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Even though chapters of this book are placed on a CD and on the web, 
so that my students can access and use this book, the copyright and 
all other rights associated with this text still belong to the author, Dr. 
Peter J. Nolan.  
 
 
If you do not accept these conditions, then do not continue. Close the 
book by clicking on the X in the upper right-hand corner of the screen. 
 
 
If you do accept these conditions, then you can continue to 
use this book by clicking on this sentence, which will take you 
to the rest of the book. Clicking on this sentence implies that 
you accept all these copyright conditions. 
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To study Physics is to see the 
workings of the mind of the 

creator. 
 

Blaise Pascal  
 French mathematician, physicist, and philosopher 

 
 
 

This fifth edition is dedicated to my 
grandchildren - Joseph, Kathleen, Shannon, 

and Erin 
 
 
 
 

Click on this sentence to go to the Preface of this 
book where you will find:  

 (1) “A Special Note to the Student”, 
 (2) “Computer Assisted Instruction - 
Interactive Examples”,   where you can learn about 
the Interactive Examples in this book. 
 (3) “Computer Assisted Instruction - 
Interactive Tutorials”, where you can learn about 
the Interactive Tutorials in this book. 

 
 

Click on this sentence to go to the “Brief Table of 
Contents” where you can access any chapter in the 

book.  
 
 

Click on this sentence to go to the “Detailed Table 
of Contents” where you can also access any chapter 

in the book.  

Pearson Custom Publishing

5



IV 

To access a particular chapter, double click on that chapter below. 
 

Contents In Brief 
 

 

VOLUME ONE 
 

PART ONE 
 

Mechanics  
 

6 Uniform Circular Motion, Gravitation, 

 

PART TWO 
 

Vibratory Motion, Wave Motion,  

 

 

PART THREE 
 

 

15 Thermal Expansion and the Gas 

 
 
 
  

 
 

 

 

Epilogue, E-1 
Appendix A Conversion Factors,   A-1 
Appendix B Useful Mathematical Formulas, A-3 
Appendix C Proportionalities, A-7 
Appendix D Physical Constants, A-11 
Appendix E Table of the Elements, A-13 
Appendix F Answers to Odd-Numbered 
                 Problems, A-15 
Bibliography,  B-1 

A Special Note to the Student  XIII
Preface  XI

1 Introduction and Measurements  1-1  
2 Vectors  2-1
3 KinematicsóThe Study of Motion  3-1
4 Newtonís Laws of Motion   4-1
5 Equilibrium  5-1

   and Satellites  6-1
7 Energy and Its Conservation  7-1
8 Momentum and Its Conservation  8-1
9 Rotational Motion  9-1

and Fluids  

  Thermodynamics  

10 Elasticity  10-1
11 Simple Harmonic Motion  11-1
12 Wave Motion  12-1
13 Fluids  13-1

14 Temperature and Heat  14-1

     Laws  15-1
16 Heat Transfer  16-1
17 Thermodynamics  17-1

Computer Assisted Instruction  XIII

Pearson Custom Publishing

6



 
 Contents                                                                                                                                                                    V   

To access a particular chapter, double click on that chapter below. 
 

Contents 
 

 

 
VOLUME ONE 

 
PART ONE 

 
Mechanics,  

 
1 Introduction and Measurements   
1.1 Historical Background  
1.2 The Realm of Physics  
1.3 Physics Is a Science of Measurement  
1.4 The Fundamental Quantities  
1.5 The Standard of Length  
1.6 The Standard of Mass  
1.7 The Standard of Time  
1.8 The Standard of Electrical Charge  
1.9 Systems of Units  
1.10 Conversion Factors  
1.11 Derived Quantities  
The Language of Physics  
Questions and Problems for Chapter 1  
Interactive Tutorials  
 
2 Vectors  
2.1 Introduction  
2.2 The Displacement  
2.3 Vector Algebra—The Addition of Vectors  
2.4 Vector Subtraction—The Negative of a Vector  
2.5 Addition of Vectors by the Polygon Method  
2.6 Review of Trigonometry  
2.7 Resolution of a Vector into Its Components  
2.8 Determination of a Vector from Its Components  
2.9 The Addition of Vectors by the Component Method  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 2  
Interactive Tutorials  
 
3 Kinematics—The Study of Motion  
3.1 Introduction  
3.2 Experimental Description of a  Moving Body  
3.3 A Body Moving at Constant Velocity  
3.4 A Body Moving at Constant Acceleration 
3.5 The Instantaneous Velocity of a  Moving  Body  
3.6 The Kinematic Equations in One Dimension  
3.7 The Freely Falling Body  
3.8 Determination of Your Reaction  Time by a Freely 
       Falling Body  

3.9 Projectile Motion in One Dimension  
3.10 The Kinematic Equations in Vector  Form  
3.11 Projectile Motion in Two Dimensions  
“Have you ever wondered...?” 
An Essay on the Application of Physics 

Kinematics and Traffic Congestion  
The Language of Physics  
Summary of Important Equations  
Hints for Problem Solving  
Questions and Problems for Chapter 3  
Interactive Tutorials  
 
4 Newton’s Laws of Motion  
4.1 Introduction  
4.2 Newton’s First Law of Motion  
4.3 Newton’s Third Law of Motion  
4.4 Newton’s Second Law of Motion  
4.5 Applications of Newton’s Second Law  
4.6 Friction  
4.7 Applications of Newton’s Second Law Taking 
       Friction into Account  
4.8 Determination of the Coefficients of Friction  
“Have you ever wondered...?” 
An Essay on the Application of Physics 

The Physics in Sports  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 4  
Interactive Tutorials  
 
5 Equilibrium  
5.1 The First Condition of Equilibrium  
5.2 The Concept of Torque  
5.3 The Second Condition of Equilibrium  
5.4 Equilibrium of a Rigid Body  
5.5 Examples of Rigid Bodies in Equilibrium 
“Have you ever wondered...?” 
An Essay on the Application of Physics 

Traction  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 5  
Interactive Tutorials  
 
6 Uniform Circular Motion, Gravitation,  
    and Satellites  
6.1 Uniform Circular Motion  
6.2 Centripetal Acceleration and Its  Direction  
6.3 Angles Measured in Radians  
6.4 The Magnitude of the Centripetal Acceleration  
6.5 The Centripetal Force  
6.6 The Centrifugal Force  
6.7 Examples of Centripetal Force  

Preface  XI
A Special Note to the Student  XIII   
Computer Assisted Instruction  XIII 

Pearson Custom Publishing

7



 
VI                                                                                                                                                                        Contents 

6.8 Newton’s Law of Universal Gravitation  
6.9 Gravitational Force between Two 1-kg Masses  
6.10 Gravitational Force between a 1-kg Mass and  
        the Earth  
6.11 The Acceleration Due to Gravity and Newton’s 
         Law of Universal Gravitation 
6.12 Variation of the Acceleration Due to Gravity  
6.13 Acceleration Due to Gravity on the Moon and  
        on  Other Planets  
6.14 Satellite Motion  
6.15 The Geosynchronous Satellite  
“Have you ever wondered...?” 
An Essay on the Application of Physics 

Space Travel  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 6  
Interactive Tutorials  
 
7 Energy and Its Conservation  
7.1 Energy  
7.2 Work  
7.3 Power  
7.4 Gravitational Potential Energy  
7.5 Kinetic Energy  
7.6 The Conservation of Energy  
7.7 Further Analysis of the Conservation of Energy  
“Have you ever wondered...?” 
An Essay on the Application of Physics 

The Great Pyramids  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 7  
Interactive Tutorials  
 
8 Momentum and Its Conservation  
8.1 Momentum  
8.2 The Law of Conservation of Momentum  
8.3 Examples of the Law of Conservation of Momentum  
8.4 Impulse  
8.5 Collisions in One Dimension  
8.6 Collisions in Two Dimensions —Glancing Collisions  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 8  
Interactive Tutorials  
 
9 Rotational Motion  
9.1 Introduction  
9.2 Rotational Kinematics  
9.3 The Kinetic Energy of Rotation  
9.4 The Moment of Inertia  
9.5 Newton’s Laws for Rotational Motion  
9.6 Rotational Dynamics  
9.7 Angular Momentum and Its Conservation  
9.8 Combined Translational and Rotational Motion 
      Treated by the Law of Conservation of Energy  
9.9 Work in Rotational Motion  

“Have you ever wondered...?” 
An Essay on the Application of Physics 
      Attitude Control of Airplanes and Spaceships  
The Language of Physics  
Summary of Important Equations  
Questions and Problems for Chapter 9  
Interactive Tutorials  
 
Epilogue E-1 
Appendix A Conversion Factors A-1 
Appendix B Useful Mathematical Formulas A-2 
Appendix C Proportionalities A-5 
Appendix D Physical Constants A-7 
Appendix E Table of the Elements A-8 
Appendix F Answers to Odd-Numbered Problems A-10 
Bibliography B-1 
 

Pearson Custom Publishing

8



 

 
Preface                                                                                                                                                                 XI 

Preface For The Updated Fifth Edition  
   
This book is both old and very new. It is old because it is an outgrowth of over thirty-five years of teaching 

college physics. The first, second, and third editions of this book have been used in some three hundred colleges 
and universities throughout the country (It was also translated into Italian, and is used in Italian Universities). It 
is now, however, very new because it is the first College Physics textbook that is totally interactive. It comes in 
both a hard copy and a soft copy that is accessed on a totally interactive CD.  

Many students, taking physics for the first time, sometimes find the mathematics frightening. In order to 
help these students, every illustrative example in the textbook has been computerized using computer 
spreadsheets. These computerized Interactive Examples will allow the student to solve the example problem in the 
textbook, with all the in-between steps, many times over but with different numbers placed in the problem. The 
Interactive Examples can be accessed on-line by simply clicking on the sentence at the end of the example 
problem. More details on these Interactive Examples can be found in the section “Computer Aided Instruction” at 
the end of the Preface. These Interactive Examples make the book the first truly interactive college physics textbook 
that is accessible on the computer. 

Because the book is written for students, it contains a great many of the intermediate steps that are often 
left out of the derivations and illustrative problem solutions in many traditional college physics textbooks. 
Students new to physics often find it difficult to follow derivations when the intermediate steps are left out. In 
addition, the units of measurement are carried along, step by step, in the equations to make it easier for students 
to understand. This book does not require calculus; the only prerequisites are high school algebra and 
trigonometry. In fact, a short review of trigonometry is given in chapter 2, before the discussion of the components 
of a vector. 

This text gives a good, fairly rigorous, traditional college physics coverage. Instructors are expected to 
choose those topics they deem most important for the particular course. Students can read on their own the 
detailed descriptions found in those chapters, or parts of chapters, omitted from the course. Unfortunately, many 
interesting and important topics in modern physics are never covered in college physics courses because of lack of 
time. These chapters, especially, are written in even more detail to enable students to read them on their own. 
Even years after taking the course, students can read these sections for their own edification and enjoyment. This 
is one of the reasons that students should never sell any of their college textbooks. They are an investment for a 
lifetime of reference, illumination, and enjoyment. 

The organization of the text follows the traditional sequence of mechanics, wave motion, heat, electricity 
and magnetism, optics, and modern physics. The emphasis throughout the book is on clarity. The book starts out 
at a very simple level, and advances as students’ understanding grows. There are a large number of diagrams and 
illustrative problems in the text to help students visualize physical ideas. Important equations are highlighted to 
help students find and recognize them. A summary of these important equations is given at the end of each 
chapter. 

Students sometimes have difficulty remembering the meanings of all the vocabulary associated with new 
physical ideas. Therefore, a section called The Language of Physics, found at the end of each chapter, contains the 
most important ideas and definitions discussed in that chapter. 

To comprehend the physical ideas expressed in the theory class, students need to be able to solve physics 
problems for themselves. Problem sets at the end of each chapter are grouped according to the section where the 
topic is covered. Problems that are a mix of different sections are found in the Additional Problems section. If you 
have difficulty with a problem, refer to that section of the chapter for help. The problems begin with simple, plug-
in problems to develop students’ confidence and to give them a feel for the numerical magnitudes of some physical 
quantities. The problems then become progressively more difficult and end with some that are very challenging. 
The more difficult problems are indicated by a star (∗). The starred problems are either conceptually more difficult 
or very long. However, just because a problem is starred is no reason to avoid attempting its solution. Many 
problems at the end of the chapter are very similar to the illustrative problems worked out in the text. When 
solving these problems, students can use the illustrative problems as a guide. However, students should be warned 
that physics cannot be learned by memorizing the exhaustive set of illustrative problems. These problems are only 
a guide to foster greater understanding. To facilitate setting up a problem, the Hints for Problem Solving section, 
which is found before the problem set in chapter 3, should be studied carefully. 

A section called Interactive Tutorials, which also uses computer spreadsheets to solve physics problems, 
can be found at the end of the problems section in each chapter. These Interactive Tutorials are a series of physics 
problems, very much like the interactive examples, but are more detailed and more general. They can be accessed 
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on-line by clicking on the sentence at the end of the Interactive Tutorials. More details on these Interactive 
Tutorials can be found in the section “Computer Aided Instruction” at the end of the Preface. 

A series of questions relating to the topics discussed in the chapter is also included at the end of each 
chapter. Students should try to answer these questions to see if they fully understand the ramifications of the 
theory discussed in the chapter. Just as with the problem sets, some of these questions are either conceptually 
more difficult or will entail some outside reading. These more difficult questions are also indicated by a star (∗). 

A word about units. Some thirty years ago when I started teaching physics I said to my class, “We use the 
British Engineering System of Units in our daily lives in the United States, but we are in the process of changing 
over to the metric system of units (Now called the International System of Units or SI units). In a few years the 
British Engineering System of Units will be obsolete and the entire world will use the metric system.” Over thirty 
years later I find myself giving that same lecture at the beginning of the course. Something is very wrong! Except 
for the United States and one or two small islands in the south pacific, the entire world uses the International 
System of Units. Even the British do not use the British Engineering System of Units. (I performed an interesting 
experiment by asking many of my colleagues how far away from the campus they lived. Each gave an answer in 
the British Engineering System of Units. If all the physics faculty still think in terms of the British Engineering 
System, what can we expect of our students and the rest of our society. Try asking your colleagues how far away 
from the campus they live and see what they reply.) It is time for the United States to get in step with the rest of 
the world. To do that we must teach a new generation of physics students SI units almost exclusively so that they 
will think and work in SI units. Therefore in this book only SI units will be used in the description of physics. 
However, to help the student in this transition, the first chapter will show how to convert from the British 
Engineering System to SI units and vice versa if it is ever necessary. If a student is told that a car is traveling at 
55 mph, the student will convert that to 88.6 km/hr and then solve the entire problem in SI units. An interactive 
computer tutorial will be found at the end of chapter 1 that will help the student to make any of these conversions. 
After that, the rest of the book will be in SI units almost exclusively. Occasionally, a few problems throughout the 
book will still have some numbers in the British Engineering System of Units. When this occurs the student 
should convert these numbers into SI units, and proceed in solving the problem in the International System of 
Units. 

Scattered throughout the text, at the ends of chapters, are sections entitled “Have you ever wondered … ?” 
These are a series of essays on the application of physics to areas such as meteorology, astronomy, aviation, space 
travel, the health sciences, the environment, philosophy, traffic congestion, sports, and the like. Many students are 
unaware that physics has such far-reaching applications. These sections are intended to engage students’ varied 
interests but can be omitted, if desired, without loss of continuity in the physics course. The “Have you ever 
wondered … ?” section on the application of physics to traffic congestion is the only major item still expressed in 
British Engineering Systems of Units in this book. 

The relation between theory and experiment is carried throughout the book, emphasizing that our models 
of nature are good only if they can be verified by experiment. Concepts presented in the lecture and text can be 
well demonstrated in a laboratory setting. To this end, Experiments In Physics, second edition by Peter J. Nolan 
and Raymond E. Bigliani is also available. Experiments in Physics contains some 55 experiments covering all the 
traditional topics in a physics laboratory. New to the second edition of Experiments in Physics is a complete 
computer analysis of the data for every experiment.  

A Bibliography, given at the end of the book, lists some of the large number of books that are accessible to 
students taking college physics. These books cover such topics in modern physics as relativity, quantum 
mechanics, and elementary particles. Although many of these books are of a popular nature, they do require some 
physics background. After finishing this book, students should be able to read any of them for pleasure without 
difficulty. 

Finally, we should note that we are living in a rapidly changing world. Many of the changes in our world 
are sparked by advances in physics, engineering, and the high-technology industries. Since engineering and 
technology are the application of physics to the solution of practical problems, it behooves every individual to get 
as much background in physics as possible. You can depend on the fact that there will be change in our society. You 
can be either the architect of that change or its victim, but there will be change. 
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A Special Note to the Student 
 

“One thing I have learned in a long life: that all our science measured against reality, is primitive and childlike—
and yet it is the most precious thing we have.” 

Albert Einstein  as quoted by Banesh Hoffmann in  
Albert Einstein, Creator and Rebel 

 
The language of physics is mathematics, so it is necessary to use mathematics in our study of nature. 

However, just as sometimes “you cannot see the forest for the trees,” you must be careful or “you will not see the 
physics for the mathematics.” Remember, mathematics is only a tool used to help describe the physical world. You 
must be careful to avoid getting lost in the mathematics and thereby losing sight of the physics. When solving 
problems, a sketch or diagram that represents the physics of the problem should be drawn first, then the 
mathematics should be added. 

Physics is such a logical subject that when a student sees an illustrative problem worked out, either in the 
textbook or on the blackboard, it usually seems very simple. Unfortunately, for most students, it is simple only 
until they sit down and try to do a problem on their own. Then they often find themselves confused and frustrated 
because they do not know how to get started. 

If this happens to you, do not feel discouraged. It is a normal phenomenon that happens to many students. 
The usual approach to overcoming this difficulty is going back to the illustrative problem in the text. When you do 
so, however, do not look at the solution of the problem first. Read the problem carefully, and then try to solve the 
problem on your own. At any point in the solution, when you cannot proceed to the next step on your own, peek at 
that step and only that step in the illustrative problem. The illustrative problem shows you what to do at that 
step. Then continue to solve the problem on your own. Every time you get stuck, look again at the appropriate 
solution step in the illustrative problem until you can finish the entire problem. The reason you had difficulty at a 
particular place in the problem is usually that you did not understand the physics at that point as well as you 
thought you did. It will help to reread the appropriate theory section. Getting stuck on a problem is not a bad 
thing, because each time you do, you have the opportunity to learn something. Getting stuck is the first step on the 
road to knowledge. I hope you will feel comforted to know that most of the students who have gone before you also 
had these difficulties. You are not alone. Just keep trying. Remember, that in the learning process, there is nothing 
wrong with making a mistake, what’s wrong is not learning from that mistake. Eventually, you will find that 
solving physics problems is not as difficult as you first thought; in fact, with time, you will find that they can even 
be fun to solve. The more problems that you solve, the easier they become, and the greater will be your enjoyment 
of the course. 

 
Computer Assisted Instruction 

Interactive Examples 
 

Many students, taking physics for the first time, sometimes find the mathematics frightening. In order to 
help these students, I have computerized every illustrative example in the textbook. These computerized 
Interactive Examples will allow the student to solve the example problem in the textbook, with all the in-between 
steps, many times over but with different numbers placed in the problem.  

Figure 1 shows an example from Chapter 3 of the textbook for solving a problem in Kinematics. It is a 
problem in kinematics in which a car, initially traveling at 30.0 km/hr, accelerates at the constant rate of 1.50 
m/s2. The student is then asked how far will the car travel in 15.0 s? The example in the textbook shows all the 
steps and reasoning done in the solution of the problem. 

 
Example 3.6 

 
Using the kinematic equation for the displacement as a function of time. A car, initially traveling at 30.0 km/hr, 
accelerates at the constant rate of 1.50 m/s2. How far will the car travel in 15.0 s? 

Solution
 

To express the result in the proper units, km/hr is converted to m/s as 
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0
km 1 hr 1000 m30.0 8.33 m/s
hr 3600 s 1 km

v   = =  
  

 

 
The displacement of the car, found from equation 3.14, is 
 

x = v0t +  1  at2 
         2 

( ) ( )2
2

m 1 m8.33 15.0 s 1.50 15.0 s
s 2 s

   = +   
   

 

= 125 m + 169 m 
= 294 m 

 
The first term in the answer, 125 m, represents the distance that the car would travel if there were no 

acceleration and the car continued to move at the velocity 8.33 m/s for 15.0 s. But there is an acceleration, and the 
second term shows how much farther the car moves because of that acceleration, namely 169 m. The total 
displacement of 294 m is the total distance that the car travels because of the two effects. 

 
To go to this interactive example click on this sentence. 

 

 
Figure 1  Example 3.6 in the textbook. 

 
The last sentence in blue type in the example (To go to this interactive example click on this sentence.)  
allows the student to access the interactive example for this same problem. Clicking on the blue 
sentence, the spreadsheet shown in figure 2 opens. Notice that the problem is stated in the identical manner 
as in the textbook. Directly below the stated problem is a group of yellow-colored cells labeled Initial Conditions. 
Into these yellow cells are placed the numerical values associated with the particular problem. For this problem 
the initial conditions consist of the initial velocity v0 of the car, the acceleration a of the car, and the time t that the 
car is moving, as shown in figure 2. The problem is now solved in the identical way it is solved in the textbook. 
Words are used to describe the physical principles and then the equations are written down. Then the in-between 
steps of the calculation are shown in light green-colored cells, and the final result of the calculation is shown in a 
light blue-colored cell. The entire problem is solved in this manner, as shown in figure 2. If the student wishes to 
change the problem by using a different initial velocity or a different time or acceleration, he or she then changes 
these values in the yellow-colored cells of the initial conditions. When the initial conditions are changed the 
computer spreadsheet recalculates all the new in-between steps in the problem and all the new final answers to 
the problem. In this way the problem is completely interactive. It changes for every new set of initial conditions. 
The Interactive Examples make the book a living book. The examples can be changed many times over to solve for 
all kinds of special cases. When the student is finished with the interactive example, and is accessing it 
from a CD, he or she just clicks on the X in the extreme upper right-hand corner of the spreadsheet 
screen, returning him or her to the original example in the textbook chapter. If the student is accessing 
the interactive example from a web page, then  he or she presses the go Back button on the top of the 
browser page. When Excel closes, you will be returned to the first page of the present chapter. You can 
then go to wherever page you want in that chapter by sliding the Scroll Bar box on the right-hand side 
of the screen. 

These Interactive Examples are a very helpful tool to aid in the learning of physics if they are used 
properly. The student should try to solve the particular problem in the traditional way using paper and an 
electronic calculator. Then the student should open the interactive example, insert the appropriate data into the 
Initial Conditions cells and see how the computer solves the problem. Go through each step on the computer and 
compare it to the steps you made on paper. Does your answer agree? If not, check through all the in-between steps 
on the computer and your paper and find where your made a mistake. Repeat the problem using different Initial 
Conditions on the computer and your paper. Again check your answers and all the in-between steps. Once you are 
sure that you know how to solve the problem, try some special cases. What would happen if you changed an 
angle?, a weight?, a force? etc. In this way you can get a great deal of insight into the physics of the problem and 
also learn a great deal of physics in the process. 

Pearson Custom Publishing

12



 

 
Preface                                                                                                                                                                 XV 

Figure 2  Interactive Example 3.6 in Microsoft Excel Spreadsheet. 
 
You must be very careful not to just plug numbers into the Initial Conditions and look at the answers 

without understanding the in-between steps and the actual physics of the problem. You will only be deceiving 
yourself. Be careful, these Interactive Examples can be extremely helpful if they are used properly. 

We should point out two differences in a text example and in a spreadsheet example. Powers of ten, that 
are used in scientific notation in the text, are written with the capital letter E in the spreadsheet. Hence, the 
number 5280, written in scientific notation as 5.280 × 103, will be written on the spreadsheet as 5.280E+3. Also, 
the square root symbol  in the textbook is written as sqrt[   ] in a spreadsheet. Finally, we should note that the 
spreadsheets are “protected” by allowing you to enter data only in the designated light yellow-colored cells of the 
Initial Conditions area. Therefore, the student cannot damage the spreadsheets in any way, and they can be used 
over and over again. 

To access these Interactive Examples the student must have Microsoft’s Excel computer 
spreadsheet installed on his computer.   

 
 

Example 3.6 
Using the kinematic equation for the displacement as a function of time.   A car, 
initially traveling at 30.0 km/hr, accelerates at the constant rate of 1.50 m/s2.  How far
will the car travel in 15.0 s?

Initial Conditions
Initial velocity vo = 30 km/hr

acceleration a = 1.5 m/s2

time t = 15 s

Solution.  
To express the result in the proper units, km/hr is converted to m/s as

vo = ( 30 km/hr)     x   [ 1 hr / ( 3600 s)  ]   x  ( 1000 m/km)
vo = ( 8.33333 m/s

The displacement of the car, found from equation 3.14, is
x = vo t + 1/2 a t2

x = [( 8.3333 m/s) x   ( 15 s)]
+ 1/2  [( 1.5 m/s2) x  ( 15 s)2]

x = [( 125 m)]   +      168.75 m)]
x = 293.75 m

The first term in the answer, 125 m, represents the distance that the car would
travel if there were no acceleration and the car continued to move at the velocity 
8.3333 m/s for 15 s.  But there is an acceleration, and the second term

shows how much farther the car moves because of that acceleration, namely 
168.75 m. The total displacement of 293.75 m is the total distance that the car
travels because of the two effects.
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Computer Assisted Instruction 
Interactive Tutorials 

 
  Besides the Interactive Examples in this text, I have also introduced a section called Interactive Tutorials 

at the end of the problem section in each chapter. These Interactive Tutorials are a series of physics problems, 
very much like the interactive examples, but are more detailed and more general. The Interactive Tutorials are 
available on the Internet, but the student must have Microsoft’s Excel computer spreadsheet on his or her 
computer.    

To access the Interactive Tutorial on the Internet, the student will click on the sentence in blue 
type at the end of the Interactive Tutorials section (To go to this interactive tutorial click on this 
sentence.)  Clicking on the blue sentence, opens the appropriate spreadsheet. 

Figure 3 show a typical Interactive Tutorial for a problem in chapter 3 on Kinematics. When the student 
opens this particular spreadsheet, he or she sees the problem stated in the usual manor. That is, this problem is  
 

Chapter 3 Kinematics  
Computer Assisted Instruction 
Interactive Tutorial 
72. A golf ball is hit with an initial velocity vo = 53.0 m/s at an angle θ = 50.00 above the  
horizontal. (a) How high will the ball go? (b) What is the total time the ball is in the air? (c)  How far will 
the ball travel horizontally before it hits the ground?         
Initial Conditions 
The magnitude of the initial velocity vo =  53 m/s  
The angle θ =  50 degrees  
The acceleration of gravity g = 9.8 m/s2  
      
The x-component of the initial velocity is found as  
  vox = vo cosθ  
 vox = ( 53 m/s)   x  cos( 50 ) 
  vox =  34.07 m/s  
      
The y-component of the initial velocity is found as  
   voy = vo sinθ  
 voy = ( 53 m/s)   x   sin( 50 ) 
  voy =  40.6 m/s  
      
(a) The maximum height ymax of the golf ball above the launch point is found from  
the kinematic equation       vy

2 = voy
2 - 2 g y  

When y = ymax, vy = 0. Therefore 
  0 = voy

2 - 2 g ymax  
Solving for the maximum height ymax above the launch point, we get  
   ymax = (voy

2) / 2 g  
 ymax = ( 40.6 m/s)2   /    2 ( 9.8 m/s2) 
  ymax =  84.1 m  
      
(b) The total time tt the ball is in the air is found from the kinematic equation 
  y = voy t - (1/2) g t2  
When t is equal to the total time tt, the projectile is on the ground and y = 0, therefore 
  0 = voy tt - (1/2) g tt2  
or dividing each term by tt we get  
   0 = voy - (1/2) g tt  
upon solving for the total time tt we get  
   tt = 2 voy / g   
 tt = 2 x ( 40.6 m/s)      /      ( 9.8 m/s2) 
  tt =  8.29 s  
      
(c)  The maximum distance the ball travels in the x-direction before it hits the  
ground, is found from the kinematic equation for the displacement of the ball in  
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the x-direction x = vox t   
The maximum distance xmax occurs for t = tt. Therefore 
  xmax = vox tt   
 xmax = ( 34.07 m/s)      x    ( 8.29 s) 
  xmax =  282.28 m  
      

Figure 3.  A typical Interactive Tutorial. 

 
an example of a projectile fired at a initial velocity vo = 53.0 m/s at an angle θ = 50.00, and it is desired to find the 
maximum height of the projectile, the total time the projectile is in the air, and the range of the projectile. Directly 
below the stated problem is a group of yellow-colored cells labeled Initial Conditions. 

Into these yellow cells are placed the numerical values associated with the particular problem. For this 
problem the initial conditions consist of the initial velocity vo, the initial angle θ, and the acceleration due to 
gravity g as shown in figure 3. The problem is now solved in the traditional way of a worked out example in the 
book. Words are used to describe the physical principles and then the equations are written down. Then the in-
between steps of the calculation are shown in light green-colored cells, and the final result of the calculation is 
shown in a light blue-colored cell. The entire problem is solved in this manor as shown in figure 3. If the student 
wishes to change the problem by using a different initial velocity or a different launch angle, he or she then 
changes these values in the yellowed-colored cells of the initial conditions. When the initial conditions are changed 
the computer spreadsheet recalculates all the new in-between steps in the problem and all the new final answers 
to the problem. In this way the problem is completely interactive. It changes for every new set of initial conditions. 
The tutorials can be changed many times over to solve for all kinds of special cases. 

These Interactive Tutorials are a very helpful tool to aid in the learning of physics if they are used 
properly. The student should try to solve the particular problem in the traditional way using paper and an 
electronic calculator. Then the student should open the spreadsheet, insert the appropriate data into the Initial 
Conditions cells and see how the computer solves the problem. Go through each step on the computer and compare 
it to the steps you made on paper. Does your answer agree? If not, check through all the in-between steps on the 
computer and your paper and find where your made a mistake. Repeat the problem using different Initial 
Conditions on the computer and your paper. Again check your answers and all the in-between steps. Once you are 
sure that you know how to solve the problem, try some special cases. What would happen if you changed an 
angle?, a weight?, a force? etc. In this way you can get a great deal of insight into the physics of the problem and 
also learn a great deal of physics in the process.  

You must be very careful not to just plug numbers into the Initial Conditions and look at the answers 
without understanding the in-between steps and the actual physics of the problem. You will only be deceiving 
yourself. Be careful, these spreadsheets can be extremely helpful if they are used properly. 

When the student is finished with the interactive tutorial, and is accessing it from a CD, he or 
she just clicks on the X in the extreme upper right-hand corner of the spreadsheet screen, returning him 
or her to the original tutorials in the textbook chapter. If the student is accessing the interactive 
tutorial from a web page, then he or she presses the go Back button on the top of the browser page. 
When Excel closes, you will be returned to the first page of the present chapter. You can then go to 
wherever page you want in that chapter by sliding the Scroll Bar box on the right-hand side of the 
screen. 

   
Click on this sentence to go to the “Brief Table of Contents” which will allow you to go to any 

chapter in this book.     
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Chapter 1  Introduction and Measurements 
 

In exploring nature, therefore, we must begin by trying to determine its first principles.   
                                       Aristotle 

The method with which we shall follow in this treatise will be always to make what is said 
depend on what was said before.                                        Galileo Galilei 

 
 

1.1  Historical Background 
Physics has its birth in mankind’s quest for knowledge and truth. In ancient times, people were hunters following 
the wild herds for their food supply. Since they had to move with the herds for their survival, they could not be 
tied down to one site with permanent houses for themselves and their families. Instead these early people lived in 
whatever caves they could find during their nomadic trips. Eventually these cavemen found that it was possible to 
domesticate such animals as 
sheep and cattle. They no longer 
needed to follow the wild herds. 
Once they stayed long enough in 
one place to take care of their 
herds, they found that seeds 
collected from various edible 
plants in one year could be 
planted the following year for a 
new crop. Thus, many of these 
ancient people became farmers, 
growing their own food supply. 
They, of course, found that they 
could grow a better crop in a 
warm climate near a readily 
available source of water. It is 
not surprising then that the 
earliest known1 civilizations 
sprang up on the banks of the 
great rivers: the Nile in Egypt 
and the Tigris and Euphrates in 
Mesopotamia. Once permanently 
located on their farms, these early people were able to build houses for themselves. Trades eventually developed 
and what would later be called civilization began.                                      

To be successful farmers, these ancient people had to know when to plant the seeds and when to harvest 
the crop. If they planted the seeds too early, a frost could destroy the crop, causing starvation for their families. If 
they planted the seeds too late, there might not be sufficient growing time or adequate rain. 

In those very dark nights, people could not help but notice the sky. It must have been a beautiful sight 
without the background street lights that are everywhere today. People began to study that sky and observed a 
regularity in the movements of the sun, moon, and stars. In ancient Egypt, for example, the Nile river would 
overflow when Sirius, the Dog Star, rose above the horizon just before dawn. People then developed a calendar 
based on the position of the stars. By their observation of the sky, they found that when certain known stars were 
in a particular position in the sky it was time to plant a new crop. With an abundant harvest it was now possible 
to store enough grain to feed the people for the entire year. 

For the first time in the history of humanity, obtaining food for survival was not an all time-consuming job. 
These ancient people became affluent enough to afford the time to think and question. What is the cause of the 
regularity in the motion of the heavenly bodies? What makes the sun rise, move across the sky, and then set? 
What makes the stars and moon move in the night sky? What is the earth made of? What is man? And through 
this questioning of the world about them, philosophy was born _ the search for knowledge or wisdom (philos in 
Greek means “love of” and sophos means “wisdom”). Philosophy, therefore, originated when these early people 
began to seek a rational explanation of the world about them, an explanation of the nature of the world without 

                                                           
1It is not that other civilizations did not exist, only that they had not discovered the technology of writing and hence did not leave records of any 
of their activities. As an example, there is evidence that at Stonehenge in ancient England, a civilization flourished there before the pyramids of 
Egypt were ever built. We take writing for granted, but it is one of the greatest technological achievements of all time.    

Figure 1.1 The caveman steps out of his cave. 
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recourse to magic, myths, or revelation. Ancient philosophers studied ethics, morality, and the essence of beings as 
determined by the mind, but they also studied the natural world itself. This latter activity was called natural 
philosophy _ the study of the phenomena of nature. Among early Greek natural philosophers were Thales of 
Miletus (ca. 624-547 B.C.), Democritus (ca. 460-370 B.C.), Aristarchus (ca. 320-250 B.C.), and Archimedes (ca. 287-
212 B.C.), perhaps the greatest scientist and mathematician of ancient times. 

For many centuries afterward, the study of nature continued to be called natural philosophy. In fact, one of 
the greatest scientific works ever written was by Sir Isaac Newton. When it was published in 1687, he entitled it 
Philosophiae Naturalis Principia Mathematica (The Mathematical Principles of Natural Philosophy). 

Natural philosophy, therefore, studied all of nature. The Greek word for “natural” is physikos. Therefore, the 
name physics came to mean the study of all of nature. Physics became a separate entity from philosophy 
because it employed a different method to search for truth. Physics developed and employed an approach called 
the scientific method in its quest for knowledge. 

The scientific method is the application of a logical process of reasoning to arrive at a model of nature 
that is consistent with experimental results. The scientific method consists of five steps: 

1.  Observation 
2.  Hypothesis 
3.  Experiment 
4.  Theory or law 
5.  Prediction 

This process of scientific reasoning can be followed with the help of the flow diagram shown in figure 1.2. 

 
Figure 1.2 The scientific method. 

 
1. Observation. The first step in the scientific method is to make an observation of nature, that is, to collect 
data about the world. The data may be drawn from a simple observation, or they may be the results of 
numerous experiments. 
2. Hypothesis. From an analysis of these observations and experimental data, a model of nature is 
hypothesized. The dictionary defines a hypothesis as an assumption that is made in order to draw out and 
test its logical or empirical consequences; that is, an assumption is made that in a given situation nature 
will always work in a certain way. If this hypothesis is correct, we should be able to confirm it by testing. 
This testing of the hypothesis is called the experiment. 
3. Experiment. An experiment is a controlled procedure carried out to discover, test, or demonstrate 
something. An experiment is performed to confirm that the hypothesis is valid. If the results of the 
experiment do not support the hypothesis, the experimental technique must be checked to make sure that 
the experiment was really measuring that aspect of nature that it was supposed to measure. If nothing 
wrong is found with the experimental technique, and the results still contradict the hypothesis, then the 
original hypothesis must be modified. Another experiment is then made to test the modified hypothesis. 
The hypothesis can be modified and experiments redesigned as often as necessary until the hypothesis is 
validated. 
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4. Theory. Finally, success: the experimental results confirm that the hypothesis is correct. The hypothesis 
now becomes a new theory about some specific aspect of nature, a scientifically acceptable general 
principle based on observed facts. After a careful analysis of the new theory, a prediction about some 
presently unknown aspect of nature can be made. 
5. Prediction. Is the prediction correct? To answer that question, the prediction must be tested by 
performing a new experiment. If the new experiment does not agree with the prediction, then the theory is 
not as general as originally thought. Perhaps it is only a special case of some other more general model of 
nature. The theory must now be modified to conform to the negative results of the experiment. The 
modified theory is then analyzed to obtain a new prediction, which is then tested by a new experiment. If 
the new experiment confirms the prediction, then there is reasonable confidence that this theory of nature 
is correct. This process of prediction and experiment continues many times. As more and more predictions 
are confirmed by experiment, mounting evidence indicates that a good model of the way nature works has 
been developed. At this point, the theory can be called a law of physics. 
 
This method of scientific reasoning demonstrates that the establishment of any theory is based on 

experiment. In fact, the success of physics lies in this agreement between theoretical models of the natural world 
and their experimental confirmation in the laboratory. A particular model of nature may be a great intellectual 
achievement but, if it does not agree with physical reality, then, from the point of view of physics, that hypothesis 
is useless. Only hypotheses that can be tested by experiment are relevant in the study of physics. 

 
 
1.2 The Realm of Physics 
Physics can be defined as the study of the entire natural or physical world. To simplify this task, the study of 
physics is usually divided into the following categories: 

I. Classical Physics 
1. Mechanics 
2. Wave Motion 
3. Heat 
4. Electricity and Magnetism 
5. Light 

II. Modern Physics 
1. Relativity 
2. Quantum Mechanics 
3. Atomic and Nuclear Physics 
4. Condensed Matter Physics 
5. Elementary Particle and High-Energy Physics 
 

Although there are other sciences of nature besides physics, physics is the foundation of these other 
sciences. For example, astronomy is the application of physics to the study of all matter beyond the earth, 
including everything from within the solar system out to the remotest galaxies. Chemistry is the study of the 
properties of matter and the transformation of that matter. Geology is the application of physics to the study of the 
earth. Meteorology is the application of physics to the study of the atmosphere. Engineering is the application of 
physics to the solution of practical problems. The science of biology, which traditionally had been considered 
independent of physics, now uses many of the principles of physics in its study of molecular biology. The health 
sciences use so many new techniques and equipment based on physical principles that even there it has become 
necessary to have an understanding of physics. 

This distinction between one science and another is usually not clear. In fact, there is often a great deal of 
overlap among them. 

 
 
1.3 Physics Is a Science of Measurement 
In order to study the entire physical world, we must first observe it. To be precise in the observation of nature, all 
the physical quantities that are observed should be measured and described by numbers. The importance of 
numerical measurements was stated by the Scottish physicist, William Thomson (1824-1907), who was made 
Baron Kelvin in 1892 and has since been referred to as Lord Kelvin: 
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I often say that when you can measure what you are speaking about, and express it in numbers, you know something about 
it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind. 

 
We can see the necessity for quantitative measurements from the following example. First, let us consider 

the following thought experiment. (A thought experiment is an experiment that we can think through, rather than 
actually performing the experiment.) Three beakers are placed on the table as shown in figure 1.3. In the first 
beaker, we place several ice cubes in water. We place boiling water in the third beaker. In the second beaker, we 
place a mixture of the ice water 
from beaker 1 and the boiling 
water from beaker 3. If you put 
your left hand into beaker 1, you 
will conclude that the ice water is 
cold. Now place your left hand 
into beaker 2, which contains the 
mixture. After coming from the 
ice water, your hand finds the 
second beaker to be hot by 
comparison. So you naturally 
conclude that the mixture is hot. 

Now take your right hand 
and plunge it into the boiling 
water of beaker 3. (This is the 
reason that this is only a thought 
experiment. You can certainly appreciate what would happen in the experiment without actually risking bodily 
harm.) You would then conclude that the water in beaker 3 is certainly hot. Now place your right hand into beaker 
2. After the boiling water, your hand finds the mixture cold by comparison, so you conclude that the mixture is 
cold. After this relatively “scientific” experiment, you find that you have contradictory conclusions. That is, you 
have found the middle mixture to be either hot or cold depending on the sequence of the measurements. 

We can therefore conclude that in this particular observation of nature, describing something as hot or cold 
is not very accurate. Unless we can say numerically how hot or cold something is, our observation of nature is 
incomplete. In practice, of course, we would use a thermometer to measure the temperature of the contents of each 
beaker and read the hotness or coldness of each beaker as a number on the thermometer. For example, the 
thermometer might read, 00C or 500C or 1000C. We would now have assigned a number to our observation of 
nature and would thus have made a precise statement about that observation. This example points out the 
necessity of assigning a number to any observation of nature. The next logical question is, “What should we 
observe in nature?” 

 
 
1.4 The Fundamental Quantities 
If physics is the study of the entire natural world, where do we begin in our observations and measurements of it? 
It is desirable to describe the natural world in terms of the fewest possible number of quantities. This idea is not 
new; some of the ancient Greek philosophers thought that the entire world was composed of only four elements − 
earth, air, fire, and water. Although today we certainly would not accept these elements as building blocks of the 
world, we do accept the basic principle that the world is describable in terms of a few fundamental quantities. 

When we look out at the world, we observe that the world occupies space, that within that space we find 
matter, and that space and matter exists within something we call time. So we will look for our observations of the 
world in terms of space, matter, and time. To measure space, we use the fundamental quantity of length. To 
measure matter, we use the fundamental quantities of mass and electrical charge. To measure time, we use the 
fundamental quantity of time itself. 

Therefore, to measure the entire physical world, we use the four fundamental quantities of length, 
mass, time, and charge. We call all the other quantities that we observe derived quantities. 

We have assigned ourselves an enormous task by trying to study the entire physical world in terms of only 
four quantities. The most remarkable part of it all is that it can be done. Everything in the world can be described 
in terms of these fundamental quantities. For example, consider a biological system, composed of very complex 
living tissue. But the tissue itself is made up of cells, and the cells are made of chemical molecules. The molecules 
are made of atoms, while the atoms consist of electrons, protons, and neutrons, which can be described in terms of 
the four fundamental quantities. 

Figure 1.3  A thought experiment on temperature. 
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We might also ask of what electrons, protons, and neutrons are made. These particles are usually 
considered to be fundamental particles, however, the latest hypothesis in elementary particle physics is that 
protons and neutrons are made of even smaller particles called quarks. And although no one has yet actually 
found an isolated quark, and indeed some theories suggest that they are confined within the particles and will 
never be seen, the quark hypothesis has successfully predicted the existence of other particles, which have been 
found. The finding of these predicted particles gives a certain amount of credence to the existence of quarks. Of 
course if the quark is ever found then the next logical question will be, “Of what is the quark made?” 

This progression from one logical question to the next in our effort to study the entire natural world is part 
of the adventure of physics. But to succeed on this adventure, we need to be precise in our observations, which 
brings us back to the subject at hand. If we intend to measure the world in terms of the four fundamental 
quantities of length, mass, time, and charge, we need to agree on some standard of measurement for each of these 
quantities. 

 
 
1.5 The Standard of Length 
The fundamental quantity of length is used to measure the location and the dimensions of any object in space. An 
object is located in space with reference to some coordinate system, as shown in figure 1.4. If the object is at the 
position P, then it can be located by moving a distance lx in the x 
direction, then a distance ly in the y direction, and finally a 
distance lz in the z direction. When many points like P are put 
together in space, they generate lines and surfaces to describe 
any object in space. That is, two points generate a line; three 
points generate a triangle which then defines a plane; four 
points generate a rectangle and when two rectangles are 
connected together they form a box or a three-dimensional 
object in space. Continuing in this way, any object in space can 
be described.   

But before we can measure the distances lx, ly, and lz, or 
for that matter, any distance, we need a standard of length that 
all observers can agree on. For example, suppose we wanted to 
measure the length of the room. We could use this text book as the standard of length. We would then place the 
text book on the floor and lay off the entire distance by placing the book end-over-end on the floor as often as 
necessary until the entire distance is covered. We might then say that the room is 25 books long. But this is not a 
very good standard of length because there are different sized books, and if you performed the measurement with 
another book, you would say that the floor has a different length. 

We could even use the tile on the floor as a standard of length. To measure the length of the room all we 
would have to do is count the number of tiles. Indeed, if you worked at laying floor tiles, this would be a very good 
standard of length. The choice of a standard of length does seem somewhat arbitrary. In fact, just think of some of 
the units of measurement that you are familiar with: 

The foot -- historically the foot was used as a standard of length and it was literally the length of the king’s 
foot. Every time you changed the king, you changed the measurement of the foot. 

The yard -- the yard was the distance from the outstretched hand of the king to the back of his neck. 
Obviously, this standard of length also changed with each king. 

The inch--the inch was the distance from the tip of the king’s thumb to the thumb knuckle. 
With these very arbitrary and constantly changing standards of length, it was obviously very difficult to make a 
measurement of length that all could agree on. 

During the French Revolution, the French National Assembly initiated a proposal to the French Academy 
of Sciences to reform the systems of weights and measures. Under the guidance of such great physicists as Joseph 
L. Lagrange and Pierre S. de Laplace, the committee agreed on a measuring system based on the number 10 and 
its multiples. In this system, the unit of length chosen was one ten-millionth of the distance s from the North Pole 
to the equator along a meridian passing through Paris, France (figure 1.5). The entire distance from the pole to the 
equator was not actually measured. Instead a geodetic survey was undertaken for 10 degrees of latitude extending 
from Dunkirk, in northern France, to Barcelona, in Spain. From these data, the distance from the pole to the 
equator was found. The meter, the standard of length, was defined as one ten-millionth of this distance. A metal 
rod with two marks scratched on it equal to this distance was made, and it was stored in Sèvres, just outside Paris. 
Copies of this rod were distributed to other nations to be used as their standard. 

Figure 1.4 The location of an object in space. 
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In time, with greater sophistication in measuring techniques, it turned out that the distance from the 
North Pole to the equator was in error, so the length of the meter could no longer represent one ten-millionth of 
that distance. But that really did not matter, as long as everyone agreed that this length of rod would be the  

     
Figure 1.5 (a) The original definition of  the meter. (b) View of the earth from space. 

 
standard of length. For years these rods were the accepted standard. However, they also had drawbacks. They 
were not readily accessible to all the nations of the world, and they could be destroyed by fire or war. A new 
standard had to be found. The standard remained the meter, but it was now defined in terms of something else. In 
1960, the Eleventh General Conference of Weights and Measures defined the meter as a certain number of 
wavelengths of light from the krypton 86 atom. 

Using a standard meter bar or a prescribed number of wavelengths indeed gives us a standard length. 
Such measurements are called direct measurements. But in addition to direct measuring procedures, an even more 
accurate determination of a quantity sometimes can be made by measuring something other than the desired 
quantity, and then obtaining the desired quantity by a calculation with the measured quantity. Such procedures, 
called indirect measuring techniques, have been used to obtain an even more precise definition of the meter. 

We can measure the speed of light c, a derived quantity, to a very great accuracy. The speed of light has 
been measured at 299,792,458 meters/second, with an uncertainty of only four parts in 109, a very accurate value 
to be sure. Using this value of the speed of light, the standard meter can now be defined. On October 20, 1983, the 
Seventeenth General Conference on Weights and Measures redefined the meter as: “The meter is the length of the 
path traveled by light in a vacuum during a time interval of 1/299,792,458 of a second.” 

We will see in chapter 3 on kinematics that the distance an object moves at a constant speed is equal to the 
product of its speed and the time that it is in motion. Using this relation the meter is defined as 

 
distance = (speed of light)(time)  

299,792,458 meters second 1 meter
second 299,792,458

  = =  
  

 

   
Hence the meter, the fundamental quantity of length, is now determined in terms of the speed of light and 

the fundamental quantity of time. The meter, thus defined, is a fixed standard of length accessible to everyone and 
is nonperishable. For everyone brought up to think of lengths in terms of the familiar inches, feet, or yards, the 
meter, abbreviated m, is equivalent to 

 
1.000 m = 39.37 in. = 3.281 ft = 1.094 yd 

 
For very precise work, the standard of length must be used in terms of its definition. For most work in a 

college physics course, however, the standard of length will be the simple meter stick. 
The system of measurements based on the meter was originally called the metric system of measurements. 

