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9
Optimization

INTRODUCTORY EXAMPLE

The Berlin Airlift

After World War II, the city of Berlin was an “island”

surrounded by the Soviet zone of occupied Germany. The

city was divided into four sections, with the British,

French, and Americans having jurisdiction over West

Berlin and the Soviets over East Berlin. But the Russians

were eager for the other three nations to abandon Berlin.

After months of harassment, on June 24, 1948, they

imposed a blockade on West Berlin, cutting off all access

by land and rail. With a civilian population of about 2.5

million people, the isolated western sectors became

dependent on reserve stocks and airlift replacements.

Four days later, the first American planes landed in

Berlin with supplies of food, and “Operation Vittles” had

begun. At first the airlift seemed doomed to failure

because the needs of the city were overwhelming. The

Russians had cut off all electricity and coal shipments, and

the city was literally under siege. But the Western Allies

responded by flying in thousands of tons of food, coal,

medicine, and other supplies on a daily basis. In May

1949, Stalin relented, and the blockade was lifted. The

airlift, however, continued for another four months.

The Berlin Airlift was unbelievably successful in

using relatively few aircraft to deliver an enormous

amount of supplies. The design and conduct of this

operation required intensive planning and calculations,

which led to the theoretical development of linear

programming, and the invention of the simplex method by

George Dantzig. The potential of this new tool was

quickly recognized by business and industry, where it is

now used to allocate resources, plan production, schedule

workers, organize investment portfolios, formulate

marketing strategies, and perform many other tasks

involving optimization.
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2 CHAPTER 9 Optimization

There are many situations in business, politics, economics, military strategy, and
other areas where one tries to optimize a certain benefit. This may involve maxi-
mizing a profit or the payoff in a contest or minimizing a cost or other loss. This

chapter presents two mathematical models that deal with optimization problems.1 The
fundamental results in both cases depend on properties of convex sets and hyperplanes.
Section 9.1 introduces the theory of games and develops strategies based on probabil-
ity. Sections 9.2–9.4 explore techniques of linear programming and use them to solve a
variety of problems, including matrix games larger than those in Section 9.1.

9.1 MATRIX GAMES
The theory of games analyzes competitive phenomena and seeks to provide a basis for
rational decision-making. Its growing importance was highlighted in 1994 when the
Nobel Prize in Economics was awarded to John Harsanyi, John Nash, and Reinhard
Selten, for their pioneering work in the theory of noncooperative games.2

The games in this section arematrix games whose various outcomes are listed in a
payoff matrix. Two players in a game compete according to a fixed set of rules. Player
R (for row) has a choice ofm possible moves (or choices of action), and playerC (for
column) hasn moves. By convention, thepayoff matrix A = [aij ] lists the amounts
that therow playerR wins from playerC, depending on the choicesR andC make.
Entryaij shows the amountR wins whenR chooses actioni andC chooses actionj . A
negative value foraij indicates a loss forR, the amountR has to pay toC. The games
are often calledtwo-person zero-sum games because the algebraic sum of the amounts
gained byR andC is zero.

EXAMPLE 1 Each player has a supply of pennies, nickels, and dimes. At a given
signal, both players display (or “play”) one coin. If the displayed coins are not the same,
then the player showing the higher-valued coin gets to keep both. If they are both pennies
or both nickels, then playerC keeps both; but if they are both dimes, then playerR keeps
them. Construct a payoff matrix, usingp for display of a penny,n for a nickel, andd
for a dime.

Solution Each player has three choices,p, n, andd, so the payoff matrix is 3×3:

PlayerC
p n d

p

PlayerR n

d







1I am indebted to my brother, Dr. Steven R. Lay, for designing and writing most of this chapter and
class testing it at Lee University. I have also class tested it and made a few changes/additions. It works
well, and the students enjoyed it. However, I would appreciate feedback from anyone who uses this, fac-
ulty or students.
2The popular 2002 movie,A Beautiful Mind, tells a poignant story of the life of John Nash.
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Consider a row forR and fill in whatR receives (or pays), depending on the choiceC

makes. First, supposeR plays a penny. IfC also plays a penny,R loses 1 cent, because
the coins match. The(1,1) entry is –1. IfC plays either a nickel or a dime,R also loses
1 cent, becauseC displays the higher-valued coin. This information goes in row 1:

PlayerC
p n d

p

PlayerR n

d


 −1 −1 −1




Next, supposeR plays a nickel. IfC plays a penny,R wins the penny. Otherwise,R
loses the nickel, because eitherC matches the nickel or shows the higher-value dime.
Finally, whenR plays a dime,R gains either a penny or a nickel, whichever is shown
by C, becauseR’s dime is of higher value. Also, when both players display a dime,R

wins the dime fromC because of the special rule for that case.

PlayerC
p n d

p

PlayerR n

d


 −1 −1 −1

1 −5 −5
1 5 10




By looking at the payoff matrix in Example 1, the players discover that some plays
are better than others. Both players know thatR is likely to choose a row that has positive
entries, whileC is likely to choose a column that has negative entries (a payment from
R toC). PlayerR notes that every entry in row 3 is positive and chooses to play a dime.
No matter whatC may do, the worst that can happen toR is to win a penny. Player
C notes that every column contains a positive entry and thereforeC cannot be certain
of winning anything. So playerC chooses to play a penny, which will minimize the
potential loss.

From a mathematical point of view, what has each player done? PlayerR has found
the minimum of each row (the worst that could happen for that play) and has chosen the
row for which this minimum is largest. (See Fig. 1.) That is,R has computed

max
i

[
min

j
aij

]

–1

1

1

–1

5

–5

–1

10

–5

–1

1

1 5 10

–5

Player C Row minima

Player R

Column maxima

Max of the minima

Min of the maxima

FIGURE 1
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Observe that forC, a large positive payment toR is worse than a small positive
payment. ThusC has found the maximum of each column (the worst that can happen to
C for that play) and has chosen the column for which this maximum is smallest. Player
C has found

min
j

[
max

i
aij

]
For this payoff matrix[aij ],

max
i

min
j

aij = min
j

max
i

aij = 1

D E F I N I T I O N If the payoff matrix of a matrix game contains an entryaij that is both the minimum
of row i and the maximum of columnj , thenaij is called asaddle point.

In Example 1, the entrya31 is a saddle point for the payoff matrix. As long as both
players continue to seek their best advantage, playerR will always display a dime (row
3) and playerC will always display a penny (column 1). Some games may have more
than one saddle point.

The situation is not quite so simple in the next example.

EXAMPLE 2 Again suppose that each player has a supply of pennies, nickels, and
dimes to play, but this time the payoff matrix is given as follows:

10

0

1

p

d

n

–5

–10

1

5

–5

–1

p n d
–5

–10

10 1 5

–1

Player C
Row minima

Player R

Column maxima

Max of the minima

Min of the maxima

If playerR reasons as in the first example and looks at the row minima,R will choose
to play a nickel, thereby maximizing the minimum gain (in this case a loss of 1). Player
C, looking at the column maxima (the greatest payment toR), will also select a nickel
to minimize the loss toR.

Thus, as the game begins,R andC both continue to play a nickel. After a while,
however,C begins to reason, “IfR is going to play a nickel, then I’ll play a dime so that I
can win a penny.” However, whenC starts to play a dime repeatedly,R begins to reason,
“If C is going to play a dime, then I’ll play a penny so that I can win a nickel.” OnceR
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has done this,C switches to a nickel (to win a nickel) and thenR starts playing a nickel
. . . and so on. It seems that neither player can develop a winning strategy.

Mathematically speaking, the payoff matrix for the game in Example 2 does not
have a saddle point. Indeed,

max
i

min
j

aij = −1

while

min
j

max
i

aij = 1

This means that neither player can play the same coin repeatedly and be assured of
optimizing the winnings. In fact, any predictable strategy can be countered by the
opponent. But is it possible to formulate some combination of plays that over the long
run will produce an optimal return? The answer isyes (as Theorem 3 later will show),
when each move is made at random, but with a certain probability attached to each
possible choice.

Here is a way to imagine how playerR could develop a strategy for playing a matrix
game. Suppose thatR has a device consisting of a horizontal metal arrow whose center
of gravity is supported on a vertical rod in the middle of a flat circular region. The region
is cut into pie-shaped sectors, one for each of the rows in the payoff matrix. Player
R gives the arrow an initial spin and waits for it to come to rest. The position of the
arrowhead at rest determines one play forR in the matrix game.

If the area of the circle is taken as 1 unit, then the areas of the various sectors sum to
1; and these areas give the relative frequencies, orprobabilities, of selecting the various
plays in the matrix game, when the game is played many times. For instance, if there
are five sectors of equal area and if the arrow is spun many times, playerR will select
each of the five plays about 1/5 of the time. This strategy is specified by the vector in
R

5 whose entries all equal 1/5. If the five sectors of the circle are unequal in size, then
in the long run some game plays will be chosen more frequently than the others. The
corresponding strategy forR is specified by a vector inR5 that lists the areas of the five
sectors.

DEFINITIONS A probability vector in R
m is the set of allx in R

m whose entries are nonnegative
and sum to one. Such anx has the form

x =



x1
...

xm


 , xi ≥ 0 for i = 1, . . . , m and

m∑
i=1

xi = 1

Let A be anm×n payoff matrix for a game. Thestrategy space for playerR is
the set of all probability vectors inRm, and thestrategy space for playerC is the
set of all probability vectors inRn. A point in a strategy space is called astrategy.
If one entry in a strategy is 1 (and the other entries are zeros), the strategy is called
a pure strategy.
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The pure strategies inRm are the standard basis vectors forR
m, e1, . . . , em. In gen-

eral, each strategyx is a linear combination,x1e1 + · · · + xmem, of these pure strategies
with nonnegative weights that sum to one.3

Suppose now thatR andC are playing them×n matrix gameA = [aij ], whereaij

is the entry in theith row and thej th column ofA. There aremn possible outcomes of
the game, depending on the rowR chooses and the columnC chooses. SupposeR uses
strategyx andC uses strategyy, where

x =



x1
...

xm


 and y =




y1
...

yn




SinceR plays the first row with probabilityx1 andC plays the first column with probabil-
ity y1 and since their choices are made independently, it can be shown that the probability
is x1y1 thatR chooses the first rowand C chooses the first column. Over the course
of many games, the expected payoff toR for this outcome isa11x1y1 for one game. A
similar computation holds for each possible pair of choices thatR andC can make. The
sum of the expected payoffs toR over all possible pairs of choices is called theexpected
payoff, E(x, y), of the game to playerR for strategiesx andy. That is,

E(x, y) =
m∑

i=1

n∑
j=1

xiaij yj = xTAy

Roughly speaking, the numberE(x, y) is the average amount thatC will pay to R

per game, whenR andC play a large number of games using the strategiesx andy,
respectively.

Let X denote the strategy space forR andY the strategy space forC. If R were to
choose a particular strategy, sayx̃, and ifC were to discover this strategy, thenC would
certainly choosey to minimize

E(x̃, y) = x̃TAy

Thevalue of using strategỹx is the numberv(x̃) defined by

v(x̃) = min
y∈Y

E(x̃, y) = min
y∈Y

x̃TAy (1)

Sincex̃TA is a 1×n matrix, the mappingy 
→ E(x̃, y) = x̃TAy is a linear functional on
the probability spaceY . From this, it can be shown thatE(x̃, y) attains its minimum
wheny is one of the pure strategies,e1, . . . , en, for C.4

Recall thatAej is thej th column of the matrixA, usually denoted byaj . Since the
minimum in (1) is attained wheny = ej for somej , (1) may be written, withx in place

3More precisely, each strategy is a convex combination of the set of pure strategies—that is, a point in
the convex hull of the set of standard basis vectors. This fact connects the theory of convex sets to the
study of matrix games. The strategy space forR is an(m − 1)-dimensional simplex inRm, and the strat-
egy space forC is an(n − 1)-dimensional simplex inRn. See Sections 8.3 and 8.5 for definitions.
4A linear functional onY is a linear transformation fromY into R. The pure strategies are the extreme
points of the strategy space for a player. The stated result follows directly from Theorem 16 in Section
8.5.
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of x̃, as

v(x) = min
j

E(x, ej ) = min
j

xTAej = min
j

xTaj = min
j

x·aj (2)

That is,v(x) is the minimum of the inner product ofx with each of the columns ofA.
The goal ofR is to choosex to maximizev(x).

D E F I N I T I O N The numbervR, defined by

vR = max
x∈X

v(x) = max
x∈X

min
y∈Y

E(x, y) = max
x∈X

min
j

x·aj

with the notation as described above, is called thevalue of the game to row player
R. A strategyx̂ for R is calledoptimal if v(x̂) = vR.

Of course,E(x, y) may exceedvR for somex andy if C plays poorly. Thus,̂x is
optimal forR if E(x̂, y) ≥ vR for all y ∈ Y . This valuevR can be thought of as the most
that playerR can besure to receive fromC, independent of what playerC may do.

Asimilar analysis for playerC, using the pure strategies forx, shows that a particular
strategyy will have a valuev(y) given by

v(y) = max
x∈X

E(x, y) = max
i

E(ei , y) = max
i

rowi (A)y (3)

becauseeT
iA = rowi (A). That is, the value of strategyy toC is the maximum of the inner

product ofy with each of the rows ofA. The numbervC , defined by

vC = min
y∈Y

v(y) = min
y∈Y

max
i

rowi (A)y

is called thevalue of the game to C. This is the least thatC will have to lose regardless
of whatR may do. A strategŷy for C is calledoptimal if v(ŷ) = vC . Equivalently,ŷ is
optimal if E(x, ŷ) ≤ vC for all x in X.

T H E O R E M 1 In any matrix game,vR ≤ vC .

PROOF For any x in X, the definitionv(x) = miny∈Y E(x, y) implies thatv(x) ≤
E(x, y) for eachy in Y . Also, sincev(y) is the maximum ofE(x, y) over all x,
v(y) ≥ E(x, y) for each individualx. These two inequalities show that

v(x) ≤ E(x, y) ≤ v(y)

for all x ∈ X and for ally ∈ Y . For any fixedy, the left inequality above implies that
maxx∈X v(x) ≤ E(x, y). Similarly, for eachx, E(x, y) ≤ miny∈Y v(y). Thus,

max
x∈X

v(x) ≤ min
y∈Y

v(y)

which proves the theorem. ■
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EXAMPLE 3 Let A =

 10 −5 5

1 1 −1
0 −10 −5


, x =




1
4
1
2
1
4


, andy =




1
4
1
4
1
2


, whereA comes

from Example 2. ComputeE(x, y) and verify that this number lies betweenv(x) and
v(y).

Solution Compute

E(x, y) = xTAy = [
1
4

1
2

1
4

] 10 −5 5
1 1 −1
0 −10 −5






1
4
1
4
1
2


 = [

1
4

1
2

1
4

]



15
4

0
−5


 = − 5

16

Next, from (2),v(x) is the minimum ofE(x, ej ) for 1 ≤ j ≤ 3. So compute

E(x, e1) = 10
4 + 1

2 + 0 = 3

E(x, e2) = − 5
4 + 1

2 − 10
4 = − 13

4

E(x, e3) = 5
4 − 1

2 − 5
4 = − 1

2

Then v(x) = min
{

3,− 13
4 ,− 1

2

} = − 13
4 < − 5

16 = E(x, y). Similarly, E(e1, y) = 15
4 ,

E(e2, y) = 0, andE(e3, y) = −5, and sov(y) = max
{

15
4 ,0,−5

} = 15
4 . ThusE(x, y)

≤ v(y), as expected.

In Theorem 1, the proof thatvR ≤ vC was simple. A fundamental result in game
theory is thatvR = vC , but this is not easy to prove. The first proof by John von Neumann
in 1928 was technically difficult. Perhaps the best-known proof depends strongly on
certain properties of convex sets and hyperplanes. It appeared in the classic 1944 book
Theory of Games and Economic Behavior, by von Neumann and Oskar Morgenstern.5

T H E O R E M 2 Minimax Theorem

In any matrix game,vR = vC . That is,

max
x∈X

min
y∈Y

E(x, y) = min
y∈Y

max
x∈X

E(x, y)

D E F I N I T I O N The common valuev = vR = vC is called thevalue of the game. Any pair of
optimal strategies(x̂, ŷ) is called asolution to the game.

When (x̂, ŷ) is a solution to the game,vR = v(x̂) ≤ E(x̂, ŷ) ≤ v(ŷ) = vC , which
shows thatE(x̂, ŷ) = v.

5More precisely, the proof involves finding a hyperplane that strictly separates the origin0 from the con-
vex hull of {a1, . . . , an, e1, . . . , em}, wherea1, . . . , an are the columns ofA ande1, . . . , em are the stan-
dard basis vectors inRm. The details are in Steven R. Lay,Convex Sets and Their Applications (New
York: John Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), pp. 159–163.
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The next theorem is the main theoretical result of this section. A proof can be based
either on the Minimax Theorem or on the theory of linear programming (in Section 9.4).6

T H E O R E M 3 Fundamental Theorem for Matrix Games

In any matrix game, there are always optimal strategies. That is, every matrix
game has a solution.

2 × n Matrix Games

When a game matrixA has 2 rows andn columns, an optimal row strategy andvR are
fairly easy to compute. Suppose

A =
[
a11 a12 · · · a1n

a21 a22 · · · a2n

]

The objective of playerR is to choosex in R
2 to maximizev(x). Sincex has only

two entries, the probability spaceX for R may be parameterized by a variablet , with a

typicalx in X having the formx(t) =
[

1 − t

t

]
for 0 ≤ t ≤ 1. From formula (2),v(x(t))

is the minimum of the inner product ofx(t) with each of the columns ofA. That is,

v(x(t)) = min

{
x(t)T

[
a1j

a2j

]
: j = 1, . . . , n

}
= min

{
a1j (1 − t) + a2j t : j = 1, . . . , n

}
(4)

Thusv(x(t)) is the minimum value ofn linear functions oft . When these functions are
graphed on one coordinate system for 0≤ t ≤ 1, the graph ofz = v(x(t)) as a function
of t becomes evident, and the maximum value ofv(x(t)) is easy to find. The process is
illustrated best by an example.

EXAMPLE 4 Consider the game whose payoff matrix is

A =
[

1 5 3 6
4 0 1 2

]

a. On at-z coordinate system, sketch the four linesz = a1j (1 − t) + a2j t for 0 ≤ t ≤ 1,
and darken the line segments that correspond to the graph ofz = v(x(t)), from (4).

6The proof based on the Minimax Theorem goes as follows: The functionv(x) is continuous on the
compact setX, so there exists a point̂x in X such that

v(x̂) = max
x∈X

v(x) = vR

Similarly, there existŝy in Y such that

v(ŷ) = min
y∈Y

v(y) = vC

According to the Minimax Theorem,vR = vC = v.
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b. Identify the highest pointM = (t, z) on the graph ofv(x(t)). Thez-coordinate of
M is the valuevR of the game forR, and thet-coordinate determines an optimal
strategyx̂(t) for R.

Solution

a. The four lines are

z = 1· (1 − t) + 4 · t = 3t + 1
z = 5· (1 − t) + 0 · t = −5t + 5
z = 3· (1 − t) + 1 · t = −2t + 3
z = 6· (1 − t) + 2 · t = −4t + 6

See Fig. 2. Notice that the linez = a1j · (1 − t) + a2j · t goes through the points
(0, a1j ) and(1, a2j ). For instance, the linez = 6 · (1 − t) + 2 · t for column 4 goes
through the points(0,6) and(1,2). The heavy polygonal path in Fig. 2 represents
v(x) as a function oft , because thez-coordinate of a point on this path is the minimum
of the correspondingz-coordinates of points on the four lines in Fig. 2.

t
1

3

2

column 2
column 3

column 4

column 1

1

M

0

z

6

5

4

2
5

11
5

FIGURE 2

b. The highest point,M, on the graph ofv(x) is the intersection of the lines corresponding
to the first and third columns ofA. The coordinates ofM are

(
2
5,

11
5

)
.7 The value of

the game forR is 11
5 . This value is attained att = 2

5, so the optimal strategy forR is

x̂ =
[

1 − 2
5

2
5

]
=

[
3
5
2
5

]
.

For any 2×n matrix game, Example 4 illustrates the method for finding an optimal
solution for playerR. Theorem 3 guarantees that there also exists an optimal strategy for

7Solve the equations for columns 1 and 3 simultaneously:

(column 1)z = 3t + 1
(column 3)z = −2t + 3

}
⇒ t = 2

5
, z = 11

5
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playerC, and the value of the game is the same forC as forR. With this value available,
an analysis of the graphical solution forR, as in Fig. 2, will reveal how to produce an
optimal strategŷy for C. The next theorem supplies the key information aboutŷ.

T H E O R E M 4 Let x̂ andŷ be optimal strategies for anm×n matrix game whose value isv, and
suppose that

x̂ = x̂1e1 + · · · + x̂mem in R
m (5)

Thenŷ is a convex combination of the pure strategiesej in R
n for whichE(x̂, ej ) =

v. In addition,ŷ satisfies the equation

E(ei , ŷ) = v (6)

for eachi such that̂xi �= 0.

PROOF Write ŷ = ŷ1e1 + · · · + ŷnen inR
n, and note thatv = E(x̂, ŷ) = v(x̂) ≤ E(x̂, ej )

for j = 1, . . . , n. So there exist nonnegative numbersεj such that

E(x̂, ej ) = v + εj (j = 1, . . . , n)

Then

v = E(x̂, ŷ) = E(x̂, ŷ1e1 + · · · + ŷnen)

=
n∑

j=1

ŷjE(x̂, ej ) =
n∑

j=1

ŷj (v + εj )

= v +
n∑

j=1

ŷj εj

because thêyj sum to one. This equality is possible only ifŷj = 0 whenever
εj > 0. Thus ŷ is a linear combination of theej for which εj = 0. For suchj ,
E(x̂, ej ) = v.

Next, observe thatE(ei , ŷ) ≤ v(ŷ) = E(x̂, ŷ) for i = 1, . . . , m. So there exist non-
negative numbersδi such that

E(ei , ŷ) + δi = v (i = 1, . . . , m) (7)

Then, using (5) gives

v = E(x̂, ŷ) =
m∑

i=1
x̂iE(ei , ŷ)

=
m∑

i=1
x̂i (v − δi) = v −

m∑
i=1

x̂iδi

since thex̂i sum to one. This equality is possible only ifδi = 0 whenx̂i �= 0. By (7),
E(ei , ŷ) = v for eachi such that̂xi �= 0. ■
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EXAMPLE 5 The value of the game in Example 4 is11
5 , attained when̂x =

[
3
5
2
5

]
. Use

this fact to find an optimal strategy for the column playerC.

Solution The z-coordinate of the maximum pointM in Fig. 2 is the value of the
game, and thet-coordinate identifies the optimal strategyx( 2

5) = x̂. Recall that thez-
coordinates of the lines in Fig. 2 representE(x(t), ej ) for j = 1, . . . ,4. Only the lines
for columns 1 and 3 pass through the pointM, which means that

E(x̂, e1) = 11
5 and E(x̂,e3) = 11

5

while E(x̂, e2) andE(x̂, e4) are greater than11
5 . By Theorem 4, the optimal column

strategyŷ for C is a linear combination of the pure strategiese1 ande3 in R
2. Thus,ŷ

has the form

ŷ = c1




1
0
0
0


 + c3




0
0
1
0


 =




c1

0
c3

0




wherec1 + c3 = 1. Since both coordinates of the optimalx̂ are nonzero, Theorem 4
shows thatE(e1, ŷ) = 11

5 andE(e2, ŷ) = 11
5 . Each condition, by itself, determinesŷ. For

example,

E(e1, ŷ) = eT
1Aŷ = [

1 0
][ 4 0 1 2

1 5 3 6

]
c1

0
c3

0


 = 4c1 + c3 = 11

5

Substitutec3 = 1 − c1, and obtain 4c1 + (1 − c1) = 11
5 , c1 = 2

5 andc3 = 3
5. The optimal

strategy forC is ŷ =




2
5

0
3
5

0


.

Reducing the Size of a Game

The generalm×n matrix game can be solved using linear programming techniques, and
Section 9.4 describes one method for doing this. In some cases, however, a matrix game
can be reduced to a “smaller” game whose matrix has only two rows. If this happens,
the graphical method of Examples 4 and 5 is available.

D E F I N I T I O N Given a and b in R
n, with entriesai and bi , respectively, vectora is said to

dominate vectorb if ai ≥ bi for all i = 1, . . . , n andai > bi for at least onei. If
a dominatesb, thenb is said to berecessive to a.
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Suppose that in the matrix gameA, row r dominates rows. This means that forR
the pure strategy of choosing rowr is at least as good as the pure strategy of choosing
row s, no matter whatC may choose, and for some choice byC, r is better thans. It
follows that the recessive rows (the “smaller” one) can be ignored byR without hurting
R’s expected payoff. A similar analysis applies to the columns ofA, in which case
the dominating “larger” column is ignored. These observations are summarized in the
following theorem.

T H E O R E M 5 Let A be anm×n matrix game. If rows in the matrixA is recessive to some
other row, then letA1 be the(m − 1)×n matrix obtained by deleting rows from
A. Similarly, if column t of matrix A dominates some other column, letA2 be
them×(n − 1) matrix obtained by deleting columnt from A. In either case, any
optimal strategy of the reduced matrix gameA1 or A2 will determine an optimal
strategy forA.

EXAMPLE 6 Use the process described in Theorem 5 to reduce the following matrix
game to a smaller size. Then find the value of the game and optimal strategies for both
players in the original game.

