taylor polynomials t2(x) and t3(x) for f (x) = 1+ x+ x2 + x3 + x4 in
powers of x.

4.43. Find the Taylor series for cosx in powers of x. For what values of x does the
series converge to cosx?

4.44. Find the Taylor series for cos(3x) in powers of x. For what values of x does
the series converge to cos(3x)?

4.45. Compare Taylor polynomials t3 and t4 for sinx in powers of x. Give the best
estimate you can of |sin x− t3(x)|.
4.46. Find the Taylor polynomial of degree 4 and estimate the remainder in

tan−1 x = x− x3

3
+(remainder) x in [−1

2
,

1
2
].

4.47. Find the Taylor series for coshx in powers of x. Use the Taylor remainder for-
mula to show that the series converges uniformly to coshx on every interval [−b,b].
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4.48. Find the Taylor series for sinh(2x) in powers of x. Use the Taylor remainder
formula to show that the series converges uniformly to sinh(2x) on every interval
[−b,b].

4.49. Find the Taylor series for cosx about a = π/3, i.e. in powers of (x−π/3).

4.50. Prove the validity of Taylor’s formula with remainder, Eq. (4.17), when b < a.
Hint: Consider the function g(x) = f (a+ b− x) over the interval [b,a].

4.51. Find the binomial coefficients bk =

( 1
2
k

)
through b3 in

√
1+ y = b0 + b1y+ b2y2 + · · · .

4.52. Consider the function f (x) =
√

x on the interval 1≤ x≤ 1+d. Find values of d
small enough that t2(x), the second-degree Taylor polynomial at x= 1, approximates
f (x) on [1,1+ d] with an error of at most

(a) .1
(b) .01
(c) .001

4.53. Answer the question posed in Problem 4.52 for the third-degree Taylor poly-
nomial t3 in place of t2.

4.54. Let s be a function with the following properties:

(a) s has derivatives of all orders.
(b) All derivatives of s lie between −1 and 1.

(c) s( j)(0) =

{
0, j even.

(−1)( j−1)/2, j odd.

Determine a value of n so large that the nth-degree Taylor polynomial tn(x) ap-
proximates s(x) with an error less than 10−3 on the interval [−1,1]. Determine the
value of s(0.7854) with an error less than 10−3. What is the standard name for this
function?

4.55. Let c be a function that has properties (a) and (b) of Problem 4.54 and satisfies

c( j)(0) =

{
(−1) j/2, j even,

0, j odd.

Using a Taylor polynomial of appropriate degree, determine the value of c(0.7854)
with an error less than 10−3. What is the standard name for this function?

4.56. Explain why there is no power series |t|=
∞

∑
n=0

antn.
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4.57. In this problem, we rediscover Taylor’s theorem for the case of polynomials.
Let f be a polynomial of degree n, and a any constant, and set

g(x) = f (x+ a)− x f ′(x+ a)+
x2

2
f ′′(x+ a)−·· ·+ (−1)nxn

n!
f (n)(x+ a).

(a) Evaluate g(0) and g(−a).
(b) Evaluate g′(x) and simplify your result as much as possible.
(c) Conclude from part (b) the somewhat curious result that g is a constant function.
(d) Use the result of part (c) to express the relation between the values you found in

part (a).

4.4 Approximating Derivatives

By definition, f ′(x) requires that we use a limiting process. That may be fine for
human beings, but not for computers. The difference quotient

fh(x) =
f (x+ h)− f (x)

h

can be computed once you know f , x, and h. But how good would such an approxi-
mation be? Let us look at some examples.

Example 4.18. If f (x) = x2, then

fh(x) =
f (x+ h)− f (x)

h
=

(x+ h)2 − x2

h
=

x2 + 2xh+ h2− x2

h
= 2x+ h.

For this function, replacing f ′(x) by fh(x) would lead to an error of only h. If we
are willing to accept an error of say 0.00001, then we could approximate f ′(x)
by f0.00001(x). Figure 4.20 shows the case in which h = 0.07.

Example 4.19. If f (x) = x3, then

fh(x) =
f (x+ h)− f (x)

h
=

(x+ h)3 − x3

h

=
x3 + 3x2h+ 3xh2+ h3 − x3

h
= 3x2 + 3xh+ h2.

For this function, replacing f ′(x) by fh(x) would introduce an error of 3xh+ h2,
an amount that depends on both h and x. This is illustrated in Fig. 4.21.
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1

2

-0.5  0.5 1

derivative

difference quotient

Fig. 4.20 Derivative f ′(x) and difference quotient fh(x) =
f (x+h)− f (x)

h
for f (x) = x2 using

h = 0.07

70

50

30

10

-2 -1 0 1 2 3 4 5

derivative

difference
quotient

Fig. 4.21 Derivative f ′(x) and difference quotient fh(x) =
f (x+h)− f (x)

h for f (x) = x3 using h = 0.2

These examples lead to the concept of uniform differentiability.

Definition 4.8. A function f defined on an interval is called uniformly differen-
tiable if given a tolerance ε > 0, there is a δ such that

if |h|< δ , then

∣∣∣∣ f (x+ h)− f (x)
h

− f ′(x)
∣∣∣∣< ε for every x.

Example 4.20. The linear function f (x) = mx+b is uniformly differentiable: the
derivative is the constant function m. The difference quotient is given by

fh(x) =
m(x+ h)+ b− (mx+ b)

h
= m.

So it not only tends to f ′(x), but is equal to f ′(x) for all h and all x.
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Example 4.21. We have shown in Sect. 3.3a that the exponential function ex is
differentiable at every x. We will now show that ex is uniformly differentiable on
each interval [−c,c]. We have

ex+h − ex

h
− ex = ex

(
eh − 1

h
− 1

)
.

Therefore, for every x in [−c,c], this quantity is at most ec times

(
eh − 1

h
− 1

)
,

which does not depend on x, and which tends to zero as h tends to zero.

We claim the following theorem.

Theorem 4.13. If f is uniformly differentiable on [a,b], then f ′ is uniformly
continuous on [a,b].

The proof is outlined in Problem 4.62 at the end of this section. The theorem has
a converse, whose significance is that we may easily approximate derivatives:

Theorem 4.14. If f ′ is uniformly continuous on [a,b], then f is uniformly dif-
ferentiable on [a,b].

Proof. We need to prove that f ′(x) and the difference quotient fh(x) differ by an
amount that is small independently of x. More precisely, consider

f (x+ h)− f (x)
h

− f ′(x).

According to the mean value theorem (Theorem 4.1), the difference quotient equals
f ′(c) at some point c between x and x+ h. So x and c differ by less than h, and we
can rewrite the previous expression as

f (x+ h)− f (x)
h

− f ′(x) = f ′(c)− f ′(x).

Since f ′ is uniformly continuous on [a,b], given any tolerance ε , there is a precision
δ such that if x and c are in [a,b] and differ by less than δ , then f ′(c) and f ′(x)
differ by less than ε . This proves that f is uniformly differentiable. ��

Many of the functions we work with, such as polynomials, sine, cosine, exponen-
tial, and logarithm, have continuous derivatives, and are therefore uniformly differ-
entiable on closed intervals. We give an example in Problem 4.63 of a differentiable
function f for which f ′ is not continuous, and thus according to Theorem 4.13, f is
not uniformly differentiable.
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A Word of Caution about actually approximating f′(x) by fh(x). When we

asked how good an approximation fh(x) =
f (x+ h)− f (x)

h
is to f ′(x), we assumed

that we could perform the subtraction accurately. But when we subtract decimal
approximations of numbers that are very close, we get very few digits of the differ-
ence correctly. Figure 4.22 shows the result of a computer program that attempted
to calculate the difference quotient minus the derivative,

f (x+ h)− f (x)
h

− f ′(x),

for f (x) = x2 and x = 1. We know by algebra that

f (1+ h)− f (1)
h

− f ′(1) =
(1+ h)2 − 12

h
− 2 =

2h+ h2

h
− 2 = h,

so the graph should be a straight line. But we see something quite different in
Fig. 4.22.

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

1e-09 1e-08 1e-07 1e-06 1e-05

h

((1+h)2 -1)/h -2

Fig. 4.22 The result of computing the difference quotient minus the derivative (1+h)2−12

h − 2 is
plotted for 10−9 ≤ h ≤ 10−5

Approximate Derivatives and Data. In experimental settings, functions are rep-
resented through tables of data, rather than by a formula. How can we compute f ′
when only tabular data are known? We give an application of the linear approxima-
tion theorem, Theorem 4.5, to the problem of approximating derivatives.

The difference quotient
f (x+ h)− f (x)

h
is asymmetric in the sense that it favors

one side of the point x. By the linear approximation theorem,
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f (x+h) = f (x)+ f ′(x)h+
1
2

f ′′(c1)h
2 and f (x−h) = f (x)− f ′(x)h+

1
2

f ′′(c2)h
2,

where c1 lies between x and x+ h, and c2 lies between x and x− h. Subtract and
divide by 2h to get an estimate for the symmetric difference quotient

f (x+ h)− f (x− h)
2h

= f ′(x)+
1
4

(
f ′′(c1)− f ′′(c2)

)
h. (4.23)

See Fig. 4.23, which illustrates a symmetric difference quotient. Both c1 and c2 dif-
fer by less than h from x. If f ′′ is continuous, then for small h, both f ′′(c1) and
f ′′(c2) differ little from f ′′(x). Thus we deduce that the symmetric difference quo-
tient differs from f ′(x) by an amount sh, where s = 1

4

(
f ′′(c1)− f ′′(c2)

)
is small

when h is small.
But we saw that the one-sided difference quotient differs from f ′(x) by 1

2 f ′′(c1)h.
We conclude that for twice differentiable functions and for small h, the symmetric
difference quotient is a better approximation of the derivative at x than the one-sided
quotient.

x−h x x+h

Fig. 4.23 The symmetric difference quotient is a better approximation to f ′(x) than one-sided
quotients

Let us look at an example. Table 4.1 contains data for a function at eleven equidis-
tant points between 0 and 1. Note that if we take x + h = x2 and x − h = x1 in
Eq. (4.23), it becomes

f (x2)− f (x1)

x2 − x1
= f ′

(
x2 + x1

2

)
+

1
4

(
f ′′(c1)− f ′′(c2)

)x2 − x1

2
.

Table 4.1 shows estimates for f ′ at the midpoints 0.05, 0.15, 0.25, . . . , 0.85, 0.95 of
the intervals using

f ′
(x1 + x2

2

)≈ f (x2)− f (x1)

x2 − x1
.

For example,

f ′(0.35) = f ′
(0.3+ 0.4

2

)≈ f (0.4)− f (0.3)
0.4− 0.3

=
0.38941− 0.29552

0.1
= 0.9389
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Table 4.1 Data in the f (x) column, and approximate derivatives for the unknown function

x f (x) ≈ f ′(x) ≈ f ′′(x) ≈ f ′′′(x) ≈ f ′′′′(x)
0 0

0.05 0.9983
0.1 0.09983 −0.100
0.15 0.9883 −0.97
0.2 0.19866 −0.197 ( )
0.25 0.9686 −1
0.3 0.29552 −0.297 ( )
0.35 0.9389 −0.91
0.4 0.38941 −0.388 ( )
0.45 0.9001 −0.91
0.5 0.47942 −0.479 ( )
0.55 0.8522 ( )
0.6 0.56464 −0.565 ( )
0.65 0.7957 ( )
0.7 0.64421 −0.643 ( )
0.75 0.7314 ( )
0.8 0.71735 −0.717 ( )
0.85 0.6597 ( )
0.9 0.78332 −0.782
0.95 0.5815

1 0.84147

and

f ′(0.45) = f ′
(0.4+ 0.5

2

)≈ f (0.5)− f (0.4)
0.5− 0.4

=
0.47942− 0.38941

0.1
= 0.9001.

Now using our estimates for f ′(0.35) and f ′(0.45) we can repeat the process to find
estimates for f ′′ at 0.1, 0.2, . . . , 0.9. For example,

f ′′(0.4)≈ f ′(0.45)− f ′(0.35)
0.45− 0.35

≈ 0.9001− 0.9389
0.1

=−0.388.

In Problem 4.60, we ask you to complete the table.

Problems

4.58. Consider the symmetric difference quotient graphed in Fig. 4.24. Use Taylor’s
theorem with remainder to show that the difference∣∣∣∣ sin(x+ 0.1)− sin(x− 0.1)

0.2
− cosx

∣∣∣∣
is less than 0.002 for all x. This is why the cosine appears to have been graphed in
the figure.
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 1

-1
-4 -3 -2 -1  0  1  2  3  4

sin x

Fig. 4.24 The sine and a symmetric difference quotient
sin(x+0.1)− sin(x−0.1)

0.2

4.59. Evaluate the one-sided difference quotient
f (x+ h)− f (x)

h
and the symmetric

difference quotient
f (x+ h)− f (x− h)

2h
for the cases f (x) = x2 and f (x) = x3. If

x = 10 and h = 0.1, by how much do these quotients differ from the derivative?

4.60.

(a) Use the approximation f ′′′
(x1 + x2

2

)≈ f ′′(x2)− f ′′(x1)

x2 − x1
to find estimates for f ′′′

at the points 0.55, 0.65, 0.75, 0.85, which were left blank in Table 4.1.

(b) Use the approximation f ′′′′
(x1 + x2

2

) ≈ f ′′′(x2)− f ′′′(x1)

x2 − x1
to find estimates for

f ′′′′ at x = 0.2, 0.3, . . . , 0.7, 0.8.

4.61. Here we explore how to use approximate derivatives in a somewhat different
way: to detect an isolated error in the tabulation of a smooth function. Suppose
that in tabulating the data column that shows values of f (x) in Table 4.1, a small
error was made that interchanged two digits, f (0.4) = 0.38914 instead of f (0.4) =
0.38941.

(a) Recompute the table.
(b) Plot graphs of f , f ′, f ′′, f ′′′ and f ′′′′ for Table 4.1, and again for the recomputed

table. What do you notice?

4.62. Assume that f is uniformly differentiable on [a,b]. Show that f ′ is continuous
on [a,b] by carrying out or justifying each of the following steps.

(a) Write down the definition of uniformly differentiable on [a,b].
(b) Given any tolerance ε , explain why there is a positive integer n such that if

|h|< 1
n , then ∣∣∣∣∣

f
(
x+ 1

n

)− f (x)
1
n

− f ′(x)

∣∣∣∣∣ < ε

for every x in [a,b].
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(c) Define a sequence of continuous functions fn(x) =
f
(
x+ 1

n

)− f (x)
1
n

. Explain

why fn is continuous on [a,b] and show that fn converges uniformly to f ′ on
[a,b]. Conclude that f ′ is continuous on [a,b].

4.63. Define f (x) = x2 sin
(1

x

)
and f (0) = 0.

(a) Find f ′(x) for values of x 
= 0.
(b) Verify that f is also differentiable at x = 0, and evaluate f ′(0), by considering

the difference quotient
f (h)− f (0)

h
.

(c) Verify that f ′ is not continuous at 0 by showing that f ′(x) does not tend to f ′(0)
as x tends to zero.

(d) Use Theorem 4.13 to argue that f is not uniformly differentiable.



Chapter 5
Applications of the Derivative

Abstract We present five applications of the calculus:

1. Atmospheric pressure in a gravitational field
2. Motion in a gravitational field
3. Newton’s method for finding the zeros of a function
4. The reflection and refraction of light
5. Rates of change in economics

5.1 Atmospheric Pressure

If you have ever traveled in the mountains, you probably noticed that air pressure
diminishes at higher altitudes. If you exert yourself, you get short of breath; if you
cook, you notice that water boils at less than 100 ◦C. Our first application is to
derive a differential equation to investigate the nature of air pressure as a function
of altitude.

Let P(y) be the air pressure [force/area] at altitude y above sea level. The force
of air pressure at altitude y supports the weight of air above y. Imagine a column
of air of unit cross section. The volume of air in the column between the altitudes
y and y+ h (see Fig. 5.1) is h unit volumes. The weight of this air is hρg, where h
is the volume of the column, ρ is the average density [mass/volume] of air between
altitudes y and y+ h, and g is the acceleration due to gravity. This weight is sup-
ported by the force of air pressure at y minus the force of air pressure at y+ h.
Therefore,

hρg = P(y)−P(y+ h).

Dividing by h, we get

ρg =
P(y)−P(y+ h)

h
.

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 5, © Springer Science+Business Media New York 2014
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y

y+h

Fig. 5.1 The column of atmosphere above altitude y is heavier than that above y+h

As h tends to zero, the average density of the air, ρ , tends to the density ρ(y) at
y, and the difference quotient on the right-hand side tends to −P′(y), giving us the
differential equation

ρ(y)g =−P′(y). (5.1)

When gas is compressed, both its density and its pressure are increased. If we as-
sume that air pressure and density are linearly related,

ρ = kP, k some constant,

and set this into the differential equation (5.1), we get

kgP(y) =−P′(y).

According to Theorem 3.11, the solutions of this equation are the exponential func-
tions

P(y) = P(0)e−kgy,

where P(0) is atmospheric pressure at sea level.
So we have deduced that atmospheric pressure is an exponential function of al-

titude. Is there anything we can say about the constant k? We can determine the

dimension of k from k =
ρ
P

. The dimension of k is then
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[
density
pressure

]
=

[
mass

volume
force
area

]
.

Since force is equal to mass times acceleration, the dimension of k is
[

mass/length3

mass×length
time2 /length2

]
=

time2

length2 =
1

velocity2 .

What is the velocity that appears in k? What velocity can one associate with the
atmosphere? It turns out that 1/k is the square of the speed of sound. Let us check
this value for k numerically using P(y) = P(0)e−kgy to calculate air pressure at Den-
ver, Colorado, at altitude 1 mile. The speed of sound at sea level is approximately
1000 ft/s. Therefore,

k = 10−6 (s/ft)2, g = 32 ft/s2, y = 5280 ft,

and kgy= 10−6(32)(5280)= 0.169. Since e−0.169 = 0.844, the air pressure formula
gives

P(1 mile) = 0.844P(0).

Atmospheric pressure at sea level is 14.7 psi (pounds per square inch). Using our
formula, we get (0.844)(14.7) = 12.4 psi for air pressure at Denver. The measured
value of atmospheric pressure in Denver is 12.1 psi, so our formula gives a good
approximation.

Problems

5.1. Compare the atmospheric pressure at your city to the approximate value deter-
mined by the equation in this section.

5.2. While investigating atmospheric pressure, we assumed that air density is
proportional to air pressure. In this problem, consider pressure in the ocean, where
water density is nearly constant. You may ignore atmospheric pressure at the
surface.

(a) Derive a differential equation for ocean pressure, similar to Eq. (5.1), in two
different ways: In one equation, assume that y is measured from the surface
down, and in the other, assume that y is measured from the bottom up. How do
the resulting equations compare? What are the values of P(0) in each case? Are
there advantages of one equation over the other?

(b) Solve the “surface down” differential equation.
(c) Take the density of ocean water to be 1025 [kg/m3], and atmospheric pressure

105 [N/m2]. Divers use a rule of thumb that the pressure increases by one at-
mosphere for each 10 m of descent. Does this agree with the “surface down”
pressure function you found in part (b)?
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5.2 Laws of Motion

In this section, we see how calculus is used to derive differential equations of motion
of idealized particles along straight lines. The beauty of these equations is their
universality; we can use them to deduce how high we can jump on the surface of the
Earth, as well as on the Moon. A particle is an idealization in physics, an indivisible
point with no extent in space, so that a single coordinate gives the position. It has a
mass, usually denoted by the letter m. In this simple case, the position of a particle is
completely described by its distance y from an arbitrarily chosen point (the origin)
on the line; y is taken to be positive if y lies to one side (chosen arbitrarily) of the
origin and negative if the particle is located on the other side of the origin.

Since the particle moves, y is a function of time t. The derivative y′(t) of this
function is the velocity of the particle, a quantity usually denoted by v:

v = y′ =
dy
dt
. (5.2)

Note that v is positive if the y-coordinate of the particle increases during the motion.
The velocity of a particle may, of course, change as time changes. The rate at

which it changes is called the acceleration, and is usually denoted by the letter a:

a = v′ =
dv
dt

=
d2y
dt2 . (5.3)

Newton’s laws of motion relate the acceleration of a particle to its mass and the
force acting on it as follows: A force f acting along the y-axis causes a particle of
mass m to accelerate at the rate a, and

f = ma. (5.4)

According to Eq. (5.4), a force acting along the y-axis is negative if it imparts a nega-
tive acceleration to a particle traveling along the y-axis. There is nothing mysterious
about this negative sign. It merely means that the force is acting in the negative
direction along the y-axis.

If a number of different forces act on a particle, as they do in most realistic
situations, the effective force acting on the particle is the sum of the separate forces.
For example, a body might be subject to the force of gravity fg, the force of air
resistance fa, an electric force fe, and a magnetic force fm; the effective force f is
then

f = fg + fa + fe + fm, (5.5)

and the equations governing motions under this combination of forces are

y′ = v, mv′ = f . (5.6)

There is a tremendous advantage in being able to synthesize the force acting on a
particle from various simpler forces, each of which can be analyzed separately.
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Although we can write down the equations of motion (5.6) governing particles
subject to any combination of forces (5.5), we cannot, except in simple situations,
write down formulas for the particle’s position as a function of time. In this chapter,
we show how to solve the simplest version of the problem when f is a constant
due to gravity. In Chap. 10, we describe numerical methods to calculate the position
of a particle as a function of time to a high degree of accuracy when the force is
not constant. We also investigate equations of motion for a particle subject to a
combination of forces.

Gravity. We illustrate how Newton’s second law (5.4) can be used to describe mo-
tion in the specific situation in which the force is that of gravity at the surface of the
Earth. According to a law that is again Newton’s, the magnitude fg of the force of
gravity exerted on a particle of mass m is proportional to its mass:

fg = gm. (5.7)

The constant of proportionality g and the direction of the force depend on the gravi-
tational pull of other masses acting on the particle. At a point near the surface of the
Earth, the direction of the force is toward the center of the Earth, and the value of g
is approximately

g = 9.81m/s2, (5.8)

where m is meters and s is seconds. Near the surface of the Moon, the value of g is
approximately

g = 1.6m/s2. (5.9)

For the moment, let us stay near the Earth. Denote by y the distance from the surface
of the Earth of a falling body, and denote by v the vertical velocity of this falling
body. Since y was chosen to increase upward, and the force of gravity is downward,
the force of gravity is −gm. Substituting this into Newton’s law (5.4), we see that

−gm = ma,

where a is the acceleration of the falling body. Divide by m:

−g = a.

Recalling the definitions of velocity and acceleration, we can write a = y′′, so New-
ton’s law for a falling body is

y′′ =−g. (5.10)

We claim that all solutions of this equation are of the form

y =−1
2

gt2 + v0t + b, (5.11)

where b and v0 are constants. To see this, rewrite Eq. (5.10) as 0 = y′′+ g = (y′+ gt)′,
from which we conclude that y′+ gt is a constant; call it v0. Then y′+ gt − v0 = 0.
We rewrite this equation as

(
y + 1

2 gt2 − v0t
)′

= 0. From this, we conclude that
y+ 1

2 gt2 − v0t is a constant; call it b. This proves that all solutions of Eq. (5.10) are
of the form (5.11).
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The significance of the constant v0 is this: it is the particle’s initial velocity; that
is, y′ = v0 when t = 0. Similarly, b is the initial position of the particle, i.e., y = b
when t = 0. So we see that initial position and initial velocity can be prescribed
arbitrarily, but thereafter, the motion is uniquely determined.

How High Can You Jump? Suppose that a student, let us call her Anya, idealized
as a particle, can jump k meters vertically starting from a crouching position. How
much force is exerted?

Denote by h Anya’s height and by m her mass. Denote by f the force that her feet
in crouching position exert on the ground. As long as Anya’s feet are on the ground,
the total upward force acting on her body is the force exerted by her feet minus the
force of gravity:

f − gm.

According to Newton’s law, Anya’s motion, considered as the motion of a particle,
is governed by Eq. (5.4),

my′′ = f − gm,

where y(t) is the distance of Anya’s head from the ground at time t. We divide by m
and rewrite the result as

y′′ = p− g,

where p =
f
m

is force per unit mass. As we have seen, all solutions of this equation

are of the form (5.11):

y(t) =
1
2
(p− g)t2 + v0t + b.

Setting t = 0, we get y(0) = b, the distance of Anya’s head from the ground in
crouching position. Differentiating y and setting t = 0, we get y′(0) = v0. Since at
the outset, the body is at rest, we have v0 = 0. So

y(t) =
1
2
(p− g)t2 + b. (5.12)

The description (5.12) is valid until the time t1 when Anya’s feet leave the ground.
That occurs when y(t1), the position of her head, equals her height h, that is, when
y(t1) = h. Setting this into Eq. (5.12), we get 1

2 (p− g)t2
1 = h− b. Denote by c the

difference between the position of Anya’s head in the standing and crouching po-
sitions: c = h− b. Solving for t1, the time at which Anya’s feet leave the ground,
we get

t1 =

√
2c

p− g
. (5.13)

What is Anya’s upward velocity v1 at time t1? Since velocity is the time derivative
of position, we have y′(t) = (p− g)t. Using Eq. (5.13), we get

v1 = y′(t1) =
√

2c(p− g). (5.14)
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After her feet leave the ground, the only force acting on Anya is gravity. So for
t > t1, the equation governing the position of her head is

y′′ =−g.

The solutions of this equation are of the form (5.11). We rewrite it with t replaced
by t − t1 and b replaced by h:

y(t) =−1
2

g(t − t1)
2 + v1(t − t1)+ h. (5.15)

Here h is the position at time t1. The greatest height reached by the trajectory (5.15)
is time t2, when the velocity is zero. Differentiating Eq. (5.15), we get

y′(t2) =−g(t2 − t1)+ v1 = 0,

which gives t2 − t1 =
v1

g
. Setting this into formula (5.15) for y(t) gives

y(t2) =−1
2

g(t2 − t1)
2 + v1(t2 − t1)+ h =− v2

1

2g
+

v2
1

g
+ h =

v2
1

2g
+ h.

Using formula (5.14) for v1, we get

y(t2) = c
p− g

g
+ h.

So the height of the jump k = y(t2)− h is given by

k = c

(
p
g
− 1

)
. (5.16)

Using this relation, we can express the jumping force p per unit mass as

p = g

(
1+

k
c

)
. (5.17)

Notice that in order to be able to jump at all, the force per mass exerted has to be
greater than the acceleration of gravity g.

Anya is rather tall, so we shall take her height h to be 2 m and b to be 1.5 m,
making c = h− b = 0.5 m. We take the height of the jump k to be 0.25 m. Then by
Eq. (5.17), p = 1.5g (Fig. 5.2).

Let us see how far such a force would carry us on the Moon. The distance km

jumped on the moon is given by formula (5.16), where g is replaced by gm, the
acceleration due to gravity on the Moon:

km = c

(
p

gm
− 1

)
.
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Fig. 5.2 Jumping on the surface of the Earth (left) and Moon (right) with the same force, plotting
height as a function of time. The convex parabola indicates head position while the feet are pushing

Using p = 1.5g and c = 0.5, we get

km =
1
2

(
1.5

g
gm

− 1

)
. (5.18)

Since g = 9.8 m/s2, and gm = 1.6 m/s2, their ratio is 6.125. Setting these values
into formula (5.18), we deduce that on the Moon, Anya can jump

km =
1
2

(
1.5(6.125)− 1

)
= 4.1m.

Problems

5.3. Suppose that the initial position and velocity of a particle subject to Earth’s
gravity are y(0) = 0 and y′(0) = 10 (m/s). Calculate position and velocity at time
t = 1 and t = 2.

5.4. What is the largest value of y(t) during the motions described in Problem 5.3?

5.5. Write Newton’s law (5.4) as a differential equation for the position y(t) of a
particle of mass m in the following situation: (1) y > 0 is the distance down to a
horizontal surface at y= 0. (2) There are two forces on the particle; one is downward
due to constant gravitational acceleration g as we have discussed, and the other is a
constant upward force fup.

5.6. We have said that forces may be added, and that positions can be more difficult
to find than forces. In this problem, a particle of mass m at position y(t) moves in
six different cases according to

my′′ = f ,
y(0) = 1,

y′(0) = v,
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where v is 0 or 3, and f is 5 or 7 or 5+7. Solve for the position functions y(t) in the
six cases. Is it ever true that positions can be added when the forces are added?

5.7. What theorem did we use to deduce that all solutions of Eq. (5.10) are of the
form (5.11)?

5.3 Newton’s Method for Finding the Zeros of a Function

In the preceding two sections, we applied calculus to problems in the physical sci-
ences. In this section, we apply calculus to solving mathematical problems.

Many mathematical problems are of the following form: we are seeking a num-
ber, called “unknown” and denoted by, say, the letter z, which has some desirable
property expressed in an equation. Such an equation can be written in the form

f (z) = 0,

where f is some function. Very often, additional restrictions are placed on the num-
ber z. In many cases, these restrictions require z to lie in a certain interval. So the
task of “solving an equation” is really nothing but finding a number z for which a
given function f vanishes, that is, where the value of f is zero. Such a number z is
called a zero of the function f . In some problems, we are content to find one zero
of f in a specified interval, while in other problems, we are interested in finding all
zeros of f in an interval.

What does it mean to “find” a zero of a function? It means to devise a procedure
that gives as good an approximation as desired, of a number z where the given func-
tion f vanishes. There are two ways of measuring the goodness of an approximation
zapprox: one is to demand that zapprox differ from an exact zero z by, say, less than 1

100 ,
or 1

1000 , or 10−m. Another way of measuring the goodness of an approximation is
to insist that the value of f at zapprox be very small, say less than 1

100 , 1
1000 , or in

general, less than 10−m. Of course, these notions go hand in hand: if zapprox is close
to the true zero z, then f (zapprox) will be close to f (z) = 0, provided that the function
f is continuous.

In this section, we describe a method for finding approximations to zeros of
functions f that are not only continuous but differentiable, preferably twice dif-
ferentiable. The basic step of the method is this: starting with some fairly good
approximation to a zero of f , we use the derivative to produce a much better one.
If the approximation is not yet good enough, we repeat the basic step as often as
necessary to produce an approximation that is good enough according to either of
the two criteria mentioned earlier. There are two ways of describing the basic step,
geometrically and analytically. We start with the geometric description.

Denote by zold the starting approximation. We assume—and this is crucial for
the applicability of this method—that f ′(zold) 
= 0. This guarantees that the line
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f(x)

x

z znew oldz

(z     , f(z     ))
old old

Fig. 5.3 Newton’s method to approximate a root z

tangent to the graph of f at (zold, f (zold)) (see Fig. 5.3) is not parallel to the x-
axis, and so intersects the x-axis at some point. This point of intersection is our new
approximation znew. We now calculate znew. Since the slope of the tangent is f ′(zold),
we have

f ′(zold) =
f (zold)− f (znew)

zold − znew
=

f (zold)

zold − znew
.

From this relation we can determine znew:

znew = zold − f (zold)

f ′(zold)
. (5.19)

The rationale behind this procedure is this: if the graph of f were a straight line,
znew would be an exact zero of f . In reality, the graph of f is not a straight line, but
if f is differentiable, its graph over a short enough interval is nearly straight, and
so znew can reasonably be expected to be a good approximation to the exact zero z,
provided that the interval (z,zold) is short enough.

We shall show at the end of this section that if zold is a good enough approxima-
tion to a zero of the function f (in a sense made precise there), then znew is a much
better one, and that if we repeat the procedure, the resulting sequence of approxima-
tions will converge very rapidly to a zero of the function f . But first we give some
examples.

The method described above has been devised, like so much else in calculus, by
Newton and is therefore called Newton’s method.

5.3a Approximation of Square Roots

Let f (x) = x2 − 2. We seek a positive solution of

f (z) = z2 − 2 = 0.



5.3 Newton’s Method for Finding the Zeros of a Function 227

Let us see how closely we can approximate the exact solution, which is z =
√

2. For
f (x) = x2 − 2, we have f ′(x) = 2x, so if zold is an approximation to

√
2, Newton’s

recipe (5.19) yields

znew = zold − z2
old − 2
2zold

=
zold

2
+

1
zold

. (5.20)

Notice that this relation is just Eq. (1.7) revisited. Let us take zold = 2 as a first
approximation to

√
2. Using formula (5.20), we get

znew = 1.5.

We then repeat the process, with znew = 1.5 now becoming zold. Thus, we construct
a sequence z1, z2, . . . of (hopefully) better approximations to

√
2 by choosing z1 = 2

and setting

zn+1 =
zn

2
+

1
zn
.

The first six approximations are

z1 = 2.0
z2 = 1.5
z3 = 1.4166 . . .
z4 = 1.414215686 . . .
z5 = 1.414213562 . . .
z6 = 1.414213562 . . .

Since z5 and z6 agree up to the first eight decimal places after the decimal point, we
surmise that z5 gives the first eight decimal places of

√
2 correctly. Indeed,

(1.41421356)2 = 1.999999993 . . .

is very near and slightly less than 2, while

(1.41421357)2 = 2.000000021 . . .

is very near, but slightly more than, 2. It follows from the intermediate value theorem
that z2 = 2 at some point between these numbers, i.e. that

1.41421356<
√

2 < 1.41421357.

When we previously encountered the sequence {zn}, where it was constructed in a
somewhat ad hoc fashion, the sequence was shown to converge.

5.3b Approximation of Roots of Polynomials

The beauty of Newton’s method is its universality. It can be used to find the zeros of
not only quadratic functions, but functions of all sorts.
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5
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1

21-1

x3-2
 1.5

-0.5
 1.5 1.3

 0.05
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Fig. 5.4 Three steps of Newton’s method to approximate a root of f (x) = x3 −2, drawn at different
magnifications. The three tangent lines shown are at z1, z2, and z3 of Example 5.1

Example 5.1. Let f (x) = x3 − 2. We seek a sequence of approximations to a so-
lution of

z3 − 2 = 0, (5.21)

i.e., to the number 3
√

2. Since f ′(x) = 3x2, Newton’s recipe gives the following
sequence of approximations (Fig. 5.4):

zn+1 = zn − z3
n − 2
3z2

n
=

2zn

3
+

2
3z2

n
. (5.22)

Starting with z1 = 2 as a first approximation, we have

z1 = 2.0
z2 = 1.5
z3 = 1.2962962 . . .
z4 = 1.2609322 . . .
z5 = 1.2599218 . . .
z6 = 1.2599210 . . .

Since z5 and z6 agree up to the sixth digit after the decimal, we surmise that

3
√

2 = 1.259921 . . .

Indeed, (1.259921)3 = 1.9999997 . . ., while (1.259922)3 = 2.000004 . . ., so that

1.259921< 3
√

2 < 1.259922.

Next we find all zeros of

f (x) = x3 − 6x2 − 2x+ 12. (5.23)

Since f is a polynomial of degree 3, an odd number, f (x) is very large and positive
when x is very large and positive, and very large and negative when x is very large
and negative. So by the intermediate value theorem, f (x) is zero somewhere. To get
a better idea where the zero, or zeros, might be located, we calculate the value of f
at integers ranging from x =−2 to x = 6:
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x −2 −1 0 1 2 3 4 5 6
f (x) −16 7 12 5 −8 −21 −28 −23 0

This table shows that f has a zero at z = 6, and since the value of f at x =−2 is
negative, at x = −1 positive, f has a zero in the interval (−2,−1). Similarly, f has
a zero in the interval (1,2).

According to a theorem of algebra, if z is a zero of a polynomial, x− z is a factor.
Indeed, we can write our f in the factored form

f (x) = (x− 6)(x2 − 2).

This form for f shows that its other zeros are z =±√
2, and that there are no others.

Let us ignore this exact knowledge of the zeros of f (which, after all, was due to
a lucky accident). Let us see how well Newton’s general method works in this case.
The formula, for this particular function, reads

zn+1 = zn − z3
n − 6z2

n − 2zn + 12
3z2

n − 12zn− 2
.

Starting with z1 = 5 as a first approximation to the exact root 6, we get the following
sequence of approximations:

z1 = 5
z2 = 6.76 . . .
z3 = 6.147 . . .
z4 = 6.007 . . .
z5 = 6.00001 . . .

Similar calculations show that if we start with a guess z close enough to one of the
other two zeros

√
2 and −√

2, we get a sequence of approximations that converges
rapidly to the exact zeros.

5.3c The Convergence of Newton’s Method

How rapid is rapid, and how close is close? In the last example, starting with an
initial guess that was off by 1, we obtained, after four steps of the method, an ap-
proximation that differs from the exact zero z = 6 by 0.007.

Furthermore, perusal of the examples presented so far indicates that Newton’s
method works faster, the closer zn gets to the zero! We shall analyze Newton’s
method to explain its extraordinary efficiency and also to determine its limitations.

Newton’s method is based on a linear approximation. If there were no error in this
approximation—i.e., if f had been a linear function—then Newton’s method would
have furnished in one step the exact zero of f . Therefore, in analyzing the error
inherent in Newton’s method, we must start with the deviation of the function f from
its linear approximation. The deviation is described by the linear approximation
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theorem, Theorem 4.5:

f (x) = f (zold)+ f ′(zold)(x− zold)+
1
2

f ′′(c)(x− zold)
2, (5.24)

where c is some number between zold and x. Let us introduce for simplicity the
abbreviations

f ′′(c) = s and f ′(zold) = m,

and let z be the exact zero of f . Then Eq. (5.24) yields for x = z,

f (z) = 0 = f (zold)+m(z− zold)+
1
2

s(z− zold)
2.

Divide by m and use Newton’s recipe (5.19) to get

0=
f (zold)

m
+(z−zold)+

1
2

s
m
(z−zold)

2 =−znew+zold+(z−zold)+
1
2

s
m
(z−zold)

2.

We can rewrite this as

znew − z =
1
2

s
m
(zold − z)2. (5.25)

We are interested in finding out under what conditions znew is a better approxi-
mation to z than zold. Formula (5.25) is ideal for deciding this, since it asserts that

(znew − z) is the product of (z− zold) and
1
2

s
m
(z− zold). There is an improvement if

and only if that second factor is less than 1 in absolute value, i.e., if

1
2

∣∣∣ s
m

∣∣∣ |z − zold|< 1. (5.26)

Suppose now that f ′(z) 
= 0. Since f ′ is continuous, f ′ is bounded away from zero
at all points close to z, and since f ′′ is continuous, s does not vary too much.
Also, Eq. (5.26) holds if zold is close enough to z. In fact, for zold close enough,
we have

1
2

∣∣∣ s
m

∣∣∣ |z− zold|< 1
2
. (5.27)

If Eq. (5.27) holds, we deduce from Eq. (5.25) that

|znew − z| ≤ 1
2
|zold − z| . (5.28)

Now let z1, z2, . . . be a sequence of approximations generated by repeated applica-
tions of Newton’s recipe. Suppose z1 is so close to z that Eq. (5.27) holds for zold = z1

and for all zold that are as close or closer to z than z1. Then it follows from Eq. (5.28)
that z2 is closer to z than z1 and, in general, that each zn+1 is closer to z than the
previous zn, and so Eq. (5.27) holds for all subsequent zn. Repeated application of
Eq. (5.28) shows that
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|zn+1 − z| ≤ 1
2
|zn − z| ≤

(
1
2

)2

|zn−1 − z| ≤ · · · ≤
(

1
2

)n

|z1 − z| . (5.29)

This proves the following theorem.

Theorem 5.1. Convergence theorem for Newton’s method. Let f be twice
continuously differentiable on an open interval and z a zero of f such that

f ′(z) 
= 0. (5.30)

Then repeated applications of Newton’s recipe

zn+1 = zn − f (zn)

f ′(zn)
(5.31)

yields a sequence of approximations z1, z2, . . . that converges to z, provided
that the first approximation z1 is close enough to z.

A few comments are in order:
1. The proof that zn tends to z is based on inequality (5.29), according to which

|zn+1 − z| is less than a constant times
( 1

2

)n
. This is a gross overestimate; to under-

stand the true rate at which zn converges to z, we have to go back to relation (5.25).
For zold close to z, the numbers m and s differ little from f ′(z) and f ′′(z) respec-
tively, so that Eq. (5.25) asserts that |znew − z| is practically a constant multiple of
(zold − z)2. Now if |zold − z| is small, its square is enormously small! To give an ex-

ample, suppose that

∣∣∣∣ f ′′(z)
2 f ′(z)

∣∣∣∣≤ 1 and that |zold − z| ≤ 10−3. Then by Eq. (5.25), we

conclude that
|znew − z| ≈ (zold − z)2 = 10−6.

In words: If the first approximation lies within one-thousandth of an exact zero, and

if

∣∣∣∣ f ′′(z)
2 f ′(z)

∣∣∣∣< 1, then Newton’s method takes us in one step to a new approximation

that lies within one millionth of that exact zero.

Example 5.2. In Example 5.1, we have
1
2

s
m

< 1 and

z5 = 1.25992186056593,
z6 = 1.25992104989539,

where the underlined digits are correct, an increase of about twice as many in
one step.

2. It is necessary to start close enough to z, not only to achieve rapid convergence,
but to achieve convergence at all. Figure 5.5 shows an example in which Newton’s
method fails to get us any closer to a zero. The points zold and znew are chosen so



232 5 Applications of the Derivative

f(x)

x

z
old

newz

Fig. 5.5 Newton’s method can fail by cycling

that the tangent to the graph of f at the point (zold, f (zold)) intersects the x-axis at
znew, and the tangent to the graph of f at (znew, f (znew)) intersects the x-axis at zold.
Newton’s recipe brings us from zold to znew, then back to zold, etc., without getting
any closer to the zero between them.

3. Our analysis indicates difficulty with Newton’s method when f ′(z) = 0 at the
zero z. Here is an example: the function f (x) = (x− 1)2 has a double zero at z = 1;
therefore, f ′(z) = 0. Newton’s method yields the following sequence of iterates:

zn+1 = zn − f (zn)

f ′(zn)
= zn − (zn − 1)2

2(zn − 1)
=

zn + 1
2

.

Subtracting 1 from both sides, we get zn+1 − 1 =
zn − 1

2
. Using this relation repeat-

edly, we get

zn+1 − 1 =
1
2
(zn − 1) =

1
4
(zn−1 − 1) = · · ·=

(
1
2

)n

(z1 − 1).

Thus zn approaches the zero z = 1 at the rate of a constant times 2−n, and not the
super fast rate at which Newton’s method converges when f ′(z) 
= 0.

Problems

5.8. Use Newton’s method to determine the first four digits after the decimal point
of 31/4 and of 3

√
7.

Hint: Evaluating c1/q is equivalent to finding the zero of zq − c.

5.9. Find all zeros of the following functions in the indicated domain:

(a) f (x) = 1+ x1/3− x1/2, x ≥ 0. Hint: Try introducing x = y6.
(b) f (x) = x3 − 3x2 + 1, −∞ < x < ∞.

(c) f (x) =
x

x2 + 1
+ 1−√

x, x ≥ 1.
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5.10. We claimed in the text that “if f had been a linear function, then Newton’s
method would have furnished in one step the exact zero of f .” Show that this is true.

5.11. Show that you can find the largest value assumed by a function f in an interval
[a,b] by performing the following steps:

(a) Evaluate f (x) at the endpoints a and b and at N equidistant points x j between
the endpoints, where N is to be specified. Set x0 = a, xN+1 = b.

(b) If f (x j) is greater than both f (x j−1) and f (x j+1), there is a zero of f ′(x) in the
interval (x j−1, x j+1). Use Newton’s method to find such a zero, and denote it by
z j .

(c) Determine the largest of the values f (z j) and compare to the values of f at the
endpoints.

Why is it important to select N sufficiently large?

5.12. Let z be a zero of the function f , and suppose that neither f ′ nor f ′′ is
zero. Show that all subsequent approximations z2, z3, . . . generated by Newton’s
method are

(a) Greater than z if f ′(z) and f ′′(z) have like signs,
(b) Less than z if f ′(z) and f ′′(z) have opposite signs.

Verify the truth of these assertions for examples presented in this section.

5.13. In this exercise, we ask you to investigate the following method designed to
obtain a sequence of progressively better approximations to a zero of a function f :

znew = zold − a f (zold).

Here a is a number to be chosen in some suitable way. Clearly, if zold happens to be
the exact root z, then znew = zold. The question is this: if zold is a good approximation
to z, will znew be a better approximation, and how much better?

(a) Use this method to construct a sequence z1, z2, . . . of approximations to the
positive root of

f (z) = z2 − 2 = 0,

starting with z1 = 2. Observe that

• For a =
1
2

, zn →
√

2, but the zn are alternately less than and greater than
√

2.

• For a =
1
3

, zn →
√

2 monotonically.

• For a = 1, the sequence (zn} diverges.

(b) Prove, using the mean value theorem, that

znew − z = (1− am)(zold − z), (5.32)
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where m is the value of f ′ somewhere between z and zold. Prove that if a is
chosen so that

|1− a f ′(z)|< 1,

then zn → z, provided that z1 is taken close enough to z.
Can you explain your findings under (a) in light of formula (5.32)?

(c) What would be the best choice for a, i.e., one that would yield the most rapidly
converging sequence of approximations?

(d) Since the ideal value of a in part (c) is not practical, try using some reasonable
estimate of 1/ f ′, perhaps 1/(secant slope) in any interval where f changes sign,
for the functions in Eqs. (5.21) and (5.23).

5.4 Reflection and Refraction of Light

Mathematics can be used in science to derive laws from basic principles. In this
section, we show how to use calculus to derive the laws of reflection and refraction
from Fermat’s principle.

Fermat’s principle: Among all possible paths PRQ connecting two points P and
Q via a mirror, a ray of light travels along the one that takes the least time to
traverse.

Flat Mirrors. We wish to calculate the path of a ray of light that is reflected from
a flat mirror. The path of a reflected ray going from point P to point Q is pictured in
Fig. 5.6. The ray consists of two straight line segments, one, the incident ray, leading
from P to the point of reflection R, the other, the reflected ray, leading from R to Q.

R

P Q

Fig. 5.6 A light ray reflects from a flat mirror

In a uniform medium like air, light travels with constant speed, so the time needed
to traverse the path PRQ equals its length divided by the speed of light. So the path
taken by the light ray will be the shortest path PRQ. We choose the mirror to be
the axis of a Cartesian coordinate system. The coordinates of the point R are (x,0).
Denote the coordinates of the point P by (a,b), those of Q by (c,d). According to
the Pythagorean theorem, the distances PR and RQ are

�1(x) = PR =
√
(x− a)2 + b2, �2(x) = RQ =

√
(c− x)2 + d2.

The total length � of the path is

�(x) = �1(x)+ �2(x) =
√
(x− a)2 + b2 +

√
(c− x)2 + d2.
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According to Fermat’s principle, the coordinate x ought to minimize �(x). The func-
tion � is defined and differentiable for all real numbers x, not just those between
a and c. For x large enough, positive or negative, �(x) is also very large because
�(x) ≥ |x− a|+ |c− x|. So by taking a large enough closed interval, � assumes its
maximum at an endpoint and its minimum at a point in the interior where �′(x) = 0.

Differentiating �, we get

�′(x) =
x− a√

(x− a)2 + b2
− c− x√

(c− x)2 + d2
=

x− a
�1(x)

− c− x
�2(x)

.

Since �′(x) = 0, we have
x− a
�1(x)

=
c− x
�2(x)

. (5.33)

We ask you to check in Problem 5.14 that every x that satisfies Eq. (5.33) must be
between a and c.

R(x,0)0

P(a,b)
Q(c,d)

a

c−xx−a

c

i r

Fig. 5.7 Since the two right triangles are similar, i = r

The dashed line is perpendicular to the mirror at the point of reflection. The ratio
x− a
�1(x)

is the sine of the angle of incidence, defined as the angle i formed by the

incident ray and the perpendicular to the mirror (Fig. 5.7). Similarly,
c− x
�2

is the

sine of the angle of reflection, defined as the angle r formed by the reflected ray and
the perpendicular to the mirror. Therefore,

sin i = sinr.

Since these angles are acute, this relation can be expressed by saying that the angle
of incidence equals the angle of reflection. This is the celebrated law of reflection.

We now give a simple geometric derivation of the law of reflection from a plane
mirror. See Fig. 5.8. We introduce the mirror image P′ of the point P, so called
because as will be apparent after this argument, it is the point you perceive if your
eye is at Q. The mirror is the perpendicular bisector of the interval PP′. Then every
point R of the mirror is equidistant from P and P′,

PR = P′R,

so that
�(x) = PR+RQ = P′R+RQ.
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The right side of this equation is the sum of two sides of the triangle P′RQ. Accord-
ing to the triangle inequality, that sum is at least as great as the third side:

�(x)≥ P′Q.

Equality holds in the triangle inequality only in the special case that the “triangle” is
flat, that is, when P′, R, and Q lie on a straight line. In that case, we see geometrically
that the angle of incidence equals the angle of reflection.

R

P Q

P’

Q

R

P

P’

i r

Fig. 5.8 A geometric argument to locate the path of shortest time

Curved Mirrors. We now turn to light reflection in a curved mirror. This case can
no longer be handled by elementary geometry. Calculus, on the other hand, gives
the answer, as we shall now demonstrate. Again according to Fermat’s principle of
least time, the point of reflection R can be characterized as that point on the mirror
that minimizes the total length

�= PR+RQ.

We introduce Cartesian coordinates with R as the origin and the x-axis tangent to
the mirror at R. See Fig. 5.9. In terms of these coordinates, the mirror is described
by an equation of the form

y = f (x) such that f (0) = 0, f ′(0) = 0.

Denoting as before the coordinates of P by (a,b) and those of Q by (c,d), we see
that the sum of the distances �(x) = �1(x)+ �2(x) from (c,d) to (x, f (x)) to (a,b)
can be expressed as

�(x) =
√
(x− a)2 +( f (x)− b)2 +

√
(x− c)2 +( f (x)− d)2.

We assumed that reflection occurs at x = 0. By Fermat’s principle, the path from
(a,b) to (0,0) to (c,d) takes the least time and hence has the shortest total length �.
Therefore, �′(0) = 0. Differentiating, we get

�′(x) =
(x− a)+ f ′(x)( f (x)− b)

�1(x)
+

(x− c)+ f ′(x)( f (x)− d)
�2(x)

.

Since f ′(0) = 0 at R, the value of �′(x) at x = 0 simplifies to

�′(0) =
−a
�1(0)

+
−c
�2(0)

=
−a√

a2 + b2
+

−c√
c2 + d2

= 0.
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R(0,0)

f(x)P(a,b) Q(c,d)

x

a

c

Fig. 5.9 The law of reflection also applies to a curved mirror

This equation agrees with the case of a straight mirror. We conclude as before that
the angle of incidence equals the angle of reflection, except that in this case, these
angles are defined as those formed by the rays with the line perpendicular to the
tangent of the mirror at the point of reflection.

If we had not chosen the x-axis to be tangent to the mirror at the point of re-
flection, we would have had to use a fair amount of trigonometry to deduce the law
of reflection from the relation �′(x) = 0. This shows that in calculus, as well as in
analytic geometry, life can be made simpler by a wise choice of coordinate axes.

One difference between reflections from a straight mirror and from a curved mir-
ror is that for a curved mirror, there may well be several points R that furnish a
reflection. Only one of these is an absolute minimum, which points to an impor-
tant modification of Fermat’s principle: Among all possible paths that connect two
points P and Q via a mirror, light travels along those paths that take the least time
to traverse compared to all nearby paths. In other words, we do not care which one
may be the absolute minimum; light seeks out those paths that are local, not abso-
lute, minima. An observer located at P sees the object located at Q when he looks
toward any of these points R; this can be observed in some funhouse mirrors as in
Fig. 5.10.

Fig. 5.10 The law of reflection. If the mirror is curved, you might see your knee in two places

Refraction of Light. We shall study the refraction of light rays, that is, their pas-
sage from one medium into another, in cases in which the propagation speed of light
in the two media is different. A common example is the refraction at an air and water
interface; see Fig. 5.11.
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P(a,b)
l1

l2

R(x,0)

Q(c,d)

i

r

Fig. 5.11 Refraction of light traveling through air above and water below. On a straight path from
P to Q, the light would spend more time in the water

We rely as before on Fermat’s optical principle: among all possible paths PRQ,
light travels along the one that takes the least time to traverse.

Denote by c1 and c2 the speed of light in air and water, respectively. The time it

takes light to travel from P to R is
PR
c1

, and from R to Q it takes
RQ
c2

. The total time

t is then

t =
PR
c1

+
RQ
c2

.

We introduce the line separating air and water as the x-axis. Denote as before the
coordinates of P and of Q by (a,b) and (c,d) respectively, and the coordinate of R
by (x,0). Then

PR = �1(x) =
√
(x− a)2 + b2, RQ = �2(x) =

√
(c− x)2 + d2,

and so

t(x) =
�1(x)

c1
+

�2(x)
c2

.

As before, we notice that t(x)>
|x− a|

c1
+

|c− x|
c2

. Therefore, for x large (positive or

negative), t(x) is large. It follows from the same argument we gave previously that
t(x) achieves its minimum at a point where t ′(x) is 0. The derivative is

t ′(x) =
�′1(x)

c1
+

�′2(x)
c2

=
x− a

c1�1(x)
− c− x

c2�2(x)
.

From the relation t ′(x) = 0, we deduce that

c2

c1

x− a
�1(x)

=
c− x
�2(x)

.
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As in Eq. (5.33), the ratios
x− a
�1(x)

and
c− x
�2(x)

can be interpreted geometrically (see

Fig. 5.11) as the sine of the angle of incidence i and the sine of the angle of refraction
r, respectively:

c2

c1
sin i = sin r. (5.34)

This is the law of refraction, named for the Dutch mathematician and astronomer
Snell, and is often stated as follows: when a light ray travels from a medium 1 into
a medium 2 where the propagation speeds are c1 and c2, respectively, it is refracted
so that the ratio of the sines of the angle of refraction to the angle of incidence is

equal to the ratio
c2

c1
of the propagation speeds. The ratio I =

c2

c1
is called the index

of refraction. Since the sine function does not exceed 1, it follows from the law of
refraction that sinr does not exceed the index of refraction I, i.e., from Eq. (5.34),

sinr = I sin i ≤ I. (5.35)

The speed of light in water is less than that in air: I =
c2

c1
< 1. It follows from

inequality (5.35) that r cannot exceed a critical angle rcrit defined by sinrcrit = I. For

water and air, the index of refraction is approximately
1

1.33
, so the critical angle

is sin−1
(

1
1.33

)
≈ 49◦. This means that an underwater observer who looks in a

direction that makes an angle greater than 49◦ with the perpendicular cannot see
points above the water, since such a refracted ray would violate the law of refraction.
He sees instead reflections of underwater objects. (See Fig. 5.12.) This phenomenon,
well known to snorkelers, is called total internal reflection.

P

Q
θ

Fig. 5.12 A fish (or snorkeler) looking toward the surface with angle θ > 49◦ can’t see an object
at point P in the air

Problems

5.14. We showed in the derivation of the law of reflection that when �(x) is at a

minimum,
x− a
�1(x)

=
c− x
�2(x)

. Show that if x satisfies this equation, then x must be

strictly between a and c.
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5.15. The derivation of the law of reflection from Fermat’s principle used calculus.
Find all the places in the derivation in which knowledge of calculus was used.

h

hi

r

Fig. 5.13 Left: a light ray is refracted, in Problem 5.16. Right: with many thin layers, the ray may
bend

5.16. On the left of Fig. 5.13, a ray has slope m1 in the lower layer, and m2 in
the upper.

(a) If the light speeds are c1 and c2, use Snell’s law to show that

c2

c1

1√
m2

1 + 1
=

1√
m2

2 + 1
.

(b) Suggest functions c(y) and y(x) for which c(y)
√
(y′)2 + 1 is constant, so that

the graph of y produces one of the upward paths on the right of the figure. It is
drawn to suggest repeated reflections between a mirror at the bottom and total
internal reflection at the top.

5.5 Mathematics and Economics

Econometrics deals with measurable (and measured) quantities in economics. The
basis of econometric theory, as of any theory, is the relations between such quanti-
ties. This section contains some brief remarks on the concepts of calculus applied
to some of the functions that occur in economic theory.

Fixed and Variable Costs. Denote by C(q) the total cost of producing q units
of a certain commodity. Many ingredients make up the total cost; some, like raw
materials needed, are variable and are dependent on the amount q produced. Others,
like investment in a plant, are fixed and are independent of q. Now, C(q) can be a
rather complicated function of q, but it can be thought of as comprising two basic
components, the variable cost Cv(q) and the fixed cost Cf (q) = F , so that

C(q) =Cv(q)+F.

A manager who is faced with the decision whether to increase production has to
know how much the additional production of h units will cost. The cost per addi-
tional unit is
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C(q+ h)−C(q)
h

.

For reasonably small h, this is well approximated by
dC
dq

. This is called the marginal

cost of production. Another function of interest is the average cost function

AC(q) =
C(q)

q
=

Cv(q)+F
q

.

Productivity. Let G(L) be the amount of goods produced by a labor force of size
L. A manager, in order to decide whether to hire more workers, wants to know
how much additional goods will be produced by h additional laborers. The gain in
production per laborer added is

G(L+ h)−G(L)
h

.

For reasonably small h, this is well approximated by
dG
dL

. This is called the marginal

productivity of labor.

Demand. The consumer demand q for a certain product is a function of the price
p of the product. The slope of the demand function, called the marginal demand, is

the rate at which the demand changes given a change in price,
dq
dp

. The marginal

demand is a measure of how responsive consumer demand is to a change in price.
As you can see from the definition, the marginal demand depends on the units in
which you measure quantity and price. For example, if you measure the quantity of
oil in barrels rather than gallons, the marginal demand is 1

42 as much, since there
are 42 gallons to a barrel. Similarly with the price. Change the units from dollars to
pesos, and the marginal demand will change depending on the exchange rate. Rather
than specify units, economists define the elasticity of demand, ε , as

ε =
p
q

dq
dp

.

First let us verify that ε is independent of a change in units. Suppose that the price
is given as P = kp, and the quantity is given as Q = cq. Let the demand function be

given by q = f (p). Then Q = cq = c f

(
P
k

)
. By the chain rule,

dQ
dP

=
c
k

f ′
(

P
k

)
=

c
k

dq
dp

.

It follows that ε is independent of units:

ε =
P
Q

dQ
dP

=
kp
cq

dQ
dP

=
kp
cq

c
k

dq
dp

=
p
q

dq
dp

.
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In Problem 5.18, we ask you to verify, using the chain rule, that an equivalent defi-
nition for the elasticity of demand is

ε =
d logq
d log p

.

Other Marginals. We give two further examples of derivatives in economics.

Example 5.3. Let P(e) be the profit realized after the expense of e dollars. The
added profit per dollar where h additional dollars are spent is

P(e+ h)−P(e)
h

,

well approximated for small h by
dP
de

, called the marginal profit of expenditure.

Example 5.4. Let T (I) be the tax imposed on a taxable income I. The increase in
tax per dollar on h additional dollars of taxable income is

T (I+ h)−T(I)
h

.

For moderate h and some values I, this is well approximated by
dT
dI

, called the

marginal rate of taxation. However, T as prescribed by the tax code is only piece-

wise differentiable, in that the derivative
dT
dI

fails to exist at certain points.

These examples illustrate two facts:

(a) The rate at which functions change is as interesting in economics, business, and
finance as in every other kind of quantitative description.

(b) In economics, the rate of change of a function y(x) is not called the derivative of
y with respect to x but the marginal y of x.

Here are some examples of the uses to which the notion of derivative can be
put in economic thinking. The managers of a firm would likely not hire additional
workers when the going rate of pay exceeds the marginal productivity of labor, for
the firm would lose money. Thus, declining productivity places a limitation on the
size of a firm.

Actually, one can argue persuasively that efficiently run firms will stop hiring
even before the situation indicated above is reached. The most efficient mode for a
firm is one in which the cost of producing a unit of commodity is minimal. The cost
of a unit commodity is

C(q)
q

.

The derivative must vanish at the point where this is minimal. By the quotient rule,
we get
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q dC
dq −C(q)

q2 = 0,

which implies that at the point qmax of maximum efficiency,

dC
dq

(qmax) =
C(qmax)

qmax
. (5.36)

In words: At the peak of efficiency, the marginal cost of production equals the aver-
age cost of production. The firm would still make more money by expanding pro-
duction, but would not be as efficient as before, and so its relative position would be
weakened.

Example 5.5. Let us see how this works in the simple case that the cost function
is C(q) = q2 + 1. Then the variable cost is Cv(q) = q2, and the fixed cost is

Cf (q) = 1. The average variable cost is ACv(q) =
q2

q
= q, the average fixed cost

is ACf (q) =
1
q

, the average cost is AC(q) =
q2 + 1

q
= q+

1
q

, and the marginal

cost is C′(q) = 2q. The average cost reaches its minimum when the average cost
equals the marginal cost,

q+
1
q
= 2q,

which gives q = 1.

Equation (5.36) has the following geometric interpretation: The line connecting
(qmax,C(qmax)) to the origin is tangent to the graph of C at (qmax,C(qmax)). Such
a point does not exist for all functions, but does exist for functions C(q) for which
C(q)

q
tends to infinity as q tends to infinity. It has been remarked that the nonmo-

nopolistic capitalistic system is possible precisely because the cost functions in cap-
italistic production have this property. We ask you for an example of this property
in Problem 5.19.

We conclude this brief section by pointing out that to be realistic, economic the-
ory has to take into account the enormous diversity and interdependence of eco-
nomic activities. Any halfway useful models deal typically with functions of very
many variables. These functions are not derived a priori from detailed theoretical
considerations, but are empirically determined. For this reason, these functions are
usually taken to be of very simple form, linear or quadratic; the coefficients are then
determined by making a best fit to observed data. The fit that can be obtained in this
way is as good as could be obtained by taking functions of more complicated forms.
Therefore, there is no incentive or justification to consider more complicated func-
tions. The mathematical theory of economics makes substantial use of statistical
techniques for fitting linear and quadratic functions of many variables to recorded
data and with maximizing or minimizing such functions when variables are subject
to realistic restrictions.
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C(q)

0 q
max

q

Fig. 5.14 Tangency at the peak of efficiency

Problems

5.17. Suppose you have two plants that have two different cost functions C1 and C2.
You want to produce a total of Q units.

(a) Explain (including the meaning of q) why the total cost function C can be ex-
pressed as C(q) =C1(q)+C2(Q− q).

(b) Show that the optimal division of production occurs when the marginal cost of
production at plant 1 is equal to the marginal cost of production at plant 2.

(c) Suppose both costs are quadratic, C1(q) = aq2, C2(q) = bq2. Sketch a graph
of C. If plant 2 is 20 % more expensive than plant 1, show that about 55 % of
production should be done at plant 1.

If the costs were not equal, it would pay to switch some production from one plant
to the other!

5.18. Elasticity of demand is defined as ε =
p
q

dq
dp

. Use the chain rule to argue that

an equivalent definition is ε =
dlogq
dlog p

.

5.19. Consider a cost function C(q) = aqk +b, where a and b are positive. For what
values of k is there a most efficient production level as illustrated in Fig. 5.14?



Chapter 6
Integration

Abstract The total amount of some quantity is an important and useful concept.
We introduce the concept of the integral, the precise mathematical expression for
total amount. The fundamental theorem of calculus tells us how the total amount is
related to the rate at which that amount accumulates.

6.1 Examples of Integrals

We introduce the concept of the integral using three motivating examples of total
amount: distance, mass, and area.

6.1a Determining Mileage from a Speedometer

At the beginning of Chap. 3, we investigated the relation between a car’s odome-
ter and speedometer. We showed that if the speedometer were broken, it would
still be possible to determine the speed of the moving car from readings of the
odometer and a clock. Now we investigate the inverse problem: how to deter-
mine the total mileage if we are given the speedometer readings at various times.
We assume that we have at our disposal the total record of speedometer readings
throughout the trip, i.e., that we know the speed of the car, f , as a function of
time.

In the graph of f shown in Fig. 6.1, t is measured in hours, speed in miles per
hour (mph). Our problem can be formulated as follows: Given speed as function f
of time, determine the distance covered during the time interval [a,b].

Let us denote the distance covered by

D( f , [a,b]).

