SYSTEM MODELING WITH THE UML

After studying Chapter 15, you should be able to:

Understand the need for system modeling
Describe the UML

Work with use case diagrams

Use class and object diagrams

Use sequence and communication diagrams
Use state machine diagrams

Use activity diagrams

Use component and deployment diagrams
Diagram exception handling

Decide which UML diagrams to use

600 Chapter 15 e System Modeling with the UML

UNDERSTANDING THE NEED FOR SYSTEM MODELING

Computer programs often stand alone to solve a user’s specific problem. For example, a program might exist only to
print paychecks for the current week. Most computer programs, however, are part of a larger system. Your company’s
payroll system might consist of dozens of programs, including programs that produce employee paychecks, apply
raises to employee records, alter employee deduction options, and print W2 forms at the end of the tax year. Each pro-
gram you write as part of a system might be related to several others. Some programs depend on input from other pro-
grams in the system or produce output to be fed into other programs. Similarly, an organization’s accounting, inventory,
and customer ordering systems all consist of many interrelated programs. Producing a set of programs that operate
together correctly requires careful planning. System design is the detailed specification of how all the parts of a sys-
tem will be implemented and coordinated.

Many textbooks cover the theories and techniques of system design. If you continue to study in a Computer Information
Systems program at a college or university, you probably will be required to take a semester-long course in system
design. Explaining all the techniques of system design is beyond the scope of this book. However, some basic principles
parallel those you have used throughout this book in designing individual programs:

m Large systems are easier to understand when you break them down into subsystems.

m Good modeling techniques are increasingly important as the size and complexity of systems
increase.

= Good models promote communication among technical and nontechnical workers while ensuring
good business solutions.

In other words, developing a model for a single program or an entire business system requires organization and plan-
ning. In this chapter, you learn the basics of one popular design tool, the UML, which is based on these principles. The
UML, or Unified Modeling Language, allows you to envision systems with an object-oriented perspective, breaking a
system into subsystems, focusing on the big picture, and hiding the implementation details. In addition, the UML pro-
vides a means for programmers and businesspeople to communicate about system design. It also provides a way to
plan to divide responsibilities for large systems. Understanding the UMLs principles helps you design a variety of sys-
tem types and talk about systems with the people who will use them.

Whatls UML? 601

WHAT IS UML?

The UML is a standard way to specify, construct, and document systems that use object-oriented methods. (The UML is
a modeling language, not a programming language. The systems you develop using the UML probably will be imple-
mented later in object-oriented programming languages such as Java, C++, C#, or Visual Basic.) As with flowcharts,
pseudocode, hierarchy charts, and class diagrams, the UML has its own notation that consists of a set of specialized
shapes and conventions. You can use the UML's shapes to construct different kinds of software diagrams and model
different kinds of systems. Just as you can use a flowchart or hierarchy chart to diagram real-life activities, organiza-
tional relationships, or computer programs, you also can use the UML for many purposes, including modeling business
activities, organizational processes, or software systems.

TI P The UML was created at Rational Software by Grady Booch, Ivar Jacobson, and Jim
Jees Rumbaugh. The Object Management Group (OMG) adopted the UML as a standard for
software modeling in 1997. The OMG includes more than 800 software vendors, devel-
opers, and users who seek a common architectural framework for object-oriented pro-
gramming. The UML is in its second version, known as UML 2.0. You can view or
download the entire UML specification and usage guidelines from the OMG at

\\'\\'\\'.[//77/4()11\{4

Tl P S onono You can purchase compilers for most programming languages from a variety of manufac-
turers. Similarly, you can purchase a variety of tools to help you create UML diagrams,
but the UML itself is vendor-independent.

When you draw a flowchart or write pseudocode, your purpose is to illustrate the individual steps in a process. When
you draw a hierarchy chart, you use more of a “big picture” approach. As with a hierarchy chart, you use the UML to
create top-view diagrams of business processes that let you hide details and focus on functionality. This approach lets
you start with a generic view of an application and introduce details and complexity later. UML diagrams are useful as
you begin designing business systems, when customers who are not technically oriented must accurately communicate
with the technical staff members who will create the actual systems. The UML was intentionally designed to be non-
technical so that developers, customers, and implementers (programmers) could all “speak the same language.” If
business and technical people can agree on what a system should do, the chances improve that the final product will
be useful.

The UML is very large; its documentation is more than 800 pages. The UML provides 13 diagram types that you can
use to model systems. Each of the diagram types lets you see a business process from a different angle, and appeals
to a different type of user. Just as an architect, interior designer, electrician, and plumber use different diagram types to
describe the same building, different computer users appreciate different perspectives. For example, a business user
most values a system’s use case diagrams because they illustrate who is doing what. On the other hand, programmers
find class and object diagrams more useful because they help explain details of how to build classes and objects into
applications.