A =

 7 1 6 7

8 3 1 0
4 5 3 3




Solution Since the first column dominates the third, playerC will never want to use
the first pure strategy. So delete column 1 and obtain

 ∗ 1 6 7
∗ 3 1 0
∗ 5 3 3




In this matrix, row 2 is recessive to row 3. Delete row 2 and obtain
 ∗ 1 6 7

∗ ∗ ∗ ∗
∗ 5 3 3




This reduced 2×3 matrix can be reduced further by dropping the last column, since it
dominates column 2. Thus, the original matrix gameA has been reduced to

B =
[

1 6
5 3

]
whenA =


 7 1 6 7

8 3 1 0
4 5 3 3


 (8)

and any optimal strategy forB will produce an optimal strategy forA, with zeros as
entries corresponding to deleted rows or columns.

A quick check of matrixB shows that the game has no saddle point (because 3 is
the max of the row minima and 5 is the min of the column maxima). So the graphical
solution method is needed. Figure 3 shows the lines corresponding to the two columns
of B, whose equations arez = 4t + 1 andz = −3t + 6. They intersect wheret = 5

7; the



August 16, 2005 10:59 L57-ch09 Sheet number 14 Page number 14 cyan magenta yellow black

14 CHAPTER 9 Optimization

t
1

3

column 2

column 1

1

M

0

z

6

5

5
7

27
7

FIGURE 3

value of the game is27
7 , and the optimal row strategy for matrixB is

x̂ = x( 5
7) =

[
1 − 5

7
5
7

]
=

[
2
7
5
7

]

Since the game has no saddle point, the optimal column strategy must be a linear
combination of the two pure strategies. Setŷ = c1e1 + c2e2, and use the second part of
Theorem 4 to write

27
7 = E(e1, ŷ) = [

1 0
][ 1 6

5 3

][
c1

c2

]
= c1 + 6c2 = (1 − c2) + 6c2

Solving gives 5c2 = 20
7 , c2 = 4

7, andc1 = 1 − c2 = 3
7. Thus ŷ =

[
3
7
4
7

]
. As a check,

computeE(e2, ŷ) = 5( 3
7) + 3( 4

7) = 27
7 = v.

The final step is to construct the solution for matrixA from the solution for matrix
B (given byx̂ andŷ above). Look at the matrices in (8) to see where the extra zeros go.
The row and column strategies forA are, respectively,

x̂ =



2
7

0
5
7


 and ŷ =




0
3
7
4
7

0




P R A C T I C E P R O B L E M

Find the optimal strategies and the value of the matrix game
 −3 4 1 3

2 2 −1 0
1 5 2 3



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9.1 EXERCISES

In Exercises 1–4, write the payoff matrix for each game.

1. PlayerR has a supply of dimes and quarters. PlayerR chooses
one of the coins, and playerC must guess which coinR has
chosen. If the guess is correct,C takes the coin. If the guess
is incorrect,C givesR an amount equal toR’s chosen coin.

2. PlayersR andC each show one, two, or three fingers. If
the total numberN of fingers shown is even, thenC paysN
dollars toR. If N is odd,R paysN dollars toC.

3. In the traditional Japanese children’s gamejanken (or “stone,
scissors, paper”), at a given signal, each of two players shows
either no fingers (stone), two fingers (scissors), or all five (pa-
per). Stone beats scissors, scissors beats paper, and paper
beats stone. In the case of a tie, there is no payoff. In the case
of a win, the winner collects 5 yen. (On December 10, 2004,
Fox Sports broadcast the 2004 Rock Paper Scissors World
Championships. Seewww.worldrps.com.)

4. PlayerR has three cards: a red 3, a red 6, and a black 7. Player
C has two cards: a red 4 and a black 9. They each show one
of their cards. If the cards are the same color,R receives the
larger of the two numbers. If the cards are of different colors,
C receives the sum of the two numbers.

Find all saddle points for the matrix games in Exercises 5–8.

5.
[

4 3
1 −1

]
6.

[
2 1 3
4 −2 1

]

7.


 5 3 4 3

−2 1 −5 2
4 3 7 3


 8.


 −2 4 1 −1

3 5 2 2
1 −3 0 2




9. Let M be the matrix game having payoff matrix
 1 2 −2

0 1 4
3 −1 1


. FindE(x, y), v(x), andv(y) whenx andy

have the given values.

a. x =




1
3
1
2
1
6


 andy =




1
4
1
2
1
4




b. x =




1
4
1
2
1
4


 andy =




1
2
1
4
1
4




10. Let M be the matrix game having payoff matrix
 2 0 1 −1

−1 1 −2 0
1 −2 2 1


. FindE(x, y), v(x), andv(y) when

x andy have the given values.

a. x =



1
3

0
2
3


 andy =




1
4
1
2

0
1
4




b. x =




1
2
1
4
1
4


 andy =




0
1
4
1
2
1
4




In Exercises 11–18, find the optimal row and column strategies
and the value of each matrix game.

11.
[

3 −2
0 1

]
12.

[
2 −2

−3 6

]

13.
[

3 5
4 1

]
14.

[
3 5 3 2

−1 9 1 8

]

15.
[

4 6 2 0
1 3 2 5

]
16.


 5 −1 1

4 2 3
−2 −3 1




17.




0 1 −1 4 3
1 −1 3 −1 −3
2 −1 4 0 −2

−1 0 −2 2 1




18.




6 4 5 5
0 4 2 7
6 3 5 2
2 5 3 7




19. A certain army is engaged in guerrilla warfare. It has two
ways of getting supplies to its troops: it can send a convoy
up the river road or it can send a convoy overland through
the jungle. On a given day, the guerrillas can watch only one
of the two roads. If the convoy goes along the river and the
guerrillas are there, the convoy will have to turn back and 4
army soldiers will be lost. If the convoy goes overland and
encounters the guerrillas, half the supplies will get through,
but 7 army soldiers will be lost. Each day a supply convoy
travels one of the roads, and if the guerrillas are watching the

www.worldrps.com
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other road, the convoy gets through with no losses. Set up and
solve the following as matrix games, withR being the army.
a. What is the optimal strategy for the army if it wants to max-

imize the amount of supplies it gets to its troops? What
is the optimal strategy for the guerrillas if they want to
prevent the most supplies from getting through? If these
strategies are followed, what portion of the supplies gets
through?

b. What is the optimal strategy for the army if it wants to
minimize its casualties? What is the optimal strategy for
the guerrillas if they want to inflict maximum losses on the
army? If these strategies are followed, what portion of the
supplies gets through?

20. Suppose in Exercise 19 that whenever the convoy goes over-
land two soldiers are lost to land mines, whether they are
attacked or not. Thus, if the army encounters the guerrillas,
there will be 9 casualties. If it does not encounter the guerril-
las, there will be 2 casualties.
a. Find the optimal strategies for the army and the guerrillas

with respect to the number of army casualties.

b. In part (a), what is the “value” of the game? What does
this represent in terms of the troops?

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21. a. The payoff matrix for a matrix game indicates whatR wins
for each combination of moves.

b. With a pure strategy, a player makes the same choice each
time the game is played.

c. The valuev(x) of a particular strategyx to playerR is
equal to the maximum of the inner product ofx with each
of the columns of the payoff matrix.

d. The Minimax Theorem says that every matrix game has a
solution.

e. If row s is recessive to some other row in payoff matrixA,
then rows will not be used (that is, have probability zero)
in some optimal strategy for (row) playerR.

22. a. If aij is a saddle point, thenaij is the smallest entry in row
i and the largest entry in columnj .

b. Each pure strategy is an optimal strategy.

c. The valuevR of the game to playerR is the maximum of
the values of the various possible strategies forR.

d. The Fundamental Theorem for Matrix Games shows how
to solve every matrix game.

e. If columnt dominates some other column in a payoff ma-
trix A, then columnt will not be used (that is, have prob-
ability zero) in some optimal strategy for (column) player
C.

23. Find the optimal strategies and the value of the game in Ex-
ample 2.

24. Bill and Wayne are playing a game in which each player has
a choice of two colors: red or blue. The payoff matrix with
Bill as the row player is given below.

red blue

red
blue

[ −1 2
3 −4

]

For example, this means that if both people choose red, then
Bill pays Wayne one unit.
a. Using the same payoffs for Bill and Wayne, write the ma-

trix that shows the winnings with Wayne as the row player.

b. If A is the matrix with Bill as the row player, write your
answer to (a) in terms ofA.

25. Consider the matrix gameA =
[
a b

c d

]
, whereA has no

saddle point.
a. Find a formula for the optimal strategiesx̂ for R andŷ for

C. What is the value of the game?

b. LetJ =
[

1 1
1 1

]
, and letα andβ be real numbers with

α �= 0. Use your answer in part (a) to show that the optimal
strategies for the matrix gameB = αA + βJ are the same
as forA. In particular, note that the optimal strategies for
A andA + βJ are the same.

26. Let A be a matrix game having valuev. Find an example to
show thatE(x, y) = v does not necessarily imply thatx and
y are optimal strategies.

S O L U T I O N T O P R A C T I C E P R O B L E M

The first row is recessive to the third row, so the first row may be eliminated. The second
and fourth columns dominate the first and third columns, respectively. Deletion of the
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second and fourth columns leaves the matrixB:

B =
[

2 −1
1 2

]
whenA =


 −3 4 1 3

2 2 −1 0
1 5 2 3




The game forB has no saddle point, but a graphical analysis will work. The two columns
of B determine the two lines shown below, whose equations are 2· (1 − t) + 1· t and
z = −1· (1 − t) + 2· t .

t

2 2

1

–1

z

3
4

5
4

These lines intersect at the point
(

3
4,

5
4

)
. The value of the game is54, and the optimal

row strategy for the matrix gameB is

x̂ = x
(

3
4

) =
[

1 − 3
4

3
4

]
=

[
1
4
3
4

]

By Theorem 4, the optimal column strategy,ŷ =
[
c1

c2

]
, satisfies two equationsE(e1, ŷ) =

5
4 andE(e2, ŷ) = 5

4, becausêx is a linear combination of bothe1 ande2. Each of these
equations determineŝy. For example,

5

4
= E(e1, ŷ) = [

1 0
][ 2 −1

1 2

][
c1

c2

]
= 2c1 − c2 = 2c1 − (1 − c1) = 3c1 − 1

Thus,c1 = 3
4, and soc2 = 1

4, andŷ =
[

3
4
1
4

]
. As a check, compute

E(e2, ŷ) = [
0 1

][ 2 −1
1 2

][ 3
4
1
4

]
= [

1 2
][ 3

4
1
4

]
= 5

4

This solves the game forB. The optimal row strategŷx for A needs a 0 in the first entry
(for the deleted first row); the optimal column strategyŷ for A needs 0’s in entries 2 and
4 (for the two deleted columns). Thus

x̂ =



0
1
4
3
4


 and ŷ =




3
4

0
1
4

0



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9.2 LINEAR PROGRAMMING—GEOMETRIC METHOD
Since the 1950s, the variety and size of industrial linear programming problems have
grown along with the dramatic increase in computing power. Still, at their core, linear
programming problems have a concise mathematical description, discussed in this sec-
tion. The final example in the section presents a geometric view of linear programming
that is important for visualizing the algebraic approach needed for larger problems.

Generally speaking, a linear programming problem involves a system of linear
inequalities in variablesx1, . . . , xn and a linear functionalf from R

n into R. The
system typically has many free variables, and the problem is to find a solutionx that
maximizes or minimizesf (x).

EXAMPLE 1 The Shady-Lane grass seed company blends two types of seed mixtures,
EverGreen and QuickGreen. Each bag of EverGreen contains 3 pounds of fescue seed,
1 pound of rye seed, and 1 pound of bluegrass. Each bag of QuickGreen contains 2
pounds of fescue, 2 pounds of rye, and 1 pound of bluegrass. The company has 1200
pounds of fescue seed, 800 pounds of rye seed, and 450 pounds of bluegrass available to
put into its mixtures. The company makes a profit of $2 on each bag of EverGreen and
$3 on each bag of QuickGreen that it produces. Set up the mathematical problem that
determines the number of bags of each mixture that Shady-Lane should make in order
to maximize its profit.

Solution The phrase “maximize. . . profit” identifies the goal or objective of the prob-
lem. The first step, then, is to create a formula for the profit. Begin by naming the
quantities that can vary. Letx1 be the number of bags of EverGreen andx2 the number
of bags of QuickGreen that are produced. Since the profit on each bag of EverGreen is
$2 and the profit on each bag of QuickGreen is $3, the total profit (in dollars) is

2x1 + 3x2 (profit function)

The next step is to write inequalities or equalities thatx1 andx2 must satisfy, one for each
of the ingredients that are in limited supply. Notice that each bag of EverGreen requires
3 pounds of fescue seed and each bag of QuickGreen requires 2 pounds of fescue seed.
So the total amount of fescue required is 3x1 + 2x2 pounds. Since only 1200 pounds are
available,x1 andx2 must satisfy

3x1 + 2x2 ≤ 1200 (fescue)

Similarly, EverGreen needs 1 pound of rye per bag, QuickGreen needs 2 pounds per bag,
and only 800 pounds of rye are available. Thus, the total amount of rye seed required is
x1 + 2x2, andx1 andx2 must satisfy

x1 + 2x2 ≤ 800 (rye)

As for the bluegrass, EverGreen requires 1 pound per bag and QuickGreen requires 1
pound per bag. Since 450 pounds are available,

x1 + x2 ≤ 450 (bluegrass)
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Of course,x1 andx2 cannot be negative, sox1 andx2 must also satisfy

x1 ≥ 0 and x2 ≥ 0

The problem is summarized mathematically as

Maximize 2x1 + 3x2 (profit function)
subject to 3x1 + 2x2 ≤ 1200 (fescue)

x1 + 2x2 ≤ 800 (rye)
x1 + x2 ≤ 450 (bluegrass)

andx1 ≥ 0, x2 ≥ 0.

EXAMPLE 2 An oil refining company has two refineries that produce three grades of
unleaded gasoline. Each day refineryAproduces 12,000 gallons of regular, 4,000 gallons
of premium, and 1,000 gallons of super gas, at a cost of $3,500. Each day refinery B
produces 4,000 gallons of regular, 4,000 gallons of premium, and 5,000 gallons of super
gas, at a cost of $3,000. An order is received for 48,000 gallons of regular, 32,000
gallons of premium, and 20,000 gallons of super gas. Set up a mathematical problem
that determines the number of days each refinery should operate in order to fill the order
at the least cost.

Solution Suppose that refinery A operatesx1 days and refinery B operatesx2 days.
The cost of doing this is 3,500x1 + 3,000x2 dollars. The problem is to find a production
schedule(x1, x2) that minimizes this cost and also ensures that the required gasoline is
produced.

Since refinery A produces 12,000 gallons of regular gas each day and refinery B
produces 4,000 gallons of regular each day, the total produced is 12,000x1 + 4,000x2.
The total should be at least 48,000 gallons. That is,

12,000x1 + 4,000x2 ≥ 48,000

Similarly, for the premium gas,

4,000x1 + 4,000x2 ≥ 32,000

and, for the super,

1,000x1 + 5,000x2 ≥ 20,000

As in Example 1,x1 andx2 cannot be negative, sox1 ≥ 0 andx2 ≥ 0.
The problem is summarized mathematically as

Minimize 3,500x1 + 3,000x2 (cost function)
subject to 12,000x1 + 4,000x2 ≥ 48,000 (regular gas)

4,000x1 + 4,000x2 ≥ 32,000 (premium)
1,000x1 + 5,000x2 ≥ 20,000 (super)

andx1 ≥ 0, x2 ≥ 0.

The examples show how a linear programming problem involves finding the maxi-
mum (or minimum) of a linear function, called theobjective function, subject to certain
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linear constraints. In many situations, the constraints take the form of linear inequalities
and the variables are restricted to nonnegative values. Here is a precise statement of the
so-called canonical form of a linear programming problem.

D E F I N I T I O N

Givenb =



b1
...

bm


 in R

m, c =



c1
...

cn


 in R

n, and anm×n matrix A = [
aij

]
, the

canonical linear programming problem is the following:

Find ann-tuplex =



x1
...

xn


 in R

n to maximize

f (x1, . . . , xn) = c1x1 + c2x2 + · · · + cnxn

subject to the constraints

a11x1 + a12x2+ · · · +a1nxn ≤ b1

a21x1 + a22x2+ · · · +a2nxn ≤ b2
...

am1x1 + am2x2+ · · · +amnxn ≤ bm

and

xj ≥ 0 for j = 1, . . . , n

This may be restated in vector-matrix notation as follows:

Maximizef (x) = cTx (1)

subject to the constraintsAx ≤ b (2)

andx ≥ 0 (3)

where an inequality between two vectors applies to each of their coordinates.
Any vectorx that satisfies (2) and (3) is called afeasible solution, and the set

of all feasible solutions, denoted byF , is called thefeasible set. A vectorx in F
is anoptimal solution if f (x) = maxx∈F f (x).

The canonical statement of the problem is really not as restrictive as it might seem.
To minimize a functionh(x), replace it with the problem of maximizing the function
−h(x). A constraint inequality of the sort

ai1x1 + · · · + ainxn ≥ bi

can be replaced by

−ai1x1 − · · · − ainxn ≤ −bi
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An equality constraint

ai1x1 + · · · + ainxn = bi

can be replaced by two inequalities

ai1x1 + · · · + ainxn ≤ bi

−ai1x1 − · · · − ainxn ≤ −bi

With an arbitrary canonical linear programming problem, two things can go wrong.
If the constraint inequalities are inconsistent, thenF is the empty set. If the objective
function takes on arbitrarily large values inF , then the desired maximum does not exist.
In the former case, the problem is said to beinfeasible; in the latter case, the problem is
calledunbounded.

EXAMPLE 3 The problem

Maximize 5x
subject to x ≤ 3

−x ≤ –4
x ≥ 0

is infeasible, since there is nox such thatx ≤ 3 andx ≥ 4.

EXAMPLE 4 The problem

Maximize 5x
subject to –x ≤ 3

x ≥ 0

is unbounded. The values of 5x may be arbitrarily large, asx is only required to satisfy
x ≥ 0 (andx ≥ −3).

Fortunately, these are the only two things that can go wrong.

T H E O R E M 6 If the feasible setF is nonempty and if the objective function is bounded above
on F , then the canonical linear programming problem has at least one optimal
solution. Furthermore, at least one of the optimal solutions is an extreme point of
F .1

Theorem 6 describes when an optimal solution exists, and it suggests a possible
technique for finding one. That is, evaluate the objective function at each of the extreme

1The feasible set is the solution of a system of linear inequalities. Geometrically, this corresponds to the
intersection of a finite number of (closed) half-spaces, sometimes called a polyhedral set. Intuitively, the
extreme points correspond to the “corner points,” or vertices, of this polyhedral set. The notion of an
extreme point is discussed more fully in Section 8.5.

A proof of Theorem 6 is in Steven R. Lay,Convex Sets and Their Applications (New York: John
Wiley & Sons, 1982; Melbourne, FL: Krieger Pub., 1992), p. 171.
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points ofF and select the point that gives the largest value. This works well in simple
cases such as the next two examples. The geometric approach is limited to two or three
dimensions, but it provides an important visualization of the nature of the solution set
and how the objective function interacts with the feasible set to identify extreme points.

EXAMPLE 5 Maximizef (x1, x2) = 2x1 + 3x2

subject to x1 ≤ 30
x2 ≤ 20

x1 + 2x2 ≤ 54
andx1 ≥ 0, x2 ≥ 0.

Solution Figure 1 shows the shaded pentagonal feasible set, obtained by graphing
each of the constraint inequalities. (For simplicity, points in this section are displayed
as ordered pairs or triples.) There are five extreme points, corresponding to the five
vertices of the feasible set. They are found by solving the appropriate pairs of linear
equations. For example, the extreme point(14,20) is found by solving the linear system
x1 + 2x2 = 54 andx2 = 20. The table below shows the value of the objective function
at each extreme point. Evidently, the maximum is 96 atx1 = 30 andx2 = 12.

x1(0, 0) (30, 0)

(30, 12)

(0, 20) (14, 20)

x2

(0, 0)
(30, 0)
(30, 12)
(14, 20)
(0, 20)

0
60
96
88
60

(x1, x2) 2x1 + 3x2

FIGURE 1

Another geometric technique that can be used when the problem involves two vari-
ables is to graph severallevel lines for the objective function. These are parallel lines,
and the objective function has a constant value on each line. (See Fig. 2.) The values
of the objective functionf (x1, x2) increase as(x1, x2) moves from left to right. The
level line farthest to the right that still intersects the feasible set is the line through the
vertex(30,12). Thus, the point(30,12) yields the maximum value off (x1, x2) over
the feasible set.
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x1

f (x1, x2) = 30 f (x1, x2) = 60

f (x1, x2) = 96

x2

FIGURE 2

EXAMPLE 6 Maximizef (x1, x2, x3) = 2x1 + 3x2 + 4x3

subject to x1 + x2 + x3 ≤ 50
x1 + 2x2 + 4x3 ≤ 80

andx1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solution Each of the five inequalities above determines a “half-space” inR
3—a plane

together with all points on one side of the plane. The feasible set of this linear program-
ming problem is the intersection of these half-spaces, which is a convex set in the first
octant ofR3.

When the first inequality is changed to an equality, the graph is a plane that intercepts
each coordinate axis 50 units from the origin and determines the equilateral triangular
region shown in Fig. 3. Since(0,0,0) satisfies the inequality, so do all the other points
“below” the plane. In a similar fashion, the second (in)equality determines a triangular
region on a plane (shown in Fig. 4) that passes somewhat closer to the origin. The two
planes intersect in a line that contains segmentEB.

x1

x2

x3

50

0
50

50

FIGURE 3

x1

x2

x3

E
B

80

20

0 40

FIGURE 4

The quadrilateral surfaceBCDE forms a boundary of the feasible set, because it
is below the equilateral triangular region. BeyondEB, however, the two planes change
position relative to the origin, so the planar regionABE forms another bounding surface
for the feasible set. The vertices of the feasible set are the pointsA, B, C, D, E, and 0
(the origin). See Fig. 5, which has all sides of the feasible set shaded except the large
“top” piece. To find the coordinates ofB, solve the system


x1 + x2 + x3 = 50
x1 + 2x2 + 4x3 = 80

x3 = 0
⇒

{
x1 + x2 = 50
x1 + 2x2 = 80

Obtainx2 = 30, and find thatB is (20,30,0). ForE, solve


x1 + x2 + x3 = 50
x1 + 2x2 + 4x3 = 80

x2 = 0
⇒

{
x1 + x3 = 50
x1 + 4x3 = 80

Obtainx3 = 10, and find thatE = (40,0,10).
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x1

x2

x3

40
C

500

D

50
A

(40, 0, 10) E B

80

20

50

FIGURE 5

Now that the feasible set and its extreme points are clearly seen, the next step is
to examine the objective functionf (x1, x2, x3) = 2x1 + 3x2 + 4x3. The sets on which
f is constant are planes, rather than lines, all having(2,3,4) as a normal vector to the
plane. This normal vector has a direction different from the normal vectors(1,1,1) and
(1,2,4) to the two facesBCDE andABE. So the level sets off are not parallel to any
of the bounding surfaces of the feasible set. Figure 6 shows just the feasible set and a
level set on whichf has the value 120. This plane passes throughC, E, and the point
(30,20,0) on the edge of the feasible set betweenA andB, which shows that the vertex
B is “above” this level plane. In fact,f (20,30,0) = 130. Thus the unique solution of
the linear programming problem is atB = (20,30,0).

x1

x2

x3

C
400

D

A

(40, 0, 10) E
B (20, 30, 0)

(30, 20, 0)

50

20

f (x1, x2, x3) = 120

FIGURE 6
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P R A C T I C E P R O B L E M S

1. Consider the following problem:

Maximize 2x1 + x2

subject to x1 − 2x2 ≥ −8
3x1 + 2x2 ≤ 24

andx1 ≥ 0, x2 ≥ 0.

Write this problem in the form of a canonical linear programming problem: Maximize
cTx subject toAx ≤ b andx ≥ 0. SpecifyA, b, andc.

2. Graph the feasible set for Practice Problem 1.

3. Find the extreme points of the feasible set in Practice Problem 2.

4. Use the answer to Practice Problem 3 to find the solution to the linear programming
problem in Practice Problem 1.

9.2 EXERCISES

1. Betty plans to invest a total of $12,000 in mutual funds, cer-
tificates of deposit (CDs), and a high yield savings account.
Because of the risk involved in mutual funds, she wants to
invest no more in mutual funds than the sum of her CDs and
savings. She also wants the amount in savings to be at least
half the amount in CD’s. Her expected returns are 11% on
the mutual funds, 8% on the CD’s and 6% on savings. How
much money should Betty invest in each area in order to have
the largest return on her investments? Set this up as a linear
programming problem in the following form: MaximizecTx
subject toAx ≤ b andx ≥ 0. Do not find the solution.

2. A dog breeder decides to feed his dogs a combination of two
dog foods: Pixie Power and Misty Might. He wants the dogs
to receive four nutritional factors each month. The amounts
of these factors (a, b, c, and d) contained in 1 bag of each dog
food are shown in the following chart, together with the total
amounts needed.

a b c d

Pixie Power 3 2 1 2

Misty Might 2 4 3 1

Needed 28 30 20 25

The costs per bag are $50 for Pixie Power and $40 for Misty
Might. How many bags of each dog food should be blended to

meet the nutritional requirements at the lowest cost? Set this
up as a linear programming problem in the following form:
Minimize cTx subject toAx ≥ b andx ≥ 0. Do not find the
solution.

