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Optimization

The Berlin Airlift

After World War 11, the city of Berlin was an “island”
surrounded by the Soviet zone of occupied Germany. The
city was divided into four sections, with the British,
French, and Americans having jurisdiction over West
Berlin and the Soviets over East Berlin. But the Russians
were eager for the other three nations to abandon Berlin.
After months of harassment, on June 24, 1948, they
imposed a blockade on West Berlin, cutting off all access
by land and rail. With a civilian population of about 2.5
million people, the isolated western sectors became

The Berlin Airlift was unbelievably successful in

dependent on reserve stocks and airlift replacements.  using relatively few aircraft to deliver an enormous

Four days later, the first American planes landed in  amount of supplies. The design and conduct of this
Berlin with supplies of food, and “Operation Vittles” had operation required intensive planning and calculations,
begun. At first the airlift seemed doomed to failure which led to the theoretical development of linear
because the needs of the city were overwhelming. The programming, and the invention of the simplex method by
Russians had cut off all electricity and coal shipments, and>eorge Dantzig. The potential of this new tool was
the city was literally under siege. But the Western Allies quickly recognized by business and industry, where it is
responded by flying in thousands of tons of food, coal, now used to allocate resources, plan production, schedule
medicine, and other supplies on a daily basis. In May  workers, organize investment portfolios, formulate
1949, Stalin relented, and the blockade was lifted. The marketing strategies, and perform many other tasks
airlift, however, continued for another four months. involving optimization.
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MATRIX GAMES

CHAPTER 9

Optimization

other areas where one tries to optimize a certain benefit. This may involve maxi-

mizing a profit or the payoff in a contest or minimizing a cost or other loss. This
chapter presents two mathematical models that deal with optimization probl&hes.
fundamental results in both cases depend on properties of convex sets and hyperplanes.
Section 9.1 introduces the theory of games and develops strategies based on probabil-
ity. Sections 9.2-9.4 explore techniques of linear programming and use them to solve a
variety of problems, including matrix games larger than those in Section 9.1.

T here are many situations in business, politics, economics, military strategy, and

The theory of games analyzes competitive phenomena and seeks to provide a basis for
rational decision-making. Its growing importance was highlighted in 1994 when the
Nobel Prize in Economics was awarded to John Harsanyi, John Nash, and Reinhard
Selten, for their pioneering work in the theory of noncooperative ggmes.

The games in this section ameatrix gameswhose various outcomes are listed in a
payoff matrix. Two players in a game compete according to a fixed set of rules. Player
R (for row) has a choice of: possible moves (or choices of action), and plag€gfor
column) hasrn moves. By convention, theayoff matrix A = [q;;] lists the amounts
that therow player R wins from playerC, depending on the choicgs andC make.
Entrya;; shows the amour wins whenR chooses actiohandC chooses actior. A
negative value fou;; indicates a loss foR, the amouniR has to pay taC. The games
are often calledwo-per son zer o-sum games because the algebraic sum of the amounts
gained byR andC is zero.

EXAMPLE 1 Each player has a supply of pennies, nickels, and dimes. At a given
signal, both players display (or “play”) one coin. If the displayed coins are not the same,
then the player showing the higher-valued coin gets to keep both. If they are both pennies
or both nickels, then playé&r keeps both; but if they are both dimes, then plag&eeps

them. Construct a payoff matrix, usingfor display of a pennyi for a nickel, and/

for a dime.

Solution Each player has three choicegsn, andd, so the payoff matrix is 3 3:

PlayerC

p n d
p
PlayerR n
d

1] am indebted to my brother, Dr. Steven R. Lay, for designing and writing most of this chapter and

class testing it at Lee University. | have also class tested it and made a few changes/additions. It works
well, and the students enjoyed it. However, | would appreciate feedback from anyone who uses this, fac-
ulty or students.

2The popular 2002 movieh Beautiful Mind, tells a poignant story of the life of John Nash.
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Consider a row foR and fill in whatR receives (or pays), depending on the chdice
makes. First, supposeplays a penny. I€ also plays a penny; loses 1 cent, because
the coins match. Thél, 1) entry is —1. IfC plays either a nickel or a dim®, also loses
1 cent, becaus€ displays the higher-valued coin. This information goes in row 1:

PlayerC
p n d
pl-1 -1 -1
PlayerR n
d

Next, supposer plays a nickel. IfC plays a pennyR wins the penny. Otherwise&?
loses the nickel, because eiti@matches the nickel or shows the higher-value dime.
Finally, whenR plays a dimeR gains either a penny or a nickel, whichever is shown
by C, because&r’s dime is of higher value. Also, when both players display a diRe,
wins the dime fronC because of the special rule for that case.

PlayerC
p n d
p|l-1 -1 -1
PlayerR n 1 -5 -5
d 1 5 10

By looking at the payoff matrix in Example 1, the players discover that some plays
are better than others. Both players know R likely to choose a row that has positive
entries, whileC is likely to choose a column that has negative entries (a payment from
R to C). PlayerR notes that every entry in row 3 is positive and chooses to play a dime.
No matter whatC may do, the worst that can happenRads to win a penny. Player
C notes that every column contains a positive entry and theré&farannot be certain
of winning anything. So playe€ chooses to play a penny, which will minimize the
potential loss.

From a mathematical point of view, what has each player done? Prayas found
the minimum of each row (the worst that could happen for that play) and has chosen the
row for which this minimum is largest. (See Fig. 1.) ThatRshas computed

1

max {mjn aij]
J

Player C Row minima
-1 -1 -1 -1

Player R 1 -5 -5 -5
1 5 10 1 —Max of the minima

Column maxima 1 5 10

T—l\/lin of the maxima
FIGURE 1
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Observe that foIC, a large positive payment tB is worse than a small positive
payment. Thug has found the maximum of each column (the worst that can happen to
C for that play) and has chosen the column for which this maximum is smallest. Player
C has found

min [maxa[ ,}
J i

For this payoff matriqa;;],

maxmina;; = minmaxa;; =1
l J J 1

Ifthe payoff matrix of a matrix game contains an entrythatis both the minimum
of row i and the maximum of colump, theng;; is called asaddle point.

In Example 1, the entrys; is a saddle point for the payoff matrix. As long as both
players continue to seek their best advantage, playeill always display a dime (row
3) and playelC will always display a penny (column 1). Some games may have more
than one saddle point.

The situation is not quite so simple in the next example.

EXAMPLE 2 Again suppose that each player has a supply of pennies, nickels, and
dimes to play, but this time the payoff matrix is given as follows:

Player C
p n d Row minima

p |10 -5 5 -5
Player R n 1 1 -1 -1 «Max of the minima
d 0 -10 -5 1 -10

Column maxima 10 1 5

T—l\/lin of the maxima

If player R reasons as in the first example and looks at the row minknaill choose

to play a nickel, thereby maximizing the minimum gain (in this case a loss of 1). Player
C, looking at the column maxima (the greatest paymem)owill also select a nickel

to minimize the loss t&.

Thus, as the game beging,andC both continue to play a nickel. After a while,
however(C begins to reason, “IR is going to play a nickel, then I'll play a dime so that |
can win a penny.” However, whanstarts to play a dime repeatedR/pegins to reason,

“If C is going to play a dime, then I'll play a penny so that | can win a nickel.” ORce
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has done this; switches to a nickel (to win a nickel) and th@&rstarts playing a nickel
... and so on. It seems that neither player can develop a winning strategy.

Mathematically speaking, the payoff matrix for the game in Example 2 does not
have a saddle point. Indeed,

maxming;; = —1
i J

while
minmaxa;; =1
J 1

This means that neither player can play the same coin repeatedly and be assured of
optimizing the winnings. In fact, any predictable strategy can be countered by the
opponent. But is it possible to formulate some combination of plays that over the long
run will produce an optimal return? The answeyés (as Theorem 3 later will show),
when each move is made at random, but with a certain probability attached to each
possible choice.

Here is a way to imagine how play®&rcould develop a strategy for playing a matrix
game. Suppose th& has a device consisting of a horizontal metal arrow whose center
of gravity is supported on a vertical rod in the middle of a flat circular region. The region
is cut into pie-shaped sectors, one for each of the rows in the payoff matrix. Player
R gives the arrow an initial spin and waits for it to come to rest. The position of the
arrowhead at rest determines one playRan the matrix game.

If the area of the circle is taken as 1 unit, then the areas of the various sectors sum to
1; and these areas give the relative frequencigs;atabilities, of selecting the various
plays in the matrix game, when the game is played many times. For instance, if there
are five sectors of equal area and if the arrow is spun many times, ptayél select
each of the five plays abouy3 of the time. This strategy is specified by the vector in
R® whose entries all equal/s. If the five sectors of the circle are unequal in size, then
in the long run some game plays will be chosen more frequently than the others. The
corresponding strategy f@ is specified by a vector iR°® that lists the areas of the five
sectors.

A probability vector in R™ is the set of alk in R™ whose entries are nonnegative
and sum to one. Such arhas the form

xl m
x=|: |, x=0fri=1..mand) x=1
Xom i=1
Let A be anm x n payoff matrix for a game. Thstrategy space for playerR is
the set of all probability vectors iR™, and thestrategy space for playerC is the
set of all probability vectors iiR". A pointin a strategy space is calledtaategy.

If one entry in a strategy is 1 (and the other entries are zeros), the strategy is called
apurestrategy.
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The pure strategies iR" are the standard basis vectorsi®t, ey, ..., e,. Ingen-
eral, each strategyis a linear combinatioryie; + - - - + x,,€,,, Of these pure strategies
with nonnegative weights that sum to che.

Suppose now thak andC are playing then xn matrix gameA = [a;;], wherea;;
is the entry in theéth row and thejth column ofA. There arenn possible outcomes of
the game, depending on the ra&kwchooses and the colunthchooses. Suppostuses
strategyx andC uses strategy, where

X1 Y1
X=1: and y=
Xm Yn

SinceRr plays the first row with probability; andC plays the first column with probabil-
ity y; and since their choices are made independently, it can be shown that the probability
is x1y; that R chooses the first rolnd C chooses the first column. Over the course
of many games, the expected payoffRdor this outcome isi;1x1y, for one game. A
similar computation holds for each possible pair of choicesRatdC can make. The
sum of the expected payoffs oover all possible pairs of choices is called d@xpected
payoff, E(X,y), of the game to playeR for strategiex andy. That is,

m n

E(X,y) = Z inaijyj =x"Ay

i=1 j=1

Roughly speaking, the numbéf(x, y) is the average amount that will pay to R
per game, wherR andC play a large number of games using the strategiaady,
respectively.

Let X denote the strategy space ®randY the strategy space fd@r. If R were to
choose a particular strategy, sgyand if C were to discover this strategy, thénwould
certainly choosg to minimize

EX,y) = XAy
Thevalue of using strategx is the numberp(X) defined by

V(%) =min E(X, y) = minX’Ay (1)
yeY yeY

SinceX’A is a 1xn matrix, the mapping — E (X, y) = X’Ay is a linear functional on
the probability spac&. From this, it can be shown that(x, y) attains its minimum
wheny is one of the pure strategies, ..., &,, for C.#

Recall thatAe; is the jth column of the matrix4, usually denoted bg;. Since the
minimum in (1) is attained whey = e; for somej, (1) may be written, wittx in place

SMore precisely, each strategy is a convex combination of the set of pure strategies—that is, a point in
the convex hull of the set of standard basis vectors. This fact connects the theory of convex sets to the
study of matrix games. The strategy space Rois an (m — 1)-dimensional simplex ifR”, and the strat-

egy space folC is an(n — 1)-dimensional simplex ifR”. See Sections 8.3 and 8.5 for definitions.

4A linear functional onY is a linear transformation frori into R. The pure strategies are the extreme
points of the strategy space for a player. The stated result follows directly from Theorem 16 in Section
8.5.
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of X, as
. . T . T .
v(X) = mjm E(X, €)= mjmx Ae; = mjmx a; = mjmx-aj (2)

That is,v(x) is the minimum of the inner product afwith each of the columns od.
The goal ofR is to choos& to maximizev(x).

The numbewy, defined by

Vg = Maxv(xX) = maxmin E (X, y) = maxminx-a;
xeX xeX yeY xeX j

with the notation as described above, is called/diae of thegametorow player
R. A strategyXx for R is calledoptimal if v(X) = vg.

Of course,E (X, y) may exceedy for somex andy if C plays poorly. Thusg is
optimal forR if E(X, y) > vgforally € Y. This valuevy can be thought of as the most
that playerR can besure to receive fromC, independent of what play€r may do.

Asimilar analysis for playe€, using the pure strategies fgrshows that a particular
strategyy will have a valuev(y) given by

v(y) = MaxE(X, y) = MaxE (€, y) = maxrow; (A)y 3)
Xe l 1
because’A = row; (A). Thatis, the value of strategyto C is the maximum of the inner
product ofy with each of the rows ofi. The numbew, defined by

ve = minv(y) = min maxrow; (A)y
yeY yeY i

is called thevalue of thegameto C. This is the least that will have to lose regardless
of whatR may do. A strategy for C is calledoptimal if v(§) = v¢. Equivalentlyy is
optimal if E(x, ) < v¢ for all xin X.

In any matrix gameyg < vc.

PROOF For anyx in X, the definitionv(x) = minyey E(X,y) implies thatv(x) <
E(x,y) for eachy in Y. Also, sincev(y) is the maximum ofE(x,y) over all x,
v(y) > E(X,Yy) for each individuak. These two inequalities show that

v(X) < E(X,y) = v(y)

for all x € X and for ally € Y. For any fixedy, the left inequality above implies that
MaXex v(X) < E(X,Y). Similarly, for eactx, E(x,y) < minyey v(y). Thus,

maxv(x) < minv(y)
xeX yeY

which proves the theorem.
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1 1
10 -5 5 4 4
EXAMPLE3 LetA=| 1 1 -1|,x=|3|, andy= :11 , whereA comes
0 —10 -5 1 1
2 2
from Example 2. Computé& (x, y) and verify that this number lies betwee(x) and
v(y).
Solution Compute
1
10 -5 57|13 L
Fy=xiy=[1 3 3’1 1-1lil=[3 1 i) o|=-%
0 -10 -5 1 -5
2
Next, from (2),v(x) is the minimum ofE (x, ;) for 1 < j < 3. So compute
Ex,e)=2+1+0=3
EX.&)=—-3+;-4=—%
Ee=§-3-3=-1
Thenv(x)=min{3, -2 11 =L - = _F(x,y). Similarly, E(er,y) =2,
E(ey,y) =0, andE(e3, y) = =5, and sov(y) = max{%f’, 0, -5} = 175. ThusE(X,y)
< v(y), as expected.

In Theorem 1, the proof thatz < v¢ was simple. A fundamental result in game
theoryisthatvz = v¢, butthisis noteasy to prove. The first proof by John von Neumann
in 1928 was technically difficult. Perhaps the best-known proof depends strongly on
certain properties of convex sets and hyperplanes. It appeared in the classic 1944 book
Theory of Games and Economic Behavior, by von Neumann and Oskar Morgenstern.

I
THEOREM 2 Minimax Theorem
In any matrix gameyz = v¢. That s,
qu?,l'y EX,y) = rynelp r)](la}.(XE(X, Y)
DEFINITION The common value = vz = v is called thevalue of the game. Any pair of

optimal strategiesk, V) is called asolution to the game.

When (X, §) is a solution to the gamejz = v(X) < E(X,¥) < v(y) = v¢, Which
shows thatE (X, §) = v.

5More precisely, the proof involves finding a hyperplane that strictly separates the @rfigim the con-
vex hull of {ag, ..., a,, e, ..., e,}, whereay, .. ., a, are the columns off andey, ..., e, are the stan-
dard basis vectors ii®”. The details are in Steven R. La@pnvex Sets and Their Applications (New
York: John Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), pp. 159-163.
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The next theorem is the main theoretical result of this section. A proof can be based
either on the Minimax Theorem or on the theory of linear programming (in Sectiofi 9.4).

Fundamental Theorem for Matrix Games

In any matrix game, there are always optimal strategies. That is, every matrix
game has a solution.

2 x n Matrix Games

When a game matriX has 2 rows and columns, an optimal row strategy angd are
fairly easy to compute. Suppose

A= |@ a2 - an
a1 axp -+ Ay

The objective of player is to choosex in R? to maximizev(x). Sincex has only
two entries, the probability spacéfor R may be parameterized by a variabjevith a

typicalx in X having the fornx(z) = {1 t_ t} for0 <t < 1. Fromformula (2)y(x(¢))

is the minimum of the inner product &fr) with each of the columns of. That is,

j
:min{alj(l—t)+a2jt:j:l,...,n} 4)

v(X(7)) = min {x(t)T[alj] j=1,.. n}
az

Thusv(x(¢)) is the minimum value of linear functions of. When these functions are
graphed on one coordinate system for @ < 1, the graph of = v(x(¢)) as a function
of r becomes evident, and the maximum value ©f(¢)) is easy to find. The process is
illustrated best by an example.

EXAMPLE 4 Consider the game whose payoff matrix is

1 5 3 6
A={4012}

a. Ona-z coordinate system, sketch the four lines a;(1 —t) + apjt for0 < < 1,
and darken the line segments that correspond to the graphofx(z)), from (4).

6The proof based on the Minimax Theorem goes as follows: The funetionis continuous on the
compact sef, so there exists a poiktin X such that

V(X) = maxv(x) = vg
xeX

Similarly, there existy in Y such that

v(§) =minv(y) =vc
yey

According to the Minimax Theoremyg = v¢ = v.
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b. Identify the highest poinM = (¢, z) on the graph of(x(¢)). Thez-coordinate of
M is the valuevy of the game forR, and ther-coordinate determines an optimal
strategyx(r) for R.

Solution

a. The four lines are
z=1.1-t+4-t= 3r+1
z=5-1-)+0-t=-5:+5
z=31-+1-t=-2t+3
2=6-1—1)+2-t=—4+6

See Fig. 2. Notice that the line=ay; - (1 — 1) +ay; - t goes through the points
(0, ayj) and(1, ap;). For instance, the line=6- (1 —¢) + 2- ¢ for column 4 goes
through the points0, 6) and (1, 2). The heavy polygonal path in Fig. 2 represents
v(x) as afunction of, because the-coordinate of a point on this path is the minimum
of the corresponding-coordinates of points on the four lines in Fig. 2.

61 < T
U’h/;
5] d 1
1 Co, | 4
(/’77/; > (‘,0\\“““
34 col umn 3 4
ul T — . __ 2> |
5F M -2
T rl
} t
0 2 1
5
FIGURE 2

b. Thehighestpoiniy/, onthe graph of(x) is the intersection of the lines corresponding
to the first and third columns of. The coordinates af/ are(%, %1)7 The value of
the game forR is %1 This value is attained at= % so the optimal strategy fak is

1— 2 3

o 5 5
X:[ :[2‘|.

5

2
5
For any 2< n matrix game, Example 4 illustrates the method for finding an optimal
solution for playerR. Theorem 3 guarantees that there also exists an optimal strategy for

“Solve the equations for columns 1 and 3 simultaneously:

(column 1)z =3r+1 :H_g _Ll
(column 3)z =—2r +3 =575
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playerC, and the value of the game is the samefas forR. With this value available,
an analysis of the graphical solution fB; as in Fig. 2, will reveal how to produce an
optimal strategy for C. The next theorem supplies the key information aljout

Let x andy be optimal strategies for an x n matrix game whose value is and
suppose that

X=x181+ - +X,6, INR" (5)

Theny is a convex combination of the pure strategigm R” for whichE (X, ;) =
v. In addition,y satisfies the equation

E@E,y)=v (6)
for eachi such thatt; £ 0.

PROOF  Writey = y1€1 + - - - + y,€,inR", and notethat = E(X, §) =v(X) < E(X, €})
for j =1, ..., n. Sothere exist nonnegative numbeysuch that

ERX,e)=v+e; (j=1,...,n)
Then
V=E()zvy):E(ka&lel-"'""'-j}nen)

n n
= JERe)=> Ii(v+e))
j=1 j=1

n
=v+ E Viej
=1

because thej; sum to one. This equality is possible only §f =0 whenever
gj > 0. Thusy is a linear combination of the; for which ¢; =0. For suchj,
E()A(, ej) =V.

Next, observe thak (e, y) < v(y) = E(X,y) fori =1, ..., m. So there exist non-
negative number& such that

EE€,)+8=v (=1,...,m) (7)
Then, using (5) gives
v=ERX ) =) XE®@&.Y)
i=1
= Z)?i(v—(s,-)zv— Z)e[ai
i=1 i=1

since thex; sum to one. This equality is possible onlysjf= 0 whenx; #0. By (7),
E(e;, V) = v for eachi such thatk; # 0.
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EXAMPLE5 The value of the game in Example 4% attained whe = [

aun Gllw
—_
Cc
(%2}
(9]

this fact to find an optimal strategy for the column plager

Solution The z-coordinate of the maximum poin¥ in Fig. 2 is the value of the
game, and the-coordinate identifies the optimal strateg@é) = X. Recall that thez-
coordinates of the lines in Fig. 2 represéiix(s), e;) for j =1,..., 4. Only the lines
for columns 1 and 3 pass through the paiit which means that

E&e)=%3 and EXe)=7g

while E(X, &) and E(X, ;) are greater thar%. By Theorem 4, the optimal column
strategyy for C is a linear combination of the pure strategégsandes in R?. Thus,y
has the form

1 0 Cc1
y=c 0 +c 01_1|0
- 0 3 1| C3

0 0 0

wherec; + c3=1. Since both coordinates of the optinfakhre nonzero, Theorem 4
shows that (ey, §) = % andE (e, ¥) = %1 Each condition, by itself, determingsFor
example,

C1

=4C;|_+C3=£'

4 0 1 2
5

pep=dy=[1 ot o ; 2|2
0

Substituters = 1 — ¢1, and obtain &; + (1 — ¢1) = &, ¢; = £ andcz = . The optimal

strategy forC isy =

O vlw O viIn

Reducing the Size of a Game

The general: x n matrix game can be solved using linear programming techniques, and
Section 9.4 describes one method for doing this. In some cases, however, a matrix game
can be reduced to a “smaller” game whose matrix has only two rows. If this happens,
the graphical method of Examples 4 and 5 is available.

DEFINITION Givena andb in R", with entriesa; and b;, respectively, vectoa is said to
dominatevectorb if a; > b; foralli =1, ..., n anda; > b; for at least oné. If
a dominated, thenb is said to be ecessiveto a.
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Suppose that in the matrix game row r dominates rows. This means that foR
the pure strategy of choosing rowis at least as good as the pure strategy of choosing
row s, no matter whatC may choose, and for some choice 8yr is better thars. It
follows that the recessive row(the “smaller” one) can be ignored ®ywithout hurting
R’s expected payoff. A similar analysis applies to the columnsgipfn which case
the dominating “larger” column is ignored. These observations are summarized in the
following theorem.

Let A be anm xn matrix game. If rows in the matrixA is recessive to some
other row, then lefd; be the(m — 1) x n matrix obtained by deleting rowfrom
A. Similarly, if column: of matrix A dominates some other column, L&t be
them x (n — 1) matrix obtained by deleting columrfrom A. In either case, any
optimal strategy of the reduced matrix gamhgor A, will determine an optimal
strategy forA.

EXAMPLE 6 Use the process described in Theorem 5 to reduce the following matrix
game to a smaller size. Then find the value of the game and optimal strategies for both
players in the original game.

