
April 12, 2005 11:27 L57-ch05 Sheet number 1 Page number 301 cyan magenta yellow black

301

5
Eigenvalues and
Eigenvectors

WEB

INTRODUCTORY EXAMPLE

Dynamical Systems
and Spotted Owls

In 1990, the northern spotted owl became the center of a

nationwide controversy over the use and misuse of the

majestic forests in the Pacific Northwest.

Environmentalists convinced the federal government that

the owl was threatened with extinction if logging

continued in the old-growth forests (with trees over 200

years old), where the owls prefer to live. The timber

industry, anticipating the loss of 30,000 to 100,000 jobs as

a result of new government restrictions on logging, argued

that the owl should not be classified as a “threatened

species” and cited a number of published scientific reports

to support its case.1

Caught in the crossfire of the two lobbying groups,

mathematical ecologists intensified their drive to under-

stand the population dynamics of the spotted owl. The life

cycle of a spotted owl divides naturally into three stages:

juvenile (up to 1 year old), subadult (1 to 2 years), and

adult (over 2 years). The owl mates for life during the

subadult and adult stages, begins to breed as an adult, and

1“The Great Spotted Owl War,” Reader’s Digest, November 1992,
pp. 91–95.

lives for up to 20 years. Each owl pair requires about

1000 hectares (4 square miles) for its own home territory.

A critical time in the life cycle is when the juveniles leave

the nest. To survive and become a subadult, a juvenile

must successfully find a new home range (and usually a

mate).

A first step in studying the population dynamics is to

model the population at yearly intervals, at times denoted

by k = 0, 1, 2, . . . . Usually, one assumes that there is a 1:1

ratio of males to females in each life stage and counts only

the females. The population at year k can be described by

a vector xk = (jk, sk, ak), where jk , sk , and ak are the

numbers of females in the juvenile, subadult, and adult

stages, respectively.
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Using actual field data from demographic studies,

R. Lamberson and co-workers considered the following

stage-matrix model:2


jk+1

sk+1

ak+1


 =




0 0 .33

.18 0 0

0 .71 .94






jk

sk

ak




Here the number of new juvenile females in year k + 1 is

.33 times the number of adult females in year k (based on

the average birth rate per owl pair). Also, 18% of the

juveniles survive to become subadults, and 71% of the

subadults and 94% of the adults survive to be counted as

adults.

The stage-matrix model is a difference equation of the

form xk+1 = Axk . Such an equation is often called a

dynamical system (or a discrete linear dynamical

2R. H. Lamberson, R. McKelvey, B. R. Noon, and C. Voss, “A
Dynamic Analysis of the Viability of the Northern Spotted Owl in
a Fragmented Forest Environment,” Conservation Biology 6
(1992), 505–512. Also, a private communication from Professor
Lamberson, 1993.

system) because it describes the changes in a system as

time passes.

The 18% juvenile survival rate in the Lamberson

stage matrix is the entry affected most by the amount of

old-growth forest available. Actually, 60% of the juveniles

normally survive to leave the nest, but in the Willow

Creek region of California studied by Lamberson and his

colleagues, only 30% of the juveniles that left the nest

were able to find new home ranges. The rest perished

during the search process.

A significant reason for the failure of owls to find new

home ranges is the increasing fragmentation of old-growth

timber stands due to clear-cutting of scattered areas on the

old-growth land. When an owl leaves the protective

canopy of the forest and crosses a clear-cut area, the risk

of attack by predators increases dramatically. Section 5.6

will show that the model described above predicts the

eventual demise of the spotted owl, but that if 50% of the

juveniles who survive to leave the nest also find new home

ranges, then the owl population will thrive.

T he goal of this chapter is to dissect the action of a linear transformation x �→Ax
into elements that are easily visualized. Except for a brief digression in Sec-
tion 5.4, all matrices in the chapter are square. The main applications described

here are to discrete dynamical systems, including the spotted owls discussed above.
However, the basic concepts—eigenvectors and eigenvalues—are useful throughout
pure and applied mathematics, and they appear in settings far more general than we
consider here. Eigenvalues are also used to study differential equations and continuous
dynamical systems, they provide critical information in engineering design, and they
arise naturally in fields such as physics and chemistry.

5.1 EIGENVECTORS AND EIGENVALUES
Although a transformation x �→Ax may move vectors in a variety of directions, it often
happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 Let A =
[

3 −2
1 0

]
, u =

[ −1
1

]
, and v =

[
2
1

]
. The images of u and

v under multiplication by A are shown in Fig. 1. In fact, Av is just 2v. So A only
“stretches,” or dilates, v.
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FIGURE 1 Effects of multiplication by A.

As another example, readers of Section 4.9 will recall that if A is a stochastic matrix,
then the steady-state vector q for A satisfies the equation Ax = x. That is, Aq = 1·q.

In this section, we study equations such as

Ax = 2x or Ax = −4x

and we look for vectors that are transformed by A into a scalar multiple of themselves.

DEF IN I T I ON An eigenvector of an n×n matrix A is a nonzero vector x such that Ax = λx for
some scalar λ. A scalar λ is called an eigenvalue of A if there is a nontrivial
solution x of Ax = λx; such an x is called an eigenvector corresponding to λ.1

It is easy to determine if a given vector is an eigenvector of a matrix. It is also easy
to decide if a specified scalar is an eigenvalue.

EXAMPLE 2 Let A =
[

1 6
5 2

]
, u =

[
6

−5

]
, and v =

[
3

−2

]
. Are u and v eigenvec-

tors of A?Au

Av

v

u

20

–30 30

–10

–20

x1

x2

Au = −4u, but Av �= λv.

Solution

Au =
[

1 6
5 2

][
6

−5

]
=

[ −24
20

]
= −4

[
6

−5

]
= −4u

Av =
[

1 6
5 2

][
3

−2

]
=

[ −9
11

]
�= λ

[
3

−2

]

Thus u is an eigenvector corresponding to an eigenvalue (−4), but v is not an eigenvector
of A, because Av is not a multiple of v.

EXAMPLE 3 Show that 7 is an eigenvalue of the A in Example 2, and find the corre-
sponding eigenvectors.

Solution The scalar 7 is an eigenvalue of A if and only if the equation

Ax = 7x (1)

1Note that an eigenvector must be nonzero, by definition, but an eigenvalue may be zero. The case when
the number 0 is an eigenvalue is discussed after Example 5.
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has a nontrivial solution. But (1) is equivalent to Ax − 7x = 0, or

(A − 7I )x = 0 (2)

To solve this homogeneous equation, form the matrix

A − 7I =
[

1 6
5 2

]
−

[
7 0
0 7

]
=

[ −6 6
5 −5

]

The columns of A − 7I are obviously linearly dependent, so (2) has nontrivial solutions.
Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row operations:[ −6 6 0

5 −5 0

]
∼

[
1 −1 0
0 0 0

]

The general solution has the form x2

[
1
1

]
. Each vector of this form with x2 �= 0 is an

eigenvector corresponding to λ = 7.

Warning: Although row reduction was used in Example 3 to find eigenvectors,
it cannot be used to find eigenvalues. An echelon form of a matrix A usually does not
display the eigenvalues of A.

The equivalence of equations (1) and (2) obviously holds for any λ in place of λ = 7.
Thus λ is an eigenvalue of A if and only if the equation

(A − λI)x = 0 (3)

has a nontrivial solution. The set of all solutions of (3) is just the null space of the matrix
A − λI . So this set is a subspace of R

n and is called the eigenspace of A corresponding
to λ. The eigenspace consists of the zero vector and all the eigenvectors corresponding
to λ.

Example 3 shows that for the A in Example 2, the eigenspace corresponding to
λ = 7 consists of all multiples of (1, 1), which is the line through (1, 1) and the origin.
From Example 2, one can check that the eigenspace corresponding to λ = −4 is the
line through (6, −5). These eigenspaces are shown in Fig. 2, along with eigenvectors
(1, 1) and (3/2, −5/4) and the geometric action of the transformation x �→Ax on each
eigenspace.

EXAMPLE 4 Let A =

 4 −1 6

2 1 6
2 −1 8


. An eigenvalue of A is 2. Find a basis for the

corresponding eigenspace.

Solution Form

A − 2I =

 4 −1 6

2 1 6
2 −1 8


 −


 2 0 0

0 2 0
0 0 2


 =


 2 −1 6

2 −1 6
2 −1 6




and row reduce the augmented matrix for (A − 2I )x = 0:
 2 −1 6 0

2 −1 6 0
2 −1 6 0


 ∼


 2 −1 6 0

0 0 0 0
0 0 0 0



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x1

x2

Eigenspace
for λ = 7

Multiplication
by 7
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for λ = –4

Multiplication
by –4

2

2

(6, –5)

FIGURE 2 Eigenspaces for λ = −4 and λ = 7.

At this point, we are confident that 2 is indeed an eigenvalue of A because the equation
(A − 2I )x = 0 has free variables. The general solution is

 x1

x2

x3


 = x2


 1/2

1
0


 + x3


 −3

0
1


 , x2 and x3 free

The eigenspace, shown in Fig. 3, is a two-dimensional subspace of R
3. A basis is



 1

2
0


 ,


 −3

0
1






x3 x3

Eigenspace for � � 2

Eigenspace for � � 2

Multiplication

by A

FIGURE 3 A acts as a dilation on the eigenspace.



April 12, 2005 11:27 L57-ch05 Sheet number 6 Page number 306 cyan magenta yellow black

306 CHAPTER 5 Eigenvalues and Eigenvectors

NU M E R I CA L NOT E

Example 4 shows a good method for manual computation of eigenvectors in simple
cases when an eigenvalue is known. Using a matrix program and row reduction to find
an eigenspace (for a specified eigenvalue) usually works, too, but this is not entirely
reliable. Roundoff error can lead occasionally to a reduced echelon form with the
wrong number of pivots. The best computer programs compute approximations for
eigenvalues and eigenvectors simultaneously, to any desired degree of accuracy, for
matrices that are not too large. The size of matrices that can be analyzed increases
each year as computing power and software improve.

The following theorem describes one of the few special cases in which eigenvalues
can be found precisely. Calculation of eigenvalues will also be discussed in Section 5.2.

THEOREM 1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

PROOF For simplicity, consider the 3×3 case. If A is upper triangular, then A − λI

has the form

A − λI =

 a11 a12 a13

0 a22 a23

0 0 a33


 −


 λ 0 0

0 λ 0
0 0 λ




=

 a11 − λ a12 a13

0 a22 − λ a23

0 0 a33 − λ




The scalar λ is an eigenvalue of A if and only if the equation (A − λI)x = 0 has a
nontrivial solution, that is, if and only if the equation has a free variable. Because of the
zero entries in A − λI , it is easy to see that (A − λI)x = 0 has a free variable if and only
if at least one of the entries on the diagonal of A − λI is zero. This happens if and only
if λ equals one of the entries a11, a22, a33 in A. For the case when A is lower triangular,
see Exercise 28. �

EXAMPLE 5 Let A =

 3 6 −8

0 0 6
0 0 2


 and B =


 4 0 0

−2 1 0
5 3 4


. The eigenvalues

of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example 5?
This happens if and only if the equation

Ax = 0x (4)

has a nontrivial solution. But (4) is equivalent to Ax = 0, which has a nontrivial solution
if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not
invertible. This fact will be added to the Invertible Matrix Theorem in Section 5.2.
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The following important theorem will be needed later. Its proof illustrates a typical
calculation with eigenvectors.

THEOREM 2 If v1, . . . , vr are eigenvectors that correspond to distinct eigenvalues λ1, . . . , λr

of an n×n matrix A, then the set {v1, . . . , vr} is linearly independent.

PROOF Suppose {v1, . . . , vr} is linearly dependent. Since v1 is nonzero, Theorem 7 in
Section 1.7 says that one of the vectors in the set is a linear combination of the preceding
vectors. Let p be the least index such that vp+1 is a linear combination of the preceding
(linearly independent) vectors. Then there exist scalars c1, . . . , cp such that

c1v1 + · · · + cpvp = vp+1 (5)

Multiplying both sides of (5) by A and using the fact that Avk = λkvk for each k, we
obtain

c1Av1 + · · · + cpAvp = Avp+1

c1λ1v1 + · · · + cpλpvp = λp+1vp+1 (6)

Multiplying both sides of (5) by λp+1 and subtracting the result from (6), we have

c1(λ1 − λp+1)v1 + · · · + cp(λp − λp+1)vp = 0 (7)

Since {v1, . . . , vp} is linearly independent, the weights in (7) are all zero. But none of
the factors λi − λp+1 are zero, because the eigenvalues are distinct. Hence ci = 0 for
i = 1, . . . , p. But then (5) says that vp+1 = 0, which is impossible. Hence {v1, . . . , vr}
cannot be linearly dependent and therefore must be linearly independent. �

Eigenvectors and Difference Equations

We conclude this section by showing how to construct solutions of the first-order differ-
ence equation discussed in the chapter introductory example:

xk+1 = Axk (k = 0, 1, 2, . . .) (8)

If A is an n×n matrix, then (8) is a recursive description of a sequence {xk} in R
n. A

solution of (8) is an explicit description of {xk} whose formula for each xk does not
depend directly on A or on the preceding terms in the sequence other than the initial
term x0.

The simplest way to build a solution of (8) is to take an eigenvector x0 and its
corresponding eigenvalue λ and let

xk = λkx0 (k = 1, 2, . . .) (9)

This sequence works, because

Axk = A(λkx0) = λk(Ax0) = λk(λx0) = λk+1x0 = xk+1

Linear combinations of solutions of the form (9) are solutions, too! See Exercise 33.



April 12, 2005 11:27 L57-ch05 Sheet number 8 Page number 308 cyan magenta yellow black

308 CHAPTER 5 Eigenvalues and Eigenvectors

P R A C T I C E P R O B L E M S

1. Is 5 an eigenvalue of A =

 6 −3 1

3 0 5
2 2 6


?

2. If x is an eigenvector for A corresponding to λ, what is A3x?

5.1 EXERCISES

1. Is λ = 2 an eigenvalue of

[
3 2
3 8

]
? Why or why not?

2. Is λ = −2 an eigenvalue of

[
7 3
3 −1

]
? Why or why not?

3. Is

[
1
4

]
an eigenvector of

[ −3 1
−3 8

]
? If so, find the eigen-

value.

4. Is

[ −1 +
√

2
1

]
an eigenvector of

[
2 1
1 4

]
? If so, find the

eigenvalue.

5. Is


 4

−3
1


 an eigenvector of


 3 7 9

−4 −5 1
2 4 4


? If so, find

the eigenvalue.

6. Is


 1

−2
1


 an eigenvector of


 3 6 7

3 3 7
5 6 5


? If so, find the

eigenvalue.

7. Is λ = 4 an eigenvalue of


 3 0 −1

2 3 1
−3 4 5


? If so, find one

corresponding eigenvector.

8. Is λ = 3 an eigenvalue of


 1 2 2

3 −2 1
0 1 1


? If so, find one

corresponding eigenvector.

In Exercises 9–16, find a basis for the eigenspace corresponding
to each listed eigenvalue.

9. A =
[

5 0
2 1

]
, λ = 1, 5

10. A =
[

10 −9
4 −2

]
, λ = 4

11. A =
[

4 −2
−3 9

]
, λ = 10

12. A =
[

7 4
−3 −1

]
, λ = 1, 5

13. A =

 4 0 1

−2 1 0
−2 0 1


, λ = 1, 2, 3

14. A =

 1 0 −1

1 −3 0
4 −13 1


, λ = −2

15. A =

 4 2 3

−1 1 −3
2 4 9


, λ = 3

16. A =




3 0 2 0
1 3 1 0
0 1 1 0
0 0 0 4


, λ = 4

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.


 0 0 0

0 2 5
0 0 −1


 18.


 4 0 0

0 0 0
1 0 −3




19. For A =

 1 2 3

1 2 3
1 2 3


, find one eigenvalue, with no cal-

culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly

independent eigenvectors of A =

 5 5 5

5 5 5
5 5 5


. Justify

your answer.
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In Exercises 21 and 22, A is an n×n matrix. Mark each statement
True or False. Justify each answer.

21. a. If Ax = λx for some vector x, then λ is an eigenvalue of
A.

b. Amatrix A is not invertible if and only if 0 is an eigenvalue
of A.

c. Anumber c is an eigenvalue of A if and only if the equation
(A − cI)x = 0 has a nontrivial solution.

d. Finding an eigenvector of A may be difficult, but check-
ing whether a given vector is in fact an eigenvector is
easy.

e. To find the eigenvalues of A, reduce A to echelon form.

22. a. If Ax = λx for some scalar λ, then x is an eigenvector of
A.

b. If v1 and v2 are linearly independent eigenvectors, then
they correspond to distinct eigenvalues.

c. A steady-state vector for a stochastic matrix is actually an
eigenvector.

d. The eigenvalues of a matrix are on its main diagonal.

e. An eigenspace of A is a null space of a certain matrix.

23. Explain why a 2×2 matrix can have at most two distinct eigen-
values. Explain why an n×n matrix can have at most n distinct
eigenvalues.

24. Construct an example of a 2×2 matrix with only one distinct
eigenvalue.

25. Let λ be an eigenvalue of an invertible matrix A. Show that
λ−1 is an eigenvalue of A−1. [Hint: Suppose a nonzero x
satisfies Ax = λx.]

26. Show that if A2 is the zero matrix, then the only eigenvalue
of A is 0.

27. Show that λ is an eigenvalue of A if and only if λ is an eigen-
value of AT . [Hint: Find out how A − λI and AT − λI are
related.]

28. Use Exercise 27 to complete the proof of Theorem 1 for the
case when A is lower triangular.

29. Consider an n×n matrix A with the property that the row sums
all equal the same number s. Show that s is an eigenvalue of
A. [Hint: Find an eigenvector.]

30. Consider an n×n matrix A with the property that the col-
umn sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transfor-
mation T . Without writing A, find an eigenvalue of A and describe
the eigenspace.

31. T is the transformation on R
2 that reflects points across some

line through the origin.

32. T is the transformation on R
3 that rotates points about some

line through the origin.

33. Let u and v be eigenvectors of a matrix A, with corresponding
eigenvalues λ and µ, and let c1 and c2 be scalars. Define

xk = c1λ
ku + c2µ

kv (k = 0, 1, 2, . . .)

a. What is xk+1, by definition?

b. Compute Axk from the formula for xk , and show that
Axk = xk+1. This calculation will prove that the se-
quence {xk} defined above satisfies the difference equation
xk+1 = Axk (k = 0, 1, 2, . . .).

34. Describe how you might try to build a solution of a difference
equation xk+1 = Axk (k = 0, 1, 2, . . .) if you were given the
initial x0 and this vector did not happen to be an eigenvector
of A. [Hint: How might you relate x0 to eigenvectors of A?]

35. Let u and v be the vectors shown in the figure, and suppose
u and v are eigenvectors of a 2×2 matrix A that correspond
to eigenvalues 2 and 3, respectively. Let T : R

2 → R
2 be the

linear transformation given by T (x) = Ax for each x in R
2,

and let w = u + v. Make a copy of the figure, and on the same
coordinate system, carefully plot the vectors T (u), T (v), and
T (w).

x1

x2

v

u

36. Repeat Exercise 35, assuming u and v are eigenvectors of A

that correspond to eigenvalues −1 and 3, respectively.

[M] In Exercises 37–40, use a matrix program to find the eigen-
values of the matrix. Then use the method of Example 4 with a
row reduction routine to produce a basis for each eigenspace.

37.


 8 −10 −5

2 17 2
−9 −18 4



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38.




9 −4 −2 −4
−56 32 −28 44
−14 −14 6 −14

42 −33 21 −45




39.




4 −9 −7 8 2
−7 −9 0 7 14

5 10 5 −5 −10
−2 3 7 0 4
−3 −13 −7 10 11




40.