In Exercises 3–6, find vectorsb andc and matrixA so that each
problem is set up as a canonical linear programming problem:
MaximizecTx subject toAx ≤ b andx ≥ 0. Do not find the solu-
tion.

3. Maximize 3x1 + 4x2 − 2x3

subject to x1 + 2x2 ≤ 20
−3x2 + 5x3 ≥ 10

andx1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

4. Maximize 3x1 + x2 + 5x3

subject to 5x1 + 7x2 + x3 ≤ 25
2x1 + 3x2 + 4x3 = 40

andx1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

5. Minimize 7x1 − 3x2 + x3

subject to x1 − 4x2 ≥ 35
x2 − 2x3 = 20

andx1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

6. Minimize x1 + 5x2 − 2x3

subject to 2x1 + x2 + 4x3 ≤ 27
x1 − 6x2 + 3x3 ≥ 40

andx1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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In Exercises 7–10, solve the linear programming problems.

7. Maximize 80x1 + 65x2

subject to 2x1 + x2 ≤ 32
x1 + x2 ≤ 18
x1 + 3x2 ≤ 24

andx1 ≥ 0, x2 ≥ 0.

8. Minimize 5x1 + 3x2

subject to 2x1 + 5x2 ≥ 10
3x1 + x2 ≥ 6
x1 + 7x2 ≥ 7

andx1 ≥ 0, x2 ≥ 0.

9. Maximize 2x1 + 7x2

subject to −2x1 + x2 ≤ –4
x1 – 2x2 ≤ –4

andx1 ≥ 0, x2 ≥ 0.

10. Maximize 5x1 + 12x2

subject to x1 – x2 ≤ 3
−x1 + 2x2 ≤ –4

andx1 ≥ 0, x2 ≥ 0.

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11. a. In a canonical linear programming problem, a nonnegative
vectorx is a feasible solution if it satisfiesAx ≤ b.

b. A vectorx is an optimal solution of a canonical linear pro-
gramming problem iff (x) is equal to the maximum value
of the linear functionalf on the feasible setF .

12. a. If a canonical linear programming problem does not have
an optimal solution, then either the objective function is
not bounded on the feasible setF or F is the empty set.

b. If x is an optimal solution of a canonical linear program-
ming problem, thenx is an extreme point of the feasible
set.

13. Solve the linear programming problem in Example 1.

14. Solve the linear programming problem in Example 2.

15. The Benri Company manufactures two kinds of kitchen gad-
gets: invertible widgets and collapsible whammies. The pro-

duction process is divided into three departments: fabricating,
packing, and shipping. The hours of labor required for each
operation and the hours available in each department each day
are shown below.

Widgets Whammies Time available

Fabricating 5.0 2.0 200

Packing .2 .4 16

Shipping .2 .2 10

Suppose that the profit on each widget is $20 and the profit
on each whammy is $26. How many widgets and how many
whammies should be made each day to maximize the com-
pany’s profit?

Exercises 16–19 use the notion of a convex set, studied in Section
8.3. A setS in R

n is convex if, for eachp andq in S, the line
segment betweenp andq lies in S. [This line segment is the set
of points of the form(1 − t)p + tq for 0 ≤ t ≤ 1.]

16. Let F be the feasible set of all solutionsx of a linear pro-
gramming problemAx ≤ b with x ≥ 0. Assume thatF is
nonempty. Show thatF is a convex set inRn. [Hint: Con-
sider pointsp andq in F and t such that 0≤ t ≤ 1. Show
that(1 − t)p + tq is in F .]

17. Let v =
[
a

b

]
andx =

[
x1

x2

]
. The inequalityax1 + bx2 ≤ c

for some real numberc may be written asvTx < c. The setS
of all x that satisfy this inequality is called aclosed half-space
of R

2. Show thatS is convex. [See the Hint for Exercise 16.]

18. The feasible set in Example 5 is the intersection of five closed
half-spaces. By Exercise 17, these half-spaces are convex sets.
Show that the intersection of any five convex setsS1, . . . , S5

in R
n is a convex set.

19. If c is in R
n and if f is defined onRn by f (x) = cTx, then

f is called a linear functional, and for any real numberd,
{x: f (x) = d} is called a level set off . (See level sets in Fig.
2 of Example 5.) Show that any such level set is convex.

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The first inequality has the wrong direction, so multiply by−1. This gives the
following problem:

Maximize 2x1 + x2

subject to −x1 + 2x2 ≤ 8
3x1 + 2x2 ≤ 24

andx1 ≥ 0, x2 ≥ 0.
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This corresponds to the canonical form

MaximizecTx subject toAx ≤ b andx ≥ 0

when

b =
[

8
24

]
, x =

[
x1

x2

]
, c =

[
2
1

]
, and A =

[ −1 2
3 2

]

2. To graph the inequality−x1 + 2x2 ≤ 8, first graph the corresponding equality−x1 +
2x2 = 8. The intercepts are easy to find:(0,4) and (−8,0). Figure 7 shows the
straight line through these two points.

The graph of the inequality consists of this line together with all points on one
side of the line. To determine which side, pick a point not on the line to see if its
coordinates satisfy the inequality. For example, try the origin,(0,0). The inequality

−(0) + 2(0) ≤ 8

is a true statement. Thus the origin and all other points below the line satisfy the
inequality. As another example, substituting the coordinates of the point(0,8) into
the inequality produces a false statement:

−(0) + 2(8) ≤ 8

Thus(0,8) and all other points above the line do not satisfy the inequality. Figure 7
shows small arrows beneath the graph of−x1 + 2x2 = 8, to indicate which side is to
be included.

x2

x1

16

8

8 16–8

–8

FIGURE 7 Graph of−x1 + 2x2 ≤ 8.

For the inequality

3x1 + 2x2 ≤ 24

draw the graph of 3x1 + 2x2 = 24, using the intercepts(0,12) and(8,0) or two other
convenient points. Since(0,0) satisfies the inequality, the feasible set is on the side
of the line containing the origin. The inequalityx1 ≥ 0 gives the right half-plane,
and the inequalityx2 ≥ 0 gives the upper half-plane. All of these are graphed in Fig.
8, and their common solution is the shaded feasible set.
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x2

x1

16

8

8 16–8

–8

FIGURE 8 Graph of the feasible set.

3. There are four extreme points in the feasible set:

1. The origin: (0,0)

2. Thex2-intercept of the first inequality:(0,4)

3. Thex1-intercept of the second inequality:(8,0)

4. The intersection of the two inequalities.

For the fourth extreme point, solve the system of equations−x1 + 2x2 = 8 and 3x1 +
2x2 = 24 to obtainx1 = 4 andx2 = 6.

4. To find the maximum value of the objective function 2x1 + x2, evaluate it at each of
the four extreme points of the feasible set.

2x1 + x2

(0,0) 2(0) + 1(0) = 0

(0,4) 2(0) + 1(4) = 4

(8,0) 2(8) + 1(0) = 16

(4,6) 2(4) + 1(6) = 14

✛

The maximum value is 16, attained whenx1 = 8 andx2 = 0.

9.3 LINEAR PROGRAMMING—SIMPLEX METHOD
Transportation problems played an important role in the early days of linear program-
ming, including the BerlinAirlift described in this chapter’s Introductory Example. They
are even more important today. The first example is simple, but it suggests how a problem
of this type could involve hundreds, if not thousands, of variables and equations.

EXAMPLE 1 A retail sales company has two warehouses and four stores. A particular
model of outdoor hot tub is sold at all four stores, and each store has placed an order with
company headquarters for a certain number of these hot tubs. Headquarters determines
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that the warehouses have enough hot tubs and can ship them immediately. The distances
from the warehouses to the stores vary, and the cost of transporting a hot tub from a
warehouse to a store depends on the distance. The problem is to decide on a shipping
schedule that minimizes the total cost of shipping. Letxij be the number of units (hot
tubs) to ship from warehousei to storej .

Warehouse 1 Warehouse 2

Store 2 Store 3

Store 1 Store 4

x11 x24

x14

x21

x12 x23

x22 x13

Let a1 and a2 be the numbers of units available at warehouses 1 and 2, and let
r1, . . . , r4 be the numbers of units requested by the various stores. Then the xij must
satisfy the equations

x11 + x12 + x13 + x14 ≤ a1

x21 + x22 + x23 + x24 ≤ a2

x11 + x21 = r1

x12 + x22 = r2

x13 + x23 = r3

x14 + x24 = r4

and xij ≥ 0 for i = 1, 2 and j = 1, . . . , 4. If the cost of shipping one unit from warehouse
i to store j is cij , then the problem is to minimize the function

c11x11 + c12x12 + c13x13 + c14x14 + c21x21 + c22x22 + c23x23 + c24x24

subject to the four equalities and ten inequalities listed above.

The simplex method, discussed below, can easily handle problems the size of Exam-
ple 1. To introduce the method, however, this section focuses mainly on the canonical
linear programming problem from Section 9.2, in which the objective function must be
maximized. Here is an outline of the steps in the simplex method.

1. Select an extreme point x of the feasible set F .

2. Consider all the edges of F that join at x. If the objective function f cannot be
increased by moving along any of these edges, then x is an optimal solution.

3. If f can be increased by moving along one or more of the edges, then follow the path
that gives the largest increase and move to the extreme point of F at the opposite
end.

4. Repeat the process, beginning at step 2.



August 16, 2005 10:59 L57-ch09 Sheet number 30 Page number 30 cyan magenta yellow black

30 CHAPTER 9 Optimization

Since the value of f increases at each step, the path will not go through the same extreme
point twice. Since there are only a finite number of extreme points, this process will
end at an optimal solution (if there is one) in a finite number of steps. If the problem is
unbounded, then eventually the path will reach an unbounded edge at step 3 along which
f increases without bound.

The next five examples concern canonical linear programming problems in which
each of the entries in the m-tuple b is positive:

Maximize f (x) = cTx
subject to the constraints Ax ≤ b and x ≥ 0

Here c and x are in R
n, A is an m×n matrix, and b is in R

m.
The simplex method begins by changing each constraint inequality into an equality.

This is done by adding one new variable to each inequality. These new variables are not
part of the final solution; they appear only in the intermediate calculations.

D E F I N I T I O N A slack variable is a nonnegative variable that is added to the smaller side of an
inequality to convert it to an equality.

EXAMPLE 2 Change the inequality

5x1 + 7x2 ≤ 80
into the equality

5x1 + 7x2 + x3 = 80

by adding the slack variable x3. Note that x3 = 80 − (5x1 + 7x2) ≥ 0.

If A is m×n, the addition of m slack variables in Ax ≤ b produces a linear system
with m equations and n + m variables. Asolution to this system is called a basic solution
if no more than m of the variables are nonzero. As in Section 9.2, a solution to the system
is called feasible if each variable is nonnegative. Thus, in a basic feasible solution, each
variable must be nonnegative and at most m of them can be positive. Geometrically,
these basic feasible solutions correspond to the extreme points of the feasible set.

EXAMPLE 3 Find a basic feasible solution for the system

2x1 + 3x2 + 4x3 ≤ 60
3x1 + x2 + 5x3 ≤ 46
x1 + 2x2 + x3 ≤ 50

Solution Add slack variables to obtain a system of three equations:

2x1 + 3x2 + 4x3 + x4 = 60
3x1 + x2 + 5x3 + x5 = 46
x1 + 2x2 + x3 + x6 = 50

(1)



August 16, 2005 10:59 L57-ch09 Sheet number 31 Page number 31 cyan magenta yellow black

9.3 Linear Programming—Simplex Method 31

There were only three variables in the original system, so a basic solution of (1) has at
most three nonzero values for the variables. The following simple solution is called the
basic feasible solution associated with (1):

x1 = x2 = x3 = 0, x4 = 60, x5 = 46, and x6 = 50

This solution corresponds to the extreme point 0 in the feasible set (in R
3).

It is customary to refer to the nonzero variables x4, x5, and x6 in system (1) as basic
variables because each has a coefficient of 1 and occurs in only one equation.1 The basic
variables are said to be “ in” the solution of (1). The variables x1, x2, and x3 are said to be
“out” of the solution. In a linear programming problem, this particular solution would
probably not be optimal since only the slack variables are nonzero.

A standard procedure in the simplex method is to change the role a variable plays
in a solution. For example, although x2 is out of the solution in (1), it can be introduced
“ into” a solution by using elementary row operations. The goal is to pivot on the x2

entry in the third equation of (1) to create a new system in which x2 appears only in the
third equation.2

First, divide the third equation in (1) by the coefficient of x2 to obtain a new third
equation:

1
2x1 + x2 + 1

2x3 + 1
2x6 = 25

Second, to equations 1 and 2 of (1) add multiples of this new equation that will eliminate
x2 from those equations. This produces the system

1
2x1 + 5

2x3 + x4 − 3
2x6 = −15

5
2x1 + 9

2x3 + x5 − 1
2x6 = 21

1
2x1 + x2 + 1

2x3 + 1
2x6 = 25

The basic solution associated with this new system is

x1 = x3 = x6 = 0, x2 = 25, x4 = −15, x5 = 21

The variable x2 has come into the solution, and the variable x6 has gone out. Unfortu-
nately, this basic solution is not feasible since x4 < 0. This lack of feasibility was caused
by an improper choice of a pivot equation. The next paragraph shows how to avoid this
problem.

1This terminology generalizes that used in Section 1.2, where basic variables also had to correspond to
pivot positions in a matrix echelon form. Here, the goal is not to solve for basic variables in terms of
free variables, but to obtain a particular solution of the system when the nonbasic (free) variables are
zero.
2To “pivot” on a particular term here means to transform its coefficient into a 1 and then use it to elimi-
nate corresponding terms in all the other equations, not just the equations below it, as was done in Sec-
tion 1.2.
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In general, consider the system

a11x1 + · · · + a1kxk + · · · + a1nxn = b1
...

ai1x1 + · · · + aikxk + · · · + ainxn = bi

...

am1x1 + · · · + amkxk + · · · + amnxn = bn

and suppose the next step is to bring the variable xk into the solution by using equation
p to pivot on entry apkxk . The basic solution corresponding to the resulting system will
be feasible if the following two conditions are satisfied:

1. The coefficient apk of xk must be positive. (When the pth equation is divided by apk ,
the new bp term must be positive.)

2. The ratio bp/apk must be the smallest among all the ratios bi/aik for which aik > 0.
(This will guarantee that when the pth equation is used to eliminate the xk term from
the ith equation, the resulting bi term will be positive.)

EXAMPLE 4 Determine which row to use as a pivot in order to bring x2 into the
solution in Example 3.

Solution Compute the ratios bi/ai2:

b1

a12
= 60

3
= 20,

b2

a22
= 46, and

b3

a32
= 50

2
= 25

Since the first ratio is the smallest, pivot on the x2 term in the first equation. This produces
the system

2
3x1 + x2 + 4

3x3 + 1
3x4 = 20

7
3x1 + 11

3 x3 − 1
3x4 + x5 = 26

− 1
3x1 − 5

3x3 − 2
3x4 + x6 = 10

Now the basic feasible solution is

x1 = x3 = x4 = 0, x2 = 20, x5 = 26, x6 = 10

A matrix format greatly simplifies calculations of this type. For instance, system
(1) in Example 3 is represented by the augmented matrix

x1 x2 x3 x4 x5 x6


2 ✐3 4 1 0 0 60

3 1 5 0 1 0 46

1 2 1 0 0 1 50




The variables are used as column labels, with the slack variables in color. Recall that
the basic feasible solution associated with this matrix is

x1 = x2 = x3 = 0, x4 = 60, x5 = 46, x6 = 50
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The circled 3 in the x2 column indicates that this entry will be used as a pivot to bring
x2 into the solution. (The ratio calculations in Example 4 identified this entry as the
appropriate pivot.) Complete row reduction in column 2 produces the new matrix that
corresponds to the new system in Example 4:

x1 x2 x3 x4 x5 x6


2
3 1 4

3
1
3 0 0 20

7
3 0 11

3 − 1
3 1 0 26

− 1
3 0 − 5

3 − 2
3 0 1 10




As in Example 4, the new basic feasible solution is

x1 = x3 = x4 = 0, x2 = 20, x5 = 26, x6 = 10

The preceding discussion has prepared the way for a full demonstration of the
simplex method, based on the constraints in Example 3. At each step, the objective
function in Example 5 will drive the choice of which variable to bring into the solution
of the system.

EXAMPLE 5 Maximize 25x1 + 33x2 + 18x3

subject to 2x1 + 3x2 + 4x3 ≤ 60
3x1 + x2 + 5x3 ≤ 46
x1 + 2x2 + x3 ≤ 50

and xj ≥ 0 for j = 1, . . . , 3.

Solution First, add slack variables, as before. Then change the objective function
25x1 + 33x2 + 18x3 into an equation by introducing a new variable M given by M =
25x1 + 33x2 + 18x3. Now the goal is to maximize the variable M , where M satisfies the
equation

−25x1 − 33x2 − 18x3 + M = 0

The original problem is now restated as follows: Among all the solutions of the system
of equations

2x1 + 3x2 + 4x3 + x4 = 60
3x1 + x2 + 5x3 + x5 = 46
x1 + 2x2 + x3 + x6 = 50

−25x1 − 33x2 − 18x3 + M = 0

find a solution for which xj ≥ 0 (j = 1, . . . , 6) and for which M is as large as possible.
The augmented matrix for this new system is called the initial simplex tableau. It

is written with two ruled lines in the matrix:

x1 x2 x3 x4 x5 x6 M


2 3 4 1 0 0 0 60
3 1 5 0 1 0 0 46
1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0



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The horizontal line above the bottom row isolates the equation corresponding to the
objective function. This last row will play a special role in what follows. (The bottom
row is used only to decide which variable to bring into the solution. Pivot positions are
never chosen from the bottom row.) The column headings for the slack variables are in
color, to remind us at the end of the calculations that only the original variables are part
of the final solution of the problem.

Look in rows 1 to 3 of the tableau above to find the basic feasible solution. The
columns of the 3×3 identity matrix in these three rows identify the basic variables—
namely, x4, x5, and x6. The basic solution is

x1 = x2 = x3 = 0, x4 = 60, x5 = 46, x6 = 50, M = 0

This solution is not optimal, however, since only the slack variables are nonzero. How-
ever, the bottom row implies that

M = 25x1 + 33x2 + 18x3

The value of M will rise when any of the variables x1, x2, or x3 rises. Since the coefficient
of x2 is the largest of the three coefficients, bringing x2 into the solution will cause the
greatest increase in M .

To bring x2 into the solution, follow the pivoting procedure outlined earlier. In the
tableau above, compare the ratios bi/ai2 for each row except the last. They are 60/3,
46/1, and 50/2. The smallest is 60/3, so the pivot should be the entry 3 that is circled
in the first row.

x1 x2 x3 x4 x5 x6 M


2 ✐3 4 1 0 0 0 60

3 1 5 0 1 0 0 46

1 2 1 0 0 1 0 50

−25 −33 −18 0 0 0 1 0




The result of the pivot operation is

x1 x2 x3 x4 x5 x6 M


2
3 1 4

3
1
3 0 0 0 20

7
3 0 11

3 − 1
3 1 0 0 26

− 1
3 0 − 5

3 − 2
3 0 1 0 10

−3 0 26 11 0 0 1 660




(2)

Now the columns of the 3×3 identity matrix are in columns 2, 5, and 6 of the tableau.
So the basic feasible solution is

x1 = x3 = x4 = 0, x2 = 20, x5 = 26, x6 = 10, M = 660

Thus M has increased from 0 to 660. To see if M can be increased further, look at the
bottom row of the tableau and solve the equation for M:

M = 660 + 3x1 − 26x3 − 11x4 (3)
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Since each of the variables xj is nonnegative, the value of M will increase only if x1

increases (from 0). (Since the coefficients of x3 and x4 are both negative at this point,
increasing one of them would decrease M .) So x1 needs to come into the solution.
Compare the ratios (of the augmented column to column 1):

20
2
3

= 30 and
26
7
3

= 78

7

The second ratio is smaller, so the next pivot should be 7
3 in row 2.

x1 x2 x3 x4 x5 x6 M


2
3 1 4

3
1
3 0 0 0 20

�7
3 0 11

3 − 1
3 1 0 0 26

− 1
3 0 − 5

3 − 2
3 0 1 0 10

−3 0 26 11 0 0 1 660




After pivoting, the resulting tableau is

x1 x2 x3 x4 x5 x6 M


0 1 2
7

3
7 − 2

7 0 0 88
7

1 0 11
7 − 1

7
3
7 0 0 78

7

0 0 − 8
7 − 5

7
1
7 1 0 96

7

0 0 215
7

74
7

9
7 0 1 4854

7




The corresponding basic feasible solution is

x3 = x4 = x5 = 0, x1 = 78
7 , x2 = 88

7 , x6 = 96
7 , M = 4854

7

The bottom row shows that

M = 4854
7 − 215

7 x3 − 74
7 x4 − 9

7x5

The negative coefficients of the variables here show that M can be no larger than 4854
7

(because x3, x4, and x5 are nonnegative), so the solution is optimal. The maximum
value of 25x1 + 33x2 + 18x3 is 4854

7 , and this maximum occurs when x1 = 78
7 , x2 = 88

7 ,

and x3 = 0. The variable x3 is zero because in the optimal solution x3 is a free variable,
not a basic variable. Note that the value of x6 is not part of the solution of the original
problem, because x6 is a slack variable. The fact that the slack variables x4 and x5 are
zero means that the first two inequalities listed at the beginning of this example are both
equalities at the optimal values of x1, x2, and x3.

Example 5 is worth reading carefully several times. In particular, notice that a
negative entry in the bottom row of any xj column will become a positive coefficient
when that equation is solved for M , indicating that M has not reached its maximum.
See tableau (2) and equation (3).
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In summary, here is the simplex method for solving a canonical maximizing problem
when each entry in the vector b is positive.

THE SIMPLEX ALGORITHM FOR A CANONICAL LINEAR PROGRAMMING PROBLEM

1. Change the inequality constraints into equalities by adding slack variables.
Let M be a variable equal to the objective function, and below the constraint
equations write an equation of the form

(objective function) − M = 0

2. Set up the initial simplex tableau. The slack variables (and M) provide the
initial basic feasible solution.

3. Check the bottom row of the tableau for optimality. If all the entries to the left
of the vertical line are nonnegative, then the solution is optimal. If some are
negative, then choose the variable xk for which the entry in the bottom row is
as negative as possible.3

4. Bring the variable xk into the solution. Do this by pivoting on the positive
entry apk for which the nonnegative ratio bi/aik is the smallest. The new basic
feasible solution includes an increased value for M .

5. Repeat the process, beginning at step 3, until all the entries in the bottom row
are nonnegative.

Two things can go wrong in the simplex algorithm. At step 4, there might be a
negative entry in the bottom row of the xk column, but no positive entry aik above
it. In this case, it will not be possible to find a pivot to bring xk into the solution.
This corresponds to the case where the objective function is unbounded and no optimal
solution exists.

The second potential problem also occurs at step 4. The smallest ratio bi/aik may
occur in more than one row. When this happens, the next tableau will have at least
one basic variable equal to zero, and in subsequent tableaus the value of M may remain
constant. Theoretically it is possible for an infinite sequence of pivots to occur and fail to
lead to an optimal solution. Such a phenomenon is called cycling. Fortunately, cycling
occurs only rarely in practical applications. In most cases, one may arbitrarily choose
either row with a minimum ratio as the pivot.

EXAMPLE 6 A health food store sells two different mixtures of nuts. A box of the
first mixture contains 1 pound of cashews and 1 pound of peanuts. A box of the second
mixture contains 1 pound of filberts and 2 pounds of peanuts. The store has available 30

3The goal of step 3 is to produce the greatest increase possible in the value of M . This happens when
only one variable xk satisfies the conditions. Suppose, however, that the most negative entry in the bot-
tom row appears in both columns j and k. Step 3 says that either xj or xk should be brought into the
solution, and that is correct. Occasionally, a few computations can be avoided by first using step 4 to
compute the “smallest ratio” for both columns j and k, and then choosing the column for which this
“smallest ratio” is larger. This situation will arise in Section 9.4.
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pounds of cashews, 20 pounds of filberts, and 54 pounds of peanuts. Suppose the profit
on each box of the first mixture is $2 and on each box of the second mixture is $3. If
the store can sell all of the boxes it mixes, how many boxes of each mixture should be
made in order to maximize the profit?

Solution Let x1 be the number of boxes of the first mixture, and let x2 be the number
of boxes of the second mixture. The problem can be expressed mathematically as

Maximize 2x1 + 3x2

subject to x1 ≤ 30 (cashews)
x2 ≤ 20 (filberts)

x1 + 2x2 ≤ 54 (peanuts)
and x1 ≥ 0, x2 ≥ 0.