7 1 6 7
A=|8 3 1 O
4 5 3 3

Solution  Since the first column dominates the third, plagewill never want to use
the first pure strategy. So delete column 1 and obtain

[« 1 6 7]
* 3 1 0
| * 5 3 3_
In this matrix, row 2 is recessive to row 3. Delete row 2 and obtain
[« 1 6 7]
k *k * k
|+ 5 3 3]

This reduced 2 3 matrix can be reduced further by dropping the last column, since it
dominates column 2. Thus, the original matrix gambas been reduced to

1 6 7 1 6 7
B = [5 3} whenA=(8 3 1 O (8)
4 5 3 3

and any optimal strategy faB will produce an optimal strategy fot, with zeros as
entries corresponding to deleted rows or columns.

A quick check of matrixB shows that the game has no saddle point (because 3 is
the max of the row minima and 5 is the min of the column maxima). So the graphical
solution method is needed. Figure 3 shows the lines corresponding to the ;wo columns

of B, whose equations are= 4 + 1 andz = —3¢ + 6. They intersect where= 3; the
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o
~ljon o=
e

FIGURE 3

value of the game i§7 , and the optimal row strategy for matriis

1—5 2
e[
7 7

Since the game has no saddle point, the optimal column strategy must be a linear
combination of the two pure strategies. $et c;1e; + ¢26,, and use the second part of
Theorem 4 to write

. 1 6
F=E@E,)=[1 0][5 3}[z;}=cl+662=(1—62)+602

. As a check,

Solving gives 5, =2, c;=1%, andc;=1—c,=2. Thusy = [

~NIbh Nlw

computeE (e, 9) =53) +3(%) = & = v.

The final step is to construct the solution for matixrom the solution for matrix
B (given byx andy above). Look at the matrices in (8) to see where the extra zeros go.
The row and column strategies farare, respectively,

and y=

>
I

~Nlo O ~NIN

O NN Nw O

PRACTICE PROBLEM
Find the optimal strategies and the value of the matrix game
-3 4 1 3

2 2-1 0
1 5 2 3
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I
9.1 EXERCISES

In Exercises 1-4, write the payoff matrix for each game. 10. Let M be the matrix game having payoff matrix
2 0 1 -1
1. PlayerR has a supply of dimes and quarters. Plagehooses -1 1 -2 0]. FindE(X,Y), v(x), andv(y) when
one of the coins, and play€r must guess which coiR has 1 -2 2 1
chosen. If the guess is correcttakes the coin. If the guess x andy have the given values.
is incorrect,C givesR an amount equal t&’s chosen coin. . i %1 i
1
2. PlayersR and C each show one, two, or three fingers. If B E
. . a. x=|po|andy= |2
the total numbeW of fingers shown is even, then paysN 2 0
dollars toR. If N is odd,R paysN dollars toC. L3 %1
3. Inthe traditional Japanese children’s gajmaken (or “stone, o 07
scissors, paper”), at a given signal, each of two players shows % 1
either no fingers (stone), two fingers (scissors), or all five (pa- p. x = % andy = ‘11
per). Stone beats scissors, scissors beats paper, and paper 1 2
beats stone. In the case of a tie, there is no payoff. In the case L 4] %

of a win, the winner collects 5 yen. (On December 10, 2004,
Fox Sports broadcast the 2004 Rock Paper Scissors Worl#h Exercises 11-18, find the optimal row and column strategies

Championships. Seeww.worldrps.comn) and the value of each matrix game.
4. Playerr hasthree cards: ared 3,ared 6,andablack7. Player [3 _—2 [ 2 -2
C has two cards: ared 4 and a black 9. They each show o 0o 1 12. -3 6
of their cards. If the cards are the same coloreceives the i i
larger of the two numbers. If the cards are of different colorsg3 | 3 5} 14 | 3 5 3 2}
C receives the sum of the two numbers. 14 1 -1 9 1 8
Find all saddle points for the matrix games in Exercises 5-8. (4 6 2 0 5 -1 1
15. 16. 4 2 3
i 1 3 2 5 > _3 1
5 4 3 6 2 1 3 L™=
11 -1 14 -2 1 o 1 -1 4 3
_ 17 1 -1 3 -1 -3
5 3 4 3 -2 4 1 -1 . 2 _1 4 0 -2
7. |-2 1 -5 2 8. 3 5 2 2 1 0 -2 2 1
4 3 7 3 1 -3 0 2 -
) ] ) ] 6 4 5 5
9. Let M be the matrix game having payoff matrix 0o 4 2 7
1 2 _2 18.
. 6 3 5 2
g 1 4|. Find E(X,Y), v(X), andv(y) whenx andy 2 5 3 7
-1 1 -
have the given values. 19. A certain army is engaged in guerrilla warfare. It has two
ra T ways of getting supplies to its troops: it can send a convoy
3 4 up the river road or it can send a convoy overland through
a. X= % andy = % the jungle. On a given day, the guerrillas can watch only one
1 1 of the two roads. If the convoy goes along the river and the
-6 -4 guerrillas are there, the convoy will have to turn back and 4
1 1 . .
2 2 army soldiers will be lost. If the convoy goes overland and
b. x=|1|andy= |1 encounters the guerrillas, half the supplies will get through,
2 4 . .
1 1 but 7 army soldiers will be lost. Each day a supply convoy
4 4

L2 ] L4 ] travels one of the roads, and if the guerrillas are watching the
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other road, the convoy gets through with no losses. Set up and

solve the following as matrix games, withbeing the army.

a. Whatisthe optimal strategy for the army if it wants to max-
imize the amount of supplies it gets to its troops? What
is the optimal strategy for the guerrillas if they want to
prevent the most supplies from getting through? If these
strategies are followed, what portion of the supplies gets
through?

b. What is the optimal strategy for the army if it wants to
minimize its casualties? What is the optimal strategy for
the guerrillas if they want to inflict maximum losses on the 23.
army? If these strategies are followed, what portion of the
supplies gets through? 24,

Suppose in Exercise 19 that whenever the convoy goes over-

land two soldiers are lost to land mines, whether they are

attacked or not. Thus, if the army encounters the guerrillas,

there will be 9 casualties. If it does not encounter the guerril-

las, there will be 2 casualties.

a. Find the optimal strategies for the army and the guerrillas
with respect to the number of army casualties.

b. In part (a), what is the “value” of the game? What does
this represent in terms of the troops?

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22.

a. The payoff matrix for a matrix game indicates wRatins
for each combination of moves. 25,

b. With a pure strategy, a player makes the same choice each
time the game is played.

c. The valuev(x) of a particular strategx to playerRr is
equal to the maximum of the inner productofvith each
of the columns of the payoff matrix.

d. The Minimax Theorem says that every matrix game has a
solution.

If rows is recessive to some other row in payoff matfix
then rows will not be used (that is, have probability zero)

in some optimal strategy for (row) play&. 26.

If a;; is a saddle point, them; is the smallest entry in row
i and the largest entry in columpn

b. Each pure strategy is an optimal strategy.

c. The valuevy of the game to player is the maximum of
the values of the various possible strategieskor

d. The Fundamental Theorem for Matrix Games shows how
to solve every matrix game.

If columns dominates some other column in a payoff ma-
trix A, then columnr will not be used (that is, have prob-
ability zero) in some optimal strategy for (column) player
C.

Find the optimal strategies and the value of the game in Ex-
ample 2.

Bill and Wayne are playing a game in which each player has
a choice of two colors: red or blue. The payoff matrix with
Bill as the row player is given below.

red blue
red | -1 2
blue 3 -4

For example, this means that if both people choose red, then

Bill pays Wayne one unit.

a. Using the same payoffs for Bill and Wayne, write the ma-
trix that shows the winnings with Wayne as the row player.

b. If A is the matrix with Bill as the row player, write your
answer to (a) in terms of.

Consider the matrix gama = {i 2} , whereA has no

saddle point.
a. Find a formula for the optimal strategiefor R andy for
C. What is the value of the game?

b. LetJ = and lete andB be real numbers with

1
1 1y
a # 0. Use your answer in part (a) to show that the optimal
strategies for the matrix ganie= a A + BJ are the same
as forA. In particular, note that the optimal strategies for

A andA + BJ are the same.

Let A be a matrix game having value Find an example to
show thatE (x, y) = v does not necessarily imply thatand
y are optimal strategies.

SOLUTION TO PRACTICE PROBLEM

The first row is recessive to the third row, so the first row may be eliminated. The second
and fourth columns dominate the first and third columns, respectively. Deletion of the
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second and fourth columns leaves the ma#ix

5 1 -3 4 1 3
B:[l 2} whenA = 2 2 -1 0
1 5 2 3

The game foB has no saddle point, but a graphical analysis will work. The two columns
of B determine the two lines shown below, whose equations afg2¢) + 1.+ and
z=-1-1—1)+2-1.

ENTAR

—1-

These lines intersect at the poi(rﬁ, %) The value of the game % and the optimal
row strategy for the matrix game is

-5

By Theorem 4, the optimal column strategy- { 21 ] , satisfies two equatioris(ey, ¥) =
2

% andE(e, V) = %, becaus« is a linear combination of botey, ande,. Each of these
equations determings For example,

5 N 2 -1
i=Eey=[1 OJ[l 2“2}=2C1—62=261—(1—01)=361—1

Thus,c; = 2, and soc, = 7, andy = . As a check, compute

- o)

This solves the game fd. The optimal row strateg¥ for A needs a 0 in the first entry
(for the deleted first row); the optimal column stratggfipr A needs 0's in entries 2 and
4 (for the two deleted columns). Thus

EN R N4

E(e,$)=[0 1][i _;]

and y=

Hw b, O
O Ak O dlw
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°WA LINEAR PROGRAMMING—GEOMETRIC METHOD

Since the 1950s, the variety and size of industrial linear programming problems have
grown along with the dramatic increase in computing power. Still, at their core, linear
programming problems have a concise mathematical description, discussed in this sec-
tion. The final example in the section presents a geometric view of linear programming
that is important for visualizing the algebraic approach needed for larger problems.

Generally speaking, a linear programming problem involves a system of linear
inequalities in variabless, ..., x, and a linear functionalf from R” into R. The
system typically has many free variables, and the problem is to find a sohutivet
maximizes or minimizes (x).

EXAMPLE 1 The Shady-Lane grass seed company blends two types of seed mixtures,
EverGreen and QuickGreen. Each bag of EverGreen contains 3 pounds of fescue seed,
1 pound of rye seed, and 1 pound of bluegrass. Each bag of QuickGreen contains 2
pounds of fescue, 2 pounds of rye, and 1 pound of bluegrass. The company has 1200
pounds of fescue seed, 800 pounds of rye seed, and 450 pounds of bluegrass available to
put into its mixtures. The company makes a profit of $2 on each bag of EverGreen and
$3 on each bag of QuickGreen that it produces. Set up the mathematical problem that
determines the number of bags of each mixture that Shady-Lane should make in order
to maximize its profit.

Solution The phrase “maximize. . profit” identifies the goal or objective of the prob-

lem. The first step, then, is to create a formula for the profit. Begin by naming the
guantities that can vary. Let be the number of bags of EverGreen andhe number

of bags of QuickGreen that are produced. Since the profit on each bag of EverGreen is
$2 and the profit on each bag of QuickGreen is $3, the total profit (in dollars) is

2x1 + 3x2 (profit function)

The next step is to write inequalities or equalities thaindx, must satisfy, one for each

of the ingredients that are in limited supply. Notice that each bag of EverGreen requires

3 pounds of fescue seed and each bag of QuickGreen requires 2 pounds of fescue seed.
So the total amount of fescue required ig 3 2x, pounds. Since only 1200 pounds are
available x; andx,; must satisfy

3x1 + 2x2 < 1200 (fescue)

Similarly, EverGreen needs 1 pound of rye per bag, QuickGreen needs 2 pounds per bag,
and only 800 pounds of rye are available. Thus, the total amount of rye seed required is
X1 + 2x2, andx; andx, must satisfy

X1+ 2x2 < 800 (rye)

As for the bluegrass, EverGreen requires 1 pound per bag and QuickGreen requires 1
pound per bag. Since 450 pounds are available,

X1+ xp <450 (bluegrass)
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Of coursex; andx;, cannot be negative, sq andx, must also satisfy
x1>0 and x>0
The problem is summarized mathematically as

Maximize 201 + 3x2 profit function)

(
subject to 31+ 2x, <1200 (fescue)
X1+ 2xp <800 (rye)
X1+ x2 <450 (bluegrass)

andx; > 0, x, > 0.

EXAMPLE 2 An oil refining company has two refineries that produce three grades of
unleaded gasoline. Each day refinery Aproduces 12,000 gallons of regular, 4,000 gallons
of premium, and 1,000 gallons of super gas, at a cost of $3,500. Each day refinery B
produces 4,000 gallons of regular, 4,000 gallons of premium, and 5,000 gallons of super
gas, at a cost of $3,000. An order is received for 48,000 gallons of regular, 32,000
gallons of premium, and 20,000 gallons of super gas. Set up a mathematical problem
that determines the number of days each refinery should operate in order to fill the order
at the least cost.

Solution Suppose that refinery A operatesdays and refinery B operataes days.
The cost of doing this is,500x; + 3,000Qx; dollars. The problem is to find a production
schedulgx, x») that minimizes this cost and also ensures that the required gasoline is
produced.

Since refinery A produces 12,000 gallons of regular gas each day and refinery B
produces 4,000 gallons of regular each day, the total produced@9@32 + 4,000Qx,.
The total should be at least 48,000 gallons. That s,

12,000x; + 4,000x, > 48,000
Similarly, for the premium gas,

4,000x; + 4,000x, > 32,000
and, for the super,

1,000x; + 5,000x, > 20,000

As in Example 1x; andx, cannot be negative, sq > 0 andx, > 0.
The problem is summarized mathematically as

Minimize 3,500x7 + 3,000x> (cost function)
subject to 12000Qx; + 4,00Qr, > 48,000 (regular gas)
4,000x, + 4,000¢, > 32,000 (premium)
1,000x; + 5,000x, > 20,000 (super)
andx; > 0, x, > 0.

The examples show how a linear programming problem involves finding the maxi-
mum (or minimum) of a linear function, called thbjectivefunction, subject to certain
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linear constraints. In many situations, the constraints take the form of linear inequalities
and the variables are restricted to nonnegative values. Here is a precise statement of the

so-called canonical form of a linear programming problem.

DEFINITION by c1

Givenb= | : [ inR",c=| : | inR", and anm xn matrix A = [ a;; |, the
bm cl‘t

canonical linear programming problem is the following:
X1
Find ann-tuplex = | : | inR" to maximize
Xn
f(x1, ..., xp) =cixy+Coxo+ -+ -+ CuXp

subject to the constraints

a11x1 + dioxot+ - - +ayx, < b
a21X1 + azoxo+ - - - +dp, X, < bo

Am1X1 + ApaXx2t - - - +appXy = bm
and
x;>0 forj=1,...,n

This may be restated in vector-matrix notation as follows:

Maximize f (x) = c’x (1)
subject to the constraintsx < b (2)
andx > 0 3)

where an inequality between two vectors applies to each of their coordinates.
Any vectorx that satisfies (2) and (3) is calledeasible solution, and the set

of all feasible solutions, denoted b¥, is called thefeasible set. Avectorx in &
is anoptimal solution if f(X) = maxcs f(X).

The canonical statement of the problem is really not as restrictive as it might seem.

To minimize a functionz(x), replace it with the problem of maximizing the function
—h(x). A constraint inequality of the sort

aj1x1+ - +ainX, > b;

can be replaced by

—aj1X1 — -+ — inXy < —b;
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An equality constraint
ai1X1+ -+ dinXy = b;
can be replaced by two inequalities

aj1X1+ -+ ainXy < by
—aj1X1 =+ — QipXy = _bi

With an arbitrary canonical linear programming problem, two things can go wrong.
If the constraint inequalities are inconsistent, th&ns the empty set. If the objective
function takes on arbitrarily large valuesh, then the desired maximum does not exist.
In the former case, the problem is said toibgesasible; in the latter case, the problem is
calledunbounded.

EXAMPLE 3 The problem

Maximize 5
subject to x<3
—x <-4
x>0

is infeasible, since there is nosuch thatx < 3 andx > 4.

EXAMPLE 4 The problem

Maximize 5
subject to * <3
x>0

is unbounded. The values af Bnay be arbitrarily large, asis only required to satisfy
x > 0 (andx > —3).

Fortunately, these are the only two things that can go wrong.

I
THEOREM 6 If the feasible set is nonempty and if the objective function is bounded above

on %, then the canonical linear programming problem has at least one optimal
solution. Furthermore, at least one of the optimal solutions is an extreme point of
z1

Theorem 6 describes when an optimal solution exists, and it suggests a possible
technique for finding one. Thatis, evaluate the objective function at each of the extreme

1The feasible set is the solution of a system of linear inequalities. Geometrically, this corresponds to the
intersection of a finite number of (closed) half-spaces, sometimes called a polyhedral set. Intuitively, the
extreme points correspond to the “corner points,” or vertices, of this polyhedral set. The notion of an
extreme point is discussed more fully in Section 8.5.

A proof of Theorem 6 is in Steven R. Lagonvex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), p. 171.
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points of.Z and select the point that gives the largest value. This works well in simple
cases such as the next two examples. The geometric approach is limited to two or three
dimensions, but it provides an important visualization of the nature of the solution set
and how the objective function interacts with the feasible set to identify extreme points.

EXAMPLE5 Maximize f(x1, x2) = 2x1 + 3x2

subjectto  x; <30
x2 <20
X1+ 2xp, <54

andx; > 0,x, > 0.

Solution Figure 1 shows the shaded pentagonal feasible set, obtained by graphing
each of the constraint inequalities. (For simplicity, points in this section are displayed

as ordered pairs or triples.) There are five extreme points, corresponding to the five
vertices of the feasible set. They are found by solving the appropriate pairs of linear
equations. For example, the extreme péi®, 20) is found by solving the linear system

x1 + 2x2 = 54 andx, = 20. The table below shows the value of the objective function

at each extreme point. Evidently, the maximum is 96,at 30 andx, = 12.

Xy X9) | 2%+ 3%,

(0,0) 0
(30,0) 60
(30, 12) 9% —
(14, 20) 88
(0, 20) 60
X2
(0, 20) (14, 20)
(30, 12)
©0) } } @0.0) } } F— X1
FIGURE 1

Another geometric technique that can be used when the problem involves two vari-
ables is to graph severkdvel lines for the objective function. These are parallel lines,
and the objective function has a constant value on each line. (See Fig. 2.) The values
of the objective functionf (x1, x2) increase agxi, x,) moves from left to right. The
level line farthest to the right that still intersects the feasible set is the line through the
vertex (30, 12). Thus, the point30, 12) yields the maximum value of (x1, x») over
the feasible set.
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X2

/

\ f(x,%,) = 96
: : 1 1 1 Xl

f(x1,%2) =30 f(x1, %) =60
FIGURE 2

EXAMPLE 6 Maximize f(x1, x2, x3) = 2x1 + 3x2 + 4x3

subjectto  x1+ x2+ x3 <50
x1+2X2+4X3 <80
andx; > 0,x, > 0, x3 > 0.

Solution Each of the five inequalities above determines a “half-spacR®in-a plane
together with all points on one side of the plane. The feasible set of this linear program-
ming problem is the intersection of these half-spaces, which is a convex set in the first
octant ofR®.

When the firstinequality is changed to an equality, the graph is a plane that intercepts
each coordinate axis 50 units from the origin and determines the equilateral triangular
region shown in Fig. 3. Sinc@, 0, 0) satisfies the inequality, so do all the other points
“below” the plane. In a similar fashion, the second (in)equality determines a triangular
region on a plane (shown in Fig. 4) that passes somewhat closer to the origin. The two
planes intersect in a line that contains segnieBt

The quadrilateral surfacBC DE forms a boundary of the feasible set, because it
is below the equilateral triangular region. BeyaF#, however, the two planes change
position relative to the origin, so the planar regibg E forms another bounding surface
for the feasible set. The vertices of the feasible set are the pojmés C, D, E, and 0
(the origin). See Fig. 5, which has all sides of the feasible set shaded except the large
“top” piece. To find the coordinates &, solve the system

X1+ x2=50

X1+2x0+4x3 =80 = X1+ 2x, = 80

X1+ X2+ X3=50 {
X3 = 0

Obtainx, = 30, and find thaB is (20, 30, 0). For E, solve

X1+ X3=50

)C1+2)C2+4X3:80 = X1+4X3:80

X1+ X2+ X3=50 {
X2 =0

Obtainxz = 10, and find tha® = (40, 0, 10).
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(40,0, 10) E

V

FIGURE 5

Now that the feasible set and its extreme points are clearly seen, the next step is
to examine the objective functiofi(xy, x2, x3) = 2x3 + 3x, + 4x3. The sets on which
f is constant are planes, rather than lines, all havih@, 4) as a normal vector to the
plane. This normal vector has a direction different from the normal ve¢tofis 1) and
(1, 2, 4) tothe two face88C DE andABE. So the level sets of are not parallel to any
of the bounding surfaces of the feasible set. Figure 6 shows just the feasible set and a
level set on whichf has the value 120. This plane passes thrafigh, and the point
(30, 20, 0) on the edge of the feasible set betweteand B, which shows that the vertex
B is “above” this level plane. In factf (20, 30, 0) = 130. Thus the unique solution of
the linear programming problem is At= (20, 30, 0).

40
c X

f(Xq, X9, X3) =120
(40,0,10) E

B (20, 30, 0)

FIGURE 6



9.2  Linear Programming—Geometric Method

PRACTICE PROBLEMS

1. Consider the following problem:
Maximize 21+ x2
subject to X1 — 2xp > —8
3x1 + 2x0 < 24

andx; > 0, x, > 0.

25

Write this problem in the form of a canonical linear programming problem: Maximize
c’x subject toAx < b andx > 0. Specify4, b, andc.

2. Graph the feasible set for Practice Problem 1.

3. Find the extreme points of the feasible set in Practice Problem 2.

4. Use the answer to Practice Problem 3 to find the solution to the linear programming
problem in Practice Problem 1.

I
9.2 EXERCISES

1. Betty plans to invest a total of $12,000 in mutual funds, cer-
tificates of deposit (CDs), and a high yield savings account.
Because of the risk involved in mutual funds, she wants to
invest no more in mutual funds than the sum of her CDs and
savings. She also wants the amount in savings to be at least

meet the nutritional requirements at the lowest cost? Set this
up as a linear programming problem in the following form:
Minimize c¢’x subject toAx > b andx > 0. Do not find the

solution.

half the amount in CD’s. Her expected returns are 11% onn Exercises 3-6, find vectoksandc and matrixA so that each
the mutual funds, 8% on the CD's and 6% on savings. HowProblem is set up as a canonical linear programming problem:
much money should Betty invest in each area in order to hayMaximizec’x subject toAx < b andx > 0. Donot find the solu-
the largest return on her investments? Set this up as a lineHen-

programming problem in the following form: Maximizeéx

subject toAx < b andx > 0. Do not find the solution. 3

2. A dog breeder decides to feed his dogs a combination of two
dog foods: Pixie Power and Misty Might. He wants the dogs
to receive four nutritional factors each month. The amounts 4,
of these factors (a, b, ¢, and d) contained in 1 bag of each dog
food are shown in the following chart, together with the total
amounts needed.

a b c d 5.