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 6, © Springer Science+Business Media New York 2014
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f(t)

Fig. 6.1 Speed of a car

The notation emphasizes that D depends on f and [a,b]. How does D depend on
[a,b]? Suppose we divide [a,b] into two subintervals [a,c] and [c,b] that cover [a,b]
and do not overlap (Fig. 6.2).

a bc

Fig. 6.2 The number c subdivides the interval

The distance covered during the total time interval [a,b] is the sum of the dis-
tances covered during the intervals [a,c] and [c,b]. This property is called the addi-
tivity property.

Additivity Property. For every c between a and b,

D( f , [a,b]) = D( f , [a,c])+D( f , [c,b]). (6.1)

How does distance D depend on the speed f ? The distance covered by a car
traveling with constant speed is

distance = (speed)(time).

Suppose that between time a and b, the speed, f , is between m and M:

m ≤ f (t)≤ M.

Two cars, one traveling with speed m the other with speed M, would cover the dis-
tances m(b− a) and M(b− a) during the time interval [a,b]. Our car travels a dis-
tance between these two. This property is called the lower and upper bound property.

Lower and Upper Bound Property. If m ≤ f (t)≤ M when a ≤ t ≤ b, then

m(b− a)≤ D( f , [a,b])≤ M(b− a).

To make this example a bit more concrete, we use the data in Fig. 6.1 to find var-
ious lower and upper bounds for the distance traveled between t = 2 and t = 7.
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From the graph, we see that the minimum speed during the interval was 0 mph and
the maximum speed was 60 mph:

0 ≤ f (t)≤ 60.

The time interval has length 7− 2 = 5 h. So we conclude that the distance traveled
was between 0 and 300 miles,

0 = (0)(5)≤ D( f , [2,7])≤ (60)(5) = 300.

This is not a very impressive estimate for the distance traveled. Let us see how to
do better using additivity. We know that the time interval [2,7] can be subdivided
into two parts, [2,5] and [5,7], and that the total distance traveled is the sum of the
distances traveled over these two shorter segments of the trip:

D( f , [2,7]) = D( f , [2,5])+D( f , [5,7]).

The speed on [2,5] is between 0 and 50 mph,

0 ≤ f (t)≤ 50,

and the speed on [5,7] is between 30 and 60 mph,

30 ≤ f (t)≤ 60.

The length of [2,5] is 5− 2 = 3, and the length of [5,7] is 7− 5 = 2. The lower and
upper bound property applied to each subinterval gives

(0)(3)≤ D( f , [2,5])≤ (50)(3) and (30)(2)≤ D( f , [5,7])≤ (60)(2).

Adding these two inequalities together, we see that

60 ≤ D( f , [2,5])+D( f , [5,7])≤ 270 miles.

Now recalling that D( f , [2,7]) = D( f , [2,5])+D( f , [5,7]), we get

60 ≤ D( f , [2,7])≤ 270 miles,

a better estimate for the distance traveled.

6.1b Mass of a Rod

Picture a rod of variable density along the x-axis, as in Fig. 6.3. Denote the density
at position x by f (x) in grams per centimeter. Let R( f , [a,b]) denote the mass of the
portion of the rod between points a and b of the x axis-measured in centimeters.
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How does R depend on [a,b]? If we divide the rod into two smaller pieces lying
on [a,c] and [c,b], then the mass of the whole rod is the sum of the mass of the
pieces,

R( f , [a,b]) = R( f , [a,c])+R( f , [c,b]).

ba c

Fig. 6.3 A rod lying on a line between a and b

This property is the additivity property that we encountered in the distance example
above.

How does the mass depend on f ? If the density f is constant, then the mass is
given by

mass = (density)(length).

But our rod has variable density. If m and M are the minimum and maximum densi-
ties of the rod between a and b,

m ≤ f (x) ≤ M,

then the mass R of the [a,b] portion of the rod is at least the minimum density times
the length of the rod and is not more than the maximum density times the length of
the rod:

m(b− a)≤ R( f , [a,b])≤ M(b− a).

This is the lower and upper bound property that we encountered in the distance
example.

Let us use the properties of additivity and lower and upper bounds to obtain
various estimates for the mass of a particular rod. Suppose the rod lies along the
x-axis between 1 and 5 cm and that its density at x is f (x) = x grams per centimeter.

The greatest density occurs at x = 5 and is f (5) = 5, and the least density occurs
at x = 1 and is f (1) = 1. The length of the rod is 5−1 = 4 cm. So we conclude that

4 = (1)(4)≤ R( f , [1,5])≤ (5)(4) = 20.

We can improve this estimate by subdividing the rod and using the properties of
additivity and lower and upper bounds. This time, let us subdivide the rod into three
shorter pieces as shown in Fig. 6.4.

By the additivity property, the mass of the rod between 1 and 5 is equal to the
sum of the mass between 1 and 3 and the mass between 3 and 5. If we subdivide the
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1 3 54

Fig. 6.4 A rod in three parts

interval [3,5] at 4, then we see by additivity again that the mass between 3 and 5 is
the sum of the mass between 3 and 4 and the mass between 4 and 5:

R( f , [1,5]) = R( f , [1,3])+R( f , [3,5])
= R( f , [1,3])+R( f , [3,4])+R( f , [4,5]).

Next, we apply the lower and upper bound property to each segment to estimate
their masses. The lower bounds for the density f on the three intervals are 1, 3,
and 4, and the upper bounds are 3, 4, and 5, respectively. The lengths of the inter-
vals are 2, 1, 1. By the lower and upper bound property, the masses of the three
segments are

(1)(2)≤ R( f , [1,3]) ≤ (3)(2),
(3)(1)≤ R( f , [3,4]) ≤ (4)(1),
(4)(1)≤ R( f , [4,5]) ≤ (5)(1).

Now adding these three inequalities, we obtain

9 ≤ R( f , [1,3])+R( f , [3,4])+R( f , [4,5])≤ 15 .

Recalling that mass has the additivity property

R( f , [1,5]) = R( f , [1,3])+R( f , [3,4])+R( f , [4,5]),

we obtain
9 ≤ R( f , [1,5])≤ 15,

a better estimate for the mass.

6.1c Area Below a Positive Graph

Let f be a function whose graph is shown in Fig. 6.5. We wish to calculate the area
of the region contained between the graph of f , the x-axis, and the lines x = a and
x = b. Denote this area by

A( f , [a,b]).

How does A depend on [a,b]? For any c between a and b, subdivide [a,b] into
two subintervals [a,c] and [c,b], as on the left in Fig. 6.6. This subdivides the region
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ba

f

Fig. 6.5 The area of the shaded region is A( f , [a,b])

into two nonoverlapping regions. The area of the original region is the sum of the
areas of the components. So A has the additive property,

A( f , [a,b]) = A( f , [a,c])+A( f , [c,b]).

How does A depend on f ? From the graph on the right in Fig. 6.6, we see that
the values f takes on in [a,b] lie between m and M:

m ≤ f (x) ≤ M for x in [a,b].

ba c

f

ba

f

m

M

Fig. 6.6 Left: The interval subdivided. Right: Rectangles with heights m and M

Then, as Fig. 6.6 indicates, the region in question contains the rectangle with base
[a,b] and height m, and is contained in the rectangle with base [a,b] and height M.
Therefore, we conclude that

m(b− a)≤ A( f , [a,b])≤ M(b− a). (6.2)

That is, the lower and upper bound property holds.
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Now just as we did in the examples of distance and mass, we look at a specific
example. We estimate the area of the region bounded by the graph of f (x) = x2 +1,
the x-axis, and the lines x = −1 and x = 2, as shown in Fig. 6.7. On [−1,2], f is
between 1 and 5, and so

3 = (1)(3)≤ A(x2 + 1, [−1,2])≤ (5)(3) = 15.

−1 2

2

4

0

x

1+x2

Fig. 6.7 The area below the graph of x2 +1 is between the areas of the smaller and larger rectan-
gles. The height of the small rectangle is 1. The height of the large rectangle is 5

Since A is additive over intervals, we see that if we subdivide [−1,2] into three
intervals [−1,−0.5], [−0.5,1.5], and [1.5,2], we get

A(x2 + 1, [−1,2]) = A(x2+1, [−1,−0.5])+A(x2+1, [−0.5,1.5])+A(x2 + 1, [1.5,2]).

Now on each of these subintervals, f (x) = x2 +1 takes on minimum and maximum
values (see Fig. 6.8). So on [−1,−0.5],

(1.25)(0.5)≤ A(x2 + 1, [−1,−0.5])≤ (2)(0.5).

On [−.5,1.5],
(1)(2)≤ A(x2 + 1, [−0.5,1.5])≤ (3.25)(2);

and on [1.5,2],

(3.25)(0.5)≤ A(x2 + 1, [1.5,2])≤ (5)(0.5).

Putting this all together, we get

(1.25)(0.5)+ (1)(2)+ (3.25)(0.5)

≤ A(x2 + 1, [−1,2])≤ (2)(0.5)+ (3.25)(2)+ (5)(0.5),

or
4.25 ≤ A(x2 + 1, [−1,2])≤ 10.
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−1 −.5 2

2

4

0 1.5

x

1+x2

Fig. 6.8 The area below the graph of x2 + 1 is between the sums of the areas of the smaller and
larger rectangles. The heights of the small rectangles are 1.25, 1, 3.25. The heights of the large
rectangles are 2, 3.25, 5

This is not a very accurate estimate for A, but it is better than our first estimate that
A is between 3 and 15.

We can see from the graphs that if we were to continue to subdivide each of the
intervals, the resulting estimates for A would become more accurate.

6.1d Negative Functions and Net Amount

So far, our function f has been positive, and in the case of density, that remains true.
But signed distance D and area A also make sense for functions f which take on
negative values.

The notion of positive and negative position of a car along a road can be defined
in the same way as positive and negative numbers are defined on the number line:
the starting point divides the road into two parts, one of which is arbitrarily labeled
positive. Positions on the positive side are assigned a positive distance from the
starting point, while positions on the negative side are assigned the negative of the
distance from the starting point.

t = t 2 t = t 3

Home School

t = t1

Store

Fig. 6.9 A trip from school to home, then to the store
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Velocity is defined as the derivative with respect to t of the position function as
just defined. The change in position (or signed distance) traveled between two points
in time is the ending position minus the starting position. On intervals over which
velocity is always negative, the change in position (or signed distance) is negative.
By arguments that are identical to those for positive velocity, we can see that signed
distance D has both the additivity and the lower and upper bound properties. On
intervals over which the velocity is at times positive and at times negative, we can
see by additivity that D is the net distance: the sum of the signed distances traveled
from the starting point. Fig. 6.9 shows an example.

a b

f

x

Fig. 6.10 A function f that has both positive and negative values

What should the interpretation of the area A( f , [a,b]) be when f takes on neg-
ative values, as pictured in Fig. 6.10? We propose to interpret the area above the
x-axis as positive, and the area below the x-axis as negative, with the result that A
will be defined as the algebraic sum of these positive and negative quantities. There
is a reason for this interpretation: in many applications of area, the “underground”
positions, i.e., those below the x-axis, have to be interpreted in a sense opposite
to the portions aboveground. Only with this interpretation of positive and negative
area is the lower and upper bound property (6.2) valid. This is particularly clear on
intervals where f is negative.

We have shown that all three of the quantities distance D, rod mass R, and area
A have the additive property with respect to [a,b], and the lower and upper bound
property with respect to f . We shall show in the next section that these two prop-
erties completely characterize D, R, and A. To put it sensationally, if you knew no
more about D, R, and A than what you have learned so far, and if you were trans-
ported to a desert island, equipped only with pencil and paper, you could calculate
the values of D, R, and A for any continuous function f on any interval [a,b]. The
next section is devoted to explaining how.

Problems

6.1. Find a better estimate for the mass of the rod R(x, [1,5]) discussed in
Sect. 6.1b, by

(a) Subdividing the rod into four subpieces of equal length,
(b) Subdividing the rod into eight subpieces of equal length.
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6.2. Find better upper and lower estimates for the area A(x2 + 1, [−1,2]) discussed
in Sect. 6.1c, by subdividing [−1,2] into six subintervals of equal length.

6.3. In this problem we explore signed area, or net area above the x-axis.

(a) Sketch the graph of f (x) = x2 − 1 on the interval [−3,2].
(b) Let A(x2 − 1, [a,b]) be the signed area as described in Sect. 6.1d. Which of the

following areas are clearly positive, clearly negative, or difficult to determine
without some computation:

(i) A(x2 − 1, [−3,−2])
(ii) A(x2 − 1, [−2,0])

(iii) A(x2 − 1, [−1,0])
(iv) A(x2 − 1, [0,2])

(c) Find upper and lower estimates for A(x2 − 1, [−3,2]) using five subintervals of
equal length.

6.4. Let f (t) = t2 − 1 be the velocity of an object at time t. Find upper and lower
estimates for the change in position between time t = −3 and t = 2 by subdividing
[−3,2] into five subintervals of equal length.

6.2 The Integral

We have seen that all three quantities distance D( f , [a,b]), rod mass R( f , [a,b]), and
area A( f , [a,b]) are additive with respect to the given interval and have the lower
and upper bound property with respect to f . In this section, we show that using
only these two properties, we can calculate D, R, and A with as great an accuracy as
desired.

In other words, if f and [a,b] are the same in each of the three applications,
then the numbers D( f , [a,b]), R( f , [a,b]), and A( f , [a,b]) have the same value, even
though D, R, and A have entirely different physical and geometric interpretations.
Anticipating this result, we call this number the integral of f over [a,b] and denote
it by

I( f , [a,b]).

The usual notation for the integral is

I( f , [a,b]) =
∫ b

a
f (t)dt.

Example 6.1. The area A(t, [0,b]) is shown as the area of the large triangle in
Fig. 6.11. In the integral notation it is written

∫ b

0
t dt,
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and since it represents the area of a triangle of base b and height b, the value is
1
2

b2. According to the additive property, if 0 < a < b, then

∫ b

0
t dt =

∫ a

0
t dt +

∫ b

a
t dt.

We find by subtracting that

∫ b

a
t dt =

b2 − a2

2
.

This is the area of the shaded trapezoid in the figure.

We use the notation I( f , [a,b]) when we are developing the concept of the integral
to emphasize that it is an operation whose inputs are a function and an interval and
whose output is a number. The basic properties of the integral are (a) additivity with
respect to the interval of integration, and (b) the lower and upper bound property
with respect to the function being integrated.

Next we give an example to show how we can compute an integral using only
the two basic properties.

f(t) = t

a b

t

Fig. 6.11 The areas calculated in Example 6.1

The Integral of et on [0,1]:
∫ 1

0
et dt.

Let us look at what happens when we divide [0,1] into three equal subintervals

0 <
1
3
<

2
3
< 1.

Since et is increasing, its lower bounds on these subintervals are

e0, e1/3, e2/3.
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Set r = e1/3. Then the lower bounds are 1, r, r2, and the upper bounds are r, r2, r3.
The lower and upper bound property gives

(1)
(1

3

)≤
∫ 1/3

0
et dt ≤ (r)

(1
3

)
,

(r)
(1

3

)≤
∫ 2/3

1/3
et dt ≤ (r2)

(1
3

)
,

(r2)
(1

3

)≤
∫ 1

2/3
et dt ≤ (r3)

(1
3

)
.

Add these inequalities to get

1+ r+ r2

3
≤

∫ 1/3

0
et dt +

∫ 2/3

1/3
et dt +

∫ 1

2/3
et dt ≤ r+ r2 + r3

3
.

Then additivity gives

1+ r+ r2

3
≤

∫ 1

0
et dt ≤ r+ r2 + r3

3
.

Similarly, if the unit interval is divided into n equal parts, each of length
1
n

, we set

r = e1/n. We get

1+ r+ · · ·+ rn−1

n
≤

∫ 1

0
et dt ≤ r+ r2 + · · ·+ rn

n
.

Both the left and right sides are
1
n

times the partial sum of a geometric series (see

Sect. 2.6a). We know that these sums can be rewritten as

1− rn

(1− r)n
≤

∫ 1

0
et dt ≤ r

1− rn

(1− r)n
. (6.3)

Take h =
1
n

. Since r = e1/n, we have

1− rn

(1− r)n
=

e− 1
eh−1

h

.

As n tends to infinity, h tends to 0, and the limit lim
h→0

eh − 1
h

is the derivative of ex at

x = 0, which equals 1. Therefore, in the limit as n tends to infinity, inequality (6.3)

becomes e− 1 ≤
∫ 1

0
et dt ≤ e− 1, and so

∫ 1

0
et dt = e− 1. (6.4)
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6.2a The Approximation of Integrals

We show now how to determine the integral of any continuous function over any
closed interval, using only the following two basic properties:

If a < c < b then
∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt (6.5)

and

If m ≤ f (t)≤ M then m(b− a)≤
∫ b

a
f (t)dt ≤ M(b− a). (6.6)

By the additivity property in Eq. (6.5), we know that if

a < a1 < b,

then ∫ b

a
f (t)dt =

∫ a1

a
f (t)dt +

∫ b

a1

f (t)dt.

Similarly, divide [a,b] into three intervals

a < a1 < a2 < b.

Then applying the additivity property twice, we get

∫ b

a
f (t)dt =

∫ a1

a
f (t)dt +

∫ b

a1

f (t)dt and
∫ b

a1

f (t)dt =
∫ a2

a1

f (t)dt +
∫ b

a2

f (t)dt.

Therefore, ∫ b

a
f (t)dt =

∫ a1

a
f (t)dt +

∫ a2

a1

f (t)dt +
∫ b

a2

f (t)dt.

Generally, if we divide [a,b] into n intervals by

a < a1 < a2 < · · ·< an−1 < b,

we find that repeated application of the additivity property gives

∫ b

a
f (t)dt =

∫ a1

a
f (t)dt +

∫ a2

a1

f (t)dt + · · ·+
∫ b

an−1

f (t)dt. (6.7)

Set a0 = a and an = b. Since f is continuous on [a,b], we know by the extreme
value theorem that f has a minimum m and maximum M on [a,b], and a minimum
mi and a maximum Mi on each of the subintervals, with m ≤ mi and Mi ≤ M. We
can estimate each of the integrals on the right-hand side of Eq. (6.7) by the lower
and upper bound property:

mi(ai − ai−1)≤
∫ ai

ai−1

f (t)dt ≤ Mi(ai − ai−1).
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By summing these estimates and using additivity, we get

m1(a1 − a0)+m2(a2 − a1)+ · · ·+mn(an − an−1)

≤
∫ b

a
f (t)dt ≤ M1(a1 − a0)+M2(a2 − a1)+ · · ·+Mn(an − an−1). (6.8)

Since each of the Mi is less than or equal to M, and m ≤ mi, and since the sum of
the lengths of the subintervals is the length b− a of the entire interval, we see that

inequality (6.8) is an improvement on the original estimate m(b−a)≤
∫ b

a
f (t)dt ≤

M(b− a). We saw examples of this kind of improvement in the distance, mass, and
area examples.

Having a better estimate is good, but we would like to know that we can compute∫ b

a
f (t)dt within any tolerance, no matter how small, through repeated uses of addi-

tivity and the lower and upper bound properties alone. We can achieve the tolerance
we desire by making the difference between the left-hand side of Eq. (6.8), called
the lower sum, and the right-hand side of Eq. (6.8), called the upper sum, as small
as desired. For example, if the difference between them were less than 1

1000 , then we

would know
∫ b

a
f (t)dt within that tolerance.

We recall now that every continuous function f on a closed interval is uniformly
continuous. That is, given any tolerance ε > 0, there is a precision δ > 0 such that if
two points c and d in [a,b] are closer than δ , then f (c) and f (d) differ by less than
ε . So if we break up the interval [a,b] into pieces [ai−1,ai] with length less than δ ,
the minimum mi and the maximum Mi of f on [ai−1,ai] will differ by less than ε .
The left and right sides of Eq. (6.8) differ by

(M1 −m1)(a1 − a0)+ (M2 −m2)(a2 − a1)+ · · ·+(Mn −mn)(an − an−1),

which is less than

ε(a1 − a0)+ ε(a2 − a1)+ · · ·+ ε(an − an−1) = ε(an − a0) = ε(b− a).

This shows that for a sufficiently fine subdivision of the interval [a,b], the upper sum
and the lower sum in Eq. (6.8) differ by less than ε(b−a), so by Eq. (6.8), the upper

and lower sums differ from
∫ b

a
f (t)dt by less than ε(b−a). Since b−a is fixed, we

can choose ε so that ε(b− a) is as small as we like.
So far, our descriptions of how to determine the integral of a continuous function

on [a,b] have relied heavily on finding the maximum and minimum on each subin-
terval. In general, it is not easy to find the absolute maximum and minimum values
of a continuous function on a closed interval, even though we know they exist. We
now give estimates of the integral of a function that are much easier to evaluate than

the upper and lower bounds in Eq. (6.8), and that also approximate
∫ b

a
f (t)dt within

any tolerance.
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Definition 6.1. Choose any point ti in the interval [ai−1,ai], i = 1,2, . . . ,n, and
form the sum

Iapprox( f , [a,b]) = f (t1)(a1 − a0)+ f (t2)(a2 − a1)+ · · ·+ f (tn)(an − an−1).
(6.9)

The sum Iapprox is called an approximate integral of f on [a,b] or a Riemann
sum of f on [a,b].

Example 6.2. To find an approximate integral of f (t) =
√

t on the interval [1,2]
using the subdivision

1 < 1.3 < 1.5 < 2,

we need to choose a number from each subinterval. Let us choose them in such
a way that their square roots are easy to calculate:

t1 = 1.21 = (1.1)2, t2 = 1.44 = (1.2)2, t3 = 1.69 = (1.3)2.

Then

Iapprox(
√

t, [1,2]) =
√

t1(1.3− 1)+
√

t2(1.5− 1.3)+
√

t3(2− 1.5)

= (1.1)(0.3)+ (1.2)(0.2)+ (1.3)(0.5)= 1.22.

Approximate integrals are easy to compute, but how close are they to
∫ b

a
f (t)dt?

The value f (ti) lies between the minimum mi and the maximum Mi of f on [ai−1,ai].
Therefore, Iapprox( f , [a,b]) lies in the interval between

m1(a1 − a0)+m2(a2 − a1)+ · · ·+mn(an − an−1)

and

M1(a1 − a0)+M2(a2 − a1)+ · · ·+Mn(an − an−1).

That is, no matter how the ti are chosen in each interval, each approximate integral

lies within the same interval that contains
∫ b

a
f (t)dt. We saw that for continuous

functions we can subdivide [a,b] into subintervals such that the difference between
the lower sum and the upper sum is less than ε(b− a). Therefore, the exact and an
approximate integral differ by an amount not greater than ε(b− a). We state this
result as the approximation theorem.
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Theorem 6.1. Approximation theorem for the integral. Suppose that for a
continuous function f on [a,b], | f (c)− f (d)| < ε whenever |c− d|<δ . Take a
subdivision

a = a0 < a1 < a2 < · · ·< an−1 < an = b, (6.10)

where each length (ai − ai−1) is less than δ . Then every approximate integral

f (t1)(a1 − a0)+ · · ·+ f (tn)(an − an−1)

differs from the exact integral
∫ b

a
f (t)dt by less than ε(b− a).

Sometimes, the length (ai − ai−1) of the ith interval in (6.10) is denoted by dti,
so that the approximating sums are written as

Iapprox = f (t1)(a1 − a0)+ · · ·+ f (tn)(an − an−1) = f (t1)dt1 + · · ·+ f (tn)dtn.

One term of this sum is illustrated in Fig. 6.12. If we use the sum symbol, this sum
may be abbreviated as

Iapprox( f , [a,b]) =
n

∑
i=1

f (ti)dti. (6.11)

We use the classical notation ∫ b

a
f (t)dt

for the integral because of its resemblance to this formula.

a1 t2 a2

dt2

f(t 2)

Fig. 6.12 Elements of an approximate integral
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6.2b Existence of the Integral

We began our discussion of the integral with physical and geometric examples such
as distance, mass, and area, in which it was reasonable to assume that there was a
number, called the integral, that we were trying to estimate. For example, we found
it reasonable to believe there is a number that can be assigned to the area of a planar
region bounded by a nice boundary. But how do we know that a single number
called area can be assigned to such a region in the first place?

In this section, we prove that for a continuous function on a closed interval, the
approximate integrals converge to a limit as we refine the subdivision. We show that
this limit does not depend on the particular sequence of subdivisions used. This limit

is called the definite integral and is written
∫ b

a
f (t)dt.

Given a continuous function f on [a,b] and given any tolerance ε , we can choose
δ such that if two points s and t in [a,b] differ by less than δ , then f (s) and f (t)
differ by less than ε . Subdivide the interval [a,b] as

a = a0 < a1 < a2 < · · ·< an−1 < an = b.

Then choose any point ti in the ith subinterval, ai−1 ≤ ti ≤ ai, and form the ap-

proximate integral I =
n

∑
i=1

f (ti)(ai − ai−1). Then form another approximate integral

I′ =
m

∑
j=1

f (t ′j)(a
′
j − a′j−1) using another subdivision

a = a′0 < a′1 < · · ·< a′m = b

and points t ′j from each subinterval. Next, we show that if all the lengths of the
subintervals are small enough,

ai − ai−1 <
1
2

δ and a′j − a′j−1 <
1
2

δ ,

then the two approximate integrals differ from each other by less than ε(b− a).
That is,

|I − I′|< ε(b− a).

To see this, we form the common subdivision consisting of all the intersections
of the a intervals and a′ intervals that have positive length. We denote by si j

the length of the intersection of [ai−1,ai] with [a′j−1,a
′
j]. An example is indicated

in Fig. 6.13. Many of the si j are zero, because most of the subintervals do not
overlap.
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ja’
i−1

a a ia’
j−1

a’ a
i−1 j ia’

j−1
a

j|a’  − a     | = si−1 ij

Fig. 6.13 Left: The subintervals intersect, with length si j. Right: They do not overlap, and si j = 0

We break up the sums I and I′ as follows. The length (ai − ai−1) is the sum over
j of the si j for which [ai−1,ai] and [a′j−1,a

′
j] intersect. Since the other si j are 0, we

can sum over all i and j:

I = ∑
i

f (ti)(ai − ai−1) = ∑
i, j

f (ti)si j .

Similarly, the length (a j − a j−1) is the sum over i of the si j for which [ai−1,ai] and
[a′j−1,a

′
j] intersect. So

I′ =∑
j

f (t ′j)(a j − a j−1) = ∑
i, j

f (t ′i )si j.

Therefore, I − I′ = ∑i, j( f (ti)− f (t ′j))si j . The only terms of interest are those for
which si j is nonzero, that is, for which [ai−1,ai] and [a′j−1,a

′
j] overlap. But the

lengths of [ai−1,ai] and [a′j−1,a
′
j] have been assumed less than 1

2 δ . Hence the points
ti and t ′j in each nonzero term differ by no more than δ . It follows that f (ti) and
f (t ′j) differ by less than ε . Therefore, by the triangle inequality,

|I− I′| ≤ ∑
i, j

εsi j = ε(b− a). (6.12)

This result enables us to make the following definition.

Definition 6.2. The integral of a continuous function on a closed interval.
Take any sequence of subdivisions of [a,b] with the following property: the
length of the largest subinterval in the kth subdivision tends to zero as k tends
to infinity. (For instance, we could take the kth subdivision to be the subdivi-
sion into k equal parts.) Denote by Ik any approximate integral using the kth
subdivision.

Since f is a continuous function, given any tolerance ε > 0, there is a pre-
cision δ > 0 such that the values of f differ by less than ε over any interval of
length δ . Choose N so large that for k > N, each subinterval of the kth subdi-
vision has length less than 1

2 δ . It follows from (6.12) that for k and l greater
than N, Ik and Il differ by less than ε(b−a). This proves the convergence of the
sequence Ik.
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The limit does not depend on our choice of the sequence of subdivisions. For
given two such sequences, we can merge them into a single sequence, and the
associated approximate integrals form a convergent sequence. This proves that
the two sequences that were merged have the same limit.

This common limit is defined to be the integral
∫ b

a
f (t)dt.

Other Integrable Functions. If f is not continuous on [a,b], we may be able to
define a continuous function g on [a,b] by redefining f at finitely many points. If so,

we say that f is integrable on [a,b] and set
∫ b

a
f (t)dt =

∫ b

a
g(t)dt.

Example 6.3. To compute
∫ 4

1

t2 − 4
t − 2

dt, we notice that
t2 − 4
t − 2

is not continuous

on all of [1,4] but is equal to t + 2 for t 
= 2. So by redefining
t2 − 4
t − 2

to be 4 at

t = 2, we obtain ∫ 4

1

t2 − 4
t − 2

dt =
∫ 4

1
(t + 2)dt.

Example 6.4. To compute
∫ 1

0

sin t
t

dt, we notice that
sin t

t
is not continuous at 0,

because it is not defined at 0. We know that lim
t→0

sin t
t

= 1, so we define g(0) = 1

and g(t) =
sin t

t
for t 
= 0. Then g is continuous on every closed interval [a,b].

In particular,
∫ 1

0

sin t
t

dt =
∫ 1

0
g(t)dt is a number. We do not have an easy way

to calculate this number, but using ten equal subintervals and the right-hand end-
points, you can see that it is approximately

∫ 1

0

sin t
t

dt ≈
10

∑
n=1

sin
(

n
10

)
n
10

( 1
10

)≈ 0.94.

Also, if f is not continuous on [a,b] but is integrable on [a,c] and [c,b], then we

say that f is integrable on [a,b] and set
∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt.

Example 6.5. Denote by [x] the greatest integer that is less than or equal to x. See
Fig. 6.14. Then [x] is integrable on [0,1], [1,2], and [2,3], and

∫ 3

0
[x]dx =

∫ 1

0
0dx+

∫ 2

1
1dx+

∫ 3

2
2dx = 0+ 1(2− 1)+ 2(3−2)= 3.
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1

2

1 2 3

Fig. 6.14 Graph of the greatest integer function, in Example 6.5

The Properties of Integrals Revisited. We verify that the lower and upper bound
property, as well as additivity property, are satisfied by Definition 6.2.

To check additivity, suppose a < c < b. Approximate
∫ b

a
f (t)dt using a subdivi-

sion of [a,b] in which one point of the subdivision is c. This is permissible, because
we have seen that any sequence of subdivisions is allowed, as long as the lengths of
the subintervals tend to 0, and this can certainly be done while keeping c as one of
the division points. Then for each such Iapprox( f , [a,b]), we may separate the terms
into two groups corresponding to the subintervals to the left of c and those to the
right of c, and thus express Iapprox( f , [a,b]) as a sum

Iapprox( f , [a,b]) = Iapprox( f , [a,c])+ Iapprox( f , [c,b]).

As the lengths of the largest subintervals tend to zero, the approximate integrals
tend to ∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt.

This verifies the additivity property (6.5). For the lower and upper bound property,
suppose m ≤ f (t) ≤ M on [a,b]. Then for every approximate integral, we have

∑
i

m(ai − ai−1)≤ ∑
i

f (ti)(ai − ai−1)≤ ∑
i

M(ai − ai−1),

that is, m(b− a)≤ Iapprox( f , [a,b])≤ M(b− a). In the limit, it follows that

m(b− a)≤
∫ b

a
f (t)dt ≤ M(b− a),

which is the lower and upper bound property (6.6).
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6.2c Further Properties of the Integral

We present some important properties of the integral.

Theorem 6.2. The mean value theorem for integrals. If f is a continuous
function on [a,b], then there is a number c in [a,b] for which

∫ b

a
f (t)dt = f (c)(b− a).

The number f (c) is called the mean or average value of f on [a,b].

Proof. By the extreme value theorem, f has a minimum value m and a maximum
M on [a,b]. Then the lower and upper bound property gives

m ≤ 1
b− a

∫ b

a
f (t)dt ≤ M.

Since a continuous function takes on all values between its minimum and maximum,
there is a number c in [a,b] for which

f (c) =
1

b− a

∫ b

a
f (t)dt.

��
Example 6.6. The mean of f (t) = t on [a,b] is

1
b− a

∫ b

a
t dt =

1
b− a

b2 − a2

2
=

a+ b
2

= f (c), where c =
a+ b

2
.

In Problem 6.9, we encourage you to explore how the mean value of f on [a,b]
is related to the ordinary average taken over n numbers, and to the concept of a
weighted average.

a bc

Fig. 6.15 The mean value of a positive function, illustrated in Example 6.7
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Example 6.7. Take f positive. We interpret
∫ b

a
f (t)dt as the area under the graph

of f in Fig. 6.15. Theorem 6.2 asserts that there is at least one number c between
a and b such that the shaded rectangle shown has the same area as the region
under the graph of f .

We make the following definition, which is occasionally useful in simplifying
expressions.

Definition 6.3. When a > b we define
∫ b

a
f (t)dt = −

∫ a

b
f (t)dt, and when

a = b we define
∫ b

a
f (t)dt = 0.

Note that the additivity property holds for all numbers a, b, c within an interval
on which f is continuous.

Example 6.8. ∫ 3

1
f (t)dt =

∫ 5

1
f (t)dt +

∫ 3

5
f (t)dt,

because this is merely a rearrangement of the earlier property

∫ 3

1
f (t)dt +

∫ 5

3
f (t)dt =

∫ 5

1
f (t)dt.

Even and Odd Functions. The integral of an odd function f , f (−x) = − f (x),
on an interval that is symmetric about 0 is zero. Consider approximate integrals for∫ 0

−a
f (x)dx and

∫ a

0
f (x)dx for an odd function as in Fig. 6.16. We see that

∫ 0

−a
f (x)dx =−

∫ a

0
f (x)dx.

Therefore,
∫ a

−a
f (x)dx =

∫ 0

−a
f (x)dx+

∫ a

0
f (x)dx = 0 for odd f .

For an even function f , f (−x) = f (x), as in the figure, we see that

∫ 0

−a
f (x)dx =

∫ a

0
f (x)dx.

Therefore,
∫ a

−a
f (x)dx = 2

∫ a

0
f (x)dx for even f .
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a−a a

even odd

−a

Fig. 6.16 Graphs of even and odd functions

Theorem 6.3. Linearity of the integral. For any numbers a, b, c1, c2 and con-
tinuous functions f1 and f2, we have

∫ b

a
c1 f1(t)+ c2 f2(t)dt = c1

∫ b

a
f1(t)dt + c2

∫ b

a
f2(t)dt.

Proof. The approximate integrals satisfy

Iapprox(c1 f1 + c2 f2, [a,b]) = c1Iapprox( f1, [a,b])+ c2Iapprox( f2, [a,b])

if we use the same subdivision and the same points ti in each of the three sums. The
limit of these relations then gives Theorem 6.3. ��

Theorem 6.4. Positivity of the integral. If f is a continuous function with

f (t)≥ 0 on [a,b], then
∫ b

a
f (t)dt ≥ 0.

Proof. Each approximate integral consists of nonnegative terms, so the limit must
be nonnegative. ��

Example 6.9. If f1(t) ≤ f2(t) on [a,b], then
∫ b

a
f1(t)dt ≤

∫ b

a
f2(t)dt. We see

this by taking f = f2 − f1 in Theorem 6.4 and using the linearity of the integral,
Theorem 6.3.

Problems

6.5. Calculate the approximate integral for the given function, subdivision of the
interval, and choice of evaluation points ti. For each problem, make a sketch of the
graph of the function corresponding to the approximate integral.

(a) f (t) = t2 + t on [1,3], using 1 < 1.5 < 2 < 3 and t1 = 1.2, t2 = 2, t3 = 2.5.
(b) f (t) = sin t on [0,π ], using 0 < π

4 < π
2 < 3π

4 < π and take the ti to be the left
endpoints of the subintervals.
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6.6. Use an area interpretation of the integral to compute the integrals for the func-
tion f whose graph is shown in Fig. 6.17.

(a)
∫ 1

0
f (t)dt

(b)
∫ 4

1
f (t)dt

(c)
∫ 4

0
f (t)dt

(d)
∫ 6

1
f (t)dt

−2

1

3

1 4 6

1

 e

 1

e x

x0

Fig. 6.17 Left: The graph of f in Problem 6.6. Right: The graph of ex for Problem 6.7

6.7. Refer to Fig. 6.17.

(a) Use the result that
∫ 1

0
et dt = e− 1 to find the area of the shaded region.

(b) Use a geometric argument to compute
∫ e

1
logt dt.

6.8. Use an area interpretation and properties of integrals to evaluate the following
integrals.

(a)
∫ π

−π
sin(x3)dx

(b)
∫ 2

0

√
4− x2 dx

(c)
∫ 10

−10

(
ex3 − e−x3)

dx
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6.9. Let T (x) be the temperature at point x on a rod, 0 ≤ x ≤ 15.

(a) Use the measurements at six equally spaced points shown in Fig. 6.18. Make two
estimates of the average temperature, first with an approximate integral using
left endpoint values of T , and then using right endpoint values.

(b) Use the measurements taken at unequally spaced points in Fig. 6.18. Write two
expressions to estimate the average temperature, first with an approximate inte-
gral using left endpoint values of T , and then using right endpoint values.

0 3 6 9 12 15

6061636575130T

x

1 2 4 1560

65 60130 120 90 70T

x

Fig. 6.18 Two sets of temperature measurements along the same rod in Problem 6.9

6.10. Express the limit

lim
n→∞

1+ 4+ 9+ · · ·+(n− 1)2

n3

as an integral of some function over some interval, and find its value.

6.11. Let k be some positive number. Consider the interval obtained from [a,b] by
stretching in the ratio 1 : k, i.e., [ka,kb]. Let f be any continuous function on [a,b].
Denote by fk the function defined on [ka,kb] obtained from f by stretching:

fk(t) = f
( t

k

)
.

Using approximate integrals, prove that

∫ kb

ka
fk(t)dt = k

∫ b

a
f (t)dt

and make a sketch to illustrate this result. In Sect. 6.3, we shall prove this relation
using the fundamental theorem of calculus.

Further properties of the integral are explored in the next problems. These prop-
erties can be derived here using approximate integrals. Later, in Sect. 6.3, we ask
you to prove them using the fundamental theorem of calculus.
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6.12. Let f be any continuous function on [a,b]. Denote by fr the function obtained
when f is shifted to the right by r. That is, fr is defined on [a+ r,b+ r] according to
the rule

fr(t) = f (t − r).

See Fig. 6.19. Prove that

∫ b

a
f (x)dx =

∫ b+r

a+r
fr(x)dx.

This property of the integral is called translation invariance.
Hint: Show that approximating sums are translation-invariant.

a

f(x)

b a+r

f(x−r)

b+r

Fig. 6.19 Translation

6.13. For an interval [a,b], the reflected interval is defined as [−b,−a]. If f is some
continuous function on [a,b], its reflection, denoted by f−, is defined on [−b,−a] as
follows:

f−(t) = f (−t).

The graph of f− is obtained from the graph of f by reflection across the vertical
axis; see Fig. 6.20. Prove that

∫ −a

−b
f−(t)dt =

∫ b

a
f (t)dt.

This property of the integral is called invariance under reflection.
Hint: Show that approximating sums are invariant under reflection.

−ab−

f_(x)

a

f(x)

b

Fig. 6.20 Reflection
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6.14. In this problem, you will evaluate
∫ 1

0

√
t dt =

2
3

.

(a) Using 0 < 1
4 < 1

2 < 1, verify that the upper and lower sums are

Iupper =

√
1
4

1
4
+

√
1
2

1
4
+
√

1
1
2

and

Ilower =
√

0
1
4
+

√
1
4

1
4
+

√
1
2

1
2
.

(b) Let 0 < r < 1, and use the subdivision 0 < r3 < r2 < r < 1. Verify that the upper
sum is

Iupper =
√

r3r3 +
√

r2(r2 − r3)+
√

r(r− r2)+
√

1(1− r),

and find an expression for the lower sum.
(c) Write the upper sum for the subdivision 0 < rn < rn−1 < · · · < r2 < r < 1, rec-

ognize a geometric series in it, and check that

Iupper → 1− r

1− r3/2

as n tends to infinity.

(d) Show that
1− r

1− r3/2
tends to 2

3 as r tends to 1.

6.3 The Fundamental Theorem of Calculus

Earlier, we posed the following problem: determine the change of position, or net
distance, D, of a moving vehicle during a time interval [a,b] from knowledge of the
velocity f of the vehicle at each instant of [a,b]. The answer we found in Sect. 6.1d
was that D is the integral

D = I( f , [a,b])

of the velocity as a function of time over the interval [a,b]. This formula expresses
the net distance covered during the whole trip. A similar formula holds, of course,
for the net distance D(t) up to time t. This formula is

D(t) = I( f , [a, t]),

where [a, t] is the interval between the starting time and the time t.
In Sects. 3.1 and 6.1d, we discussed the converse problem: if we know the net

distance D(t) of a moving vehicle from its starting point to its position at time t,
for all values of t, how can we determine its velocity as a function of time
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t? The answer we found was that velocity is the derivative of D as a function
of time:

f (t) = D′(t)

We also posed the problem early in this chapter of finding the mass of a rod R
between points a and b from knowledge of its linear density f . We found that the
mass of the rod is

R = I( f , [a,b]),

the integral of the density f over the interval [a,b]. A similar formula holds for the
mass of the part of the rod up to the point x. This is

R(x) = I( f , [a,x]).

Again in Sect. 3.1 we discussed the converse problem: if we know the mass of the
rod from one end to any point x, how do we find the linear density of the rod at x?
The answer we found was that the linear density f at x is the derivative of the mass

f (x) = R′(x).

We can summarize these observations in the following words:

If a function F is defined to be the integral of f from a to x,
then the derivative of F is f .

Omitting all qualifying phrases, we can express the preceding statement as an
epigram.

Differentiation and integration are inverses of each other.

The argument presented in favor of this proposition was based on physical intu-
ition. We proceed to give a purely mathematical proof.

Theorem 6.5. The fundamental theorem of calculus

(a) Let f be any continuous function on [a,b]. Then f is the derivative of some
differentiable function. In fact, for x in [a,b],

d
dx

(∫ x

a
f (t)dt

)
= f (x). (6.13)

(b) Let F be any function with a continuous derivative on [a,b]. Then

F(b)−F(a) =
∫ b

a
F ′(t)dt. (6.14)
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Proof. We first prove statement (a). Define a function

G(x) =
∫ x

a
f (t)dt.

Form the difference quotient

G(x+ h)−G(x)
h

.

We have to show that as h tends to zero, this quotient tends to f (x). By definition
of G,

G(x+ h) =
∫ x+h

a
f (t)dt, and G(x) =

∫ x

a
f (t)dt.

By the additivity property of the integral,

∫ x+h

a
f (t)dt =

∫ x

a
f (t)dt +

∫ x+h

x
f (t)dt.

This can be written as

G(x+ h) = G(x)+
∫ x+h

x
f (t)dt.

The difference quotient is

G(x+ h)−G(x)
h

=
1
h

∫ x+h

x
f (t)dt.

By the mean value theorem for integrals, Theorem 6.2, there is a number c between
x and x+ h such that

1
h

∫ x+h

x
f (t)dt = f (c).

That is, as we see in Fig. 6.21, the area of a strip, divided by its width, is equal to
the height of the strip at some point. Since f is continuous, f (c) tends to f (x) as
h tends to 0. This proves that the difference quotient tends to f (x). Therefore, the
derivative of G is f . This concludes the proof of part (a).

We turn now to the proof of part (b). Since F ′ is continuous on [a,b], we can
define a function Fa by

Fa(x) =
∫ x

a
F ′(t)dt, a ≤ x ≤ b. (6.15)

As we have shown in the proof of part (a), the derivative of Fa is F ′. Therefore,
the difference F −Fa has derivative zero for every x in [a,b]. By Corollary 4.1 of
the mean value theorem for derivatives, a function whose derivative is zero at every
point of an interval is constant on that interval. Therefore,

F(x)−Fa(x) = constant
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for every x. We evaluate the constant as follows. Let x = a. By the definition of Fa,
Fa(a) = 0. Then F(a)−Fa(a) = F(a) = constant, and we get

F(x) = Fa(x)+F(a) on [a,b].

Setting x = b, it follows that

F(b)−F(a) = Fa(b) =
∫ b

a
F ′(t)dt. (6.16)

This completes a proof of the fundamental theorem of calculus. ��
Here is another proof of part (b) of the fundamental theorem of calculus that uses

the mean value theorem for derivatives more directly. Let

a = a0 < a1 < a2 < · · ·< an = b

be any subdivision of the interval [a,b]. According to the mean value theorem for
derivatives, in each subinterval [ai−1,ai], there is a point ti such that

F ′(ti) =
F(ai)−F(ai−1)

ai − ai−1
.

x c x+h

f(t)

f(c)

t

Fig. 6.21 The equation 1
h

∫ x+h
x f (t)dt = f (c) illustrated

Therefore,
F ′(ti)(ai − ai−1) = F(ai)−F(ai−1).

Add these up for all i from 1 to n. We get

n

∑
i=1

F ′(ti)(ai − ai−1) = F(a1)−F(a0)+F(a2)−F(a1)+ · · ·+F(an)−F(an−1)

= F(b)−F(a).

The sum on the left is an approximation to the integral
∫ b

a
F ′(t)dt. We have shown

in Sect. 6.2b that the set of all approximations tends to the integral as the subdivi-
sion is refined. Our formula shows that no matter how fine the subdivision, these
particular approximations are exactly equal to F(b)−F(a). Therefore, the limit is
F(b)−F(a).
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The fundamental theorem of calculus deserves its honorific name; it has at least
two important uses. First and foremost, it is the fundamental existence theorem of
analysis; it guarantees the existence of a function with a given derivative. Its second
use lies in furnishing an exact method for evaluating the integral of any function we
recognize to be the derivative of a known function.

We have shown how to deduce the fundamental theorem of calculus from the
mean value theorem of differential calculus and the mean value theorem for inte-
grals. The three can be related in one unifying statement. If F ′ is continuous on
[a,b], then for some c,

F ′(c) =
1

b− a

∫ b

a
F ′(t)dt =

F(b)−F(a)
b− a

.

We can express this relationship in words: the average of the instantaneous rates of
change of F throughout an interval is equal to the average rate of change in F over
the interval.

Notation. We sometimes denote F(b)−F(a) by

F(b)−F(a) = [F(x)]ba = F(x)
∣∣∣b
a
.

A function F whose derivative is f is called an antiderivative of f . One way to
evaluate a definite integral on an interval is to find and evaluate an antiderivative F .

We use the notation
∫

f (x)dx to denote an antiderivative of f . Often,
∫

f (x)dx =

F(x)+C is used to denote all possible antiderivatives of f . Antiderivatives expressed
in this way are called indefinite integrals. The constant C is called the constant of
integration, and it can be assigned any value.

Evaluation of Some Integrals. Next, we illustrate how to use the fundamental
theorem of calculus to evaluate the integral of a function that we recognize as a
derivative.

Example 6.10. Since
(− cost

)′
= sin t, the fundamental theorem gives

∫ b

a
sin t dt =−cost

∣∣∣b
a
=−cosb+ cosa.

Example 6.11. We know that (et)′ = et . By the fundamental theorem, then,

∫ 1

0
et dt = e1 − e0 = e− 1,

in agreement with our computation of this integral in Sect. 6.2.

Example 6.12. Let f (t) = tc, where c is any real number except −1. Then f is

the derivative of F(t) =
tc+1

c+ 1
. By the fundamental theorem,
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∫ b

a
tc dt = F(b)−F(a) =

bc+1

c+ 1
− ac+1

c+ 1
.

In particular, ∫ b

a
t dt =

t2

2

∣∣∣b
a
=

b2 − a2

2
,

as we found in Sect. 6.2.

By now, you must have noticed that the key to evaluating integrals by the fun-
damental theorem lies in an ability to notice that the function f presented for in-
tegration is the derivative of another handy function F . How does one acquire the
uncanny ability to find antiderivatives? It comes with the experience of differentiat-
ing many functions; in addition, the search for F can be systematized with the aid
of a few basic techniques. These will be presented in the next chapter.

The Special Case c =−1. We showed in Chap. 3 that for every number c, positive

or negative except −1, the function tc, t > 0, is the derivative of
tc+1

c+ 1
. In contrast,

the function t−1 is the derivative of logt. This seems very strange. The functions tc

change continuously with c as c passes through the value −1. Why is there such a
drastic discontinuity at c =−1 of the antiderivative of the function?

We show now that the discontinuity is only apparent, not real. Let

Fc(t) =
∫ t

1
xc dx.

Using the fundamental theorem, we get

Fc(t) =
tc+1 − 1

c+ 1
for c 
=−1, and F−1(t) = logt.

We shall show that as c tends to −1, Fc tends to F−1. This is illustrated in Fig. 6.22.
To prove this, we set c =−1+ y. Then

Fy−1(t) =
ty − 1

y
.

Define the function g as g(y) = ty, where t is some positive number. Note that
g(0)=1. Using this function, we rewrite the previous relation as

Fy−1(t) =
g(y)− g(0)

y
.

The limit of this expression as y tends to zero is the derivative of g at y = 0. To
evaluate that derivative, we write g in exponential form: g(y) = ey logt . Using the

chain rule, we get
dg
dy

= g(y) logt. Since g(0) = 1, we have
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dg
dy

(0) = log t.

In words: the limit of Fy−1(t) as y tends to zero is logt. Since F−1(t) = log t, this
shows that Fc(t) depends continuously on c at c =−1!

1

-1

-2

21

x

Fig. 6.22 The graphs of logx and xc+1−1
c+1 for c =−0.9 and c =−1.1

In the next example, we illustrate how to use the fundamental theorem of calculus
to construct a function with a particular derivative.

The Logarithm and Exponential Functions Redefined. Suppose we had not
worked hard in Chaps. 1 and 2 to define ex and logx. Let us use the fundamental

theorem part (a) to define a function F(x) whose derivative is
1
x

. Let

F(x) =
∫ x

1

1
t

dt

for any x > 0. See Fig. 6.23. Then by the fundamental theorem,

F ′(x) =
1
x
.

Recall that the derivative of logx is also
1
x

. Two functions that have the same

derivative on an interval differ by a constant, and since both are 0 at x = 1, we see
that

logx =
∫ x

1

1
t

dt, x > 0. (6.17)

Next we show that if we take Eq. (6.17) as the definition of the logarithm function,
we can derive all properties of the logarithm from Eq. (6.17). The basic properties
of logx are:

(a) log1 = 0,
(b) logx is an increasing function, and
(c) log(ax) = loga+ logx.
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1 x
t

1/t

F(x) = log x

Fig. 6.23 For x > 1, logx can be visualized as the area under the graph of
1
t

Part (a) follows because the lower limit of integration in Eq. (6.17) is 1. Part (b)
follows because the derivative of logx is positive for x positive. For part (c), take the
derivative of log(ax). Using the chain rule, we get

(logax)′ =
1
ax

a =
1
x
.

This shows that log(ax) and logx have the same derivative on (0,∞). Therefore, they
differ by a constant, log(ax) =C+ logx. Setting x = 1, we see that C is loga.

Since logx is increasing, we can define ex to be the inverse of logx:

logex = x.

The basic properties of ex are:

(a) e0 = 1,
(b)

(
ex
)′
= ex, and

(c) ea+x = eaex.

Part (a) follows from property (a) of the log function. For part (b), note that
logx is differentiable with continuous nonzero derivative. Its inverse, ex, is then also
differentiable. By the chain rule,

1 = x′ =
(

logex)′ = 1
ex

(
ex)′.

Multiply both sides by ex to get (ex)′ = ex. For part (c), we first verify that the

derivative of
ea+x

ex is zero. By the quotient rule and chain rule,

(
ea+x

ex

)′
=

exea+x − ea+xex

(ex)2 = 0 for all x.

This means that
ea+x

ex is constant. Taking x = 0, we see that the constant is ea.
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Defining ex as the inverse of logx is much, much simpler than the defini-

tion of ex we used in Chap. 2: ex = lim
n→∞

(
1+

x
n

)n
. Finding (ex)′ as the deriva-

tive of the inverse function of logx is much, much simpler than the discussion in
Sect. 3.3a.

Many arguments are much easier once you know calculus. In Problem 6.22, we

ask you to use calculus to find a much easier proof that

(
1+

1
n

)n

is an increasing

function of n than the one we gave in Sect. 1.4, which used no calculus.

Trigonometric Functions Redefined. In Sect. 2.4, we gave a geometric defini-
tion of trigonometric functions and then defined the inverse trigonometric functions
from the trigonometric functions. We now show how their inverse functions can be
defined independently, using integration. Then the trigonometric functions can be
defined as their inverses. For 0 < x < 1, let

F(x) =
∫ x

0

1√
1− t2

dt. (6.18)

Since F ′(x) =
1√

1− x2
is positive, F(x) is an increasing function of x for 0 < x < 1,

and therefore F has an inverse. We define this inverse to be x = sin t, defined for
0 < t < p, where p = F(1) is defined as the limit of F(x) as x tends to 1. All
properties of the sine function can be deduced from this definition. In Sect. 7.3, we
will see that F(x) does have a limit as x approaches 1. To define the sine function to
have the full domain we expect, we have to do a bit more work. But we see that sin t
can be completely described without reference to triangles!

Problems

6.15. Use the fundamental theorem of calculus to calculate the derivatives.

(a)
d
dx

∫ x

0
t3 dt

(b)
d
dx

∫ x

0
t3e−t dt

(c)
d
ds

∫ s2

−2
x3e−x dx

(d) h′(4), if h(x) =
∫ x

1

√
t cos

(π
t

)
dt

6.16. Use the fundamental theorem to calculate the integrals.

(a)
∫ 2

1
t3 dt

(b)
∫ b

0
(x3 + 5)dx
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(c)
∫ 1

0

1√
1+ t

dt

(d)
∫ 7

0

(
cost +(1+ t)1/3

)
dt

(e)
∫ b

a
(t − et)dt

6.17. Use the fundamental theorem to calculate the integrals.

(a)
∫ π/4

0

1
1+ x2 dx

(b)
∫ 1

0
(x2 + 2)2 dx

(c)
∫ 4

1

(
2√
x
−√

x

)
dx

(d)
∫ −1

−2
(2+ 4t−2− 8t−3)dt

(e)
∫ 6

2

(
2s+

1
s+ 1

)
ds

6.18. Sketch the regions and find the areas.

(a) The region bounded by y =
√

x and y = 1
2 x.

(b) The region bounded by y = x2 and y = x.
(c) The region bounded by y = ex, y =−x+ 1, and x = 1.

6.19. For the function x(t) = sin t defined as the inverse of F in equation (6.18),
show that

dx
dt

=
√

1− x2.

6.20. Suppose f is an even function, i.e., f (t) = f (−t), and set g(x) =
∫ x

0
f (t)dt.

Explain why g is odd, i.e., g(x) =−g(−x).

6.21. Suppose g is a differentiable function and

F(x) =
∫ g(x)

a
f (t)dt.

Explain why F ′(x) = f (g(x))g′(x).

6.22. Explain the following items, which prove that

(
1+

1
n

)n

is an increasing

sequence.

(a) For x > 0,

(
1+

1
x

)x

= ex log(1+ 1
x )

(b)
∫ 1+1/x

1

1
t

dt >
1
x
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(c)
∫ 1+1/x

1

1
t

dt − 1
x+ 1

> 0

(d)
d
dx

(
1+

1
x

)x

> 0

(e) When n is a positive integer,

(
1+

1
n

)n

is an increasing function of n.

6.23. Use the fundamental theorem to explain the following.

(a)
1
4

(
(1+ 33)4 − (1+ 23)4)=

∫ 3

2
3t2(1+ t3)3 dt

(b) v(t2)− v(t1) =
∫ t2

t1
a(t)dt for the acceleration and velocity of a particle.

6.24. Work, or rework, Problems 6.11, 6.12, and 6.13 using the fundamental
theorem.

6.4 Applications of the Integral

6.4a Volume

The volume of most regions in three-dimensional space is best described using in-
tegrals of functions of more than one variable, a topic in multivariable calculus. But
some regions, such as solids of revolution and solids obtained by stacking thin slabs,
can be expressed as integrals of functions of a single variable. For example, volumes
of revolution can be expressed as quantities that satisfy the two basic properties of
additivity and lower and upper bounds.

a b

y

x

y

x

A(x)

Fig. 6.24 Left: A planar region to revolve around the x-axis. Right: The solid of revolution. A(x) is
the shaded cross-sectional area of the solid at x

Let us write V (A, [a,b]) for the volume of a solid of revolution that is located
in the region a ≤ x ≤ b, and where A(x) is the cross-sectional area of the solid at
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each x. The solid is obtained by revolving a planar region as in Fig. 6.24 around the
x-axis, and all cross sections are circular.

y

xba

y

xba

Fig. 6.25 If m ≤ A(x) ≤ M, the solid in Fig. 6.24 fits between cylinders with volumes M(b− a)
and m(b−a)

If M and m are the largest and smallest cross-sectional areas,

m ≤ A(x)≤ M,

then the solid fits between two cylinders having cross-sectional areas m and M, and
for the volumes of the three solids, we have (Fig. 6.25)

m(b− a)≤V (A, [a,b])≤ M(b− a).

Similarly, if we cut the object at c between a and b, we expect that the volumes of
the two pieces add to the total:

V (A, [a,b]) =V (A, [a,c])+V(A, [c,b]).

These two properties are the additivity and the lower and upper bound properties.
So it must be that for a volume of revolution,

V (A, [a,b]) =
∫ b

a
A(x)dx. (6.19)

Example 6.13. A ball of radius r is centered at the origin. We imagine slicing it
with planes perpendicular to the horizontal axis. In Fig. 6.26, we see that the cross
section at x is a circular disk of radius

√
r2 − x2, so the cross-sectional area is

A(x) = π(r2 − x2).

Then the volume is

∫ r

−r
A(x)dx =

∫ r

−r
π(r2 − x2)dx = π

[
r2x− x3

3

]r

−r
= 2π

(
r3 − r3

3

)
=

4
3

πr3.
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−r

r

x

Fig. 6.26 By the Pythagorean theorem, the cross section of a ball is a disk of radius
√

r2 − x2, in
Example 6.13

Example 6.14. Consider the planar region bounded by the graph of y =
1
x

, the

x-axis, and the lines x = 1 and x = 2. Generate a solid by revolving that region
around the x-axis, as in Fig. 6.27. The volume is

∫ 2

1
A(x)dx,

where A(x) is the cross-sectional area of the solid at x. The cross section is a disk

of radius
1
x

, so A(x) = πx−2. The volume is

∫ 2

1
πx−2 dx =−πx−1

∣∣∣2
1
= π

(
−1

2
+ 1

)
=

π
2
.

A(x)

x1 2

Fig. 6.27 The cross section of the solid in Example 6.14 is a disk of radius
1
x
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6.4b Accumulation

The fundamental theorem of calculus has two important consequences. One is that
every continuous function f on an interval arises as the rate of change of some
function:

f (x) =
d
dx

∫ x

a
f (t)dt.

The other is that the integral of the rate of change F ′ equals the change in the func-
tion F between a and b:

F(b)−F(a) =
∫ b

a
F ′(t)dt.

In this section, we look at ways to use the integral to answer the following question:
How much?

Suppose we know that water is flowing into a pool at a rate f (t) that varies
continuously with time. How much water flows into the pool between time a and
time b? We subdivide the interval of time into n very small subintervals,

a = a0 < a1 < · · ·< an = b,

and for each one, we find the rate at which water is flowing at some time ti during
that interval. The product of the rate f (ti) and the length of time (ai−ai−1) is a good
estimate for the amount of water that entered the pool between times ai−1 and ai.

Summing all those estimates, we get the approximate integral
n

∑
i=1

f (ti)(ai − ai−1).

We know that in the limit, such approximate integrals converge to
∫ b

a
f (t)dt. So the

amount of water that accumulates in the pool between time a and time b is

∫ b

a
f (t)dt.

The function F(t) =
∫ t

a
f (τ)dτ represents the amount of water that accumulates

between time a and time t. Note that if we wanted to know how much water is in
the pool, we would need to know how much water there was at time a, and then

(amount at time t) =
∫ t

a
f (τ)dτ +(amount at time a).

6.4c Arc Length

Here is another example of how the integral is used to answer a “how much”
question. Let f have a continuous derivative on [a,b]. The arc length of the graph of
f from a to b is the least upper bound of the sum of lengths of line segments joining
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points on the graph. Let us see how to compute the arc length using an integral
(Fig. 6.28).

a b=a

(a  ,f(a  ))

(a  ,f(a  ))
(a  ,f(a  ))

0

1

0

0

1 22

a a
1 2 n

(a  ,f(a  ))n n

Fig. 6.28 The segments underestimate the arc length

Let
a = a0 < a1 < · · ·< an−1 < an = b

be a subdivision of [a,b]. By the Pythagorean theorem, the length of the ith
segment is √

(ai − ai−1)2 +
(

f (ai)− f (ai−1)
)2
.

By the mean value theorem for derivatives, there is a point ti between ai−1 and ai

such that

f (ai)− f (ai−1) = f ′(ti)(ai − ai−1)

and √
(ai − ai−1)2 +

(
f (ai)− f (ai−1)

)2
=

√
1+

(
f ′(ti)

)2
(ai − ai−1).

The length of the curve is approximately the sum of the lengths of the segments:

L ≈
n

∑
i=1

√
1+

(
f ′(ti)

)2
(ai − ai−1).

Since f ′ is continuous on [a,b],
√

1+( f ′)2 is continuous as well, and the approxi-

mate integrals
n

∑
i=1

√
1+

(
f ′(ti)

)2
(ai − ai−1) approach

∫ b

a

√
1+

(
f ′(t)

)2
dt,

the arc length of the curve from a to b.
Let us see how this formula works on a problem for which we already know the

arc length.
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a

1s

Fig. 6.29 In the first quadrant, the graph of f (x) =
√

1− x2 is part of the unit circle. See Exam-
ple 6.15

Example 6.15. According to our definition of the inverse sine function, the length
of the heavy arc on the unit circle in Fig. 6.29 ought to be a= sin−1 s. Let us check
this against the arc-length formula. We have

f (x) =
√

1− x2, f ′(x) =
−x√
1− x2

,

and √
1+( f ′)2 =

√
1+

x2

1− x2 =
1√

1− x2
.

So the arc-length formula gives

∫ s

0

1√
1− x2

dx = sin−1 s,

in agreement with Sect. 3.4c.

Let us compute an arc length that we cannot compute geometrically.

Example 6.16. Find the arc length of the graph of f (x) =
2
3

x3/2 from 0 to 1. We

have f ′(x) = x1/2. Then

L =

∫ 1

0

√
1+(x1/2)2 dx =

∫ 1

0

√
1+ xdx =

2
3
(1+ x)3/2

∣∣∣∣
1

0
=

2
3

(
23/2 − 1

)
.
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6.4d Work

The concept of work is readily visualized by the example of hoisting a load with the
aid of a rope over a pulley. How much work is required depends on the weight of
the load and on the difference between its initial height and the height to which it
has to be hoisted. The following facts are suggested in our example by the intuitive
notion of work:

(a) The work done is proportional to the distance through which the force acts.
(b) The amount of work done is proportional to the weight or force.

Accordingly, we define the work, W , done in elevating a load of weight f by the
vertical distance h to be

W = f h.

According to Newton’s theory, the dynamical effect of every force is the same. So
we take W = f h to be the work done by any force f acting through a distance h in
the direction of the force (Fig. 6.30).

r

Fig. 6.30 Left: Work W = f h to lift weight f through a distance h. Right: W =
∫

f dr with a

variable force

We show now that this formula for work is meaningful when h is negative, that
is, when the displacement is in the opposite direction to the force. For let us lower
the load to its original position. The total energy of the load has not changed, so the
work done in lowering the load undoes the energy it gained from being raised, and
so is a negative quantity.

How much work is done in moving an object through an interval [a,b] against a
variable force f , i.e., a force f whose magnitude differs at different points of [a,b]
and may even reverse its direction? In this case, f is a function defined on [a,b]; let
us denote the work done by W ( f , [a,b]).

What kind of function is W of [a,b]? Suppose [a,b] is divided into two disjoint
intervals,

a < c < b.
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Since moving the object across [a,b] means moving it first across [a,c], then across
[c,b], it follows that the total work is the sum of the work done in accomplishing the
separate tasks:

W ( f , [a,b]) =W ( f , [a,c])+W( f , [c,b])

How does W depend on f ? Clearly, if at every point of [a,b] the force f stays below
some value M, then the work done in pushing against f is less than the work done
in pushing against a constant force of magnitude M. Likewise, if the force f is
greater than m at every point of [a,b], then pushing against f requires more work
than pushing against a constant force of magnitude m. The work done by pushing
against a constant force is given by W = f h. Thus, if the force f lies between the
bounds

m ≤ f (x) ≤ M for x in [a,b],

then
m(b− a)≤W ( f , [a,b])≤ M(b− a).