This turns out to be the same problem solved graphically in Example 5 of Section 9.2.
When it is solved by the simplex method, the basic feasible solution from each tableau
corresponds to an extreme point of the feasible region. See Fig. 1.

x1

(0, 20)

(0, 0) (30, 0)

(30, 12)

x2

(14, 20)

FIGURE 1

To construct the initial tableau, add slack variables and rewrite the objective function
as an equation. The problem now is to find a nonnegative solution to the system

x1 + x3 = 30
x2 + x4 = 20

x1 + 2x2 + x5 = 54
−2x1 − 3x2 + M = 0

for which M is a maximum. The initial simplex tableau is

x1 x2 x3 x4 x5 M


1 0 1 0 0 0 30
0 1 0 1 0 0 20
1 2 0 0 1 0 54

−2 −3 0 0 0 1 0




The basic feasible solution, where x1, x2, and M are 0, corresponds to the extreme point
(x1, x2) = (0, 0) of the feasible region in Fig. 1. In the bottom row of the tableau, the
most negative entry is −3, so the first pivot should be in the x2 column. The ratios 20/1
and 54/2 show that the pivot should be the 1 in the x2 column:

x1(0, 0)

x2
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x1 x2 x3 x4 x5 M


1 0 1 0 0 0 30
0 ✐1 0 1 0 0 20
1 2 0 0 1 0 54

−2 −3 0 0 0 1 0




After pivoting, the tableau becomes

x1 x2 x3 x4 x5 M


1 0 1 0 0 0 30
0 1 0 1 0 0 20
✐1 0 0 −2 1 0 14

−2 0 0 3 0 1 60




The basic feasible solution is now

x1

(0, 20)

x2

x1 = x4 = 0, x2 = 20, x3 = 30, x5 = 14, M = 60

The new solution is at the extreme point (x1, x2) = (0, 20) in Fig. 1. The −2 in the
bottom row of the tableau shows that the next pivot is in column 1, which produces

x1

x2

(14, 20)

x1

(30, 12)

x2

x1 x2 x3 x4 x5 M


0 0 1 ✐2 −1 0 16

0 1 0 1 0 0 20
1 0 0 −2 1 0 14

0 0 0 −1 2 1 88




This time x1 = 14 and x2 = 20, so the solution has moved across to the extreme point
(14, 20) in Fig. 1, and the objective function has increased from 60 to 88. Finally, the
−1 in the bottom row shows that the next pivot is in column 4. Pivoting on the 2 in the
first row produces the final tableau:

x1 x2 x3 x4 x5 M


0 0 1
2 1 − 1

2 0 8

0 1 − 1
2 0 1

2 0 12

1 0 1 0 0 0 30

0 0 1
2 0 3

2 1 96




Since all the entries in the bottom row are nonnegative, the solution now is optimal, with
x1 = 30 and x2 = 12, corresponding to the extreme point (30, 12). The maximum profit
of $96 is attained by making 30 boxes of the first mixture and 12 boxes of the second.
Note that although x4 is part of the basic feasible solution for this tableau, its value is not
included in the solution of the original problem, because x4 is a slack variable.
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Minimization Problems

So far, each canonical maximizing problem involved a vector b whose coordinates were
positive. But what happens when some of the coordinates of b are zero or negative?
And what about a minimizing problem?

If some of the coordinates of b are zero, then it is possible for cycling to occur and
the simplex method to fail to terminate at an optimal solution. As mentioned earlier,
however, cycling does not generally happen in practical applications, and so the presence
of zero entries in the right-hand column seldom causes difficulty in the operation of the
simplex method.

The case when one of the coordinates of b is negative can occur in practice and
requires some special consideration. The difficulty is that all the bi terms must be non-
negative in order for the slack variables to provide an initial basic feasible solution. One
way to change a negative bi term into a positive term would be to multiply the inequality
by −1 (before introducing slack variables). But this would change the direction of the
inequality. For example,

x1 − 3x2 + 2x3 ≤ −4

would become
−x1 + 3x2 − 2x3 ≥ 4

Thus a negative bi term causes the same problem as a reversed inequality. Since reversed
inequalities often occur in minimization problems, the following example discusses this
case.

EXAMPLE 7 Minimize x1 + 2x2

subject to x1 + x2 ≥ 14
x1 − x2 ≤ 2

and x1 ≥ 0, x2 ≥ 0.

Solution The minimum of f (x1, x2) over a set is the same as the maximum of
−f (x1, x2) over the same set. However, in order to use the simplex algorithm, the
canonical description of the feasible set must use ≤ signs. So the first inequality above
must be rewritten. The second inequality is already in canonical form. Thus the original
problem is equivalent to the following:

Maximize −x1 − 2x2

subject to −x1 − x2 ≤ −14
x1 − x2 ≤ 2

and x1 ≥ 0, x2 ≥ 0.

To solve this, let M = −x1 − 2x2 and add slack variables to the inequalities, as before.
This creates the linear system

−x1 − x2 + x3 = −14
x1 − x2 + x4 = 2
x1 + 2x2 + M = 0
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To find a nonnegative solution to this system for which M is a maximum, construct the
initial simplex tableau:

x1 x2 x3 x4 M


−1 −1 1 0 0 −14
1 −1 0 1 0 2

1 2 0 0 1 0




The corresponding basic solution is

x1 = x2 = 0, x3 = −14, M = 0

However, since x3 is negative, this basic solution is not feasible. Before the standard
simplex method can begin, each term in the augmented column above the horizontal line
must be a nonnegative number. This is accomplished by pivoting on a negative entry.

In order to replace a negative bi entry by a positive number, find another negative
entry in the same row. (If all the other entries in the row are nonnegative, then the
problem has no feasible solution.) This negative entry is in the column corresponding
to the variable that should now come into the solution. In this example, the first two
columns both have negative entries, so either x1 or x2 should be brought into the solution.

For example, to bring x2 into the solution, select as a pivot the entry ai2 in column 2
for which the ratio bi/ai2 is the smallest nonnegative number. (The ratio is positive when
both bi and ai2 are negative.) In this case, only the ratio (−14)/(−1) is nonnegative, so
the −1 in the first row must be the pivot. After the pivot operations on column 2, the
resulting tableau is

x1 x2 x3 x4 M


1 1 −1 0 0 14
2 0 −1 1 0 16

−1 0 2 0 1 −28




Now each entry in the augmented column (except the bottom entry) is positive, and the
simplex method can begin. (Sometimes it may be necessary to pivot more than once
in order to make each of these terms nonnegative. See Exercise 15.) The next tableau
turns out to be optimal:

x1 x2 x3 x4 M


0 1 − 1
2 − 1

2 0 6

1 0 − 1
2

1
2 0 8

0 0 3
2

1
2 1 −20




The maximum feasible value of −x1 − 2x2 is −20, when x1 = 8 and x2 = 6. So the
minimum value of x1 + 2x2 is 20.

The final example uses the technique of Example 7, but the simplex tableau requires
more preprocessing before the standard maximization operations can begin.
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EXAMPLE 8 Minimize 5x1 + 3x2

subject to 4x1 + x2 ≥ 12
x1 + 2x2 ≥ 10
x1 + 4x2 ≥ 16

and x1 ≥ 0, x2 ≥ 0.

Solution Convert the problem into a maximization problem, setting M = −5x1 − 3x2

and reversing the three main constraint inequalities:

−4x1 − x2 ≤ −12, −x1 − 2x2 ≤ −10, −x1 − 4x2 ≤ −16

Add nonnegative slack variables, and construct the initial simplex tableau:

−4x1 – x2 + x3 = −12
−x1 – 2x2 + x4 = −10
−x1 – 4x2 + x5 = −16
5x1 + 3x2 + M = 0

x1 x2 x3 x4 x5 M


−4 −1 1 0 0 0 −12
−1 −2 0 1 0 0 −10
−1 −4 0 0 1 0 −16

5 3 0 0 0 1 0




Before the simplex maximization process can begin, the top three entries in the aug-
mented column must be nonnegative (to make the basic solution feasible). Pivoting on
a negative entry to bring x1 or x2 into the solution will help. Trial and error will work.
However, the fastest method is to compute the usual ratios bi/aij for all negative entries
in rows 1 to 3 of columns 1 and 2. Choose as the pivot the entry with the largest ratio.
That will make all the augmented entries change sign (because the pivot operation will
add multiples of the pivot row to the other rows). In this example, the pivot should be
a31, and the new tableau is

x1 x2 x3 x4 x5 M


0 15 1 0 −4 0 52
0 2 0 1 −1 0 6
1 4 0 0 −1 0 16

0 −17 0 0 5 1 −80




Now the simplex maximization algorithm is available. The −17 in the last row shows
that x2 must be brought into the solution. The smallest of the ratios 52/15, 6/2, and
16/4 is 6/2. A pivot on the 2 in column 2 produces

x1 x2 x3 x4 x5 M


0 0 1 − 15
2

7
2 0 7

0 1 0 1
2 − 1

2 0 3

1 0 0 −2 1 0 4

0 0 0 17
2 − 7

2 1 −29






August 16, 2005 10:59 L57-ch09 Sheet number 42 Page number 42 cyan magenta yellow black

42 CHAPTER 9 Optimization

The − 7
2 in the last row shows that x5 must be brought into the solution. The pivot is 7

2
in column 5, and the new (and final) tableau is

x1 x2 x3 x4 x5 M


0 0 2
7 − 15

7 1 0 2

0 1 1
7 − 4

7 0 0 4

1 0 − 2
7

1
7 0 0 2

0 0 1 1 0 1 −22




The solution occurs when x1 = 2 (from row 3), x2 = 4, and M = −22, so the minimum
of the original objective function is 22.

The “Simplex” in the Simplex Algorithm

The geometric approach in Section 9.2 focused on the rows of a 2×n matrix A, graphing
each inequality as a half-space in R

2, and viewing the solution set as the intersection of
half-spaces. In higher-dimensional problems, the solution set is again an intersection of
half-spaces, but this geometric view does not lead to an efficient algorithm for finding
the optimal solution.

The simplex algorithm focuses on the columns of A instead of the rows. Suppose
that A is m×n and denote the columns by a1, . . . , am. The addition of m slack variables
creates an m by n + m system of equations of the form

x1a1 + · · · + xnan + xn+1e1 + · · · + xn+mem = b

where x1, . . . , xn+m are nonnegative and {e1, . . . , em} is the standard basis for R
m. The

initial basic feasible solution is obtained when x1, . . . , xn are zero and b1e1 + · · · +
bmem = b. If s = b1 + · · · + bm, then the equation

0 +
(

b1

s

)
se1 + · · · +

(
bm

s

)
sem = b

shows that b is in what is called the simplex generated by 0, se1, . . . , sem. For simplicity,
we say that “b is in an m-dimensional simplex determined by e1, . . . , em.” This is the
first simplex in the simplex algorithm.4

In general, if v1, . . . , vm is any basis of R
m, selected from the columns of the

matrix P = [a1· · · an e1· · · em], and if b is a linear combination of these vectors with
nonnegative weights, then b is in an m-dimensional simplex determined by v1, . . . , vm.
A basic feasible solution of the linear programming problem corresponds to a particular
basis from the columns of P . The simplex algorithm changes this basis and hence
the corresponding simplex that contains b, one column at a time. The various ratios

4If v1, . . . , vm are linearly independent vectors in R
m, then the convex hull of the set {0, v1, . . . , vm} is

an m-dimensional simplex, S. (See Section 8.5.) A typical vector in S has the form c00 + c1v1 + · · · +
cmvm, where the weights are nonnegative and sum to one. (Equivalently, vectors in S have the form
c1v1 + · · · + cmvm, where the weights are nonnegative and their sum is at most one.) Any set formed
by translating such a set S is also called an m-dimensional simplex, but such sets do not appear in the
simplex algorithm.
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computed during the algorithm drive the choice of columns. Since row operations do
not change the linear dependence relations among the columns, each basic feasible
solution tells how to build b from the corresponding columns of P .

P R A C T I C E P R O B L E M

Use the simplex method to solve the following linear programming problem:

Maximize 2x1 + x2

subject to −x1 + 2x2 ≤ 8
3x1 + 2x2 ≤ 24

and x1 ≥ 0, x2 ≥ 0.

9.3 EXERCISES

In Exercises 1 and 2, set up the initial simplex tableau for the given
linear programming problem.

1. Maximize 21x1 + 25x2 + 15x3

subject to 2x1 + 7x2 + 10x3 ≤ 20
3x1 + 4x2 + 18x3 ≤ 25

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

2. Maximize 22x1 + 14x2

subject to 3x1 + 5x2 ≤ 30
2x1 + 7x2 ≤ 24
6x1 + x2 ≤ 42

and x1 ≥ 0, x2 ≥ 0.

For each simplex tableau in Exercises 3–6, do the following:

a. Determine which variable should be brought into the solution.

b. Compute the next tableau.

c. Identify the basic feasible solution corresponding to the tableau
in part (b).

d. Determine if the answer in part (c) is optimal.

3. x1 x2 x3 x4 M


5 1 1 0 0 20
3 2 0 1 0 30

−4 −10 0 0 1 0




4. x1 x2 x3 x4 M


−1 1 2 0 0 4
1 0 5 1 0 6

−5 0 3 0 1 17




5. x1 x2 x3 x4 M


2 3 1 0 0 20
2 1 0 1 0 16

−6 −5 0 0 1 0




6. x1 x2 x3 x4 M


5 8 1 0 0 80
12 6 0 1 0 30

2 −3 0 0 1 0




Exercises 7 and 8 relate to a canonical linear programming prob-
lem with an m×n coefficient matrix A in the constraint inequality
Ax ≤ b. Mark each statement True or False, and justify each an-
swer.

7. a. A slack variable is used to change an equality into an in-
equality.

b. A solution is feasible if each variable is nonnegative.

c. If one of the coordinates in vector b is positive, then the
problem is infeasible.

8. a. A solution is called a basic solution if m or fewer of the
variables are nonzero.

b. The basic feasible solutions correspond to the extreme
points of the feasible region.

c. The bottom entry in the right column of a simplex tableau
gives the maximum value of the objective function.

Solve Exercises 9–14 by using the simplex method.

9. Maximize 10x1 + 12x2

subject to 2x1 + 3x2 ≤ 36
5x1 + 4x2 ≤ 55

and x1 ≥ 0, x2 ≥ 0.
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10. Maximize 5x1 + 4x2

subject to x1 + 5x2 ≤ 70
3x1 + 2x2 ≤ 54

and x1 ≥ 0, x2 ≥ 0.

11. Maximize 4x1 + 5x2

subject to x1 + 2x2 ≤ 26
2x1 + 3x2 ≤ 30
x1 + x2 ≤ 13

and x1 ≥ 0, x2 ≥ 0.

12. Maximize 2x1 + 5x2 + 3x3

subject to x1 + 2x2 ≤ 28
2x1 + 4x3 ≤ 16

x2 + x3 ≤ 12
and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

13. Minimize 12x1 + 5x2

subject to 2x1 + x2 ≥ 32
−3x1 + 5x2 ≤ 30

and x1 ≥ 0, x2 ≥ 0.

14. Minimize 2x1 + 3x2 + 3x3

subject to x1 − 2x2 ≥ −8
2x2 + x3 ≥ 15

2x1 − x2 + x3 ≤ 25
and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

15. Solve Example 7 by bringing x1 into the solution (instead of
x2) in the initial tableau.

16. Use the simplex method to solve the linear programming prob-
lem in Section 9.2, Exercise 1.

17. Use the simplex method to solve the linear programming prob-
lem in Section 9.2, Exercise 15.

18. Use the simplex method to solve the linear programming prob-
lem in Section 9.2, Example 1.

S O L U T I O N T O P R A C T I C E P R O B L E M

Introduce slack variables x3 and x4 to rewrite the problem:

Maximize 2x1 + x2

subject to −x1 + 2x2 + x3 = 8
3x1 + 2x2 + x4 = 24

and x1 ≥ 0, x2 ≥ 0.

Then let M = 2x1 + x2, so that −2x1 − x2 + M = 0 provides the bottom row in the initial
simplex tableau.

x1 x2 x3 x4 M


−1 2 1 0 0 8
✐3 2 0 1 0 24

−2 −1 0 0 1 0




Bring x1 into the solution (because of the −2 entry in the bottom row), and pivot on
the second row (because it is the only row with a positive entry in the first column).
The second tableau turns out to be optimal, since all the entries in the bottom row are
positive. Remember that the slack variables (in color) are never part of the solution.

x1 x2 x3 x4 M


0 8
3 1 1

3 0 16

1 2
3 0 1

3 0 8

0 1
3 0 2

3 1 16




The maximum value is 16, when x1 = 8 and x2 = 0. Note that this problem was solved
geometrically in the Practice Problem for Section 9.2.
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9.4 DUALITY
Associated with each canonical (maximization) linear programming problem is a related
minimization problem, called the dual problem. In this setting, the canonical problem is
called the primal problem. This section describes the dual problem and how it is solved,
along with an interesting economic interpretation of the dual variables. The section
concludes by showing how any matrix game can be solved using the primal and dual
versions of a suitable linear programming problem.

Given vectors c in R
n and b in R

m, and given an m×n matrix A, the canonical
(primal) problem is to find x in R

n so as to maximize f (x) = cTx subject to the constraints
Ax ≤ b and x ≥ 0. The dual (minimization) problem is to find y in R

m so as to minimize
g(y) = bTy subject to AT y ≥ c and y ≥ 0:

Primal Problem P Dual Problem P ∗

Maximize f (x) = cTx Minimize g(y) = bTy
subject to Ax ≤ b subject to ATy ≥ c

x ≥ 0 y ≥ 0

Observe that in forming the dual problem, the ci coefficients of xi in the objec-
tive function of the primal problem become the constants on the right-hand side of the
constraint inequalities in the dual. Likewise, the numbers in the right-hand side of the
constraint inequalities in the primal problem become the coefficients bj of yj in the ob-
jective function in the dual. Also, note that the direction of the constraint inequalities is
reversed from Ax ≤ b to ATy ≥ c. In both cases, the variables x and y are nonnegative.

EXAMPLE 1 Find the dual of the following primal problem:

Maximize 5x1 + 7x2

subject to 2x1 + 3x2 ≤ 25
7x1 + 4x2 ≤ 16
x1 + 9x2 ≤ 21

and x1 ≥ 0, x2 ≥ 0.

Solution

Minimize 25y1 + 16y2 + 21y3

subject to 2y1 + 7y2 + y3 ≥ 5
3y1 + 4y2 + 9y3 ≥ 7

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

Suppose that the dual problem above is rewritten as a canonical maximization prob-
lem:

Maximize h(y) = −bTy
subject to −ATy ≤ –c and y ≥ 0.
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Then the dual of this problem is

Minimize F(w) = −cTw
subject to (−AT )Tw ≥ –b and w ≥ 0.

In canonical form, this minimization problem is equivalent to

Maximize G(w) = cTw
subject to Aw ≤ b and w ≥ 0.

If w is replaced by x, this problem is precisely the primal problem. So the dual of the
dual problem is the original primal problem.

Theorem 7 below is a fundamental result in linear programming. As with the
Minimax Theorem in game theory, the proof depends on certain properties of convex
sets and hyperplanes.1

T H E O R E M 7 THE DUALITY THEOREM

Let P be a (primal) linear programming problem with feasible set F, and let P ∗
be the dual problem with feasible set F ∗.

a. If F and F ∗ are both nonempty, then P and P ∗ both have optimal solutions,
say x̄ and ȳ, respectively, and f (x̄) = g(ȳ).

b. If one of the problems P or P ∗ has an optimal solution x̄ or ȳ, respectively,
then so does the other, and f (x̄) = g(ȳ).

EXAMPLE 2 Set up and solve the dual to the problem in Example 5 of Section 9.2.

Solution The original problem is to

Maximize f (x1, x2) = 2x1 + 3x2

subject to x1 ≤ 30
x2 ≤ 20

x1 + 2x2 ≤ 54
and x1 ≥ 0, x2 ≥ 0.

Calculations in Example 5 of Section 9.2 showed that the optimal solution of this problem

is x̄ =
[

30
12

]
with f (x̄) = 96. The dual problem is to

Minimize g(y1, y2, y3) = 30y1 + 20y2 + 54y3

subject to y1 + y3 ≥ 2
y2 + 2y3 ≥ 3

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

1If the equation Ax = b has no nonnegative solution, then the sets {b} and S = {z ∈ R
m : z = Ax, x ≥ 0}

are disjoint. It is not hard to show that S is a closed convex set, so Theorem 12 in Chapter 8 implies
that there exists a hyperplane strictly separating {b} and S. This hyperplane plays a key role in the proof.
For details, see Steven R. Lay, Convex Sets and Their Applications (New York: John Wiley & Sons,
1982; Melbourne, FL: Krieger Pub., 1992), pp. 174–178.
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The simplex method could be used here, but the geometric method of Section 9.2 is
not too difficult. Graphs of the constraint inequalities (Fig. 1) reveal that F ∗ has three

extreme points and that ȳ =




1
2

0
3
2


 is the optimal solution. Indeed, g(ȳ) = 30( 1

2 ) +

20(0) + 54( 3
2 ) = 96, as expected.

y2

y3

y1

y2 + 2y3 = 3

y1
 + y3

 = 2

(0, 0, 2)

(2, 3, 0)

(   , 0,    )1
2

3
2

(0, 0, 2)

(   , 0,    )
(2, 3, 0)

108

96

120

y g(y)

1
2

3
2

FIGURE 1 The minimum of g(y1, y2, y3) = 30y1 + 20y2 + 54y3.

Example 2 illustrates another important property of duality and the simplex method.
Recall that Example 6 of Section 9.3 solved this same maximizing problem using the
simplex method. Here is the final tableau:

x1 x2 x3 x4 x5 M


0 0 1
2 1 − 1

2 0 8

0 1 − 1
2 0 1

2 0 12

1 0 1 0 0 0 30

0 0 1
2 0 3

2 1 96




Notice that the optimal solution to the dual problem appears in the bottom row. The
variables x3, x4, and x5 are the slack variables for the first, second, and third equations,
respectively. The bottom entry in each of these columns gives the optimal solution

ȳ =




1
2

0
3
2


 to the dual problem. This is not a coincidence, as the following theorem

shows.
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T H E O R E M 7 THE DUALITY THEOREM (CONTINUED)

Let P be a (primal) linear programming problem and let P ∗ be its dual problem.
Suppose P (or P ∗) has an optimal solution.

c. If either P or P ∗ is solved by the simplex method, then the solution of its dual
is displayed in the bottom row of the final tableau in the columns associated
with the slack variables.

EXAMPLE 3 Set up and solve the dual to the problem in Example 5 in Section 9.3.

Solution The primal problem P is to

Maximize f (x1, x2, x3) = 25x1 + 33x2 + 18x3

subject to 2x1 + 3x2 + 4x3 ≤ 60
3x1 + x2 + 5x3 ≤ 46
x1 + 2x2 + x3 ≤ 50

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The dual problem P ∗ is to

Minimize g(y1, y2, y3) = 60y1 + 46y2 + 50y3

subject to 2y1 + 3y2 + y3 ≥ 25
3y1 + y2 + 2y3 ≥ 33
4y1 + 5y2 + y3 ≥ 18

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

The final tableau for the solution of the primal problem was found to be

x1 x2 x3 x4 x5 x6 M


0 1 2
7

3
7 − 2

7 0 0 88
7

1 0 11
7 − 1

7
3
7 0 0 78

7

0 0 − 8
7 − 5

7
1
7 1 0 96

7

0 0 215
7

74
7

9
7 0 1 4854

7




The slack variables are x4, x5, and x6. They give the optimal solution to the dual problem
P ∗. Thus,

y1 = 74
7 , y2 = 9

7 , and y3 = 0

Note that the optimal value of the objective function in the dual problem is

g
(

74
7 , 9

7 , 0
) = 60

(
74
7

)
+ 46

(
9
7

)
+ 50(0) = 4854

7

which agrees with the optimal value of the objective function in the primal problem.

The variables in the dual problem have useful economic interpretations. For ex-
ample, consider the problem of mixing nuts studied in Example 5 of Section 9.2 and
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Example 6 of Section 9.3:

Maximize f (x1, x2) = 2x1 + 3x2

subject to x1 ≤ 30 (cashews)
x2 ≤ 20 (filberts)

x1 + 2x2 ≤ 54 (peanuts)
and x1 ≥ 0, x2 ≥ 0.

Recall that x1 is the number of boxes of the first mixture and x2 is the number of boxes
of the second mixture. Example 2 displayed the dual problem:

Minimize g(y1, y2, y3) = 30y1 + 20y2 + 54y3

subject to y1 + y3 ≥ 2
y2 + 2y3 ≥ 3

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

If x̄ and ȳ are optimal solutions of these problems, then by the Duality Theorem, the
maximum profit f (x̄) satisfies the equation

f (x̄) = g(ȳ) = 30ȳ1 + 20ȳ2 + 54ȳ3

Suppose, for example, that the amount of cashews available was increased from 30
pounds to 30 + h pounds. Then the profit would increase by hȳ1. Likewise, if the
amount of cashews was decreased by h pounds, then the profit would decrease by hȳ1.
So ȳ1 represents the value (per pound) of increasing or decreasing the amount of cashews
available. This is usually referred to as the marginal value of the cashews. Similarly,
ȳ2 and ȳ3 are the marginal values of the filberts and peanuts, respectively. These values
indicate how much the company might be willing to pay for additional supplies of the
various nuts.2

EXAMPLE 4 The final simplex tableau for the problem of mixing nuts was found (in
Example 6 of Section 9.3) to be

x1 x2 x3 x4 x5 M


0 0 1
2 1 − 1

2 0 8

0 1 − 1
2 0 1

2 0 12

1 0 1 0 0 0 30

0 0 1
2 0 3

2 1 96




so the optimal solution of the dual is ȳ =




1
2

0
3
2


. Thus the marginal value of the cashews

is 1
2 , the marginal value of the filberts is 0, and the marginal value of the peanuts is 3

2 .

2The other entries in the final tableau can also be given an economic interpretation. See Saul I. Gass,
Linear Programming Methods and Applications, 5th Ed. (Danvers, MA: Boyd & Fraser Publishing,
1985), pp. 173–177. Also see Goldstein, Schneider, and Siegel, Finite Mathematics and Its Applications,
6th Ed. (Upper Saddle River, NJ: Prentice Hall, 1998), pp. 166–185.
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Note that the optimal production schedule x̄ =
[

30
12

]
uses only 12 of the 20 pounds

of filberts. (This corresponds to the slack variable x4 for the filbert constraint inequality
having value 8 in the final tableau.) This means that not all the available filberts are
used, so there is no increase in profit from increasing the number of filberts available.
That is, their marginal value is zero.