Today it is called the International System (SI) of units. The letters are written SI rather than IS because the 
official international name follows French usage, “Le Système International d’Unités.” This system of 
measurements is used by scientists throughout the world and commercially by almost all the countries of the 

Pearson Custom Publishing

22



 
Chapter 1  Introduction and Measurements                                                                                                      1-7 

world except the United States and one island in the Indian ocean. The United States is supposed to be changing 
over to this system also. 

One of the great advantages of using the meter as the standard of length is that the meter is divided into 
100 parts called centimeters (abbreviated cm). The centimeter, in turn, is divided into ten smaller divisions called 
millimeters (mm). The kilometer (abbreviated km) is equal to a thousand meters, and is used to measure very 
large distances. Thus the units of length measurement become a decimal system, that is, 

 
1 m = 100 cm 
1 cm = 10 mm 
1 km = 1000 m 

 
A further breakdown of the units of length into powers of ten is facilitated by using the following prefixes: 
 

tera (T) = 1012 
giga (G) = 109 
mega (M) = 106 
milli (m) = 10−3 
micro (µ) = 10−6 
nano (n) = 10−9 
pico (p) = 10−12 
femto (f) = 10−15 
 

Students unfamiliar with the powers of ten notation, and scientific notation in general, should consult 
appendix B. Using these prefixes, the lengths of all observables can be measured as multiples or submultiples of 
the meter. 

The decimal nature of the SI system makes it easier to use than the British engineering system, the system 
of units that is used in the United States. For example, compare the simplicity of the decimal metric system to the 
arbitrary units of the British engineering system: 

 
12 inches = 1 foot 
3 feet = 1 yard 
5280 feet = 1 mile 

 
In fact, these units are now officially defined in terms of the meter as 
 

1 foot = 0.3048 meters = 30.48 centimeters 
1 yard = 0.9144 meters = 91.44 centimeters 
1 inch = 0.0254 meters = 2.54 centimeters 
1 mile = 1.609 kilometers 

 
A complete list of equivalent measurements can be found in appendix A. 
 
 
1.6  The Standard of Mass 
The simplest definition of mass is that mass is a measure of the quantity of matter in a body. This may not be a 
particularly good definition, but it is one for which we have an intuitive grasp. Mass will be redefined more 
accurately in terms of its inertial and gravitational characteristics later. For now, let us think of the mass of a 
body as being the matter that is contained in the sum of all the atoms and molecules that make up that body. For 
example, the mass of this book is the matter of the billions upon billions of atoms that make up the pages and the 
print of the book itself. 

The standard we use to measure mass can, like the standard of length, also be quite arbitrary. In 1795, the 
French Academy of Science initially defined the standard as the amount of matter in 1000 cm3 of water at 00C and 
called this amount of mass, one kilogram. This definition was changed in 1799 to make the kilogram the amount of 
matter in 1000 cm3 of water at 40C, the temperature of the maximum density of water. However, in 1889, the new 
and current definition of the kilogram became the amount of matter in a specific platinum iridium cylinder 39 mm 
high and 39 mm in diameter. The metal alloy of platinum and iridium was chosen because it was considered to be 
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the most resistant to wear and tarnish. Copies of the cylinder (figure 1.6) are kept in the standards laboratories of 
most countries of the world. 

The disadvantage of using this cylinder as the standard 
of mass is that it could be easily destroyed and it is not readily 
accessible to every country on earth. It seems likely that 
sometime in the future, when the necessary experimental 
techniques are developed, the kilogram will be redefined in 
terms of the mass of some specified number of atoms or 
molecules, thereby giving the standard of mass an atomic 
definition. 

With the standard of mass, the kilogram, defined, any 
number of identical masses, multiple masses, or submultiple 
masses can be found by using a simple balance, as shown in 
figure 1.7. We place a standard kilogram on the left pan of the 
balance, and then place another piece of matter on the right 
pan. If the new piece of matter is exactly 1 kg, then the scale 
will balance and we have made another kilogram mass. If there 
is too much matter in the tested sample the scales will not 
balance. We then shave off a little matter from the sample until 
the scales do balance. On the other hand, if there is not enough 
matter in the sample, we add a little matter to the sample until 
the scales do balance. In this way, we can make as many one 
kilogram masses as we want. 

Any multiple of the kilogram mass can now be made 
with the aid of the original one kilogram masses. That is, if we 
want to make a 5-kg mass, we place five 1-kg masses on the left 
pan of the balance and add mass to the right pan until the scale 
balances. When this is done, we will have made a 5-kg mass. 
Proceeding in this way, we can obtain any multiple of the 
kilogram. 

To make submultiples of the kilogram mass, we cut a 1-kg mass in half, and place one half of the mass on 
each of the two pans of the balance. If we have cut the kilogram mass exactly in half, the scales will balance. If 
they do not, we shave off a little matter from one of the samples and add it to the other sample until the scales do  
balance. Two 1/2-kg 
masses thus result. 
Since the prefix kilo 
means a thousand, 
these half-kilogram 
masses each contain 
500grams (abbreviated 
g). If we now cut a 500-
g mass in half and 
place each piece on one 
of the pans of the 
balance, making of 
course whatever 
corrections that are 
necessary, we have 
two 250-g masses. 
Continuing this process by taking various combinations of cuttings and placing them on the balance, eventually 
we can make any submultiple of the kilogram. The assembly of these multiples and submultiples of the kilogram 
is called a set of masses. (Quite often, this is erroneously referred to as a set of weights.) 

We can now measure the unknown mass of any body by placing it on the left pan of the balance and adding 
any multiple, and/or submultiple, of the kilogram to the right pan until the scales balance. The sum of the 
combination of the masses placed on the right pan is the mass of the unknown body. So we can determine the mass 
of any body in terms of the standard kilogram. 

The principle underlying the use of the balance is the gravitational force between masses. (The 
gravitational force will be discussed in detail in chapter 6.) The mass on the left pan is attracted toward the center 

Figure 1.6 The standard kilogram mass. 

    
Figure 1.7   A simple balance. 
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of the earth and therefore pushes down on the left pan. The mass on the right pan is also attracted toward the 
earth and pushes down on the right pan. When the force down on the right pan is equal to the force down on the 
left pan, the scales are balanced and the mass on the right pan is equal to the mass on the left pan. Mass 
measured by a balance depends on the force of gravity acting on the mass. Hence, mass measured by a balance can 
be called gravitational mass. The balance will work on the moon or on any planet where there are gravitational 
forces. The equality of masses on the earth found by a balance will show the same equality on the moon or on any 
planet. But a balance at rest in outer space extremely far away from gravitational forces will not work at all. 

 
 
1.7  The Standard of Time 
What is time and how do we measure it? Time is such a fundamental concept that it is very difficult to define. We 
will try by defining time as a duration between the passing of events. (Do not ask me to define duration, because I 
would have to define it as the time during which something happens, and I would end up seemingly caught in 
circular reasoning. This is the way it is with fundamental quantities, they are so fundamental that we cannot 
define them in terms of something else. If we could, that something else would become the fundamental quantity.) 
As with all fundamental quantities, we must choose a standard and measure all durations in terms of that 
standard. To measure time we need something that will repeat itself at regular intervals. The number of intervals 
counted gives a quantitative measure of the duration. The simplest method of measuring a time interval is to use 
the rhythmic beating of your own heart as a time standard. Then, just as you measured a length by the number of 
times the standard length was used to mark off the unknown length, you can measure a time duration by the 
number of pulses from your heart that covers the particular unknown duration. Note that Galileo timed the 
swinging chandeliers in a church one morning by the use of his pulse, finding the time for one complete oscillation 
of the pendulum to be independent of the magnitude of that oscillation. 

In this way, we can measure time durations by the number of heartbeats counted. However, if you start 
running or jumping up and down your heart will beat faster and the time interval recorded will be different than 
when you were at rest. Therefore, for any good timing device we need something that repeats itself over and over 
again, always with the same constant time interval. Obviously, the technique used to measure time intervals 
should be invariant, and the results obtained should be the same for different individuals. One such invariant, 
which occurs day after day, is the rotation of the earth. 

It is not surprising, then, that the early technique used for measuring time was the rotation of the earth. 
One complete rotation of the earth was called a day, and the day was divided into 24 hours; each hour was divided 
into 60 minutes; and finally each minute was divided into 60 seconds. The standard of time became the second. It 
may seem strange that the day was divided into 24 hours, the hour into 60 minutes, and the minute into 60 
seconds. But remember that the very earliest recorded studies of astronomy and mathematics began in ancient 
Mesopotamia and Babylonia, where the number system was based on the number 60, rather than on the number 
10, which we base our number system on. Hence, a count of 60 of their base units was equal to 1 of their next 
larger units. When they got to a count of 120 base units, they set this equal to 2 of the larger units. Thus, a count 
of 60 seconds, their base unit, was equal to 1 unit of their next larger unit, the minute. When they got to 60 
minutes, this was equal to their next larger unit, the hour. 

Their time was also related to their angular measurements of the sky. Hence the year became 360 days, 
the approximate time for the earth to go once around the sun. They related the time for the earth to move once 
around the heavens, 360 days, to the angle moved through when moving once around a circle by also dividing the 
circle into 360 units, units that today are called angular degrees. They then divided their degree by their base 
number 60 to get their next smaller unit of angle, 1/60 of a degree, which they called a minute of arc. They then 
divided their minute by their base number 60 again to get an angle of 1 second, which is equal to 1/60 of a minute. 
The movement of the heavenly bodies across the sky became their calendar. Of course their minutes and seconds 
of arc are not the same as our minutes and seconds of time, but because of their base number 60 our 
measurements of arc and time are still based on the number 60. 

What is even more interesting is that the same committee that originally introduced the meter and the 
kilogram proposed a clock that divided the day into 10 equal units, each called a deciday. They also divided a 
quadrant of a circle (900) into a hundred parts each called the grade. They thus tried to place time and angle 
measurements into a decimal system also, but these units were never accepted by the people. 

So the second, which is 1/86,400 part of a day, was kept as the measure of time. However, it was eventually 
found that the earth does not spin at a constant rate. It is very close to being a constant value, but it does vary 
ever so slightly. In 1967, the Thirteenth General Conference of Weights and Measures decided that the primary 
standard of time should be based on an atomic clock, figure 1.8. The second is now defined as “the  
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duration of 9,192,631,770 periods (or cycles) of the radiation 
corresponding to the transition between two hyperfine levels of the 
ground state of the cesium-133 atom.” The atomic clock is located at the 
National Bureau of Standards in Boulder, Colorado. The atomic clock 
is accurate to 1 second in a thousand years and can measure a time 
interval of one millionth of a second. 

The atomic clock provides the reference time, from which 
certain specified radio stations (such as WWV in Fort Collins, 
Colorado) broadcast the correct time. This time is then transmitted to 
local radio and TV stations and telephone services, from which we 
usually obtain the time to set our watches. 

For the accuracy required in a freshman college physics course, 
the unit of time, the second, is the time it takes for the second hand on 
a nondigital watch to move one interval. 

 
 
 
1.8  The Standard of Electrical Charge 
One of the fundamental characteristics of matter is that it has not only mass but also electrical charge. We now 
know that all matter is composed of atoms. These atoms in turn are composed of electrons, protons, and neutrons. 
Forces have been found that exist between these electrons and protons, forces caused by the electrical charge that 
these particles carry. The smallest charge ever found is the charge on the electron. By convention we call it a 
negative charge. The proton contains the same amount of charge, but it is a positive charge. Most matter contains 
equal numbers of electrons and protons, and hence is electrically neutral. 

Although electrical charge is a fundamental property of matter, it is a quantity that is relatively difficult to 
measure directly, whereas the effects of electric current--the flow of charge per unit time--is much easier to 
measure. Therefore, the fundamental unit of electricity is defined as the ampere, where “the ampere is that constant 
current that, if maintained in two straight parallel conductors of infinite length, of negligible circular cross section, 
and placed one meter apart in a vacuum, would produce between these conductors a force equal to 2 × 10−7 newtons 
per meter of length.” This definition will be explained in more detail when electricity is studied in section 22.7. The 
ampere, the unit of current, is also defined as the passage of 1 coulomb of charge per second in a circuit. This 
represents a passage of 6.25 × 1018 electrons per second. Therefore, the charge on one electron is 1.60 × 10−19 
coulombs.     

 
 
1.9  Systems of Units 
When the standards of the fundamental quantities are all assembled, they are called a system of units. The 
standards for the fundamental quantities, discussed in the previous sections, are part of a system of units called 
the International System of units, abbreviated SI units. They were adopted by the Eleventh General Conference of 
Weights and Measures in 1960. This system of units refines and replaces the older metric system of units, and is 
very similar to it. Table 1.1 shows the two systems of units that will be considered. 

Let us add another 
quantity to table 1.1, namely 
the quantity of weight or force. 
In SI units this is not a 
fundamental quantity, but 
rather a derived quantity. (A 
complete definition of the 
concepts of force and weight 
will be given in chapter 4.) For 
the present, let us add it to the 
table and say the weight and 
mass of an object are related 
but not identical quantities. As already indicated, mass is a measure of the quantity of matter in a body. The 
weight of a body here on earth is a measure of the gravitational force of attraction of the earth on that mass, 
pulling the mass of that body down toward the center of the earth. In the international system, the unit of weight 
or force is called the newton, named of course after Sir Isaac Newton. 

 
Figure 1.8 The atomic clock. 

Table 1.1 
Systems of Units 

Physical Quantity International System (SI) British Engineering 
System 

Length 
Mass 
Time 
Electric current 
Electric charge 
Weight or force 

meter (m) 
kilogram (kg) 
second (s) 
ampere (A) 
coulomb (C) 
newton (N) 

foot (ft) 
slug 
second (s) 
 
 
pound (lb) 
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 An important distinction between mass and weight can easily be shown here. If you were to go to the 
moon, figure 1.9, you would find that the gravitational force on the moon is only 1/6 of the gravitational force  
found here on earth. Hence, on the moon you would only weigh 1/6 
what you do on earth. That is, if you weigh 180 lb on earth, you 
would only weigh 30 lb on the surface of the moon. Yet your mass 
has not changed at all. The thing that you call you, all the 
complexity of atoms, molecules, cells, tissue, blood, bones, and the 
like, is still the same. Your weight would have changed, but not your 
mass. The difference between mass and weight will be explained in 
much more detail in a later chapter. The unit of weight or force, the 
newton, is only placed in the table now in order to compare it to the 
next system of units. 

The system of units that you are probably accustomed to 
using is called the British engineering system of units (see table 
1.1). In that system, the unit of length is the foot. (Recall that the 
unit of a foot is now defined in terms of the standard of length, the 
meter.) The unit of time is again the second. In the British 
engineering system (BES), mass is not defined as a fundamental 
quantity; instead the weight of a body is described as fundamental, 
and its mass is derived from its weight. The fundamental unit of 
weight in the BES is defined as the pound with which we are all 
familiar. The unit of mass is derived from the unit of weight, and is 
called a slug. Whenever you hear or see the word pound it means a 
weight or a force, never a mass. The British engineering system is an 
obsolete system of units. (Even the British no longer use the British 
engineering system.) As we just pointed out, mass is a more fundamental quantity than weight. It is the same 
everywhere in the universe, while the weight would vary almost everywhere in the universe. Yet the British 
engineering system considers weight to be a fundamental quantity, which it certainly is not. This is another 
reason why the British engineering system should be replaced in the United States by the international system. 
The international system is also a better system because it is a much easier system to use and it is used by all the 
other countries in the world. 

In SI units, the unit of weight is the newton. However, if you go to the local supermarket and buy an 
average-sized can of vegetables, you will see printed on it “Net wt. 595 g.” The business sector has erroneously 
equated mass and weight by calling them the same name, grams or kilograms. What the businessman really 
means is that the can of vegetables has a mass of 595 grams. The weight of an object in SI units should be 
expressed in newtons. We will show how to deal with this new confusion later. In this book, however, whenever 
you see the word kilogram or gram it will refer to the mass of an object. 

To simplify the use of units in equations, abbreviations will be used. All unit abbreviations in SI units are 
one or two letters long and the abbreviations do not require a period following them. The name of a unit based on a 
proper name is written in lower-case letters, while its abbreviation is capitalized. All other abbreviations are 
written in lower-case letters. The abbreviations are shown in table 1.1. 

Almost all of the measurements used in this book will be in SI units. However, occasionally you will want to 
convert a unit from the British engineering system to the international system, and vice versa. In order to do this, it 
is necessary to make use of a conversion factor. 
 
 
1.10  Conversion Factors 
A conversion factor is a factor by which a quantity expressed in one set of units must be multiplied in order to 
express that quantity in different units. The numbers for a conversion factor are usually expressed as an equation, 
relating the quantity in one system of units to the same quantity in different units. Appendix A, at the back of this 
book, contains a large number of conversion factors. An example of an equation leading to a conversion factor is 

1 m = 3.281 ft 
 

If both sides of the above equality are divided by 3.281 ft we get 
 

1
ft 3.281
ft 3.281

ft 3.281
m 1

==  

 
Figure 1.9  Your weight on the moon is 
very different from your weight on earth. 
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Thus, 

1
ft 3.281

m 1
=  

 
is a conversion factor that is equal to unity. If a height is multiplied by a conversion factor, we do not physically 
change the height, because all we are doing is multiplying it by the number one. The effect, however, expresses the 
same height as a different number with a different unit. A conversion factor is also used to change a quantity 
expressed in one system of units to a value in different units of the same system. 

 
Example 1.1 

 
Converting feet to meters. The height of a building is 100.0 ft. Find the height in meters. 

To express the height h in meters, multiply the height in feet by the conversion factor that converts feet to meters, 
that is, 

 1 m = 100.0 ft  = 30.48 m
3.281 ft

 
 
 

h     

 
Notice that the units act like algebraic quantities. That is, the unit foot, which is in both the numerator and the 
denominator of the equation, divides out, leaving us with the single unit, meters. 
 

To go to this interactive example, click on this sentence. 

 
The technique to remember in using a conversion factor is that the unit in the numerator that is to be 

eliminated, must be in the denominator of the conversion factor. Then, because units act like algebraic quantities, 
identical units can be divided out of the equation immediately. 

Conversion factors should also be set up in a chain operation. This will make it easy to see which units 
cancel. For example, suppose we want to express the time T of one day in terms of seconds. This number can be 
found as follows: 

24 hr 60 min 60 s 1 day
1 day 1 hr 1 min

T
   =    

   
 

 = 86,400 s 
 
By placing the conversion factors in this sequential fashion, the units that are not wanted divide out directly and 
the only unit left is the one we wanted, seconds. This technique is handy because if we make a mistake and use the 
wrong conversion factor, the error is immediately apparent. These examples are, of course, trivial, but the 
important thing to learn is the technique. Later when these ideas are applied to problems that are not trivial, if 
the technique is followed as shown, there should be no difficulty in obtaining the correct solutions. 
 
 
1.11  Derived Quantities 
Most of the quantities that are observed in the study of physics are derived in terms of the fundamental 
quantities. For example, the speed of a body is the ratio of the distance that an object moves to the time it takes to 
move that distance. This is expressed as 

distance travelledspeed = 
time

 

=
length 
time

v   
 

Solution
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That is, the speed v is the ratio of the fundamental quantity of length to the fundamental quantity of time. Thus, 
speed is derived from length and time. For example, the unit for speed in SI units is a meter per second (m/s). 

Another example of a derived quantity is the volume V of a body. For a box, the volume is equal to the 
length times the width times the height. Thus, 

 
V = (length)(width)(height) 

 
But because the length, width, and height of the box are measured by a distance, the volume is equal to the cube of 
the fundamental unit of length L. That is, 

V = L3 
Hence, the SI unit for volume is m3. 

As a final example of a derived quantity, the density of a body is defined as its mass per unit volume, that 
is, 

ρ =   m
V

 

   
( )

= 3
mass 

length
 

     
Hence, the density is defined as the ratio of the fundamental quantity of mass to the cube of the fundamental 
quantity of length. The SI unit for density is thus kg/m3. All the remaining quantities of physics are derived in this 
way, in terms of the four fundamental quantities of length, mass, charge, and time. 

Note that the international system of units also recognizes temperature, luminous intensity, and “quantity 
of matter” (the mole) as fundamental. However, they are not fundamental in the same sense as mass, length, time, 
and charge. Later in the book we will see that temperature can be described as a measure of the mean kinetic 
energy of molecules, which is described in terms of length, mass, and time. Similarly, intensity can be derived in 
terms of energy, area, and time, which again are all describable in terms of length, mass, and time. Finally, the 
mole is expressed in terms of mass.  

These derived quantities can also be expressed in many different units. Appendix A contains conversion 
factors from almost all British engineering system of units to International system of units and vice versa. Using 
these conversion factors the student can express any fundamental or derived quantity in any unit desired. 

 
Example 1.2 

 
Converting cubic feet to cubic meters. The volume of a container is 75.0 ft3. Find the volume of the container in 
cubic meters. 

Solution
 

There are two ways to express the volume V in cubic meters. First let us multiply by the conversion factor that 
converts feet to meters. When we do this, however, we see that we have ft3 in the numerator and the conversion 
factor has only ft in the denominator. In order to cancel out the unit ft3 we have to cube the conversion factor, that 
is, 

      
 
 

3
3 31 m = 75.0 ft = 2.12 m

3.281 ft
V     

 
Notice that by cubing the conversion factor the unit ft3, which is now in both the numerator and the denominator 
of the equation, divides out, leaving us with the single unit, m3. 

A second way to make the conversion is to find a conversion factor that converts the unit ft3 directly into 
m3. As an example in Appendix A we see that 1 ft3 = 2.83 × 10−2 m3. We now use this conversion factor as  

 
− ×

= = 
 

2 3
3 3

3
2.83 10  m 75.0 ft 2.12 m

1 ft
V  

     
Notice that we get the same result either way. If you have access to the direct conversion factor, as in Appendix A, 
then use that factor. If not, you can use the simplified version as we did in the first part of this example. 
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To go to this interactive example click on this sentence. 

 
Example 1.3 

 
Converting horsepower to watts. A certain engine is rated as having a power output of 200 horsepower. Find the 
power rating of this engine in SI units. 

Although we have not yet discussed the concept of power, we can still convert a unit in one system of units to 
another system of units by using the conversion factors for those quantities. Horsepower, abbreviated hp, is a unit 
of power in the British engineering system of units. The unit of power in the international system of units is a 
watt, abbreviated W.  We find in appendix A the conversion from horsepower to watts as 1 hp = 746 W. Hence, the 
power expressed in SI units becomes  

 
=  

 

746 WP  200 hp
1 hp

 

P = 1.49 × 105 W 
 

To go to this interactive example click on this sentence. 

 
In this way, if we are given any physical quantity expressed in the British Engineering System of Units we 

can convert this quantity into SI units and then solve the problem completely in SI units. Conversely, when a 
problem is solved in SI units and the answer is desired in the British Engineering System, a conversion factor will 
allow you to convert the answer into that system of units. Most of the problems at the end of this chapter will ask 
you to convert between these two systems, so that in the later chapters we can work strictly in the International 
System of Units. As a help in converting from one set of units to another see the Interactive Tutorial #49 at the 
end of this chapter. When you open this tutorial on your computer the Conversion Calculator will allow you to 
convert from a quantity in one system of units to that same quantity in another system of units and/or to convert 
to different units within the same system of units. 

 
Figure 1.10  Learning physics at an early age. 
PEANUTS reprinted by permission of UFS, Inc. 

 
The Language of Physics 

 
Philosophy 
The search for knowledge or 
wisdom (p. ). 
 
Natural philosophy 
The study of the natural or 
physical world (p. ). 
Physics 

The Greek word for “natural” is 
physikos. Therefore, the word 
physics came to mean the study of 
the entire natural or physical world 
(p. ). 
 
Scientific method 
The application of a logical process 
of reasoning to arrive at a model of 

nature that is consistent with 
experimental results. The scientific 
method consists of five steps: (1) 
observation, (2) hypothesis, (3) 
experiment, (4) theory or law, and 
(5) prediction (p. ). 
 
Fundamental quantities 
The most basic quantities that can 

Solution
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be used to describe the physical 
world. When we look out at the 
world, we observe that the world 
occupies space, and within that 
space we find matter, and that 
space and matter exists within 
something we call time. So the 
observation of the world can be 
made in terms of space, matter, 
and time. The fundamental 
quantity of length is used to 
describe space, the fundamental 
quantities of mass and electrical 
charge are used to describe matter, 
and the fundamental quantity of 
time is used to describe time. All 
other quantities, called derived 
quantities, can be described in 
terms of some combination of the 
fundamental quantities (p. ). 
 
 
 
International System (SI) of 
units 
The internationally adopted system 
of units used by all the scientists 

and all the countries of the world 
(p. ). 
 
Meter 
The standard of length. It is 
defined as the length of the path 
traveled by light in a vacuum 
during an interval of 1/299,792,458 
of a second (p. ). 
 
Mass 
The measure of the quantity of 
matter in a body (p. ). 
 
Kilogram 
The unit of mass. It is defined as 
the amount of matter in a specific 
platinum iridium cylinder 39 mm 
high and 39 mm in diameter (p. ). 
 
Second 
The unit of time. It is defined as 
the duration of 9,192,631,770 
periods of the radiation 
corresponding to the transition 
between two hyperfine levels of the 

ground state of the cesium-133 
atom of the atomic clock (p. ). 
 
Coulomb 
The unit of electrical charge. It is 
defined in terms of the unit of 
current, the ampere. The ampere is 
a flow of 1 coulomb of charge per 
second. The ampere is defined as 
that constant current that, if 
maintained in two straight parallel 
conductors of infinite length, of 
negligible circular cross section, 
and placed one meter apart in 
vacuum, would produce between 
these conductors a force equal to 2 
× 10−7 newtons per meter of length 
(p. ). 
 
Conversion factor 
A factor by which a quantity 
expressed in one set of units must 
be multiplied in order to express 
that quantity in different units 
(p. ).

 
Questions for Chapter 1 

 
1. Why should physics have 

separated from philosophy at all? 
2. What were Aristotle’s ideas 

on physics, and what was their 
effect on science in general, and on 
physics in particular? 

3. Is the scientific method an 
oversimplification? 

4. How does a law of physics 
compare with a civil law? 

5. Is there a difference between 
saying that an experiment 
validates a law of nature and that 
an experiment verifies a law of 

nature? Where does the concept of 
truth fit in the study of physics? 

6. How does physics relate to 
your field of study? 

7. In the discussion of hot and 
cold in section 1.3, what would 
happen if you placed your right 
hand in the hot water and your left 
hand in the cold water, and then 
placed both of them in the mixture 
simultaneously? 

8. Can you think of any more 
examples that show the need for 
quantitative measurements? 

9. Compare the description of 
the world in terms of earth, air, 
fire, and water with the description 
in terms of length, mass, electrical 
charge, and time. 

10. Discuss the pros and cons of 
dividing the day into decidays. Do 
you think this idea should be 
reintroduced into society? Using 
yes and no answers, have your 
classmates vote on a change to a 
deciday. Is the result surprising? 

11. Discuss the difference 
between mass and weight. 

 
Problems for Chapter 1 

 
In all the examples and problems 
in this book we assume that whole 
numbers, such as 2 or 3, have as 
many significant figures as are 
necessary in the solution of the 
problem. 

1. The Washington National 
Monument is 555 ft high. Express 
this height in meters.   

2. The Statue of Liberty is 305 
ft high. Express this height in 
meters. 

3. A basketball player is 7 ft 
tall. What is this height in meters?   

4. A floor has an area of 144 ft2. 
What is this area expressed in m2? 

5. How many seconds are there 
in a day? a month? a year? 

6. Calculate your height in 
meters. 

7. A speed of 60.0 miles per 
hour (mph) is equal to how many 
ft/s? 

8. What is 90 km/hr expressed 
in mph? 

9. How many feet are there in 1 
km? 
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10. Express the age of the earth 
(approximately 4.6 × 109 years) in 
seconds. 

11. The speed of sound in air is 
331 m/s at 0 0C. Express this speed 
in ft/s and mph. 

12. The speedometer of a new 
car is calibrated in km/hr. If the 
speed limit is 55 mph, how fast can 
the car go in km/hr and still stay 
below the speed limit? 

13. The density of 1 g/cm3 is 
equal to how many kg/liter? 

14. A tank contains a volume of 
50 ft3. Express this volume in cubic 
meters. 

15. Assuming that an average 
person lives for 75 yrs, how many 
(a) seconds and (b) minutes are 
there in this lifetime? If the heart 
beats at an average of 70 
pulses/min, how many beats does 
the average heart have? 

16. A cube is 50 cm on each 
side. Find its surface area in m2 
and ft2 and its volume in m3 and 
ft3. 

17. The speed of light in a 
vacuum is approximately 186,000 
miles/s. Express this speed in mph 
and m/s. 

18. The distance from home 
plate to first base on a baseball 
field is 90 ft. What is this distance 
in meters? 

 
Diagram for problem 18. 

 
19. In the game of football, a 

first down is 10 yd long. What is 
this distance in meters? If the field 
is 100 yd long, what is the length of 
the field in meters? 

20. The diameter of a sphere is 
measured as 6.28 cm. What is its 
volume in cm3, m3, in.3, and ft3? 

21. The Empire State Building 
is 1245 ft tall. Express this height 
in meters, miles, inches, and 
millimeters. 

22. A drill is 1/4 in. in 
diameter. Express this in 
centimeters, and then millimeters. 

23. The average diameter of the 
earth is 7927 miles. Express this in 
km. 

 
   Diagram for problem 23. 
 
24. A 31-story building is 132 m 

tall. What is the average height of 
each story in feet? 

25. Light of a certain color has 
a wavelength of 589 nm. Express 
this wavelength in (a) pm, (b) mm, 
(c) cm, (d) m. How many of these 
589 nm waves are there in an inch? 

26. Calculate the average 
distance to the moon in meters if 
the distance is 239,000 miles. 

27. How many square meters 
are there in 1 acre, if 1 acre is 
equal to 43,560 ft2? 

28. The mass of a hydrogen 
atom is 1.67 × 10−24 g. Calculate 
the number of atoms in 1 g of 
hydrogen. 

29. How many cubic 
centimeters are there in a cubic 
inch? 

30. A liter contains 1000 cm3. 
How many liters are there in a 
cubic meter? 

31. Cells found in the human 
body have a volume generally in 
the range of 104 to 106 cubic 
microns. A micron is an older name 
of the unit that is now called a 
micrometer and is equal to 10−6 m. 
Express this volume in cubic 
meters and cubic inches. 

32. The diameter of a 
deoxyribonucleic acid (DNA) 
molecule is about 20 angstroms. 
Express this diameter in 
picometers, nanometers, 
micrometers, millimeters, 
centimeters, meters, and inches. 

Note that the old unit angstrom is 
equal to 10−10 m. 

33. A glucose molecule has a 
diameter of about 8.6 angstroms. 
Express this diameter in 
millimeters and inches. 

34. Muscle fibers range in 
diameter from 10 microns to 100 
microns. Express this range of 
diameters in centimeters and 
inches. 

35. The axon of the neuron, the 
nerve cell of the human body, has a 
diameter of approximately 0.2 
microns. Express this diameter in 
terms of (a) pm, (b) nm, (c) µm, (d) 
mm, and (e) cm. 

36. The Sears Tower in 
Chicago, the world’s tallest 
building, is 1454 ft high. Express 
this height in meters. 

37. A baseball has a mass of 
145 g. Express this mass in slugs. 

38. One shipping ton is equal to 
40 ft3. Express this volume in cubic 
meters. 

39. A barrel of oil contains 42 
U.S. gallons, each of 231 in.3. What 
is its volume in cubic meters? 

40. The main span of the 
Verrazano Narrows Bridge in New 
York is 1298.4 m long. Express this 
distance in feet and miles. 

41. The depth of the Mariana 
Trench in the Pacific Ocean is 
10,911 m. Express this depth in 
feet. 

42. Mount McKinley is 6194 m 
high. Express this height in feet. 

43. The average radius of the 
earth is 6371 km. Find the area of 
the surface of the earth in m2 and 
in ft2. Find the volume of the earth 
in m3 and ft3. If the mass of the 
earth is 5.97 × 1024 kg, find the 
average density of the earth in 
kg/m3. 

44. Cobalt-60 has a half-life of 
5.27 yr. Express this time in 
(a) months, (b) days, (c) hours, 
(d) seconds, and (e) milliseconds. 

45. On a certain European road 
in a quite residential area, the 
speed limit is posted as 40 km/hr. 
Express this speed limit in miles 
per hour. 
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46. In a recent storm, it rained 
6.00 in. of rain in a period of 2.00 
hr. If the size of your property is 
100 ft by 100 ft, find the total 
volume of water that fell on your 
property. Express your answer in 
(a) cubic feet, (b) cubic meters, 
(c) liters, and (d) gallons. 

47. A cheap wrist watch loses 
time at the rate of 8.5 seconds a 
day. How much time will the watch 

be off at the end of a month? A 
year? 

48. A ream of paper contains 
500 sheets of 8 1/2 in. by 11 in. 
paper. If the package is 1 and 7/8 
in. high, find (a) the thickness of 
each sheet of paper in inches and 
millimeters, (b) the dimensions of 
the page in millimeters, and (c) the 
area of a page in square meters 
and square millimeters. 

 

Interactive Tutorials 
49. Conversion Calculator. The 

Conversion Calculator will allow 
you to convert from a quantity in 
one system of units to that same 
quantity in another system of units 
and/or to convert to different units 
within the same system of units. 

 
To go to this interactive 

tutorial click on this sentence. 

 
  

To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 2  Vectors 
 

"COROLLARY I. A body, acted on by two forces simultaneously, will describe the 
diagonal of a parallelogram in the same time as it would describe the sides by those 
forces separately."  

                                                                              Isaac Newton - “Principia” 
 
2.1  Introduction 
Of all the varied quantities that are observed in nature, some have the characteristics of scalar quantities while 
others have the characteristics of vector quantities. A scalar quantity is a quantity that can be completely 
described by a magnitude, that is, by a number and a unit. Some examples of scalar quantities are mass, length, 
time, density, and temperature. The characteristic of scalar quantities is that they add up like ordinary numbers. 
That is, if we have a mass m1 = 3 kg and another mass m2 = 4 kg then the sum of the two masses is 
 

m = m1 + m2 = 3 kg + 4 kg = 7 kg                                                              (2.1) 
 

A vector quantity, on the other hand, is a quantity that needs both a magnitude and a direction to 
completely describe it. Some examples of vector quantities are force, displacement, velocity, and acceleration. The 
velocity of a car moving at 50 km per hour (km/hr) due east can be represented by a vector. Velocity is a vector 
because it has a magnitude, 50 km/hr, and a direction, due east. 

A vector is represented in this text book by boldface script, that 
is, A. Because we cannot write in boldface script on note paper or a 
blackboard, a vector is written there as the letter with an arrow over 
it. A vector can be represented on a diagram by an arrow. A picture of 
this vector can be obtained by drawing an arrow from the origin of a 
cartesian coordinate system, figure 2.1. The length of the arrow 
represents the magnitude of the vector, while the direction of the arrow 
represents the direction of the vector. The direction is specified by the 
angle θ that the vector makes with an axis, usually the x-axis, and is 
shown in figure 2.1. The magnitude of vector A is written as the 
absolute value of A namely |A|, or simply by the letter A without 
boldfacing. One of the defining characteristics of vector quantities is 
that they must be added in a way that takes their direction into 
account.                                                                                                           
 
 
2.2  The Displacement 

Probably the simplest vector that can be discussed is the displacement vector. Whenever a body moves 
from one position to another it undergoes a displacement. The displacement can be represented as a vector that 
describes how far and in what direction the body has been displaced from its original position. The tail of the 
displacement vector is located at the position where the displacement started, and its tip is located at the position  
at which the displacement ended. For example, if you walk 3 km due east, 
this walk can be represented as a vector that is 3 units long and points 
due east. It is shown as d1 in figure 2.2. This is an example of a 
displacement vector. Suppose you now walk 4 km due north. This distance 
of 4 km in a northerly direction can be represented as another 
displacement vector d2, which is also shown in figure 2.2. The result of 
these two displacements is a final displacement vector d that shows the 
total displacement from the original position.          

We now ask how far did you walk? Well, you walked 3 km east and 
4 km north and hence you have walked a total distance of 7 km. But how 
far are you from where you started? Certainly not 7 km, as we can easily 
see using a little high school geometry. In fact the final displacement d is 
a vector of magnitude d and that distance d can be immediately 
determined by simple geometry. Applying the Pythagorean theorem to the 
right triangle of figure 2.2 we get 

 

 
Figure 2.1  Representation of a vector. 

 
Figure 2.2  The displacement 

vector. 

x

y

A
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2 2
1 2d d d= +                                                                                 (2.2) 

( ) ( )2 2 23 km 4 km 25 kmd = + =  
and thus, 

d = 5 km 
 

Even though you have walked a total distance of 7 km, you are only 5 km away from where you started. 
Hence, when these vector displacements are added 

d = d1 + d2                                                                                (2.3) 
 

we do not get 7 km for the magnitude of the final displacement, but 5 km instead. The displacement is thus a 
change in the position of a body from its initial position to its final position. Its magnitude is the distance between 
the initial position and the final position of the body. 

It should now be obvious that vectors do not add like ordinary scalar numbers. In fact, all the rules of 
algebra and arithmetic that you were taught in school are the rules of scalar algebra and scalar arithmetic, 
although the word scalar was probably never used at that time. To solve physical problems associated with vectors 
it is necessary to deal with vector algebra. 
 
 
2.3  Vector Algebra - The Addition of Vectors 
Let us now add any two arbitrary vectors a and b. The result of adding the two vectors a and b forms a new 
resultant vector R, which is the sum of a and b. This can be shown graphically by laying off the first vector a in 
the horizontal direction and then placing the tail of the second vector b at the tip of vector a, as shown in figure 
2.3. 

The resultant vector R is drawn from the origin of the first vector to 
the tip of the last vector. The resultant vector is written mathematically as 

 
R =  a + b                                                  (2.4) 

 
Remember that in this sum we do not mean scalar addition. The resultant 
vector is the vector sum of the individual vectors a and b. 

We can add these vectors graphically, with the aid of a ruler and a  
protractor. First, we need to choose a scale such that a unit distance on the 
graph paper corresponds to a unit of magnitude of the vector. Using this 
scale, we lay off the length that corresponds to the magnitude of vector a in 
the x-direction with a ruler. Then, at the tip of vector a, place the center of 
the protractor and measure the angle φ that vector b makes with the x-axis. Mark that direction on the paper. 
Using the ruler, measure off the length of vector b in the marked direction, as shown in figure 2.4. Now draw a  
line from the tail of vector a to the tip of vector b. This is the 
resultant vector R. Take the ruler and measure the length of 
vector R from the diagram. This length R is the magnitude of 
vector R. Using the protractor, measure the angle θ between R 
and the x-axis — this angle θ is the direction of the resultant 
vector R. 

Although a vector is a quantity that has both magnitude 
and direction, it does not have a position. Consequently a vector 
may be moved parallel to itself without changing the 
characteristics of the vector. Because the magnitude of the moved 
vector is still the same, and its direction is still the same, the 
vector is the same. 

Hence, when adding vectors a and b, we can move vector 
a parallel to itself until the tip of a touches the tip of b. Similarly, we can move vector b parallel to itself until the 
tip of b touches the tail end of the top vector a. In moving the vectors parallel to themselves we have formed a 
parallelogram, as shown in figure 2.5.  

From what was said before about the resultant of a and b, we can see that the resultant of the two vectors 
is the main diagonal of the parallelogram formed by the vectors a and b, hence we call this process the 
parallelogram method of vector addition. It is sometimes stated as part of the definition of a vector, that 
vectors obey the parallelogram law of addition. Note from the diagram that 

 
Figure 2.3  The addition of 

vectors. 
 

 
Figure 2.4  The graphical addition of 

vectors. 
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 R = a + b = b + a                                                                          (2.5) 

 
that is, vectors can be added in any order. Mathematicians would say vector addition is commutative. 

 
Figure 2.5  The addition of vectors by the parallelogram method. 

 
 
2.4  Vector Subtraction -- The Negative of a Vector 
If we are given a vector a, as shown in figure 2.6, then the vector minus a (−a) is a vector of the same magnitude 
as a but in the opposite direction. That is, if vector a points to the right, then the vector −a points to the left.  
Vector −a is called the negative of the vector a. By defining the 
negative of a vector in this way, we can now determine the process 
of vector subtraction. The subtraction of vector b from vector a is 
defined as 

 a − b = a + (−b)                                    (2.6) 
 

In other words, the subtraction of b from a is equivalent to adding 
vector a and the negative vector (−b). This is shown graphically in figure 2.7(a) as the vector a − b. If we complete 
the parallelogram for the addition of a + b, we see that we can move the vector a − b parallel to itself until it 
becomes the minor diagonal of the parallelogram, figure 2.7(b).  

            
a

b

a

b
a + b

a - b

 
                                             (a)                                                            (b)                

Figure 2.7  The subtraction of vectors. 
 
 
2.5  Addition of Vectors by the Polygon Method 
To find the sum of any number of vectors graphically, we use the polygon method. In the polygon method, we add 
each vector to the preceding vector by placing the tail of one vector to the head of the previous vector, as shown in 
figure 2.8. The resultant vector R is the sum of all these vectors. That is, 

 
 R = a + b + c + d                                                                          (2.7) 

 
We find R by drawing the vector from the origin of the coordinate system to the tip of the final vector, as shown in 
figure 2.8. Although this set of vectors could represent forces, velocities, and the like, it is sometimes easier for the 
beginning student to visualize them as though they were displacement vectors. It is easy to see from the figure 
that if a, b, c, and d were individual displacements, R would certainly be the resultant displacement of all the 
individual displacements. 

 

 
Figure 2.6  The negative of a vector. 

. 
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Figure 2.8  Addition of vectors by the 

 polygon method. 
 

Vectors are usually added analytically or mathematically. In order to do that, we need to define the 
components of a vector. However, to discuss the components of a vector, we first need a brief review of 
trigonometry. 
 
 
2.6  Review of Trigonometry 
Although we assume that everybody reading this book has been exposed to the fundamentals of trigonometry, the 
essential ideas and definitions of trigonometry will now be reviewed. 

Consider the right triangle shown in figure 2.9. It has sides a and b and hypotenuse c. Side a is called the                      
side adjacent to the angle θ (theta), and the side b is called the side opposite to the angle θ. The trigonometric  
functions, defined with respect to this triangle, are nothing more than ratios of the 
different sides of the triangle. The sine function is defined as the ratio of the opposite 
side of the triangle to the hypotenuse of the triangle, that is 

 
opposite sidesine  =
hypotenuse

θ                                                  (2.8) 

or     

sin b
c

θ =                                                          (2.9)                       

 
The cosine function is defined as the ratio of the adjacent side of the triangle to the 
hypotenuse of the triangle, 

adjacent sidecosine  =
hypotenuse

θ                                       (2.10) 

or 

cos a
c

θ =                                                                               (2.11) 

 
The tangent function is defined as the ratio of the opposite side of the triangle to the adjacent side of the 
triangle, 

opposite sidetangent  =
adjacent side

θ                                                                   (2.12) 

or 

tan b
a

θ =                                                                             (2.13) 

 
Figure 2.9 A simple  

right triangle. 
 

b
c

a
θ
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Let us now review how these simple trigonometric functions are used. Assuming that the hypotenuse c of 

the right triangle and the angle θ that the hypotenuse makes with the x-axis are known, we want to determine the 
lengths of sides a and b of the triangle. From the definition of the cosine function, 

 

cos a
c

θ =                                                                               (2.11) 

 
we can find the length of side a by multiplying both sides of equation 2.11 by c, that is, 
 

  a = c cos θ                                                                             (2.14) 
 

Example 2.1 
 

Using the cosine function to determine a side of the triangle. If the hypotenuse c is equal to 10.0 cm and the angle θ 
is equal to 60.00, find the length of side a. 

Solution
 

The length of side a is found from equation 2.14 as 
 

a = c cos θ = (10.0 cm) cos 60.00 = (10.0 cm)(0.500) = 5.00 cm 
 

(We assume here that anyone can compute the cos 60.00 with the aid of a hand-held calculator.) 
 

To go to this interactive example click on this sentence. 

To find side b of the triangle we use the definition of the sine function: 
 

sin b
c

θ =                                                                                (2.9) 

Multiplying both sides of equation 2.9 by c we obtain 
  b = c sin θ                                                                           (2.15) 

 
Example 2.2 

 
Using the sine function to determine a side of the triangle. The hypotenuse c of a right triangle is 10.0 cm long, and 
the angle θ is equal to 60.00. Find the length of side b. 

Solution
 

The length of side b is found from equation 2.15 as 
 

b = c sin θ = 10.0 cm sin 60.00 = 10.0 cm (0.866) = 8.66 cm 
 

To go to this interactive example click on this sentence. 

 
 

Therefore, if the hypotenuse and angle θ of a right triangle are given, the lengths of the sides a and b of that 
triangle can be determined by simple trigonometry. 

Suppose that the lengths of sides a and b of a right triangle are given and we want to find the hypotenuse c 
and the angle θ of that triangle, as shown in figure 2.9. The hypotenuse is found by the Pythagorean theorem 
from elementary geometry which says that the square of the hypotenuse of a right triangle is equal to the sum of 
the squares of the other two sides. Hence 

c2 = a2 + b2                                                                            (2.16) 
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and, 
2 2c a b= +                                                                            (2.17) 

 
The angle θ is found from the definition of the tangent function, 

 

tan b
a

θ =                                                                               (2.13) 

 
Using the inverse of the tangent function, sometimes called the arctangent, the angle θ becomes 
 

1tan b
a

θ −=                                                                            (2.18) 

 
Example 2.3 

 
Using the Pythagorean theorem and the inverse tangent. The lengths of two sides of a right triangle are a = 3.00 cm 
and b = 4.00 cm. Find the hypotenuse of the triangle and the angle θ. 

Solution
 

The hypotenuse of the triangle is found from equation 2.17 as 
 

( ) ( )2 22 2 3.00 cm 4.00 cm 5.00 cmc a b= + = + =  
 

and the angle θ is found from equation 2.18 as 
 

1 1 1 04.00 cmtan tan tan 1.33 53.1
3.00 cm

b
a

θ − − −= = = =  

 
To go to this interactive example click on this sentence. 

 
Therefore, if the lengths of the sides a and b of a right triangle are known we can easily calculate the 

hypotenuse and angle θ. We will repeatedly use these elementary concepts of trigonometry in the discussion of the 
components of a vector. 
 
  
2.7  Resolution of a Vector into Its Components 
An arbitrary vector a is drawn onto an x,y-coordinate system, as in figure 2.10. 
Vector a makes an angle θ with the x-axis. To find the x-component ax of vector a, 
we project vector a down onto the x-axis, that is, we drop a perpendicular from 
the tip of a to the x-axis. One way of visualizing this concept of a component of 
a vector is to place a light beam above vector a and parallel to the y-axis. The 
light hitting vector a will not make it to the x-axis, and will therefore leave a 
shadow on the x-axis. We call this shadow on the x-axis the x-component of vector 
a and denote it by ax. The component is shown as the light red line on the x-axis 
in figure 2.10. 

In the same way, we can determine the y-component of vector a, ay, by 
projecting a onto the y-axis in figure 2.10. That is, we drop a perpendicular from 
the tip of a onto the y-axis. Again, we can visualize this by projecting light, which 
is parallel to the x-axis, onto vector a. The shadow of vector a on the y-axis is the 
y-component ay, shown in figure 2.10 as the light red line on the y-axis. 

                                                                                                                                    Figure 2.10  Defining the 
                                                                                                                                        components of a vector. 
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The components of the vector are found mathematically by noting that the vector and its components 
constitute a triangle, as seen in figure 2.11. From trigonometry, we find the x-component of a from 

 

cos xa
a

θ =                                                   (2.19) 

 
Solving for ax, the x-component of vector a obtained is 
 

 ax = a cos θ                                                (2.20) 
We find the y-component of vector a from    

sin ya
a

θ =                                                   2.21) 

                                                                                                                                            Figure 2.11 
Finding the components           

of a vector mathematically.  
Hence, the y-component of vector a is  

 ay = a sin θ                                                                         (2.22) 
 

Example 2.4 
 

Finding the components of a vector. The magnitude of vector a is 15.0 units and the vector makes an angle of 35.00 
with the x-axis. Find the components of a. 

Solution
 

The x-component of vector a, found from equation 2.20, is 
 

ax = a cos θ = (15.0 units) cos 35.00 = 12.3 units 
 

The y-component of a, found from equation 2.22, is 
 

ay = a sin θ = (15.0 units) sin 35.00 = 8.60 units 
 

To go to this interactive example click on this sentence. 