We recognize these as the additive and the lower and upper bound properties. These
two properties characterize W as the integral

W ( f , [a,b]) =
∫ b

a
f (x)dx.

Problems

6.25. When a spring is stretched or compressed a distance x, the force required is
kx, where k is a constant reflecting the physical properties of the spring. Suppose
a spring requires a force of 2000 Newtons to compress it 4 mm. Verify that the
spring constant is k = 500,000 N/m, and find the work done to compress the spring
0.004 m.

6.26. If at time t, oil leaks from a tank at a rate of R(t) gallons per minute, what

does
∫ 5

3
R(t)dt represent?

6.27. Water can be pumped from a tank at the rate of 2t +10 L/min. How long does
it take to drain 200 L from the tank?

6.28. Find the volume of the solid obtained by revolving the graph of
2
3

x3/2, for

0 ≤ x ≤ 1, around the x-axis.

6.29. Consider the graph of
1
x

on [1,2].

(a) Set up but do not evaluate an integral for the arc length.
(b) Calculate two approximate integrals Iapprox for the arc length, using ten subin-

tervals, and taking the ti at the left, respectively the right, endpoints.
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6.30. During the space shuttle program, the shuttle orbiter had a mass of about
105 kg.

(a) When a body of mass m is close to the surface of the Earth, the force of gravity
is essentially constant,

f = mg,

with a gravitational constant of g= 9.8 m/s2. Use the constant-force assumption
W = mgh to calculate the work done against gravity to lift the shuttle mass to a
height of 50 m above the launch pad.

(b) When a mass is moved a great distance from the Earth, the force of gravity
depends on the distance r from the center of the Earth,

f =
GMm

r2 .

The radius of the Earth is about 6.4× 106 m. Equating the two expressions for
the weight of an object of mass m at the surface of the Earth, find GM.

(c) Calculate the work done against gravity to lift the shuttle orbiter to an altitude
of 3.2× 105 m.

6.31. We have calculated the volume of a solid of revolution as
∫ b

a
A(x)dx, where

A(x) is the cross-sectional area at x. We also know that every integral can be
approximated with arbitrary accuracy by an approximate integral taken over a small
enough subdivision: ∫ b

a
A(x)dx ≈

n

∑
i=1

A(xi)dxi.

We observe that each term A(xi)dxi is the volume of a thin cylinder with thickness
dxi. Make a sketch to illustrate that the volume of the solid is well approximated by
the volume of a stack of thin cylinders.

6.32. The density ρ of seawater changes with the depth. It is approximately
1025 kg/m3 at the surface, and 1027 at 500 m depth.

(a) Assume that density is a linear function between 0 and 500 m. Find the mass of
a column of water that has a uniform cross-sectional area of 1 m2 and is located
between 100 and 500 m deep.

(b) Assume also that ρ = 1027 from 500 to 800 m depth. Find the mass of the 1 m2

column located between 100 and 700 m deep.



Chapter 7
Methods for Integration

Abstract In this chapter, we present techniques of integration and examples of how
to use them.

7.1 Integration by Parts

The rules for differentiation in Sect. 3.2 specify how to express the derivatives
of the sum and product of two functions in terms of the derivatives of those
functions themselves. Using the fundamental theorem of calculus, we shall convert
each of these rules into a rule for integration.

Linearity and Integration. Let f and g be the derivatives of F and G, respectively.
The sum rule says that

(F +G)′ = F ′+G′ = f + g.

Applying the fundamental theorem of calculus to the function f + g, we obtain

∫ b

a
( f (t)+ g(t))dt = (F(b)+G(b))− (F(a)+G(a)).

On the other hand,

∫ b

a
f (t)dt = F(b)−F(a) and

∫ b

a
g(t)dt = G(b)−G(a).

Comparing the first expression with the sum of the second two, we deduce the sum
rule for integrals:

∫ b

a
( f (t)+ g(t))dt =

∫ b

a
f (t)dt +

∫ b

a
g(t)dt.

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 7, © Springer Science+Business Media New York 2014
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Similarly, if c is any constant, the constant multiple rule for derivatives says that
(cF)′ = cF ′ = c f . Applying the fundamental theorem of calculus to c f , we obtain

∫ b

a
c f (t)dt =

∫ b

a
(cF)′(t)dt = cF(b)− cF(a) = c

(
F(b)−F(a)

)
= c

∫ b

a
f (t)dt.

Combining these results, we obtain

∫ b

a
(c1 f (t)+ c2g(t))dt = c1

∫ b

a
f (t)dt + c2

∫ b

a
g(t)dt.

This rule is not new to us; we have already encountered it under the name of linearity
in Theorem 6.3, where it was deduced from the linearity of approximating sums.

Integration by Parts. We now recall the product rule of differentiation:

( f g)′ = f ′g+ f g′.

Integrate each side over an interval [a,b] in which f ′ and g′ are continuous, and
apply linearity to obtain

∫ b

a
( f g)′(t)dt =

∫ b

a
f ′(t)g(t)dt +

∫ b

a
f (t)g′(t)dt.

According to the fundamental theorem, we have

∫ b

a
( f g)′(t)dt = f (b)g(b)− f (a)g(a).

Subtraction then leads to the following result.

Theorem 7.1. Integration by parts If f ′ and g′ are continuous on [a,b] then

∫ b

a
f ′(t)g(t)dt =

∫ b

a
( f g)′(t)dt −

∫ b

a
f (t)g′(t)dt

= f (b)g(b)− f (a)g(a)−
∫ b

a
f (t)g′(t)dt.

For indefinite integrals, we get the corresponding formula for intervals on which
f ′ and g′ are continuous:

∫
f ′(t)g(t)dt = f (t)g(t)−

∫
f (t)g′(t)dt.

Integration by parts is helpful if we know more about the integral on the right
than about the integral on the left. “Knowing more” could mean knowing the exact
value of the integral on the right, or it could mean that the integral on the right is
easier to evaluate approximately than the one on the left. In the examples below, we
illustrate both possibilities.
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Example 7.1. To find ∫ b

a
tet dt,

we consider whether the product tet = f ′(t)g(t) ought to be viewed as giving
f ′(t) = t or f ′(t) = et . If we try

f ′(t) = t, g(t) = et ,

then we may take f (t) = 1
2 t2. Integration by parts gives

∫ b

a
tet dt =

[
1
2

t2et
]b

a
−
∫ b

a

1
2

t2et dt.

The new integration problem is no easier than the original one. On the other hand,
if we take

f ′(t) = et , g(t) = t,

then we may take f (t) = et and g′(t) = 1. Integration by parts gives

∫ b

a
tet dt = ebb− eaa−

∫ b

a
et dt = ebb− eaa− eb+ ea.

This second choice for f ′ and g resulted in a very easy integral to evaluate.

The trick to applying integration by parts is to think ahead to the new integration
problem that results from your choices for f ′ and g.

Example 7.2. To find
∫ 3

2
logxdx, we factor the integrand

logx =
(
1
)(

logx
)
= f ′(x)g(x),

where f ′(x) = 1 and g(x) = logx. Using f (x) = x and g′(x) =
1
x

, integration by

parts gives ∫ 3

2
logxdx = 3log3− 2log2−

∫ 3

2
x

1
x

dx

= log
(33

22

)
− x

∣∣∣3
2
= log

(33

22

)
− 1.

Example 7.3. To find
∫ 1

0

√
x2 − x3 dx, factor the integrand:

√
x2 − x3 = (

√
1− x)x = f ′(x)g(x),
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where f ′(x) = (1−x)1/2 and g(x) = x. Using f (x) =− 2
3(1−x)3/2 and g′(x) = 1,

integration by parts gives
∫ 1

0
x(1− x)1/2 dx = x

(− 2
3
(1− x)3/2)∣∣∣1

0
−
∫ 1

0
−2

3
(1− x)3/2 dx.

In evaluating f (x)g(x)
∣∣1
0, we notice that f vanishes at one endpoint and g van-

ishes at the other. So f (1)g(1) = 0, f (0)g(0) = 0. Therefore,

∫ 1

0
x(1− x)1/2 dx =−

∫ 1

0
−2

3
(1− x)3/2 dx.

We recognize that − 2
3(1 − x)3/2 is the derivative of 4

15(1 − x)5/2. So, using

the fundamental theorem of calculus, we find that
∫ 1

0
−2

3
(1− x)3/2 dx = − 4

15
.

Therefore,
∫ 1

0

√
x2 − x3 dx =

4
15

.

Example 7.4. To find an antiderivative
∫

ex sinxdx, we factor ex sinx= f ′(x)g(x),

where f ′(x) = ex and g(x) = sinx. Using f (x) = ex and g′(x) = cosx, integration
by parts gives ∫

ex sinxdx = ex sin x−
∫

ex cosxdx.

The new integral does not appear any easier than the original integral. Using in-
tegration by parts again, we factor the new integrand ex cosx = f ′(x)g(x), where
f ′(x) = ex and g(x) = cosx. Using f (x) = ex and g′(x) = −sinx, a second inte-
gration by parts gives

∫
ex sinxdx = ex sinx−

(
ex cosx−

∫
ex(−sinx)dx

)

= ex sinx− ex cosx−
∫

ex sinxdx.

Note that the last term on the right is our original integral. Therefore, we may
solve to find an antiderivative

∫
ex sinxdx =

1
2

ex(sinx− cosx).

Example 7.5. To evaluate
∫ b

a
sin2 t dt, we use integration by parts. Take f ′(t) =

sin t, g(t) = sin t, f (t) =−cost, g′(t) = cost. Then

∫ b

a
sin t sin t dt = [−cost sin t]ba −

∫ b

a
(−cost)(cost)dt

= [−cost sin t]ba +
∫ b

a
(1− sin2 t)dt = [−cost sin t + t]ba −

∫ b

a
sin2 t dt.
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Solving for the integral, we get
∫ b

a
sin2 t dt =

1
2
[−cost sin t + t]ba .

In fact, we may extend the approach used in Example 7.5 to develop a reduction
formula for integrating higher powers of sin t. If m = 3, 4, . . ., we integrate by parts,
taking f ′(t) = sin t and g(t) = sinm−1 t:

∫ b

a
sinm t dt =

∫ b

a
sin t sinm−1 t dt

=
[−cost sinm−1 t

]b
a −

∫ b

a
(−cost)

(
(m− 1)sinm−2 t cost

)
dt

=
[−cost sinm−1 t

]b
a +(m− 1)

∫ b

a
(1− sin2 t)sinm−2 t dt

=
[−cost sinm−1 t

]b
a +(m− 1)

∫ b

a
sinm−2 t dt − (m− 1)

∫ b

a
sinm t dt.

Solving for the integral of sinm t, we get∫ b

a
sinm t dt =

1
m

[−cost sinm−1 t
]b

a +
m− 1

m

∫ b

a
sinm−2 t dt. (7.1)

Example 7.6. To evaluate the integral of sin4 t, we use the reduction formula (7.1)
to get ∫ b

a
sin4 t dt =

1
4

[−cost sin3 t
]b

a +
3
4

∫ b

a
sin2 t dt.

According to Example 7.5,
∫ b

a
sin2 t dt =

1
2
[−cost sin t + t]ba. Therefore,

∫ b

a
sin4 t dt =

1
4

[−cost sin3 t
]b

a +
3
4

1
2
[−cost sin t + t]ba .

In Problem 7.8, we ask you to practice using integration by parts to derive the
analogous reduction formula for integrating powers of the cosine.

The importance of integration by parts is not limited to these nearly miraculous
cases of explicit integration; the examples below illustrate very different applica-
tions of the theorem.

7.1a Taylor’s Formula, Integral Form of Remainder

We saw in Chap. 4 that if f is n+ 1 times continuously differentiable on an open
interval containing a, we can form the nth Taylor polynomial tn(x) about a,

tn(x) =
n

∑
k=0

f (k)(a)
(x− a)k

k!
,
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for x in the interval. Theorem 4.10, Taylor’s formula, shows that the remainder is
given by

f (x)− tn(x) = f (n+1)(c)
(x− a)n+1

(n+ 1)!

for some c between a and x. Now we use integration by parts to obtain a different
expression for the remainder,

f (x)− tn(x) =
1
n!

∫ x

a
(x− t)n f (n+1)(t)dt, (7.2)

which we call the integral form of the remainder. First observe that when n = 0, this
formula is

f (x)− f (a) =
∫ x

a
f ′(t)dt, (7.3)

a restatement of the fundamental theorem of calculus. Now factor the integrand
f ′(t) = 1 f ′(t) = g′(t) f ′(t), where g(t) = t − x. Integration by parts gives

∫ x

a
f ′(t)dt =

[
(t − x) f ′(t)

]x
t=a −

∫ x

a
(t − x) f ′′(t)dt

= f ′(a)(x− a)+
∫ x

a
(x− t) f ′′(t)dt.

Combining this with Eq. (7.3), we get

f (x) = f (a)+ f ′(a)(x− a)+
∫ x

a
(x− t) f ′′(t)dt, (7.4)

which is Eq. (7.2) for n = 1. Now integrating by parts in the integral in Eq. (7.4), we
have

∫ x

a
(x− t) f ′′(t)dt =

[
−1

2
(x− t)2 f ′′(t)

]x

a
+

∫ x

a

1
2
(x− t)2 f ′′′(t)dt

= f ′′(a)
(x− a)2

2
+
∫ x

a

1
2
(x− t)2 f ′′′(t)dt.

Combining this with Eq. (7.4), we get

f (x) = f (a)+ f ′(a)(x− a)+ f ′′(a)
(x− a)2

2
+

∫ x

a

1
2
(x− t)2 f ′′′(t)dt,

which is Eq. (7.2) for n = 2. Continuing in this way, one can prove Eq. (7.2) by
induction for all n.

Let us consider the function f (x) = log(1+ x). The derivatives are

f ′(x) =
1

1+ x
, f ′′(x) =

−1
(1+ x)2 , f ′′′(x) =

2
(1+ x)3 , f ′′′′(x) =

−3!
(1+ x)4 ,



7.1 Integration by Parts 297

and so forth. For n ≥ 1,

f (n)(x) = (−1)n+1 (n− 1)!
(1+ x)n , f (n)(0) = (−1)n+1(n− 1)!,

and the nth Taylor polynomial at a = 0 is

tn(x) =
n

∑
k=1

(−1)k+1 xk

k
.

For what values of x does | log(1+ x)− tn(x)| tend to zero? The integral form of the
remainder (7.2) is

log(1+x)−tn(x)=
1
n!

∫ x

0
(x−t)n(−1)n+2 n!

(1+ t)n+1 dt =(−1)n+2
∫ x

0

(x− t)n

(1+ t)n+1 dt.

For 0 ≤ x ≤ 1, we have 0 ≤ t < x ≤ 1 and 1 ≤ 1+ t. Therefore,
∣∣∣∣(−1)n+2

∫ x

0

(x− t)n

(1+ t)n+1 dt

∣∣∣∣≤
∫ x

0
(x− t)n dt =

xn+1

n+ 1
≤ 1

n+ 1
,

which tends to zero uniformly as n tends to infinity. So we have shown that for
0 ≤ x ≤ 1,

log(1+ x) = x− x2

2
+

x3

3
− x4

4
+ · · · ,

the Taylor series for log(1+ x). In particular, for x = 1,

log2 = x− 1
2
+

1
3
− 1

4
+ · · · .

In Problem 7.4, we ask you to prove the convergence of this Taylor series for
−1 < x < 0.

7.1b Improving Numerical Approximations

We study the integral ∫ 1

0
x2
√

1− x2 dx. (7.5)

We factor the integrand as follows:

x2
√

1− x2 = (x
√

1− x2)x = f ′g,

where

f (x) =−1
3
(1− x2)3/2, g(x) = x.
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Note that the function f is 0 at x = 1, and that g is 0 at x = 0, so integrating by parts,
we obtain ∫ 1

0
x2
√

1− x2 dx =
∫ 1

0

1
3
(1− x2)3/2 dx. (7.6)

Seemingly our strategy of integrating by parts has merely reduced the original task
of finding the value of an integral to the problem of finding the value of another
integral. We shall now show that something useful has been achieved. The second
integral is easier to approximate than the first one. To convince you of this, we plot
the graphs of both integrands in Fig. 7.1.

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1

x

f ’g-f g’

n Imid(x2
√

1− x2) Imid(
1
3 (1− x2)3/2)

1 0.21650635 0.21650635
2 0.21628707 0.19951825
5 0.20306231 0.19664488

10 0.19890221 0.19640021

Fig. 7.1 Left: Graphs of the integrands f ′(x)g(x) = x2
√

1− x2 and − f (x)g′(x) = 1
3 (1− x2)3/2 in

Eq. (7.6). Right: Approximate integrals using values at the midpoints of n subintervals

The derivative of the first function, x2
√

1− x2, is

2x
√

1− x2− x3
√

1− x2
,

which tends to minus infinity as x tends to the right endpoint x = 1; this fact causes
the graph of the function to have a vertical tangent at x = 1. A function that has
a large derivative is changing very fast. In contrast, the derivative of the second
function, 1

3(1− x2)3/2, is −x
√

1− x2, which stays decently bounded throughout the
whole interval [0,1]. A function with such a derivative changes slowly. We will see
in Chap. 8 that is easier to approximately evaluate the integral of a slowly changing
function than the integral of one that changes quickly.

The table in Fig. 7.1 lists, for various values of n and equal subdivisions of [0,1],
approximate integrals Imid(x2

√
1− x2, [0,1]) and Imid(

1
3 (1− x2)3/2, [0,1]) evaluated

at the midpoint of each subinterval. We will show in Example 7.13 that the ex-
act value of the integral is π

16 = 0.19634 . . .. The table shows that for n = 10, the
approximation of the second integral is much closer to the exact value than the ap-
proximation of the first integral.
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7.1c Application to a Differential Equation

Let x(t) be any twice continuously differentiable function, and [a,b] an interval
at whose endpoints x(t) is zero. Can one say something about the integral of the

product xx′′, that is, about
∫ b

a
x(t)x′′(t)dt? To answer this question, we factor the

integrand as x′′(t)x(t) = f ′(t)g(t), where f (t) = x′(t) and g(t) = x(t). Since g(t) is
0 at both endpoints, integration by parts gives

∫ b

a
x′′(t)x(t)dt =−

∫ b

a
x′(t)x′(t)dt =

∫ b

a
−(x′(t))2 dt. (7.7)

Since the integrand on the right is negative, then so is the value of the integral on
the right; this shows that the left side is negative. This demonstrates that integration
by parts can sometimes reveal a quality of an integral such as negativity. There are
some situations in which this is all we want to know.

Example 7.7. Suppose f1 and f2 are solutions of

f ′′ − f = 0

having the same value at two points, say f1(a) = f2(a) and f1(b) = f2(b). Take
x(t) = f1(t)− f2(t). Then x′′ − x = 0, x(a) = 0, and x(b) = 0. Equation (7.7)
becomes ∫ b

a
(x(t))2 dt =−

∫ b

a
(x′(t))2 dt.

The left side is the integral of a square, and therefore is nonnegative; the right
side is the integral of a square times −1 and is therefore nonpositive. This can
be the case only if both sides are zero, but then x = f1 − f2 is zero for all values
of t. Therefore, f1 and f2 are the same function. This furnishes another proof of
Theorem 3.16 in Sect. 3.4d.

7.1d Wallis Product Formula for π

Let

Wn =

∫ π
2

0
sinn xdx.

Note that W0 =
π
2 and W1 = 1. Using the reduction formula (7.1), we get

Wn =
∫ π

2

0
sinn xdx =

1
n
[−cosxsin x]

π
2
0 +

n− 1
n

∫ π
2

0
sinn−2 xdx,
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and therefore

Wn =
n− 1

n
Wn−2 (n ≥ 2). (7.8)

Continuing in this fashion, and taking n even, n = 2m, we get

W2m =
2m− 1

2m
2m− 3
2m− 2

· · · 1
2

W0,

while for n = 2m+ 1 odd, we get

W2m+1 =
2m

2m+ 1
2m− 2
2m− 1

· · · 2
3

W1.

Since W0 =
π
2 , we have found a relation between the even W2m and the number π .

Next, divide the even terms by the odd terms and use W1 = 1. We get

W2m

W2m+1
=

(2m+ 1)(2m− 1)(2m− 1)(2m−3) · · ·(3)(1)
(2m)(2m)(2m− 2)(2m− 2) · · ·(2)(2)

π
2
.

Thus
π
2
=

(2m)(2m)(2m− 2)(2m− 2) · · ·(2)(2)
(2m+ 1)(2m− 1)(2m− 1)(2m−3) · · ·(3)(1)

W2m

W2m+1
.

Since

0 ≤ sin2m+1 x ≤ sin2m x ≤ sin2m−1 x for 0 ≤ x ≤ π
2
,

we have W2m+1 ≤ W2m ≤ W2m−1. This implies, using n = 2m+ 1 in relation (7.8),
that

1 =
W2m+1

W2m+1
≤ W2m

W2m+1
≤ W2m−1

W2m+1
=

2m+ 1
2m

,

which tends to 1 as m tends to infinity. Therefore, we have proved the Wallis product
formula

π
2
= lim

m→∞

(2m)(2m)(2m− 2)(2m− 2) · · ·(4)(4)(2)(2)
(2m+ 1)(2m− 1)(2m− 1)(2m−3) · · ·(5)(3)(3)(1) =

2
1

2
3

4
3

4
5

6
5

6
7
· · ·

Problems

7.1. Evaluate the following integrals.

(a)
∫ 1

0
t2et dt

(b)
∫ π/2

0
t cost dt
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(c)
∫ π/2

0
t2 cost dt

(d)
∫ 1

0
x3(1+ x2)1/2 dx

7.2. Evaluate the following integrals.

(a)
∫ 1

0
sin−1 xdx

(b)
∫ 5

2
x logxdx

7.3. Evaluate the integral and the antiderivative.

(a)
∫ 1

0
x tan−1 xdx

(b)
∫
(sinu+ ucosu)du

7.4. Show that the Taylor series for log(1+ x) converges for −1 < x < 0.

7.5. Suppose f1 and f2 are two solutions of

f ′′ − v(t) f = 0,

where v is a positive function, and suppose there are two points a and b where
f1(a) = f2(a), f1(b) = f2(b). Use the integration by parts argument of Example 7.7
to show that f1 and f2 are the same function on [a,b].

7.6. Find the antiderivatives.

(a)
∫

xe−x dx

(b)
∫

xe−x2
dx

(c)
∫

x3e−x dx

(d) Express
∫

x2e−x2
dx in terms of

∫
e−x2

dx.

7.7. Evaluate

(a)
∫ π

2

0
sin2 t dt

(b)
∫ π

2

0
sin3 t dt

7.8. Derive the following recurrence formula for powers n = 2, 3, 4, . . . of the co-
sine: ∫ b

a
cosn t dt =

1
n

[
sin t cosn−1 t

]b
a +

n− 1
n

∫ b

a
cosn−2 t dt.

Use the formula to evaluate
∫ π

4

0
cos2 t dt and

∫ π
4

0
cos4 t dt exactly.
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7.9. Find the antiderivatives (x > 0).

(a)
∫

x−2e−1/x dx

(b) Express
∫

x−1e−1/x dx in terms of
∫

e−1/x dx.

(c)
∫

x−3e−1/x dx

(d)
∫ (

x−2e−1/x + x2e−x)dx

7.10. Define the number B(n,m) by the integral

B(n,m) =

∫ 1

0
xn(1− x)m dx, n > 0, m > 0.

(a) Integrating by parts, show that

B(n,m) =
n

m+ 1
B(n− 1,m+ 1).

(b) For positive integers n and m, show that repeated application of the recurrence
relation derived in part (a) yields

B(n,m) =
n!m!

(n+m+ 1)!
.

7.11. Let Km be an antiderivative Km(x) =
∫

xm sinxdx for m = 0,1,2, . . ..

(a) Evaluate K1(x).
(b) Integrate by parts twice to show that

Km(x) =−xm cosx+mxm−1 sinx−m(m− 1)Km−2.

(c) Evaluate K0(x), K2(x), K4(x), and
∫ π

0
x4 sinxdx.

(d) Evaluate K3(x).

7.2 Change of Variables in an Integral

We now recall the chain rule from Sect. 3.2b:
(
F(g(t))

)′
= F ′(g(t))g′(t).

Interpreting this as a statement about antiderivatives, we get
∫ (

F(g(t))
)′ dt =

∫
F ′(g(t))g′(t)dt.
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We now deduce an important formula for definite integrals.

Theorem 7.2. Change of variables Let g be continuously differentiable on
[a,b], and let f be continuous on an interval that contains the range of g. Then

∫ g(b)

g(a)
f (u)du =

∫ b

a
f (g(t))g′(t)dt.

Proof. By the fundamental theorem of calculus, f has an antiderivative F , so that
dF(u)

du
= f (u). Then by the chain rule,

d
dt

(
F(g(t))

)
=

dF
du

(g)
dg
dt

= f (g(t))g′(t).

According to the fundamental theorem of calculus,

∫ b

a
f (g(t))g′(t)dt = F(g(b))−F(g(a)).

Another application of the fundamental theorem gives

∫ g(b)

g(a)
f (u)du =

∫ g(b)

g(a)
F ′(u)du = F(g(b))−F(g(a)).

Therefore
∫ g(b)

g(a)
f (u)du =

∫ b

a
f (g(t))g′(t)dt.

��
We show how to use the change of variables formula, also known as substitution,

through some examples.

Example 7.8. Consider the integral

∫ 2π

0
2t cos(t2)dt.

Let u = g(t) = t2, as in Fig. 7.2. Then g′(t) = 2t. When t = 0, u = g(0) = 0.
When t = 2π , u = g(2π) = (2π)2. By the change of variables theorem,

∫ t=2π

t=0
2t cos(t2)dt =

∫ u=(2π)2

u=0
cosudu = sinu

∣∣∣(2π)2

0
= sin

(
(2π)2).
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a = 0 
t

u

A = a2 = 0 

u = t 2 
b = 2π

B = b2  = (2π2 
)

Fig. 7.2 The change of variable u = t2 in Example 7.8

Change of variables works for finding antiderivatives as well, i.e., if we write

g(t) = u, g′(t) =
du
dt

, then

∫
f (g(t))g′(t)dt =

∫
f (u)

du
dt

dt =
∫

f (u)du.

Here are some examples.

Example 7.9. To find an antiderivative
∫

1
t

logt dt (t > 0), let u = logt. Then

du
dt

=
1
t

, and

∫
logt

(1
t

)
dt =

∫
u

du
dt

dt =
∫

udu =
1
2

u2 =
1
2
(logt)2.

Let us check our answer:(
1
2
(logt)2

)′
=

1
2

2(logt)
1
t
.

Example 7.10. To find an antiderivative
∫

x
3
(x2 + 3)1/2 dx, let u = x2 + 3. Then

du
dx

= 2x and du = 2xdx. Solving for xdx, we get xdx = 1
2 du and 1

3 xdx = 1
6 du.

Therefore,∫
(x2 + 3)1/2 x

3
dx =

∫
1
6

u1/2 du =
1
6

2
3

u3/2 =
1
9
(x2 + 3)3/2.

Let us check our answer:(
1
9
(x2 + 3)3/2

)′
=

1
9

3
2
(x2 + 3)1/2(2x) =

x
3
(x2 + 3)1/2.

Example 7.11. To find an antiderivative
∫

cos(2t)dt, let u = 2t. Then
du
dt

= 2,

du = 2dt, and 1
2 du = dt. Then

∫
cos(2t)dt =

1
2

∫
cosudu =

1
2

sinu =
1
2

sin(2t).
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Often, the change of variables formula is used in the opposite way, that is, by
replacing the variable of integration u by a function of t, as in the following example.

Example 7.12. The area of a circle of radius r is represented by the integral

4
∫ r

0

√
r2 − u2 du.

Using the change of variables u = g(t) = r sin t, we obtain g′(t) = r cost. See
Fig. 7.3. To determine the endpoints of integration, we notice that u = r when
t = π

2 and that u = 0 when t = 0. By the change of variables theorem, then,

4
∫ r

0

√
r2 − u2 du = 4

∫ π
2

0

√
r2 − r2 sin2 t r cost dt = 4

∫ π
2

0
r2 cos2 t dt.

We use the trigonometric identity cos2 t = 1
2 (1+ cos(2t)). Then this is equal to

4r2
∫ π

2

0

1
2
(1+ cos(2t))dt = 2r2

[
t +

1
2

sin(2t)

] π
2

0
= πr2.

r2−u2

t
r

u = r sin t

Fig. 7.3 The graph of f (u) =
√

r2 −u2 on [0, r], and the change of variables u = r sin t in
Example 7.12

Example 7.13. Previously, we stated that the exact value of the integral (7.5) is∫ 1

0
x2
√

1− x2 dx =
π
16

. If we use the substitution x = sin t, 0 ≤ t ≤ π
2 , we will

see why:

∫ 1

0
x2
√

1− x2 dx =
∫ π

2

0
sin2 t

√
1− sin2 t(cos t)dt =

∫ π
2

0
sin2 t(1− sin2 t)dt

=
∫ π

2

0
sin2 t dt −

∫ π
2

0
sin4 t dt =W2 −W4,



306 7 Methods for Integration

where the Wn are defined in Sect. 7.1d. Since W2 =
π
4 and W4 =

3
4W2, we conclude

that ∫ 1

0
x2
√

1− x2 dx =
π
4
− 3

4
π
4
=

π
16

.

In the last two examples, we simplified integrals involving
√

a2 − x2 using the
substitution x = asin t. This is called a trigonometric substitution. In Problem 7.14,
we guide you through two other useful substitutions, x = a tan t for integrals involv-
ing

√
a2 + x2, and x = asec t for integrals involving

√
x2 − a2.

Geometric Meaning of the Change of Variables. The change of variables for-
mula has a geometric meaning that is not revealed by the somewhat formal proof
we presented. Here is another, more revealing, proof, which we give in the special
case that the new variable u = g(t) in Theorem 7.2 is an increasing function.

Proof. Subdivide the interval [a,b] on the t-axis into subintervals as

a = a0 < a1 < a2 < · · ·< an = b.

The function g maps the interval [a,b] on the t-axis into the interval [A,B] on the
u-axis, creating a subdivision

A = u0 < u1 < · · ·< un = B,

where ui = g(ai). A typical subinterval is illustrated in Fig. 7.4. According to the
mean value theorem, the subinterval lengths u j − u j−1 and a j − a j−1 are related by

u j − u j−1 = g(a j)− g(a j−1) = g′(t j)(a j − a j−1)

for some t j. (See Sect. 3.1c for an interpretation of the derivative as a “stretching
factor.”)

a 1 a 2
t 2

u = g(t)

g(t 2 )   u2u1

Fig. 7.4 The interval [a1,a2] is mapped to [u1,u2] by the change of variables u = g(t)

To show that ∫ B

A
f (u)du =

∫ b

a
f (g(t))g′(t)dt,

we look at sums approximating the integrals. On the left we choose to evaluate f at
the points g(t j):

n

∑
j=1

f (g(t j))(u j − u j−1).
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On the right we evaluate f ◦ g at the points t j:

n

∑
j=1

f (g(t j))g
′(t j)(a j − a j−1).

Since g is an increasing function and t j is between a j−1 and a j, it follows that g(t j)
is between u j−1 and u j. With these choices, the two sums are equal. Since these
sums approximate the integrals as closely as we wish, it follows that the integrals
are equal too. ��

As we have seen, the formula for changing variables in an integral holds out
the possibility of transforming an integral into another one that can be expressed in
terms of known functions. But it also can be used to give us insight into integrals
more generally.

Example 7.14. Let f be any continuous function, and let g be the linear function

g(t) = kt + c,

where k and c are constants. We get by a change of variables that

∫ kb+c

ka+c
f (x)dx =

∫ b

a
f (kt + c)k dt = k

∫ b

a
f (kt + c)dt.

Notice that this embodies two rules:

(a) Setting k = 1, we obtain the translation invariance of the integral, and
(b) Setting c = 0, we obtain the effect of stretching on integrals.

Thus we see that the change of variables theorem is a powerful generalization of
the simple rules we previously found.

Improving an Estimate by Change of Variables. Often after a change of vari-
ables, the transformed integral cannot be evaluated explicitly but is easier to esti-
mate than the original integral. Here is an example:

We know how to evaluate the integral

I =
∫ 4

1

1
1+ x

dx

exactly. It is
[

log(1+x)
]4

1 = log
(

5
2

)
= 0.9162 . . .. But suppose we did not know the

antiderivative and we performed a quick estimate. On [1,4],
1

1+ x
is between 1

2 and
1
5 . Using the estimate of the integral in terms of the upper and lower bounds of the
integrand, we get

0.6 =
1
5
(4− 1)≤

∫ 4

1

1
1+ x

dx ≤ 1
2
(4− 1) = 1.5.
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Now let us change variables. Set x = t2. Then

I =
∫ 4

1

1
1+ x

dx =
∫ 2

1

1
1+ t2

dx
dt

dt =
∫ 2

1

2t
1+ t2 dt.

Now the length of the interval of integration is 2 − 1 = 1. The new integrand is
a decreasing function of t. Its maximum, taken on at t = 1, is 1, and its minimum,
taken on at t = 2, is 0.8. Therefore, according to the lower and upper bound property,
I lies between these limits:

0.8 ≤ I ≤ 1.

Notice how much narrower these bounds are than those we had previously.
The most important use by far of the formula for changing variables in an integral

comes from frequent encounters with integrals where the integrand is not handed
down from on high to be evaluated, but is a function that arises in another part
of a larger problem. It often happens that it is necessary, or convenient, to change
variables in the other part of the problem; it is then necessary to perform that change
of variable in the integral, too.

Problems

7.12. Use the substitution t = 2sinθ similar to that of Example 7.12 to evaluate

∫ 1

0

√
4− t2 dt,

and use a similar sketch to help determine the limits of integration.

7.13. Use the substitution u = 1+ x2 to evaluate the integral

∫ 2

1

(
1+ x2

)3/2
x dx.

7.14. Evaluate
∫ 3

0

1
9+ x2 dx using the substitution x = 3tant.

7.15. Use a change of variables to evaluate the following integrals.

(a)
∫ 1

0

t
t2 + 1

dt

(b)
∫ 1

0

t
(t2 + 1)2 dt

(c)
∫ 1

0

1
(t2 + 1)2 dt Hint: let t = tanu.

(d)
∫ 1

−1
x2ex3

dx

(e)
∫ 1

−1

2t + 3
t2 + 9

dt



7.2 Change of Variables in an Integral 309

(f)
∫ 1

0

√
2+ t2 dt Hint: Let t =

√
2sinhu. You may also need to refer to Prob-

lem 3.66.

7.16. Express the area bounded by the ellipse

x2

a2 +
y2

b2 = 1

as a definite integral. Make a change of variables that converts this integral into one
representing the area of a circle, and then evaluate it.

7.17. Evaluate
∫ 1

0

√
1+

√
xdx.

Hint: Let
√

x = t.

7.18.(a) Find
d
dx

log(secx+ tanx). For what values of x is your result valid?

(b) Explain which, if any, of the following integrals have been defined:

∫ 3/2

1
secxdx,

∫ π/2

1
secxdx

∫ 2

π/2
secxdx

∫ 2

1
secxdx

7.19. Let g be a function whose derivative on the interval [a,b] is negative. Prove
that in this case, we have the following formula for changing variables in an
integral: ∫ g(a)

g(b)
f (x)dx =

∫ b

a
f (g(t))|g′(t)|dt.

7.20. Use the change of variable x = sin2(θ ) to express the integral

∫ π/2

0
sin2n+1(θ )cos2m+1(θ )dθ

in terms of the numbers B(n,m) in Problem 7.10.

7.21. Use the change of variables theorem to prove:

(a) If f is any continuous function on [a,b] and if fr(x) is defined on [a+ r,b+ r]
according to the rule fr(x) = f (x− r), then

∫ b

a
f (x)dx =

∫ b+r

a+r
fr(x)dx.

(b) If f is continuous on [a,b] and its reflection, denoted by f−, is defined on
[−b,−a] as f−(x) = f (−x), then

∫ b

a
f (x)dx =

∫ −a

−b
f−(x)dx.
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7.3 Improper Integrals

In this section, we study “improper” integrals. The first kind of improper integral
arises when the interval of integration becomes infinite, e.g., if one or both end-
points of [a,b] tend to plus or minus infinity. The second kind of improper integral
arises when a function becomes unbounded at some point of the interval of inte-
gration. We shall see that an improper integral of either type may or may not be
meaningful.

Example 7.15. Consider the integral
∫ b

1

1
x2 dx. The function

1
x2 is continuous on

(0,∞) and is the derivative of −1
x

, so for b > 0, the integral can be evaluated with

the aid of the fundamental theorem of calculus:
∫ b

1

1
x2 dx =−1

b
− (−1) =−1

b
+ 1.

Let b tend to infinity. Then
1
b

tends to zero, so we get the result

lim
b→∞

∫ b

1

1
x2 dx = lim

b→∞

(
−1

b
+ 1

)
= 1.

The limit on the left is denoted, not unreasonably, by
∫ ∞

1

1
x2 dx.

More generally, we make the following definition.

Definition 7.1. Whenever f is continuous on [a,b] and
∫ b

a
f (x)dx tends to a

limit as b tends to infinity, that is, whenever

lim
b→∞

∫ b

a
f (x)dx

exists, that limit is denoted by
∫ ∞

a
f (x)dx.

Such an integral is called an improper integral, and the function f is said to be
integrable on [a,∞), and the integral is said to converge. If the limit does not
exist, we say that the function f is not integrable on [a,∞) and that the improper
integral diverges.
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Example 7.16. Let n> 1 be any number, and b> 0. We get from the fundamental
theorem of calculus that

∫ b

1

1
xn dx =− 1

n− 1
1

bn−1 +
1

n− 1
.

Letting b tend to infinity, we deduce that
1

bn−1 tends to zero and

∫ ∞

1

1
xn dx =

1
n− 1

(n > 1),

so the integral converges.

Example 7.17. For n < 1,
1

bn−1 tends to infinity as b does, so

∫ ∞

1

1
xn dx = lim

b→∞

∫ b

1

1
xn dx = lim

b→∞

(
− 1

n− 1
1

bn−1 +
1

n− 1

)

does not exist. Therefore,
∫ ∞

1

1
xn dx divergesfor n < 1.

Example 7.18. Next, we show that the improper integral
∫ ∞

1

1
x

dx does not con-

verge. For b > 1, we have
∫ b

1

1
x

dx = logb− log1 = logb. The logarithm in-

creases without bound, so the limit lim
b→∞

∫ b

1

1
x

dx does not exist, and

∫ ∞

1

1
x

dx diverges.

Here is another way to see that the improper integral
∫ ∞

1

1
x

dx diverges, a way

that does not rely on our knowledge of the logarithm function. Recall from the

lower and upper bound property of the integral that
∫ b

a
f (x)dx ≥ (b− a)m, where

m is the minimum of f in [a,b]. Apply this to the integral
∫ 2a

a

1
x

dx. The minimum

of
1
x

occurs at the right endpoint of the interval of integration, so

∫ 2

1

1
x

dx > (2− 1)
1
2
=

1
2
,

∫ 4

2

1
x

dx > (4− 2)
1
4
=

1
2
,
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and so forth. This, together with the additivity of integrals, allows us to write the

integral of
1
x

over the interval [1,2k] as the following sum:

∫ 2k

1

1
x

dx =
∫ 2

1

1
x

dx+
∫ 4

2

1
x

dx+
∫ 8

4

1
x

dx+ · · ·+
∫ 2k

2k−1

1
x

dx

>
1
2
+

1
2
+

1
2
+ · · ·+ 1

2
=

k
2
.

See Fig. 7.5. This estimate shows that as k tends to infinity,
∫ 2k

1

1
x

dx also tends to

infinity, and therefore does not have a limit. Thus the function
1
x

is not integrable

on [1,∞).

1

0.5

0.25
0.125

8421

Fig. 7.5 The rectangles under the graph of 1
x each have area 1

2

The Comparison Theorem. Now we present a very useful criterion for deciding
which functions are integrable on [a,∞) and which are not. It is based on the mono-
tonicity of the integral, that is, on the fact that functions with greater values have
greater integrals. We start by examining what it means that the limit

lim
b→∞

∫ b

a
f (x)dx

exists. The meaning is that for b large enough, the value of the integral on [a,b]
depends very little on b. More precisely, for any choice of tolerance ε > 0 there is
an N that depends on ε such that

∣∣∣∣
∫ b1

a
f (x)dx−

∫ b2

a
f (x)dx

∣∣∣∣ < ε

for every b1 and b2 larger than N, that is, for b1 and b2 large enough. For a< b1 < b2,

∫ b2

a
f (x)dx =

∫ b1

a
f (x)dx+

∫ b2

b1

f (x)dx.
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Therefore, the above difference of integrals can be rewritten as a single integral over
[b1,b2], and we need ∣∣∣∣

∫ b2

b1

f (x)dx

∣∣∣∣< ε (7.9)

for b1 and b2 large enough.

Theorem 7.3. Comparison theorem for improper integrals. Suppose f and
g are continuous and

| f (x)| ≤ g(x)

on [a,∞). If g is integrable on [a,∞), then so is f . The same result holds if [a,∞)
is replaced by (−∞,a].

Proof. Since | f (x)| ≤ g(x),
∣∣∣∣
∫ b2

b1

f (x)dx

∣∣∣∣ ≤
∫ b2

b1

| f (x)|dx ≤
∫ b2

b1

g(x)dx.

Since g is integrable from a to ∞, then according to (7.9),

∫ b2

b1

g(x)dx < ε

for b1, b2 large enough. Then it follows also that
∣∣∣∣
∫ b2

b1

f (x)dx

∣∣∣∣< ε.

This means that f is integrable on [a,∞). ��
We can also obtain the result for intervals (−∞,a]. This theorem can be used as

an integrability criterion for f , or a nonintegrability criterion for g. We illustrate
with a few examples.

Example 7.19. Is the function
1

1+ x2 integrable on [1,∞)? To answer this ques-

tion quickly, observe that

1
1+ x2 <

1
x2 .

We have seen that the function
1
x2 is integrable on [1,∞). Therefore, it follows

from the comparison theorem that
1

1+ x2 is also integrable on [1,∞).

We know how to evaluate
∫ ∞

1

1
1+ x2 dx exactly, so let us redo the last example.
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Example 7.20. We have

∫ ∞

1

1
1+ x2 dx = lim

t→∞

∫ t

1

1
1+ x2 dx

= lim
t→∞

[
tan−1 x

]t
1 = lim

t→∞

(
tan−1 t − tan−1 1

)
=

π
2
− π

4
=

π
4
.

The comparison theorem gives us a tool that allows us sometimes to quickly
determine the convergence or divergence of an improper integral. But it does not
tell us the value of a convergent integral.

Example 7.21. Is the function
x

1+ x2 integrable on [1,∞)? Since x2 ≥ 1 on the

interval in question, we have the inequality

x
1+ x2 ≥ x

x2 + x2 =
1
2x

for x ≥ 1.

The function
1
2x

is just half the function
1
x

. We have seen that
∫ b

1

1
x

dx tends to

infinity with b. Therefore, it follows from the comparison theorem that

∫ b

1

x
1+ x2 dx ≥ 1

2

∫ b

1

1
x

dx,

so
∫ ∞

1

x
1+ x2 dx diverges.

Example 7.22. We evaluate, using the change of variables u = 1+ x2,

∫ b

1

x
1+ x2 dx =

1
2

∫ 1+b2

2

1
u

du =
1
2

(
log

(
1+ b2)− log2

)
.

This increases without bound as b tends to infinity. This shows that
∫ ∞

1

x
1+ x2 dx

diverges, as we saw in Example 7.21 by a simple comparison.

Setting up a simple comparison can be less onerous than evaluating the integral
directly, as we see in the next example.

Example 7.23. Is
sin x
x2 integrable on (−∞,−1]? Since

∣∣∣∣ sinx
x2

∣∣∣∣≤ 1
x2 , and since we

saw that
1
x2 is integrable on (−∞,−1], so is

sinx
x2 .

Example 7.24. Is the function e−x2
integrable on [1,∞)? Since x < x2 for 1 < x,

it follows that 0 ≤ e−x2 ≤ e−x. The function e−x is integrable on [1,∞), since
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∫ b

1
e−x dx = e−1 − e−b, which tends to e−1 as b tends to infinity. According to

the comparison theorem,
∫ ∞

1
e−x2

dx converges.

It can be shown that ∫ ∞

0
e−x2

dx =
1
2

√
π. (7.10)

The convergence or divergence of improper integrals can be used as a criterion
for the convergence or divergence of infinite series.

Theorem 7.4. Integral test for the convergence of a series.
Let f (x) be a positive decreasing continuous function on [1,∞).

(a) Suppose f is integrable on [1,∞), and let
∞

∑
n=1

an be an infinite series whose

terms satisfy the inequalities

|an| ≤ f (n).

Then the series
∞

∑
n=1

an converges.

(b) Let
∞

∑
n=1

an be a convergent infinite series whose terms satisfy the inequalities

an ≥ f (n).

Then f is integrable on [1,∞).

1 3 x

f

2

|a  |
2 |a  |

3

Fig. 7.6 The idea of the proof of Theorem 7.4, part (a). The numbers |an| may be viewed as areas

Proof. Since f (x) is assumed to be decreasing, its minimum on the interval [n−1,n]
occurs at the right endpoint n. By the lower bound property of the integral (Fig.7.6),

f (n)≤
∫ n

n−1
f (x)dx.

Using the hypothesis that |an| ≤ f (n), we conclude, therefore, that

|an| ≤
∫ n

n−1
f (x)dx.
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Add these inequalities for all n between j and k. Using the additive property of the
integral, we get

|a j+1|+ · · ·+ |ak| ≤
∫ j+1

j
f (x)dx+ · · ·+

∫ k

k−1
f (x)dx =

∫ k

j
f (x)dx.

The function f is assumed to be integrable on [1,∞), so the right-hand side is less
than ε for j and k large enough. Therefore,

|a j+1 + · · ·+ ak| ≤ |a j+1|+ · · ·+ |ak| ≤ ε

for j, k large enough. This means that the jth and kth partial sums of
∞

∑
n=1

an differ

by very little for j and k large enough, and the series
∞

∑
n=1

an converges (see Theo-

rem 1.20). This proves part (a).
To prove part (b), we observe that since f is decreasing, its maximum on the inter-

val (n,n+ 1) is reached at n. By the upper bound property of the integral (Fig. 7.7),

f (n)≥
∫ n+1

n
f (x)dx.

1 3 x

f

2

2
1a

a

Fig. 7.7 The idea of the proof of Theorem 7.4, part (b). The numbers an are viewed as areas

Using the assumption that an ≥ f (n)≥ 0, we conclude that

an ≥
∫ n+1

n
f (x)dx ≥ 0.

Add these inequalities for all n between j and k. Using the additive property of the
integral, we get

a j + · · ·+ ak−1 ≥
∫ j+1

j
f (x)dx+ · · ·+

∫ k

k−1
f (x)dx =

∫ k

j
f (x)dx ≥ 0.

We have assumed that the series
∞

∑
n=1

an converges, and hence its jth and kth partial

sums differ by very little for j and k large enough. This means that no matter how
small ε is, we have

a j + · · ·+ ak−1 ≤ ε

for j, k large enough. It follows then that
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∣∣∣∣
∫ k

j
f (x)dx

∣∣∣∣ ≤ ε.

This implies that f is integrable on [1,∞). This completes the proof of the integral
test for convergence. ��

The integral test is enormously useful in applications. Here are some examples.

Example 7.25. f (x) =
1
xp , p > 1. In this case, we have seen that f is integrable

on [1,∞). Set

an = f (n) =
1
np .

It follows from part (a) of the integral test for convergence that

∞

∑
n=1

1
np = 1+

1
2p +

1
3p + · · ·

converges for p > 1. This sum is the celebrated zeta function ζ (p) of number
theory.

Example 7.26. We saw in Example 1.21 that the series

∞

∑
n=1

1
n

diverges. Here is a new argument using the integral test. Take f (x) =
1
x

, and set

an = f (n) =
1
n

. If the series converged, then according to part (b) of the integral

test, the function f (x) =
1
x

would be integrable over [1,∞), but we have seen that

it is not.

Unbounded Integrand. We turn now to another class of integrals also called “im-
proper,” with the feature that the integrand is not bounded on the closed interval of
integration.

Example 7.27. Consider the integral
∫ 1

a

1√
x

dx, where a> 0. The function
1√
x

is

the derivative of 2
√

x, so the fundamental theorem of calculus yields
∫ 1

a

1√
x

dx=

2− 2
√

a. Now let a tend to zero. Then
√

a also tends to zero, and

lim
a→0

∫ 1

a

1√
x

dx = 2.

The limit on the left is denoted, not unreasonably, by
∫ 1

0

1√
x

dx.
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Although the function
1√
x

becomes unbounded as x tends to zero, its integral

over [0,1] exists. More generally, we make the following definition.

Definition 7.2. Let f be a function defined on a half-open interval (a,b] such
that f is continuous on every subinterval [a+ h,b], with h > 0, but not on the
interval [a,b] itself. The function f is called integrable on (a,b] if the limit

lim
h→0

∫ b

a+h
f (x)dx

exists. This limit is denoted by
∫ b

a
f (x)dx and is called an improper integral.

If the limit does not exist, we say that f is not integrable on (a,b], or that the
integral diverges.

h 10

Fig. 7.8 The graph of
1
x

for Example 7.28. The shaded area tends to infinity as h → 0

Example 7.28. Consider
∫ 1

0

1
x

dx. The function
1
x

is not defined at the left end-

point x = 0 of the interval of integration. We add a small number 0 < h < 1 to the
left endpoint, and we integrate over the modified interval [h,1]. The fundamental
theorem yields

∫ 1

h

1
x

dx = log1− logh = log

(
1
h

)
.

As h → 0, log
(1

h

)
tends to infinity, so the integral diverges. See Fig. 7.8.

Example 7.29. Consider the integral
∫ 1

0

1
xp dx, where p 
= 1. Figure 7.9 shows

graphs of some of the integrands. Since the function
1
xp is the derivative of

x1−p

1− p
,

it follows from the fundamental theorem that for h > 0,

∫ 1

h

1
xp dx =

1
1− p

− h1−p

1− p
.
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When p < 1, h1−p tends to zero as h does. Therefore, the improper integral

∫ 1

0

1
xp dx is equal to

1
1− p

for all 0 < p < 1.

When p > 1, h1−p tends to infinity. Therefore,

∫ 1

0

1
xp dx diverges if p > 1.

1

3

5

7

0 0.5 1

x1.1

x0.9

Fig. 7.9 The graphs of
1
xp for p = 0.9, 1, and 1.1, for Example 7.29. As h → 0, the area between

[h,1] and the graph converges if p < 1 and diverges if p ≥ 1

Example 7.30. Consider
∫ 1

−1

−1
x2 dx. Since the integrand is the derivative of

1
x

, it

is tempting to use the fundamental theorem of calculus, giving

[
1
x

]1

−1
= 2. How-

ever, the theorem cannot be applied, because
−1
x2 is not continuous on [−1,1].

The right way to approach such an integral is to evaluate the two improper inte-

grals
∫ 0

−1

−1
x2 dx and

∫ 1

0

−1
x2 dx. If they exist, then their sum is the answer. Oth-

erwise, the integral diverges. In fact, we know that the second of these integrals
diverges, so the integral

∫ 1

−1

−1
x2 dx does not exist.

The comparison criterion also applies to improper integrals. If | f (x)| ≤ g(x) on
(a,b], and if g is integrable on (a,b], then f is also integrable on (a,b].

Example 7.31. Consider the improper integral

∫ 1

0

1√
x+ x2

dx.

The integrand satisfies the inequality
1√

x+ x2
<

1√
x
=

1

x
1
2

. Since we have seen

in Example 7.29 that
1

x
1
2

is integrable on (0,1], the integral converges.
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Example 7.32. The function f (x) =
sinx

x
is not defined at x = 0. But because

lim
x→0

sinx
x

= 1,

we can extend the definition of f to be 1 at x = 0. Then f is continuous at 0. (See
the graph of f in Fig. 7.10.) This is called a continuous extension of f , and we
make these extensions often without renaming the function. So from this point
of view, we say that

∫ 1

0

sinx
x

dx

is a proper integral because the integrand has a continuous extension that is inte-
grable.

 1

-15 -10 -5  5  10  15

sin(x)/x

x

Fig. 7.10 The graph of
sinx

x
in Example 7.32

A Change of Variables. Next we show how the introduction of z =
1
x

as a new

variable of integration can change an improper integral into a proper one, sometimes
exchanging an interval of infinite length for a finite one. According to the change of
variable formula for integrals,

∫ b

a
f (x)dx =

∫ 1/a

1/b
f

(
1
z

)
1
z2 dz.

Suppose that the function f (x) is such that as x tends to infinity, x2 f (x) tends to a

finite limit L. Then the change of variable leads to the function f

(
1
z

)
1
z2 , which

tends to the same limit L as z tends to zero. That is, f

(
1
z

)
1
z2 has a continuous

extension to the value L at z = 0. It follows that as b tends to infinity, the integral∫ b

a
f (x)dx tends to the proper integral
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∫ 1/a

0
f

(
1
z

)
1
z2 dz.

The next example makes use of such a change of variable.

Example 7.33. We consider
∫ ∞

1

1
1+ x2 dx. The change of variables x =

1
z

gives

lim
b→∞

∫ b

1

1
1+ x2 dx = lim

b→∞

∫ 1

1/b

1

1+
(1

z

)2

1
z2 dz = lim

b→∞

∫ 1

1/b

1
z2 + 1

dz.

As b tends to infinity, the integral on the right tends to the perfectly
proper integral (Fig. 7.11)

∫ 1

0

1
z2 + 1

dz = tan−1 1− tan−1 0 =
π
4
.

 1

0 1

1/(1+x2)

x

Fig. 7.11 The graph of
1

1+ x2 . The area over [0,1] is equal to the area over [1,∞). See Exam-

ple 7.33

Estimation of n!. We have shown in Sect. 4.1 that the exponential function ex

grows faster than any power of x as x tends to infinity. It follows that xne−x goes
to zero faster than any negative power of x, no matter how large n is. It follows that
the function xne−x is integrable from 0 to infinity (Fig. 7.12).

We show now how to evaluate, using integration by parts, the improper integral
∫ ∞

0
xne−x dx,

where n is a positive integer. Write the integrand as f ′(x)g(x), where f (x) = −e−x

and g(x) = xn. We integrate from 0 to b and then let b tend to infinity. The product
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f (x)g(x) is zero at x = 0, and its value at x = b tends to zero as b tends to infinity.
Since g′(x) = nxn−1, we get

∫ ∞

0
xne−x dx = lim

b→∞

([−e−xxn]b
0 +

∫ b

0
nxn−1e−x dx

)
= n

∫ ∞

0
xn−1e−x dx.

Repeating this procedure, we obtain
∫ ∞

0
xne−x dx = n(n−1)

∫ ∞

0
xn−2e−x dx. After n

integrations by parts, we obtain
∫ ∞

0
xne−x dx = n!

∫ ∞

0
e−x dx.

For every t,
∫ t

0
e−x dx =−e−t − (−1), which tends to 1 as t tends to infinity. There-

fore, we have shown that ∫ ∞

0
xne−x dx = n!. (7.11)

One is tempted to think of formula (7.11) as expressing a complicated integral on
the left by the simple expression n!. But actually, it is the other way around; (7.11)
expresses the complicated expression n! by the simple integral on the left! Why do
we call n! a complicated expression? Because it is not easy to estimate how large it
is for large n. We can replace all the factors 1,2,3, . . . by n and conclude that

n! < nn,

but this is a very crude estimate. We can obtain a sharper estimate by pairing the
factors k and n− k and estimating their product using the A-G inequality:

√
k(n− k)≤ k+(n− k)

2
=

n
2
.

Squaring this, we get k(n− k) ≤ (n/2)2. In the product n! we have n/2 pairs k and
n− k, so applying the above inequality to all such pairs, we get that

n! <
(n

2

)n
. (7.12)

This is an improvement by a factor of 2n over our previous crude estimate, but as
we shall see, this is still a very crude estimate.

As we shall show, the integral on the left in Eq. (7.11) is much easier to estimate,
since most of the contribution to an integral comes from around the point where the
integrand reaches its maximum. Our first task is to locate the maximum of xne−x.
This is easily accomplished by looking at the derivative of the integrand. Using the
product rule, we get

d
dx

(
xne−x)= nxn−1e−x − xne−x.
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1

0
54321

x

x e-x

x2 e -x

x3  e-x

Fig. 7.12 Graphs of xne−x for n = 1,2,3

We can write the right side as

(n− x)xn−1e−x.

This formula shows that the derivative of xne−x is positive for x less than n, and
negative for x greater than n. This shows that xne−x reaches its maximum at x = n;
its value there is nne−n. Let us factor it out:

xne−x =
(n

e

)n( x
n

)n
en−x.

So we can write the integral for n! as

n! =
(n

e

)n ∫ ∞

0

( x
n

)n
en−x dx.

We make the change of variable x = ny, dx = ndy and get

n! =
(n

e

)n ∫ ∞

0
ynen(1−y)ndy = n

(n
e

)n ∫ ∞

0

(
ye1−y)n

dy. (7.13)

We denote the integral on the right in Eq. (7.13) by d(n) and rewrite (7.13) as

n! =
nn+1

en d(n), (7.14)

where

d(n) =
∫ ∞

0

(
ye1−y)n

dy.

What can we say about this integral? The integrand is the nth power of ye1−y, a
function that is equal to 1 at y = 1 and is less than 1 everywhere else. This shows
that the integrand is a decreasing function of n for every y; therefore, so is its integral
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d(n). This shows that formula (7.14) gives a much sharper upper bound for n! than
Eq. (7.12).

How fast does d(n) decrease as n increases? It turns out that d(n) behaves asymp-

totically like

√
2π
n

; that is, the ratio of d(n) to this expression tends to 1 as n tends

to infinity. The proof of this statement is elementary, but not so elementary that it
belongs to an introductory calculus text. So we state, without any further ado, the
following theorem.

Theorem 7.5. Stirling’s formula. As n tends to infinity, n! is
asymptotic to √

2πn
(n

e

)n
,

in the sense that the ratio of n! to this expression tends to 1.

Problems

7.22. Two sequences an and bn are said to be asymptotic to each other if their ratio
an

bn
tends to 1 as n tends to infinity. If an and bn are asymptotic to each other, does

their difference an − bn tend to 0?

7.23. Suppose an and bn are positive asymptotic sequences.

(a) Are nan and nbn asymptotic to each other? How about nan and
√

1+ n2bn?
(b) Find lim

n→∞
(logan − logbn).

7.24. We stated Stirling’s formula, that
√

2πn
(

n
e

)n ∼ n!. Use this to find the limit of

log(n!)− (
n+

1
2

)
logn+ n

as n tends to infinity.

7.25. Use the integral test to determine which of these series converge.

(a)
∞

∑
n=1

1
n2

(b)
∞

∑
n=1

1
n1.2

(c)
∞

∑
n=2

1
n logn

(d)
∞

∑
n=1

1

n9/10
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7.26. Which of the functions below are integrable on [0,∞)?

(a)
1√

x(1+ x)

(b)
x

1+ x2

(c)

√
x+ 1−√

x
1+ x

(d)
1

x+ x4

Hint: Use the comparison theorem. Treat the two endpoints separately.

7.27. Let f (x) =
p(x)
q(x)

, where q(x) is a polynomial of degree n ≥ 2, and suppose

that q(x) is nonzero for x ≥ 1. Let p(x) be a polynomial of degree ≤ n− 2.

(a) Show that the introduction of z = x−1 as a new variable of integration turns the

improper integral
∫ ∞

1
f (x)dx into a proper one.

(b) Use this method to show that
∫ ∞

1

1
1+ x3 dx =

∫ 1

0

z
z3 + 1

dz.

7.28. Integrate by parts to turn the improper integral
∫ 1

0

1√
x+ x2

dx into a proper

one.

7.29. Integrate by parts to verify that the improper integral
∫ ∞

1

sinx
x

dx converges.

Then use the following items to verify that
∫ ∞

1

|sinx|
x

dx does not converge:

(a) Explain why
∫ nπ

1

|sinx|
x

dx ≥
n

∑
k=2

∫ kπ

(k−1)π

|sinx|
x

dx.

(b) Explain why
∫ kπ

(k−1)π

|sinx|
x

dx ≥ 1
kπ

∫ kπ

(k−1)π
|sinx|dx.

(c) Verify that
∫ kπ

(k−1)π
|sinx|dx = 2.

(d) Why do these facts imply that
∫ ∞

1

|sin x|
x

dx diverges?

7.30. Show that the following improper integrals exist, and evaluate them.

(a)
∫ ∞

1

dx
x1.0001

(b)
∫ 4

0

dx√
4− x

(c)
∫ 1

0

dx
x0.9999

(d)
∫ 1

0

dx

x2/3
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7.31. Show that the integral
∫ ∞

s

1
x logx

dx diverges, where s > 1.

The next two problems indicate an algebraic method that is useful for some inte-
grals.

7.32.(a) Bring to a common denominator
A

x+ 2
+

B
x− 2

.

(b) Write
3x− 4
x2 − 4

as a sum
3x− 4
x2 − 4

=
A

x+ 2
+

B
x− 2

.

(c) Evaluate
∫ 4

3

3x− 4
x2 − 4

dx.

7.33. Evaluate the integral
∫ ∞

2

1
y− y2 dy.

7.34. Show that
∫ ∞

0
tne−pt dt =

n!
pn+1 for positive p by repeated integration by parts.

7.35. Use integration by parts twice to show that
∫ ∞

0
sin(at)e−pt dt =

a
a2 + p2 and

∫ ∞

0
cos(at)e−pt dt =

p
a2 + p2 .

7.4 Further Properties of Integrals

7.4a Integrating a Sequence of Functions

We have seen that polynomial functions are very easy to integrate, and that many
important functions can be represented by Taylor series. We would like to know
whether we may evaluate the integral of f on [a,b] by integrating its Taylor series
term by term instead. The next theorem answers this question.

Theorem 7.6. Convergence theorem for integrals. If a sequence of functions
fn converges uniformly on an interval to f , then for any numbers a and b in the
interval, the sequence of integrals of fn converges to the integral of f :

lim
n→∞

∫ b

a
fn(t)dt =

∫ b

a
f (t)dt.

Proof. The fn converge uniformly to f on an interval containing [a,b]. This means
that for every ε > 0, fn(t) and f (t) differ by less than ε for all t on [a,b], provided
that n is large enough.

Choose N so large that | fn(t)− f (t)|< ε for n ≥ N, a ≤ t ≤ b. By the properties
of integrals, we have
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∣∣∣∣
∫ b

a
fn(t)dt −

∫ b

a
f (t)dt

∣∣∣∣≤
∫ b

a
| fn(t)− f (t)|dt ≤ ε(b− a)

for all n ≥ N. So lim
n→∞

∫ b

a
fn(t)dt =

∫ b

a
f (t)dt. ��

Example 7.34. We know that
∞

∑
n=0

x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− ·· · converges uni-

formly to sinx on every interval [−c,c]. Therefore, the series

∞

∑
n=0

(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
−·· ·

converges uniformly to sin(x2) on every interval [a,b]. By Theorem 7.6,

∫ 1

0
sin(x2)dx =

[
x3

3
− x7

3!7
+

x11

5!11
−·· ·

]1

0
=

1
3
− 1

3!7
+

1
5!11

−·· · .

Theorem 7.6 may also be used to generate power series that converge to a given
function, as in the next examples.

Example 7.35. We know from Sect. 2.6a that the geometric series

1− t + t2 − t3 + · · ·

converges uniformly to
1

1+ t
on every interval [−c,c], where 0 < c < 1. Ac-

cording to Theorem 7.6, we may integrate from 0 to any number x in (−1,1).
Integrating from 0 to x is a new way to obtain the power series for log(1+ x):

x− x2

2
+

x3

3
− x4

4
+ · · ·= log(1+ x),

with uniform convergence on every [−c,c], where 0 < c < 1.