Linear Programming and Matrix Games

Let A be an m×n payoff matrix for a matrix game, as in Section 9.1, and assume at first
that each entry in A is positive. Let u in R

m and v in R
n be the vectors whose coordinates

are all equal to one, and consider the following linear programming problem P and its
dual P ∗. (Notice that the roles of x and y are reversed, with x in R

m and y in R
n.)

P : Maximize vTy P ∗: Minimize uTx
subject to Ay ≤ u subject to ATx ≥ v

y ≥ 0 x ≥ 0

The primal problem P is feasible since y = 0 satisfies the constraints. The dual
problem P ∗ is feasible since all the entries in AT are positive and v is a vector of 1’ s.
By the Duality Theorem, there exist optimal solutions ȳ and x̄ such that vT ȳ = uT x̄. Set

λ = vT ȳ = uT x̄

Since the entries in A and u are positive, the inequality Ay ≤ u has a nonzero solution
y with y ≥ 0. As a result, the solution λ of the primal problem is positive. Let

ŷ = ȳ/λ and x̂ = x̄/λ

It can be shown (Exercise 23) that ŷ is the optimal mixed strategy for the column player
C and x̂ is the optimal mixed strategy for the row player R. Furthermore, the value of
the game is equal to 1/λ.

Finally, if the payoff matrix A has some entries that are not positive, add a fixed
number, say k, to each entry to make the entries all positive. This will not change the
optimal mixed strategies for the two players, and it will add an amount k to the value of
the game. [See Exercise 25(b) in Section 9.1.]

EXAMPLE 5 Solve the game whose payoff matrix is A =
[ −2 1 2

3 2 0

]
.

Solution To produce a matrix B with positive entries, add 3 to each entry:

B =
[

1 4 5
6 5 3

]

The optimal strategy for the column player C is found by solving the linear programming
problem
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Maximize y1 + y2 + y3

subject to y1 + 4y2 + 5y3 ≤ 1
6y1 + 5y2 + 3y3 ≤ 1

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

Introduce slack variables y4 and y5, let M be the objective function, and construct the
initial simplex tableau:

y1 y2 y3 y4 y5 M


1 4 5 1 0 0 1
6 5 3 0 1 0 1

−1 −1 −1 0 0 1 0




The three −1 entries in the bottom row are equal, so any of columns 1 to 3 can be the
first pivot column. Choose column 1 and check the ratios bi/ai1. To bring variable y1

into the solution, pivot on the 6 in the second row.

y1 y2 y3 y4 y5 M


0 19
6

9
2 1 − 1

6 0 5
6

1 5
6

1
2 0 1

6 0 1
6

0 − 1
6 − 1

2 0 1
6 1 1

6




In the bottom row, the third entry is the most negative, so bring y3 into the solution. The
ratios bi/ai3 are 5

6/
9
2 = 5

27 and 1
6/

1
2 = 1

3 = 9
27 . The first ratio is smaller, so pivot on the

9
2 in the first row.

y1 y2 y3 y4 y5 M


0 19
27 1 2

9 − 1
27 0 5

27

1 13
27 0 − 1

9
5
27 0 2

27

0 5
27 0 1

9
4
27 1 7

27




The optimal solution of the primal problem is

ȳ1 = 2
27 , ȳ2 = 0, ȳ3 = 5

27 , with λ = ȳ1 + ȳ2 + ȳ3 = 7
27

The corresponding optimal mixed strategy for C is

ŷ = ȳ/λ =




2
7

0
5
7




The optimal solution of the dual problem comes from the bottom entries under the slack
variables:

x̄1 = 1
9 = 3

27 and x̄2 = 4
27 , with λ = x̄1 + x̄2 = 7

27

which shows that the optimal mixed strategy for R is

x̂ = x̄/λ =
[

3
7
4
7

]
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The value of the game with payoff matrix B is v = 1

λ
= 27

7 , so the value of the original

matrix game A is 27
7 − 3 = 6

7 .

Although matrix games are usually solved via linear programming, it is interesting
that a linear programming problem can be reduced to a matrix game. If the programming
problem has an optimal solution, then this solution is reflected in the solution of the matrix
game. Suppose the problem is to maximize cTx subject to Ax ≤ b and x ≥ 0, where A

is m×n with m ≤ n. Let

M =

 0 A −b

−AT 0 c
bT −cT 0


 and s =


 ȳ

x̄
z




and suppose that M represents a matrix game and s is an optimal column strategy for M .
The (n + m + 1)×(n + m + 1) matrix M is skew-symmetric; that is, MT = −M . It can
be shown that in this case the optimal row strategy equals the optimal column strategy,
the value of the game is 0, and the maximum of the entries in the vector Ms is 0. Observe
that

Ms =

 0 A −b

−AT 0 c
bT −cT 0




 ȳ

x̄
z


 =


 Ax̄ − zb

−AT ȳ + zc
bT ȳ − cT x̄


 ≤


 0

0
0




Thus Ax̄ ≤ zb, ATy ≥ zc, and bT ȳ ≤ cT x̄. Since the column strategy s is a probability
vector, z ≥ 0. It can be shown that if z > 0, then x̄/z is an optimal solution for the
primal (maximization) problem for Ax ≤ b, and ȳ/z is an optimal solution for the dual
problem for ATy ≥ c. Also, if z = 0, then the primal and dual problems have no optimal
solutions.

In conclusion, the simplex method is a powerful tool in solving linear programming
problems. Because a fixed procedure is followed, it lends itself well to using a computer
for the tedious calculations involved. The algorithm presented here is not optimal for a
computer, but many computer programs implement variants of the simplex method, and
some programs even seek integer solutions. New methods developed in recent years take
shortcuts through the interior of the feasible region instead of going from extreme point
to extreme point. They are somewhat faster in certain situations (typically involving
thousands of variables and constraints), but the simplex method is still the approach
most widely used.

P R A C T I C E P R O B L E M S

The following questions relate to the Shady-Lane grass seed company from Example 1
in Section 9.2. The canonical linear programming problem can be stated as follows:

Maximize 2x1 + 3x2

subject to 3x1 + 2x2 ≤ 1200 (fescue)
x1 + 2x2 ≤ 800 (rye)
x1 + x2 ≤ 450 (bluegrass)

and x1 ≥ 0, x2 ≥ 0.
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1. State the dual problem.

2. Find the optimal solution to the dual problem, given that the final tableau in the
simplex method for solving the primal problem is

x1 x2 x3 x4 x5 M


0 0 1 1 −4 0 200
0 1 0 1 −1 0 350
1 0 0 −1 1 0 100

0 0 0 1 1 1 1250




3. What are the marginal values of fescue, rye, and bluegrass at the optimal solution?

9.4 EXERCISES

In Exercises 1–4, state the dual of the given linear programming
problem.

1. Exercise 9 in Section 9.3 2. Exercise 10 in Section 9.3

3. Exercise 11 in Section 9.3 4. Exercise 12 in Section 9.3

In Exercises 5–8, use the final tableau in the solution of the given
exercise to solve its dual.

5. Exercise 9 in Section 9.3 6. Exercise 10 in Section 9.3

7. Exercise 11 in Section 9.3 8. Exercise 12 in Section 9.3

Exercises 9 and 10 relate to a primal linear programming problem
of finding x in R

n so as to maximize f (x) = cTx subject to Ax ≤ b
and x ≥ 0. Mark each statement True or False, and justify each
answer.

9. a. The dual problem is to minimize y in R
m subject to Ay ≥ c

and y ≥ 0.

b. If both the primal and the dual problems are feasible, then
they both have optimal solutions.

c. If x is an optimal solution to the primal problem and
ŷ is a feasible solution to the dual problem such that
g(ŷ) = f (x), then ŷ is an optimal solution to the dual prob-
lem.

d. If a slack variable is in an optimal solution, then the
marginal value of the item corresponding to its equation is
positive.

10. a. The dual of the dual problem is the original primal prob-
lem.

b. If either the primal or the dual problem has an optimal
solution, then they both do.

c. If the primal problem has an optimal solution, then the fi-
nal tableau in the simplex method also gives the optimal
solution to the dual problem.

d. When a linear programming problem and its dual are used
to solve a matrix game, the vectors u and v are unit vectors.

Sometimes a minimization problem has inequalities only of the
“≥” type. In this case, replace the problem by its dual. (Multiply-
ing the original inequalities by −1 to reverse their direction will
not work, because the basic solution of the initial simplex tableau
in this case will be infeasible.) In Exercises 11–14, use the simplex
method to solve the dual, and from this solve the original problem
(the dual of the dual).

11. Minimize 16x1 + 10x2 + 20x3

subject to x1 + x2 + 3x3 ≥ 4
2x1 + x2 + 2x3 ≥ 5

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

12. Minimize 10x1 + 14x2

subject to x1 + 2x2 ≥ 3
2x1 + x2 ≥ 4
3x1 + x2 ≥ 2

and x1 ≥ 0, x2 ≥ 0.

13. Solve Exercise 2 in Section 9.2.

14. Solve Example 2 in Section 9.2.

Exercises 15 and 16 refer to Exercise 15 in Section 9.2. This exer-
cise was solved using the simplex method in Exercise 17 of Section
9.3. Use the final simplex tableau for that exercise to answer the
following questions.
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15. What is the marginal value of additional labor in the fabri-
cating department? Give an economic interpretation to your
answer.

16. If an extra hour of labor were available, to which department
should it be allocated? Why?

Solve the matrix games in Exercises 17 and 18 by using linear
programming.

17.


 2 0

−4 5
−1 3


 18.


 1 −2

0 1
−3 2




19. Solve the matrix game in Exercise 9 in Section 9.1 using linear
programming. This game and the one in Exercise 10 cannot
be solved by the methods of Section 9.1.

20. Solve the matrix game in Exercise 10 in Section 9.1 using
linear programming.

21. Bob wishes to invest $35,000 in stocks, bonds, and gold coins.
He knows that his rate of return will depend on the economic
climate of the country, which is, of course, difficult to pre-
dict. After careful analysis, he determines the annual profit
in dollars he would expect per hundred dollars on each type
of investment, depending on whether the economy is strong,
stable, or weak:

Strong Stable Weak

Stocks 4 1 −2

Bonds 1 3 0

Gold −1 0 4

How should Bob invest his money in order to maximize his
profit regardless of what the economy does? That is, consider
the problem as a matrix game in which Bob, the row player,
is playing against the “economy.” What is the expected value
of his portfolio at the end of the year?

22. Let P be a (primal) linear programming problem with feasible
set F , and let P ∗ be the dual problem with feasible set F ∗.
Prove the following:
a. If x is in F and y is in F ∗, then f (x) ≤ g(y). [Hint:

Write f (x) as xTc and g(y) as yT b. Then begin with the
inequality c ≤ ATy.]

b. If f (x̂) = g(ŷ) for some x̂ in F and ŷ in F ∗, then x̂ is an
optimal solution to P and ŷ is an optimal solution to P ∗.

23. Let A be an m×n matrix game. Let ȳ and x̄ be the optimal
solutions to the related primal and dual linear programming
problems, respectively, as in the discussion prior to Example
5. Let λ = uT x̄ = vT ȳ, and define x̂ = x̄/λ and ŷ = ȳ/λ. Let
R and C, respectively, denote the row and column players.
a. Show that x̂ and ŷ are mixed strategies for R and C, re-

spectively.

b. If y is any mixed strategy for C, show that E(x̂, y) ≥ 1/λ.

c. If x is any mixed strategy for R, show that E(x, ŷ) ≤ 1/λ.

d. Conclude that x̂ and ŷ are optimal mixed strategies for R

and C, respectively, and that the value of the game is 1/λ.

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Minimize 1200y1 + 800y2 + 450y3

subject to 3y1 + y2 + y3 ≥ 2
2y1 + 2y2 + y3 ≥ 3

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

2. The slack variables are x3, x4, and x5. The bottom row entries in these columns of the

final simplex tableau give the optimal solution to the dual problem. Thus ȳ =

 0

1
1


.

3. Slack variable x3 comes from the constraint inequality for fescue. This corresponds
to variable y1 in the dual problem, so the marginal value of fescue is 0. Similarly, x4

and x5 come from rye and bluegrass, respectively, so their marginal values are both
equal to 1.
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Answers to
Odd-Numbered Exercises
Chapter 9

Section 9.1, page 15

1. d q

d
q

[ −10 10
25 −25

]
3. st sc p

stone
scissors
paper


 0 5 −5

−5 0 5
5 −5 0




5.
[

4 ✐3
1 −1

]

7.


 5 ✐3 4 ✐3

−2 1 −5 2
4 ✐3 7 ✐3




9. a. E(x, y) = 13
12 , v(x) = min

{
5
6 , 1, 9

6

} = 5
6 ,

v(y) = max
{

3
4 , 3

2 , 1
2

} = 3
2

b. E(x, y) = 9
8 , v(x) = min

{
1, 3

4 , 7
4

} = 3
4 ,

v(y) = max
{

1
2 , 5

4 , 3
2

} = 3
2

11. x̂ =
[

1
6
5
6

]
, ŷ =

[
1
2
1
2

]
, v = 1

2

Solution:
Given A =

[
3 −2
0 1

]
, graph{

z = 3(1 − t) + (0)t = 3 − 3t

z = −2(1 − t) + (1)t = −2 + 3t
.

The lines intersect at (t, z) = ( 5
6 , 1

2 ). The optimal row

strategy is x̂ = x( 5
6 ) =

[
1 − 5

6
5
6

]
=

[
1
6
5
6

]
, and the value of

the game is ν = 1
2 . By Theorem 4, the optimal column

strategy ŷ satisfies E(e1, ŷ) = 1
2 and E(e2, ŷ) = 1

2 because x̂
is a linear combination of both e1 and e2. From the second

of these conditions, 1
2 = [

0 1
] [

3 −2
0 1

] [
c1

c2

]

= [
0 1

] [
c1

c2

]
= c2. From this, c1 = 1

2 and ŷ =
[

1
2
1
2

]
.

As a check on this work, one can compute

E(e1, ŷ) = [
1 0

][ 3 −2
0 1

][ 1
2
1
2

]
= [

3 −2
][ 1

2
1
2

]
= 1

2

13. x̂ =
[

3
5
2
5

]
, ŷ =

[
4
5
1
5

]
, ν = 17

5

Solution:
Given A =

[
3 5
4 1

]
, graph{

z = 3(1 − t) + (4)t = 3 + t

z = 5(1 − t) + (1)t = 5 − 4t
.

The lines intersect at (t, z) = ( 2
5 , 17

5 ). The optimal row

strategy is x̂ = x( 2
5 ) =

[
1 − 2

5
2
5

]
=

[
3
5
2
5

]
, and the value of

the game is ν = 17
5 . By Theorem 4, the optimal column

strategy ŷ satisfies E(e1, ŷ) = 17
5 and E(e2, ŷ) = 17

5 because
x̂ is a linear combination of both e1 and e2. From the first of
these conditions,
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17
5 = [

1 0
] [

3 5
4 1

] [
c1

1 − c1

]

= [
3 5

] [
c1

1 − c1

]
= 5 − 2c1

From this, c1 = 4
5 and ŷ =

[
4
5
1
5

]
. As a check on this work,

one can compute

E(e2, ŷ) = [
0 1

] [
3 5
4 1

][
4
5
1
5

]

= [
4 1

] [
4
5
1
5

]
= 17

5

15. x̂ =
[

1
3
2
3

]
or

[
3
5
2
5

]
or any convex combination of these row

strategies, ŷ =




0
0
1
0


, v = 2

Solution:
Column 2 dominates column 3, so the column player C will
never play column 2. The graph shows why column 2 will
not affect the column play, and the graph shows that the
value of the game is 2. The new game is[

4 ∗ 2 0
1 ∗ 2 5

]
. Let B =

[
4 2 0
1 2 5

]
. The line

for column 3 is z = 2. That line intersects the line for
column 4 where z = 0(1 − t) + 5t = 2, and t = .4. An

optimal row strategy is x̂ =
[

1 − .4
.4

]
=

[
.6
.4

]
. Another

optimal row strategy is determined by the intersection of the
lines for columns 1 and 3, where z = 4(1 − t) + t = 2,

t = 2
3 , and x̂ =

[
1
3
2
3

]
. It can be shown that any convex

combination of these two optimal strategies is also an
optimal row strategy.

To find the optimal column strategy, set y =

 c1

c2

c3


,

and set 2 = E(e1, y) = eT
1By and 2 = E(e2, y) = eT

2By.
These two equations produce 4c1 + 2c2 = 2 and
c1 + 2c2 + 5c3 = 2. Combine these with the fact that
c1 + c2 + c3 must be 1, and solve the system:

4c1 + 2c2 = 2
c1 + 2c2 + 5c3 = 2
c1 + c2 + c3 = 1

,


 4 2 0 2

1 2 5 2
1 1 1 1


 ∼


 1 0 0 0

0 1 0 1
0 0 1 0


 ,

c2 = 1, and y =

 0

1
0




This is the column strategy for the game matrix B. For A,

ŷ =




0
0
1
0


.

17. x̂ =




5
7

0
2
7

0


, ŷ =




0
5
7
2
7

0
0


, v = 3

7

Solution:
Row 2 is recessive to row 3, and row 4 is recessive to row 1,
so the row player R will never play row 2 or row 4. Also,
column 4 dominates column 2, so the column player C will
never play column 4. Thus, the game reduces:

A =




0 1 −1 4 3
1 −1 3 −1 −3
2 −1 4 0 −2

−1 0 −2 2 1




→




0 1 −1 4 3
∗ ∗ ∗ ∗ ∗
2 −1 4 0 −2
∗ ∗ ∗ ∗ ∗




→




0 1 −1 ∗ 3
∗ ∗ ∗ ∗ ∗
2 −1 4 ∗ −2
∗ ∗ ∗ ∗ ∗




Let B =
[

0 1 −1 3
2 −1 4 −2

]
. (If column 4 in A is not

noticed as dominant, this fact will become clear after the
lines are plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

(column 1) z = 0(1 − t) + 2t = 2t

(column 2) z = 1(1 − t) − t = 1 − 2t

(column 3) z = −1(1 − t) + 4t = −1 + 5t

(column 4) z = 3(1 − t) − 2t = 3 − 5t
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The graph of v(x(t)) as a function of t is the polygonal path
formed by line 3 (for column 3), then line 2 (column 2), and
then line 4 (column 4). The highest point on this path occurs
at the intersection of lines 3 and 2. Solve z = −1 + 5t and
z = 1 − 2t to find t = 2

7 and z = 3
7 . The value of game B is

z = 3
7 , attained when x̂ =

[
1 − 2

7
2
7

]
=

[
5
7
2
7

]
.

Because columns 2 and 3 of B determine the optimal
solution, the optimal strategy for the column player C is a
convex combination ŷ of the pure column strategies e2 and

e3, say, ŷ =




0
c2

c3

0


. Since both coordinates of the optimal

row solution are nonzero, Theorem 4 shows that
E(ei , ŷ) = 3

7 for i = 1, 2. Each condition, by itself,
determines ŷ. For example,

E(e1, ŷ) = eT
1Bŷ

= [
1 0

] [
0 1 −1 3
2 −1 4 −2

]


0
c2

c3

0




= c2 − c3 = 3
7

Substitute c3 = 1 − c2, and obtain c2 = 5
7 and c3 = 2

7 . Thus,

ŷ =




0
5
7
2
7

0


 is the optimal column strategy for game B. For

game A, x̂ =




5
7

0
2
7

0


 and ŷ =




0
5
7
2
7

0
0


 , and the value of the

game is still 3
7 .

19. a. Army: 1/3 river, 2/3 land; guerrillas: 1/3 river,
2/3 land; 2/3 of the supplies get through.

b. Army: 7/11 river, 4/11 land; guerrillas: 7/11 river,
4/11 land; 64/121 of the supplies get through.

21. a. True. Definition.
b. True. With a pure strategy, a player chooses one

particular play with probability 1.
c. False. v(x) is equal to the minimum of the inner product

of x with each of the columns of the payoff matrix.
d. False. The Minimax Theorem says only that the value of

a game is the same for both players. It does not
guarantee that there is an optimal mixed strategy for

each player that produces this common value. It is the
Fundamental Theorem for Matrix Games that says every
matrix game has a solution.

e. True. By Theorem 5, row r may be deleted from the
payoff matrix, and any optimal strategy from the new
matrix will also be an optimal strategy for matrix A.
This optimal strategy will not involve row s.

23. x̂ =



1
6
5
6

0


, ŷ =




0
1
2
1
2


, v = 0

25. x̂ =
(

d − c

a − b + d − c
,

a − b

a − b + d − c

)
,

ŷ =
(

d − b

a − b + d − c
,

a − c

a − b + d − c

)
, v = ad − bc

a − b + d − c

Section 9.2, page 25

1. Let x1 be the amount invested in mutual funds, x2 the
amount in CDs, and x3 the amount in savings. Then

b =

 12,000

0
0


, x =


 x1

x2

x3


, c =


 .11

.08

.06


, and

A =

 1 1 1

1 −1 −1
0 1 −2


.

3. b =
[

20
−10

]
, c =


 3

4
−2


, A =

[
1 2 0
0 3 −5

]

5. b =

 −35

20
−20


, c =


 −7

3
−1


, A =


 −1 4 0

0 1 −2
0 −1 2




7. max =1360, when x1 = 72
5 and x2 = 16

5

Solution:
First, find the intersection points for the bounding lines:

(1) 2x1 + x2 = 32,

(2) x1 + x2 = 18,

(3) x1 + 3x2 = 24

Even a rough sketch of the graphs of these lines will reveal
that (0, 0), (16, 0), and (0, 8) are vertices of the feasible set.
What about the intersections of the lines corresponding to
(1), (2), and (3)?

The graphical method will work, provided the graph is
large enough and is drawn carefully. In many simple
problems, even a small sketch will reveal which intersection
points are vertices of the feasible set. In this problem,
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however, three intersection points happen to be quite close to
each other, and a slight inaccuracy on a graph of size 3′′×3′′

or smaller may lead to an incorrect solution. In a case such
as this, the following algebraic procedure will work well:

When an intersection point is found that corresponds
to two inequalities, test it in the other inequalities
to see whether the point is in the feasible set.

The intersection of (1) and (2) is (14, 4). Test this in
the third inequality: (14) + 3(4) = 26 > 24. The
intersection point does not satisfy the inequality for (3), so
(14, 4) is not in the feasible set.

The intersection of (1) and (3) is (14.4, 3.2). Test this
in the second inequality: 14.4 + 3.2 = 17.6 ≤ 18, so
(14.4, 3.2) is in the feasible set.

The intersection of (2) and (3) is (15, 3). Test this in
the first inequality: 2(15) + (3) = 33 > 32, so (15, 3) is not
in the feasible set.

Next, list the vertices of the feasible set: (0, 0), (16, 0),
(14.4, 3.2), and (0, 8). Then compute the values of the
objective function 80x1 + 65x2 at these points.

(0, 0): 80(0) + 65(0) = 0
(16, 0): 80(16) + 3(0) = 1280
(14.4, 3.2): 80(14.4) + 65(3.2) = 1360
(0, 8): 80(0) + 65(8) = 520

Finally, select the maximum of the objective function,
which is 1360, and note that this maximum is attained at
(14.4, 3.2).

9. unbounded

11. a. True. Definition.
b. False. The vector x must itself be feasible. It is possible

for a nonfeasible vector (as well as the optimal solution)
to yield the maximum value of f .

13. max profit = $1250, when x1 = 100 bags of EverGreen and
x2 = 350 bags of QuickGreen

Solution:
First, find the intersection points for the bounding lines:

(1) 3x1 + 2x2 = 1200 (fescue)
(2) x1 + 2x2 = 800 (rye)
(3) x1 + x2 = 450 (bluegrass)

The intersection of lines (1) and (2) is (200, 300). Test
this in the inequality corresponding to (3):
(200) + (300) = 500 > 450. The intersection point does not
satisfy the inequality for (3), so (200, 300) is not in the
feasible set.

The intersection of (1) and (3) is (300, 150). Test this
in (2): (300) + 2(150) = 600 < 800, so (300, 150) is in the
feasible set.

The intersection of (2) and (3) is (100, 350). Test this
in (1): 3(100) + 2(350) = 1000 < 1200, so (100, 350) is in
the feasible set.

The vertices of the feasible set are (0, 0), (400, 0),
(300, 150), (100, 350), and (0, 400). Evaluate the objective
function at each vertex:

(0, 0): 2(0) + 3(0) = 0
(400, 0): 2(400) + 3(0) = 800
(300, 150): 2(300) + 3(150) = 1050
(100, 350): 2(100) + 3(350) = 1250
(0, 400): 2(0) + 3(400) = 1200

The maximum of the objective function 2x1 + 3x2 is $1250
at (100, 350).

15. max profit = $1180, for 20 widgets and 30 whammies

Solution:
First, find the intersection points for the bounding lines:

(1) 5x1 + 2x2 = 200
(2) .2x1 + .4x2 = 16
(3) .2x1 + .2x2 = 10

The intersection of (1) and (2) is (30, 25). Test this in
the third inequality: .2(30) + .2(25) = 11 > 10. The
intersection point does not satisfy the inequality for (3), so
(30, 25) is not in the feasible set.