602 Chapter 15 e System Modeling with the UML

The UML superstructure defines six structure diagrams, three behavior diagrams, and four interaction diagrams. The 13 UML
diagram types are:

m Structure diagrams
m Class diagrams
m Object diagrams
m Component diagrams
m Composite structure diagrams
m Package diagrams
= Deployment diagrams
= Behavior diagrams
m Use case diagrams
m Activity diagrams
m State machine diagrams
= Interaction diagrams
= Sequence diagrams
= Communication diagrams
= Timing diagrams
= Interaction overview diagrams
TI P I You can cjalcgorilc UML diagramsAas those that ill}lsll‘alc the dynamic, or changing,
aspects of a system and those that illustrate the static, or steady, aspects of a system.

Dynamic diagrams include use case, sequence, communication, state machine, and activ-
ity diagrams. Static diagrams include class, object, component, and deployment diagrams.

Tl P e In UML 1.5, communication diagrams were called collaboration diagrams, and state
machine diagrams were called statechart diagrams.

Each of the UML diagram types supports multiple variations, and explaining them all would require an entire textbook.
This chapter presents an overview and simple examples of several diagram types, which provides a good foundation for
further study of the UML.

Tl P I The UML Web site, at www.uml.org, provides links to several UML tutorials.

Using Use Case Diagrams 603

USING USE CASE DIAGRAMS

The use case diagram shows how a business works from the perspective of those who approach it from the outside, or
those who actually use the business. This category includes many types of users—for example, employees, customers,
and suppliers. Although users can also be governments, private organizations, machines, or other systems, it is easiest
to think of them as people, so users are called actors and are represented by stick figures in use case diagrams. The
actual use cases are represented by ovals.

Use cases do not necessarily represent all the functions of a system; they are the system functions or services that are
visible to the system’s actors. In other words, they represent the cases by which an actor uses and presumably benefits
from the system. Determining all the cases for which users interact with systems helps you divide a system logically
into functional parts.

Establishing use cases usually follows from analyzing the main events in a system. For example, from a librarian’s point
of view, two main events are acquireNewBook () and checkOutBook (). Figure 15-1 shows a use case dia-
gram for these two events.

FIGURE 15-1: USE CASE DIAGRAM FOR LIBRARIAN

librarian

acquireNewBook()

checkOutBook()

Tl P Many system developers would use the standard English form to describe activities in their
D000 umL diagrams—for example, check out book instead of checkOutBook(),

which looks like a programming method call. Because you are used to seeing method
names in camel casing and with trailing parentheses throughout this book, this discussion
of the UML continues with the same format.

In many systems, there are variations in use cases. The three possible types of variations are:

= Extend
= Include
= Generalization

604 Chapter 15 e System Modeling with the UML

An extend variation is a use case variation that shows functions beyond those found in a base case. In other words, an
extend variation is usually an optional activity. For example, checking out a book for a new library patron who doesn’t have
a library card is slightly more complicated than checking out a book for an existing patron. Each variation in the sequence
of actions required in a use case is a scenario. Each use case has at least one main scenario, but might have several
more that are extensions or variations of the main one. Figure 15-2 shows how you would diagram the relationship
between the use case checkOutBook () and the more specific scenario checkOutBookForNewPatron().
Extended use cases are shown in an oval with a dashed arrow pointing to the more general base case.

FIGURE 15-2: USE CASE DIAGRAM FOR LIBRARIAN, WITH SCENARIO EXTENSION

acquireNewBook()

librarian

For clarity, you can add “<<extend>>" near the line that shows a relationship extension. Such a feature, which adds to
the UML vocabulary of shapes to make them more meaningful for the reader, is called a stereotype. Figure 15-3
includes a stereotype.

FIGURE 15-3: USE CASE DIAGRAM FOR LIBRARIAN, USING STEREOTYPE

acquireNewBook()

librarian

In addition to extend relationships, use case diagrams also can show include relationships. You use an include variation
when a case can be part of multiple use cases. This concept is very much like that of a subroutine or submodule. You
show an include use case in an oval with a dashed arrow pointing to the subroutine use case. For example,
issueLibraryCard () might be a function of checkOutBook (), which is used when the patron checking
out a book is new, but it might also be a function of registerNewPatron (), which occurs when a patron regis-
ters at the library but does not want to check out books yet. See Figure 15-4.

Using Use Case Diagrams 605

You use a generalization variation when a use case is less specific than others, and you want to be able to substitute
the more specific case for a general one. For example, a library has certain procedures for acquiring new materials,
whether they are videos, tapes, CDs, hardcover books, or paperbacks. However, the procedures might become more
specific during a particular acquisition—perhaps the librarian must procure plastic cases for circulating videos or
assign locked storage locations for CDs. Figure 15-5 shows the generalization acquireNewItem() with two more
specific situations: acquiring videos and acquiring CDs. The more specific scenarios are attached to the general sce-
nario with open-headed dashed arrows.