−4 −4 20 −8 −1
14 12 46 18 2

6 4 −18 8 1
11 7 −37 17 2
18 12 −60 24 5




S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The number 5 is an eigenvalue of A if and only if the equation (A − 5I )x = 0 has a
nontrivial solution. Form

A − 5I =

 6 −3 1

3 0 5
2 2 6


 −


 5 0 0

0 5 0
0 0 5


 =


 1 −3 1

3 −5 5
2 2 1




and row reduce the augmented matrix:
 1 −3 1 0

3 −5 5 0
2 2 1 0


 ∼


 1 −3 1 0

0 4 2 0
0 8 −1 0


 ∼


 1 −3 1 0

0 4 2 0
0 0 −5 0




At this point, it is clear that the homogeneous system has no free variables. Thus
A − 5I is an invertible matrix, which means that 5 is not an eigenvalue of A.

2. If x is an eigenvector of A corresponding to λ, then Ax = λx and so

A2x = A(λx) = λAx = λ2x

Again, A3x = A(A2x) = A(λ2x) = λ2Ax = λ3x. The general pattern, Akx = λkx, is
proved by induction.

5.2 THE CHARACTERISTIC EQUATION
Useful information about the eigenvalues of a square matrix A is encoded in a special
scalar equation called the characteristic equation of A. A simple example will lead to
the general case.

EXAMPLE 1 Find the eigenvalues of A =
[

2 3
3 −6

]
.

Solution We must find all scalars λ such that the matrix equation

(A − λI)x = 0
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has a nontrivial solution. By the Invertible Matrix Theorem in Section 2.3, this problem
is equivalent to finding all λ such that the matrix A − λI is not invertible, where

A − λI =
[

2 3
3 −6

]
−

[
λ 0
0 λ

]
=

[
2 − λ 3

3 −6 − λ

]

By Theorem 4 in Section 2.2, this matrix fails to be invertible precisely when its
determinant is zero. So the eigenvalues of A are the solutions of the equation

det (A − λI) = det

[
2 − λ 3

3 −6 − λ

]
= 0

Recall that

det

[
a b

c d

]
= ad − bc

So

det (A − λI) = (2 − λ)(−6 − λ) − (3)(3)

= −12 + 6λ − 2λ + λ2 − 9

= λ2 + 4λ − 21

Setting λ2 + 4λ − 21 = 0, we have (λ − 3)(λ + 7) = 0; so the eigenvalues of A are 3
and −7.

The determinant in Example 1 transformed the matrix equation (A − λI)x = 0,
which involves two unknowns (λ and x), into the scalar equation λ2 + 4λ − 21 = 0,
which involves only one unknown. The same idea works for n×n matrices. However,
before turning to larger matrices, we summarize the properties of determinants needed
to study eigenvalues.

Determinants

Let A be an n×n matrix, U be any echelon form obtained from A by row replacements
and row interchanges (without scaling), and r be the number of such row interchanges.
Then the determinant of A, written as det A, is (−1)r times the product of the diagonal
entries u11, . . . , unn in U . If A is invertible, then u11, . . . , unn are all pivots (because
A ∼ In and the uii have not been scaled to 1’s). Otherwise, at least unn is zero, and the
product u11 · · · unn is zero. Thus1

det A =

 (−1)r ·

(
product of
pivots in U

)
, when A is invertible

0, when A is not invertible
(1)

1Formula (1) was derived in Section 3.2. Readers who have not studied Chapter 3 may use this formula
as the definition of det A. It is a remarkable and nontrivial fact that any echelon form U obtained from
A without scaling gives the same value for det A.
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EXAMPLE 2 Compute det A for A =

 1 5 0

2 4 −1
0 −2 0


.

Solution The following row reduction uses one row interchange:

A ∼

 1 5 0

0 −6 −1
0 −2 0


 ∼


 1 5 0

0 −2 0
0 −6 −1


 ∼


 1 5 0

0 −2 0
0 0 −1


 = U1

So det A equals (−1)1(1)(−2)(−1) = −2. The following alternative row reduction
avoids the row interchange and produces a different echelon form. The last step adds
−1/3 times row 2 to row 3:

A ∼

 1 5 0

0 −6 −1
0 −2 0


 ∼


 1 5 0

0 −6 −1
0 0 1/3


 = U2

This time det A is (−1)0(1)(−6)(1/3) = −2, the same as before.

Formula (1) for the determinant shows that A is invertible if and only if det A is
nonzero. This fact, and the characterization of invertibility found in Section 5.1, can be
added to the Invertible Matrix Theorem.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n×n matrix. Then A is invertible if and only if:

s. The number 0 is not an eigenvalue of A.

t. The determinant of A is not zero.

When A is a 3×3 matrix, | det A| turns out to be the volume of the parallelepiped
determined by the columns a1, a2, a3 of A, as in Fig. 1. (See Section 3.3 for details.)
This volume is nonzero if and only if the vectors a1, a2, a3 are linearly independent and
the matrix A is invertible. (If the vectors are nonzero and linearly dependent, they lie in
a plane or along a line.)

x3

x1

x2

a1

a2

a3

FIGURE 1
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The next theorem lists facts needed from Sections 3.1 and 3.2. Part (a) is included
here for convenient reference.

THEOREM 3 Properties of Determinants

Let A and B be n×n matrices.

a. A is invertible if and only if det A �= 0.

b. det AB = (det A)(det B).

c. det AT = det A.

d. If A is triangular, then det A is the product of the entries on the main diagonal
of A.

e. A row replacement operation on A does not change the determinant. A row
interchange changes the sign of the determinant. A row scaling also scales the
determinant by the same scalar factor.

The Characteristic Equation

By virtue of Theorem 3(a), we can use a determinant to determine when a matrix A − λI

is not invertible. The scalar equation det (A − λI) = 0 is called the characteristic
equation of A, and the argument in Example 1 justifies the following fact.

A scalar λ is an eigenvalue of an n×n matrix A if and only if λ satisfies the
characteristic equation

det (A − λI) = 0

EXAMPLE 3 Find the characteristic equation of

A =




5 −2 6 −1
0 3 −8 0
0 0 5 4
0 0 0 1




Solution Form A − λI , and use Theorem 3(d):

det (A − λI) = det




5 − λ −2 6 −1
0 3 − λ −8 0
0 0 5 − λ 4
0 0 0 1 − λ




= (5 − λ)(3 − λ)(5 − λ)(1 − λ)

The characteristic equation is

(5 − λ)2(3 − λ)(1 − λ) = 0
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or

(λ − 5)2(λ − 3)(λ − 1) = 0

Expanding the product, we can also write

λ4 − 14λ3 + 68λ2 − 130λ + 75 = 0

In Examples 1 and 3, det (A − λI) is a polynomial in λ. It can be shown that if A is
an n×n matrix, then det (A − λI) is a polynomial of degree n called the characteristic
polynomial of A.

The eigenvalue 5 in Example 3 is said to have multiplicity 2 because (λ − 5) oc-
curs two times as a factor of the characteristic polynomial. In general, the (algebraic)
multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic equation.

EXAMPLE 4 The characteristic polynomial of a 6×6 matrix is λ6 − 4λ5 − 12λ4. Find
the eigenvalues and their multiplicities.

Solution Factor the polynomial

λ6 − 4λ5 − 12λ4 = λ4(λ2 − 4λ − 12) = λ4(λ − 6)(λ + 2)

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and −2 (multiplicity 1).

We could also list the eigenvalues in Example 4 as 0, 0, 0, 0, 6, and −2, so that the
eigenvalues are repeated according to their multiplicities.

Because the characteristic equation for an n×n matrix involves an nth-degree poly-
nomial, the equation has exactly n roots, counting multiplicities, provided complex roots
are allowed. Such complex roots, called complex eigenvalues, will be discussed in Sec-
tion 5.5. Until then, we consider only real eigenvalues, and scalars will continue to be
real numbers.

The characteristic equation is important for theoretical purposes. In practical work,
however, eigenvalues of any matrix larger than 2×2 should be found by a computer,
unless the matrix is triangular or has other special properties. Although a 3×3 charac-
teristic polynomial is easy to compute by hand, factoring it can be difficult (unless the
matrix is carefully chosen). See the Numerical Notes at the end of this section.

SG Factoring a
Polynomial 5–8

Similarity

The next theorem illustrates one use of the characteristic polynomial, and it provides
the foundation for several iterative methods that approximate eigenvalues. If A and B

are n×n matrices, then A is similar to B if there is an invertible matrix P such that
P −1AP = B, or equivalently, A = P BP −1. Writing Q for P −1, we have Q−1BQ = A.
So B is also similar to A, and we say simply that A and B are similar. Changing A into
P −1AP is called a similarity transformation.
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THEOREM 4 If n×n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

PROOF If B = P −1AP , then

B − λI = P −1AP − λP −1P = P −1(AP − λP ) = P −1(A − λI)P

Using the multiplicative property (b) of Theorem 3, we compute

det (B − λI) = det [P −1(A − λI)P ]
= det (P −1) · det (A − λI) · det (P ) (2)

Since det (P −1) · det (P ) = det (P −1P ) = det I = 1, we see from (2) that det (B − λI) =
det (A − λI). �

Warning: Similarity is not the same as row equivalence. (If A is row equivalent
to B, then B = EA for some invertible matrix E.) Row operations on a matrix usually
change its eigenvalues.

Application to Dynamical Systems

Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical
system, as mentioned in the chapter introduction.

EXAMPLE 5 Let A =
[

.95 .03

.05 .97

]
. Analyze the long-term behavior of the dynamical

system defined by xk+1 = Axk (k = 0, 1, 2, . . .), with x0 =
[

.6

.4

]
.

Solution The first step is to find the eigenvalues of A and a basis for each eigenspace.
The characteristic equation for A is

0 = det

[
.95 − λ .03

.05 .97 − λ

]
= (.95 − λ)(.97 − λ) − (.03)(.05)

= λ2 − 1.92λ + .92

By the quadratic formula

λ = 1.92 ±
√

(1.92)2 − 4(.92)

2
= 1.92 ±

√
.0064

2

= 1.92 ± .08

2
= 1 or .92
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It is readily checked that eigenvectors corresponding to λ = 1 and λ = .92 are multiples
of

v1 =
[

3
5

]
and v2 =

[
1

−1

]

respectively.
The next step is to write the given x0 in terms of v1 and v2. This can be done because

{v1, v2} is obviously a basis for R
2. (Why?) So there exist weights c1 and c2 such that

x0 = c1v1 + c2v2 = [ v1 v2 ]

[
c1

c2

]
(3)

In fact, [
c1

c2

]
= [ v1 v2 ]−1 x0 =

[
3 1
5 −1

]−1[
.60
.40

]

= 1

−8

[ −1 −1
−5 3

][
.60
.40

]
=

[
.125
.225

]
(4)

Because v1 and v2 in (3) are eigenvectors of A, with Av1 = v1 and Av2 = .92v2, we
easily compute each xk:

x1 = Ax0 = c1Av1 + c2Av2 Using linearity of x �→ Ax

= c1v1 + c2(.92)v2 v1 and v2 are eigenvectors.

x2 = Ax1 = c1Av1 + c2(.92)Av2

= c1v1 + c2(.92)2v2

and so on. In general,

xk = c1v1 + c2(.92)kv2 (k = 0, 1, 2, . . .)

Using c1 and c2 from (4),

xk = .125

[
3
5

]
+ .225(.92)k

[
1

−1

]
(k = 0, 1, 2, . . .) (5)

This explicit formula for xk gives the solution of the difference equation xk+1 = Axk . As

k → ∞, (.92)k tends to zero and xk tends to

[
.375
.625

]
= .125v1.

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 4.9. Those who read that section may recognize that the A in
Example 5 above is the same as the migration matrix M in Section 4.9, x0 is the ini-
tial population distribution between city and suburbs, and xk represents the population
distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence xk tends
to a steady-state vector. Now we know why the xk behave this way, at least for the
migration matrix. The steady-state vector is .125v1, a multiple of the eigenvector v1,
and formula (5) for xk shows precisely why xk → .125v1.
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NU M E R I CA L NOT E S

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n×n matrix for n ≥ 5.

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial of a
matrix A by first computing the eigenvalues λ1, . . . , λn of A and then expanding
the product (λ − λ1)(λ − λ2) · · · (λ − λn).

3. Several common algorithms for estimating the eigenvalues of a matrix A are
based on Theorem 4. The powerful QR algorithm is discussed in the exercises.
Another technique, called Jacobi’s method, works when A = AT and computes
a sequence of matrices of the form

A1 = A and Ak+1 = P −1
k AkPk (k = 1, 2, . . .)

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of Ak+1 tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

P R A C T I C E P R O B L E M

Find the characteristic equation and eigenvalues of A =
[

1 −4
4 2

]
.

5.2 EXERCISES
Find the characteristic polynomial and the eigenvalues of the ma-
trices in Exercises 1–8.

1.
[

2 7
7 2

]
2.

[
5 3
3 5

]

3.
[

3 −2
1 −1

]
4.

[
5 −3

−4 3

]

5.
[

2 1
−1 4

]
6.

[
3 −4
4 8

]

7.
[

5 3
−4 4

]
8.

[
7 −2
2 3

]

Exercises 9–14 require techniques from Section 3.1. Find the
characteristic polynomial of each matrix, using either a cofactor
expansion or the special formula for 3×3 determinants described

prior to Exercises 15–18 in Section 3.1. [Note: Finding the char-
acteristic polynomial of a 3×3 matrix is not easy to do with just
row operations, because the variable λ is involved.]

9.


 1 0 −1

2 3 −1
0 6 0


 10.


 0 3 1

3 0 2
1 2 0




11.


 4 0 0

5 3 2
−2 0 2


 12.


 −1 0 1

−3 4 1
0 0 2




13.


 6 −2 0

−2 9 0
5 8 3


 14.


 5 −2 3

0 1 0
6 7 −2




For the matrices in Exercises 15–17, list the eigenvalues, repeated
according to their multiplicities.
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15.




4 −7 0 2
0 3 −4 6
0 0 3 −8
0 0 0 1


 16.




5 0 0 0
8 −4 0 0
0 7 1 0
1 −5 2 1




17.




3 0 0 0 0
−5 1 0 0 0

3 8 0 0 0
0 −7 2 1 0

−4 1 9 −2 3




18. It can be shown that the algebraic multiplicity of an eigen-
value λ is always greater than or equal to the dimension of the
eigenspace corresponding to λ. Find h in the matrix A below
such that the eigenspace for λ = 5 is two-dimensional:

A =




5 −2 6 −1
0 3 h 0
0 0 5 4
0 0 0 1




19. Let A be an n×n matrix, and suppose A has n real eigenval-
ues, λ1, . . . , λn, repeated according to multiplicities, so that

det (A − λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

Explain why det A is the product of the n eigenvalues of A.
(This result is true for any square matrix when complex eigen-
values are considered.)

20. Use a property of determinants to show that A and AT have
the same characteristic polynomial.

In Exercises 21 and 22, A and B are n×n matrices. Mark each
statement True or False. Justify each answer.

21. a. The determinant of A is the product of the diagonal entries
in A.

b. An elementary row operation on A does not change the
determinant.

c. (det A)(det B) = det AB

d. If λ + 5 is a factor of the characteristic polynomial of A,
then 5 is an eigenvalue of A.

22. a. If A is 3×3, with columns a1, a2, a3, then det A equals the
volume of the parallelepiped determined by a1, a2, a3.

b. det AT = (−1) det A.

c. The multiplicity of a root r of the characteristic equation of
A is called the algebraic multiplicity of r as an eigenvalue
of A.

d. A row replacement operation on A does not change the
eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-

gorithm produces a sequence of matrices, all similar to A, that be-
come almost upper triangular, with diagonal entries that approach
the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A = Q1R1, where QT

1 = Q−1
1

and R1 is upper triangular. The factors are interchanged to form
A1 = R1Q1, which is again factored as A1 = Q2R2; then to form
A2 = R2Q2, and so on. The similarity of A, A1, . . . follows from
the more general result in Exercise 23.

23. Show that if A = QR with Q invertible, then A is similar to
A1 = RQ.

24. Show that if A and B are similar, then det A = det B.

25. Let A =
[

.6 .3

.4 .7

]
, v1 =

[
3/7
4/7

]
, x0 =

[
.5
.5

]
. [Note: A is the

stochastic matrix studied in Example 5 of Section 4.9.]

a. Find a basis for R
2 consisting of v1 and another eigenvector

v2 of A.

b. Verify that x0 may be written in the form x0 = v1 + cv2.

c. For k = 1, 2, . . . , define xk = Akx0. Compute x1 and x2,
and write a formula for xk . Then show that xk → v1 as k

increases.

26. Let A =
[

a b

c d

]
. Use formula (1) for a determinant (given

before Example 2) to show that det A = ad − bc. Consider
two cases: a �= 0 and a = 0.

27. Let A =

 .5 .2 .3

.3 .8 .3

.2 0 .4


, v1 =


 .3

.6

.1


, v2 =


 1

−3
2


,

v3 =

 −1

0
1


, and w =


 1

1
1


.

a. Show that v1, v2, v3 are eigenvectors of A. [Note: A is the
stochastic matrix studied in Example 3 of Section 4.9.]

b. Let x0 be any vector in R
3 with nonnegative entries whose

sum is 1. (In Section 4.9, x0 was called a probability vec-
tor.) Explain why there are constants c1, c2, c3 such that
x0 = c1v1 + c2v2 + c3v3. Compute wT x0, and deduce that
c1 = 1.

c. For k = 1, 2, . . . , define xk = Akx0, with x0 as in part (b).
Show that xk → v1 as k increases.

28. [M] Construct a random integer-valued 4×4 matrix A, and
verify that A and AT have the same characteristic polynomial
(the same eigenvalues with the same multiplicities). Do A

and AT have the same eigenvectors? Make the same analysis
of a 5×5 matrix. Report the matrices and your conclusions.
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29. [M] Construct a random integer-valued 4×4 matrix A.

a. Reduce A to echelon form U with no row scaling, and use
U in formula (1) (before Example 2) to compute det A. (If
A happens to be singular, start over with a new random
matrix.)

b. Compute the eigenvalues of A and the product of these
eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the piv-
ots in U and the eigenvalues of A. Compute det A with
your matrix program, and compare it with the products
you found in (a) and (b).

30. [M] Let A =

 −6 28 21

4 −15 −12
−8 a 25


. For each value of a in

the set {32, 31.9, 31.8, 32.1, 32.2}, compute the characteristic
polynomial of A and the eigenvalues. In each case, create a
graph of the characteristic polynomial p(t) = det (A − tI ) for
0 ≤ t ≤ 3. If possible, construct all graphs on one coordinate
system. Describe how the graphs reveal the changes in the
eigenvalues as a changes.

S O L U T I O N T O P R A C T I C E P R O B L E M

The characteristic equation is

0 = det (A − λI) = det

[
1 − λ −4

4 2 − λ

]

= (1 − λ)(2 − λ) − (−4)(4) = λ2 − 3λ + 18

From the quadratic formula,

λ = 3 ±
√

(−3)2 − 4(18)

2
= 3 ±

√−63

2

It is clear that the characteristic equation has no real solutions, so A has no real eigenval-
ues. The matrix A is acting on the real vector space R

2, and there is no nonzero vector
v in R

2 such that Av = λv for some scalar λ.

5.3 DIAGONALIZATION
In many cases, the eigenvalue–eigenvector information contained within a matrix A

can be displayed in a useful factorization of the form A = PDP −1. In this section, the
factorization enables us to compute Ak quickly for large values of k, a fundamental idea
in several applications of linear algebra. Later, in Sections 5.6 and 5.7, the factorization
will be used to analyze (and decouple) dynamical systems.

The D in the factorization stands for diagonal. Powers of such a D are trivial to
compute.

EXAMPLE 1 If D =
[

5 0
0 3

]
, then D2 =

[
5 0
0 3

][
5 0
0 3

]
=

[
52 0
0 32

]
and

D3 = DD2 =
[

5 0
0 3

][
52 0
0 32

]
=

[
53 0
0 33

]

In general,

Dk =
[

5k 0
0 3k

]
for k ≥ 1
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If A = PDP −1 for some invertible P and diagonal D, then Ak is also easy to
compute, as the next example shows.