The intersection of (1) and (3) is (100/3, 100/6). Test
this in the second inequality:
.2(100/3) + .4(100/6) = 13.3 < 16, so (100/3, 100/6) is in
the feasible set.

The intersection of (2) and (3) is (20, 30). Test this in
the first inequality: 5(20) + 2(30) = 160 < 200, so (20, 30)

is in the feasible set.
The vertices of the feasible set are (40, 0),

(100/3, 100/6), (20, 30), and (0, 40). Evaluate the
objective function at each vertex:

(40, 0): 20(40) + 26(0) = 800
(100/3, 100/6): 20(100/3) + 26(100/6) = 1100
(20, 30): 20(20) + 26(30) = 1180
(0, 40): 20(0) + 26(40) = 1040

The maximum profit is $1180, when x1 = 20 widgets and
x2 = 30 whammies.

17. Take any p and q in S, with p =
[

x1

x2

]
and q =

[
y1

y2

]
. Then

vT p ≤ c and vT q ≤ c. Take any scalar t such that
0 ≤ t ≤ 1. Then, by the linearity of matrix multiplication
(or the dot product if vT p is written as v·p, and so on),

vT [(1 − t)p + tq] = (1 − t)vT p + tvT q ≤ (1 − t)c + tc = c
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because (1 − t) and t are both positive and p and q are in S.
So the line segment between p and q is in S. Since p and q
were any points in S, the set S is convex.

19. Let S = {x : f (x) = d}, and take p and q in S. Also, take t

with 0 ≤ t ≤ 1, and let x = (1 − t)p + tq. Then

f (x) = cT x = cT [(1 − t)p + tq]
= (1 − t)cT p + tcT q = (1 − t)d + td = d

Thus, x is in S. This shows that S is convex.

Section 9.3, page 43

1. x1 x2 x3 x4 x5 M


2 7 10 1 0 0 20
3 4 18 0 1 0 25

−21 −25 −15 0 0 1 0




3. a. x2

b. x1 x2 x3 x4 M


7
2 0 1 − 1

2 0 5
3
2 1 0 1

2 0 15

11 0 0 5 1 150




c. x1 = 0, x2 = 15, x3 = 5, x4 = 0, M = 150
d. optimal

5. a. x1

b. x1 x2 x3 x4 M


0 2 1 −1 0 4

1 1
2 0 1

2 0 8

0 −2 0 3 1 48




c. x1 = 8, x2 = 0, x3 = 4, x4 = 0, M = 48
d. not optimal

7. a. False. A slack variable is used to change an inequality
into an equality.

b. True. Definition.
c. False. The initial basic solution will be infeasible, but

there may still be a basic feasible solution.

9. The maximum is 150, when x1 = 3 and x2 = 10.

Solution:
First, bring x2 into the solution; pivot with row 1. Then
bring x1 into the solution; pivot with row 2. The maximum
is 150, when x1 = 3 and x2 = 10.

x1 x2 x3 x4 M


2 3 1 0 0 36
5 4 0 1 0 55

−10 −12 0 0 1 0




∼

x1 x2 x3 x4 M


2
3 1 1

3 0 0 12
7
3 0 − 4

3 1 0 7

−2 0 4 0 1 144




∼

x1 x2 x3 x4 M


0 1 5
7 − 2

7 0 10

1 0 − 4
7

3
7 0 3

0 0 20
7

6
7 1 150




11. The maximum is 56, when x1 = 9 and x2 = 4.

Solution:
First, bring x2 into the solution; pivot with row 2. Then
bring x1 into the solution; pivot with row 3. The maximum
is 56, when x1 = 9 and x2 = 4.

x1 x2 x3 x4 x5 M


1 2 1 0 0 0 26
2 3 0 1 0 0 30
1 1 0 0 1 0 13

−4 −5 0 0 0 1 0




∼

x1 x2 x3 x4 x5 M


− 1
3 0 1 − 2

3 0 0 6
2
3 1 0 1

3 0 0 10
1
3 0 0 − 1

3 1 0 3

− 2
3 0 0 5

3 0 1 50




∼

x1 x2 x3 x4 x5 M


0 0 1 −1 1 0 9
0 1 0 1 −2 0 4
1 0 0 −1 3 0 9

0 0 0 1 2 1 56




13. The minimum is 180, when x1 = 10 and x2 = 12.

Solution:
Convert this to a maximization problem for −12x1 − 5x2,
and reverse the first constraint inequality. Beginning with
the first tableau below, bring x1 into the solution, using row
1 as the pivot row. Then bring x2 into the solution; pivot
with row 2. The maximum value of −12x1 − 5x2 is −180,
so the minimum of the original objective function
12x1 + 5x2 is 180, when x1 is 10 and x2 is 12.

x1 x2 x3 x4 M


−2 −1 1 0 0 −32
−3 5 0 1 0 30

12 5 0 0 1 0



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∼

x1 x2 x3 x4 M


1 1
2 − 1

2 0 0 16

0 13
2 − 3

2 1 0 78

0 −1 6 0 1 −192




∼

x1 x2 x3 x4 M


1 0 − 5
13 − 1

13 0 10

0 1 − 3
13

2
13 0 12

0 0 75
13

2
13 1 −180




15. The answer matches that in Example 7. The minimum is 20,
when x1 = 8 and x2 = 6.

Solution:
Begin with the same initial simplex tableau, bringing x1 into
the solution, with row 2 as the pivot row. Then bring x2 into
the solution; pivot with row 1. The maximum of −x1 − 2x2

is −20, so the minimum of x1 + 2x2 is 20, when x1 = 8 and
x2 = 6.

x1 x2 x3 x4 M


−1 −1 1 0 0 −14
1 −1 0 1 0 2

1 2 0 0 1 0




∼
x1 x2 x3 x4 M


0 −2 1 1 0 −12
1 −1 0 1 0 2

0 −3 0 −1 1 −2




∼

x1 x2 x3 x4 M


0 1 − 1
2 − 1

2 0 6

1 0 − 1
2

1
2 0 8

0 0 3
2

1
2 1 −20




17. The maximum profit is $1180, achieved by making 20
widgets and 30 whammies each day.

Solution:
The simplex tableau below is based on the problem of the
Benri Company (Exercise 15 in Section 9.2) to maximize
the profit function 20x1 + 26x2 subject to various amounts
of labor available for the three-step production process. To
begin the simplex method, bring x2 into the solution; pivot
with row 2. Then, bring x1 into the solution; pivot with row
3. The profit is maximized at $1180, by making 20 widgets
and 30 whammies each day.

x1 x2 x3 x4 x5 M


5 2 1 0 0 0 200
1
5

2
5 0 1 0 0 16

1
5

1
5 0 0 1 0 10

−20 −26 0 0 0 1 0




∼

x1 x2 x3 x4 x5 M


4 0 1 −5 0 0 120
1
2 1 0 5

2 0 0 40
1
10 0 0 − 1

2 1 0 2

−7 0 0 65 0 1 1040




∼

x1 x2 x3 x4 x5 M


0 0 1 15 −40 0 40
0 1 0 5 −5 0 30
1 0 0 −5 10 0 20

0 0 0 30 70 1 1180




Section 9.4, page 53

1. Minimize 36y1 + 55y2

subject to 2y1 + 5y2 ≥ 10
3y1 + 4y2 ≥ 12

and y1 ≥ 0, y2 ≥ 0.

3. Minimize 26y1 + 30y2 + 13y3

subject to y1 + 2y2 + y3 ≥ 4
2y1 + 3y2 + y3 ≥ 5

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

5. The minimum is M = 150, attained when y1 = 20
7 and

y2 = 6
7 .

Solution:
The final tableau from Exercise 9 in Section 9.3 is

x1 x2 x3 x4 M


0 1 5
7 − 2

7 0 10

1 0 − 4
7

3
7 0 3

0 0 20
7

6
7 1 150




The solution of the dual problem is displayed by the entries
in row 3 of columns 3, 4, and 6. The minimum is M = 150,
attained when y1 = 20

7 and y2 = 6
7 .

7. The minimum is M = 56, attained when y1 = 0, y2 = 1, and
y3 = 2.
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Solution:
The final tableau from Exercise 11 in Section 9.3 is

x1 x2 x3 x4 x5 M


0 0 1 −1 1 0 9
0 1 0 1 −2 0 4
1 0 0 −1 3 0 9

0 0 0 1 2 1 56




The solution of the dual problem is displayed by the entries
in row 4 of columns 3, 4, 5, and 7. The minimum is
M = 56, attained when y1 = 0, y2 = 1, and y3 = 2.

9. a. False. It should be AT y ≥ c.
b. True. Theorem 7.
c. True. Theorem 7.
d. False. The marginal value is zero if it is in the optimal

solution. See Example 4.

11. The minimum is 43, when x1 = 7
4 , x2 = 0, and x3 = 3

4 .

Solution:
The dual problem is to maximize 4y1 + 5y2 subject to
 1 2

1 1
3 2


[

y1

y2

]
≤


 16

10
20


 and y ≥ 0. Solve the dual

problem with the simplex method:

y1 y2 y3 y4 y5 M


1 2 1 0 0 0 16
1 1 0 1 0 0 10
3 2 0 0 1 0 20

−4 −5 0 0 0 1 0




∼

y1 y2 y3 y4 y5 M


1
2 1 1

2 0 0 0 8
1
2 0 − 1

2 1 0 0 2

2 0 −1 0 1 0 4

− 3
2 0 5

2 0 0 1 40




∼

y1 y2 y3 y4 y5 M


0 1 3
4 0 − 1

4 0 7

0 0 − 1
4 1 − 1

4 0 1

1 0 − 1
2 0 1

2 0 2

0 0 7
4 0 3

4 1 43




The solution of the dual of the dual (the primal) is x1 = 7
4 ,

x2 = 0, x3 = 3
4 , with M = 43.

13. The minimum cost is $670, using 11 bags of Pixie Power
and 3 bags of Misty Might.

Solution:
The problem in Exercise 2 of Section 9.2 is to minimize cT x
subject to Ax ≥ b and x ≥ 0, where x lists the number of

bags of Pixie Power and Misty Might, and c =
[

50
40

]
,

A =




3 2
2 4
1 3
2 1


, b =




28
30
20
25


, and x =

[
x1

x2

]
. The dual of a

minimization problem involving a matrix is a maximization
problem involving the transpose of the matrix, with the
vector data for the objective function and the constraint
equation interchanged. Since the notation was established in
Exercise 2 for a minimization problem, the notation here is
“reversed’’ from the usual notation for a primal problem.
Thus, the dual of the primal problem stated above is to
maximize bT y subject to AT y ≤ c and y ≥ 0. That is,
maximize 28y1 + 30y2 + 20y3 + 25y4 subject to

[
3 2 1 2
2 4 3 1

]


y1

y2

y3

y4


 ≤

[
50
40

]

Here are the simplex calculations for this dual problem:

y1 y2 y3 y4 y5 y6 M


3 2 1 2 1 0 0 50
2 4 3 1 0 1 0 40

−28 −30 −20 −25 0 0 1 0




∼

y1 y2 y3 y4 y5 y6 M


2 0 − 1
2

3
2 1 − 1

2 0 30
1
2 1 3

4
1
4 0 1

4 0 10

−13 0 5
2 − 35

2 0 15
2 1 300




∼

y1 y2 y3 y4 y5 y6 M


4
3 0 − 1

3 1 2
3 − 1

3 0 20
1
6 1 5

6 0 − 1
6

1
3 0 5

31
3 0 − 10

3 0 35
3

5
3 1 650




∼

y1 y2 y3 y4 y5 y6 M


7
5

2
5 0 1 3

5 − 1
5 0 22

1
5

6
5 1 0 − 1

5
2
5 0 6

11 4 0 0 11 3 1 670




Since the original problem is the dual of the problem solved
by the simplex method, the desired solution is given by the
slack variables y5 = 11 and y6 = 3. The value of the
objective is the same for the primal and dual problems, so
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the minimum cost is $670. This is achieved by blending 11
bags of PixiePower and 3 bags of MistyMight.

15. The marginal value is zero. This corresponds to labor in the
fabricating department being underutilized. That is, at the
optimal production schedule with x1 = 20 and x2 = 30, only
160 of the 200 available hours in fabricating are needed.
The extra labor is wasted, and so it has value zero.

17. x̂ =



2
3

0
1
3


, ŷ =

[
1
2
1
2

]
, v = 1

19. x̂ =



2
5
2
5
1
5


, ŷ =




3
7
3
7
1
7


, v = 1

Solution:

The game is


 1 2 −2

0 1 4
3 −1 1


. Add 3 to shift the game:


 4 5 1

3 4 7
6 2 4


. The linear programming tableau for this

game is

x1 x2 x3 x4 x5 x6 M


4 5 1 1 0 0 0 1
3 4 7 0 1 0 0 1
6 2 4 0 0 1 0 1

−1 −1 −1 0 0 0 1 0




Pivots:


0 11
3 − 5

3 1 0 − 2
3 0 1

3

0 3 5 0 1 − 1
2 0 1

2

1 1
3

2
3 0 0 1

6 0 1
6

0 − 2
3 − 1

3 0 0 1
6 1 1

6




∼




0 1 − 5
11

3
11 0 − 2

11 0 1
11

0 0 70
11 − 9

11 1 1
22 0 5

22

1 0 9
11 − 1

11 0 5
22 0 3

22

0 0 − 7
11

2
11 0 1

22 1 5
22




∼




0 1 0 3
14

1
14 − 5

28 0 3
28

0 0 1 − 9
70

11
70

1
140 0 1

28

1 0 0 1
70 − 9

70
31

140 0 3
28

0 0 0 1
10

1
10

1
20 1 1

4




The optimal solution of the primal and dual problems,
respectively, are ȳ1 = 3

28 , ȳ2 = 3
28 , ȳ3 = 1

28 , and x̄1 = 1
10 ,

x̄2 = 1
10 , x̄3 = 1

20 , with λ = 1
4 . The corresponding optimal

mixed strategies for the column and row players,
respectively, are:

ŷ = ȳ/λ = ȳ ·4 =



3
7
3
7
1
7


 and x̂ = x̄/λ = x̄·4 =




2
5
2
5
1
5




The value of the game with the shifted payoff matrix is 1/λ,
which is 4, so the value of original game is 4 − 3 = 1.

21. Change this “game’’ into a linear programming problem and
use the simplex method to analyze the game. The expected
value of the game is 38

35 , based on a payoff matrix for an
investment of $100. With $35,000 to invest, Bob “plays’’
this game 350 times. Thus, he expects to gain $380, and the
expected value of his portfolio at the end of the year is
$35,380. Using the optimal game strategy, Bob should
invest $11,000 in stocks, $9,000 in bonds, and $15,000 in
gold.

Solution:

The game is


 4 1 −2

1 3 0
−1 0 4


. Add 3 to shift the game:


 7 4 1

4 6 3
2 3 7


. The linear programming problem is to

maximize y1 + y2 + y3 subject to


 7 4 1

4 6 3
2 3 7


 ≤


 1

1
1




and


 y1

y2

y3


 ≥


 0

0
0


.

The tableau for this game is

x1 x2 x3 x4 x5 x6 M


7 4 1 1 0 0 0 1
4 6 3 0 1 0 0 1
2 3 7 0 0 1 0 1

−1 −1 −1 0 0 0 1 0




The simplex calculations are

y1 y2 y3 y4 y5 y6 M


1 4
7

1
7

1
7 0 0 0 1

7

0 26
7

17
7 − 4

7 1 0 0 3
7

0 13
7

47
7 − 2

7 0 1 0 5
7

0 − 3
7 − 6

7
1
7 0 0 1 1

7



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∼

y1 y2 y3 y4 y5 y6 M


1 25
47 0 7

47 0 − 1
47 0 6

47

0 143
47 0 − 22

47 1 − 17
47 0 8

47

0 13
47 1 − 2

47 0 7
47 0 5

47

0 − 9
47 0 5

47 0 6
47 1 11

47




∼

y1 y2 y3 y4 y5 y6 M


1 0 0 3
13 − 25

143
6

143 0 14
143

0 1 0 − 2
13

47
143 − 17

143 0 8
143

0 0 1 0 − 1
11

2
11 0 1

11

0 0 0 1
13

9
143

15
143 1 35

143




The optimal solution of the primal and dual problems,
respectively, are

ȳ1 = 14
143 , ȳ2 = 8

143 , ȳ3 = 1
11 ,

and

x̄1 = 1
13 , x̄2 = 9

143 , x̄3 = 15
143 , with λ = 35

143

The corresponding optimal mixed strategies for the
column and row players, respectively, are

ŷ = ȳ/λ = ȳ · 143
35 =




14
35
8
35
13
35


 and x̂ = x̄/λ = x̄ · 143

35 =



11
35
9

35
15
35




The value of the game with the shifted payoff matrix is
1/λ , which is 143

35 , so the value of original game is
143
35 − 3 = 38

35 . Using the optimal strategy x̂, Bob should
invest 11

35 of the $35,000 in stocks, 9
35 in bonds, and 15

35 in

gold. That is, Bob should invest $11,000 in stocks, $9,000
in bonds, and $15,000 in gold. The expected value of the
game is 38

35 , based on $100 for each play of the game. (The
payoff matrix lists the amounts gained or lost for each $100
that is invested for one year.) With $35,000 to invest, Bob
“plays’’ this game 350 times. Thus, he should expect to
gain $380, and the expected value of his portfolio at the end
of the year is $35,380.

23. a. The coordinates of x̄ are all nonnegative. From the
definition of u, λ is equal to the sum of these
coordinates. It follows that the coordinates of x̂ are
nonnegative and sum to one. Thus, x̂ is a mixed strategy
for the row player R. A similar argument holds for ŷ and
the column player C.

b. If y is any mixed strategy for C, then

E(x̂, y) = x̂T Ay = 1

λ

(
x̄T Ay

) = 1

λ

[(
AT x̄

)·y
]

≥ 1

λ
(v·y) = 1

λ

c. If x is any mixed strategy for R, then

E(x, ŷ) = xT Aŷ = 1

λ

(
xTAȳ

) = 1

λ
[x·Aȳ]

≤ 1

λ
(x·u) = 1

λ

d. Part (b) implies v(x̂) ≥ 1/λ, so vR ≥ 1/λ . Part (c)
implies v(ŷ) ≤ 1/λ , so vC ≤ 1/λ . It follows from the
Minimax Theorem in Section 9.1 that x̂ and ŷ are
optimal mixed strategies for R and C, respectively, and
that the value of the game is 1/λ.
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Chapter 9

Section 9.1, page 15

1. d q

d
q

[ −10 10
25 −25

]
2. 1 2 3

1
2
3


 2 −3 4

−3 4 −5
4 −5 6




3. st sc p

stone
scissors
paper


 0 5 −5

−5 0 5
5 −5 0




4. r4 b9
r3
r6
b7


 4 −12

6 −15
−11 9




5.
[

4 ✐3
1 −1

]

6.
[

2 ✐1 3
4 −2 1

]

7.


 5 ✐3 4 ✐3

−2 1 −5 2
4 ✐3 7 ✐3




8.


 −2 4 1 −1

3 5 ✐2 ✐2
1 −3 0 2




9. a. E(x, y) = 13
12 , v(x) = min

{
5
6 , 1, 9

6

} = 5
6 ,

v(y) = max
{

3
4 , 3

2 , 1
2

} = 3
2

b. E(x, y) = 9
8 , v(x) = min

{
1, 3

4 , 7
4

} = 3
4 ,

v(y) = max
{

1
2 , 5

4 , 3
2

} = 3
2

10. a. E(x, y) = − 1
4 , v(x) = min

{
4
3 , − 4

3 , 5
3 , 1

3

} = − 4
3 ,

v(y) = max
{

1
4 , 1

4 , − 1
2

} = 1
4

b. E(x, y) = 1
8 , v(x) = min

{
1, − 1

4 , 1
2 , − 1

4

} = − 1
4 ,

v(y) = max
{

1
4 , − 3

4 , 3
4

} = 3
4

11. x̂ =
[

1
6
5
6

]
, ŷ =

[
1
2
1
2

]
, v = 1

2

Solution:
Given A =

[
3 −2
0 1

]
, graph{

z = 3(1 − t) + (0)t = 3 − 3t

z = −2(1 − t) + (1)t = −2 + 3t
.

The lines intersect at (t, z) = ( 5
6 , 1

2 ). The optimal row

strategy is x̂ = x( 5
6 ) =

[
1 − 5

6
5
6

]
=

[
1
6
5
6

]
, and the value of

the game is ν = 1
2 . By Theorem 4, the optimal column

strategy ŷ satisfies E(e1, ŷ) = 1
2 and E(e2, ŷ) = 1

2 because x̂
is a linear combination of both e1 and e2. From the second

of these conditions, 1
2 = [

0 1
] [

3 −2
0 1

] [
c1

c2

]

= [
0 1

] [
c1

c2

]
= c2. From this, c1 = 1

2 and ŷ =
[

1
2
1
2

]
.

As a check on this work, one can compute

E(e1, ŷ) = [
1 0

][ 3 −2
0 1

][ 1
2
1
2

]
= [

3 −2
][ 1

2
1
2

]
= 1

2

12. x̂ =
[

9
13
4
13

]
, ŷ =

[
8
13
5

13

]
, v = 6

13
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13. x̂ =
[

3
5
2
5

]
, ŷ =

[
4
5
1
5

]
, ν = 17

5

Solution:
Given A =

[
3 5
4 1

]
, graph{

z = 3(1 − t) + (4)t = 3 + t

z = 5(1 − t) + (1)t = 5 − 4t
.

The lines intersect at (t, z) = ( 2
5 , 17

5 ). The optimal row

strategy is x̂ = x( 2
5 ) =

[
1 − 2

5
2
5

]
=

[
3
5
2
5

]
, and the value of

the game is ν = 17
5 . By Theorem 4, the optimal column

strategy ŷ satisfies E(e1, ŷ) = 17
5 and E(e2, ŷ) = 17

5 because
x̂ is a linear combination of both e1 and e2. From the first of
these conditions,

17
5 = [

1 0
] [

3 5
4 1

] [
c1

1 − c1

]

= [
3 5

] [
c1

1 − c1

]
= 5 − 2c1

From this, c1 = 4
5 and ŷ =

[
4
5
1
5

]
. As a check on this work,

one can compute

E(e2, ŷ) = [
0 1

] [
3 5
4 1

][
4
5
1
5

]

= [
4 1

] [
4
5
1
5

]
= 17

5

14. x̂ =
[

9
10
1
10

]
, ŷ =




3
5

0
0
2
5


, v = 13

5

Solution:
Columns 2 and 3 dominate column 1, so the column player
will never choose column 2 or column 3. The new game is[

3 ∗ ∗ 2
−1 ∗ ∗ 8

]
. Let B =

[
3 2

−1 8

]
. Graph{

z = 3(1 − t) + (−1)t = −4t + 3
z = 2(1 − t) + 8t = 6t + 2

Solve for the intersection, to get t = .1, and

x̂ = x(.1) =
[

1 − .1
.1

]
=

[
.9
.1

]
. The game value is

6(.1) + 2 = 2.6. Let y =
[

c1

c2

]
, and set

2.6 = E(e1, y) = [
1 0

] [
3 2

−1 8

] [
c1

c2

]
,

so 3c1 + 2c2 = 2.6. Since y is a probability vector,

3c1 + 2(1 − c1) = 2.6, and c1 = .6. Thus, c2 = 1 − .6 = .4,
and the optimal column strategy y for the matrix game B

has entries .6 and .4. The optimal ŷ for the matrix game A

has four entries.

The game matrix, written as

[
3 ∗ ∗ 2

−1 ∗ ∗ 8

]
,

shows that ŷ =




.6
0
0
.4


 and, from above, x̂ =

[
.9
.1

]
.

15. x̂ =
[

1
3
2
3

]
or

[
3
5
2
5

]
or any convex combination of these row

strategies, ŷ =




0
0
1
0


, v = 2

Solution:
Column 2 dominates column 3, so the column player C will
never play column 2. The graph shows why column 2 will
not affect the column play, and the graph shows that the
value of the game is 2. The new game is[

4 ∗ 2 0
1 ∗ 2 5

]
. Let B =

[
4 2 0
1 2 5

]
. The line

for column 3 is z = 2. That line intersects the line for
column 4 where z = 0(1 − t) + 5t = 2, and t = .4. An

optimal row strategy is x̂ =
[

1 − .4
.4

]
=

[
.6
.4

]
. Another

optimal row strategy is determined by the intersection of the
lines for columns 1 and 3, where z = 4(1 − t) + t = 2,

t = 2
3 , and x̂ =

[
1
3
2
3

]
. It can be shown that any convex

combination of these two optimal strategies is also an
optimal row strategy.

To find the optimal column strategy, set y =

 c1

c2

c3


,

and set 2 = E(e1, y) = eT
1By and 2 = E(e2, y) = eT

2By.
These two equations produce 4c1 + 2c2 = 2 and
c1 + 2c2 + 5c3 = 2. Combine these with the fact that
c1 + c2 + c3 must be 1, and solve the system:

4c1 + 2c2 = 2
c1 + 2c2 + 5c3 = 2
c1 + c2 + c3 = 1

,


 4 2 0 2

1 2 5 2
1 1 1 1


 ∼


 1 0 0 0

0 1 0 1
0 0 1 0


 ,
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c2 = 1, and y =

 0

1
0




This is the column strategy for the game matrix B. For A,

ŷ =




0
0
1
0


.