Pixie Power | 3 2 1 2
Misty Might | 2 4 3 1
Needed 28 30 20 25

The costs per bag are $50 for Pixie Power and $40 for Misty
Might. How many bags of each dog food should be blended to

Maximize 30y + 4dxy — 2x3
subject to X1+ 2x2 <20

—3x2 + bx3 > 10
andx; > 0,x, >0, x3 > 0.

Maximize 31+ x + 5x3
subject to B+ Txo+ x3<25

ZX]_ + 3)62 + 4)63 =40
andx; > 0,x, >0, x3 > 0.

Minimize Txy — 3x2 + X3
subject to x1 — 4x» > 35

X2 — 2X3 =20
andx; > 0,x, >0, x3 > 0.

Minimize x1 + 5x2 — 2x3
subject to 21+ xp + 4dx3 <27

x1 — 6xp + 3x3 > 40
andx; > 0,x, > 0, x3 > 0.
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In Exercises 7-10, solve the linear programming problems.

7.

10.

In Exercises 11 and 12, mark each statement True or False. Justjfg'

. Minimize

Maximize 80, + 65x,
subject to 21+ x<32
x1+ x» <18

X1 + 3)62 <24
andx; > 0, x, > 0.
5)(1 + 3)(2
21+ 5x, > 10
31+ x2> 6
X1 + 7)(2 > 7

subject to

duction process is divided into three departments: fabricating,
packing, and shipping. The hours of labor required for each
operation and the hours available in each department each day
are shown below.

Widgets Whammies Time available
Fabricating 5.0 2.0 200
Packing 2 4 16
Shipping 2 2 10

Suppose that the profit on each widget is $20 and the profit
on each whammy is $26. How many widgets and how many
whammies should be made each day to maximize the com-
pany’s profit?

Exercises 16—19 use the notion of a convex set, studied in Section

andx; > 0,x, > 0.
. Maximize 2 + x>
subject to —2x1+ x2 <-4
X1 — 2)62 < -4
andx; > 0, x, > 0.
Maximize 51 + 12x5
subject to X1— x2< 3
—X1 + ZXZ < -4

andx; > 0, x, > 0.

each answer.

1.

12.

13.
14.
15.

a. Inacanonical linear programming problem, a nonnegative
vectorx is a feasible solution if it satisfie$x < b.

b. Avectorx is an optimal solution of a canonical linear pro-
gramming problem iff (X) is equal to the maximum value
of the linear functiona)f on the feasible se¥.

. If a canonical linear programming problem does not have
an optimal solution, then either the objective function is
not bounded on the feasible s&tor .# is the empty set.

b. If X is an optimal solution of a canonical linear program-
ming problem, theiX is an extreme point of the feasible
set.

Solve the linear programming problem in Example 1.
Solve the linear programming problem in Example 2.

The Benri Company manufactures two kinds of kitchen gad-
gets: invertible widgets and collapsible whammies. The pro-

18.

19.

8.3. AsetS in R" is convex if, for eaclp andq in S, the line
segment betweep andq lies in S. [This line segment is the set
of points of the form(1 — r)p+rqforO<r < 1)

Let % be the feasible set of all solutioxsof a linear pro-
gramming problemAx < b with x > 0. Assume that# is
nonempty. Show tha# is a convex set ifR”. [Hint: Con-
sider pointsgp andq in .# andt such that O< 7 < 1. Show
that(l —n)p +rqisin.#.]

17. Letv= {ﬂ andx = Bl} The inequalityax; + bx, < ¢
2

for some real number may be written ag’x < c. The setS
of all x that satisfy this inequality is calledcbosed half-space
of R?. Show thatS is convex. [See the Hint for Exercise 16.]

The feasible set in Example 5 is the intersection of five closed
half-spaces. By Exercise 17, these half-spaces are convex sets.
Show that the intersection of any five convex sgts . ., Ss

in R" is a convex set.

If ¢ isinR" and if f is defined orR” by f(x) = c’x, then
f is called a linear functional, and for any real number
{x: f(x) =d} is called a level set of . (See level sets in Fig.
2 of Example 5.) Show that any such level set is convex.

SOLUTIONS TO PRACTICE PROBLEMS

1. The first inequality has the wrong direction, so multiply byl. This gives the

following problem:

Maximize 21+ xo
subjectto —x;+2xp; < 8
3x1+2xp < 24

andx; > 0, x> 0.
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This corresponds to the canonical form

Maximizec’x subject toAx < b andx > 0

| 8 REs 2 -1 2
o= =[] o= [i) e [ E]
. To graph the inequality-x; + 2x, < 8, first graph the corresponding equality; +
2x, = 8. The intercepts are easy to findd, 4) and (—8, 0). Figure 7 shows the
straight line through these two points.
The graph of the inequality consists of this line together with all points on one

side of the line. To determine which side, pick a point not on the line to see if its
coordinates satisfy the inequality. For example, try the ori@nQ). The inequality

—-(0)+20) <8

when

is a true statement. Thus the origin and all other points below the line satisfy the
inequality. As another example, substituting the coordinates of the ()i} into
the inequality produces a false statement:

—(0)+2(8) <8

Thus(0, 8) and all other points above the line do not satisfy the inequality. Figure 7
shows small arrows beneath the graph-af + 2x, = 8, to indicate which side is to
be included.

FIGURE7 Graph of—x; + 2x, < 8.

For the inequality
3x1+2x; <24

draw the graph of 8, + 2x, = 24, using the intercept®, 12) and(8, 0) or two other
convenient points. Sino@, 0) satisfies the inequality, the feasible set is on the side
of the line containing the origin. The inequality > O gives the right half-plane,
and the inequality, > 0 gives the upper half-plane. All of these are graphed in Fig.
8, and their common solution is the shaded feasible set.
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FIGURE8 Graph of the feasible set.

3. There are four extreme points in the feasible set:

1. The origin: (0, 0)

2. Thexy-intercept of the first inequality(0, 4)

3. Thex;-intercept of the second inequality8, 0)

4. The intersection of the two inequalities.

For the fourth extreme point, solve the system of equatians+ 2x, = 8 and 31 +
2x, = 24 to obtainx; = 4 andx, = 6.

4. To find the maximum value of the objective functiom 2 x,, evaluate it at each of
the four extreme points of the feasible set.

2X1+X2

0,00 | 2000+10)=0
0,4 | 200+14 =4
8,0 | 28+10) =16 ~—
(4,6) | 24 +1(6)=14

The maximum value is 16, attained when= 8 andx, = 0.

LINEAR PROGRAMMING—SIMPLEX METHOD

Transportation problems played an important role in the early days of linear program-
ming, including the Berlin Airlift described in this chapter’s Introductory Example. They
are even more importanttoday. The firstexample is simple, but it suggests how a problem
of this type could involve hundreds, if not thousands, of variables and equations.

EXAMPLE 1 Aretail sales company has two warehouses and four stores. A particular
model of outdoor hot tub is sold at all four stores, and each store has placed an order with
company headquarters for a certain number of these hot tubs. Headquarters determines
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that the warehouses have enough hot tubs and can ship them immediately. The distances
from the warehouses to the stores vary, and the cost of transporting a hot tub from a
warehouse to a store depends on the distance. The problem is to decide on a shipping
schedule that minimizes the total cost of shipping. Lgte the number of units (hot

tubs) to ship from warehouséo store;.

Store 2 Store 3

iy a0
o

(==

TXB Store 4

Store 1 XlZT
X
7] BN
o0 ]
Warehouse 1 Warehouse 2

T | i *14 4

Xo1

Let a1 and a, be the numbers of units available at warehouses 1 and 2, and let
r1, ..., 14 be the numbers of units requested by the various stores. Then the x;; must
satisfy the equations

X11 + X12 + X13 + X14 =a
X21 +X22 +X23 + X4 = a2

X11 + X1 =n
X12 + X22 =Tr

X13 + X23 =73

X14 + X4 =714

andx;; > Ofori =1,2andj =1, ..., 4. If thecost of shipping oneunit fromwarehouse
i to store j isc;;, then the problem is to minimize the function
C11X11 + C12X12 + €C13X13 + C14X14 + €21X21 + C22X22 + €23X23 + C24X24

subject to the four equalities and ten inequalities listed above.

The simplex method, discussed below, can easily handle problemsthe size of Exam-
ple 1. To introduce the method, however, this section focuses mainly on the canonical
linear programming problem from Section 9.2, in which the objective function must be
maximized. Hereis an outline of the steps in the simplex method.

1. Select an extreme point x of the feasible set ..

2. Consider all the edges of .# that join at x. If the objective function f cannot be
increased by moving along any of these edges, then x is an optimal solution.

3. If f can beincreased by moving along one or more of the edges, then follow the path
that gives the largest increase and move to the extreme point of .# at the opposite
end.

4. Repeat the process, beginning at step 2.
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Sincethevalueof f increasesat each step, the path will not go through the same extreme
point twice. Since there are only a finite number of extreme points, this process will
end at an optimal solution (if there is one) in afinite number of steps. If the problem is
unbounded, then eventually the path will reach an unbounded edge at step 3 along which
f increases without bound.

The next five examples concern canonical linear programming problems in which
each of the entriesin the m-tuple b is positive:

Maximize f(x) = c’x
subject to the constraints Ax < bandx > 0

Herecand x arein R", A isanm xn matrix, and b isin R™.

The simplex method begins by changing each constraint inequality into an equality.
Thisisdone by adding one new variable to each inequality. These new variables are not
part of the final solution; they appear only in the intermediate calculations.

A dack variable is a nonnegative variable that is added to the smaller side of an
inequality to convert it to an equality.

EXAMPLE 2 Changethe inequality
Bx1+ 7x, < 80
into the equality
5X1 + 7x2 + X3 = 80

by adding the slack variable x3. Note that x3 = 80 — (5x1 + 7x2) > 0.

If Aism xn, theaddition of m slack variablesin Ax < b produces alinear system
withm equationsand n + m variables. A solutiontothissystemiscalled abasic solution
if no morethan m of thevariablesare nonzero. Asin Section 9.2, asolution to the system
iscalledfeasibleif each variableisnonnegative. Thus, inabasicfeasible solution, each
variable must be nonnegative and at most m of them can be positive. Geometricaly,
these basic feasible solutions correspond to the extreme points of the feasible set.

EXAMPLE 3 Find abasic feasible solution for the system

2x1 + 3xp + 4x3 < 60
3x1+ xp+5x3 <46
x1+2x2+ x3 <50

Solution Add slack variablesto obtain a system of three equations:

2X1+3)C2+4X3+X4 =60
31+ xp+ SX3 + X5 =46 (1)
x1+2x2+ X3 +x6=50
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There were only three variables in the original system, so a basic solution of (1) has at
most three nonzero values for the variables. The following simple solution is called the
basic feasible solution associated with (1):

x1=x2=x3=0, x4=060, x5=46, and xg =50

This solution corresponds to the extreme point 0 in the feasible set (in R3).

Itiscustomary to refer to the nonzero variables x4, xs, and xg in system (1) asbasic
variables because each has acoefficient of 1 and occursin only oneequation.! Thebasic
variablesaresaidtobe“in” the solution of (1). Thevariablesx;, x,, and x3 are said to be
“out” of the solution. In alinear programming problem, this particular solution would
probably not be optimal since only the slack variables are nonzero.

A standard procedure in the simplex method is to change the role a variable plays
in asolution. For example, although x5 is out of the solutionin (1), it can be introduced
“into” a solution by using elementary row operations. The goal is to pivot on the x;
entry in the third equation of (1) to create a new system in which x, appears only in the
third equation.?

First, divide the third equation in (1) by the coefficient of x, to obtain a new third
equation:

1 1 1
E)C]_ + X2 + §X3 + 5X6 = 25

Second, to equations 1 and 2 of (1) add multiples of thisnew equation that will eliminate
xo from those equations. This produces the system

1

5 3
5X1 + 3x3 + X4 — 5x6 =—15
5 9 1
E)C]_ + E)Cg + X5 — E)Cs = 21
1 1 1
E)C]_ + X2 + EX3 + E)Ce = 25

The basic solution associated with this new systemis
x1=x3=x=0, x,=25 x4=-15  x5=21

The variable x, has come into the solution, and the variable x¢ has gone out. Unfortu-
nately, thisbasic solutionisnot feasible since x4 < 0. Thislack of feasibility was caused
by an improper choice of a pivot equation. The next paragraph shows how to avoid this
problem.

1This terminology generalizes that used in Section 1.2, where basic variables also had to correspond to
pivot positions in a matrix echelon form. Here, the goal is not to solve for basic variables in terms of
free variables, but to obtain a particular solution of the system when the nonbasic (free) variables are
zero.

2To “pivot” on a particular term here means to transform its coefficient into a 1 and then use it to elimi-
nate corresponding terms in all the other equations, not just the equations below it, as was done in Sec-
tion 1.2.
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In general, consider the system

ainxy + -+ ayxg +

aip1x1 + -+ ajxg +

B alnxnzbl

coot QinXp zbi

Ap1X1 + -+ QuiXe + -+ + ApX, = by,

and suppose the next step is to bring the variable x; into the solution by using equation
p to pivot on entry a,.xx. The basic solution corresponding to the resulting system will
be feasible if the following two conditions are satisfied:

1. The coefficient a,; of x;, must be positive. (When the pth equation is divided by a,,
the new b, term must be positive.)

2. Therdtio b, /a, must be the smallest among all the ratios b; /a; for which a;; > O.
(Thiswill guarantee that when the pth equation is used to eliminate the x; term from
the ith equation, the resulting b; term will be positive.)

EXAMPLE 4 Determine which row to use as a pivot in order to bring x, into the
solution in Example 3.

Solution Computetheratios b; /a;»:

by 60 b by 50

= 20, = 46, and = 25
ap 3 ax agp 2
Sincethefirst ratioisthesmallest, pivot onthe x, terminthefirst equation. Thisproduces
the system
%Xl + X2 + gx3 + %X4 =20
%Xl + %x3 — %X4 + X5 =26
—%xl — %X3 — :%X4 + Xg = 10
Now the basic feasible solution is
x1=x3=x4=0, x=20, x5=26, x¢=10

A matrix format greatly simplifies calculations of this type. For instance, system
(1) in Example 3 is represented by the augmented matrix

X1 X2 X3 X4 X5 Xp
2 ® 4 1 0 O ‘ 60
31 5 0 1 O ‘ 46

1 2 1 0 0 1|50

The variables are used as column labels, with the slack variables in color. Recall that
the basic feasible solution associated with this matrix is

X4 = 60, X5 = 46, X = 50

)C1=)C2=)C3=0,
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The circled 3 in the x, column indicates that this entry will be used as a pivot to bring
x» into the solution. (The ratio calculations in Example 4 identified this entry as the
appropriate pivot.) Complete row reduction in column 2 produces the new matrix that
corresponds to the new system in Example 4:

X1 X2 X3 X4 X5  Xg
2 1 4 1 0 o0 ‘ 20
I o Z -1 1 o0 ‘ 26

-1 0 -2 -2 0 1]10

Asin Example 4, the new basic feasible solution is
X1=X3=)C4=0, x2=20, X5=26, x6=10

The preceding discussion has prepared the way for a full demonstration of the
simplex method, based on the constraints in Example 3. At each step, the objective
function in Example 5 will drive the choice of which variable to bring into the solution
of the system.

EXAMPLE5 Maximize 25x1 + 33x, + 18x3

subject to 2x1 + 3x2 + 4x3 < 60
3x1 + XQ+5)C3§46
x1+2x2+ x3 <50
andx; > 0forj=1,...,3.

Solution First, add dack variables, as before. Then change the objective function
25x; + 33x, + 18x3 into an equation by introducing a new variable M given by M =
25x1 + 33x;, + 18x3. Now the goal isto maximize the variable M, where M satisfiesthe
equation

—25x1 — 33)(2 — 18)(3 +M=0

The original problem is now restated as follows. Among all the solutions of the system
of equations

2x1 + 3xp + 4dx3z+xa =60
3x1 + x2 + bxs + X5 = 46
X1+ 2x2+  x3 + Xg =50
—25)6]_ — 33)(2 — 18)C3 +M= 0
find asolution for whichx; > 0(j =1, ..., 6) and for which M isaslarge as possible.

The augmented matrix for this new system is called theinitial simplex tableau. It
iswritten with two ruled lines in the matrix:

X1 X2 X3 X4 X5 X6 M
2 3 4 1 0 0 060
3 1 5 0 1 0 0 4
1 2 1 0 0 1 0]50
25 33 -18 0 0 0 1| 0
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The horizontal line above the bottom row isolates the equation corresponding to the
objective function. This last row will play a special role in what follows. (The bottom
row is used only to decide which variable to bring into the solution. Pivot positions are
never chosen from the bottom row.) The column headings for the slack variablesarein
color, to remind us at the end of the calculations that only the original variables are part
of the final solution of the problem.

Look in rows 1 to 3 of the tableau above to find the basic feasible solution. The
columns of the 3 x 3 identity matrix in these three rows identify the basic variables—
namely, x4, xs, and xg. The basic solution is

x1:x2:x3:0, )C4:60, X5:46, x6:50, M=0

This solution is not optimal, however, since only the slack variables are nonzero. How-
ever, the bottom row implies that

M = 25x1 + 33}(2 + 18)(3

Thevalueof M will risswhen any of thevariablesx1, x,, or x3 rises. Sincethe coefficient
of x, isthelargest of the three coefficients, bringing x, into the solution will cause the
greatest increasein M.

To bring x; into the solution, follow the pivoting procedure outlined earlier. In the
tableau above, compare the ratios b; /a;» for each row except the last. They are 60/3,
46/1, and 50/2. The smallest is 60/3, so the pivot should be the entry 3 that is circled
in thefirst row.

X1 X2 X3 X4 X5 X6 M
2 ® 4 1 0 0 O ‘ 60
3 1 5 0 1 0 O ‘ 46
1 2 1 0 0 1 O ‘ 50
25 -33 -18 0 0 0 1| O
The result of the pivot operation is
X1 X2 X3 X4 x5 xg M
£ 1 3 L 0 o0 o0 ‘ 20
7 11 1
1 5 2
-3 0 -5 -3 0 1 0] 10
3 0 26 11 0 0 1 660

Now the columns of the 3 x 3 identity matrix are in columns 2, 5, and 6 of the tableau.
So the basic feasible solution is

x1=x3=x4=0, x,=20, x5=26, x¢=10, M =660

Thus M hasincreased from 0 to 660. To seeif M can be increased further, look at the
bottom row of the tableau and solve the equation for M:

M =660 + 3x; — 26x3 — 11xs 3)
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Since each of the variables x; is nonnegative, the value of M will increase only if x;
increases (from 0). (Since the coefficients of x3 and x4 are both negative at this point,
increasing one of them would decrease M.) So x; needs to come into the solution.
Compare the ratios (of the augmented column to column 1):

20 26 78

3 3

=30

The second ratio is smaller, so the next pivot should be % inrow 2.

X1 X2 X3 X4 x5 xg M
£ 1 3 %+ 0 0 o‘ 20
o ¥ -1 10 0| 26
—%0—%—%010‘10
3 0 2 1 0 0 1 660
After pivoting, the resulting tableau is
X1 X2 X3 X4 x5 xg M
01 5 3-3 00| %
10 ¥ b 200 B
00 3 5 110 %
0 0 Z® % 9 o 1
The corresponding basic feasible solution is
x3=x4=x5=0, x1=7—78, x2=§, x6=9—76, Mzg4
The bottom row shows that
M:@—Z—%Sm—%“x—g)%

The negative coefficients of the variables here show that M can be no larger than 4’%54
(because x3, x4, and x5 are nonnegative), so the solution is optimal. The maximum
value of 25x; + 33x, + 18x3 is 8, and this maximum occurs when x; = 2, x, = %,
and x3 = 0. The variable x3 is zero because in the optimal solution x3 isafree variable,
not a basic variable. Note that the value of xg is not part of the solution of the original
problem, because x¢ is a dlack variable. The fact that the slack variables x4 and x5 are
zero meansthat the first two inequalities listed at the beginning of this example are both

equalities at the optimal values of xj, x;, and xs.

Example 5 is worth reading carefully several times. In particular, notice that a
negative entry in the bottom row of any x; column will become a positive coefficient
when that equation is solved for M, indicating that M has not reached its maximum.
See tableau (2) and equation (3).
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Insummary, hereisthe simplex method for solving acanonical maximizing problem
when each entry in the vector b is positive.

THE SIMPLEX ALGORITHM FOR A CANONICAL LINEAR PROGRAMMING PROBLEM

1. Change the inequality constraints into equalities by adding dlack variables.
Let M be avariable equal to the objective function, and below the constraint
equations write an eguation of the form

(objective function) — M =0

2. Set up the initial simplex tableau. The slack variables (and M) provide the
initial basic feasible solution.

3. Check the bottom row of the tableau for optimality. If all the entriesto the left
of the vertical line are nonnegative, then the solution is optimal. |If some are
negative, then choose the variable x; for which the entry in the bottom row is
as negative as possible.®

4. Bring the variable x; into the solution. Do this by pivoting on the positive
entry a,; for which the nonnegetive ratio b; /a; isthe smallest. The new basic
feasible solution includes an increased value for M.

5. Repeat the process, beginning at step 3, until al the entriesin the bottom row
are nonnegative.

Two things can go wrong in the simplex algorithm. At step 4, there might be a
negative entry in the bottom row of the x; column, but no positive entry a;;, above
it. In this case, it will not be possible to find a pivot to bring x; into the solution.
This corresponds to the case where the objective function is unbounded and no optimal
solution exists.

The second potential problem also occurs at step 4. The smallest ratio b; /a;;, may
occur in more than one row. When this happens, the next tableau will have at least
one basic variable equal to zero, and in subsequent tableaus the value of M may remain
constant. Theoretically itispossiblefor an infinite sequence of pivotsto occur and fail to
lead to an optimal solution. Such a phenomenon is called cycling. Fortunately, cycling
occurs only rarely in practical applications. In most cases, one may arbitrarily choose
either row with aminimum ratio as the pivot.

EXAMPLE 6 A hedth food store sells two different mixtures of nuts. A box of the
first mixture contains 1 pound of cashews and 1 pound of peanuts. A box of the second
mixture contains 1 pound of filberts and 2 pounds of peanuts. The store has available 30

3The goal of step 3 is to produce the greatest increase possible in the value of M. This happens when
only one variable x; satisfies the conditions. Suppose, however, that the most negative entry in the bot-
tom row appears in both columns j and k. Step 3 says that either x; or x; should be brought into the
solution, and that is correct. Occasionally, a few computations can be avoided by first using step 4 to
compute the “smallest ratio” for both columns j and &, and then choosing the column for which this
“smallest ratio” is larger. This situation will arise in Section 9.4.
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pounds of cashews, 20 pounds of filberts, and 54 pounds of peanuts. Suppose the profit
on each box of the first mixture is $2 and on each box of the second mixture is $3. If
the store can sell all of the boxes it mixes, how many boxes of each mixture should be
made in order to maximize the profit?

Solution Let x1 be the number of boxes of the first mixture, and let x» be the number
of boxes of the second mixture. The problem can be expressed mathematically as

Maximize 2x1 + 3x2
subject to X1 <30 (cashews)
xp <20 (filberts)
X1+ 2xp <54 (peanuts)
and x; > 0, x2 > 0.