EXAMPLE 2 Let A =
[

7 2
−4 1

]
. Find a formula for Ak , given that A = PDP −1,

where

P =
[

1 1
−1 −2

]
and D =

[
5 0
0 3

]

Solution The standard formula for the inverse of a 2×2 matrix yields

P −1 =
[

2 1
−1 −1

]

Then, by associativity of matrix multiplication,

A2 = (PDP −1)(PDP −1) = PD (P −1P )︸ ︷︷ ︸
I

DP −1 = PDDP −1

= PD2P −1 =
[

1 1
−1 −2

][
52 0
0 32

][
2 1

−1 −1

]

Again,

A3 = (PDP −1)A2 = (PDP −1)P︸ ︷︷ ︸
I

D2P −1 = PDD2P −1 = PD3P −1

In general, for k ≥ 1,

Ak = PDkP −1 =
[

1 1
−1 −2

][
5k 0
0 3k

][
2 1

−1 −1

]

=
[

2 · 5k − 3k 5k − 3k

2 · 3k − 2 · 5k 2 · 3k − 5k

]

Asquare matrix A is said to be diagonalizable if A is similar to a diagonal matrix, that
is, if A = PDP −1 for some invertible matrix P and some diagonal matrix D. The next
theorem gives a characterization of diagonalizable matrices and tells how to construct a
suitable factorization.

THEOREM 5 The Diagonalization Theorem

An n×n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A = PDP −1, with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal entries
of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P .
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In other words, A is diagonalizable if and only if there are enough eigenvectors to
form a basis of R

n. We call such a basis an eigenvector basis.

PROOF First, observe that if P is any n×n matrix with columns v1, . . . , vn, and if D

is any diagonal matrix with diagonal entries λ1, . . . , λn, then

AP = A [ v1 v2 · · · vn ] = [ Av1 Av2 · · · Avn ] (1)

while

PD = P




λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


 = [ λ1v1 λ2v2 · · · λnvn ] (2)

Now suppose A is diagonalizable and A = PDP −1. Then right-multiplying this relation
by P , we have AP = PD. In this case, (1) and (2) imply that

[ Av1 Av2 · · · Avn ] = [ λ1v1 λ2v2 · · · λnvn ] (3)

Equating columns, we find that

Av1 = λ1v1, Av2 = λ2v2, . . . , Avn = λnvn (4)

Since P is invertible, its columns v1, . . . , vn must be linearly independent. Also, since
these columns are nonzero, (4) shows that λ1, . . . , λn are eigenvalues and v1, . . . , vn are
corresponding eigenvectors. This argument proves the “only if” parts of the first and
second statements, along with the third statement, of the theorem.

Finally, given any n eigenvectors v1, . . . , vn, use them to construct the columns of
P and use corresponding eigenvalues λ1, . . . , λn to construct D. By (1)–(3), AP = PD.
This is true without any condition on the eigenvectors. If, in fact, the eigenvectors
are linearly independent, then P is invertible (by the Invertible Matrix Theorem), and
AP = PD implies that A = PDP −1. �

Diagonalizing Matrices

EXAMPLE 3 Diagonalize the following matrix, if possible.

A =

 1 3 3

−3 −5 −3
3 3 1




That is, find an invertible matrix P and a diagonal matrix D such that A = PDP −1.

Solution There are four steps to implement the description in Theorem 5.

Step 1. Find the eigenvalues of A. As mentioned in Section 5.2, the mechanics of this
step are appropriate for a computer when the matrix is larger than 2×2. To avoid
unnecessary distractions, the text will usually supply information needed for this step.
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In the present case, the characteristic equation turns out to involve a cubic polynomial
that can be factored:

0 = det (A − λI) = −λ3 − 3λ2 + 4

= −(λ − 1)(λ + 2)2

The eigenvalues are λ = 1 and λ = −2.

Step 2. Find three linearly independent eigenvectors of A. Three vectors are needed
because A is a 3×3 matrix. This is the critical step. If it fails, then Theorem 5 says
that A cannot be diagonalized. The method of Section 5.1 produces a basis for each
eigenspace:

Basis for λ = 1: v1 =

 1

−1
1




Basis for λ = −2: v2 =

 −1

1
0


 and v3 =


 −1

0
1




You can check that {v1, v2, v3} is a linearly independent set.

Step 3. Construct P from the vectors in step 2. The order of the vectors is unimportant.
Using the order chosen in step 2, form

P = [
v1 v2 v3

] =

 1 −1 −1

−1 1 0
1 0 1




Step 4. Construct D from the corresponding eigenvalues. In this step, it is essential that
the order of the eigenvalues matches the order chosen for the columns of P . Use the
eigenvalue λ = −2 twice, once for each of the eigenvectors corresponding to λ = −2:

D =

 1 0 0

0 −2 0
0 0 −2




It is a good idea to check that P and D really work. To avoid computing P −1,
simply verify that AP = PD. This is equivalent to A = PDP −1 when P is invertible.
(However, be sure that P is invertible!) We compute

AP =

 1 3 3

−3 −5 −3
3 3 1




 1 −1 −1

−1 1 0
1 0 1


 =


 1 2 2

−1 −2 0
1 0 −2




PD =

 1 −1 −1

−1 1 0
1 0 1




 1 0 0

0 −2 0
0 0 −2


 =


 1 2 2

−1 −2 0
1 0 −2



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EXAMPLE 4 Diagonalize the following matrix, if possible.

A =

 2 4 3

−4 −6 −3
3 3 1




Solution The characteristic equation of A turns out to be exactly the same as that in
Example 3:

0 = det (A − λI) = −λ3 − 3λ2 + 4 = −(λ − 1)(λ + 2)2

The eigenvalues are λ = 1 and λ = −2. However, when we look for eigenvectors, we
find that each eigenspace is only one-dimensional.

Basis for λ = 1: v1 =

 1

−1
1




Basis for λ = −2: v2 =

 −1

1
0




There are no other eigenvalues, and every eigenvector of A is a multiple of either v1

or v2. Hence it is impossible to construct a basis of R
3 using eigenvectors of A. By

Theorem 5, A is not diagonalizable.

The following theorem provides a sufficient condition for a matrix to be diagonal-
izable.

THEOREM 6 An n×n matrix with n distinct eigenvalues is diagonalizable.

PROOF Let v1, . . . , vn be eigenvectors corresponding to the n distinct eigenvalues of
a matrix A. Then {v1, . . . , vn} is linearly independent, by Theorem 2 in Section 5.1.
Hence A is diagonalizable, by Theorem 5. �

It is not necessary for an n×n matrix to have n distinct eigenvalues in order to be
diagonalizable. The 3×3 matrix in Example 3 is diagonalizable even though it has only
two distinct eigenvalues.

EXAMPLE 5 Determine if the following matrix is diagonalizable.

A =

 5 −8 1

0 0 7
0 0 −2




Solution This is easy! Since the matrix is triangular, its eigenvalues are obviously 5,
0, and −2. Since A is a 3×3 matrix with three distinct eigenvalues, A is diagonalizable.
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Matrices Whose Eigenvalues Are Not Distinct

If an n×n matrix A has n distinct eigenvalues, with corresponding eigenvectors v1, . . . ,

vn, and if P = [ v1 · · · vn ], then P is automatically invertible because its columns
are linearly independent, by Theorem 2. When A is diagonalizable but has fewer than n

distinct eigenvalues, it is still possible to build P in a way that makes P automatically
invertible, as the next theorem shows.1

THEOREM 7 Let A be an n×n matrix whose distinct eigenvalues are λ1, . . . , λp.

a. For 1 ≤ k ≤ p, the dimension of the eigenspace for λk is less than or equal to
the multiplicity of the eigenvalue λk .

b. The matrix A is diagonalizable if and only if the sum of the dimensions of the
distinct eigenspaces equals n, and this happens if and only if the dimension of
the eigenspace for each λk equals the multiplicity of λk .

c. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to λk

for each k, then the total collection of vectors in the sets B1, . . . , Bp forms an
eigenvector basis for R

n.

EXAMPLE 6 Diagonalize the following matrix, if possible.

A =




5 0 0 0
0 5 0 0
1 4 −3 0

−1 −2 0 −3




Solution Since A is a triangular matrix, the eigenvalues are 5 and −3, each with
multiplicity 2. Using the method of Section 5.1, we find a basis for each eigenspace.

Basis for λ = 5: v1 =




−8
4
1
0


 and v2 =




−16
4
0
1




Basis for λ = −3: v3 =




0
0
1
0


 and v4 =




0
0
0
1




1The proof of Theorem 7 is somewhat lengthy but not difficult. For instance, see S. Friedberg, A. Insel,
and L. Spence, Linear Algebra, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1997), pp. 234–238.



April 12, 2005 11:27 L57-ch05 Sheet number 25 Page number 325 cyan magenta yellow black

5.3 Diagonalization 325

The set {v1, . . . , v4} is linearly independent, by Theorem 7. So the matrix P =
[ v1 · · · v4 ] is invertible, and A = PDP −1, where

P =




−8 −16 0 0
4 4 0 0
1 0 1 0
0 1 0 1


 and D =




5 0 0 0
0 5 0 0
0 0 −3 0
0 0 0 −3




P R A C T I C E P R O B L E M S

1. Compute A8, where A =
[

4 −3
2 −1

]
.

2. Let A =
[ −3 12

−2 7

]
, v1 =

[
3
1

]
, and v2 =

[
2
1

]
. Suppose you are told that v1 and

v2 are eigenvectors of A. Use this information to diagonalize A.

3. Let A be a 4×4 matrix with eigenvalues 5, 3, and −2, and suppose you know that
the eigenspace for λ = 3 is two-dimensional. Do you have enough information to
determine if A is diagonalizable?

CD Exploring
Diagonalization

WEB

5.3 EXERCISES
In Exercises 1 and 2, let A = PDP −1 and compute A4.

1. P =
[

5 7
2 3

]
, D =

[
2 0
0 1

]

2. P =
[

2 −3
−3 5

]
, D =

[
1 0
0 1/2

]

In Exercises 3 and 4, use the factorization A = PDP −1 to compute
Ak , where k represents an arbitrary positive integer.

3.
[

a 0
3(a − b) b

]
=

[
1 0
3 1

][
a 0
0 b

][
1 0

−3 1

]

4.
[ −2 12

−1 5

]
=

[
3 4
1 1

][
2 0
0 1

][ −1 4
1 −3

]

In Exercises 5 and 6, the matrix A is factored in the form PDP −1.
Use the Diagonalization Theorem to find the eigenvalues of A and
a basis for each eigenspace.

5.


 2 2 1

1 3 1
1 2 2


 =


 1 1 2

1 0 −1
1 −1 0




 5 0 0

0 1 0
0 0 1




 1/4 1/2 1/4

1/4 1/2 −3/4
1/4 −1/2 1/4




6.


 4 0 −2

2 5 4
0 0 5


 =


 −2 0 −1

0 1 2
1 0 0




 5 0 0

0 5 0
0 0 4




 0 0 1

2 1 4
−1 0 −2




Diagonalize the matrices in Exercises 7–20, if possible. The eigen-
values for Exercises 11–16 are as follows: (11) λ = 1, 2, 3; (12)
λ = 2, 8; (13) λ = 5, 1; (14) λ = 5, 4; (15) λ = 3, 1; (16) λ = 2, 1.
For Exercise 18, one eigenvalue is λ = 5 and one eigenvector is
(−2, 1, 2).
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7.
[

1 0
6 −1

]
8.

[
5 1
0 5

]

9.
[

3 −1
1 5

]
10.

[
2 3
4 1

]

11.


 −1 4 −2

−3 4 0
−3 1 3


 12.


 4 2 2

2 4 2
2 2 4




13.


 2 2 −1

1 3 −1
−1 −2 2


 14.


 4 0 −2

2 5 4
0 0 5




15.


 7 4 16

2 5 8
−2 −2 −5


 16.


 0 −4 −6

−1 0 −3
1 2 5




17.


 4 0 0

1 4 0
0 0 5


 18.


 −7 −16 4

6 13 −2
12 16 1




19.




5 −3 0 9
0 3 1 −2
0 0 2 0
0 0 0 2


 20.




4 0 0 0
0 4 0 0
0 0 2 0
1 0 0 2




In Exercises 21 and 22, A, B, P , and D are n×n matrices. Mark
each statement True or False. Justify each answer. (Study Theo-
rems 5 and 6 and the examples in this section carefully before you
try these exercises.)

21. a. A is diagonalizable if A = PDP −1 for some matrix D and
some invertible matrix P .

b. If R
n has a basis of eigenvectors of A, then A is diagonal-

izable.

c. A is diagonalizable if and only if A has n eigenvalues,
counting multiplicities.

d. If A is diagonalizable, then A is invertible.

22. a. A is diagonalizable if A has n eigenvectors.

b. If A is diagonalizable, then A has n distinct eigenvalues.

c. If AP = PD, with D diagonal, then the nonzero columns
of P must be eigenvectors of A.

d. If A is invertible, then A is diagonalizable.

23. A is a 5×5 matrix with two eigenvalues. One eigenspace
is three-dimensional, and the other eigenspace is two-
dimensional. Is A diagonalizable? Why?

24. A is a 3×3 matrix with two eigenvalues. Each eigenspace is
one-dimensional. Is A diagonalizable? Why?

25. A is a 4×4 matrix with three eigenvalues. One eigenspace
is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable? Jus-
tify your answer.

26. A is a 7×7 matrix with three eigenvalues. One eigenspace is
two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable? Jus-
tify your answer.

27. Show that if A is both diagonalizable and invertible, then so
is A−1.

28. Show that if A has n linearly independent eigenvectors, then
so does AT . [Hint: Use the Diagonalization Theorem.]

29. A factorization A = PDP −1 is not unique. Demonstrate this

for the matrix A in Example 2. With D1 =
[

3 0
0 5

]
, use

the information in Example 2 to find a matrix P1 such that
A = P1D1P

−1
1 .

30. With A and D as in Example 2, find an invertible P2 unequal
to the P in Example 2, such that A = P2DP −1

2 .

31. Construct a nonzero 2×2 matrix that is invertible but not di-
agonalizable.

32. Construct a nondiagonal 2×2 matrix that is diagonalizable
but not invertible.

[M] Diagonalize the matrices in Exercises 33–36. Use your ma-
trix program’s eigenvalue command to find the eigenvalues, and
then compute bases for the eigenspaces as in Section 5.1.

33.




−6 4 0 9
−3 0 1 6
−1 −2 1 0
−4 4 0 7


 34.




0 13 8 4
4 9 8 4
8 6 12 8
0 5 0 −4




35.




11 −6 4 −10 −4
−3 5 −2 4 1
−8 12 −3 12 4

1 6 −2 3 −1
8 −18 8 −14 −1




36.




4 4 2 3 −2
0 1 −2 −2 2
6 12 11 2 −4
9 20 10 10 −6

15 28 14 5 −3



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S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. det (A − λI) = λ2 − 3λ + 2 = (λ − 2)(λ − 1). The eigenvalues are 2 and 1, and the

corresponding eigenvectors are v1 =
[

3
2

]
and v2 =

[
1
1

]
. Next, form

P =
[

3 1
2 1

]
, D =

[
2 0
0 1

]
, and P −1 =

[
1 −1

−2 3

]

Since A = PDP −1,

A8 = PD8P −1 =
[

3 1
2 1

][
28 0
0 18

][
1 −1

−2 3

]

=
[

3 1
2 1

][
256 0

0 1

][
1 −1

−2 3

]

=
[

766 −765
510 −509

]

2. Compute Av1 =
[ −3 12

−2 7

][
3
1

]
=

[
3
1

]
= 1·v1, and

Av2 =
[ −3 12

−2 7

][
2
1

]
=

[
6
3

]
= 3·v2

So, v1 and v2 are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

A = PDP −1, where P =
[

3 2
1 1

]
and D =

[
1 0
0 3

]

3. Yes, A is diagonalizable. There is a basis {v1, v2} for the eigenspace corresponding
to λ = 3. In addition, there will be at least one eigenvector for λ = 5 and one for
λ = −2. Call them v3 and v4. Then {v1, . . . , v4} is linearly independent, and A

is diagonalizable, by Theorem 7. There can be no additional eigenvectors that are
linearly independent from v1, . . . , v4, because the vectors are all in R

4. Hence the
eigenspaces for λ = 5 and λ = −2 are both one-dimensional.

SG Mastering: Eigenvalue
and Eigenspace 5–15

5.4 EIGENVECTORS AND LINEAR TRANSFORMATIONS
The goal of this section is to understand the matrix factorization A = PDP −1 as a state-
ment about linear transformations. We shall see that the transformation x �→Ax is
essentially the same as the very simple mapping u �→Du, when viewed from the proper
perspective. Asimilar interpretation will apply to A and D even when D is not a diagonal
matrix.

Recall from Section 1.9 that any linear transformation T from R
n to R

m can be
implemented via left-multiplication by a matrix A, called the standard matrix of T .
Now we need the same sort of representation for any linear transformation between two
finite-dimensional vector spaces.
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The Matrix of a Linear Transformation

Let V be an n-dimensional vector space, W an m-dimensional vector space, and T any
linear transformation from V to W . To associate a matrix with T , choose (ordered) bases
B and C for V and W , respectively.

Given any x in V , the coordinate vector [ x ]B is in R
n and the coordinate vector of

its image, [ T (x) ]C , is in R
m, as shown in Fig. 1.

[x]B

�n
�m

x

V T W

T(x)

[T(x)]C

FIGURE 1 A linear transformation from V to W .

The connection between [ x ]B and [ T (x) ]C is easy to find. Let {b1, . . . , bn} be the
basis B for V . If x = r1b1 + · · · + rnbn, then

[x]B =



r1
...

rn




and

T (x) = T (r1b1 + · · · + rnbn) = r1T (b1) + · · · + rnT (bn) (1)

because T is linear. Using the basis C in W , we can rewrite (1) in terms of C-coordinate
vectors:

[ T (x) ]C = r1 [ T (b1) ]C + · · · + rn [ T (bn) ]C (2)

Since C-coordinate vectors are in R
m, the vector equation (2) can be written as a matrix

equation, namely,

[T (x)]C = M[x]B (3)

where

M = [
[ T (b1) ]C [ T (b2) ]C · · · [ T (bn) ]C

]
(4)

The matrix M is a matrix representation of T , called the matrix for T relative to the
bases B and C. See Fig. 2.

[T(x)]C

T(x)
T

x

Multiplication
by M

[x]B

FIGURE 2
Equation (3) says that, so far as coordinate vectors are concerned, the action of T

on x may be viewed as left-multiplication by M .
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EXAMPLE 1 Suppose B = {b1, b2} is a basis for V and C = {c1, c2, c3} is a basis for
W . Let T : V → W be a linear transformation with the property that

T (b1) = 3c1 − 2c2 + 5c3 and T (b2) = 4c1 + 7c2 − c3

Find the matrix M for T relative to B and C.

Solution The C-coordinate vectors of the images of b1 and b2 are

[ T (b1) ]C =

 3

−2
5


 and [ T (b2) ]C =


 4

7
−1




Hence

M =

 3 4

−2 7
5 −1




✲ ✲

If B and C are bases for the same space V and if T is the identity transformation
T (x) = x for x in V , then the matrix M in (4) is just a change-of-coordinates matrix (see
Section 4.7).

Linear Transformations from V into V

In the common case when W is the same as V and the basis C is the same as B, the
matrix M in (4) is called the matrix for T relative to B, or simply the B-matrix for T,
and is denoted by [ T ]B. See Fig. 3.

x
T

T(x)

[T(x)]B
Multiplication

by [T]B
[x]B

FIGURE 3

The B-matrix for T : V → V satisfies

[ T (x) ]B = [ T ]B [x]B, for all x in V (5)

EXAMPLE 2 The mapping T : P2 → P2 defined by

T (a0 + a1t + a2t2) = a1 + 2a2t

is a linear transformation. (Calculus students will recognize T as the differentiation
operator.)

a. Find the B-matrix for T , when B is the basis {1, t, t2}.
b. Verify that [ T (p) ]B = [ T ]B [ p ]B for each p in P2.