Example 7.36. The sequence of polynomials

fn(t) =
n

∑
k=0

(−1)kt2k = 1− t2+ t4 − t6 + · · ·+(−1)nt2n

converges uniformly to
1

1− (−t2)
=

1
1+ t2 in every interval [−c,c] where

0 < c < 1. The fn(t) are in fact the Taylor polynomials of f (t) =
1

1+ t2 at

a = 0. By Theorem 7.6, we can write for −1 < x < 1,

∫ x

0

1
1+ t2 dt = lim

n→∞

∫ x

0

(
1− t2+ t4 − t6 + · · ·+(−1)nt2n

)
dt
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= lim
n→∞

(
x− x3

3
+

x5

5
−·· ·+(−1)n x2n+1

2n+ 1

)
=

∞

∑
n=0

(−1)n x2n+1

2n+ 1
.

By the fundamental theorem of calculus,
∫ x

0

1
1+ t2 dt = tan−1 x, and we get

tan−1 x =
∞

∑
n=0

(−1)n x2n+1

2n+ 1
for |x|< 1.

Theorem 7.6 is a great convenience when it applies. Happily, as we saw in
Chap. 2, when Taylor polynomials converge, they do so uniformly on [a,b], so op-
portunities to use Theorem 7.6 abound. The next example, however, demonstrates
that strange things can happen if a sequence of functions converges pointwise but
not uniformly on [a,b].

1

2

0 1 x

f4(x)

f8(x)

f16(x)

f32(x)

Fig. 7.13 The functions fn(x) in Example 7.37 converge to 0 pointwise, but their integrals do not
converge to 0

Example 7.37. Let fn(x) = nx(1− x2)n on [0,1]. For each n = 1, 2, 3, . . ., the
function fn is continuous and

∫ 1

0
fn(x)dx = n

∫ 1

0
x(1− x2)n dx =

n
n+ 1

(
−1

2

)[
(1− x2)n+1]1

0 =
1
2

n
n+ 1

.

Therefore,

lim
n→∞

∫ 1

0
fn(x)dx =

1
2

lim
n→∞

n
n+ 1

=
1
2
.

Now let us investigate fn(x) as n tends to infinity for each x in [0,1]. At x = 0,
fn(0) = 0 for all n. For 0 < x ≤ 1, the number b = 1− x2 is less than 1, and we
have lim

n→∞
fn(x) = x lim

n→∞
nbn. This limit is 0, because according to Theorem 2.10

on exponential growth, the reciprocals
b−n

n
tend to infinity. Therefore fn(x) tends
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to 0 for all x in the interval [0,1], but

∫ 1

0
lim
n→∞

fn(x)dx =
∫ 1

0
0dx = 0 
= 1

2
.

The limit of the integrals is not equal to the integral of the limit. A careful look
at the graphs in Fig. 7.13 gives some insight into why this example does not
contradict Theorem 7.6.

7.4b Integrals Depending on a Parameter

A very important extension of the convergence theorem for integrals deals with
functions that depend on an additional parameter. We introduce the idea of integrals
that depend on a parameter through an example.

Consider gas in a tube of unit cross-sectional area. The tube lies along the x-axis.
Denote the linear density (mass per length) of the gas at x by ρ(x). Then the mass
M of the gas contained in the portion [a,b] of the tube is given by the integral

M =

∫ b

a
ρ(x)dx.

Suppose that the gas flows, and its linear density ρ changes with time t. Then the
mass of the gas in the tube is a function of time. Let ρ [t](x) be the linear density at
x at time t. Then the mass in the tube at time t is

M[t] =
∫ b

a
ρ [t](x)dx.

If the linear density at each point is a continuous function of time, we would expect
the mass in the tube to depend continuously on time as well. This leads to a definition
and a theorem (Fig.7.14).

ba

Fig. 7.14 Gas flowing in a tube has varying density ρ . M is the mass between points a and b

We say that a one-parameter family of functions ρ on [a,b] depends continuously
on the parameter t if given any tolerance ε , there is a δ such that when t and s differ
by less than δ , ρ [t](x) and ρ [s](x) differ by less than ε at all points x of [a,b].
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If a function ρ depends on a parameter t, so does its integral over a fixed interval
[a,b]. We indicate this dependence explicitly by I(ρ [t], [a,b]) = I(t). In many situa-
tions, it is very important to learn how I(t) varies with t. The following theorem is
a variant of the convergence theorem 7.6.

Theorem 7.7. Suppose that a one-parameter family of functions ρ depends
continuously on the parameter t on the interval [a,b]. Then the integral of ρ
from a to b depends continuously on t.

So for the gas in the tube, the theorem tells us that if the linear density at x
depends continuously on t, then the mass of gas in the tube depends continuously
on time. Next, we want to know whether we can determine the rate of change in
the mass with respect to time if we know the rate of change of linear density with
respect to time at each x in [a,b]. To do so, we need the following definition.

Definition 7.3. We say that a one-parameter family of functions ρ [t] depends
differentiably on the parameter t if for every t, the difference quotients

ρ [t + h](x)−ρ [t](x)
h

tend uniformly on the interval [a,b] to a limit function as h tends to 0. We denote

this limit function by
dρ
dt

.

The following theorem shows how to differentiate M(t) with respect to t:

Theorem 7.8. Differentiation theorem for the integral. Suppose that ρ [t] de-

pends differentiably on the parameter t. Then
∫ b

a
ρ [t](x)dx depends differen-

tiably on t, and
d
dt

∫ b

a
ρ [t](x)dx =

∫ b

a

dρ
dt

(x)dx.

Proof. This result is a corollary of previously derived properties: using the linearity
of the integral, we can write

1
h

(∫ b

a
ρ [t + h](x)dx−

∫ b

a
ρ [t](x)dx

)
=

∫ b

a

(
ρ [t + h](x)−ρ [t](x)

h

)
dx.

Since we have assumed that the difference quotients tend uniformly to
dρ
dt

, we con-

clude from the convergence theorem for integrals that the right side tends to the

integral of
dρ
dt

. The left side tends to
d
dt

∫ b

a
ρ [t](x)dx. So Theorem 7.8 follows. ��
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A colloquial way of stating Theorem 7.8 is this:
The derivative of an integral with respect to a parameter is the integral of the

derivative of the integrand.
Theorem 7.8 can be regarded as an extension of the rule that the derivative of a

sum is the sum of the derivatives. This result is enormously useful.
In the gas example, how does mass M change with time? If ρ depends differen-

tiably on the parameter t, then

dM
dt

=

∫ b

a

dρ
dt

dx.

Factorial of a Noninteger. In Sect. 7.3, we expressed n! as an integral

n! =
∫ ∞

0
xne−x dx.

This formula allows us to define n! for positive noninteger n.

Problems

7.36. Use Theorem 4.12 to express the integrand in

sin−1 x =
∫ x

0
(1− t2)−1/2 dt

as a binomial series. Integrate this series term by term to produce a series for the
inverse sine function.

7.37. Show that for all real positive n, n! = n(n− 1)!.

7.38. Make a change of variables in Eq. (7.10) to show that

∫ ∞

0
e−ty2

dy =
1
2

√
πt−1/2.

Differentiate both sides with respect to t to find expressions for the integrals
∫ ∞

0
y2e−y2

dy,
∫ ∞

0
y4e−y2

dy.

7.39. Make a change of variables in one of the integrals of Problem 7.38 to calculate
the factorial

(
1
2

)
!.

7.40. Consider the sequence of functions gn(x) = n2x(1− x2)n on [0,1]. Show that

the gn(x) converge to 0 pointwise but that the integrals
∫ 1

0
gn(x)dx tend to infinity.

Compare a sketch of the graphs of the gn with those in Fig. 7.13.
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7.41. The density of gas in a tube of unit cross section is ρ(x) = 1+ x2 + t at time t,
and 0 < x < 10. Calculate

(a) The mass M =
∫ 10

0
ρ(x)dx in the tube.

(b) The rate of change
dM
dt

using
d
dt

∫ 10

0
ρ(x)dx.

(c) The rate of change
dM
dt

using
∫ 10

0

dρ
dt

dx.

(d) If gas enters the tube at rate R [mass/time] at the left end x = 0, and no mass en-

ters or leaves by any other means, what is the relation between R and
∫ 10

0

dρ
dt

dx?



Chapter 8
Approximation of Integrals

Abstract In this chapter, we explore different ways to approximate
∫ b

a
f (t)dt and

ask the question, “How good are they?”

8.1 Approximating Integrals

In Sect. 6.2, we defined the integral
∫ b

a
f (t)dt by approximating it with sums of the

form
n

∑
j=1

f (t j)(a j −a j−1), where a= a0 < a1 < a2 < · · ·< an = b is a subdivision of

[a,b], and t j is a point in [a j−1,a j]. The basic observation behind this approximation
was that if [a,b] is a short interval, and t a point of [a,b], then f (t)(b− a) is a good
approximation to the integral of f over [a,b].

We now turn to the practical application of the approximation theorem, i.e., to
calculate integrals approximately. Among all possible approximation formulas, we
single out three classes for numerical study: those in which the function is eval-
uated at the left endpoint, the midpoint, or the right endpoint of each subinterval.
We denote these by Ileft( f , [a,b]), Imid( f , [a,b]), and Iright( f , [a,b]). See Fig. 8.1,
where just one subinterval is shown.

Example 8.1. We know that
∫ 1

0
t dt =

1
2

. Let us compare approximate integrals

of f (t) = t on [0,1] to the exact value. In the case of n = 2 equal subintervals (see
Fig. 8.2), we obtain

Ileft(t, [0,1]) = f (0)(0.5)+ f (0.5)(0.5) = 0+ 0.5(0.5) = 0.25,

Imid(t, [0,1]) = f
(0+ 0.5

2

)
(0.5)+ f

(0.5+ 1
2

)
(0.5) = 0.25(0.5)+ 0.75(0.5)= 0.5,

Iright(t, [0,1]) = f (0.5)(0.5)+ f (1)(0.5) = 0.5(0.5)+ 1(0.5)= 0.75.

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 8, © Springer Science+Business Media New York 2014
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f(t)

t
a b(a+b)/2

f(t)

t
a (a+b)/2 b

f(t)

t
ba (a+b)/2

Fig. 8.1 To approximate
∫ b

a
f (t)dt using only one subinterval, we may evaluate f at the left,

middle, or right point of [a,b]

Computing other cases of n equal subintervals in a similar manner gives the
results shown in the table. We suggest that you use your calculator or computer
to generate such tables yourself. Observe that the midpoint rule gives the exact

answer for
∫ 1

0
t dt, while Ileft and Iright deviate from the exact value.

0 .5 1
t

1

.5

f(t) = t 

n Ileft Imid Iright

1 0 0.5 1.0
2 0.25 0.5 0.75
3 0.333... 0.5 0.666...
4 0.375 0.5 0.625
5 0.400 0.5 0.600

10 0.450 0.5 0.550
100 0.495 0.5 0.505

Fig. 8.2 Approximate integrals for f (t) = t on [0,1]. The rectangles shown correspond to the
midpoint rule

Example 8.2. The exact value of
∫ 1

0
t2 dt is

1
3

. Compare that to the approximate

integrals in the table, where we again use equal subintervals. Again, you should
create your own table using your calculator or computer.

n Ileft Imid Iright

1 0.0000000 0.2500000 1.0000000
5 0.2400000 0.3300000 0.4400000

10 0.2850000 0.3325000 0.3850000
100 0.3283500 0.3333250 0.3383500

Notice that for all n listed, Imid gives a better approximation to the exact value
than either Ileft or Iright.
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Example 8.3. We can compute the exact value

∫ 1

0

t
1+ t2 dt =

[
1
2

log(1+ t2)

]1

0
=

1
2

log 2 = 0.34657359027 . . ..

Compare this to the approximate integrals given in the table.

n Ileft Imid Iright

1 0.0 0.4 0.5
5 0.2932233. . . 0.3482550. . . 0.3932233. . .

10 0.3207392. . . 0.3469911. . . 0.3707392. . .
100 0.3440652. . . 0.3465777. . . 0.3490652. . .

Observe that Imid again provides a consistently better approximation to the value
of the integral than either Ileft or Iright.

8.1a The Midpoint Rule

In Examples 8.1–8.3, we saw that picking the point t to be the midpoint of the
subintervals was better than picking one of the endpoints. We repeat the definition:

Definition 8.1. The midpoint rule is the approximate integral

Imid( f , [a,b]) = f
(a+ b

2

)
(b− a).

We use a sum of such terms when the interval is subdivided.

We show now that the midpoint rule gives the exact value of the integral when
f is a linear function. First, the midpoint rule gives the exact value of the integral

for a constant function f (t) = k: f
(a+ b

2

)
(b− a) = k(b− a), which is equal to

the integral of f on [a,b]. What about the function f (t) = t? By the fundamental
theorem of calculus,

∫ b

a
t dt =

[
1
2

t2
]b

a
=

b2 − a2

2
=

a+ b
2

(b− a).

This is exactly the midpoint rule, since f
(a+ b

2

)
=

a+ b
2

for f (t) = t.

For any linear function f (t) = mt + k, we have by linearity of the integral that

∫ b

a
(mt + k)dt = m

∫ b

a
t dt +

∫ b

a
k dt

= m
a+ b

2
(b− a)+ k(b− a)=

(
m

a+ b
2

+ k

)
(b− a).

This proves that the midpoint rule gives the exact value of the integral of any linear
function.
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8.1b The Trapezoidal Rule

Our introductory examples showed that using either endpoint gives a less-accurate
approximation than that produced using the midpoint. What about using the average
of f at both endpoints? We call this the trapezoidal rule. Figure 8.3 suggests the
origin of the name.

Definition 8.2. The trapezoidal rule is the approximate integral

Itrap( f , [a,b]) =
1
2
( f (a)+ f (b))(b− a).

We use a sum of such terms when the interval is subdivided.

We show now that the trapezoidal rule, like the midpoint rule, gives the exact
value of the integral when f (t) = mt +k, a linear function. By the linearity property
again, ∫ b

a
(mt + k)dt = m

∫ b

a
t dt + k

∫ b

a
1dt.

Therefore, it suffices to test the function f (t) = t and the constant function 1. Set-
ting f (t) = t into the rule gives 1

2 (a+ b)(b− a), which is the exact value of the

integral
∫ b

a
t dt. Setting f (t) = 1 into the rule gives

1
2
(1+ 1)(b− a), which is the

exact value of the integral
∫ b

a
1dt. Therefore, the trapezoidal rule is exact when

f (t) = mt + k.

f(t)

a b t

Fig. 8.3 The area of the trapezoid is f (a)+ f (b)
2 (b−a)

Let us see how well these rules work for the function f (t) = t2. To make the
formulas not too messy, we take a = 0. Since t2 is the derivative of 1

3 t3, the integral
of t2 over [0,b] is 1

3 b3. The midpoint and trapezoidal rules give respectively

Imid(t
2, [0,b]) =

(1
2

b
)2

b =
1
4

b3
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and

Itrap(t
2, [0,b]) =

1
2
(02 + b2)b =

1
2

b3.

Neither of these is the exact value. How much do they deviate from the exact value?

∫ b

0
t2 dt − Imid(t

2, [0,b]) = b3
(

1
3
− 1

4

)
=

1
12

b3,

and ∫ b

0
t2 dt − Itrap(t

2, [0,b]) = b3
(

1
3
− 1

2

)
=−1

6
b3.

In words: for the function t2, the trapezoidal rule approximation is twice as far from
the exact value of the integral as the midpoint rule approximation is from the exact
value, and in the opposite direction. It follows from this that for f (t) = t2, the com-
bination

2
3

Imid( f , [a,b])+
1
3

Itrap( f , [a,b]) (8.1)

gives the exact value of the integral. Since for linear functions, both Imid and Itrap

give the exact value of the integral, it follows from linearity of the integral (The-
orem 6.3) that this new combination gives the exact value of the integral for all
quadratic functions integrated over [0,b]. We ask you to write out the details of
this in Problem 8.4. This new approximation is called Simpson’s rule, denoted by
IS( f , [a,b]).

So far, we have assumed that the lower endpoint of the interval of integration
is zero. As we point out in Problem 6.12, any interval of integration [a,c] can be
reduced to this case by replacing the function f (t) to be integrated by f (t + a),
and the interval of integration by [0,c− a]. We point out another way to show that
2
3

Imid(t
2, [a,b])+

1
3

Itrap(t
2, [a,b]) is exactly

∫ b

a
t2 dt without assuming that the lower

endpoint is zero in Problem 8.6.

Problems

8.1. Compute the values of Ileft, Iright, and Imid in the following cases:

(a) f (x) = x3, [1,2], n = 1,2,4.
(b) f (x) =

√
1− x2,

[
0, 1√

2

]
, n = 1,2,4.

(c) f (x) =
1

1+ x2 , [0,1], n = 1,2,4.

8.2. When a drug is administered once every 24 h, the concentration of the drug
in the blood, c(t) (micrograms per milliliter), varies over time. Measurements are
taken of the concentration at several times during the 24 h period from 72 to 96 h
after the first dose, and an average is calculated using the trapezoidal rule:

1
24

∫ 96

72
c(t)dt ≈ 1

24
Itrap.
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Some clinical decisions are based on this average value, which is expected to be
a good estimate of the steady-state concentration during repeated use of the drug.
Carry out this approximation to find the average, assuming that the data available
are as in Fig. 8.4.

hours
9672

75

50

25

g/mlμ

Fig. 8.4 Measurements of drug concentration in Problem 8.2

8.3. Use a calculator or computer to evaluate approximations to the integrals using
the midpoint rule, using partitions into n equal subintervals, n = 1, 5, 10, 100.
Compare your results to the exact value of the integrals.

(a)
∫ 1

0

x√
1+ x2

dx (b)
∫ 1

0

1
1+ x2 dx (c)

∫ 2

0

1
(1+ x)2 dx

8.4. We showed that Simpson’s rule is exact for f (t) = t2, and that the midpoint and
trapezoidal rules are exact for mt + k.

(a) Show that IS(kt2, [a,b]) =
∫ b

a
kt2 dt for every number k.

(b) Show that Simpson’s rule is exact for every quadratic function.

8.5. Suppose that the function f is convex over [a,b], i.e., that its second derivative
is positive there. Show that

(a)
∫ b

a
f (x)dx ≥ Imid( f , [a,b]) (b)

∫ b

a
f (x)dx ≤ Itrap( f , [a,b]).

Can you give a geometric interpretation of these inequalities?

8.6. Using one subinterval [a,b], show the following, which prove that Simpson’s

rule gives exactly
∫ b

a
t2 dt on every interval.

(a) Imid(t2, [a,b]) = 1
4 (−a2b+ ab2+ b3 − a3).

(b) Itrap(t2, [a,b]) = 1
2 (a

2b− ab2+ b3 − a3).
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(c) Conclude that
∫ b

a
t2 dt =

2
3

Imid(t
2, [a,b])+

1
3

Itrap(t
2, [a,b]).

(d) Why does this also prove the case in which many subintervals are used?

8.7. Explain each of the following steps, which prove an error estimate for the mid-
point rule.

(a) Imid( f , [−h,h]) −
∫ h

−h
f (x)dx = K(h) − K(−h), where K(h) = h f (0) −

∫ h

0
f (x)dx.

(b) K(h)−K(−h) is an odd function, and Taylor’s theorem gives

K(h)−K(−h)= 0+0+0+
(
K′′′(c2)+K′′′(−c2)

)h3

3!
=
(− f ′′(c2)− f ′′(−c2)

)h3

6

for some c2 in [−h,h] depending on h.
(c) Therefore, if [a,b] is subdivided into n equal parts, and M2 is an upper bound for

| f ′′| on [a,b], then

∣∣∣∣Imid( f , [a,b])−
∫ b

a
f (x)dx

∣∣∣∣ ≤ n
2
6

M2

(
b− a

2n

)3

=
1
24

M2(b− a)

(
b− a

n

)2

.

8.2 Simpson’s Rule

We observed at the end of Sect. 8.1b that the combination of the midpoint rule and
the trapezoid rule, formula (8.1), called Simpson’s rule, gives the exact integral for
quadratic integrands f . In this section, we explore the application of Simpson’s rule
to the integration of arbitrary smooth functions.

Definition 8.3. Simpson’s rule is the approximate integral 2
3 Imid+

1
3 Itrap, that is,

IS( f , [a,b]) =

(
1
6

f (a)+
2
3

f
(a+ b

2

)
+

1
6

f (b)

)
(b− a).

We use a sum of such terms when the interval is subdivided.

By design, Simpson’s rule gives the exact value of the integral of f when f is a
quadratic polynomial. Let us see how good an approximation it gives to the integrals
of some other functions.

Example 8.4. Let f (t) = t3. Since t3 is the derivative of 1
4 t4, the integral of t3

over the interval [a,b] is 1
4 (b

4 −a4). Simpson’s rule on a single subinterval gives

(
1
6

a3 +
2
3

(a+ b
2

)3
+

1
6

b3
)
(b− a)
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=

(
1
6

a3 +
a3 + 3a2b+ 3ab2+ b3

12
+

1
6

b3
)
(b− a)

=
1
4
(a3 + a2b+ ab2+ b3)(b− a) =

1
4
(b4 − a4).

Note that this is exactly right.

ba

g(t) = f(a+b−t) f(t)

t

Fig. 8.5 Graphs of a function f and of the reflection g(t) = f (a+b− t)

So rather surprisingly, Simpson’s rule gives the exact value of the integral for
f (t) = t3. Here is a reason why: For a function f (t) defined on the interval [a,b], we
define g(t) = f (a+b− t). The graphs of f and g are reflections of each other across

the midpoint,
a+ b

2
, as in Fig. 8.5. Therefore, the integrals of f and g over [a,b] are

equal: ∫ b

a
g(t)dt =

∫ b

a
f (t)dt.

So it follows from the linearity of the integral that

∫ b

a

(
f (t)+ g(t)

)
dt = 2

∫ b

a
f (t)dt. (8.2)

By reflection, g(a) = f (b), g(b) = f (a), and g
(a+ b

2

)
= f

(a+ b
2

)
. It follows that

IS( f , [a,b]) =

[
1
6

f (a)+
2
3

f
(a+ b

2

)
+

1
6

f (b)

]
(b− a)

=

[
1
6

g(b)+
2
3

g
(a+ b

2

)
+

1
6

g(a)

]
(b− a) = IS(g, [a,b]).

Since Simpson’s rule depends linearly on f , it follows that

IS( f + g, [a,b]) = 2IS( f , [a,b]). (8.3)

Now take f (t) to be t3. Then g(t) = (a+ b− t)3. The sum

f (t)+ g(t) = t3 +(a+ b− t)3

is a quadratic function, because the cubic term cancels out. Since Simpson’s rule
gives the exact value of the integral for quadratic functions, the left side of (8.2)
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equals the left side of (8.3) when f (t) = t3. But then the right sides are also
equal:

2
∫ b

a
t3 dt = 2IS(t

3, [a,b]).

It follows by linearity that for every cubic polynomial, Simpson’s rule furnishes the
exact value of the integral. We have proved the following theorem.

Theorem 8.1. Simpson’s rule for cubic polynomials. For any cubic polyno-
mial f (t) and any subdivision of [a,b], Simpson’s rule gives the exact value of∫ b

a
f (t)dt.

Example 8.5. For f (t) = t4 and [0,c], the exact integral is
∫ c

0
t4 dt =

1
5

c5. How-

ever, Simpson’s rule gives(
1
6
(0)+

2
3

( c
2

)4
+

1
6
(c4)

)
c =

(
1
24

+
1
6

)
c5 =

5
24

c5.

At last we have found a case in which the rule fails to give the exact value. The

failure is not excessive. The relative error,
5

24 − 1
5

1
5

, is about 4.1%.

How well does Simpson’s rule work for other functions? That depends on how
closely these functions can be approximated by cubic polynomials. Taylor’s theo-
rem, Theorem 4.10, gives the estimate

f (b) = f (a)+ f ′(a)(b− a)+ f ′′(a)
(b− a)2

2
+ f ′′′(a)

(b− a)3

6
+R,

where R = f ′′′′(c)
(b− a)4

24
for some number c between a and b. This estimate

can be used to judge the accuracy of Simpson’s rule for four-times differentiable
functions.

We have been considering Simpson’s method on a single interval [a,b]. To
achieve better accuracy, we divide the given interval of integration [a,b] into

n short subintervals of length h =
b− a

n
. Define a j = a + j

b− a
2n

and use the

subdivision
a0 < a2 < a4 < · · ·< a2n.

The a j with j odd are the midpoints of these intervals. We apply Simpson’s
rule to each interval [a2( j−1),a2 j] for j = 1, . . . ,n, and add the approximations.
We get
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IS( f , [a,b]) =
n

∑
j=1

(
1
6

f (a2( j−1))+
2
3

f (a2 j−1)+
1
6

f (a2 j)

)
h

=

(
1
6

f (a0)+
2
3

f (a1)+
1
3

f (a2)+
2
3

f (a3)+ · · ·+ 2
3

f (a2n−1)+
1
6

f (a2n)

)
b− a

n
.

Example 8.6. We evaluate the integral
∫ 1

0

s
1+ s2 ds using Simpson’s rule applied

without subdivision. This gives the approximate value
(

1
6
(0)+

2
3

(
1
2

1+ 1
4

)
+

1
6

(
1
2

))
(1− 0) =

7
20

= 0.35

for the integral. We display the results of approximating this integral by Simp-
son’s rule but with n equal subdivisions.

n 1 5 10 100
IS 0.35. . . 0.346577. . . 0.3465738. . . 0.3465735903. . .

The exact value is 1
2 log2 = 0.34657359027 . . .; Simpson’s rule with five

subintervals gives five digits correctly.

A

B

C

0 1

n IS 8IS −2 ≈ π
1 0.642 1... 3.137...
5 0.642 697... 3.141 58...

10 0.642 698 97... 3.141 591...
100 0.642 699 081 688... 3.141 592 653 50...

Fig. 8.6 Left: The shaded area is expressed as an integral in Example 8.7. Right: output from
Simpson’s rule

Example 8.7. Let f (s) =
√

1− s2 and set I =
∫ 1/

√
2

0

√
1− s2 ds. The geometric

meaning of the integral I is the area of the shaded region shown in Fig. 8.6, the

sum of the area of a square A of side length
1√
2

and the area of a piece marked

B. The quarter circle is the union of A, B, and C. Since B and C are congruent,
and the area of A is 1

2 , we get that

area of quarter circle =
π
4
= area(A)+ area(B)+ area(C) =

1
2
+ 2 area(B).
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Hence π = 2 + 8 area(B). But I = area(A) + area(B) = 1
2 + area(B), so that

area(B) = I − 1
2 . Thus π = 2+ 8(I − 1

2 ) = 8I − 2. The table in Fig. 8.6 lists
various approximations to I and to 8I − 2 using Simpson’s rule with a partition
into n equal subintervals.

Observe that for n = 10, we get the first six digits of π correctly.

8.2a An Alternative to Simpson’s Rule

We describe here an approximation scheme of integrals that is as good as Simp-
son’s rule for functions that have continuous fourth derivatives. We start again with
Taylor’s approximation of f to fourth order,

f (x) = f (0)+ f ′(0)x+
1
2

f ′′(0)x2 +
1
6

f ′′′(0)x3 +R,

where the remainder R is equal to 1
24 f ′′′′(c)x4 for some c between 0 and x. Integrate

with respect to x over [−h,h]:

∫ h

−h
f (x)dx = 2 f (0)h+

1
3

f ′′(0)h3 +

∫ h

−h
R(x)dx. (8.4)

We also have by Taylor’s approximation of f ′′ to second order that

f ′′(x) = f ′′(0)+ f ′′′(0)x+R2,

where R2 =
1
2

f ′′′′(c2)x
2 for some c2 between 0 and x. Integrating with respect to x

over [−h,h], we get

∫ h

−h
f ′′(x)dx = 2 f ′′(0)h+

∫ h

−h
R2 dx. (8.5)

To eliminate the f ′′(0) term in (8.4), multiply (8.5) by 1
6 h2 and subtract from (8.4),

giving

∫ h

−h
f (x)dx− 1

6
h2

∫ h

−h
f ′′(x)dx = 2 f (0)h+

∫ h

−h

(
R− 1

6
h2R2

)
dx.

The integral of f ′′ can be expressed by f ′, so we get

∫ h

−h
f (x)dx = 2 f (0)h+

1
6
( f ′(h)− f ′(−h))h2 +

∫ h

−h

(
R− 1

6
h2R2

)
dx.

The integral on the right is less than a constant times h5.
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Divide the interval [a,b] into n equal parts of width w = 2h =
b− a

n
, and apply

the previous formula to each subinterval. To use the formula in intervals other than
[−h,h], we use the translation invariance of the integral (see Problem 6.12). This
gives on any interval [c,d],

∫ d

c
f (x)dx = f

(c+ d
2

)
(d − c)+

1
6

(d− c
2

)2(
f ′(d)− f ′(c)

)
+ error.

If we denote the subdivision of [a,b] by a0 < m1 < a2 < m2 < a4 < · · · < an

and use the approximation on each [a2( j−1),a2 j], then f is evaluated only at
the midpoints m j. When we sum over all subintervals, the f ′ terms cancel ex-
cept at the ends a0 = a and an = b. This gives the following approximation
formula:

∫ b

a
f (x)dx = w

n

∑
j=1

f (m j)+
1

24
w2( f ′(b)− f ′(a)

)
+ error,

where the error is bounded by a constant times w4(b− a).

Definition 8.4. We denote this alternative to Simpson’s rule by

IA( f , [a,b]) = w
n

∑
j=1

f (m j)+
1
24

w2( f ′(b)− f ′(a)
)
,

where the m j are the midpoints of n subintervals of length w =
b− a

n
.

Example 8.8. Using Simpson’s rule and the alternative, we evaluate

∫ 1

0

√
2+ s2 ds.

The exact value of this integral can be expressed in terms of hyperbolic functions,
as we have suggested in Problem 7.15. Its first eight digits are

1.5245043 . . ..

The following table gives approximations with partition into n equal subintervals.
“Count” is the number of function evaluations.

n IS IS count IA IA count error
∫ 1

0
−IA

1 1.524 377 3. . . 3 1.524 056 2. . . 3 .0004480. . .
2 1.524 495 9. . . 5 1.524 474 9. . . 4 .0000294. . .
4 1.524 503 8. . . 9 1.524 502 5. . . 6 .0000018. . .
8 1.524 504 3. . . 17 1.524 504 2. . . 10 .0000001. . .
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Thus we see that with only four subdivisions, both rules give correctly the first six
digits of the integral. The last column agrees with the h4 error prediction, because
with each doubling of n, the error is reduced by a factor of about 24.

Problems

8.8. Use a calculator or computer to evaluate approximations to the integrals using
Simpson’s rule, employing partitions into n equal subintervals, n = 1, 5, 10, 100.
Compare your results to the exact value of the integrals and to the result of
Problem 8.3.

(a)
∫ 1

0

x√
1+ x2

dx (b)
∫ 1

0

1
1+ x2 dx (c)

∫ 2

0

1
(1+ x)2 dx

8.9. Calculate IA for
∫ 1

0
t4 dt with two subintervals. Verify that the result is about

0.1 % too large.

8.10. We showed by the change of variables z=
1
x

that
∫ ∞

1

1
1+ x2 dx=

∫ 1

0

1
1+ z2 dz.

(a) Approximate the integral on the right by Simpson’s rule, n = 2.

(b) Use the equation above to evaluate approximately
∫ ∞

−∞

1
1+ x2 dx= π . How close

is your approximation?

8.11. Looking at Fig. 8.6, we see that
∫ 1

0

√
1− s2 ds =

π
4
. Approximate, using

Simpson’s rule, the integral on the left. You will observe that even if a large num-
ber of subintervals is used, the approximation to π

4 is poor. Can you explain why
Simpson’s rule works so poorly in this case?



Chapter 9
Complex Numbers

Abstract We develop the properties of the number system called the complex num-
bers. We also describe derivatives and integrals of some basic functions of complex
numbers.

9.1 Complex Numbers

Most people first encounter complex numbers as solutions of quadratic equations
x2 + bx+ c = 0, that is, zeros z of the function f (x) = x2 + bx+ c.

Example 9.1. Take as an example the equation x2+1 = 0. The quadratic formula
for the roots gives z = ±√−1. There is no real number

√−1. We introduce a
new number i =

√−1.

Definition 9.1. A complex number z is defined as the sum of a real number x
and a real multiple y of i,

z = x+ iy,

where i denotes a square root of minus one, i2 = −1. The number x = Re(z)
is called the real part of z, and the real number y = Im(z) is called its imagi-
nary part. A complex number whose imaginary part is zero is called (naturally
enough) real. A complex number whose real part is zero is called purely imag-
inary. The complex conjugate of z is z = x− iy.

You might be wondering how solving an equation such as r2 +1 = 0 might arise
in calculus. Consider the differential equation

y′′+ y = 0.

We know that sinx and cosx solve the equation. But what about y = erx? The second
derivative of y = erx is r2 times y, so y = erx solves the equation

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 9, © Springer Science+Business Media New York 2014
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y′′+ y = (r2 + 1)erx = 0

if r solves r2 + 1 = 0. We will see in this chapter that eix, sinx, and cosx are re-
lated, and we will see in Chap. 10 that functions of complex numbers help us solve
many useful differential equations. Complex numbers also have very practical ap-
plications; they are used to analyze alternating current circuits.1

9.1a Arithmetic of Complex Numbers

We now describe a natural way of doing arithmetic with complex numbers. To add
complex numbers, we add their real and imaginary parts separately:

(x+ iy)+ (u+ iv) = x+ u+ i(y+ v).

Similarly, for subtraction, (x+ iy)− (u+ iv)= x−u+ i(y−v). To multiply complex
numbers, we use the distributive law:

(x+ iy)(u+ iv) = xu+ iyu+ xiv+ iyiv.

Rewrite xi as ix and yi as iy, since we are assuming that multiplication of real num-
bers and i is commutative. Then, since i2 =−1, we can write the product above as

(xu− yv)+ i(yu+ xv).

Example 9.2. Multiplication includes squaring:

(−i)2 =−1, (3− i)2 = 9− 6i+ i2 = 8− 6i, (5i)2 =−25.

It is easy to divide a complex number by a real number r:
x+ iy

r
=

x
r
+ i

y
r

. To

express the quotient of two complex numbers
x+ iy
u+ iv

as a complex number in the

form s+ it, multiply the numerator and denominator by the complex conjugate2

u+ iv = u− iv. We get

x+ iy
u+ iv

=
(x+ iy)(u− iv)
(u+ iv)(u− iv)

=
xu+ yv+ i(yu− xv)

u2 + v2 =
xu+ yv
u2 + v2 + i

yu− xv
u2 + v2 .

Notice that the indicated division by u2 + v2 can be carried out unless both u and
v are zero. In that case, the divisor u+ iv is zero, so we do not expect to be able to
carry out the division.

1 For electrical engineers, the letter i denotes current and nothing but current. So they denote the
square root of −1 by the letter j.
2 For physicists, the conjugate is denoted by an asterisk: (u+ iv)∗ = u− iv.
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Example 9.3. One handy example of a quotient is the reciprocal of i,

1
i
=

1
i
(−i)
(−i)

=
−i
1

=−i.

Example 9.4. Division is needed almost every time you solve an equation. Let us
try to solve for a if

i(i+ a) = 2a+ 1.

Use properties of complex arithmetic and collect like terms to get i2 − 1 = (2−
i)a. Next divide both sides by 2− i:

a =
−2

2− i
=

−2
2− i

2+ i
2+ i

=
−4− 2i

4+ 1
=−4

5
− 2

5
i.

Addition and multiplication of complex numbers are defined so that the associa-
tive, commutative, and distributive rules of arithmetic hold. For complex numbers
v, w, and z, we have

• Associativity rules: v+(w+ z) = (v+w)+ z and v(wz) = (vw)z,
• Commutativity rules: v+w = w+ v and vw = wv,
• Distributivity rule: v(w+ z) = vw+ vz.
• The numbers 0 = 0+ 0i and 1 = 1+ i0 are distinguished, inasmuch as adding 0

and multiplying by 1 do not alter a number.

Rules for the Conjugate of a Complex Number. In the case of complex numbers,
we have the additional operation of conjugation. The following rules concerning
conjugation are very useful. They can be verified immediately using the rules of
arithmetic for complex numbers. We already encountered some of the rules of con-
jugation when we explained how to divide by a complex number.

• Symmetry: The conjugate of the conjugate is the original number: z = z.
• Additivity: The conjugate of a sum is the sum of the conjugates: z+w = z+w.
• The sum of a complex number and its conjugate is real:

z+ z = 2Re(z). (9.1)

• The conjugate of a product is the product of the conjugates: zw = zw.
• The product of a complex number z = x+ iy and its conjugate is

zz = x2 + y2. (9.2)

The number zz is real and nonnegative.

The Absolute Value of a Complex Number. Since zz is real and nonnegative, we
can make the following definition.
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Definition 9.2. The absolute value, |z|, of z = x+ iy is the nonnegative square
root of zz:

|z|=√
zz =

√
x2 + y2. (9.3)

For z real, this definition coincides with the absolute value of a real number.
Next, we see that the absolute values of the real and imaginary parts of z = x+ iy
are always less than or equal to |z|.

|Re (z)|= |x|=
√

x2 ≤
√

x2 + y2 = |z| (9.4)

and
|Im(z)|= |y|=

√
y2 ≤

√
x2 + y2 = |z|.

Example 9.5. To find |z| for z = 3+ 4i, we have

|z|=√
zz =

√
(3+ 4i)(3− 4i)=

√
32 + 42 = 5.

Therefore, |3+ 4i|= 5.

The absolute value of z is also called the modulus of z or the magnitude of z.

Example 9.6. There are infinitely many complex numbers with the same absolute
value. Let

z = cosθ + i sinθ ,

where θ is any real number. Then zz = cos2 θ + sin2 θ = 1. So

|z|=
√

1 = 1.

We show below that this extension of the notion of absolute value to complex
numbers has some familiar properties.

Theorem 9.1. Properties of absolute value

(a) Positivity: |0|= 0, and if z 
= 0 then |z|> 0.
(b) Symmetry: |z|= |z|.
(c) Multiplicativity: |wz|= |w||z|.
(d) Triangle inequality: |w+ z| ≤ |w|+ |z|.

Proof. Positivity and symmetry follow directly from the definition, as we ask you
to check in Problem 9.8.

For multiplicativity we use the properties of complex numbers and conjugation
along with the definition of absolute value to get

|wz|2 = wzwz = wzw z = wwzz = |w|2|z|2 = (|w||z|)2,

and so |wz|= |w||z|.



9.1 Complex Numbers 351

The proof of the triangle inequality again begins with the definition of absolute
value and then uses the additive property and the distributive rule to get

|w+ z|2 = (w+ z)(w+ z) = (w+ z)(w+ z)

= ww+wz+ zw+ zz = |w|2 +wz+ zw+ |z|2.

Observe that wz and zw are conjugates of each other. According to (9.1), their sum
is equal to twice the real part

wz+ zw = 2Re(wz).

As we saw in (9.4), the real part of a complex number does not exceed its absolute
value. Therefore,

wz+ zw ≤ 2|wz|.
Now by multiplicativity and symmetry, 2|wz|= 2|w||z|= 2|w||z|. Therefore,

|w+ z|2 = |w|2 + 2Re(wz)+ |z|2 ≤ |w|2 + 2|w||z|+ |z|2 = (|w|+ |z|)2.

Therefore,
|w+ z| ≤ |w|+ |z|.

��
Example 9.7. We verify the triangle inequality for w = 1− 2i and z = 3+ 4i.
Adding, we get w+ z = 4+ 2i. Taking absolute values, we have

|w|=
√

5, |z|=
√

25, |w+ z|=
√

20,

and
√

20 ≤√
5+

√
25. So we see that |w+ z| ≤ |w|+ |z|.

Absolute Value and Sequence Convergence. Just as with sequences of real num-
bers, absolute values help us define what it means for numbers to be close, and
hence what it means for a sequence of complex numbers to converge. A sequence
of complex numbers {zn} = {z1, z2, . . . , zn, . . .} is said to converge to z if for any
tolerance ε > 0, |zn − z| is less than ε for all zn far enough out in the sequence.

A sequence of complex numbers zn is a Cauchy sequence if |zn − zm| can be
made less than any prescribed tolerance for all n and m large enough. A sequence
zn = xn + iyn of complex numbers gives rise to two sequences of real numbers: the
real parts x1, x2, . . . and the imaginary parts y1, y2, . . .. How is the behavior of {zn}
related to the behavior of these sequences of real and imaginary parts {xn} and {yn}?
For example, suppose {zn} is a Cauchy sequence. According to (9.4),

|xn − xm|= |Re(zn − zm)| ≤ |zn − zm|

and
|yn − ym|= |Im(zn − zm)| ≤ |zn − zm|.
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This shows that {xn} and {yn} are Cauchy sequences of real numbers, and hence
converge to limits x and y. The sequence {zn} converges to z = x + iy, because
according to the triangle inequality,

|z− zn|= |x− xn + i(y− yn)| ≤ |x− xn|+ |y− yn|,

and this sum on the right will be as small as desired whenever n is large enough.
On the other hand, suppose xn and yn are Cauchy sequences of real numbers.

Then the sequence of complex numbers

zn = xn + iyn

is a Cauchy sequence of complex numbers, because

|zn − zm|=
√
(xn − xm)2 +(yn − ym)2

can be made as small as desired for all n and m large enough. Take n and m so large
that both of |xn − xm| and |yn − ym| are less than ε . Then

|zn − zm|<
√

ε2 + ε2 =
√

2ε.

In summary, the convergence of a sequence of complex numbers boils down to the
convergence of the sequences of their real and imaginary parts. As a result, much of
the work we did in Chap. 1 to prove theorems about convergence of sequences can
be extended to complex numbers.

Example 9.8. Suppose zn = xn + iyn is a Cauchy sequence tending to z = x+ iy.
Then xn → x and yn → y. Therefore, the sequence

z2
n = x2

n − y2
n + 2ixnyn tends to x2 − y2 + 2ixy.

That is, z2
n → z2.

Alternatively, without mentioning xn or yn, we have

|z2 − z2
n|= |z+ zn||z− zn|.

The factor |z+ zn| is nearly |z+ z| for n large, and the factor |z− zn| tends to zero.
Therefore, z2

n tends to z2.

9.1b Geometry of Complex Numbers

We now present a geometric representation of complex numbers. This turns out
to be a very useful way of thinking about complex numbers, just as it is useful to
think of the real numbers as points of the number line. The complex numbers are
conveniently represented as points in a plane, called the complex number plane.



9.1 Complex Numbers 353

To each point (x,y) of the Cartesian plane we associate the complex number
x+ iy. The horizontal axis consists of real numbers. It is called the real axis. The
vertical axis consists of purely imaginary numbers and is called the imaginary axis.
See Fig. 9.1.

The complex conjugate has a simple geometric interpretation in the complex
plane. The complex conjugate of x+ iy, x− iy, is obtained from x+ iy by reflection
across the real axis. The geometric interpretation of the absolute value

√
x2 + y2 of

x+ iy is very striking: it is the distance of x+ iy from the origin. To visualize geo-
metrically the sum of two complex numbers z and w, move the coordinate system
rigidly and parallel to itself, i.e., without rotating it, so that the origin ends up where
the point z was originally located. Then the point w will end up where the point
z+w was located in the original coordinate system. It follows from this geometric
description of addition that the four points 0, w, z, w+ z are the vertices of a paral-
lelogram; in particular, it follows that the distance of w to w+ z equals the distance
from 0 to z. See on the left in Fig. 9.2.

0

imaginary axis

z=x+iy

z=x−iy
_

x

iy

−iy

real axis

−z

Fig. 9.1 Some complex numbers

Now consider the triangle whose vertices are 0, w, and w+ z, as on the right in
Fig. 9.2. The length of the side 0 to w+ z is |w+ z|, the length of the side 0 to w is
|w|, and using the parallelogram interpretation, the length of the side w to w+ z is
|z|. According to a famous inequality of geometry, the length of any one side of a
triangle does not exceed the sum of the lengths of the other two; therefore,

|w+ z| ≤ |w|+ |z|.

This is precisely the triangle inequality and is the reason for its name. Our ear-
lier proof of this inequality made no reference to geometry, so it may be regarded
as a proof of a theorem about triangles with the aid of complex numbers! In Prob-
lems 9.16 and 9.17 we shall give further examples of how to prove geometric results
with the aid of complex numbers.
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real axis0

imaginary axis

z

w

z+w

0

w

z
z+w

Fig. 9.2 Left: addition of complex numbers. Right: the triangle inequality illustrated

We have seen that addition of complex numbers can be visualized using Cartesian
coordinates. Next, we see how multiplication of complex numbers can be visualized
using polar coordinates.

Suppose p is a complex number with absolute value 1. Such a point lies on the
unit circle. The Cartesian coordinates of p are (cosθ , sinθ ), where θ is the radian
measure of the angle made by the real axis and the ray from 0 through p. So the
complex number p with |p|= 1 is

p = cosθ + i sinθ . (9.5)

Let z be any complex number other than 0, and denote its absolute value by r = |z|.
Define p =

z
r

. Then p has absolute value 1, so p can be represented in the form

(9.5). Therefore,
z = r(cosθ + i sinθ ), where r = |z|. (9.6)

See Fig. 9.3. The numbers (r,θ ) are called the polar coordinates of the point (x,y),
and (9.6) is called the polar form of the complex number. The angle θ is called the
argument of z, denoted by argz; it is the angle between the positive real axis and
the ray connecting the origin to z. In (9.6), we may replace θ by θ plus any integer
multiple of 2π .

0 real axis1

z

p

imaginary axis

θ

r

Fig. 9.3 Polar coordinates (r,θ ) for z. The case |z|> 1 is drawn

Let z and w be a pair of complex numbers. Represent each in polar form,

z = r(cosθ + i sinθ ), w = s(cosφ + i sinφ).
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Multiplying these together, we get that

zw = rs(cosθ + i sinθ )(cosφ + i sinφ) (9.7)

= rs
(
(cosθ cosφ − sinθ sinφ)+ i(cosθ sinφ + sinθ cosφ)

)
.

We use the addition laws for the cosine and sine, Eq. (3.17), to rewrite the product
formula (9.7) in a particularly simple form. Recalling that r denotes |z| and s denotes
|w|, we find that

zw = |z||w|[cos(θ +φ)+ i sin(θ +φ)]. (9.8)

This formula gives the polar form of the product zw. It is a symbolic statement of
the following theorem.

Theorem 9.2. Multiplication rule for complex numbers in polar form

(a) The absolute value of the product zw is the product of the absolute values of
its factors.

(b) The argument of the product zw is the sum of the arguments of its factors z
and w.

In symbols: |zw|= |z||w|, (9.9)

arg(zw) = argz+ argw+ 2πn, (9.10)

where n is 0 or 1.

Example 9.9. Let z = w =−i, where argz = argw =
3π
2

. Then zw =−1, arg(zw)

= arg(−1) = π , and argz+ argw = 3π . Therefore, in this case,

argz+ argw = arg(zw)+ 2π .

Square Root of a Complex Number. The complex number z2 has twice the argu-
ment of z, and its absolute value is |z|2. This suggests that to find square roots, we
must halve the argument and form the square root of the absolute value.

Let us use these properties to locate a square root of i. The square root of 1 is 1,

and half of
π
2

is
π
4

. This describes the number

z = cos
(π

4

)
+ i sin

(π
4

)
=

1√
2
+ i

1√
2
=

1+ i√
2
.

Let us verify that z2 = i: (
1+ i√

2

)2

=
1+ 2i+ i2

2
= i.

It works. Next we show that when we have z in polar form, it is possible to take
powers and roots of z easily.
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De Moivre’s Theorem. By the multiplication rule, if

z = r(cosθ + i sinθ ),

then

z2 = r2(cos2θ + i sin2θ ),

z3 = r3(cos3θ + i sin3θ ),

and for every positive integer n,

(
r(cosθ + i sinθ )

)n
= rn(cos(nθ )+ i sin(nθ )

)
. (9.11)

This result is known as de Moivre’s theorem. The reciprocal is

1
r(cosθ + i sinθ )

= r−1(cosθ − i sinθ ),

because r(cosθ + i sin θ )
1
r
(cosθ − i sin θ ) =

r
r
(cos2 θ + sin2 θ ) = 1. Similarly, we

ask you to verify in Problem 9.10 that for n = 1,2,3, . . .,

if z = r(cosθ + i sinθ ) then z−n = r−n(cos(nθ )− i sin(nθ )
)
.

After our successful polar representation of positive and negative integer powers
of z, we tackle the problem of rational powers, zp/q. Since zp/q = (z1/q)p, we first
settle the problem of finding the qth roots of z, for q = 2,3,4, . . ..

By analogy to (9.11), we shall tentatively represent a qth root of z by

w1 = r1/q
(

cos
(θ

q

)
+ i sin

(θ
q

))
.

Indeed, this is a qth root of z, for its qth power is

(w1)
q = (r1/q)q

(
cos

(
q

θ
q

)
+ i sin

(
q

θ
q

))
= r(cosθ + i sinθ ) = z,

but it is not the only qth root. Another root, different from w1, is the number

w2 = r1/q
(

cos

(
θ + 2π

q

)
+ i sin

(
θ + 2π

q

))
.

You may also check, using the periodicity of the sine and cosine functions, that the
q numbers

wk+1 = r1/q
(

cos

(
θ + 2kπ

q

)
+ i sin

(
θ + 2kπ

q

))
, k = 0,1, . . . ,q− 1,

(9.12)
yield the q distinct qth roots of z, if z 
= 0. If z = 0, they are all equal to zero.
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Fig. 9.4 The cube roots of 1, given in Example 9.10. All three lie on the unit circle

Example 9.10. The three cube roots of 1 = cos0+ i sin0 are

cos
0
3
+ i sin

0
3
= 1, cos

2π
3

+ i sin
2π
3

=−1
2
+ i

√
3

2
,

and

cos
4π
3

+ i sin
4π
3

=−1
2
− i

√
3

2
,

which correspond to taking k = 0, 1, and 2 in (9.12). See Fig. 9.4.

We end this section on the geometry of complex numbers by showing how to
use products of complex numbers to find the area A of a triangle with vertices at
three complex numbers in the plane. We take the case in which one of the vertices
of the triangle is the origin. We lose no generality by this assumption, for the area
of the triangle with vertices p, q, r is the same as the area of the translated triangle
0, q− p, r− p.

0

z

w

w

a

0

Fig. 9.5 Left: we prove that the area of the triangle is 1
2 |Im(zw)|. Right: the height of this triangle

is |Im(w)|

Denote by a a positive real number, and by w a complex number. The triangle
whose vertices are 0, a, and w has base whose length is a and whose altitude is the
absolute value of the imaginary part of w. See Fig. 9.5. Therefore, the area of the
triangle with vertices 0, a, w is

A(0,a,w) =
1
2

a|Im(w)| = 1
2
|Im(aw)|.
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Now let z and w denote any complex numbers. We claim that the area of the triangle
with vertices 0, z, w is

A(0,z,w) =
1
2
|Im(zw)| . (9.13)

In the case that z is real and positive, this agrees with the first case. Now consider
arbitrary z 
= 0. Let p denote any complex number of absolute value 1. Multiplication
by p is equivalent to rotation around the origin; therefore, the triangle with vertices
0, pz, pw has the same area as the triangle with vertices 0, z, w:

A(0,z,w) = A(0, pz, pw).

Choose p =
z
|z| . Then pz = |z| is real, so the area is given by the formula

A(0, pz, pw) =
1
2
|Im(pz pw)|= 1

2
|Im(zw)| .

Example 9.11. We find the area of the triangle with vertices (0,1), (2,3), and
(−5,7). Translate so that the first vertex is at the origin, giving (0,0), (2,2), and
(−5,6), or the complex numbers 0, z = 2+ 2i, and w =−5+ 6i. Then

A(0,z,w) =
1
2
|Im(zw)|= 1

2

∣∣Im(
(2− 2i)(−5+ 6i)

)∣∣= 11.

Problems

9.1. For each of the numbers z = 2+ 3i and z = 4− i, calculate the following:

(a) |z|
(b) z

(c) Express
1
z

and
1
z

in the form a+ bi.

(d) Verify that z+ z = 2Re(z).
(e) Verify that zz = |z|2.

9.2. Carry out the following operations with complex numbers:

(a) (2+ 3i)+ (5− 4i)
(b) (3− 2i)− (8− 7i)
(c) (3− 2i)(4+ 5i)

(d)
3− 2i
4+ 5i

(e) Solve 2iz = i− 4z

9.3. Express z = 4+(2+ i)i in the form x+ iy, where x and y are real, and then find
the conjugate z.

9.4. Give an example to show that the ray from 0 to iz is 90 degrees counterclock-
wise from the ray from 0 to z, unless z is 0.
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9.5. Find the absolute values of the following complex numbers:

(a) 3+ 4i
(b) 5+ 6i

(c)
3+ 4i
5+ 6i

(d)
1+ i
1− i

9.6. For each item, describe geometrically the set of complex numbers that satisfy
the given condition.

(a) Im(z) = 3
(b) Re (z) = 2
(c) 2 < Im(z)≤ 3
(d) |z|= 1
(e) |z|= 0
(f) 1 < |z|< 2

9.7. Show that Imz =
z− z

2i
and Rez =

z+ z
2

.

9.8. Verify the positivity and symmetry properties of absolute value |z|, as listed in
Theorem 9.1.

9.9. Verify the identity (a2 + b2)(c2 + d2) = (ac− bd)2 +(ad+ bc)2. Then explain
how this proves the property |z||w|= |zw| of absolute value.

9.10. Verify that the reciprocal of zn = rn
(

cosθ + i sinθ
)n

is

z−n = r−n(cos(nθ )− i sin(nθ )
)
.

9.11. Prove that for complex numbers z1 and z2,

(a) |z1 − z2|2 = |z1|2 + |z2|2 − 2Re(z1z2),
(b)

∣∣|z1|− |z2|
∣∣≤ |z1 − z2|.

9.12.(a) Show that for any pair of complex numbers z and w,

|z+w|2 + |z−w|2 = 2|z|2 + 2|w|2.

(b) Using the parallelogram interpretation of the addition of complex numbers, de-
duce from (a) that the sum of the squares of the diagonals of a parallelogram
equals the sum of the squares of its four sides.

9.13. Find all three cube roots of −1 and represent each in the complex plane.

9.14.(a) Show that the two square roots of i are

1√
2
(1+ i), − 1√

2
(1+ i),

and sketch each in the complex plane.
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(b) Verify that the two square roots of i are fourth roots of −1. Then find the other
two fourth roots of −1. Sketch all four.

9.15. Suppose a triangle has vertices 0, a = a1 + ia2, and b = b1 + ib2. Derive from
the area formula (9.13) that the area of the triangle is

1
2
|a1b2 − a2b1|.

9.16. Verify the following.

(a) The argument of w is the negative of the argument of w.
(b) The argument of zw is the difference of the arguments of z and w.

(c) The argument of
z
w

is the difference of the arguments of z and w.

(d) The ray from 0 to z is perpendicular to the ray from 0 to w if and only if the
number zw is purely imaginary.

(e) Let p be a point on the unit circle. Prove that the ray connecting p to the point 1
on the real axis is perpendicular to the ray connecting p to the point −1.

9.17. Let p and q be complex numbers of absolute value 1. Verify the following.

(a) (p− 1)2 p is real.

(b)
(
(p− 1)(q− 1)

)2
pq is real.

(c) Prove the angle-doubling theorem: If p and q lie on the unit circle, then the angle
β between the rays from the origin to p and q is twice the angle α between the
rays connecting the point z = 1 to p and q. In Fig. 9.6, β = 2α .

10

q

p

αβ

Fig. 9.6 The angle at 0 is twice the angle at 1, in Problem 9.17

9.18. Show that the sequence of complex numbers

1, 1+ z, 1+ z+ z2, 1+ z+ z2+ z3, . . .

is a Cauchy sequence, provided that |z| is less than 1. What is the limit of the se-
quence?
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9.19. We explore roots of 1.

(a) Find all zeros of the function w(x) = x4 + x3 + x2 + x+ 1 by first observing that
the function (x− 1)w(x) = x5 − 1 is 0 whenever w(x) is 0.

(b) Sketch all n of the nth roots of 1 in the complex plane.
(c) Let r be the nth root of 1 with smallest nonzero argument. Verify that the re-

maining nth roots are r2,r3, . . . ,rn. Explain why the n− 1 numbers

r, r2, r3, . . . , rn−1

are the roots of xn−1 + xn−2 + · · ·+ x+ 1 = 0.

9.20. Generalize the geometric series argument used in Problem 1.56 to show that
for each complex number z, the partial sums

sn = 1+ z+
z2

2!
+ · · ·+ zn

n!

are a Cauchy sequence.

9.2 Complex-Valued Functions

In this section we discuss the relationship of complex numbers to the concept of
function. So far in this text, numbers have entered the concept of function in two
places: as input and output. In the first part of this section, we show how simple it
is to replace real numbers by complex ones as output if the input is kept real; such
functions are called complex-valued functions with real input. In the second part,
we discuss some very special but important functions whose input is complex, and
whose output is also complex, i.e., complex-valued functions with complex input.

Definition 9.3. A complex-valued function of a real variable means a function

f (t) = p(t)+ iq(t),

where p and q are real-valued functions. The variable t is real, in some interval
that is the domain of p, q and f .

The theory of complex-valued functions is simple, because it can be reduced at
one stroke to the theory of real-valued functions. There are two ways of going about
it. The first is to observe that everything (well, almost everything) that has been
said about real-valued functions makes sense when carried over to complex-valued
functions. “Everything” includes the following notions:

(a) The concept of function itself.
(b) The operations of adding and multiplying functions and forming the reciprocal

of a function (with the usual proviso that the function should not be zero).
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(c) The concept of a continuous function.
(d) The concept of a differentiable function and its derivative.
(e) Higher derivatives.
(f) The integral of a function over an interval.

9.2a Continuity

Let us review the concept of continuity. The intuitive meaning of the continuity of
a function f is that to determine f (t) approximately, approximate knowledge of t
is sufficient. The precise version was discussed in Definition 2.3 back in Chapter 2.
Both the intuitive and the precise definitions make sense for complex-valued func-
tions:

• Intuitive: A complex-valued function f (t) is continuous at t if approximate
knowledge of t suffices to determine approximate knowledge of f (t).

• Precise: A complex-valued function f is uniformly continuous on an interval I
if given any tolerance ε > 0, there is a precision δ > 0 such that for any pair of
numbers t and s in I that differ by less than δ , f (t) and f (s) differ by less than ε .

Sums and products of uniformly continuous complex-valued functions are uni-
formly continuous, and so is the reciprocal of a uniformly continuous function that
is never zero.

Example 9.12. Let f (t) = 3+ it. To check uniform continuity of f we may write

f (t)− f (s) = (3+ it)− (3+ is)= i(t − s).

Then
| f (t)− f (s)|= |i(t − s)|= |t − s|.

If t and s are within δ , then the complex numbers f (t) and f (s) are as well.
Therefore, f is uniformly continuous on every interval.

9.2b Derivative

We turn to the concept of differentiation. The function f (t) is differentiable at t if

fh(t) =
f (t + h)− f (t)

h

tends to a limit as h tends to zero. This limit is called the derivative of f at t, and is
denoted by f ′(t). We can separate the difference quotient into its real and imaginary
parts:

p(t + h)+ iq(t+ h)− p(t)− iq(h)
h

= ph(t)+ iqh(t).
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It follows that f = p+ iq is differentiable at t if and only if its real and imaginary
parts are differentiable at t.

The usual rules for differentiating sums, products, and reciprocals of differen-
tiable functions hold, i.e.,

( f + g)′ = f ′+ g′,
( f g)′ = f g′+ f ′g,(
1
f

)′
= − f ′

f 2 .

You are urged to consult Chap. 3 to convince yourself that the proofs offered
there retain their validity for complex-valued functions as well.

Example 9.13. Suppose f (t) = z1t + z2, where z1 and z2 are arbitrary complex
numbers. Then f ′(t) = z1.

Example 9.14. If f (x) =
1

x+ i
, then the rule for differentiating the reciprocal of

a function yields

f ′(x) =− 1
(x+ i)2 .

Example 9.15. Again let f (x) =
1

x+ i
. Let us find f ′(x) a different way. Separate

f into its real and imaginary parts:

f (x) =
1

x+ i
=

1
x+ i

x− i
x− i

=
x− i

x2 + 1
=

x
x2 + 1

− i
x2 + 1

= a(x)+ ib(x).

Differentiating, we get

a′(x) =
(x2 + 1)1− x(2x)

(x2 + 1)2 =
1− x2

(x2 + 1)2 , b′(x) =
(
− 1

x2 + 1

)′
=

2x
(x2 + 1)2 .

To see that the real and imaginary parts of f ′(x), as computed in Example 9.14,
are a′(x) and b′(x) of Example 9.15, we write

f ′(x) =− 1
(x+ i)2 =

−1
(x+ i)2

(x− i)2

(x− i)2 =
−x2 + 2xi+ 1
(x2 + 1)2 =

1− x2

(x2 + 1)2 + i
2x

(x2 + 1)2 .

Example 9.16. We use the quotient rule for differentiating f (x) =
x

x2 + i
, and

obtain

f ′(x) =
(x2 + i)x′ − x(x2 + i)′

(x2 + i)2 =
i− x2

(x2 + i)2 .
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Example 9.17. Now consider f (x) = (x+ i)2. If we carry out the indicated squar-
ing, we can split f into its real and imaginary parts:

f (x) = x2 + 2ix− 1= x2 − 1+ 2ix= a(x)+ ib(x).

Differentiating a(x) = x2 − 1 and b(x) = 2x, we get a′(x) = 2x and b′(x) = 2, so
that

f ′(x) = a′(x)+ ib′(x) = 2x+ 2i.

The function f (x) = (x+ i)2 = (x+ i)(x+ i), when differentiated using the prod-
uct rule, yields

f ′(x) = 1(x+ i)+ (x+ i)1= 2(x+ i),

the same answer we got before.

Next we consider the chain rule. Suppose g(t) is a real-valued function and f is
a complex-valued function defined at all values taken on by g. Then we can form
their composition f ◦ g, defined as f (g(t)). If f and g are both differentiable, so is
the composite, and the derivative of the composite is given by the usual chain rule.
The proof is similar to the real-valued case.

Example 9.18. Let f (x) =
1

x+ i
and g(t) = t2. By Example 9.14, f ′(x) =−(x+

i)−2. The derivative of f ◦ g can be calculated by the chain rule:

(
1

t2 + i

)′
= ( f ◦ g)′(t) = f ′(g(t))g′(t) =−(g(t)+ i)−2g′(t) =

1
(t2 + i)2 2t.

9.2c Integral of Complex-Valued Functions

Splitting a complex-valued function into its real and imaginary parts is suitable for
defining the integral of a complex-valued function.

Definition 9.4. For f = p+ iq, where p and q are continuous real-valued func-
tions on [a,b], we set

∫ b

a
f (t)dt =

∫ b

a
p(t)dt + i

∫ b

a
q(t)dt.

The properties of integrals of complex-valued functions follow from the defini-
tion and the corresponding properties of integrals of real-valued functions that are
continuous on the indicated intervals:

• Additivity:
∫ c

a
f (t)dt +

∫ b

c
f (t)dt =

∫ b

a
f (t)dt.
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• Linearity: For a complex constant k,
∫ b

a
k f (t)dt = k

∫ b

a
f (t)dt and

∫ b

a

(
f (t)+ g(t)

)
dt =

∫ b

a
f (t)dt +

∫ b

a
g(t)dt.

• Fundamental theorem:
d
dx

∫ x

a
f (t)dt = f (x) and

∫ b

a
F ′(t)dt = F(b)−F(a).

Recall that the integrals of p and q in Definition 9.4 are defined as the limits
of approximating sums Iapprox(p, [a,b]) and Iapprox(q, [a,b]). Let us use the same
subdivision of [a,b] and choices of the t j and define

Iapprox( f , [a,b]) = Iapprox(p, [a,b])+ iIapprox(q, [a,b]).