This turns out to be the same problem solved graphically in Example 5 of Section 9.2.
When it is solved by the simplex method, the basic feasible solution from each tableau
corresponds to an extreme point of the feasible region. See Fig. 1.

X2

(0, 20)| (14, 20)

(30, 12)

T T } X
(0,0 (30,0) "t
FIGURE 1

To construct theinitial tableau, add slack variablesand rewrite the objectivefunction
as an equation. The problem now isto find a nonnegative solution to the system

X1 + X3 =30
X2 + X4 =20

X1 + 2X2 + X5 = 54
—2X1—3)C2 +M= 0

for which M isamaximum. Theinitial smplex tableau is

X1 X2 X3 X4 X5 M

1 0 1 0 0 0]30
0 1 0 1 0 0 20
1 2 0 0 1 054
2-3 0 0 0 1| 0

The basic feasible solution, where x1, x,, and M are 0, corresponds to the extreme point
(x1, x2) = (0, 0) of the feasible region in Fig. 1. In the bottom row of the tableau, the
most negative entry is —3, so thefirst pivot should be in the x, column. Theratios 20/1
and 54/2 show that the pivot should be the 1 in the x, column:
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X1 X2 X3 X4 X5 M
10 1 0 0 0]30
0o @ o0 1 0 020
1 2 0 0 1 O \ 54

2-3 0 0 0 1| 0

After pivoting, the tableau becomes

X1 X2 X3 X4 X5 M
1 0 1 0 0 O \ 30
0O 1 0 1 0 O \ 20
@ o 0 -2 1 0 14

2 0 0 3 0 1]|60

The basic feasible solution is now
)C1=X4=0, XZZZO, X3=30, X5=14, M =60

The new solution is at the extreme point (x1, x2) = (0, 20) in Fig. 1. The —2 in the
bottom row of the tableau shows that the next pivot isin column 1, which produces

X1 X2 X3 X4 X5 M

=

00 1 @-1 016
0 1 0 1 0 020
1 0 0-2 1 0 14
0 0 0-1 2 1 88

Thistime x; = 14 and x, = 20, so the solution has moved across to the extreme point
(14, 20) in Fig. 1, and the objective function has increased from 60 to 88. Finaly, the
—1 in the bottom row shows that the next pivot isin column 4. Pivoting on the 2 in the
first row produces the final tableau:

X1 X2 X3 X4 X5 M

o 0 I 1-3 o0 ‘ 8
1 1

0 -3 3 0 ‘ 12

1 0 1 0 030

o 0o ; o0 3% 1 \ 9%

Sinceall the entriesin the bottom row are nonnegative, the solution now isoptimal, with
x1 = 30and x, = 12, corresponding to the extreme point (30, 12). The maximum profit
of $96 is attained by making 30 boxes of the first mixture and 12 boxes of the second.
Notethat although x4 is part of the basic feasible solution for thistableau, itsvalueis not
included in the solution of the original problem, because x4 isaslack variable.
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Minimization Problems

So far, each canonical maximizing problem involved avector b whose coordinates were
positive. But what happens when some of the coordinates of b are zero or negative?
And what about a minimizing problem?

If some of the coordinates of b are zero, then it is possible for cycling to occur and
the simplex method to fail to terminate at an optimal solution. As mentioned earlier,
however, cycling doesnot generally happenin practical applications, and so the presence
of zero entriesin the right-hand column seldom causes difficulty in the operation of the
simplex method.

The case when one of the coordinates of b is negative can occur in practice and
requires some special consideration. The difficulty isthat all the b; terms must be non-
negative in order for the slack variablesto provide aninitial basic feasible solution. One
way to change anegative b; term into apositive term would be to multiply theinequality
by —1 (before introducing slack variables). But this would change the direction of the
inequality. For example,

X1 — 32 +2x3 < —4

would become
—x1+3x2—ZX3 >4

Thusanegativeb; term causesthe same problem asareversed inequality. Sincereversed
inequalities often occur in minimization problems, the following example discusses this
case.

EXAMPLE7 Minimizexi + 2x>

subject to X1+ x2>14
X1 —x2< 2
andx; > 0,x, > 0.

Solution The minimum of f(x1, x2) over a set is the same as the maximum of
— f(x1, x2) over the same set. However, in order to use the simplex agorithm, the
canonical description of the feasible set must use < signs. So thefirst inequality above
must be rewritten. The second inequality isalready in canonical form. Thusthe origina
problem is equivalent to the following:

Maximize —x1 — 2xp
subject to —x1— x2 <-14

X1 — X2 < 2
andx; > 0,x, > 0.

To solve this, let M = —x; — 2x, and add dack variables to the inequalities, as before.
This creates the linear system

—X1 — X2+ X3 =-14
X1 — X2 + Xq = 2
X1 + 2X2 + M = 0
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To find a nonnegative solution to this system for which M is a maximum, construct the
initial simplex tableau:

X1 X2 X3 X4 M

-1 -1 1 0 O \ -14
1 -1 0 1 O ‘ 2

1

1 2 0 0 1, 0

The corresponding basic solution is
x1=x2=0, x3=-14, M=0

However, since x3 is negative, this basic solution is not feasible. Before the standard
simplex method can begin, each termin the augmented column above the horizontal line
must be a nonnegative number. Thisis accomplished by pivoting on a negative entry.

In order to replace a negative b; entry by a positive number, find another negative
entry in the same row. (If al the other entries in the row are nonnegative, then the
problem has no feasible solution.) This negative entry is in the column corresponding
to the variable that should now come into the solution. In this example, the first two
columns both have negative entries, so either x; or x, should be brought into the solution.

For example, to bring x; into the solution, select asapivot the entry a;, in column 2
for whichtheratio b; /a;, isthe smallest nonnegative number. (Theratioispositivewhen
both b; and a;, are negative.) In thiscase, only theratio (—14)/(—1) isnonnegative, so
the —1 in the first row must be the pivot. After the pivot operations on column 2, the
resulting tableau is

X1 X2 X3 X4 M
1 1-1 0 0] 14
2 0-1 1 O ‘ 16

1 0 2 0 1| -28

Now each entry in the augmented column (except the bottom entry) is positive, and the
simplex method can begin. (Sometimes it may be necessary to pivot more than once
in order to make each of these terms nonnegative. See Exercise 15.) The next tableau
turns out to be optimal:

X1 X2 X3 X4 M

0 1-12 -1 0 6
1 0-3 3 O ‘ 8
o 0o 2 I 1]-20

The maximum feasible value of —x; — 2x;, is —20, when x; =8 and x, = 6. So the
minimum value of x; + 2x5 is 20.

Thefinal example usesthe technique of Example 7, but the simplex tableau requires
more preprocessing before the standard maximization operations can begin.
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andx; > 0,x, > 0.

4xq + szlz
x1+2x2 > 10
x1+4x2 > 16

Solution Convert the problem into a maximization problem, setting M = —5x; — 3x»

and reversing the three main constraint inequalities:

—4x1 — x2 < =12, —x1 — 2x2 < —10,

Add nonnegative slack variables, and construct the initial simplex tableau:

—4)(1— X2 + X3 =-12
—X1 — 2X2 + X4 =-10
—x1—4x2 + X5 =-16
5)(1 + 3XZ + M = 0

—x1— 4xo < —16

X1 X2 X3 X4 X5 M

4 -1 1 0 0 0] -12
1-2 0 1 0 0 -10
1 -4 0 0 1 0 -16
5 3 0 0 0 1| 0

Before the ssmplex maximization process can begin, the top three entries in the aug-
mented column must be nonnegative (to make the basic solution feasible). Pivoting on
a hegative entry to bring x; or x, into the solution will help. Trial and error will work.
However, the fastest method isto compute the usual ratios b; /a;; for al negative entries
inrows 1 to 3 of columns 1 and 2. Choose as the pivot the entry with the largest ratio.
That will make all the augmented entries change sign (because the pivot operation will
add multiples of the pivot row to the other rows). In this example, the pivot should be

az1, and the new tableau is

X1 X2 X3 X4 X5 M

0 15 1 0 -4 0] 52
0 2 0 1-1 0 6
1 4 0 0-1 0 16
0-17 0 0 5 1 -8

Now the simplex maximization algorithm is available. The —17 in the last row shows
that x, must be brought into the solution. The smallest of the ratios 52/15, 6/2, and

16/4is6/2. A pivot on the 2 in column 2 produces

X1 X2 X3 X4 X5 M

o 0o 1-2 I o0 ‘ 7
0 1 0 -3 O ‘ 3
1 0 0 -2 1 0| 4
0 0 0 ¥ -7 1| _2

2
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The — I inthe last row shows that xs must be brought into the solution. The pivot is
in column 5, and the new (and final) tableau is

X1 X2 X3 X4 X5 M
o 0o 2 -2 1 o0 ‘
0 1 I -2 0 0 ‘ 4
1 0-2 1 0 o ‘
00 1 1 0 1| -2

The solution occurs when x; = 2 (from row 3), x, = 4, and M = —22, so the minimum
of the original objective function is 22.

The* Simplex” in the Simplex Algorithm

The geometric approach in Section 9.2 focused on therows of a2 x n matrix A, graphing
each inequality as a half-space in R?, and viewing the solution set as the intersection of
half-spaces. In higher-dimensional problems, the solution set is again an intersection of
half-spaces, but this geometric view does not lead to an efficient algorithm for finding
the optimal solution.

The simplex agorithm focuses on the columns of A instead of the rows. Suppose
that A ism x n and denotethe columnsby ay, ..., a,,. Theaddition of m slack variables
creates an m by n + m system of equations of the form

X181 + -+ Xp By + Xp1€1 s X € = b

wherexy, ..., x,, aenonnegative and {ey, ..., e, } isthe standard basis for R”. The
initial basic feasible solution is obtained when x1, ..., x, are zero and bie; + - - +
bmem =b.Ifs= bl +--- 4+ bm, then the equation

0+ (bl)sel+-~-+(bm)seﬂ:b
s s

showsthat b isinwhat iscalled thesimplex generated by O, sey, . . ., se,. For smplicity,
we say that “b isin an m-dimensional simplex determined by ey, ..., e,.” Thisisthe
first smplex in the simplex agorithm.*

In general, if vq,...,Vv, isany basis of R™", selected from the columns of the
matrix P =[a;---a, €---6&,], andif b isalinear combination of these vectors with
nonnegative weights, then b isin an m-dimensional simplex determined by vy, ..., Vv,,.
A basic feasible solution of the linear programming problem corresponds to a particular
basis from the columns of P. The simplex algorithm changes this basis and hence
the corresponding simplex that contains b, one column at atime. The various ratios

Hf vy, ..., v, are linearly independent vectors in R™, then the convex hull of the set {0, v, ..., V) is
an m-dimensional simplex, S. (See Section 8.5.) A typical vector in S has the form ¢O+ c1vi + - - - +
cmVm, Where the weights are nonnegative and sum to one. (Equivalently, vectorsin S have the form
c1V1 + - - - + ¢ Vi, Where the weights are nonnegative and their sum is at most one.) Any set formed
by trandating such a set S is aso called an m-dimensional simplex, but such sets do not appear in the
simplex agorithm.
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computed during the algorithm drive the choice of columns. Since row operations do
not change the linear dependence relations among the columns, each basic feasible
solution tells how to build b from the corresponding columns of P.

PRACTICE PROBLEM

Use the simplex method to solve the following linear programming problem:

I
9.3 EXERCISES

In Exercises1and 2, set up theinitial simplex tableau for the given
linear programming problem.

1. Maximize
subject to

21)(1 + 25X2 + 15X3
2x1+ Txp+ 10x3 <20
3x1+ 4dxo+18x3 <25

andx; >0,x, >0,x3>0.

2. Maximize 22x, + 14x,
S,IbJeCttO 3x1 + 5x, <30
2x1+ Txp <24
GX]_ + x2 =< 42

andx; > 0,x, > 0.

For each simplex tableau in Exercises 3-6, do the following:

a. Determine which variable should be brought into the solution.

b. Compute the next tableau.

c. ldentify thebasicfeasiblesolution corresponding to thetableau
in part (b).

d. Determineif the answer in part (c) is optimal.

3. X1 X2 X3 X4 M
[ 5 1 1 0 O \ 20
3 2 0 1 0 ‘ 30
4 -10 0 0 1| 0

4, X1 X2 X3 X4 M
(-1 1 2 0 0] 4
1 0 5 1 O ‘ 6
-5 0 3 0 1 ‘ 17

Maximize 2x1+ x2
subject to —Xx1+2x2 <8
3)(?1 + 2)(2 <24

andx; > 0,x, > 0.

5. X1 X2 X3 X4 M
2 3 1 0 02
2 1 0 1 O ‘ 16
6 5 0 0 1| 0

6. X1 X2 X3 X4 M
5 8 1 0 0] 80
12 6 0 1 O ‘ 30
2 3 0 0 1] 0

Exercises 7 and 8 relate to a canonical linear programming prob-
lem with anm x n coefficient matrix A inthe constraint inequality
Ax < b. Mark each statement True or False, and justify each an-
swer.
7. a A dack variable is used to change an equality into an in-
equality.
b. A solutionisfeasibleif each variableis nonnegative.
c. If one of the coordinates in vector b is positive, then the
problem isinfeasible.
8. a A solution is called a basic solution if m or fewer of the
variables are nonzero.
b. The basic feasible solutions correspond to the extreme
points of the feasible region.

c. Thebottom entry in the right column of asimplex tableau
gives the maximum value of the objective function.

Solve Exercises 9-14 by using the simplex method.

1OX1 + 12X2
2x1+ 3x, <36
5xy + 4x, <55
andx; > 0,x, > 0.

9. Maximize
subject to
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Maximize 5x1 + 4xs 14.
subject to x1+5x, <70

3x1 +2xp, <54
and x; > 0, x, > 0.

. Maximize 4x1 + 5xp

subject to X1+ 2xp < 26 15.
2x1 + 3x, < 30
X1+ x2 <13 16
and x; > 0, x, > 0.

Maximize 2x1 + Bxp + 3x3 17
subject to X1+ 2x; <28
2xq + 4x3 < 16
Xo+ x3 <12

andx; > 0,x, >0, x3>0.

18.

Minimize 12x1 + 5x»
subject to 2x1 + x> 32

—3x1 + 5x, <30
and x; > 0, x, > 0.

SOLUTION TO PRACTIC

Minimize 2x1 + 3xp + 3x3
subject to X1 — 2% > -8
2x, + x3> 15

2x1 — x2+ x3< 25
andx; > 0,x, >0, x3>0.
Solve Example 7 by bringing x; into the solution (instead of
Xp) intheinitial tableau.

. Usethesimplex method to solvethelinear programming prob-

lem in Section 9.2, Exercise 1.

. Usethesimplex method to solvethelinear programming prob-

lem in Section 9.2, Exercise 15.

Usethe simplex method to solvethelinear programming prob-
lem in Section 9.2, Example 1.

EPROBLEM

Introduce slack variables x3 and x4 to rewrite the problem:

Maximize 2x1 + x2

subject to

and x; >

Thenlet M = 2x1 + x», Sothat —

simplex tableau.

—X1+2X2+X3 = 8
3X1+2)C2 +X4=24
O,XZZO.

2x1 — x2 + M = O providesthebottomrow intheinitial

X1 X2 X3 X4 M

-1 2 1 0 0] 8
® 2 0 1 0| 24
2 -1 0 0 1| 0

Bring x; into the solution (because of the —2 entry in the bottom row), and pivot on
the second row (because it is the only row with a positive entry in the first column).
The second tableau turns out to be optimal, since all the entries in the bottom row are
positive. Remember that the slack variables (in color) are never part of the solution.

X1 X2 X3 X4 M

0 $ 3 0 ‘ 16
1 2 : o‘ 8
o f o 2 1|16

The maximum value is 16, when x; = 8 and x, = 0. Note that this problem was solved
geometrically in the Practice Problem for Section 9.2.
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Associated with each canonical (maximization) linear programming problemisarelated
minimization problem, called the dual problem. In thissetting, the canonical problemis
called the primal problem. This section describesthe dual problem and how it is solved,
along with an interesting economic interpretation of the dual variables. The section
concludes by showing how any matrix game can be solved using the primal and dual
versions of a suitable linear programming problem.

Given vectors c in R"” and b in R™, and given an m xn matrix A, the canonical
(primal) problemistofindx inR” so asto maximize f (x) = c¢’x subject tothe constraints
AX < bandx > 0. Thedual (minimization) problemistofindy in R” so asto minimize
g(y) =b’y subjectto A’y > candy > 0:

Primal Problem P Dual Problem P*
Maximize f(x) = c'x Minimize g(y) = by
subjectto Ax <b subjectto ATy >c¢

x>0 y>0

Observe that in forming the dual problem, the ¢; coefficients of x; in the objec-
tive function of the primal problem become the constants on the right-hand side of the
constraint inequalitiesin the dual. Likewise, the numbersin the right-hand side of the
constraint inequalities in the primal problem become the coefficients »; of y; in the ob-
jective function in the dual. Also, note that the direction of the constraint inequalitiesis
reversed from Ax < bto ATy > c. In both cases, the variables x and y are nonnegative.

EXAMPLE 1  Find the dua of the following primal problem:

Maximize Bx1+ 7x;
SUbjECt to 2x1+3x2 <25
Tx1+4x, < 16
x1+9% <21
andx; >0, x> 0.

Solution

Minimize 25y1 + 16y, + 21y3
subject to 2y14+ Ty2+ y3=5

3y1+ 4y2+ 9yz3>7
andy; >0,y,>0,y3>0.

Suppose that the dual problem aboveisrewritten asacanonical maximization prob-
lem:
Maximize  h(y) = —bly
subject to —Aly<— and y=>0.
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Then the dual of this problemis
Minimize  F(w)=—c'w
subject to (-ADHYT™w>-b and w=>0.
In canonical form, this minimization problem is equivalent to
Maximize G(w) =cTw
subject to Aw <b and w=>0.
If wisreplaced by X, this problem is precisely the primal problem. So the dua of the
dual problem isthe original primal problem.
Theorem 7 below is a fundamenta result in linear programming. As with the

Minimax Theorem in game theory, the proof depends on certain properties of convex
sets and hyperplanes.t

THE DUALITY THEOREM

Let P bea (primal) linear programming problem with feasible set .%, and let P*
be the dual problem with feasible set .7 *.

a If # and .#* are both nonempty, then P and P* both have optimal solutions,
say X and y, respectively, and f'(X) = g(¥).

b. If one of the problems P or P* has an optimal solution X or y, respectively,
then so does the other, and f(X) = g(y).

EXAMPLE 2  Set up and solve the dual to the problem in Example 5 of Section 9.2.
Solution Theoriginal problemisto

Maximize f(x1, x2) = 2x1 + 3x2

subject to X1 <30
x2 <20
x1+2x, <54

andx; > 0, x> > 0.
Calculationsin Example5 of Section 9.2 showed that the optimal solution of thisproblem

iISX = [:132] with f(X) = 96. The dua problemisto
Minimize  g(y1, y2, y3) = 30y1 + 20y2 + 54y3
subject to yioo+ y3=2
y2+2y3>3
andy; > 0,y, >0, y3 > 0.

11f the equation Ax = b has no nonnegative solution, then the sets {b} and § = {z € R” : z= Ax, X > 0}
are digoint. It is not hard to show that S is a closed convex set, so Theorem 12 in Chapter 8 implies
that there exists a hyperplane strictly separating {b} and S. This hyperplane plays a key role in the proof.
For details, see Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley & Sons,
1982; Melbourne, FL: Krieger Pub., 1992), pp. 174-178.
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The simplex method could be used here, but the geometric method of Section 9.2 is
not too difficult. Graphs of the constraint inequalities (Fig. 1) reveal that .#* has three

extreme points and that y = is the optimal solution. Indeed, g(y) = 30(%) +

Niw O NI

20(0) + 54(3) = 96, as expected.

y | e
002 | 108
(z.03) | 9% <
230 | 120

FIGURE1 Theminimum of g(y1, y2, y3) = 30y; + 20y, + 54ys.

Example 2illustrates another important property of duality and the simplex method.
Recall that Example 6 of Section 9.3 solved this same maximizing problem using the
simplex method. Hereisthefinal tableau:

X1 X2 X3 X4 X5 M

0o 0  1-1 0 ‘ 8
0o 1-7 0 1 O ‘ 12
1 0 1 0 0 0 30
0 0 L 0o 2 1|9

Notice that the optimal solution to the dual problem appears in the bottom row. The
variables x3, x4, and x5 are the dack variables for the first, second, and third equations,
respectively. The bottom entry in each of these columns gives the optimal solution

to the dual problem. This is not a coincidence, as the following theorem

L
I
Niw O NIk

shows.
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S
THEOREM 7

THE DUALITY THEOREM (CONTINUED)

Let P bea(prima) linear programming problem and let P* be its dual problem.
Suppose P (or P*) has an optimal solution.

c. If either P or P* issolved by the simplex method, then the solution of its dual
is displayed in the bottom row of the final tableau in the columns associated
with the dlack variables.

EXAMPLE 3  Set up and solve the dual to the problem in Example 5 in Section 9.3.

Solution The primal problem P isto

Maximize f(xl, X2, X3) = 25x1 + 33X2 + 18x3
SUbjeCt to 2x1 + 3xp + 4x3 < 60
3x1+ x2+5x3 <46
x1+2x2+ x3 <50
andx; > 0, x>0, x3 > 0.

The dua problem P* isto

Minimize g(v1, y2, y3) = 60y1 + 46y, + 50y3
SUb] ect to 2y1 + 3y2 + y3 = 25

3y1+ y2+2y3 >33

4y + 5y, + y3 > 18
andy; > 0,y2 >0,y3>0.

Thefina tableau for the solution of the primal problem was found to be

X1 X2 X3 X4 X5 X6 M
2 3 2 88
o1 5 7-F 0 0] %
11 1 3 78
10 7 -5 3 00 %
8 5 1 96
o0 -2 -3 7 1 0 2
215 74 9 4854
0 0 % g o 1 f

Thedack variablesare x4, x5, and xg. They givetheoptimal solution to thedual problem
P*. Thus,

ylzg’ yzzg, and y3=0
Note that the optimal value of the objective function in the dual problemis
§(7%.9,0) = 60(%) + 46(3) + 50(0) = *
which agrees with the optimal value of the objective function in the primal problem.

The variables in the dual problem have useful economic interpretations. For ex-
ample, consider the problem of mixing nuts studied in Example 5 of Section 9.2 and
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Example 6 of Section 9.3:

Maximize f(x1, x2) = 2x1 + 3x2

subject to X1 <30 (cashews)
x2 <20 (filberts)
X1+ 2xp <54 (peanuts)

andx; > 0, x2 > 0.

Recall that x1 isthe number of boxes of the first mixture and x» is the number of boxes
of the second mixture. Example 2 displayed the dual problem:

Minimize g1, y2, y3) = 30y1 + 20y, + 54y3
subject to 1 + y3>2

y2+2y3 >3
andy; >0,y2>0,y3 >0.