16. x̂ = ŷ =

 0

1
0


, v = 2

Solution:
Row 3 is recessive to row 2, so the row player R will never
play row 3. Also, column 3 dominates column 2, so the
column player C will never play column 3. Thus, the game
reduces:

A =

 5 −1 1

4 2 2
−2 −3 1


 →


 5 −1 1

4 2 2
∗ ∗ ∗




→

 5 −1 ∗

4 2 ∗
∗ ∗ ∗




Let B =
[

5 −1
4 2

]
. The row minima are −1 and 2, so the

max of the minima is 2. The column maxima are 5 and 2, so
the min of the maxima is 2. Thus, the value of the game is 2,
and game B has a saddle point, where R always plays row 2
and C always plays column 2. For the original game, the

optimal solutions are x̂ = ŷ =

 0

1
0


. Another solution

method is to check the original matrix for a saddle point and
find it directly, without reducing the size of the matrix.

17. x̂ =




5
7

0
2
7

0


, ŷ =




0
5
7
2
7

0
0


, v = 3

7

Solution:
Row 2 is recessive to row 3, and row 4 is recessive to row 1,
so the row player R will never play row 2 or row 4. Also,
column 4 dominates column 2, so the column player C will
never play column 4. Thus, the game reduces:

A =




0 1 −1 4 3
1 −1 3 −1 −3
2 −1 4 0 −2

−1 0 −2 2 1




→




0 1 −1 4 3
∗ ∗ ∗ ∗ ∗
2 −1 4 0 −2
∗ ∗ ∗ ∗ ∗




→




0 1 −1 ∗ 3
∗ ∗ ∗ ∗ ∗
2 −1 4 ∗ −2
∗ ∗ ∗ ∗ ∗




Let B =
[

0 1 −1 3
2 −1 4 −2

]
. (If column 4 in A is not

noticed as dominant, this fact will become clear after the
lines are plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

(column 1) z = 0(1 − t) + 2t = 2t

(column 2) z = 1(1 − t) − t = 1 − 2t

(column 3) z = −1(1 − t) + 4t = −1 + 5t

(column 4) z = 3(1 − t) − 2t = 3 − 5t

The graph of v(x(t)) as a function of t is the polygonal path
formed by line 3 (for column 3), then line 2 (column 2), and
then line 4 (column 4). The highest point on this path occurs
at the intersection of lines 3 and 2. Solve z = −1 + 5t and
z = 1 − 2t to find t = 2

7 and z = 3
7 . The value of game B is

z = 3
7 , attained when x̂ =

[
1 − 2

7
2
7

]
=

[
5
7
2
7

]
.

Because columns 2 and 3 of B determine the optimal
solution, the optimal strategy for the column player C is a
convex combination ŷ of the pure column strategies e2 and

e3, say, ŷ =




0
c2

c3

0


. Since both coordinates of the optimal

row solution are nonzero, Theorem 4 shows that
E(ei , ŷ) = 3

7 for i = 1, 2. Each condition, by itself,
determines ŷ. For example,

E(e1, ŷ) = eT
1Bŷ

= [
1 0

] [
0 1 −1 3
2 −1 4 −2

]


0
c2

c3

0




= c2 − c3 = 3
7
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Substitute c3 = 1 − c2, and obtain c2 = 5
7 and c3 = 2

7 . Thus,

ŷ =




0
5
7
2
7

0


 is the optimal column strategy for game B. For

game A, x̂ =




5
7

0
2
7

0


 and ŷ =




0
5
7
2
7

0
0


 , and the value of the

game is still 3
7 .

18. x̂ =




2/3
0

0

1/3


, ŷ =




0

2/3

1/3

0


, v = 13

3

Solution:
Row 2 is recessive to row 4, and row 3 is recessive to row 1,
so the row player R will never play row 2 or row 3. After
these rows are removed, column 4 dominates column 2, so
the column player C will never play column 4. Thus, the
game reduces:

A =




6 4 5 5
0 4 2 7
6 3 5 2
2 5 3 7


 →




6 4 5 5
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
2 5 3 7




→




6 4 5 ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
2 5 3 ∗




Let B =
[

6 4 5
2 5 3

]
. (If column 4 in A is not noticed

as dominant, this fact will become clear after the lines are
plotted for the columns of the reduced matrix.) The
equations of the lines corresponding to the columns of B are

(column 1) z = 6(1 − t) + 2t = 6 − 4t

(column 2) z = 4(1 − t) + 5t = 4 + t

(column 3) z = 5(1 − t) + 3t = 5 − 2t

The graph of v(x(t)) as a function of t is the polygonal path
formed by line 2 (for column 2), then line 3 (column 3), and
then line 1 (column 1). The highest point on this path occurs
at the intersection of lines 2 and 3. Solve z = 4 + t and
z = 5 − 2t to find t = 1

3 and z = 13
3 . The value of game B is

z = 13
3 , attained when x̂ =

[
1 − 1

3
1
3

]
=

[
2
3
1
3

]
. Because

columns 2 and 3 of B determine the optimal solution, the
optimal strategy for the column player C is a convex
combination ŷ of the pure column strategies e2 and e3, say,

ŷ =

 0

c2

c3


. Since both coordinates of the optimal row

solution are nonzero, Theorem 4 shows that E(ei , ŷ) = 13
3

for i = 1, 2. Each condition, by itself, determines ŷ. For
example,
13
3 = E(e1, ŷ) = eT

1Bŷ

= [
1 0

] [
6 4 5
2 5 3

]
 0

c2

c3




= 4c2 + 5c3 = 4c2 + 5(1 − c2) = 5 − c2

Then c2 = 2
3 and c3 = 1

3 . Thus, ŷ =



0
2
3
1
3


 is the optimal

column strategy for game B. For game A, x̂ =




2
3

0
0
1
3


 and

ŷ =




0
2
3
1
3
0


 , and the value of the game is still 13

3 .

19. a. Army: 1/3 river, 2/3 land; guerrillas: 1/3 river,
2/3 land; 2/3 of the supplies get through.

b. Army: 7/11 river, 4/11 land; guerrillas: 7/11 river,
4/11 land; 64/121 of the supplies get through.

20. a. Army: 7/11 river, 4/11 land; guerrillas: 9/11 river,
2/11 land.

b. The value of the game is −36/11. This means the army
will average 36/11 casualties a day.

21. a. True. Definition.
b. True. With a pure strategy, a player chooses one

particular play with probability 1.
c. False. v(x) is equal to the minimum of the inner product

of x with each of the columns of the payoff matrix.
d. False. The Minimax Theorem says only that the value of

a game is the same for both players. It does not
guarantee that there is an optimal mixed strategy for
each player that produces this common value. It is the
Fundamental Theorem for Matrix Games that says every
matrix game has a solution.

e. True. By Theorem 5, row r may be deleted from the
payoff matrix, and any optimal strategy from the new
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matrix will also be an optimal strategy for matrix A.
This optimal strategy will not involve row s.

22. a. True. Definition.
b. False. A strategy is optimal only if its value equals the

value of the game.
c. True. Definition.
d. False. It guarantees the existence of a solution, but it

does not show how to find a solution.
e. True. By Theorem 5, the dominating column t may be

deleted from the payoff matrix, and any optimal strategy
from the new matrix will also be an optimal strategy for
matrix A. This optimal strategy will not involve column
t . (Note, however, that if a column is recessive, it may or
may not be nonzero in an optimal mixed strategy. In
Example 6, column 4 is recessive to column 1, but
column 4 has probability 0 in the optimal mixed strategy
for C. However, column 3 is also recessive to column 1,
and the probability of column 3 in the optimal strategy is
positive.)

23. x̂ =



1
6
5
6

0


, ŷ =




0
1
2
1
2


, v = 0

24. a.
[

1 −3
−2 4

]
b. −AT

25. x̂ =
(

d − c

a − b + d − c
,

a − b

a − b + d − c

)
,

ŷ =
(

d − b

a − b + d − c
,

a − c

a − b + d − c

)
, v = ad − bc

a − b + d − c

26. Let A =
[

2 0
0 2

]
, x =

[
1
2
1
2

]
, and y =

[
1
0

]
. Then v = 1

and E(x, y) = 1, but y is not optimal. There are many other
possibilities.

Section 9.2, page 25

1. Let x1 be the amount invested in mutual funds, x2 the
amount in CDs, and x3 the amount in savings. Then

b =

 12,000

0
0


, x =


 x1

x2

x3


, c =


 .11

.08

.06


, and

A =

 1 1 1

1 −1 −1
0 1 −2


.

2. Let x1 be the number of bags of Pixie Power, and x2 the

number of bags of Misty Might. Then b =




28
30
20
25


,

x =
[

x1

x2

]
, c =

[
50
40

]
, and A =




3 2
2 4
1 3
2 1


.

3. b =
[

20
−10

]
, c =


 3

4
−2


, A =

[
1 2 0
0 3 −5

]

4. b =

 25

40
−40


, c =


 3

1
5


, A =


 5 7 1

2 3 4
−2 −3 −4




5. b =

 −35

20
−20


, c =


 −7

3
−1


, A =


 −1 4 0

0 1 −2
0 −1 2




6. b =
[

27
−40

]
, c =


 −1

−5
2


, A =

[
2 1 4

−1 6 −3

]

7. max =1360, when x1 = 72
5 and x2 = 16

5

Solution:
First, find the intersection points for the bounding lines:

(1) 2x1 + x2 = 32,

(2) x1 + x2 = 18,

(3) x1 + 3x2 = 24

Even a rough sketch of the graphs of these lines will reveal
that (0, 0), (16, 0), and (0, 8) are vertices of the feasible set.
What about the intersections of the lines corresponding to
(1), (2), and (3)?

The graphical method will work, provided the graph is
large enough and is drawn carefully. In many simple
problems, even a small sketch will reveal which intersection
points are vertices of the feasible set. In this problem,
however, three intersection points happen to be quite close to
each other, and a slight inaccuracy on a graph of size 3′′×3′′

or smaller may lead to an incorrect solution. In a case such
as this, the following algebraic procedure will work well:

When an intersection point is found that corresponds
to two inequalities, test it in the other inequalities
to see whether the point is in the feasible set.

The intersection of (1) and (2) is (14, 4). Test this in
the third inequality: (14) + 3(4) = 26 > 24. The
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intersection point does not satisfy the inequality for (3), so
(14, 4) is not in the feasible set.

The intersection of (1) and (3) is (14.4, 3.2). Test this
in the second inequality: 14.4 + 3.2 = 17.6 ≤ 18, so
(14.4, 3.2) is in the feasible set.

The intersection of (2) and (3) is (15, 3). Test this in
the first inequality: 2(15) + (3) = 33 > 32, so (15, 3) is not
in the feasible set.

Next, list the vertices of the feasible set: (0, 0), (16, 0),
(14.4, 3.2), and (0, 8). Then compute the values of the
objective function 80x1 + 65x2 at these points.

(0, 0): 80(0) + 65(0) = 0
(16, 0): 80(16) + 3(0) = 1280
(14.4, 3.2): 80(14.4) + 65(3.2) = 1360
(0, 8): 80(0) + 65(8) = 520

Finally, select the maximum of the objective function,
which is 1360, and note that this maximum is attained at
(14.4, 3.2).

8. min = 154
13 , when x1 = 20

13 and x2 = 18
13

Solution:
First, convert the problem to a canonical (maximization)
problem:

Maximize − 5x1 − 3x2, subject to
(1) −2x1 − 5x2 ≤ −10
(2) −3x1 − x2 ≤ −6
(3) −x1 − 7x2 ≤ –7

Next, find the intersection points for the bounding lines.
The intersection of the equalities for (1) and (2) is ( 20

13 , 18
13 ).

Test this in the inequality (3): −( 20
13 ) − 7( 18

13 ) = − 146
13 < −7.

This point satisfies (3), so ( 20
13 , 18

13 ) is in the feasible set.

The intersection corresponding to (1) and (3) is ( 35
9 , 4

9 ).

Test this in (2): −3( 35
9 ) − ( 4

9 ) = − 109
9 < −6, so ( 35

9 , 4
9 ) is in

the feasible set.
The intersection corresponding to (2) and (3) is ( 7

4 , 3
4 ).

Test this in (1): −2( 7
4 ) − 5( 3

4 ) = − 29
4 > −10, so ( 7

4 , 3
4 ) is

not in the feasible set.
The vertices of the feasible set are (0, 6),

( 20
13 , 18

13 ), ( 35
9 , 4

9 ), and (7, 0). The values of the objective
function −5x1 − 3x2 at these points are −18,
− 154

13 ≈ −11.85, − 187
9 ≈ −20.8, and −35, respectively.

The maximum value of the objective function −5x1 − 3x2 is
− 154

13 , which occurs at ( 20
13 , 18

13 ). So the minimum value of
the original objective function 5x1 + 3x2 is 154

13 , and this
occurs at ( 20

13 , 18
13 ).

9. unbounded

10. infeasible

11. a. True. Definition.
b. False. The vector x must itself be feasible. It is possible

for a nonfeasible vector (as well as the optimal solution)
to yield the maximum value of f .

12. a. True. This is a logically equivalent version (called the
contrapositive) of Theorem 6.

b. False. Theorem 6 says that some extreme point is an
optimal solution, but not every optimal solution must be
an extreme point.

13. max profit = $1250, when x1 = 100 bags of EverGreen and
x2 = 350 bags of QuickGreen

Solution:
First, find the intersection points for the bounding lines:

(1) 3x1 + 2x2 = 1200 (fescue)
(2) x1 + 2x2 = 800 (rye)
(3) x1 + x2 = 450 (bluegrass)

The intersection of lines (1) and (2) is (200, 300). Test
this in the inequality corresponding to (3):
(200) + (300) = 500 > 450. The intersection point does not
satisfy the inequality for (3), so (200, 300) is not in the
feasible set.

The intersection of (1) and (3) is (300, 150). Test this
in (2): (300) + 2(150) = 600 < 800, so (300, 150) is in the
feasible set.

The intersection of (2) and (3) is (100, 350). Test this
in (1): 3(100) + 2(350) = 1000 < 1200, so (100, 350) is in
the feasible set.

The vertices of the feasible set are (0, 0), (400, 0),
(300, 150), (100, 350), and (0, 400). Evaluate the objective
function at each vertex:

(0, 0): 2(0) + 3(0) = 0
(400, 0): 2(400) + 3(0) = 800
(300, 150): 2(300) + 3(150) = 1050
(100, 350): 2(100) + 3(350) = 1250
(0, 400): 2(0) + 3(400) = 1200

The maximum of the objective function 2x1 + 3x2 is $1250
at (100, 350).

14. min cost = $25,000, when x1 = 2 days and x2 = 6 days

Solution:
First, find the intersection points for the bounding lines:

(1) 12x1 + 4x2 = 48
(2) 4x1 + 4x2 = 32
(3) x1 + 5x2 = 20

The intersection of lines (1) and (2) is (2, 6). Test this in the
third inequality: (2) + 5(6) = 32 > 20. The intersection
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point satisfies the inequality for (3), so (2, 6) is in the
feasible set.

The intersection of (1) and (3) is (20/7, 24/7). Test
this in the second inequality:
4(20/7) + 4(24/7) = 176/7 ≈ 25.14 < 32, so this point is
not in the feasible set.

The intersection of (2) and (3) is (5, 3). Test this in the
first inequality: 12(5) + 4(3) = 72 > 48, so (5, 3) is in the
feasible set.

The vertices of the feasible set are (20, 0), (5, 3),
(2, 6), and (0, 12). Evaluate the objective function at each
vertex. (The values here represent thousands of dollars.)

(20, 0): 3.5(20) + 3(0) = 70
(5, 3): 3.5(5) + 3(3) = 26.5
(2, 6): 3.5(2) + 3(6) = 25
(0, 12): 3.5(0) + 3(12) = 36

The minimum cost is $25,000, when the production schedule
is (x1, x2) = (2, 6). That is, the cost is minimized when
refinery A runs for 2 days and refinery B runs for 6 days.

15. max profit = $1180, for 20 widgets and 30 whammies

Solution:
First, find the intersection points for the bounding lines:

(1) 5x1 + 2x2 = 200
(2) .2x1 + .4x2 = 16
(3) .2x1 + .2x2 = 10

The intersection of (1) and (2) is (30, 25). Test this in
the third inequality: .2(30) + .2(25) = 11 > 10. The
intersection point does not satisfy the inequality for (3), so
(30, 25) is not in the feasible set.

The intersection of (1) and (3) is (100/3, 100/6). Test
this in the second inequality:
.2(100/3) + .4(100/6) = 13.3 < 16, so (100/3, 100/6) is in
the feasible set.

The intersection of (2) and (3) is (20, 30). Test this in
the first inequality: 5(20) + 2(30) = 160 < 200, so (20, 30)

is in the feasible set.
The vertices of the feasible set are (40, 0),

(100/3, 100/6), (20, 30), and (0, 40). Evaluate the
objective function at each vertex:

(40, 0): 20(40) + 26(0) = 800
(100/3, 100/6): 20(100/3) + 26(100/6) = 1100
(20, 30): 20(20) + 26(30) = 1180
(0, 40): 20(0) + 26(40) = 1040

The maximum profit is $1180, when x1 = 20 widgets and
x2 = 30 whammies.

16. Take any p, q in F . Then Ap ≤ b, Aq ≤ b, p ≥ 0, and
q ≥ 0. Take any scalar t such that 0 ≤ t ≤ 1, and let
x = (1 − t)p + tq. Then

Ax = A[(1 − t)p + tq] = (1 − t)Ap + tAq (∗)

by the linearity of matrix multiplication. Since t and 1 − t

are both nonnegative, (1 − t)Ap ≤ (1 − t)b and tAp ≤ tb.
Thus, the right side of (∗) is less than or equal to b. Also,
x ≥ 0 because p and q have this property and the constants
(1 − t) and t are nonnegative. Thus, x is in F . So the line
segment between p and q is in F . This proves that F is
convex.

17. Take any p and q in S, with p =
[

x1

x2

]
and q =

[
y1

y2

]
. Then

vT p ≤ c and vT q ≤ c. Take any scalar t such that
0 ≤ t ≤ 1. Then, by the linearity of matrix multiplication
(or the dot product if vT p is written as v·p, and so on),

vT [(1 − t)p + tq] = (1 − t)vT p + tvT q ≤ (1 − t)c + tc = c

because (1 − t) and t are both positive and p and q are in S.
So the line segment between p and q is in S. Since p and q
were any points in S, the set S is convex.

18. Let S be the intersection of S1, . . . , S5, and take x and y in
S. Then x and y are in Si for i = 1, . . . , 5. For any t , with
0 ≤ t ≤ 1, and any i, with 1 ≤ i ≤ 5, (1 − t)x + ty is in Si

because Si is convex. Then (1 − t)x + ty is in S, by
definition of the intersection. This proves that S is a convex
set.

19. Let S = {x : f (x) = d}, and take p and q in S. Also, take t

with 0 ≤ t ≤ 1, and let x = (1 − t)p + tq. Then

f (x) = cT x = cT [(1 − t)p + tq]
= (1 − t)cT p + tcT q = (1 − t)d + td = d

Thus, x is in S. This shows that S is convex.

Section 9.3, page 43

1. x1 x2 x3 x4 x5 M


2 7 10 1 0 0 20
3 4 18 0 1 0 25

−21 −25 −15 0 0 1 0




2. x1 x2 x3 x4 x5 M


3 5 1 0 0 0 30
2 7 0 1 0 0 24
6 1 0 0 1 0 42

−22 −14 0 0 0 1 0



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3. a. x2

b. x1 x2 x3 x4 M


7
2 0 1 − 1

2 0 5
3
2 1 0 1

2 0 15

11 0 0 5 1 150




c. x1 = 0, x2 = 15, x3 = 5, x4 = 0, M = 150
d. optimal

4. a. x1

b. x1 x2 x3 x4 M


0 1 7 1 0 10
1 0 5 1 0 6

0 0 28 5 1 47




c. x1 = 6, x2 = 10, x3 = 0, x4 = 0, M = 47
d. optimal

5. a. x1

b. x1 x2 x3 x4 M


0 2 1 −1 0 4

1 1
2 0 1

2 0 8

0 −2 0 3 1 48




c. x1 = 8, x2 = 0, x3 = 4, x4 = 0, M = 48
d. not optimal

6. a. x2

b. x1 x2 x3 x4 M


−11 0 1 − 4
3 0 40

2 1 0 1
6 0 5

8 0 0 1
2 1 15




c. x1 = 0, x2 = 5, x3 = 40, x4 = 0, M = 15
d. optimal

7. a. False. A slack variable is used to change an inequality
into an equality.

b. True. Definition.
c. False. The initial basic solution will be infeasible, but

there may still be a basic feasible solution.

8. a. True. Definition.
b. True. See the comment before Example 3.
c. False. The bottom entry in the right column gives the

current value of the objective function. It will be the
maximum value only if the current solution is optimal.

9. The maximum is 150, when x1 = 3 and x2 = 10.

Solution:
First, bring x2 into the solution; pivot with row 1. Then
bring x1 into the solution; pivot with row 2. The maximum
is 150, when x1 = 3 and x2 = 10.

x1 x2 x3 x4 M


2 3 1 0 0 36
5 4 0 1 0 55

−10 −12 0 0 1 0




∼

x1 x2 x3 x4 M


2
3 1 1

3 0 0 12
7
3 0 − 4

3 1 0 7

−2 0 4 0 1 144




∼

x1 x2 x3 x4 M


0 1 5
7 − 2

7 0 10

1 0 − 4
7

3
7 0 3

0 0 20
7

6
7 1 150




10. The maximum is 98, when x1 = 10 and x2 = 12.

Solution:
First, bring x1 into the solution; pivot with row 2. Next,
scale row 1 to simplify the arithmetic. Finally, bring x2 into
the solution; pivot with row 1. The maximum is 98, when
x1 = 10 and x2 = 12.

x1 x2 x3 x4 M


1 5 1 0 0 70
3 2 0 1 0 54

−5 −4 0 0 1 0




∼

x1 x2 x3 x4 M


0 13
3 1 − 1

3 0 52

1 2
3 0 1

3 0 18

0 − 2
3 0 5

3 1 90




∼

x1 x2 x3 x4 M


0 1 3
13 − 1

13 0 12

1 2
3 0 1

3 0 18

0 − 2
3 0 5

3 1 90




∼

x1 x2 x3 x4 M


0 1 3
13 − 1

13 0 12

1 0 − 2
13

5
13 0 10

0 0 2
13

21
13 1 98




11. The maximum is 56, when x1 = 9 and x2 = 4.

Solution:
First, bring x2 into the solution; pivot with row 2. Then
bring x1 into the solution; pivot with row 3. The maximum
is 56, when x1 = 9 and x2 = 4.
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x1 x2 x3 x4 x5 M


1 2 1 0 0 0 26
2 3 0 1 0 0 30
1 1 0 0 1 0 13

−4 −5 0 0 0 1 0




∼

x1 x2 x3 x4 x5 M


− 1
3 0 1 − 2

3 0 0 6
2
3 1 0 1

3 0 0 10
1
3 0 0 − 1

3 1 0 3

− 2
3 0 0 5

3 0 1 50




∼

x1 x2 x3 x4 x5 M


0 0 1 −1 1 0 9
0 1 0 1 −2 0 4
1 0 0 −1 3 0 9

0 0 0 1 2 1 56




12. The maximum is 70, when x1 = 6, x2 = 11, and x3 = 1.

Solution:
First, bring x2 into the solution; pivot with row 3. Next,
bring x1 into the solution; pivot with row 1. Finally, bring x3

into the solution; pivot with row 2. The maximum is 70,
when x1 = 6, x2 = 11, and x3 = 1.

x1 x2 x3 x4 x5 x6 M


1 2 0 1 0 0 0 28
2 0 4 0 1 0 0 16
0 1 1 0 0 1 0 12

−2 −5 −3 0 0 0 1 0




∼

x1 x2 x3 x4 x5 x6 M


1 0 −2 1 0 −2 0 4
2 0 4 0 1 0 0 16
0 1 1 0 0 1 0 12

−2 0 2 0 0 5 1 60




∼

x1 x2 x3 x4 x5 x6 M


1 0 −2 1 0 −2 0 4
0 0 8 −2 1 4 0 8
0 1 1 0 0 1 0 12

0 0 −2 2 0 1 1 68




∼

x1 x2 x3 x4 x5 x6 M


1 0 0 1
2

1
4 −1 0 6

0 0 1 − 1
4

1
8

1
2 0 1

0 1 0 1
4 − 1

8
1
2 0 11

0 0 0 3
2

1
4 2 1 70




13. The minimum is 180, when x1 = 10 and x2 = 12.

Solution:
Convert this to a maximization problem for −12x1 − 5x2,
and reverse the first constraint inequality. Beginning with
the first tableau below, bring x1 into the solution, using row
1 as the pivot row. Then bring x2 into the solution; pivot
with row 2. The maximum value of −12x1 − 5x2 is −180,
so the minimum of the original objective function
12x1 + 5x2 is 180, when x1 is 10 and x2 is 12.

x1 x2 x3 x4 M


−2 −1 1 0 0 −32
−3 5 0 1 0 30

12 5 0 0 1 0




∼

x1 x2 x3 x4 M


1 1
2 − 1

2 0 0 16

0 13
2 − 3

2 1 0 78

0 −1 6 0 1 −192




∼

x1 x2 x3 x4 M


1 0 − 5
13 − 1

13 0 10

0 1 − 3
13

2
13 0 12

0 0 75
13

2
13 1 −180




14. The minimum is 33, when x1 = 0, x2 = 4, and x3 = 7.

Solution:
Convert this to a maximization problem for
−2x1 − 3x2 − 3x3, and reverse the first two constraint
inequalities. Beginning with the first tableau below, bring x3

into the solution, with row 2 as the pivot. Then bring x2 into
the solution; pivot with row 1. The maximum is −33, so the
minimum of 2x1 + 3x2 + 3x3 is 33, when x1 = 0, x2 = 4, and
x3 = 7.