We can conclude that Iapprox( f , [a,b]) tends to
∫

f (t)dt. That is, the integral of

a complex-valued function can be defined in terms of approximating sums. This
bears out our original contention that most of the theory we have developed for real-
valued functions applies verbatim to complex-valued functions. Another property
of the integral of real-valued functions is the following.

• Upper bound property: If | f (t)| ≤ M for every t in [a,b], then

∣∣∣∣
∫ b

a
f (t)dt

∣∣∣∣ ≤
M(b− a).

This inequality, too, remains true for complex-valued functions, and for the same
reason: the analogous estimate holds for the approximating sums, with absolute
value as defined for complex numbers.

9.2d Functions of a Complex Variable

Next we consider complex-valued functions f (z) = w of a complex variable z. Do
such functions have derivatives? In Chap. 3, we introduced the derivative in two
ways:

• the rate at which the value of the function changes;
• the slope of the line tangent to the graph of the function.

For functions of a complex variable, the geometric definition as slope is no longer
available, but the rate of change definition is still meaningful.
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Definition 9.5. A complex-valued function f (z) of a complex variable z is dif-
ferentiable at z if the difference quotients

f (z+ h)− f (z)
h

tend to a limit as the complex number h tends to zero. The limit is called the
derivative of f at z and is denoted by f ′(z).

Example 9.19. Let f (z) = z2. Then

f (z+ h)− f (z)
h

=
(z+ h)2 − z2

h
=

2zh+ h2

h
= 2z+ h.

As the complex number h tends to 0, 2z+ h tends to 2z. So f ′(z) = 2z.

Theorem 9.3. Every positive integer power of z,

zm (m = 1,2,3, . . .),

is a differentiable function of the complex variable z, and its derivative is
mzm−1.

Proof. According to the binomial theorem, valid for complex numbers,

(z+ h)m = zm +mzm−1h+ · · ·+ hm. (9.14)

All the terms after the first two have h raised to the power 2 or higher. So

(z+ h)m − zm

h
= mzm−1 + · · · ,

where each of the terms after the plus sign contains h as a factor. It follows that as
h tends to zero, the difference quotient above tends to mzm−1. This concludes the
proof. ��

Since sums and constant multiples of differentiable functions are differentiable,
it follows that every polynomial p(z) is a differentiable function of z. Next we show
that we can extend Newton’s method to find complex roots of polynomials.

Newton’s Method for Complex Roots. Newton’s method for estimating a real
root of a real function f (x) = 0 relied on finding a root of the linear approximation
to f at a previous estimate. We carry this idea into the present setting of complex
roots.
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Suppose zold is an approximate root of p(z) = 0. Denote by h the difference
between the exact zero z of p and zold:

h = z− zold.

Using Eq. (9.14), we see that

0 = p(z) = p(zold + h) = p(zold)+ p′(zold)h+ error, (9.15)

where the error is less than a constant times |h|2. Let the new approximation be

znew = zold − p(zold)

p′(zold)
, (9.16)

as we did in Sect. 5.3a. We use (9.15) to express

p(zold) =−p′(zold)h− error.

Setting this in (9.16), we get

znew = zold + h+
error

p′(zold)
.

Since h was defined as z− zold, we can rewrite this relation as

znew − z =
error

p′(zold)
.

If p′(zold) is bounded away from zero (which is a basic assumption for Newton’s
method to work), we can rewrite this relation as the inequality

|z− znew|< (constant)h2 = (constant)|z− zold|2.

If zold is so close to the exact root z that the quantity (constant)|z− zold| is less than
1, then the new approximation is closer to the exact root than the old one. Repeating
this process produces a sequence of approximations that converge to the exact root
with extraordinary rapidity.

Example 9.20. We have seen that the three cube roots of 1 are 1,
1+

√
3i

2
, and

1−√
3i

2
. Let us see what Newton’s method produces. For f (z) = z3 − 1, New-

ton’s iteration is

znew = z− f (z)
f ′(z)

= z− z3 − 1
3z2 .

Table 9.1 shows the results starting from three different initial states, and these
are sketched in Fig. 9.7.
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a0

b bbb

c

a
a3

2

b
0 1 235

b
4

c
0

2

c1

a
1

Fig. 9.7 Newton’s method used to approximate three roots of f (z) = z3 −1, starting from a0 = i,
b0 =−1, and c0 =−0.1− i. See Example 9.20

Table 9.1 Newton’s method applied in Example 9.20 to z3 −1 = 0, from three starting values

n an bn cn

0 i −1 −0.1− i
1 −0.33333+0.66667i −0.33333 −0.39016−0.73202i
2 −0.58222+0.92444i 2.7778 −0.53020−0.89017i
3 −0.50879+0.86817i 1.8951 −0.50135−0.86647i
4 −0.50007+0.86598i 1.3562 −0.50000−0.86602i
5 −0.50000+0.86603i 1.0854 −0.50000−0.86603i
6 −0.50000+0.86603i 1.0065 −0.50000−0.86603i
7 −0.50000+0.86603i 1.0000 −0.50000−0.86603i

9.2e The Exponential Function of a Complex Variable

We now turn to the function C(t) = cost + i sin t. Its image in the complex plane
lies on the unit circle. The function C is differentiable, and C′(t) = −sint + icost.
A moment’s observation discloses that

C′ = iC.

We now recall that for a real, eat = P(t) satisfies the differential equation

P′ = aP.

This suggests how to define eit .
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Definition 9.6.
eit = cost + i sin t.

The functional equation of the exponential function suggests that

ex+iy = exeiy;

combining this with Definition 9.6, we arrive at the definition of the exponential of
a complex number.

Definition 9.7. If x, y are real numbers, we define

ex+iy = ex(cosy+ i siny
)
.

The exponential function as defined above has complex input, complex output,
and it has all the usual properties of the exponential function, as we shall now show.

Theorem 9.4. For all complex numbers z and w,

ez+w = ezew.

Proof. Set z = x+ iy and w = u+ iv. Then by definition, we get

ezew = ex(cosy+ i siny)eu(cosv+ i sinv).

Using the functional equation of the exponential function for real inputs and arith-
metic properties of complex numbers yields

ezew = ex+u(cosy+ i siny)(cosv+ i sinv)

= ex+u((cosycosv− sinysinv)+ i(cosysinv+ sinycosv)
)
.

Similarly, using the addition formulas for sine and cosine, we conclude that

ezew = ex+u(cos(y+ v)+ i sin(y+ v)) = ex+u+i(y+v).

We conclude that ezew = ez+w, as asserted. ��

Theorem 9.5. Differential equation. For every complex number c,

P(t) = ect

satisfies
P′(t) = cP(t).
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Proof. Set c = a+ ib, where a and b are real. By the definition of complex expo-
nentials,

ect = eat(cos(bt)+ i sin(bt)).

The derivative of this is, by the product rule,

aeat(cos(bt)+ i sin(bt))+ eat(−bsin(bt)+ ibcos(bt)).

This is the same as aect + ibect = (a+ ib)ect = cect , as was to be proved. ��
Example 9.21. Let us show that y = eit satisfies the differential equation

y′′+ y = 0.

We have y′ = ieit , so y′′ = i2eit =−eit =−y and y′′+ y = 0.

Theorem 9.6. Series representation. For every complex number z,

ez = 1+ z+
z2

2
+ · · ·+ zn

n!
+ · · · .

Proof. We saw in Problem 1.55 of Chap. 1 that the theorem is true in the case of
z = 1. Certainly it is true when z = 0. We proved it for all real z in Sect. 4.3a, and
in Problem 9.20, we suggested a method to show that the partial sums are a Cauchy
sequence. For the sake of simplicity, we prove this now only for pure imaginary z.
Assume z = ib, where b is real. Substituting z = ib into the series on the right, we get

1+ ib− b2

2
+ · · ·+ (ib)n

n!
+ · · · .

The powers in have period 4, i.e., we have

i0 = 1, i1 = i, i2 =−1, i3 =−i,

and then the pattern is repeated. This shows that the terms of even order are real,
and the odd ones are purely imaginary. Next, we assume that it is valid to rearrange
the terms of this series:

1+ ib− b2

2
+ · · ·+ (ib)n

n!
+ · · ·

=

(
1− b2

2
+

b4

24
−·· ·+ (−1)mb2m

(2m)!
+ · · ·

)

+i

(
b− b3

6
+

b5

120
+ · · ·+ (−1)mb2m+1

(2m+ 1)!
+ · · · .

)
.
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The real and imaginary parts are cosb and sinb; see Sect. 4.3a and Eq. (4.20). So
our series is

1+ ib− b2

2
+ · · ·+ (ib)n

n!
+ · · · .= cosb+ i sinb,

which is eib, as was to be proved. ��

Set t = 2π in the definition of the exponential function, and observe that

ei2π = cos(2π)+ i sin(2π) = 1.

More generally, since cos(2πn) = 1, sin(2πn) = 0,

ei2πn = cos(2πn)+ i sin(2πn) = 1

for every integer n.
Now set t = π in the definition. Since cosπ =−1, sinπ = 0, we get that

eiπ = cosπ + i sinπ =−1.

This can be rewritten in the form3 eiπ + 1 = 0.

The Derivative of the Exponential Function of a Complex Variable. We have
shown in Theorem 9.3 that polynomials f (z) are differentiable for complex z. We
shall show now that so is the function ez.

Theorem 9.7. The function ez is differentiable, and its derivative is ez.

Proof. We have to show that the difference quotient

ez+h − ez

h

tends to ez as h tends to 0. Using the functional equation for the exponential function,
ez+h = ezeh, we can write the difference quotient as

ez eh − 1
h

.

So what has to be proved is that
eh − 1

h
tends to 1 as h tends to zero. Decompose h

into its real and imaginary parts: h = x+ iy. Then

eh − 1 = ex(cosy+ i siny)− 1.

3 It is worth pointing out to those interested in number mysticism that this relation contains the
most important numbers and symbols of mathematics: 0,1, i,π ,e,+, and =.
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As h approaches 0, both x and y approach 0 as well. Use the linear approximations
of the exponential and trigonometric functions for x and y near zero:

ex = 1+ x+ r1, cosy = 1+ r2, siny = y+ r3,

where the remainders r1, r2, and r3 are less than a constant times x2 + y2 = |h|2.
Using these approximations, we get

eh − 1 = (1+ x+ r1)
(
1+ r2 + i(y+ r3)

)− 1

= x+ iy+ xiy+ remainder= h+ ixy+ remainder,

where the absolute value of the remainder is less than a constant times |h|2. Accord-
ing to the A-G inequality, it is also true that the absolute value |ixy| is equal to

|ixy|= |x||y| ≤ 1
2

(|x|2 + |y|2)= 1
2
|h|2.

Therefore, eh −1= h+ remainder, where the absolute value of the remainder is less
than a constant times |h|2. Dividing by h, we see that

eh − 1
h

= 1+
remainder

h

tends to 1, as claimed. ��
So far, all the functions f (z) that we have considered, i.e., polynomials p(z) and

the exponential ez, have been differentiable with respect to z. However, there are
simple functions that are not differentiable. Here is an example.

Example 9.22. Let f (z) = z. Then

lim
h→0

f (z+ h)− f (z)
h

= lim
h→0

z+ h− z
h

= lim
h→0

h
h

if the limit exists. For real h = x+0i 
= 0, we have h= h, so
h
h
= 1. For imaginary

h = 0+yi 
= 0, we have h =−yi and
h
h
=−1. Therefore, the limit does not exist,

and f is not differentiable.

Problems

9.21. Differentiate the following complex functions of a real variable t:

(a) et + i sint

(b)
1

t − i
+

1
t + i
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(c) iet2

(d) i sin t +
1

t + 3+ i

9.22. Differentiate the following complex functions of a complex variable z:

(a) 2i− z2

(b) z3 − z+ 5ez

9.23. Express cost and sin t in terms of eit .

9.24. Compute the complex integrals:

(a)
∫ 1

0
eis ds

(b)
∫ π/2

0
(coss+ i sins)ds

9.25. Since we have defined ez for every complex z, we can extend the definition
of the hyperbolic cosine to every complex number. Write that definition, and then
verify the identity cosh(it) = cost for all real numbers t.

9.26. For a real and positive and z complex, write a definition of az by expressing a
as eloga. Show that az+w = azaw.

9.27. Find the value of the integral
∫ ∞

0
eikx−x dx, k real.

9.28. In this exercise we ask you to test experimentally Newton’s method (9.16)
for finding complex roots of an algebraic equation p(z) = 0. Take for p the cubic
polynomial

p(z) = z3 + z2 + z− i.

(a) Write a computer program that constructs a sequence z1, z2, . . . according to
Newton’s method, stopping when both the real and imaginary parts of zn+1 and
zn differ by less than 10−6, or when n exceeds 30.

(b) Show that p(z) 
= 0 if |z|> 2 or if |z|< 1
2 .

Hint: Use the triangle inequality in the form

|a− b| ≥ |a|− |b|

to show that |z3 + z2 + z− i| ≥ 1− |z3|− |z2|− |z|, which is positive if |z| < 1
2 .

Similarly, show that if |z|> 2, then the z3 term is the most important to consider,
because its absolute value is greater than that of the sum of the other three terms.

(c) Starting with the first approximation

z0 = 0.35+ 0.35i,

construct the sequence zn by Newton’s method, and determine whether it con-
verges to a solution of p(z) = 0.

(d) Find all solutions of p(z) = 0 by starting with different choices for z.



Chapter 10
Differential Equations

Abstract The laws of the exact sciences are often formulated as differential equa-
tions, that is, equations connecting functions and their derivatives. In this chapter,
we present examples from three different fields: mechanical vibrations, population
growth, and chemical reactions.

10.1 Using Calculus to Model Vibrations

Most people realize that sound—its generation, transmission, and perception—is a
vibration. For this reason alone, vibration is a very important subject. But vibra-
tions are more general and pervasive than mere sound, and they constitute one of
the fundamental phenomena of physics. The reason is the mechanical stability of
everyday objects from bells and horns to the basic constituents of matter. Mechan-
ical stability means that when an object is distorted by an outside force, it springs
back into its original shape when released. This is accomplished by restoring forces
inherent in any object. Restoring forces work in a peculiar way: they not only bring
the object back to its original shape, but they tend to overcorrect and distort it in
the opposite direction. This is again overcorrected, and so ad infinitum, leading to
a vibration around an equilibrium. In this section, we shall explain this process in
simple situations, as an example of the application of calculus.

10.1a Vibrations of a Mechanical System

The fundamental concepts of one-dimensional mechanics are particle, mass, posi-
tion, velocity, acceleration, and force.

The position of a particle along a line is specified by a single real number x.
Since the position of the particle changes in time, it is a function of the time t. The
derivative of position with respect to t is the velocity of the particle, denoted usually
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by v(t). The derivative of velocity with respect to time is called acceleration, and is
denoted by a(t):

x′ = v, v′ = x′′ = a.

The mass of the particle, denoted by m, does not change throughout the motion.
Newton’s law of motion says that

f = ma,

where f is the total force acting on the particle, m the mass, and a the acceleration.
To put teeth into Newton’s law, we have to be able to calculate the total force acting
on the particle. According to Newton, the total force acting on a particle (in the
direction of increasing x) is the sum of all the various forces acting on it. In this
section, we shall deal with two kinds of forces: restoring forces and frictional forces.
We shall describe them in the following specific context.

x

Fig. 10.1 Left: position of static equilibrium. Right: mass displaced by distance x

Imagine a piece of elastic string (rubber band, elastic wire) placed in a verti-
cal position with its endpoints fastened and a mass attached to its middle. In this
position the mass is at rest. Now displace the mass to one side (Fig. 10.1). In this
position, the elastic string exerts a force on the mass. It is clear, to anyone who ever
shot paper clips with a rubber band, that the restoring force depends on position,
and

(a) the force acts in the direction opposite to the displacement, tending to restore
the mass to its previous position;

(b) the greater the magnitude of the displacement, the greater the magnitude of the
force.
A force with these two properties is called a restoring force, written fre.
The graph of a typical restoring force is shown in Fig. 10.2. Many restoring
forces, such as the one exerted by a rubber band, have yet a third property,
symmetry:

(c) Displacements by the same magnitude but in opposite directions generate
restoring forces fre that are equal in magnitude but opposite in direction.
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We turn next to describing the force of friction. Friction can be caused by various
mechanisms, one of which is air resistance. As anyone who has ever bicycled at
high speed knows, the frictional force depends on velocity, and

(a) the force of air resistance acts in the direction opposite to the direction of
motion;

(b) the greater the velocity, the greater the force of resistance.

x

fre

Fig. 10.2 A restoring force fre, as a function of displacement

Any force with these two properties is called a frictional force, written ffr. The
graph of a typical frictional force is shown in Fig. 10.3. This graph displays yet
another property common to most frictional forces, their symmetry:

(c) The magnitude of the frictional force ffr depends only on the magnitude of the
velocity.

f
fr

v

Fig. 10.3 A frictional force ffr, as a function of velocity
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In order to turn the verbal descriptions of these two kinds of forces into
mathematical descriptions, we regard the restoring force fre as a function of the
position x. The properties (a)–(c) can be expressed as follows in the language of
functions:

fre(x) =

⎧⎪⎨
⎪⎩
< 0 for x > 0,

= 0 for x = 0,

> 0 for x < 0,

and
fre(x) is a decreasing function of x.

The symmetry property of fre(x) can be expressed in the following way: fre is an
odd function of x, i.e.,

fre(−x) =− fre(x).

We regard the frictional force ffr as a function of velocity. The properties of a fric-
tional force can be expressed as follows:

ffr(v) =

⎧⎪⎨
⎪⎩
< 0 for v > 0,

= 0 for v = 0,

> 0 for v < 0,

and
ffr(v) is a decreasing function of v.

Assumption (c), that the magnitude of friction depends only on the magnitude of
velocity, together with assumption (a) implies that ffr is an odd function, i.e.,

ffr(−v) =− ffr(v).

The total force f is the sum of the individual forces:

f = ffr + fre.

The additivity of forces is an experimental fact. With this decomposition of force,
Newton’s law may be written as

ma = ffr(v)+ fre(x). (10.1)

Since velocity v and acceleration a are the first and second derivatives of x, this is
the differential equation

mx′′ − ffr(x
′)− fre(x) = 0 (10.2)

for x as function of t. Solutions of this differential equation describe all possible
motions of a particle subject to a restoring force and a frictional force.

In the rest of Sect. 10.1, we shall study the behavior of solutions of Eq. (10.2)
for various kinds of restoring force and frictional force. The basic fact is that if we
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prescribe the initial position and velocity of a particle, then the motion of the particle
is completely determined for all time by the differential equation. We call this basic
result the uniqueness theorem:

Theorem 10.1. Uniqueness. Denote by x(t) and y(t) two solutions of the differ-
ential equation (10.2) that are equal at some time s and whose first derivatives
are equal at time s:

x(s) = y(s), x′(s) = y′(s).

Then x(t) and y(t) are equal for all t ≥ s.

The steps of the proof of this theorem are outlined in Problem 10.21 at the end
of Sect. 10.1, where we ask you to justify each step.

Example 10.1. We have encountered the following differential equations in pre-
vious chapters:

(a) x′ = x, (b) x′′ − x = 0 , (c) x′′+ x = 0.

Which of these are examples of Eq. (10.2) governing vibrations of a simple me-
chanical system?

(a) The equation x′ = x can be rewritten 0+ x′ − x = 0, but it is not an example
of Eq. (10.2), because there is no second-order term mx′′.

(b) x′′ −x = 0 looks promising. Take mass m = 1, friction ffr(x′) = 0, and restoring
force fre(x) = x. This seems to fit the form. However, in our model we made the
assumption that fre is decreasing and odd. Since this fre(x) is not decreasing,
x′′ − x = 0 is not an example of Eq. (10.2).

(c) x′′ + x = 0 looks very much like case (b), except that now the restoring force
fre(x) = −x is decreasing and odd. Therefore, the equation x′′ + x = 0 is an
example of the equation mx′′ − ffr(x

′)− fre(x) = 0 governing vibrations of a
simple mechanical system.

10.1b Dissipation and Conservation of Energy

This section will be devoted to the mathematics of extracting information about
solutions of the differential equation mx′′ − ffr(x′)− fre(x) = 0. It is remarkable
how much we can deduce about the solutions without knowing the frictional force
ffr(v) or the restoring force fre(x) explicitly, but knowing only that they both are
decreasing odd functions.

We start with a trick. Multiply the equation by v, obtaining

mva− v ffr(v)− v fre(x) = 0.



380 10 Differential Equations

Since the sign of ffr(v) is opposite to that of v, it follows that −v ffr(v) is positive
except when v = 0. By dropping this positive term, we convert the equality into the
inequality

mva− v fre(x)≤ 0. (10.3)

Recalling that acceleration is the derivative of velocity, we can rewrite the term mva
as mvv′. We recognize this as the derivative of 1

2 mv2:

mva =
d
dt
(

1
2

mv2). (10.4)

Recalling that v is the derivative of x, we can rewrite the term v fre(x) as x′ fre(x).

-1

1

-1.5 -1 -0.5 0.5 1 1.5

x

p(x) = (1/2)x2

fre(x) = -x

Fig. 10.4 Graphs of the restoring force fre(x) = −x and the potential energy p(x) = 1
2 x2 for the

equation x′′ + x = 0 in Example 10.1

Let us introduce the function p(x) as the integral of − fre,

p(x) =−
∫ x

0
fre(y)dy.

By the fundamental theorem of calculus, the derivative of p is − fre,

d
dx

p(x) =− fre(x), (10.5)

and by definition,
p(0) = 0.

The derivative of p(x) with respect to x is − fre(x), which is positive for x positive,
and negative for x negative. (See Figs. 10.2 and 10.4.) According to the monotonicity
criterion, this means that p is increasing for x > 0 and decreasing for x < 0. Since
p(0) = 0, it follows that p(x) is positive for all x 
= 0. Using the chain rule and
Eq. (10.5), we can express the derivative of p(x(t)) with respect to t as
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d
dt

p(x(t)) = x′(t)
dp
dx

=−x′(t) fre(x(t)) =−v fre(x). (10.6)

Substituting this result and expression (10.4) for the first and second terms into
inequality (10.3) we obtain

d
dt

(
1
2

mv2 + p(x)

)
≤ 0. (10.7)

According to the monotonicity criterion, a function whose derivative is less than or
equal to zero is decreasing. We use “decreasing” to mean “nonincreasing.” So we
conclude that the function

1
2

mv2 + p(x)

decreases with time. This function, and both terms appearing in it, have physical
meaning: the quantity 1

2 mv2 is called kinetic energy, and the quantity p(x) is called
potential energy. The sum of kinetic and potential energies is called the total energy.
In this terminology, we have derived the following.

Law of Decrease of Energy. The total energy of a particle moving under the influ-
ence of a restoring force and a frictional force decreases with time.

Suppose there is no frictional force, i.e., ffr is zero. Then the energy inequal-

ity (10.7) becomes an equality:
d
dt

(
1
2

mv2 + p(x)

)
= 0. A function whose deriva-

tive is zero for all t is a constant, E , so we have derived the following.

Law of Conservation of Energy. In the absence of friction, the total energy of a
particle moving under the influence of a restoring force does not change with time.

1
2

mv2 + p(x) = E.

From Eq. (10.2) governing vibrations of a simple mechanical system, we have de-
rived energy laws for the particle in the presence, and in the absence, of friction.
When there is no friction, the total mechanical energy does not change with time.
When there is friction, the total mechanical energy decreases. That energy is not lost
but is turned into heat energy.

10.1c Vibration Without Friction

Next, we turn our attention to the study of the motion of a particle subject to a
restoring force in the absence of friction. That is, the forces satisfy

mx′′ − fre(x) = 0. (10.8)
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In Example 10.1, we saw that the differential equation x′′ − (−x) = x′′+ x = 0 is an
example of Eq. (10.8), and we showed in Sect. 3.4b that all solutions of x′′+ x = 0
are of the form x(t) = ucost + vsint, where u and v are arbitrary constants. These
functions have period 2π :

x(t + 2π) = x(t).

Now we show that every function x(t) satisfying Eq. (10.8) is periodic. We start
with a qualitative description of the motion determined by Eq. (10.8) and the law of
conservation of energy that we derived from it in the last section:

d
dt

(
1
2

mv2 + p(x)

)
= 0, p(x) =−

∫ x

0
fre(y)dy,

1
2

mv2 + p(x) = E.

Fig. 10.5 At left, x = −b, v = 0, and p = E. Then x is shown between −b and 0, with v positive

and p < E. Then x = 0, p = 0, and
1
2

mv2 = E. At right, the particle has almost reached the point

x = b halfway through the cycle

Suppose we start the motion at time t = 0 by displacing the particle to the posi-
tion x =−b, b > 0, and holding it there until we let it go, so that initially its velocity
is zero. See Fig. 10.5. The total energy imparted thereby to the system is p(−b)= E .
On being released, the restoring force starts moving the particle toward the position
x = 0. For negative x, p(x) decreases with x. It follows then from the law of conser-
vation of energy that the kinetic energy, 1

2 mv2, increases. Since v2 is increasing, the
particle gains speed during this phase of the motion. The potential energy reaches
its minimum at x = 0. As soon as the particle swings past x = 0, its potential energy
starts increasing, and its kinetic energy decreases accordingly. This state of affairs
persists until the particle reaches the position x = b. At this point, its potential en-
ergy equals p(b). Since p is the integral of an odd function, p is an even function,
and p(b) = p(−b) = E is the total energy. Therefore, at point b, the kinetic energy
1
2 mv2 is zero, and b is the right endpoint of the interval through which the particle
moves. On reaching x = b, the particle is turned around by the restoring force and
describes a similar motion from right to left until it returns to its original position
x = −b. Its velocity at this time t = T is zero, so everything is just as it was at the
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beginning of the motion. Therefore, according to Theorem 10.1 in the previous sec-
tion, the same pattern is repeated all over again. Such motion is called periodic, and
the time T taken by the particle to return to its original position is called the period
of the motion. The mathematical expression of periodicity is

x(t +T) = x(t),

and the graph of such a period-T function is shown in Fig. 10.6. In fact, due to
the assumption that fre is odd, the position x = b occurs at exactly t = 1

2 T , for the
motions to left and right are mirror images of each other.

−b

b

t

x(t)

T

Fig. 10.6 The motion repeats with period T

We now turn from this qualitative description of motion to a quantitative descrip-
tion, which we also shall deduce from the law of conservation of energy. Using the
energy equation 1

2 mv2 + p(x) = E , we can express v as function of x:

v =

√
2
m
(E − p(x)).

In the first phase of the motion, 0 ≤ t ≤ 1
2 T , x is an increasing function of time.

Therefore, v = x′ is positive, so that the positive square root is to be taken. Since
x(t) is strictly monotonic during this interval, we can express t as a function of x.
According to the rule for differentiating the inverse of a function, the derivative of t
with respect to x is

dt
dx

=
1
dx
dt

=
1
v
.

Using the formula above for v, we deduce that

dt
dx

=

√
m

2(E − p(x))
.

According to the fundamental theorem of calculus, t is the integral with respect to x

of
dt
dx

:

t(y2)− t(y1) =

∫ y2

y1

√
m

2(E − p(x))
dx. (10.9)
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The integral on the right expresses the time it takes for the particle to move from
position y1 to position y2 during the first phase of the motion. Take, in particular,
y1 = −b and y2 = b. These positions are reached at t = 0 and t = 1

2 T , respectively.

Therefore,
1
2

T − 0 =

∫ b

−b

√
m

2(E − p(x))
dx, and multiplying by 2, we get

T =
∫ b

−b

√
2m

E − p(x)
dx. (10.10)

We have seen that the energy conservation 1
2 mv2 + p(x) = E at times t = 0 and

t = 1
2 T gives E = p(−b) = p(b). This shows that as x approaches −b or b, the

difference E − p(x) tends to zero. This makes the integrand tend to infinity as x
approaches the endpoints. In the terminology of Sect. 7.3, this integral is improper,
and therefore is defined by evaluating the integral over a subinterval and taking the
limit as the subinterval approaches the original interval.

We show now that the improper integral (10.10) for the period T converges. Acc-
ording to the mean value theorem, the function in the denominator of Eq. (10.10) is

E − p(x) = E − p(b)− p′(c)(x− b)

for some c between b and x. Since E = p(b), this gives

E − p(x) =− fre(c)(b− x).

For x slightly less than b, that is, near the upper limit in integral (10.10), this is a
positive multiple of (b− x), because − fre(c) is nearly − fre(b)> 0. Therefore,

√
2m

E − p(x)
≤ const√

b− x
.

The integrand is similarly bounded near −b, the lower bound of integration. As we
have seen in Example 7.27 of Sect. 7.3, such a function is integrable. In other words,
the period T is well defined by the integral (10.10).

We have been able to deduce quite a bit about the function x(t) from the fact
that it satisfies mx′′ − fre(x) = 0. First, we showed that x(t) is periodic. Second,

we showed that the period is a number T =

∫ b

−b

√
2m

E − p(x)
dx that depends on the

initial displacement b of the particle and on the restoring force fre, since p(x) =

−
∫ x

0
fre(y)dy. Next, we look at the specific cases in which the restoring forces are

linear functions.
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10.1d Linear Vibrations Without Friction

Suppose that the restoring force is a differentiable function of x. According to the
basic tenet of differential calculus, a differentiable function can be well approxi-
mated over a short interval by a linear function. We have seen earlier that the mo-
tion is confined to the interval −b ≤ x ≤ b, where −b is the initial displacement. For
small b, fre(x) can be well approximated over [−b,b] by a linear function (Fig. 10.7).
It is reasonable to expect that if we replace the true restoring force by its linear ap-
proximation over the small interval [−b,b], the characteristic properties of motions
with small displacements will not change drastically.

x

fre

Fig. 10.7 Linearized restoring force

In this section, we study vibration under a linear restoring force

fre(x) =−kx.

The positive constant k measures the stiffness of the elastic medium exerting the
force, i.e., the larger k is, the greater the resistance to the displacement. For this
reason, k is called the stiffness constant. The corresponding potential

p(x) =−
∫ x

0
fre(s)ds =−

∫ x

0
−ksds =

1
2

kx2

is quadratic. Let us substitute it into formula (10.10) for the period of the motion.
Using the fact that E = p(b), we get

T =
∫ b

−b

√
2m

E − p(x)
dx =

∫ b

−b

√
4m

kb2 − kx2 dx.

Performing the change of variable x = by, we get

T =
∫ b

−b

√
4m

kb2 − kx2 dx =
∫ 1

−1

√
4m

kb2 − k(by)2 bdy = 2

√
m
k

∫ 1

−1

dy√
1− y2

.
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We recall that the function
1√

1− y2
is the derivative of sin−1 y, so

∫ 1

−1

1√
1− y2

dy = sin−1 1− sin−1(−1) =
π
2
− (−π

2
) = π .

Substituting this into the above formula for T , we obtain

T = 2π
√

m
k
. (10.11)

This remarkable formula shows how the period of the motion depends on the data:

(a) The period is independent of the size of the initial displacement, provided that
the initial displacement is small enough to warrant approximating fre by a linear
function.

(b) The period is proportional to

√
m
k

.

What does our physical intuition tell us? Increasing the mass m slows down the
motion, and tightening the elastic string, which is the same as increasing the stiffness
constant k, speeds up the motion. Therefore, the period is an increasing function of
m and a decreasing function of k; this is evident from formula (10.11).

We show now how to derive formula (10.11) using dimensional analysis. In a lin-
ear restoring force fre(x) =−kx, the dimension of the number k is force per length,
which is equal to

(mass)(acceleration)
length

=
(mass) length

(time)2

length
=

mass
(time)2 .

The only way to build a number whose dimension is time out of the two numbers m

and k is

√
m
k

. Therefore, the period T must be a constant multiple of

√
m
k

. Calculus

is needed only to nail down that constant as 2π .
A periodic motion is often called a vibration. Any portion of such motion lasting

a full period is called a cycle. The number of cycles per unit time is called frequency,
i.e.,

frequency=
1

period
=

1
2π

√
k
m
.

The most striking manifestation of vibration is caused by the pressure waves trans-
mitted through the air to the ears of a nearby auditor who perceives them as sound.
The pitch of the sound is determined by the number of pressure pulses per unit time
reaching the eardrum, and this number is the frequency of the vibrating source of the
sound. When struck by a hammer, piece of metal vibrates. We know from everyday
observation that the pitch of the sound generated does not depend on how hard the
metal has been struck, although the loudness of the sound does. On the other hand,
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the sound generated by a plucked rubber band has a twangy quality, indicating that
the pitch changes as the displacement changes. We conclude that the elastic force
that acts in metal when slightly displaced from equilibrium is a linear function of
displacement, while the force exerted by a rubber band is a nonlinear function of
displacement.

10.1e Linear Vibrations with Friction

We now turn to the study of motion with friction. We shall restrict our study to mo-
tions for which displacement x and velocity v are relatively small, so small that both
fre and ffr are so well approximated by linear functions that we might as well take
them to be linear, i.e., fre = −kx and ffr = −hv, where k > 0 and h > 0. Newton’s
equation becomes

mx′′+ hx′+ kx = 0, (10.12)

where the constant h is called the friction constant. Such a differential equation
whose coefficients m, k, and h are constants has a solution of the form ert . Substitut-
ing ert and its first and second derivatives rert , r2ert into Eq. (10.12), we get mr2ert +
hrert +kert = 0, and factoring out the exponential yields (mr2+hr+k)ert = 0. Since
the exponential factor is never zero, the sum in the parentheses must be zero:

mr2 + hr+ k = 0. (10.13)

Our efforts have led to a solution ert of Eq. (10.12) for each root of Eq. (10.13).
This is a quadratic equation for r, whose solutions are

r± =− h
2m

±
√

h2 − 4mk
2m

.

There are two cases, depending on the sign of the quantity under the square root.

• Case I: h2 − 4mk negative, or h < 2
√

mk.
• Case II: h2 − 4mk nonnegative, or 2

√
mk ≤ h.

In Case I, the roots are complex, while in Case II, they are real. We first consider
Case I.

Case I, h < 2
√

mk. Denote by w the real quantity

1
2m

√
4mk− h2 = w.

Then the roots can be written as

r± =− h
2m

± iw.
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This gives two complex-valued solutions,

x−(t) = er−t = e(−
h

2m−iw)t and x+(t) = er+t = e(−
h

2m+iw)t .

We have seen in Chap. 9 that ea+ib = ea(cosb+ i sinb). Using this with a = − h
2m

and b = w, and again with b =−w, we can express

x±(t) = er±t = e−
h

2m t(coswt ± i sinwt).

We have shown in Theorem 9.3 that complex exponentials satisfy (ert)′ = rert , so
the functions x+ and x− are solutions of Eq. (10.12). We ask you to verify in Prob-
lem 10.11 that sums and complex multiples of these solutions are also solutions. As
a result,

1
2

(
x+(t)+ x−(t)

)
= e−

h
2m t coswt and

1
2i

(
x+(t)− x−(t)

)
= e−

h
2m t sinwt

are solutions. These functions are the product of a trigonometric and an exponential

function. The trigonometric function is periodic, with period
2π
w

, and the exponen-

tial function tends to 0 as t tends to infinity. The exponential function diminishes by

the factor e−
h

2m per unit time. This is called the decay rate of x(t). Such motion is
called a damped vibration.

By applying the linearity principle for real solutions of a differential equation
(see Problem 10.9), we see that every combination of the form

x(t) = e−
h

2m t(Acoswt +Bsinwt),

where A and B are constants, is also a solution.

Example 10.2. Consider the equation

x′′+
1
2

x′+
17
16

x = 0. (10.14)

Solving r2 +
1
2

r +
17
16

= 0, we obtain r = −1
4
+ i, so e−

1
4 t(cost + i sin t

)
is a

complex solution. The functions e−
1
4 t cost and e−

1
4 t sin t are both real solutions

to Eq. (10.14), and so are all linear combinations of them. The particular linear
combination

x(t) =−e−
1
4 t(cost +

1
4

sin t
)

is graphed in Fig. 10.8. This solution has initial values x(0) =−1 and x′(0) = 0.

Case II, 2
√

mk ≤ h. The special case of equal roots, h = 2
√

mk, will be discussed
in Problem 10.13. For h > 2

√
mk, the roots

r± =− h
2m

±
√

h2 − 4mk
2m
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1

-1
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x

t

Fig. 10.8 A graph of the damped vibration x(t) =−e−t/4(cos t +
1
4

sint) in Example 10.2

are both real, and they furnish two distinct real exponential solutions, er+t and er−t .
According to the principle of linearity, every combination of them,

x(t) = A+er+t +A−er−t ,

is also a solution. We would like to choose the constants A+ and A− so that the
initial displacement is x(0) = −b and the initial velocity is x′(0) = v(0) = 0. The
desired values of A+ and A− have to satisfy

x(0) = A++A− =−b,

v(0) = r+A++r−A− = 0.

Since r+ and r− are unequal, A+ and A− are easily determined from these relations.

Example 10.3. We consider the equation

x′′+
3
2

x′+
1
2

x = 0

with initial displacement x(0) = −1. The roots of r2 + 3
2 r+ 1

2 = 0 are r− = −1
and r+ = − 1

2 . We need to solve x(0) = A+ +A− = −1 and − 1
2 A+ −A− = 0.

Adding, we obtain A+ =−2, then A− = 1. Our solution is

x(t) =−2e−
1
2 t + e−t .

This is graphed for t > 0 in Fig. 10.9.

Both roots r+ and r− in Case II are negative. Consequently, both exponentials
tend to zero as t tends to infinity. Of the two negative roots, r− has the greater
magnitude:

|r−|> |r+|.
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1

-1

8642

x

t

Fig. 10.9 The overdamped vibration x(t) = e−t −2e−t/2 in Example 10.3

It is also true that |A+| > |A−|, and that for t > 0, er+t > er−t . Hence |A+er+t | is
always greater than |A−er−t |. As t tends to infinity, the first term becomes very much
greater than the second. This shows that the decay of x(t) is governed by the decay
rate of the first term. That decay rate is er+ .

Rates of Decay. The difference between Case I and Case II is that in Case I, the
force of friction is not strong enough to prevent the particle from swinging back
and forth, although it does diminish the magnitude of successive swings. In Case II,
friction is so strong compared to the restoring force that it slows down the particle
to such an extent that it never swings over to the other side (except possibly in the
rare case where h = 2

√
mk). This motion is called overdamped.

In both Case I and Case II, motion decays to zero as t tends to infinity. We now

investigate the rates of this decay, respectively e−
h

2m and er+ . The logarithms of
these decay rates are called coefficients of decay and are denoted by the symbol �.
We have the following formula for �:

�(h) =

{− h
2m for h < 2

√
mk, Case I damped,

−h+
√

h2−4mk
2m for 2

√
mk < h, Case II overdamped.

0

h

Fig. 10.10 Coefficient of decay � is minimal at h = 2
√

mk
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We next study how � varies as the friction constant h changes while m and k
remain fixed. Properties of the coefficient of decay �:

(a) �(h) is a continuous function for 0 ≤ h.
This is true because at the point h = 2

√
mk where Case I joins Case II, the two

formulas for � furnish the same value.
(b) �(h) is a decreasing function of h for 0 ≤ h < 2

√
mk.

This is true because for 0 ≤ h < 2
√

mk, the derivative of � is − 1
2m

< 0.

(c) �(h) is an increasing function of h for 2
√

mk < h.
This is true because for h > 2

√
mk, the derivative of � is positive. To see this,

note in �′(h) that since h >
√

h2 − 4mk, the fraction in the large parentheses
below is greater than 1:

�′(h) =
1

2m

(
−1+

h√
h2 − 4mk

)
.

(d) �(h) reaches its minimum value at the critical damping h = 2
√

mk.
This is a consequence of the first three items.

Note that the function �(h) is continuous and its absolute value is largest at h =
2
√

mk. It is not differentiable at h = 2
√

mk, as can be seen from Fig. 10.10. As the
graph indicates, �(h) tends to zero as h tends to infinity. Knowing the value of h that
maximizes |�| is important. For example, in an automobile bouncing after hitting
a pothole, the springs provide a restoring force and the shock absorbers provide
frictional damping. In fact, the shock is absorbed by the springs; the role of the
shock absorbers is to dissipate the energy resulting from a sudden displacement.

10.1f Linear Systems Driven by an External Force

Next, we study the motion of particles under the influence of a restoring frictional
force and a driving force fd presented as a known function of time. This is a fre-
quently occurring situation; examples of it are

(a) the motion of the eardrum driven by pressure pulses in the air,
(b) the motion of a magnetic diaphragm under an electromagnetic force,
(c) the motion of air in the resonating cavity of a violin under the force exerted by

a vibrating violin string, and
(d) the motion of a building under the force exerted by wind or tremors in the Earth.

Of course, these examples are much more complicated than the case of a single
particle that we shall investigate.

Newton’s law of motion governing a single particle says that

mx′′ = fre(x)+ ffr(v)+ fd(t).
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We shall discuss the case in which the restoring force and the frictional force are
linear functions of their arguments and the driving force is the simple periodic func-
tion

fd(t) = F cos(qt),

where F is a positive constant. Substituting these forces into Newton’s law, we get
the equation

mx′′+ hx′+ kx = F cos(qt). (10.15)

See Fig. 10.11.

h

k

Fcos(qt)
m

Fig. 10.11 Forces are applied to a mass m with position x(t) in Eq. (10.15): the linear spring restor-
ing force −kx, the linear frictional force −hx′, and the applied force F cos(qt)

We begin by establishing a simple relation between any two solutions of this
equation. Let x0 be another solution:

mx′′0 + hx′0 + kx0 = F cos(qt).

Subtracting from Eq. (10.15), we get

m(x− x0)
′′+ h(x− x0)

′+ k(x− x0) = 0, (10.16)

i.e., the difference of any two solutions of Eq. (10.15) is a solution of Eq. (10.16).
But this is the equation governing the motion of particles subject only to a restoring
force and a frictional force. In the previous section, we showed that all solutions of
Eq. (10.16) tend to zero as t tends to infinity (see Figs. 10.8 and 10.9). This shows
that for large t, any two solutions of Eq. (10.15) differ by very little. Thus we may
study the large-time behavior of any one solution.

We shall find a solution of Eq. (10.15) by the following trick. We look for
complex-valued solutions z of the complex equation

mz′′+ hz′+ kz = Feiqt . (10.17)

We ask you in Problem 10.16 to verify that if z is a complex-valued solution of
Eq. (10.17), then x = Re z is a real solution of Eq. (10.15). The advantage of z is the
ease with which we can calculate with exponentials.

We take z of the same form as the driving force, because it is reasonable to guess
that the mass oscillates at the same frequency at which it is pushed:

z(t) = Aeiqt .
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Then by Theorem 9.5,

z′ = Aiqeiqt and z′′ =−Aq2eiqt .

Substituting these into Eq. (10.17), we get, after division by eiqt ,

A(−mq2 + ihq+ k) = F.

Solving for A from this equation, we get that

z(t) =
F

−mq2 + ihq+ k
eiqt

is a solution to Eq. (10.17). The real part x of z is a solution of the real part of the
complex equation, which is Eq. (10.15), the equation we originally wanted to solve.

The Response Curve. The absolute value of the complex solution z(t) is

F
|−mq2+ ihq+ k|

for all t. This is the maximum of the absolute value of its real part x(t), reached
for those values of t for which z is real. This maximum is called the amplitude of
the vibration. Furthermore, F is the maximum of the absolute value of the imposed
force; it is called the amplitude of the force. The ratio of the two amplitudes is

R(q) =
max |x|

F
=

1
|−mq2+ ihq+ k| .

In many ways, the most interesting question is this: for what value of q is R(q) the
largest? Clearly, R(q) tends to zero as q tends to infinity, so R(q) has a maximum.
We shall calculate the value of the maximum. It occurs at the same frequency q at
which the reciprocal of R(q) is minimized:

1(
R(q)

)2 = |−mq2+ ihq+ k|2 = (k−mq2)2 + h2q2.

The derivative of this with respect to q is

4mq(mq2 − k)+ 2h2q = 2q(2m2q2 − 2mk+ h2),

and it is zero at q= 0. To find other possible zeros, we set the remaining factor equal
to zero: 2m2q2 − 2mk+ h2 = 0. After rearrangement, we get

q2 =
2mk− h2

2m2 =
k
m
− h2

2m2 .
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If the quantity on the right is negative, which is the overdamped Case II, h >
√

2mk,
the equation cannot be satisfied, and we conclude that the maximum of R is reached
at q = 0. If, however, the quantity on the right is positive, in Case I, then

qr =

√
k
m
− h2

2m2

is a possible candidate for the value for which R(q) achieves its maximum. A direct
calculation shows that

R(qr) =
1
h

1√
k
m − h2

4m2

.

In Problem 10.19, we ask you to show that R(qr) is greater than R(0) =
1
k

. So for

h <
√

2mk, the graph of R(q) looks qualitatively like the example in Fig. 10.12. The
graph of R is called the response curve of the vibrating system.

R(q)

qqr

Fig. 10.12 Graph of the response function R(q) =
1√

(−q2 +1)2 +
(

1
5 q
)2

for the damped equation

x′′+
1
5

x′+ x = F cos(qt). The maximum is R(0.989 . . .) = 5.025 . . .

The significance of the maximum at qr is that among all driving forces of the
form F cosqt, the one with q = qr causes the motion with the largest amplitude.

This phenomenon is called resonance, and
qr

2π
is called the resonant frequency.

Resonance is particularly striking if friction is small, i.e., if h is small, for then
R(qr) is so large that at the resonant frequency, even a low-amplitude driving force
will cause a motion of large amplitude. A known dramatic example of this kind of
resonance is the shattering of a wine glass by a musical note pitched at the resonant
frequency of the glass.
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We conclude this section with a summary:
For motion under a restoring force without friction:

(a) Total energy is conserved.
(b) All motions are periodic.
(c) All motions with relatively small amplitude have approximately the same

period.
For motion under a restoring force with friction:

(d) Total energy is decreasing.
(e) All motion decays to zero at an exponential rate.
(f) There is a critical value of the coefficient of friction that maximizes the rate at

which solutions decay to zero.
We have proved (e) and (f) only for a linear restoring force and linear friction.
For motions under a linear restoring force, linear friction, and a sinusoidal
driving force:

(g) All motions tend toward a sinusoidal motion with the same frequency as the
driving force.

(h) If friction is not too large, there is a resonant frequency.

Problems

10.1. Which of the following differential equations are examples of the model (10.2)
that we developed for vibrations of a mechanical system? Be sure to check the
required properties of the frictional and restoring forces.

(a) 2x′′ − x = 0
(b) x′′+ x′+ x+ x3 = 0
(c) x′′+ x′ = 0
(d) x′′ − x2 = 0
(e) x′′ − 0.07x′ − 3x = 0

10.2. Verify that since we assumed that the restoring force fre(x) is an odd function,

the potential energy p(x) =−
∫ x

0
fre(y)dy is an even function.

10.3. Solve x′′ + x′ = 0, which has no restoring force, by trying a combination of
exponential solutions x(t) = ert for the two cases

(a) x(0) = 5, x′(0) = 7,
(b) x(0) = 5, x′(0) =−7.

Do the solutions have limits as t tends to infinity?

10.4. Find an equation mx′′ + hx′ + kx = 0 if the roots to mr2 + hr + k = 0 are
r± =− 1

10 ± i.

10.5. Find exponential solutions ert of 2x′′+ 7x′+ 3x = 0.
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10.6. Find trigonometric solutions of 2y′′+ 3y = 0.

10.7. As indicated by the graph in Fig. 10.10 of the coefficient of decay �, some
solutions x(t) of mx′′+hx′+kx = 0 decay toward zero very slowly if h is either very
small or very large. Sketch typical solutions for both cases.

10.8. Find a complex exponential solution z(t) of the equation z′′+4z′+5z = 0 and
verify that the real part x(t) = Rez(t) is a solution of x′′+ 4x′+ 5x = 0.

10.9. Let x1(t) and x2(t) be real-valued functions that are solutions of the nth-order
differential equation

Anx(n)(t)+ · · ·+A2x′′(t)+A1x′(t)+A0x(t) = 0,

where the Ai are real constants.

(a) Show that if c is any real constant, then cx1(t) is a solution.
(b) Show that y(t) = x1(t)+ x2(t) is a solution.

Combining these observations, we observe that c1x1(t)+c2x2(t) is a solution when-
ever x1 and x2 are solutions and the c’s are constant. This is an example of the
linearity of this differential equation.

10.10. Suppose that the coefficients A0, A1, . . . ,An in the differential equation of
Problem 10.9 are functions of t. Are the assertions made there still valid? Are the
assertions true if instead, the equation is modified to

Anx(n)(t)+ · · ·+A2x′′(t)+A1x′(t)+A0x(t) = cost ?

10.11. Suppose x1(t) = p1(t)+ iq1(t) and x2(t) = p2(t)+ iq2(t) are complex-valued
solutions of

mx′′+ hx′+ kx = 0

and that c1 and c2 are complex numbers. Show that c1x1(t)+ c2x2(t) is a solution.

10.12. The function x(t) = e−bt cos(wt) represents a motion under a linear restoring
force and linear friction.

(a) Show that the interval between successive times when x(t) = 0 has length
π
w

.

(b) Show that the time interval between successive local maxima is
2π
w

.

10.13. Consider the equation of motion mx′′+ hx′+ kx = 0, and suppose that h has
the critical value 2

√
mk.

(a) Show that the only solution of the form ert has r =−
√

k
m

.

(b) Show that te−
√

k
m t is a solution.

10.14. Find all solutions x(t) of the equation of motion x′′+ x′+ x = 0.
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10.15. Find a complex exponential solution z(t) of the equation z′′+z′+6z= 52e6it ,
and verify that the real part x(t) = Re z(t) is a solution of x′′+ x′+ 6x = 52cos(6t).

10.16. Show that if z(t) is any solution of mz′′+ hz′+ kz = Feiqt , then the real part
x(t) = Re z(t) is a solution of mx′′+ hx′+ kx = F cos(qt).

10.17. Find a solution x1(t) of the equation x′′+ x′+ x = cost. Verify that you may
add any solution of y′′+y′+y= 0 to your solution to get another solution x2 = y+x1

of x′′+ x′+ x = cost.

10.18. A heavy motor runs at 1800 rpm, causing the floor to vibrate with small ver-
tical displacements y(t) = Acos(ωt). Find ω if t is measured in minutes.

10.19. Prove that in the damped case h <
√

2mk, the response maximum R(qr) is

greater than R(0) =
1
k

, i.e., that
1
h

1√
k
m − h2

4m2

>
1
k
.

h k

m

Fig. 10.13 A spring and mass with friction. Before gravity is applied, y = 0 is the equilibrium.
fre(y) =−ky ffr(v) =−hv. See Problem 10.20

10.20. Newton’s equation of motion for a particle at the end of a vertical spring (see
Fig. 10.13) under the influence of the restoring force of the spring, friction, and the
applied force of gravity is

my′′+ hy′+ ky = mg.

Here the displacement y is measured as positive downward, and m, h, k, and g are
positive constants.
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(a) Show that the difference of any two solutions solves the equation for the case of
no gravity, mx′′+ hx′+ kx = 0.

(b) Find a constant solution y.

(c) Show that every solution is of the form y(t) =
gm
k

+ x(t), where x solves the

case of no gravity.
(d) Show that as t tends to infinity, every solution y(t) tends to the constant solution.

10.21. Justify the following items, which prove the uniqueness theorem, Theorem
10.1, stated at the end of Sect. 10.1a.

(a) If mx′′ − ffr(x′)− fre(x) = 0 and my′′ − ffr(y′)− fre(y) = 0, denote by w the
difference w(t) = y(t)− x(t). Then

mw′′ − (
ffr(w

′+ x′)− ffr(x
′)
)− (

fre(w+ x)− fre(x)
)
= 0.

(b) For each t, there is u between x′(t) and y′(t) and v between x(t) and y(t) such
that

mw′′ − f ′fr(u)w
′ − f ′re(v)w = 0.

(c) Therefore, mw′′w′ − f ′re(v)ww′ ≤ 0.
(d) f ′re is bounded above by some constant −k ≤ 0. Therefore, mw′′w′+ kww′ ≤ 0,

and
1
2

m(w′)2 +
1
2

kw2

is nonincreasing.
(e) A nonnegative nonincreasing function that is 0 at time s must be 0 for all times

t > s. Explain why this implies w(t) = 0 for all t > s.

10.2 Population Dynamics

In this section, calculus is used to study the evolution of populations—animal, veg-
etable, or mineral. About half the material is devoted to formulating the laws gov-
erning population changes in the form of differential equations, and the other half
to studying their solutions. Only in the simplest cases can this be accomplished
by obtaining explicit formulas for solutions. When explicit solutions are not avail-
able, relevant qualitative and quantitative properties of solutions can nevertheless
be deduced directly from the equations, as our examples will show. Using numeri-
cal methods that extend those we mention in Sect. 10.4, one can generate extremely
accurate approximations to any specific solution of a differential equation. These
may lead to the answers we seek or suggest trends that once perceived, can often be
deduced logically from the differential equations.

Theoretical population models have become more and more useful in such di-
verse fields as the study of epidemics and the distribution of inherited traits. Yet the
most important application, the one about which the public needs to be informed in
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order to make intelligent decisions, is to demography, the study of human popula-
tions. Indeed, as Alexander Pope put it, “The proper study of Mankind is Man.”

In Sect. 10.2a, we develop a theory of differential equations needed for the study
of population growth. In Sect. 10.2b, we describe the dynamics of a population con-
sisting of a single species, and in Sect. 10.2c, the dynamics of a population consist-
ing of two species.

10.2a The Differential Equation
dN
dt

= R(N)

In this section, we analyze the type of differential equations that govern both pop-
ulation growth and chemical reactions, but without reference to these applications.
We consider the equation

dN
dt

= R(N), (10.18)

where R(N) is a known rate depending on N. In Sect. 3.3, we solved one equation

of this type,
dN
dt

= kN. We saw that the solutions N(t) = N(0)ekt are exponential

functions, including the constant function N(t) = 0. In Fig. 10.14, we plot the solu-

tions of
dN
dt

=−N for five different initial conditions N0 = N(0) = 3, 1, 0,−1,−2.

We know that as t tends to infinity, each solution shown, N(t) = N(0)e−t , regardless
of the initial condition, tends to the constant solution N = 0. In the context of pop-
ulations, N0 < 0 may not make sense, but the differential equation has solutions for
those initial conditions, so we include them in our analysis.

-2

-1

1

3

1 2

N

t

Fig. 10.14 Graphs of five solutions to
dN
dt

=−N
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The equation
dN
dt

= 2N −N2 = N(2−N) is another example of an equation of

the form
dN
dt

= R(N). In Sect. 10.2b, you can see that we will find explicit solution

formulas for this equation, some of which we have graphed on the right side of
Fig. 10.16.

Both of these differential equations are statements about the relative growth rate
dN
dt

N
of the population. In the first equation, the relative growth rate

dN
dt

N
= −1 is

constant. In the second, the relative growth rate
dN
dt

N
= 2−N decreases as N increases

from 0 to 2, perhaps due to a lack of resources.

A third equation of the form (10.18) is
dN
dt

=−N(N−1)(N−2). Solutions of this

equation are plotted in Fig. 10.15. A fourth such equation is given in Example 10.7,
whose solutions are plotted in Fig. 10.22.

You may have begun to perceive a pattern. It appears that the constant solutions,
i.e., the places where R(N) = 0, play a key role in describing the long-term behavior
of the other solutions. Our first task is to determine conditions under which solutions
exist and are determined uniquely by the initial condition. Then we will show how
the zeros of R(N) are related to the long-term behavior of solutions.

To begin, assume that R(N) is a continuous function of N, different from zero.
Then we can divide both sides of

dN
dt

= R(N)

by R(N), obtaining
1

R(N)

dN
dt

= 1.

By the fundamental theorem of calculus, since
1

R(N)
is a continuous function of N,

there is a function Q(N) whose derivative is

dQ
dN

=
1

R(N)
. (10.19)

If N(t) satisfies
dN
dt

= R(N), then by the chain rule,

dQ
dt

=
dQ
dN

dN
dt

=
1

R(N)

dN
dt

= 1.

A function with constant derivative is linear, so

Q(N(t)) = t + c, c a constant.
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It follows from
dQ
dN

=
1

R(N)
that

dQ
dN

is not zero, and from the continuity of R

that
dQ
dN

does not change sign. Therefore, Q(N) is strictly monotonic and hence

invertible. This means that Q(N(t)) = t + c can be solved for

N(t) = Q−1(t + c).

The constant c can be related to the initial value N(0) = N0 by setting t = 0:

N(0) = Q−1(c) or Q(N0) = c.

With this determination of c, the function

N(t) = Q−1(t +Q(N0)) (10.20)

is the solution of
dN
dt

= R(N) with initial value N0. Thus we have proved the follow-

ing theorem.

Theorem 10.2. Existence. If R(N) is a continuous function of N that is never
0, then the differential equation

dN
dt

= R(N), with N(0) = N0,

has a unique solution on a possibly infinite t-interval (r,s). If one of the end-
points r or s is finite, the solution N(t) approaches plus or minus infinity as t
approaches the endpoint.

It is instructive to look at the example
dN
dt

= N2 +1, with initial value N(0) = 0.

We divide this equation by N2 + 1 and get
1

N2 + 1
dN
dt

= 1. The left side is the

derivative of tan−1 N, so integration gives tan−1 N = t + c. Since we specified that
N(0) = 0, it follows that c= 0, and so N(t) = tan t, defined on the interval

(− π
2 ,

π
2

)
.

As t approaches the left or right endpoint of this interval, N(t) tends to minus or plus
infinity.

We now turn to the more interesting case that R(N) vanishes at some points. The
derivation of formula (10.20) for the solution of the initial value problem shows
more than what is stated in Theorem 10.2. It shows that even if R(N) vanishes at
some points, if it is not zero for R(N0), then the method used to solve the initial
value problem yields a solution on a short time interval (−d,d).
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Fig. 10.15 Left: graph of the right-hand side R(N) = −N(N − 1)(N − 2). Right: graphs of some

computed solutions to
dN
dt

=−N(N −1)(N −2)

Theorem 10.3. Suppose that the function R(N) is differentiable and N(t) is a
solution of

dN
dt

= R(N).

Suppose that N(0) is not a zero of the function R(N), that is, R(N(0)) 
= 0.
Then N(t) is not a zero of R(N) for any value of t.

Proof. We shall argue indirectly. Suppose, to the contrary, that at some s, N(s) is a
zero of R(N). Denote this zero by Z:

N(s) = Z, R(Z) = 0.

We shall show that then R(N(t)) is zero for all t.
Since R(Z) = 0, we have R(N) = R(N)−R(Z). Using the mean value theorem,

we obtain R(N) = k(N −Z), where k is the value of the derivative of the function R
at some point between N and Z. Since Z is a constant, we can rewrite the differential
equation governing N as

d(N −Z)
dt

= R(N) = k(N −Z).

Denote the function N(t)−Z by M(t) and write the differential equation for N −Z

as
dM
dt

= kM. Multiply this equation by 2M. We get 2M
dM
dt

= 2kM2. Denote the

function M2 by P and rewrite the equation above as

dP
dt

= kP.

Denote by m an upper bound for the function k(N). We deduce from this differential
equation the inequality
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dP
dt

≤ mP.

We write this inequality as
dP
dt

−mP ≤ 0, and multiply it by e−mt . We get

e−mt dP
dt

−me−mtP ≤ 0.

The left side is the derivative of e−mtP, and since it is nonpositive, e−mtP is a non-
increasing function of t. The function P was defined as M2, and M as N −Z. Since
Z is the value of the function N at s, M(s) is zero, and so is P(s). Since the function
P is a square, its values are nonnegative, and so are the values of e−mtP(t). We have
shown before that e−mtP(t) is a nonincreasing function of t. But since e−mtP(t) is
zero at s, it follows that e−mtP(t), and therefore P(t), is zero for t greater than s.
Using a similar argument but with a lower bound for the function k(N), we show
similarly that P(t) is zero for all t less than s.

Since P(t) is the square of M(t) and M(t) is N(t)−Z, this proves that N(t) = Z
for all t. But this contradicts the assumption that N(0) is not a zero of R(N). Since
we got into this contradiction by denying Theorem 10.3, this proves the theorem.

��
Next we see how the zeros of R(N) are related to the long-term behavior of

the solutions of
dN
dt

= R(N). From Theorem 10.3, we shall deduce the following

property of solutions of Eq. (10.18).

Theorem 10.4. Denote by N(t) a solution of
dN
dt

= R(N), and its value N(0)

by N0. Suppose that R(N) is differentiable, its derivative bounded, and assume
that R(N) is positive for N large negative and that it is negative for N large
positive.

(a) If R(N0) is negative, then the solution N(t) decreases as t increases, and as
t tends to infinity, N(t) tends to the largest zero of R(N) that is less than N0.

(b) Similarly, if R(N0) is positive, then N(t) is an increasing function of t, and
as t tends to infinity, N(t) tends to the smallest zero of R(N) that is larger
than N0.

Before we write the proof of Theorem 10.4, let us see what the theorem tells us
about our two examples:

• dN
dt

= N(2−N). If 0 < N0 < 2, then R(N0) is positive. According to Theo-

rem 10.4, as t tends to infinity, the solution N(t) increases to N = 2. If 2 < N0,
R(N0) is negative, and the solution decreases to 2, the largest zero of R(N) that
is less than N0.

• dN
dt

=−N(N −1)(N −2). The graph of R(N) on the left side of Fig. 10.15 will

help us tell where R(N0) is positive or negative. If N0 < 0, R(N0) is positive, so
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according to Theorem 10.4, N(t) increases to N = 0. If 0 < N0 < 1, then R(N0)
is negative, so N(t) decreases to N = 0. If 1 < N0 < 2, then R(N0) is positive, so
N(t) increases to the smallest zero that is larger than N0, i.e., N = 2. If 2 < N0,
then R(N0) is negative, and so N(t) decreases to N = 2 as t tends to infinity. This
agrees with the approximate solutions computed in Fig. 10.15.

Now we will prove the theorem that makes so much qualitative information about
the solutions readily available.

Proof. We prove part (a); assume that R(N0) is negative. Since R(N) is positive for
N large negative, it has a zero less than N0. Denote by M the largest zero of R(N)

less than N0. When R(N0) is negative, then according to
dN
dt

= R(N), the derivative

of N(t) is negative at t = 0 and remains negative as long as N(t) is greater than M,
because R(N) is negative for all values of N between M and N0. It follows that N(t)
is a decreasing function of t and keeps decreasing as long as N(t) is greater than M.
According to Theorem 10.3, N(t) is not equal to a zero of R(N). Therefore, N(t) is
greater than M for all positive t.

We show now that as t tends to infinity, N(t) tends to M. We again argue indi-
rectly and assume to the contrary that for all t, N(t) is greater than M + p, p some
positive number. The function R(N) is negative on the interval [M + p,N0]. Denote
by m the maximum of R(N) on this interval; m is a negative number. We apply the
mean value theorem to the function N(t):

N(t)−N(0)
t

=
dN
dt

(c),

where c is some number between 0 and t. Since N(t) is a solution of the differential
equation, this gives

N(t)−N(0)
t

=
dN
dt

(c) = R(N(c))≤ m.

We deduce that N(t)≤ N(0)+mt for all positive t. Since m is negative, this would
imply that N(t) tends to minus infinity as t tends to infinity. This is contrary to
our previous demonstration that N(t) is greater than M for all t. Therefore, our
assumption that N(t) is greater than M+ p for all t must be false.

This completes the proof in the case that R(N0) is negative. The proof for R(N0)
positive is analogous. ��

Remark. Take the case that the zeros M of R(N) are simple in the sense that
dR
dN

(M)

is not zero. Theorem 10.4 can be expressed in this way: The zeros of R(N) where the

derivative
dR
dN

is negative attract solutions of
dN
dt

= R(N). Here is why: the proof

shows that solutions less than a root M will increase toward M where R is positive,
and solutions greater than M decrease toward M when R is negative. But if R is

positive below M and negative above, then
dR
dN

(M) must be either negative or 0.
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The zeros of R(N) are called equilibrium solutions. A zero that attracts solutions
which that nearby it is called a stable equilibrium. A zero that repels some near
solutions, such as N = 1 in Fig. 10.15, is called unstable.