If X and y are optimal solutions of these problems, then by the Duality Theorem, the
maximum profit f(X) satisfies the equation

f(X) = g(¥) = 30y1 + 20y + 54y3

Suppose, for example, that the amount of cashews available was increased from 30
pounds to 30+ /4 pounds. Then the profit would increase by hy;. Likewise, if the
amount of cashews was decreased by 4 pounds, then the profit would decrease by £y;.
So y; representsthe value (per pound) of increasing or decreasing the amount of cashews
available. Thisis usually referred to as the marginal value of the cashews. Similarly,
¥, and y3 are the marginal values of the filberts and peanuts, respectively. These values
indicate how much the company might be willing to pay for additional supplies of the
various nuts.?

EXAMPLE 4 Thefinal simplex tableau for the problem of mixing nuts was found (in
Example 6 of Section 9.3) to be

X1 X2 X3 X4 X5 M

0o 0  1-3 o‘ 8

0 1-7 0 3 O ‘ 12

1 1 0 0 O \ 30

0 1 0 2 1|
1
2

so the optimal solution of thedual isy = | O |. Thusthe marginal value of the cashews

3
2

is 3, the marginal value of the filbertsis 0, and the marginal value of the peanutsiis 3.

2The other entries in the final tableau can also be given an economic interpretation. See Saul 1. Gass,
Linear Programming Methods and Applications, 5th Ed. (Danvers, MA: Boyd & Fraser Publishing,
1985), pp. 173-177. Also see Goldstein, Schneider, and Siegel, Finite Mathematics and Its Applications,
6th Ed. (Upper Saddle River, NJ: Prentice Hall, 1998), pp. 166-185.
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1 | Uses only 12 of the 20 pounds

of filberts. (This correspondsto the slack variable x4 for the filbert constraint inequality
having value 8 in the final tableau.) This means that not al the available filberts are
used, so there is no increase in profit from increasing the number of filberts available.
That is, their margina vaueis zero.

Note that the optimal production schedule x = { 30

Linear Programming and Matrix Games

Let A beanm x n payoff matrix for amatrix game, asin Section 9.1, and assume at first
that eachentry in A ispositive. LetuinR™ andv inR" bethe vectorswhose coordinates
are dl equal to one, and consider the following linear programming problem P and its
dua P*. (Noticethat therolesof x and y arereversed, with x in R” and y in R".)

P: Maximize vy P*: Minimize u’x
subjectto Ay < u subjectto  A'x > v
y>0 x>0

The primal problem P is feasible since y = 0 satisfies the constraints. The dual
problem P* isfeasible since all the entriesin A” are positive and v is a vector of 1's.
By the Duality Theorem, there exist optimal solutionsy and X such that vy = u” x. Set

r=vly=uTx

Sincethe entriesin A and u are positive, the inequality Ay < u has a nonzero solution
y withy > 0. Asaresult, the solution A of the primal problem is positive. Let

g=y/x ad K=X/A
It can be shown (Exercise 23) that ¥ is the optimal mixed strategy for the column player
C and X is the optima mixed strategy for the row player R. Furthermore, the value of
the gameisequa to 1/A.
Finaly, if the payoff matrix A has some entries that are not positive, add a fixed
number, say k, to each entry to make the entries all positive. Thiswill not change the

optimal mixed strategies for the two players, and it will add an amount k to the value of
the game. [See Exercise 25(b) in Section 9.1.]

EXAMPLE5 Solve the game whose payoff matrix isA = [_2 ! 2}

3 2 0}

Solution To produce amatrix B with positive entries, add 3 to each entry:

1 4 s
32[653]

The optimal strategy for the column player C isfound by solving thelinear programming
problem
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Maximize yi+ Y2+ y3
subject to v1+4y, +5y3 <1

6y1 +5y2 +3y3 <1
andy; > 0,y, >0, y3 > 0.

Introduce slack variables y, and ys, let M be the objective function, and construct the
initial simplex tableau:

Yo y2 y3 va yvs M
1 4 5 1 0 01
6 5 3 0 1 O
1 -1-1 0 0 10

The three —1 entries in the bottom row are equal, so any of columns 1 to 3 can be the
first pivot column. Choose column 1 and check the ratios b; /a;1. To bring variable y;
into the solution, pivot on the 6 in the second row.

»n )’129 y% Ya ,\‘51 M :
5 1 1 1
1 5§ 2 0 5 0 \ 6
1 1 1 1
0 - -1 0o i 1]}
In the bottom row, the third entry isthe most negatlve so bring y3 into the solution. The
ratios b; /a;3 are 2/3 = 2 and /% 1= 2. Thefirst ratio is smaller, so pivot on the
2 inthefirst row.
TV T ST
0 % 1 5 - O \ b
13 1 5 2
1 %z 0-5 z O \ 7
5 1 4 7
0o % 0 5 x 1 | %

The optimal solution of the primal problem is
=%, %2=0 Ja=2, Withi=ji+j+js=5
The corresponding optimal mixed strategy for C is

<>
I
<
~
>
I
~No O NIN

The optimal solution of the dual problem comes from the bottom entries under the slack
variables:

¥.=1_3 io— 4 i . Xo —
X1—9—27 and x2_27, Wlthk—x1+x2—

27
which shows that the optimal mixed strategy for R is

|

ﬁ:i/k:[

~NIh Nlw
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1
The value of the game with payoff matrix B isv = — = 2—77 so the value of the original
A

; e 27 _ 6
matrix game A is 5 — 3= .

Although matrix games are usually solved vialinear programming, it isinteresting
that alinear programming problem can be reduced to amatrix game. If the programming
problem hasan optimal solution, thenthissolutionisreflected inthe solution of thematrix
game. Suppose the problem isto maximize c’x subject to Ax < b and x > 0, where A
ismxnwithm <n. Let

0 A -b y
M=|—-AT 0 ¢ and s= | X
b —cT 0 z

and supposethat M represents amatrix game and sisan optimal column strategy for M.
The (n +m + 1) x (n + m + 1) matrix M is skew-symmetric; that is, M” = —M. It can
be shown that in this case the optimal row strategy equals the optimal column strategy,
thevalue of the gameis0, and the maximum of the entriesin thevector Msis0. Observe

that
0 A —b][y AX —zb 0
Ms=|—-AT 0 c||x|=]|-ATy+zc| < |0
b7y —cTx 0

bT —c 0|z
Thus AX < zb, ATy > zc, and b7y < c¢'x. Since the column strategy s is a probability
vector, z > 0. It can be shown that if z > 0, then X/z is an optimal solution for the
primal (maximization) problem for Ax < b, and y/z isan optimal solution for the dual
problemfor ATy > c. Also, if z = 0, then the primal and dual problems have no optimal
solutions.

In conclusion, the simplex method isapowerful tool in solving linear programming
problems. Because afixed procedureisfollowed, it lendsitself well to using acomputer
for the tedious calculations involved. The algorithm presented hereis not optimal for a
computer, but many computer programsimplement variants of the simplex method, and
some programseven seek integer solutions. New methods devel oped in recent yearstake
shortcuts through the interior of the feasible region instead of going from extreme point
to extreme point. They are somewhat faster in certain situations (typicaly involving
thousands of variables and constraints), but the simplex method is still the approach
most widely used.

PRACTICE PROBLEMS

The following questions relate to the Shady-L ane grass seed company from Example 1
in Section 9.2. The canonical linear programming problem can be stated as follows:

Maximize 2x1 + 3x2
subject to 3x1 + 2xp < 1200 (fescue)
X1+ 2x; < 800 (rye)
X1+ x2 < 450 (bluegrass)
andx; > 0, x, > 0.



1. State the dual problem.
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2. Find the optimal solution to the dual problem, given that the final tableau in the
simplex method for solving the primal problemis

X1 X2 X3 Xz X5 M

0 0 1 1 -4 0] 200
0 1 0 1 -1 0 350
1 0 0-1 1 0 100
0 0 0 1 1 1| 1250

3. What are the marginal values of fescue, rye, and bluegrass at the optimal solution?

I
9.4 EXERCISES

In Exercises 14, state the dual of the given linear programming
problem.

1. Exercise 9in Section 9.3
3. Exercise 11 in Section 9.3

2. Exercise 10in Section 9.3
4, Exercise12in Section 9.3

In Exercises 5-8, use the final tableau in the solution of the given
exercise to solveitsdual.

5. Exercise 9in Section 9.3
7. Exercise 11 in Section 9.3

6. Exercise 10in Section 9.3
8. Exercise 12 in Section 9.3

Exercises 9 and 10 relate to aprimal linear programming problem
of finding x inIR”" so asto maximize f(x) = c’x subjectto AX < b
and x > 0. Mark each statement True or False, and justify each
answer.

9. a Thedua problemistominimizey inR™ subjectto Ay > ¢
andy > 0.

b. If both the primal and the dual problems are feasible, then
they both have optimal solutions.

c. If X is an optimal solution to the primal problem and
y is a feasible solution to the dual problem such that
g(¥) = f(X), theny isan optimal solutionto thedual prob-
lem.

d. If a dlack variable is in an optimal solution, then the
marginal value of theitem corresponding toitsequationis
positive.

10. a Thedua of the dual problem isthe origina prima prob-
lem.

b. If either the primal or the dual problem has an optimal
solution, then they both do.

c. If the primal problem has an optimal solution, then the fi-
nal tableau in the smplex method also gives the optimal
solution to the dual problem.

d. When alinear programming problem and its dual are used
to solveamatrix game, thevectorsu and v are unit vectors.

Sometimes a minimization problem has inequalities only of the
“>" type. Inthiscase, replace the problem by itsdual. (Multiply-
ing the original inequalities by —1 to reverse their direction will
not work, because the basic solution of theinitial ssimplex tableau
inthiscasewill beinfeasible.) InExercises 11-14, usethe simplex
method to solve the dual, and from this solve the original problem
(the dual of the dua).

11. Minimize 16x; + 10x, + 20x3
SJbJeCttO X1+ x2+ 3x3>4
2x1+ xo+ 2x3>5
andx1 >0,x,>0,x3>0.
12. Minimize 10x; + 14x;
SJbJeCttO X1+ 2x, >3
20+ xp>4
3X1 + X2 = 2

andx; >0, x, > 0.
13. Solve Exercise 2 in Section 9.2.

14. Solve Example 2 in Section 9.2.

Exercises 15 and 16 refer to Exercise 15in Section 9.2. Thisexer-
cisewas solved using thesimplex method in Exercise 17 of Section
9.3. Use the final simplex tableau for that exercise to answer the
following questions.



54 CHAPTER 9  Optimization

15. What is the marginal value of additional labor in the fabri-
cating department? Give an economic interpretation to your
answer.

16. If an extra hour of labor were available, to which department
should it be alocated? Why?

Solve the matrix games in Exercises 17 and 18 by using linear

programming.
2 0 1 -2
7. | -4 5 18. 0 1
-1 3 -3 2

19. Solvethematrix gamein Exercise9in Section 9.1 using linear
programming. This game and the one in Exercise 10 cannot
be solved by the methods of Section 9.1.

20. Solve the matrix game in Exercise 10 in Section 9.1 using
linear programming.

21. Bobwishestoinvest $35,000 in stocks, bonds, and gold coins.
He knows that his rate of return will depend on the economic
climate of the country, which is, of course, difficult to pre-
dict. After careful anaysis, he determines the annual profit
in dollars he would expect per hundred dollars on each type
of investment, depending on whether the economy is strong,
stable, or weak:

Strong  Stable  Weak
Stocks 4 1 -2
Bonds 1 3 0
Gold -1 0 4

22.

23.

How should Bob invest his money in order to maximize his
profit regardless of what the economy does? That is, consider
the problem as a matrix game in which Bob, the row player,
isplaying against the “economy.” What is the expected value
of hisportfolio at the end of the year?

Let P bea(primal) linear programming problem with feasible
set %, and let P* be the dual problem with feasible set .#*.
Prove the following:

a Ifxisin.Z andy isin .Z7*, then f(x) < g(y). [Hint:
Write f(x) asx’c and g(y) asy”b. Then begin with the
inequality c < ATy ]

b. If f(X)=g(y) forsomeXin.# andy in #*, thenX isan
optimal solutionto P and § isan optimal solution to P*.

Let A be an m xn matrix game. Let y and X be the optimal

solutions to the related primal and dual linear programming

problems, respectively, asin the discussion prior to Example

5 LetA=u"x=v"y, anddefineX =X/A andy = y/A. Let

R and C, respectively, denote the row and column players.

a. Show that X and y are mixed strategies for R and C, re-
spectively.

b. If yisany mixed strategy for C, show that E (X, y) > 1/A.

c. If xisany mixed strategy for R, show that E(x, ) < 1/A.

d. Conclude that X and ¥ are optimal mixed strategies for R
and C, respectively, and that the value of the gameis 1/A.

SOLUTIONS TO PRACTICE PROBLEMS

1. Minimize 1200y; + 800y, + 450y3
subject to 3y1+  y2+  y3>2
2y1+ 2y2+  y3=3

andy; > 0,y2>0,y3 >0.
2. Thedack variablesare x3, x4, and x5. The bottom row entriesin these columns of the
0
final simplex tableau give the optimal solution to the dual problem. Thusy = | 1
1

3. Slack variable x3 comes from the constraint inequality for fescue. This corresponds
tovariable y; in the dual problem, so the marginal value of fescueis 0. Similarly, x4
and x5 come from rye and bluegrass, respectively, so their marginal values are both
equal to 1.
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Section 9.1, page 15

o

d g
d|[-10 10
q| 25 -25
s s p
stone 0O 5 -5
scissors | —5 0 5
paper 5 -5 0
4 @
1 -1

S
-2 1 -5 2
4 ® 7 ®

N o1
N

a Exy) =2 vx)=min{3 12} =2

v =max (3.3} =3
b. Ex,y) =2, v()=min{1, 3 71 =2,
vy)=max{3,%, 3} =3

{

z= 31-H+Or= 3—3
z=-21-1)+ Dt =-2+3t °
Thelinesintersect at (1, z) = (2, ). The optimal row

13.

1-23 1
strategy is& = x(2) = { . 6] = g],andthevalueof
6 6
thegameisv = 1. By Theorem 4, the optimal column
strategy § satisfies E(ey, §) = 3 and E(e;, §) = 1 because X
isalinear combination of both e; and ;. From the second

of these conditions, = [0 1] [3 —2} |:Cl:|

0 1 C2
. 1
=[0 1] L;] = c,. Fromthis,c; = andy = {i}
2

As acheck on this work, one can compute

ot oy e [

3 4
5 5
Solution
3 5
Given A = [4 1],graph

z=31—-t)+ Dt =3+t
z=5(1-t)+QDt=5—-4"
Thelinesintersect at (z, z) = (2, ¥). The optimal row

1z 5’§5
strategy isk =x(2) = |, 5] = [g]ﬁndthevalueof
5 5
thegameisv = . By Theorem 4, the optimal column

strategy y satisfies E(ey, §) = %7 and E(e;,y) = 1?7 because
X isalinear combination of both e; and e,. From the first of
these conditions,

Al
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From this, c; = 2 andy =

one can compute

= alhs
1

E(en) = [0 1][

gk as AW
= Ol

| I
1

Il
N
'_\
| — |

_u
- 5

1 3
X= { 2 } or [ Z ] or any convex combination of these row
3 5
0
N 0
strategies, y = | ; |, v =2
0
Solution:

Column 2 dominates column 3, so the column player C will
never play column 2. The graph shows why column 2 will
not affect the column play, and the graph shows that the
value of the gameis 2. The new gameis

4 * 2 0 4 2 0 .
{1 . 5 5}.LetB:1 5 5}.Thellne

for column 3isz = 2. That lineintersects the line for

column4wherez =0(1—1¢)+5r =2,andt = .4. An
1-4 .6

4 } = {_4}.Another

optimal row strategy is determined by the intersection of the

linesfor columns1and 3, wherez =4(1—1) +t = 2,

optimal row strategy isX = {

[N

z:%,andf(: 2 . It can be shown that any convex

combination of th3é$ two optimal strategiesisalso an
optimal row strategy.
C1
c2 |,
C3

andset2=E(e;,y) =e/By and 2= E(ey, y) = €]By.
These two equations produce 4¢3 + 2¢, = 2 and

c1 + 2c5 + 5¢3 = 2. Combine these with the fact that

c1 + ¢z + c3 must be 1, and solve the system:

4C;|_+26‘2 =2
C1+26‘2+563=2,
c1+ C2+ 3= 1

To find the optimal column strategy, sety =

17.

1 1 1 1 0 1 O
[0
=1, and y= 1
K
Thisis the column strategy for the game matrix B. For A,
[0
-~ |0
y=11
| 0
-5 0
7 5
. 0| . !
K= % Y = % ,V:g
0 0
- 0
Solution:

Row 2 isrecessive to row 3, and row 4 isrecessive to row 1,
so the row player R will never play row 2 or row 4. Also,
column 4 dominates column 2, so the column player C will
never play column 4. Thus, the game reduces:

0 1 -1 4 3
A_| 1 -1 3 -1-3
- 2 -1 4 0 -2
-1 0 -2 2 1
[0 -1 4 37
N * * * * *
2 — 0 -2
| * * * * |
[0 -1 * 37
N * * * * *
2 — 4 % =2
_* k * *_
0O 1 -1 3 S
Let B = 5 1 4 2 . (If column 4in A isnot

noticed as dominant, this fact will become clear after the
lines are plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

(columnl) z= 01—t +2r=2r
(column2) z= 11-1—- t=1-2
(column3d) z=-1(1-1) + 4t =—1+5¢
(columnd) z= 31-t) —2t=3-5¢



19.

21.

The graph of v(x(r)) asafunction of ¢ isthe polygonal path

formed by line 3 (for column 3), then line 2 (column 2), and

then line 4 (column 4). The highest point on this path occurs

at theintersection of lines3 and 2. Solvez = —1 + 5¢ and

z=1-2tofinds =2 andz = 2. Thevaueof game B is
2

z =3, attained when X = 27 =

| —
[LNEENITS]
{ I

7 7
Because columns 2 and 3 of B determine the optimal
solution, the optimal strategy for the column player C isa
convex combination y of the pure column strategies e, and
0

C2

€, s,y = . Since both coordinates of the optimal

0
row solution are nonzero, Theorem 4 shows that
E(e,¥) = 2 fori =1, 2. Each condition, by itself,
determinesy. For example,

E(e,Y) = €[BY
0
B 0 1 -1 3]]|e
_[1 0] 2 -1 4 -2 Cc3
0
:C2—C3:§

Substitute c; = 1 — ¢z, and obtain c; = 2 and c3 = 2. Thus,

0
5
y= ; isthe optimal column strategy for game B. For
7
0
5 0
7 5
0 7
gameA,X= | , | andy = % , and the value of the
7
0 0
0
gameisstill 2.

a. Army: 1/3river, 2/3 land; guerrillas: 1/3river,
2/3land; 2/3 of the supplies get through.
b. Army: 7/11river, 4/11 |land; guerrillas: 7/11 river,
4/11 land; 64/121 of the supplies get through.
. True. Definition.
. True. With a pure strategy, a player chooses one
particular play with probability 1.
¢. Fase v(x) isequal to the minimum of the inner product
of x with each of the columns of the payoff matrix.
d. False. The Minimax Theorem says only that the value of
agame isthe same for both players. It does not
guarantee that there is an optimal mixed strategy for

To

23.

25.

1

. max =1360, when x; = 22 and x, = 1

Section 9.2 A3

each player that produces this common value. It isthe
Fundamental Theorem for Matrix Games that says every
matrix game has a solution.

e. True. By Theorem 5, row r may be deleted from the
payoff matrix, and any optimal strategy from the new
matrix will also be an optimal strategy for matrix A.
This optimal strategy will not involve row s.

1 0
x=|51,9=|3],v=0
0 2
2:( d—c a—b )
a—b+d—c a—-b+d—c)’

o d—>b a—c . ad — bc
y= a—b+d—c a—b+d—c) ~a—-b+d-—c

Section 9.2, page 25

Let x, be the amount invested in mutual funds, x» the
amount in CDs, and x3 the amount in savings. Then

12,000 X1 A1
b= 0 ,X=|xp|,c=|.08],and
0 X3 .06

1 1 1
A=|1 -1 -—-1/|.
0o 1 -2
3
20 1 2 0
B | da-ft 2 )
-2
-35 -7 -1 4 0
. b= 20|,c= 3|,A= 0o 1 -2
-20 -1 o -1 2

5 5

Solution:
First, find the intersection points for the bounding lines:

(l) 2X1 + Xo = 32,
(2) X1+ X = 18,
(3) X1+ 3X2 =24

Even arough sketch of the graphs of these lines will reveal
that (0, 0), (16, 0), and (0, 8) are vertices of the feasible set.
What about the intersections of the lines corresponding to
(1), (2), and (3)?

The graphical method will work, provided the graph is
large enough and is drawn carefully. In many simple
problems, even asmall sketch will reveal which intersection
points are vertices of the feasible set. In this problem,
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however, three intersection points happen to be quite close to
each other, and a slight inaccuracy on agraph of size 3" x 3"
or smaller may lead to an incorrect solution. In a case such
as this, the following algebraic procedure will work well:

When an intersection point is found that corresponds
to two inequalities, test it in the other inequalities
to see whether the point isin the feasible set.

Theintersection of (1) and (2) is (14, 4). Test thisin
the third inequality: (14) + 3(4) =26 > 24. The
intersection point does not satisfy the inequality for (3), so
(14, 4) isnot in the feasible set.

Theintersection of (1) and (3) is (14.4, 3.2). Test this
in the second inequality: 14.4+3.2=17.6 < 18, s0
(14.4, 3.2) isin the feasible set.

Theintersection of (2) and (3) is (15, 3). Test thisin
the first inequality: 2(15) + (3) = 33 > 32, so (15, 3) ishot
in the feasible set.

Next, list the vertices of the feasible set: (0, 0), (16, 0),
(14.4, 3.2), and (0, 8). Then compute the values of the
objective function 80x; + 65x, at these points.

(0, 0): 80(0) + 65(0) =0

(16, 0): 80(16) + 3(0) = 1280
(14.4,3.2):  80(14.4) + 65(3.2) = 1360
(0, 8): 80(0) + 65(8) =520

Finally, select the maximum of the objective function,
which is 1360, and note that this maximum is attained at
(14.4, 3.2).

. unbounded
11.

a. True. Definition.

b. Fase. The vector X must itself be feasible. It ispossible
for anonfeasible vector (aswell as the optimal solution)
toyield the maximum value of f.

max profit = $1250, when x; = 100 bags of EverGreen and
x, = 350 bags of QuickGreen

Solution:
First, find the intersection points for the bounding lines:

(D) 3x1 + 2x; = 1200 (fescue)
(2)  x1+ 2x, =800 (rye)
(3  x1+ x2 =450 (bluegrass)

The intersection of lines (1) and (2) is (200, 300). Test
thisin the inequality corresponding to (3):
(200) + (300) = 500 > 450. The intersection point does not
satisfy the inequality for (3), so (200, 300) isnot in the
feasible set.

Theintersection of (1) and (3) is (300, 150). Test this
in (2): (300) + 2(150) = 600 < 800, so (300, 150) isin the
feasible set.

15.

17.

Theintersection of (2) and (3) is (100, 350). Test this
in (1): 3(100) + 2(350) = 1000 < 1200, so (100, 350) isin
the feasible set.