Solution

a. Compute the images of the basis vectors:

T (1) = 0 The zero polynomial

T (t) = 1 The polynomial whose value is always 1

T (t2) = 2t



April 12, 2005 11:27 L57-ch05 Sheet number 30 Page number 330 cyan magenta yellow black

330 CHAPTER 5 Eigenvalues and Eigenvectors

Then write the B-coordinate vectors of T (1), T (t), and T (t2) (which are found by
inspection in this example) and place them together as the B-matrix for T :

[ T (1) ]B =

 0

0
0


 , [ T (t) ]B =


 1

0
0


 , [ T (t2) ]B =


 0

2
0




[ T ]B =

 0 1 0

0 0 2
0 0 0




✲ ✲✲

b. For a general p(t) = a0 + a1t + a2t2,

[ T (p) ]B = [ a1 + 2a2t ]B =

 a1

2a2

0




=

 0 1 0

0 0 2
0 0 0




 a0

a1

a2


 = [T ]B[p]B

See Fig. 4.

a0 + a1t + a2t2

a0

Multiplication
by [T ]B

a1

a1
2a2
0

a2

T

�2

�3

�3

�2

a1 + 2a2t

FIGURE 4 Matrix representation of a linear
transformation.WEB

Linear Transformations on n

In an applied problem involving R
n, a linear transformation T usually appears first as

a matrix transformation, x �→Ax. If A is diagonalizable, then there is a basis B for R
n

consisting of eigenvectors of A. Theorem 8 below shows that, in this case, the B-matrix
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for T is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation
of x �→Ax.

THEOREM 8 Diagonal Matrix Representation

Suppose A = PDP −1, where D is a diagonal n×n matrix. If B is the basis for
R

n formed from the columns of P , then D is the B-matrix for the transformation
x �→Ax.

PROOF Denote the columns of P by b1, . . . , bn, so that B = {b1, . . . , bn} and P =
[ b1 · · · bn ]. In this case, P is the change-of-coordinates matrix PB discussed in
Section 4.4, where

P [x]B = x and [x]B = P −1x

If T (x) = Ax for x in R
n, then

[ T ]B = [
[ T (b1) ]B · · · [ T (bn) ]B

]
Definition of [ T ]B

= [
[ Ab1 ]B · · · [ Abn ]B

]
Since T (x) = Ax

= [ P −1Ab1 · · · P −1Abn ] Change of coordinates

= P −1A [ b1 · · · bn ] Matrix multiplication

= P −1AP (6)

Since A = PDP −1, we have [ T ]B = P −1AP = D. �

EXAMPLE 3 Define T : R
2 → R

2 by T (x) = Ax, where A =
[

7 2
−4 1

]
. Find a

basis B for R
2 with the property that the B-matrix for T is a diagonal matrix.

Solution From Example 2 in Section 5.3, we know that A = PDP −1, where

P =
[

1 1
−1 −2

]
and D =

[
5 0
0 3

]

The columns of P , call them b1 and b2, are eigenvectors of A. By Theorem 8, D is the
B-matrix for T when B = {b1, b2}. The mappings x �→Ax and u �→Du describe the
same linear transformation, relative to different bases.

Similarity of Matrix Representations

The proof of Theorem 8 did not use the information that D was diagonal. Hence, if
A is similar to a matrix C, with A = P CP −1, then C is the B-matrix for the transfor-
mation x �→Ax when the basis B is formed from the columns of P . The factorization
A = P CP −1 is shown in Fig. 5.

Conversely, if T : R
n → R

n is defined by T (x) = Ax, and if B is any basis for R
n,

then the B-matrix for T is similar to A. In fact, the calculations in (6) show that if P is the
matrix whose columns come from the vectors in B, then [T ]B = P −1AP . Thus, the set



April 12, 2005 11:27 L57-ch05 Sheet number 32 Page number 332 cyan magenta yellow black

332 CHAPTER 5 Eigenvalues and Eigenvectors

Multiplication
by A

Multiplication
by C

Multiplication
by P–1

[x]B

Multiplication
by P

[Ax]B

Axx

FIGURE 5 Similarity of two matrix representations:
A = PCP −1.

of all matrices similar to a matrix A coincides with the set of all matrix representations
of the transformation x �→ Ax.

EXAMPLE 4 Let A =
[

4 −9
4 8

]
, b1 =

[
3
2

]
, and b2 =

[
2
1

]
. The characteristic poly-

nomial of A is (λ + 2)2, but the eigenspace for the eigenvalue−2 is only one-dimensional;
so A is not diagonalizable. However, the basis B = {b1, b2} has the property that the
B-matrix for the transformation x �→ Ax is a triangular matrix called the Jordan form
of A.1 Find this B-matrix.

Solution If P = [b1 b2], then the B-matrix is P −1AP . Compute

AP =
[

4 −9
4 −8

][
3 2
2 1

]
=

[ −6 −1
−4 0

]

P −1AP =
[ −1 2

2 −3

][ −6 −1
−4 0

]
=

[ −2 1
0 −2

]

Notice that the eigenvalue of A is on the diagonal.

NU M E R I CA L NOT E

An efficient way to compute a B-matrix P −1AP is to compute AP and then to row
reduce the augmented matrix [ P AP ] to [ I P −1AP ]. A separate computation
of P −1 is unnecessary. See Exercise 12 in Section 2.2.

P R A C T I C E P R O B L E M S

1. Find T (a0 + a1t + a2t2), if T is the linear transformation from P2 to P2 whose matrix
relative to B = {1, t, t2} is

[T ]B =

 3 4 0

0 5 −1
1 −2 7




1Every square matrix A is similar to a matrix in Jordan form. The basis used to produce a Jordan form
consists of eigenvectors and so-called “generalized eigenvectors” of A. See Chapter 9 of Applied Linear
Algebra, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1988), by B. Noble and J. W. Daniel.
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2. Let A, B, and C be n×n matrices. The text has shown that if A is similar to B,
then B is similar to A. This property, together with the statements below, shows that
“similar to” is an equivalence relation. (Row equivalence is another example of an
equivalence relation.) Verify parts (a) and (b).

a. A is similar to A.

b. If A is similar to B and B is similar to C, then A is similar to C.

5.4 EXERCISES
1. Let B = {b1, b2, b3} and D = {d1, d2} be bases for vector

spaces V and W , respectively. Let T : V → W be a linear
transformation with the property that

T (b1) = 3d1 − 5d2, T (b2) = −d1 + 6d2, T (b3) = 4d2

Find the matrix for T relative to B and D.

2. Let D = {d1, d2} and B = {b1, b2} be bases for vector spaces
V and W , respectively. Let T : V → W be a linear transfor-
mation with the property that

T (d1) = 2b1 − 3b2, T (d2) = −4b1 + 5b2

Find the matrix for T relative to D and B.

3. Let E = {e1, e2, e3} be the standard basis for R
3,

B = {b1, b2, b3} be a basis for a vector space V , and
T : R

3 → V be a linear transformation with the property
that

T (x1, x2, x3) = (x3 − x2)b1 − (x1 + x3)b2 + (x1 − x2)b3

a. Compute T (e1), T (e2), and T (e3).

b. Compute [T (e1)]B, [T (e2)]B, and [T (e3)]B.

c. Find the matrix for T relative to E and B.

4. Let B = {b1, b2, b3} be a basis for a vector space V and
T : V → R

2 be a linear transformation with the property that

T (x1b1 + x2b2 + x3b3) =
[

2x1 − 4x2 + 5x3

−x2 + 3x3

]

Find the matrix for T relative to B and the standard basis for
R

2.

5. Let T : P2 → P3 be the transformation that maps a polyno-
mial p(t) into the polynomial (t + 5)p(t).

a. Find the image of p(t) = 2 − t + t2.

b. Show that T is a linear transformation.

c. Find the matrix for T relative to the bases {1, t, t2} and
{1, t, t2, t3}.

6. Let T : P2 → P4 be the transformation that maps a polyno-
mial p(t) into the polynomial p(t) + t2p(t).

a. Find the image of p(t) = 2 − t + t2.

b. Show that T is a linear transformation.

c. Find the matrix for T relative to the bases {1, t, t2} and
{1, t, t2, t3, t4}.

7. Assume the mapping T : P2 → P2 defined by

T (a0 + a1t + a2t
2) = 3a0 + (5a0 − 2a1)t + (4a1 + a2)t

2

is linear. Find the matrix representation of T relative to the
basis B = {1, t, t2}.

8. Let B = {b1, b2, b3} be a basis for a vector space V . Find
T (3b1 − 4b2) when T is a linear transformation from V to V

whose matrix relative to B is

[T ]B =

 0 −6 1

0 5 −1
1 −2 7




9. Define T : P2 → R
3 by T (p) =


 p(−1)

p(0)

p(1)


.

a. Find the image under T of p(t) = 5 + 3t .

b. Show that T is a linear transformation.

c. Find the matrix for T relative to the basis {1, t, t2} for P2

and the standard basis for R
3.
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10. Define T : P3 → R
4 by T (p) =




p(−3)

p(−1)

p(1)

p(3)


.

a. Show that T is a linear transformation.

b. Find the matrix for T relative to the basis {1, t, t2, t3} for
P3 and the standard basis for R

4.

In Exercises 11 and 12, find the B-matrix for the transformation
x �→Ax, when B = {b1, b2}.

11. A =
[

3 4
−1 −1

]
, b1 =

[
2

−1

]
, b2 =

[
1
2

]

12. A =
[ −1 4

−2 3

]
, b1 =

[
3
2

]
, b2 =

[ −1
1

]

In Exercises 13–16, define T : R
2 → R

2 by T (x) = Ax. Find a
basis B for R

2 with the property that [T ]B is diagonal.

13. A =
[

0 1
−3 4

]
14. A =

[
5 −3

−7 1

]

15. A =
[

4 −2
−1 3

]
16. A =

[
2 −6

−1 3

]

17. Let A =
[

1 1
−1 3

]
and B = {b1, b2}, for b1 =

[
1
1

]
,

b2 =
[

5
4

]
. Define T : R

2 → R
2 by T (x) = Ax.

a. Verify that b1 is an eigenvector of A but A is not diago-
nalizable.

b. Find the B-matrix for T .

18. Define T : R
3 → R

3 by T (x) = Ax, where A is a 3×3 matrix
with eigenvalues 5 and −2. Does there exist a basis B for R

3

such that the B-matrix for T is a diagonal matrix? Discuss.

Verify the statements in Exercises 19–24. The matrices are square.

19. If A is invertible and similar to B, then B is invertible and A−1

is similar to B−1. [Hint: P −1AP = B for some invertible P .
Explain why B is invertible. Then find an invertible Q such
that Q−1A−1Q = B−1.]

20. If A is similar to B, then A2 is similar to B2.

21. If B is similar to A and C is similar to A, then B is similar to
C.

22. If A is diagonalizable and B is similar to A, then B is also
diagonalizable.

23. If B = P −1AP and x is an eigenvector of A corresponding
to an eigenvalue λ, then P −1x is an eigenvector of B corre-
sponding also to λ.

24. If A and B are similar, then they have the same rank. [Hint:
Refer to Supplementary Exercises 13 and 14 for Chapter 4.]

25. The trace of a square matrix A is the sum of the diagonal
entries in A and is denoted by tr A. It can be verified that
tr(F G) = tr(GF ) for any two n×n matrices F and G. Show
that if A and B are similar, then tr A = tr B.

26. It can be shown that the trace of a matrix A equals the sum of
the eigenvalues of A. Verify this statement for the case when
A is diagonalizable.

27. Let V be R
n with a basis B = {b1, . . . , bn}; let W be R

n with
the standard basis, denoted here by E ; and consider the iden-
tity transformation I : R

n → R
n, where I (x) = x. Find the

matrix for I relative to B and E . What was this matrix called
in Section 4.4?

28. Let V be a vector space with a basis B = {b1, . . . , bn}, W be
the same space V with a basis C = {c1, . . . , cn}, and I be the
identity transformation I : V → W . Find the matrix for I rel-
ative to B and C. What was this matrix called in Section 4.7?

29. Let V be a vector space with a basis B = {b1, . . . , bn}. Find
the B-matrix for the identity transformation I : V → V .

[M] In Exercises 30 and 31, find the B-matrix for the transforma-
tion x �→ Ax when B = {b1, b2, b3}.

30. A =

 −14 4 −14

−33 9 −31
11 −4 11


, b1 =


 −1

−2
1


, b2 =


 −1

−1
1


,

b3 =

 −1

−2
0




31. A =

 −7 −48 −16

1 14 6
−3 −45 −19


, b1 =


 −3

1
−3


, b2 =


 −2

1
−3


,

b3 =

 3

−1
0




32. [M] Let T be the transformation whose standard matrix is
given below. Find a basis for R

4 with the property that [ T ]B
is diagonal.

A =




15 −66 −44 −33
0 13 21 −15
1 −15 −21 12
2 −18 −22 8



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S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Let p(t) = a0 + a1t + a2t2 and compute

[ T (p) ]B = [ T ]B [ p ]B =

 3 4 0

0 5 −1
1 −2 7




 a0

a1

a2


 =


 3a0 + 4a1

5a1 − a2

a0 − 2a1 + 7a2




So T (p) = (3a0 + 4a1) + (5a1 − a2)t + (a0 − 2a1 + 7a2)t2.
2. a. A = (I )−1AI , so A is similar to A.

b. By hypothesis, there exist invertible matrices P and Q with the property that
B = P −1AP and C = Q−1BQ. Substitute the formula for B into the formula for
C, and use a fact about the inverse of a product:

C = Q−1BQ = Q−1(P −1AP )Q = (PQ)−1A(PQ)

This equation has the proper form to show that A is similar to C.

5.5 COMPLEX EIGENVALUES
Since the characteristic equation of an n×n matrix involves a polynomial of degree n,
the equation always has exactly n roots, counting multiplicities, provided that possibly
complex roots are included. This section shows that if the characteristic equation of
a real matrix A has some complex roots, then these roots provide critical information
about A. The key is to let A act on the space C

n of n-tuples of complex numbers.1

Our interest in C
n does not arise from a desire to “generalize” the results of the

earlier chapters, although that would in fact open up significant new applications of
linear algebra.2 Rather, this study of complex eigenvalues is essential in order to uncover
“hidden” information about certain matrices with real entries that arise in a variety of
real-life problems. Such problems include many real dynamical systems that involve
periodic motion, vibration, or some type of rotation in space.

The matrix eigenvalue–eigenvector theory already developed for R
n applies equally

well to C
n. So a complex scalar λ satisfies det (A − λI) = 0 if and only if there is a

nonzero vector x in C
n such that Ax = λx. We call λ a (complex) eigenvalue and x a

(complex) eigenvector corresponding to λ.

EXAMPLE 1 If A =
[

0 −1
1 0

]
, then the linear transformation x �→ Ax on R

2 rotates

the plane counterclockwise through a quarter-turn. The action of A is periodic, since
after four quarter-turns, a vector is back where it started. Obviously, no nonzero vector
is mapped into a multiple of itself, so A has no eigenvectors in R

2 and hence no real

1Refer to Appendix B for a brief discussion of complex numbers. Matrix algebra and concepts about
real vector spaces carry over to the case with complex entries and scalars. In particular, A(cx + dy) =
cAx + dAy, for A an m×n matrix with complex entries, x, y in C

n, and c, d in C.
2A second course in linear algebra often discusses such topics. They are of particular importance in
electrical engineering.
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eigenvalues. In fact, the characteristic equation of A is

λ2 + 1 = 0

The only roots are complex: λ = i and λ = −i. However, if we permit A to act on C
2,

then [
0 −1
1 0

][
1

−i

]
=

[
i

1

]
= i

[
1

−i

]
[

0 −1
1 0

][
1
i

]
=

[ −i

1

]
= −i

[
1
i

]

Thus i and −i are eigenvalues, with

[
1

−i

]
and

[
1
i

]
as corresponding eigenvectors. (A

method for finding complex eigenvectors is discussed in Example 2.)

The main focus of this section will be on the matrix in the next example.

EXAMPLE 2 Let A =
[

.5 −.6

.75 1.1

]
. Find the eigenvalues of A, and find a basis for

each eigenspace.

Solution The characteristic equation of A is

0 = det

[
.5 − λ −.6

.75 1.1 − λ

]
= (.5 − λ)(1.1 − λ) − (−.6)(.75)

= λ2 − 1.6λ + 1

From the quadratic formula, λ = 1
2 [1.6 ±

√
(−1.6)2 − 4] = .8 ± .6i. For the eigenvalue

λ = .8 − .6i, construct

A − (.8 − .6i)I =
[

.5 −.6

.75 1.1

]
−

[
.8 − .6i 0

0 .8 − .6i

]

=
[ −.3 + .6i −.6

.75 .3 + .6i

]
(1)

Row reduction of the usual augmented matrix is quite unpleasant by hand because of the
complex arithmetic. However, here is a nice observation that really simplifies matters:
Since .8 − .6i is an eigenvalue, the system

(−.3 + .6i)x1 − .6x2 = 0

.75x1 + (.3 + .6i)x2 = 0
(2)

has a nontrivial solution (with x1 and x2 possibly complex numbers). Therefore, both
equations in (2) determine the same relationship between x1 and x2, and either equation
can be used to express one variable in terms of the other.3

3Another way to see this is to realize that the matrix in (1) is not invertible, so its rows are linearly de-
pendent (as vectors in C

2), and hence one row is a (complex) multiple of the other.
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The second equation in (2) leads to

.75x1 = (−.3 − .6i)x2

x1 = (−.4 − .8i)x2

Choose x2 = 5 to eliminate the decimals, and obtain x1 = −2 − 4i. A basis for the
eigenspace corresponding to λ = .8 − .6i is

v1 =
[ −2 − 4i

5

]

Analogous calculations for λ = .8 + .6i produce the eigenvector

v2 =
[ −2 + 4i

5

]

As a check on the work, compute

Av2 =
[

.5 −.6

.75 1.1

][ −2 + 4i

5

]
=

[ −4 + 2i

4 + 3i

]
= (.8 + .6i)v2

Surprisingly, the matrix A in Example 2 determines a transformation x �→Ax that
is essentially a rotation. This fact becomes evident when appropriate points are plotted.

EXAMPLE 3 One way to see how multiplication by the A in Example 2 affects points
is to plot an arbitrary initial point—say, x0 = (2, 0)—and then to plot successive images
of this point under repeated multiplications by A. That is, plot

x1 = Ax0 =
[

.5 −.6

.75 1.1

][
2
0

]
=

[
1.0
1.5

]

x2 = Ax1 =
[

.5 −.6

.75 1.1

][
1.0
1.5

]
=

[ −.4
2.4

]

x3 = Ax2, . . .

Figure 1 on page 338 shows x0 , . . . , x8 as larger dots. The smaller dots are the locations
of x9 , . . . , x100. The sequence lies along an elliptical orbit.

Of course, Fig. 1 does not explain why the rotation occurs. The secret to the rotation
is hidden in the real and imaginary parts of a complex eigenvector.

Real and Imaginary Parts of Vectors

The complex conjugate of a complex vector x in C
n is the vector x in C

n whose entries
are the complex conjugates of the entries in x. The real and imaginary parts of a
complex vector x are the vectors Re x and Im x formed from the real and imaginary parts
of the entries of x.
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x1

x2

x2x3

x4

x5

x6

x7
x8

x1

x0

FIGURE 1 Iterates of a point x0

under the action of a matrix with a
complex eigenvalue.