10.2b Growth and Fluctuation of Population

The Arithmetic of Population and Development

The rate of population growth is itself impeding efforts at social and economic development.
Take the case, for example, of a developing country which has achieved an annual increase
in its gross national product of five percent–a very respectable effort indeed, and one which
few countries have been able to maintain on a continuing basis. Its population is increasing
at 3 percent annually. Thus, its per capita income is increasing by 2 percent each year,
and will take 35 years to double, say from $100 per year to $200. In the meantime, its
population will have almost tripled, so that greatly increased numbers of people will be
living at what is still only a subsistence level. Reduction of the rate of population growth
is not a sufficient condition for social and economic development–other means, such as
industrialization, must proceed along with such reduction–but it is clear that it is a necessary
condition without which the development process is seriously handicapped.

Dr. John Maier
Director for Health Sciences
The Rockefeller Foundation

In this section we shall study the growth of population of a single species and of
several species living in a shared environment. The growth rate of a population is
related to the birth and death rates. The basic equation governing the growth in time
t of a single population of size N(t) is

dN
dt

= B−D,

where B is the birth rate and D is the death rate for the total population. What do B
and D depend on? They certainly depend on the age distribution within the popula-
tion; a population with a high percentage of old members will have a higher death
rate and lower birth rate than a population of the same size that has a low percentage
of old members. Yet in this section we shall disregard this dependence of birth and
death rates on age distribution. The results we shall derive are quantitatively rele-
vant in situations in which the age distribution turns out to change fairly little over
time.

If we assume, in addition, that the basic biological functions of the individuals
in the population are unaffected by the population size, then it follows that both
birth rate and death rate are proportional to the population size. The mathematical
expression of this idea is

B = cN, D = dN,
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where c, d are constants. Substituting this into the differential equation leads to

dN
dt

= aN,

where a = c− d. The solution of this equation is

N(t) = N0eat ,

where N0 = N(0) is the initial population size. For positive a this is the celebrated—
and lamented—Malthusian law of population explosion.

The Verhulst Model. If the population grows beyond a certain size, the sheer size
of the population will depress the birth rate and increase the death rate. We summa-
rize this as

dN
dt

= aN − effect of overpopulation.

How can we quantify the effect of overpopulation? Let us assume that the effect
of overpopulation is proportional to the number of encounters between members of
the population and that these encounters are by chance, i.e., are due to individuals
bumping into each other without premeditation. For each individual, the number of
encounters is proportional to the population size. In Chap. 11, we find that proba-
bilities of independent events need to be multiplied, and therefore, the total number
of such encounters is proportional to the square of the population. So the effect
of overpopulation is to depress the rate of population growth by bN2, for b some
positive number. The resulting growth equation is

dN
dt

= aN − bN2, a,b > 0. (10.21)

This equation was introduced into the theory of population growth by Verhulst. It is

a special instance of the equation
dN
dt

= R(N), discussed in Sect. 10.2a.

Example 10.4. Consider
dN
dt

= 2N − N2 = N(2 − N) in Fig. 10.16. Note that

when the population N is between 0 and 2, it must increase, because the rate
of change N(2−N) is positive then.

Now we find a solution formula for the Verhulst model (10.21). Suppose that the
right side of Eq. (10.21) is not zero. Then dividing by aN − bN2, we get

1 =
1

aN − bN2

dN
dt

.

We write the right side as a derivative:

1 =
1

a
N − b

1
N2

dN
dt

=
1

a
N − b

d
dt

(
− 1

N

)
=−1

a
d
dt

(
log

( a
N
− b

))
.
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Fig. 10.16 Left: graph of the right-hand side R(N) = N(2−N) in Example 10.4. Right: graphs of

some computed solutions to
dN
dt

= N(2−N)

Integrating yields log
( a

N
− b

)
= c−at for some number c. If N0 denotes the initial

value of N, then log

(
a

N0
− b

)
= c. Therefore,

log
( a

N
− b

)
= log

(
a

N0
− b

)
− at.

Combining the logarithms gives

log

(
a
N − b
a

N0
− b

)
=−at.

Applying the exponential function gives
a
N − b
a

N0
− b

= e−at , which can be solved for

N(t) as

N(t) =
a
b N0

N0 −
(
N0 − a

b

)
e−at

.

Many interesting properties of N(t) can be deduced from this formula by inspection.

Theorem 10.5. Assume that the initial value N(0) = N0 is positive in the Ver-
hulst model

dN
dt

= aN − bN2.

(a) If N0 >
a
b , then N(t)> a

b for all t and decreases as time increases.
(b) If N0 =

a
b , then N(t) = a

b for all t.
(c) If N0 <

a
b , then N(t)< a

b for all t and increases as time increases.

In all cases, N(t) tends to a
b as t tends to infinity.
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These findings are in complete agreement with Theorem 10.4. For according to

that theorem, every solution of
dN
dt

= R(N) tends to the nearest stable steady state.

For the equation at hand, R(N) = aN−bN2 = bN
(a

b
−N

)
. The steady states are the

zeros of R, in this case N = 0 and N =
a
b

. The derivative of R is
dR
dN

= a− 2bN, so

its values at the zeros of R are

dR
dN

(0) = a and
dR
dN

(a
b

)
=−a.

Since a is positive, we conclude that both zeros are simple, and that
dR
dN

is positive

at N = 0, negative at N =
a
b

. Therefore, the zero 0 is unstable and the zero
a
b

is

stable, and all solutions with initial value N0 > 0 tend to the stable steady state
a
b

as t tends to infinity. This is exactly what we found by studying the explicit formula
for all solutions. It is gratifying that properties of solutions can be deduced directly
from the differential equation that they satisfy without help from an explicit formula
for solutions. Indeed, there are very few differential equations whose solutions can
be described by an explicit formula.

The result we have just obtained, that all solutions of the Verhulst model (10.21)

tend to
a
b

as t tends to infinity, has great demographic significance, for it predicts the

eventual steady state of any population that can reasonably be said to be governed
by an equation of that form.

An Extinction Model. We now return to the basic equation
dN
dt

= R(N) of popula-

tion growth and again we assume that the death rate is proportional to the popula-
tion size. This amounts to assuming that death is due to “natural” causes, and not due
to one member of the population eating the food needed by another member, or due
to one member eating another. On the other hand, we challenge the assumption that
birth rate is proportional to population size. This assumption holds for extremely
primitive organisms, such as amoebas, which reproduce by dividing. It is also true
of well-organized species, such as human beings, who seek out a partner and pro-
ceed to produce a biologically or socially determined number of offspring. But there
are important classes of organisms whose reproductive sophistication falls between
those of the amoeba and humans, who need a partner for reproduction but must
rely on chance encounters for meeting a mate. The expected number of encounters
is proportional to the product of the numbers of males and females. If these are
equally distributed in the population, the number of encounters—and so the birth
rate—is proportional to N2. The death rate, on the other hand, is proportional to
the population size N. Since the rate of population growth is the difference between
birth rate and death rate, the equation governing the growth of such populations is

dN
dt

= bN2 − aN, a,b > 0.
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This equation is of the form
dN
dt

= R(N) with

R(N) = bN2 − aN = bN
(
N − a

b

)
, a,b > 0.

This function has two zeros, 0 and
a
b

. The derivative is
dR
dN

= 2bN −a, so its values

at the zeros of R are
dR
dN

(0) =−a and
dR
dN

(a
b

)
= a.

Since a is positive, it follows that both zeros are simple, and that R′(N) is negative at

N = 0, positive at N =
a
b

. Therefore, the zero 0 is stable, and the zero
a
b

is unstable;

all solutions with initial value N0 <
a
b

tend to 0 as t tends to infinity.

Example 10.5. The case
dN
dt

= N2 − 2N can be viewed in Fig. 10.16 by time re-

versal, where we imagine t increasing from right to left along the horizontal axis.
We ask you to explore this idea in Problem 10.24.

This stability of 0 is the stability of death; what we have discovered by our analysis
is a very interesting and highly significant threshold effect. Once the population size

N0 drops below the critical size
a
b

, the population tends to extinction. This notion of

a critical size is important for the preservation of a species. A species is classified
endangered if its current size is perilously close to its critical size.

10.2c Two Species

We now turn to a situation involving two species, where one species feeds on nour-
ishment whose supply is ample, and the other species feeds on the first species. We
denote the population sizes of the two species by N and P, N denoting the prey, P
denoting the predators. Both N and P are functions of t, and their growth is gov-

erned by differential equations of the form
dN
dt

= B−D. The initial task is to choose

suitable functions B and D describing the birth rates and death rates of each species.
We assume that the two species encounter each other by chance, at a rate pro-

portional to the product of the size of the two populations. If we assume that the
principal cause of death among the first species is due to being eaten by a member
of the second species, then the death rate for N is proportional to the product NP.
We assume that the birth rate for the predator is proportional to the population size
P, and that the portion of the young that survive is proportional to the available food
supply N. Thus the effective birth rate is proportional to NP. Finally, we assume that
the birth rate of the prey and the death rate of the predator are proportional to the
size of their respective populations. So the equations governing the growth of these
species are called the Lotka-Volterra equation, Table 10.1.
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Table 10.1 The Lotka-Volterra equation

Growth Birth Death
Species rate rate rate

Prey
dN
dt

= aN − bNP

Predator
dP
dt

= hNP − cP

In the Lotka-Volterra equations, a, b, c, and h are all positive constants. These
equations were first set down and analyzed, independently, by Volterra and by Lotka.
Lotka’s work on this and other population models is described in his book Elements
of Physical Biology, originally published in 1925 and reprinted by Dover, New York,
in 1956. The work of Volterra, inspired by the fluctuations in the size and com-
position of the catch of fish in the Adriatic, appeared in Cahier Scientifique, vol.
VII, Gauthier-Villars, Paris, 1931, under the romantic title “Leçons sur la théorie
mathématique de la lutte pour la vie” (Lessons on the mathematical theory of the
fight for survival). It is reprinted in his collected works published by Accademia dei
Lincei, Rome. We first give an example in which there is no predation.

Example 10.6. Consider the case in which there is no interaction between the
predator and prey, so b = h = 0 and a = 2, c = 3. Then the system reads

Growth Birth Death
Species rate rate rate

Prey
dN
dt

= 2N

Predator
dP
dt

= − 3P

The solutions are exponential:

N(t) = N0e2t , P(t) = P0e−3t .

Note that by properties of exponents, (e2t)−3/2 = e−3t , so

P(t)
P0

=

(
N(t)
N0

)−3/2

.

We plot two such relations in the (N,P)-plane in Fig. 10.17.

Next we consider the general case that all of a, b, c, and h are positive. The first
order of business is to show that these laws of growth, and knowledge of the initial
population size, are sufficient to determine the size of both populations at all future
times. We formulate this as a uniqueness theorem.
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Fig. 10.17 The (N,P)-plane in a case of no predation,
dN
dt

= 2N,
dP
dt

=−3P. Two time histories are

shown, one starting from (N0,P0) = (1,1) and the other from (N0,P0) = (1,2). See Example 10.6

Theorem 10.6. Uniqueness. A solution of the Lotka-Volterra equations (Table
10.1) is uniquely determined for all time by the specification of the initial values
N0, P0 of N and P. That is, if N,P and n, p are solutions with the same initial
values, then N(t) = n(t) and P(t) = p(t) for all t.

We ask you to fill in steps of a proof of this theorem in Problem 10.26. We omit
a proof of existence of solutions, and instead investigate the properties of solutions.
We take the case that both species are present, i.e., P > 0, N > 0. We divide the
Lotka–Volterra equations by N and P respectively, obtaining

1
N

dN
dt

= a− bP,

1
P

dP
dt

= hN − c.

It follows that P =
a
b

and N =
c
h

are steady-state solutions. That is, if the initial

values are N0 =
c
h

and P0 =
a
b

, then P =
a
b

and N =
c
h

for all t. To study the non-

steady-state solutions, we multiply the first equation by hN−c, the second equation
by bP− a, and add. The sum of the right sides is 0, so we get the relation

(
h− c

N

) dN
dt

+
(

b− a
P

) dP
dt

= 0.

Using the chain rule, we rewrite this relation as

d
dt

(
hN − c logN + bP− a logP

)
= 0.
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We introduce the abbreviations H and K through (Fig. 10.18)

H(N) = hN − c logN, K(P) = bP− a logP.

Then
d(H +K)

dt
= 0. We conclude from the fundamental theorem of calculus the

following.

Theorem 10.7. For any solution of the Lotka-Volterra equations

dN
dt

= aN − bNP,

dP
dt

= hNP− cP,

the quantity
H(N)+K(P) = hN − c logN + bP− a logP

is independent of t.

1.5

1

0.5

543210

H(N)

N

1.5

1

0.5

543210

K(P)

P

Fig. 10.18 Graphs of the functions H(N) = N − 3logN and K(P) = P− 2logP for the system
dN
dt

= 2N −NP,
dP
dt

=−3P+NP

The constancy of the sum H +K is strongly reminiscent of the law of conserva-
tion of energy in mechanics and can be used, like the law of conservation of energy,
to gain qualitative and quantitative information about solutions. For that purpose,
we note the following properties of functions the H and K. Inspection of their def-
initions shows that the functions H(N) and K(P) tend to infinity as N and P tend
to zero or to infinity. Since the functions H(N) and K(P) are continuous, they have
minimum values, which we now locate. The derivatives of these functions are

dH
dN

= h− c
N
,

dK
dP

= b− a
P
,
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and these are zero at
Nm =

c
h

and Pm =
a
b
.

Notice that these are the steady-state values for the Lotka–Volterra equations.

Theorem 10.8. Consider species N and P that satisfy the Lotka-Volterra equa-
tions (Table 10.1)

(a) Neither species can become extinct, i.e., there is a positive lower bound for
each population, throughout the whole time history.

(b) Neither species can proliferate ad infinitum, i.e., there is an upper bound
for each population throughout its time history.

(c) The steady state is neutrally stable in the following sense: if the initial state
N0, P0 is near the steady state, then N(t), P(t) stays near the steady state
throughout the whole time history.

Proof. All three results follow from the conservation law: The sum H(N)+K(P)
tends to infinity if either N or P tends to 0 or infinity. Since this is incompatible with
the constancy of H +K, we conclude that neither N(t) nor P(t) can approach 0 or
infinity. This proves parts (a) and (b).

For part (c), we specify the meaning of “near the steady state” by describing sets
Gs of points as follows. The minimum of H(N) is reached at Nm, and the minimum
of K(P) is reached at Pm. Let s be a small positive number. Denote by Gs the set
of points in the (N,P)-plane where H(N)+K(P) is less than H(Nm)+K(Pm)+ s.
For s small, Gs is a small region around the point (Nm,Pm); see Fig. 10.19. Choose
(N(0),P(0)) in Gs. Then since H(N)+K(P) has the same value for all t, H(N)+
K(P) is less than H(Nm)+K(Pm)+ s for all t. This shows that (N(t),P(t)) remains
in Gs for all t. This completes the proof of part (c). ��
The next result, Theorem 10.9, is both interesting and surprising. It is suggested by
some computed solutions that are shown in Fig. 10.20.

Theorem 10.9. Every time history is periodic, i.e., for every solution N(t),P(t)
of the Lotka-Volterra equations

dN
dt

= aN − bNP,

dP
dt

= hNP− cP,

there is a time T such that

N(T ) = N(0), P(T ) = P(0).

The number T is called the period of this particular time history. Different
time histories have different periods. It is instructive to picture the time histories
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P
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Fig. 10.19 Stability: solutions starting in the region Gs remain in that region, as shown in the
proof of Theorem 10.8. The gray region here is G1/10, where N −3logN +P−2logP exceeds its
minimum by less than 1
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Fig. 10.20 Computed graphs of N(t) and P(t) for the system
dN
dt

= 2N −NP,
dP
dt

= −3P+NP

with N(0) = 1.5, P(0) = 1. Two cycles are shown

N(t), P(t) graphed in Fig. 10.20 as curves in the (P,N)-plane, in Fig. 10.21. Period-
icity means that these curves close. Compare to Fig. 10.17, where the species do not
interact.

Proof. We write the Lotka–Volterra equations in terms of the steady-state values as

dN
dt

= aN − bNP = bN
(a

b
−P

)
= bN(Pm −P)

dP
dt

= hNP− cP = hP
(
N − c

h

)
= hP(N −Nm)

and conclude from the monotonicity criterion that N and P are increasing or de-
creasing functions of t, depending on whether the right sides are positive or negative.
Therefore,
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Fig. 10.21 Left: four computed time histories folded into the (N,P)-plane, for the same system as
in Fig. 10.20. Right: a sketch showing the notation used in the proof of Theorem 10.9

N(t)

{
increases when P < Pm,

decreases when P > Pm,

P(t)

{
decreases when N < Nm,

increases when N > Nm.

We shall use these relations to trace qualitatively the time histories of N(t) and
P(t). See Fig. 10.21. The initial values N0, P0 may be chosen arbitrarily. For sake of
definiteness, we choose N0 < Nm, P0 < Pm. Then N starts to increase, P to decrease,
until time t1, when N reaches Nm. At time t1, P starts to increase, and N continues
to increase, until time t2, when P reaches Pm. Then N starts to decrease, and P
continues to increase, until time t3, when N reaches Nm. Then P starts to decrease,
and N continues to decrease, until time t4, when P reaches Pm. Then N starts to
increase, and P continues to decrease, until time t5, when N reaches Nm.

We claim that at time t5, the value of P is the same as at time t1. To convince you
of this, we appeal to the conservation law. Denoting the values of N and P at t1 and
t5 by subscripts 1 and 5, we conclude from the conservation law that

H(N5)+K(P5) = H(N1)+K(P1).

The times t1 and t5 were chosen so that both N1 and N5 are equal to Nm. It follows
then from the conservation law that

K(P5) = K(P1).

The value of K(P) decreases for P < Pm. Recall that each value of a decreasing
function occurs only once. Since t1 and t5 were chosen so that both P1 and P5 are
less than Pm, it follows therefore from K(P5) = K(P1) that

P5 = P1.
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It follows from the uniqueness theorem, Theorem 10.6, that the time history of
N(t), P(t) after t5 is a repetition of its time history after t1. Therefore, the peri-
odicity claim is established, the period being T = t5 − t1. ��

The closed curves in the (N,P)-plane can be determined without solving the dif-
ferential equations. According to the conservation law, on each curve, the function

H(N)+K(P) = hN − c logN + bP− a logP

is constant, because the function is independent of t. The value of the constant can
be determined from the initial condition

H(N0)+K(P0) = constant.

As remarked before, each solution is periodic, but different solutions have different
periods. It is quite remarkable that the following quantities are the same for all
solutions.

Theorem 10.10. The average values of P and N over a period are the same for
all solutions of the Lotka-Volterra equations (Table 10.1), and they equal their

steady-state values Pm =
a
b

and NM =
c
h

. That is,

1
T

∫ T

0
N(t)dt = Nm,

1
T

∫ T

0
P(t)dt = Pm,

where T is the period of N and P.

Proof. Write the Lotka–Volterra equations as

1
N

dN
dt

= a− bP,
1
P

dP
dt

= hN − c.

We integrate both equations from 0 to T , where T is the period of the solution in
question. Using the chain rule, we get

logN(T )− logN(0) =
∫ T

0

1
N

dN
dt

dt =
∫ T

0
(a− bP)dt,

logP(T )− logP(0) =
∫ T

0

1
P

dP
dt

dt =
∫ T

0
(hN − c)dt.

Since T is the period of N and P, the left sides are zero. So we obtain the relations

0 = aT − b
∫ T

0
P(t)dt, 0 = h

∫ T

0
N(t)dt − cT.

Dividing the first equation by bT , the second by hT , we get

1
T

∫ T

0
P(t)dt =

a
b
, and

1
T

∫ T

0
N(t)dt =

c
h
.
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The expressions on the left are the average values of P and N over a period, while
those on the right are their steady-state values. This concludes the proof. ��

This result contains several interesting features; we mention two. The constants
a, b, c, h that determine the steady state have nothing to do with the initial values
P0, N0 of our populations. So it follows that the average values of P and N are
independent of the initial values. Thus, if we were to increase the initial population
N0, for example by stocking a lake with fish, this would not affect the average size
of N(t) over a period, but would only lead to different oscillations in the size of
N(t). We ask you in Problem 10.28 to explore cases in which stocking the lake may
result in either larger or smaller oscillations in N(t).

For another application, suppose we introduce fishing into the model. Assuming
that the catch of predator and prey is proportional to the number of each, fishing
diminishes each population at a rate proportional to the size of that population. De-
noting by f the constant of proportionality, we have the following modification of
the equations:

dN
dt

= aN − bNP− f N,
dP
dt

=−cP+ hNP− f P.

We may write these equations in the form

dN
dt

= (a− f )N − bPN,

dP
dt

= −(c+ f )P+ hNP,

and observe that they differ from the original system only in that the coefficient
a of N in the first has been replaced by a− f , and the coefficient −c of P in the
second has been replaced by −(c+ f ). According to Theorem 10.10, the average

values of P and N are
a− f

b
and

c+ f
h

, respectively. In other words, increased

fishing depresses the average population of predators, but increases the average
population of edible fish. During the First World War, the Italian fishing industry
reported a marked increase in the ratio of sharks to edible fish. Since less fishing
was done during that war than before, this observation is consistent with Volterra’s
surprising result.

In more complicated models, numerical computations are indispensable. They
not only provide numerical answers that cannot be found in any other way, but
often reveal patterns of behavior amenable to mathematical analysis. For example,
the computed solutions in Fig. 10.20 suggested that solutions are periodic, and we
proved that they are.

To conclude, we point out simplifications that were made in the models presented
in this section:

• We have neglected to take into account the age distribution of the population.
Since birth rate and death rate are sensitive to this, our models are deficient and
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would not describe correctly population changes accompanied by shifts in the
population in and out of childbearing age. This phenomenon is particularly im-
portant in demography, the study of human populations.

• We have assumed that the population is homogeneously distributed in its envi-
ronment. In many cases this is not so; the population distribution changes from
location to location.

In problems such as the geographic spread of epidemics and the invasion of the ter-
ritory belonging to one species by another, the interesting phenomenon is precisely
the change in population as a function of time and location. Population sizes that
depend on age and location as well as time are prototypes of functions of several
variables. The calculus of functions of several variables is the natural language for
the formulation of laws governing the growth of such populations.

You probably noticed throughout this section that we have treated population size
as a differentiable function of t, whereas in fact, population changes by whole num-
bers, and so is not even a continuous function of t. Our defense is that these models
are just models, i.e., approximations to reality, where some less-essential features
are sacrificed for the sake of simplicity. The point we are making is that the contin-
uous is sometimes simpler than the discrete, since it allows us to use the powerful
notions and tools of calculus. Analogous simplifications are made in dealing with
matter, e.g., in applying calculus to such physical quantities as pressure or density
as functions of time or space. After all, according to the atomic theory of matter,
these functions, too, change discontinuously.

Problems

10.22. Take the case of Eq. (10.19) where Q(N) = N4/3 and N0 = 1000.

(a) Solve Q(N) = t + c for N as a function of t.
(b) Evaluate c.

(c) Find R(N) and verify that your answer N(t) is a solution to
dN
dt

= R(N).

10.23. Show that the differential equation

dN
dt

=
√

N

is satisfied by both functions N(t) = 0 and N(t) =
1
4

t2 for t ≥ 0. Since both functions

are 0 at t = 0, does this contradict Theorem 10.3, according to which two solutions
with the same initial value agree for all t?
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10.24. Verify that the change of variables n(t) = N(−t) converts the Verhulst model
dN
dt

= 2N −N2 of Example 10.4 into the extinction model
dn
dt

= n2 − 2n of Exam-

ple 10.5.

10.25. Consider the differential equation

dN
dt

= N2 −N

for values 0 < N < 1. Derive a formula for the solutions. Use your formula to verify
that if the initial value N0 is between 0 and 1, then N(t) tends to 0 as t tends to
infinity.

10.26. Let p and n be functions of t that satisfy the following differential equations:

n′ = f (p), p′ = g(n),

where the prime denotes differentiation with respect to t, and f and g are differen-
tiable functions.

(a) Let n1, p1 and n2, p2 be two pairs of solutions. Show that the differences

n1 − n2 = m, p1 − p2 = q

satisfy the inequalities

|m′| ≤ k|q|, |q′| ≤ k|m|,

where k is an upper bound for the absolute value of the derivatives of the func-
tions f and g.

(b) Deduce that
mm′+ qq′ ≤ 2k|m||q| ≤ k(m2 + q2).

(c) Define E = 1
2 m2 + 1

2 q2. Prove that E ′ ≤ 2kE .
(d) Deduce that e−2ktE is a nonincreasing function of t. Deduce from this that if

E(0) = 0, then E(t) = 0 for all t > 0. Show that this implies that two solutions
n1, p1 and n2, p2 that are equal at t = 0 are equal forever after.

10.27. Consider the relation between numbers N and P given by the equation

H(N)+K(P) = constant, (10.22)

where H and K are convex functions, and suppose that K(P) is a decreasing function
of P for P less than some number Pm, and an increasing function for P > Pm.

(a) Show that solutions of Eq. (10.22) where P > Pm can be described by express-
ing P as a function of N. Show that solutions where P < Pm can be described
similarly. Denote these functions by P+(N) and P−(N).
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(b) Let P(N) be either of the functions P+(N), P−(N). Show by differentiating
Eq. (10.22) twice that

dH
dN

+
dK
dP

dP
dN

= 0

and
d2H
dN2 +

d2K
dP2

(
dP
dN

)2

+
dK
dP

d2P
dN2 = 0.

(c) Use the result of part (b) to express the second derivative as

d2P
dN2 =−

d2H
dN2 +

d2K
dP2

(
dP
dN

)2

dK
dP

.

Deduce from this formula and the information given about H and K that P+(N)
is a concave function and P−(N) is convex.

Remark. This confirms that the oval shapes computed in Fig. 10.21 are qualitatively
correct.

10.28. What is the common point contained in all the ovals in Fig. 10.21?

10.3 Chemical Reactions

We give an elementary introduction to the theory of chemical reactions. This subject
is of enormous interest to chemical engineers and to theoretical chemists. It also
plays a central role in two topics that have recently been at the center of public
controversy: emission by automobile engines and the deleterious effect on ozone of
the accumulation of fluorocarbon compounds in the stratosphere.

In high-school chemistry, we studied the concept of a chemical reaction: it is the
formation of one or several compounds called the products of the reaction out of
one or several compounds or elements called reactants. Here is a familiar example:

2H2 +O2 → 2H2O

In words: two molecules of hydrogen and one molecule of oxygen form two
molecules of water. Another example is

H2 + I2 → 2HI.

In words: one molecule of hydrogen and one molecule of iodine form two molecules
of hydrogen iodide.

A chemical reaction may require energy or may release energy in the form of
heat; the technical terms are endothermic and exothermic. Familiar examples of
reactions that release energy are the burning of coal or oil, and, more spectacularly,
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the burning of an explosive. In fact, the whole purpose of these chemical reactions is
to garner the energy they release; the products of these reactions are uninteresting.
In fact, they can be a severe nuisance, namely pollution. On the other hand, in the
chemical industry, the desired commodity is the end product of the reactions or of a
series of reactions.

The above description of chemical reactions deals with the phenomenon entirely
in terms of its initial and final states. In this section, we shall study time histories
of chemical reactions. This branch of chemistry is called reaction kinetics. An un-
derstanding of kinetics is essential in the chemical industry, because many reactions
necessary in certain production processes must be set up so that they occur in the
right order within specified time intervals. Similarly, the kinetics of burning must
be understood in order to know what the end products are, for when released into
the atmosphere, these chemicals affect global warming. The effect of fluorocarbons
on depletion of ozone in the stratosphere must be judged by computing the rates at
which various reactions involving these molecules occur. Last but not least, reaction
kinetics is a valuable experimental tool for studying the structure of molecules.

In this section we shall describe the kinetics of fairly simple reactions, in par-
ticular those in which both reactants and products appear as gases. Furthermore,
we shall assume that all components are homogeneously distributed in the vessel in
which the reaction takes place. That is, we assume that the concentration, tempera-
ture, and pressure of all components at any given time are the same at all points in
the vessel.

The concentration of a reactant measures the number of molecules of that re-
actant present per unit volume. Note that if two components in a vessel have the
same concentration, then that vessel contains the same number of molecules of each
component.

In what follows, we shall denote different molecules as well as atoms, ions, and
radicals that play important roles in chemical reactions by different capital letters
such as A,B,C, and we shall denote their concentrations by the corresponding lower-
case letters such as a,b,c. (In the chemical literature, the concentration of molecule
A would be denoted by [A].) These concentrations change with time. The rates at
which they change, i.e., the derivatives of the concentrations with respect to time, are
called the reaction rates. A basic principle of reaction kinetics says that the reaction
rates are completely determined by pressure, temperature, and the concentrations
of all components present. Mathematically, this can be expressed by specifying the
rates as functions of pressure, temperature, and concentrations; then the laws of
reaction kinetics take the form of differential equations:

da
dt

= f (a,b;T, p),
db
dt

= g(a,b;T, p),

where f ,g are functions specific to each particular reaction. In the simple reactions
considered here, we suppress the dependence of f , g, on the temperature T and
the pressure p. The determination of these functions is the task of the theorist and
experimenter. We shall start with some theoretical observations; of course, the last
word belongs to the experimentalist.
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The products of a chemical reaction are built out of the same basic components
as the reactants, i.e., the same nuclei and the same number of electrons, but the com-
ponents are now arranged differently. In other words, the chemical reaction is the
process by which the rearrangement of the basic components occurs. One can think
of this process of rearrangement as a continuous distortion, starting with the original
component configuration and ending up with the final one. There is an energy as-
sociated with each transient configuration; the initial and the final states are stable,
which means that energy is at a local minimum in those configurations. It follows
that during a continuous distortion of one state into the other, energy increases un-
til it reaches a peak and then decreases as the final configuration is reached. There
are many paths along which this distortion can take place; the reaction is channeled
mainly along the path where the peak value is minimum. The difference between
this minimum peak value of energy and the energy of the initial configuration is
called the activation energy. It is an energy barrier that has to be surmounted for the
reaction to take place.

This description of a chemical reaction as rearrangement in one step is an over-
simplification; it is applicable to only a minority of cases, called elementary reac-
tions. In the great majority of cases, the reaction is complex, meaning that it takes
place in a number of stages that lead to the formation of a number of interme-
diate states. The intermediate states—atoms, free radicals, and activated states—
disappear when the reaction is completed. The transitions from the initial state to an
intermediate state, from one intermediate state to another, and from an intermediate
state to the final state are all elementary reactions. So a complex reaction may be
thought of as a network of elementary reactions.

We now study the rate of an elementary reaction of form

A2 +B2 → 2AB,

where one A2 molecule consisting of two A atoms and one B2 molecule consisting
of two B atoms combine to form two molecules of the compound AB. The reaction
takes place only if the two molecules collide and are energetic enough. The kinetic
energies of the molecules in a vessel are not uniform, but are distributed according
to a Maxwellian probability distribution (see Chap. 11). Therefore, some molecules
always have sufficient kinetic energy to react when they collide, to supply the ac-
tivation energy needed for the reaction. The frequency with which this happens is
proportional to the product of the concentrations of A2 and B2 molecules, i.e., is
equal to

kab, k a positive number.

Here a and b denote the concentrations of A2 and B2, and k is the rate constant. This
is called the law of mass action. Denote the concentration of the reaction product
AB at time t by x(t). By the law of mass action, x satisfies the differential equation

dx
dt

= kab.



10.3 Chemical Reactions 423

Denote by a0 and b0 the initial concentrations of A2 and B2. Since each molecule of
A2 and B2 make two molecules of AB, the concentrations at time t are

a(t) = a0 − x(t)
2

, b(t) = b0 − x(t)
2

.

Substituting this into the differential equation yields

dx
dt

= k
(

a0 − x
2

)(
b0 − x

2

)
.

This equation is of the form of our population model
dN
dt

= R(N) in Eq. (10.18),

with x in place of N:

dx
dt

= R(x), R(x) = k
(

a0 − x
2

)(
b0 − x

2

)
.

If the initial concentration of AB is zero, then

x(0) = x0 = 0.

Since R(0) = ka0b0 is positive, the solution x(t) with initial value x(0) = 0 starts to
increase. According to Theorem 10.4, this solution tends to the zero of R(x) to the
right of x = 0 that is nearest to x = 0. The zeros of R(x) are x = 2a0 and x = 2b0.
The one nearest to zero is the smaller of the two. We denote it by x∞:

x∞ = min{2a0,2b0}.

It follows, then, that as t tends to infinity, x(t) tends to x∞. Observe that the quantity
x∞ is the largest amount of AB that can be made out of the given amounts a0 and b0

of A2 and B2. Therefore, our result shows that as t tends to infinity, one or the other
of the reactants gets completely used up.

Example 10.7. Consider

dx
dt

= (1− x)(3− x).

The smaller root is x∞ = 1. Some computed solutions are plotted in Fig. 10.22.
We see that solutions starting between 0 and 3 tend to 1.

Our second observation is that although x(t) tends to x∞, x(t) never reaches x∞.
So strictly speaking, the reaction goes on forever. However, when the difference
between x(t) and x∞ is so small that it makes no practical difference, the reaction
is practically over. We show how to estimate the time required for the practical
completion of the reaction, using a linear rate instead of the quadratic rate R(x), as
follows.
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Fig. 10.22 Graphs of several solutions to x′ = R(x) = (1−x)(3−x) of Example 10.7. The function
R is graphed in Fig. 10.23

The function R(x) = k
(

a0 − x
2

)(
b0 − x

2

)
is quadratic. Therefore, its graph is

a parabola. The second derivative of R(x) is 1
2 k, a positive quantity. Therefore, as

explained in Sect. 4.2b, its graph is a convex curve. This means that the points of
the curve lie above its tangent lines. In particular, they lie above the tangent line
at the point x∞, as illustrated in Fig. 10.23. Denote the slope of the tangent line by

n =
dR
dx

(x∞). So we deduce that

R(x)> n(x− x∞) when x 
= x∞.

Since x∞ is the smaller zero of R(x), we deduce from Fig. 10.23 that n is negative.
We set this inequality into the rate equation and get

dx
dt

= k
(

a0 − x
2

)(
b0 − x

2

)
≥ n(x− x∞).

Since x∞ is a constant, the relation
dx
dt

≥ n(x−x∞) can be further simplified if we

write
d(x− x∞)

dt
≥ n(x− x∞): denote the difference x∞ − x by y. Then the inequality

can be expressed as

0 ≥ dy
dt

− ny.

Keep in mind that we want to estimate how long it takes for x(t) to approach x∞,
i.e., for y(t) to approach 0. We multiply this inequality by e−nt :

0 ≥ e−nt dy
dt

− e−ntny.

We recognize the function on the right as the derivative of y(t)e−nt ,

0 ≥ d
dt

(
y(t)e−nt).
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1
2

0 1 3 4 x

R(x)

Fig. 10.23 The graph of the convex function R(x) = (1− x)(3− x) lies above its tangent line at
x∞ = 1: (1− x)(3− x) ≥ 2−2x. See Example 10.7

Since the derivative is nonpositive, the function y(t)e−nt is nonincreasing. Therefore,
for t positive, y(t)e−nt ≤ y(0). Multiplying both sides by ent gives

y(t)≤ y(0)ent .

Since n is a negative number, this shows that y(t) tends to zero at an exponential
rate.

Example 10.8. For the equation in Example 10.7, we have

dx
dt

= (1− x)(3− x)≥ 2− 2x,

x∞ = 1, n =−2, and y(t) = 1− x(t) approaches 0 at the rate

|1− x(t)| ≤ |1− x(0)|e−2t.

We now calculate the decay rate n for any quadratic reaction rate. We have

R(x) =
k
4

x2 − k
2
(a0 + b0)x+ ka0b0.

Differentiate:
dR
dx

=
k
2

x− k
2
(a0 + b0).

Suppose a0 is less than b0. Then x∞ = 2a0, and so

n =
dR
dx

(2a0) = ka0 − k
2
(a0 + b0) =

k
2
(a0 − b0).
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Notice that when a0 and b0 are nearly equal, n is very small. Therefore, in this case
x(t) approaches x∞ rather slowly. When a0 and b0 are equal, n= 0, and our argument
tells us nothing about x(t) approaching x∞.

We show that in case a0 equals b0, x(t) tends to x∞, but not very fast. In this case,

R(x) =
k
4
(x− x∞)

2, so the differential equation says that

dx
dt

=
k
4
(x− x∞)

2.

0

1

0 2 4 6

1/(1+t)
e-t

t

Fig. 10.24 Graphs of the functions
1

1+ t
and e−t to illustrate differences in completion rates

typical for reactions starting with equal or unequal concentrations of A2 and B2

Introducing as before y= x∞−x> 0 as a new variable, we can rewrite the differential
equation as

dy
dt

=− k
4

y2.

Divide both sides by y2. The resulting equation

1
y2

dy
dt

=− k
4

can be written as
d
dt

(
1
y

)
=

k
4
.

Integrate from 0 to t; it follows that
1

y(t)
=

1
y(0)

+
k
4

t. Taking reciprocals, we get

y(t) =
y(0)

1+ 1
4 ky(0)t

.
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Since k and y(0) are positive, y(t) is defined for all t ≥ 0, and tends to 0 as t tends
to infinity. This proves that x(t) = x∞ − y(t) tends to x∞, but at a very slow rate. See
Fig. 10.24.

There is a good chemical reason why the reaction proceeds to completion much
more slowly when the ingredients a0 and b0 are so perfectly balanced that they get
used up simultaneously. If there is a shortage of both kinds of molecules, a collision
leading to a reaction is much less likely than when there is a scarcity of only one
kind of molecule but an ample supply of the other.

Complex Reactions. We consider a typical complex reaction such as the sponta-
neous decomposition of some molecule A, for example N2H4. The decomposition
occurs in two stages; the first stage is the formation of a population of activated
molecules B followed by the spontaneous splitting of the activated molecules. The
mechanism for the formation of activated molecules B is through collision of two
sufficiently energetic A molecules. See Fig. 10.25. The number of these collisions
per unit time in a unit volume is proportional to a2, the square of the concentration
of A. There is also a reverse process of deactivation, due to collisions of activated
and nonactivated molecules; the number of these per unit time in a unit volume is
proportional to the product ab of the concentrations of A and B. There is, finally, a
spontaneous decomposition of B molecules into the end products C. The number of
these decompositions per unit time in a unit volume is proportional to the concen-
tration of B. If we denote the rate constant of the formation of activated molecules
by k, that of the reverse process by r, and that of the spontaneous decomposition by
d, we get the following rate equations:

da
dt

= −ka2 + rab,

db
dt

= ka2 − rab− db, (10.23)

and
dc
dt

= db, which may be used after b(t) is determined. It can be shown that a(t)

and b(t) tend to zero as t tends to infinity, but the argument goes beyond the scope
of this chapter.

Finally, we again call attention to the striking similarity between the differential
equations governing the evolution of concentrations of chemical compounds during
reaction and the laws governing the evolution of animal species interacting with
each other. This illustrates the universality of mathematical ideas.

Problems

10.29. Consider the differential equations

(a)
dy
dt

=−y2,
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Fig. 10.25 An illustration for a complex decomposition of A to C. Here k is the rate of formation
of activated B from two A, r the reverse rate, and d the rate of spontaneous decomposition of B to C

(b)
dy
dt

=−y.

Take y(0) positive. For which equation does y(t) tend to zero faster as t tends to
infinity?

10.30. Show that if a(t) and b(t) are positive functions that satisfy the differential
equations (10.23), than a+ b is a decreasing function of t.

10.31. In Eq. (10.23) let p(t) = rb(t)− ka(t), so that

da
dt

= ap,
db
dt

=−ap− db.

Divide the positive quadrant of the (a,b)-plane into two parts along the ray rb = ka.
Show that on the side where p(t)< 0, a(t) is a decreasing function, and that on the
side where p(t)> 0, b(t) is decreasing.

10.4 Numerical Solution of Differential Equations

In Sect. 10.2a we showed how integration and inverting a function can be used to
find solutions of an equation linking a function N to its first derivative. Such meth-
ods no longer work for finding solutions of equations involving functions and their
higher derivatives, or for systems of equations relating the derivatives of several
functions. Such equations can be solved only by numerical methods. In this section,
we show how this is done with a very simple example.

The basis of most numerical methods for finding approximate solutions of a dif-
ferential equation

dN
dt

= N′ = R(N, t), N(0) = N0,
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is to replace the derivative
dN
dt

in the differential equation by a difference quotient

N(t + h)−N(t)
h

.

Instead of the differential equation, we solve the difference equation

N(t + h)−N(t)
h

= R(N(t), t), N(0) = N0,

which we rearrange as

N(t + h) = N(t)+ hR(N(t), t).

This is called Euler’s method for approximating solutions.
We denote solutions of the difference equation by Nh(t), defined for values of t

that are integer multiples nh of h. One of the results of the theory of approximations
by difference equations is that Nh(nh) tends to N(t) as h tends to zero and nh tends
to t. The proof goes beyond the scope of this book. However, we will show that
the method converges in the case N′ = N. In the process, we will encounter some
familiar sequences from Chap. 1.

The Equation N′ = N. The solution of the differential equation

N′(t) = N(t), with initial condition N(0) = 1, (10.24)

is our old friend N(t) = et . Denote by eh(t) a function that satisfies the equation ob-
tained by replacing the derivative on the left in Eq. (10.24) by a difference quotient:

eh(t + h)− eh(t)
h

= eh(t), eh(0) = 1. (10.25)

For h small, the difference quotient doesn’t differ too much from the derivative, so
it is reasonable to expect that the solution eh of Eq. (10.25) does not differ too much
from the solution et of Eq. (10.24). From Eq. (10.25), we can express eh(t + h) in
terms of eh(t) as follows:

eh(t + h) = (1+ h)eh(t). (10.26)

Set t = 0 in Eq. (10.26). Since eh(0) = 1, we get eh(h) = 1 + h. Set t = h in
Eq. (10.26), and we get eh(2h) = (1+ h)eh(h) = (1+ h)2. Continuing in this fash-

ion, we get for any positive integer k, eh(kh) = (1+ h)k. When h =
1
n

and t = kh,

k = nt, we have (Fig. 10.26)

eh(t) = e1/n

(
k

1
n

)
=

(
1+

1
n

)k

=

(
1+

1
n

)nt

=

((
1+

1
n

)n)t

.
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Recall that
(
1+ 1

n

)n
is the number we called en in Sect. 1.4. So we have

e1/n(t) = (en)
t

for every positive rational number t.

10

1

e

Fig. 10.26 Approximations eh(kh) using Eq. (10.26) with h =
1
n

. Values are connected by seg-

ments. Dotted line: n = 2 and h = 0.5. Solid line: n = 4 and h = 0.25. The highest points are(
1+

1
2

)2
and

(
1+

1
4

)4

We investigate now another way of replacing the differential equation (10.24)
by a difference equation. We denote this approximate solution by fh(t). As before,
we replace the derivative by the same difference quotient, but we set this equal to
fh(t + h):

fh(t + h)− fh(t)
h

= fh(t + h), fh(0) = 1. (10.27)

This equation can be used to express fh(t + h) in terms of fh(t):

fh(t + h) =
1

1− h
fh(t).

Since fh(0) = 1, we deduce from this equation that fh(h) =
1

1− h
. Arguing as be-

fore, where t = kh, we deduce that for every positive integer k, fh(kh) =

(
1

1− h

)k

.

Set h =
1

n+ 1
. Then
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fh(kh) =

(
1

1− 1
n+1

)k

=

(
n+ 1

n

)k

=

(
1+

1
n

)t(n+1)

.

Recall that
(
1+ 1

n

)n+1
is the number we called fn in Sect. 1.4. So f1/(n+1)(t) = ( fn)

t .
Next we use calculus to compare the solutions to the difference equations with

the exact solution of the differential equation (10.24), for the case t = 1.

Theorem 10.11. For every positive integer n,

(
1+

1
n

)n

< e <

(
1+

1
n

)n+1

. (10.28)

Proof. We use the mean value theorem to express the difference quotient

et+h − et

h
= ec,

where c lies between t and t + h. Since et is an increasing function, we get that if
h > 0, then

et < ec =
et+h − et

h
< et+h.

Multiply by h and rearrange terms to get

(1+ h)et < et+h <
1

1− h
et . (10.29)

Choosing first t = 0 and then t = h, we deduce from the inequality on the left
in Eq. (10.29) that

1+ h < eh, (1+ h)eh < e2h.

Multiply the first of these by (1+ h) and use the second to see that (1+ h)2 < e2h.

Similarly, for every positive integer n, (1+ h)n < enh. Choosing h =
1
n

, we get

(
1+

1
n

)n

< e. (10.30)

Using similarly the inequality on the right in Eq. (10.29), we get eh <
1

1− h
. Then

e2h <
1

1− h
eh <

(
1

1− h

)2

,
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and so forth. Taking n+ 1 steps and h =
1

n+ 1
gives

e = e(n+1) 1
n+1 <

(
1

1− 1
n+1

)n+1

=

(
1+

1
n

)n+1

.

This completes the proof. ��
In Sect. 1.4 we proved inequality (10.28) using the A-G inequality; here we have

given an entirely different proof.

From Theorem 10.11, we can easily deduce that both
(
1+ 1

n

)n
and

(
1+ 1

n

)n+1

tend to e as n tends to infinity. Take their difference:

(
1+

1
n

)n+1

−
(

1+
1
n

)n

=

(
1+

1
n

)n 1
n
<

e
n
.

The inequality we have just proved shows that the difference tends to zero. Since e
lies between these two numbers, it follows that their difference from e also tends to
zero. This proves the convergence of both difference schemes (10.25) and (10.27).

The Rate of Convergence. In Sect. 1.4, we saw that the convergence of en and fn

to the limit e is very slow. For example, with n = 1000 we had e1000 = 2.717 . . .
and f1000 = 2.719 . . ., only two correct digits after the decimal point. Now we shed
some light on why these approximations to e are so crude. Both en and fn are derived
from one-sided approximations to the derivative. We saw in Sect. 4.4 that for a twice
differentiable function g, the error in using the asymmetric difference quotient

g′(t)− g(t + h)− g(t)
h

tends to zero with h, while the error in using the symmetric difference quotient

g′(t)− g(t + h)− g(t− h)
2h

is equal to sh, where s tends to zero with h, which gives a better approximation.
We can take advantage of this observation to improve the approximate solution to
y′ = y. Use the equation

g(t + h)− g(t− h)
2h

=
g(t + h)+ g(t− h)

2
,

in which we use the symmetric difference quotient on the left-hand side to approx-
imate y′, and on the right hand-side we average the values of g at t + h and t − h as

an approximation of y(t). Solving for g(t + h), we obtain g(t + h) =
1+ h
1− h

g(t − h).

Replace t by t + h to get

g(t + 2h) =
1+ h
1− h

g(t).
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Taking g(0) = 1, this gives

g(2h) =
1+ h
1− h

, g(4h) =
1+ h
1− h

g(2h) =

(
1+ h
1− h

)2

, . . . g(2nh) =

(
1+ h
1− h

)n

.

Take h =
1

2n
. We obtain

g(1) =

(
1+ 1

2n

1− 1
2n

)n

.

For n = 10 and 20, this gives the estimates

(
1.05
0.95

)10

= 2.7205 . . . and

(
1.025
0.975

)20

= 2.7188 . . . ,

much closer to e than the numbers en and fn.

Problems

10.32. Use Euler’s numerical method with h = 0.1 to approximate the solution to

dy
dt

=−1− t, y(0) = 1

for several steps, sufficient to estimate the time t at which y becomes 0. Compare to
the exact solution.

10.33. Verify that for any differential equation y′ = f (t) with y(0) = 0, Euler’s nu-
merical method with n subdivisions gives exactly the approximate integral

yn = Ileft( f , [0,nh]).

10.34. Consider the differential equation y′ = a− y, where a is a constant.

(a) Verify that the constant function y(t) = a is a solution.
(b) Suppose y is a solution, and for some interval of t we have y(t)> a. Is y increas-

ing or decreasing?
(c) Consider two numerical methods. For the first, we use Euler’s method to produce

a sequence yn according to

yn+1 = yn + h(a− yn).

For the second, we use a method similar to that in Eq. (10.27) to produce a
sequence Yn according to

Yn+1 = Yn + h(a−Yn+1).
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Show that if some yn is equal to a, then yn+1 = a, and if some Yn is equal to a,
then Yn+1 = a.

(d) Show that if some Yn is greater than a, then Yn+1 > a.
(e) Find a value of h such that the sequence yn alternates between numbers less than

a and greater than a.



Chapter 11
Probability

Abstract Probability is the branch of mathematics that deals with events whose
individual outcomes are unpredictable, but whose outcomes on average are pre-
dictable. In this chapter we shall describe the rules of probability. We shall apply
these rules to specific situations. As you will see, the notions and methods of cal-
culus play an extremely important part in these applications. In particular, the loga-
rithmic and exponential functions are ubiquitous. For these reasons, this chapter has
been included in this book.

The origins of calculus lie in Newtonian mechanics, of which a brief preview
was given in Sect. 10.1, where we considered the motion of a particle under the
combination of a restoring force and friction. We saw that once the force acting on
a particle is ascertained and the initial position and velocity of the particle specified,
the whole future course of the particle is predictable. Such a predictable motion is
called deterministic. In fact, every system of particles moving according to Newton’s
laws by ascertainable forces describes a predictable path. On the other hand, when
the forces acting on a particle cannot be ascertained exactly, or even approximately,
or when its initial position and velocity are not under our control or even our power
to observe, then the path of the object is far from being predictable. Many—one
is tempted to say almost all—motions observed in everyday life are of this kind.
Typical examples are the wafting of smoke, drifting clouds in the sky, dice thrown,
cards shuffled and dealt. Such unpredictable motion is called nondeterministic or
random.

Even though the outcome of a single throw of a die is unpredictable, the aver-
age outcome in the long run is quite predictable, at least if the die is the standard
kind: each number will appear in about one-sixth of a large number of throws. Sim-
ilarly, if we repeatedly shuffle and deal out the top card of a deck of 52 cards, each
card will appear about 1/52 times the number of deals. With certain types of cloud
formations, experience may indicate rain in three out of five cases on average.

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8 11, © Springer Science+Business Media New York 2014
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11.1 Discrete Probability

We shall consider some simple, almost simplistic, experiments such as the tossing
of a die, the shuffling of a deck of cards and dealing the top card, and the tossing of a
coin. A more realistic example is the performance of a physical experiment. The two
stages of an experiment are setting it up and observing its outcome. In many cases,
such as meteorology, geology, oceanography, the setting up of the experiment is
beyond our power; we can merely observe what has been set up by nature.

We shall deal with experiments that are repeatable and nondeterministic. Repeat-
able means that it can be set up repeatedly any number of times. Nondeterministic
means that any single performance of the experiment may result in a variety of
outcomes. In the simple examples mentioned at the beginning of this section, the
possible outcomes are respectively a whole number between 1 and 6, any one of
52 cards, heads or tails. In this section, we shall deal with experiments that like the
examples above, have a finite number of possible outcomes. We denote the number
of possible outcomes by n, and shall number them from 1 to n.

Finally, we assume that the outcome of the experiment, unpredictable in any
individual instance, is predictable on average. By this we mean the following: Sup-
pose we could repeat the experiment as many times as we wished. Denote by S j

the number of instances among the first N experiments in which the jth outcome

was observed to take place. Then the frequency
S j

N
with which the jth outcome has

been observed to occur tends to a limit as N tends to infinity. We call this limit the
probability of the jth outcome and denote it by p j:

p j = lim
N→∞

S j

N
. (11.1)

These probabilities have the following properties:

(a) Each probability p j is a real number between 0 and 1:

0 ≤ p j ≤ 1.

(b) The sum of all probabilities equals 1:

p1 + p2 + · · ·+ pn = 1.

Both these properties follow from Eq. (11.1), for
S j

N
lies between 0 and 1, and there-

fore so does its limit p j. This proves the first assertion. On the other hand, there are
altogether n possible outcomes, so that each of the first N outcomes of the sequence
of experiments performed falls into one of these n cases. Since S j is the number of
instances among the first N when the jth outcome was observed, it follows that

S1 + S2 + · · ·+ Sn = N.
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Dividing by N, we get
S1

N
+

S2

N
+ · · ·+ Sn

N
= 1.

Now let N tend to infinity. The limit of
S1

N
is p1, that of

S2

N
is p2, etc., so in the limit,

we see that p1 + p2 + · · ·+ pn = 1, as asserted.
Sometimes, in fact very often, we are not interested in all the details of the out-

come of an experiment, but merely in a particular aspect of it. For example, in draw-
ing a card we may be interested only in the suit to which it belongs, and in throwing
a die, we may be interested only in whether the outcome is even or odd. An occur-
rence such as drawing a spade or throwing an even number is called an event. In
general, we define an event E as any collection of possible outcomes. Thus drawing
a spade is the collective name for the outcomes of drawing the deuce of spades, the
three of spades, etc., all the way up to drawing the ace of spades. Similarly, an even
throw of a die is the collective name for throwing a two, a four or a six.

We define the probability p(E) of an event E similarly to the way we defined the
probability of an outcome:

p(E) = lim
N→∞

S(E)
N

,

where S(E) is the number of instances among the first N performances of the
experiment when the event E took place. It is easy to show that this limit exists.
In fact, it is easy to give a formula for p(E). For by definition, the event E takes
place whenever the outcome belongs to the collection of the possible outcomes that
make up the event E . Therefore, S(E), the number of instances in which E has
occurred, is the sum of all S j for those j that make up E:

S(E) = ∑
j in E

S j.

Divide by N:
S(E)

N
= ∑

j in E

S j

N
.

This relation says that
S(E)

N
is the sum of the frequencies

S j

N
, where j is in E . We

deduce that in the limit as N tends to infinity,

p(E) = ∑
j in E

p j. (11.2)

Two events E1 and E2 are called disjoint if both cannot take place simultaneously.
That is, the set of outcomes that constitute the event E1 and the set of outcomes that
constitute the event E2 have nothing in common. Here are some examples of disjoint
events:

Example 11.1. If the experiment consists in drawing one card, let E1 be the event
of drawing a spade, and E2 the event of drawing a heart:
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E1 = {2♠,3♠, . . . ,10♠,J♠,Q♠,K♠,A♠}, E2 = {2♥,3♥, . . . ,A♥}.

Each event contains 13 outcomes, and they have no outcome in common; E1 and
E2 are disjoint events.

Example 11.2. Suppose the experiment is to roll one die. Let E1 be the event of
throwing an even number, and E2 the event of throwing a 3. Then E1 consists of
the outcomes 2, 4, and 6, while E2 consists of outcome 3 only. These are disjoint.

We define the union of two events E1 and E2, denoted by E1 ∪E2, as the event of
either E1 or E2 (or both) taking place. That is, the outcomes that constitute E1 ∪E2

are the outcomes that constitute E1 combined with the outcomes that constitute E2.

Example 11.3. In the card experiment, Example 11.1, E1 ∪E2 consists of half
the deck: all the spades and all the hearts. In the die experiment, Example 11.2,
E1 ∪E2 consists of outcomes 2, 3, 4, and 6.

The following observation is as important as it is simple: The probability of the
union of two disjoint events is the sum of the probabilities of each event:

p(E1 ∪E2) = p(E1)+ p(E2).

This is called the addition rule for disjoint events. This result follows from formula
(11.2) for the probability of an event, for by definition of union,

p(E1 ∪E2) = ∑
j in E1 or E2

p j.

On the other hand, disjointness means that an outcome j may belong either to E1 or
to E2 but not to both. Therefore,

p(E1 ∪E2) = ∑
j in E1 or E2

p j = ∑
j in E1

p j + ∑
j in E2

p j = p(E1)+ p(E2),

as asserted.
Next we turn to another important idea in probability, the independence of two

experiments. Take two experiments such as (1) throwing a die and (2) shuffling a
deck and dealing the top card. Our common sense plus everything we know about
the laws of nature tells us that these experiments are totally independent of each
other in the sense that the outcome of one cannot possibly influence the other, nor is
the outcome of both under the influence of a common cause. We state now, precisely
in the language of probability theory, an important consequence of independence.

Given two experiments, we can compound them into a single combined experi-
ment simply by performing them simultaneously. Let E be any event in the frame-
work of one of the experiments, F any event in the framework of the other. The
combined event of both E and F taking place will be denoted by E ∩F .

Example 11.4. For instance, if E is the event an even throw, and F is the event
drawing a spade, then E ∩F is the event of an even throw and drawing a spade.
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We claim that if the experiments are independent, then the probability of the
combined event E ∩F is the product of the separate probabilities of the events E
and F :

p(E ∩F) = p(E)p(F). (11.3)

We refer to this relation as the product rule for independent experiments.
We now show how to deduce the product rule. Imagine the combined experi-

ment repeated as many times as we wish. We look at the first N experiments of
this sequence. Among the first N, count the number of times E has occurred, F has
occurred, and E ∩F has occurred. We denote these numbers by S(E), S(F), and
S(E ∩F). By definition of the probability of an event,

p(E) = lim
N→∞

S(E)
N

,

p(F) = lim
N→∞

S(F)
N

,

p(E ∩F) = lim
N→∞

S(E ∩F)
N

.

Suppose that we single out from the sequence of combined experiments the
subsequence of those in which E occurred. The frequency of occurrence of F

in this subsequence is
S(E ∩F)

S(E)
. If the two events E and F are truly independent,

the frequency with which F occurs in this subsequence should be the same as the
frequency with which F occurs in the original sequence. Therefore,

lim
N→∞

S(E ∩F)
S(E)

= lim
N→∞

S(F)
N

= p(F).

Now we write the frequency S(E ∩F)/N as the product

S(E ∩F)

N
=

S(E ∩F)
S(E)

S(E)
N

.

Then

lim
N→∞

S(E ∩F)
N

= lim
N→∞

S(E ∩F)

S(E)
· lim

N→∞

S(E)
N

.

Therefore, p(E ∩F) = p(E)p(F).
Suppose that one experiment has m outcomes numbered 1,2, . . . , j, . . . ,m, and the

other has n outcomes numbered 1,2, . . . ,k, . . . ,n. Denote their respective probabili-
ties by p1, . . . , pm and q1, . . . , qn. The combined experiment then has mn possible
outcomes, namely all pairs of outcomes ( j,k). If the experiments are independent,
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then the product rule tells us that the outcome ( j,k) of the combined experiment has
probability

p jqk.

This formula plays a very important role in probability theory. We now give an
illustration of its use.

Suppose that both of the two experiments we have been discussing are the tossing
of a die. Then the combined experiment is the tossing of a pair of dice. Each exper-
iment has six possible outcomes, with probability 1

6 . There are 36 outcomes for the
combined experiment, which we can list from (1,1) to (6,6). According to the prod-
uct rule for independent events, p(E ∩F) = p(E)p(F), so each combined outcome
has probability 1

36 . We now ask the following question: What is the probability of
the event of tossing a 7? There are six ways of tossing a 7:

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1).

The probability of tossing a 7 is the sum of the probabilities of these six outcomes
that constitute the event. That sum is

1
36

+
1
36

+
1

36
+

1
36

+
1

36
+

1
36

=
1
6
.

Similarly, we can calculate the probability of tossing any number between 2 and 12.
We ask you in Problem 11.6 to go through the calculations of determining the prob-
abilities that the numbers 2,3, . . . ,12 will be thrown. The results are in Table 11.1.

Table 11.1 Probabilities for the sum of two independent dice

Throw 2 3 4 5 6 7 8 9 10 11 12
Probability 1

36
1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

Numerical Outcome. We now turn to another important concept of probability,
the numerical outcome of an experiment. In physical experiments designed to mea-
sure the value of a single physical quantity, the numerical outcome is simply the
measured value of the quantity in question. For the simple example of throwing a
pair of dice, the numerical outcome might be the sum of the face values of each
die. For the experiment of dealing a bridge hand, the numerical outcome might be
the point count of the bridge hand. In general, the numerical outcome of an exper-
iment means the assignment of a real number x j to each of the possible outcomes,
j = 1,2, . . . , n.

Note that different outcomes may be assigned the same number, as in the case
of the dice; the numerical outcome 7 is assigned to the six different outcomes
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1).

Expectation. We show now that in a random experiment with n possible outcomes
of probability p j and numerical outcome x j ( j = 1,2 . . .n), the average numerical
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outcome, called the mean of x, or expectation of x, denoted by x or E(x), is given by
the formula

x = E(x) = p1x1 + · · ·+ pnxn. (11.4)

To prove this, denote as before by S j the number of instances among the first N in
which the jth outcome was observed. The average numerical outcome among the
first N is therefore

S1x1 + S2x2 + · · ·+ Snxn

N
.

We rewrite this as
S1

N
x1 +

S2

N
+ · · ·+ Sn

N
xn.

By hypothesis, each of the ratios
S j

N
tends to the limit p j. It follows that the average

numerical outcome tends to x, as asserted.
We now give an example of formula (11.4) for the average numerical outcome.

Take the experiment of throwing a pair of dice. We classify the outcomes as throwing
a 2, 3, . . ., up to 12. We take these numbers to be the numerical outcomes of the
experiment. The probability of each outcome is given in Table 11.1. We get the
following value for the average numerical outcome of a throw of a pair of dice:

x =
1

36
2+

1
18

3+
1

12
4+

1
9

5+
5
36

6+
1
6

7+
5

36
8+

1
9

9+
1

12
10+

1
18

11+
1

36
12 = 7.

Variance. We have shown that if we perform a random experiment with numerical
outcomes many times, the average of the numerical outcomes will be very close
to the mean, given by Eq. (11.4). A natural question is this: by how much do the
numerical outcomes differ on average from the mean? The average difference is

n

∑
i=1

(xi − x)pi =
n

∑
i=1

pixi −
( n

∑
i=1

pi
)
x = x− x = 0,

not very informative. It turns out that a related concept, the variance, has much
better mathematical properties.

Definition 11.1. The variance, denoted by V , is the expected value of the
square of the difference of the outcome and its expected value:

V = (x− x)2 = E
(
(x−E(x))2).

We show how to express the variance in terms of the numerical outcomes and
their probabilities. The numerical outcome x j differs from the mean x by x j − x. Its
square is (x j − x)2, which is equal to

x2
j − 2x jx+(x)2. (11.5)
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Denote as before by S j the number of times the jth outcome occurred among the
first N events. The expected value of the quantity in Eq. (11.5) is

S1x2
1 + · · ·+ Snx2

n

N
− 2

S1x1 + · · ·+ Snxn

N
x+(x)2.

As N tends to infinity,
S j

N
tends to p j. Therefore, the expected value above tends to

V = p1x2
1 + · · ·+ pnx2

n − 2(p1x1 + · · ·+ pnxn)x+(x)2 = x2 − (x)2.

We denote the expected value of the square of the outcome by x2 = E(x2). This
leads to an alternative way to calculate the variance:

V = E
(
(x−E(x))2)= E(x2)− (

E(x)
)2
. (11.6)

Definition 11.2. The square root of the variance is called the standard devia-
tion.

The Binomial Distribution. Suppose a random experiment has two possible
outcomes A and B, with probabilities p and q respectively, where p+ q = 1. For
example, think of a coin toss, or an experiment with two outcomes, A success and B
failure. Choose any positive integer N and repeat the experiment N times. Assume
that the repeated experiments are independent of each other. This new combined
experiment has outcomes that are a string of successes and failures. For example, if
N = 5, then ABAAB is one possible outcome, and another is BABBB. If we let x be
the numerical outcome that this repeated experiment results in A occurring exactly
x times, we see that x has possible values

x = 0, 1, , . . . ,N.

The probability that the outcome A occurs exactly k times and the outcome B exactly
N − k times is given by the expression

bk(N) =

(
N
k

)
pkqN−k.

For since the outcomes of the experiments are independent of each other, the prob-
ability of a particular sequence of (k) A’s and (N − k) B’s is pkqN−k. Since there are

exactly

(
N
k

)
arrangements of (k) A’s and (N − k) B’s, this proves the result. We

make the following definition.
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Definition 11.3. The probabilities

bk(N) =

(
N
k

)
pkqN−k (11.7)

are called the binomial distribution. We call bk(N) the probability of k successes
in N independent trials, where p is the probability of success in one trial, and
q = 1− p it the probability of failure.