FIGURE 15-4: USE CASE DIAGRAM FOR LIBRARIAN, USING INCLUDE RELATIONSHIP
librarian

acqmreNewBook()

FIGURE 15-5: USE CASE DIAGRAM FOR LIBRARIAN, WITH GENERALIZATIONS

acquireVideo()
librarian
acqmreNewItem ------ acquireCD()
<<extend>>
checkOutBook(-------- checkOutBookForNewPatron
., <<include>>

<<|nc|ude>>
reglsterNewPatron ________ > issueLibraryCard()

606 Chapter 15 e System Modeling with the UML

Many use case diagrams show multiple actors. For example, Figure 15-6 shows that a library clerk cannot perform as
many functions as a librarian; the clerk can check out books and register new patrons but cannot acquire new materials.

FIGURE 15-6: USE CASE DIAGRAM FOR LIBRARIAN, WITH MULTIPLE ACTORS

acquireVideo()

librarian

P>
acquireNewltem() <}-mm--- acquireCD()
<<extend>>
checkOutBook() <€-------- checkOutBookForNewPatron()

Y <<include>>

<<include>>
registerNewPatron())._._._.. > issueLibraryCard()

library clerk

While designing an actual library system, you could add many more use cases and actors to the use case diagram. The
purpose of such a diagram is to encourage discussion between the system developer and the library staff. Library staff
members do not need to know any of the technical details of the system that the analysts will eventually create, and
they certainly do not need to understand computers or programming. However, by viewing the use cases, the library
staff can visualize activities they perform while doing their jobs and correct the system developer if inaccuracies exist.
The final software products developed for such a system are far more likely to satisfy users than those developed with-
out this design step.

Using Use Case Diagrams

A use case diagram is only a tool to aid communication. No single “correct” use case diagram exists; you might cor-
rectly represent a system in several ways. For example, you might choose to emphasize the actors in the library system,
as shown in Figure 15-7, or to emphasize system requirements, as shown in Figure 15-8. Diagrams that are too
crowded are neither visually pleasing nor very useful. Therefore, the use case diagram in Figure 15-7 shows all the
specific actors and their relationships, but purposely omits more specific system functions, whereas Figure 15-8 shows
many actions that are often hidden from users but purposely omits more specific actors. For example, the activities car-
ried out to manageNetworkOutage (), if done properly, should be invisible to library patrons checking out books.

FIGURE 15-7: USE CASE DIAGRAM EMPHASIZING ACTORS

patron

checkOutBook()

checkOutVideo() /
checkOutReferenceMaterials() %

library clerk librarian adult patron child patron

i % cooperating library

library staff

608 Chapter 15 e System Modeling with the UML

FIGURE 15-8: USE CASE DIAGRAM EMPHASIZING SYSTEM REQUIREMENTS

Library System

checkOutMaterials()

library staff
removeOldMaterialsFromSystem()

acquireNewMaterials()

patron reshelveReturnedMaterials()

manageNetworkOutage()

cooperating library

In Figure 15-8, the relationship lines between the actors and use cases have been removed because the emphasis is
on the system requirements, and too many lines would make the diagram confusing. When system developers omit
parts of diagrams for clarity, they refer to the missing parts as elided. For the sake of clarity, eliding extraneous infor-
mation is perfectly acceptable. The main purpose of UML diagrams is to facilitate clear communication.

USING CLASS AND OBJECT DIAGRAMS

You use a class diagram to illustrate the names, attributes, and methods of a class or set of classes. Class diagrams
are more useful to a system’s programmers than to its users because they closely resemble code the programmers will
write. A class diagram illustrating a single class contains a rectangle divided into three sections: the top section con-
tains the name of the class, the middle section contains the names of the attributes, and the bottom section contains
the names of the methods. Figure 15-9 shows the class diagram for a Book class. Each Book object contains an
idNum, title, and author. Each Book object also contains methods to create a Book when it is acquired and
to retrieve or get title and author information when the Book object’s idNum is supplied.

Using Class and Object Diagrams 609

FIGURE 15-9: Book CLASS DIAGRAM

Book

idNum
title
author

create()
getinfo(idNum)

In the preceding section, you learned how to use generalizations with use case diagrams to show general and more
specific use cases. With use case diagrams, you drew an open-headed arrow from the more specific case to the more
general one. Similarly, you can use generalizations with class diagrams to show more general (or parent) classes and
more specific (or child) classes that inherit attributes from parents. For example, Figure 15-10 shows Book and
video classes that are more specific than the general LibraryItem class. Al LibraryItem objects contain
an idNum and title, but each Book item also contains an author, and each video item also contains a
runningTime. In addition, video items contain a rewind () method not found in the more general
LibraryItem class. Child classes contain all the attributes of their parents and usually contain additional attributes
not found in the parent.

Tl P S oon You first learned about inheritance and parent and child classes in Chapter 13. There, you
learned that the create () and getInfo () methods in the Book and Video classes
| override the version in the LibraryItem class.