EXAMPLE 4 If x =

 3 − i

i

2 + 5i


 =


 3

0
2


 + i


 −1

1
5


, then

Re x =

 3

0
2


 , Im x =


 −1

1
5


 , and x =


 3

0
2


 − i


 −1

1
5


 =


 3 + i

−i

2 − 5i




If B is an m×n matrix with possibly complex entries, then B denotes the matrix
whose entries are the complex conjugates of the entries in B. Properties of conjugates
for complex numbers carry over to complex matrix algebra:

rx = r x, Bx = B x, BC = B C, and rB = r B

Eigenvalues and Eigenvectors of a Real Matrix That Acts
on n

Let A be an n×n matrix whose entries are real. Then Ax=Ax=Ax. If λ is an eigenvalue
of A and x is a corresponding eigenvector in C

n, then

Ax = Ax = λx = λx

Hence λ is also an eigenvalue of A, with x a corresponding eigenvector. This shows that
when A is real, its complex eigenvalues occur in conjugate pairs. (Here and elsewhere,
we use the term complex eigenvalue to refer to an eigenvalue λ = a + bi, with b �= 0.)

EXAMPLE 5 The eigenvalues of the real matrix in Example 2 are complex conjugates,
namely, .8 − .6i and .8 + .6i. The corresponding eigenvectors found in Example 2 are
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also conjugates:

v1 =
[ −2 − 4i

5

]
and v2 =

[ −2 + 4i

5

]
= v1

The next example provides the basic “building block” for all real 2×2 matrices with
complex eigenvalues.

EXAMPLE 6 If C =
[

a −b

b a

]
, where a and b are real and not both zero, then the

eigenvalues of C are λ = a ± bi. (See the Practice Problem at the end of this section.)
Also, if r = |λ| = √

a2 + b2, then

C = r

[
a/r −b/r

b/r a/r

]
=

[
r 0
0 r

][
cos ϕ − sin ϕ

sin ϕ cos ϕ

]

where ϕ is the angle between the positive x-axis and the ray from (0, 0) through (a, b).
See Fig. 2 and Appendix B. The angle ϕ is called the argument of λ = a + bi. Thus
the transformation x �→Cx may be viewed as the composition of a rotation through the
angle ϕ and a scaling by |λ| (see Fig. 3).

b

(a, b)

a

ϕ
r

Re z

Im z

FIGURE 2

x2

x1

Ax

x

ϕ

Scaling

Rotation

FIGURE 3 A rotation followed by a
scaling.

Finally, we are ready to uncover the rotation that is hidden within a real matrix
having a complex eigenvalue.

EXAMPLE 7 Let A =
[

.5 −.6

.75 1.1

]
, λ = .8 − .6i, and v1 =

[ −2 − 4i

5

]
, as in Exam-

ple 2. Also, let P be the 2×2 real matrix

P = [
Re v1 Im v1

] =
[ −2 −4

5 0

]

and let

C = P −1AP = 1

20

[
0 4

−5 −2

][
.5 −.6
.75 1.1

][ −2 −4
5 0

]
=

[
.8 −.6
.6 .8

]
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By Example 6, C is a pure rotation because |λ|2 = (.8)2 + (.6)2 = 1. From C = P −1AP ,
we obtain

A = P CP −1 = P

[
.8 −.6
.6 .8

]
P −1

Here is the rotation “inside” A! The matrix P provides a change of variable, say, x = P u.
The action of A amounts to a change of variable from x to u, followed by a rotation, and
then a return to the original variable. See Fig. 4. The rotation produces an ellipse, as in
Fig. 1, instead of a circle, because the coordinate system determined by the columns of
P is not rectangular and does not have equal unit lengths on the two axes.

P–1

A

P

Ax

Cuu

x

Change of
variable

Change of
variable

C
Rotation

FIGURE 4 Rotation due to a complex eigenvalue.

The next theorem shows that the calculations in Example 7 can be carried out for
any 2×2 real matrix A having a complex eigenvalue λ. The proof uses the fact that
if the entries in A are real, then A(Re x) = Re Ax and A(Im x) = Im Ax, and if x is an
eigenvector for a complex eigenvalue, then Re x and Im x are linearly independent in
R

2. (See Exercises 25 and 26.) The details are omitted.

THEOREM 9 Let A be a real 2×2 matrix with a complex eigenvalue λ = a − bi (b �= 0) and an
associated eigenvector v in C

2. Then

A = PCP −1, where P = [ Re v Im v ] and C =
[

a −b

b a

]

The phenomenon displayed in Example 7 persists in higher dimensions. For in-
stance, if A is a 3×3 matrix with a complex eigenvalue, then there is a plane in R

3

on which A acts as a rotation (possibly combined with scaling). Every vector in that
plane is rotated into another point on the same plane. We say that the plane is invariant
under A.

x1
x2

x3

x3

x2

w2

w8w1
w7

w0
x1

x0

FIGURE 5
Iterates of two points under the
action of a 3×3 matrix with a
complex eigenvalue.

EXAMPLE 8 The matrix A =

 .8 −.6 0

.6 .8 0
0 0 1.07


 has eigenvalues .8 ± .6i and 1.07.

Any vector w0 in the x1x2-plane (with third coordinate 0) is rotated by A into another
point in the plane. Any vector x0 not in the plane has its x3-coordinate multiplied by
1.07. The iterates of the points w0 = (2, 0, 0) and x0 = (2, 0, 1) under multiplication by
A are shown in Fig. 5.
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P R A C T I C E P R O B L E M

Show that if a and b are real, then the eigenvalues of A =
[

a −b

b a

]
are a ± bi, with

corresponding eigenvectors

[
1

−i

]
and

[
1
i

]
.

5.5 EXERCISES
Let each matrix in Exercises 1–6 act on C

2. Find the eigenvalues
and a basis for each eigenspace in C

2.

1.
[

1 −2
1 3

]
2.

[
5 −5
1 1

]

3.
[

1 5
−2 3

]
4.

[
5 −2
1 3

]

5.
[

0 1
−8 4

]
6.

[
4 3

−3 4

]

In Exercises 7–12, use Example 6 to list the eigenvalues of A.
In each case, the transformation x �→ Ax is the composition of a
rotation and a scaling. Give the angle ϕ of the rotation, where
−π < ϕ ≤ π , and give the scale factor r .

7.
[ √

3 −1
1

√
3

]
8.

[ √
3 3

−3
√

3

]

9.
[ −√

3/2 1/2
−1/2 −√

3/2

]
10.

[ −5 −5
5 −5

]

11.
[

.1 .1
−.1 .1

]
12.

[
0 .3

−.3 0

]

In Exercises 13–20, find an invertible matrix P and a matrix C

of the form

[
a −b

b a

]
such that the given matrix has the form

A = PCP −1. For Exercises 13–16, use information from Exer-
cises 1–4.

13.
[

1 −2
1 3

]
14.

[
5 −5
1 1

]

15.
[

1 5
−2 3

]
16.

[
5 −2
1 3

]

17.
[

1 −.8
4 −2.2

]
18.

[
1 −1
.4 .6

]

19.
[

1.52 −.7
.56 .4

]
20.

[ −1.64 −2.4
1.92 2.2

]

21. In Example 2, solve the first equation in (2) for x2 in terms of

x1, and from that produce the eigenvector y =
[

2
−1 + 2i

]
for

the matrix A. Show that this y is a (complex) multiple of the
vector v1 used in Example 2.

22. Let A be a complex (or real) n×n matrix, and let x in C
n be

an eigenvector corresponding to an eigenvalue λ in C. Show
that for each nonzero complex scalar µ, the vector µx is an
eigenvector of A.

Chapter 7 will focus on matrices A with the property that AT = A.
Exercises 23 and 24 show that every eigenvalue of such a matrix
is necessarily real.

23. Let A be an n×n real matrix with the property that AT = A,
let x be any vector in C

n, and let q = xTAx. The equalities
below show that q is a real number by verifying that q = q.
Give a reason for each step.

q = xT Ax = xT Ax = xTAx = (xT Ax)T = xT AT x = q

(a) (b) (c) (d) (e)

24. Let A be an n×n real matrix with the property that AT = A.
Show that if Ax = λx for some nonzero vector x in C

n, then,
in fact, λ is real and the real part of x is an eigenvector of A.
[Hint: Compute xTAx, and use Exercise 23. Also, examine
the real and imaginary parts of Ax.]

25. Let A be a real n×n matrix, and let x be a vector in C
n. Show

that Re(Ax) = A(Re x) and Im(Ax) = A(Im x).

26. Let A be a real 2×2 matrix with a complex eigenvalue
λ = a − bi (b �= 0) and an associated eigenvector v in C

2.

a. Show that A(Re v) = a Re v + b Im v and A(Im v) =
−b Re v + a Im v. [Hint: Write v = Re v + i Im v, and
compute Av.]

b. Verify that if P and C are given as in Theorem 9, then
AP = P C.
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[M] In Exercises 27 and 28, find a factorization of the given matrix
A in the form A = P CP −1, where C is a block-diagonal matrix
with 2×2 blocks of the form shown in Example 6. (For each con-
jugate pair of eigenvalues, use the real and imaginary parts of one
eigenvector in C

4 to create two columns of P .)

27.




.7 1.1 2.0 1.7
−2.0 −4.0 −8.6 −7.4

0 −.5 −1.0 −1.0
1.0 2.8 6.0 5.3




28.




−1.4 −2.0 −2.0 −2.0
−1.3 −.8 −.1 −.6

.3 −1.9 −1.6 −1.4
2.0 3.3 2.3 2.6




S O L U T I O N T O P R A C T I C E P R O B L E M

Remember that it is easy to test whether a vector is an eigenvector. There is no need to
examine the characteristic equation. Compute

Ax =
[

a −b

b a

][
1

−i

]
=

[
a + bi

b − ai

]
= (a + bi)

[
1

−i

]

Thus

[
1

−i

]
is an eigenvector corresponding to λ = a + bi. From the discussion in this

section,

[
1
i

]
must be an eigenvector corresponding to λ = a − bi.

5.6 DISCRETE DYNAMICAL SYSTEMS
Eigenvalues and eigenvectors provide the key to understanding the long-term behavior,
or evolution, of a dynamical system described by a difference equation xk+1 = Axk . Such
an equation was used to model population movement in Section 1.10, various Markov
chains in Section 4.9, and the spotted owl population in the introductory example for
this chapter. The vectors xk give information about the system as time (denoted by k)
passes. In the spotted owl example, for instance, xk listed the number of owls in three
age classes at time k.

The applications in this section focus on ecological problems because they are easier
to state and explain than, say, problems in physics or engineering. However, dynamical
systems arise in many scientific fields. For instance, standard undergraduate courses
in control systems discuss several aspects of dynamical systems. The modern state-
space design method in such courses relies heavily on matrix algebra.1 The steady-state
response of a control system is the engineering equivalent of what we call here the
“long-term behavior” of the dynamical system xk+1 = Axk .

Until Example 6, we assume that A is diagonalizable, with n linearly indepen-
dent eigenvectors, v1, . . . , vn, and corresponding eigenvalues, λ1, . . . , λn. For conve-

1See G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of Dynamic Systems, 4th
ed. (Upper Saddle River, NJ: Prentice-Hall, 2001). This undergraduate text has a nice introduction to
dynamic models (Chapter 2). State-space design is covered in Chapters 6 and 8.
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nience, assume the eigenvectors are arranged so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Since
{v1, . . . , vn} is a basis for R

n, any initial vector x0 can be written uniquely as

x0 = c1v1 + · · · + cnvn (1)

This eigenvector decomposition of x0 determines what happens to the sequence {xk}.
The next calculation generalizes the simple case examined in Example 5 of Section 5.2.
Since the vi are eigenvectors,

x1 = Ax0 = c1Av1 + · · · + cnAvn

= c1λ1v1 + · · · + cnλnvn

In general,

xk = c1(λ1)kv1 + · · · + cn(λn)kvn (k = 0, 1, 2, . . .) (2)

The examples that follow illustrate what can happen in (2) as k → ∞.

A Predator–Prey System

Deep in the redwood forests of California, dusky-footed wood rats provide up to 80% of
the diet for the spotted owl, the main predator of the wood rat. Example 1 uses a linear
dynamical system to model the physical system of the owls and the rats. (Admittedly,
the model is unrealistic in several respects, but it can provide a starting point for the
study of more complicated nonlinear models used by environmental scientists.)

EXAMPLE 1 Denote the owl and wood rat populations at time k by xk =
[

Ok

Rk

]
, where

k is the time in months, Ok is the number of owls in the region studied, and Rk is the
number of rats (measured in thousands). Suppose

Ok+1 = (.5)Ok + (.4)Rk

Rk+1 = −p ·Ok + (1.1)Rk

(3)

where p is a positive parameter to be specified. The (.5)Ok in the first equation says
that with no wood rats for food, only half of the owls will survive each month, while the
(1.1)Rk in the second equation says that with no owls as predators, the rat population
will grow by 10% per month. If rats are plentiful, the (.4)Rk will tend to make the
owl population rise, while the negative term −p · Ok measures the deaths of rats due to
predation by owls. (In fact, 1000p is the average number of rats eaten by one owl in one
month.) Determine the evolution of this system when the predation parameter p is .104.

Solution When p = .104, the eigenvalues of the coefficient matrix A for (3) turn out
to be λ1 = 1.02 and λ2 = .58. Corresponding eigenvectors are

v1 =
[

10
13

]
, v2 =

[
5
1

]
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An initial x0 can be written as x0 = c1v1 + c2v2. Then, for k ≥ 0,

xk = c1(1.02)kv1 + c2(.58)kv2

= c1(1.02)k

[
10
13

]
+ c2(.58)k

[
5
1

]

As k → ∞, (.58)k rapidly approaches zero. Assume c1 > 0. Then, for all sufficiently
large k, xk is approximately the same as c1(1.02)kv1, and we write

xk ≈ c1(1.02)k

[
10
13

]
(4)

The approximation in (4) improves as k increases, and so for large k,

xk+1 ≈ c1(1.02)k+1

[
10
13

]
= (1.02)c1(1.02)k

[
10
13

]
≈ 1.02xk (5)

The approximation in (5) says that eventually both entries of xk (the numbers of owls
and rats) grow by a factor of almost 1.02 each month, a 2% monthly growth rate. By
(4), xk is approximately a multiple of (10, 13), so the entries in xk are nearly in the same
ratio as 10 to 13. That is, for every 10 owls there are about 13 thousand rats.

Example 1 illustrates two general facts about a dynamical system xk+1 = Axk in
which A is n×n, its eigenvalues satisfy |λ1| ≥ 1 and 1 > |λj | for j = 2, . . . , n, and v1

is an eigenvector corresponding to λ1. If x0 is given by (1), with c1 �= 0, then for all
sufficiently large k,

xk+1 ≈ λ1xk (6)

and

xk ≈ c1(λ1)kv1 (7)

The approximations in (6) and (7) can be made as close as desired by taking k sufficiently
large. By (6), the xk eventually grow almost by a factor of λ1 each time, so λ1 determines
the eventual growth rate of the system. Also, by (7), the ratio of any two entries in xk

(for large k) is nearly the same as the ratio of the corresponding entries in v1. The case
when λ1 = 1 is illustrated by Example 5 in Section 5.2.

Graphical Description of Solutions

When A is 2×2, algebraic calculations can be supplemented by a geometric description
of a system’s evolution. We can view the equation xk+1 = Axk as a description of what
happens to an initial point x0 in R

2 as it is transformed repeatedly by the mapping
x �→Ax. The graph of x0, x1, . . . is called a trajectory of the dynamical system.

EXAMPLE 2 Plot several trajectories of the dynamical system xk+1 = Axk , when

A =
[

.80 0
0 .64

]
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Solution The eigenvalues of A are .8 and .64, with eigenvectors v1 =
[

1
0

]
and

v2 =
[

0
1

]
. If x0 = c1v1 + c2v2, then

xk = c1(.8)k

[
1
0

]
+ c2(.64)k

[
0
1

]

Of course, xk tends to 0 because (.8)k and (.64)k both approach 0 as k → ∞. But the way
xk goes toward 0 is interesting. Figure 1 shows the first few terms of several trajectories
that begin at points on the boundary of the box with corners at (±3, ±3). The points on
each trajectory are connected by a thin curve, to make the trajectory easier to see.

x2

x1

x1

x2

x0

x2

x1

x0

x2

x1

x0

3

3

FIGURE 1 The origin as an attractor.

In Example 2, the origin is called an attractor of the dynamical system because
all trajectories tend toward 0. This occurs whenever both eigenvalues are less than 1
in magnitude. The direction of greatest attraction is along the line through 0 and the
eigenvector v2 for the eigenvalue of smaller magnitude.

In the next example, both eigenvalues of A are larger than 1 in magnitude, and 0
is called a repellor of the dynamical system. All solutions of xk+1 = Axk except the
(constant) zero solution are unbounded and tend away from the origin.2

2The origin is the only possible attractor or repellor in a linear dynamical system, but there can be mul-
tiple attractors and repellors in a more general dynamical system for which the mapping xk �→ xk+1 is
not linear. In such a system, attractors and repellors are defined in terms of the eigenvalues of a special
matrix (with variable entries) called the Jacobian matrix of the system.
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EXAMPLE 3 Plot several typical solutions of the equation xk+1 = Axk , where

A =
[

1.44 0
0 1.2

]

Solution The eigenvalues of A are 1.44 and 1.2. If x0 =
[

c1

c2

]
, then

xk = c1(1.44)k

[
1
0

]
+ c2(1.2)k

[
0
1

]

Both terms grow in size, but the first term grows faster. So the direction of greatest
repulsion is the line through 0 and the eigenvector for the eigenvalue of larger magnitude.
Figure 2 shows several trajectories that begin at points quite close to 0.

x1

x2

FIGURE 2 The origin as a repellor.

In the next example, 0 is called a saddle point because the origin attracts solutions
from some directions and repels them in other directions. This occurs whenever one
eigenvalue is greater than 1 in magnitude and the other is less than 1 in magnitude. The
direction of greatest attraction is determined by an eigenvector for the eigenvalue of
smaller magnitude. The direction of greatest repulsion is determined by an eigenvector
for the eigenvalue of greater magnitude.

EXAMPLE 4 Plot several typical solutions of the equation yk+1 = Dyk , where

D =
[

2.0 0
0 0.5

]

(We write D and y here instead of A and x because this example will be used later.)
Show that a solution {yk} is unbounded if its initial point is not on the x2-axis.
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Solution The eigenvalues of D are 2 and .5. If y0 =
[

c1

c2

]
, then

yk = c12k

[
1
0

]
+ c2(.5)k

[
0
1

]
(8)

If y0 is on the x2-axis, then c1 = 0 and yk → 0 as k → ∞. But if y0 is not on the x2-axis,
then the first term in the sum for yk becomes arbitrarily large, and so {yk} is unbounded.
Figure 3 shows ten trajectories that begin near or on the x2-axis.

x3

x2

x1

x1

x2

x0

x3
x2

x1

x0

FIGURE 3 The origin as a saddle point.

Change of Variable

The preceding three examples involved diagonal matrices. To handle the nondiagonal
case, we return for a moment to the n×n case in which eigenvectors of A form a
basis {v1, . . . , vn} for R

n. Let P = [ v1 · · · vn ], and let D be the diagonal matrix
with the corresponding eigenvalues on the diagonal. Given a sequence {xk} satisfying
xk+1 = Axk , define a new sequence {yk} by

yk = P −1xk, or equivalently, xk = P yk

Substituting these relations into the equation xk+1 = Axk and using the fact that A =
PDP −1, we find that

P yk+1 = AP yk = (PDP −1)P yk = PDyk

Left-multiplying both sides by P −1, we obtain

yk+1 = Dyk
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If we write yk as y(k) and denote the entries in y(k) by y1(k), . . . , yn(k), then


y1(k + 1)

y2(k + 1)
...

yn(k + 1)


 =




λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn







y1(k)

y2(k)
...

yn(k)




The change of variable from xk to yk has decoupled the system of difference equations.
The evolution of y1(k), for example, is unaffected by what happens to y2(k), . . . , yn(k),
because y1(k + 1) = λ1 ·y1(k) for each k.

The equation xk = P yk says that yk is the coordinate vector of xk with respect to
the eigenvector basis {v1, . . . , vn}. We can decouple the system xk+1 = Axk by making
calculations in the new eigenvector coordinate system. When n = 2, this amounts to
using graph paper with axes in the directions of the two eigenvectors.