The sum of the probabilities of all possible outcomes is

N

∑
k=0

(
N
k

)
pkqN−k =

N

∑
k=0

(
N
k

)
pk(1− p)N−k.

According to the binomial theorem, this sum is equal to (p+ 1− p)N = 1N = 1.

Example 11.5. Suppose a fair coin is tossed 10 times, and x is the number of
heads. What is the probability of getting 7 heads and 3 tails? “Fair” means that

the probabilities of heads or tails on one toss are each
1
2

. We take N = 10. There

are

(
10
7

)
= 120 ways for 7 heads to turn up out of 10 tosses. The probability of

each is
(

1
2

)10
. Therefore,

p(x = 7) =

(
10
7

)(1
2

)7(1
2

)3

=
(10)(9)(8)

3!

(1
2

)10
= (120)

1
1024

= 0.1171875

We calculate now the expected value of the number occurrences of outcome A
when there are N independent trials. Let (x = k) be the numerical outcome that there
are exactly k occurrences of A, and let p(x = k) be its probability. We saw above that

p(x = k) =

(
N
k

)
pk(1− p)N−k for each possible value of x = 0, 1, 2, . . . , k, . . . , N.

By definition of expectation,

E(x) =
N

∑
k=0

kp(x = k) =
N

∑
k=0

k

(
N
k

)
pkqN−k =

N

∑
k=1

k

(
N
k

)
pkqN−k.

Using the formula for the binomial coefficients, we can write the formula for the
expected value as

E(x) =
N

∑
k=1

k N!
k!(N − k)!

pkqN−k = N p
N

∑
k=1

(N − 1)!
(k− 1)!(N − k)!

pk−1qN−k.
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Using the binomial theorem, we can rewrite the last sum as

N p(p+ q)N−1 = N p.

Thus we have proved that for the binomial distribution, the expected number of
successes, E(x), is N p.

Note that since the probability of the outcome A in a single trial is p, it is rea-
sonable to expect the outcome A to occur N p times after the experiment has been
performed N times.

The Poisson Distribution. Suppose you know that each week, a large number of
vehicles pass through a busy intersection and there are on average u accidents. Let
us assume that the probability of a vehicle having an accident is independent of the
occurrence of previous accidents. We use a binomial distribution to determine the
probability of k accidents in a week:

bk(N) =

(
N
k

)
pk(1− p)N−k =

N(N − 1) . . .(N − k+ 1)
k!

pk(1− p)N−k

=

(
1− 1

N

)
. . .

(
1− k− 1

N

)
Nk pk(1− p)N−k

k!
.

Setting p =
u
N

, we can rewrite this as

=

[(
1− 1

N

) · · ·(1− k−1
N

)
(1− p)k

]
uk

k!

(
1− u

N

)N
.

As N tends to infinity, p tends to 0, and the factor in brackets tends to 1, because
both the numerator and the denominator tend to 1. As shown in Sect. 1.4, the third
factor tends to e−u. Therefore,

lim
N→∞, u=N p

bk(N) =
uk

k!
e−u.

This gives us an estimate for bk(N) when N is large, p is small, and N p = u.

Definition 11.4. The Poisson distribution is the set of probabilities

pk(u) =
uk

k!
e−u, (11.8)

where u is a parameter. The number pk is the probability of k favorable out-
comes, k = 0,1,2, . . ..
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Note that the sum of the pk(u) equals 1:

∞

∑
k=0

pk(u) = e−u
∞

∑
k=0

uk

k!
= e−ueu = 1.

Here we have used the expression of the exponential function given by its Taylor
series. The Poisson process is an example of discrete probability with infinitely
many possible outcomes.

Next, we show that the combination of two Poisson processes is again a Poisson
process. Denote by pk(u) and pk(v) the probability of k favorable outcomes in these
processes, where pk is given by formula (11.8). We claim that the probability of k
favorable outcomes when both experiments are performed is pk(u+ v), assuming
that the experiments are independent.

Proof. There will be k favorable outcomes for the combined experiment if the first
experiment has j favorable outcomes and the second experiment has (k− j). If the
experiments are independent, the probability of such a combined outcome is the
product of the probabilities,

p j(u)pk− j(v),

so the probability of the combined experiment to have k favorable outcomes is
the sum

∑
j

p j(u)pk− j(v) = ∑
j

u j

j!
e−u vk− j

(k− j)!
e−v.

We rewrite this sum as

1
k!

e−(u+v)∑
j

k!
j!(k− j)!

u jvk− j.

The sum in this formula is the binomial expression for (u+v)k. Therefore, the prob-
ability of k favorable outcomes for the combined experiment is

1
k!
(u+ v)ke−(u+v),

which is the Poisson distribution pk(u+ v). ��

Problems

11.1. Calculate the variance of the outcome when one die is rolled.

11.2. Find the probability of getting exactly three heads in six independent tosses of
a fair coin.

11.3. Let E be an event consisting of a certain collection of outcomes of an experi-
ment. We may call these outcomes favorable from the point of view of the event that
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interests us. The collection of all unfavorable outcomes, i.e., those that do not belong
to E , is called the event complementary to E . Denote by E ′ the complementary
event. Prove that

p(E)+ p(E ′) = 1.

11.4. We have said that the probability of the outcome ( j,k) of the combination of
two independent experiments is p jqk when the outcomes of one experiment have
probabilities p j and the other qk, where j = 1, 2, . . . , n and k = 1, 2, . . . , m. Show
that the sum of all these probabilities is 1.

11.5. An event E is included in the event F if whenever E takes place, F also takes
place. Another way of expressing this relationship is to say that the outcomes that
constitute E form a subset of the outcomes that make up F . The assertion “the event
E is included in the event F” is expressed in symbols by E ⊂ F . For example, the
event E of drawing a spade is included in the event F of drawing a black card.

Show that if E ⊂ F , then
p(E)≤ p(F).

11.6. Verify the probabilities shown for two independent dice in Table 11.1.

11.7. Let E1, E2, . . . , Em be a collection of m events that are disjoint in the sense
that no outcome can belong to more than one event. Denote the union of the events
E j by

E = E1 ∪E2 ∪·· ·∪Em.

Show that the additive rule holds:

p(E) = p(E1)+ · · ·+ p(Em).

11.8. Show that the variance of the number of successes in the binomial distribution
is N p(1− p).

11.9. Let x represent the number of successes in a Poisson distribution (11.8). Show
that the expected value

E(x) =
∞

∑
k=0

kpk(u)

is equal to u.

11.2 Information Theory: How Interesting Is Interesting?

It is a universal human experience that some information is dull, some interesting.
Man bites dog is news, dog bites man is not. In this section, we describe a way of
assigning a quantitative measure to the value of a piece of information.

“Interesting,” in this discussion, shall mean the degree of surprise at being in-
formed that a certain event E , whose occurrence is subject to chance, has occurred.
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An event is a collection of possible outcomes of an experiment. The frequency with
which the event E occurs in a large number of performances of the experiment is its
probability p(E). We assume in this theory that the information gained on learning
that an event has occurred depends only on the probability p of the event. We denote
by f (p) the information thus gained. In other words, we could think of f (p) as a
measure of the element of surprise generated by the event that has occurred.

What properties does this function f have? We claim that the following four are
mandatory:

(a) f (p) increases as p decreases.
(b) f (1) = 0.
(c) f (p) tends to infinity as p tends to 0.
(d) f (pq) = f (p)+ f (q).

Property (a) expresses the fact that the occurrence of a less probable event is more
surprising than the occurrence of a more probable one and therefore carries more
information. Property (b) says that the occurrence of an event that is a near certainty
imparts almost no new information, while property (c) says that the occurrence of a
rare event is of great interest and furnishes a great deal of new information.

Property (d) expresses a property of independent events. Suppose that two events
E and F are independent. Since such events are totally unrelated, being informed
that both of them have occurred conveys no more information than learning that
each has occurred separately, i.e., the information gained on learning that both
have occurred is the sum of the information gained by learning of each occurrence
separately. Denote by p and q the probabilities of events E and F , respectively. Ac-
cording to the product rule (11.3), the probability of the combined event E ∩F is
the product pq. It is not hard to show that the only continuous function that satisfies
property (d) is a constant multiple of log p. So we conclude that

f (p) = k log p. (11.9)

What is the value of this constant? According to property (a), f (p) increases with
decreasing p. Since log p increases with increasing p, we conclude that the constant
must be negative. What about its magnitude? There is no way of deciding that with-
out first adopting an arbitrary unit of information. For convenience, we choose the
constant to be −1, and so define

f (p) =− log p.

We ask you to verify properties (b) and (c) in Problem 11.10.
Now consider an experiment with n possible outcomes having probabilities

p1, p2, . . . , pn. If in a single performance of the experiment, the jth outcome oc-
curs, we have gained information in the amount − log p j. We now ask the following
question: If we perform the experiment repeatedly many times, what is the average
information gain? The answer to this question is contained in formula (11.4) con-
cerning the average numerical outcome of a series of experiments. According to that
formula, if the jth numerical outcome is x j, and the average numerical outcome is
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p1x1 + · · ·+ pnxn. In our case, the numerical outcome, the information gained in the
jth outcome, is

x j =− log p j.

So the average information gain I is I = −(p1 log p1 + p2 log p2 + · · ·+ pn log pn).
To indicate the dependence of I on the probabilities, we write

I = I(p1, . . . , pn) =−p1 log p1 − p2 log p2 −·· ·− pn log pn. (11.10)

This definition of information is due to the physicist Léo Szilárd. It was introduced
in the mathematical literature by Claude Shannon.

Let us look at the simplest case that there are only two possible outcomes, with
probabilities p and 1− p. We can write the formula for information gain as follows:

I =−p log p+(p− 1) log(1− p).

How does I depend on p? To study how I changes with p, we use the methods of
calculus: we differentiate I with respect to p and get

dI
dp

=− log p− 1+ log(1− p)+ 1=− log p+ log(1− p).

Using the functional equation of the logarithm function, we can rewrite this as

dI
dp

= log

(
1− p

p

)
.

We know that logx is positive for x > 1 and negative for x < 1. Also,

(1− p)
p

{
> 1 for 0 < p < 1

2 ,

< 1 for 1
2 < p < 1.

Therefore,

dI
dp

{
> 0 for 0 < p < 1

2 ,

< 0 for 1
2 < p < 1.

It follows that I(p) is an increasing function of p from 0 to 1
2 , and a decreasing

function as p goes from 1
2 to 1. Therefore, the largest value of I occurs when p = 1

2 .
In words: the most information that can be gained on average from an experiment
with two possible outcomes occurs when the probabilities of the two outcomes are
equal.

We now extend this result to experiments with n possible outcomes.
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Theorem 11.1. The function

I(p1, . . . , pn) =−p1 log p1 − p2 log p2 −·· ·− pn log pn,

defined for positive numbers with p1 + p2 + · · ·+ pn = 1, is largest when

p1 = p2 = · · ·= pn =
1
n
.

Proof. We have to show that

I(p1, . . . , pn)< I
(1

n
, . . . ,

1
n

)

unless all the p j are equal to
1
n

. In order to apply the methods of calculus to proving

this inequality, we consider the following functions r j(s):

r j(s) = sp j +(1− s)
1
n
, j = 1, . . . ,n.

These functions are designed so that at s = 0, the value of each r j is
1
n

, and at s = 1,

the value of r j is p j:

r j(0) =
1
n
, r j(1) = p j, j = 1, . . . ,n.

So, if we define the function J(s) = I(r1(s), . . . ,rn(s)), then

J(0) = I
(1

n
, . . . ,

1
n

)
, J(1) = I(p1, . . . , pn).

Therefore, the inequality to be proved can be expressed simply as J(1)< J(0). We
shall prove this by showing that J(s) is a decreasing function of s. We use the mono-
tonicity criterion to demonstrate the decreasing character of J(s), by verifying that
its derivative is negative. To calculate the derivative of J(s), we need to know the
derivative of each r j with respect to s. This is easily calculated:

dr j(s)
ds

= p j − 1
n
. (11.11)

Note that the derivative of each r j is constant, since each r j is a linear function of s.
Using the definition of I, we have

J(s) =−r1 logr1 −·· ·− rn logrn.
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We calculate the derivative of J using the chain rule and Eq. (11.11):

dJ
ds

=−(1+ logr1)
dr1

ds
−·· ·− (1+ logrn)

drn

ds

=−(1+ logr1)

(
p1 − 1

n

)
−·· ·− (1+ logrn)

(
pn − 1

n

)
. (11.12)

Since r j(0) =
1
n

, we get with s = 0 that

dJ
ds

(0) =−
(

1+ log
(1

n

))(
p1 − 1

n

)
−·· ·−

(
1+ log

(1
n

))(
pn − 1

n

)
.

Since the sum of the p j is 1, this gives

dJ
ds

(0) =−
(

1+ log
(1

n

))(
1− n

1
n

)
= 0.

Switching to the J′ notation, we have J′(0) = 0. We claim that for all positive values
of s,

J′(s)< 0. (11.13)

If we can show this, our proof that J is a decreasing function is complete. To verify
Eq. (11.13), we shall show that J′(s) itself is a decreasing function of s. Since J′(0)=
0, then J′ will be negative for all positive s.

To show that J′ is decreasing, we apply the monotonicity criterion once more, this
time to J′, and show that J′′ is negative. We compute J′′ by differentiating Eq. (11.12)
and using Eq. (11.11):

J′′ =− 1
r1

r′1

(
p1 − 1

n

)
−·· ·− 1

rn
r′n

(
pn − 1

n

)

=− 1
r1

(
p1 − 1

n

)2

−·· ·− 1
rn

(
pn − 1

n

)2

.

Each term in this sum is negative or zero. Since not all p j are equal to
1
n

, at

least some terms are negative. This proves J′′ < 0, and completes the proof of our
theorem. ��

Problems

11.10. Verify that the function f (p) = −k log p has properties (b) and (c) that we
listed at the outset of Sect. 11.2.
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11.11. Suppose that an experiment has three possible outcomes, with probabilities
p, q, and r, with

p+ q+ r = 1.

Suppose that we simplify the description of our experiment by lumping the last two
cases together, i.e., we look on the experiment as having two possible outcomes, one
with probability p, the other with probability 1− p. The average information gain
in looking at the full description of the experiment is

−p log p− q logq− r logr.

In looking at the simplified description, the average information gain is

−p log p− (1− p) log(1− p).

Prove that the average information gain from the full experiment is greater than that
obtained from its simplified description. The result is to be expected: if we lump
data together, we lose information.

11.12. Let p1, . . . , pn be the probabilities of the n possible outcomes of an
experiment, and q1, . . . , qm the probabilities of the outcomes of another exper-
iment. Suppose that the experiments are independent, i.e., if we combine the two
experiments, the probability of the first experiment having the jth outcome and the
second experiment having the kth outcome is the product

r jk = p jqk.

Show that in this case, the average information gain from the combined experiment
is the sum of the average information gains in the performance of each experiment
separately:

I(r11, . . . ,rmn) = I(p1, . . . , pn)+ I(q1, . . . ,qm).

11.13. Suppose an experiment can have n possible outcomes, the jth having proba-
bility p j, j = 1, . . . ,n. The information gained from this experiment is on average

−p1 log p1 −·· ·− pn log pn.

Suppose we simplify the description of the experiment by lumping the last n− 1
outcomes together as failures of the first case. The average information gain from
this description is

−p1 log p1 − (1− p1) log(1− p1).

Prove that we gain on average more information from the full description than from
the simplified description.
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11.3 Continuous Probability

The probability theory developed in Sect. 11.1 deals with experiments that have
finitely many possible numerical outcomes. This is a good model for experiments
such as tossing a coin (labeling the numerical outcome 0 or 1) or throwing a die, but
it is artificial for experiments such as making a physical measurement with an appa-
ratus subject to random disturbances that can be reduced but not totally eliminated.
Every real number is a possible numerical outcome of such an experiment. This
section is devoted to developing a probability theory for such situations. The experi-
ments we study are, just like the previous ones, repeatable and nondeterministic but
predictable on average.

By “predictable on average” we mean this: Repeat the experiment as many times
as we wish and denote by S(x) the number of instances among the first N perfor-

mances for which the numerical outcome was less than x. Then the frequency
S(x)

N
with which this event occurs tends to a limit as N tends to infinity. This limit is the
probability that the outcome is less than x, and is denoted by P(x):

P(x) = lim
N→∞

S(x)
N

.

The probability P(x) has the following properties:

(i) Each probability lies between 0 and 1:

0 ≤ P(x)≤ 1.

(ii) P(x) is a nondecreasing function of x.

Properties (i) and (ii) are consequences of the definition, for the number S(x) lies

between 0 and N, so that the ratio
S(x)
N

lies between 0 and 1; but then so does the

limit P(x). Secondly, S(x) is a nondecreasing function of x, so that the ratio
S(x)

N
is

a nondecreasing function of x; then so is the limit P(x). We shall assume two further
properties of P(x):

(iii) P(x) tends to 0 as x tends to minus infinity.
(iv) P(x) tends to 1 as x tends to infinity.

Property (iii) says that the probability of a very large negative outcome is very
small. Property (iv) implies that very large positive outcomes are very improbable,
as we ask you to explain in Problem 11.14. As in Sect. 11.1, we shall be interested
in collections of outcomes, which we call events.

Example 11.6. Examples of events are:

(a) The outcome is less than x.
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(b) The outcome lies in the interval I.
(c) The outcome lies in a given collection of intervals.

The probability of an event E , which we denote by P(E), is defined as in
Sect. 11.1, as the limit of the frequencies:

lim
N→∞

S(E)
N

= P(E),

where S(E) the number of times the event E took place among the first N of an
infinite sequence of performances of an experiment. The argument presented in
Sect. 11.1 can be used in the present context to show the additive rules for disjoint
events: Suppose E and F are two events that have probabilities P(E) and P(F), and
suppose that they are disjoint in the sense that one event precludes the other. That is,
no outcome can belong to both E and F . In this case, the union E ∪F of the events,
consisting of all outcomes either in E or in F , also has a probability that is the sum
of the probabilities of E and F :

P(E ∪F) = P(E)+P(F).

We apply this to the events

E : the outcome x < a

and

F : the outcome a ≤ x < b.

The union of these two is

E ∪F : the outcome x < b.

Then

P(E) = P(a), P(E ∪F) = P(b).

We conclude that

P(F) = P(b)−P(a)

is the probability of an outcome less than b but greater than or equal to a.
We now make the following assumption:

(v) P(x) is a continuously differentiable function.

This assumption holds in many important cases and allows us to use the methods
of calculus. We denote the derivative of P by p:

dP(x)
dx

= p(x)
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The function p(x) is called the probability density. According to the mean value
theorem, for every a and b, there is a number c lying between a and b such that

P(b)−P(a) = p(c)(b− a). (11.14)

According to the fundamental theorem of calculus,

P(b)−P(a) =
∫ b

a
p(x)dx. (11.15)

Since by assumption (iii), P(a) tends to 0 as a tends to minus infinity, we conclude
that

P(b) =
∫ b

−∞
p(x)dx.

Since by assumption (iv), P(b) tends to 1 as b tends to infinity, we conclude that

1 =

∫ ∞

−∞
p(x)dx.

This is the continuous analogue of the basic fact that p1 + p2 + · · ·+ pn = 1 in
discrete probability. According to property (ii), P(x) is a nondecreasing function of
x. Since the derivative of a nondecreasing function is nowhere negative, we conclude
that p(x) is nonnegative for all x:

0 ≤ p(x).

We now define the expectation, or mean, x of an experiment analogously to the
discrete case. Imagine the experiment performed as many times as we wish, and
denote the sequence of outcomes by

a1,a2, . . . ,aN , . . . .

Theorem 11.2. If an experiment is predictable on average, and if the outcomes
are restricted to lie in a finite interval, then

x = lim
N→∞

a1 + · · ·+ aN

N

exists and is equal to

x =
∫ ∞

−∞
xp(x)dx. (11.16)

The assumption that the outcomes lie in a finite interval is a realistic one if one
thinks of the experiment as a measurement. After all, every measuring apparatus
has a finite range. However, there are probability densities of great theoretical inter-
est, such as the ones we shall discuss in Sect. 11.4, that are positive for all real x.
Theorem 11.2 remains true for these experiments, too, under the additional assump-
tion that the improper integral defining x exists.



11.3 Continuous Probability 455

Proof. Divide the interval I in which all outcomes lie into n subintervals I1, . . . , In.
Denote the endpoints by

e0 < e1 < · · ·< en.

The probability Pj of an outcome lying in interval I j is the difference of the values
of P at the endpoints of I j. According to formula (11.14), this difference is equal to

Pj = P(e j)−P(e j−1) = p(x j)(e j − e j−1), (11.17)

where x j is a point in I j guaranteed by the mean value theorem, and (e j − e j−1)
denotes the length of I j. We now simplify the original experiment by recording
merely the intervals I j in which the outcome falls, and calling the numerical outcome
in this case x j, the point in I j that appears in formula (11.17). The actual outcome of
the full experiment and the numerical outcome of the simplified experiment always
belong to the same subinterval of the subdivision we have taken. Therefore, these
two outcomes differ by at most w, the length of largest of the subintervals I j.

Now consider the sequence of outcomes a1, a2, . . . of the original experiment.
Denote the corresponding outcomes of the simplified experiment by b1, b2, . . .. The
simplified experiment has a finite number of outcomes. For such discrete exper-
iments, we have shown in Sect. 11.1 that the average of the numerical outcomes
tends to a limit, called the expectation. We denote it by xn:

xn = lim
N→∞

b1 + · · ·+ bN

N
, (11.18)

where n is the number of subintervals of I. The expectation xn of the simplified
experiment can be calculated by formula (11.4):

xn = P1x1 + · · ·+Pnxn. (11.19)

By Eq. (11.17), this is

= p(x1)x1(e1 − e0)+ · · ·+ p(xn)xn(en − en−1).

We recognize this as an approximating sum for the integral of xp(x) over I. If the
subdivision is fine enough, the approximating sum xn differs very little from the
value of the integral ∫ en

e0

xp(x)dx. (11.20)

We recall that the outcomes of the simplified experiment and the full experiment
differ by less than w, the length of the largest subinterval I j. Therefore, the expec-
tation of the simplified experiment tends to the expectation of the full experiment
as the lengths of the subintervals tend to zero. This proves that the expectation of
the full experiment is given by the integral (11.20). Since p(x) is zero outside the
interval I, the integrals (11.20) and (11.16) are equal. This concludes the proof of
Theorem 11.2. ��
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We now give some examples of expectation.

Example 11.7. Let A be a positive number, and define p(x) by

p(x) =

⎧⎪⎨
⎪⎩

0 for x < 0,

1/A for 0 ≤ x < A,

0 for A ≤ x.

This is intended to mean that the numerical outcome x is equally likely to occur

anywhere in [0,A]. This choice of p satisfies
∫ ∞

−∞
p(x)dx =

∫ A

0

dx
A

= 1. We now

compute the expected value

x =
∫ ∞

−∞
xp(x)dx =

∫ A

0

x
A

dx =

[
x2

2A

]A

0
=

A
2
.

Example 11.8. Let A be a positive number and set

p(x) =

{
0 for x < 0,

Ae−Ax for 0 ≤ x.

Let us check that p satisfies
∫ ∞

−∞
p(x)dx = 1. Using the fundamental theorem of

calculus, we have
∫ ∞

−∞
p(x)dx =

∫ ∞

0
Ae−Ax dx =−e−Ax

∣∣∞
0 = 1.

We now compute x. Using integration by parts and then the fundamental theorem,
we have

x =
∫ ∞

−∞
xp(x)dx =

∫ ∞

0
xAe−Ax dx =

∫ ∞

0
e−Ax dx =

[−e−Ax

A

]∞

0
=

1
A
.

Example 11.9. Assume that p(x) is an even function. Then xp(x) is an odd func-
tion, and so

x =
∫ ∞

−∞
xp(x)dx = 0.

Let f (x) be any function of x. We define the expected value of f with respect to
the probability density p(x) as

f =
∫ ∞

−∞
f (x)p(x)dx.
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One can show, analogously to the foregoing discussion, that if a1, . . . ,aN , . . . is a
sequence of outcomes, then

lim
N→∞

f (a1)+ · · ·+ f (aN)

N
= f .

Independence. We now turn to the important concept of independence. The intu-
itive notion is the same as in the discrete models discussed in Sect. 11.1: two exper-
iments are independent if the outcome of either has no influence on the other, nor
are they both influenced by a common cause. We analyze the consequences of inde-
pendence the same way we did previously, by constructing a combined experiment
consisting of performing both experiments.

We first analyze the case that the outcome of the first experiment may be any
real number, but the second experiment can have only a finite number of outcomes.
As before, we denote by P(a) the probability that the numerical outcome of the
first experiment is less than a. The second experiment has n possible numerical
outcomes a1, . . . ,an, which occur with probabilities Q1, Q2, . . . , Qn. We define
the numerical outcome of the combined experiment to be the sum of the separate
numerical outcomes of the two experiments that constitute it.

We now derive a useful and important formula for the probability that the
numerical outcome of the combined experiment is less than x. We denote this event
by E(x), and denote its probability by U(x). We shall show that

U(x) = Q1P(x− a1)+ · · ·+QnP(x− an). (11.21)

Proof. The numerical outcome of the second experiment is one of the n numbers
a j. The numerical outcome of the combined experiment is then less than x if and
only if the outcome of the first experiment is less than x− a j. We denote this event
by E j(x). Thus the event E(x) is the union

E(x) = E1(x)∪·· ·∪En(x).

The events E j(x) are disjoint, that is, an outcome cannot belong to two distinct
events E j(x) and Ek(x). It follows then from the addition rule for disjoint events that
the probability of their union E(x) is the sum of the probabilities of the events E j(x).

Since the two experiments are independent, the probability of E j(x) is given by
the product of the probabilities of the two experiments,

Q jP(x− a j).

The sum of the probabilities of the E j(x) is U(x), the probability of E(x). This
completes the proof of Eq. (11.21). ��

We now turn to the situation in which both experiments can have any real number
as outcome. We denote by P(a) and Q(a) the probabilities that the outcome is less
than a in each of the two experiments, respectively.
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We shall prove the following analogue of formula (11.21): Suppose that Q(x)
is continuously differentiable, and denote its derivative by q(x). Then U(x), the
probability that the outcome of the combined experiment is less than x, is given by

U(x) =
∫ ∞

−∞
q(a)P(x− a)da. (11.22)

The proof deduces Eq. (11.22) from Eq. (11.21). We assume that the outcome of the
second experiment always lies in some finite interval I. We subdivide I into a finite
number n of subintervals I j = [e j−1,e j]. Let us denote by Q j the probability that the
outcome of the experiment Q lies in I j. According to the mean value theorem,

Q j = Q(e j)−Q(e j−1) = q(a j)(e j − e j−1), (11.23)

where a j is some point in I j.
We discretize the second experiment by lumping together all outcomes that lie in

the interval I j and redefine the numerical outcome in that case to be a j, the number
guaranteed to exist by the mean value theorem in Eq. (11.23). The probability of
the outcome a j is then the probability that the outcome lies in the interval I j, i.e.,
it is Q j.

Substitute for each Q j the expressions given in Eq. (11.23). According to formula
(11.21), the probability that the outcome of the discretized experiment is less than
x is

Un(x) = q(a1)P(x− a1)(e1 − e0)+ · · ·+ q(an)P(x− an)(en − en−1).

The sum on the right is an approximating sum for the integral

∫ ∞

−∞
q(a)P(x− a)da.

This function was denoted by U(x) in formula (11.22). Since approximating sums
tend to the integral as the subdivision is made finer and finer, we conclude that for
every x, Un(x) tends to U(x). This proves our contention.

Now suppose that P(x) is continuously differentiable, and denote its derivative
by p(x). It follows from Theorem 7.8 that U(x) as defined by Eq. (11.22) is differen-
tiable, and its derivative, which we denote by u(x), can be obtained by differentiating
the integrand with respect to x:

u(x) =
∫ ∞

−∞
q(a)p(x− a)da. (11.24)
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We summarize what we have proved:

Theorem 11.3. Consider two experiments whose outcomes lie in some finite
interval and have probability densities p and q respectively. Suppose the exper-
iments are independent. In the combined experiment consisting of performing
both experiments, define the outcome of the combined experiment to be the sum
of the outcomes of the individual experiments. Then the combined experiment

has probability density u(x) given by u(x) =
∫ ∞

−∞
q(a)p(x− a)da.

The restriction of the outcomes of the experiments to a finite interval is too con-
fining for many important applications. Fortunately, the theorem, although not our
proof, holds under more general conditions.

Definition 11.5. The function u defined by u(x) =
∫ ∞

−∞
q(a)p(x−a)da is called

the convolution of the functions q and p. This relation is denoted by

u = q ∗ p. (11.25)

Example 11.10. Consider the following example of evaluating the convolution of
two functions, where A and B are positive numbers.

p(a) =

{
0 for a < 0,

e−Aa for 0 ≤ a,
q(a) =

{
0 for a < 0,

e−Ba for 0 ≤ a.

Substitute these definitions of p and q into the definition of the convolution:

u(x) = (p ∗ q)(x) =
∫ ∞

−∞
p(a)q(x− a)da.

Both p(t) and q(t) were defined to be zero for t < 0. It follows from this that
the first factor in the integrand, p(a), is zero for a negative. If x < 0, the second
factor, q(x− a), is zero for a positive. So for x negative, the integrand is zero
for all values of a, and therefore so is the integral. This shows that u(x) = 0 for
x < 0. For x > 0, the same analysis shows that the integrand is nonzero only in
the range 0 ≤ a ≤ x. So for x > 0,

u(x) =
∫ x

0
e−Aa−B(x−a)da

= e−Bx
∫ x

0
e(B−A)a da =

[
e−Bx e(B−A)a

B−A

]x

a=0

=
1

B−A
(e−Ax − e−Bx).

Convolution is an important operation among functions, with many uses. We now
state and prove some of its basic properties without any reference to probability.
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Theorem 11.4. Let q1(x), q2(x), and p(x) be continuous functions defined for
all real numbers x, and assume that the functions are zero outside a finite inter-
val.

(a) Convolution is distributive: (q1 + q2)∗ p = q1 ∗ p+ q2∗ p.
(b) Let k be any constant. Then (kq)∗ p = k(q ∗ p).
(c) Convolution is commutative: q∗ p = p ∗ q.

Proof. The first result follows from the additivity of integrals:

(q1 + q2)∗ p(x) =
∫ ∞

−∞

(
q1(a)+ q2(a)

)
p(x− a)da

=
∫ ∞

−∞
q1(a)p(x− a)da+

∫ ∞

−∞
q2(a)p(x− a)da = q1 ∗ p(x)+ q2 ∗ p(x).

The second result follows from

(kq)∗ p(x) =
∫ ∞

−∞
kq(a)p(x− a)da= k

∫ ∞

−∞
q(a)p(x− a)da = k(q ∗ p)(x).

The third result follows if we make the change of variable b = x− a:

q ∗ p(x) =
∫ ∞

−∞
q(a)p(x− a)da =

∫ ∞

−∞
q(x− b)p(b)db = p ∗ q(x).

��
The following result is another basic property of convolution.

Theorem 11.5. Suppose p and q are continuous functions, both zero outside
some finite interval. Denote their convolution by u:

u = p ∗ q.

Then the integral of the convolution is the product of the integrals of the factors:
∫ ∞

−∞
u(x)dx =

∫ ∞

−∞
p(x)dx

∫ ∞

−∞
q(a)da. (11.26)

Proof. By definition of the convolution u = p ∗ q,

u(x) =
∫ ∞

−∞
p(x− a)q(a)da. (11.27)

Suppose that the function p(a) is zero outside the interval I = [−b,b], so that∫ ∞

−∞
p(x)dx =

∫ b

−b
p(x)dx, and q(a) is zero outside the interval J. It follows that

u(x) is zero when x lies outside the interval I∪ J.
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Approximate the integral (11.27) by the sum

un(x) =
n

∑
j=1

p(x− a j)q(a j)(a j+1 − a j), (11.28)

where the numbers a1, . . . ,an are n equally spaced points in the interval J of inte-
gration. It follows from the definition of integral as the limit of approximate sums
that un(x) tends to u(x), uniformly for all x in the interval I ∪ J. It follows that the
integral of un(x) with respect to x over I ∪ J tends to the integral of u(x). It follows
from formula (11.28) that the integral of un(x) over I ∪ J is

∫ b

−b
p(x)dx

n

∑
j=1

q(a j)(a j+1 − a j).

The limit of this sum as n tends to infinity is the integral of q. This concludes the
proof of Eq. (11.26) in Theorem 11.5. ��

The numerical outcome of the combination of two experiments was defined as the
sum of the numerical outcomes of its two constituents. We now give some realistic
examples to illustrate why this definition is of interest.

Suppose the outcomes of the two experiments represent income from two entirely
different sources. Their sum is then the total income; its probability distribution is
of considerable interest.

Here is another example: Suppose the two outcomes represent amounts of water
entering a reservoir in a given period from two different sources. Their sum repre-
sents the total inflow, again an object of considerable interest.

Problems

11.14. We have said that the assumption P(x) tends to 1 as x tends to infinity means
that very large positive outcomes x are improbable. Justify that statement.

11.15. Define p by

p(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < 0,
2
A

(
1− x

A

)
for 0 ≤ x ≤ A,

0 for A < x.

(a) Show that
∫ ∞

−∞
p(x)dx = 1.

(b) Calculate the expected value of x, i.e., find x =
∫ ∞

−∞
xp(x)dx.
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(c) Calculate the expected value x2 =

∫ ∞

−∞
x2 p(x)dx.

(d) Give a definition of standard deviation and calculate it for this case.

11.16. Define p by

p(x) = k|x|e−kx2
, k > 0.

Show that p is a probability density, i.e.,
∫ ∞

−∞
p(x)dx = 1.

11.17. Let A and B be two positive numbers. Define p and q by

p(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for t < 0,
1
A for 0 ≤ t ≤ A,

0 for A < t,

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 for t < 0,
1
B for 0 ≤ t ≤ B,

0 for B < t.

(a) Show that p and q are probability densities, i.e., that they satisfy
∫ ∞

−∞
p(t)dt = 1,

∫ ∞

−∞
q(t)dt = 1.

(b) Let u denote the convolution of p and q. Show that u(x) = 0 for x < 0 and for
x > A+B.

(c) Verify that u(x) is constant if B < x < A.
(d) Determine all values of u(x) for the case B < A.

11.18. The purpose of this problem is to give an alternative proof of Theorem 11.5.
Let p and q be a pair of functions, both zero outside some finite interval J. Let u be
the convolution of p and q.

(a) Let h be a small number. Show that the sum

∑
i

p(ih)q(x− ih)h (11.29)

is an approximating sum to the integral defining u(x).
(b) Show that

∑
j

u( jh)h (11.30)

is an approximating sum to the integral
∫ ∞

−∞
u(x)dx.

(c) Substitute the approximations (11.29) for u(x) into Eq. (11.30) with x = jh.
Show that the result is the double sum ∑

i, j

p(ih)q(( j− i)h)h2.

(d) Denote j− i by � and rewrite the above double sum as ∑
i,�

p(ih)q(�h)h2.
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(e) Show that this double sum can be written as the product of two single sums:
(

∑
i

p(ih)h

)(
∑
�

q(�h)h

)
.

(f) Show that the single sums are approximations to the integrals
∫ ∞

−∞
p(x)dx and

∫ ∞

−∞
q(x)dx.

(g) Show that as h tends to zero, you obtain the identity in Theorem 11.5.

11.19. Define
|u|1 =

∫ ∞

−∞
|u(x)|dx

as a quantity that measures the size of functions u(x) that are defined for all x and
are zero outside a finite interval.

(a) Evaluate |u|1 if u(x) = 5 on [a,b], and zero outside of [a,b].
(b) Verify the properties |cu|1 = |c||u|1 when c is constant, and |u+v|1 ≤ |u|1+ |v|1.
(c) Prove for convolution that |u ∗ v|1 ≤ |u|1|v|1.

11.4 The Law of Errors

In this section, we shall analyze a particular experiment. The experiment consists
in dropping pellets from a fixed point at a certain height onto a horizontal plane. If
the hand that releases the pellet were perfectly still and if there were no air currents
diverting the pellet on its downward path, then we could predict with certainty that
the pellet would end up directly below the point where it was released. But even
the steadiest hand trembles a little, and even on the stillest day, minute air currents
buffet the pellet in its downward flight, in a random fashion. These effects become
magnified and very noticeable if the pellets are dropped from a great height, say the
tenth floor of a building. Under such circumstances, the experiment appears to be
nondeterministic, i.e., it is impossible to predict where each pellet is going to land.1

Although it is impossible to predict where any particular pellet would fall, the
outcome can be predicted very well on average. That is, let G be any region such
as a square, rectangle, triangle, or circle. Denote by S(G) the number of instances

1 G.I. Taylor (1886–1975), a famous British applied mathematician, described the following expe-
rience during the First World War: Taylor was working on a project to develop aerial darts; his task
was to record the patterns created when a large number of darts were dropped from an airplane.
This he did by putting a piece of paper under each dart where it had fallen in the field. These papers
were to be photographed from the air. He had just finished this tedious task when a cavalry officer
came by on horseback and demanded to know what Taylor was doing. Taylor explained the dart
project, whereupon the officer exclaimed, “And you chaps managed to hit all those bits of paper?
Good show!”
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among the first N in a sequence of experiments in which the pellet landed in G.

Then the frequencies
S(G)

N
tend to a limit, called the probability of landing in G

and denoted by C(G):

lim
N→∞

S(G)

N
=C(G).

In this section, we shall investigate the nature of this probability.
Suppose that the region G is a very small one. Then we expect the probability of

landing in G to be nearly proportional to the area A(G) of G. We can express this
surmise more precisely as follows: Let g be any point in the plane. Then there is
a number c = c(g), called the probability density at g, such that for any region G
containing g

C(G) =
(
c(g)+ small

)
A(G),

where “small” means a quantity that tends to zero as G shrinks to the point g.
What can we say about the probability density c(g)? It depends on how close

g is to the bullseye, i.e., the point directly underneath where the pellet is released.
The closer g is, the greater the probability of a hit near g. In particular, the maximum
value of c is achieved when g is the bullseye. We now adopt the following two
hypotheses about the way in which the uncontrolled tremors of the hand and the
unpredictable gusts of wind influence the distribution of hits and misses:

(i) c(g) depends only on the distance of g from the bullseye, and not on the direction
in which g lies.

(ii) Let x and y be perpendicular directions. Displacement of pellets in the
x-direction is independent of their displacement in the y-direction.

Example 11.11. A special case illustrating hypothesis (ii) consists of two half-
spaces bounded by lines through the origin in perpendicular directions. The prob-

ability of the pellet falling in either half-plane is
1
2

. The probability that the pellet

falls in the quarter-plane that is the intersection of the two half-planes is
1
4

, and

this is equal to (
1
2
)(

1
2
).

To express these hypotheses in a mathematical form, we introduce a Cartesian
coordinate system with the origin, naturally, at the bullseye. We denote by (a,d) the
coordinates of the point g, as in Fig. 11.1. We denote by P(a) the probability that
the pellet falls in the half-plane

x < a.

The probability that the pellet falls in the strip a ≤ x < b is

P(b)−P(a).

Assume that P(a) has a continuous derivative for all a. We denote it by p(a).
According to the mean value theorem, the difference
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y=d

y=fy

0 x=a x=b
x

Fig. 11.1 Pellets dropped directly over the origin might land in the shaded rectangle

P(b)−P(a) is equal to p(a1)(b− a),

for some number a1 between a and b.
What is the probability that the pellet falls in the rectangle

a ≤ x < b, d ≤ y < f ?

This event occurs when the pellet falls in the strip a ≤ x < b and the strip d ≤ y < f .
According to hypothesis (ii), these two events are independent, and therefore, ac-
cording to the product rule, the probability of the combined event is the product of
the probabilities of the two separate events whose simultaneous occurrence consti-
tutes the combined event. Thus the probability of a pellet falling in the rectangle is
the product

p(a1)(b− a)p(d1)( f − d).

Since the product (b−a)( f −d) is the area A of the rectangle, we can rewrite this as

p(a1)p(d1)A.

Now consider a sequence of rectangles that tend to the point g = (a,d) by letting b
tend to a and f tend to d. Since a1 lies between a and b and d1 lies between d and f ,
and since p is a continuous function, it follows that p(a1) tends to p(a) and p(d1)
tends to p(d). Thus, in this case, we can express the probability that the pellet lands
in the rectangle as (

p(a)p(d)+ small
)
A.



466 11 Probability

We conclude that the probability density c at the point g = (a,d) is

c(g) = p(a)p(d). (11.31)

Next, we exploit the symmetry of the experimental setup around the bullseye by in-
troducing another coordinate system, as in Fig. 11.2, whose origin is still the bulls-
eye but where one of the coordinate axes is chosen to go through the point g whose
coordinates in the old system were (a,d). The coordinates of g in the new system are

(
0,
√

a2 + d2
)
.

g

(0,d)

(a,0)

(  a
2 +d

2  , 0
)

Fig. 11.2 A rotated coordinate system

According to hypothesis (i), we can apply relation (11.31) in any coordinate
system. Then c in the new coordinate system is

c(g) = p(0)p
(√

a2 + d2
)
. (11.32)

Since the value of c(g) expressed in two different coordinate systems as in
Eqs. (11.31) and (11.32) are equal, we conclude that

p(a)p(d) = p(0)p
(√

a2 + d2
)
. (11.33)

This is a functional equation for p(x). It can be solved by the trick of writing the

function p(x) in terms of another function f (x) =
p
(√

x
)

p(0)
. Set x = a2 and y = d2 in

Eq. (11.33), which gives
f (x) f (y) = f (x+ y).

This, at last, is the familiar functional equation satisfied by exponential functions
and only by them, as explained in Sect. 2.5c. So we conclude that f (x) = eKx. Using

the relation f (x) =
p
(√

x
)

p(0)
, we deduce that p(a) = p(0)eKa2

. We claim that the
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constant K is negative. For as a tends to infinity, the probability density p(a) tends
to zero, and this is the case only if K is negative. To put this into evidence, we
rename K as −k, and rewrite

p(x) = p(0)e−kx2
. (11.34)

Since p is a probability density, it satisfies
∫ ∞

−∞
p(x)dx = 1. Substituting Eq. (11.34)

into this relation gives

p(0)
∫ ∞

−∞
e−kx2

dx = 1. (11.35)

Introduce y =
√

2kx as a new variable of integration. We get

∫ ∞

−∞
e−kx2

dx =
1√
2k

∫ ∞

−∞
e−

y2
2 dy. (11.36)

It follows from Eq. (7.10) that
∫ ∞

−∞
e−

y2
2 dy =

√
2π. Therefore,

∫ ∞

−∞
e−kx2

dx =

√
π
k
.

Setting this in Eq. (11.35) gives p(0) =

√
k
π

. Therefore, using Eq. (11.34), we get

p(x) =

√
k
π

e−kx2
. (11.37)

Substituting this into c(g) = p(a)p(d), we deduce

c(x,y) =
k
π

e−k(x2+y2). (11.38)

The derivation of the law of errors presented above is due to the physicist James
Clerk Maxwell (1831–1879), who made profound investigations of the significance
of probability densities of the form (11.37) and (11.38) in physics. For this rea-
son, such densities in physics are called Maxwellian. Even before Maxwell, Carl
Friedrich Gauss (1777–1855) investigated probabilities of the form (11.37). Mathe-
maticians call such densities Gaussian. Another name for probabilities of this form
is normal.

In Fig. 11.3, we see the shape of the normal distributions p(x) for three different
values: k = 0.5, k = 1, k = 2. These graphs indicate that the larger the value of k,
the greater the concentration of the probability near the bullseye. The rest of this
section is about some of the basic properties of normal distributions.
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x

Fig. 11.3 Normal distributions with k = 0.5, k = 1, and k = 2

Theorem 11.6. The convolution of two normal distributions is normal.

Proof. We denote the two normal distributions by

p(x) =

√
k
π

e−kx2
, and q(x) =

√
m
π

e−mx2
. (11.39)

Their convolution is

(q ∗ p)(x) =
∫ ∞

−∞
q(a)p(x− a)da

=

√
mk
π

∫ ∞

−∞
e−ma2−k(x−a)2

da =

√
mk
π

e−kx2
∫ ∞

−∞
e−
(
(m+k)a2−2akx

)
da.

To evaluate the integral, we complete the exponent under the integral sign to a per-
fect square:

(m+ k)a2 − 2akx = (m+ k)

(
a− kx

m+ k

)2

− k2

m+ k
x2.

Setting this into the integral above, we get, using a− kx
m+ k

= b as the new variable

of integration,

(q ∗ p)(x) =

√
mk
π

e−k+ k2
m+k x2

∫ ∞

−∞
e−(m+k)b2

db.
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The integral is of the same form as the integral (11.36), with (m+ k) in place of k.

Therefore, the value of the integral is

√
π

m+ k
. This gives

(q ∗ p)(x) =

√
1
π

√
mk

m+ k
e−(k− k2

m+k )x
2
=

√
1
π

√
mk

m+ k
e−

km
m+k x2

.

We summarize: With p and q given by Eq. (11.39),

q ∗ p =

√
�

π
e−�x2

, where �=
km

k+m
. (11.40)

��
We turn next to the continuous analogue of Theorem 11.1 for discrete probability:

Theorem 11.7. Among all probability densities q(x) that satisfy

∫ ∞

−∞
x2q(x)dx =

1
2k

,

the quantity I(q) =−
∫ ∞

−∞
q(x) logq(x)dx is largest for the Gaussian, i.e., when

q = p given by p(x) =

√
k
π

e−kx2
.

Remarks.

(i) This result is a continuous analogue of Theorem 11.1, which asserts that among

all probability distributions for n events, −
n

∑
1

p j log p j is largest when all the

p j are equal. Our proof is similar to the proof given in the discrete case.
(ii) The functional I(q) is the entropy of q(x), an important quantity.

(iii) Implicit in the statement of the theorem is that

∫ ∞

−∞
x2 p(x)dx =

1
2k

when p(x) =

√
k
π

e−kx2
,

which we ask you to derive in Problem 11.20.

Proof. We construct the following one-parameter family of probability densities
r(s) in the interval 0 ≤ s ≤ 1:

r(s) = sq+(1− s)p. (11.41)

This function is designed so that r(0) = p and r(1) = q. To show that I(p)≥ I(q),
it suffices to verify that I(r(s)), which we abbreviate as F(s), is a decreasing func-
tion of s. According to the monotonicity criterion, the decreasing character of F(s)
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can be shown by verifying that the derivative of F(s) is negative. To this end, we

calculate the derivative of F(s) =−
∫ ∞

−∞
r(s) logr(s)dx using the differentiation the-

orem for integrals, Theorem 7.8. Differentiate r(s) log r(s) with respect to s; since
dr
ds

= p− q, we get

d
ds

(r(s) log r(s)) =
(
1+ logr(s)

)dr
ds

=
(
1+ logr(s)

)
(p− q).

Thus
dF(s)

ds
=−

∫ ∞

−∞

(
1+ logr(s)

)
(p(x)− q(x))dx. (11.42)

For s = 0, we have r(0) = p(x) and log p(x) = log

√
k
π
− kx2. So if we set s = 0 in

the derivative, we get

dF
ds

(0) =−
∫ ∞

−∞

(
1+ log

√
k
π
− kx2

)
(p(x)− q(x))dx

=−
(

1+ log

√
k
π

)∫ ∞

−∞
(p(x)− q(x))dx− k

∫ ∞

−∞
x2(p(x)− q(x))dx.

Since both p and q are probability densities,
∫ ∞

−∞
p(x)dx =

∫ ∞

−∞
q(x)dx = 1. Fur-

thermore,
∫ ∞

−∞
x2 p(x)dx =

∫ ∞

−∞
x2q(x)dx =

1
2k

. Therefore,
∫ ∞

−∞
(p(x)−q(x))dx and∫ ∞

−∞
x2(p(x)− q(x))dx are both zero, and

dF
ds

(0) = 0. To show that
dF
ds

(s) < 0 for

all s between 0 and 1, it suffices to show that
d2F
ds2 < 0. We now calculate the sec-

ond derivative of F by again applying the differentiation theorem for integrals to
Eq. (11.42). We get that

d2F(s)
ds2 =

∫ ∞

−∞
(p(x)− q(x))

1
r(s)

dr
ds

dx =
∫ ∞

−∞
− (p(x)− q(x))2

r(s)
dx.

This last integral is negative unless q and p are identical; hence the second derivative
of F is negative. ��
Remark. In our proof we have applied the differentiation theorem for integrals to
improper integrals over the infinite interval (−∞,∞), whereas this differentiation
theorem was proved only for proper integrals. To get around this difficulty, we as-
sume that q(x) equals p(x) outside a sufficiently large interval (a,b) and derive the
inequality I(q)≤ I(p) for this subclass of q. From this, we can deduce the inequality
for any q by approximating q by a sequence of q’s belonging to the subclass. We
omit the details of this step in the proof.
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Fig. 11.4 The binomial distribution bk(100) and a normal distribution

The Limit of the Binomial Distribution. We have defined the binomial distribu-

tion as bk(n) =

(
n
k

)
pkqn−k. To simplify the discussion, we take p = q =

1
2

. In this

case,

bk(n) = 2−n
(

n
k

)
.

We have plotted these probabilities in Fig. 11.4 for n = 100 together with the func-

tion
1

10

√
2
π

e−2y2
, which is a multiple of the normal distribution. Note that the points

bk lie (nearly) on the graph of the normal distribution. The figures suggest that for n
large, binomial distributions tend toward normal distributions. The precise statement
is the following theorem.

Theorem 11.8. The binomial distribution

bk(n) = 2−n
(

n
k

)

is approximately normal in this sense: set y =
k− 1

2 n√
n

. Then

bk(n)∼ 1√
n

√
2
π

e−2y2
,

where ∼ means asymptotic as n and k tend to infinity with y fixed.
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In Problem 11.23, we guide you through a proof of this theorem. It is based on
Stirling’s formula (Theorem 7.5), which states that

m! ∼
√

2πm
(m

e

)m
,

that is, the ratio of the left and right sides tends to 1 as m tends to infinity.

Problems

11.20. Integrate by parts to show that
∫ ∞

−∞
x2 p(x)dx =

1
2k

when p(x) =

√
k
π

e−kx2
.

Explain why this integral is called the variance of the normal distribution.

11.21. The purpose of this problem is to evaluate the integral
∫ ∞

−∞
e−y2

dy numeri-

cally. Since the interval of integration is infinite, we truncate it by considering for
large N, the approximate integral

Imid

(
e−y2

,
[
− (

N +
1
2

)
h,
(
N +

1
2

)
h
])

= h
N

∑
n=−N

e−(nh)2

with subintervals of length h.

(a) Prove that
∞

∑
n=K

e−(nh)2 ≤
∞

∑
n=K

e−Knh2
=

e−K2h2

1− e−Kh2 . Use this to show that for h=1,

the sum
∞

∑
n=4

e−(nh)2
is less than 10−6.

(b) Evaluate Imid ≈ 1.77263 . . . numerically using just the sum from −3 to 3 with
h = 1.

Remark. The value of the integral is
√

π = 1.77245 . . . . Thus we see that the mid-
point rule gives an astonishingly good approximation to the value of the integral,
even when we divide the interval of integration into subintervals of length h = 1, a
rather crude subdivision.

11.22. Let

p(x, t) =
1√
4πt

e−
x2
4t .

(a) Determine the derivative of p with respect to x. Denote it by px.
(b) Determine the second derivative of p with respect to x. Denote it by pxx.
(c) Determine the derivative of p with respect to t. Denote it by pt .
(d) Verify that pt = pxx.
(e) In one application, p has an interpretation as the temperature of a metal rod,

which varies with position and time. Suppose p(x, t) is graphed as a function of
x. In an interval of x where the graph is convex, will the temperature increase or
decrease with time, according to part (d)?
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11.23. Verify the following steps, which prove Theorem 11.8.

(a) Use Stirling’s formula for each factorial in 2−n
(

n
k

)
to show that

2−n
(

n
k

)
∼ 1√

2π

√
n

k(n− k)
nn

2nkk(n− k)n−k .

(b) Substitute k = n
2 +

√
ny and rearrange the previous expression to show that

2−n
(

n
k

)
∼ 1√

2π

√
n

n2

4 − ny2

1(
1− 4y2

n

) n
2
(

n
2 +

√
ny
)√ny( n

2 −
√

ny
)−√

ny
.

(c) We showed in Sect. 2.6 that
(
1+ x

m

)m
tends to ex as m tends to infinity. Use this

to show that the right side in (b) is asymptotic to

1√
2π

√
n

n2

4 − ny2

1

e−2y2e2y2e2y2 .

(d) Show that the last expression is asymptotic to
1√
n

√
2
π

e−2y2
.



Answers to Selected Problems

Chapter 1

1.1

(a) [−1,7]
(b) [−52,−48]
(c) y < 6 or y > 8
(d) |3− x|= |x−3| so same as (a)

1.3

(a) |x| ≤ 3
(b) −3 ≤ x ≤ 3

1.5 2+4+8
3 = 14

3 , (2 ·4 ·8)1/3 = (26)1/3 = 22 = 4 < 14
3 .

1.7

(a) (
√

x−√
y)(

√
x+

√
y) = x− y and 0 <

1√
x+

√
y
≤ 1

4
, so

√
x−√

y ≤ 1
4 (x− y).

(b) Since x > y, |√x−√
y|=√

x−√
y ≤ 1

4 (0.02) = 0.005

1.9 |x| < m means −m < x < m. So if |b−a|< ε , then:

(a) At least one of 0 ≤ b − a and 0 ≤ −(b − a) is true. The upper bound ε comes from the
assumption.

(b) −ε < b−a < ε is a restatement of |b−a|< ε
(c) add a to both sides in (b)
(d) |a−b|= |b−a|, so −ε < a−b < ε is a restatement of |b−a|< ε
(e) add b to both sides in (d)

1.11 5/3

1.13

(a) (1(1)(x))1/3 ≤ 1+1+x
3

(b) (1 · · ·(1)(x))1/n ≤ 1+···+1+x
n = x+n−1

n
(c) 2n−1

n = 2− 1
n < 2

P.D. Lax and M.S. Terrell, Calculus With Applications, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-7946-8, © Springer Science+Business Media New York 2014

475



476 Answers to Selected Problems

1.15

(a) Since 1 ≤ 2 ≤ ·· · ≤ n, we get n! < nn. Taking the nth root gives (n!)1/n ≤ n.

(b) By the A-G inequality, (1 ·2 ·3 · · ·n)1/n ≤ 1+2+3+···+n
n , so (n!)1/n ≤ 1

2 n(n+1)
n = n+1

2 .

1.16

(a) We have |ab−a0b0|= |ab−ab0 +ab0 −a0b0|. By the triangle inequality,

|ab−a0b0|= |ab−ab0 +ab0 −a0b0| ≤ |ab−ab0|+ |ab0 −a0b0|

Recall that |ab|= |a||b|. Then |ab−a0b0| ≤ |a||b−b0|+ |b0||a−a0|.
(b) |a| ≤ 10 and |b0| ≤ 10.001, so |ab−a0b0| ≤ 10(0.001)+10.001(0.001)

1.19 m = 1 because
√

3 = 1.732 · · ·= 1.7+(0.032 · · ·) and (0.032 · · ·)< 10−1.

1.21

(a) an is part of the area of the 1 by 1 square, so an < 1
(b) S has an upper bound of 1, therefore has a least upper bound, the area of the quarter-circle of

radius 1, which is
π
4

.

1.27 s1 = 1, s2 = (1/2)(s1 +3/s1) = 2, s3 = (1/2)(2+3/2) = 7/4 = 1.75,
s4 = (1/2)(7/4 + 12/7) = 97/56 = 1.7321 . . . If you start with s1 = 2 instead, it just shifts the
sequence, since 2 already occurred as s2.

1.29 If s >
√

2, then
1
s
<

1√
2

. Multiply by 2 to get
2
s
<

2√
2
=

√
2.

1.31 Suppose s ≥√
2+q for some number q. Then

2+ p > s2 ≥ 2+2
√

2q+q2 ≥ 2+2
√

2q.

This is possible only if p > 2
√

2q. Therefore, taking q = p
23/2 , we get s <

√
2+q.

1.35

(a) an is arbitrarily close to a when n is sufficiently large, so in particular, there is N such that an

is within 1 of a when n > N.
(b) |an|= |a+(an −a)| ≤ |a|+ |an−a|< |a|+1
(c) use the definition of α

1.37 a1 = s1 =
1
3 , a2 = s2 −a1 =

2
4 − 1

3 = 1
6 , and the sum is the limit of the sn, which is 1.

1.39
1

1− 5
7

1.41

∣∣∣∣ (n+1)an+1

nan

∣∣∣∣= n+1
n

∣∣∣∣an+1

an

∣∣∣∣ has the same limit as

∣∣∣∣an+1

an

∣∣∣∣.
The sum

∞

∑
n=0

(−1)nn5an also converges absolutely by the ratio test if
∞

∑
n=0

an does so.

1.47

(a) Converges absolutely by the limit comparison theorem; compare with ∑
(

2
3

)n

.

(b) Diverges by the comparison theorem; compare with the harmonic series
(c) Converges by the alternating series theorem
(d) Diverges because the nth term does not tend to 0
(e) Diverges by the limit comparison theorem; compare with the harmonic series
(f) Converges by the ratio test
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1.49
(a) The series of absolute values is a convergent geometric series, so the series converges abso-

lutely
(b) Converges by comparing with the geometric series ∑(10)−n

(c) For any number b, the series converges absolutely by the ratio test

(d) Converges by comparing with the geometric series ∑ 2
3n

(e) Sum of two convergent series is convergent
(f) Diverges because the term does not tend to 0

1.51 The sequence converges to x, so it must be Cauchy by the theorem that every convergent
sequence is Cauchy. To see this case specifically, an is within 10−n of x, so if n and m are both
greater than N, then |an −am|= |an − x+ x−am| ≤ |an − x|+ |x−am|< (2)10−N .

1.53

(a)

(
1+

1
n−1

)n

= en−1

(
1+

1
n−1

)
< (3)(2).

(b) This is

(
n

n−1

)n

< 6, or nn < 6(n− 1)n. Therefore nn−1 < 6
n (n− 1)n ≤ (n− 1)n if n ≥ 6.

Take roots to get n1/n < (n−1)1/(n−1) .
(c) If n1/n were less than 1, its powers, such as n, would be less than 1. Therefore, we have a

decreasing sequence bounded below by 1, which then has a limit r ≥ 1.
(d) (2n)1/(2n) = 21/(2n)

√
n1/n tends to r =

√
r. So r = 1.

Chapter 2

2.1
(a) Not bounded, not bounded away from 0
(b) Not bounded, bounded away from 0
(c) Bounded, not bounded away from 0
(d) Not bounded, not bounded away from 0

2.3
(a) Cancel common factors
(b) f is defined except at 0 and −3; g is defined except at −3. h is defined for all numbers.
(c) The graph of h is a line, that of g is the line with one point deleted, and that of f is the line

with two points deleted.

2.5 51,116.80

2.7 The change in radius is 1
2π times the change in circumference, about 3 meters.

2.9
(a) −3
(b) −6
(c) −2

2.13 Numerator is polynomial, continuous on [−20,120], has a maximum value M and a minimum
value m. Denominator is x2 +2 ≥ 2 and has maximum (120)2 +2. Therefore,

m
(120)2 +2

≤ f (x)≤ M
2
.

So f is bounded.
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2.15 It appears to be approximately (−0.4,0.4).

2.17 No. The truncation of x = 9.a1a2a3a4a5a6a7a8a9 . . . is y = 9.a1a2a3a4a5a6a7a8. The differ-
ence is x− y = 0.00000000a9 . . . < 0.000000010 = 10−8. Then

x2 − y2 = (x+ y)(x− y) < (20)(10−8) = 2×10−7.

In fact, if we take an example with a9 as large as possible, then

(9.000000009)2 −92 = 0.000000162 . . . > 10−7.

2.18 f has a minimum value on each closed interval contained in (a,b).

Take an expanding sequence of closed intervals, such as In =
[
a+

b−a
2n

,b− 1
n

]
.

It might happen that the minimum value of f on In decreases with n. If so, there must be
locations xn at which the minimums occur, for which xn tends to a or to b. This is a contradiction,
because the values f (xn) must tend to infinity.

2.20 (a) 3×10−m (b) (1/3)×10−7 (c) all x

2.23 We suppose the bottle only has one volume for a given height, V = f (H), and only one
height for a given volume, H = g(V ). Then H = g(V ) = g( f (H)) = (g ◦ f )(H) and V = f (H) =
f (g(V )) = ( f ◦g)(V ). So f and g are inverses.

2.25 There are two, x and x−1.

2.27

(a) k ◦ k
(b) g◦ k
(c) k ◦g

2.29 Let f (x) =
√

x2 +1− 3
√

x5 +2. Then f is continuous because polynomials and roots are
continuous and composites of continuous functions are continuous. We have f (0) = 1− 3

√
2 < 0

and f (−1) =
√

2− a > 0. By the intermediate value theorem, f (x) = 0 for some number x in
[−1,0].

2.31

(a) If a < b then f (a)< f (b), so f ( f (a))< f ( f (b)).
(b) Let f (x) =−x, for example. Then f is decreasing, but f ( f (x)) = x is increasing.

2.33

(a) By the continuity of f
(b) By the limit of g
(c) Combine parts (a) and (b)
(d) restates part (c)

2.35 Since x2 + y2 = 1 on the unit circle, cos2 s+ sin2 s = 1. This identity does not hold for the
first pair, but does for the second.

2.37 The graph has to be very wide if you use the same scale on both axes!

2.39 Maximum height 1.2 reached at 3t = π
2 and 3t = π

2 +2π . The t difference is 2π/3.

2.43

(a) sin(tan−1(z)) is the y-coordinate of the point on the unit circle whose radius points toward
(1, z). In order to rescale (1, z) back to the unit circle, multiply by some number c: (c,cz) is on

the unit circle if c2 +c2z2 = 1, so c =
1√

1+ z2
. Therefore, sin(tan−1(z)) = y = cz =

z√
1+ z2

.
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(b) cos(sin−1(y)) is the x-coordinate of the point whose vertical coordinate is y. By the
Pythagorean theorem, it is

√
1− y2.

2.45 g(x+ y) = f (c(x+ y)) = f (cx+ cy) = f (cx) f (cy) = g(x)g(y).

2.47 p(0) = 800, p(d) = 1600 = 800(1.023)d gives 2 = d log(1.023) so d = 87.95 . . ..

2.51 f (1/2) = 3 f (0) = 3 = m, so f (1) = 3 f (1/2) = 9 = ma, so a = 3.

2.53 P(N) = P(1)P(N −1) = P(1)P(1)P(N −2) = · · ·= P(1) · · ·P(1) = P(1)N . So the sequence
is 1+P(1)+(P(1))2 + · · ·+(P(1))N .

2.55 e > 2, so e10 > 210 = 1024 > 1000 = elog1000. But ex is increasing; therefore log1000 < 10.
Then log(1000000) = log(1000)+ log(1000) < 20

2.57 With
ex

x2 > 1 for large x, you get ex > x2 = elog(x2). So x > log(x2), or
√

y > logy.

2.59
∣∣1+x+x2+x3 +x4 − 1

1− x

∣∣= ∣∣ x5

1− x

∣∣. If − 1
2 ≤ x ≤ 1

2 , the numerator does not exceed 1/32,

and the denominator is at least 1/2, so the error ≤ 1/16.

2.63 Since
∞

∑
n=0

an(x− 2)n converges at x = 4, it must converge at every x that is closer to 2, i.e.,

|x−2|< 2. So the radius of convergence is at least 2, and f is continuous at least on (0,4).

2.65 We have said that the series in question, which is centered at a, converges for m < x < M. We
have also said that when a power series centered at a converges at any particular number x, then it
converges for every number closer to a. So it converges on intervals symmetric about a. Therefore
M−a = a−m.

2.67
(a) You need to argue that since p1/n

n tends to �, it is eventually smaller than every number such
as r that is greater than �. Then compare with a geometric series.