The vertices of the feasible set are (0, 0), (400, 0),
(300, 150), (100, 350), and (0, 400). Evaluate the objective
function at each vertex:

(0, 0): 2(00+3(00) =0

(400, 0): 2(400) + 3(0) = 800
(300, 150):  2(300) + 3(150) = 1050
(100, 350):  2(100) + 3(350) = 1250
(0, 400): 2(0) + 3(400) = 1200

The maximum of the objective function 2x; + 3x; is $1250
at (100, 350).

max profit = $1180, for 20 widgets and 30 whammies

Solution:
First, find the intersection points for the bounding lines:

(D) 5x1+2x, =200
(2) .ZX]_ +.4x, = 16
B 21 +.2xp,=10

Theintersection of (1) and (2) is (30, 25). Test thisin
the third inequality: .2(30) +.2(25) = 11 > 10. The
intersection point does not satisfy the inequality for (3), so
(30, 25) isnot in the feasible set.

Theintersection of (1) and (3) is (100/3, 100/6). Test
thisin the second inequality:

.2(100/3) + .4(100/6) = 13.3 < 16, so (100/3, 100/6) isin
the feasible set.

The intersection of (2) and (3) is (20, 30). Test thisin
the first inequality: 5(20) + 2(30) = 160 < 200, so (20, 30)
isin the feasible set.

The vertices of the feasible set are (40, 0),

(100/3, 100/6), (20, 30), and (0, 40). Evaluate the
objective function at each vertex:

(40, 0): 20(40) + 26(0) = 800
(100/3,100/6):  20(100/3) + 26(100/6) = 1100
(20, 30): 20(20) + 26(30) = 1180

(0, 40): 20(0) + 26(40) = 1040

The maximum profit is $1180, when x; = 20 widgets and

x2 = 30 whammies.

Takeany pandqin S, withp = [il} andq = Bl} . Then
2 2

vip < candv’q < c¢. Take any scalar ¢ such that
0 <t < 1. Then, by the linearity of matrix multiplication
(or the dot product if v p iswritten asv-p, and so on),

VIIA=tp+1gl=A -tV p+v'g< A —t)c+tc=c



because (1 — ¢) and ¢ are both positiveand p and q arein S.

So the line segment between p and g isin S. Since p and g
were any pointsin S, the set S is convex.

19. LetS={x: f(X) =d},andtakepand qin S. Also, taket

withO <r < 1,andletx= (1 —t)p +tq. Then

fx) =c"x=c"[(1-1)p+1q]
=1-nc"p+ic’"q=A—-t)d+td=d

Thus, x isin S. Thisshowsthat S is convex.

Section 9.3, page 43

X1 X2 X3 X4 x5 M
2 7 10 1 0 0] 2
3 4 18 0 1 O ‘ 25
-21 -25 -15 0 0 1 ‘ 0
a. X2
X1 X2 X3 X4 M
I 0o 1 -1 o0 ‘ 5
5 1.0 7 0] 15
1 0 0 5 1 ‘ 150
C. x1=0,x,=15,x3=5, x4, =0, M =150
d. optimal
. a. Xp
b. X1 X2 X3 X4 M
o 2 1 -1 O ‘ 4
1 1 0o % o© ‘ 8]
0o -2 0 3 1 ‘ 48
C. x1=8,x=0,x3=4,x,4=0,M =48
d. not optimal
. a. Fase. A dack variableis used to change an inequality
into an equality.

b. True. Definition.
c. Fase. Theinitial basic solution will be infeasible, but
there may till be a basic feasible solution.

. The maximum is 150, when x; = 3 and x, = 10.

Solution:

First, bring x, into the solution; pivot with row 1. Then
bring x; into the solution; pivot with row 2. The maximum
is 150, when x; = 3 and x, = 10.

X1 X2 X3 v, M
2 3 1 0 0] 36
5 4 0 1 0 ‘ 55
—-10 -12 0O O 1 ‘ 0

1.

13.

Section 9.3 A5
X1 Xp X3 xa M
2 1 ¢ o0 O ‘ 12
~ I o -4 0 ‘ 7
-2 0 4 0 1 \ 144
X1 Xp X3 X4 M
0o 1 2 -2 0 ‘ 10
~ 11 0 -2 ¢ o0 ‘ 3
o o 2 150

6
7 1 ‘
The maximum is 56, when x; = 9 and x, = 4.

Solution:

First, bring x, into the solution; pivot with row 2. Then
bring x; into the solution; pivot with row 3. The maximum
is56, when x; =9and x, = 4.

X1 X2 X3 X4 X5 M
1 2 1 0 0 O ‘ 267
2 3 0 1 0 O \ 30
1 1 0 0 1 o0 ‘ 13
-4 -5 0 0 0 1 ‘ 0]
X1 X2 X3 X4 X5 M
-3 0 1-5 0 0|6
- £ 1. 0 L o0 o ‘ 10
5 0 0-5 1 03
2 0 0 § 0 1] 50]
X1 X2 X3 X4 X5 M
0 0 1 -1 1 0] 9
. |01 0 1 -2 o0 4
1 0 0 -1 3 O ‘ 9
o o o0 1 2 1 ‘ 56

The minimum is 180, when x; = 10 and x, = 12.

Solution:

Convert this to a maximization problem for —12x; — 5x5,
and reverse thefirst constraint inequality. Beginning with
the first tableau below, bring x; into the solution, using row
1 asthe pivot row. Then bring x; into the solution; pivot
with row 2. The maximum value of —12x; — 5x5 is —180,
so the minimum of the original objective function

12x1 + 5x5, is 180, when x4 is 10 and x, is 12.

X1 X2 X3 X4 M

-2 -1 1 0 0[-3
-3 5 0 1 O ‘ 30
12 5 0 0 1 ‘ 0
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X1 X2 X3 xa M
1 1 -1 o0 0‘ 16
~ 3 3
13 -3 O‘ 78
0 -1 6 0 1 -192
X1 X2 X3 Xa M
5 1
1 0 -3 -4 0] 10
~ 3 2
1 -3 = 0‘ 12
2
0 0 % = 1 ‘—180

The answer matches that in Example 7. The minimum is 20,
when x; =8 and x, = 6.

Solution:

Begin with the sameinitial simplex tableau, bringing x; into
the solution, with row 2 as the pivot row. Then bring x, into
the solution; pivot with row 1. The maximum of —x; — 2x,
is —20, so the minimum of x; + 2x, is 20, when x; = 8 and

Xo = 6.

1. Minimize

X1 X2 X3 x4 M
-1 -1 1 0 0 \—14
1 -1 0 1 0 ‘ 2
1 2 0 0 1 ‘ 0
X1 X2 X3 X4 M
0 -2 1 1 0 \—12
~ 1 -1 0 1 0 ‘ 2
0 -3 0 -1 1 ‘ -2
X1 X2 X3 Xy M
0 1 —% —% 0 ‘ 6
~ 1 1
0 -3 5 0 ‘ 8
o o ¥ I 1 \—20

The maximum profit is $1180, achieved by making 20
widgets and 30 whammies each day.

Solution:

The simplex tableau below is based on the problem of the
Benri Company (Exercise 15 in Section 9.2) to maximize
the profit function 20x; + 26x, subject to various amounts
of labor available for the three-step production process. To
begin the simplex method, bring x into the solution; pivot
with row 2. Then, bring x; into the solution; pivot with row
3. The profit is maximized at $1180, by making 20 widgets
and 30 whammies each day.

X1 X2 X3 X4 X5 M
5 2 1 0 0 0 ‘ 2007
1o 1 0 0| 16
i 1 0 0 ‘ 10
| —20 —-26 0 0 0 1 ‘ 0]
X1 X2 X3 Xz x5 M
r 4 0 1 -5 0 0 ‘ 1207
- % 1 0 g 0 0 ‘ 40
1—10 0 0 —% 0 ‘ 2
L —7 0 0 65 0 1 ‘ 1040 |
X1 X2 X3 X4 X5 M
[0 0 1 15 -40 0 ‘ 40
10 1 0 5 -5 0 ‘ 30
1 0 0 -5 10 0 ‘ 20
L0 0 0 30 70 1 ‘ 1180

Section 9.4, page 53

36y, + 55y,
2y1 + 5y2 >10
3y1 + 4y2 > 12
andy; > 0,y, > 0.

subject to

. Minimize 26y; + 30y, + 13y3
subject to yi+ 22+ y3>4
2y1+ 3y2+ y3=5

andy; >0,y,>0,y; >0.

. The minimum is M = 150, attained when y; = 2 and

}’2=$-
Solution:
The final tableau from Exercise 9 in Section 9.3 is
X1 X2 X3 X4 M
0o 1 % —% 0 ‘ 10
0 —57‘ % 0 ‘ 3
o o 2 & 1 \ 150

The solution of the dual problem is displayed by the entries
inrow 3 of columns 3, 4, and 6. The minimum is M = 150,

attained when y; = 2 and y, = $.

. The minimum is M = 56, attained when y; =0, y» =1, and

y3=2.
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Solution:
Thefinal tableau from Exercise 11 in Section 9.3 is

X1 X2 X3 Xg X5 M

00 1 -1 1 0] 9
0 1 0 1 -2 0 4
1 0 0-1 3 0| 9
0 0 0 1 2 156

The solution of the dual problem is displayed by the entries

inrow 4 of columns 3, 4, 5, and 7. The minimum is

M =56, attainedwhen y; =0, y, =1, and y3 = 2.

. False. It shouldbe ATy > c.

. True. Theorem 7.

. True. Theorem 7.

. False. Themargina valueis zero if it isin the optimal
solution. See Example 4.

O o0oT O

The minimumis 43, whenx; = I, x, =0, and x3 = 3.

Solution:

The dual problem isto maximize 4y, + 5y, subject to
1 2 16
1 1 {yl} < | 10| andy > 0. Solvethe dual
3 2| L 20

problem with the simplex method:

Yioy2 va va ys M
1 2 1 0 0 0] 16
1 1 0 1 0 0] 10
3 2 0 0 1 02
-4 -5 0 0 0 1 \ 0
yll Y2 _\'31 va yvs M
3 1 1 o0 o0 0‘ 8
~| 3 0o-1 1 o0 o‘ 2
2 0 -1 0 1 0 4
-2 0o 2 o0 0 1 \ 40
LYz Y3 va s M
o 1 2 0-; O ‘
~o 0 i 1 o
1 0-f o % o ‘ 2
o o I o 2 1 \ 43

The solution of the dual of the dual (the primal) isx; = I,
XQZO,)Cg: %,WlthM:43

The minimum cost is $670, using 11 bags of Pixie Power
and 3 bags of Misty Might.

Section 9.4 A7

Solution:
The problem in Exercise 2 of Section 9.2 isto minimize c¢”x
subject to AX > b and x > 0, where x lists the number of

bags of Pixie Power and Misty Might, and ¢ = {28}
3 2 28

_ 2 4 _ 30 _ X1

A= 1 3 b= 20 ,andx_{xz}.Thedualofa
2 1 25

minimization problem involving a matrix is a maximization
problem involving the transpose of the matrix, with the
vector data for the objective function and the constraint
equation interchanged. Since the notation was established in
Exercise 2 for aminimization problem, the notation hereis
“reversed’’ from the usual notation for a primal problem.
Thus, the dual of the primal problem stated aboveisto
maximize by subject to ATy < candy > 0. That is,
maximize 28y, + 30y, + 20y; + 25y, subject to
Y1
3 2 1 2] V2 <{50}
2 4 3 1| |ys| ~ |40

Y4
Here are the simplex calculations for this dual problem:

»n 2 y3 Ya s ve M

T3 2 1 2 1 0 0]s0
2 4 3 1 0 1 0 ‘ 40
|28 30 -20 25 0 0 1 O]
N Y2 Y3,1 y43 ys ,\'61 M i
2 0 -1 2 -1 0| =
~ 1 3 1 1
P13 30 3 0w
5 35 15
|13 0 5 -3 o 5 1| 300]
YioY2oy3 Ya s e M
P00 51 33 o 2
~ 1 5 1 1
P13 0 -1 3 0 05
31 10 33 5
(2 0 - o T & 1| 60
Yo Y2 Y3 ya ys yvo M
r 7 2 3 1
¢ 2o 1 oo o2
~ 1 6 1 2
s 5 1 0 -5 § O ‘ 6
1 4 0 0 11 3 1| 670

Since the original problem isthe dual of the problem solved
by the simplex method, the desired solution is given by the
dlack variables ys = 11 and yg = 3. The value of the
objective is the same for the primal and dual problems, so
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the minimum cost is $670. Thisis achieved by blending 11 The optimal solution of the primal and dual problems,
bags of PixiePower and 3 bags of MistyMight. respectively, are j1 = 2, o = 2, Ja = 5, and iy = &,

B R . .
15. The marginal value s zero. This corresponds to labor in the X2 = 15, ¥3 = 5, With 2 = 3. The corresponding optimal

fabricating department being underutilized. That is, at the mixed strategies for the column and row players,

optimal production schedule with x; = 20 and x, = 30, only respectively, are: 3 2
160 of the 200 available hours in fabricating are needed. 7 5
The extralabor is wasted, and so it has value zero. y=y/A=y-4= |3 | andX=%/A=%-4=| 2
27 1 1
3 r 7 5
17 %= 8 §= % =1 The value of the game with the shifted payoff matrix is1/x,
' 1| il which is 4, so the value of original gameis4 — 3=1.
) z ) . 21. Changethis“game’’ into alinear programming problem and
5 7 use the simplex method to analyze the game. The expected
19. k= g Y= g v=1 value of the gameis 2, based on a payoff matrix for an
1 1 investment of $100. With $35,000 to invest, Bob “plays’’
- 5- -7 this game 350 times. Thus, he expectsto gain $380, and the
Solution: expected value of his portfolio at the end of the year is
) 1 2 -2 ) $35,380. Using the optimal game strategy, Bob should
Thegameis |0 1 4. Add 3toshift the game: invest $11,000 in stocks, $9,000 in bonds, and $15,000 in
3 -1 1 gold.
4 5 1 .
3 4 7 |.Thelinear programming tableau for this Solution: 4 1 -2
6 2 4 The gameis 1 3 0].Add3to shift the game:
X1 X2 X3 X4 X5 X6 M 1 0 4
NER R
gamels 4 6 3. Thelinear programming problemisto
6 2 4 0 0 1 01 > 3 7
. -1 -1 -1 0 0 0 1 ‘ 0 7 4 1 1
Pivots: maximize y, + y, + ys subjectto [4 6 3| < |1
11 2 1
o I -3 -2 0 ‘ 3 2 3 7 1
0 3 5 -3 03 Y1 0
1 1 2 0 1 0 1 and 2| = 0.
3 3 6 ‘ 6 V3 0
0 _% _% o o & 1 ‘ % The tableau for thisgame is
- 5 3 2 1 X1 X2 X3 X4 X5 X6 M
0 1 -y uw 0 -z 0fxg 7 4 1 1 0 0 0]1
cooEtr e 0 2 s 305 101
10 2 -2 0 2 o0 ‘ 3
-1 -1 -1 0 0 0 1|0
0 0 -F & o 4 1|3 N
- The simplex calculations are
o 1 0 & L -5 o0 ‘ 2 P N
V. Vi Y
0 0 15 B & ol AR T B R A
1o 0 &4 A o 3 . -
70 70 140 28 0 2 2 1 0 ‘ 3
1 1 1 1
L0 0 0 10 10 20 1 ‘ 4 0 % 477 _% 0 0 ‘ %
0 % -3 3 0 0 1}



iy Y3 Va Y5 Ve M
15 0 4 o0k 0|3
o ® o2 17 o
B 1-2 0 7 o3
o -5 o & o & 1]

Y1 Y2 Y3 s Vs V6 M
100%—%%0‘%
o1 0z & -8 o &
0 1 0o -% Z o %
00 0 & & B 1 2

The optimal solution of the primal and dual problems,
respectively, are

and

=21 35— 9 z — 15 i — 35
X1 =15 X2 = g53, Y3 = 153, WithA = 35

The corresponding optimal mixed strategies for the
column and row players, respectively, are
14

35 35
J=9/h=y W= | &l andsx=x/r=x-L=|2

The value of the g?é?ne with the shifted payoff matrsisx is
1/x , whichis 2, so the value of original gameis
¥ _3=2 Using the optimal strategy X, Bob should
invest & of the $35,000 in stocks, 2 in bonds, and £ in

23.
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gold. That is, Bob should invest $11,000 in stocks, $9,000

in bonds, and $15,000 in gold. The expected value of the

gameis % based on $100 for each play of the game. (The
payoff matrix lists the amounts gained or lost for each $100
that isinvested for one year.) With $35,000 to invest, Bob

“plays’ this game 350 times. Thus, he should expect to

gain $380, and the expected value of his portfolio at the end

of the year is $35,380.

a. The coordinates of X are all nonnegative. From the
definition of u, A isequal to the sum of these
coordinates. It follows that the coordinates of X are
nonnegative and sum to one. Thus, X isamixed strategy
for the row player R. A similar argument holdsfor y and
the column player C.

b. If yisany mixed strategy for C, then

E&y) =% Ay = % (X Ay) = % [(47%)-y]
1

X

c. If xisany mixed strategy for R, then

>1v- =
_X( y) =

E(x,y) =xTAy = % (x"Ay) = % [x-AY]
< E(X'U) — }
A A
d. Part (b) impliesv(X) > 1/A,s0vg > 1/A . Part (c)
impliesv(y) < 1/A,s0vce < 1/A . It follows from the
Minimax Theorem in Section 9.1 that X and y are
optimal mixed strategies for R and C, respectively, and
that the value of the gameis 1/x.
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3
4
-5
6
st sC
stone 0O 5 -5
scissors | —5 0 5
paper 5 -5
4, r4 b9
r3 4 —-12
ré 6 —15

b7 9

-1

@) 3

-2
[ ®
@
4
5
3

)

NIRRT,
'—\
@ @)

5 o@©r ~ s
N

@I—‘

9. a EXX,y)
v(y) =

4° 202

2

Answers to Exercises
Chapter 9

in{5 1,91 =5
max{v(x);}m_ms{a 81 =3

b. Ex.y)=§,v() = mln{1,4,4} g,
vy) =max {3, 2, 3} =
10. a E(X,y)=—3,v(X) = mm{is‘ -4 81 =-1
v(y) = maX{4, i-4=1
b. E(X,y)—B,v(x) mln{l -1 -4=-1
vy =max {7, —3.3} =1
1 1
s 6 ~ 2
11. X= 5:|'y=|:l:|’V=;
6 2
Solution:
: 3 -2
Given A = [0 1],graph

z= 31-1)+O¢t= 3—3
z=-201-0)+ Dt =-2+3 °
Thelinesintersect at (1, z) = (2, 3). The optimal row

5
1_6 _
5 =
6

thegameisv = % By Theorem 4, the optimal column
strategy ¥ satisfies E(ey, §) = 3 and E(ep, §) = 3 becauseX
isalinear combination of both e; and &. From the second

of these conditions, = [0 1] [3 _2} {Cl}

strategy isX = Xx(3) =

1
:],andthevalueof

o

0 1 C2
1
=[0 1] {2] =c,. Fromthis, c; = 1 andy = {i}
2

As acheck on this work, one can compute

E@.9) =1 0][3 ﬂM#S —2][ﬂ=%

Al
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—_
<
I
ol

Solution:
. 3 5

Given A = [4 1},graph
z=31-0H+ @Dt =3+t
7=51-1)+Dt=5—4"

Thelinesintersect at (1, z) = (2, ¥). The optimal row
1—2 3
strategy isk =x(2) = |, 5} = {i},andthevalueof

z 2
thegameisv = 1—57 By Theorem 4, the optimal column
strategy § satisfies E(ey, §) = ¥ and E(e,. §) = ¥ because
x isalinear combination of both e; and e,. From the first of
these conditions,

=i afs 3fan]

=[3 5] {1?&} =5-2c;

o

4
From this, ¢; = ‘g‘ andy = i . Asacheck on thiswork,
L5
one can compute
4
N 3 5]1|s
4
SCREIHEY
5
3
5
9
o 0| |0 _ 13
g {l:|’y_ 0 ’V_E
10 2
5
Solution:

Columns 2 and 3 dominate column 1, so the column player
will never choose column 2 or column 3. The new gameis

3 * * 2 3 2
{71 % 8}.Let3={_l 8].Graph
{ 7=31—-1)+ (-1t =—-4+3

z=21—-1)+ 8= 6r+2
Solve for theintersection, to get r = .1, and

K=x(.1) = {1._1'1} = {ﬂ The gamevalueis

6(1)+2=26. Lety = [ﬂ,andset
2

C2

26=E(e.y) =1 N{-i é} {Cl}’

S0 3c¢; + 2¢c, = 2.6. Sincey is aprobability vector,

3(,‘1 + 2(1 —c1) = 2.6, and 1= .6. ThUS, co=1— 6=.4
and the optimal column strategy y for the matrix game B
has entries .6 and .4. The optimal y for the matrix game A
has four entries.

Thegamematrix,writtenas[_i : * 2},

* 8
.6
N 0 - 9
showsthat y = 0 and, from above, X = { 1}.
4
1 3
K = { : } or { S } or any convex combination of these row
3 5
0
N 0
dtrategies, § = 1v= 2
0
Solution:

Column 2 dominates column 3, so the column player C will
never play column 2. The graph shows why column 2 will
not affect the column play, and the graph shows that the
value of the gameis 2. The new gameis

4 x 2 0 4 2 0

1« 2 s5|'tB=11 5 5
for column 3isz = 2. That lineintersects the line for
column4wherez =0(1—1¢) +5=2,andt = .4. An
optimal row strategy isX = 1_4'4 = 2 . Another
optimal row strategy is determined by the intersection of the

linesfor columns1and 3, wherez =4(1—1) +t = 2,

. Theline

[iN

t:%,and)?: g . It can be shown that any convex

3
combination of these two optimal strategiesisalso an
optimal row strategy.

C1
To find the optimal column strategy, sety = [cz ] ,
Cc3
andset2=E(e;,y) =e/By and 2= E(ey, y) = €]By.
These two equations produce 4¢3 + 2¢, = 2 and
c1 + 2c5 + 5¢3 = 2. Combine these with the fact that
c1 + ¢z + ¢z must be 1, and solve the system:
46‘1 + 202 =2
C1+2€2+563=2,
c1+ C2+ 3= 1
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0
and y=|1
0

Thisisthe column strategy for the game matrix B. For A,

0
0
1(,v=2
0

Solution:

Row 3 isrecessiveto row 2, so therow player R will never
play row 3. Also, column 3 dominates column 2, so the
column player C will never play column 3. Thus, the game
reduces:

C2:1,

<>
I
O -

>

Il
<>

Il

5 -1 1 5 -1 1
A= 4 2 2| - 14
-2 -3 1 * * *
5 -1 *
— | 4 2 *
k k k
Let B = i _2 . Therow minimaare —1 and 2, so the

max of the minimais 2. The column maximaare 5 and 2, so
the min of the maximais 2. Thus, the value of the gameis 2,
and game B has a saddle point, where R always plays row 2
and C aways plays column 2. For the original game, the

0
optimal solutionsareX =y = | 1 |. Another solution

0
method is to check the original matrix for a saddle point and
find it directly, without reducing the size of the matrix.