EXAMPLE 5 Show that the origin is a saddle point for solutions of xk+1 = Axk , where

A =
[

1.25 −.75
−.75 1.25

]

Find the directions of greatest attraction and greatest repulsion.

Solution Using standard techniques, we find that A has eigenvalues 2 and .5, with

corresponding eigenvectors v1 =
[

1
−1

]
and v2 =

[
1
1

]
, respectively. Since |2| > 1 and

|.5| < 1, the origin is a saddle point of the dynamical system. If x0 = c1v1 + c2v2, then

xk = c12kv1 + c2(.5)kv2 (9)

This equation looks just like (8) in Example 4, with v1 and v2 in place of the standard
basis.

On graph paper, draw axes through 0 and the eigenvectors v1 and v2. See Fig. 4.
Movement along these axes corresponds to movement along the standard axes in Fig. 3.
In Fig. 4, the direction of greatest repulsion is the line through 0 and the eigenvector v1

whose eigenvalue is greater than 1 in magnitude. If x0 is on this line, the c2 in (9) is zero
and xk moves quickly away from 0. The direction of greatest attraction is determined
by the eigenvector v2 whose eigenvalue is less than 1 in magnitude.

A number of trajectories are shown in Fig. 4. When this graph is viewed in terms
of the eigenvector axes, the picture “looks” essentially the same as the picture in Fig. 3.

Complex Eigenvalues

When a 2×2 matrix A has complex eigenvalues, A is not diagonalizable (when acting on
R

n), but the dynamical system xk+1 = Axk is easy to describe. Example 3 of Section 5.5
illustrated the case in which the eigenvalues have absolute value 1. The iterates of a
point x0 spiraled around the origin along an elliptical trajectory.
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x3

x2

v2

v1

x1

x

y

x0

x3

x2
x1

x0

FIGURE 4 The origin as a saddle point.

If A has two complex eigenvalues whose absolute value is greater than 1, then 0 is
a repellor and iterates of x0 will spiral outward around the origin. If the absolute values
of the complex eigenvalues are less than 1, the origin is an attractor and the iterates of
x0 spiral inward toward the origin, as in the following example.

EXAMPLE 6 It can be verified that the matrix

A =
[

.8 .5
−.1 1.0

]

has eigenvalues .9 ± .2i, with eigenvectors

[
1 ±2i

1

]
. Figure 5 (on page 350) shows three

trajectories of the system xk+1 = Axk , with initial vectors

[
0

2.5

]
,

[
3
0

]
, and

[
0

−2.5

]
.

Survival of the Spotted Owls

Recall from the chapter’s introductory example that the spotted owl population in the
Willow Creek area of California was modeled by a dynamical system xk+1 = Axk in
which the entries in xk = (jk, sk, ak) listed the numbers of females (at time k) in the
juvenile, subadult, and adult life stages, respectively, and A is the stage-matrix

A =

 0 0 .33

.18 0 0
0 .71 .94


 (10)
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x3 x2 x1

x3
x2

x1

x1

x2

x0

x0

x3

x2
x1

x0

FIGURE 5 Rotation associated with complex
eigenvalues.

MATLAB shows that the eigenvalues of A are approximately λ1 = .98, λ2 = −.02 + .21i,
and λ3 = −.02 − .21i. Observe that all three eigenvalues are less than 1 in magnitude,
because |λ2|2 = |λ3|2 = (−.02)2 + (.21)2 = .0445.

For the moment, let A act on the complex vector space C
3. Then, because A has

three distinct eigenvalues, the three corresponding eigenvectors are linearly independent
and form a basis for C

3. Denote the eigenvectors by v1, v2, and v3. Then the general
solution of xk+1 = Axk (using vectors in C

3) has the form

xk = c1(λ1)kv1 + c2(λ2)kv2 + c3(λ3)kv3 (11)

If x0 is a real initial vector, then x1 = Ax0 is real because A is real. Similarly, the equation
xk+1 = Axk shows that each xk on the left of (11) is real, even though it is expressed as
a sum of complex vectors. However, each term on the right of (11) is approaching the
zero vector, because the eigenvalues are all less than 1 in magnitude. Therefore the real
sequence xk approaches the zero vector, too. Sadly, this model predicts that the spotted
owls will eventually all perish.

Is there hope for the spotted owl? Recall from the introductory example that the
18% entry in the matrix A in (10) comes from the fact that although 60% of the juvenile
owls live long enough to leave the nest and search for a new home territory, only 30%
of that group survive the search and find a new home range. Search survival is strongly
influenced by the number of clear-cut areas in the forest, which make the search more
difficult and dangerous.

Some owl populations live in areas with few or no clear-cut areas. It may be that
a larger percentage of the juvenile owls there survive and find a new home range. Of
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course, the problem of the spotted owl is more complex than we have described, but the
final example provides a happy ending to the story.

EXAMPLE 7 Suppose the search survival rate of the juvenile owls is 50%, so the
(2, 1)-entry in the stage-matrix A in (10) is .3 instead of .18. What does the stage-matrix
model predict about this spotted owl population?

Solution Now the eigenvalues of A turn out to be approximately λ1 = 1.01, λ2 =
−.03 + .26i, and λ3 = −.03 − .26i. An eigenvector for λ1 is approximately v1 =
(10, 3, 31). Let v2 and v3 be (complex) eigenvectors for λ2 and λ3. In this case, equation
(11) becomes

xk = c1(1.01)kv1 + c2(−.03 + .26i)kv2 + c3(−.03 − .26i)kv3

As k → ∞, the second two vectors tend to zero. So xk becomes more and more like
the (real) vector c1(1.01)kv1. The approximations in (6) and (7), following Example
1, apply here. Also, it can be shown that the constant c1 in the initial decomposition
of x0 is positive when the entries in x0 are nonnegative. Thus the owl population will
grow slowly, with a long-term growth rate of 1.01. The eigenvector v1 describes the
eventual distribution of the owls by life stages: For every 31 adults, there will be about
10 juveniles and 3 subadults.

Further Reading

Franklin, G. F., J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems,
3rd ed. Reading, MA: Addison-Wesley, 1998.

Sandefur, James T. Discrete Dynamical Systems—Theory and Applications. Oxford:
Oxford University Press, 1990.

Tuchinsky, Philip. Management of a Buffalo Herd, UMAP Module 207. Lexington,
MA: COMAP, 1980.

P R A C T I C E P R O B L E M S

1. The matrix A below has eigenvalues 1, 2
3 , and 1

3 , with corresponding eigenvectors
v1, v2, and v3:

A = 1

9


 7 −2 0

−2 6 2
0 2 5


 , v1 =


 −2

2
1


 , v2 =


 2

1
2


 , v3 =


 1

2
−2




Find the general solution of the equation xk+1 = Axk if x0 =

 1

11
−2


.

2. What happens to the sequence {xk} in Practice Problem 1 as k → ∞?
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5.6 EXERCISES
1. Let A be a 2×2 matrix with eigenvalues 3 and 1/3 and corre-

sponding eigenvectors v1 =
[

1
1

]
and v2 =

[ −1
1

]
. Let {xk}

be a solution of the difference equation xk+1 = Axk , x0 =
[

9
1

]
.

a. Compute x1 = Ax0. [Hint: You do not need to know A

itself.]

b. Find a formula for xk involving k and the eigenvectors v1

and v2.

2. Suppose the eigenvalues of a 3×3 matrix A are 3, 4/5, 3/5,

with corresponding eigenvectors


 1

0
−3


,


 2

1
−5


,


 −3

−3
7


.

Let x0 =

 −2

−5
3


. Find the solution of the equation xk+1 = Axk

for the specified x0, and describe what happens as k → ∞.

In Exercises 3–6, assume that any initial vector x0 has an eigen-
vector decomposition such that the coefficient c1 in equation (1)
of this section is positive.3

3. Determine the evolution of the dynamical system in Exam-
ple 1 when the predation parameter p is .2 in (3). (Give a
formula for xk.) Does the owl population grow or decline?
What about the wood rat population?

4. Determine the evolution of the dynamical system in Example
1 when the predation parameter p is .125. (Give a formula
for xk .) As time passes, what happens to the sizes of the owl
and wood rat populations? The system tends toward what is
sometimes called an unstable equilibrium. What do you think
might happen to the system if some aspect of the model (such
as birth rates or the predation rate) were to change slightly?

5. In old-growth forests of Douglas fir, the spotted owl dines
mainly on flying squirrels. Suppose the predator–prey matrix

for these two populations is A =
[

.4 .3
−p 1.2

]
. Show that if

the predation parameter p is .325, both populations grow. Es-
timate the long-term growth rate and the eventual ratio of owls
to flying squirrels.

3One of the limitations of the model in Example 1 is that there always
exist initial population vectors x0 with positive entries such that the
coefficient c1 is negative. The approximation (7) is still valid, but the
entries in xk eventually become negative.

6. Show that if the predation parameter p in Exercise 5 is .5, both
the owls and the squirrels eventually perish. Find a value of p

for which both populations of owls and squirrels tend toward
constant levels. What are the relative population sizes in this
case?

7. Let A have the properties described in Exercise 1.

a. Is the origin an attractor, a repellor, or a saddle point of the
dynamical system xk+1 = Axk?

b. Find the directions of greatest attraction and/or repulsion
for this dynamical system.

c. Make a graphical description of the system, showing the
directions of greatest attraction or repulsion. Include a
rough sketch of several typical trajectories (without com-
puting specific points).

8. Determine the nature of the origin (attractor, repellor, saddle
point) for the dynamical system xk+1 = Axk if A has the prop-
erties described in Exercise 2. Find the directions of greatest
attraction or repulsion.

In Exercises 9–14, classify the origin as an attractor, repellor, or
saddle point of the dynamical system xk+1 = Axk . Find the direc-
tions of greatest attraction and/or repulsion.

9. A =
[

1.7 −.3
−1.2 .8

]
10. A =

[
.3 .4

−.3 1.1

]

11. A =
[

.4 .5
−.4 1.3

]
12. A =

[
.5 .6

−.3 1.4

]

13. A =
[

.8 .3
−.4 1.5

]
14. A =

[
1.7 .6
−.4 .7

]

15. Let A =

 .4 0 .2

.3 .8 .3

.3 .2 .5


. The vector v1 =


 .1

.6

.3


 is an

eigenvector for A, and two eigenvalues are .5 and .2. Con-
struct the solution of the dynamical system xk+1 = Axk that
satisfies x0 = (0, .3, .7). What happens to xk as k → ∞?

16. [M] Produce the general solution of the dynamical system
xk+1 = Axk when A is the stochastic matrix for the Hertz Rent
A Car model in Exercise 16 of Section 4.9.

17. Construct a stage-matrix model for an animal species that has
two life stages: juvenile (up to 1 year old) and adult. Sup-
pose the female adults give birth each year to an average of
1.6 female juveniles. Each year, 30% of the juveniles survive
to become adults and 80% of the adults survive. For k ≥ 0,
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let xk = (jk, ak), where the entries in xk are the numbers of
female juveniles and female adults in year k.

a. Construct the stage-matrix A such that xk+1 = Axk for
k ≥ 0.

b. Show that the population is growing, compute the eventual
growth rate of the population, and give the eventual ratio
of juveniles to adults.

c. [M] Suppose that initially there are 15 juveniles and 10
adults in the population. Produce four graphs that show
how the population changes over eight years: (a) the num-
ber of juveniles, (b) the number of adults, (c) the total
population, and (d) the ratio of juveniles to adults (each
year). When does the ratio in (d) seem to stabilize? Include
a listing of the program or keystrokes used to produce the
graphs for (c) and (d).

18. A herd of American buffalo (bison) can be modeled by a stage
matrix similar to that for the spotted owls. The females can
be divided into calves (up to 1 year old), yearlings (1 to 2
years), and adults. Suppose an average of 42 female calves
are born each year per 100 adult females. (Only adults pro-
duce offspring.) Each year, about 60% of the calves survive,
75% of the yearlings survive, and 95% of the adults survive.
For k ≥ 0, let xk = (ck, yk, ak), where the entries in xk are the
numbers of females in each life stage at year k.

a. Construct the stage-matrix A for the buffalo herd, such
that xk+1 = Axk for k ≥ 0.

b. [M] Show that the buffalo herd is growing, determine the
expected growth rate after many years, and give the ex-
pected numbers of calves and yearlings present per 100
adults.

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. The first step is to write x0 as a linear combination of v1, v2, v3. Row reduction of
[ v1 v2 v3 x0 ] produces the weights c1 = 2, c2 = 1, c3 = 3, so that

x0 = 2v1 + 1v2 + 3v3

Since the eigenvalues are 1, 2
3 , and 1

3 , the general solution is

xk = 2 · 1kv1 + 1 ·
(

2

3

)k

v2 + 3 ·
(

1

3

)k

v3

= 2


 −2

2
1


 +

(
2

3

)k


 2

1
2


 + 3 ·

(
1

3

)k


 1

2
−2


 (12)

2. As k → ∞, the second and third terms in (12) tend to the zero vector, and

xk = 2v1 +
(

2

3

)k

v2 + 3

(
1

3

)k

v3 → 2v1 =

 −4

4
2




5.7 APPLICATIONS TO DIFFERENTIAL EQUATIONS
This section describes continuous analogues of the difference equations studied in Sec-
tion 5.6. In many applied problems, several quantities are varying continuously in time,
and they are related by a system of differential equations:
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x ′
1 = a11x1 + · · · + a1nxn

x ′
2 = a21x1 + · · · + a2nxn

...

x ′
n = an1x1 + · · · + annxn

Here x1, . . . , xn are differentiable functions of t , with derivatives x ′
1, . . . , x ′

n, and the aij

are constants. The crucial feature of this system is that it is linear. To see this, write the
system as a matrix differential equation

x′ = Ax (1)

where

x(t) =



x1(t)
...

xn(t)


 , x′(t) =




x ′
1(t)
...

x ′
n(t)


 , and A =




a11 · · · a1n

...
...

an1 · · · ann




A solution of (1) is a vector-valued function that satisfies (1) for all t in some interval
of real numbers, such as t ≥ 0.

Equation (1) is linear because both differentiation of functions and multiplication of
vectors by a matrix are linear transformations. Thus, if u and v are solutions of x′ = Ax,
then cu + dv is also a solution, because

(cu + dv)′ = cu′ + dv′

= cAu + dAv = A(cu + dv)

(Engineers call this property superposition of solutions.) Also, the identically zero
function is a (trivial) solution of (1). In the terminology of Chapter 4, the set of all
solutions of (1) is a subspace of the set of all continuous functions with values in R

n.
Standard texts on differential equations show that there always exists what is called

a fundamental set of solutions to (1). If A is n×n, then there are n linearly independent
functions in a fundamental set, and each solution of (1) is a unique linear combination
of these n functions. That is, a fundamental set of solutions is a basis for the set of
all solutions of (1), and the solution set is an n-dimensional vector space of functions.
If a vector x0 is specified, then the initial value problem is to construct the (unique)
function x such that x′ = Ax and x(0) = x0.

When A is a diagonal matrix, the solutions of (1) can be produced by elementary
calculus. For instance, consider[

x ′
1(t)

x ′
2(t)

]
=

[
3 0
0 −5

][
x1(t)

x2(t)

]
(2)

that is,

x ′
1(t) = 3x1(t)

x ′
2(t) = −5x2(t)

(3)

The system (2) is said to be decoupled because each derivative of a function depends
only on the function itself, not on some combination or “coupling” of both x1(t) and
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x2(t). From calculus, the solutions of (3) are x1(t) = c1e3t and x2(t) = c2e−5t , for any
constants c1 and c2. Each solution of (2) can be written in the form[

x1(t)

x2(t)

]
=

[
c1e3t

c2e−5t

]
= c1

[
1
0

]
e3t + c2

[
0
1

]
e−5t

This example suggests that for the general equation x′ = Ax, a solution might be a
linear combination of functions of the form

x(t) = veλt (4)

for some scalar λ and some fixed nonzero vector v. [If v = 0, the function x(t) is
identically zero and hence satisfies x′ = Ax.] Observe that

x′(t) = λveλt By calculus, since v is a constant vector

Ax(t) = Aveλt Multiplying both sides of (4) by A

Since eλt is never zero, x′(t) will equal Ax(t) if and only if λv = Av, that is, if and only
if λ is an eigenvalue of A and v is a corresponding eigenvector. Thus each eigenvalue–
eigenvector pair provides a solution (4) of x′ = Ax. Such solutions are sometimes called
eigenfunctions of the differential equation. Eigenfunctions provide the key to solving
systems of differential equations.

R1

R2

C1

C2

+

+

FIGURE 1

EXAMPLE 1 The circuit in Fig. 1 can be described by the differential equation[
v′

1(t)

v′
2(t)

]
=

[ −(1/R1 + 1/R2)/C1 1/(R2C1)

1/(R2C2) −1/(R2C2)

][
v1(t)

v2(t)

]

where v1(t) and v2(t) are the voltages across the two capacitors at time t . Suppose
resistor R1 is 1 ohm, R2 is 2 ohms, capacitor C1 is 1 farad, and C2 is .5 farad, and
suppose there is an initial charge of 5 volts on capacitor C1 and 4 volts on capacitor C2.
Find formulas for v1(t) and v2(t) that describe how the voltages change over time.

Solution For the data given, set A =
[ −1.5 .5

1 −1

]
, x =

[
v1

v2

]
, and x0 =

[
5
4

]
. The

vector x0 lists the initial values of x. From A, we obtain eigenvalues λ1 = −.5 and
λ2 = −2, with corresponding eigenvectors

v1 =
[

1
2

]
and v2 =

[ −1
1

]

The eigenfunctions x1(t) = v1eλ1t and x2(t) = v2eλ2t both satisfy x′ = Ax, and so does
any linear combination of x1 and x2. Set

x(t) = c1v1eλ1t + c2v2eλ2t = c1

[
1
2

]
e−.5t + c2

[ −1
1

]
e−2t

and note that x(0) = c1v1 + c2v2. Since v1 and v2 are obviously linearly independent
and hence span R

2, c1 and c2 can be found to make x(0) equal to x0. In fact, the equation
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c1

[
1
2

]
+ c2

[ −1
1

]
=

[
5
4

]

✲ ✲ ✲

v1 v2 x0

leads easily to c1 = 3 and c2 = −2. Thus the desired solution of the differential equation
x′ = Ax is

x(t) = 3

[
1
2

]
e−.5t − 2

[ −1
1

]
e−2t

or [
v1(t)

v2(t)

]
=

[
3e−.5t + 2e−2t

6e−.5t − 2e−2t

]

Figure 2 shows the graph, or trajectory, of x(t), for t ≥ 0, along with trajectories for
some other initial points. The trajectories of the two eigenfunctions x1 and x2 lie in the
eigenspaces of A.

The functions x1 and x2 both decay to zero as t → ∞, but the values of x2 decay faster
because its exponent is more negative. The entries in the corresponding eigenvector v2

show that the voltages across the capacitors will decay to zero as rapidly as possible if
the initial voltages are equal in magnitude but opposite in sign.

5

4 x0

v2

v1

FIGURE 2 The origin as an attractor.

In Fig. 2, the origin is called an attractor, or sink, of the dynamical system because
all trajectories are drawn into the origin. The direction of greatest attraction is along
the trajectory of the eigenfunction x2 (along the line through 0 and v2) corresponding
to the more negative eigenvalue, λ = −2. Trajectories that begin at points not on this
line become asymptotic to the line through 0 and v1 because their components in the v2

direction decay so rapidly.
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If the eigenvalues in Example 1 were positive instead of negative, the corresponding
trajectories would be similar in shape, but the trajectories would be traversed away from
the origin. In such a case, the origin is called a repellor, or source, of the dynamical
system, and the direction of greatest repulsion is the line containing the trajectory of the
eigenfunction corresponding to the more positive eigenvalue.

EXAMPLE 2 Suppose a particle is moving in a planar force field and its position vector
x satisfies x′ = Ax and x(0) = x0, where

A =
[

4 −5
−2 1

]
, x0 =

[
2.9
2.6

]

Solve this initial value problem for t ≥ 0, and sketch the trajectory of the particle.