 
 

What do these components of a vector represent physically? If vector a is a displacement, then ax would be 
the distance that the object is east of its starting point and ay would be the distance north of it. That is, if you 
walked a distance of 15.0 km in a direction that is 35.00 north of east, you would be 12.3 km east of where you 
started from and 8.60 km north of where you started from. If, on the other hand, vector a were a force of 15.0 N 
applied at an angle of 35.00 to the x-axis, then the x-component ax is equivalent to a force of 12.3 N in the x-
direction, while the y-component ay is equivalent to a force of 8.60 N in the y-direction. 
 

 
2.8  Determination of a Vector from Its Components 
If the components ax and ay of a vector are given, and we want to find the vector a 
itself, that is, its magnitude a and its direction θ, then the process is the inverse 
of the technique used in section 2.7. The components ax and ay of vector a are 
seen in figure 2.12. If we form the triangle with sides ax and ay, then the 
hypotenuse of that triangle is the magnitude a of the vector, and is determined by 
the Pythagorean theorem as 

a2 = ax2 + ay2                                       (2.23) 
      
 

Figure 2.12  Determining a vector  
from its components. 
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Hence, the magnitude of vector a is 
                   2 2

x ya a a= +                                                                             (2.24) 
 

It is thus very simple to find the magnitude of a vector once its components are known. 
To find the angle θ that vector a makes with the x-axis we use the definition of the tangent, namely 
 

opposite sidetangent  =
adjacent side

θ                                                                (2.12) 

 
For the simple triangle of figure 2.12, the opposite side is ay and the adjacent side is ax. Therefore, 
 

tan y

x

a
a

θ =                                                                            (2.25) 

We find the angle θ by using the inverse tangent, as 
1tan y

x

a
a

θ −=                                                                        (2.26) 

 
Example 2.5 

 
Finding a vector from its components. The components of a certain vector are given as ax = 13.5 and ay = 7.45. Find 
the magnitude of the vector and the angle θ that it makes with the x-axis. 

Solution
 

The magnitude of vector a, found from equation 2.24, is 
 

( ) ( )2 22 2 13.5 7.45x ya a a= + = +  
  = 15.4 

The angle θ, found from equation 2.26, is 

    1 1 17.45tan tan tan 0.552
13.5

y

x

a
a

θ − − −= = =  

= 28.90 
 

Therefore, the magnitude of vector a is 15.4 and the angle θ is 28.90. 
 

To go to this interactive example click on this sentence. 

 
 
The techniques developed here for finding the components of a vector from its magnitude and direction, 

and finding the magnitude of a vector and its direction from its components will be very useful later for the 
addition of any number of vectors. 

The components of a vector can also be found along axes other than the traditional horizontal and vertical 
ones. A coordinate system can be orientated any way we choose. For example, suppose a block is placed on an 
inclined plane that makes an angle θ with the horizontal, as shown in figure 2.13. Let us find the components of 
the weight of the block parallel and perpendicular to the inclined plane.  

We draw in a set of axes that are parallel and perpendicular to the inclined plane, as shown in figure 2.13, 
with the positive x-axis pointing down the plane and the positive y-axis perpendicular to the plane. To find the 
components parallel and perpendicular to the plane, we draw the weight of the block as a vector pointed toward 
the center of the earth. The weight vector is therefore perpendicular to the base of the inclined plane. To find the 
component of w perpendicular to the plane, we drop a perpendicular line from the tip of vector w onto the negative 
y-axis. This length w⊥ is the perpendicular component of vector w. Similarly, to find the parallel component of w, 
we drop a perpendicular line from the tip of w onto the positive x-axis. This length w|| is the parallel component of 
the vector w. 
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θ

θ x

y

w

w
||w

|−

                                  
Figure 2.13  Components of the weight parallel                       Figure 2.14  Comparison of two triangles.    
          and perpendicular to the inclined plane. 

 
The angle between vector w and the perpendicular axis is also the inclined plane angle θ, as shown in the 

comparison of the two triangles in figure 2.14. (Figure 2.14 is an enlarged view of the two triangles of figure 2.13). 
In triangle I, the angles must add up to 1800. Thus, 

θ + α + 900 = 1800                                                                   (2.27) 
while for triangle II 

β + α + 900 = 1800                                                                   (2.28) 
From equations 2.27 and 2.28 we see that 

β = θ                                                                                  (2.29) 
 

This is an important relation that we will use every time we use an inclined plane. 
 

Example 2.6 
 

Components of the weight perpendicular and parallel to the inclined plane. A 100-N block is placed on an inclined 
plane with an angle θ = 50.00, as shown in figure 2.13. Find the components of the weight of the block parallel and 
perpendicular to the inclined plane. 

Solution
 

We find the perpendicular component of w from figure 2.13 as 
 

w⊥ = w cos θ                                                                           (2.30) 
      = 100 N cos 50.00 = 64.3 N    

The parallel component is 
w|| = w sin θ                                                                          (2.31)  

      = 100 N sin 50.00 = 76.6 N     
 

To go to this interactive example click on this sentence. 

 
 

One of the interesting things about this inclined plane is that the component of the weight parallel to the 
inclined plane supplies the force responsible for making the block slide down the plane. Similarly, if you park your 
car on a hill with the gear in neutral and the emergency brake off, the car will roll down the hill. Why? You can 
now see that it is the component of the weight of the car that is parallel to the hill that essentially pushes the car 
down the hill. That force is just as real as if a person were pushing the car down the hill. That force, as can be seen 
from equation 2.31, is a function of the angle θ. If the angle of the plane is reduced to zero, then 

 
w|| = w sin 00 = 0 
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Thus, we can reasonably conclude that when a car is not on a hill (i.e., when θ = 00) there is no force, due to 
the weight of the car, to cause the car to move. Also note that the steeper the hill, the greater the angle θ, and 
hence the greater the component of the force acting to move the car down the hill. 
 
 
2.9  The Addition of Vectors by the Component Method 
A very important technique for the addition of vectors is the addition of vectors by the component method. 
Let us assume that we are given two vectors, a and b, and we want to find their vector sum. The sum of the 
vectors is the resultant vector R given by 

R = a + b                                                                               (2.32) 
 

and is shown in figure 2.15. We determine R as follows. First, we find the components ax and ay of vector a by  

     

θ

RRy

x

y

R x
0

 
(a)                                                     (b) 

Figure 2.15  The addition of vectors by the component method. 
 

making the projections onto the x- and y-axes, respectively. To find the components of the vector b, we again make 
a projection onto the x- and y-axes, but note that the tail of vector b is not at the origin of coordinates, but rather 
at the tip of a. So both the tip and the tail of b are projected onto the x-axis, as shown, to get bx, the x-component of 
b. In the same way, we project b onto the y-axis to get by, the y-component of b. All these components are shown in 
figure 2.15(a). 

The resultant vector R is given by equation 2.32, and because R is a vector it has components Rx and Ry, 
which are the projections of R onto the x- and y-axes, respectively. They are shown in figure 2.15(b). Now let us go 
back to the original diagram, figure 2.15(a), and project R onto the x-axis. Here Rx is shown a little distance below 
the x-axis, so as not to confuse Rx with the other components that are already there. Similarly, R is projected onto 
the y-axis to get Ry. Again Ry is slightly displaced from the y-axis, so as not to confuse Ry with the other 
components already there. 

Look very carefully at figure 2.15(a). Note that the length of Rx is equal to the length of ax plus the length 
of bx. Because components are numbers and hence add like ordinary numbers, this addition can be written simply 
as 

 Rx = ax + bx                                                                              (2.33) 
 

That is, the x-component of the resultant vector is equal to the sum of the x-components of the individual vectors. 
In the same manner, look at the geometry on the y-axis of figure 2.15(a). The length Ry is equal to the sum 

of the lengths of ay and by, and therefore 
 Ry = ay + by                                                                             (2.34) 

 
Thus, the y-component of the resultant vector is equal to the sum of the y-components of the individual vectors. We 
demonstrated the addition of vectors for only two vectors because it is easier to see the results in figure 2.15 for 
two vectors than it would be for many vectors. However, the technique is the same for the addition of any number 
of vectors. For the general case, where there are many vectors, equations 2.33 and 2.34 for Rx and Ry can be 
generalized to 

 Rx = ax + bx + cx + dx + …                                                                (2.35) 
and 

Ry = ay + by + cy + dy + …                                                                (2.36) 

Pearson Custom Publishing

44



Chapter 2  Vectors                                                                                                                                                   2-11 

 
The plus sign and the dots that appear at the far right in equations 2.35 and 2.36 indicate that additional 
components can be added for any additional vectors. 

We now have Rx and Ry, the components of the resulting vector R. But if we know the components of R, we 
can find the magnitude of R by using the Pythagorean theorem, that is, 

 
2 2

x yR R R= +                                                                           (2.37) 
 

The angle θ in figure 2.15(b), found from the geometry, is 

tan y

x

R
R

θ =                                                                             (2.38) 

Thus, 
1tan y

x

R
R

θ −=                                                                             (2.39) 

 
where Rx and Ry are given by equations 2.35 and 2.36. Thus, we have found the magnitude R and the direction θ of 
the resultant vector R. Therefore, the sum of any number of vectors can be determined by the component method 
of vector addition. 

 
Example 2.7 

 
The addition of vectors by the component method. Find the resultant of the following four vectors: 
 

A = 100, θ1 = 30.00 
B = 200, θ2 = 60.00 
C = 75.0, θ3 = 1400 
D = 150, θ4 = 2500 

Solution
 

The four vectors are drawn in figure 2.16. Because any vector can be moved 
parallel to itself, all the vectors have been moved so that they are drawn as 
emanating from the origin. Before actually solving the problem, let us first 
outline the solution. To find the resultant of these four vectors, we must first 
find the individual components of each vector, then we find the x- and y-
components of the resulting vector from 

 
Rx = Ax + Bx + Cx + Dx                                   (2.35) 
Ry = Ay + By + Cy + Dy                                    (2.36) 

 
We then find the resulting vector from 
 

2 2
x yR R R= +                                           (2.37) 

Figure 2.16  Addition of four vectors. 
and 

1tan y

x

R
R

θ −=                                                                              (2.39) 

 
The actual solution of the problem is found as follows: we find the individual x-components as 
 

Ax = A cos θ1 = 100 cos 30.00 = 100(0.866) =    86.6 
Bx = B cos θ2 = 200 cos 60.00 = 200(0.500) =  100.0 
Cx = C cos θ3 =   75 cos 1400 =   75(−0.766) =  −57.5 
Dx = D cos θ4 = 150 cos 2500 = 150(−0.342) =  −51.3 

                                                  Rx = Ax + Bx + Cx + Dx =  77.8 

x-x

y

-y
D

C

B

A
θ4

θ3

θ2

θ1
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whereas the y-components are 
Ay = A sin θ1 = 100 sin 30.00 = 100(0.500) =      50.0 
By = B sin θ2 = 200 sin 60.00 = 200(0.866) =    173.0 
Cy = C sin θ3 =  75 sin 1400   =   75(0.643)  =     48.2 
Dy = D sin θ4 = 150 sin 2500 = 150(−0.940) = −141.0 

                                                   Ry = Ay + By + Cy + Dy =  130.2 
 
The x- and y-components of vector R are shown in figure 2.17. Because Rx and Ry are both positive, we find vector 
R in the first quadrant. If Rx were negative, R would have been in the second quadrant. It is a good idea to plot the 
components Rx and Ry for any addition so that the direction of R is immediately apparent. 

We find the magnitude of the resultant vector from equation 2.37 as 
 

( ) ( )2 22 2 77.8 130.2 23,004.8x yR R R= + = + =  
= 152 

 
The angle θ that vector R makes with the x-axis is found as 
 

1 1 1130.2tan tan tan 1.674
77.8

y

x

R
R

θ − − −= = =  

= 59.10 
as is seen in figure 2.17. 

It is important to note here that the components Cx, Dx, and Dy are 
negative numbers. This is because Cx and Dx lie along the negative x-axis and 
Dy lies along the negative y-axis. We should note that in the solution of the 
components of the vector C in this problem, the angle of 1400 was entered 
directly into the calculator to give the solution for the cosine and sine of that 
angle. The calculator automatically gives the correct sign for the components if 
we always measure the angle from the positive x-axis.1   

 
To go to this interactive example click on this sentence. 

 
 
 

Figure 2.17  The resultant vector. 

 
 

Example 2.8 
 

The necessity of taking the wind velocity into account when flying an airplane. An airplane is flying due east from 
city A to city B with an airspeed of 250 km/hr. A wind is blowing from the northwest at 75.0 km/hr. Find the 
velocity of the airplane with respect to the ground. 

Solution
 

The velocity of the plane with respect to the air is shown as the vector vPA in figure 2.18. If there were no wind 
present, the plane would fly in a straight line from city A to city B. However, there is a wind blowing and it is 
shown as the vector vAG, the velocity of air with respect to the ground. This wind blows the plane away from the 
straight line motion from A to B. The total velocity of the plane with respect to the ground is the vector sum of vPA 
and vAG. That is, 

vPG = vPA + vAG 
                                                           
1  We can also measure the angle that the vector makes with any axis other than the positive x-axis. For example, instead of using the angle of 
1400 with respect to the positive x-axis, an angle of 400 with respect to the negative x-axis can be used to describe the direction of vector C. The 
x-component of vector C would then be given by Cx = C cos 400 = 75.0 cos 400 = 57.5. Note that this is the same numerical value we obtained 
before, however the answer given by the calculator is now positive. But as we can see in figure 2.16, Cx is a negative quantity because it lies 
along the negative x-axis. Hence, if you do not use the angle with respect to the positive x-axis, you must add the positive or negative sign that 
is associated with that component. In most of the problems that will be covered in this text, we will measure the angle from the positive x-axis 
because of the simplicity of the calculation. However, whenever it is more convenient to measure the angle from any other axis, we will do so. 

θ

RRy

x

y

R x
0
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A wind from the northwest makes an angle of −450 or +3150 with the positive x-axis. We find the x-component of 
the resulting velocity as 

(vPA)x = vPA cos θ2 = 250 km/hr cos 00      = 250 km/hr 
(vAG)x = vAG cos θ1 = 75.0 km/hr cos 3150    =   53.0 km/hr 

                 (vPG)x = (vPA)x + (vAG)x = 303 km/hr 
 

 
Figure 2.18  When flying an airplane, the velocity of the wind must be taken into account. 

 
While the y-component of the resulting velocity is 
 

(vPA)y = vPA sin θ2 = 250 km/hr sin 00      =   00.0 km/hr 
(vAG)y = vAG sin θ1 = 75.0 km/hr sin 3150 = −53.0 km/hr 
                              (vPG)y = (vPA)y + (vAG)y = −53.0 km/hr 

 
The magnitude of the resulting velocity of the plane with respect to the ground is 

 

( ) ( )
22

PG PG PGx yv v v  = +     

   ( ) ( )2 2303 km/hr 53.0 km/hr= + −  
      = 308 km/hr 

 
Even though the aircraft airspeed indicator is reading 250 km/hr, the aircraft is actually moving at 308 km/hr with 
respect to the ground because of the wind. The angle that the velocity vector vPG makes with the positive x-axis is 

( )
( )

PG1

PG

tan y

x

v
v

θ −=  

1 53.0 km/hrtan
303 km/hr

θ − −
=  

 = −9.930 
 

Thus the direction of the aircraft as it moves over the ground is 9.930 south of east. If the pilot does not make a 
correction, he or she will not arrive at city B as expected. 
 

To go to this interactive example click on this sentence. 

 
 

Example 2.9 
 

The zero vector. Given the two vectors 
A = 55.8, θ1 = 35.00 
B = 84.7, θ2 = 1550 

 

Pearson Custom Publishing

47



2-14                                                                                                                                                                 Mechanics 

Find the vector C that makes the sum of these vectors equal to zero. 

Solution
 

For the sum of all the vectors to be zero, the resultant must be equal to zero. That is,  
 

R = A + B + C = 0 
 
If R is to be zero, then its components must also be zero, hence 
 

Rx = Ax + Bx + Cx = 0 
 

and hence the x-component of the vector C that makes the sum equal to zero is  
  

Cx = −(Ax + Bx) 
Similarly, for the y-component 

Ry = Ay + By + Cy = 0 
 

and hence the y-component of the vector C that makes the sum equal to zero is 
 

Cy = −(Ay + By) 
The x-components are  

Ax = A cos θ1 = 55.8 cos 35.00 = 55.8(0.819) =   45.7 
Bx = B cos θ2 = 84.7 cos 1550 = 84.7(0.500) =  −76.8 

                       Cx = −(Ax + Bx) = −(−31.1) = 31.1 
whereas the y-components are 
 

Ay = A sin θ1 = 55.8 sin 35.00 = 55.8(0.574) = 32.0 
By = B sin θ2 = 84.7 sin 1550 = 84.7(0.423) =  35.8 

                                                             Cy = −(Ay + By) =  −(67.8) 
 
Because Cx is positive and Cy is negative, the vector C is in the fourth quadrant. We find the magnitude of the 
vector C as 

( ) ( )2 22 2 31.1 67.8 5564.05x yC C C= + = + − =  
= 74.6 

 
The angle θ that vector C makes with the x-axis is found as 

 
1 1 167.8tan tan tan 2.180

31.1
y

x

C
C

θ − − −−
= = = −  

= −65.40   
 

Hence the vector C, that when added to the vectors A and B gives a resultant of 0, has a magnitude C = 74.6 and 
is located in the fourth quadrant at an angle of −65.40, or +294.60 with respect to the positive x-axis. 
 

To go to this interactive example click on this sentence. 

 
 
 

The Language of Physics 
 

Scalar 
A scalar quantity is a quantity that 
can be completely described by a 
magnitude, that is, by a number 
and a unit (p. ). 

Vector 
A vector quantity is a quantity that 
needs both a magnitude and 
direction to completely describe it 
(p. ). 

 
Resultant 
The vector sum of any number of 
vectors is called the resultant vector 
(p. ). 
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Parallelogram method of vector 
addition 
The main diagonal of a 
parallelogram is equal to the 
magnitude of the sum of the vectors 
that make up the sides of the 
parallelogram (p. ). 
 
Sine function 
The ratio of the length of the 
opposite side to the length of the 
hypotenuse in a right triangle (p. ). 
 
Cosine function 
The ratio of the length of the 
adjacent side to the length of the 
hypotenuse in a right triangle (p. ). 
 
 

Tangent function 
The ratio of the length of the 
opposite side of a right triangle to 
the length of the adjacent side (p. ). 
 
Pythagorean theorem 
The sum of the squares of the 
lengths of two sides of a right 
triangle is equal to the square of 
the length of the hypotenuse (p. ). 
 
Component of a vector 
The projection of a vector onto a 
specified axis. The length of the 
projection of the vector onto the x-
axis is called the x-component of the 
vector. The length of the projection 
of the vector onto the y-axis is 
called the y-component of the vector 
(p. ). 

 
The addition of vectors by the 
component method 
The x-component of the resultant 
vector Rx is equal to the sum of the 
x-components of the individual 
vectors, while the y-component of 
the resultant vector Ry is equal to 
the sum of the y-components of the 
individual vectors. The magnitude 
of the resultant vector is then found 
by the Pythagorean theorem 
applied to the right triangle with 
sides Rx and Ry. The direction of the 
resultant vector is found by 
trigonometry (p. ). 
 
 

 
Summary of Important Equations 

 
Vector addition is commutative 

R =  a + b = b + a         (2.5) 
 
Subtraction of vectors 

   a − b = a + (−b)           (2.6) 
 
Addition of vectors 

  R = a + b + c + d            (2.7) 
 
Definition of the sine  

  opposite sidesine  =
hypotenuse

θ          (2.8) 

                    
Definition of the cosine 

adjacent sidecosine  =
hypotenuse

θ     (2.10) 

                                  
Definition of the tangent 

 opposite sidetangent  =
adjacent side

θ     (2.12) 

                                         
Pythagorean theorem 

  2 2c a b= +                (2.17) 
 
x-component of a vector 

  ax = a cos θ              (2.20) 
 
y-component of a vector 

     ay = a sin θ             (2.22) 
   
 
Magnitude of a vector 

         2 2
x ya a a= +          (2.24) 
 

Direction of a vector 

      1tan y

x

a
a

θ −=             (2.26) 

                      
x-component of resultant vector 

  Rx = ax + bx + cx + dx     (2.35) 
 
y-component of resultant vector 

Ry = ay + by + cy + dy       (2.36) 
 
Magnitude of resultant vector 

          2 2
x yR R R= +         (2.37) 
 

Direction of resultant vector 

           1tan y

x

R
R

θ −=           (2.39) 

                  

 
Questions for Chapter 2 

 
1. Give an example of some 

quantities that are scalars and 
vectors other than those listed in 
section 2.1. 

2. Can a vector ever be zero? 
What does a zero vector mean? 

*3. Since time seems to pass 
from the past to the present and 
then to the future, can you say that 
time has a direction and therefore 
could be represented as a vector 
quantity? 

4. Does the subtraction of two 
vectors obey the commutative law? 

5. What happens if you multiply 
a vector by a scalar? 

6. What happens if you divide a 
vector by a scalar? 

7. If a person walks around a 
block that is 80 m on each side and 
ends up at the starting point, what 
is the person’s displacement? 

8. How can you add three 
vectors of equal magnitude in a 

plane such that their resultant is 
zero? 

9. When are two vectors a and b 
equal? 

*10. If a coordinate system is 
rotated, what does this do to the 
vector? to the components? 

*11. Why are all the 
fundamental quantities scalars? 

12. A vector equation is 
equivalent to how many component 
equations? 
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13. If the components of a 
vector a are ax and ay, what are the 
components of the vector b = −5a? 

14. If a + b = a − b, what is the 
angle between a and b? 
 

 

 
Problems for Chapter 2 

 
2.7- 2.8  Resolution of a Vector 
into Its Components and 
Determination of a Vector from 
Its Components 

1. A strong child pulls a sled 
with a force of 300 N at an angle of 
350 above the horizontal. Find the 
vertical and horizontal components 
of this pull. 

2. A 50-N force is directed at an 
angle of 500 above the horizontal. 
Resolve this force into vertical and 
horizontal components. 

3. A boy wants to hold a 68.0-N 
sled at rest on a snow-covered hill. 
The hill makes an angle of 27.50 
with the horizontal. (a) What force 
must he exert parallel to the slope? 
(b) What is the force perpendicular 
to the surface of the hill that 
presses the sled against the hill? 

4. A displacement vector, at an 
angle of 350 with respect to a 
specified direction, has a y-
component equal to 150 cm. What is 
the magnitude of the displacement 
vector? 

5. A plane is traveling northeast 
at 200 km/hr. What is (a) the 
northward component of its 
velocity, and (b) the eastward 
component of its velocity? 

6. While taking off, an airplane 
climbs at an 80 angle with respect 
to the ground. If the aircraft’s speed 
is 200 km/hr, what are the vertical 
and horizontal components of its 
velocity? 

7. A car that weighs 8900 N is 
parked on a hill that makes an 
angle of 430 with the horizontal. 
Find the component of the car’s 
weight parallel to the hill and 
perpendicular to the hill. 

8. A girl pushes a lawn mower 
with a force of 90 N. The handle of 
the mower makes an angle of 400 
with the ground. What are the 
vertical and horizontal components 
of this force and what are their 
physical significances? What effect 
does raising the handle to 500 have? 

9. A missile is launched with a 
speed of 1000 m/s at an angle of 730 
above the horizontal. What are the 
horizontal and vertical components 
of the missile’s velocity? 

10. When a ladder leans against 
a smooth wall, the wall exerts a 
horizontal force F on the ladder, as 
shown in the diagram. If F is equal 
to 50 N and θ is equal to 630, find 
the component of the force 
perpendicular to the ladder and the 
component parallel to the ladder. 

 
Diagram for problem 10. 

 
2.9 The Addition of Vectors 

by the Component Method 
11. Find the resultant of the 

following three displacements; 3 km 
due east, 6 km east-northeast, and 
7 km northwest. 

12. A girl drives 3 km north, 
then 12 km to the northwest, and 
finally 5 km south-southwest. How 
far has she traveled? What is her 
displacement? 

13. An airplane flies due north 
at 380 km/hr straight from city A to 
city B. A southeast wind of 75 
km/hr is blowing. (Note that all 
winds are defined in terms of the 
direction from which the wind 
blows. Hence, a southeast wind 
blows out of the southeast and 
blows toward the northwest.) What 
is the resultant velocity of the plane 
with respect to the ground? 

14. Find the resultant of the 
following forces: (a) 30 N at an 
angle of 400 with respect to the x-
axis, (b) 120 N at an angle of 1350, 
and (c) 60 N at an angle of 2600. 

15. Find the resultant of the 
following set of forces. (a) F1 of 200 
N at an angle of 530 with respect to 
the x-axis. (b) F2 of 300 N at an 
angle of 1500 with respect to the x-
axis. (c) F3 of 200 N at an angle of 
2700 with respect to the x-axis. 
(d) F4 of 350 N at an angle of 3100 
with respect to the x-axis. 

 
Additional Problems 

16. A heavy trunk weighing 800 
N is pulled along a smooth station 
platform by a 210-N force making 
an angle of 530 above the 
horizontal. Find (a) the horizontal 
component of the force, (b) the 
vertical component of the force, and 
(c) the resultant downward force on 
the floor. 

17. Vector A has a magnitude of 
15.0 m and points in a direction of 
500 north of east. What are the 
magnitudes and directions of the 
vectors, (a) 2A, (b) 0.5A, (c) −A, 
(d) −5A, (e) A + 4A, (f) A − 4A? 

18. Given the two force vectors 
F1 = 20.0 N at an angle of 30.00 with 
the positive x-axis and F2 = 40.0 N 
at an angle of 150.00 with the 
positive x-axis, find the magnitude 
and direction of a third force that 
when added to F1 and F2 gives a 
zero resultant. 

19. When vector A, of 
magnitude 5.00 m/s at an angle of 
1200 with respect to the positive x-
axis, is added to a second vector B, 
the resultant vector has a 
magnitude R = 8.00 m/s and is at an 
angle of 85.00 with the positive x-
axis. Find the vector B. 

20. A car travels 100 km due 
west and then 45.0 km due north. 
How far is the car from its starting 
point? Solve graphically and 
analytically. 

21. Find the resultant of the 
following forces graphically and 
analytically: 25 N at an angle of 530 
above the horizontal and 100 N at 
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an angle of 1170 counterclockwise 
from the horizontal. 

*22. The velocity of an aircraft 
is 200 km/hr due west. A northwest 
wind of 50 km/hr is blowing. 
(a) What is the velocity of the 
aircraft relative to the ground? 
(b) If the pilot’s destination is due 
west, at what angle should he point 
his plane to get there? (c) If his 
destination is 400 km due west, 
how long will it take him to get 
there? 

23. A plane flies east for 50.0 
km, then at an angle of 30.00 north 
of east for 75.0 km. In what 
direction should it now fly and how 
far, such that it will be 200 km 
northwest of its original position? 

*24. The current in a river flows 
south at 7 km/hr. A boat starts 
straight across the river at 19 
km/hr relative to the water. 
(a) What is the speed of the boat 
relative to the land? (b) If the river 
is 1.5 km wide, how long does it 
take the boat to cross the river? 
(c) If the boat sets out straight for 
the opposite side, how far south will 
it reach the opposite shore? (d) If we 
want to have the boat go straight 
across the river, at what angle 
should the boat be headed? 

*25. Show that if the angle 
between vectors a and b is an acute 
angle, then the sum a + b becomes 
the main diagonal of the 
parallelogram and the difference a 
− b becomes the minor diagonal of 
the parallelogram. Also show that if 
the angle is obtuse the results are 
reversed. 

26. Find the resultant of the 
following three vectors. The 
magnitudes of the vectors are 
a = 5.00 km, b = 10.0 km, and 
c = 20.0 km. 

 
Diagram for problem 26. 

 
27. Find the resultant of the 

following three forces. The 
magnitudes of the forces are 
F1 = 2.00 N, F2 = 8.00 N, and 
F3 = 6.00 N. 

      

 
Diagram for problem 27. 

 
*28. Show that for three 

nonparallel vectors all in the same 
plane, any one of them can be 
represented as a linear sum of the 
other two. 

*29. A unit vector is a vector 
that has a magnitude of one unit 
and is in a specified direction. If a 
unit vector i is defined to be in the 
x-direction, and a unit vector j is 
defined to be in the y-direction, 
show that any vector a can be 
written in the form 

 
a = ax i + ay j 

 
*30. Prove that  

| a + b | ≤ | a| + |b |. 
31. An airplane flies due east at 

200 km/hr straight from city A to 
city B a distance of 200 km. A wind 
of 40 km/hr from the northwest is 
blowing. If the pilot doesn’t make 
any corrections, where will the 
plane be in 1 hr? 

32. Given vectors a and b, 
where a = 50, θ1 = 330, b = 80, 
and θ2 = 1280, find (a) a + b, (b) a − 
b, (c) a − 2b, (d) 3a + b, (e) 2a − b, 
and (f) 2b − a. 

33. In the accompanying figure 
the tension T in the cable is 200 N. 
Find the vertical component Ty and 
the horizontal component Tx of this 
tension. 

 

 
Diagram for problem 33.                     

 
*34. In the accompanying 

diagram w1 is 5 N and w2 is 3 N. 
Find the angle θ such that the 
component of w1 parallel to the 
incline is equal to w2. 

    

 
Diagram for problem 34. 

 
*35. In the accompanying 

diagram w1 = 2 N, w2 = 5 N, and θ = 
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650. Find the angle φ such that the 
components of the two forces 
parallel to the inclines are equal. 

 
Diagram for problem 35. 

                           
*36. In the accompanying 

diagram w = 50 N, and θ = 100. 
What must be the value of F such 
that w will be held in place? What 
happens if the angle is doubled to 
200? 

    

       
Diagram for problem 36. 

 
*37. In projectile motion in two 

dimensions the projectile is located 
by the displacement vector r1 at the 
time t1 and by the displacement 
vector r2 at t2, as shown in the 
diagram. If r1 = 20 m, θ1 = 600, r2 = 
25 m, and θ2 = 250, find the 
magnitude and direction of the 
vector r2 − r1. 

 
Diagram for problem 37. 

 
Interactive Tutorials 

38. The components of a vector. 
A 50.0-N force is directed at an 
angle of 500 above the horizontal. 
Resolve this force into vertical and 
horizontal components. 

39. Resultant vector. Find the 
resultant of any number of force 
vectors (up to five vectors). 

 
To go to this interactive 

tutorial click on this sentence. 
 

To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 3  Kinematics - The Study of Motion 
    

My purpose is to set forth a very new science dealing with a very ancient subject. There is, in nature, perhaps 
nothing older than motion, concerning which the books written by Philosophers are neither few nor small; 
nevertheless I have discovered by experiment some properties of it which are worth knowing and which have not 
hitherto been either observed or demonstrated … and what I consider more important, there has been opened up 
to this vast and most excellent science, of which my work is merely the beginning, ways and means by which other 
minds more acute than mine will explore its remote corners.  

                 Galileo Galilei 
      Dialogues Concerning Two New Sciences 

 
3.1  Introduction 
Kinematics is defined as that branch of mechanics that studies the 
motion of a body without regard to the cause of that motion. In our 
everyday life we constantly observe objects in motion. For example, an 
object falls from the table, a car moves along the highway, or a plane 
flies through the air. In this process of motion, we observe that at one 
time the object is located at one position in space and then at a later 
time it has been displaced to some new position. Motion thus entails a 
movement from one position to another position. Therefore, to 
describe the motion of a body logically, we need to start by defining 
the position of a body. To do this we need a reference system. Thus, 
we introduce a coordinate system, as shown in figure 3.2. The body is 
located at the point 0 at the time t = 0. The point 0, the origin of the 
coordinate system, is the reference position. We measure the 
displacement of the moving body from there. After an elapse of time t1 

                                                                                                                 Figure 3.1  Galileo Galilei 
 

       
Figure 3.2  The position of an object at two different times. 

 
the object will have moved from 0 and will be found along the x-axis at position 1, a distance x1 away from 0. A 
little later in time, at t = t2, the object will be located at point 2, a distance x2 away from 0. (As an example, the 
moving body might be a car on the street. The reference point 0 might be a lamp post on the street, while points 1 
and 2 might be telephone poles.) Let us now consider the motion between points 1 and 2. 

The average velocity of the body in motion between the points 1 and 2 is defined as the displacement of 
the moving body divided by the time it takes for that displacement. That is, 

 
vavg =          displacement                                                                   (3.1) 

                                                                                         time for displacement    
 

where vavg is the notation used for the average velocity. For this description of one-dimensional motion, it is not 
necessary to use boldface vector notation. However, positive value of x implies a displacement in the positive x-
direction, while a negative value of x implies a displacement in the negative x-direction. A positive value of y 
implies a displacement in the positive y-direction, while a negative value of y implies a displacement in the 
negative y-direction. A positive value of v implies a velocity in the positive x- or y-direction, while a negative value 
of v implies a velocity in the negative x- or y-direction. Hence, for one-dimensional motion, the direction associated 
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with a vector quantity is taken into account by the + or − sign on the quantity. The more general case, the velocity 
of a moving body in two dimensions, where we have to use the full vector notation, is treated in section 3.10. 

From figure 3.2, we can see that during the time interval t2 − t1, the displacement or change in position of 
the body is simply x2 − x1. Therefore, the average velocity of the body in motion between points 1 and 2 is 

 
vavg = x2 − x1                                                                               (3.2) 
          t2 − t1 

 
Note here that in the example of the car and the telephone poles, t1 is the time on a clock when the car passes the 
first telephone pole, position 1, and t2 is the time on the same clock when the car passes the second telephone pole, 
position 2. 

A convenient notation to describe this change in position with the change in time is the delta notation. 
Delta (the Greek letter ∆) is used as a symbolic way of writing “change in,” that is, 

 
∆x = (change in x) = x2 − x1                                                                 (3.3) 

and 
∆t = (change in t) = t2 − t1                                                                  (3.4) 

 
Using this delta notation we can write the average velocity as 
 

 vavg = x2 − x1  = ∆x                                                                          (3.5) 
                                                                                             t2 − t1     ∆t       

 
Example 3.1 

 
Finding the average velocity using the ∆ notation. A car passes telephone pole number 1, located 20.0 m down the 
street from the corner lamp post, at a time t1 = 8.00 s. It then passes telephone pole number 2, located 80.0 m from 
the lamp post, at a time of t2 = 16.0 s. What was the average velocity of the car between the positions 1 and 2? 

Solution
 

The average velocity of the car, found from equation 3.5, is 
 

vavg = ∆x = x2 − x1 = 80.0 m − 20.0 m  
                                                                                     ∆t     t2 − t1      16.0 s − 8.00 s 

= 60.0 m  = 7.50 m/s 
                                                                                    8.00 s                    

 
(Note that according to the convention that we have adopted, the 7.50 m/s represents a velocity because the 
magnitude of the velocity is 7.50 m/s and the direction of the velocity vector is in the positive x-direction. If the 
answer were −7.50 m/s the direction would have been in the negative x-direction.) 
 

To go to this interactive example click on this sentence. 
 

 
 

For convenience, the reference position 0 that is used to describe the motion is occasionally moved to 
position 1, then x1 = 0, and the displacement is denoted by x, as shown in figure 3.3. The clock is started at this 
new reference position 1, so t1 = 0 there. We now express the elapsed time for the displacement as t. In this 
simplified coordinate system the average velocity is 

vavg =  x                                                                                    (3.6) 
         t 

 
Remember, the average velocity is the same physically in both equations 3.5 and 3.6; the numerator is still the 
displacement of the moving body, and the denominator is still the elapsed time for this displacement. Because the 
reference point has been changed, the notation appears differently. We use both notations in the description of 
motion. The particular notation we use depends on the problem.  
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(a)                                                                                         (b) 

Figure 3.3  The position of an object determined from a new reference system. 
 

Example 3.2 
 

Changing the reference position. A car passes telephone pole number 1 at t = 0 on a watch. It passes a second 
telephone pole 60.0 m down the block 8.00 seconds later. What is the car’s average velocity? 

Solution
 

The average velocity, found from equation 3.6, is 
 

vavg =  x  = 60.0 m = 7.50 m/s 
                                                                                    t      8.00 s 
 
Also note that this is the same problem solved in example 3.1; only the reference position for the measurement of 
the motion has been changed. 
 

To go to this interactive example click on this sentence. 
 

 
 

Before we leave this section, we should make a distinction between the average velocity of a body and the 
average speed of a body. The average speed of a body is the distance that a body moves per unit time. The average 
velocity of a body is the displacement of a body per unit time. Because the displacement of a body is a vector 
quantity, that is, it specifies the distance an object moves in a specified direction, its velocity is also a vector 
quantity. Thus, velocity is a vector quantity while speed is a scalar quantity. For example, if a girl runs 100 m in 
the x-direction and turns around and returns to the starting point in a total time of 90 s, her average velocity is 
zero because her displacement is zero. Her average speed, on the other hand, is the total distance she ran divided 
by the total time it took, or 200 m/90 s = 2.2 m/s. If she ran 100 m in 45 s in one direction only, let us say the 
positive x-direction, her average speed is 100 m/45 s = 2.2 m/s. Her average velocity is 2.2 m/s in the positive x-
direction. In this case, the speed is the magnitude of the velocity vector. Speed is always a positive quantity, 
whereas velocity can be either positive or negative depending on whether the motion is in the positive x-direction 
or the negative x-direction, respectively. 

Section 3.2 shows how the motion of a body can be studied in more detail in the laboratory. 
 
 
3.2  Experimental Description of a Moving Body 
Following Galileo’s advice that motion should be studied by experiment, let us go into the laboratory and describe 
the motion of a moving body on an air track1. An air track is a hollow aluminum track. Air is forced into the air 
track by a blower and flows out the sides of the track through many small holes. When a glider is placed on the 
track, the air escaping from the holes in the track provides a cushion of air for the glider to move on, thereby 

                                                           
1For a more detailed description of such an experiment in kinematics on an air track see, “Experiments in Physics” 2ed by Nolan and Bigliani. 
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substantially reducing the retarding force of 
friction on the glider. The setup of an air track 
in the laboratory is shown in figure 3.4. 

We connect a spark timer, a device 
that emits electrical pulses at certain 
prescribed times, to a wire on the air track. A 
piece of spark-timer tape is attached to the air 
track to act as a permanent record of the 
position of the moving glider as a function of 
time. A spark from the timer jumps across an 

  
                                                        Figure 3.4  Setup of an airtrack. 

 
air gap between the glider wire and the air track, and in so doing it burns a hole in the timer tape. This burned 
hole on the tape, which appears as a dot, is a record of the position of the glider at that instant of time. Thus, the 
combination of a glider, an air track, and a spark timer gives us a record of the position of a moving body at any 
instant of time. Let us now look at an experiment with a glider moving at constant velocity along the air track. 
 
 
3.3  A Body Moving at Constant Velocity 
To study a body moving at constant velocity we place a glider on a 
level air track and give it a slight push to initiate its motion along 
the track. The spark timer is turned on, leaving a permanent record 
of this motion on a piece of spark-timer tape. The distance traveled 
by the glider as a function of time is recorded on the spark-timer 
paper, and appears as in figure 3.5. The spark timer is set to give a 
spark every 1/30 of a second. The first dot occurs at the time t = 0, 
and each succeeding dot occurs at a time interval of 1/30 of a second 
later. We label the first dot as dot 0, the reference position, and then 
measure the total distance x from the first dot to each succeeding 
dot with a meter stick. 
                                                                                           Figure 3.5  Spark-timer paper showing constant velocity. 
                                                                                                                                          

The measured data for the total distance traveled by the 
glider as a function of time are plotted in figure 3.6. Note that 
the plot is a straight line. If you measure the slope of this line 
you will observe that it is ∆x/∆t, which is the average velocity 
defined in equation 3.5. Since all the points generate a straight 
line, which has a constant slope, the velocity of the glider is a 
constant equal to the slope of this graph. Whenever a body moves 
in such a way that it always travels equal distances in equal 
times, that body is said to be moving with a constant velocity. 
This can also be observed in figure 3.5 by noting that the dots 
are equally spaced. 

The SI unit for velocity is m/s. The units cm/s and km/hr 
are also used. Note that on a graph of the displacement of a 
moving body versus time, the slope ∆x/∆t always represents a  

                                                                                                         Figure 3.6  Graph of distance versus time 
                                                                                                                   for constant velocity. 

 
velocity. If the slope is positive, the velocity is positive and the direction of the moving body is toward the right. If 
the slope is negative, the velocity is negative and the direction of the moving body is toward the left. 

 
Example 3.3 

 
The velocity of a glider on an air track. A glider goes from a position of 20.4 cm at a time of t = 10/30 s to a position 
of 103 cm at a time of t = 50/30 s. Find the average velocity of the glider during this interval. 
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Solution
 

The average velocity of the glider, found from equation 3.5, is 
 

vavg = ∆x = x2 − x1      
                                                                                                      ∆t     t2 − t1 

= 103 cm − 20.4 cm = 82.6 cm  
                                                                            50/30 s − 10/30 s        4/3 s 

= 62.0 cm/s 
 

To go to this interactive example click on this sentence. 

 
 
 

3.4  A Body Moving at Constant Acceleration 
If we tilt the air track at one end 
it effectively becomes a 
frictionless inclined plane. We 
place a glider at the top of the 
track and then release it from 
rest. Figure 3.7 is a picture of the 
glider in its motion on the 
inclined air track. 

The spark timer is turned 
on, giving a record of the position 
of the moving glider as a function 
of time, as illustrated in figure 
3.8. The most important feature 
to immediately note on this 

                                                                           Figure 3.7 The tilted air track. 

                  
Figure 3.8  Spark-timer tape for accelerated motion.      Figure 3.9  Graph of x versus t for constant acceleration.  

 
 
record of the motion, is that the dots, representing the positions of the glider, are no longer equally spaced as they 
were for motion at constant speed, but rather become farther and farther apart as the time increases. The total 
distance x that the glider moves is again measured as a function of time. If we plot this measured distance x 
against the time t, we obtain the graph shown in figure 3.9. 

The first thing to note in this figure is that the graph of x versus t is not a straight line. However, as you 
may recall from section 3.3, the slope of the distance versus time graph, ∆x/∆t, represents the velocity of the 
moving body. But in figure 3.9 there are many different slopes to this curve because it is continuously changing 
with time. Since the slope at any point represents the velocity at that point, we observe that the velocity of the 
moving body is changing with time. The change of velocity with time is defined as the acceleration of the moving 
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body, and the average acceleration is written as 
 aavg = ∆v = v2 − v1                                                                          (3.7) 

                                                                                                      ∆t     t2 − t1         
 
Since the velocity is a vector quantity, acceleration, which is equal to the change in velocity with time, is also a 
vector quantity. More will be said about this shortly. 

Because the velocity is changing continuously, the average velocity for every time interval can be 
computed from equation 3.5. Thus, subtracting each value of x from the next value of x gives us ∆x, the distance 
the glider moves during one time interval. The average velocity during that interval can then be computed from 
vavg = ∆x/∆t. At the beginning of this interval the actual velocity is less than this value while at the end of the 
interval it is greater. Later we will see that for constant acceleration, the velocity at the center of the time interval is 
equal to the average velocity for the entire time interval. 

If we plot the velocity at the center of the interval against 
the time, we obtain the graph in figure 3.10. We can immediately 
observe that the graph is a straight line. The slope of this line, 
∆v/∆t, is the experimental acceleration of the glider. Since this 
graph is a straight line, the slope is a constant; this implies that 
the acceleration is also a constant. Hence, the acceleration of a 
body moving down a frictionless inclined plane is a constant. In the 
case of more general motion, a body can also have its acceleration 
changing with time. However, most of the accelerated motion 
discussed in this book is at constant acceleration. The most notable 
exception is for simple harmonic motion, which we discuss in 
chapter 11. Because in constantly accelerated motion the average 
acceleration is the same as the constant acceleration, the subscript 
avg will be deleted from the acceleration in all the equations 
dealing with this type of motion. 

 
Figure 3.10  Graph of v versus t for constant  

                                                                                                                    acceleration. 
 
Since acceleration is a change in velocity per unit time, the units for acceleration are velocity divided by 

the time. In SI units, the acceleration is 
m/s 

s 
 

For convenience, this is usually written in the equivalent algebraic form as m/s2. But we must not forget the 
physical meaning of a change in velocity of so many m/s every second. Other units used to express acceleration are 
cm/s2, and (km/hr)/s. 

 
Example 3.4 

 
The acceleration of a glider on an air track. A glider’s velocity on a tilted air track increases from 3.83 cm/s at the 
time t = 10/30 s to 42.3 cm/s at a time of t = 70/30 s. What is the acceleration of the glider? 

Solution
 

The acceleration of the glider, found from equation 3.7, is 
 

a = ∆v = v2 − v1  
                                                                                                   ∆t      t2 − t1 

= 42.3 cm/s − 3.83 cm/s = 38.5 cm/s  
                                                                       70/30 s − 10/30 s          6/3 s 

= 19.2 cm/s2 
 

To go to this interactive example click on this sentence. 
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Before leaving this section we should note that since acceleration is a vector, if the acceleration is a 
positive quantity, the velocity is increasing with time, and the acceleration vector points toward the right. If the 
acceleration is a negative quantity, the velocity is decreasing with time, and the acceleration vector points toward 
the left. When the velocity is positive, indicating that the body is moving in the positive x-direction, and the 
acceleration is positive, the object is speeding up, or accelerating. However, when the velocity is positive, and the 
acceleration is negative, the object is slowing down, or decelerating. On the other hand, if the velocity is negative, 
indicating that the body is moving in the negative x-direction, and the acceleration is negative, the body is 
speeding up in the negative x-direction. However, when the velocity is negative and the acceleration is positive, 
the body is slowing down in the negative x-direction. If the acceleration lasts long enough, the body will eventually 
come to a stop and will then start moving in the positive x-direction. The velocity will then be positive and the 
body will be speeding up in the positive x-direction. 
 
  
3.5  The Instantaneous Velocity of a Moving Body 
In section 3.4 we observed that the velocity of the glider varies continuously as it “slides” down the frictionless 
inclined plane. We also stated that the average velocity could be computed from vavg = ∆x/∆t. At the beginning of 
the interval of motion the actual velocity is less than this value while at the end of the interval it is greater. If the 
interval is made smaller and smaller, the average velocity vavg throughout the interval becomes closer to the 
actual velocity at the instant the body is at the center of the time interval. Finding the velocity at a particular 
instant of time leads us to the concept of instantaneous velocity. Instantaneous velocity is defined as the limit of 
∆x/∆t as ∆t gets smaller and smaller, eventually approaching zero. We write this concept mathematically as 
 

0
lim

t

x
v

t∆ →

∆
=

∆
                                                                               (3.8) 

 
As in the case of average velocity in one-dimensional motion, if the limit of ∆x/∆t is a positive quantity, the velocity 
vector points toward the right. If the limit of ∆x/∆t is a negative quantity, the velocity vector points toward the left. 

The concept of instantaneous velocity can be easily understood by performing the following experiment on 
an air track. First, we tilt the air track to again give an effectively frictionless inclined plane. Then we place a 20-
cm length of metal, called a flag, at the top of the glider. A photocell gate, which is a device that can be used to 
automatically turn a clock on and off, is attached to a clock timer and is placed on the air track. We then allow the 
glider to slide down the track. When the flag of the glider interrupts the light beam to the photocell, the clock is 
turned on. When the flag has completely passed through the light beam, the photocell gate turns off the clock. The 
clock thus records the time for the 20-cm flag to pass through the photocell gate. We find the average velocity of 
the flag as it moves through the gate from equation 3.5 as v = ∆x/∆t. The 20-cm length of the flag is ∆x, and ∆t is 
the time interval, as read from the clock. 

We repeat the process for a 15-cm, 10-cm, and a 5-cm 
flag. For each case we measure the time ∆t that it takes for the 
flag to move through the gate. The first thing that we observe is 
that the time for the flag to move through the gate, ∆t, gets 
smaller for each smaller flag. You might first expect that if ∆t 
approaches 0, the ratio of ∆x/∆t should approach infinity. 
However, since ∆x, the length of the flag, is also getting smaller, 
the ratio of ∆x/∆t remains finite. If we plot ∆x/∆t as a function of 
∆t for each flag, we obtain the graph in figure 3.11. 

Notice that as ∆t approaches 0, (∆t→0), the plotted line 
intersects the ∆x/∆t axis. At this point, the distance interval ∆x 
has been reduced from 20 cm to effectively 0 cm. The value of ∆t 
has become progressively smaller so this point represents the 
limiting value of ∆x/∆t as ∆t approaches 0. But this limit is the 

Figure 3.11 Graph of ∆x/∆t versus ∆t to obtain 
                                                                                                                 the instantaneous velocity of the glider. 
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definition of the instantaneous velocity. Hence, the point where the line intersects the ∆x/∆t axis gives the value of 
the velocity of the glider at the instant of time that the glider is located at the position of the photocell gate. This 
limiting process allows us to describe the motion of a moving body in terms of the velocity of the body at any 
instant of time rather than in terms of the body’s average velocity. 