FIGURE 15-10: LibraryItem CLASS DIAGRAM SHOWING GENERALIZATION

Libraryltem

idNum
title

create()
getinfo(idNum)

I

Book Video

author runningTime

create() create()

getinfo(idNum) getinfo(idNum)
rewind()

Class diagrams can include symbols that show the relationships between objects. You can show two types of

relationships:

= An association relationship
m A whole-part relationship

610 Chapter 15 e System Modeling with the UML

An association relationship describes the connection or link between objects. You represent an association relation-
ship between classes with a straight line. Frequently, you include information about the arithmetical relationship or ratio
(called cardinality or multiplicity) of the objects. For example, Figure 15-11 shows the association relationship
between a Library and the LibraryItems it lends. Exactly one Library object exists, and it can be associ-
ated with any number of LibraryItems from 0 to infinity, which is represented by an asterisk. Figure 15-12 adds
the Patron class to the diagram and shows how you indicate that any number of Patrons can be associated with
the Library, but that each Patron can borrow only up to five LibraryItems at a time, or currently might not
be borrowing any. In addition, each LibraryItem can be associated with at most one Patron, but at any given
time might not be on loan.

FIGURE 15-11: CLASS DIAGRAM WITH ASSOCIATION RELATIONSHIP

Library

communityName

directorName Libraryitem

streetAddress 1 0.*

phoneNumber idNum
title

create()

getinfo() create()
getinfo(idNum)

FIGURE 15-12: CLASS DIAGRAM WITH SEVERAL ASSOCIATION RELATIONSHIPS

Library
communityName
directorName Libraryltem
streetAddress 1 0.*
phoneNumber idNum
title
create()
getinfo() create()
getinfo(idNum)
1
0.5
0.1
0.* Patron
idNum
name
address
create()
getinfo(idNum)
borrowltem()

Using Class and Object Diagrams

A whole-part relationship describes an association in which one or more classes make up the parts of a larger whole
class. For example, 50 states “make up” the United States, and 10 departments might “make up” a company. This type
of relationship is also called an aggregation and is represented by an open diamond at the “whole part” end of the line
that indicates the relationship. You also can call a whole-part relationship a has-a relationship because the phrase
describes the association between the whole and one of its parts; for example, “The library has a Circulation
Department.” Figure 15-13 shows a whole-part relationship for a Library.

FIGURE 15-13: CLASS DIAGRAM WITH WHOLE-PART RELATIONSHIP
Library
communityName
directorName
streetAddress
phoneNumber
create()
getinfo()
CirculationDepartment ReferenceDepartment
deptName deptName
director director

Object diagrams are similar to class diagrams, but they model specific instances of classes. You use an object dia-
gram to show a snapshot of an object at one point in time, so you can more easily understand its relationship to other
objects. Imagine looking at the travelers in a major airport. If you try to watch them all at once, you see a flurry of activ-
ity, but it is hard to understand all the tasks (buying a ticket, checking luggage, and so on) a traveler must accomplish
to take a trip. However, if you concentrate on one traveler and follow his or her actions through the airport from arrival
to takeoff, you get a clearer picture of the required activities. An object diagram serves the same purpose; you concen-
trate on a specific instance of a class to better understand how a class works.

Figure 15-14 contains an object diagram showing the relationship between one Library, LibraryItem, and
Patron. Notice the similarities between Figures 15-12 and 15-14. If you need to describe the relationship between
three classes, you can use either model—a class diagram or an object diagram—interchangeably. You simply use the
model that seems clearer to you and your intended audience.

611

612 Chapter 15 e System Modeling with the UML

FIGURE 15-14: OBJECT DIAGRAM FOR Library

Library

communityName = “Oakwood” Libraryitem
directorName = ““Hanna S_cott”" idNum: 23776
streetAddress = “100 Main St. title: “The Color Purple”
phoneNumber = “622-1000”

Patron

idNum: 19876
name: “Carl Baker”
address: “185 Willow Rd.”

USING SEQUENCE AND COMMUNICATION DIAGRAMS

You use a sequence diagram to show the timing of events in a single use case. A sequence diagram makes it easier
to see the order in which activities occur. The horizontal axis (x-axis) of a sequence diagram represents objects, and the
vertical axis (y-axis) represents time. You create a sequence diagram by placing objects that are part of an activity
across the top of the diagram along the x-axis, starting at the left with the object or actor that begins the action.
Beneath each object on the x-axis, you place a vertical dashed line that represents the period of time the object exists.
Then, you use horizontal arrows to show how the objects communicate with each other over time.

For example, Figure 15-15 shows a sequence diagram for a scenario that a librarian can use to create a book check-
out record. The librarian begins a create () method with Patron idNum and Book idNum information. The
BookCheckOutRecord object requests additional Patron information (such as name and address) from
the Patron object with the correct Patron idNum, and additional Book information (such as title and
author) from the Book object with the correct Book idNum. When BookCheckOutRecord contains all the
data it needs, a completed record is returned to the librarian.