Solution The eigenvalues of A turn out to be λ1 = 6 and λ2 = −1, with corresponding
eigenvectors v1 = (−5, 2) and v2 = (1, 1). For any constants c1 and c2, the function

x(t) = c1v1eλ1t + c2v2eλ2t = c1

[ −5
2

]
e6t + c2

[
1
1

]
e−t

is a solution of Ax′ = x. We want c1 and c2 to satisfy x(0) = x0, that is,

c1

[ −5
2

]
+ c2

[
1
1

]
=

[
2.9
2.6

]
or

[ −5 1
2 1

][
c1

c2

]
=

[
2.9
2.6

]

Calculations show that c1 = −3/70 and c2 = 188/70, and so the desired function is

x(t) = −3

70

[ −5
2

]
e6t +

188

70

[
1
1

]
e−t

Trajectories of x and other solutions are shown in Fig. 3.

x0

v2
v1

FIGURE 3 The origin as a saddle point.

In Fig. 3, the origin is called a saddle point of the dynamical system because
some trajectories approach the origin at first and then change direction and move away
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from the origin. A saddle point arises whenever the matrix A has both positive and
negative eigenvalues. The direction of greatest repulsion is the line through v1 and 0,
corresponding to the positive eigenvalue. The direction of greatest attraction is the line
through v2 and 0, corresponding to the negative eigenvalue.

Decoupling a Dynamical System

The following discussion shows that the method of Examples 1 and 2 produces a funda-
mental set of solutions for any dynamical system described by x′ = Ax when A is n×n

and has n linearly independent eigenvectors, that is, when A is diagonalizable. Suppose
the eigenfunctions for A are

v1eλ1t , . . . , vneλnt

with v1, . . . , vn linearly independent eigenvectors. Let P = [ v1 · · · vn ], and let D

be the diagonal matrix with entries λ1, . . . , λn, so that A = PDP −1. Now make a change
of variable, defining a new function y by

y(t) = P −1x(t), or equivalently, x(t) = P y(t)

The equation x(t) = P y(t) says that y(t) is the coordinate vector of x(t) relative to the
eigenvector basis. Substitution of P y for x in the equation x′ = Ax gives

d

dt
(P y) = A(P y) = (PDP −1)P y = PDy (5)

Since P is a constant matrix, the left side of (5) is P y′. Left-multiply both sides of (5)
by P −1 and obtain y′ = Dy, or



y ′
1(t)

y ′
2(t)
...

y ′
n(t)


 =




λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn







y1(t)

y2(t)
...

yn(t)




The change of variable from x to y has decoupled the system of differential equations,
because the derivative of each scalar function yk depends only on yk . (Review the
analogous change of variables in Section 5.6.) Since y ′

1 = λ1y1, we have y1(t) = c1eλ1t ,
with similar formulas for y2, . . . , yn. Thus

y(t) =



c1eλ1t

...

cneλnt


 , where




c1
...

cn


= y(0) = P −1x(0) = P −1x0

To obtain the general solution x of the original system, compute

x(t) = P y(t) = [ v1 · · · vn ] y(t)

= c1v1eλ1t + · · · + cnvneλnt

This is the eigenfunction expansion constructed as in Example 1.
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Complex Eigenvalues

In the next example, a real matrix A has a pair of complex eigenvalues λ and λ, with
associated complex eigenvectors v and v. (Recall from Section 5.5 that for a real matrix,
complex eigenvalues and associated eigenvectors come in conjugate pairs.) So two
solutions of x′ = Ax are

x1(t) = veλt and x2(t) = veλt (6)

It can be shown that x2(t) = x1(t) by using a power series representation for the complex
exponential function. Although the complex eigenfunctions x1 and x2 are convenient
for some calculations (particularly in electrical engineering), real functions are more
appropriate for many purposes. Fortunately, the real and imaginary parts of x1 are (real)
solutions of x′ = Ax, because they are linear combinations of the solutions in (6):

Re(veλt ) = 1

2
[ x1(t) + x1(t) ] , Im(veλt ) = 1

2i
[ x1(t) − x1(t) ]

To understand the nature of Re(veλt ), recall from calculus that for any number x,
the exponential function ex can be computed from the power series:

ex = 1 + x +
1

2!x
2 + · · · +

1

n!x
n + · · ·

This series can be used to define eλt when λ is complex:

eλt = 1 + (λt) +
1

2! (λt)2 + · · · +
1

n! (λt)n + · · ·
By writing λ = a + bi (with a and b real), and using similar power series for the cosine
and sine functions, one can show that

e(a+bi)t = eat · eibt = eat (cos bt + i sin bt) (7)

Hence

veλt = (Re v + i Im v) · eat (cos bt + i sin bt)

= [ (Re v) cos bt − (Im v) sin bt ] eat

+ i [ (Re v) sin bt + (Im v) cos bt ] eat

So two real solutions of x′ = Ax are

y1(t) = Re x1(t) = [ (Re v) cos bt − (Im v) sin bt ] eat

y2(t) = Im x1(t) = [ (Re v) sin bt + (Im v) cos bt ] eat

It can be shown that y1 and y2 are linearly independent functions (when b �= 0).1

1Since x2(t) is the complex conjugate of x1(t), the real and imaginary parts of x2(t) are y1(t) and
−y2(t), respectively. Thus one can use either x1(t) or x2(t), but not both, to produce two real linearly
independent solutions of x′ = Ax.
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EXAMPLE 3 The circuit in Fig. 4 can be described by the equation[
i ′
L

v′
C

]
=

[ −R2/L −1/L

1/C −1/(R1C)

][
iL
vC

]

where iL is the current passing through the inductor L and vC is the voltage drop across
the capacitor C. Suppose R1 is 5 ohms, R2 is .8 ohm, C is .1 farad, and L is .4 henry.
Find formulas for iL and vC , if the initial current through the inductor is 3 amperes and
the initial voltage across the capacitor is 3 volts.

R1

R2

C

L

+

iL

FIGURE 4 Solution For the data given, A =
[ −2 −2.5

10 −2

]
and x0 =

[
3
3

]
. The method of Section

5.5 produces the eigenvalue λ = −2 + 5i and the corresponding eigenvector v1 =
[

i

2

]
.

The complex solutions of x′ = Ax are complex linear combinations of

x1(t) =
[

i

2

]
e(−2+5i)t and x2(t) =

[ −i

2

]
e(−2−5i)t

Next, use (7) to write

x1(t) =
[

i

2

]
e−2t (cos 5t + i sin 5t)

The real and imaginary parts of x1 provide real solutions:

y1(t) =
[ − sin 5t

2 cos 5t

]
e−2t , y2(t) =

[
cos 5t

2 sin 5t

]
e−2t

Since y1 and y2 are linearly independent functions, they form a basis for the two-
dimensional real vector space of solutions of x′ = Ax. Thus the general solution is

x(t) = c1

[ − sin 5t

2 cos 5t

]
e−2t + c2

[
cos 5t

2 sin 5t

]
e−2t

To satisfy x(0) =
[

3
3

]
, we need c1

[
0
2

]
+ c2

[
1
0

]
=

[
3
3

]
, which leads to c1 = 1.5 and

c2 = 3. Thus

x(t) = 1.5

[ − sin 5t

2 cos 5t

]
e−2t + 3

[
cos 5t

2 sin 5t

]
e−2t

or [
iL(t)

vC(t)

]
=

[ −1.5 sin 5t + 3 cos 5t

3 cos 5t + 6 sin 5t

]
e−2t

See Fig. 5.

x0

FIGURE 5
The origin as a spiral point.

In Fig. 5, the origin is called a spiral point of the dynamical system. The rotation
is caused by the sine and cosine functions that arise from a complex eigenvalue. The
trajectories spiral inward because the factor e−2t tends to zero. Recall that −2 is the real
part of the eigenvalue in Example 3. When A has a complex eigenvalue with positive
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real part, the trajectories spiral outward. If the real part of the eigenvalue is zero, the
trajectories form ellipses around the origin.

P R A C T I C E P R O B L E M S

A real 3×3 matrix A has eigenvalues −.5, .2 + .3i, and .2 − .3i, with corresponding
eigenvectors

v1 =

 1

−2
1


 , v2 =


 1 + 2i

4i

2


 , and v3 =


 1 − 2i

−4i

2




1. Is A diagonalizable as A = PDP −1, using complex matrices?

2. Write the general solution of x′ = Ax using complex eigenfunctions, and then find
the general real solution.

3. Describe the shapes of typical trajectories.

5.7 EXERCISES
1. A particle moving in a planar force field has a position vector

x that satisfies x′ = Ax. The 2×2 matrix A has eigenvalues

4 and 2, with corresponding eigenvectors v1 =
[ −3

1

]
and

v2 =
[ −1

1

]
. Find the position of the particle at time t , as-

suming that x(0) =
[ −6

1

]
.

2. Let A be a 2×2 matrix with eigenvalues −3 and −1 and cor-

responding eigenvectors v1 =
[ −1

1

]
and v2 =

[
1
1

]
. Let x(t)

be the position of a particle at time t . Solve the initial value

problem x′ = Ax, x(0) =
[

2
3

]
.

In Exercises 3–6, solve the initial value problem x′(t) = Ax(t)

for t ≥ 0, with x(0) = (3, 2). Classify the nature of the origin
as an attractor, repellor, or saddle point of the dynamical system
described by x′ = Ax. Find the directions of greatest attraction
and/or repulsion. When the origin is a saddle point, sketch typical
trajectories.

3. A =
[

2 3
−1 −2

]
4. A =

[ −2 −5
1 4

]

5. A =
[

7 −1
3 3

]
6. A =

[
1 −2
3 −4

]

In Exercises 7 and 8, make a change of variable that decouples the
equation x′ = Ax. Write the equation x(t) = P y(t) and show the
calculation that leads to the uncoupled system y′ = Dy, specifying
P and D.

7. A as in Exercise 5 8. A as in Exercise 6

In Exercises 9–18, construct the general solution of x′ = Ax in-
volving complex eigenfunctions and then obtain the general real
solution. Describe the shapes of typical trajectories.

9. A =
[ −3 2

−1 −1

]
10. A =

[
3 1

−2 1

]

11. A =
[ −3 −9

2 3

]
12. A =

[ −7 10
−4 5

]

13. A =
[

4 −3
6 −2

]
14. A =

[ −2 1
−8 2

]

15. [M] A =

 −8 −12 −6

2 1 2
7 12 5




16. [M] A =

 −6 −11 16

2 5 −4
−4 −5 10




17. [M] A =

 30 64 23

−11 −23 −9
6 15 4



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18. [M] A =

 53 −30 −2

90 −52 −3
20 −10 2




19. [M] Find formulas for the voltages v1 and v2 (as functions of
time t) for the circuit in Example 1, assuming that R1 = 1/5
ohm, R2 = 1/3 ohm, C1 = 4 farads, C2 = 3 farads, and the
initial charge on each capacitor is 4 volts.

20. [M] Find formulas for the voltages v1 and v2 for the circuit
in Example 1, assuming that R1 = 1/15 ohm, R2 = 1/3 ohm,
C1 = 9 farads, C2 = 2 farads, and the initial charge on each
capacitor is 3 volts.

21. [M] Find formulas for the current iL and the voltage vC for the
circuit in Example 3, assuming that R1 = 1 ohm, R2 = .125
ohm, C = .2 farad, L = .125 henry, the initial current is 0 amp,
and the initial voltage is 15 volts.

22. [M] The circuit in the figure is described by the equation[
i ′
L

v′
C

]
=

[
0 1/L

−1/C −1/(RC)

][
iL

vC

]

where iL is the current through the inductor L and vC is the
voltage drop across the capacitor C. Find formulas for iL

and vC when R = .5 ohm, C = 2.5 farads, L = .5 henry, the
initial current is 0 amp, and the initial voltage is 12 volts.

R

C

L

+

S O L U T I O N S T O P R A C T I C E P R O B L E M S

1. Yes, the 3×3 matrix is diagonalizable because it has three distinct eigenvalues.
Theorem 2 in Section 5.1 and Theorem 5 in Section 5.3 are valid when complex
scalars are used. (The proofs are essentially the same as for real scalars.)

2. The general solution has the form

x(t) = c1


 1

−2
1


e−.5t + c2


 1 + 2i

4i

2


e(.2+.3i)t + c3


 1 − 2i

−4i

2


e(.2−.3i)t

The scalars c1, c2, c3 here can be any complex numbers. The first term in x(t) is real.
Two more real solutions can be produced using the real and imaginary parts of the
second term in x(t): 

 1 + 2i

4i

2


e.2t (cos .3t + i sin .3t)

The general real solution has the following form, with real scalars c1, c2, c3:

c1


 1

−2
1


e−.5t + c2


 cos .3t − 2 sin .3t

−4 sin .3t

2 cos .3t


e.2t + c3


 sin .3t + 2 cos .3t

4 cos .3t

2 sin .3t


e.2t

3. Any solution with c2 = c3 = 0 is attracted to the origin because of the negative ex-
ponential factor. Other solutions have components that grow without bound, and the
trajectories spiral outward.



April 12, 2005 11:27 L57-ch05 Sheet number 63 Page number 363 cyan magenta yellow black

5.8 Iterative Estimates for Eigenvalues 363

Be careful not to mistake this problem for one in Section 5.6. There the condition
for attraction toward 0 was that an eigenvalue be less than 1 in magnitude, to make
|λ|k → 0. Here the real part of the eigenvalue must be negative, to make eλt → 0.

5.8 ITERATIVE ESTIMATES FOR EIGENVALUES
In scientific applications of linear algebra, eigenvalues are seldom known precisely.
Fortunately, a close numerical approximation is usually quite satisfactory. In fact, some
applications require only a rough approximation to the largest eigenvalue. The first
algorithm described below can work well for this case. Also, it provides a foundation
for a more powerful method that can give fast estimates for other eigenvalues as well.

The Power Method

The power method applies to an n×n matrix A with a strictly dominant eigenvalue λ1,
which means that λ1 must be larger in absolute value than all the other eigenvalues. In
this case, the power method produces a scalar sequence that approaches λ1 and a vector
sequence that approaches a corresponding eigenvector. The background for the method
rests on the eigenvector decomposition used at the beginning of Section 5.6.

Assume for simplicity that A is diagonalizable and R
n has a basis of eigenvectors

v1, . . . , vn, arranged so their corresponding eigenvalues λ1, . . . , λn decrease in size, with
the strictly dominant eigenvalue first. That is,

|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|
Strictly larger✲

(1)

As we saw in (2) of Section 5.6, if x in R
n is written as x = c1v1 + · · · + cnvn, then

Akx = c1(λ1)kv1 + c2(λ2)kv2 + · · · + cn(λn)kvn (k = 1, 2, . . .)

Assume c1 �= 0. Then, dividing by (λ1)k ,

1

(λ1)k
Akx = c1v1 + c2

(
λ2

λ1

)k

v2 + · · · + cn

(
λn

λ1

)k

vn (k = 1, 2, . . .) (2)

From (1), the fractions λ2/λ1, . . . , λn/λ1 are all less than 1 in magnitude and so their
powers go to zero. Hence

(λ1)−kAkx → c1v1 as k → ∞ (3)

Thus, for large k, a scalar multiple of Akx determines almost the same direction as the
eigenvector c1v1. Since positive scalar multiples do not change the direction of a vector,
Akx itself points almost in the same direction as v1 or −v1, provided c1 �= 0.

EXAMPLE 1 Let A =
[

1.8 .8
.2 1.2

]
, v1 =

[
4
1

]
, and x =

[ −.5
1

]
. Then A has eigen-

values 2 and 1, and the eigenspace for λ1 = 2 is the line through 0 and v1. For



April 12, 2005 11:27 L57-ch05 Sheet number 64 Page number 364 cyan magenta yellow black

364 CHAPTER 5 Eigenvalues and Eigenvectors

k = 0, . . . , 8, compute Akx and construct the line through 0 and Akx. What happens as
k increases?

Solution The first three calculations are

Ax =
[

1.8 .8
.2 1.2

][ −.5
1

]
=

[ −.1
1.1

]

A2x = A(Ax) =
[

1.8 .8
.2 1.2

][ −.1
1.1

]
=

[
.7

1.3

]

A3x = A(A2x) =
[

1.8 .8
.2 1.2

][
.7

1.3

]
=

[
2.3
1.7

]

Analogous calculations complete Table 1.

TABLE 1 Iterates of a Vector

k 0 1 2 3 4 5 6 7 8

Akx
[ −.5

1

] [ −.1
1.1

] [
.7

1.3

] [
2.3
1.7

] [
5.5
2.5

] [
11.9
4.1

] [
24.7

7.3

] [
50.3
13.7

] [
101.5

26.5

]

The vectors x, Ax, . . . , A4x are shown in Fig. 1. The other vectors are growing
too long to display. However, line segments are drawn showing the directions of those
vectors. In fact, the directions of the vectors are what we really want to see, not the vectors
themselves. The lines seem to be approaching the line representing the eigenspace
spanned by v1. More precisely, the angle between the line (subspace) determined by
Akx and the line (eigenspace) determined by v1 goes to zero as k → ∞.

1

Eigenspace

A4x

A3x
A2x

Ax

x

10
x1

x2

v1

41

FIGURE 1 Directions determined by x, Ax, A2x, . . . , A7x.

The vectors (λ1)−kAkx in (3) are scaled to make them converge to c1v1, provided
c1 �= 0. We cannot scale Akx in this way because we do not know λ1. But we can scale
each Akx to make its largest entry a 1. It turns out that the resulting sequence {xk} will
converge to a multiple of v1 whose largest entry is 1. Figure 2 shows the scaled sequence
for Example 1. The eigenvalue λ1 can be estimated from the sequence {xk}, too. When
xk is close to an eigenvector for λ1, the vector Axk is close to λ1xk , with each entry in
Axk approximately λ1 times the corresponding entry in xk . Because the largest entry in
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xk is 1, the largest entry in Axk is close to λ1. (Careful proofs of these statements are
omitted.)

Eigenspace

A3x

A2x
Ax
x1 x2 x3

x4

x1

x2

41

Multiple of v1

1

2

x = x0

FIGURE 2 Scaled multiples of x, Ax, A2x, . . . , A7x.

THE POWER METHOD FOR ESTIMATING A STRICTLY DOMINANT EIGENVALUE

1. Select an initial vector x0 whose largest entry is 1.

2. For k = 0, 1, . . . ,

a. Compute Axk .

b. Let µk be an entry in Axk whose absolute value is as large as possible.

c. Compute xk+1 = (1/µk)Axk .

3. For almost all choices of x0, the sequence {µk} approaches the dominant eigen-
value, and the sequence {xk} approaches a corresponding eigenvector.

EXAMPLE 2 Apply the power method to A =
[

6 5
1 2

]
with x0 =

[
0
1

]
. Stop when

k = 5, and estimate the dominant eigenvalue and a corresponding eigenvector of A.

Solution Calculations in this example and the next were made with MATLAB, which
computes with 16-digit accuracy, although we show only a few significant figures here.
To begin, compute Ax0 and identify the largest entry µ0 in Ax0:

Ax0 =
[

6 5
1 2

][
0
1

]
=

[
5
2

]
, µ0 = 5

Scale Ax0 by 1/µ0 to get x1, compute Ax1, and identify the largest entry in Ax1:

x1 = 1

µ0
Ax0 = 1

5

[
5
2

]
=

[
1
.4

]

Ax1 =
[

6 5
1 2

][
1
.4

]
=

[
8

1.8

]
, µ1 = 8
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Scale Ax1 by 1/µ1 to get x2, compute Ax2, and identify the largest entry in Ax2:

x2 = 1

µ1
Ax1 = 1

8

[
8

1.8

]
=

[
1

.225

]

Ax2 =
[

6 5
1 2

][
1

.225

]
=

[
7.125
1.450

]
, µ2 = 7.125

Scale Ax2 by 1/µ2 to get x3, and so on. The results of MATLAB calculations for the
first five iterations are arranged in Table 2.