Usually we will be more interested in the instantaneous velocity of a moving body than its average 
velocity. The speedometer of a moving car is a physical example of instantaneous velocity. Whether the car’s 
velocity is constant or changing with time, the instant that the speedometer is observed, the speedometer indicates 
the speed of the car at that particular instant of time. The instantaneous velocity of the car is that observed value 
of the speed in the direction that the car is traveling. 
 
 
3.6  The Kinematic Equations in One Dimension 
Because the previous experiments were based on motion at constant acceleration, we can only apply the results of 
those experiments to motion at a constant acceleration. Let us now compile those results into a set of equations, 
called the kinematic equations of linear motion, that will describe the motion of a moving body. For motion at 
constant acceleration, the average acceleration is equal to the constant acceleration. Hence, the subscript avg can 
be deleted from equation 3.7 and that equation now gives the constant acceleration of the moving body as 
 

 a = v2 − v1                                                                                 (3.7) 
                                                                                               t2 − t1              

 
Equation 3.7 indicates that at the time t1 the body is moving at the velocity v1, while at the time t2 the body is 
moving at the velocity v2. This motion is represented in figure 3.12(a) for a runner. 

                
Figure 3.12  Change in reference system. 

 
Let us change the reference system by starting the clock at the time t1 = 0, as shown in figure 3.12(b). We 

will now designate the velocity of the moving body at the time 0 as v0 instead of the v1 in the previous reference 
system of figure 3.12(a). Similarly, the time t2 will correspond to any time t and the velocity v2 will be denoted by v, 
the velocity at that time t. Thus, the velocity of the moving body will be v0 when the time is equal to 0, and v when 
the time is equal to t. This change of reference system allows us to rewrite equation 3.7 as 

 
a = v − v0                                                                                  (3.9) 

   t 
 

Equation 3.9 is similar to equation 3.7 in that it gives the same definition for acceleration, namely a 
change in velocity with time, but in a slightly different but equivalent notation. Solving equation 3.9 for v gives the 
first of the very important kinematic equations, namely, 

 
 v = v0 + at                                                                             (3.10) 
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Equation 3.10 says that the velocity v of the moving object can be found at any instant of time t once the 

acceleration a and the initial velocity v0 of the moving body are known. 
 

Example 3.5 
 

Using the kinematic equation for the velocity as a function of time. A car passes a green traffic light while moving 
at a velocity of 6.00 m/s. It then accelerates at 0.300 m/s2 for 15.0 s. What is the car’s velocity at 15.0 s? 

Solution
 

The velocity, found from equation 3.10, is 
v = v0 + at 

( )2
m m6.00 0.300 15.0 s 
s s

   = +   
   

 

= 10.5 m/s 
 
The velocity of the car is 10.5 m/s. This means that the car is moving at a speed of 10.5 m/s in the positive x-
direction. 
 

To go to this interactive example click on this sentence. 
 

 
 

In addition to the velocity of the moving body at any time t, we would also like to know the location of the 
body at that same time. That is, let us obtain an equation for the displacement of the moving body as a function of 
time. Solving equation 3.6 for the displacement x gives 

x = vavgt                                                                             (3.11) 
 

Hence, the displacement of the moving body is equal to the average velocity of the body times the time it is in 
motion. For example, if you are driving your car at an average velocity of 50 km/hr, and you drive for a period of 
time of two hours, then your displacement is 

x = 50 km (2 hr) 
 hr  

= 100 km 
 

You have traveled a total distance of 100 km from where you started. 
Equation 3.11 gives us the displacement of the moving body in terms of its average velocity. The actual 

velocity during the motion might be greater than or less than the average value. The average velocity does not tell 
us anything about the body’s acceleration. We would like to express the displacement of the body in terms of its 
acceleration during a particular time interval, and in terms of its initial velocity at the beginning of that time 
interval. 

For example, consider a car in motion along a road between the times t = 0 and t = t. At the beginning of 
the time interval the car has an initial velocity v0, while at the end of the time interval it has the velocity v, as 
shown in figure 3.13. If the acceleration of the moving body is constant, then the average velocity throughout the 
entire time interval is 

 
vavg = v0 + v       (3.12) 

      2 
 

This averaging of velocities 
for bodies moving at 
constant acceleration is 
similar to determining a 
grade in a course. For 
example, if you have two  

                                             Figure 3.13  A car moving on a road. 
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test grades in the course, your course grade, the average of the two test grades, is the sum of the test grades 
divided by 2, 

Avg. Grade = 100 + 90 = 95 
                2 

 
If we substitute this value of the average velocity into equation 3.11, the displacement becomes 
 

t
vv

tvx avg 






 +
==

2
0                                                                   (3.13) 

 
Note that v represents the final value of the velocity at the time t, the end of the time interval. But there already 
exists an equation for the value of v at the time t, namely equation 3.10. Therefore, substituting equation 3.10 into 
equation 3.13 gives 

( )0 0

2
v v at

x t
 + +

=  
 

 

Simplifying, we get 
02
2

v at
x t

+ =  
 

 

= 2v0t  +  1  at2 
                                                                                         2         2 

 
21

0 2x v t at= +                                                                       (3.14) 
    

Equation 3.14, the second of the kinematic equations, represents the displacement x of the moving body at 
any instant of time t. In other words, if the original velocity and the constant acceleration of the moving object are 
known, then we can determine the location of the moving object at any time t. Notice that the first term represents 
the distance that the moving body would travel if there were no acceleration and the body just moved at the 
constant velocity v0 for the time t. The second term shows how far the body moves because there is an acceleration. 
If there were no initial velocity, that is v0 = 0, this is the distance that the body will move because of the 
acceleration. In general, however, there is both an initial velocity and an acceleration, and the total displacement x 
is the total distance that the body moves because of the two effects. This rather simple equation contains a 
tremendous amount of information. 

 
Example 3.6 

 
Using the kinematic equation for the displacement as a function of time. A car, initially traveling at 30.0 km/hr, 
accelerates at the constant rate of 1.50 m/s2. How far will the car travel in 15.0 s? 

Solution
 

To express the result in the proper units, km/hr is converted to m/s as 
 

0
km 1 hr 1000 m30.0 8.33 m/s
hr 3600 s 1 km

v   = =  
  

 

 
The displacement of the car, found from equation 3.14, is 
 

x = v0t +  1  at2 
         2 

( ) ( )2
2

m 1 m8.33 15.0 s 1.50 15.0 s
s 2 s

   = +   
   

 

= 125 m + 169 m 
= 294 m 
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The first term in the answer, 125 m, represents the distance that the car would travel if there were no 

acceleration and the car continued to move at the velocity 8.33 m/s for 15.0 s. But there is an acceleration, and the 
second term shows how much farther the car moves because of that acceleration, namely 169 m. The total 
displacement of 294 m is the total distance that the car travels because of the two effects. 

 
To go to this interactive example click on this sentence. 

 

 
 

As a further example of the kinematics of a moving body, consider the car moving along a road at an initial 
velocity of 95.0 km/hr = 26.4 m/s, as shown in figure 3.14. The driver sees a tree fall into the middle of the road  

 
 

 (b) 
Figure 3.14  A tree falls on the road. 

 
60.0 m away. The driver immediately steps on the brakes, and the car starts to decelerate at the constant rate of a 
= −5.50 m/s2. (As mentioned previously, in one-dimensional motion a negative acceleration means that the 
acceleration vector is toward the left, in the opposite direction of the motion. If the velocity is positive, a negative 
value for the acceleration means that the body is slowing down or decelerating.) Will the car come to a stop before 
hitting the tree? 

What we need for the solution of this problem is the actual distance the car travels before it can come to a 
stop while decelerating at the rate of 5.50 m/s2. Before we can find that distance, however, we must know the time 
it takes for the car to come to a stop. Then we substitute this stopping time into equation 3.14, and the equation 
tells us how far the car will travel before coming to a stop. (Note that most of the questions that might be asked 
about the motion of the car can be answered using the kinematic equations 3.10 and 3.14.) 

Equation 3.10 tells us the velocity of the car at any instant of time. But when the car comes to rest its 
velocity is zero. Thus, at the time when the car comes to a stop tstop, the velocity v will be equal to zero. Therefore, 
equation 3.10 becomes 

0 = v0 + atstop 
 

Solving for the time for the car to come to a stop, we have 
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tstop = − v0                                                                             (3.15) 

                 a 
 

the time interval from the moment the brakes are applied until the car comes to a complete stop. Substituting the 
values of the initial velocity v0 and the constant acceleration a into equation 3.15, we have 
 

tstop = − v0 = −26.4 m/s = 4.80 s  
                                                                                    a      −5.50 m/s2    
 
It will take 4.80 s for the car to come to a stop if nothing gets in its way to change its rate of deceleration. Note how 
the units cancel in the equation until the final unit becomes seconds, that is, 
 

v0 =  m/s = 1/s =  1    1  =  1  = s  
                                                                       a     m/s2    1/s2    s   1/s2   1/s 

 
Thus, (m/s)/(m/s2), comes out to have the unit seconds, which it must since it represents the time for the car to 
come to a stop. 

Now that we know the time for the car to come to a stop, we can substitute that value back into equation 
3.14 and find the distance the car will travel in the 4.80 s: 

 
x = v0t +  1  at2 

         2 

( ) ( )2
2

m 1 m26.4 4.80 s 5.50 4.80 s
s 2 s

   = + −   
   

 

 = 127 m − 63.4 m 
= 63.6 m 

 
The car will come to a stop in 63.6 m. Since the tree is only 60.0 m in front of the car, it cannot come to a stop in 
time and will hit the tree. 

In addition to the velocity and position of a moving body at any instant of time, we sometimes need to 
know the velocity of the moving body at a particular displacement x. In the example of the car hitting the tree, we 
might want to know the velocity of the car when it hits the tree. That is, what is the velocity of the car when the 
displacement x of the car is equal to 60.0 m? 

To find the velocity as a function of displacement x, we must eliminate time from our kinematic equations. 
To do this, we start with equation 3.13 for the displacement of the moving body in terms of the average velocity, 
 

t
vv

tvx avg 






 +
==

2
0                                                                   (3.13) 

 
But v is the velocity of the moving body at any time t, given by 
 

v = v0 + at                                                                              (3.10) 
Solving for t gives 

t = v − v0 
    a 

Substituting this value into equation 3.13 gives 
 

0 0 0

2 2
v v v v v v

x t
a

+ + −    = =    
    

 

( )0
02

v v
v v

a
+ = − 

 
 

2ax = v0v + v2 − v0v − v02 
= v2 − v02 
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Solving for v2, we obtain the third kinematic equation, 
 

 v2 = v02 + 2ax                                                                            (3.16) 
 

which is used to determine the velocity v of the moving body at any displacement x. 
Let us now go back to the problem of the car moving down the road, with a tree lying in the road 60.0 m in 

front of the car. We already know that the car will hit the tree, but at what velocity will it be going when it hits the 
tree? That is, what is the velocity of the car at the displacement of 60.0 m? Using equation 3.16 with x = 60.0 m, v0 
= 26.4 m/s, and a = −5.50 m/s2, and solving for v gives 

 
v2 = v02 + 2ax   

= (26.4 m/s)2 + 2(−5.50 m/s2)(60 m) 
= 697 m2/s2 − 660 m2/s2 

= 37.0 m2/s2 
m 3.60 km/hr6.08 
s 1 m/s

v  =  
 

 

and finally, 
v = 21.9 km/hr 

 
When the car hits the tree it will be moving at 21.9 km/hr, so the car may need a new bumper or fender. 

Equation 3.16 allows us to determine the velocity of the moving body at any displacement x. 
A problem similar to that of the car and the tree involves the maximum velocity that a car can move and 

still have adequate time to stop before hitting something the driver sees on the road in front of the car. Let us 
again assume that the car decelerates at the same constant rate as before, a = −5.50 m/s2, and that the low beam 
headlights of the car are capable of illuminating a 60.0 m distance of the road. Using equation 3.16, which gives 
the velocity of the car as a function of displacement, let us find the maximum value of v0 such that v is equal to 
zero when the car has the displacement x. That is, 

 v2 = v02 + 2ax 
  0 = v02 + 2ax 

0 2v ax= −  

( )( )22 5.50 m/s 60.0 m= − −  
2 2660 m /s=  

m 3.60 km/hr25.7 
s 1 m/s

v  =  
 

 

= 92.5 km/hr 
 

If the car decelerates at the constant rate of 5.50 m/s2 and the low beam headlights are only capable of 
illuminating a distance of 60.0 m, then the maximum safe velocity of the car at night without hitting something is 
92.5 km/hr. For velocities faster than this, the distance it takes to bring the car to a stop is greater than the 
distance the driver can see with low beam headlights. If you see it, you’ll hit it! Of course these results are based 
on the assumption that the car decelerates at 5.50 m/s2. This number depends on the condition of the brakes and 
tires and road conditions, and will be different for each car. To increase the maximum safe velocity of the car at 
night without hitting something, your car has high beam “bright” lights that illuminates a greater distance of the 
road. But even with these brighter beams, there is still another maximum safe driving speed, and if you drive 
faster than that, if you see it, you’ll hit it.  

In summary, the three kinematic equations, 
x = v0t +  1  at2                                                                       (3.14) 

                 2 
v = v0 + at                                                                              (3.10) 
v2 = v02 + 2ax                                                                        (3.16) 

 
are used to describe the motion of an object undergoing constant acceleration. The first equation gives the 
displacement of the object at any instant of time. The second equation gives the body’s velocity at any instant of 
time. The third equation gives the velocity of the body at any displacement x. 
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These equations are used for either positive or negative accelerations. Remember the three kinematic 
equations hold only for constant acceleration. If the acceleration varies with time then more advanced techniques 
must be used to determine the position and velocity of the moving object. 
 
 
3.7  The Freely Falling Body 
Another example of the motion of a body in one dimension is the freely falling body. A freely falling body is 
defined as a body that is moving freely under the influence of gravity, where it is assumed that the effect of air 
resistance is negligible. The body can have an upward, downward, or even zero initial velocity. The simplest of the 
freely falling bodies we discuss is the body dropped in the vicinity of the surface of the earth. That is, the first case 
to be considered is the one with zero initial velocity, v0 = 0. The motion of a body in the vicinity of the surface of the 
earth with either an upward or downward initial velocity will be considered in section 3.9. 

In chapter 4 on Newton’s second law of motion, we will see that whenever an unbalanced force F acts on an 
object of mass m, it gives that object an acceleration, a. The gravitational force that the earth exerts on an object 
causes that object to have an acceleration. This acceleration is called the acceleration due to gravity and is 
denoted by the letter g. Therefore, any time a body is dropped near the surface of the earth, that body, ignoring air 
friction, experiences an acceleration g. From experiments in the laboratory we know that the value of g near the 
surface of the earth is constant and is given by 

 
g = 9.80 m/s2 = 980 cm/s2  

 
Any body that falls with the acceleration due to gravity, g, is called a freely falling body.  

Originally Aristotle said that a heavier body falls faster than a lighter body and on his authority this 
statement was accepted as truth for 1800 years. It was not disproved until the end of the sixteenth century when 
Simon Stevin (Stevinus) of Bruges (1548-1620) dropped balls of very different weights and found that they all fell 
at the same rate. That is, the balls were all dropped from the same height at the same time and all landed at the 
ground simultaneously. The argument still persisted that a ball certainly drops faster than a feather, but Galileo 
Galilei (1564-1642) explained the difference in the motion by saying that it is the air’s resistance that slows up the 
feather. If the air were not present the ball and the feather would accelerate at the same rate. 

A standard demonstration of the rate of fall is the penny and the feather demonstration. A long tube 
containing a penny and a feather is used, as shown in figure 3.15. If we turn the tube upside down, first we 
observe that the penny falls to the bottom of the tube before the feather. Then we connect the tube to a vacuum 
pump and evacuate most of the air from the tube. Again we turn the tube upside down, and now the penny and 
feather do indeed fall at the same rate and reach the bottom of the tube at the same time. Thus, it is the air 
friction that causes the feather to fall at the slower rate. 

Another demonstration of a freely falling body, performed by the Apollo astronauts on the surface of the 
moon, was seen by millions of people on television. One of the astronauts dropped a feather and a hammer 
simultaneously and millions saw them fall at the same rate, figure 3.16. Remember, there is no atmosphere on the 
moon. 

                                        
         Figure 3.15  Free-fall of the penny and                     Figure 3.16  Astronaut David R. Scott holds a geological 
              the feather.                                                   hammer in his right hand and a feather in his left. The hammer  
                                                                                          and feather dropped to the lunar surface at the same instant. 
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Therefore, neglecting air friction, all freely falling bodies accelerate downward at the same rate regardless 

of their mass. Recall that the acceleration of a body was defined as the change in its velocity with respect to time, 
that is, 

a = ∆v                                                                                    (3.7) 
       ∆t       

 
Hence, a body that undergoes an acceleration due to gravity of 9.80 m/s2, has its velocity changing by 9.80 m/s 
every second. If we neglect the effects of air friction, every body near the surface of the earth accelerates 
downward at that rate, whether the body is very large or very small. For all the problems considered in this book, 
we neglect the effects of air resistance. 

Since the acceleration due to gravity is constant near the surface of the earth, we can determine the 
position and velocity of the freely falling body by using the kinematic equations 3.10, 3.14, and 3.16. However, 
because the motion is vertical, we designate the displacement by y in the kinematic equations: 

 
v = v0 + at                                                                                (3.10) 
y = v0t +  1  at2                                                                        (3.14) 
                2 

  v2 = v02 + 2ay                                                                            (3.16) 
 

Since the first case we consider is a body that is dropped, we will set the initial velocity v0 equal to zero in the 
kinematic equations. Also the acceleration of the moving body is now the acceleration due to gravity, therefore we 
write the acceleration as 

 a = −g                                                                                 (3.17) 
 

The minus sign in equation 3.17 is consistent with our previous convention for one-dimensional motion. 
Motion in the direction of the positive axis is considered positive, while motion in the direction of the negative axis 
is considered negative. Hence, all quantities in the upward direction (positive y-direction) are considered positive, 
whether displacements, velocities, or accelerations. And all quantities in the downward direction (negative y-
direction) are considered negative, whether displacements, velocities, or accelerations. The minus sign indicates 
that the direction of the acceleration is down, toward the center of the earth. This notation will be very useful later 
in describing the motion of projectiles. Therefore, the kinematic equations for a body dropped from rest near the 
surface of the earth are 

y = − 1  gt2                                                                           (3.18) 
          2 
v = − gt                                                                                (3.19) 
v2 = −2gy                                                                              (3.20) 

 
Equation 3.18 gives the height or location of the freely falling body at any time, equation 3.19 gives its velocity at 
any time, and equation 3.20 gives the velocity of the freely falling body at any height y. This sign convention gives 
a negative value for the displacement y, which means that the zero position of the body is the position from which 
the body is dropped, and the body’s location at any time t will always be below that point. The minus sign on the 
velocity indicates that the direction of the velocity is downward.                                                     

Equations 3.18, 3.19, and 
3.20 completely describe the motion 
of the freely falling body that is 
dropped from rest. As an example, 
let us calculate the distance fallen 
and velocity of a freely falling body 
as a function of time for the first 5 s 
of its fall. The results of the 
computations are written in figure 
3.17. At t = 0 the body is located at y 
= 0, (top of figure 3.17) and its 
velocity is zero. We then release the 
body. Where is it at t = 1 s? 

 
                                                 Figure 3.17  The distance and velocity for a freely falling body. 

t = 0
t = 1 s
t = 2 s

t = 3 s

t = 5 s

t = 4 s

t = 0
t = 1 s
t = 2 s

t = 3 s

t = 5 s

t = 4 s

y = 0 v = 0
 =  4.9 m−y1 =  9.8 m/s−v1

=  19.6 m/s−v2

=  49.0 m/s−v5

=  39.2 m/s−v4

=  29.4 m/s−v3

 =  123 m−y5

 =  44.1 m−y3

 =  78.4 m−y4

 =  19.6 m−y2
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Using equation 3.18, y1 is the displacement of the body (distance fallen) at the end of 1 s: 
 

y1 = − 1  gt2 = − 1 (9.80 m/s2)(1 s)2 = −4.90 m  
                                                                      2              2       
 
The minus sign indicates that the body is 4.90 m below the starting point. To find the velocity at the end of 1 s, we 
use equation 3.19: 

v1 = −gt = (−9.80 m/s2)(1 s) = −9.80 m/s 
 
The velocity is 9.80 m/s downward at the end of 1 s. The position and velocity at the end of 1 s are shown in figure 
3.17. For t = 2 s, the displacement and velocity are 
  

y2 = − 1  gt2 = − 1 (9.80 m/s2)(2 s)2 = −19.6 m  
                                                                      2              2 

v2 = −gt = (−9.80 m/s2)(2 s) = −19.6 m/s 
 

At the end of 2 s the body has dropped a total distance downward of 19.6 m and is moving at a velocity of 19.6 m/s 
downward. For t = 3 s we obtain 

y3 = − 1  gt2 = − 1 (9.80 m/s2)(3 s)2 = −44.1 m  
                                                                      2              2 

v3 = −gt = (−9.80 m/s2)(3 s) = −29.4 m/s 
 
At the end of 3 s the body has fallen a distance of 44.1 m and is moving downward at a velocity of 29.4 m/s. 

The distance and velocity for t = 4 s and t = 5 s are found similarly and are shown in figure 3.17. One of the 
first things to observe in figure 3.17 is that an object falls a relatively large distance in only a few seconds of time. 
Also note that the object does not fall equal distances in equal times, but rather the distance interval becomes 
greater for the same time interval as time increases. This is, of course, the result of the t2 in equation 3.18 and is a 
characteristic of accelerated motion. Also note that the change in the velocity in any 1-s time interval is 9.80 m/s, 
which is exactly what we meant by saying the acceleration due to gravity is 9.80 m/s2. 

We stated previously that the average velocity during a time interval is exactly equal to the instantaneous 
value of the velocity at the exact center of that time interval. We can see that this is the case by inspecting figure 
3.17. For example, if we take the time interval as between t = 3 s and t = 5 s, then the average velocity between the 
third and fifth second is 

v35avg = v5 + v3 = −49.0 m/s + (−29.4 m/s)  
                                                                                2                         2 

 
= −78.4 m/s 

   2 
= −39.2 m/s = v4 

 
The average velocity between the time interval of 3 and 5 s, v35avg, is exactly equal to v4, the instantaneous velocity 
at t equals 4 seconds, which is the exact center of the 3-5 time interval, as we can see in figure 3.17. The figure also 
shows the characteristic of an average velocity. At the beginning of the time interval the actual velocity is less 
than the average value, while at the end of the time interval the actual velocity is greater than the average value, 
but right at the center of the time interval the actual velocity is equal to the average velocity. Note that the 
average velocity occurs at the center of the time interval and not the center of the space interval. 

In summary, we can see the enormous power inherent in the kinematic equations. An object was dropped 
from rest and the kinematic equations completely described the position and velocity of that object at any instant 
of time. All that information was contained in those equations. 

 
Example 3.7 

 
Using the kinematic equation for free fall. A student’s book falls out the window of the physics laboratory. How 
long does it take to fall to the ground 20.0 m below? With what  velocity does the book hit the ground? 

Solution
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To find the time for the book to fall to the ground we solve equation 3.18 for the time t as 
 

2y
t

g
= −  

( )
2

2 20.0 m
9.80 m/s

−
= −  

 = 2.02 s 
 

Notice that the distance of 20.0 m is written as a negative number because the ground is 20.0 m below the point 
from which the book starts to fall. That is, the ground is on the negative y-axis at y = − 20.0 m. 

The velocity of the book as it hits the ground is found from equation 3.19 as  
 

v = − gt  
= − (9.80 m/s2)(2.02 s) 

 = − 19.8 m/s  
 

Notice that the answer is negative, indicating that the velocity is in the negative y-direction. 
 

To go to this interactive example click on this sentence. 
 

 
 
 
3.8  Determination of Your Reaction Time by a Freely Falling Body 
How long a period of time does it take for you to react to something? How can you measure this reaction time? It 
would be very difficult to use a clock to measure reaction time because it will take some reaction time to turn the 
clock on and off. However, a freely falling body can be used to measure reaction time. To see how this is 
accomplished, have one student hold a vertical meter stick near the top, as shown in figure 3.18(a). The second 
student then places his or her hand at the zero of the meter stick (the bottom of the stick) with thumb and 
forefinger extended. The thumb and forefinger should be open about 3 to 5 cm. When the first student drops the 
meter stick, the second student catches it with the thumb and finger [figure 3.18(b)]. 

As the meter stick is released, it becomes a freely falling body and hence falls a distance y in a time t: 

          
Figure 3.18  Measurement of reaction time. 
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y = − 1  gt2  
  2 
 

The location of the fingers on the meter stick, where the meter stick was caught, represents the distance y that the 
meter stick has fallen. Solving for the time t we get 

2y
t

g
= −                                                                               (3.21) 

 
Since we have measured y, the distance the meter stick has fallen, and we know the acceleration due to gravity g, 
we can do the simple calculation in equation 3.21 and determine your reaction time. (Remember that the value of y 
placed into equation 3.21 will be a negative number and hence we will take the square root of a positive quantity 
since the square root of a negative number is not defined.) 

If you practice catching the meter stick, you will be able to catch it in less time. But eventually you reach a 
time that, no matter how much you practice, you cannot make smaller. This time is your minimum reaction time 
— the time it takes for your eye to first see the stick drop and then communicate this message to your brain. Your 
brain then communicates this information through nerves and muscles to your fingers and then you catch the 
stick. Your normal reaction time is most probably the time that you first caught the stick. A normal reaction time 
to catch the meter stick is about 0.2 to 0.3 seconds. 

Note that this is not quite the same reaction time it would take to react to a red light while driving a car, 
because in that case, part of the communication from the brain would entail lifting your leg from the accelerator, 
placing it on the brake pedal, and then pressing. The motion of more muscles and mass would consequently take a 
longer period of time. A normal reaction time in a car is approximately 0.5 s. To obtain a more accurate value of 
the stopping distance for a car we also need to include the distance that the car moves while the driver reacts to 
the red light. 

 
Example 3.8 

 
Measuring your reaction time. One student holds a vertical meter stick near the top and then drops it. The second 
student then catches it after the stick has fallen 23.5 cm. Using the kinematic equation for free fall, determine the 
reaction time of the second student.  

Solution
 

The reaction time of the student is the time it takes him to react to something. For the falling meterstick, 
it is the time from the moment he sees the meterstick drop, to the time he catches it. His reaction time is thus the 
time it takes for the meterstick to fall. We solve equation 3.21 for this reaction time t as 

 
2y

t
g

= −  

( )
2

2 0.235 m
9.80 m/s
−

= −  

 = 0.219 s 
 

To go to this interactive example click on this sentence. 
 

 
 
 
3.9  Projectile Motion in One Dimension 
A case one step more general than the freely falling body dropped from rest, is the motion of a body that is thrown 
up or down with an initial velocity v0 near the surface of the earth. This type of motion is called projectile 
motion in one dimension. Remember, however, that this type of motion still falls into the category of a freely 
falling body because the object experiences the acceleration g downward throughout its motion. The kinematic 
equations for projectile motion are 
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2oy v t gt= −                                                                              (3.22) 

                            v = v0 − gt                                                                                 (3.23) 
 v2 = v02 − 2gy                                                                             (3.24) 

 
These three equations completely describe the motion of a projectile in one dimension. Note that these 

equations are more general than those for the body dropped from rest because they contain the initial velocity v0. 
In fact, if v0 is set equal to zero these equations reduce to the ones studied for the body dropped from rest. 

In the previous cases of motion, we were concerned only with motion in one direction. Here there are two 
possible directions, up and down. According to our convention the upward direction is positive and the downward 
direction is negative. Hence, if the projectile is initially thrown upward, v0 is positive; if the projectile is initially 
thrown downward, v0 is negative. Also note that whether the projectile is thrown up or down, the acceleration due 
to gravity always points downward. If it did not, then a ball thrown upward would continue to rise forever and 
would leave the earth, a result that is contrary to observation. 

Let us now consider the motion of a projectile thrown upward. Figure 
3.19 shows its path through space, which is called a trajectory. The projectile 
goes straight up, and then straight down. The downward portion of the motion 
is slightly displaced from the upward portion to clearly show the two different 
parts of the motion. For example, suppose the projectile is a baseball thrown 
straight upward with an initial velocity v0 = 30.0 m/s. We want to determine 

1. The maximum height of the ball. 
2. The time it takes for the ball to rise to the top of its trajectory. 
3. The total time that the ball is in the air. 
4. The velocity of the ball as it strikes the ground. 
5. The position and velocity of the ball at any time t, for example,          
for t = 4.00 s. 

Figure 3.19  Trajectory of a projectile  
                                                                                                                                               in one dimension. 

 
We are asking for a great deal of information, especially considering that the only data given is the initial 

position and velocity of the ball. Yet all this information can be obtained using the three kinematic equations 3.22, 
3.23, and 3.24. In fact, any time we try to solve any kinematic problem, the first thing is to write down the 
kinematic equations, because somehow, somewhere, the answers are in those equations. It is just a matter of 
manipulating them into the right form to obtain the information we want about the motion of the projectile. 

Let us now solve the problem of projectile motion in one dimension. 
 
Find the Maximum Height of the Ball 
Equation 3.22 tells us the height of the ball at any instant of time. We could find the maximum height if we knew 
the time for the projectile to rise to the top of its trajectory. But at this point that time is unknown. (In fact, that is 
question 2.) Equation 3.24 tells us the velocity of the moving body at any height y. The velocity of the ball is 
positive on the way up, and negative on the way down, so therefore it must have gone through zero somewhere. In 
fact, the velocity of the ball is zero when the ball is at the very top of its trajectory. If it were greater than zero the 
ball would continue to rise, if it were less than zero the ball would be on its way down. Therefore, at the top of the 
trajectory, the position of maximum height, v = 0, and equation 3.24,  
 

v2 = v02 − 2gy 
becomes 

0 = v02 − 2gymax 
 

where ymax is the maximum height of the projectile. For any other height y, the velocity is either positive 
indicating that the ball is on its way up, or negative indicating that it is on the way down. Solving for ymax, the 
maximum height of the ball is 

2gymax = v02 
2

max 2
ov

y
g

=                                                                             (3.25) 

Inserting numbers into equation 3.25, we get 
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ymax =  v02  
           2g 

=   (30.0 m/s)2   
    2(9.80 m/s2) 

= 45.9 m 
The ball will rise to a maximum height of 45.9 m. 
 
Find the Time for the Ball to Rise to the Top of the Trajectory 
We have seen that when the projectile is at the top of its trajectory, v = 0. Therefore, equation 3.23, 
 

v = v0 − gt 
becomes 

0 = v0 − gtr 
 

where tr is the time for the projectile to rise to the top of its path. Only at this value of time does the velocity equal 
zero. At any other time the velocity is either positive or negative, depending on whether the ball is on its way up or 
down. Solving for tr we get 

o
r

v
t

g
=                                                                                  (3.26) 

 
the time for the ball to rise to the top of its trajectory. Inserting numbers into equation 3.26 we obtain 
 

tr =  v0  =  30.0 m/s   
         g       9.80 m/s2 

= 3.06 s 
 
It takes 3.06 s for the ball to rise to the top of the trajectory. Notice that the ball has the acceleration −g at the top 
of the trajectory even though the velocity is zero at that instant. That is, in any kind of motion, we can have a 
nonzero acceleration even though the velocity is zero. The important thing for an acceleration is the change in 
velocity, not the velocity itself. At the top, the change in velocity is not zero, because the velocity is changing from 
positive values on the way up, to negative values on the way down. 

The time tr could also have been found using equation 3.22, 
 

y = v0t −  1  gt2 
         2 

 
by substituting the maximum height of 45.9 m for y. Even though this also gives the correct solution, the algebra 
and arithmetic are slightly more difficult because a quadratic equation for t would have to be solved. 
 
Find the Total Time that the Object Is in the Air 
When t is equal to the total time tt, that the projectile is in the air, y is equal to zero. That is, during the time from 
t = 0 to t = tt, the projectile goes from the ground to its maximum height and then falls back to the ground. Using 
equation 3.22, the height of the projectile at any time t, 
 

y = v0t −  1  gt2  
          2 

with t = tt and y = 0, we get 
0 = v0tt −  1  gtt2                                                                         (3.27) 

            2 
Solving for tt we obtain 

2 o
t

v
t

g
=                                                                                 (3.28) 

 
the total time that the projectile is in the air. Recall from equation 3.26 that the time for the ball to rise to the top 
of its trajectory is tr = v0/g. And the total time, equation 3.28, is just twice that value. Therefore, the total time that 
the projectile is in the air becomes 
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2 2o
t r

v
t t

g
= =                                                                             (3.29) 

 
The total time that the projectile is in the air is twice the time it takes the projectile to rise to the top of its 
trajectory. Stated in another way, the time for the ball to go up to the top of the trajectory is equal to the time for 
the ball to come down to the ground. 

For this particular problem, 
tt = 2tr = 2(3.06 s) = 6.12 s 

 
The projectile will be in the air for a total of 6.12 s. Also note that equation 3.27 is really a quadratic equation with 
two roots. One of which we can see by inspection is t = 0, which is just the initial moment that the ball is launched. 
 
Find the Velocity of the Ball as It Strikes the Ground 
There are two ways to find the velocity of the ball at the ground. The simplest is to use equation 3.24, 
 

v2 = v02 − 2gy 
 

noting that the height is equal to zero (y = 0) when the ball is back on the ground. Therefore, 
 

vg2 = v02 
and 

vg = ±v0                                                                               (3.30) 
 

The two roots represent the velocity at the two times that y = 0, namely, when the ball is first thrown up (t = 0), 
with an initial velocity +v0, and when the ball lands (t = tt) with a final velocity of −v0 (the minus sign indicates 
that the ball is on its way down). 

Another way to find the velocity at the ground is to use equation 3.23, 
 

v = v0 − gt 
 

which represents the velocity of the projectile at any instant of time. If we let t be the total time that the projectile 
is in the air (i.e., t = tt), then v = vg, the velocity of the ball at the ground. Thus, 
 

vg = v0 − gtt                                                                         (3.31) 
But we have already seen that 

tt = 2v0                                                                                (3.28) 
         g 

Substituting equation 3.28 into equation 3.31 gives 
 

vg = v0 − g(2v0) 
               g 

Hence,  
vg = −v0 

 
The velocity of the ball as it strikes the ground is equal to the negative of the original velocity with which the ball 
was thrown upward, that is, 

vg = −v0 = −30.0 m/s 
 

Find the Position and Velocity of the Ball at t = 4.00 s 
The position of the ball at any time t is given by equation 3.22 as 
 

      y = v0t −  1  gt2    
              2 

Substituting in the values for t = 4.00 s gives 
 

y4 = (30.0 m/s)(4.00 s) −  1  (9.80 m/s2)(4.00 s)2 
        2     
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= 120 m − 78.4 m 
= 41.6 m 

At t = 4.00 s the ball is 41.6 m above the ground. 
The velocity of the ball at any time is given by equation 3.23 as 
 

      v = v0 − gt 
For t = 4.00 s, the velocity becomes 

v4 = 30.0 m/s − (9.80 m/s2)(4.00 s) 
= 30.0 m/s − 39.2 m/s 

= −9.2 m/s 
 

At the end of 4 s the velocity of the ball is −9.2 m/s, where the 
negative sign indicates that the ball is on its way down. We could 
have used equation 3.22 for every value of time and plotted the 
entire trajectory, as shown in figure 3.20. 

There is great beauty and power in these few simple 
equations, because with them we can completely predict the motion 
of the projectile for any time, simply by knowing its initial position 
and velocity. This is a characteristic of the field of physics. First we 
observe how nature works. Then we make a mathematical model of 
nature in terms of certain equations. We manipulate these 
equations until we can make a prediction, and this prediction yields 
information that we usually have no other way of knowing. 

For example, how could you know that the velocity of the 
ball after 4.00 s would be −9.2 m/s. In general, there is no way of 
knowing that. Yet we have actually captured a small piece of nature 
in our model and have seen how it works.          

                                                                                                        Figure 3.20  Results of projectile motion 
                                                                                                                              in one dimension. 
                                                                                                                                                                

Example 3.9 
 

A projectile is fired straight up from the top of a building. A projectile is 
fired from the top of a building at an initial velocity of 35.0 m/s upward. 
The top of the building is 30.0 m above the ground. The motion is 
shown in figure 3.21. Find (a) the maximum height of the projectile, 
(b) the time for the projectile to reach its maximum height, (c) the 
velocity of the projectile as it strikes the ground, and (d) the total time 
that the projectile is in the air. 

Solution
 

We will solve this problem using the techniques just developed. 
a. To find the maximum height of the projectile we again note that at 
the top of the trajectory v = 0. Using equation 3.24, 

 
          v2 = v02 − 2gy 

and setting v = 0 we obtain 
           0 = v02 − 2gymax  

                                                                                                                          Figure 3.21  A projectile is fired  
                                                                                                                                   vertically from the top of a building.                    
Solving for the maximum height, 

 ymax = v02 =  (35.0 m/s)2  
                                                                                         2g     2(9.80 m/s2) 

       = 62.5 m 
 
The projectile’s maximum height is 62.5 m above the roof of the building, or 92.5 m above the ground.  
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b. To find the time for the projectile to reach its maximum height we again note that at the maximum height v = 0. 
Substituting v = 0 into equation 3.23, we get 

0 = v0 − gtr 
 

Solving for the time to rise to the top of the trajectory, we get 
 

tr = v0 =  35.0 m/s    
                                                                                         g      9.80 m/s2 

= 3.57 s 
 
It takes 3.57 s for the ball to rise from the top of the roof to the top of its trajectory. 
c. To find the velocity of the projectile when it strikes the ground, we use equation 3.24. When y = −30.0 m the 
projectile will be on the ground, and its velocity as it strikes the ground is 
 

v2 = v02 − 2gy 
(vg)2 = (35.0 m/s)2 − 2(9.80 m/s2)(− 30.0 m) 

= 1225 m2/s2 + 588 m2/s2 = 1813 m2/s2 
vg = −42.6 m/s 

 
The projectile hits the ground at a velocity of −42.6 m/s. Note that this value is greater than the initial velocity v0, 
because the projectile does not hit the roof on its way down, but rather hits the ground 30.0 m below the level of 
the roof. The acceleration has acted for a longer time, thereby imparting a greater velocity to the projectile. 
d. To find the total time that the projectile is in the air we use equation 3.23, 
 

v = v0 − gt 
 

But when t is equal to the total time that the projectile is in the air, the velocity is equal to the velocity at the 
ground (i.e., v = vg). Therefore, 

vg = v0 − gtt 
Solving for the total time, we get 

tt = v0 − vg 
      g 

= 35.0 m/s − (−42.6 m/s) 
9.80 m/s2 

= (35.0 + 42.6)m/s 
    9.80 m/s2 

= 7.92 s 
 
The total time that the projectile is in the air is 7.92 s. Note that it is not twice the time for the projectile to rise 
because the projectile did not return to the level where it started from, but rather to 30.0 m below that level. 
 

To go to this interactive example click on this sentence. 
 

 
 
 
3.10  The Kinematic Equations in Vector Form 
Up to now we have discussed motion in one dimension only. And although the displacement, velocity, and 
acceleration of a body are vector quantities, we did not write them in the traditional boldface type, characteristic of 
vectors. We took into account their vector character by noting that when the displacement, velocity, and 
acceleration were in the positive x- or y-direction, we considered the quantities positive. When the displacement, 
velocity, and acceleration were in the negative x- or y-direction, we considered those quantities negative. For two-
dimensional motion we must be more general and write the displacement, velocity, and acceleration in boldface 
type to show their full vector character. Let us now define the kinematic equations in terms of their vector 
characteristics. 
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The average velocity of a body is defined as the rate at which the displacement vector changes with time. 
That is, 

vavg = ∆r = r2 − r1                                                                      (3.32) 
                                                                                                     ∆t     t2 − t1 

 
where the letter r is the displacement vector. The displacement vector r1 locates the position of the body at the 
time t1, while the displacement vector r2 locates the position of the body at the time t2. The displacement between 
the times t1 and t2 is just the difference between these vectors, r2 − r1, or ∆r, and is shown in figure 3.22. 

We find the instantaneous velocity by taking the limit in 
equation 3.32 as ∆t approaches zero, just as we did in equation 3.8. The 
magnitude of the instantaneous velocity vector is the instantaneous 
speed of the body, while the direction of the velocity vector is the 
direction that the body is moving, which is tangent to the trajectory at 
that point. 

The average acceleration vector is defined as the rate at which 
the velocity vector changes with time: 

 
a = ∆v = v − v0                                     (3.33) 

                                                              ∆t         t              
 
Since the only cases that we will consider concern motion at constant 
acceleration, we will not use the subscript avg on a. We find the 

Figure 3.22  The change in the displacement 
                                                                                                                                   vector. 

 
kinematic equation for the displacement and velocity of the body at any instant of time as in section 3.6, only we 
write every term except t as a vector: 

r = v0t +  1  at2                                                                            (3.34) 
                                                                                                   2              
and 

 v = v0 + at                                                                               (3.35) 
 

Equation 3.34 represents the vector displacement of the moving body at any time t, while equation 3.35 represents 
the velocity of the moving body at any time. These vector equations are used to describe the motion of a moving 
body in two or three directions. 
 
 
3.11  Projectile Motion in Two Dimensions 
In the study of kinematics we found that the displacement and velocity of a moving body can be determined if the 
original velocity v0 of the body and the acceleration a acting on it are known. The displacement of the body was 
given by 

r = v0t +  1  at2                                                                        (3.34) 
               2   

while its velocity was given by 
v = v0 + at                                                                            (3.35) 

 
These two equations completely describe the resulting motion of the body. As an example of two-dimensional 
kinematics let us study the motion of a projectile in two dimensions. A projectile is thrown from the point 0 in 
figure 3.23 with an initial velocity v0. The trajectory of the projectile is shown in the figure. The initial velocity v0 
has two components: v0x, the x-component of the initial velocity, and v0y, the y-component. 

The location of the projectile at any instant of time is given by equation 3.34 and is shown as the 
displacement vector r in figure 3.23. We resolve the displacement vector r into two components: the distance the 
projectile has moved in the x-direction, we designate as x; the distance (or height) the projectile has moved in the 
y-direction we designate as y. We can now write the one vector equation 3.34 as two component equations, namely, 
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                                          (a)                                                                                                     (b) 

Figure 3.23  The trajectory of a projectile in two dimensions. 
 

x = v0x t +  1 axt2                                                                        (3.36) 
              2 

     y = v0yt +  1 ayt2                                                                         (3.37) 
            2 

 
Figure 3.23 shows that v0x is the x-component of the original velocity, given by v0x = v0 cos θ, while v0y is the y-
component of the original velocity, v0y = v0 sin θ. We have resolved the vector acceleration a into two components ax 
and ay. 

In chapter 4 on Newton’s laws of motion, we will see that whenever an unbalanced force F acts on a body of 
mass m, it gives that mass an acceleration a. Because there is no force acting on the projectile in the horizontal x-
direction, the acceleration in the x-direction must be zero, that is, ax = 0. Therefore, the x-component of the 
displacement r of the projectile, equation 3.36, takes the simple form 

 
 x = v0xt                                                                                (3.38) 

  
There is, however, a force acting on the projectile in the y-direction, the force of gravity that the earth exerts on 
any object, directed toward the center of the earth. We define the direction of this gravitational force to be in the 

 

Figure 3.24  A punted football is an example of a projectile in two dimensions.  
 

negative y-direction. This gravitational force produces a constant acceleration called the acceleration due to 
gravity g. Hence, the y-component of the acceleration of the projectile is given by −g, that is, ay = −g. The y-
component of the displacement of the projectile therefore becomes 
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 y = v0yt −  1  gt2                                                                          (3.39) 
                                                                                                     2                  

 
Using the same arguments, we resolve the velocity v at any instant of time, equation 3.35, into the two 

scalar equations: 
 vx = v0x                                                                                (3.40) 
 vy = v0y − gt                                                                         (3.41) 

 
Equation 3.40 does not contain the time t, and therefore the x-component of the velocity vx is independent of time 
and is a constant. Hence, the projectile motion consists of two motions: accelerated motion in the y-direction and 
motion at constant velocity in the x-direction. 

We can completely describe the motion of the projectile using the four equations, namely, 
 

x = v0xt                                                                                 (3.38) 
y = v0yt −  1  gt2                                                                          (3.39) 

           2 
     vx = v0x                                                                                 (3.40) 

vy = v0y − gt                                                                            (3.41) 
 

Now let us apply these equations to the projectile motion shown in figure 3.23. We essentially look for the 
same information that we found for projectile motion in one dimension. Because two-dimensional motion is a 
superposition of accelerated motion in the y-direction coupled to motion in the x-direction at constant velocity, we 
can use many of the techniques and much of the information we found in the one-dimensional case. 

Let us find (1) the time for the projectile to rise to its maximum height, (2) the total time that the projectile 
is in the air, (3) the range (or maximum distance in the x-direction) of the projectile, (4) the maximum height of the 
projectile, (5) the velocity of the projectile as it strikes the ground, and (6) the location and velocity of the projectile 
at any time t. 

To determine this information we use the kinematic equations 3.38 through 3.41. 
 
The Time for the Projectile to Rise to Its Maximum Height 
To determine the maximum height of the projectile we use the same reasoning used for the one-dimensional case. 
As the projectile is moving upward it has some positive vertical velocity vy. When it is coming down it has some 
negative vertical velocity −vy. At the very top of the trajectory, vy = 0.  

Therefore, at the top of the trajectory, equation 3.41 becomes 
 

0 = v0y − gtr                                                                             (3.42) 
 

Note that this is very similar to the equation for the one-dimensional case, except for the subscript y on v0. This is 
an important distinction between the two motions, because the initial velocity upward v0y is now less than the 
initial velocity upward v0 in the one-dimensional case. Solving equation 3.42 for the time to rise to the top of the 
trajectory tr, we get 

tr = v0y                                                                                   (3.43) 
   g 

 
Since we know v0 and hence v0y, and because g is a constant, we can immediately compute tr. 
 
The Total Time the Projectile Is in the Air 
To find the total time that the projectile is in the air, we use equation 3.39. When t is the total time tt, the 
projectile is back on the ground and the height of the 
projectile is zero, y = 0. Therefore, 

 0 = v0ytt −  1  gtt2   
           2 

 
Solving for the total time that the projectile is in the air, we get 
 

tt = 2v0y                                                                                (3.44) 
        g 
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But using equation 3.43 for the time to rise, tr = v0y/g, the total time that the projectile is in the air is exactly 
double this value, 

tt = 2v0y = 2tr                                                                           (3.45) 
 g     
 

which is the same as the one-dimensional case, as expected. 
 
The Range of the Projectile 
The range of a projectile is defined as the horizontal distance from the point where the projectile is launched to 
the point where it returns to its launch height. In this case, the range is the maximum distance that the projectile 
moves in the x-direction before it hits the ground. Because the maximum horizontal distance is the product of the 
horizontal velocity, which is a constant, and the total time of flight, the range, becomes 
 

range = R = xmax = v0xtt                                                                   (3.46) 
 

Sometimes it is convenient to express the range in another way. Since v0x = v0 cos θ, and the total time in the air is 
 

tt = 2v0y = 2v0 sin θ  
                                                                                         g            g 

 
we substitute these values into equation 3.46 to obtain 
 

R = (v0 cos θ)(2v0 sin θ)  = v02 2 sin θ cos θ  
                                                                                   g                                g 
 
However, using the well-known trigonometric identity, 
 

2 sin θ cos θ = sin 2θ 
the range of the projectile becomes 

 R = v02 sin 2θ                                                                             (3.47) 
                                                                                                   g                 

 
We derived equation 3.47 based on the assumption that the initial and final elevations are the same, and we can 
use it only in problems where this assumption holds. This formulation of the range is particularly useful when we 
want to know at what angle a projectile should be fired in order to get the maximum possible range. From 
equation 3.47 we can see that for a given initial velocity v0, the maximum range depends on the sine function. 
Because the sine function varies between −1 and +1, the maximum value occurs when sin 2θ = 1. But this happens 
when 2θ = 900, hence the maximum range occurs when θ = 450. We obtain the maximum range of a projectile by 
firing it at an angle of 450. 
 