Using Sequence and Communication Diagrams 13

FIGURE 15-15: SEQUENCE DIAGRAM FOR CHECKING OUT A Book FOR A Patron

librarian

BookCheckOutRecord Patron Book

. getinfo(idNum)
create(Patron idNum,

Y

A

Book idNum) (patroninfo)
getinfo(idNum)
(bookinfo)
(checkOutRecord)

In Figures 15-15 and 15-16, patronInfo and bookInfo represent group items that
contain all of a Patron’s and Book’s data. For example, patronInfo might contain
idNum, lastName, firstName, address, and phoneNumber, all of which have
been defined as attributes of that class.

TlPDDDEI

A communication diagram emphasizes the organization of objects that participate in a system. It is similar to a
sequence diagram, except that it contains sequence numbers to represent the precise order in which activities occur.
Communication diagrams focus on object roles instead of the times that messages are sent. Figure 15-16 shows the
same sequence of events as Figure 15-15, but the steps to creating a BookCheckOutRecord are clearly num-
bered (see the shaded sections of the figure). Decimal numbered steps (1.1, 1.2, and so on) represent substeps of the
main steps. Checking out a library book is a fairly straightforward event, so a sequence diagram sufficiently illustrates
the process. Communication diagrams become more useful with more complicated systems.

614 Chapter 15 e System Modeling with the UML

FIGURE 15-16: COMMUNICATION DIAGRAM FOR CHECKING OUT A Book FOR A Patron

librarian

1. create(Patron idNum, Book idNum) Patron
A
1.1 getinfo(idNum)
1.2 (patroninfo)
1.3 getinfo(idNum) v
Book < BookCheckOutRecord

1.4 (booklinfo)

Y

USING STATE MACHINE DIAGRAMS

A state machine diagram shows the different statuses of a class or object at different points in time. You use a state
machine diagram to illustrate aspects of a system that show interesting changes in behavior as time passes.
Conventionally, you use rounded rectangles to represent each state and labeled arrows to show the sequence in which
events affect the states. A solid dot indicates the start and stop states for the class or object. Figure 15-17 contains a
state machine diagram you can use to describe the states of a Book.

Using Activity Diagrams 615

FIGURE 15-17: STATE MACHINE DIAGRAM FOR Book CLASS
publish() ¢
Potential
adoption
—
libraryBoardApprove() %
)
Ordered
—
receive() \
)
Received
catalogEntry() 7
)
Circulating
—
retire() Y ‘* .
— i
Retired

Tl P So that your diagrams are clear, you should use the correct symbol in each UML diagram
- you create, just as you should use the correct symbol in each program flowchart.
However, if you create a flowchart and use a rectangle for an input or output statement
where a parallelogram is conventional, others will still understand your meaning.
Similarly, with UML diagrams, the exact shape you use is not nearly as important as the

sequence of events and relationships between objects.

USING ACTIVITY DIAGRAMS

The UML diagram that most closely resembles a conventional flowchart is an activity diagram. In an activity diagram,
you show the flow of actions of a system, including branches that occur when decisions affect the outcome.
Conventionally, activity diagrams use flowchart start and stop symbols (called lozenges) to describe actions and solid
dots to represent start and stop states. Like flowcharts, activity diagrams use diamonds to describe decisions. Unlike
the diamonds in flowcharts, the diamonds in UML activity diagrams usually are empty; the possible outcomes are docu-
mented along the branches emerging from the decision symbol. As an example, Figure 15-18 shows a simple activity
diagram with a single branch.

616 Chapter 15 e System Modeling with the UML

FIGURE 15-18: ACTIVITY DIAGRAM SHOWING BRANCH

(patronRequest())

[Library does not own Book] aN [Library owns Book]
S

Y Y

(contactinterLibraryLoan()) (retrieveBook())

(checkOutBook())

l

Tl P In the first version of the UML (UML 1.0), each lozenge was an activity. In the second
ooono B - . . - .
{ version (UML 2.0), each lozenge is an action and a group of actions is an activity.

Many real-life systems contain actions that are meant to occur simultaneously. For example, when you apply for a home
mortgage with a bank, a bank officer might perform a credit or background check while an appraiser determines the
value of the house you are buying. When both actions are complete, the loan process continues. UML activity diagrams
use forks and joins to show simultaneous activities. A fork is similar to a decision, but whereas the flow of control fol-
lows only one path after a decision, a fork defines a branch in which all paths are followed simultaneously. A join, as its
name implies, reunites the flow of control after a fork. You indicate forks and joins with thick straight lines. Figure 15-19
shows how you might model the way an interlibrary loan system processes book requests. When a request is received,
simultaneous searches begin at three local libraries that are part of the library system.

Using Activity Diagrams &1Z7 |

FIGURE 15-19: ACTIVITY DIAGRAM SHOWING FORK AND JOIN

l

(memberLibraryRequestsBook())

| | |

(queryOakwood()) (queryLakeHeights()) (queryLittletown())

| |

Y
(sendBookToRequestingLibrary())

l

Tl P A fork does not have to indicate strictly simultaneous activity. The actions in the branches
Ooo0Ooao - - . .
{ for a fork might only be concurrent or interleaved.