5 0
7 5
e |9 g |2] vos
X=|,1.9=12]v=7
7
0
0
0
Solution:

Row 2 isrecessive to row 3, and row 4 isrecessive to row 1,
so the row player R will never play row 2 or row 4. Also,
column 4 dominates column 2, so the column player C will
never play column 4. Thus, the game reduces:

Section 9.1 A3

0 1 -1 4 3
4| -1 3 -1 -3
2 -1 4 0 -2
-1 0 -2 2 1
[0 -1 4 3]
* * * * *
2 - 0 -2
| * * * * *
[0 1 -1 =« 3]
N * * * * *
2 -1 * =2
| * * * * * |
0 1 -1 3 S
Let B = o _1 2 _2}.(Ifcolumn4|nA|snot

noticed as dominant, this fact will become clear after the
lines are plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

(columnl) z= 01—-1) +2r=2t
(column2) z= 11-1)— t=1-2¢
(column3d) z=-1(1-1) + 4 =—-1+5¢
(column4) z= 31-1—-2r=3-"5

The graph of v(x(¢)) asafunction of ¢ isthe polygonal path
formed by line 3 (for column 3), then line 2 (column 2), and
then line 4 (column 4). The highest point on this path occurs

at the intersection of lines3 and 2. Solvez = —1 + 5¢ and
3

z=1-2rtofindr = % and z = 3. Thevalue of game B is

2
z=3, atainedwheng=| ", ' | =

—
N ~lo
[

7 7
Because columns 2 and 3 of B determine the optimal
solution, the optimal strategy for the column player C isa
convex combination § of the pure column strategies e, and
0

e, sy, ¥ = “2 | since both coordinates of the optimal

0
row solution are nonzero, Theorem 4 shows that
E(e,y) = 2 fori =1, 2. Each condition, by itself,
determinesy. For example,

E(e.Y) = e{BY

0
_ 0 1 -1 3 C2
=[1 0, 1 4 3 cs

0
=C2—C3=%
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Substitute c; = 1 — ¢z, and obtain c; = 2 and c3 = 2. Thus,

0
5
§=| 7 | istheoptimal column strategy for game B. For
i
0
5 0
7 5
0 7
gameA,X= | , [ andy = | 2 | , and the value of the
< 7
7
0 0
0
gameisstill 2.
2/3 0
. 0] . |23 13
*“lo YT ys|'" T
1/3 0
Solution:

Row 2 isrecessive to row 4, and row 3 isrecessiveto row 1,
so the row player R will never play row 2 or row 3. After
these rows are removed, column 4 dominates column 2, so
the column player C will never play column 4. Thus, the
game reduces:

6 4 5 5 (6 4 5 5]
A 0 4 2 7 o * * *
6 3 5 2 * * * *
2 5 3 7 12 5 3 7]
(6 4 5 %]
* * * *
—
% * k *
|2 5 3 x|
LetB:éz3 g g.(Ifcolumn4inAisnotnoticed

as dominant, this fact will become clear after thelines are
plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

(columnl) z=6(1-1t)+2t=6-—4¢
(column2) z=4A-1)+5=4+1
(column3) z=51-7+3t=5—-2¢

The graph of v(x(¢)) asafunction of ¢ isthe polygonal path
formed by line 2 (for column 2), then line 3 (column 3), and
then line 1 (column 1). The highest point on this path occurs
at the intersection of lines2 and 3. Solvez =4+ and

13

z=5—-2rtofindt = % and z = 3. Thevalue of game B is

e

z=2, attained when X = {

Wik WIN

} Because

10.

20.

21.

columns 2 and 3 of B determine the optimal solution, the
optimal strategy for the column player C is a convex
combination ¥ of the pure column strategies e, and e3, say,
0

C } . Since both coordinates of the optimal row

(&)

solution are nonzero, Theorem 4 showsthat E (g, §) = %
fori =1, 2. Each condition, by itself, determinesy. For

example,
Y =E(e,y) =¢€[BY

=[1 o]{g g g}lcoz]

g/:

3
=4c+5c3=4c;+5(1—c) =5—¢;
0
Thenc, =2 andcs= 3. Thus ¥ = £ | isthe optimal
1
3
2
3
column strategy for game B. For game A, X = 8 and
1
3

. and the value of the game s still 2.

<>
Il
Quwir wiv O

a. Army: 1/3river, 2/3 land; guerrillas: 1/3 river,
2/3land; 2/3 of the supplies get through.

b. Army: 7/11river, 4/11 land; guerrillas: 7/11 river,
4/11 land; 64/121 of the supplies get through.

a. Army: 7/11river, 4/11 land; guerrillas: 9/11 river,
2/11 land.

b. Thevalue of the gameis —36/11. This meansthe army
will average 36/11 casualties a day.

a. True. Definition.

b. True. With apure strategy, a player chooses one
particular play with probability 1.

c. Fase. v(x) isequa to the minimum of the inner product
of x with each of the columns of the payoff matrix.

d. False. The Minimax Theorem says only that the value of
agameisthe same for both players. It does not
guarantee that there is an optimal mixed strategy for
each player that produces this common value. It isthe
Fundamental Theorem for Matrix Games that says every
matrix game has a solution.

e. True. By Theorem 5, row r may be deleted from the
payoff matrix, and any optimal strategy from the new



matrix will also be an optimal strategy for matrix A.
This optimal strategy will not involve row s.

22. a. True. Definition.

b. False. A strategy isoptimal only if its value equals the
value of the game.

c. True. Definition.

d. False. It guarantees the existence of a solution, but it
does not show how to find a solution.

e. True. By Theorem 5, the dominating column ¢ may be
deleted from the payoff matrix, and any optimal strategy
from the new matrix will also be an optimal strategy for
matrix A. Thisoptimal strategy will not involve column
t. (Note, however, that if acolumnisrecessive, it may or
may not be nonzero in an optimal mixed strategy. In
Example 6, column 4 is recessive to column 1, but
column 4 has probability 0 in the optimal mixed strategy
for C. However, column 3 is also recessive to column 1,
and the probability of column 3 in the optimal strategy is

positive.)
3 0
2. %=|2|,9=|3],v=0
0 3
1 -3
a2
b. —AT
25, % — d—c ’ a—>b ,
a—b+d—c a—b+d—c
o d—>b a—c . ad — bc
y= a—b+d—c a—-b+d—c)' ~ a—-b+d—c

1
26. Let A — {2 0},x= i}andy: {é].Theﬂv:l

0 2
2
and E(X,y) =1, buty isnot optimal. There are many other
possihilities.

Section 9.2, page 25

1. Let x; be the amount invested in mutual funds, x, the
amount in CDs, and x3 the amount in savings. Then

12,000 X1 A1
b= 0 X=|x2|,c=1].08],and
0 X3 .06

1 1 1
A=1[1 -1 -1].
0o 1 -2

. max =1360, when x; = 2 and x, = £
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2. Let x; be the number of bags of Pixie Power, and x, the

28
30
20|’
25

number of bags of Misty Might. Thenb =

NN W
P whN

2

: -1
27 2 1 4
'b:_—4o]"’:!_5]’A:{—1 6 —3}

5 5

Solution:
First, find the intersection points for the bounding lines:

(1) 2X1 + Xo = 32,
(2) X1+ X2 = 18,
(3) X1+ 3)52 =24

Even arough sketch of the graphs of these lines will reveal
that (0, 0), (16, 0), and (0, 8) are vertices of the feasible set.
What about the intersections of the lines corresponding to
(1), (2), and (3)?

The graphical method will work, provided the graph is
large enough and is drawn carefully. In many simple
problems, even asmall sketch will reveal which intersection
points are vertices of the feasible set. In this problem,
however, three intersection points happen to be quite close to
each other, and a slight inaccuracy on agraph of size 3" x 3"
or smaller may lead to an incorrect solution. In a case such
asthis, the following algebraic procedure will work well:

When an intersection point is found that corresponds
to two inequalities, test it in the other inequalities
to see whether the point isin the feasible set.

Theintersection of (1) and (2) is (14, 4). Test thisin

the third inequality: (14) + 3(4) = 26 > 24. The
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intersection point does not satisfy the inequality for (3), so
(14, 4) isnot inthe feasible set.

Theintersection of (1) and (3) is (14.4, 3.2). Test this
in the second inequality: 14.4+3.2=17.6 < 18, so
(14.4, 3.2) isin the feasible set.

Theintersection of (2) and (3) is (15, 3). Test thisin
thefirst inequality: 2(15) + (3) = 33 > 32, so (15, 3) isnot
in the feasible set.

Next, list the vertices of the feasible set: (0, 0), (16, 0),
(14.4, 3.2), and (0, 8). Then compute the values of the
objective function 80x; + 65x, at these points.

(0, 0): 80(0) + 65(0) =

(16, 0): 80(16) + 3(0) = 1280
(14.4,3.2):  80(14.4) + 65(3.2) = 1360
(0, 8): 80(0) + 65(8) = 520

Finally, select the maximum of the objective function,
which is 1360, and note that this maximum is attained at
(14.4, 3.2).

18
. mln_ﬁ,whenxl_ Sandx; =43

Solution:
First, convert the problem to a canonical (maximization)
problem:

Maximize — 5x; — 3x,, subject to
D —2x1 — 5x; < —10
2 —3x1—x,<-6
) —x1—Txp <7

Next, find the intersection points for the bounding lines.
The intersection of the equalities for (1) and (2) is (3. 32).
Test thisin theinequality (3): —(%) — 7(32) = —32 < 7.

This point satisfies (3), so (2, ) isin thefeesbleset

13” 13
Theintersection corresponding to (1) and (3) is (£, §
Testthisin (2): —3(2) — (5) =—-22 < -6, 50(2, §)isin
the feasible set.

The intersection corresponding to (2) and (3) is (£ a0 4

Testthisin(1): —2(1) —-5(3)=-2 > -10, 0 ({, })is
not in the feasible set.
The vertices of the feasible set are (0, 6),

2 8y (2, %), and (7,0). Thevaluesof the objective
functlon —bx; — 3x, at these points are —18,
— 2~ —11.85, — 1% ~ —20.8, and —35, respectively.
ThemaX|mumvaIueoftheobjectlvefunctlon —bx; — 3xsis
which occurs at (2, £). Sothe minimum value of

13 ’ 13° 13
the original objective function 5x; + 3x; |s 5 and this

occursat (22, 18,

9. unbounded

10. infeasible

1.

12.

13.

14.

a. True. Definition.

b. False. The vector X must itself be feasible. It ispossible
for anonfeasible vector (as well as the optimal solution)
to yield the maximum value of f.

a. True. Thisisalogicaly equivaent version (called the
contrapositive) of Theorem 6.

b. False. Theorem 6 says that some extreme point is an
optimal solution, but not every optimal solution must be
an extreme point.

max profit = $1250, when x; = 100 bags of EverGreen and
x2 = 350 bags of QuickGreen

Solution:
First, find the intersection points for the bounding lines:

(1) 3x1 + 2x, = 1200 (fescue)
(2)  x1+ 2x, =800 (rye)
(3  x1+ x2 =450 (bluegrass)

Theintersection of lines (1) and (2) is (200, 300). Test
thisin the inequality corresponding to (3):

(200) + (300) = 500 > 450. The intersection point does not
satisfy the inequality for (3), so (200, 300) isnot in the
feasible set.

Theintersection of (1) and (3) is (300, 150). Test this
in (2): (300) + 2(150) = 600 < 800, so (300, 150) isin the
feasible set.

Theintersection of (2) and (3) is (100, 350). Test this
in (1): 3(100) + 2(350) = 1000 < 1200, so (100, 350) isin
the feasible set.

The vertices of the feasible set are (0, 0), (400, 0),
(300, 150), (100, 350), and (0, 400). Evaluate the objective
function at each vertex:

(0, 0): 2(00+3(0) =0

(400, 0): 2(400) + 3(0) = 800
(300, 150):  2(300) + 3(150) = 1050
(100, 350):  2(100) + 3(350) = 1250
(O, 400): 2(0) + 3(400) = 1200

The maximum of the objective function 2x; + 3x; is $1250
at (100, 350).

min cost = $25,000, when x; = 2 days and x, = 6 days

Solution:
First, find the intersection points for the bounding lines:

(l) lle + 4)(2 =48

(2) Axq + dx, = 32

B) x1+5x,=20

The intersection of lines (1) and (2) is (2, 6). Test thisin the
third inequality: (2) + 5(6) = 32 > 20. The intersection
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point satisfies the inequality for (3), so (2, 6) isinthe
feasible set.

Theintersection of (1) and (3) is (20/7, 24/7). Test
thisin the second inequality:

4(20/7) + 4(24/7) = 176/7 ~ 25.14 < 32, so thispoint is
not in the feasible set.

Theintersection of (2) and (3) is (5, 3). Test thisin the
first inequality: 12(5) + 4(3) = 72 > 48, s0 (5, 3) isin the
feasible set.

The vertices of the feasible set are (20, 0), (5, 3),

(2, 6), and (0, 12). Evaluate the objective function at each
vertex. (The values here represent thousands of dollars.)

(20,0): 3.5(20) + 3(0) =70
(5,3): 35(05)+3(3) =265
(2,6): 3.5(2)+3(6) =25

(0,12): 3.5(0) + 3(12) = 36

The minimum cost is $25,000, when the production schedule
is (x1, x0) = (2, 6). That is, the cost is minimized when
refinery A runs for 2 days and refinery B runs for 6 days.

max profit = $1180, for 20 widgets and 30 whammies

Solution:
First, find the intersection points for the bounding lines:

(1) 5x1+2x, =200
(2) .le + .4x, = 16
B 2x+.2xp=10

Theintersection of (1) and (2) is (30, 25). Test thisin
the third inequality: .2(30) +.2(25) = 11 > 10. The
intersection point does not satisfy the inequality for (3), so
(30, 25) isnot in the feasible set.

Theintersection of (1) and (3) is (100/3, 100/6). Test
thisin the second inequality:

.2(100/3) + .4(100/6) = 13.3 < 16, so (100/3, 100/6) isin
the feasible set.

The intersection of (2) and (3) is (20, 30). Test thisin
thefirst inequality: 5(20) + 2(30) = 160 < 200, so (20, 30)
isin the feasible set.

The vertices of the feasible set are (40, 0),

(100/3, 100/6), (20, 30), and (0, 40). Evaluate the
objective function at each vertex:

(40, 0): 20(40) + 26(0) = 800
(100/3,100/6):  20(100/3) + 26(100/6) = 1100
(20, 30): 20(20) + 26(30) = 1180

(0, 40): 20(0) + 26(40) = 1040

The maximum profit is $1180, when x; = 20 widgets and
x2 = 30 whammies.

16.

17.

18.

19.

Section 9.3 A7

Takeany p,qin.Z . Then Ap < b, Aq <b,p >0, and
g > 0. Takeany scalar t suchthat 0 < < 1, and let
X=(Q—-1t)p+1tq. Then

AX=A[1—-1p+1q]l=1—r)Ap+1tAq (%)

by the linearity of matrix multiplication. Sincer and 1 — ¢
are both nonnegative, (1 —1)Ap < (1 —t)bandtAp < tb.
Thus, theright side of (x) islessthan or equal to b. Also,

X > 0 because p and g have this property and the constants
(1 —1) and ¢ are nonnegative. Thus, x isin .%#. Sotheline
segment between p and q isin .%. This provesthat .% is
CONVex.

Takeany pandqgin S, withp = {il} andq= Bl}.Then
2 2

vI'p < candv’q < c. Take any scalar ¢ such that
0 <t < 1. Then, by thelinearity of matrix multiplication
(or the dot product if v7p iswritten asv-p, and so on),

VIIA-p+tgl=A -tV p+v'g< A —f)c+tc=c

because (1 — r) and ¢ are both positiveand p and g arein S.
So the line segment between p and g isin S. Sincep and g
were any pointsin S, the set S is convex.

Let S betheintersectionof Sy, ..., Ss,andtakex andy in
S. Thenxandy arein S; fori =1,..., 5. For any ¢, with
O<t=<landanyi,withl<i <5 (1—-1)X+tyisins;
because S; isconvex. Then (1 —1)x + tyisin S, by
definition of the intersection. This provesthat S isaconvex
Set.

Let S={x: f(x) =d},andtakep andqin S. Also, take ¢
withO <r < 1,andletx=(1—¢)p +tq. Then

fx) =c"x=c"[(1-1p+1q]
=A-t)c'p+tclg=1—-1d+td=d

Thus, x isin S. Thisshowsthat S is convex.

Section 9.3, page 43

X1 X2 X3 X4 x5 M
[ 2 7 10 1 0 0 ‘ 20
3 4 18 0 1 0 ‘ 25
|-21 —-25 -15 0 0 1 ‘ 0
X1 X2 X3 x4 x5 M
3 5 1 0 0 0 ‘ 30
2 7 0 1 0 0 ‘ 24
6 1 0 0 1 0 ‘ 42
| —22 -14 0 0 0 1 ‘ 0
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3. a x
b. X1 X2 X3 Xa M
% 0 1 —% 0 ‘ 5
g 1 0 % 0 ‘ 15
17 0 o0 5 1 ‘ 150
C. x1=0,x0=15,x3=05, x,=0, M =150
d. optima
4. a x;
b. X1 X2 X3 X4 M
0 1 7 1 0] 10
1 0 5 1 0 ‘ 6
0O 0 28 5 1 ‘ 47
C. x1=6,x0=10,x3=0,x4=0, M =47
d. optimal 10
5 a x;
b. X1 X2 X3 Xa M
o 2 1 -1 o0 ‘ 4
1 % 0 % 0 ‘ 8]
o -2 0 3 1 ‘ 48
C. x1=8,x=0,x3=4,x,2=0,M =48
d. not optimal
6. a. x
b. X1 X2 X3 X4 M
-1 0 1 -% © ‘ 40
2 1 0 5 0] 5
8 0 0 3§ 1 \ 15
C. X1:0,X2:5,X3:40,X4:0,M:15
d. optimal
7. a. False. A dack variable is used to change an inequality
into an equality.

b. True. Definition.
c. False. Theinitial basic solution will be infeasible, but
there may still be a basic feasible solution.

. True. Définition.

b. True. Seethe comment before Example 3.

c. False. The bottom entry in the right column givesthe
current value of the objective function. It will be the
maximum value only if the current solution is optimal.

11.

9. The maximum is 150, when x; = 3 and x, = 10.

Solution:

First, bring x, into the solution; pivot with row 1. Then
bring x; into the solution; pivot with row 2. The maximum
is 150, when x; = 3 and x, = 10.

X1 X2 x3 x4 M
2 3 1 0 0 ‘ 36
5 4 0 1 0 ‘ 55
10 12 0 0 1| 0
X1 X2 X3 X4 M
2 1
501 3 0 of m
~ 7z o -¢ 0| 7
-2 0 4 0 1 ‘ 144
X1 X2 X3 X4 M
5 2
o 1 $ -7 0] 10
~ 4 3
1 0 -3 H 0 ‘ 3
20 6
0 0 = 7 1 ‘ 150
The maximum is 98, when x; = 10 and x, = 12.

Solution:

First, bring x; into the solution; pivot with row 2. Next,
scalerow 1 to simplify the arithmetic. Finaly, bring x, into
the solution; pivot with row 1. The maximum is 98, when

x1 =10 and xo =12,

X1 X2 X3 X4 M
1 5 1 0 0/70
3 2 0 1 0 ™
-5 -4 0 0 1 \ 0
X1 X2 X3 X3 M
13 1
o 2 1 -3 o0 ‘ 52
~ 2
2 0 : o0 ‘ 18
0 -2 0 § 1|9
X1 X2 X3  Xa M
0o 1 2 -& 0| 12]
~ 11 2 o f o] 18
0 -2 0 % 1| 9]
X1 X2 X3 X4 M
0 1 2 -1 0] 12]
~ /1 0o -% 2 o010
o o 2 #Z 1| 98]

The maximum is 56, when x; = 9 and x, = 4.

Solution:

First, bring x; into the solution; pivot with row 2. Then
bring x; into the solution; pivot with row 3. The maximum
is56, when x; =9and x, = 4.



X1 X2 X3 x4 x5 M
1 2 1 0 0 O ‘ 267
2 3 0 1 0 0|3
1 1 0 0 1 o0 ‘ 13
-4 -5 0 0 0 1 ‘ 0
X1 X2 X3 Xa X5 M
-5 0 1-5 0 0|6
N £ 1 0 L o0 o0 ‘ 10
5 0 0-5 1 0 3
2
2 0 0 $ 0 1] 50]
X1 X2 X3 X4 X5 M
0 0 1 -1 1 0] 9
~ 0 1 0 1 -2 0 \ 4
1 0 0 -1 3 O ‘ 9
0 0 0 1 2 156

12. Themaximum is 70, when x; = 6, x, = 11, and x3 = 1.

Solution:

First, bring x; into the solution; pivot with row 3. Next,
bring x; into the solution; pivot with row 1. Finally, bring x3
into the solution; pivot with row 2. The maximum is 70,

whenx; =6, x, =11, and x3 = 1.

X1 X2 X3 X4 X5 X6 M
(1 2 0 1 0 0 0| 28]
2 0 4 0 1 0 0 16
0o 1 1 0o O 1 o0 12
-2 -5 -3 0 0 0 1 0]
X1 X2 X3 Xa X5 Xg M
1 0 -2 1 0 -2 0 47
~ 2 0 4 0 1 0 0] 16
6o 1 1 0 O 1 o0 12
|1-2 0 2 0 0 5 1| 60]
X1 X2 X3 X4 X5 Xg M
1 0-2 1 0 -2 O \ 4
~ 0o 0 8 -2 1 4 O ‘ 8
0 1 1 0o 0 1 O ‘ 12
o 0-2 2 0 1 1 ‘ 68
X1 X2 X3 Xz X5 X6 M
1 0 0 % % -1 0 ‘ 6
~ o0 15 5 3 01
0 1 0 2 - % O ‘ 11
o o o 3 : 2 1 \ 70

13.

14.

Section 9.3 A9

The minimum is 180, when x; = 10 and x, = 12.

Solution:

Convert this to a maximization problem for —12x; — 5x5,
and reverse the first constraint inequality. Beginning with
thefirst tableau below, bring x; into the solution, using row
1 as the pivot row. Then bring x; into the solution; pivot
with row 2. The maximum value of —12x; — 5x5 is —180,
so the minimum of the original objective function

12x4 + 5x, 15180, when x4 is 10 and x5 is 12.

X1 X2 X3 x4 M
-2 -1 1 0 0 [-3
-3 5 0 1 O ‘ 30
12 5 0 O 1‘ 0
X1 X2 X3 X4 M
1 1
1 3 -3 0 o) 16
~ 13 3
o & 3 o‘ 78
0o -1 6 O 1 ‘—192
X1 X2 X3 X4 M
5 1
1 -5 % 0] 10
~ 3 2
0 1 -3 F 0
o 0o &2 Z2 1 \—180

13 13
The minimumis 33, whenx; =0, x, =4, and x3 = 7.

Solution:

Convert this to a maximization problem for

—2x1 — 3x, — 3x3, and reverse the first two constraint
inequalities. Beginning with the first tableau below, bring x3
into the solution, with row 2 as the pivot. Then bring x, into
the solution; pivot with row 1. The maximum is —33, so the
minimum of 2x; + 3x, + 3x3 1533, when x; =0, x, = 4, and
X3 = 7.