The Maximum Height of the Projectile 
We can find the maximum height of the projectile by substituting the time tr into equation 3.39 and solving for the 
maximum height. However, since it is useful to have an equation for vertical velocity as a function of the height, 
we will use an alternate solution. Equation 3.39 represents the y-component of the displacement of the projectile 
at any instant of time and equation 3.41 is the y-component of the velocity at any instant of time. If the time is 
eliminated between these two equations (exactly as it was in section 3.6, for equation 3.16), we obtain the 
kinematic equation 

 vy2 = v0y2 − 2gy                                                                          (3.48) 
 

which gives the y-component of the velocity of the moving body at any height y.    
When the projectile has reached its maximum height, vy = 0. Therefore, equation 3.48 becomes 
 

0 = v0y2 − 2gymax  
Solving for ymax we obtain 

ymax =  v0y2                                                                               (3.49) 
          2g 
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Solution

the maximum height of the projectile. 
 
The Velocity of the Projectile as It Strikes the Ground 
The velocity of the projectile as it hits the ground vg can be described in terms of its components, as shown in 
figure 3.25. The x-component of the velocity at the ground, found from equation 3.40, is 
 

vxg = vx = v0x                                              (3.50) 
 

The y-component of the velocity at the ground, found from equation 3.41 with t = tt 
is 

vyg = v0y − gtt 
 

  = v0y − g(2v0y)                                               (3.51) 
               g 
vyg = −v0y                                                     (3.52) 

 
Figure 3.25  The velocity of the  

projectile at the ground. 
 

The y-component of the velocity of the projectile at the ground is equal to the negative of the y-component of the 
original velocity. The minus sign just indicates that the projectile is coming down. But this is exactly what we 
expected from the study of one-dimensional motion. The magnitude of the actual velocity at the ground, found 
from its two components, is 

( ) ( )2 2
g xg ygv v v= +                                                                         (3.53) 

and using equations 3.50 and 3.52, becomes 

( ) ( )22
g 0 0 0x yv v v v= + − =                                                                (3.54) 

 
The speed of the projectile as it strikes the ground is equal to the original speed of the projectile. The direction that 
the velocity vector makes with the ground is 

                  θ = tan−1 vyg = tan−1 −v0y = −θ  
                                                                                                vxg               v0x 
 
The angle that the velocity vector makes as it hits the ground is the negative of the original angle. That is, if the 
projectile was fired at an original angle of 300 above the positive x-axis, it will make an angle of 300 below the 
positive x-axis when it hits the ground. 
 
The Location and Velocity of the Projectile at Any Time t 
We find the position and velocity of the projectile at any time t by substituting that value of t into equations 3.38, 
3.39, 3.40, and 3.41. Let us look at some examples of projectile motion. 

 
Example 3.10 

 
Projectile motion in two dimensions. A ball is thrown with an initial velocity of 30.0 m/s at an angle of 60.00 above 
the horizontal, as shown in figure 3.26. Find (a) the maximum height of the ball, (b) the time to rise to the top of 
the trajectory, (c) the total time the ball is in the air, (d) the range of the ball, (e) the velocity of the ball as it 
strikes the ground, and (f) the position and velocity of the ball at t = 4 s. 

 
 

 
The x-component of the initial velocity is 
 

v0x = v0 cos θ = (30.0 m/s) cos 600 = 15.0 m/s 
 

The y-component of the initial velocity is 
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v0y = v0 sin θ = (30.0 m/s) sin 60.00 = 26.0 m/s 
 
a. The maximum height of the ball, found from 
equation 3.49, is 
 

ymax = v0y2 =  (26.0 m/s)2  = 34.5 m  
                        2g      2(9.80 m/s2)                                          
 
b. To find the time to rise to the top of the 
trajectory, we use equation 3.43, 
 

tr = v0y = 26.0 m/s = 2.65 s 
                          g      9.80 m/s2 

 
                                                                           Figure 3.26  Trajectory of a thrown ball. 

 
c. To find the total time that the ball is in the air, we use equation 3.45, 
 

tt = 2tr = 2(2.65 s) = 5.30 s 
 

d. The range of the ball, found from equation 3.47, is 
 

R = v02 sin 2θ  = (30.0 m/s)2 sin 1200 = 79.5 m 
                                                                        g                     9.80 m/s2 
 
As a check, we can use equation 3.46 to get 
 

R = xmax = v0xtt = (15.0 m/s)(5.30 s) = 79.5 m 
 

e. To find the magnitude of the velocity of the ball at the ground, we use equation 3.53, 
 

( ) ( )2 2
g xg ygv v v= +  

where 
vxg = v0x = 15.0 m/s 

and 
vyg = v0y − gtt = 26.0 m/s − (9.80 m/s2)(5.30 s) 

= 26.0 m/s − 51.9 m/s = −25.9 m/s 
Hence, 

( ) ( )2 215.0 m/s 25.9 m/sgv = + −  
= 29.9 m/s ≅ 30.0 m/s because of round off errors 

 
The direction that the velocity vector makes with the ground is 
 

θ = tan−1vyg = tan−1 −25.9 m/s = −59.90 ≅ 60.00  
                                                                         vxg              15.0 m/s 

 
f. To find the position and velocity of the ball at t = 4 s we use the kinematic equations 3.38 through 3.41. 
 

1.     x = v0xt = (15.0 m/s)(4 s) = 60.0 m 
2.             y = v0yt −  1  gt2    
                                2 
                  = (26.0 m/s)(4 s) −  1  (9.80 m/s2)(4 s)2 
                                                  2 
                  = 25.6 m 
 
The ball is 60.0 m down range and is 25.6 m high. 

Pearson Custom Publishing

81



 
3-30                                                                                                                                                               Mechanics 

The components of the velocity at 4 s are 
3.   vx = v0x = 15.0 m/s 
4.           vy = v0y − gt 
                  = 26.0 m/s − (9.80 m/s2)(4 s) 
                  = −13.2 m/s 

 
At the end of 4 s the x-component of the velocity is 15.0 m/s and the y-component is −13.2 m/s. To determine the 
magnitude of the velocity vector at 4 s we have 

( ) ( )22
x yv v v= +  

( ) ( )2 215.0 m/s 13.2 m/sv = + −  
= 20.0 m/s 

The direction of the velocity vector at 4 s is 
 

θ = tan−1vyg = tan−1 −13.2 m/s = −41.30  
                                                                                vxg              15.0 m/s 
 
The velocity vector makes an angle of 41.30 below the horizontal at 4 s. 
 

To go to this interactive example click on this sentence. 
 

 
 

Example 3.11 
 

A projectile is fired horizontally from the roof of a building. A projectile is fired horizontally from the roof of a 
building 30.0 m high at an initial velocity of 20.0 m/s, as shown in figure 3.27. Find (a) the total time the projectile 
is in the air, (b) where the projectile will hit the ground, and (c) the velocity of the projectile as it hits the ground. 

Solution
 

The x- and y-components of the velocity are 
 

v0x = v0 = 20.0 m/s 
v0y = 0 

 
a. To find the total time that the projectile is in the air, we use 
equation 3.39, 

y = v0yt −  1  gt2 
          2    

 
However, the initial conditions are that v0y = 0. Therefore, 
 

     y = −  1  gt2 
        2 

Solving for t, 

      2y
t

g
= −  

Figure 3.27  Trajectory of projectile thrown horizontally. 
 
However, when t = tt, y = −30.0 m. Hence,                                                   

( )
2

2 30.0 m2
9.80 m/st

y
t

g

−
= − = −  

= 2.47 s 
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b. To find where the projectile hits the ground, we use equation 3.38, 
 

x = v0xt 
 

Now the projectile hits the ground when t = tt, therefore, 
 

x = v0xtt = (20.0 m/s)(2.47 s) = 49.4 m 
 
The projectile hits the ground at the location y = −30.0 m and x = 49.4 m. 
c. To find the velocity of the projectile at the ground we use equations 3.50, 3.51, and 3.53: 
 

vxg = v0x = v0 = 20.0 m/s 
vyg = v0y − gtt = 0 − (9.80 m/s2)(2.47 s) = −24.2 m/s 

( ) ( )2 2
g xg ygv v v= +  

( ) ( )2 220.0 m/s 24.2 m/sv = + −  
= 31.4 m/s 

 
The direction that the velocity vector makes with the ground is 

 
θ = tan−1vyg = tan−1 −24.2 m/s = −50.40  

                                                                                vxg              20.0 m/s 
  

The velocity vector makes an angle of 50.40 below the horizontal when the projectile hits the ground. 
 

To go to this interactive example click on this sentence. 
 

 
 

Example 3.12 
 

A projectile is fired at an angle from the roof of a building. A projectile is fired at an initial velocity of 35.0 m/s at 
an angle of 30.00 above the horizontal from the roof of a building 30.0 m 
high, as shown in figure 3.28. Find (a) the maximum height of the 
projectile, (b) the time to rise to the top of the trajectory, (c) the total 
time that the projectile is in the air, (d) the velocity of the projectile at 
the ground, and (e) the range of the projectile. 

Solution
 

The x- and y-components of the original velocity are 
 

v0x = v0 cos θ = (35.0 m/s) cos 300 = 30.3 m/s 
v0y = v0 sin θ = (35.0 m/s) sin 300 = 17.5 m/s 

 
a. To find the maximum height we use equation 3.49: 
 

                                                                                                                 Figure 3.28  Trajectory of a projectile fired           
from the roof of a building. 

 
ymax = v0y2  =  (17.5 m/s)2    

                                                                                        2g       2(9.80 m/s2) 
= 15.6 m 

 
above the building. Since the building is 30 m high, the maximum height with respect to the ground is 45.6 m. 
b. To find the time to rise to the top of the trajectory we use equation 3.43: 
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tr = v0y  = 17.5 m/s = 1.79 s   

                                                                                  g       9.80 m/s2 

 
c. To find the total time the projectile is in the air we use equation 3.39: 
 

y = v0yt −  1  gt2 
          2   

When t = tt, y = −30.0 m. Therefore, 
−30.0 m = (17.5 m/s)tt −  1  (9.80 m/s2)tt2  

                 2 
Rearranging the equation, we get 

4.90 tt2 − 17.5 tt − 30.0 = 0  
 
The units have been temporarily left out of the equation to simplify the following calculations. This is a quadratic 
equation of the form 

ax2 + bx + c = 0 
with the solution 

2 4
2

b b ac
x

a
− ± −

=  

 
In this problem, x = tt, a = 4.90, b = −17.5, and c = −30.0. Therefore, 
 

( ) ( )( )217.5 17.5 4 4.90 30.0
2(4.90)tt

+ ± − −
=  

= +17.5 ± 29.9 
   9.80 

 = 4.84 s   
 
The total time that the projectile is in the air is 4.84 s. If we had solved the equation for the negative root, we 
would have found a time of −1.27 s. This corresponds to a time when the height is −30.0 meters but it is a time 
before the projectile was thrown. If the projectile had been thrown from the ground it would have taken 1.27 
seconds to reach the roof. 
d. To find the velocity of the projectile at the ground we use equations 3.50, 3.51, and 3.53: 
 

vxg = v0x = 30.3 m/s 
vyg = v0y − gtt = 17.5 m/s − (9.80 m/s2)(4.84 s) 

= −29.9 m/s 

( ) ( )2 2
g xg ygv v v= +  

( ) ( )2 230.3 m/s 29.9 m/sgv = + −  
= 42.6 m/s 

 
The speed of the projectile as it strikes the ground is 42.6 m/s. The angle 
that the velocity vector makes with the ground, found from figure 3.29, 
is 

tan φ = vyg 

            vxg 
1 1 29.9tan tan

30.3
yg

xg

v

v
ϕ − − − = =  

 
 

= −44.60 

 
Figure 3.29  Angle of velocity vector as it  

                                                                                                                                    strikes the ground. 
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The velocity vector makes an angle of 44.60 below the horizontal when the projectile hits the ground. 
e. To find the range of the projectile we use equation 3.46: 
 

xmax = v0xtt = (30.3 m/s)(4.84 s) 
= 147 m 

 
To go to this interactive example click on this sentence. 

 

 
 
 

Have You Ever Wondered . . . ? 
An Essay on the Application of Physics 

Kinematics and Traffic Congestion 
 

Have you ever wondered, while sitting in heavy traffic 
on the expressway, as shown in figure 1, why there is 
so much traffic congestion? The local radio station 
tells you there are no accidents on the road, the traffic 
is heavy because of volume. What does that mean? 
Why can’t cars move freely on the expressway? Why 
call it an expressway, if you have to move so slowly? 

Let us apply some physics to the problem to 
help understand it. In particular, we will make a 
simplified model to help analyze the traffic congestion. 
In this model, we assume that the total length of the 
expressway L is 10,000 ft2 (approximately two miles), 

                                                                         Figure 1  Does your highway look like this? 
 

the length of the car xc is 10 ft, and the speed of the car v0 is 55 mph. How many cars of this size can safely fit on 
this expressway if they are all moving at 55 mph? 

First, we need to determine the safe distance required for each car. If the car is moving at 55 mph (80.7 
ft/s), and the car is capable of decelerating at −18.0 ft/s2, the distance required to stop the car is found from 
equation 3.16, 

v2 = v02 + 2ax 
 
by noting that v = 0 when the car comes to a stop. Solving for the distance xd that the car moves while decelerating 
to a stop we get 

xd = −v02 = −(80.7 ft/s)2 = 181 ft 
                                                                                2a      2(−18 ft/s2) 

 
Before the actual deceleration, the car will move, during the reaction time, a distance xR given by 
 

xR = v0tR = (80.7 ft/s)(0.500 s) = 40.4 ft 
 

where we assume that it takes the driver 0.500 s to react. The total distance ∆L needed for each car on the 
expressway to safely come to rest is equal to the sum of the distance taken up by the car itself xc, the distance the 
car moves during the drivers reaction time xR, and the distance the car moves while it is decelerating xd. That is  
 

∆L = xc + xR + xd = 10 ft + 40.4 ft + 181 ft = 231 ft 
 

                                                           
2We will depart from our custom of using only SI units here because most students will have a better feel for this discussion if it is done in the 
British engineering system of units. 
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Because it takes a safe distance ∆L for one car to come to rest, N cars will take a distance of N∆L. The total 
length of the road L can then hold N cars, each requiring a distance ∆L to stop, as seen in figure 2. Stated 
mathematically this is 

L = N∆L                                                                           (H3.1) 

Figure 2  The number of cars on an expressway. 
 
Therefore, the number of cars N that can safely fit on this road is 
 

N =  L  = 10,000 ft = 43 cars 
                                                                                        ∆L       231 ft 
 

Thus for a road 10,000 ft long, only 43 cars can fit safely on it when each is moving at 55 mph. If the 
number of cars on the road doubles, then the safe distance per car ∆L must be halved because the product of N and 
∆L must equal L the total length of the road, which is a constant. Rewriting equation H3.1 in the form 

 
∆L =  L   
         N              

= xc + xR + xd =  L  
                         N 

 
xc + v0tR −  v02  =  L                                                                       (H3.2) 

                                                                                                   2a     N 
 
Notice in equation H3.2 that if the number of cars N increases, the only thing that can change on this fixed length 
road is the initial velocity v0 of each car. That is, by increasing the number of cars on the road, the velocity of each 
car must decrease, in order for each car to move safely. Equation H3.2 can be written in the quadratic form 
 

− v02 + v0tR + xc −  L  = 0 
                                                                               2a                       N 
which can be solved quadratically to yield 

( ) ( )2
0 2 /R R cv at at a x L N= + −m                                                    (H3.3) 

 
Equation H3.3 gives the maximum velocity that N cars can 
safely travel on a road L ft long. (Don’t forget that a is a 
negative number.) Using the same numerical values of a, tR, 
xc, and L as above, equation H3.3 is plotted in figure 3 to 
show the safe velocity (in miles per hour) for cars on an 
expressway as a function of the number of cars on that 
expressway. Notice from the form of the curve that as the 
number of cars increases, the safe velocity decreases. As the 
graph shows, increasing the number of cars on the road to 

Figure 3  Plot of the velocity of cars (y-axis) as function  
of the number of cars on the expressway (x-axis). 
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80, decreases the safe velocity to 38 mph. A further increase in the number of cars on the road to 200, decreases 
the safe velocity to 20 mph. 

Hence, when that radio announcer says, “There is no accident on the road, the heavy traffic comes from 
volume,” he means that by increasing the number of cars on the road, the safe velocity of each car must decrease. 

You might wonder if there is some optimum number of cars that a road can handle safely. We can define 
the capacity C of a road as the number of cars that pass a particular place per unit time. Stated mathematically, 
this is 

C =  N                                                                                 (H3.4) 
      t 

 
From the definition of velocity, the time for N cars to pass through a distance L, when moving at the velocity v0, is 
 

t =  L   
      v0 

Substituting this into equation H3.4 gives 
C =  N  =   N    =   v0   

                                                                                        t       L/v0     L/N 
 
Substituting from equation H3.2 for L/N, the capacity of the road is 
 

C =             v0                                                                          (H3.5) 
                      xc + v0tR − v02/2a        

 
Using the same values for xc, tR, and a as before, equation H3.5 is plotted in figure 4. The number of cars per hour 
that the road can hold is on the y-axis, and the speed of the cars in miles per hour is on the x-axis. Notice that at a 
speed of 60 mph, the road can handle 1200 cars per hour. By decreasing the speed of the cars, the number of cars 
per hour that the road can handle increases. As shown in the figure, if the speed decreases to 40 mph the road can 
handle about 1600 cars per hour. Notice that the curve peaks at a speed of about 13 mph, allowing about 2300 
cars/hour to flow on the expressway. Thus, according to this model, the optimum speed to pass the greatest 
number of cars per hour is only 13 mph. Hence, even though the road may be called an expressway, if the volume 
of cars increases significantly, the cars are not going to travel very rapidly. The solution to the problem is to build 
more lanes to handle the increased volume. 

It should also be emphasized that this model is 
based on safe driving intervals between cars. If an 
object were to drop from the back of a truck you are 
following, you would need the safe distance to stop in 
time to avoid hitting the object. On the other hand, if 
the car in front of you, also traveling at 55 mph, has to 
stop, and if both drivers have the same reaction time 
and both cars decelerate at the same rate, then both 
cars will need 231 ft to come to a stop. Hence, when 
both cars come to a stop they will still be separated by 
the distance of 231 ft. For this reason, in areas of very  

Figure 4  The capacity of the road as a function of the  
                                                                                                 velocity of cars. 

 
heavy traffic, many people do not leave the safe distance between them and the car in front. Instead, they get 
closer and closer to the car in front of them until they are only separated by the reaction distance xR. I call this the 
kamikaze model, for obvious reasons. The kamikaze model allows more cars to travel at a greater velocity than are 
allowed by the safe stopping distance model. The velocity of the cars as a function of the number of cars is found by 
solving equation H3.2 with the v02 term, which is the term associated with the deceleration distance xd set equal to 
zero. The result is shown in figure 5, which compares the safe stopping distance model with the kamikaze model. 
Notice that many more cars can now fit on the road. For example, in the safe stopping model, only 40 cars, each 
traveling at 60 mph, can fit safely on this road. In the kamikaze model about 185 cars can fit on this road, but 
certainly not safely. There will be only 44 ft between each car, and if you have a slower reaction time than that of 
the car in front of you, you will almost certainly hit him when he steps on the brakes. This is the reason why there 
are so many rear-end collisions on expressways. The number of cars on a real expressway falls somewhere 
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between the extremes of these two models. Note that even in the kamikaze model, the velocity of the cars must 
decrease with volume. 

 
Figure 5  Comparison of traffic with the safe stopping          Figure  6  Comparison of the capacity versus velocity 
                 distance model and the kamikaze model.                                   for the safe stopping distance model and 
                                                                                                                        the kamikaze model. 

 
The capacity of the expressway for the kamikaze model is found by setting the v02 term in equation H3.5 to 

zero. The result is shown in figure 6. Notice that in the kamikaze model the capacity increases with velocity, and 
there is no optimum speed for the maximum car flow. In practice, the actual capacity of an expressway lies 
somewhere between these two extremes. 

In conclusion, if your expressway is not much of an expressway, it is time to petition your legislators to 
allocate more money for the widening of the expressway, or maybe it is time to move to a less populated part of the 
country. 

 
The Language of Physics 

 
Kinematics 
The branch of mechanics that 
describes the motion of a body 
without regard to the cause of that 
motion (p. ). 
 
Average velocity 
The average rate at which the 
displacement vector changes with 
time. Since a displacement is a 
vector, the velocity is also a vector 
(p. ). 
 
Average speed 
The distance that a body moves per 
unit time. Speed is a scalar 
quantity (p. ). 
 
Constant velocity 
A body moving in one direction in 
such a way that it always travels 
equal distances in equal times (p. ). 
 
Acceleration 
The rate at which the velocity of a 
moving body changes with time 
(p. ). 

Instantaneous velocity 
The velocity at a particular instant 
of time. It is defined as the limit of 
the ratio of the change in the 
displacement of the body to the 
change in time, as the time interval 
approaches zero. The magnitude of 
the instantaneous velocity is the 
instantaneous speed of the moving 
body (p. ). 
 
Kinematic equations of linear 
motion 
A set of equations that gives the 
displacement and velocity of the 
moving body at 
any instant of time, and the velocity 
of the moving body at any 
displacement, if the acceleration of 
the body is a constant (p. ). 
 
Freely falling body 
Any body that is moving under the 
influence of gravity only. Hence, 
any body that is dropped or thrown 
on the surface of the earth is a 
freely falling body (p. ). 

Acceleration due to gravity 
If air friction is ignored, all objects 
that are dropped near the surface of 
the earth, are accelerated toward 
the center of the earth with an 
acceleration of 9.80 m/s2. 
 
Projectile motion 
The motion of a body thrown or 
fired with an initial velocity v0 in a 
gravitational field (p. ). 
 
Trajectory 
The path through space followed by 
a projectile (p. ). 
 
Range of a projectile 
The horizontal distance from the 
point where the projectile is 
launched to the point where it 
returns to its launch height (p. ). 
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Summary of Important Equations 

 
Average velocity  

  vavg = ∆r = r2 − r1         (3.32) 
                          ∆t     t2 − t1 
 
Acceleration 

  a = ∆v = v − v0           (3.33) 
                         ∆t        t 
 
Instantaneous velocity in two or 
more directions, which is a 
generalization of the instantaneous 
velocity in one dimension 

   
0

lim
t t∆ →

∆
=

∆
r

v    

(3.8) 

   
0

lim
t

x
v

t∆ →

∆
=

∆
  

 

Velocity at any time 
  v = v0 + at             (3.35) 

 
Displacement at any time 

   r = v0t +  1  at2          (3.34) 
       2    

 
Velocity at any displacement in the 
x-direction 

           v2 = v02 + 2ax          (3.16) 
 
Velocity at any displacement in the 
y-direction     

       v2 = v02 + 2ay        (3.16) 
 
For Projectile Motion 
x-displacement 

                x = v0xt               (3.38) 
 

y-displacement 
         y = v0yt −  1  gt2           (3.39) 

      2 
 

x-component of velocity 
                   vx = v0x                   (3.40) 

 
y-component of velocity 

                vy = v0y − gt             (3.41) 
  
y-component of velocity at any 
height y  

      vy2 = v0y2 − 2gy          (3.48) 
 
Range 

             R = v02 sin 2θ          (3.47) 
        g 

 
Questions for Chapter 3 

 
1. Discuss the difference 

between distance and displacement. 
2. Discuss the difference 

between speed and velocity. 
3. Discuss the difference 

between average speed and 
instantaneous speed. 

*4. Although speed is the 
magnitude of the instantaneous 
velocity, is the average speed equal 
to the magnitude of the average 
velocity? 

5. Why can the kinematic 
equations be used only for motion 
at constant acceleration? 

6. In dealing with average 
velocities discuss the statement, 
“Straight line motion at 60 km/hr 
for 1 hr followed by motion in the 
same direction at 30 km/hr for 2 hr 
does not give an average of 45 
km/hr but rather 40 km/hr.” 

7. What effect would air 
resistance have on the velocity of a 
body that is dropped near the 
surface of the earth? 

8. What is the acceleration of a 
projectile when its instantaneous 
vertical velocity is zero at the top of 
its trajectory? 

9. Can an object have zero 
velocity at the same time that it has 
an acceleration? Explain and give 
some examples. 

10. Can the velocity of an object 
be in a different direction than the 
acceleration? Give some examples. 

11. Can you devise a means of 
using two clocks to measure your 
reaction time? 

*12. A person on a moving train 
throws a ball straight upward. 
Describe the motion as seen by a 

person on the train and by a person 
on the station platform. 

13. You are in free fall, and you 
let go of your watch. What is the 
relative velocity of the watch with 
respect to you? 

*14. What kind of motion is 
indicated by a graph of 
displacement versus time, if the 
slope of the curve is (a) horizontal, 
(b) sloping upward to the right, and 
(c) sloping downward? 

*15. What kind of motion is 
indicated by a graph of velocity 
versus time, if the slope of the curve 
is (a) horizontal, (b) sloping upward 
at a constant value, (c) sloping 
upward at a changing rate, 
(d) sloping downward at a constant 
value, and (e) sloping downward at 
a changing rate? 

 
 

Hints for Problem Solving 
 

To be successful in a physics 
course it is necessary to be able to 
solve problems. The following 
procedure should prove helpful in 
solving the physics problems 

assigned. First, as a preliminary 
step, read the appropriate topic in 
the textbook. Do not attempt to 
solve the problems before doing 
this. Look at the appropriate 

illustrative problems to see how 
they are solved. With this 
background, now read the assigned 
problem. Now continue with the 
following procedure. 
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1. Draw a small picture showing 

the details of the problem. This is 
very useful so that you do not lose 
sight of the problem that you are 
trying to solve. 

2. List all the information that 
you are given. 

3. List all the answers you are 
expected to find. 

4. From the summary of 
important equations or the text 
proper, list the equations that are 
appropriate to this topic. 

5. Pick the equation that relates 
the variables that you are given. 

6. Place a check mark (8) over 
each variable that is given and a 
question mark (?) over each 
variable that you are looking for. 

7. Solve the equation for the 
unknown variable. 

8. When the answer is obtained 
check to see if the answer is 
reasonable. 

 
Let us apply this technique to 

the following example. 
A car is traveling at 10.0 m/s 

when it starts to accelerate at 3.00 
m/s2. Find (a) the velocity and 
(b) the displacement of the car at 
the end of 5 s. 

1. Draw a picture of the 
problem. 

2. Given: v0 = 10.0 m/s 
                a = 3.00 m/s2 
                 t = 5 s 
3. Find: v = ? 
              x = ? 
4. The problem is one in 

kinematics and the kinematic 
equations apply. That is, 

 
(1) x = v0t +  1  at2 

                      2 
(2)       v = v0 + at 
(3)       v2 = v02 + 2ax 

 

5. Part a of the problem. To 
solve for the velocity v, we need an 
equation containing v. Equation 1 
does not contain a velocity term v, 
and hence can not be used to solve 
for the velocity. Equations 2 and 3, 
on the other hand, both contain v. 
Thus, we can use one or possibly 
both of these equations to solve for 
the velocity. 

6. Write down the equation and 
place a check mark over the known 
terms and a question mark over the 
unknown terms: 

        ?     8    88 
(2)   v = v0 + at 
 
The only unknown in equation 

2 is the velocity v and we can now 
solve for it. 

7. The velocity after 5 s, found 
from equation 2 is 

 
v = v0 + at 

= 10.0 m/s + (3.00 m/s2)(5 s) 
= 10.0 m/s + 15.0 m/s 

= 25.0 m/s 
 

Notice what would happen if we 
tried to use equation 3 at this time: 

       ?     8      88? 
(2) v2 = v02 + 2ax 
 
We can not solve for the velocity 

v from equation 3 because there are 
two unknowns, both v and x. 
However, if we had solved part b of 
the problem for x first, then we 
could have used this equation. 

5. Part b of the problem. To 
solve for the displacement x, we 
need an equation containing x. 
Notice that equation 2 does not 
contain x, so we can not use it. 
Equations 1 and 3, on the other 
hand, do contain x, and we can use 
either to solve for x. 

6. Looking at equation 1, we 
have 

         ?    88     8  88 
(1)    x = v0t +  1  at2    

                               2 
 
7. Solving for the only unknown 

in equation 1, x, we get 
 

x = v0t +  1  at2 
   2 

= (10.0 m/s)(5 s) + 1 (3.00 m/s2)(5 s)2   
                        2  

= 50 m + 37.5 m 
= 87.5 m 

 
Note that at this point we could 

also have used equation 3 to 
determine x, because we already 
found the velocity v in part a of the 
problem. 

 

 
Problems for Chapter 3 

 
3.1 Introduction 

1. A driver travels 500 km in 5 
hr and 25 min. What is his average 
speed in (a) km/hr, and (b) m/s? 

2. A car travels at 65.0 km/hr 
for 2 hr and 100 km/hr for 3 hr. 
What is its average speed? 

3. A man hears the sound of 
thunder 5 s after he sees the 
lightning flash. If the speed of 
sound in air is 343 m/s, how far 

away is the lightning? Assume that 
the speed of light is so large that 
the lightning was seen essentially 
at the same time that it was 
created. 

4. The earth-moon distance is 
3.84 × 108 m. If it takes 3 days to 
get to the moon, what is the 
average speed? 

5. Electronic transmission is 
broadcast at the speed of light, 

which is 3.00 × 108 m/s. How long 
would it take for a radio 
transmission from earth to an 
astronaut orbiting the planet Mars? 
Assume that at the time of 
transmission the distance from 
earth to Mars is 7.80 × 107 km. 

6. In the game of baseball, some 
excellent fast-ball pitchers have 
managed to pitch a ball at 
approximately 160 km/hr. If the 
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pitcher’s mound is 18.5 m from 
home plate, how long does it take 
the ball to get to home plate? If the 
pitcher then throws a change-of-
pace ball (a slow ball) at 95.0 km/hr, 
how long will it now take the ball to 
get to the plate? 

7. Two students are having a 
race on a circular track. Student 1 
is on the inside track, which has a 
radius of curvature r1 = 250 m, and 
is moving at the speed v1 = 4.50 m/s. 
With what speed must student 2 
run to keep up with student 1 if 
student 2 is on the outside track of 
radius of curvature r2 = 255 m? 

8. A plot of the displacement of 
a car (in m) as a function of time is 
shown in the diagram. Find the 
velocity of the car along the paths 
(a) O-A, (b) A-B, (c) B-C, and (d) C-
D. 

 
Diagram for problem 8. 

9. A plot of the velocity of a car 
(in m/s) as a function of time is 
shown in the diagram. Find the 
acceleration of the car along the 
paths (a) O-A, (b) A-B, (c) B-C, and 
(d) C-D.          

 
Diagram for problem 9. 

 
10. If an airplane is traveling at 

110 knots, what is its velocity in 
(a) km/hr, and (b) m/s? A knot is a 
nautical mile per hour, and a 
nautical mile is equal to 1.852 km. 

 
3.6  The Kinematic Equations in 
One Dimension 

11. A girl who is initially 
running at 1.00 m/s increases her 
velocity to 2.50 m/s in 5.00 s. Find 
her acceleration. 

12. A car is traveling at 95.0 
km/hr. The driver steps on the 
brakes and the car comes to a stop 
in 60.0 m. What is the car’s 
deceleration? 

13. A train accelerates from an 
initial velocity of 25.0 km/hr to a 
final velocity of 65.0 km/hr in 8.50 
s. Find its acceleration and the 
distance the train travels during 
this time. 

14. An airplane travels 450 m at 
a constant acceleration while taking 
off. If it starts from rest, and takes 
off in 15.0 s, what is its takeoff 
velocity? 

15. A car starts from rest and 
acquires a velocity of 30.0 km/hr in 
10.0 s. Where is the car located and 
what is its velocity at 10.0, 15.0, 
20.0, and 25.0 s? 

16. A jet airplane goes from rest 
to a velocity of 75.0 m/s in a 
distance of 725 m. What is the 
airplane’s average acceleration in 
m/s2? 

 
Diagram for problem 16. 

 
17. An electron in a vacuum 

tube acquires a velocity of 5.3 × 108 
cm/s in a distance of 0.25 cm. Find 
the acceleration of the electron. 

18. A driver traveling at 100 
km/hr tries to stop the car and finds 
that the brakes have failed. The 
emergency brake is then pulled and 
the car comes to a stop in 130 m. 
Find the car’s deceleration. 

19. An airplane has a 
touchdown velocity of 140 km/hr 
and comes to rest in 120 m. What is 
the airplane’s average deceleration? 
How long does it take the plane to 
stop? 

20. A pitcher gives a baseball a 
horizontal velocity of 30.0 m/s by 
moving his arm through a distance 
of approximately 2.50 m. What is 
the average acceleration of the ball 
during this throwing process? 

21. The speedometer of a car 
reads 95.0 km/hr when the brakes 
are applied. The car comes to rest in 
4.55 s. How far does the car travel 
before coming to rest? 

*22. A body with unknown 
initial velocity moves with constant 
acceleration. At the end of 8.00 s, it 
is moving at a velocity of 50.0 m/s 
and it is 200 m from where it 
started. Find the body’s 
acceleration and its initial velocity. 

*23. A driver traveling at 30.0 
km/hr sees the light turn red at the 
intersection. If his reaction time is 
0.600 s, and the car can decelerate 
at 4.50 m/s2, find the stopping 
distance of the car. What would the 
stopping distance be if the car were 
moving at 90.0 km/hr? 

*24. A uniformly accelerating 
train passes a green light signal at 
25.0 km/hr. It passes a second light 
125 m farther down the track, 12.0 
s later. What is the train’s 
acceleration? What is the train’s 
velocity at the second light? 

 
Diagram for problem 24. 

 
25. A car accelerates from 80.0 

km/hr to 130 km/hr in 26.9 s. Find 
its acceleration and the distance the 
car travels in this time. 

*26. A motorcycle starts from 
rest and accelerates at 4.00 m/s2 for 
5.00 s. It then moves at constant 
velocity for 25.0 s, and then 
decelerates at 2.00 m/s2 until it 
stops. Find the total distance that 
the motorcycle has moved. 

Pearson Custom Publishing

91



 
3-40                                                                                                                                                               Mechanics 

*27. A car starts from rest and 
accelerates at a constant rate of 
3.00 m/s2 until it is moving at 18.0 
m/s. The car then decreases its 
acceleration to 0.500 m/s2 and 
continues moving for an additional 
distance of 250 m. Find the total 
time taken. 

 
3.7  The Freely Falling Body 

28. A passenger, in abandoning 
a sinking ship, steps over the side. 
The deck is 15.0 m above the water 
surface. With what velocity does the 
passenger hit the water? 

29. How long does it take for a 
stone to fall from a bridge to the 
water 30.0 m below? With what 
velocity does the stone hit the 
water? 

30. An automobile traveling at 
95.0 km/hr hits a stone wall. From 
what height would the car have to 
fall to acquire the same velocity? 

31. A rock is dropped from the 
top of a building and hits the 
ground 8.00 s later. How high is the 
building? 

32. A ball is dropped from a 
building 50.0 meters high. How 
long will it take the ball to hit the 
ground below? 

*33. A girl is standing in an 
elevator that is moving upward at a 
velocity of 3.75 m/s when she drops 
her handbag. If she was originally 
holding the bag at a height of 1.25 
m above the elevator floor, how long 
will it take the bag to hit the floor? 

 
3.9  Projectile Motion in One 
Dimension 

34. A ball is thrown vertically 
upward with an initial velocity of 
40.0 m/s. Find its position and 
velocity at the end of 2, 4, 6, and 8 s 
and sketch these positions and 
velocities on a piece of graph paper. 

35. A projectile is fired 
vertically upward with an initial 
velocity of 40.0 m/s. Find the 
position and velocity of the 
projectile at 1, 3, 5, and 7 s. 

*36. A ball is thrown vertically 
upward from the top of a building 
40.0 m high with an initial velocity 
of 25.0 m/s. What is the total time 
that the ball is in the air? 

37. A stone is thrown vertically 
upward from a bridge 30.0 m high 
at an initial velocity of 15.0 m/s. 
How long will it take for the stone 
to hit the water below? 

*38. A stone is thrown vertically 
downward from a bridge 30.0 m 
high at an initial velocity of −15.0 
m/s. How long will it take for the 
stone to hit the water below? 

39. A rock is thrown vertically 
downward from a building 40.0 m 
high at an initial velocity of −15.0 
m/s. (a) What is the rock’s velocity 
as it strikes the ground? (b) How 
long does it take for the rock to hit 
the ground? 

40. A baseball batter fouls a ball 
vertically upward. The ball is 
caught right behind home plate at 
the same height that it was hit. 
How long was the baseball in flight 
if it rose a distance of 30.0 m? What 
was the initial velocity of the 
baseball? 

 
3.11  Projectile Motion in Two 
Dimensions 

41. A projectile is thrown from 
the top of a building with a 
horizontal velocity of 15.0 m/s. The 
projectile lands on the street 85.0 m 
from the base of the building. How 
high is the building? 

42. To find the velocity of water 
issuing from the nozzle of a garden 
hose, the nozzle is held horizontally 
and the stream is directed against a 
vertical wall. If the wall is 7.00 m 
from the nozzle and the water 
strikes the wall 0.650 m below the 
horizontal, what is the velocity of 
the water? 

 
Diagram for problem 42. 

 
43. A bomb is dropped from an 

airplane in level flight at a velocity 
of 970 km/hr. The altitude of the 

aircraft is 2000 m. At what 
horizontal distance from the initial 
position of the aircraft will the 
bomb land? 

*44. A cannon is placed on a hill 
20.0 m above level ground. A shell 
is fired horizontally at a muzzle 
velocity of 300 m/s. At what 
horizontal distance from the cannon 
will the shell land? How long will 
this take? What will be the shell’s 
velocity as it strikes its target? 

45. A shell is fired from a 
cannon at a velocity of 300 m/s to 
hit a target 3000 m away. At what 
angle above the horizontal should 
the cannon be aimed? 

46. In order to hit a target, a 
marksman finds he must aim 1.00 
m above the target, which is 300 m 
away. What is the initial speed of 
the bullet? 

47. A golf ball is hit with an 
initial velocity of 50.0 m/s at an 
angle of 55.00 above the horizontal. 
(a) How high will the ball go? 
(b) What is the total time the ball is 
in the air? (c) How far will the ball 
travel horizontally before it hits the 
ground? 

48. A projectile is thrown from 
the ground with an initial velocity 
of 20.0 m/s at an angle of 40.00 
above the horizontal. Find (a) the 
projectile’s maximum height, (b) the 
time required to reach its maximum 
height, (c) its velocity at the top of 
the trajectory, (d) the range of the 
projectile, and (e) the total time of 
flight. 

 
Additional Problems 

49. A missile has a velocity of 
16,000 km/hr at “burn-out,” which 
occurs 2 min after ignition. Find the 
average acceleration in (a) m/s2, and 
(b) in terms of g, the acceleration 
due to gravity at the surface of the 
earth. 

50. A block slides down a 
smooth inclined plane that makes 
an angle of 25.00 with the 
horizontal. Find the acceleration of 
the block. If the plane is 10.0 
meters long and the block starts 
from rest, what is its velocity at the 
bottom of the plane? How long does 
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it take for the block to get to the 
bottom? 

*51. At the instant that the 
traffic light turns green, a car 
starting from rest with an 
acceleration of 2.50 m/s2 is passed 
by a truck moving at a constant 
velocity of 60.0 km/hr. (a) How long 
will it take for the car to overtake 
the truck? (b) How far from the 
starting point will the car overtake 
the truck? (c) At what velocity will 
the car be moving when it overtakes 
the truck? 

*52. A boat passes a buoy while 
moving to the right at a velocity of 
8.00 m/s. The boat has a constant 
acceleration to the left, and 10.0 s 
later the boat is found to be moving 
at a velocity of −3.00 m/s. Find 
(a) the acceleration of the boat, 
(b) the distance from the buoy when 
the boat reversed direction, (c) the 
time for the boat to return to the 
buoy, and (d) the velocity of the 
boat when it returns to the buoy. 

*53. Two trains are initially at 
rest on parallel tracks with train 1 
50.0 m ahead of train 2. Both trains 
accelerate simultaneously, train 1 
at the rate of 2.00 m/s2 and train 2 
at the rate of 2.50 m/s2. How long 
will it take train 2 to overtake train 
1? How far will train 2 travel before 
it overtakes train 1? 

*54. Repeat problem 53 but 
with train 1 initially moving at 5.00 
m/s and train 2 initially moving at 
7.00 m/s. 

*55. A policewoman driving at 
80.0 km/hr observes a car 50.0 m 
ahead of her speeding at 120 km/hr. 
If the county line is 400 m away 
from the police car, what must the 
acceleration of the police car be in 
order to catch the speeder before he 
leaves the county? 

*56. Two trains are approaching 
each other along a straight and 
level track. The first train is 
heading south at 125 km/hr, while 
the second train is heading north at 
80.0 km/hr. When they are 2.00 km 
apart, they see each other and start 
to decelerate. Train 1 decelerates at 
2.00 m/s2, while train 2 decelerates 
at 1.50 m/s2. Will the trains be able 
to stop or will there be a collision? 

*57. A boy in an elevator, which 
is descending at the constant 
velocity of −5.00 m/s, jumps to a 
height of 0.500 m above the elevator 
floor. How far will the elevator 
descend before the boy returns to 
the elevator floor? 

58. The acceleration due to 
gravity on the moon is 1.62 m/s2. If 
an astronaut on the moon throws a 
ball straight upward, with an initial 
velocity of 25.0 m/s, how high will 
the ball rise? 

*59. A helicopter, at an altitude 
of 300 m, is rising vertically at 20.0 
m/s when a wheel falls off. How 
high will the wheel go with respect 
to the ground? How long will it take 
for the wheel to hit the ground 
below? At what velocity will the 
wheel hit the ground? 

 
Diagram for problem 59. 

 
*60. A ball is dropped from the 

roof of a building 40.0 m high. 
Simultaneously, another ball is 
thrown upward from the ground 
and collides with the first ball at 
half the distance to the roof. What 
was the initial velocity of the ball 
that was thrown upward? 

*61. A ball is dropped from the 
top of a 40.0-m high building. At 
what initial velocity must a second 
ball be thrown from the top of the 
building 2.00 s later, such that both 
balls arrive at the ground at the 
same time? 

*62. Show that the range of a 
projectile is the same for either a 
projection angle of 45.00 +θ or an 
angle of 45.00 −θ. 

63. A projectile hits a target 
1.50 km away 10.5 s after it was 

fired. Find (a) the elevation angle of 
the gun and (b) the initial velocity 
of the projectile. 

64. A football is kicked with an 
initial velocity of 20.0 m/s at an 
angle of 65.00 above the horizontal. 
Find (a) how long the ball is in the 
air, (b) how far down field the ball 
lands, (c) how high the ball rises, 
and (d) the velocity of the ball when 
it strikes the ground. 

*65. A baseball is hit at an 
initial velocity of 35.0 m/s at an 
angle of 45.00 above the horizontal. 
Will the ball clear a 3.00 m fence 
92.0 m from home plate for a home 
run? If so, by how much will it clear 
the fence? 

*66. A ball is thrown from a 
bridge 100 m high at an initial 
velocity of 30.0 m/s at an angle of 
50.00 above the horizontal. Find 
(a) how high the ball goes, (b) the 
total time the ball is in the air, 
(c) the maximum horizontal 
distance that the ball travels, and 
(d) the velocity of the ball as it 
strikes the ground. 

67. A ball is thrown at an angle 
of 35.50 below the horizontal at a 
speed of 22.5 m/s from a building 
20.0 m high. (a) How long will it 
take for the ball to hit the ground 
below? (b) How far from the 
building will the ball land? 

*68. Using the kinematic 
equations for the x- and y-
components of the displacement, 
find the equation of the trajectory 
for two-dimensional projectile 
motion. Compare this equation with 
the equation for a parabola 
expressed in its standard form. 

*69. Using the kinematic 
equations, prove that if two balls 
are released simultaneously from a 
table, one with zero velocity and the 
other with a horizontal velocity v0x, 
they will both reach the ground at 
the same time. 

 
Interactive Tutorials 

70. A train accelerates from an 
initial velocity of 20.0 m/s to a final 
velocity of 35.0 m/s in 11.8 s. Find 
its acceleration and the distance the 
train travels in this time.  
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71. A ball is dropped from a 
building 50.0 m high. How long will 
it take the ball to hit the ground 
below and with what final velocity? 
Plot the displacement and the 
velocity of the falling ball. 

72. A golf ball is hit with an 
initial velocity v0 = 53.0 m/s at an 
angle θ = 50.00 above the horizontal. 
(a) How high will the ball go? 
(b) What is the total time the ball is 
in the air? (c) How far will the ball 
travel horizontally before it hits the 
ground? 

73. Instantaneous velocity. If 
the equation for the displacement x 
of a body is known, the average 
velocity throughout an interval can 
be computed by the formula 

 
vavg = (∆x)/(∆t) 

 
The instantaneous velocity is 

defined as the limit of the average 
velocity as ∆t approaches zero. That 
is, 

0
lim

t

x
v

t∆ →

∆
=

∆
 

 
For an acceleration with a 

displacement given by x = 0.5 at2, 
use different values of ∆t to see how 
the average velocity approaches the 
instantaneous velocity. Compare 
this to the velocity determined by 
the equation v = at, and determine 
the percentage error. Plot the 
average velocity, (∆x)/(∆t), versus 
∆t. 

74. Free-fall and generalized 
one-dimensional projectile motion. 
A projectile is fired from a height y0 
above the ground with an initial 
velocity v0 in a vertical direction. 
Find (a) the time tr for the projectile 
to rise to its maximum height, 
(b) the total time tt the ball is in the 
air, (c) the maximum height ymax of 
the projectile, (d) the velocity vg of 
the projectile as it strikes the 
ground, and (e) the location and 
velocity of the projectile at any time 

t. (f) Plot a picture of the motion as 
a function of time. 

75. Generalized two-
dimensional projectile motion. A 
projectile is fired from a height y0 
above the horizontal with an initial 
velocity v0 at an angle θ. Find 
(a) the time tr for the projectile to 
rise to its maximum height; (b) the 
total time tt the ball is in the air; 
(c) the maximum distance the ball 
travels in the x-direction, xmax 
before it hits the ground; (d) the 
maximum height ymax of the 
projectile; (e) the velocity vg of the 
projectile as it strikes the ground; 
and (f) the location and velocity of 
the projectile at any time t. (g) Plot 
a picture of the trajectory. 

 
To go to these interactive 

tutorials click on this sentence. 
 

  
To go to another chapter, return to the table of contents by clicking on this sentence.   
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Chapter 4  Newton’s Laws of Motion 
 

I do not know what I may appear to the world/ but to myself I seem to have been only like a boy 
playing on the sea shore, and diverting myself in now and then finding a smoother pebble or a 
prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me. 

      Sir Isaac Newton 
 
4.1  Introduction 
Chapter 3 dealt with kinematics, the study of motion. We saw that if the acceleration, initial position, and velocity 
of a body are known, then the future position and velocity of the moving body can be completely described. But one 
of the things left out of that discussion, was the cause of the body’s acceleration. If a piece of chalk is dropped, it is 
immediately accelerated downward. The chalk falls because the earth exerts a force of gravity on the chalk pulling 
it down toward the center of the earth. We will see that any time there is an acceleration, there is always a force 
present to cause that acceleration. In fact, it is Newton’s laws of motion that describe what happens to a body 
when forces are acting on it. That branch of mechanics concerned with the forces that change or produce the 
motions of bodies is called dynamics. 

As an example, suppose you get into your car and accelerate from rest to 80 km/hr. What causes that 
acceleration? The acceleration is caused by a force that begins with the car engine. The engine supplies a force, 
through a series of shafts and gears to the tires, that pushes backward on the road. The road in turn exerts a force 
on the car to push it forward. Without that force you would never be able to accelerate your car. Similarly, when 
you step on the brakes, you exert a force through the brake linings, to the wheels and tires of the car to the road. 
The road exerts a force backward on the car that causes the car to decelerate. All motions are started or stopped by 
forces. 

Before we start our discussion of Newton’s laws of motion, let us spend a few moments discussing the life 
of Sir Isaac Newton, perhaps the greatest scientist who ever lived. Newton was born in the little hamlet of 
Woolsthorpe in Lincolnshire, England, on Christmas day, 1642. It was about the same time that Galileo Galilei  

        
Figure 4.1  (a) Sir Isaac Newton  (b) The first page of Newton’s Principia. 

 
died; it was as though the torch of knowledge had been passed from one generation to another. Newton was born 
prematurely and was not expected to live; somehow he managed to survive. His father had died three months 
previously. Isaac grew up with a great curiosity about the things around him. His chief delight was to sit under a 
tree reading a book. His uncle, a member of Trinity College at Cambridge University, urged that the young 
Newton be sent to college, and Newton went to Cambridge in June, 1661. He spent the first two years at college 
learning arithmetic, Euclidean geometry, and trigonometry. He also read and listened to lectures on the 
Copernican system of astronomy. After that he studied natural philosophy. In 1665 the bubonic plague hit London 
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and Newton returned to his mother’s farm at Woolsthorpe. It was there, while observing an apple fall from a tree, 
that Newton wondered that if the pull of the earth can act through space to pull an apple from a tree, could it not 
also reach out as far as the moon and pull the moon toward the earth? This reasoning became the basis for his law 
of universal gravitation. 