An activity diagram can contain a time signal. A time signal indicates that a specific amount of time has passed before
an action is started. The time signal looks like two stacked triangles (resembling the shape of an hourglass). Figure 15-20
shows a time signal indicating that if a patron requests a book, and the book is checked out to another patron, then
only if the book’s due date has passed should a request to return the book be issued. In activity diagrams for other sys-
tems, you might see explanations at time signals, such as “10 hours have passed” or “at least January 1st”. If an action
is time-dependent, whether by a fraction of a second or by years, using a time signal is appropriate.

Tl P The time signal is a new feature in UML 2.0.
O0o0oan

618 Chapter 15 e System Modeling with the UML

FIGURE 15-20: A TIME SIGNAL STARTING AN ACTION

(patronRequest())

Due date
has passed
Book checked out to another patron

A"

S
Y
Other actions when

book is available Y
(sendRequestForReturn()

l

TI P . The connector is a recently introduced symbol to the UML. It is a small circle used to
connect diagrams that are continued on a new page. It is identical to the flowchart con-

nector symbol you learned about in Chapter 1.

USING COMPONENT AND DEPLOYMENT DIAGRAMS

Component and deployment diagrams model the physical aspects of systems. You use a component diagram when
you want to emphasize the files, database tables, documents, and other components that a system’s software uses. You
use a deployment diagram when you want to focus on a system’s hardware. You can use a variety of icons in each
type of diagram, but each icon must convey meaning to the reader. Figures 15-21 and 15-22 show component and
deployment diagrams that illustrate aspects of a library system. Figure 15-21 contains icons that symbolize paper and
Internet requests for library items, the library database, and two tables that constitute the database. Figure 15-22
shows some commonly used icons that represent hardware components.

Using Component and Deployment Diagrams 19

FIGURE 15-21:

COMPONENT DIAGRAM
Paper request Internet request
A
*, R
83 Library database o
Patron table Book table

TIPDDDD

In Figure 15-21, notice the filled diamond connecting the two tables to the database. Just
as it does in a class diagram, the diamond aggregation symbol shows the whole-part rela-
tionship of the tables to the database. You use an open diamond when a part might belong
to several wholes (for example, Door and Wall objects belong to many House objects),
but you use a filled diamond when a part can belong to only one whole at a time (the
Patron table can belong only to the Library database). You can use most UML sym-
bols in multiple types of diagrams.

620 Chapter 15 ¢ System Modeling with the UML

FIGURE 15-22: DEPLOYMENT DIAGRAM

Console Console Console

(I

|
|
| -]J

Printer

J

p——

Internet

DIAGRAMMING EXCEPTION HANDLING

Exception handling is a set of the object-oriented techniques used to handle program errors. In Chapter 14, you learned
that when a segment of code might cause an error, you can place that code in a try block. If the error occurs, an
object called an exception is thrown, or sent, o a catch block where appropriate action can be taken. For example,
depending on the application, a catch block might display a message, assign a default value to a field, or prompt the
user for direction.

In the UML, a try block is called a protected node and a catch block is a handler body node. In a UML diagram,
a protected node is enclosed in a rounded rectangle and any exceptions that might be thrown are listed next to
lightning-bolt-shaped arrows that extend to the appropriate handler body node.

Deciding Which UML Diagrams to Use &21 |

Figure 15-23 shows an example of an activity that uses exception handling. When a library patron tries to check out a

book, the patron’s card is scanned and the book is scanned. These actions might cause three errors—the patron owes
fines, and so cannot check out new books; the patron’s card has expired, requiring a new card application; or the book
might be on hold for another patron. If no exceptions occur, the activity proceeds to the checkOutBook () process.

FIGURE 15-23: EXCEPTIONS IN THE BOOK CHECK-QUT ACTIVITY
4)
scanLibraryCard() _ | confiscateCardProcess()
HighFineException .
scanBook() _ | ApplyForNewCardProcess()
ExpiredCardException
_ _ | BookOnHoldProcess()
BookOnHoIdException'
Y
checkOutBook()

DECIDING WHICH UML DIAGRAMS TO USE

Each of the UML diagram types provides a different view of a system. Just as a portrait artist, psychologist, and neuro-
surgeon each prefer a different conceptual view of your head, the users, managers, designers, and technicians of com-
puter and business systems each prefer specific system views. Very few systems require diagrams of all 13 types; you
can illustrate the objects and activities of many systems by using a single diagram, or perhaps one that is a hybrid of
two or more basic types. No view is superior to the others; you can achieve the most complete picture of any system by
using several views. The most important reason you use any UML diagram is to communicate clearly and efficiently
with the people for whom you are designing a system.