TABLE 2 The Power Method for Example 2

k 0 1 2 3 4 5

xk

[
0
1

] [
1
.4

] [
1

.225

] [
1

.2035

] [
1

.2005

] [
1

.20007

]

Axk

[
5
2

] [
8

1.8

] [
7.125
1.450

] [
7.0175
1.4070

] [
7.0025
1.4010

] [
7.00036
1.40014

]

µk 5 8 7.125 7.0175 7.0025 7.00036

The evidence from Table 2 strongly suggests that {xk} approaches (1, .2) and {µk}
approaches 7. If so, then (1, .2) is an eigenvector and 7 is the dominant eigenvalue. This
is easily verified by computing

A

[
1
.2

]
=

[
6 5
1 2

][
1
.2

]
=

[
7

1.4

]
= 7

[
1
.2

]

The sequence {µk} in Example 2 converged quickly to λ1 = 7 because the second
eigenvalue of A was much smaller. (In fact, λ2 = 1.) In general, the rate of convergence
depends on the ratio |λ2/λ1|, because the vector c2(λ2/λ1)kv2 in (2) is the main source
of error when using a scaled version of Akx as an estimate of c1v1. (The other fractions
λj /λ1 are likely to be smaller.) If |λ2/λ1| is close to 1, then {µk} and {xk} can converge
very slowly, and other approximation methods may be preferred.

With the power method, there is a slight chance that the chosen initial vector x
will have no component in the v1 direction (when c1 = 0). But computer rounding
errors during the calculations of the xk are likely to create a vector with at least a small
component in the direction of v1. If that occurs, the xk will start to converge to a multiple
of v1.

The Inverse Power Method

This method provides an approximation for any eigenvalue, provided a good initial
estimate α of the eigenvalue λ is known. In this case, we let B = (A − αI)−1 and apply
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the power method to B. It can be shown that if the eigenvalues of A are λ1, . . . , λn, then
the eigenvalues of B are

1

λ1 − α
,

1

λ2 − α
, . . . ,

1

λn − α

and the corresponding eigenvectors are the same as those for A. (See Exercises 15 and
16.)

Suppose, for example, that α is closer to λ2 than to the other eigenvalues of A. Then
1/(λ2 − α) will be a strictly dominant eigenvalue of B. If α is really close to λ2, then
1/(λ2 − α) is much larger than the other eigenvalues of B, and the inverse power method
produces a very rapid approximation to λ2 for almost all choices of x0. The following
algorithm gives the details.

THE INVERSE POWER METHOD FOR ESTIMATING AN EIGENVALUE λ OF A

1. Select an initial estimate α sufficiently close to λ.

2. Select an initial vector x0 whose largest entry is 1.

3. For k = 0, 1, . . . ,

a. Solve (A − αI)yk = xk for yk .

b. Let µk be an entry in yk whose absolute value is as large as possible.

c. Compute νk = α + (1/µk).

d. Compute xk+1 = (1/µk)yk .

4. For almost all choices of x0, the sequence {νk} approaches the eigenvalue λ of
A, and the sequence {xk} approaches a corresponding eigenvector.

Notice that B, or rather (A − αI)−1, does not appear in the algorithm. Instead of
computing (A − αI)−1xk to get the next vector in the sequence, it is better to solve the
equation (A − αI)yk = xk for yk (and then scale yk to produce xk+1). Since this equation
for yk must be solved for each k, an LU factorization of A − αI will speed up the process.

EXAMPLE 3 It is not uncommon in some applications to need to know the smallest
eigenvalue of a matrix A and to have at hand rough estimates of the eigenvalues. Suppose
21, 3.3, and 1.9 are estimates for the eigenvalues of the matrix A below. Find the smallest
eigenvalue, accurate to six decimal places.

A =

 10 −8 −4

−8 13 4
−4 5 4




Solution The two smallest eigenvalues seem close together, so we use the inverse
power method for A − 1.9I . Results of a MATLAB calculation are shown in Table 3
(on page 368). Here x0 was chosen arbitrarily, yk = (A − 1.9I )−1xk , µk is the largest
entry in yk , νk = 1.9 + 1/µk , and xk+1 = (1/µk)yk . As it turns out, the initial eigenvalue
estimate was fairly good, and the inverse power sequence converged quickly. The
smallest eigenvalue is exactly 2.
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TABLE 3 The Inverse Power Method

k 0 1 2 3 4

xk


 1

1
1





 .5736

.0646
1





 .5054

.0045
1





 .5004

.0003
1





 .50003

.00002
1




yk


 4.45

.50
7.76





 5.0131

.0442
9.9197





 5.0012

.0031
9.9949





 5.0001

.0002
9.9996





 5.000006

.000015
9.999975




µk 7.76 9.9197 9.9949 9.9996 9.999975

νk 2.03 2.0008 2.00005 2.000004 2.0000002

If an estimate for the smallest eigenvalue of a matrix is not available, one can simply
take α = 0 in the inverse power method. This choice of α works reasonably well if the
smallest eigenvalue is much closer to zero than to the other eigenvalues.

The two algorithms presented in this section are practical tools for many simple
situations, and they provide an introduction to the problem of eigenvalue estimation. A
more robust and widely used iterative method is the QR algorithm. For instance, it is
the heart of the MATLAB command eig(A), which rapidly computes eigenvalues and
eigenvectors of A. A brief description of the QR algorithm was given in the exercises
for Section 5.2. Further details are in most modern numerical analysis texts.

P R A C T I C E P R O B L E M

How can you tell if a given vector x is a good approximation to an eigenvector of a
matrix A? If it is, how would you estimate the corresponding eigenvalue? Experiment
with

A =

 5 8 4

8 3 −1
4 −1 2


 and x =


 1.0

−4.3
8.1




5.8 EXERCISES
In Exercises 1–4, the matrix A is followed by a sequence {xk} pro-
duced by the power method. Use these data to estimate the largest
eigenvalue of A, and give a corresponding eigenvector.

1. A =
[

4 3
1 2

]
;
[

1
0

]
,

[
1

.25

]
,

[
1

.3158

]
,

[
1

.3298

]
,

[
1

.3326

]
2. A =

[
1.8 −.8

−3.2 4.2

]
;

[
1
0

]
,

[ −.5625
1

]
,

[ −.3021
1

]
,

[ −.2601
1

]
,

[ −.2520
1

]
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3. A =
[

.5 .2

.4 .7

]
;

[
1
0

]
,

[
1
.8

]
,

[
.6875

1

]
,

[
.5577

1

]
,

[
.5188

1

]

4. A =
[

4.1 −6
3 −4.4

]
;

[
1
1

]
,

[
1

.7368

]
,

[
1

.7541

]
,

[
1

.7490

]
,

[
1

.7502

]

5. Let A =
[

15 16
−20 −21

]
. The vectors x, . . . , A5x are

[
1
1

]
,[

31
−41

]
,

[ −191
241

]
,

[
991

−1241

]
,

[ −4991
6241

]
,

[
24991

−31241

]
. Find

a vector with a 1 in the second entry that is close to an eigen-
vector of A. Use four decimal places. Check your estimate,
and give an estimate for the dominant eigenvalue of A.

6. Let A =
[ −2 −3

6 7

]
. Repeat Exercise 5, using the following

sequence x, Ax, . . . , A5x.[
1
1

]
,

[ −5
13

]
,

[ −29
61

]
,

[ −125
253

]
,

[ −509
1021

]
,

[ −2045
4093

]

[M] Exercises 7–12 require MATLAB or other computational aid.
In Exercises 7 and 8, use the power method with the x0 given. List
{xk} and {µk} for k = 1, . . . , 5. In Exercises 9 and 10, list µ5 and
µ6.

7. A =
[

6 7
8 5

]
, x0 =

[
1
0

]

8. A =
[

2 1
4 5

]
, x0 =

[
1
0

]

9. A =

 8 0 12

1 −2 1
0 3 0


, x0 =


 1

0
0




10. A =

 1 2 −2

1 1 9
0 1 9


, x0 =


 1

0
0




Another estimate can be made for an eigenvalue when an approx-
imate eigenvector is available. Observe that if Ax = λx, then
xT Ax = xT (λx) = λ(xT x), and the Rayleigh quotient

R(x) = xT Ax
xT x

equals λ. If x is close to an eigenvector for λ, then this quo-
tient is close to λ. When A is a symmetric matrix (AT = A),

the Rayleigh quotient R(xk) = (xT
k Axk)/(xT

k xk) will have roughly
twice as many digits of accuracy as the scaling factor µk in the
power method. Verify this increased accuracy in Exercises 11 and
12 by computing µk and R(xk) for k = 1, . . . , 4.

11. A =
[

5 2
2 2

]
, x0 =

[
1
0

]

12. A =
[ −3 2

2 0

]
, x0 =

[
1
0

]

Exercises 13 and 14 apply to a 3×3 matrix A whose eigenvalues
are estimated to be 4, −4, and 3.

13. If the eigenvalues close to 4 and −4 are known to have differ-
ent absolute values, will the power method work? Is it likely
to be useful?

14. Suppose the eigenvalues close to 4 and −4 are known to have
exactly the same absolute value. Describe how one might
obtain a sequence that estimates the eigenvalue close to 4.

15. Suppose Ax = λx with x �= 0. Let α be a scalar different from
the eigenvalues of A, and let B = (A − αI)−1. Subtract αx
from both sides of the equation Ax = λx, and use algebra to
show that 1/(λ − α) is an eigenvalue of B, with x a corre-
sponding eigenvector.

16. Suppose µ is an eigenvalue of the B in Exercise 15, and that
x is a corresponding eigenvector, so that (A − αI)−1x = µx.
Use this equation to find an eigenvalue of A in terms of µ and
α. [Note: µ �= 0 because B is invertible.]

17. [M] Use the inverse power method to estimate the middle
eigenvalue of the A in Example 3, with accuracy to four dec-
imal places. Set x0 = (1, 0, 0).

18. [M] Let A be as in Exercise 9. Use the inverse power
method with x0 = (1, 0, 0) to estimate the eigenvalue of A

near α = −1.4, with an accuracy to four decimal places.

[M] In Exercises 19 and 20, find (a) the largest eigenvalue and (b)
the eigenvalue closest to zero. In each case, set x0 = (1, 0, 0, 0)

and carry out approximations until the approximating sequence
seems accurate to four decimal places. Include the approximate
eigenvector.

19. A =




10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10



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20. A =




1 2 3 2
2 12 13 11

−2 3 0 2
4 5 7 2




21. A common misconception is that if A has a strictly dominant
eigenvalue, then, for any sufficiently large value of k, the vec-
tor Akx is approximately equal to an eigenvector of A. For
the three matrices below, study what happens to Akx when

x = (.5, .5), and try to draw general conclusions (for a 2×2
matrix).

a. A =
[

.8 0
0 .2

]

b. A =
[

1 0
0 .8

]

c. A =
[

8 0
0 2

]

S O L U T I O N T O P R A C T I C E P R O B L E M

For the given A and x,

Ax =

 5 8 4

8 3 −1
4 −1 2




 1.00

−4.30
8.10


 =


 3.00

−13.00
24.50




If Ax is nearly a multiple of x, then the ratios of corresponding entries in the two vectors
should be nearly constant. So compute:

{ entry in Ax } ÷ { entry in x } = { ratio }
3.00 1.00 3.000

−13.00 −4.30 3.023
24.50 8.10 3.025

Each entry in Ax is about 3 times the corresponding entry in x, so x is close to an
eigenvector. Any of the ratios above is an estimate for the eigenvalue. (To five decimal
places, the eigenvalue is 3.02409.)

CD Iterative Methods
for Eigenvalues

CHAPTER 5 SUPPLEMENTARY EXERCISES

Throughout these supplementary exercises, A and B represent
square matrices of appropriate sizes.

1. Mark each statement as True or False. Justify each answer.

a. If A is invertible and 1 is an eigenvalue for A, then 1 is
also an eigenvalue for A−1.

b. If A is row equivalent to the identity matrix I , then A is
diagonalizable.

c. If A contains a row or column of zeros, then 0 is an eigen-
value of A.

d. Each eigenvalue of A is also an eigenvalue of A2.

e. Each eigenvector of A is also an eigenvector of A2.

f. Each eigenvector of an invertible matrix A is also an
eigenvector of A−1.

g. Eigenvalues must be nonzero scalars.

h. Eigenvectors must be nonzero vectors.

i. Two eigenvectors corresponding to the same eigenvalue
are always linearly dependent.

j. Similar matrices always have exactly the same eigen-
values.

k. Similar matrices always have exactly the same eigen-
vectors.

l. The sum of two eigenvectors of a matrix A is also an
eigenvector of A.
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m. The eigenvalues of an upper triangular matrix A are ex-
actly the nonzero entries on the diagonal of A.

n. The matrices A and AT have the same eigenvalues, count-
ing multiplicities.

o. If a 5×5 matrix A has fewer than 5 distinct eigenvalues,
then A is not diagonalizable.

p. There exists a 2×2 matrix that has no eigenvectors in R
2.

q. If A is diagonalizable, then the columns of A are linearly
independent.

r. A nonzero vector cannot correspond to two different
eigenvalues of A.

s. A (square) matrix A is invertible if and only if there is a
coordinate system in which the transformation x �→ Ax
is represented by a diagonal matrix.

t. If each vector ej in the standard basis for R
n is an eigen-

vector of A, then A is a diagonal matrix.

u. If A is similar to a diagonalizable matrix B, then A is also
diagonalizable.

v. If A and B are invertible n×n matrices, then AB is similar
to BA.

w. An n×n matrix with n linearly independent eigenvectors
is invertible.

x. If A is an n×n diagonalizable matrix, then each vector in
R

n can be written as a linear combination of eigenvectors
of A.

2. Show that if x is an eigenvector of the matrix product AB and
Bx �= 0, then Bx is an eigenvector of BA.

3. Suppose x is an eigenvector of A corresponding to an eigen-
value λ.

a. Show that x is an eigenvector of 5I − A. What is the
corresponding eigenvalue?

b. Show that x is an eigenvector of 5I − 3A + A2. What is
the corresponding eigenvalue?

4. Use mathematical induction to show that if λ is an eigenvalue
of an n×n matrix A, with x a corresponding eigenvector, then,
for each positive integer m, λm is an eigenvalue of Am, with
x a corresponding eigenvector.

5. If p(t) = c0 + c1t + c2t
2 + · · · + cntn, define p(A) to be the

matrix formed by replacing each power of t in p(t) by the
corresponding power of A (with A0 = I ). That is,

p(A) = c0I + c1A + c2A
2 + · · · + cnAn

Show that if λ is an eigenvalue of A, then one eigenvalue of
p(A) is p(λ).

6. Suppose A = PDP −1, where P is 2×2 and D =
[

2 0
0 7

]
.

a. Let B = 5I − 3A + A2. Show that B is diagonalizable by
finding a suitable factorization of B.

b. Given p(t) and p(A) as in Exercise 5, show that p(A) is
diagonalizable.

7. Suppose A is diagonalizable and p(t) is the characteristic
polynomial of A. Define p(A) as in Exercise 5, and show
that p(A) is the zero matrix. This fact, which is also true for
any square matrix, is called the Cayley–Hamilton theorem.

8. a. Let A be a diagonalizable n×n matrix. Show that if the
multiplicity of an eigenvalue λ is n, then A = λI .

b. Use part (a) to show that the matrix A =
[

3 1
0 3

]
is not

diagonalizable.

9. Show that I − A is invertible when all the eigenvalues of A

are less than 1 in magnitude. [Hint: What would be true if
I − A were not invertible?]

10. Show that if A is diagonalizable, with all eigenvalues less
than 1 in magnitude, then Ak tends to the zero matrix as
k → ∞. [Hint: Consider Akx where x represents any one
of the columns of I .]

11. Let u be an eigenvector of A corresponding to an eigenvalue
λ, and let H be the line in R

n through u and the origin.

a. Explain why H is invariant under A in the sense that Ax
is in H whenever x is in H .

b. Let K be a one-dimensional subspace of R
n that is invari-

ant under A. Explain why K contains an eigenvector of
A.

12. Let G =
[

A X

0 B

]
. Use formula (1) for the determinant in

Section 5.2 to explain why det G = (det A)(det B). From this,
deduce that the characteristic polynomial of G is the product
of the characteristic polynomials of A and B.

Use Exercise 12 to find the eigenvalues of the matrices:

13. A =

 3 −2 8

0 5 −2
0 −4 3




14. A =




1 5 −6 −7
2 4 5 2
0 0 −7 −4
0 0 3 1




15. Let J be the n×n matrix of all 1’s, and consider
A = (a − b)I + bJ ; that is,
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A =




a b b · · · b

b a b · · · b

b b a · · · b

...
...

...
. . .

...
b b b · · · a




Use the results of Exercise 16 in the Supplementary Exercises
for Chapter 3 to show that the eigenvalues of A are a − b and
a + (n − 1)b. What are the multiplicities of these eigenval-
ues?

16. Apply the result of Exercise 15 to find the eigenvalues of the

matrices


 1 2 2

2 1 2
2 2 1


 and




7 3 3 3 3
3 7 3 3 3
3 3 7 3 3
3 3 3 7 3
3 3 3 3 7


.

17. Let A =
[

a11 a12

a21 a22

]
. Recall from Exercise 25 in Section

5.4 that tr A (the trace of A) is the sum of the diagonal entries
in A. Show that the characteristic polynomial of A is

λ2 − (tr A)λ + det A

Then show that the eigenvalues of a 2×2 matrix A are both

real if and only if det A ≤
(

tr A

2

)2

.

18. Let A =
[

.4 −.3

.4 1.2

]
. Explain why Ak approaches

[ −.5 −.75
1.0 1.50

]
as k → ∞.

Exercises 19–23 concern the polynomial

p(t) = a0 + a1t + · · · + an−1t
n−1 + tn

and an n×n matrix Cp called the companion matrix of p:

Cp =




0 1 0 · · · 0
0 0 1 0
...

...
0 0 0 1

−a0 −a1 −a2 · · · −an−1




19. Write the companion matrix Cp for p(t) = 6 − 5t + t2, and
then find the characteristic polynomial of Cp .

20. Let p(t) = (t − 2)(t − 3)(t − 4) = −24 + 26t − 9t2 + t3.
Write the companion matrix for p(t), and use techniques
from Chapter 3 to find its characteristic polynomial.

21. Use mathematical induction to prove that for n ≥ 2,

det (Cp − λI) = (−1)n(a0 + a1λ + · · · + an−1λ
n−1 + λn)

= (−1)np(λ)

[Hint: Expanding by cofactors down the first column, show
that det (Cp − λI) has the form (−λ)B + (−1)na0, where B

is a certain polynomial (by the induction assumption).]

22. Let p(t) = a0 + a1t + a2t
2 + t3, and let λ be a zero of p.

a. Write the companion matrix for p.

b. Explain why λ3 = −a0 − a1λ − a2λ
2, and show that

(1, λ, λ2) is an eigenvector of the companion matrix for p.

23. Let p be the polynomial in Exercise 22, and suppose the equa-
tion p(t) = 0 has distinct roots λ1, λ2, λ3. Let V be the Van-
dermonde matrix

V =

 1 1 1

λ1 λ2 λ3

λ2
1 λ2

2 λ2
3




(The transpose of V was considered in Supplementary Exer-
cise 11 in Chapter 2.) Use Exercise 22 and a theorem from
this chapter to deduce that V is invertible (but do not compute
V −1). Then explain why V −1CpV is a diagonal matrix.

24. The MATLAB command roots(p) computes the roots of
the polynomial equation p(t) = 0. Read a MATLAB manual,
and then describe the basic idea behind the algorithm for the
roots command.

25. [M] Use a matrix program to diagonalize

A =

 −3 −2 0

14 7 −1
−6 −3 1




if possible. Use the eigenvalue command to create the diag-
onal matrix D. If the program has a command that produces
eigenvectors, use it to create an invertible matrix P . Then
compute AP − PD and PDP −1. Discuss your results.

26. [M] Repeat Exercise 25 for A =




−8 5 −2 0
−5 2 1 −2
10 −8 6 −3

3 −2 1 0


.