Newton also invented the calculus (he called it fluxions) as a means of solving a problem in gravitation. 
(We should also note, however, that the German mathematician Gottfried Leibniz also invented the calculus 
independently of, and simultaneously with, Newton.) Newton’s work on mechanics, gravity, and astronomy was 
published in 1687 as the Mathematical Principles of Natural Philosophy. It is commonly referred to as the 
Principia, from its Latin title. Because of its impact on science, it is perhaps one of the most important books ever 
written. A copy of the first page of the Principia is shown in figure 4.1. Newton died in London on March 20, 1727, 
at the age of 84. 
 
 
4.2  Newton’s First Law of Motion 
Newton’s first law of motion can be stated as: A body at rest, will remain at rest and a body in motion at a 
constant velocity will continue in motion at that constant velocity, unless acted on by some unbalanced external 
force. By a force we mean a push or a pull that acts on a body. A more sophisticated definition of force will be 
given after the discussion of Newton’s second law. 

There are really two statements in the first law. The first statement says that a body at rest will remain at 
rest unless acted on by some unbalanced force. As an example of this first statement, suppose you placed a book on 
the desk. That book would remain there forever, unless some unbalanced force moved it. That is, you might exert a 
force to pick up the book and move it someplace else. But if neither you nor anything else exerts a force on that 
book, that book will stay there forever. Books, and other inanimate objects, do not just jump up and fly around the 
room by themselves. A body at rest remains at rest and will stay in that position forever unless acted on by some 
unbalanced external force. This law is really a simple observation of nature. This is the first part of Newton’s first 
law and it is so basic that it almost seems trivial and unnecessary. 

The second part of the statement of Newton’s first law is not quite so easy to see. This part states that a 
body in motion at a constant velocity will continue to move at that constant velocity unless acted on by some 
unbalanced external force. In fact, at first observation it actually seems to be wrong. For example, if you take this 
book and give it a shove along the desk, you immediately see that it does not keep on moving forever. In fact, it 
comes to a stop very quickly. So either Newton’s law is wrong or there must be some force acting on the book while 
it is in motion along the desk. In fact there is a force acting on the book and this force is the force of friction, which 
tends to oppose the motion of one body sliding on another. (We will go into more details on friction later in this 
chapter.) But, if instead of trying to slide the book along the desk, we tried to slide it along a sheet of ice (say on a 
frozen lake), then the book would move a much greater distance before coming to rest. The frictional force acting 
on the book by the ice is much less than the frictional force that acted on the book by the desk. But there is still a 
force, regardless of how small, and the book eventually comes to rest. However, we can imagine that in the 
limiting case where these frictional forces are completely eliminated, an object moving at a constant velocity would 
continue to move at that same velocity forever, unless it were acted on by a nonzero net force. The resistance of a 
body to a change in its motion is called inertia, and Newton’s first law is also called the law of inertia. 

If you were in outer space and were to take an object and throw it away where no forces acted on it, it 
would continue to move at a constant velocity. Yet if you take your pen and try to throw it into space, it falls to the 
floor. Why? Because the force of gravity pulls on it and accelerates it to the ground. It is not free to move in 
straight line motion but instead follows a parabolic trajectory, as we have seen in the study of projectiles. 

The first part of Newton’s first law—A body at rest, will remain at rest ...—is really a special case of the 
second statement—a body in motion at some constant velocity.… A body at rest has zero velocity, and will 
therefore have that same zero velocity forever, unless acted on by some unbalanced external force. 

Newton’s first law of motion also defines what is called an inertial coordinate system. A coordinate system 
in which objects experiencing no unbalanced forces remain at rest or continue in uniform motion, is called an 
inertial coordinate system. An inertial coordinate system (also called an inertial reference system) is a 
coordinate system that is either at rest or moving at a constant velocity with respect to another coordinate system 
that is either at rest or also moving at a constant velocity. In such a coordinate system the first law of motion holds. 
A good way to understand an inertial coordinate system is to look at a noninertial coordinate system. A rotating 
coordinate system is an example of a noninertial coordinate system. Suppose you were to stand at rest at the 
center of a merry-go-round and throw a ball to another student who is on the outside of the rotating merry-go-
round at the position 1 in figure 4.2(a). When the ball leaves your hand it is moving at a constant horizontal 
velocity, v0. Remember that a velocity is a vector, that is, it has both magnitude and direction. The ball is moving 
at a constant horizontal speed in a constant direction. The y-component of the velocity changes because of gravity,  
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    Figure 4.2  A noninertial coordinate system.                        Figure 4.3  A merry-go-round is a noninertial  
                                                                                               coordinate system. 

 
but not the x-component. You, being at rest at the center, are in an inertial coordinate system. The person on the 
rotating merry-go-round is rotating and is in a noninertial coordinate system. As observed by you, at rest at the 
center of the merry-go-round, the ball moves through space at a constant horizontal velocity. But the person 
standing on the outside of the merry-go-round sees the ball start out toward her, but then it appears to be 
deflected to the right of its original path, as seen in figure 4.2(b). Thus, the person on the merry-go-round does not 
see the ball moving at a constant horizontal velocity, even though you, at the center, do, because she is rotating 
away from her original position. That student sees the ball changing its direction throughout its flight and the ball 
appears to be deflected to the right of its path. The person on the rotating merry-go-round is in a noninertial 
coordinate system and Newton’s first law does not hold in such a coordinate system. That is, the ball in motion at a 
constant horizontal velocity does not appear to continue in motion at that same horizontal velocity. Thus, when 
Newton’s first law is applied it must be done in an inertial coordinate system. In this book nearly all coordinate 
systems will be either inertial coordinate systems or ones that can be approximated by inertial coordinate systems, 
hence Newton’s first law will be valid. The earth is technically not an inertial coordinate system because of its 
rotation about its axis and its revolution about the sun. The acceleration caused by the rotation about its axis is 
only about 1/300 of the acceleration caused by gravity, whereas the acceleration due to its orbital revolution is 
about 1/1650 of the acceleration due to gravity. Hence, as a first approximation, the earth can usually be used as 
an inertial coordinate system. 

Before discussing the second law, let us first discuss Newton’s third law because its discussion is somewhat 
shorter than the second. 
 
 
4.3  Newton’s Third Law of Motion 
Newton stated his third law in the succinct form, “Every action has 
an equal but opposite reaction.” Let us express Newton’s third law 
of motion in the form, if there are two bodies, A and B, and if body 
A exerts a force on body B, then body B will exert an equal but 
opposite force on body A. The first thing to observe in Newton’s third 
law is that two bodies are under consideration, body A and body B. 
This contrasts to the first (and second) law, which apply to a single 
body. As an example of the third law, consider the case of a person 
leaning against the wall, as shown in figure 4.4. The person is body 
A, the wall is body B. The person is exerting a force on the wall, and 
Newton’s third law states that the wall is exerting an equal but 
opposite force on the person. 

The key to Newton’s third law is that there are two different 
bodies exerting two equal but opposite forces on each other. Stated 
mathematically this becomes 

                                                                                                    Figure 4.4  Forces involved when you 
                                                                                                                    lean against a wall. 
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 FAB = −FBA                                                                               (4.1) 

 
where FAB is the force on body A exerted by body B and FBA is the force on body B exerted by body A. Equation 4.1 
says that all forces in nature exist in pairs. There is no such thing as a single isolated force. We call FBA the action 
force, whereas we call FAB the reaction force (although either force can be called the action or reaction force). 
Together these forces are an action-reaction pair. 

Another example of the application of Newton’s third law is a book 
resting on a table, as seen in figure 4.5. A gravitational force, directed 
toward the center of the earth, acts 
on that book. We call the 
gravitational force on the book its 
weight w. By Newton’s third law 
there is an equal but opposite force 
w’ acting on the earth. The forces w 
and w’ are the action and reaction 
pair of Newton’s third law, and note 
how they act on two different bodies, 
the book and the earth. The force w 
acting on the book should cause it to 
fall toward the earth. However, 
because the table is in the way, the 
force down on the book is applied to 
the table. Hence the book exerts a 

                                                                       Figure 4.5  Newton’s third law of motion. 
 

force down on the table. We label this force on the table, F’N. By Newton’s third law the table exerts an equal but 
opposite force upward on the book. We call the equal but upward force acting on the book the normal force, and 
designate it as FN. When used in this context, normal means perpendicular to the surface. 

If we are interested in the forces acting on the book, they are the gravitational force, which we call the 
weight w, and the normal force FN. Note however, that these two forces are not an action-reaction pair because 
they act on the same body, namely the book. 

We will discuss Newton’s third law in more detail when we consider the law of conservation of momentum 
in chapter 8. 
 
 
4.4  Newton’s Second Law of Motion 
Newton’s second law of motion is perhaps the most basic, if not the most important, law of all of physics. We begin 
our discussion of Newton’s second law by noting that whenever an object is dropped, the object is accelerated down 
toward the earth. We know that there is a force acting on the body, a force called the force of gravity. The force of 
gravity appears to be the cause of the acceleration downward. We therefore ask the question, Do all forces cause 
accelerations? And if so, what is the relation of the acceleration to the causal force? 
 
Experimental Determination of Newton’s Second Law 
To investigate the relation between forces and acceleration, we will go into the laboratory and perform an 
experiment with a propelled glider on an air track, as seen in figure 4.6.1 

We turn a switch on the glider to apply a voltage to the airplane motor mounted on top of the glider. As the 
propeller turns, it exerts a force on the glider that pulls the glider down the track. We turn on a spark timer, 
giving a record of the position of the glider as a function of time. From the spark timer tape, we determine the 
acceleration of the glider as we did in chapter 3. We then connect a piece of Mylar tape to the back of the glider 
and pass it over an air pulley at the end of the track. Weights are hung from the Mylar tape until the force exerted 
by the weights is equal to the force exerted by the propeller. The glider will then be at rest. In this way, we 
determine the force exerted by the propeller. This procedure is repeated several times with different battery 
voltages. If we plot the acceleration of the glider against the force, we get the result shown in figure 4.7. 

                                                           
1.  See Nolan and Bigliani, Experiments in Physics, 2d ed.,  
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           Figure 4.6  Glider and airplane motor.                     Figure 4.7  Plot of the acceleration a versus  
                                                                                  the applied force F for a propelled glider. 

 
Whenever a graph of two variables is a straight line, as in figure 4.7, the dependent variable is directly 

proportional to the independent variable. (See appendix C for a discussion of proportions.) Therefore this graph 
tells us that the acceleration of the glider is directly proportional to the applied force, that is, 
 

a ∝ F                                                                                    (4.2) 
 

Thus, not only does a force cause an acceleration of a body but that acceleration is directly proportional to 
that force, and in the direction of that force. That is, if we double the force, we double the acceleration; if we triple 
the force, we triple the acceleration; and so forth. 

Let us now ask, how is the acceleration affected by the mass of the object being moved? To answer this 
question we go back to the laboratory and our experiment. This time we connect together two gliders of known 
mass and place them on the air track. Hence, the mass of the body in motion is increased. We turn on the propeller 
and the gliders go down the air track with the spark timer again turned on. Then we analyze the spark timer tape 
to determine the acceleration of the two gliders. We repeat the experiment with three gliders and then with four 
gliders, all of known mass. We determine the acceleration for each increased mass and plot the acceleration of the 
gliders versus the mass of the gliders, as shown in figure 4.8(a). The relation between acceleration and mass is not  

   
Figure 4.8  Plot of (a) the acceleration a versus the mass m and (b) the acceleration a versus the reciprocal of the 

mass (1/m) for the propelled gliders. 
 

particularly obvious from this graph except that as the mass gets larger, the acceleration gets smaller, which 
suggests that the acceleration may be related to the reciprocal of the mass. We then plot the acceleration against 
the reciprocal of the mass in figure 4.8(b), and obtain a straight line. 

Again notice the linear relation. This time, however, the acceleration is directly proportional to the 
reciprocal of the mass. Or saying it another way, the acceleration is inversely proportional to the mass of the 
moving object. (See appendix C for a discussion of inverse proportions.) That is, 

 
a ∝  1                                                                                   (4.3) 

          m 
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Thus, the greater the mass of a body, the smaller will be its acceleration for a given force. Hence, the mass of a 
body is a measure of the body’s resistance to being put into accelerated motion. Equations 4.2 and 4.3 can be 
combined into a single proportionality, namely 

a ∝  F                                                                                    (4.4) 
                                                                                                   m           

 
The result of this experiment shows that the acceleration of a body is directly proportional to the applied 

force and inversely proportional to the mass of the moving body. The proportionality in relation 4.4 can be 
rewritten as an equation if a constant of proportionality k is introduced (see the appendix on proportions). Thus, 

 
F = kma                                                                                 (4.5) 

 
Let us now define the unit of force in such a way that k will be equal to the value one, thereby simplifying 

the equation. The unit of force in SI units, thus defined, is 
 

1 newton = 1 kg m  
                            s2 

 
The abbreviation for a newton is the capital letter N. A newton is the net amount of force required to give a mass of 
1 kg an acceleration of 1 m/s2. Hence, force is now defined as more than a push or a pull, but rather a force is a 
quantity that causes a body of mass m to have an acceleration a. Recall from chapter 1 that the mass of an object is 
a fundamental quantity. We now see that force is a derived quantity. It is derived from the fundamental quantities 
of mass in kilograms, length in meters, and time in seconds. 

A check on dimensions shows that k is indeed equal to unity in this way of defining force, that is, 
 

F = kma 
newton = (k) kg m/s2 
kg m/s2 = (k) kg m/s2 

k = 1 
Equation 4.5 therefore becomes 

 F = ma                                                                                  (4.6) 
 

Equation 4.6 is the mathematical statement of Newton’s second law of motion. This is perhaps the most 
fundamental of all the laws of classical physics. Newton’s second law of motion can be stated in words as: If an 
unbalanced external force F acts on a body of mass m, it will give that body an acceleration a. The acceleration is 
directly proportional to the applied force and inversely proportional to the mass of the body. We must understand 
by Newton’s second law that the force F is the resultant external force acting on the body. Sometimes, to be more 
explicit, Newton’s second law is written in the form 

 
Σ F = ma                                                                                 (4.7) 

 
where the Greek letter sigma, Σ , means “the sum of.” Thus, if there is more than one force acting on a body, it is 
the resultant unbalanced force that causes the body to be accelerated. For example, if a book is placed on a table as 
in figure 4.5, the forces acting on the book are the force of gravity pulling the book down toward the earth, while 
the table exerts a normal force upward on the book. These forces are equal and opposite, so that the resultant 
unbalanced force acting on the book is zero. Hence, even though forces act on the book, the resultant of these 
forces is zero and there is no acceleration of the book. It remains on the table at rest. 

Newton’s second law is the fundamental principle that relates forces to motions, and is the foundation of 
mechanics. Thus, if an unbalanced force acts on a body, it will give it an acceleration. In particular, the 
acceleration is found from equation 4.7 to be 

 a = Σ F                                                                                    (4.8) 
                                                                                                   m    

 
It is a matter of practice that Σ is usually left out of the equations but do not forget it; it is always implied because 
it is the resultant force that causes the acceleration. 

Once the acceleration of the body is known, its future position and velocity at any time can be determined 
using the kinematic equations developed in chapter 3, namely, 
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x = v0t +  1  at2                                                                        (3.14) 
                2 

    v = v0 + at                                                                                (3.10) 
and 

v2 = v02 + 2ax                                                                            (3.16) 
 

provided, of course, that the force, and therefore the acceleration, are constant. When the force and acceleration 
are not constant, more advanced mathematical techniques are required. 

Our determination of Newton’s second law has been based on the experimental work performed on the air 
track. Since the air track is one dimensional, the equations have been written in their one dimensional form. 
However, recall that acceleration is a vector quantity and therefore force, which is equal to that acceleration times 
mass, must also be written as a vector quantity. Newton’s second law should therefore be written in the more 
general vector form as 

 F = ma                                                                              (4.9) 
 

The kinematic equations must also be used in their vector form. 
 
Newton’s First Law of Motion Is Consistent with His Second Law of Motion 
Newton’s first law of motion can be shown to be consistent with his second law of motion in the following manner. 
Let us start with Newton’s second law 

F = ma                                                                              (4.9) 
 

However, the acceleration is defined as the change in velocity with time. Thus, 
 

F = ma = m ∆v 
                      ∆t         

 
If there is no resultant force acting on the body, then F = 0. Hence, 
 

0 = m ∆v 
          ∆t 

and therefore 
∆v = 0                                                                                  (4.10) 

 
which says that there is no change in the velocity of a body if there is no resultant applied force. Another way to 
see this is to note that 

∆v = vf − v0 = 0                                                                            (4.11) 
Hence, 

vf = v0                                                                                  (4.12) 
 

That is, if there is no applied force (F = 0), then the final velocity vf is always equal to the original velocity v0. But 
that in essence is the first law of motion—a body in motion at a constant velocity will continue in motion at that 
same constant velocity, unless acted on by some unbalanced external force. 

Also note that the first part of the first law, a body at rest will remain at rest unless acted on by some 
unbalanced external force, is the special case of v0 = 0. That is, 

 
vf = v0 = 0 

 
indicates that if a body is initially at rest (v0 = 0), then at any later time its final velocity is still zero (vf = v0 = 0), 
and the body will remain at rest as long as F is equal to zero. Thus, the first law, in addition to defining an inertial 
coordinate system, is also consistent with Newton’s second law. If the first law was not necessary to define an 
inertial coordinate system it would not be necessary to define it as a separate law, because as just shown, it is 
actually built into the second law of motion. 

The ancient Greeks knew that a body at rest under no forces would remain at rest. And they knew that by 
applying a force to the body they could set it into motion. However, they erroneously assumed that the force had to 
be exerted continuously in order to keep the body in motion. Galileo was the first to show that this is not true, and 
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Newton showed in his second law that the net force is necessary only to start the body into motion, that is, to 
accelerate it from rest to a velocity v. Once it is moving at the velocity v, the net force can be removed and the 
body will continue in motion at that same velocity v. 

 
An Example of Newton’s Second Law  

Example 4.1 
 

Motion of a block on a smooth horizontal 
surface. A 10.0-kg block is placed on a 
smooth horizontal table, as shown in 
figure 4.9. A horizontal force of 6.00 N is 
applied to the block. Find (a) the 
acceleration of the block, (b) the position 
of the block at t = 5.00 s, and (c) the 
velocity of the block at t = 5.00 s. 
 
 
 
 

                                                                        Figure 4.9  Motion of a block on a smooth horizontal surface. 

Solution
 

a. First we draw the forces acting on the block as in the diagram. The statement that the table is smooth implies 
that there is only a negligible frictional force between the block and the table and it can be ignored. The only 
unbalanced force2 acting on the block is the force F, and the acceleration is immediately found from Newton’s 
second law as 

     a =  F   =  6.00 N  = 0.600 kg m/s2 
                                                                              m      10.0 kg                  kg 

= 0.600 m/s2 
 

Note here that this acceleration takes place only as long as the force is applied. If the force is removed, for 
any reason, then the acceleration becomes zero, and the block continues to move with whatever velocity it had at 
the time that the force was removed. 
b.  Now that the acceleration of the block is known, its position at any time can be found using the kinematic 
equations developed in chapter 3, namely, 

x = v0t +  1  at2                                                                         (3.14) 
             2   

But because the block is initially at rest v0 = 0, 
 

 x =  1  at2 =  1  (0.600 m/s2)(5.00 s)2 
                                                                           2            2   

= 7.50 m 
 

c.  The velocity at the end of 5.00 s, found from equation 3.10, is 
 

v = v0 + at 
= 0 + (0.600 m/s2)(5.00 s) 

= 3.00 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

                                                           
2Note that there are two other forces acting on the block. One is the weight w of the block, which acts downward, and the other is the normal 
force FN that the table exerts upward on the block. However, these forces are balanced and do not cause an acceleration of the block. 
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In summary, we see that Newton’s second law tells us the acceleration imparted to a body because of the forces 
acting on it. Once this acceleration is known, the position and velocity of the body at any time can be determined by 
using the kinematic equations. 
 
Special Case of Newton’s Second Law—The Weight of a Body Near the Surface of the 
Earth 
Newton’s second law tells us that if an unbalanced force acts on a body of mass m, it will give it an acceleration a. 
Let the body be a pencil that you hold in your hand. Newton’s second law says that if there is an unbalanced force 
acting on this pencil, it will receive an acceleration. If you let go of the pencil it immediately falls down to the 
surface of the earth. It is an object in free-fall and, as we have seen, an object in free-fall has an acceleration whose 
magnitude is g. That is, if Newton’s second law is applied to the pencil 
 

F = ma 
 

But the acceleration a is the acceleration due to gravity, and its magnitude is g. Therefore, Newton’s second law 
can be written as 

F = mg                                                                                 (4.13) 
 

But this gravitational force pulling an object down toward the earth is called the weight of the body, and its 
magnitude is w. Hence, 

F = w 
and Newton’s second law becomes 

 w = mg                                                                                (4.14) 
 
Equation 4.14 thus gives us a relationship between the mass of a body and the weight of a body. 

 
Example 4.2 

 
Finding the weight of a mass. Find the weight of a 1.00-kg mass. 

Solution
 

The weight of a 1.00-kg mass, found from equation 4.14, is 
 

w = mg = (1.00 kg)(9.80 m/s2) = 9.80 kg m/s2 
= 9.80 N 

Hence, a mass of 1 kg has a weight of 9.80 N. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

In pointing out the distinction between the weight of an object and the mass of an object in chapter 1, we 
said that a woman on the moon would weigh one-sixth of her weight on the earth. We can now see why. The 
acceleration due to gravity on the moon gm is only about one-sixth of the acceleration due to gravity here on the 
surface of the earth gE. That is, 

gm =  1  gE 
   6 

Hence, the weight of a woman on the moon would be 
 

wm = mgm = m( 1  gE) =  1 (mgE) =  1  wE 
                                                                                         6             6               6    
 
The weight of a woman on the moon would be one-sixth of her weight here on the earth. The mass of the woman 
would be the same on the earth as on the moon, but her weight would be different. 

We can see from equations 4.6 and 4.14 that the weight of a body in SI units should be expressed in terms 
of newtons. And in the scientific community it is. However, the business community does not always follow 
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science. The United States is now switching over to SI units, but instead of expressing weights in newtons, as 
defined, the weights of objects are erroneously being expressed in terms of kilograms, a unit of mass. 

As an example, if you go to the supermarket and buy a can of vegetables, you will see stamped on the can 
 

NET WT 0.453 kg 
 

This is really a mistake, as we now know, because we know that there is a difference between the weight and the 
mass of a body. To get around this problem, a physics student should realize that in commercial and everyday use, 
the word “weight” nearly always means mass. So when you buy something that the businessman says weighs 1 kg, 
he means that it has the weight of a 1-kg mass. We have seen that the weight of a 1-kg mass is 9.80 N. In this text 
the word kilogram will always mean mass, and only mass. If however, you come across any item marked as a 
weight and expressed in kilograms in your everyday life, you can convert that mass to its proper weight in 
newtons by simply multiplying the mass by 9.80 m/s2. 

 
Example 4.3 

 
Weight and mass at the supermarket. While at the supermarket you buy a bag of potatoes labeled, NET WT 5.00 
kg. What is the correct weight expressed in newtons? 

Solution
 

We find the weight in newtons by multiplying the mass in kg by 9.80 m/s2. Hence, 
 

w = (5.00 kg)(9.80 m/s2) = 49.0 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

4.5  Applications of Newton’s Second Law  
A Block on a Frictionless Inclined Plane 
Let us find the acceleration of a block that is to slide down a 
frictionless inclined plane. (The statement that the plane is 
frictionless means that it is not necessary to take into account the 
effects of friction on the motion of the block.) The velocity and the 
displacement of the block at any time can then be found from the 
kinematic equations. (Note that this problem is equivalent to 
placing a glider on the tilted air track in the laboratory.) The first 
thing to do is to draw a diagram of all the forces acting on the block, 
as shown in figure 4.10. A diagram showing all the forces acting on 
a body is called a force diagram or a free-body diagram. Note that 
all the forces are drawn as if they were acting at the geometrical 
center of the body. (The reason for this will be discussed in more 
detail later when we study the center of mass of a body, but for now 
we will just say that the body moves as if all the forces were acting 
at the center of the body.) 

The first force we consider is the weight of the body w, 
which acts down toward the center of the earth and is hence 
                                                                                                              Figure 4.10  A block on a frictionless inclined 

                                                                                                                             plane. 
 

perpendicular to the base of the incline. The plane itself exerts a force upward on the block that we denote by the 
symbol FN, and call the normal force. (Recall that a normal force is, by definition, a force that is always 
perpendicular to the surface.) 

Let us now introduce a set of axes that are parallel and perpendicular to the plane, as shown in figure 
4.10. Thus the parallel axis is the x-axis and lies in the direction of the motion, namely down the plane. The y-axis 
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is perpendicular to the inclined plane, and points upward away from the plane. Take the weight of the block and 
resolve it into components, one parallel to the plane and one perpendicular to the plane. Recall from chapter 2, on 
the components of vectors, that if the plane makes an angle θ with the horizontal, then the acute angle between w 
and the perpendicular to the plane is also the angle θ. Hence, the component of w parallel to the plane w|| is 
 

w|| = w sin θ                                                                             (4.15) 
 
whereas the component perpendicular to the plane w ⊥ is 
 

w ⊥ = w cos θ                                                                            (4.16) 
 

as can be seen in figure 4.10. One component of the weight, namely w cos θ, holds the block against the plane, 
while the other component, w sin θ, is the force that acts on the block causing the block to accelerate down the 
plane. To find the acceleration of the block down the plane, we use Newton’s second law, 
 

F = ma                                                                                  (4.6) 
 

The force acting on the block to cause the acceleration is given by equation 4.15. Hence, 
 

w sin θ = ma                                                                           (4.17) 
But by equation 4.14 

w = mg                                                                           (4.14) 
Substituting this into equation 4.17 gives 

mg sin θ = ma 
 

Because the mass is contained on both sides of the equation, it divides out, leaving 
 

 a = g sin θ                                                                              (4.18) 
 

as the acceleration of the block down a frictionless inclined plane. An interesting thing about this result is that 
equation 4.18 does not contain the mass m. That is, the acceleration down the plane is the same, whether the block 
has a large mass or a small mass. The acceleration is thus independent of mass. This is similar to the case of the 
freely falling body. There, a body fell at the same acceleration regardless of its mass. Hence, both accelerations are 
independent of mass. If the angle of the inclined plane is increased to 900, then the acceleration becomes  
 

           a = g sin θ = g sin 900 = g (1) = g 
 

Therefore, at θ = 900 the block goes into free-fall. When θ is equal to 00, the acceleration is zero. We can use the 
inclined plane to obtain any acceleration from zero up to the acceleration due to gravity g, by simply changing the 
angle θ. Notice that the algebraic solution to a problem gives a formula rather than a number for the answer. One 
of the reasons why algebraic solutions to problems are superior to numerical ones is that we can examine what 
happens at the extremes (for example at 900 or 00) to see if they make physical sense, and many times special 
cases can be considered. 

Galileo used the inclined plane extensively to study motion. Since he did not have good devices available to 
him for measuring time, it was difficult for him to study the velocity and acceleration of a body. By using the 
inclined plane at relatively small angles of θ, however, he was able to slow down the motion so that he could more 
easily measure it. 

Because we now know the acceleration of the block down the plane, we can determine its velocity and 
position at any time, or its velocity at any position, using the kinematic equations of chapter 3. However, now the 
acceleration a is determined from equation 4.18. 

Note also in this discussion that if Newton’s second law is applied to the perpendicular component we 
obtain 

  F⊥ = ma⊥ = 0 
 

because there is no acceleration perpendicular to the plane. Hence, 
 

F⊥ = FN − w cos θ = 0 
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and 
FN = w cos θ                                                                          (4.19) 

 
Example 4.4 

 
A block sliding down a frictionless inclined plane. A 10.0-kg block is placed on a frictionless inclined plane, 5.00 m 
long, that makes an angle of 30.00 with the horizontal. If the block starts from rest at the top of the plane, what 
will its velocity be at the bottom of the incline? 

Solution
 

The velocity of the block at the bottom of the plane is found from the 
kinematic equation 

v2 = v02 + 2ax  
Hence, 

2v ax=  
 

Before solving for v, we must first determine the acceleration a. 
Using Newton’s second law we obtain 
 

a =  F   = w sin θ  = mg sin θ  
                                         m          m               m 

= g sin θ = (9.80 m/s2) sin 30.00 

= 4.90 m/s2 
Hence, 

2v ax=  

( )( )22 4.90 m/s 5.00 m=  
                                                  = 7.00 m/s                                                         Figure 4.11  Diagram for example 4.4.   

 
The velocity of the block at the bottom of the plane is 7.00 m/s in a direction pointing down the inclined plane. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

It is perhaps appropriate here to discuss the different concepts of mass. In chapter 1, we gave a very 
simplified definition of mass by saying that mass is a measure of the amount of matter in a body. We picked a 
certain amount of matter, called it a standard, and gave it the name kilogram. This amount of matter was not 
placed into motion. It was just the amount of matter in a platinum-iridium cylinder 39 mm in diameter and 39 mm 
high. The amount of matter in any other body was then compared to this standard kilogram mass. But this 
comparison was made by placing the different pieces of matter on a balance scale. As pointed out in chapter 1, the 
balance can be used to show an equality of the amount of matter in a body only because the gravitational force 
exerts a force downward on each pan of the balance. Mass determined in this way is actually a measure of the 
gravitational force on that amount of matter, and hence mass measured on a balance is called gravitational mass. 

In the experimental determination of Newton’s second law using the propeller glider, we added additional 
gliders to the air track to increase the mass that was in motion. The acceleration of the combined gliders was 
determined as a function of their mass and we observed that the acceleration was inversely proportional to that 
mass. Thus, mass used in this way represents the resistance of matter to be placed into motion. For a person, it 
would be more difficult to give the same acceleration to a very large mass of matter than to a very small mass of 
matter. This characteristic of matter, whereby it resists motion is called inertia. The resistance of a body to be set 
into motion is called the inertial mass of that body. Hence, in Newton’s second law, 

 
F = ma                                                                               (4.9) 
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the mass m stands for the inertial mass of the body. Just as we can determine the gravitational mass of any body 
in terms of the standard mass of 1 kg using a balance, we can determine the inertial mass of any body in terms of 
the standard mass of 1 kg using Newton’s second law. 

As an example, let us go back into the laboratory and use the propelled glider we used early in section 4.4. 
For a given battery voltage the glider has a constant force acting on the glider. For a glider of mass m1, the force 
causes the glider to have an acceleration a1, which can be represented by Newton’s second law as 
 

F = m1a1                                                                                (4.20) 
 

If a new glider of mass m2 is used with the same battery setting, and thus the same force F, the glider m2 will 
experience the acceleration a2. We can also represent this by Newton’s second law as 
 

F = m2a2                                                                                (4.21) 
 

Because the force is the same in equations 4.20 and 4.21, the two equations can be set equal to each other giving 
 

m2a2 = m1a1 
Solving for m2, we get 

 m2 =  a1  m1                                                                              (4.22) 
                                                                                                a2                   

 
Thus, the inertial mass of any body can be determined in terms of a mass m1 and the ratio of the accelerations of the 
two masses. If the mass m1 is taken to be the 1-kg mass of matter that we took as our standard, then the mass of 
any body can be determined inertially in this way. Equation 4.22 defines the inertial mass of a body. 

 
Example 4.5 

 
Finding the inertial mass of a body. A 1.00-kg mass experiences an acceleration of 3.00 m/s2 when acted on by a 
certain force. A second mass experiences an acceleration of 8.00 m/s2 when acted on by the same force. What is the 
value of the second mass? 

Solution
 

The value of the second mass, found from equation 4.22, is 
 

m2 =  a1  m1  
   a2 

= 3.00 m/s2 (1 kg) 
                                                                                     8.00 m/s2           

= 0.375 kg 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Masses measured by the gravitational force can be denoted as mg, while masses measured by their 
resistance to motion (i.e., inertial masses) can be represented as mi. Then, for the motion of a block down the 
frictionless inclined plane, equation 4.17, 

w sin θ = ma 
 

should be changed as follows. The weight of the mass in equation 4.17 is determined in terms of a gravitational 
mass, and is written as 

w = mgg                                                                               (4.23) 
 

whereas the mass in Newton’s second law is written in terms of the inertial mass mi. Hence, equation 4.17 
becomes 

mgg sin θ = mia                                                                         (4.24) 
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It is, however, a fact of experiment that no differences have been found in the two masses even though they are 
determined differently. That is, experiments performed by Newton could detect no differences between 
gravitational and inertial masses. Experiments carried out by Roland von Eötvös (1848-1919) in 1890 showed that 
the relative difference between inertial and gravitational mass is at most 10−9, and Robert H. Dicke found in 1961 
the difference could be at most 10−11. That is, the differences between the two masses are 
 

mi − mg ≤ 0.000000001 kg (Eötvös), 
mi − mg ≤ 0.00000000001 kg (Dicke). 

Hence, as best as can be determined, 
mi = mg                                                                             (4.25) 

 
Because of this equivalence between the two different characteristics of mass, the masses on each side of equation 
4.24 divide out, giving us the previously found relation, a = g sin θ. Since a freely falling body is the special case of 
a body on a 900 inclined plane, the equivalence of these two types of masses is the reason that all objects fall at the 
same acceleration g near the surface of the earth. This equivalence of gravitational and inertial mass led Einstein 
to propose it as a general principle called the equivalence principle of which more is said in chapter 30 when 
general relativity is discussed. 
 
Combined Motion 
Up to now we have been considering the motion of a single body. What 
if there is more than one body in motion, say a locomotive pulling 
several train cars? How do we apply Newton’s second law? Let us 
consider a very simple combined motion of two blocks on a smooth 
table, connected by a massless string, as shown in figure 4.12. By a 
smooth table, we mean there is a negligible frictional force between  

                                                                                                                  Figure 4.12  Simple combined motion. 
 

the blocks and the table so that the blocks will move freely over the table. By a massless string we mean that the 
mass of the connecting string is so small compared to the other masses in the problem that it can be ignored in the 
solution of the problem. We want to find the motion of the blocks. In other words, what is the acceleration of the 
blocks, and their velocity and position at any time? The two blocks, taken together, are sometimes called a system. 

A force is applied to the first block by pulling on a string with the force F.  Applying Newton’s second law 
to the first mass mA, we see that the force F is exerting a force on mA to the right. But there is a string connecting 
mA to mB and the force to the right shows up as a force on the string, which we denote by T, that pulls mB also to 
the right. But by Newton’s third law if mass mA pulls mB to the right, then mB tries to pull mA to the left. We denote 
the force on mA caused by mB as T’, and by Newton’s third law the magnitudes are equal, that is, T = T’. Newton’s 
second law applied to the first mass now gives  

F + T’ = mA a                                                                            (4.26) 
 

Equation 4.26 is a vector equation. To simplify its solution, we use our previous convention with vectors in one 
dimension. That is, the direction to the right (+x) is taken as positive and the direction to the left (−x) as negative. 
Therefore, equation 4.26 can be simplified to 

F − T’ = mA a                                                                            (4.27) 
 

We can not solve equation 4.27 for the unknown acceleration a at this time because the tension T’ in the string is 
also unknown. We obviously need more information. We have one equation with two unknowns, the acceleration a 
and the tension T’. Whenever we want to solve a system of algebraic equations for some unknowns, we must always 
have as many equations as there are unknowns in order to obtain a solution. Since there are two unknowns here, 
we need another equation. We obtain that second equation by applying Newton’s second law to block B: 
 

T = mB a                                                                               (4.28) 
 

Notice that the magnitude of the acceleration of block B is also a because block B and block A are tied together by 
the string and therefore have the same motion. As we already mentioned, T = T’ and we can substitute equation 
4.28 for T into equation 4.27 for T’. That is,  

F − T’ = F − T = mA a 
F − mB a = mA a 

 T  T’ F
m

A
m

B
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F = mA a + mB a = (mA + mB )a 
 
and solving for the acceleration of the system of two masses we obtain 
 

 a =       F                                                                                   (4.29) 
                                                                                             mA + mB      

 
Alternate Solution to the Problem There is another way to compute the acceleration of this combined system that 
in a sense is a lot easier. But it is an intuitive way of solving the problem. Some students can see the solution right 
away, others can not. Let us again start with Newton’s second law and solve for the acceleration a of the system 
 

a =  F                                                                                      (4.8) 
    m 

 
Thus, the acceleration of the system is equal to the total resultant force applied to the system divided by the total 
mass of the system that is in motion. The total force that is accelerating the system is the force F.  The total mass 
that is in motion is the sum of the two masses, mA and mB. Therefore, the acceleration of the system, found from 
equation 4.8, is 

a =       F       
            mA + mB 

 
Notice that this is the same acceleration that we just determined in equation 4.29.  

 
Example 4.6 

 
Combined motion of two blocks moving on a smooth horizontal surface. A block of mass mA = 200 g is connected by 
a string of negligible mass to a second block of mass mB = 400 g. The blocks are at rest on a smooth table as shown 
in figure 4.12. A force of 2.50 N in the positive x-direction is applied to mass mA. Find (a) the acceleration of each 
block, (b) the tension in the connecting string, (c) the position of mass A after 1.50 s, and (d) the velocity of mass A 
at 1.50 s. 

Solution
 

a.  The magnitude of the acceleration, obtained from equation 4.29, is 
 

a =       F        =             2.50 N           
                                                                              mA + mB      0.200 kg + 0.400 kg 

= 4.17 m/s2 
b.  The tension, found from equation 4.28, is 
 

T = mB a = (0.400 kg)(4.17 m/s2) = 1.67 N 
 

Notice that the tension T in the string, which is the force on mass mB, is less than the applied force F as should be 
expected because the applied force F must move two masses mA and mB while the tension T in the connecting 
string only has to move one mass, mB.  
c.  The position of mass A after 1.50 s is found from the kinematic equation 
 

x = v0t +  1  at2 
         2 

 
Because the block starts from rest, v0 = 0, and the block moves the distance 
 

x =  1  at2 =  1 (4.17 m/s2)(1.50 s)2 
                                                                            2            2 

= 4.69 m 
 

d.  The velocity of block A is found from the kinematic equation 
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v = v0 + at 
= 0 + (4.17 m/s2)(1.50 s) 

= 6.25 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Combined Motion of a Block on a Frictionless Horizontal Plane and a Block Falling 
Vertically 
Let us now find the acceleration of a block, on a smooth horizontal 
table, that is connected by a cord that passes over a pulley to 
another block that is hanging over the end of the table, as shown 
in figure 4.13(a). By a smooth table, we mean there is a negligible 
frictional force between the block and the table so that the block 
will move freely over the table. We also assume that the mass of 
the connecting cord and pulley is negligible and can be ignored in 
this problem. 

To determine the acceleration, we will use Newton’s second 
law. However, before we can do so, we must draw a very careful 
free-body diagram showing all the forces that are acting on the two 
blocks, as is done in figure 4.13(b). The forces acting on block A are 
its weight wA, pulling it downward, and the tension T in the cord. 
It is this tension T in the cord that restrains block A from falling  

                                                                                                              Figure 4.13  Combined motion.   
 

freely. The forces acting on body B are its weight wB, the normal force FN that the table exerts on block B, and the 
tension T’ in the cord that acts to pull block B toward the right. Newton’s second law, applied to block A, gives 
 

F = mAa 
 

Here F is the total resultant force acting on block A and therefore, 
 

F = T + wA = mAa                                                                    (4.30) 
 

Equation 4.30 is a vector equation. To simplify its solution, we use our previous convention with vectors in one 
dimension. That is, the upward direction (+y) is taken as positive and the downward direction (−y) as negative. 
Therefore, equation 4.30 can be simplified to 

T − wA = −mAa                                                                             (4.31) 
 

However, we can not yet solve equation 4.31 for the acceleration, because the tension T in the cord is unknown. 
Since there are two unknowns here, we need another equation. We obtain that second equation by applying 
Newton’s second law to block B: 

F = mBa 
 

Here F is the resultant force on block B and, from figure 4.13(b), we can see that 
 

FN + wB + T’ = mBa 
 
This vector equation is equivalent to the two component equations 

 
FN − wB = 0                                                                            (4.32) 

and 
T ’ = mB a                                                                              (4.33) 

 
The right-hand side of equation 4.32 is zero, because there is no acceleration of block B perpendicular to the table. 
It reduces to 
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FN = wB 
 

That is, the normal force that the table exerts on block B is equal to the weight of block B.  
Equation 4.33 is Newton’s second law for the motion of block B to the right. Now we make the assumption 

that 
T’ = T 

 
that is, the magnitude of the tension in the cord pulling on block B is the same as the magnitude of the tension in 
the cord restraining block A. This is a valid assumption providing the mass of the pulley is very small and friction 
in the pulley bearing is negligible. The only effect of the pulley is to change the direction of the string and hence 
the direction of the tension. (In chapter 9 we will again solve this problem, taking the rotational motion of the 
pulley into account without the assumption of equal tensions.) Therefore, equation 4.33 becomes 
 

 T = mBa                                                                                (4.34) 
 

We now have enough information to solve for the acceleration of the system. That is, there are the two 
equations 4.31 and 4.34 and the two unknowns a and T. By subtracting equation 4.34 from equation 4.31, we 
eliminate the tension T from both equations: 

                                   T − wA = −mAa                                                                       (4.31) 
  Subtract                                  T = mBa                                                                         (4.34) 

T − T − wA = −mAa − mBa  
 − wA = −mAa − mB a 

wA = (mA + mB)a 
Solving for the acceleration a, 

a =      wA     
           mA + mB 

To simplify further we note that 
wA = mAg 

 
Therefore, the acceleration of the system of two blocks is 
 

  a =     mA     g                                                                            (4.35) 
                                                                                            mA + mB           

 
To determine the tension T in the cord, we use equations 4.34 and 4.35: 

 
 T = mBa =   mBmA   g                                                                     (4.36) 

                                                                                                  mA + mB        
 

Since the acceleration of the system is a constant we can determine the position and velocity of block B in the x-
direction at any time using the kinematic equations 

x = v0t +  1  at2                                                                      (3.14) 
                   2  

v = v0 + at                                                                             (3.10) 
and 

v2 = v02 + 2ax                                                                         (3.16) 
 

with the acceleration now given by equation 4.35. We find the position of block A at any time using the same 
equations, but with x replaced by the displacement y. 
 
Intuitive Solution to the Problem The problem can also be solved intuitively. Let us again start with Newton’s 
second law and solve for the acceleration a of the system 

a =  F                                                                               (4.8) 
                 m 

 
The acceleration of the system is equal to the total resultant force applied to the system divided by the total mass of 
the system that is in motion. The total force that is accelerating the system is the weight wA. The tension T in the 
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string just transmits the total force from one block to another. The total mass that is in motion is the sum of the 
two masses, mA and mB. Therefore, the acceleration of the system, found from equation 4.8, is 
 

a =      wA       
            mA + mB 

or 
      a =       mA     g 

         mA + mB 
  

Notice that this is the same acceleration that we determined previously in equation 4.35. The only disadvantage of 
this second technique is that it does not tell the tension in the cord. Which technique should the student use in the 
solution of the problem? That depends on the student. If you can see the intuitive approach, and wish to use it, do 
so. If not, follow the first step-by-step approach. 

 
Example 4.7 

 
Combined motion of a block moving on a smooth horizontal surface 
and a mass falling vertically. A 6.00-kg block rests on a smooth 
table. It is connected by a string of negligible mass to a 2.00-kg 
block hanging over the end of the table, as shown in figure 4.14. 
Find (a) the acceleration of each block, (b) the tension in the 
connecting string, (c) the position of mass A after 0.400 s, and 
(d) the velocity of mass A at 0.400 s. 

 
 
 
 
 
 
 

                                                                                                                  Figure 4.14  Diagram for example 4.7. 

Solution
 

a.  To solve the problem, we draw all the forces that are acting on the system and then apply Newton’s second law. 
The magnitude of the acceleration, obtained from equation 4.35, is 
 

a =     mA      g =           2.00 kg         (9.80 m/s2) 
                                                                mA + mB         2.00 kg + 6.00 kg 

= 2.45 m/s2 
b.  The tension, found from equation 4.34, is 
 

T = mB a = (6.00 kg)(2.45 m/s2) = 14.7 N 
 

c.  The position of mass A after 0.400 s is found from the kinematic equation 
 

y = v0t +  1  at2 
         2 

 
Because the block starts from rest, v0 = 0, and the block falls the distance 
 

y =  1  at2 =  1 (−2.45 m/s2)(0.400 s)2  
                                                                          2            2 

= −0.196 m 
 

d.  The velocity of block A is found from the kinematic equation 
 

v = v0 + at 
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= 0 + (−2.45 m/s2)(0.400 s) 
= −0.980 m/s 

 
The negative sign is used for the acceleration of block A because it accelerated in the negative y-direction. Hence, y 
= −0.196 m indicates that the block is below its starting position. The negative sign on the velocity indicates that 
block A is moving in the negative y-direction. If we had done the same analysis for block B, the results would have 
been positive because block B is moving in the positive x-direction. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Atwood’s Machine 
Atwood’s machine is a system that consists of a pulley, with a mass mA on one side, 
connected by a string of negligible mass to another mass mB on the other side, as 
shown in figure 4.15. 

We assume that mA is larger than mB. When the system is released, the mass 
mA will fall downward, pulling the lighter mass mB, on the other side, upward. We 
would like to determine the acceleration of the system of two masses. When we know 
the acceleration we can determine the position and velocity of each of the masses at 
any time from the kinematic equations. 

Let us start by drawing all the forces acting on the masses in figure 4.15 and 
then apply Newton’s second law to each mass. (The assumption that the tension T in 
the rope is the same for each mass is again utilized. We will solve this problem again 
in chapter 9, on rotational motion, where the rotating pulley is massive and hence the 
tensions on both sides of the pulley are not the same.) 

For mass A, Newton’s second law is 
 

FA = mAa 
or 

T + wA = mAa                                                  (4.37) 
                                                                                                                                    Figure 4.15  Atwood’s machine.   

 
We can simplify this equation by taking the upward direction as positive and the downward direction as negative, 
that is, 

 T − wA = −mAa                                                                           (4.38) 
 

We cannot yet solve for the acceleration of the system, because the tension T in the string is unknown. Another 
equation is needed to eliminate T. We obtain this equation by applying Newton’s second law to mass B: 

 
FB = mB a 

T + wB = mB a                                                                        (4.39) 
 
Simplifying again by taking the upward direction as positive and the downward direction as negative, we get 
 

 T − wB = + mBa                                                                        (4.40) 
 

We thus have two equations, 4.38 and 4.40, in the two unknowns of acceleration a and tension T. The tension T is 
eliminated by subtracting equation 4.40 from equation 4.38. That is, 
 

 T − wA = −mAa                                                                      (4.38) 
Subtract                    T − wB = mBa                                                                        (4.40) 

T − wA − T + wB = −mAa − mBa 
 wB − wA = −(mA + mB)a  

Solving for a, we obtain 
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a =  wA − wB     
       mA + mB 

       = mA g − mBg  
        mA + mB 

Hence, the acceleration of each mass of the system is 

   
 + 

A B

A B

m m
a g

m m

 −
=  

 
                                                         (4.41) 

 
We find the tension T in the string from equation 4.38 as 
 

  T = wA − mAa                                                                            (4.38) 
   T = mAg − mAa 

Hence, 
T = mA(g − a)                                                                          (4.42) 

is the tension in the string of the Atwood’s machine. 
 

Special Cases Any formulation in physics should reduce to some simple, recognizable form when certain 
restrictions are placed on the motion. As an example, suppose a 7.25 kg bowling ball is placed on one side of 
Atwood’s machine and a small 30.0-g marble on the other side. What kind of motion would we expect? The bowling 
ball is so large compared to the marble that the bowling ball should fall like a freely falling body. What does the 
formulation for the acceleration in equation 4.41 say? 

If the bowling ball is mA and the marble is mB, then mA is very much greater than mB and can be written 
mathematically as 

mA >> mB 
Then, 

mA + mB ≈ mA 
As an example, 

7.25 kg + 0.030 kg = 7.28 kg ≈ 7.25 = mA 
Similarly, 

mA − mB ≈ mA 
As an example, 

7.25 kg − 0.030 = 7.22 kg ≈ 7.25 = mA 
                                               
Therefore the acceleration of the system, equation 4.41, becomes 
 

  
 + 

A B A

A B A

m m m
a g g g

m m m

 −
= = = 

 
 

 
That is, the equation for the acceleration of the system reduces to the acceleration due to gravity, as we would 
expect if one mass is very much larger than the other. 