622 C(Chapter 15 System Modeling with the UML

CHAPTER SUMMARY

O System design is the detailed specification of how all the parts of a system will be implemented and
coordinated. Good designs make systems easier to understand. The UML (Unified Modeling Language)
provides a means for programmers and businesspeople to communicate about system design.

O The UML is a standard way to specify, construct, and document systems that use object-oriented methods.
The UML has its own notation, with which you can construct software diagrams that model different kinds of
systems. The UML provides 13 diagram types that you use at the beginning of the design process.

O A use case diagram shows how a business works from the perspective of those who approach it from
the outside, or those who actually use the business. The diagram often includes actors, represented by
stick figures, and use cases, represented by ovals. Use cases can include variations such as extend rela-
tionships, include relationships, and generalizations.

O You use a class diagram to illustrate the names, attributes, and methods of a class or set of classes. A
class diagram of a single class contains a rectangle divided into three sections: the name of the class,
the names of the attributes, and the names of the methods. Class diagrams can show generalizations
and the relationships between objects. Object diagrams are similar to class diagrams, but they model
specific instances of classes at one point in time.

O You use a sequence diagram to show the timing of events in a single use case. The horizontal axis
(x-axis) of a sequence diagram represents objects, and the vertical axis (y-axis) represents time. A com-
munication diagram emphasizes the organization of objects that participate in a system. It is similar to a
sequence diagram, except that it contains sequence numbers to represent the precise order in which
activities occur.

0O A state machine diagram shows the different statuses of a class or object at different points in time.

O In an activity diagram, you show the flow of actions of a system, including branches that occur when
decisions affect the outcome. UML activity diagrams use forks and joins to show simultaneous activities.

O You use a component diagram when you want to emphasize the files, database tables, documents, and
other components that a system'’s software uses. You use a deployment diagram when you want to focus
on a system’s hardware.

O Each of the UML diagram types provides a different view of a system. Very few systems require dia-
grams of all 13 types; the most important reason to use any UML diagram is to communicate clearly
and efficiently with the people for whom you are designing a system.

Key Terms 623

KEY TERMS

System design is the detailed specification of how all the parts of a system will be implemented and coordinated.
Reverse engineering is the process of creating a model of an existing system.

The UML is a standard way to specify, construct, and document systems that use object-oriented methods. UML is an
acronym for Unified Modeling Language.

The use case diagram is a UML diagram that shows how a business works from the perspective of those who
approach it from the outside, or those who actually use the business.

An extend variation is a use case variation that shows functions beyond those found in a base case.

Each variation in the sequence of actions required in a use case is a scenario.
A feature that adds to the UML vocabulary of shapes to make them more meaningful for the reader is called a stereotype.
An include variation is a use case variation that you use when a case can be part of multiple use cases in a UML diagram.

You use a generalization variation in a UML diagram when a use case is less specific than others, and you want to
be able to substitute the more specific case for a general one.

When system developers omit parts of UML diagrams for clarity, they refer to the missing parts as elided.
An association relationship describes the connection or link between objects in a UML diagram.
Cardinality and multiplicity refer to the arithmetic relationships between objects.

A whole-part relationship describes an association in which one or more classes make up the parts of a larger whole
class. This type of relationship is also called an aggregation. You also can call a whole-part relationship a has-a
relationship because the phrase describes the association between the whole and one of its parts.

Object diagrams are UML diagrams that are similar to class diagrams, but they model specific instances of classes.
A sequence diagram is a UML diagram that shows the timing of events in a single use case.

A communication diagram is a UML diagram that emphasizes the organization of objects that participate in a system.
A state machine diagram is a UML diagram that shows the different statuses of a class or object at different points in time.

An activity diagram is a UML diagram that shows the flow of actions of a system, including branches that occur when
decisions affect the outcome.

A time signal is a UML diagram symbol that indicates that a specific amount of time has passed before an action
is started.

A component diagram is a UML diagram that emphasizes the files, database tables, documents, and other compo-
nents that a system’s software uses.

A deployment diagram is a UML diagram that focuses on a system’s hardware.
A protected node is the UML diagram name for an exception-throwing try block.

A handler body node is the UML diagram name for an exception-handling catch block.

624 C(Chapter 15 e System Modeling with the UML

REVIEW QUESTIONS

1.

The detailed specification of how all the parts of a system will be implemented and coordinated is
called

a. programming

b. paraphrasing

c. system design

d. structuring

The primary purpose of good modeling techniques is to

a. promote communication

b. increase functional cohesion

c. reduce the need for structure

d. reduce dependency between modules

The Unified Modeling Language provides standard ways to do all of the following to business
systemsexceptto _ them.

a. construct
b. document
c. describe
d. destroy

The UML is commonly used to model all of the following except

a. computer programs

b. business activities

C. organizational processes
d. software systems

The UML was intentionally designed to be

a. low-level, detail-oriented
b. used with Visual Basic
¢. nontechnical

d. inexpensive

The UML diagrams that show how a business works from the perspective of those who actually
use the business, such as employees or customers,are __ diagrams.

a. communication
b. use case

c. state machine
d. class

10.