(b) Is similar to part (a)
(c) If p1/n

n = |an|1/n|x| tends to L|x|. If L|x| < 1, the series converges by part (a). If L|x| > 1, it
diverges by part (b). Therefore 1/L is the radius of convergence.

2.69
∞

∑
n=0

nxn converges for |x|< 1 by the ratio test. If {n1/n} tends to a limit r > 1, take x between

1/r and 1, so that rx > 1. Then the nth root (nxn)1/n = n1/nx =
n1/n

r
(rx) tends to rx > 1. According

to the root test, the series diverges, contradiction.

2.71

(a)
1

1+ t2 , for |t|< 1

(b)
1

1− x
−1− x− x2, for |x|< 1

(c) We don’t have a name for this one.

(d)
1

1− 1
2 t

+
1

1−3t2 , for |t|< 1/
√

3

2.73 Take the list of n+1 numbers 1+ x
n (n times) and 1. The A-G inequality gives

(
1+

x
n

)n/(n+1)
<

n
(
1+ x

n

)
+1

n+1
= 1+

x
n+1

.

The (n+1)st power gives the result.

2.75 en(−x) will do.
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Chapter 3

3.1 A linear function is its own tangent.

3.3 �(x) = 5(x−2)+6 = f (2)+ f ′(2)(x−2).
Use the properties �(2) = f (2) = 6 and �(2) = 5 = f ′(2)

3.5 (c)
f (a+h)− f (a)

h
=

1
h

(
a3 +3a2h+3ah2 +h3 −a3) tends to 3a2 = 3.

Tangent line y =−1+3(x+1).

3.7 y =−x− 1
4 is tangent at both − 1

2 and 1
2 .

3.9 Average rate of change:
T (a+h)−T (a)

h
. If T ′(a) is positive, T (x) is locally increasing at a;

hence it will be hotter to the right. If it is cooler to the left of a, T ′(a) should be positive. If the
temperature is constant, T (a+h)−T (a) = 0, so T ′(a) = 0.

3.11 Since f ′(3) = 5, g′(3) = 6, I would say that g is more sensitive to change near 3.

3.15 ( f (h)− f (0))/h = h−1/3 does not have a limit at h tends to 0. The one-sided derivative does
not exist, so f is not differentiable on [0,1].

3.17

(a)
1
2
(x3 +1)−1/2(3x2)

(b) 3

(
x+

1
x

)2(
1− 1

x2

)

(c)
1
2
(1+

√
x)−1/2

(
1
2

x−1/2
)

(d) 1

3.19

(a) Positions f (0) = 0, f (2) =−6
(b) Velocities f ′(0) = 1, f ′(2) =−11
(c) Direction of motion right, left, assuming axis is drawn positive to the right.

3.21 Only in parts (a), (b), and (c) do higher derivatives vanish.

(a) f (x) = x3, f ′(x) = 3x2, f ′′(x) = 6x, f ′′′(x) = 6, 0, 0, 0
(b) t3 +5t2, 3t2 +10t, 6t +10, 6, 0, 0, 0
(c) r6, 6r5, (6)(5)r4 , (6)(5)(4)r3 , (6)(5)(4)(3)r2 , (6)(5)(4)(3)(2)r, 6!
(d) x−1, −x−2, 2x−3, 3!x−4, −4!x−5, 5!x−6, −6!x−7

(e) t−3 + t3, −3t−4 +3t2, 12t−5 +6t, −60t−6 +6, 360t−7, −2520x−8, 40160x−9

3.23

(a) ( f 2)′ = 2 f f ′ = 2(1+ t + t2)(1+2t)
(b) 0
(c) 6(54)(4)

3.25

(a) 2GmMr−3

(b) 2GmMr−3r′(t) = 2GmM(2000000+1000t)−3(1000)

(c)
dF
dt

=
dF
dr

dr
dt

= 2GmMr−3 dr
dt
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3.27 V (t) = 4
3 π(r(t))3, and for some constant k,

V ′(t) = 4π(r(t))2r′(t) = k ·4π(r(t))2. So r′(t) = k.

3.29
dP
dt

=
7
5

kρ2/5 dρ
dt

.

3.31 f (1) = 1+2+3+1 = 7 and f ′(1) = 3+4+3 = 10,
so g′(7) = ( f −1)′(7) = 1/ f ′(1) = 1/10.

3.33 (xa)b = xab = x if ab = 1. If 1/p + 1/q = 1 then multiply by pq, giving q + p = pq, or
(p−1)(q−1) = 1.

3.35

(a) f (x+h) = k+ f (x) = k+ y, so x+h = g(k+ y)
(b) f strictly monotonic means that when h 
= 0, f (x+h) 
= f (x)
(c) The algebra is correct as long as no denominator is 0, and we have shown that none is,

provided k 
= 0. The left-hand side tends to g′(y) as k tends to 0. But as k tends to 0,
h = g(k + y)− g(y) tends to 0 due to the continuity of g (By Theorem 2.9). Therefore, the
right-hand side tends to 1/ f ′(x).

3.37 (−1/10)ne−t/10

3.39 2x+0+0+2x log2+ ex + exe−1

3.41

(a) 1/x
(b) 2/x
(c) 0
(d) −exe−ex

(e)
1− e−x

1+ e−x

3.43 y = x−1

3.45 The rate is 1.5 times the size, p′(t) = 1.5p(t). The solutions are p(t) = ce1.5t .
Then p(1) = 100 = ce1.5, and p(3) = ce4.5 = 100e−1.5e4.5.

3.47 (log( f g))′ =
( f g)′

f g
= (log f + logg)′ =

f ′

f
+

g′

g
. Multiply by f g to get ( f g)′ = f ′g+ f g′.

3.49
(

1
2

log(x2 +1)+
1
3

log(x4 −1)− 1
5

log(x2 −1)

)′
=

1
2

2x
x2 +1

+
1
3

4x3

x4 −1
− 1

5
2x

x2 −1

3.53

(a) cotx

(b)
etan−1(x)

x2 +1

(c)
10x

25x4 +1

(d)
2e2x

e2x +1
(e) e(logx)(cos x)

( cosx
x

− sinx logx
)
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3.55

(a) (secx)′ =−(cosx)−2(−sinx)
(b) (cscx)′ =−(sinx)−2(cosx)

(c) (cotx)′ =
(sinx)(−sin x)− (cosx)(cos x)

sin2 x

3.57 y(x) = ucosx+ vsinx, y(0) =−2 = u, y′(0) = 3 = v, so y(x) =−2cosx+3sinx.

3.59

(a) For y > 1, sketch a triangle with legs 1 and
√

y2 −1 to see that cos(sec−1 y) = 1/y. The
derivative gives −sin(sec−1 y)(sec−1 y)′ =−y−2. Then

(sec−1 y)′ =
1

sin(sec−1 y)
1
y2 =

1√
1− y−2

1
y2 =

1

y
√

y2 −1
.

For y<−1, sketch a graph of cosine and secant to see the symmetry sec−1 y= π −sec−1(−y).

Then by the chain rule, (sec−1)′(y) = (sec−1)′(−y). So (sec−1 y)′ =
1

|y|
√

y2 −1
.

(b) (cos−1 x)′ =−(sin−1 x)′ =−1/
√

1− x2.
(c) (csc−1 x)′ =−(sec−1 x)′ =−1/(|x|√x2 −1.

(d)

(
tan−1 1

x

)′
=−(tan−1 x)′ =− 1

1+ x2 . By the chain rule,
1

1+(x−1)2

−1
x2 =− 1

1+ x2 .

3.61 sinh′ x = 1
2 (e

x − e−x)′ = 1
2 (e

x + e−x) = coshx and similarly for cosh′.

3.63 cosh2 x− sinh2 x = 1
4 (2exe−x)−2(−exe−x)) = 1

3.65

(a) 0+05 + sin0 = 3(12)−3.
(b) Apply the chain rule to y(x)+ y(x)5 + sin(y(x)) = 3x2 −3.

(c)
dy
dx

=
6x

1+5y4 + cosy
= 6/2.

(d) tangent line is y = 3(x−1).
(e) y(1.01) ≈ 3(.01)

3.67 y(x) = ucosh x+ vsinhx, y(0) =−1 = u, y′(0) = 3 = v, y(x) =−coshx+3sinhx

3.69 Take x = 0 to find u = 0. Then evaluate the derivative at 0 to find 0 = v.

3.71

(a) This is a statement of the binomial theorem applied to (x+h)n .
(b) Apply the triangle inequality to the right-hand side in part (a). In each term, the binomial

coefficient is positive, and |xn−khk|= |x|n−k|h|k. Then replace |h| by the equal number
|h|
H

H,

and you get
∣∣∣∣
(

n
2

)
xn−2h2 +

(
n
3

)
xn−3h3 + · · ·+hn

∣∣∣∣≤
∣∣∣∣
(

n
2

)
xn−2h2

∣∣∣∣+ · · ·+ |hn|

≤
(

n
2

)
|x|n−2|h|2 + · · ·+ |h|n =

(
n
2

)
|x|n−2 |h|2

H2 H2 + · · ·+ |h|n
Hn Hn

(c) Factor out
|h|2
H2
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(d) Recognize that the factor
((n

2

)|x|n−2H2 + · · ·+Hn
)

consists of all but two (positive) terms of
the binomial expansion

(|x|+H)n = |x|n +h|x|n−1H +

((
n
2

)
|x|n−2H2 +

(
n
3

)
|x|n−3H3 + · · ·+Hn

)

and is therefore less than (|x|+H)n.

3.73 Each side is

(
1

1− x

)2

for |x|< 1.

Chapter 4

4.1 0.4 ≤ f ′(c) =
f (2.1)−6

0.1
≤ 0.5 gives 6.04 ≤ f (2.1)≤ 6.05

4.3 h(x) = 2
3 sin(3x)+ 3

2 cos(2x)+ c, h(x) = 2
3 sin(3x)+ 3

2 cos(2x)− 3
2 .

4.5 f ′(x) = (1− x2)/(1+ x2). f increases on (−1,1), decreases on (−∞,−1) and on (1,∞). In
[−10,10], the minimum has to be either f (−1) =−1/2 or f (10) = 10/101, so −1/2. In [−10,10],
the maximum has to be either f (−10) =−10/101 or f (1) = 1/2, so 1/2.

4.7

(a) For a rectangle x wide, area A(x) = x(16−2x)/2 = 8x− x2 defined on [0,8]. A′(x) = 8−2x
is 0 when x = 4, A(0) = A(8) = 0, so A(4) = 16 is the maximum.

(b) Now A(x) = x(16 − 2x) = 16x− 2x2 defined on [0,16]. A′(x) = 16− 4x is 0 when x = 4,
A(0) = A(16) = 0, so A(4) = 32 is the maximum.

4.9

E ′(m) = 2(y1 −mx1)(−x1)+ · · ·+2(yn −mxn)(−xn) =−2
n

∑
i=1

xiyi +2
( n

∑
i=1

x2
i

)
m

is 0 when m =
∑xiyi

∑x2
i

. This gives a minimum because E ′(m)< 0 when m <
∑xiyi

∑x2
i

and E ′(m) > 0

when m >
∑xiyi

∑x2
i

.

4.11 x′(3/2) = 0 and x′′(t) is negative for all t , and therefore x(3/2) = 9/4 is the maximum.

4.13 Let c(x) = x− x3. Then c′(x) = 1− 3x2 is 0 when x =
√

1/3, and c′′(x) = −6x is negative
for all x > 0. So c(

√
1/3) =

√
1/3(2/3) = 0.384 . . . is the largest amount.

4.17 Let f (x) = h(x)− g(x). Then we are given that f ′(x) ≥ 0 for x > 0 and f (0) = 0. Thus f is
nondecreasing for x > 0, so if x > 0, f (x)≥ f (0) = 0. So h(x)−g(x) ≥ 0, so h(x) ≥ g(x).

4.21 Since e0 = 1, lim
x→0

ex −1
x

is the derivative of ex at 0, namely 1. The reciprocal
x

ex −1
therefore

also tends to 1.

4.25 The linear approximation theorem gives f (t)= 0+3t+ 1
2 f ′′(c)t2 for some c between 0 and t .

So 3t +4.9t2 ≤ f (t)≤ 3t +4.905t2.



484 Answers to Selected Problems

4.27 f ′(x) = 6x2 − 6x+ 12 = 6(x − 2)(x + 1) is negative on (−1,2), f ′(−1) = f ′(2) = 0, and
positive otherwise; f (−1) =−17 is a local minimum and f (2) = 28 is a local maximum because
of the concavity: f ′′(x) = 12x − 6 is negative when x < 1

2 , so f is concave there, convex when
x > 1

2 .

4.29 Tangent is below graph, because the function is convex.

4.31 Set g(x) = e−1/x. Then g(x) > 0, g′(x) = x−2g(x), and
g′′(x) = (−2x−3 + x−4)g(x) = (1−2x)x−4g(x). So g is convex on (0, 1

2 ).

4.33 Yes. (e f )′ = f ′e f , (e f )′′ = f ′′e f +( f ′)2e f . Therefore if f ′′ > 0, then (e f )′′ > 0.

4.35 Write h = 1
2 (b−a) and c = 1

2 (a+b). Then c = a+h = b−h, and linear approximation gives

f (a) = f (c)+ f ′(c)h+
1
2

f ′′(c1)h
2, f (b) = f (c)− f ′(c)h+

1
2

f ′′(c2)h
2,

for some c1 and c2 in [a,b]. Average these to get 1
2 ( f (a)+ f (b)) = f (c)+ 1

4 ( f ′′(c1)+ f ′′(c2))h2.
The last term has | 1

4 ( f ′′(c1)+ f ′′(c2))h2| ≤ 1
4 2Mh2 = M

8 (b−a)2.

4.39 f ′ > 0 on [−5,−1.8] and [0.5,5] f ′ < 0 on [−1.8,0.5]
f ′′ > 0 on [−1.8,2.5] f ′′ < 0 on [−5,−1.8] and [2.5,5]

4.41

(a) See Fig. 11.5.

(b) f ′(x) = −xe−
x2
2 is positive when x is negative, so f is increasing on (−∞,0) and decreasing

on (0,∞). f ′′(x) = (−1+ x2)e−
x2
2 is negative when −1 < x < 1, so f is concave on (−1,1)

and convex on (−∞,−1) and on (1,∞). The only critical point is for the maximum at x = 0.
(c) g′(x) = x−2e−1/x is positive and g is increasing on (0,∞).

g′′(x) = (−2x−3 + x−4)e−1/x = x−4(1 − 2x)e−1/x is negative on (0,1/2) and positive on
(1/2,∞) so g is convex on (0,1/2) and concave on (1/2,∞).

0.25

0.5

0.75

-2 -1 1 2

x

0.25

0.5

0.75

1 2 3 4

x

Fig. 11.5 Left: the graph of f (x) = e−
x2
2 . Right: the graph of g(x) = e−1/x. See Problem 4.41

4.43 cosx = 1− x2

2
+

x4

4!
− x6

6!
+ · · · converges for all x.
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4.45 t3 = t4 because sin′′′′(0) = 0. It is better to use t4 to take advantage of the 5! in the remainder.

This gives | sinx− t3(x)| = | sinx− t4(x)| ≤ x5

120
.

4.47 cosh′ x = sinhx, sinh′ x = coshx, give Taylor polynomials tn(x) = 1+ x2

2! +
x4

4! +α xn

n! , where

α = 1 when n is even and α = 0 when n is odd. The remainder is cosh(n+1)(c) xn+1

(n+1)! for some c

between 0 and x. By definition, sinhb and coshb are each less than eb. Therefore, for x in [−b,b],

|tn(x)− cosh x| ≤ eb bn+1

(n+1)!
,

and this tends to 0 as b tends to infinity. The convergence is uniform on [−b,b].

4.49 Let f (x) = cosx. Then f (π/3) = 1
2 , f ′(π/3) =−

√
3

2 , f ′′(π/3) =− 1
2 , f ′′′(π/3) =

√
3

2 , . . .,

and cosx = 1
2 −

√
3

2

(
x− π

3

)− 1
2

1
2!

(
x− π

3

)2
+

√
3

2
1
3!

(
x− π

3

)3 − 1
2

1
4!

(
x− π

3

)4
+ · · ·

4.51 √
1+ y = 1+

1
2

y+
1
2

( 1
2 −1

)
2!

y2 +
1
2

( 1
2 −1

)( 1
2 −2

)
3!

y3

+
1
2

( 1
2 −1

)( 1
2 −2

)( 1
2 −3

)
4!

y4 + · · ·= 1+
1
2

y− 1
8

y2 +
1
16

y3 − 5
128

y4 + · · ·

4.53
√

x = 1+
1
2
(x−1)− 1

8
(x−1)2 +

1
16

(x−1)3 − 15
16

c−7/2 (x−1)4

4!
. For x in [1,1+d], c ≥ 1

and |x−1| ≤ d give |√x− t3(x)| ≤ 15
16

d4

4!
=

5d4

128
. This is less than

(a) 0.1 when d ≤ ((0.1)128/5)1/4 = 1.26 . . .
(b) 0.01 when d ≤ ((0.01)128/5)1/4 = 0.71 . . .
(c) 0.001 when d ≤ ((0.001)128/5)1/4 = 0.4

4.55 t6(0.7854) = 1−0.308427+0.0158545−0.000325996 = 0.70710 . . .

This is nearly cos
(π

4

)
=

1√
2

.

4.57

(a) g(0) = f (a), g(−a) = f (0)+a f ′(0)+ a2

2 f ′′(0)+ · · ·+ an

n! f (n)(0)

(b) g′(x) = f ′(x+a)− f ′(x+a)− x f ′′(x+a)+ x f ′′(x+a) −·· ·+ (−1)nxn−1

(n−1)! f (n)(x+a).

The last term would involve f (n+1), but this is zero because f has degree n. All terms cancel,
and g′(x) = 0 for all x.

(c) Since g′(x) = 0 for all x, g(x) is constant.
(d) Since g is constant, g(0) = g(−a), giving f (a) = f (0)+a f ′(0)+ · · ·+ an

n! f (n)(0).

4.59
(x+h)2 − x2

h
= 2x+h,

(x+h)2 − (x−h)2

2h
= 2x,

(x+h)3 − x3

h
= 3x2 +3xh+h2,

(x+h)3 − (x−h)3

2h
= 3x2 +h2.

(10.1)2 −102

0.1
= 20.1 = (derivative)+0.1,

(10.1)2 − (9.9)2

0.2
= 20 = (derivative),

(10.1)3 −103

0.1
= 33.01 = (derivative)+3.01,

(10.1)3 − (9.9)3

.2
= 30.01 = (derivative)+0.01.
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4.63 (a) f ′(x) = 2xsin
(1

x

)− cos
(1

x

)
when x 
= 0.

(b)
h2 sin

(
1
h

)−0

h
= hsin

(1
h

)
tends to 0 by the squeeze theorem as h tends to 0, because | sin | ≤ 1.

(c) f ′
( 1

nπ
)
=−cos(nπ) has no limit as n tends to infinity, so f ′(x) has no limit as x tends to 0.

Chapter 5

5.3 y(t) =−4.9t2 +10t +0, y(1) =−4.9+10t = 5.1, y′(1) =−9.8+10 = 0.2,
y(2) =−4.9(4)+10(2) = 0.4, y′(2) =−9.8(2)+10 =−9.6,

5.5 my′′ = g− fup.

5.7 Functions with the same derivative on an interval differ by a constant. It is a consequence of
the mean value theorem.

5.9

(a) With x = y6, f (x) = 1+x1/3 −x1/2 becomes g(y) = 1+y2 −y3. Since g(1)> 0 and g(2)< 0,
there is a root y between 1 and 2. Starting from y1 = 1 and iterating

ynew = y− 1+ y2 − y3

2y−3y2

produces 2, 1.625, 1.4858, 1.4660, 1.4656, 1.4656. So x = (1.4656)6 = 9.9093.
(b) Experiments give f (−1) = −3, f (0) = 1, f (2) = −3, f (3) = 1. Since these are −+−+,

there are three real roots, one in each interval [−1,0], [0,2], and [2,3].

(c) f (x) =
x

x2 +1
+ 1−√

x has derivative f ′(x) =
1− x2

1+ x2 − 1
2
√

x
. The derivative is negative on

[1,∞), so there can be only one zero at most; since f (1) = 1/2 and f (3) = 0.3+1−√
3 < 0,

the root is in [1,3].

5.11 There are two statements to be explained, that this finds the maximum, and the statement
about a zero of f ′ in (b).

In (b), there is a zero of f ′ because f is a continuous function on the closed subinterval
[x j−1,x j+1] for which the endpoints do not give the maximum.

Reason for large N, and why this finds the maximum, is that only two things could go wrong:
(1) If there is more than one zero of f ′ in a subinterval, then Newton could converge to the wrong
one, (2) there might be a maximum at one of the x j .

Take N so large that f is well approximated by a quadratic function in each subinterval. This
solves (1), and replacing N by N +1 solves (2).

5.13

(a) Take z1 = 1, then z2 = z1 − 1
2 (z

2
1 −2) = 1.5, z3 = 1.375, z4 = 1.42969, z5 = 1.40768,

z6 = 1.4169 and in general, zn+1 −
√

2 = (zn −
√

2)
(
1− 1

2 (zn +
√

2)
)
; since the second factor

is negative, the zn alternate greater than and less than
√

2.
(b) Take z1 = 1, then z2 = z1 − 1

3 (z
2
1 −2) = 1.33333, z3 = 1.40741, z4 = 1.41381, z5 = 1.41381,

z6 = 1.41419 and in general, zn+1−
√

2= (zn −
√

2)
(
1− 1

3 (zn +
√

2)
)
; since the second factor

is positive, the zn −
√

2 are all of the same sign.

5.17

(a) Q is fixed, so the cost of producing q in plant 1 plus the cost of producing Q−q in plant 2 is
C1(q)+C2(Q−q).
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(b) If C has a minimum at q, then C′(q) = 0 gives C′
1(q) =C′

2(Q−q).

(c) 2aq = 2b(Q−q), q =
b

a+b
Q =

1.2a
a+1.2a

Q = 0.545Q.

5.19 Marginal cost is C′(q) = akqk−1, and average cost is
C(q)

q
= aqk−1 +

b
q

. These are equal if

there is a q for which a(k−1)qk = b. Since a and b are positive, this is possible as long as k > 1.

Chapter 6

6.1

(a) Four parts: 1 < 2 < 3 < 4 < 5.

(1)(1)+(2)(1)+(3)(1)+(4)(1) ≤ R(x, [1,5])≤ (2)(1)+(3)(1)+(4)(1)+(5)(1)

gives 10 ≤ R(x, [1,5])≤ 14.
(b) Eight parts: 1 < 1.5 < 2 < 2.5 < 3 < 3.5 < 4 < 4.5 < 5.

(1)(0.5)+(1.5)(0.5)+(2)(0.5)+(2.5)(0.5)+(3)(0.5)+(3.5)(0.5)+(4)(0.5)+(4.5)(0.5)

≤ R(x, [1,5])≤
(1.5)(0.5)+(2)(0.5)+(2.5)(0.5)+(3)(0.5)+(3.5)(0.5)+(4)(0.5)+(4.5)(0.5)+(5)(0.5)

gives 11 ≤ R(x, [1,5])≤ 13.

6.3

(a) See Fig. 11.6.
(b) Since f is negative only on (−1,1), we know that A(x2 − 1, [−3,−2]) is certainly positive,

and A(x2 −1, [−1,0]) is certainly negative. The other two would require some extra effort.
(c) Iupper =

(
(−3)2 −1+(−2)2 −1+(−1)2 −1+12 −1+22 −1

)
1 = 14.

Ilower =
(
(−2)2 −1+(−1)2 −1+(0)2 −1+02 −1+12 −1

)
1 = 1.

6.5

(a) Iapprox( f , [1,3]) = f (1.2)(0.5)+ f (2)(0.5)+ f (2.5)(1) = 12.57
(b) Iapprox(sin, [0,π ]) =

(
sin(0)+ sin( π

4 )+ sin( π
2 )+ sin( 3π

4 )
) π

4 = 1.896

6.7 (a) The area of the large rectangle is e, so the area of the shaded region is 1.
(b) If you flip the picture over the diagonal, the shaded region is the region under the graph logt
from t = 1 to t = e, so the integral is 1.

6.9

(a) left: (130+75+65+63+61)(3)/15 = 78.8
right: (75+65+63+61+60)(3)/15 = 64.8

(b) left: (130(1)+120(1)+90(2)+70(2)+65(9))/15
right: (120(1)+90(1)+70(2)+65(2)+60(9))/15

6.11 The graph of fk is the graph of f stretched horizontally by a factor of k. If we have a set
of rectangles approximating the “area under the curve” f with total area A and error ε , stretching
them by a factor of k will produce a set of rectangles approximating the “area under the curve” fk
with total area kA and error kε . Since we can make ε arbitrarily small using narrower rectangles,
we can also make kε arbitrarily small. The area of the new region is kA.
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2

4

6

-3 -1 1 2

x2-1

Fig. 11.6 Left: The graph for Problem 6.3. Right: A stack of cylinders approximates volume in
Problem 6.31

6.13 Each approximate integral for f using a0 ≤ t1 ≤ a1 < · · · < an becomes an approximate
integral for f− using an < · · ·< a1 < t1 < a0.

6.15
(a) x3

(b) x3e−x

(c) s6e−s2
(2s)

(d) 2cos
( π

2

)
= 0

6.17
(a) tan−1

( π
4

)
= 1

(b)
[

1
5 x5 + 4

3 x3 +4x
]1

0

(c)
[
4
√

x− 2
3 x3/2

]4
1

(d)
[
2t −4t−1 +4t−2

]−1
−2 = 7

(e)
[
s2 + log(s+1)

]6
2 = 32+ log7− log3

6.19 By the fundamental theorem, F ′(x) =
1√

1− x2
. Then the chain rule applied to t = F(sin t)

gives 1 = F ′(sint)(sin t)′ =
1√

1− (sint)2
(sint)′ or (sint)′ =

√
1− (sint)2.

6.21 This is the chain rule combined with the fundamental theorem.

6.23
(a) 3t2(1+ t3)3 =

(
1
4 (1+ t3)4

)′, so this is an example of the fundamental theorem.
(b) a(t) =

(
v(t)

)′, so this is an example of the fundamental theorem

6.25 k =
2000
0.004

= 500000. W =
∫ 0.004

0
kxdx = k

1
2

x2
∣∣0.004
0 = 4 joule

6.27 If the pump starts at t = 0, the volume drained in T minutes is
∫ T

0
(2t + 10)dt = T 2 + 10T .

This is 200 when T = 10 minutes.

6.29 Ileft = 1.237 >
∫ 2

1

√
1+ x−2 dx > Iright = 1.207 because the integrand is decreasing.

6.31 See Fig. 11.6.
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Chapter 7

7.1

(a)
∫ 1

0
t2(et )′ dt =

[
t2et]1

0 −
∫ 1

0
2t(et)′ dt =

[
t2et −2tet]1

0 +2
∫ 1

0
et dt = e−2e+2(e−1) = e−1

(b)
π
2
−1

(c)
π2

4
−2. Integrate twice by parts.

(d)
∫ 1

0
x3(1+x2)1/2 dx=

∫ 1

0

x2

2

(
2
3
(1+x2)3/2

)′
dx=

[ x2

2
2
3
(1+x2)3/2]1

0−
1
3

∫ 1

0
2x(1+x2)3/2 dx

=
[ x2

2
2
3
(1+x2)3/2]1

0−
1
3

[2
5
(1+x2)5/2]1

0=
1
3

23/2 − 2
15

(25/2 −1)=
2

15
(1+

√
2)

7.3

(a) Integrate by parts, differentiating tan−1 x. Answer 1
4 π − 1

2 .
(b) usinu

7.5 Set f = f1 − f2. Then f ′′ − v f = 0, f (a) = 0, and f (b) = 0. Integrate by parts

0 ≤
∫ b

a
v(t) f (t) f (t)dt =

∫ b

a
f ′′(t) f (t)dt =−

∫ b

a
f ′(t) f ′(t)dt ≤ 0.

Therefore
∫ b

a
v(t)( f (t))2 dt = 0. Since v > 0, f must be identically 0 on [a,b]. Therefore f1 = f2.

7.7

(a)
∫ π/2

0
sin2 t dt =

∫ π/2

0

1
2
(1− cos(2t))dt =

π
4

(b)
∫ π/2

0
sin3 t dt =

∫ 1

0
(1−u2)du =

2
3

(let u = cos t)

7.9

(a) e−1/x +C

(b)
∫

x−1e−1/x dx = xe−1/x −
∫

e−1/x dx.

(c) (x−1 +1)e−1/x +C
(d) e−1/x − (x2 +2x+1)e−x +C

7.11

(a) sinx− xcosx+C

(b) Km(x) =−xm cosx+
∫

mxm−1 cosxdx =−xm cosx+mxm−1 sinx−m(m−1)Km−2(x)

(c) K0(x) =C− cosx, K2(x) =−x2 cosx+2xsinx−2K0(x),

K4(x) =−x4 cosx+4x3 sinx−12K2(x). Then
∫ π

0
x4 sinxdx = K4(x)

∣∣∣π
0
= π4 −12π2 +48.

(d) K3(x) =−x3 cosx+3x2 sinx−6K1(x).

7.15

(a) Let u = t2 +1, then
∫ 1

0

t
t2 +1

dt =
∫ 2

1

1
2u

du =
log2

2
.

(b) 1
4

(c) Let t = tanu, then
∫ 1

0

1
(t2 +1)2 dt =

∫ π/4

0

sec2 u
tan2 u+1

du =
∫ π/4

0
cos2 udu

=
∫ π/4

0

1
2
(1+ cos2u)du =

[1
2

u+
1
4

sin2u
]π/4

0 =
π
8
+

1
4

.
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(d)
∫ 1

−1
x2ex3

dx =
1
3

∫ 1

−1

(
ex3)′

dx =
1
3
(e− e−1).

(e)
∫ 1

−1

2t +3
t2 +9

dt = 2tan−1(
1
3
) (rewrite the integrand as

2t
t2 +9

+
3

t2 +9
. Let u = t2+9 on the left

and v = t
3 on the right)

(f) With t =
√

2sinhu we have 2+ t2 = 2+2sinh2 u = 2+2(cosh2 u−1) = 2cosh2 u. So

∫ 1

0

√
2+ t2 dt =

∫ b

0

√
2coshu

√
2coshudu,

where 1 =
√

2sinhb. But cosh2 u = 1
4 (e

2u +2+ e−2u), so the integral is equal to

2
4

[
e2u

2
+2u+

e−2u

−2

]b

0
=

e2b

4
+b− e−2b

4
.

Then since b = sinh−1 1√
2
= log

(
1√
2
+

√
1+

1
2

)
, the integral is

1
4

(
1√
2
+

√
3
2

)2

+ log

(
1√
2
+

√
1+

1
2

)
− 1

4

(
1√
2
+

√
3
2

)−2

= 1.5245043 . . . .

7.17 With x = t2, 0 ≤ t ≤ 1, and change of variables gives
∫ 1

0

√
1+

√
xdx =

∫ 1

0

√
1+ t 2t dt .

Then integrate by parts to get

[
2
3
(1+ t)3/2 2t

]1

0
−
∫ 1

0

2
3
(1+ t)3/2 2dt =

4
3

23/2 − 4
15

[
(1+ t)5/2

]1

0
=

4
3

23/2 − 4
15

27/2

7.19 f has an antiderivative F . Then

∫ b

a
f (g(t))|g′(t)|dt =−

∫ b

a
F ′(g(t))g′(t)dt =−F ◦g

∣∣∣b
a
=−

∫ g(b)

g(a)
F ′(u)du =

∫ g(a)

g(b)
F ′(u)du

7.21

(a) Set u = x− r. Then u = a when x = a+ r, and u = b when x = b+ r, so

∫ b

a
f (u)du =

∫ b+r

a+r
f (x− r)dx.

(b) Set u =−x. Then u =−a when x = a, and u =−b when x = b, so

∫ b

a
f (u)du =

∫ −b

−a
f (−x)(−1)dx =

∫ −a

−b
f (−x)dx.

7.23

(a) Yes:
nan

nbn
=

an

bn
tends to 1. Yes:

nan√
1+n2bn

=
n√

1+n2

an

bn
tends to 1.

(b) lim
n→∞

(logan − logbn) = log1 = 0.
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7.25

(a)
∞

∑
n=1

1
n2 ≤ 1+

∫ ∞

1
x−2dx =−x−1

∣∣∞
1 = 1. The series converges.

(b)
∞

∑
n=1

1
n1.2 ≤ 1+

∫ ∞

1
x−1.2dx =

x−.2

−.2

∣∣∣∞
1

. The series converges.

(c)
∞

∑
n=2

1
n logn

≥
∫ ∞

2

1
x logx

dx = log(logx)
∣∣∞
2 . This limit does not exist; the series diverges.

(d)
∞

∑
n=1

1
n.9

≥
∫ ∞

1
x−.9dx = 10x.1

∣∣∞
1 = ∞. This limit does not exist; the series diverges.

7.27

(a) ∫ b

1

p0 + · · ·+ pn−2xn−2

q0 + · · ·+qnxn dx =
∫ 1

1/b

p0 + · · ·+ pn−2z−(n−2)

q0 + · · ·+qnz−n

∣∣− z−2
∣∣ zn

zn dz

=
∫ 1

1/b

p0zn−2 + · · ·+ pn−2

q0zn+2 + · · ·+qn
dz

tends to a proper integral on [0,1], that is, it is proper and remains proper as b tends to infinity

because the denominator is never 0 in [0,1]. The result:
∫ ∞

1
f (x)dx =

∫ 1

0
f (z−1)z−2 dz.

(b) f (x) =
1

1+ x3 has denominator of degree 3 = n ≥ 2, numerator of degree 0 ≤ 3 − 2, and

1+ x3 
= 0 for x ≥ 1, so part (a) applies. Then x = z−1 gives f (x) =
1

1+ z−3 , dx =−z−2 dz,

so
∫ ∞

1

1
1+ x3 dx =−

∫ 0

1

1
1+ z−3 z−2 dz =

∫ 1

0

z
z3 +1

dz.

7.29 lim
b→∞

∫ b

1

sinx
x

dx = lim
b→∞

(
−1

x
cosx

∣∣∣b
1
−
∫ b

1

cosx
x2 dx

)
The limit of the first term is cos1, and

the integral of
cosx

x2 converges by comparison with
∫ ∞

1

1
x2 dx, which converges. For the integral

lim
b→∞

∫ b

1

| sinx|
x

dx, we have

(a) ignore integral from 1 to π ,

(b) in each subinterval
1
x
≥ 1

kπ
,

(c) each integral is equal to
∫ π

0
sinxdx = 2, and

(d) the integral has been shown to be larger than each partial sum of the divergent harmonic series.

7.31
∫ b

s

1
x logx

dx = [log(logx)]bs tends to infinity with b because logb tends to infinity.

7.33 An antiderivative for
1

y− y2 =
1
y
+

1
1− y

is log |y|− log |1− y|. Therefore,

∫ b

2

1
y− y2 dy = log

∣∣∣∣ b
1−b

∣∣∣∣− log

∣∣∣∣ 2
1−2

∣∣∣∣ .

Since
b

1−b
tends to −1 as b tends to infinity, the integral tends to − log2.
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7.35 Denote the integrals by I1, I2 respectively. Then

I1 =
∫ ∞

0
sin(at)e−pt dt =− 1

p
sin(at)e−pt

∣∣∣∞
0
+

1
p

∫ ∞

0
acos(at)e−pt dt =

a
p

I2

I1 =
∫ ∞

0
sin(at)e−pt dt =−1

a
cos(at)e−pt

∣∣∣∞
0
− p

a

∫ ∞

0
cos(at)e−pt dt =

1
a
− p

a
I2.

Then solve for I1 and I2 from these relations.

7.37 Since (xn)′ = nxn−1 is true for real positive n, integration by parts gives

∫ b

0
xne−x dx =

[−e−xxn
]b

0 −
∫ b

0

(− e−x
)
nxn−1 dx.

As b tends to infinity, this becomes n! = 0+n
(
(n−1)!

)
.

7.39 Change x = y2 in
( 1

2

)
! =

∫ ∞

0
x1/2e−x dx =

∫ ∞

0
ye−y2

2ydy = 2
∫ ∞

0
y2e−y2

dy =
1
2

√
π .

7.41 (a) 10+ 1000
3 +10t (b) 10 (c) 10 (d) They are equal.

Chapter 8

8.1

(a) Ileft(x3, [1,2]) = 13(2−1) = 1, (13 +(1.5)3)(2−1)/2 = 2.1875,
(13 +(1.25)3 +(1.5)3 +(1.75)3)(2−1)/4 = 2.92188
Iright(x3), [1,2] = 23(2−1) = 8, ((1.5)3 +23)(2−1)/2 = 5.6875,
((1.25)3 +(1.5)3 +(1.75)3 +23)(2−1)/4 = 4.67188
Imid(x3), [1,2] = (1.5)3(2−1) = 3.375, ((1.25)3 +(1.75)3)(2−1)/2 = 3.35625,
((1.125)3 +(1.375)3 +(1.625)3 +(1.875)3)(2−1)/4 = 3.72656

(b) pseudocode to compute Imid( f , [a,b]) with n subdivisions.

function iapprox = Imid(a,b,n)
h = (b-a)/n; [ width of subinterval ]
x = a+h/2; [ midpoint of 1st subinterval ]
iapprox = f(x);
for k = 2 up to n
x = x+h; [ move to next midpoint ]
iapprox = iapprox+f(x); [ add value of f there ]
endfor
iapprox = iapprox*h; [ multiply by width h last ]

function y = f(x)
y = sqrt(1-x*x);

Ileft(
√

1− x2,
[
0, 1√

2

]
) = 0.70711,0.68427,0.66600

Iright(
√

1− x2,
[
0, 1√

2

]
) = 0.5,0.58072,0.61422;

Imid(
√

1− x2,
[
0, 1√

2

]
) = 0.66144,0.66722,0.66399

(c) Ileft(
1

1+x2 , [0,1]) = 1.00000,0.90000,0.84529

Iright(
1

1+x2 , [0,1]) = 0.5,0.65000,0.72079; Imid(
1

1+x2 , [0,1]) = 0.80000,0.79059,0.78670
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8.3

(a) n = 1 : 0.447214, n = 5 : 0.415298, n = 10 : 0.414483, n = 100 : 0.414216
actual value

√
2−1 ≈ 0.414214

(b) n = 1 : 0.8, n = 5 : 0.78623, n = 10 : 0.78561, n = 100 : 0.78540
actual value tan−1 1 = π

4 ≈ 0.78540
(c) n = 1 : 0.5, n = 5 : 0.65449, n = 10 : 0.66350, n = 100 : 0.66663

actual value 2
3 ≈ 0.66666

8.5

(a) The graph of a convex function lies above each tangent line, in particular the tangent line
at the midpoint of each subinterval [c,d]. Since then f ≥ � for that linear function � on the

subinterval,
∫ d

c
f (x)dx ≥

∫ d

c
�(x)dx. But the integral of � is the midpoint rule for f .

(b) The graph of a convex function lies above each tangent line, in particular the secant line on
each subinterval [c,d]. Since then f ≤ � for that linear secant function � on the subinterval,∫ d

c
f (x)dx ≤

∫ d

c
�(x)dx. But the integral of � is the trapezoidal rule for f .

8.7

(a) The midpoint rule with one interval [−h,h] gives 2h f (0).
(b) The derivatives for Taylor are

K(h)−K(−h); at h = 0 it is 0.
K′(h)+K′(−h) = f (0)− f (h)+

(
f (0)− f (−h)

)
; at h = 0 it is 0.

K′′(h)−K′′(−h) =− f ′(h)+ f ′(−h); at h = 0 it is 0.
K′′′(h)+K′′′(−h) =− f ′′(h)− f ′′(−h).

(c) In the last step recognize that the subinterval width is 2h = (b− a)/n, and use the triangle
inequality, |− f ′′(c2)− f ′′(−c2)| ≤ 2M2.

8.9 (1/2)((1/4)2 +(3/4)2)+(1/24)(1/2)2(4−0) = 0.2002 . . .

8.11 n = 100 : 0.7853575, n = 1000 : 0.7853968 , π
4 = 0.7853981 . The error term depends

on the maximum value of | f (4)(x)| on the interval, which is unbounded as x → 1.

Chapter 9

9.1

(a)
√

22 +32 =
√

13,
√

42 +(−1)2 =
√

17
(b) 2−3i, 4+ i
(c) 1

2+3i =
1

2+3i
2−3i
2−3i =

2−3i
13 = 2

13 − 3
13 i, and the reciprocal of the conjugate is the conjugate of the

reciprocal: 2
13 +

3
13 i.

1
4−i =

1
4−i

4+i
4+i =

4+i
17 = 4

17 +
1
17 i, and 4

17 − 1
17 i

(d) (2+3i)+(2−3i) = 4 = 2(2), (4− i)+(4+ i) = 8 = 2(4)

(e) (2+3i)(2−3i) = (4+9) =
√

13
2
, (4− i)(4+ i) = (16+1) =

√
17

2

9.3 z = (4−1)+2i = 3+2i, z = (3−2i)

9.5 (a) 5 (b)
√

61 (c) 5/
√

61 (d) 1

9.7 If z = x+ iy then these say y =
x+ iy− (x− iy)

2i
and x =

x+ iy+(x− iy)
2

, which are true.
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9.9 (a2 +b2)(c2 +d2) = a2c2 +a2d2 +b2c2 +b2d2 and

(ac−bd)2 +(ad +bc)2 = (ac)2 −2acbd +(bd)2 +(ad)2 +2adbc+(bc)2

= a2c2 +a2d2 +b2c2 +b2d2

Then if z = a+ bi and w = c+ di, the left-hand side is |z|2|w|2 and zw = (ac− bd)+ (ad + bc)i,
so the right-hand side is |zw|2. Taking the square root of both sides gives |z||w|=±|zw|. However,
since absolute values are only positive, |z||w|= |zw|.
9.11

(a) |z1 − z2|2 = (z1 − z2)(z1 − z2) = (z1 − z2)(z1 − z2) = z1z1 − z1z2 − z2z1 + z2z2
= |z1|2 + |z2|2 − (z1z2 + z1z2) = |z1|2 + |z2|2 −2Re(z1z2)

(b) By the triangle inequality, |z1|= |z2 +(z1 − z2)| ≤ |z2|+ |z1 − z2|.
Thus, |z1|−|z2| ≤ |z1 −z2|. Similarly, |z2|−|z1| ≤ |z2−z1|= |z1 −z2|. These combine to give
us the desired inequality.

9.13 −1 = cos(π) has cube roots cos
(π +2kπ

3

)
+ i sin

(π +2kπ
3

)
for k = 0,1,2.

These are
1
2
+

√
3

2
i, −1, and

1
2
−

√
3

2
i. These three roots are equally spaced around the unit circle.

9.15 The area formula says that triangle (0,a,b) has area A(0,a,b) = 1
2 |Im(ab)|. If a = a1 + ia2,

b = b1 + ib2, you obtain

ab = (a1 − ia2)(b1 + ib2) = a1b1 +a2b2 + i(a1b2 −a2b1).

Therefore, the area is 1
2 |a1b2 −a2b1|.

9.17 On the unit circle, p =
1
p

. Therefore,

(a) (p−1)2 p = (p2 −2p+1)p = p−2+ p. This is real because z+ z is twice the real part of z.
(b) When q is on the unit circle, so is q. According to part (a), (q−1)2q is real.

Then
(
(p−1)(q−1)

)2
pq is the product of two real numbers, which is real.

(c) From the figure, and using Problem 9.16 part (b), β is the argument of qp, and α is minus

the argument of (q−1)(p−1). But since
(
(p−1)(q−1)

)2
pq is real, its argument, which is

−2α +β , must be 0.

9.19

(a) Because of the identity (x− 1)w(x) = x5 − 1, and because w(1) = 5 
= 0, it follows that four
of the five fifth roots of 1 are the roots of w.

(b) The n roots of 1 are equally spaced around the unit circle and one of them is 1.
(c) If rn = 1, then every integer power of r is also a root: (rp)n = rnp = (rn)p = 1. The only issue

is whether these powers are all of the roots. [For example, powers of i2 do not give all the
fourth roots of 1.] Taking the one with smallest argument makes

r = cos
(2π

n

)
+ i sin

( 2π
n

)
,

and the powers have arguments
2π
n

, 2
2π
n

, etc., so this gives all the roots. The identity

(x − 1)(xn−1 + · · ·+ x2 + x + 1) = xn − 1 and the same argument as in part (a) show that
r, . . . , rn−1 are the roots of w and rn = 1 is the other root of xn = 1.
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9.21

(a) et + i cost

(b) − 1
(t − i)2 − 1

(t + i)2

(c) iet2
2t

(d) i cost − (t +3+ i)−2

9.23 Since eit = e−it =
1
eit , cos t = Reeit =

eit + e−it

2
and sint = Imeit =

eit − e−it

2i
.

9.25 Define cosh z = 1
2 (e

z + e−z). Then cosh(it) = 1
2 (e

it + e−it) = cos t .

9.27
∫ b

0
eikx−x dx =

eikb −1
ik−1

tends to
1

1− ik
. (e−b tends to 0 as b tends to infinity, |eikb|= 1.)

Chapter 10

10.1 Only (b), and (c) if we allow fre to be 0. The others do not match the descriptions of the
frictional and restoring forces.

10.3 We need r2 + r = 0, so r = 0 or −1. Then trying x(t) = c1e0 + c2e−t , we obtain

(a) x(t) = 12−7e−t tends to 12
(b) x(t) =−2+7e−t tends to −2

10.5 2r2 +7r+3 = 0 gives r = (−7±√
49−24)/4 =− 1

2 , −3. So e−
1
2 t and e−3t are solutions.

10.7 Look at solutions ert where mr2 + hr+ k = 0, r =
−h±√

h2 −4km
2m

. When h is small, this

is roughly r ≈ − h
2m

± i

√
k
m

, and you have a solution x ≈ e−
h

2m cos
(√ k

m

)
with a gradually de-

creasing amplitude. When h is large, one value of r is a negative number close to 0 by the binomial
theorem,

−h+
√

h2 −4km =−h+h

√
1− 4km

h2 ≈−h+h(1− 2km
h2 ),

and you have a solution x ≈ e−(small)t, which is a gradually decreasing exponential.

10.9 We use (c f )′ = c f ′ and ( f +g)′ = f ′+g′ repeatedly.

(a) Let x = cx1. Then Anx(n) + · · ·= Ancx(n)1 + · · ·= c
(
Anx(n)1 + · · ·)= c(0) = 0.

(b) Any(n) + · · ·= (
Anx(n)1 + · · ·)+ (

Anx(n)2 + · · ·)= 0+0 = 0.

10.11 m(c1x1 + c2x2)
′′+h(c1x1 + c2x2)

′+ k(c1x1 + c2x2)
= m(c1x′′1 + c2x′′2)+h(c1x′1 + c2x′2)+ k(c1x1 + c2x2)
= c1(mx′′1 +hx′1 + kx1)+ c2(mx′′2 +hx′2 + kx2) = 0+0 = 0.

10.13

(a) mr2 +2
√

mkr+ k = (
√

mr+
√

k)2, so r =−√k/m
(b) x′ = (1+ rt)ert , x′′ = (2r+ r2t)ert . Then

mx′′+2
√

mkx′+kx=
(

2mr+mr2t +2
√

km(1+ rt)+ kt
)

ert =
(−2

√
mk+0t+2

√
km

)
ert = 0
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10.15 Suppose z(t) = ae6it . Then z′′+ z′+6z−52e6it =
(
a(−36+6i+6)−52

)
e6it is zero if

a =
52

−30+6i
=

52
6

−5− i
26

=
−5− i

3
. Then the real part of z(t) =

−5− i
3

e6it is

x(t) =− 5
3 cos(6t)+ 1

3 sin(6t).

10.17 Try x = Rez, where z = aeit solves z′′+ z′+ z = eit .
We need (−1+ i+1)aeit = eit , so a =−i. Then z = i cos t + sint and x1(t) = sint .
With x2 = y+ x1, you have x′′2 + x′2 + x2 = y′′+ y′+ y+ x′′1 + x′1 + x1 = 0+ cos t.

10.19 The inequality holds if its square holds:
1
h2

1
k
m − h2

4m2

>
1
k2 ,

if the reciprocals k2 > h2
(

k
m

− h2

4m2

)
, if 4m2 times it 4m2k2 > h2(4mk−h2).

But that is true because since h <
√

2mk, we have h2 < 2mk, 0 > 4m2k2 −2mkh2,
4m2k2 > 8m2k2 −2mkh2 = 2mk(4mk−h2)> h2(4mk−h2).

10.21

(a) Use w′′ = y′′ − x′′ and subtract the differential equations.
(b) This is due to the mean value theorem.
(c) Using (b), mw′′w′ − f ′re(v)ww′ = f ′fr(u)(w

′)2 ≤ 0 because ffr is decreasing.
(d) Due to the law of decrease of energy, x(t),y(t) are both bounded with values in some interval

[−M,M]. Let k be the bound of | f ′re| in [−M,M]. Because v is between x and y, v ∈ [−M,M],
so f ′re(v) is bounded above by −k. Therefore,

mw′′w′+ kww′ ≤ mw′′w′ − f ′re(v)ww′ ≤ 0,

so its antiderivative 1
2 m(w′)2 + 1

2 kw2 is nonincreasing.
(e) The function 1

2 m(w′)2 + 1
2 kw2 is nonincreasing, nonnegative, and is zero when t = s. There-

fore it is zero for all t > s. Therefore w is zero for all t > s.

10.23 For N(t) = 0, N′ = 0 =
√

0, so that is a solution. For N(t) = 1
4 t2, if t ≥ 0 then

√
N = 1

2 t .
Then N′ = 2

4 t =
√

N, so that is a solution. (Note: 1
4 t2 is not a solution when t < 0 because the

derivative has the wrong sign.)
There is no contradiction: the existence theorem does not apply to N′ =

√
N with N(0) = 0

because the function
√

N is not defined in an interval containing N(0).

10.25 N′ = N2 −N,
1

N2 −N
N′ = 1,

−N−2

N−1 −1
N′ = 1, log(N−1 −1) = t + c,

N−1 − 1 = et+c, N−1
0 − 1 = ec. So N(t) =

1
1+ et+c =

1

1+(N−1
0 −1)et

=
N0

N0 +(1−N0)et . With

N0 between 0 and 1, the denominator is more than 1 and tends to infinity, so N(t) is less than N0
and tends to 0.

10.27

(a) Where P > Pm, K is increasing, so has an inverse. Then P = K−1(c−H(N)) defines one
function P+. Similarly for P− with values less than Pm.

(b) is by the chain rule

(c) For P+, K is increasing, so in the formula for
d2P+
dN2 , the denominator is positive. All numbers

in the numerator are positive because H and K are convex. Therefore
d2P+
dN2 is negative. The

denominator reverses sign for P−.
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10.29

(a) If y(0) is positive, then y(t), being continuous, will remain positive for some interval of time.
Divide by y(t) to get −y−2y′ = 1. Then we integrate from 0 to t to obtain y−1(t)−y−1(0) = t .
Rearrange to

y(t) =
1

t + y−1(0)
=

y(0)
y(0)t +1

.

Note that in fact, y(t) remains positive for all t .
(b) We know this equation; the answer is y(t) = y(0)e−t .

For the second equation, y tends exponentially to zero, faster than the 1/t rate for the first one.

10.31
da
dt

= ap, which is negative when a > 0 and p < 0.

db
dt

=−ap−db, which is negative when a > 0, b > 0, and p > 0.

10.33 Using subintervals of length h, and yn+1 = yn +h f (nh), we obtain
y1 = y0 + f (0)h = Ileft( f , [0,h]), y2 = y1 + f (h)h =

(
f (0)+ f (h)

)
h = Ileft( f , [0,2h])

y3 = y2 + f (2h)h =
(

f (0)+ f (h)+ f (2h)
)
h = Ileft( f , [0,3h]) and so forth.

Chapter 11

11.1 The expected value of the die roll is 1
6 (1+2+3+4+5+6) = 3.5. The expected value of the

squared difference between 3.5 and the value rolled is: 1
6 (2.5

2+1.52+0.52+0.52+1.52+2.52) =
35
12 This is the variance.

11.3 Let S(E) be the number of instances among the first N experiments when E occurred. Then

S(E ′) = N −S(E). So p(E)+ p(E ′) = lim
N→∞

(
S(E)

N + S(E ′)
N

)
= lim1 = 1.

11.5 Each time an outcome of E occurs, it is also an outcome of F , so S(E) ≤ S(F).

Then P(E) = lim
n→∞

S(E)
N

≤ lim
n→∞

S(F)
N = P(F).

11.7 Since each outcome that occurs in an experiment can belong to only one of the events, the
count S(E1 ∪ · · ·∪Em) increases by exactly one each time an event occurs in some E j , and only
that one S(E j) increases by one. So S(E1 ∪ · · ·∪Em) = S(E1)+ · · ·+S(Em).

11.9
∞

∑
k=0

k
uk

k!
e−u =

∞

∑
k=1

u
uk−1

(k−1)!
e−u = u

∞

∑
k=0

uk

k!
e−u = ueue−u = u

11.11 We need to show that

q logq+ r logr < (1− p) log(1− p) = (q+ r) log(q+ r) = q log(q+ r)+ r log(q+ r).

But this is true because log is increasing, that is, logq < log(q+ r) and logr < log(q+ r).

11.13 We need to show that p2 log p2 + · · ·+ pn log pn < (1− p1) log(1− p1)

= (p2 + · · ·+ pn) log(p2 + · · ·+ pn) = p2 log(p2 + · · ·+ pn)+ · · ·+ pn log(p2 + · · ·+ pn),

which is true since log is increasing.
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11.15

(a)
∫ ∞

−∞
p(x)dx =

∫ A

0

2
A

(
1− x

A

)
dx =

2
A

(
A− A2

2A

)
= 1

(b) x =
∫ ∞

−∞
xp(x)dx =

∫ A

0

2
A

(
x− x2

A

)
dx =

2
A

(A2

2
− A3

3A

)
=

A
3

(c) x2 =

∫ ∞

−∞
x2 p(x)dx =

∫ A

0

2
A

(
x2 − x3

A

)
dx =

2
A

(A3

3
− A4

4A

)
=

A2

6

(d) Using
√

x2 − (x)2 we get
√

A2

6 − (
A
3

)2
= 1

18 A.

11.17

(a)
∫ A

0

1
A

dx = 1, similarly for p.

(b) u(x) =
∫ ∞

−∞
p(t)q(x− t)dt =

∫ A

0
p(t)q(x− t)dt . In this integral, −A ≤−t ≤ 0. If x < 0, then

x− t < 0, so q(x− t) = 0. So u(x) = 0 when x < 0. If x > A+B, then x− t > A+B−A = B,
so again q(x− t) = 0, showing that u(x) = 0 when x > A+B.

(c) If you graph q(x− t) as a function of t , you see that the convolution integral gives the area of

a rectangle whose size is constant when B < x < A. The width is B, height
1

AB
, so u = 1/A.

(d) u(x) =
x

AB
on [0,B],

1
A

on [B,A], and
1
A
− x

AB
(x−A) in [A,A+B].

11.19

(a) |w|1 =
∫ b

a
5dx = 5(b−a).

(b) |cu|1 =
∫ ∞

−∞
|cu(x)|dx =

∫ ∞

−∞
|c||u(x)|dx = |c||u|1,

|u+ v|1 =
∫ ∞

−∞
|u(x)+ v(x)|dx ≤

∫ ∞

−∞

(|u(x)|+ |v(x)|)dx = |u|1 + |v|1.

(c)

|u∗ v|1 =
∫ ∞

−∞
|u∗ v(x)|dx =

∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
u(y)v(x− y)dy

∣∣∣∣ dx

≤
∫ ∞

−∞

∫ ∞

−∞
|u(y)v(x− y)|dydx =

∫ ∞

−∞

∫ ∞

−∞
|u(y)||v(x− y)|dydx

This inner integral is the convolution of |u| and |v|. The integral of a convolution is the product
of the integrals. Therefore, we get

|u∗ v|1 =
(∫ ∞

−∞
|u(x)|dx

)(∫ ∞

−∞
|v(x)|dx

)
= |u|1|v|1.

11.21

(a) n2 > kn, then use a geometric series times e−K2h2
. Then

∞

∑
4

≤ e−16/(1−e−4) = (1.1463)10−7.

(b) 1+2e−1 +2e−4 +2e−9 = 1.7726369797 . . .

11.23

(a) Use the fact that if pn ∼ qn and rn ∼ sn, then pnrn ∼ qnsn. Then

2−n
(

n
k

)
= 2−n n!

k!(n− k)!
∼ 2−n

√
2πn

(
n
e

)n

√
2πk

(
k
e

)k √
2π(n− k)

(
n−k

e

)n−k

All the powers of e factor out as e−n+k+n−k = 1.
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(b) Part of this step is just substitution, but the hard part is

nn

2nkk
=
( n

2

)n/2(n
2

)n/2 1
kk

=
(n

2

)n/2 1( 2
n

)n/2( n
2 +

√
ny
) n

2
(

n
2 +

√
ny
)√ny

=
(n

2

)n/2 1(
1+ 2y√

n

) n
2
(

n
2 +

√
ny
)√ny

Then handle the (n− k)n−k factor similarly:

nn

2nkk(n− k)n−k
=

1(
1+ 2y√

n

) n
2
(

n
2 +

√
ny
)√ny

(n
2

)n/2 1(
n
2 −

√
ny
) n

2
(

n
2 −

√
ny
)−√

ny

=
1(

1+ 2y√
n

) n
2
(

n
2 +

√
ny
)√ny

1(
1− 2y√

n

) n
2
(

n
2 −

√
ny
)−√

ny

and combine the n/2 powers to get
1(

1− 4y2

n

) n
2
(

n
2 +

√
ny
)√ny( n

2 −
√

ny
)−√

ny
.

(c) Two of the factors in the denominator,

( n
2
+
√

ny
)√ny(n

2
−√

ny
)−√

ny
=

( n
2 +

√
ny

n
2 −

√
ny

)√
ny

=

⎛
⎝1+ 2y√

n

1+ 2y√
n

⎞
⎠

√
ny

which tends to
(e2y)y

(e−2y)y . The factor
(
1− 4y2

n

) n
2 tends to

(
e−4y2)1/2.

(d) The coefficient,
n

n2

4 −ny2
=

4
n−4y2 ∼ 4

n
, giving

1√
2π

√
n

n2

4 −ny2
∼ 1√

n

√
2
π

.



Index

A

A-G inequality 5
absolute value 120

of complex number 350
addition formula

for complex exponential
369

for exponential 151
for hyperbolic functions

162
for sine and cosine 158

additivity property of integral
246

AGM 36
amount

net 252
total 245

amplitude 393
antiderivative 275
approximate integral 259

alternative rule 344
midpoint rule 335
trapezoidal rule 336

arc length 284
area

below graph 249
negative 253

average of a function 265

B

binomial
coefficient 206
distribution 443

approximately normal
471

theorem 49, 206
bounded

function 54
sequence 25

C

Cauchy
sequence of complex

numbers 351
sequence of real numbers

37
chain rule 138
change of variables in integral

303
chemical reaction 420
closed interval 1
complex number 347

argument 354
conjugate 347

composition 72
continuous

extension 320
at a point 59
dependence on parameter

329
left 64
on closed interval 64
right 64

converge
functions

pointwise 97
uniformly 97

integral 310

numbers 20
convolution 459
cosine

derivative 154
geometric definition 82
hyperbolic cosh 161
periodicity 83

cost 240
critical point 177
cycle 386

D

de Moivre’s theorem 356
decimals 11
decreasing

function 75, 76
sequence 24

density 247
linear 329

derivative 119
complex-valued function

complex variable 366
real variable 362

higher order 142
one sided 119

difference
equation 429
quotient 119
symmetric 213

differentiable 119
uniformly 210

differential 125, 142
differential equation 130

y′′+ y = 0 156
y′′ − y = 0 161
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y′ = ky 150
chemical reaction 421
population models 405
vibrations 375

disjoint events 437
distance between numbers

2
doubling time 87

E

e, the number 44
economics 240
elasticity of demand 241
endangered species 409
energy

kinetic 381
potential 381

gravity 145
entropy 469
equilibrium 405
error

round-off 17
roundoff 212
symmetric difference

quotient 213
Euler’s method 428
event 437
expectation

continuous 454
discrete 441

exponential 86
complex variable 368
growth 89, 179

extinction model 408
extreme value theorem 67

F

Fermat’s principle 234
frequency 386
function 54

complex-valued 361
composition 72
decreasing 76
even, odd 266
increasing 76
inverse 75
nondecreasing 76
nonincreasing 76
rational 56

functional equation of
exponentials 88

fundamental theorem of
calculus 272

G

Gauss 467
Gaussian density 467
geometric sequences 27
geometric series 29
greatest integer function

263
greatest lower bound 15

H

half-life 86
higher derivative 142
hyperbolic

cosine 161
secant 165
sine 161
tangent 165

I

increasing
function 76
sequence 24

independent events 438
independent experiments

457
inequality

Cauchy–Schwarz 11
triangle 4

information 446
integral

additivity property 246
approximate 259
complex-valued function of

real variable 364
definite 261
improper

unbounded function
318

unbounded interval
310

indefinite 275
lower and upper bound

property 246

test for series convergence
315

integration by parts 292
intermediate value theorem

66

L

l’Hôpital’s rule 182
least upper bound 14
limit 20

left-hand 64
of function 61
right-hand 63

linear
approximation 121
function 56

linearity
of differential equation

396
of integral 267

logarithm 91
defined as integral 277

Lotka 410
lower sum 258

M

marginal cost 241
Maxwel 467
mean

arithmetic 6
geometric 6
harmonic 10
of a function 265
value or expectation 441
value theorem

for derivatives 171
for integrals 265
generalized 181

mileage 245
monotone

convergence theorem 26
monotonic

function 77
sequence 24

N

nested interval theorem 36
Newton’s law of motion

376
Newton’s method 225
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convergence 229
for complex polynomials

367
normal probability distribu-

tion 467

O

open interval 1
oscillation 201
outcome 436

P

parameter 329
partial sum 28

of functions 103
periodic motion 383
periodicity 83
Poisson distribution 444
polar coordinates 354
polynomial 56

complex variable 366
population 398
power rule 135
power series 104

differentiability 166
for ez 370
for log(1+ x) 327
for sin 203
for sin−1 331
for tan−1 x 327

predators 409
prey 409
probability density 454
product rule 134

Q

quotient rule 137

R

radian 82
radioactive decay 86
radius of convergence 105
rate constant 422
ratio test 35
reaction rate 421
reflected

invariance of integral 270
reflection

of light 127
refraction 239

resonance 394
response curve 394
Riemann sum 259
round-off error 17
rounding 16
roundoff error 212

S

secant
function 155
hyperbolic sech 165
line 120

second derivative 156
sequence

of complex numbers 367
of functions 97
of numbers 20

series 28
absolute convergence 33
alternating test 33
comparison test 30
conditional convergence 33
geometric 29, 100
harmonic 31
integral test 315
limit comparison test 31
of functions 103
root test 115

Shannon 448
simple zero 404
Simpson’s rule 339

alternative 344
sine

geometric definition 82
hyperbolic inverse sinh−1

165
hyperbolic sinh 161
inverse sin−1 159
redefined using integral

279
slope of a line 57
Snell 239
squeeze theorem

functions 62
numbers 22

stable equilibrium 405
standard deviation 442
stereographic projection

113
Stirling’s formula 324, 472
substitution 303

trigonometric 306
Szlárd 448

T

tangent
function 155
hyperbolic tanh 165
inverse 160
line 120

Taylor
integral form of remainder

296
polynomial 197
theorem 202

theorem
existence for differential

equation 401
integral of a sequence

326
tolerance 19
translation invariance 270
trichotomy 3
trigonometric

functions 81
substitution 306

U

uniform
convergence 97

uniformly
continuous 65
differentiability 210

union of events 438
unit circle 82
unstable equilibrium 405
upper bound 13
upper sum 258

V

vanishes 225
variance 441

of normal distribution
472

Verhulst model 406
Volterra 410
volume 281

W

Wallis product formula 299
water 284
work 287
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