Another special case is where both masses are equal. That is, if 
 

  mA = mB 
then the acceleration of the system is 

   0
 + 2

A B A A

A B A

m m m m
a g g

m m m

 − −
= = = 

 
 

 
That is, if both masses are equal there is no acceleration of the system. The system is either at rest or moving at a 
constant velocity. 
 
Intuitive Solution to Atwood’s Machine A simpler solution to Atwood’s machine can be obtained directly from 
Newton’s second law by the intuitive approach. The acceleration of the system, found from Newton’s second law, is 
 

a =  F   
      m         
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where F is the resultant force acting on the system and m is the total mass in motion. The resultant force acting on 
the system is the difference between the two weights, wA − wB, and the total mass of the system is the sum of the 
two masses that are in motion, namely mA + mB. Thus, 
 

     
 +  + 

A B A B

A B A B

w w m mF
a g

m w w m m

 − −
= = =  

 
 

 
the same result we found before in equation 4.41.  

 
Example 4.8 

 
Atwood’s machine. A 15.8-kg mass and a 10.5-kg mass are placed on an Atwood’s machine. Find (a) the 
acceleration of the system, and (b) the tension in the connecting string. 

Solution
 

a. The acceleration of the system is found from equation 4.41 as  
 

  
 + 

A B

A B

m m
a g

m m

 −
=  

 
 

( )215.8 kg  10.5 kg 9.80 m/s
15.8 kg + 10.5 kg

− 
=  

 
 

a = 1.97 m/s2  
 
b. The tension in the connecting string is found from equation 4.42 as 
 

T = mA(g − a) 
= (15.8 kg)(9.80 m/s2 − 1.97 m/s2) 

T = 124 N  
 

To go to this Interactive Example click on this sentence. 
 

 
 
The Weight of a Person Riding in an Elevator 
A scale is placed on the floor of an elevator. An 87.2 kg person enters the elevator when it is at rest and stands on 
the scale. What does the scale read when (a) the elevator is at rest, (b) the elevator is accelerating upward at 1.50 
m/s2, (c) the acceleration becomes zero and the elevator moves at the constant velocity of 1.50 m/s upward, (d) the 
elevator decelerates at 1.50 m/s2 before coming to rest, and (e) the cable breaks and the elevator is in free-fall? 

A picture of the person in the elevator showing the forces that are acting is drawn in figure 4.16. The forces 
acting on the person are his weight w, acting down, and the reaction force of the elevator floor acting upward, 
which we call FN. Applying Newton’s second law we obtain 

 
FN + w = ma                                                                         (4.43) 

 
a.  If the elevator is at rest then a = 0 in equation 4.43. Therefore, 
 

FN + w = 0 
FN = −w 

 
which shows that the floor of the elevator is exerting a force upward, through the scale, on the person, that is 
equal and opposite to the force that the person is exerting on the floor. Hence, 
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Figure 4.16  Forces acting on a person in an elevator.  

 
FN = w = mg  

= (87.2 kg)(9.80 m/s2)  
= 855 N 

 
We usually think of the operation of a scale in terms of us pressing down on the scale, but we can just as easily 
think of the scale as pushing upward on us. Thus, the person would read 855 N on the scale which would be called 
the weight of the person. 
b.  The doors of the elevator are now closed and the elevator accelerates upward at a rate of 1.50 m/s2. Newton’s 
second law is again given by equation 4.43. We can write this as a scalar equation if the usual convention of 
positive for up and negative for down is taken. Hence, 
 

FN − w = ma 
Solving for FN, we get 

FN = w + ma                                                                             (4.44) 
 

Substituting the given values into equation 4.44 gives 
 

FN = 855 N + (87.2 kg)(1.50 m/s2) 
   = 855 N + 131 N 

= 986 N 
 
That is, the floor is exerting a force upward on the person of 986 N. Therefore, the scale would now read 986 N. 
Does the person now really weigh 986 N? Of course not. What the scale is reading is the person’s weight plus the 
additional force of 131 N that is applied to the person, via the scales and floor of the elevator, to cause the person 
to be accelerated upward along with the elevator. I am sure that all of you have experienced this situation. When 
you step into an elevator and it accelerates upward you feel as though there is a force acting on you, pushing you 
down. Your knees feel like they might buckle. It is not that something is pushing you down, but rather that the 
floor is pushing you up. The floor is pushing upward on you with a force greater than your own weight in order to 
put you into accelerated motion. That extra force upward on you of 131 N is exactly the force necessary to give you 
the acceleration of +1.50 m/s2. 
c.  The acceleration now stops and the elevator moves upward at the constant velocity of 1.50 m/s. What does the 
scale read now? 

Newton’s second law is again given by equation 4.43, but since a = 0, 
 

FN = w = 855 N 
 

Notice that this is the same value as when the elevator was at rest. This is a very interesting phenomenon. The 
scale reads the same whether you are at rest or moving at a constant velocity. That is, if you are in motion at a 
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constant velocity, and you have no external references to observe that motion, you cannot tell that you are in motion 
at all. 

I am sure you also have experienced this while riding an elevator. First you feel the acceleration and then 
you feel nothing. Your usual reaction is to ask “are we moving, or are we at rest?” You then look for a crack around 
the elevator door to see if you can see any signs of motion. Without a visual reference, the only way you can sense a 
motion is if that motion is accelerated. 
d.  The elevator now decelerates at 1.50 m/s2. What does the scale read? Newton’s second law is again given by 
equation 4.43, and writing it in the simplified form, we have 
 

FN − w = −ma                                                                            (4.45) 
 

The minus sign on the right-hand side of equation 4.45 indicates that the acceleration vector is opposite to the 
direction of the motion because the elevator is decelerating. Solving equation 4.45 for FN gives 
 

FN = w − ma 
FN = 855 N − (87.2 kg)(1.50 m/s2) 

     = 855 N − 131 N 
= 724 N   

 
Hence, the force acting on the person is less than the person’s weight. The effect is very noticeable when you walk 
into an elevator and accelerate downward (which is the same as decelerating when the elevator is going upward). 
You feel as if you are falling. Well, you are falling. 

At rest the floor exerts a force upward on a 855-N person of 855 N, now it only exerts a force upward of 724 
N. The floor is not exerting enough force to hold the person up. Therefore, the person falls. It is a controlled fall of 
1.50 m/s2, but a fall nonetheless. The scale in the elevator now reads 724 N. The difference in that force and the 
person’s weight is the force that accelerates the person downward. 
e.  Let us now assume that the cable breaks. What is the acceleration of the system now. Newton’s second law is 
again given by equation 4.43, or in simplified form by 

FN − w = −ma                                                                        (4.45) 
 

But if the cable breaks, the elevator becomes a freely falling body with an acceleration g. Therefore, equation 4.45 
becomes 

FN − w = −mg 
 

The force that the elevator exerts upward on the person becomes 
 

FN = w − mg 
But the weight w is equal to mg. Thus, 

FN = w − w = 0 
or 

FN = 0 
 

Because the scale reads the force that the floor is pushing upward on the person, the scale now reads zero. 
This is why it is sometimes said that in free-fall you are weightless, because in free-fall the scale that reads your 
weight now reads zero. This is a somewhat misleading statement because you still have mass, and that mass is 
still attracted down toward the center of the earth. And in this sense you still have a weight pushing you 
downward. The difference here is that, while standing on the scale, the scale says that you are weightless, only 
because the scale itself is also in free-fall. As your feet try to press against the scale to read your weight, the scale 
falls away from them, and does not permit the pressure of your feet against the scale, and so the scale reads zero. 
From a reference system outside of the elevator, you would say that the falling person still has weight and that 
weight is causing that person to accelerate downward at the value g. However, in the frame of reference of the 
elevator, not only the person seems weightless, but all weights and gravitational forces on anything around the 
person seem to have disappeared. Normally, at the surface of the earth, if a person holds a pen and then lets go, the 
pen falls. But in the freely falling elevator, if a person lets go of the pen it will not fall to the floor, but will appear 
to be suspended in space in front of the person as if it were floating. According to the reference frame outside the 
elevator the pen is accelerating downward at the same rate as the person. But in the elevator, both are falling at 
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the value g and therefore do not move with respect to one another. In the freely falling reference system of the 
elevator, the force of gravity and its acceleration appear to have been eliminated. 
 
 
4.6  Friction  
Whenever we try to slide one body over another body there is a force 
that opposes that motion. This opposing force is called the force of 
friction. For example, if this book is placed on the desk and a 
force is exerted on the book toward the right, there is a force of 
friction acting on the book toward the left opposing the applied 
force, as shown in figure 4.17. 

The basis of this frictional force stems from the fact that 
the surfaces that slide over each other are really not smooth at all. 

                                                                                                               Figure 4.17  The force of friction. 
 
 The top of the desk feels smooth to the hand, and so does 

the book, but that is because our hands themselves are not 
particularly smooth. In fact, if we magnified the surface of the book, 
or the desk, thousands of times, we would see a great irregularity in 
the supposedly “smooth” surface, as shown in figure 4.18. 

As we try to slide the book along the desk these little 
microscopic chunks of the material get in each others way, and get 
stuck in the “mountains” and “valleys” of the other material,  

                                                                                                  Figure 4.18  The “smooth” surfaces of 
                                                                                                           contact that cause frictional forces.   

 
thereby opposing the tendency of motion. This is why it is difficult to slide one body over another. To get the body 
into motion we have to break off, or ride over, these microscopic chunks of matter. Because these chunks are 
microscopic, we do not immediately see the effect of this loss of material. Over a long period of time, however, the 
effect is very noticeable. As an example, if you observe any step of a stairway, which should be flat and level, you 
will notice that after a long period of time the middle of the stair is worn from the thousands of times a foot slid on 
the step in the process of walking up or down the stairs. This effect occurs whether the stairs are made of wood or 
even marble. 

The same wearing process occurs on the soles and heels of shoes, and eventually they must be replaced. In 
fact the walking process can only take place because there is friction between the shoes and the ground. In the 
process of walking, in order to step forward, you must press your foot 
backward on the ground. But because there is friction between your 
shoe and the ground, there is a frictional force tending to oppose that 
motion of your shoe backward and therefore the ground pushes 
forward on your shoe, which allows you to walk forward, as shown in 
figure 4.19. 
If there were no frictional force, your foot would slip backward and you 
would not be able to walk. This effect can be readily observed by trying 
to walk on ice. As you push your foot backward, it slips on the ice. You 
might be able to walk very slowly on the ice because there is some 
friction between your shoes and the ice. But try to run on the ice and 
see how difficult it is. If friction were entirely eliminated you could not 
walk at all. 
                                                                                                             Figure 4.19  You can walk because of friction. 
 
Force of Static Friction 
If this book is placed on the desk, as in figure 4.20, and a small force F1 is exerted to the right, we observe that the 
book does not move. There must be a frictional force f1 to the left that opposes the tendency of motion to the right. 
That is, f1 = −F1. 

If we increase the force to the right to F2, and again observe that the book does not move, the opposing 
frictional force must also have increased to some new value f2, where f2 = −F2. If we now increase the force to the 
right to some value F3, the book just begins to move. The frictional force to the left has increased to some value f3, 
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where f3 is infinitesimally less than F3. The force to the right is 
now greater than the frictional force to the left and the book starts 
to move to the right. When the object just begins to move, it has 
been found experimentally that the frictional force is 
 

fs = µsFN                                      (4.46) 
 
where FN is the normal or perpendicular force holding the two 
bodies in contact with each other. As we can see in figure 4.20, the 
forces acting on the book in the vertical are the weight of the body 
w, acting downward, and the normal force FN of the desk, pushing 
upward on the book. In this case, since the acceleration of the book 

                                                                                                               Figure 4.20  The force of static friction. 
 
in the vertical is zero, the normal force FN is exactly equal to the weight of the book w. (If the desk were tilted, FN 
would still be the force holding the two objects together, but it would no longer be equal to w.) 

The quantity µs in equation 4.46 is called the coefficient of static friction and depends on the materials of 
the two bodies which are in contact. Coefficients of static friction for various materials are given in table 4.1. It 
should be noted that these values are approximate and will vary depending on the condition of the rubbing 
surfaces.   

As we have seen, the force of 
static friction is not always equal to 
the product of µs and FN, but can be 
less than that amount, depending 
on the value of the applied force 
tending to move the body. 
Therefore, the force of static 
friction should be written as 

 
            fs ≤ µsFN             (4.47) 

 
where the symbol ≤ means “equal 
to, or less than.” The only time that 
the equality holds is when the object 
is just about to go into motion. 
 
Force of Kinetic Friction 
Once the object is placed into motion, it is easier to keep it in motion. That is, the force that is necessary to keep 
the object in motion is much less than the force necessary to start the object into motion. In fact once the object is 
in motion, we no longer talk of the force of static friction, but rather we talk of the force of kinetic friction or 
sliding friction. For a moving object the frictional force is found experimentally as 
 

 fk = µkFN                                                                               (4.48) 
 

and is called the force of kinetic friction. The quantity µk is called the coefficient of kinetic friction and is also given 
for various materials in table 4.1. Note from the table that the coefficients of kinetic friction are less than the 
coefficients of static friction. This means that less force is needed to keep the object in motion, than it is to start it 
into motion. 

We should note here, that these laws of friction are empirical laws, and are not exactly like the other laws 
of physics. For example, with Newton’s second law, when we apply an unbalanced external force on a body of mass 
m, that body is accelerated by an amount given by a = F/m, and is always accelerated by that amount. Whereas 
the frictional forces are different, they are average results. That is, on the average equations 4.47 and 4.48 are 
correct. At any one given instant of time a force equal to fs = µsFN, could be exerted on the book of figure 4.20, and 
yet the book might not move. At still another instance of time a force somewhat less than fs = µsFN, is exerted and 
the book does move. Equation 4.46 represents an average result over very many trials. On the average, this 
equation is correct, but any one individual case may not conform to this result. Hence, this law is not quite as 
exact as the other laws of physics. In fact, if we return to figure 4.18, we see that it is not so surprising that the 

      Table 4.1 
Approximate Coefficients of Static and Kinetic Friction for Various 

Materials in Contact 
Materials in Contact µs µk 

Glass on glass  
Steel on steel (lubricated) 
Wood on wood 
Wood on stone 
Rubber tire on dry concrete 
Rubber tire on wet concrete 
Leather on wood 
Teflon on steel 
Copper on steel 

0.95 
0.15 
0.50 
0.50 
1.00 
0.70 
0.50 
0.04 
0.53 

0.40 
0.09 
0.30 
0.40 
0.70 
0.50 
0.40 
0.04 
0.36 
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frictional laws are only averages, because at any one instant of time there are different interactions between the 
“mountains” and “valleys” of the two surfaces. 

When two substances of the same material are slid over each other, as for example, copper on copper, we 
get the same kind of results. But if the two surfaces could be made “perfectly smooth,” the frictional force would 
not decrease, but would rather increase. When we get down to the atomic level of each surface that is in contact, 
the atoms themselves have no way of knowing to which piece of copper they belong, that is, do the atoms belong to 
the top piece or to the bottom piece. The molecular forces between the atoms of copper would bind the two copper 
surfaces together. 

In most applications of friction in technology, it is usually desirable to minimize the friction as much as 
possible. Since liquids and gases show much lower frictional effects (liquids and gases possess a quality called 
viscosity—a fluid friction), a layer of oil is usually placed between two metal surfaces as a lubricant, which reduces 
the friction enormously. The metal now no longer rubs on metal, but rather slides on the layer of the lubricant 
between the surfaces. 

For example, when you put oil in your car, the oil is 
distributed to the moving parts of the engine. In particular, the oil 
coats the inside wall of the cylinders in the engine. As the piston 
moves up and down in the cylinder it slides on this coating of oil, and 
the friction between the piston and the cylinder is reduced. 

Similarly when a glider is placed on an air track, the glider 
rests on a layer or cushion of air. The air acts as the lubricant, 
separating the two surfaces of glider and track. Hence, the frictional 
force between the glider and the air track is so small that in almost 
all cases it can be neglected in studying the motion of the glider. 

When the skates of an ice skater press on the ice, the 
increased pressure causes a thin layer of the ice to melt. This liquid 
water acts as a lubricant to decrease the frictional force on the ice 
skater. Hence the ice skater seems to move effortlessly over the ice, 
figure 4.21.  

 
Rolling Friction 
To reduce friction still further, a wheel or ball of some type is 
introduced. When something can roll, the frictional force becomes 
very much less. Many machines in industry are designed with ball 
bearings, so that the moving object rolls on the ball bearings and 
friction is greatly reduced.                                                                      Figure 4.21  An ice skater takes advantage  
                                                                                                                                      of reduced friction.   
 

The whole idea of rolling friction is tied to the concept of the wheel. Some even consider the beginning of 
civilization as having started with the invention of the wheel, although many never even think of a wheel as 
something that was invented. The wheel goes so far back into the history of mankind that no one knows for certain 
when it was first used, but it was an invention. In fact, there were some societies that never discovered the wheel. 

The frictional force of a wheel is very small compared with the force of sliding friction, because, 
theoretically, there is no relative motion between the rim of a wheel and the surface over which it rolls. Because 
the wheel touches the surface only at a point, there is no sliding friction. The 
small amount of rolling friction that does occur in practice is caused by the 
deformation of the wheel as it rolls over the surface, as shown in figure 4.22. 
Notice that the part of the tire in contact with the ground is actually flat, not 
circular. 

In practice, that portion of the wheel that is deformed does have a 
tendency to slide along the surface and does produce a frictional force. So the 
smaller the deformation, the smaller the frictional force. The harder the 
substance of the wheel, the less it deforms. For example, with steel on steel 
there is very little deformation and hence very little friction. 

Figure 4.22  The deformation of a  
                                                                                                                          rolling wheel. 
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4.7 Applications of Newton’s Second Law Taking Friction  
into Account  

Example 4.9 
 

A box on a rough floor. A 220-N wooden box is at rest on a wooden floor, as shown in figure 4.23. (a) What 
horizontal force is necessary to start the box into motion? (b) If a force of 90.0 N is continuously applied once the 
box is in motion, what will be its acceleration? 

Solution
 

a. Whenever a problem says that a surface is rough, it means that 
we must take friction into account in the solution of the problem. 
The minimum force necessary to overcome static friction is found 
from equation 4.46. Hence, using the value of µs from table 4.1 we 
get 

F = fs = µsFN 
= µsw = (0.50)(220 N) 

= 110 N 
 

 
                                                                                                                 Figure 4.23   A box on a rough floor. 

 
Note that whenever we say that F = fs, we mean that F is an infinitesimal amount greater than fs, and that 

it acts for an infinitesimal period of time. If the block is at rest, and F = fs, then the net force acting on the block 
would be zero, its acceleration would be zero, and the block would therefore remain at rest forever. Thus, F must 
be an infinitesimal amount greater than fs for the block to move. Now an infinitesimal quantity is, as the name 
implies, an extremely small quantity, so for all practical considerations we can assume that the force F plus the 
infinitesimal quantity, is just equal to the force F in all our equations. This is a standard technique that we will 
use throughout the study of physics. We will forget about the infinitesimal quantity and just say that the applied 
force is equal to the force to be overcome. But remember that there really must be that infinitesimal amount more, 
if the motion is to start. 
b.  Newton’s second law applied to the box is 

F − fk = ma                                                                           (4.49) 
 

The force of kinetic friction, found from equation 4.48 and table 4.1, is 
 

fk = µkFN = µkw  
= (0.30)(220 N)  

= 66.0 N 
 

The acceleration of the block, found from equation 4.49, is 
 

a =  F − fk   =  F − fk   
                                                                                          m                  w/g      

=   90.0 N − 66.0 N   
     220 N/ 9.80 m/s2 

= 1.07 m/s2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.10 
 

A block on a rough inclined plane. Find the acceleration of a block on an inclined plane, as shown in figure 4.24, 
taking friction into account. 
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Solution
 

The problem is very similar to the one solved in figure 4.10, which 
was for a frictionless plane. We draw all the forces and their 
components as before, but now we introduce the frictional force. 
Because the frictional force always opposes the sliding motion, and w 
sin θ acts to move the block down the plane, the frictional force fk in 
opposing that motion must be pointed up the plane, as shown in 
figure 4.24. The block is given a slight push to overcome any force of 
static friction. To determine the acceleration, we use Newton’s second 
law, 

F = ma                                           (4.9) 
 

However, we can write this as two component equations, one parallel 
to the inclined plane and the other perpendicular to it. 
Components Parallel to the Plane: Taking the direction down the 
plane as positive, Newton’s second law becomes 
 

 w sin θ − fk = ma                                  (4.50) 
 

Notice that this is very similar to the equation for the frictionless           Figure 4.24  Block on an inclined plane 
                                                                                                                    with friction. 

plane, except for the term fk, the force of friction that is slowing down  
this motion. 
 
Components Perpendicular to the Plane: Newton’s second law for the perpendicular components is  
 

 FN − w cos θ = 0                                                                          (4.51) 
 

The right-hand side is zero because there is no acceleration perpendicular to the plane. That is, the block does not 
jump off the plane or crash through the plane so there is no acceleration perpendicular to the plane. The only 
acceleration is the one parallel to the plane, which was just found. 

The frictional force fk, given by equation 4.48, is 
 

fk = µkFN 
 

where FN is the normal force holding the block in contact with the plane. When the block was on a horizontal 
surface FN was equal to the weight w. But now it is not. Now FN, found from equation 4.51, is 
 

FN = w cos θ                                                                            (4.52) 
 

That is, because the plane is tilted, the force holding the block in contact with the plane is now w cos θ rather than 
just w. Therefore, the frictional force becomes 

fk = µkFN = µkw cos θ                                                                     (4.53) 
 

Substituting equation 4.53 back into Newton’s second law, equation 4.50, we get 
 

    w sin θ − µkw cos θ = ma 
but since w = mg this becomes 

     mg sin θ − µkmg cos θ = ma 
 

Since the mass m is in every term of the equation it can be divided out, and the acceleration of the block down the 
plane becomes 

 a = g sin θ − µkg cos θ                                                                     (4.54) 
 

Note that the acceleration is independent of the mass m, since it canceled out of the equation. Also note that this 
equation reduces to the result for a frictionless plane, equation 4.18, when there is no friction, that is, when µk = 0. 
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In this example, if µk = 0.300 and θ = 30.00, the acceleration becomes 
 

a = g sin θ − µkg cos θ 
= (9.80 m/s2)sin 30.00 − (0.300)(9.80 m/s2)cos 30.00 

= 4.90 m/s2 − 2.55 m/s2 
= 2.35 m/s2 

 
Notice the difference between the acceleration when there is no friction (4.90 m/s2) and when there is (2.35 m/s2). 
The block was certainly slowed down by friction. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.11 
 

Pulling a block on a rough floor. What force is necessary to pull a 220-N wooden box at a constant speed over a 
wooden floor by a rope that makes an angle θ of 300 above the horizontal, as shown in figure 4.25? 

Solution
 

Let us start by drawing all the forces that are acting on the box in figure 4.25. We 
break down the applied force into its components Fx and Fy. If Newton’s second law 
is applied to the horizontal components, we obtain 
 

Fx − fk = max                                                  (4.55) 
 

However, since the box is to move at constant speed, the acceleration ax must be 
zero. Therefore,  

Fx − fk = 0 
Or 
                                                                                                                                 Figure 4.25  Pulling a block on a 

                                                                                                                                          rough floor.   
 

F cos θ − fk = 0                                                                           (4.56) 
but 

fk = µkFN  
 

where FN is the normal force holding the box in contact with the floor. Before we can continue with our solution we 
must determine FN. 

If Newton’s second law is applied to the vertical forces we have 
 

Fy + FN − w = may                                                                     (4.57) 
 

but because there is no acceleration in the vertical direction, ay is equal to zero. Therefore, 
 

Fy + FN − w = 0 
Solving for FN we have 

FN = w − Fy 
or 

 FN = w − F sin θ                                                                       (4.58) 
 

Note that FN is not simply equal to w, as it was in example 4.9, but rather to w − F sin θ. The y-component of the 
applied force has the effect of lifting part of the weight from the floor. Hence, the force holding the box in contact 
with the floor is less than its weight. The frictional force therefore becomes 
 

fk = µkFN = µk(w − F sin θ)                                                              (4.59) 
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and substituting this back into equation 4.56, we obtain 
 

F cos θ − µk(w − F sin θ) = 0 
or 

F cos θ + µkF sin θ − µkw = 0 
Factoring out the force F, 

F(cos θ + µk sin θ) = µkw 
 

and finally, solving for the force necessary to move the block at a constant speed, we get 
 

F =          µkw                                                                                (4.60) 
                                                                                        cos θ + µk sin θ    

 
Using the value of µk = 0.30 (wood on wood) from table 4.1 and substituting the values for w, θ, and µk into 

equation 4.60, we obtain 
F =           µkw           =         (0.30)(220 N)         

                                                                      cos θ + µk sin θ       cos 300 + 0.30 sin 300 
= 65.0 N 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 4.12 
 

Combined motion of two blocks moving on a rough horizontal 
surface. A block of mass mA = 200 g is connected by a string of 
negligible mass to a second block of mass mB = 400 g. The blocks 
are at rest on a rough table with a coefficient of kinetic friction of 
0.300, as shown in figure 4.26. A force of 2.50 N in the positive x-
direction is applied to mass mA. Find (a) the acceleration of each 
block, (b) the tension in the connecting string, (c) the position of 
mass A after 1.50 s, and (d) the velocity of mass A at 1.50 s. 
                                                                                                     Figure 4.26  Simple combined motion with friction. 

Solution
 

a.  Applying Newton’s second law to the first mass gives  
 

F − T’ − fkA = mA a                                                                        (4.61) 
where the force of kinetic friction on block A is 
 

fkA = µkAFN = µkAwA = µkAmAg 
 

Substituting this into equation 4.61, we have 
F − T’ − µkAmAg = mA a                                                                  (4.62) 

 
We now apply Newton’s second law to block B to obtain 

T − fkB = mB a                                                                     (4.63) 
where the force of kinetic friction on block B is 
 

fkB = µkBFN = µkBwB = µkBmBg 
 

Substituting this into equation 4.63, we have 
T − µkBmBg = mB a                                                                         (4.64) 
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Notice that the magnitude of the acceleration of block B is also a because block B and block A are tied together by 
the string and therefore have the same motion. Since T = T’ by Newton’s third law, we can substitute T  into 
equation 4.62 for T’.  We now add equations 4.62 and 4.64 to eliminate the tension T in the two equations for 
Newton’s second law, and obtain 

 F − T − µkAmAg = mA a 
        T − µkBmBg = mB a       

F − T − µkAmAg +T − µkBmBg = mA a + mB a           
F − µkAmAg  − µkBmBg = (mA + mB )a 

 
and solving for the acceleration of the system of two masses we obtain 
 

 a =  F − µkAmAg  − µkBmBg                                                              (4.65) 
                                                                                                 mA + mB                 

=  2.50 N − (0.300)(0.200 kg)(9.80 m/s2) − (0.300)(0.400 kg)(9.80 m/s2) 
                                                                              0.200 kg + 0.400 kg 

= 1.23 m/s2 
b.  The tension is found from equation 4.64 as  

T − µkBmBg = mB a 
T = µkBmBg + mB a 

T = mB[µkBg + a]                                                                        (4.66) 
T = (0.400 kg)[(0.300)(9.80 m/s2) + 1.23 m/s2] = 1.67 N 

 
c.  The position of mass A after 1.50 s is found from the kinematic equation 
 

x = v0t +  1  at2 
         2 

 
Because the block starts from rest, v0 = 0, and the block moves the distance 
 

x =  1  at2 =  1 (1.23 m/s2)(1.50 s)2  
                                                                            2            2 

= 1.38 m 
 

d.  The velocity of block A is found from the kinematic equation 
 

v = v0 + at 
= 0 + (1.23 m/s2)(1.50 s) 

= 1.84 m/s 
 

It is interesting and informative to compare this example with example 4.6, which solves the same problem 
without friction. Notice that with friction, the acceleration, velocity, and displacement of the moving bodies are 
less than without friction, as you would expect. In fact if there were no friction µkA = µkB = 0 and equation 4.65 
would reduce to equation 4.29 for the simpler problem done without friction in example 4.6. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.13 
 

Combined motion of a block moving on a rough horizontal surface and a mass falling vertically. Find the 
acceleration of a block, on a “rough” table, connected by a cord passing over a pulley to a second block hanging over 
the table, as shown in figure 4.27. Mass mA = 2.00 kg, mB = 6.00 kg, and µk = 0.30 (wood on wood). 

Solution
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This problem is similar to the problem solved in figure 4.13, only 
now the effects of friction are taken into account. We still assume 
that the mass of the string and the pulley are negligible. All the 
forces acting on the two blocks are drawn in figure 4.27. We apply 
Newton’s second law to block A, obtaining 

 
T − wA = −mAa                            (4.67) 

 
Applying it to block B, we obtain 

T − fk = mBa                              (4.68) 
where the force of kinetic friction is 

fk = µkFN = µkwB                    (4.69) 
 

Figure 4.27  Combined motion of a block moving  
on a rough horizontal surface and a mass falling  

                                                                                                       vertically. 
Substituting equation 4.69 into equation 4.68, we have 

 T − µkwB = mBa                                                                  (4.70) 
 

We eliminate the tension T in the equations by subtracting equation 4.67 from equation 4.70. Thus, 
 

T − µkwB = mBa                                                                     (4.70) 
Subtract                             T − wA = −mAa                                                                   (4.67) 

T − µkwB − T + wA = mB a + mAa  
wA − µkwB = (mB + mA)a  

Solving for the acceleration a, we have 
a =  wA − µkwB  
      mA + mB 

But since w = mg, this becomes 
k  

 + 
A B

A B

m m
a g

m m
µ −

=  
 

                                                                      (4.71) 

 
the acceleration of the system. Note that if there is no friction, µk = 0 and the equation reduces to equation 4.32, 
the acceleration without friction. 

If mA = 2.00 kg, mB = 6.00 kg, and µk = 0.30 (wood on wood), then the acceleration of the system is 
 

( )2k  2.00 kg  (0.30)6.00 kg 9.80 m/s
 + 2.00 kg + 6.00 kg

A B

A B

m m
a g

m m
µ − − 

= =   
  

 

= 0.245 m/s2 
 

This is only one-tenth of the acceleration obtained when there was no friction. It is interesting to see what 
happens if µk is equal to 0.40 instead of the value of 0.30 used in this problem. For this new value of µk, the 
acceleration becomes 

( )2k  2.00 kg  (0.40)6.00 kg 9.80 m/s
 + 2.00 kg + 6.00 kg

A B

A B

m m
a g

m m
µ − − 

= =   
  

 

= −0.49 m/s2 
 

The negative sign indicates that the acceleration is in the opposite direction of the applied force, which is 
of course absurd; that is, the block on the table mB would be moving to the left while block mA would be moving up. 
Something is very wrong here. In physics we try to analyze nature and the way it works. But, obviously nature 
just does not work this way. This is a very good example of trying to use a physics formula when it doesn’t apply. 
Equation 4.71, like all equations, was derived using certain assumptions. If those assumptions hold in the 
application of the equation, then the equation is valid. If the assumptions do not hold, then the equation is no 
longer valid. Equation 4.71 was derived from Newton’s second law on the basis that block mB was moving to the 
right and therefore the force of kinetic friction that opposed that motion would be to the left. For µk = 0.40 the 
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force of friction is greater than the tension in the cord and the block does not move at all, that is, the acceleration 
of the system is zero. In fact if we look carefully at equation 4.71 we see that the acceleration will be zero if 

 
mA − µkmB = 0 

which becomes 
µkmB = mA 

and 
µk =  mA                                                                                  (4.72) 

       mB 
 

Whenever µk is equal to or greater than this ratio the acceleration is always zero. Even if we push the block to 
overcome static friction the kinetic friction is still too great and the block remains at rest. Whenever you solve a 
problem, always look at the numerical answer and see if it makes sense to you. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.14 
 

_Pushing a block up a rough inclined plane. What force F is necessary to push a 5.00-kg block up a rough inclined 
plane at a constant velocity? 

Solution
 

The first thing to note is that if the block is to be pushed up the plane, 
then the frictional force, which always opposes the sliding motion, must 
act down the plane. The forces are shown in figure 4.28. Newton’s second 
law for the parallel component becomes 
 

− F + w sin θ + fk = 0                                     (4.73) 
 

The right-hand side of equation 4.73 is 0 because the block is to be moved 
at constant velocity, that is, a = 0. The frictional force fk is 

 
fk = µkFN = µkw cos θ                                   (4.74) 

 
Hence, equation 4.73 becomes 
 

F = w sin θ + fk = w sin θ + µkw cos θ 
Finally, 

Figure 4.28  Pushing a block up a rough  
                                                                                                                        inclined plane. 

 
 F = w(sin θ + µk cos θ)                                                                       (4.75) 

 
is the force necessary to push the block up the plane at a constant velocity. The weight of the block is found from  
 

w = mg = (5.00 kg)(9.80 m/s2) = 49.0 N 
And the force is now found as  

   F = w(sin θ + µk cos θ) 
F = 49 N (sin 30.0 + (0.3) cos 30.0) 

F = 37.2 N 
 

It is appropriate to say something more about this force. If the block is initially at rest on the plane, then 
there is a force of static friction acting up the plane opposing the tendency of the block to slide down the plane. 
When the force is exerted to move the block up the plane, then the tendency for the sliding motion is up the plane. 
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Now the force of static friction reverses and acts down the plane. When the applied force F is slightly greater than 
w sin θ + fs, the block will just be put into motion up the plane. Now that the block is in motion, the frictional force 
to be overcome is the force of kinetic friction, which is less than the force of static friction. The force necessary to 
move the block up the plane at constant velocity is given by equation 4.75. Because the net force acting on the 
block is zero, the acceleration of the block is zero. If the block is at rest with a zero net force, then the block would 
have to remain at rest. However, the block was already set into motion by overcoming the static frictional forces, 
and since it is in motion, it will continue in that motion as long as the force given by equation 4.75 is applied. 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 4.15 
 

A book pressed against a rough wall. A 0.510-kg book is held against a wall by pressing it against the wall with a 
force of 25.0 N. What must be the minimum coefficient of friction between the book and the wall, such that the 
book does not slide down the wall? The forces acting on the book are shown in figure 4.29. 

Solution
 

The book has a tendency to slide down the wall because of its weight. Because frictional forces always tend to 
oppose sliding motion, there is a force of static friction acting upward on the book. If the book is not to fall, then fs 
must not be less than the weight of the book w. Therefore, let 

fs = w = mg                                                            (4.76) 
but 

fs = µsFN = µsF                                                       (4.77) 
 

Substituting equation 4.77 into equation 4.76, we obtain 
Figure 4.29  A book pressed  

against a rough wall. 
  µsF = mg 

Solving for the coefficient of static friction, we obtain 
 

µs =  mg  =  (0.510 kg)(9.80 m/s2)  = 0.200  
                                                                        F                 25.0 N 

 
Therefore, the minimum coefficient of static friction to hold the book against the wall is µs = 0.200. This principle 
of pressing an object against a wall to hold it up is used in your everyday life. As an example, consider the cabinets 
on your kitchen wall. The cabinets are nailed or screwed into the wall, placing the back of the cabinet in tight 
contact with the kitchen wall. The load of all the dishes and canned goods your mom stores in those cabinets are 
held up by the force of static friction between the back of the cabinet and the kitchen wall.  
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
4.8  Determination of the Coefficients of Friction 
If the coefficient of friction for any two materials can not be found in a standardized table, it can always be found 
experimentally in the laboratory as follows. 
 
Coefficient of Static Friction 
To determine the coefficient of static friction, we use an inclined plane whose surface is made up of one of the 
materials. As an example, let the plane be made of pine wood and the block that is placed on the plane will be 
made of oak wood. The forces acting on the block are shown in figure 4.30. We increase the angle θ of the plane  
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until the block just begins to slide. We measure this angle where the 
block starts to slip and call it θs, the angle of repose. 

We assume that the acceleration a of the block is still zero, 
because the block is just on the verge of slipping. Applying Newton’s 
second law to the block gives 

w sin θs − fs = 0                                 (4.78) 
where 

fs = µsFN = µsw cos θs                             (4.79) 
 

Substituting equation 4.79 back into equation 4.78 we have 
 

w sin θs − µsw cos θs = 0 
w sin θs = µsw cos θs 

 
µs =  sin θs   
         cos θs 

 
Therefore, the coefficient of static friction is 

 
Figure 4.30  Determining the coefficient of  

                                                                                                                static friction. 
 

 µs = tan θs                                                                             (4.80) 
 

That is, the coefficient of static friction µs is equal to the tangent of the angle θs, found experimentally. With this 
technique, the coefficient of static friction between any two materials can easily be found. 
 
Coefficient of Kinetic Friction 
The coefficient of kinetic friction is found in a similar way. We again 
place a block on the inclined plane and vary the angle, but now we give 
the block a slight push to overcome the force of static friction. The block 
then slides down the plane at a constant velocity. Experimentally, this 
is slightly more difficult to accomplish because it is difficult to tell 
when the block is moving at a constant velocity, rather than being 
accelerated. However, with a little practice we can determine when it is 
moving at constant velocity. We measure the angle at which the block 
moves at constant velocity and call it θk. Since there is no acceleration, 
Newton’s second law becomes 

w sin θk − fk = 0                                  (4.81) 
but 

fk = µkFN = µkw cos θk 
w sin θk − µkw cos θk = 0 

w sin θk = µkw cos θk 
µk =  sin θk    
         cos θk 

 
Figure 4.31  Determining the coefficient  

                                                                                                                              of kinetic friction. 
 

Therefore, the coefficient of kinetic friction for the two materials in contact is  
 

 µk = tan θk                                                                            (4.82) 
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“Have you ever wondered ...?” 
An Essay on the Application of Physics 

The Physics of Sports 
 
Have you ever wondered, while watching a baseball 
game, why the pitcher goes through all those 
gyrations (figure 1) in order to throw the baseball to 
the batter? Why can’t he throw the ball like all the 
rest of the players? No one else on the field goes 
through that big windup. Is there a reason for him to 
do that? 

In order to understand why the pitcher goes 
through that big windup, let us first analyze the 
process of throwing a ball, figure 2. From what we 
already know about Newton’s second law, we know  

                                                                                      Figure 1  Look at that form. 
 

you must exert a force on the ball to give it an acceleration. When you 
hold the ball initially in your hand, with your hand extended behind 
your head, the ball is at rest and hence has a zero initial velocity, 
that is, v0 = 0. You now exert the force F on the ball as you move your 
arm through the distance x1. The ball is now accelerated by your arm 
from a zero initial velocity to the final velocity v1, as it leaves your 
hand. We find the velocity of the ball from the kinematic equation 
 

v12 = v02 + 2ax1                                    (H4.1) 
 

But since v0 is equal to zero, the velocity of the ball as it leaves your 
hand is 

v12 = 2ax1 
1 12v ax=                                    (H4.2) 

 
But the acceleration of the ball comes from Newton’s second law as 
 
                                                                                                                     Figure 2  The process of throwing a ball. 

 
a =   F   
       m 

Substituting this into the equation for the velocity we get 
 

1 12( / )v F m x=                                                                         (H4.3) 
 

which tells us that the velocity of the ball depends on the mass m of the ball, the force F that your arm exerts on 
the ball, and the distance x1 that you move the ball through while you are accelerating it. Since you cannot change 
the force F that your arm is capable of applying, nor the mass m of the ball, the only way to maximize the velocity 
v of the ball as it leaves your hand is to increase the value of x to as large a value as possible. 

Maximizing the value of x is the reason for the pitcher’s long windup. In figure 3, we see the pitcher 
moving his hand as far backward as possible. In order for the pitcher not to fall down as he leans that far 
backward, he lifts his left foot forward and upward to maintain his balance. As he lowers his left leg his right arm 
starts to move forward. As his left foot touches the ground, he lifts his right foot off the ground and swings his 
body around until his right foot is as far forward as he can make it, while bringing his right arm as far forward as 
he can, figure 3(b). By going through this long motion he has managed to increase the distance that he moves the 
ball through, to the value x2. The velocity of the ball as it leaves his hand is v2 and is given by 

 
2 22( / )v F m x=                                                                        (H4.4) 
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Taking the ratio of these two velocities we obtain 
 

22

1 1

2( / )
2( / )

F m xv
v F m x

=  

which simplifies to 
2 2

1 1

v x
v x

=  

The velocity v2 becomes 
2

2 1
1

 x
v v

x
=                                (H4.5) 

 
                                                                                                         Figure 3  A pitcher throwing a baseball. 

 
Hence, by going through that long windup, the pitcher has increased the distance to x2, thereby increasing the 
value of the velocity that he can throw the baseball to v2. For example, for an average person, x1 is about 1.25 m, 
while x2 is about 3.20 m. Therefore, the velocity becomes 
 

2 1
3.25 m
1.20 m

v v=  

 = 1.65 v1 
 
Thus, if a pitcher is normally capable of throwing a baseball at a speed of 95.0 km/hr, by going through the long 
windup, the speed of the ball becomes 

v2 = 1.65(95.0 km/hr) = 157 km/hr 
 

The long windup has allowed the pitcher to throw the baseball at 157 km/hr, much faster than the 95.0 km/hr that 
he could normally throw the ball. So this is why the pitcher goes through all those gyrations. 
 

The Language of Physics 
 

Dynamics 
That branch of mechanics 
concerned with the forces that 
change or produce the motions of 
bodies. The foundation of dynamics 
is Newton’s laws of motion (p. ). 
 
Newton’s first law of motion 
A body at rest will remain at rest, 
and a body in motion at a constant 
velocity will continue in motion at 
that constant velocity, unless acted 
on by some unbalanced external 
force. This is sometimes referred to 
as the law of inertia (p. ). 
 
Force 
The simplest definition of a force is 
a push or a pull that acts on a 
body. Force can also be defined in a 
more general way by Newton’s 
second law, that is, a force is that 
which causes a mass m to have an 
acceleration a (p. ). 

Inertia 
The characteristic of matter that 
causes it to resist a change in 
motion is called inertia (p. ). 
 
Inertial coordinate system 
A coordinate system that is either 
at rest or moving at a constant 
velocity with respect to another 
coordinate system that is either at 
rest or also moving at some 
constant velocity. Newton’s first 
law of motion defines an inertial 
coordinate system. That is, if a 
body is at rest or moving at a 
constant velocity in a coordinate 
system where there are no 
unbalanced forces acting on the 
body, the coordinate system is an 
inertial coordinate system. 
Newton’s first law must be applied 
in an inertial coordinate system 
(p. ). 
 

Newton’s third law of motion 
If there are two bodies, A and B, 
and if body A exerts a force on body 
B, then body B exerts an equal but 
opposite force on body A (p. ). 
 
Newton’s second law of motion 
If an unbalanced external force F 
acts on a body of mass m, it will 
give that body an acceleration a. 
The acceleration is directly 
proportional to the applied force 
and inversely proportional to the 
mass of the body. Once the 
acceleration is determined by 
Newton’s second law, the position 
and velocity of the body can be 
determined by the kinematic 
equations (p. ). 
 
Inertial mass 
The measure of the resistance of a 
body to a change in its motion is 
called the inertial mass of the body. 
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The mass of a body in Newton’s 
second law is the inertial mass of 
the body. The best that can be 
determined at this time is that the 
inertial mass of a body is equal to 
the gravitational mass of the body 
(p. ). 
 
Atwood’s machine 
A simple pulley device that is used 
to study the acceleration of a 
system of bodies (p. ). 

 
Friction 
The resistance offered to the 
relative motion of two bodies in 
contact. Whenever we try to slide 
one body over another body, the 
force that opposes the motion is 
called the force of friction (p. ). 
 
 
 
 

Force of static friction 
The force that opposes a body at 
rest from being put into motion 
(p. ). 
 
Force of kinetic friction 
The force that opposes a body in 
motion from continuing that 
motion. The force of kinetic friction 
is always less than the force of 
static friction (p. ). 

 
Summary of Important Equations 

 
Newton’s second law 

                F = ma              (4.9) 
 
The weight of a body 

        w = mg              (4.14) 
 
 
 
 

Definition of inertial mass 
                   m2 =  a1  m1          (4.22) 

    a2 
 
Force of static friction 

                 fs ≤ µsFN             (4.47) 
 
Force of kinetic friction 

        fk = µkFN            (4.48) 

 
Coefficient of static friction 

  µs = tan θs              (4.80) 
 
Coefficient of kinetic friction 

   µk = tan θk             (4.82) 
 

 
Questions for Chapter 4 

 
1. A force was originally 

defined as a push or a pull. Define 
the concept of force dynamically 
using Newton’s laws of motion. 

2. Discuss the difference 
between the ancient Greek 
philosophers’ requirement of a 
constantly applied force as a 
condition for motion with Galileo’s 
and Newton’s concept of a force to 
initiate an acceleration. 

3. Is a coordinate system that is 
accelerated in a straight line an 
inertial coordinate system? 
Describe the motion of a projectile 
in one dimension in a horizontally 
accelerated system. 

4. If you drop an object near the 
surface of the earth it is 
accelerated downward to the earth. 
By Newton’s third law, can you 
also assume that a force is exerted 
on the earth and the earth should 
be accelerated upward toward the 
object? Can you observe such an 
acceleration? Why or why not? 

*5. Discuss an experiment that 
could be performed on a tilted air 
track whereby changing the angle 

of the track would allow you to 
prove that the acceleration of a 
body is proportional to the applied 
force. Why could you not use this 
same experiment to show that the 
acceleration is inversely 
proportional to the mass? 

*6. Discuss the concept of mass 
as a quantity of matter, a measure 
of the resistance of matter to being 
put into motion, and a measure of 
the gravitational force acting on 
the mass. Has the original 
platinum-iridium cylinder, which is 
stored in Paris, France, and 
defined as the standard of mass, 
ever been accelerated so that mass 
can be defined in terms of its 
inertial characteristics? Does it 
have to? Which is the most 
fundamental definition of mass? 

7. From the point of view of the 
different concepts of mass, discuss 
why all bodies fall with the same 
acceleration near the surface of the 
earth. 

8. Discuss why the normal force 
FN is not always equal to the 

weight of the body that is in 
contact with a surface. 

9. In the discussion of Atwood’s 
machine, we assumed that the 
tension in the string is the same on 
both sides of the pulley. Can a 
pulley rotate if the tension is the 
same on both sides of the pulley? 

∗10. You are riding in an 
elevator and the cable breaks. The 
elevator goes into free fall. The 
instant before the elevator hits the 
ground, you jump upward about 
1.00 m. Will this do you any good? 
Discuss your motion with respect to 
the elevator and with respect to the 
ground. What will happen to you? 

*11. Discuss the old saying: “If 
a horse pulls on a cart with a force 
F, then by Newton’s third law the 
cart pulls backward on the horse 
with the same force F, therefore 
the horse can not move the cart.” 

12. A football is filled with 
mercury and taken into space 
where it is weightless. Will it hurt 
to kick this football since it is 
weightless? 
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*13. A 490-N lady jumps out of 
a plane to go skydiving. She 
extends her body to obtain 
maximum frictional resistance 
from the air. After a while, she 

descends at a constant speed, 
called her terminal speed. At this 
time, what is the value of the 
frictional force of the air? 

14. When a baseball player 
catches a ball he always pulls his 
glove backward. Why does he do 
this? 

 
 

Problems for Chapter 4 
 

In all problems assume that all 
objects are initially at rest, i.e., v0 = 
0, unless otherwise stated. 

 
4.4 Newton’s Second Law of 
Motion 

1. What is the weight of a 100-
kg person at the surface of the 
earth? What would the person 
weigh on Mars where g = 3.84 
m/s2? 

2. What is the mass of a 890-N 
person?  

3. What horizontal force must 
be applied to a 15.0-kg body in 
order to give it an acceleration of 
5.00 m/s2? 

4. A constant force accelerates 
a 1450-kg car from 0 to 95.0 km/hr 
in 12.0 s. Find (a) the acceleration 
of the car and (b) the force acting 
on the car that produces the 
acceleration. 

5. A 14,240-N car is traveling 
along a highway at 95.0 km/hr. If 
the driver immediately applies his 
brakes and the car comes to rest in 
a distance of 76.0 m, what average 
force acted on the car during the 
deceleration? 

6. A 910-kg car is traveling 
along a highway at 88.0 km/hr. If 
the driver immediately applies his 
brakes and the car comes to rest in 
a distance of 70.0 m, what average 
force acted on the car during the 
deceleration? 

7. A car is traveling at 95.0 
km/hr when it collides with a stone 
wall. The car comes to rest after 
the first 30.0 cm of the car is 
crushed. What was the average 
horizontal force acting on a 68.1-kg 
driver while the car came to rest? If 
five cardboard boxes, each 1.25 m 
wide and filled with sand had been 
placed in front of the wall, and the 
car moved through all that sand 
before coming to rest, what would 

the average force acting on the 
driver have been then? 