11.

12.

13.

Review Questions 625

Which of the following is an example of a relationship that would be portrayed as an extend
relationship in a use case diagram for a hospital?

a. the relationship between the head nurse and the floor nurses
b. admitting a patient who has never been admitted before

c. serving a meal

d. scheduling the monitoring of patients’ vital signs

The people shown in use case diagrams are called

a. workers
b. clowns
c. actors

d. relatives

One aspect of use case diagrams that makes them difficult to learn about is that

a. they require programming experience to understand
b. they use a technical vocabulary

c. there is no single right answer for any case

d. all of the above

The arithmetic association relationship between a college student and college courses would be
expressed as

a1 0
b. 1 1
c. 1 0.°
d. 0.70.”

In the UML, object diagrams are most similarto _ diagrams.

a. usecase
b. activity
c. class
d. sequence

In any given situation, you should choose the type of UML diagram that is

a. shorter than others

b. clearer than others

c. more detailed than others

d. closest to the programming language you will use to implement the system

A whole-part relationship can be describedasa(n) _ relationship.

a. parent-child
b. is-a

c. has-a

d. creates-a

626 C(Chapter 15 e System Modeling with the UML

14. The timing of events is best portrayedina(n) ___ diagram.

a. sequence
b. use case

C. communication
d. association

15. A communication diagram is closesttoa(n) diagram.

a. activity

b. use case
. deployment
d. sequence

16. A(m) diagram shows the different statuses of a class or object at different points
in time.
a. activity
b. state machine
C. sequence
d. deployment

17. The UML diagram that most closely resembles a conventional flowchart is a(n)
diagram.

a. activity

b. state machine
Cc. sequence

d. deployment

18. Youusea diagram when you want to emphasize the files, database tables,
documents, and other components that a system’s software uses.

a. state machine
b. component
¢c. deployment
d. use case

19. The UML diagram that focuses on a system’s hardwareisa(n) __ diagram.

a. deployment
b. sequence
c. activity

d. use case

20. When using the UML to describe a single system, most designers would use

a. asingle type of diagram

b. at least three types of diagrams

¢. most of the available types of diagrams
d. all 13 types of diagrams

Exercises 627

FIND THE BUGS

Because of the nature of this chapter, there are no debugging exercises.

EXERCISES

1.

10.

11.
12.

Complete the following tasks:

a. Develop a use case diagram for a convenience food store. Include an actor representing the store manager
and use cases for orderItem(), stockItem(),and sellItem().

b. Add more use cases to the diagram you created in Exercise 1a. Include two generalizations for
stockItem(): stockPerishable () and stockNonPerishable ().Also include an extension
to sellItem() called checkCredit () for when a customer purchases items using a credit card.

c. Add a customer actor to the use case diagram you created in Exercise 1b. Show that the customer partici-
pates in sellItem(), but notin orderItem() Or stockItem().

Develop a use case diagram for a department store credit card system. Include at least two actors
and four use cases.

Develop a use case diagram for a college registration system. Include at least three actors and five
use cases.

Develop a class diagram for a video class that describes objects a video store customer can rent.
Include at least four attributes and three methods.

Develop a class diagram for a Shape class. Include generalizations for child classes Rectangle,
Circle,and Triangle.

Develop a class diagram for a BankLoan class. Include generalizations for child classes
Mortgage, CarLoan, and EducationLoan.

Develop a class diagram for a college registration system. Include at least three classes that coop-
erate to achieve student registration.

Develop a sequence diagram that shows how a clerk at a mail-order company places a customer
Oorder. The Order accesses Inventory to check availability. Then, the order accesses
Invoice to produce a customer invoice that returns to the clerk.

Develop a state machine diagram that shows the states of a Col1legestudent from
PotentialApplicant t0 Graduate.

Develop a state machine diagram that shows the states of a Book from Concept to
Publication.

Develop an activity diagram that illustrates how to build a house.

Develop an activity diagram that illustrates how to prepare dinner.

628 C(Chapter 15 e System Modeling with the UML

13.
14.

Develop the UML diagram of your choice that illustrates some aspect of your life.

Complete the following tasks:

a. Develop the UML diagram of your choice that best illustrates some aspect of a place you have worked.

b. Develop a different UML diagram type that illustrates the same functions as the diagram you created in
Exercise 14a.

DETECTIVE WORK

1.

What are the education requirements for a career in system design? What are the job prospects
and average salaries?

Find any discussion you can on the advantages and disadvantages of the UML as a system design
tool. Summarize your findings.

UP FOR DISCUSSION

1.

Which do you think you would enjoy doing more on the job—designing large systems that contain
many programs, or writing the programs themselves? Why?

In Chapter 11, you considered ethical dilemmas in writing a program that selects candidates for

organ transplants. Are the ethical responsibilities of a system designer different from those of a
programmer? If so, how?