x1 x2 x3 x4 x5 x6 M


−1 2 0 1 0 0 0 8
0 −2 −1 0 1 0 0 −15
2 −1 1 0 0 1 0 25

2 3 3 0 0 0 1 0




∼

x1 x2 x3 x4 x5 x6 M


−1 2 0 1 0 0 0 8
0 2 1 0 −1 0 0 15
2 −3 0 0 1 1 0 10

2 −3 0 0 3 0 1 −45






August 16, 2005 11:04 l57-ch9Ans Sheet number 10 Page number 10 cyan magenta yellow black

A10 Answers to Exercises

∼

x1 x2 x3 x4 x5 x6 M


− 1
2 1 0 1

2 0 0 0 4

1 0 1 −1 −1 0 0 7
1
2 0 0 3

2 1 1 0 22

1
2 0 0 3

2 3 0 1 −33




15. The answer matches that in Example 7. The minimum is 20,
when x1 = 8 and x2 = 6.

Solution:
Begin with the same initial simplex tableau, bringing x1 into
the solution, with row 2 as the pivot row. Then bring x2 into
the solution; pivot with row 1. The maximum of −x1 − 2x2

is −20, so the minimum of x1 + 2x2 is 20, when x1 = 8 and
x2 = 6.

x1 x2 x3 x4 M


−1 −1 1 0 0 −14
1 −1 0 1 0 2

1 2 0 0 1 0




∼
x1 x2 x3 x4 M


0 −2 1 1 0 −12
1 −1 0 1 0 2

0 −3 0 −1 1 −2




∼

x1 x2 x3 x4 M


0 1 − 1
2 − 1

2 0 6

1 0 − 1
2

1
2 0 8

0 0 3
2

1
2 1 −20




16. The maximum annual income is $1,100, provided by $6,000
in mutual funds, $4,000 in CDs, and $2,000 in savings.

Solution:
From the bottom row of the tableau, x1 must be brought into
the solution first. The ratios to consider are 12,000/1 in row
1 and 0/1 in row 2. So pivot with row 2. Next, bring x2 into
the solution; pivot with row 3 (because the ratio 0/1 is less
than the ratio 12,000/2). Finally, bring x3 into the solution;
pivot with row 1. The maximum annual income of $1,100 is
provided by $6,000 in mutual funds, $4,000 in CDs, and
$2,000 in savings.

x1 x2 x3 x4 x5 x6 M


1 1 1 1 0 0 0 12,000
1 −1 −1 0 1 0 0 0
0 1 −2 0 0 1 0 0

−.11 −.08 −.06 0 0 0 1 0




∼

x1 x2 x3 x4 x5 x6 M


0 2 2 1 −1 0 0 12,000
1 −1 −1 0 1 0 0 0
0 1 −2 0 0 1 0 0

0 −.19 −.17 0 .11 0 1 0




∼

x1 x2 x3 x4 x5 x6 M


0 0 6 1 −1 −2 0 12,000
1 0 −3 0 1 1 0 0
0 1 −2 0 0 1 0 0

0 0 −.55 0 .11 .19 1 0




∼

x1 x2 x3 x4 x5 x6 M


0 0 1 1
6 − 1

6 − 1
3 0 2,000

1 0 0 1
2

1
2 0 0 6,000

0 1 0 1
3 − 1

3
1
3 0 4,000

0 0 0 11
120

11
600

1
150 1 1,100




17. The maximum profit is $1180, achieved by making 20
widgets and 30 whammies each day.

Solution:
The simplex tableau below is based on the problem of the
Benri Company (Exercise 15 in Section 9.2) to maximize
the profit function 20x1 + 26x2 subject to various amounts
of labor available for the three-step production process. To
begin the simplex method, bring x2 into the solution; pivot
with row 2. Then, bring x1 into the solution; pivot with row
3. The profit is maximized at $1180, by making 20 widgets
and 30 whammies each day.

x1 x2 x3 x4 x5 M


5 2 1 0 0 0 200
1
5

2
5 0 1 0 0 16

1
5

1
5 0 0 1 0 10

−20 −26 0 0 0 1 0




∼

x1 x2 x3 x4 x5 M


4 0 1 −5 0 0 120
1
2 1 0 5

2 0 0 40
1
10 0 0 − 1

2 1 0 2

−7 0 0 65 0 1 1040




∼

x1 x2 x3 x4 x5 M


0 0 1 15 −40 0 40
0 1 0 5 −5 0 30
1 0 0 −5 10 0 20

0 0 0 30 70 1 1180



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18. The maximum profit is $1250, achieved when x1 = 100
(bags of EverGreen) and x2 = 350 (bags of QuickGreen).

Solution:
The simplex tableau below is based on the summary at the
end of Example 1 in Section 9.2. To begin the simplex
method, bring x2 into the solution; pivot with row 2. Then
bring x1 into the solution; pivot with row 3. The $1250
maximum is achieved when x1 = 100 (bags of EverGreen)
and x2 = 350 (bags of QuickGreen).

x1 x2 x3 x4 x5 M


3 2 1 0 0 0 1200
1 2 0 1 0 0 800
1 1 0 0 1 0 450

−2 −3 0 0 0 1 0




∼

x1 x2 x3 x4 x5 M


2 0 1 −1 0 0 400
1
2 1 0 1

2 0 0 400
1
2 0 0 − 1

2 1 0 50

− 1
2 0 0 3

2 0 1 1200




∼

x1 x2 x3 x4 x5 M


0 0 1 1 −4 0 200
0 1 0 1 −1 0 350
1 0 0 −1 2 0 100

0 0 0 1 1 1 1250




Section 9.4, page 53

1. Minimize 36y1 + 55y2

subject to 2y1 + 5y2 ≥ 10
3y1 + 4y2 ≥ 12

and y1 ≥ 0, y2 ≥ 0.

2. Minimize 70y1 + 54y2

subject to y1 + 3y2 ≥ 5
5y1 + 2y2 ≥ 4

and y1 ≥ 0, y2 ≥ 0.

3. Minimize 26y1 + 30y2 + 13y3

subject to y1 + 2y2 + y3 ≥ 4
2y1 + 3y2 + y3 ≥ 5

and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

4. Minimize 28y1 + 16y2 + 12y3

subject to y1 + 2y2 ≥ 2
2y1 + y3 ≥ 5

4y2 + y3 ≥ 3
and y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

5. The minimum is M = 150, attained when y1 = 20
7 and

y2 = 6
7 .

Solution:
The final tableau from Exercise 9 in Section 9.3 is

x1 x2 x3 x4 M


0 1 5
7 − 2

7 0 10

1 0 − 4
7

3
7 0 3

0 0 20
7

6
7 1 150




The solution of the dual problem is displayed by the entries
in row 3 of columns 3, 4, and 6. The minimum is M = 150,
attained when y1 = 20

7 and y2 = 6
7 .

6. The minimum is M = 98, attained when y1 = 2
13 and

y2 = 21
13 .

Solution:
The final tableau from Exercise 10 in Section 9.3 is

x1 x2 x3 x4 M


0 1 3
13 − 1

13 0 12

1 0 − 2
13

5
13 0 10

0 0 2
13

21
13 1 98




The solution of the dual problem is displayed by the entries
in row 3 of columns 3, 4, and 6. The minimum is M = 98,
attained when y1 = 2

13 and y2 = 21
13 .

7. The minimum is M = 56, attained when y1 = 0, y2 = 1, and
y3 = 2.

Solution:
The final tableau from Exercise 11 in Section 9.3 is

x1 x2 x3 x4 x5 M


0 0 1 −1 1 0 9
0 1 0 1 −2 0 4
1 0 0 −1 3 0 9

0 0 0 1 2 1 56




The solution of the dual problem is displayed by the entries
in row 4 of columns 3, 4, 5, and 7. The minimum is
M = 56, attained when y1 = 0, y2 = 1, and y3 = 2.

8. The minimum is M = 70, attained when y1 = 3
2 , y2 = 1

4 , and
y3 = 2.

Solution:
The final tableau from Exercise 12 in Section 9.3 is
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x1 x2 x3 x4 x5 x6 M


1 0 0 1
2

1
4 −1 0 6

0 0 1 − 1
4

1
8

1
2 0 1

0 1 0 1
4 − 1

8
1
2 0 11

0 0 0 3
2

1
4 2 1 70




The solution of the dual problem is displayed by the entries
in row 4 of columns 4, 5, 6, and 8. The minimum is
M = 70, attained when y1 = 3

2 , y2 = 1
4 , and y3 = 2.

9. a. False. It should be AT y ≥ c.
b. True. Theorem 7.
c. True. Theorem 7.
d. False. The marginal value is zero if it is in the optimal

solution. See Example 4.

10. a. True. See the comment before Theorem 7.
b. True. Theorem 7.
c. True. Theorem 7.
d. False. The coordinates of u and v are equal to one. The

vectors do not have length one.

11. The minimum is 43, when x1 = 7
4 , x2 = 0, and x3 = 3

4 .

Solution:
The dual problem is to maximize 4y1 + 5y2 subject to
 1 2

1 1
3 2


[

y1

y2

]
≤


 16

10
20


 and y ≥ 0. Solve the dual

problem with the simplex method:

y1 y2 y3 y4 y5 M


1 2 1 0 0 0 16
1 1 0 1 0 0 10
3 2 0 0 1 0 20

−4 −5 0 0 0 1 0




∼

y1 y2 y3 y4 y5 M


1
2 1 1

2 0 0 0 8
1
2 0 − 1

2 1 0 0 2

2 0 −1 0 1 0 4

− 3
2 0 5

2 0 0 1 40




∼

y1 y2 y3 y4 y5 M


0 1 3
4 0 − 1

4 0 7

0 0 − 1
4 1 − 1

4 0 1

1 0 − 1
2 0 1

2 0 2

0 0 7
4 0 3

4 1 43




The solution of the dual of the dual (the primal) is x1 = 7
4 ,

x2 = 0, x3 = 3
4 , with M = 43.

12. The minimum is 26, when x1 = 5
3 and x2 = 2

3 .

Solution:
The dual problem is to maximize 3y1 + 4y2 + 2y3 subject to[

1 2 3
2 1 1

]
 y1

y2

y3


 ≤

[
10
14

]
and y ≥ 0. Use the

simplex tableau for the dual problem:

y1 y2 y3 y4 y5 M
 1 2 3 1 0 0 10

2 1 1 0 1 0 14

−3 −4 −2 0 0 1 0




∼

y1 y2 y3 y4 y5 M


1
2 1 3

2
1
2 0 0 5

3
2 0 − 1

2 − 1
2 1 0 9

−1 0 4 2 0 1 20




∼

y1 y2 y3 y4 y5 M


1
2 1 3

2
1
2 0 0 5

1 0 − 1
3 − 1

3
2
3 0 6

−1 0 4 2 0 1 20




∼

y1 y2 y3 y4 y5 M


0 1 5
3

2
3 − 1

3 0 2

1 0 − 1
3 − 1

3
2
3 0 6

0 0 11
3

5
3

2
3 1 26




The solution of the dual of the dual (the primal) is x1 = 5
3 ,

x2 = 2
3 , with the minimum M = 26.

13. The minimum cost is $670, using 11 bags of Pixie Power
and 3 bags of Misty Might.

Solution:
The problem in Exercise 2 of Section 9.2 is to minimize cT x
subject to Ax ≥ b and x ≥ 0, where x lists the number of

bags of Pixie Power and Misty Might, and c =
[

50
40

]
,

A =




3 2
2 4
1 3
2 1


, b =




28
30
20
25


, and x =

[
x1

x2

]
. The dual of a

minimization problem involving a matrix is a maximization
problem involving the transpose of the matrix, with the
vector data for the objective function and the constraint
equation interchanged. Since the notation was established in
Exercise 2 for a minimization problem, the notation here is
“reversed’’ from the usual notation for a primal problem.
Thus, the dual of the primal problem stated above is to
maximize bT y subject to AT y ≤ c and y ≥ 0. That is,
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maximize 28y1 + 30y2 + 20y3 + 25y4 subject to

[
3 2 1 2
2 4 3 1

]


y1

y2

y3

y4


 ≤

[
50
40

]

Here are the simplex calculations for this dual problem:

y1 y2 y3 y4 y5 y6 M


3 2 1 2 1 0 0 50
2 4 3 1 0 1 0 40

−28 −30 −20 −25 0 0 1 0




∼

y1 y2 y3 y4 y5 y6 M


2 0 − 1
2

3
2 1 − 1

2 0 30
1
2 1 3

4
1
4 0 1

4 0 10

−13 0 5
2 − 35

2 0 15
2 1 300




∼

y1 y2 y3 y4 y5 y6 M


4
3 0 − 1

3 1 2
3 − 1

3 0 20
1
6 1 5

6 0 − 1
6

1
3 0 5

31
3 0 − 10

3 0 35
3

5
3 1 650




∼

y1 y2 y3 y4 y5 y6 M


7
5

2
5 0 1 3

5 − 1
5 0 22

1
5

6
5 1 0 − 1

5
2
5 0 6

11 4 0 0 11 3 1 670




Since the original problem is the dual of the problem solved
by the simplex method, the desired solution is given by the
slack variables y5 = 11 and y6 = 3. The value of the
objective is the same for the primal and dual problems, so
the minimum cost is $670. This is achieved by blending 11
bags of PixiePower and 3 bags of MistyMight.

14. Refinery A = 2 days, refinery B = 6 days, minimum cost =
$25,000

Solution:
Express costs in thousands of dollars, let x1 be the number
of days refinery A operates, and let x2 be the number of days
refinery B operates. Then the problem in Example 2 of
Section 9.2 is to minimize 3.5x1 + 3x2 subject to
 12 4

4 4
1 5


[

x1

x2

]
≥


 48

32
20


. The dual problem is to

maximize 48y1 + 32y2 + 20y3 subject to[
12 4 1

4 4 5

]
 y1

y2

y3


 ≤

[
3.5
3

]
.

Use the simplex tableau for this dual problem. The first
pivot is on y1, because the entry −48 is the most negative

entry in the bottom row. The first row is chosen because the
ratio b1/a11 is smaller than b2/a21.

y1 y2 y3 y4 y5 M


12 4 1 1 0 0 3.5
4 4 5 0 1 0 3

−48 −32 −20 0 0 1 0




∼

y1 y2 y3 y4 y5 M


1 1
3

1
12

1
12 0 0 7

24

0 8
3

14
3 − 1

3 1 0 11
6

0 −16 −16 4 0 1 14




Now, two negative entries in the bottom row happen to be
equal, so either y2 or y3 can be the next pivot. When y2 is
used, the result is

∼

y1 y2 y3 y4 y5 M


1 0 − 1
2

1
8 − 1

8 0 1
16

0 1 7
4 − 1

8
3
8 0 11

16

0 0 12 2 6 1 25




When y3 is used as a pivot in the second tableau above,
more work is required:

∼

y1 y2 y3 y4 y5 M


1 2
7 0 5

56 − 1
56 0 29

112

0 4
7 1 − 1

14
3

14 0 11
28

0 − 48
7 0 20

7
24
7 1 142

7




∼

y1 y2 y3 y4 y5 M


1 0 − 1
2

1
8 − 1

8 0 1
16

0 1 7
4 − 1

8
3
8 0 11

16

0 0 12 2 6 1 25




An extra pivot operation is required because pivoting on y3

increases M by less than pivoting on y2. This can be seen in
advance, but the situation occurs so rarely, that a rule for
deciding which pivot column to choose is hardly worth
remembering. Notice that if y2 is to be the pivot variable,
then the row for this pivot is the one for which the ratio
bi/ai2 is the smallest. (In this example, that ratio is
11
6 ÷ 8

3 = 11
16 .) If y3 is the pivot variable, then the row for

this pivot is the one for which the ratio bi/ai3 is the smallest.
(In this example, that ratio is 11

6 ÷ 14
3 = 11

28 .) The rule is to
choose the variable for which this “smallest’’ ratio is larger.
In this case, since 11

16 is larger than 11
28 , y2 is the better choice

for the pivot. Since so many ratios have to be computed, it
seems easier just to pick either y2 or y3 and calculate the
next tableau.
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Since the original problem is the dual of the problem
solved by the simplex method, the desired solution is given
by the slack variables y4 = 2 and y5 = 6. The value of the
objective is the same for the primal and dual problems, so
the minimum cost is 25 (thousand dollars). This is achieved
by operating refinery A for 2 days and refinery B for 6 days.

15. The marginal value is zero. This corresponds to labor in the
fabricating department being underutilized. That is, at the
optimal production schedule with x1 = 20 and x2 = 30, only
160 of the 200 available hours in fabricating are needed.
The extra labor is wasted, and so it has value zero.

16. Allocate the additional hour of labor to the shipping
department, thereby increasing the profit by $70. The profit
would increase by only $30 if the hour of labor were added
to packing, and not at all if the hour were added to
fabricating.

17. x̂ =



2
3

0
1
3


, ŷ =

[
1
2
1
2

]
, v = 1

18. x̂ =



1
4
3
4

0


, ŷ =

[
3
4
1
4

]
, v = 1

4

19. x̂ =



2
5
2
5
1
5


, ŷ =




3
7
3
7
1
7


, v = 1

Solution:

The game is


 1 2 −2

0 1 4
3 −1 1


. Add 3 to shift the game:


 4 5 1

3 4 7
6 2 4


. The linear programming tableau for this

game is

x1 x2 x3 x4 x5 x6 M


4 5 1 1 0 0 0 1
3 4 7 0 1 0 0 1
6 2 4 0 0 1 0 1

−1 −1 −1 0 0 0 1 0




Pivots:


0 11
3 − 5

3 1 0 − 2
3 0 1

3

0 3 5 0 1 − 1
2 0 1

2

1 1
3

2
3 0 0 1

6 0 1
6

0 − 2
3 − 1

3 0 0 1
6 1 1

6




∼




0 1 − 5
11

3
11 0 − 2

11 0 1
11

0 0 70
11 − 9

11 1 1
22 0 5

22

1 0 9
11 − 1

11 0 5
22 0 3

22

0 0 − 7
11

2
11 0 1

22 1 5
22




∼




0 1 0 3
14

1
14 − 5

28 0 3
28

0 0 1 − 9
70

11
70

1
140 0 1

28

1 0 0 1
70 − 9

70
31

140 0 3
28

0 0 0 1
10

1
10

1
20 1 1

4




The optimal solution of the primal and dual problems,
respectively, are ȳ1 = 3

28 , ȳ2 = 3
28 , ȳ3 = 1

28 , and x̄1 = 1
10 ,

x̄2 = 1
10 , x̄3 = 1

20 , with λ = 1
4 . The corresponding optimal

mixed strategies for the column and row players,
respectively, are:

ŷ = ȳ/λ = ȳ ·4 =



3
7
3
7
1
7


 and x̂ = x̄/λ = x̄·4 =




2
5
2
5
1
5




The value of the game with the shifted payoff matrix is 1/λ,
which is 4, so the value of original game is 4 − 3 = 1.

20. x̂ =



5
16
7

16
4

16


, ŷ =




0
7
16
4

16
5

16


, v = − 1

16

Solution:

The game is


 2 0 1 −1

−1 1 −2 0
1 −2 2 1


. Add 3 to shift the

game:


 5 3 4 2

2 4 1 3
4 1 5 4


.

The linear programming tableau for this game is
x1 x2 x3 x4 x5 x6 x7 M


5 3 4 2 1 0 0 0 1
2 4 1 3 0 1 0 0 1
4 1 5 4 0 0 1 0 1

−1 −1 −1 −1 0 0 0 1 0




The simplex method produces
x1 x2 x3 x4 x5 x6 x7 M



49
47 0 1 0 13

47 − 10
47

1
47 0 4

47
27
47 1 0 0 11

47
6

47 − 10
47 0 7

47

− 21
47 0 0 1 − 19

47
11
47

13
47 0 5

47

8
47 0 0 0 5

47
7

47
4

47 1 16
47



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The optimal solutions of the primal and dual problems,
respectively, are

ȳ1 = 0, ȳ2 = 7
47 , ȳ3 = 4

47 , ȳ4 = 5
47 ,

and

x̄1 = 5
47 , x̄2 = 7

47 , x̄3 = 4
47 ,

with λ = 16
47

The corresponding optimal mixed strategies for the column
and row players, respectively, are

ŷ = ȳ/λ = ȳ · 47
16 =




0
7
16
4
16
5
16


 and x̂ = x̄/λ = x̄ · 47

16 =



5
16
7

16
4

16




The value of the game with the shifted payoff matrix is 1/λ,
which is 47

16 , so the value of original game is 47
16 − 3 = − 1

16 .

21. Change this “game’’ into a linear programming problem and
use the simplex method to analyze the game. The expected
value of the game is 38

35 , based on a payoff matrix for an
investment of $100. With $35,000 to invest, Bob “plays’’
this game 350 times. Thus, he expects to gain $380, and the
expected value of his portfolio at the end of the year is
$35,380. Using the optimal game strategy, Bob should
invest $11,000 in stocks, $9,000 in bonds, and $15,000 in
gold.

Solution:

The game is


 4 1 −2

1 3 0
−1 0 4


. Add 3 to shift the game:


 7 4 1

4 6 3
2 3 7


. The linear programming problem is to

maximize y1 + y2 + y3 subject to


 7 4 1

4 6 3
2 3 7


 ≤


 1

1
1




and


 y1

y2

y3


 ≥


 0

0
0


.

The tableau for this game is

x1 x2 x3 x4 x5 x6 M


7 4 1 1 0 0 0 1
4 6 3 0 1 0 0 1
2 3 7 0 0 1 0 1

−1 −1 −1 0 0 0 1 0




The simplex calculations are

y1 y2 y3 y4 y5 y6 M


1 4
7

1
7

1
7 0 0 0 1

7

0 26
7

17
7 − 4

7 1 0 0 3
7

0 13
7

47
7 − 2

7 0 1 0 5
7

0 − 3
7 − 6

7
1
7 0 0 1 1

7




∼

y1 y2 y3 y4 y5 y6 M


1 25
47 0 7

47 0 − 1
47 0 6

47

0 143
47 0 − 22

47 1 − 17
47 0 8

47

0 13
47 1 − 2

47 0 7
47 0 5

47

0 − 9
47 0 5

47 0 6
47 1 11

47




∼

y1 y2 y3 y4 y5 y6 M


1 0 0 3
13 − 25

143
6

143 0 14
143

0 1 0 − 2
13

47
143 − 17

143 0 8
143

0 0 1 0 − 1
11

2
11 0 1

11

0 0 0 1
13

9
143

15
143 1 35

143




The optimal solution of the primal and dual problems,
respectively, are

ȳ1 = 14
143 , ȳ2 = 8

143 , ȳ3 = 1
11 ,

and

x̄1 = 1
13 , x̄2 = 9

143 , x̄3 = 15
143 , with λ = 35

143

The corresponding optimal mixed strategies for the
column and row players, respectively, are

ŷ = ȳ/λ = ȳ · 143
35 =




14
35
8
35
13
35


 and x̂ = x̄/λ = x̄ · 143

35 =



11
35
9
35
15
35




The value of the game with the shifted payoff matrix is
1/λ , which is 143

35 , so the value of original game is
143
35 − 3 = 38

35 . Using the optimal strategy x̂, Bob should
invest 11

35 of the $35,000 in stocks, 9
35 in bonds, and 15

35 in
gold. That is, Bob should invest $11,000 in stocks, $9,000
in bonds, and $15,000 in gold. The expected value of the
game is 38

35 , based on $100 for each play of the game. (The
payoff matrix lists the amounts gained or lost for each $100
that is invested for one year.) With $35,000 to invest, Bob
“plays’’ this game 350 times. Thus, he should expect to
gain $380, and the expected value of his portfolio at the end
of the year is $35,380.
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22. a. Consider x in F and y in F ∗, and note that f (x) =
cT x = xT c, and g(y) = bT y = yT b. Because the entries
in x and y are nonnegative, the inequalities c ≤ AT y and
Ax ≤ b lead to

f (x) = xT c ≤ xTAT y = (Ax)T y = yT (Ax)

≤ yT (b) = g(y)

b. If f (x̂) = g(ŷ), then for any x in F , part (a) shows that
f (x) ≤ g(ŷ) = f (x̂), so x̂ is an optimal solution to P .
Similarly, for any y in F ∗, g(y) ≥ f (x̂) = g(ŷ), which
shows that ŷ is an optimal solution to P ∗.

23. a. The coordinates of x̄ are all nonnegative. From the
definition of u, λ is equal to the sum of these
coordinates. It follows that the coordinates of x̂ are
nonnegative and sum to one. Thus, x̂ is a mixed strategy
for the row player R. A similar argument holds for ŷ and
the column player C.

b. If y is any mixed strategy for C, then

E(x̂, y) = x̂T Ay = 1

λ

(
x̄T Ay

) = 1

λ

[(
AT x̄

)·y
]

≥ 1

λ
(v·y) = 1

λ

c. If x is any mixed strategy for R, then

E(x, ŷ) = xT Aŷ = 1

λ

(
xTAȳ

) = 1

λ
[x·Aȳ]

≤ 1

λ
(x·u) = 1

λ

d. Part (b) implies v(x̂) ≥ 1/λ, so vR ≥ 1/λ . Part (c)
implies v(ŷ) ≤ 1/λ , so vC ≤ 1/λ . It follows from the
Minimax Theorem in Section 9.1 that x̂ and ŷ are
optimal mixed strategies for R and C, respectively, and
that the value of the game is 1/λ.