X1 X2 X3 X4 X5 X6 M
(-1 2 0 1 0 0 O 87
0 -2-1 0 1 0 0 |-15
2 -1 1 0 0 1 o 25
| 2 3 3 0 0 0 1 O]
X1 X2 X3 X4 Xg X6 M
(-1 2 0 1 0 0 ©O 8]
~ 0o 2 1 0-1 0 0] 15
2 -3 0 0 1 1 0 10
| 2 -3 0 0 3 0 1 |-4
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16.
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X1 Xp X3 X4 Xg xe M
-3 1.0 3 0 0 0] 4
N 1 0 1 -1 -1 0 ‘ 7
1 3
10 P01 1 022
3
i 0o o 2 3 0 1 \—33

The answer matches that in Example 7. The minimumis 20,
when x; =8 and x, = 6.

Solution:

Begin with the sameinitial simplex tableau, bringing x; into
the solution, with row 2 as the pivot row. Then bring x, into
the solution; pivot with row 1. The maximum of —x; — 2x,
is —20, so the minimum of x; + 2x, is 20, when x; = 8 and

Xo = 6.

X1 X2 X3 X4 M
-1 -1 1 0 O ‘—14
1 -1 0 1 O ‘ 2
1 2 0 0 1| 0

X1 X2 X3 X4 M
o -2 1 1 O ‘—12
~ 1 -1 0 1 O ‘ 2
0 -3 0 -1 1 -2

X1 X2 X3 Xq M
0 1 -3 -3 06
Y|t o5 3 o) 8
o o ¥ 1 1 \—20

The maximum annual income is $1,100, provided by $6,000
in mutual funds, $4,000 in CDs, and $2,000 in savings.

Solution:

From the bottom row of the tableau, x; must be brought into
the solution first. The ratios to consider are 12,000/1 in row
1land 0/1inrow 2. So pivot with row 2. Next, bring x; into
the solution; pivot with row 3 (because the ratio 0/1 isless
than the ratio 12,000/2). Finaly, bring x3 into the solution;
pivot with row 1. The maximum annual income of $1,100 is
provided by $6,000 in mutual funds, $4,000 in CDs, and
$2,000 in savings.

X1 X2 X3 X4 X5 X6 M
1 1 1 1 0 0 0] 12000
1 -1 -1 0 1 0 O \ 0
0 1 -2 0 0 1 o0 ‘ 0
-1 -08 -06 0 0 0 1 ‘ 0

X1 X2 X3 X4 X5 X6 M
K 2 2 1 -1 0 0| 120007
~ |1 -1 -1 o0 1 0 0 0
0 1 -2 0 0 1 0 0
|0 —19 —-17 0 11 0 1 0]
X1 X2 X3 X4 X5 X6 M
[0 0 6 1 -1 -2 0| 12,000]
~ |1 0o =3 o0 1 1 0 0
0 1 -2 0 0 1 0 0
|0 0 -5 0 11 19 1 0]
X1 X2 X3 X4 X5 X6 M
0 0 1 i -1 -1 o0 ‘ 2,000
. |1 o0 o i i 0 0 ‘ 6,000
0 1 0 i - : 0 ‘ 4,000
o 0 0 X & Lo \ 1,100

20 600 150

17. The maximum profit is $1180, achieved by making 20

widgets and 30 whammies each day.

Solution:

The simplex tableau below is based on the problem of the
Benri Company (Exercise 15 in Section 9.2) to maximize
the profit function 20x; + 26x, subject to various amounts
of labor available for the three-step production process. To
begin the simplex method, bring x; into the solution; pivot
with row 2. Then, bring x; into the solution; pivot with row
3. The profit is maximized at $1180, by making 20 widgets
and 30 whammies each day.

X1 X2 X3 X4 X5 M

5 2 1 0 0 0| 207
2

% £ 0O 1 0 O ‘ 16
i1 0 o0 0| 10
-20 =26 0 O O 1 ‘ 0]

X1 X2 X3 X4 X5 M
r 4 1 -5 0 O ‘ 1207
| 3 5 0 © ‘ 40
% 0 —% 0 ‘ 2
7 0 0 6 0 1| 1040]

X1 X2 X3 Xa X5 M
[0 0 1 15 —40 O | 40
~ 10 1 O 5 -5 0| 3
1 0 O -5 10 O ‘ 20
L0 0 0 30 7 1 ‘ 1180



18. The maximum profit is $1250, achieved when x; = 100
(bags of EverGreen) and x, = 350 (bags of QuickGreen).

Solution:

The simplex tableau below is based on the summary at the
end of Example 1 in Section 9.2. To begin the simplex
method, bring x, into the solution; pivot with row 2. Then
bring x; into the solution; pivot with row 3. The $1250
maximum is achieved when x; = 100 (bags of EverGreen)
and x, = 350 (bags of QuickGreen).

X1 X2 X3 X4 X5 M
3 2 1 0 0 O \ 1200
1 2 0 1 0 ©O ‘ 800
1 0 0 1 0O ‘ 450
2 3 0 0 0 1, 0
X1 X2 X3 Xa X5 M
r2 o0 1 -1 0 O ‘ 400
N i1 0 % o0 o ‘ 400
5 0 0-3 1 0/ 50
-3 o o 2 o0 1 \ 1200
X1 X2 X3 Xz X5 M
0 0 1 1 -4 0| 200
~ |0 1 0 1 -1 O \ 350
1 0 0 -1 2 O ‘ 100
10O 0 0 1 1 1 ‘ 1250

Section 9.4, page 53

1. Minimize 36y; + 55y,
subject to 2y1+ 5y, > 10
3y1+ 4y, > 12
andy, >0,y, > 0.

2. Minimize 70y;1 + 54y,
subject to yi+ 3y2>5
Sy1+ 2y, >4
andy; > 0,y, > 0.

3. Minimize 26y + 30y, + 13y3
SJbJeCt to y1+ 2y2 + Y3 = 4
2y1+ 3y2+ y3>5
andy; > 0,y > 0,y3 > 0.

4. Minimize 28y; + 16y, + 12y3

subject to yi+ 2y >2
2y + y3=5
4y, + y3>3

andy; >0,y >0,y3>0.

. Theminimumis M = 70, attained when y; = % Yo =

Section 9.4 All

5. Theminimumis M = 150, attained when y; = 2 and

)’2=g-
Solution:
The final tableau from Exercise 9in Section 9.3 is
X1 X2 X3 Xz M
o 1 2 -2 0‘ 10
o -4 32 o‘ 3
o o 2 & 1 \ 150

7

The solution of the dual problem is displayed by the entries
inrow 3 of columns 3, 4, and 6. The minimumis M = 150,
attained when y; = 2 and y, = .

. The minimum is M = 98, attained when y, = 2 and

21

Y2 = 13-
Solution:
The final tableau from Exercise 10 in Section 9.3 is
X1 X2 X3 X4 M
o 1 2 -+ o0 ‘ 12
2 5
0 -3 3 0 ‘ 10

00241\98

13 13

The solution of the dual problem is displayed by the entries
inrow 3 of columns 3, 4, and 6. The minimum is M = 98,

attained when y; = Z and y, = .

. Theminimum is M = 56, attained when y; =0, y, = 1, and

y3=2.

Solution:
The final tableau from Exercise 11 in Section 9.3 is

X1 X2 X3 Xz X5 M

0 0 1 -1 1 0] 9
0 1 0 1 -2 0/ 4
1 0 0-1 3 0| 9
0 0 0 1 2 156

The solution of the dual problem is displayed by the entries
inrow 4 of columns 3, 4, 5, and 7. The minimum is
M =56, attained when y; =0, y, =1, and y3 = 2.

2, and
y3 = 2

Solution:

Thefinal tableau from Exercise 12 in Section 9.3 is
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X1 X2 X3 Xz X5 X6 M

1 0 0 3 3 -1 0 ‘ 6
o o 1-% 1 1 0 ‘ 1
o 1 0 -t 1 o0 ‘ 1
o o o ¥ I 2 1 \ 70

The solution of the dual problem is displayed by the entries
inrow 4 of columns4, 5, 6, and 8. The minimum is
M = 70, attained when y; = g, Y2 = ;11, and y3 = 2.

a. False. Itshouldbe ATy > c.

b. True. Theorem 7.

c. True. Theorem 7.

d. False. The marginal valueiszeroif it isin the optimal
solution. See Example 4.

a. True. See the comment before Theorem 7.

b. True. Theorem 7.

¢. True. Theorem 7.

d. False. The coordinates of u and v are equal to one. The
vectors do not have length one.

Theminimumis43, whenx; = 1, x, =0,and x3 = 3

i
Solution:
The dual problem isto maximize 4y, + 5y, subject to

1 2 16
1 1 {yl} < | 10| andy > 0. Solvethe dua
3 2L 20

problem with the simplex method:

yioy2 vz va ys M
1 2 1 0 0 0] 16
1 1 0 1 0 O \ 10
3 2 0 O 1 O ‘ 20
4 5 0 0 0 1| 0
yll Y2 )‘3;1 va ys M
3 1 3 0 0 0] 8
~| 2 0o0-f 1 0 o ‘ 2
2 0 -1 o0 1 0 ‘ 4
-2 0o % 0 0 1 \ 40
Juoy2 o vade s M
0 1 § 0 -3 0|7
|0 0 - 1-3 0
1 0-3 0 3 02
o o f o 2 1 \ 43

The solution of the dual of the dua (the primal) isx; =

7
4
x2=0,x3=3, with M =43,

12. Theminimum is 26, when x; = 2 and x, = %

13.

3
Solution:
The dual problem isto maximize 3y, + 4y, + 2y; subject to

n

1 2 3 10

{2 1 1} iz 5{14}andyzo.Usethe
3

simplex tableau for the dual problem:

Y oY2 Y3 ya s M
1 2 3 1 0 0] 10
2 1 1 0 1 0 ‘ 14
-3 -4 -2 0 1] 0
_Y1l y2 Y33 e s M i
31 3 3 0 05
~ 3
o111 09
-1 0 4 2 0 1 \ 20 |
y::lL y2 y33 »\'4;- Y5 M
~ 1 1 2
1 0 -1 -1 2 9 ‘ 6
-1 0 4 2 o0 1 \ 20 |
_yl y2 y?5, _\é _\'gl, M
o 1 § 2 -1 o‘ 2
~ 1 1 2
1 5 2
lo o 2% 5 2 1 \ 26

The solution of the dual of the dual (the primal) isx; = 2,
xz = %, with the minimum M = 26.

The minimum cost is $670, using 11 bags of Pixie Power
and 3 bags of Misty Might.

Solution:
The problem in Exercise 2 of Section 9.2 isto minimize c”x
subject to Ax > b and x > 0, where x lists the number of

bags of Pixie Power and Misty Might, and c = {ig}
3 2 28

12 4 |30 IREs

A= 1 3 , b= 20 ,andx_{xz}.Thedualofa
2 1 25

minimization problem involving a matrix is a maximization
problem involving the transpose of the matrix, with the
vector data for the objective function and the constraint
equation interchanged. Since the notation was established in
Exercise 2 for aminimization problem, the notation hereis
“reversed’’ from the usual notation for a primal problem.
Thus, the dual of the primal problem stated aboveisto
maximize b”y subject to ATy < candy > 0. That is,
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maximize 28y; + 30y, + 20ys + 25y, subject to

n
3 2 1 2 ya | _ 50
2 4 3 1 vs | — |40

Ya
Here are the ssmplex calculations for this dual problem:

Y1 Y2 V3 Ya s ve M
3 2 1 2 1 0 0] 50
2 4 3 1 0 1 O ‘ 40
|-28 -30 -20 -25 0 0 1 \ 0]
N Y2 yal )’43 Vs \'61 M i
2 0 -} 3 -1 0 ‘ 30
~ 1 3 1 1
: 1 3 3 i 0| 10
5 35 15
13 0 5 -% o ® 1| 300]
) y41 Y2 y31 Ya ,\'52 ,\"61 M
d 0 -1 1 2 -1 o ‘ 20
~ 1 5 1 1
31 10 35 5
(2 0 -® o B & 1| 650
yiooy2 y3 ya ys v M
r 2 3
2 o0 1 ¢ -1 o ‘ 22
~ 1 6 1 2
g s 1 0 -5 § O ‘ 6
1 4 0 0 1 3 1 \ 670

Since the original problem isthe dual of the problem solved
by the simplex method, the desired solution is given by the
slack variables ys = 11 and ys = 3. The value of the
objective is the same for the primal and dual problems, so
the minimum cost is $670. Thisis achieved by blending 11
bags of PixiePower and 3 bags of MistyMight.

Refinery A = 2 days, refinery B = 6 days, minimum cost =
$25,000

Solution:

Express costs in thousands of dollars, let x; be the number
of daysrefinery A operates, and let x, be the number of days
refinery B operates. Then the problem in Example 2 of
Section 9.2 isto minimize 3.5x; + 3x; subject to

12 4 48
4 4 {xl] > | 32 |. Thedual problemisto
1 5| L% 20

maximize 48y, + 32y, + 20y; subject to
12 4 17| _[35
4 4 5 i 21=13]
3
Use the simplex tableau for this dual problem. Thefirst
pivot ison y;, because the entry —48 is the most negative

Section 9.4 Al3

entry in the bottom row. The first row is chosen because the
ratio by /ay; issmaler than by /az;.

»n Y2 y3 va ys M
12 4 1 1 0 0] 35
4 4 5 0 1 0 ‘ 3
| —48 —-32 -20 0 0 1 ‘ 0

Yoo y2  y3  ya  vs M
r 1 1 1 7
1 35 &z 0 0 ‘ b7
~ 8w _1 u
0 3 3 3 0 ‘ 6

0 -16 16 4 0 1 14

Now, two negative entries in the bottom row happen to be
equal, so either y, or y3 can bethe next pivot. When y;, is
used, theresult is

yoooy2 ys3 yva ys M
1 1 1 1
1 0 =5 5 -5 05
~ 7 1 3 1
0o 1 3z -5 5 O ‘ 1

0O 0 12 2 6 1‘25

When y; isused as apivot in the second tableau above,
more work is required:

Vi Y22 Y3 Va Vs M "
r 5 1
1 7 0 5% - O ‘ 1
~ 4 1 3 11
o 7 1 -4 = O \ %
48 20 24 142
o ® o 2 z ;| w
yiooy2 Y?,l A\'Al ,\'Ei M )
10 - 5 -5 O ‘ 1%
~ 7 1 3 11
0o 1 3 -5 5 O \ 16
0 0 12 2 6 1|25

An extra pivot operation is required because pivoting on y;
increases M by less than pivoting on y,. Thiscan be seenin
advance, but the situation occurs so rarely, that arule for
deciding which pivot column to choose is hardly worth
remembering. Notice that if y, isto be the pivot variable,
then the row for this pivot is the one for which theratio
b;/a;> isthe smallest. (In thisexample, that ratiois

8

T+ 8 =1 If ysisthepivot variable, then the row for

this pivot isthe onefor which theratio b; /a;3 isthe smallest.
(Inthisexample, that ratiois § + % = 21.) Theruleisto
choose the variable for which this“smallest’’ ratio islarger.
In this case, since 1L islarger than %1, y, is the better choice
for the pivot. Since so many ratios have to be computed, it
seems easier just to pick either y, or y; and calculate the

next tableau.
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Since the original problem isthe dual of the problem [0 1 - % 1% 0 - % 0 ‘ Tll
solved by the simplex method, the desired solution is given o o ©® -2 1 L1 o ‘ 3
by the slack variables y, = 2 and ys = 6. The value of the ~l1 o & _1 0 5 o0 3
objective is the same for the primal and dual problems, so u u 2 ‘ 2
the minimum cost is 25 (thousand dollars). Thisis achieved 0 0 -2 2 0 1 1 ‘ 5
by operating refinery A for 2 days and refinery B for 6 days. - n 311 ) 225 223

o 1 o0 = = —= 0| =

15. The marginal valueis zero. This correspondsto labor in the P 2 ‘ >
fabricating department being underutilized. That is, at the 0 0 1 —% 70 140 0 ‘ 28
optimal production schedule with x; = 20 and x, = 30, only "1 o o & -2 A o ‘ 2
160 of the 200 available hours in fabricating are needed.

The extralabor is wasted, and so it has value zero. 0 0 0 & % 5 1 ‘ :

16. Allocate the additional hour of labor to the shipping The optimal solution of the primal and dual problems,
department, thereby increasing the profit by $70. The profit respectively, are i, = V2= Vo= 2 and &, = &,
would increase by only $30 if the hour of |abor were added X2 = 1—10 X3 = 2—10 with A = %. The corresponding optimal
to packing, and not at all if the hour were added to mixed strategies for the column and row players,
fabricating. respectively, are:

2

P : :

17. %= 0|, 9=|2|v=1 y=y/h=y4= |5 | adk=x/r=x-4=|§

1 3 1 1
3 - 7 5
- i i The vaue of the game with the shifted payoff matrix is1/x,
1 M3 which is 4, so the value of original gameis4 — 3= 1.
5 ~ 4
18. x=|2|,9= 1}1}:1 ] 0
0 L4 1% 7
-7 N ~ 16
29 r3 20. X = % ,y= 4 ,VZ—TJ'G
5 7 4 16
19.8=|2]|,9=|%|,v=1 16 z
1 1 .
L5 L7 Solution:
. 2 0 1 -1
| :
Solution: . Thegameis | -1 1 -2 o] . Add 3 to shift the
Thegameis |0 1 4 |.Add3to shift the game: 1 -2 2 1
3 -1 1 5 3 4 2
4 5 1 game: |2 4 1 3
3 4 7 |.Thelinear programming tableau for this 4 1 5 4 ) )
6 2 4 Thelinear programming tableau for this gameis
X1 X2 X3 X4 X5 X6 M _ X1 X2 X3 X4 X5 X6 oM
4 5 1 1 0 0 0]1 523 i ‘1" 2 é (13 8 8 | 1
gameis | 3 4 7 0 1 0 0 1 2413000 | :
6 2 4 0 0 1 0 1 |
1 -1 -1 0 0 0 10 1 -1 -1 -1 0 0 0 1 0
Pivots: The simplex method produces
o ¥ -2 1 0 -2 o0 ‘ i X1 X2 X3 X4 X5 x5 x;7 M
r 49 0 1 0 3 _10 1 0 4
0 3 5 0 1-3 0 } @ 7 @ @ @
2 2 2 4 g o 4 & _10 | 2
1 1 2 0O O 1 0 ‘ 1 a7 a7 a7 ar ‘ a7
3 3 6 6
_a 0 O 1 1 a 13 0 5
0 -2 -1 o o ! 1 ‘ 1 a7 v @ @ ‘ 7
3 3 6 6 8 0 0 0 5 7 4 1 ‘ 16
L 7 a7 7 a7 a7




21.

The optimal solutions of the primal and dual problems,
respectively, are

- 05 _71 5. _4 5 _ 5
n=0y2=5. Y= 5, V2= 3.

and

= 5 - 7 = 4
X1 =27, X2 = 37, X3= 77>
witha = 16

47
The corresponding optimal mixed strategies for the column

and row players, respectively, are

0 5
7 16
G o . 47 16 o G . 47 7
y=Y/A=Y-%=1| 4 and X=X/A=X-=1|1%
16 4
5 16

16
The vaue of the game with the shifted payoff matrix is 1/,

whichis {1, sothevalue of original gameis 37 — 3= —.

Changethis“game’” into alinear programming problem and
use the simplex method to analyze the game. The expected
value of the gameis % based on a payoff matrix for an
investment of $100. With $35,000 to invest, Bob “plays”’
this game 350 times. Thus, he expects to gain $380, and the
expected value of his portfolio at the end of the year is
$35,380. Using the optimal game strategy, Bob should
invest $11,000 in stocks, $9,000 in bonds, and $15,000 in
gold.

Solution:
4 1 -2
Thegameis| 1 3 0. Add3to shift the game:
-1 0 4

7 4 1
{4 6 3] . Thelinear programming problem isto
2 3 7

7 4 1 1
maximize y; + y, + ys subjectto (4 6 3| < |1
1

2 3 7
Y1 0
Y3 0

The tableau for this gameis

X1 X2 X3 X4 X5 X6 M
7 4 1 1 0 0 0]1
4 6 3 0 1 0 0|1
2 3 7 0 0 1 O ‘ 1
-1 -1 -1 0 0 0 1 ‘ 0

Section 9.4 Al5
The simplex calculations are
yio Y2 Y3 4 s v M
r 4 1 1 1
r 7 3 37 0 0 ‘ 7
26 17 4 3
o 7 37 -3 0 \ 7
13 47 2 5
o 7 F -3 0 ‘ 3
3 6 1 1
o -z -2 7 0 0 1 ‘ 7
Yooy Y3 Va Y5 Ve M
r 25 7 1 6
1z #z 0 - O ‘ ¥
143 22 17 8
~ 10 % 0 -% v 0 @
13 2 7 5
7z 1 -% 0 5 O ‘ r
9 5 6 11
6 - 0 5 0 # 1 ‘ b
YI Y2 Y3 Va Vs V6 M
r 3 25 6 14
1 0 0 B i BV 0 ‘ e
2 47 17 8
~ |0 1 % s ~is O ‘ g7
1 2 1
0 1 0 - a 0 ‘ i

oooigél\ﬁ

L 13 143 143 143

The optimal solution of the primal and dual problems,
respectively, are

Vi= 1% V2= 1. V3= 5.
and

Xy = %,)EZZ%,)E3= %, WIthK:%
The corresponding optimal mixed strategies for the

column and row players, respectively, are
H

1
ES
y=y/r=y - L=|2|adx=x/A=%-L=1| 2

13 15

The value of the g?asme with the shifted payoff mat?isx is
1/x , whichis 2, so the value of original gameis
12 — 3= 2. Using the optimal strategy X, Bob should
invest 2 of the $35,000 in stocks, % in bonds, and £ in
gold. That is, Bob should invest $11,000 in stocks, $9,000
in bonds, and $15,000 in gold. The expected value of the
gameis g—g based on $100 for each play of the game. (The
payoff matrix lists the amounts gained or lost for each $100
that isinvested for one year.) With $35,000 to invest, Bob
“plays’ this game 350 times. Thus, he should expect to
gain $380, and the expected value of his portfolio at the end

of the year is $35,380.
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a.

a.

Answers to Exercises

Consider x in.# andy in #*, and note that f(x) =

c"x=x"c, and g(y) = b’y = y"b. Because the entries

inx and y are nonnegative, the inequalitiesc < ATy and

AX <bleadto

fx)=x"c=<x'ATy = (A)"y =y (Ax)
<y"(b)=g(y)

L Af (X)) = g(®), thenfor any x in .#, part (a) shows that

fX) < g = f(X),soXisanoptimal solutionto P.
Similarly, for any y in #*, g(y) > f(X) = g(¥), which
shows that ¥ is an optimal solution to P*.

The coordinates of X are all nonnegative. From the
definition of u, A isequal to the sum of these
coordinates. It follows that the coordinates of X are
nonnegative and sum to one. Thus, X isamixed strategy
for therow player R. A similar argument holds for y and
the column player C.

b. If yisany mixed strategy for C, then

R X 1, 1., .
E&y) =x"Ay =2 (x"Ay) = = [(4"%)-y]
1

>E(v. )—7
=RV=g

. If x isany mixed strategy for R, then

A .1 _ 1 _
E(X,¥) =xTAy = X (x"Ay) = X [x-AY]
< E(X.u)—}

A T

. Part (b) impliesv(X) > 1/x,s0vg > 1/ . Part (c)

impliesv(y) < 1/A,s0ve < 1/A . It follows from the
Minimax Theorem in Section 9.1 that X and § are
optimal mixed strategies for R and C, respectively, and
that the value of the gameis 1/A.