8. A rifle bullet of mass 12.0 g 
has a muzzle velocity of 75.0 m/s. 
What is the average force acting on 
the bullet when the rifle is fired, if 
the bullet is accelerated over the 
entire 1.00-m length of the rifle? 

9. A car is to tow a 2270-kg 
truck with a rope. How strong 
should the rope be so that it will 
not break when accelerating the 
truck from rest to 3.00 m/s in 12.0 
s? 

10. A force of 890 N acts on a 
body that weighs 265 N. (a) What 
is the mass of the body? (b) What is 
the acceleration of the body? (c) If 
the body starts from rest, how fast 
will it be going after it has moved 
3.00 m? 

11. A cable supports an 
elevator that weighs 8000 N. 
(a) What is the tension T in the 
cable when the elevator accelerates 
upward at 1.50 m/s2? (b) What is 
the tension when the elevator 
accelerates downward at 1.50 m/s2? 

12. A rope breaks when the 
tension exceeds 30.0 N. What is the 
minimum acceleration downward 
that a 60.0-N load can have 
without breaking the rope? 

13. A 5.00-g bullet is fired at a 
speed of 100 m/s into a fixed block 
of wood and it comes to rest after 
penetrating 6.00 cm into the wood. 
What is the average force stopping 
the bullet? 

14. A rope breaks when the 
tension exceeds 450 N. What is the 
maximum vertical acceleration 
that can be given to a 350-N load to 
lift it with this rope without 
breaking the rope? 

15. What horizontal force must 
a locomotive exert on a 9.08 × 105-
kg train to increase its speed from 

25.0 km/hr to 50.0 km/hr in moving 
60.0 m along a level track? 

16. A steady force of 70.0 N, 
exerted 43.50 above the horizontal, 
acts on a 30.0-kg sled on level 
snow. How far will the sled move in 
8.50 s? (Neglect friction.) 

17. A helicopter rescues a man 
at sea by pulling him upward with 
a cable. If the man has a mass of 
80.0 kg and is accelerated upward 
at 0.300 m/s2, what is the tension 
in the cable? 

 
4.5 Applications of Newton’s 
Second Law 

18. A force of 10.0 N acts 
horizontally on a 20.0-kg mass that 
is at rest on a smooth table. Find 
(a) the acceleration, (b) the velocity 
at 5.00 s, and (c) the position of the 
body at 5.00 s. (d) If the force is 
removed at 7.00 s, what is the 
body’s velocity at 7.00, 8.00, 9.00, 
and 10.0 s? 

19. A 200-N box slides down a 
frictionless inclined plane that 
makes an angle of 37.00 with the 
horizontal. (a) What unbalanced 
force acts on the block? (b) What is 
the acceleration of the block? 

20. A 20.0-kg block slides down 
a smooth inclined plane. The plane 
is 10.0 m long and is inclined at an 
angle of 30.00 with the horizontal. 
Find (a) the acceleration of the 
block, and (b) the velocity of the 
block at the bottom of the plane. 

21. A 90.0-kg person stands on 
a scale in an elevator. What does 
the scale read when (a) the elevator 
is ascending with an acceleration of 
1.50 m/s2, (b) it is ascending at a 
constant velocity of 3.00 m/s, (c) it 
decelerates at 1.50 m/s2, (d) it 
descends at a constant velocity of 
3.00 m/s, and (e) the cable breaks 
and the elevator is in free-fall?  
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22. A spring scale is attached to 
the ceiling of an elevator. If a mass 
of 2.00 kg is placed in the pan of 
the scale, what will the scale read 
when (a) the elevator is accelerated 
upward at 1.50 m/s2, (b) it is 
decelerated at 1.50 m/s2, (c) it is 
moving at constant velocity, and 
(d) the cable breaks and the 
elevator is in free-fall? 

*23. A block is propelled up a 
48.00 frictionless inclined plane 
with an initial velocity v0 = 1.20 
m/s. (a) How far up the plane does 
the block go before coming to rest? 
(b) How long does it take to move to 
that position? 

*24. In the diagram mA is equal 
to 3.00 kg and mB is equal to 
1.50 kg. The angle of the inclined 
plane is 38.00. (a) Find the 
acceleration of the system of two 
blocks. (b) Find the tension TB in 
the connecting string. 

                    
Diagram for problem 24. 

                            
25. The two masses mA = 2.00 

kg and mB = 20.0 kg are connected 
as shown. The table is frictionless. 
Find (a) the acceleration of the 
system, (b) the velocity of mB at t = 
3.00 s, and (c) the position of mB at 
t = 3.00 s. 

 
Diagram for problem 25. 

 
26. A 30.0-g mass and a 50.0-g 

mass are placed on an Atwood 
machine. Find (a) the acceleration 
of the system, (b) the velocity of the 
50.0-g block at 4.00 s, (c) the 
position of the 50.0-g mass at the 
end of the fourth second, (d) the 
tension in the connecting string. 

 
*27. Three blocks of mass m1 = 

100 g, m2 = 200 g, and m3 = 300 g 
are connected by strings as shown. 
(a) What force F is necessary to 
give the masses a horizontal 
acceleration of 4 m/s2? Find the 
tensions T1 and T2. 

     Diagram for problem 27.                           
 
*28. A force of 90.0 N acts as 

shown on the two blocks. Mass m1 
= 45.4 kg and m2 = 9.08 kg. If the 
blocks are on a frictionless surface, 
find the acceleration of each block 
and the horizontal force exerted on 
each block. 

 
Diagram for problem 28. 

 
4.7 Applications of Newton’s 
Second Law Taking Friction 
into Account 

29. If the coefficient of friction 
between the tires of a car and the 
road is 0.300, what is the minimum 
stopping distance of a car traveling 
at 85.0 km/hr? 

30. A 200-N container is to be 
pushed across a rough floor. The 
coefficient of static friction is 0.500 
and the coefficient of kinetic 
friction is 0.400. What force is 
necessary to start the container 
moving, and what force is 
necessary to keep it moving at a 
constant velocity? 

31. A 2.00-kg toy accelerates 
from rest to 3.00 m/s in 8.00 s on a 
rough surface of µk = 0.300. Find 
the applied force F. 

32. A 23.0-kg box is to be 
moved along a rough floor at a 
constant velocity. The coefficient of 
friction is µk = 0.300. (a) What force 
F1 must you exert if you push 
downward on the box as shown? 
(b) What force F2 must you exert if 
you pull upward on the box as 

shown? (c) Which is the better way 
to move the box? 

 
Diagram for problem 32. 

 
33. A 2.30-kg book is held 

against a rough vertical wall. If the 
coefficient of static friction between 
the book and the wall is 0.300, 
what force perpendicular to the 
wall is necessary to keep the book 
from sliding? 

34. A block slides along a 
wooden table with an initial speed 
of 50.0 cm/s. If the block comes to 
rest in 150 cm, find the coefficient 
of kinetic friction between the block 
and the table. 

35. What force must act 
horizontally on a 20.0-kg mass 
moving at a constant speed of 4.00 
m/s on a rough table of coefficient 
of kinetic friction of 0.300? If the 
force is removed, when will the 
body come to rest? Where will it 
come to rest? 

36. A 10.0-kg package slides 
down an inclined mail chute 15.0 m 
long. The top of the chute is 6.00 m 
above the floor. What is the speed 
of the package at the bottom of the 
chute if (a) the chute is frictionless 
and (b) the coefficient of kinetic 
friction is 0.300? 

37. In order to place a 90.8-kg 
air conditioner in a window, a 
plank is laid between the window 
and the floor, making an angle of 
40.00 with the horizontal. How 
much force is necessary to push the 
air conditioner up the plank at a 
constant speed if the coefficient of 
kinetic friction between the air 
conditioner and the plank is 0.300? 

38. If a 4.00-kg container has a 
velocity of 3.00 m/s after sliding 
down a 2.00-m plane inclined at an 
angle of 30.00, what is (a) the force 
of friction acting on the container 
and (b) the coefficient of kinetic 
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friction between the container and 
the plane? 

*39. A 445-N crate sits on the 
floor of a truck. If µs = 0.300, what 
is the maximum acceleration of the 
truck before the crate starts to slip? 

40. A skier starts from rest and 
slides a distance of 85.0 m down 
the ski slope. The slope makes an 
angle of 23.00 with the horizontal. 
(a) If the coefficient of friction 
between the skis and the slope is 
0.100, find the speed of the skier at 
the bottom of the slope. (b) At the 
bottom of the slope, the skier 
continues to move on level snow. 
Where does the skier come to a 
stop? 

*41. A mass of 2.00 kg is 
pushed up an inclined plane that 
makes an angle of 50.00 with the 
horizontal. If the coefficient of 
kinetic friction between the mass 
and the plane is 0.400, and a force 
of 50.0 N is applied parallel to the 
plane, what is (a) the acceleration 
of the mass and (b) its velocity 
after moving 3.00 m up the plane? 

42. The two masses mA = 20 kg 
and mB = 20 kg are connected as 
shown on a rough table. If the 
coefficient of friction between block 
B and the table is 0.45, find (a) the 
acceleration of each block and 
(b) the tension in the connecting 
string. 

 
Diagram for problem 42. 

 
43. To determine the coefficient 

of static friction, the following 
system is set up. A mass, mB = 2.50 
kg, is placed on a rough horizontal 
table such as in the diagram for 
problem 42. When mass mA is 
increased to the value of 1.50 kg 
the system just starts into motion. 
Determine the coefficient of static 
friction. 

44. To determine the coefficient 
of kinetic friction, the following 
system is set up. A mass, mB = 2.50 

kg, is placed on a rough horizontal 
table such as in the diagram for 
problem 42. Mass mA has the value 
of 1.85 kg, and the system goes into 
accelerated motion with a value a1. 
While mass mA falls to the floor, a 
distance x1 = 30.0 cm below its 
starting point, mass mB will also 
move through a distance x1 and 
will have acquired a velocity v1 at 
x1. When mA hits the floor, the 
acceleration a1 becomes zero. From 
this point on, the only acceleration 
mB experiences is the deceleration 
a2 caused by the force of kinetic 
friction acting on mB. Mass mB 
moves on the rough surface until it 
comes to rest at the distance x2 = 
20.0 cm. From this information, 
determine the coefficient of kinetic 
friction. 

 
Additional Problems 

*45. Find the force F that is 
necessary for the system shown to 
move at constant velocity if µk = 
0.300 for all surfaces. The masses 
are mA = 6.00 kg and mB = 2.00 kg. 

 
Diagram for problem 45. 

 
46. A pendulum is placed in a 

car at rest and hangs vertically. 
The car then accelerates forward 
and the pendulum bob is observed 
to move backward, the string 
making an angle of 15.00 with the 
vertical. Find the acceleration of 
the car. 

47. Two gliders are tied 
together by a string after they are 
connected together by a 
compressed spring and placed on 
an air track. Glider A has a mass of 
200 g and the mass of glider B is 
unknown. The string is now cut 
and the gliders fly apart. If glider B 
has an acceleration of 5.00 cm/s2 to 

the right, and the acceleration of 
glider A to the left is 20.0 cm/s2, 
find the mass of glider B. 

48. A mass of 1.87 kg is pushed 
up a smooth inclined plane with an 
applied force of 35.0 N parallel to 
the plane. If the plane makes an 
angle of 35.80 with the horizontal, 
find (a) the acceleration of the mass 
and (b) its velocity after moving 
1.50 m up the plane. 

*49. Two blocks m1 = 20.0 kg 
and m2 = 10.0 kg are connected as 
shown on a frictionless plane. The 
angle θ = 25.00 and φ = 35.00. Find 
the acceleration of each block and 
the tension in the connecting 
string. 

           
Diagram for problem 49. 

 
*50. What horizontal 

acceleration ax must the inclined 
block M have in order for the 
smaller block mA not to slide down 
the frictionless inclined plane? 
What force must be applied to the 
system to keep the block from 
sliding down the frictionless plane? 
M = 10.0 kg, mA = 1.50 kg, and θ = 
430. 

 
Diagram for problem 50. 

 
*51. If the acceleration of the 

system is 3.00 m/s2 when it is 
lifted, and mA = 5.00 kg, mB = 3.00 
kg, and mC = 2.00 kg, find the 
tensions TA, TB, and TC. 
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    Diagram for problem 51. 
 
*52. Consider the double 

Atwood’s machine as shown. If m1 
= 50.0 g, m2 = 20.0 g, and m3 = 25.0 
g, what is the acceleration of m3? 

 
Diagram for problem 52. 

 
*53. Find the tension T23 in the 

string between mass m2 and m3, if 
m1 = 10.0 kg, m2 = 2.00 kg, and m3 
= 1.00 kg. 

 
Diagram for problem 53. 

 
*54. If mA = 6.00 kg, mB = 3.00 

kg, and mC = 2.00 kg in the 
diagram, find the magnitude of the 
acceleration of the system and the 
tensions TA, TB, and TC. 

 
Diagram for problem 54. 

 
55. A force of 15.0 N acts on a 

body of mass m = 2.00 kg at an 
angle of 35.00 above the horizontal. 
If the coefficient of friction between 
the body and the surface upon 
which it is resting is 0.250, find the 
acceleration of the mass. 

*56. Find (a) the acceleration of 
mass mA in the diagram. All 
surfaces are frictionless. (b) Find 
the displacement of block A at t = 
0.500 s. The value of the masses 
are mA = 3.00 kg and mB = 5.00 kg. 

 
Diagram for problem 56. 

 
*57. Derive the formula for the 

magnitude of the acceleration of 
the system shown in the diagram. 
(a) What problem does this reduce 
to if φ = 900? (b) What problem does 
this reduce to if both θ and φ are 
equal to 900? 

 
Diagram for problem 57. 

 
*58. What force is necessary to 

pull the two masses at constant 
speed if m1 = 2.00 kg, m2 = 5.00 kg, 
µk1 = 0.300, and µk2 = 0.200? What 

is the tension T1 in the connecting 
string? 

 
Diagram for problem 58.  

 
*59. If mA = 4.00 kg, mB = 2.00 

kg, µkA = 0.300, and µkB = 0.400, 
find (a) the acceleration of the 
system down the plane and (b) the 
tension in the connecting string. 

 
Diagram for problem 59.         

 
*60. A block m = 0.500 kg slides 

down a frictionless inclined plane 
2.00 m long. It then slides on a 
rough horizontal table surface of µk 
= 0.300 for 0.500 m. It then leaves 
the top of the table, which is 1.00 m 
high. How far from the base of the 
table does the block land? 

 
Diagram for problem 60. 

*61. In the diagram mA = 6.00 
kg, mB = 3.00 kg, mC = 2.00 kg, µkC 
= 0.400, and µkB = 0.300. Find the 
magnitude of the acceleration of 
the system and the tension in each 
string. 

      
Diagram for problem 61.               
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*62. In the diagram mA = 4.00 

kg, mB = 2.00 kg, mC = 4.00 kg, and 
θ = 580. If all the surfaces are 
frictionless, find the magnitude of 
the acceleration of the system. 

 
Diagram for problem 62. 

 
*63. If mA = 6.00 kg, mB = 2.00 

kg, mC = 4.00 kg, and the coefficient 
of kinetic friction for the surfaces 
are µkB = 0.300 and µkC = 0.200 find 
the magnitude of the acceleration 
of the system shown in the diagram 
and the tension in each string. θ = 
600. 

        
Diagram for problem 63.                     

 
*64. Find (a) the magnitude of 

the acceleration of the system 
shown if µkB = 0.300, µkA = 0.200, 
mB = 3.00 kg, and mA = 5.00 kg, 
(b) the velocity of block A at 0.500 
s. 

 
Diagram for problem 64.    

 
*65. In the diagram, block B 

rests on a frictionless surface but 
there is friction between blocks B 
and C. mA = 2.00 kg, mB = 3.00 kg, 
and mC = 1 kg. Find (a) the 
magnitude of the acceleration of 
the system and (b) the minimum 

coefficient of friction between 
blocks C and B such that C will 
move with B. 

 
Diagram for problem 65. 

 
*66. When a body is moving 

through the air, the effect of air 
resistance can be taken into 
account. If the speed of the body is 
not too great, the force associated 
with the retarding force of air 
friction is proportional to the first 
power of the velocity of the moving 
body. This retarding force causes 
the velocity of a falling body at any 
time t to be 

 
v =  mg (1 − e−(k/m)t)  

                       k 
 

where m is the mass of the falling 
body and k is a constant that 
depends on the shape of the body. 
Show that this reduces to the case 
of a freely falling body if t and k are 
both small. (Hint: expand the term 
e−(k/m)t in a power series.) 

*67. Repeat problem 66, but 
now let the time t be very large 
(assume it is infinite). What does 
the velocity of the falling body 
become now? Discuss this result 
with Aristotle’s statement that 
heavier objects fall faster than 
lighter objects. Clearly distinguish 
between the concepts of velocity 
and acceleration. 

*68. If a body moves through 
the air at very large speeds the 
retarding force of friction is 
proportional to the square of the 
speed of the body, that is, f = kv2, 
where k is a constant. Find the 
equation for the terminal velocity 
of such a falling body. 

  
Interactive Tutorials 

69. An inclined plane. A 20.0-
kg block slides down from the top 

of a smooth inclined plane that is 
10.0 m long and is inclined at an 
angle θ of 300 with the horizontal. 
Find the acceleration a of the block 
and its velocity v at the bottom of 
the plane. Assume the initial 
velocity v0 = 0. 

70. An Atwood’s machine. Two 
masses mA = 40.0 kg and mB = 30.0 
kg are connected by a massless 
string that hangs over a massless, 
frictionless pulley in an Atwood’s 
machine arrangement as shown in 
figure 4.15. Calculate the 
acceleration a of the system and 
the tension T in the string. 

71. Combined motion. A mass 
mA = 40.0 kg hangs over a table 
connected by a massless string to a 
mass mB = 20.0 kg that is on a 
rough horizontal table, with a 
coefficient of friction µk = 0.400, 
that is similar to figure 4.27. 
Calculate the acceleration a of the 
system and the tension T in the 
string. 

72. Generalization of problem 
57 that also includes friction. 
Derive the formula for the 
magnitude of the acceleration of 
the system shown in the diagram 
for problem 57. As a general case, 
assume that the coefficient of 
kinetic friction between block A 
and the surface in µkA and between 
block B and the surface is µkB. 
Identify and solve for all the 
special cases that you can think of. 

73. Free fall with friction—
variable acceleration—terminal 
velocity. In the freely falling body 
studied in chapter 3, we assumed 
that the resistance of the air could 
be considered negligible. Let us 
now remove that constraint. 
Assume that there is frictional 
force caused by the motion through 
the air, and let us further assume 
that the frictional force is 
proportional to the square of the 
velocity of the moving body and is 
given by 

f = kv2 
 

Find the displacement, 
velocity, and acceleration of the 
falling body and compare it to the 
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displacement, velocity, and 
acceleration of a freely falling body 
without friction. 

74. The mass of the connecting 
string is not negligible. In the 
problem of the combined motion of 
a block on a frictionless horizontal 
plane and a block falling vertically, 
as shown in figure 4.13, it was 

assumed that the mass of the 
connecting string was negligible 
and had no effect on the problem. 
Let us now remove that constraint. 
Assume that the string is a 
massive string. The string has a 
linear mass density of 0.050 kg/m 
and is 1.25 m long. Find the 
acceleration, velocity, and 
displacement y of the system as a 

function of time, and compare it to 
the acceleration, velocity, and 
displacement of the system with 
the string of negligible mass. 

 
To go to these Interactive 
Tutorials click on this 

sentence. 

 
 To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 5  Equilibrium 
   

“Nature and Nature’s laws lay hid in night: 
God said, Let Newton be! and all was light.” 
                                            Alexander Pope 

 
 
5.1  The First Condition of Equilibrium 
The simplest way to define the equilibrium of a body is to say that a body is in equilibrium if it has no 
acceleration. That is, if the acceleration of a body is zero, then it is in equilibrium. Bodies in equilibrium under a 
system of forces are described as a special case of Newton’s second law, 
 

F = ma                                                                                  (4.9) 
 

where F is the resultant force acting on the body. As pointed out in chapter 4, to emphasize the point that F is the 
resultant force, Newton’s second law is sometimes written in the form 
 

Σ F = ma 
 

If there are forces acting on a body, but the body is not accelerated (i.e., a = 0), then the body is in equilibrium 
under these forces and the condition for that body to be in equilibrium is simply 
 

 Σ F = 0                                                                                  (5.1) 
 

Equation 5.1 is called the first condition of equilibrium. The first condition of equilibrium states that for a body 
to be in equilibrium, the vector sum of all the forces acting on that body must be zero. If the sum of the force vectors 
are added graphically they will form a closed figure because the resultant vector, which is equal to the sum of all 
the force vectors, is equal to zero. 

Remember that if the acceleration is zero, then there is no change of the velocity with time. Most of the 
cases considered in this book deal with bodies that are at rest (v = 0) under the applications of forces. Occasionally 
we also consider a body that is moving at a constant velocity (also a case of zero acceleration). At first, we consider 
only examples where all the forces act through only one point of the body. Forces that act through only one point of 
the body are called concurrent forces. That portion of the study of mechanics that deals with bodies in equilibrium 
is called statics. When a body is at rest under a series of forces it is sometimes said to be in static equilibrium. 

One of the simplest cases of a body in equilibrium is a book resting 
on the table, as shown in figure 5.1. The forces acting on the book are its 
weight w, acting downward, and FN, the normal force that the table exerts 
upward on the book. Because the book is resting on the table, it has zero 
acceleration. Hence, the sum of all the forces acting on the book must be 
zero and the book must be in equilibrium. The sum of all the forces are 

 
Σ F = FN + w = 0 

 
Taking the upward direction to be positive and the downward direction to 
be negative, this becomes 

FN − w = 0 
Hence, 

FN = w 
 

That is, the force that the table exerts upward on the book is exactly equal 
to the weight of the book acting downward. As we can easily see, this is  
                                                                                                                              Figure 5.1  A body in equilibrium. 

 
nothing more than a special case of Newton’s second law where the acceleration is zero. That is, forces can act on a 
body without it being accelerated if these forces balance each other out. 

Let us consider another example of a body in equilibrium, as shown in figure 5.2. Suppose three forces F1, 
F2, and F3 are acting on the body that is located at the point 0, the origin of a Cartesian coordinate system. If the  
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body is in equilibrium, then the vector sum of those forces must add 
up to zero and the body is not accelerating. Another way to observe 
that the body is in equilibrium is to look at the components of the 
forces, which are shown in figure 5.2. From the diagram we can see 
that if the sum of all the forces in the x-direction is zero, then there 
will be no acceleration in the x-direction. If the forces in the positive 
x-direction are taken as positive, and those in the negative x-
direction as negative, then the sum of the forces in the x-direction is 
simply 

F1x − F2x = 0                                       (5.2) 
                                                                                        

Similarly, if the sum of all the forces in the y-direction is 
zero, there will be no acceleration in the y-direction. As seen in the 
diagram, this becomes 

F1y + F2y − F3 = 0                                (5.3) 
                                                                                                                   

A generalization of equations 5.2 and 5.3 is 
 

 Σ Fx = 0                                        (5.4) 
 Σ Fy = 0                                        (5.5) 

                                                                                                                  Figure 5.2  Three forces in equilibrium. 
which is another way of stating the first condition of equilibrium. 

The first condition of equilibrium also states that the body is in equilibrium if the sum of all the forces in 
the x-direction is equal to zero and the sum of all the forces in the y-direction is equal to zero. Equations 5.4 and 5.5 
are two component equations that are equivalent to the one vector equation 5.1. 

Although only bodies in equilibrium in two dimensions will be treated in this book, if a third dimension 
were taken into account, an additional equation (ΣFz = 0) would be necessary. Let us now consider some examples 
of bodies in equilibrium. 

 
Example 5.1 

 
A ball hanging from a vertical rope. A ball is hanging from a rope that is attached to the ceiling, as shown in figure 
5.3. Find the tension in the rope. We assume that the mass of the rope is negligible and can be ignored in the 
problem. 

Solution
 

The first thing that we should observe is that even though there are 
forces acting on the ball, the ball is at rest. That is, the ball is in static 
equilibrium. Therefore, the first condition of equilibrium must hold, 
that is, 

Σ Fx = 0                                              (5.4) 
Σ Fy = 0                                               5.5) 

 
The first step in solving the problem is to draw a diagram showing the 
forces that are acting on the ball. There is the weight w, acting 
downward in the negative y-direction, and the tension T in the rope, 
acting upward in the positive y-direction. Note that there are no forces 
in the x-direction so we do not use equation 5.4. The first condition of 
equilibrium for this problem is 

Σ Fy = 0                                              (5.5) 
 

                                                                                                                   Figure 5.3  Ball hanging from a vertical rope. 
 

and, as we can see from the diagram in figure 5.3, this is equivalent to 
 

T − w = 0 
or 

 T = w 
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The tension in the rope is equal to the weight of the ball. If the ball weighs 5 N, then the tension in the rope is 5 N. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 5.2 
 

The ball is pulled to one side. A ball hanging from a rope, is pulled to the right by a horizontal force F such that 
the rope makes an angle θ with the ceiling, as shown in figure 5.4. What is the tension in the rope? 

Solution
 

The first thing that we should observe is that the system is at rest. 
Therefore, the ball is in static equilibrium and the first condition of 
equilibrium holds. But the tension T is neither in the x- nor y-
direction. Before we can use equations 5.4 and 5.5, we must resolve 
the tension T into its components, Tx and Ty, as shown in figure 5.4. 
The first condition of equilibrium, 
 

Σ Fx = 0                                             (5.4) 
 

is applied, which, as we see from figure 5.4 gives 
 

Σ Fx = F − Tx  = 0 
or   

F = Tx = T cos θ                                     (5.6) 
                                                                                                                 Figure 5.4  Ball pulled to one side. 

Similarly, 
Σ Fy = 0                                                                                   (5.5) 

becomes 
Σ Fy = Ty − w = 0   
Ty = T sin θ = w                                                                           (5.7) 

 
Note that there are four quantities T, θ, w, and F and only two equations, 5.6 and 5.7. Therefore, if any two of the 
four quantities are specified, the other two can be determined. Recall that in order to solve a set of algebraic 
equations there must always be the same number of equations as unknowns. 

For example, if w = 5.00 N and θ = 40.00, what is the tension T and the force F. We use equation 5.7 to 
solve for the tension: 

T =    w    =    5.00 N   = 7.78 N   
                                                                              sin θ      sin 40.00 

   
We determine the force F, from equation 5.6, as 
 

F = T cos θ = 7.78 N cos 40.00 = 5.96 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 5.3 
 

Resting in your hammock. A 68.0-kg person lies in a hammock, as shown in figure 5.5(a). The rope at the person’s 
head makes an angle φ of 40.00 with the horizontal, while the rope at the person’s feet makes an angle θ of 20.00. 
Find the tension in the two ropes. 
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Solution
 

Since we will be dealing 
with forces it is convenient 
for us to express the mass of 
the person as a weight 
immediately. That is,  
 

w = mg = (68.0 kg)(9.80 
m/s2) = 666 N 

 
All the forces that are 
acting on the hammock are 
drawn in figure 5.5(b). The 
forces are resolved into 
their components, as shown 
in figure 5.5(b), where 

 
 
 
 

                                         Figure 5.5  Lying in a hammock. 
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                                                                   (5.8) 

 
The first thing we observe is that the hammock is at rest under the influence of several forces and is therefore in 
static equilibrium. Thus, the first condition of equilibrium must hold. Setting the forces in the x-direction to zero, 
equation 5.4, 

Σ Fx = 0 
gives 

Σ Fx  = T2x − T1x = 0 
and 

   T2x = T1x 
Using equations 5.8 for the components, this becomes 

 
 T2 cos φ = T1 cos θ                                                                         (5.9) 

 
Taking all the forces in the y-direction and setting them equal to zero, 

 
Σ Fy = 0                                                                                   (5.5) 

gives 
Σ Fy = T1y + T2y − w = 0 

and 
         T1y + T2y = w 

Using equations 5.8 for the components, this becomes 
 

 T1 sin θ + T2 sin φ = w                                                                   (5.10) 
 

Equations 5.9 and 5.10 represent the first condition of equilibrium as it applies to this problem. Note that there 
are five quantities, T1, T2, w, θ, and φ and only two equations. Therefore, three of these quantities must be 
specified in order to solve the problem. In this case, θ, φ, and w are given and we will determine the tensions T1 
and T2. 

Let us start by solving equation 5.9 for T2, thus, 
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 T2 = T1 cos θ                                                                             (5.11) 
                                                                                                   cos φ           

 
We cannot use equation 5.11 to solve for T2 at this point, because T1 is unknown. Equation 5.11 says that if T1 is 
known, then T2 can be determined. If we substitute this equation for T2 into equation 5.10, thereby eliminating T2 
from the equations, we can solve for T1. That is, equation 5.10 becomes 
 

1
1

cossin sin
cos

TT wθ
θ φ

φ
 

+ = 
 

 

Factoring out T1 we get 

1
cos sinsin

cos
T wθ φ

θ
φ

 
+ = 

 
                                                               (5.12) 

 
Finally, solving equation 5.12 for the tension T1, we obtain 

 
 T1 =               w                                                                                (5.13) 

                                                                                       sin θ + cos θ tan φ           
 

Note that sinφ/cosφ in equation 5.12 was replaced by tanφ, its equivalent, in equation 5.13. Substituting the values 
of w = 668 N, θ = 20.00, and φ = 40.00 into equation 5.13, we find the tension T1 as 

 
T1 =               w                                                                               (5.13) 

              sin θ + cos θ tan φ     
=                    666 N                     

                        sin 20.00 + cos 20.00 tan 40.00 
=             666 N            = 666 N   

                                                                           0.342 + 0.940(0.839)   1.13 
= 589 N   

 
Substituting this value of T1 into equation 5.11, the tension T2 in the second rope becomes 
 

T2 = T1 cos θ = 589 N cos 20.00  
                                                                                    cos φ               cos 40.00 

= 723 N  
 

Note that the tension in each rope is different, that is, T1 is not equal to T2. The ropes that are used for this 
hammock must be capable of withstanding these tensions or they will break. 

An interesting special case arises when the angles θ and φ are equal. For this case equation 5.11 becomes 
 

T2 = T1 cos θ = T1 cos θ = T1 
                                                                                       cos φ         cos θ 
that is, 

T2 = T1 
For this case, T1, found from equation 5.13, is  

T1 =                    w                     
                           sin θ + cos θ (sin θ/cos θ) 

=       w                                                                                   (5.14) 
      2 sin θ 

 
Thus, when the angle θ is equal to the angle φ, the tension in each rope is the same and is given by equation 5.14. 
Note that if θ were equal to zero in equation 5.14, the tension in the ropes would become infinite. Since this is 
impossible, the rope must always sag by some amount. 
 

To go to this Interactive Example click on this sentence. 
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Before leaving this section on the equilibrium of a body let us reiterate that although the problems 

considered here have been problems where the body is at rest under the action of forces, bodies moving at constant 
velocity are also in equilibrium. Some of these problems have already been dealt with in chapter 4, that is, 
examples 4.11 and 4.14 when a block was moving at a constant velocity under the action of several forces, it was a 
body in equilibrium. 
 
 
5.2  The Concept of Torque   
Let us now consider the familiar seesaw you played on in the local school yard during your childhood. Suppose a 
30.6-kg child (m1) is placed on the left side of a weightless seesaw and another 20.4-kg child (m2) is placed on the 
right side, as shown in figure 5.6. The weights of the two children  

        
                                 (a)                                                                (b) 

Figure 5.6  The seesaw. 
 

w1 = m1g = (30.6 kg)(9.80 m/s2) = 300 N 
w2 = m2g = (20.4 kg)(9.80 m/s2) = 200 N 

 
exert forces down on the seesaw, while the support in the middle exerts a force upward, which is exactly equal to 
the weight of the two children. According to the first condition of equilibrium, 
 

Σ Fy = 0 
 

the body should be in equilibrium. However, we know from experience that if a 300-N child is at the left end, and a 
200-N child is at the right end, the 300-N child will move downward, while the 200-N child moves upward. That is, 
the seesaw rotates in a counterclockwise direction. Even though the first condition of equilibrium holds, the body 
is not in complete equilibrium because the seesaw has tilted. It is obvious that the first condition of equilibrium is 
not sufficient to describe equilibrium. The first condition takes care of the problem of translational equilibrium 
(i.e., the body will not accelerate either in the x-direction or the y-direction), but it says nothing about the problem 
of rotational equilibrium. 

In fact, up to this point in almost all our discussions we assumed that all the forces that act on a body all 
pass through the center of the body. With the seesaw, the forces do not all pass through the center of the body 
(figure 5.6), but rather act at different locations on the body. Forces acting on a body that do not all pass through 
one point of the body are called nonconcurrent forces. Hence, even though the forces acting on the body cause the 
body to be in translational equilibrium, the body is still capable of rotating. Therefore, we need to look into the 
problem of forces acting on a body at a point other than the center of the body; to determine how these off-center 
forces cause the rotation of the body; and finally to prevent this rotation so that the body will also be in rotational 
equilibrium. To do this, we need to introduce the concept of torque. 

Torque is defined to be the product of the force times the lever arm. The lever arm is defined as the 
perpendicular distance from the axis of rotation to the line along which the force acts. The line along which the 
force acts is in the direction of the force vector F, and it is sometimes called the line of action of the force. The line 
of action of a force passes through the point of application of the force and is parallel to F. This is best seen in 
figure 5.7. The lever arm appears as r⊥, and the force is denoted by F. Note that r⊥ is perpendicular to F. 

The magnitude of the torque τ (the Greek letter tau) is then defined mathematically as 
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τ = r⊥F                                                                                 (5.15) 
 

What does this mean physically? Let us consider a very simple example of a torque 
acting on a body. Let the body be the door to the room. The axes of rotation of the 
door pass through those hinges that you see at the edge of the door. The distance 
from the hinge to the door knob is the lever arm r⊥, as shown in figure 5.8. If we 
exert a force on the door knob by pulling outward, perpendicular to the door, then 
we have created a torque that acts on the door and is given by equation 5.15. What 
happens to the door? It opens, just as we would expect. We have caused a  

Figure 5.7  Torque defined. 
 
rotational motion of the door 
by applying a torque. 
Therefore, an unbalanced 
torque acting on a body at rest 
causes that body to be put into 
rotational motion. Torque 
comes from the Latin word 
torquere, which means to 
twist. We will see in chapter 
9, on rotational motion, that 
torque is the rotational 
analogue of force. When an 
unbalanced force acts on a 
body, it gives that body a 
translational acceleration. 
When an unbalanced torque 
acts on a body, it gives that 
body a rotational acceleration.                                          

It is not so much the 
applied force that opens a 
door, but rather the applied 
torque; the product of the 
force that we apply and the  

                                       Figure 5.8  An example of a torque applied to a door. 
 

lever arm. A door knob is therefore placed as far away from the hinges as possible to give the maximum lever arm 
and hence the maximum torque for a given force. 

Because the torque is the product of r⊥ and the force F, for a given value of the force, if the distance r⊥ is 
cut in half, the value of the torque will also be cut in half. If the 
torque is to remain the same when the lever arm is halved, the 
force must be doubled, as we easily see in equation 5.15. If a door 
knob was placed at the center of the door, then twice the original 
force would be necessary to give the door the same torque. It may 
even seem strange that some manufacturers of cabinets and 
furniture place door knobs in the center of cabinet doors because 
they may have a certain aesthetic value when placed there, but 
they cause greater exertion by the furniture owner in order to 
open those doors. 

If the door knob was moved to a quarter of the original 
distance, then four times the original force would have to be 
exerted in order to supply the necessary torque to open the door. 
We can see this effect in the diagram of figure 5.9. If the lever arm 
was finally decreased to zero, then it would take an infinite force 
to open the door, which is of course impossible. In general, if a  

Figure 5.9  If the lever arm decreases, the force  
                                                                                                           must be increased to give the same torque. 
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force acts through the axis of rotation of a body, it has no lever arm (i.e., r⊥ = 0) and therefore cannot cause a torque 
to act on the body about that particular axis, that is, from equation 5.15 

 
τ = r⊥F = (0)F = 0 

 
Instead of exerting a force perpendicular to the door, suppose we exert a force at some other angle θ, as 

shown in figure 5.10(a), where θ is the angle between the extension of r and the direction of F. Note that in this 
case r is not a lever arm since it is not perpendicular to F. The definition of a lever arm is the perpendicular 
distance from the axis of rotation to the line of action of the force. To obtain the lever arm, we extend a line in 
either the forward or backward direction of the force. Then we drop a perpendicular to this line, as shown in figure 
5.10(b). The line extended in the direction of the force vector, and through the point of application of the force, is 
the line of action of the force. The lever arm, obtained from the figure, is  

 
r⊥ = r sin θ                                                                              (5.16) 

 
In general, if the force is not 
perpendicular to r, the torque 
equation 5.15 becomes 
 

 τ = r⊥F = rF sin θ      (5.17) 
 

Although this approach to using 
the lever arm to compute the 
torque is correct, it may seem 
somewhat artificial, since the 
force is really applied at the 
point A and not the point B in 
figure 5.10(b). Let us therefore 
look at the problem from a 
slightly different point of view, 
as shown in figure 5.11. Take r, 
exactly as it is given—the 
distance from the axis of 
rotation to the point of 
application of the force. Then 
take the force vector F and 
resolve it into two components: 
one, F||, lies along the direction  

                                                             Figure 5.10  If the force is not perpendicular to r. 
 
of r (parallel to r), and the other, F⊥, is perpendicular to r. The 
component F|| is a force component that goes right through 0, the 
axis of rotation. But as just shown, if the force goes through the axis 
of rotation it has no lever arm about that axis and therefore it 
cannot produce a torque about that axis. Hence, the component of 
the force parallel to r cannot create a torque about 0. 

The component F⊥, on the other hand, does produce a 
torque, because it is an application of a force that is perpendicular 
to a distance r. This perpendicular component produces a torque 
given by 

                                                                                                     Figure 5.11  The parallel and perpendicular 
                                                                                                                               components of a force. 

 
τ = rF⊥                                                                              (5.18) 

But from figure 5.11 we see that 
 F⊥ = F sin θ                                                                           (5.19) 

Thus, the torque becomes 
 τ = rF⊥ = rF sin θ                                                                      (5.20) 
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Comparing equation 5.17 to equation 5.20, it is obvious that the results are identical and should be combined into 
one equation, namely 

 τ = r⊥F = rF⊥ = rF sin θ                                                                   (5.21) 
 

Therefore, the torque acting on a body can be computed either by (a) the product of the force times the lever 
arm, (b) the product of the perpendicular component of the force times the distance r, or (c) simply the product of r 
and F times the sine of the angle between F and the extension of r. 

The unit of torque is given by the product of a distance times a force and in SI units, is a m N, (meter 
newton).  
 
 
5.3  The Second Condition of Equilibrium 
Let us now return to the problem of the two children on the seesaw in 
figure 5.6, which is redrawn schematically in figure 5.12. The entire length 
l of the seesaw is 4.00 m. From the discussion of torques, it is now obvious 
that each child produces a torque tending to rotate the seesaw plank. The 
first child produces a torque about the axis of rotation, sometimes called 
the fulcrum, given by 

    τ1 = F1r1 = w1r1 = (300 N)(2.00 m) 
  = 600 m N 

 
Figure 5.12  The seesaw revisited. 

 
which has a tendency to rotate the seesaw counterclockwise (ccw). A torque that produces a counterclockwise 
rotation is sometimes called a counterclockwise torque. The second child produces a torque about the fulcrum given 
by 

τ2 = F2r2 = w2r2 = (200 N)(2.00 m) 
= 400 m N 

 
which has a tendency to rotate the seesaw clockwise (cw). A torque that produces a clockwise rotation is sometimes 
called a clockwise torque. These tendencies to rotate the seesaw are opposed to each other. That is, τ1 tends to 
produce a counterclockwise rotation with a magnitude of 600 m N, while τ2 has the tendency to produce a 
clockwise rotation with a magnitude of 400 m N. It is a longstanding convention among physicists to designate 
counterclockwise torques as positive, and clockwise torques as negative. This conforms to the mathematicians’ 
practice of plotting positive angles on an xy plane as measured counterclockwise from the positive x-axis. Hence, τ1 
is a positive torque and τ2 is a negative torque and the net torque will be the difference between the two, namely 
 

net τ = τ1 − τ2 = 600 m N − 400 m N = 200 m N 
 
or a net torque τ of 200 m N, which will rotate the seesaw counterclockwise. 

It is now clear why the seesaw moved. Even though the forces acting on it were balanced, the torques were 
not. If the torques were balanced then there would be no tendency for the body to rotate, and the seesaw would also 
be in rotational equilibrium. That is, the necessary condition for the body to be in rotational equilibrium is that the 
torques clockwise must be equal to the torques counterclockwise. That is, 

 
τcw = τccw                                                                            (5.22) 

For this case  
w1r1 = w2r2                                                                              (5.23) 

 
We can now solve equation 5.23 for the position r1 of the first child such that the torques are equal. That is, 
 

r1 =  w2 r2  = 200 N(2.00 m) = 1.33 m  
                                                                           w1         300 N 
 
If the 300-N child moves in toward the axis of rotation by 0.67 m (2.00 − 1.33 m from axis), then the torque 
counterclockwise becomes 
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τ1 = τccw = w1r1 = (300 N)(1.33 m) = 400 m N 
 
which is now equal to the torque τ2 clockwise. Thus, the torque tending to 
rotate the seesaw counterclockwise (400 m N) is equal to the torque 
tending to rotate it clockwise (400 m N). Hence, the net torque is zero and 
the seesaw will not rotate. The seesaw is now said to be in rotational 
equilibrium. This equilibrium condition is shown in figure 5.13. 

In general, for any rigid body acted on by any number of planar 
torques, the condition for that body to be in rotational equilibrium is that 
the sum of all the torques clockwise must be equal to the sum of all the 
torques counterclockwise. Stated mathematically, this becomes 

 
Figure 5.13  The seesaw in equilibrium. 

 
 Σ τcw = Σ τccw                                                                           (5.24) 

 
This condition is called the second condition of equilibrium. 

If we subtract the term Σ τcw from both sides of the equation, we obtain 
 

Σ τccw − Σ τcw = 0 
 

But the net torque is this difference between the counterclockwise and clockwise torques, so that the second 
condition for equilibrium can also be written as: for a rigid body acted on by any number of torques, the condition 
for that body to be in rotational equilibrium is that the sum of all the torques acting on that body must be zero, that 
is,    

 Σ τ = 0                                                                                  (5.25) 
 

The torque is about an axis that is perpendicular to the plane of the paper. Since the plane of the paper is the x,y 
plane, the torque axis lies along the z-axis. Hence the torque can be represented as a vector that lies along the z-
axis. Thus, we can also write equation 5.25 as 

Σ τz = 0 
 

In general torques can also be exerted about the x-axis and the y-axis, and for such general cases we have 
 

Σ τx = 0 
Σ τy = 0 

 
However, in this text we will restrict ourselves to forces in the x,y plane and torques along the z-axis. 
 
 
5.4  Equilibrium of a Rigid Body 
In general, for a body that is acted on by any number of planar forces, the conditions for that body to be in 
equilibrium are 

 Σ Fx = 0                                                                                     (5.4) 
 Σ Fy = 0                                                                                     (5.5) 

 Σ τcw = Σ τccw                                                                        (5.24) 
 

The first condition of equilibrium guarantees that the body will be in translational equilibrium, while the 
second condition guarantees that the body will be in rotational equilibrium. The solution of various problems of 
statics reduce to solving the three equations 5.4, 5.5, and 5.25. Section 5.5 is devoted to the solution of various 
problems of rigid bodies in equilibrium. 
 
 
5.5  Examples of Rigid Bodies in Equilibrium 
Parallel Forces 
Two men are carrying a girl on a large plank that is 10.000 m long and weighs 200.0 N. If the girl weighs 445.0 N 
and sits 3.000 m from one end, how much weight must each man support? 
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The diagram drawn in figure 5.14(a) shows all the forces that are acting on the plank. We assume that the 
plank is uniform and the weight of the plank can be located at its center. 

     
Figure 5.14  A plank in equilibrium under parallel forces. 

 
The first thing we note is that the body is in equilibrium and therefore the two conditions of equilibrium 

must hold. The first condition of equilibrium, equation 5.5, applied to figure 5.14 yields, 
 

Σ Fy = 0 
F1 + F2 − wp − wg = 0 

F1 + F2 = wp + wg 
= 200.0 N + 445.0 N 

F1 + F2 = 645.0 N                                                                        (5.26) 
 

Since there are no forces in the x-direction, we do not use equation 5.4. The second condition of equilibrium, given 
by equation 5.24, is 

Σ τcw = Σ τccw 
 

However, before we can compute any torques, we must specify the axis about which the torques will be computed. 
(In a moment we will see that it does not matter what axis is taken.) For now, let us consider that the axis passes 
through the point A, where man 1 is holding the plank up with the force F1. The torques tending to rotate the 
plank clockwise about axis A are caused by the weight of the plank and the weight of the girl, while the torque 
tending to rotate the plank counterclockwise about the same axis A is produced by the force F2 of the second man. 
Therefore, 

Σ τcw = Σ τccw 

wp(5.000 m) + wg(7.000 m) = F2(10.000 m) 
 
Solving for the force F2 exerted by the second man, 

 
F2 = wp(5.000 m) + wg(7.000 m) 

         10.000 m 
= (200.0 N)(5.000 m) + (445.0 N)(7.000 m) 

10.000 m 
= 1000 m N + 3115 m N 

10.000 m 
F2 = 411.5 N                                                                            (5.27) 

 
Thus, the second man must exert a force upward of 411.5 N. The force that the first man must support, found from 
equations 5.26 and 5.27, is 

F1 + F2 = 645.0 N 
F1 = 645 N − F2 = 645.0 N − 411.5 N 

F1 = 233.5 N 
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The first man must exert an upward force of 233.5 N while the second man carries the greater burden of 411.5 N. 
Note that the force exerted by each man is different. If the girl sat at the center of the plank, then each man would 
exert the same force. 

Let us now see that the same results occur if the torques are computed about any other axis. Let us 
arbitrarily take the position of the axis to pass through the point B, the location of the force F2. Since F2 passes 
through the axis at point B it cannot produce any torque about that axis because it now has no lever arm. The 
force F1 now produces a clockwise torque about the axis through B, while the forces wp and wg produce a 
counterclockwise torque about the axis through B. The solution is 

 
Σ Fy = 0 

F1 + F2 − wp − wg = 0 
F1 + F2 = wp + wg = 645.0 N 

and 
Σ τcw = Σ τccw 

        F1(10.000 m) = wp(5.000 m) + wg(3.000 m) 
Solving for the force F1, 

           F1 = (200.0 N)(5.000 m) + (445.0 N)(3.000 m) 
          10.000 m 

= 1000 m N + 1335 m N 
10.000 m 
= 233.5 N 

while the force F2 is 
F2 = 645.0 N − F1 

= 645.0 N − 233.5 N 
= 411.5 N 

 
Notice that F1 and F2 have the same values as before. As an exercise, take the center of the plank as the point 
through which the axis passes. Compute the torques about this axis and show that the results are the same. 

In general, whenever a rigid body is in equilibrium, every point of that body is in both translational 
equilibrium and rotational equilibrium, so any point of that body can serve as an axis to compute torques. Even a 
point outside the body can be used as an axis to compute torques if the body is in equilibrium. 

As a general rule, in picking an axis for the computation of torques, try to pick the point that has the 
largest number of forces acting through it. These forces have no lever arm, and hence produce a zero torque about 
that axis. This makes the algebra of the problem easier to handle. 
 
The Center of Gravity of a Body 
A meter stick of negligible weight has a 10.0-N weight hung from each end. Where, and with what force, should 
the meter stick be picked up such that it remains horizontal while it moves upward at a constant velocity? This 
problem is illustrated in figure 5.15. 

         
Figure 5.15  The center of gravity of a meter stick. 

 
The meter stick and the two weights constitute a system. If the stick translates with a constant velocity, 

then the system is in equilibrium under the action of all the forces. The conditions of equilibrium must apply and 
hence the sum of the forces in the y-direction must equal zero, 

 
Σ Fy = 0                                                                                (5.5) 
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Applying equation 5.5 to this problem gives 
F − w1 − w2 = 0 

F = w1 + w2 = 10.0 N + 10.0 N = 20.0 N 
 

Therefore, a force of 20 N must be exerted in order to lift the stick. But where should this force be applied? In 
general, the exact position is unknown so we assume that it can be lifted at some point that is a distance x from 
the left end of the stick. If this is the correct position, then the body is also in rotational equilibrium and the 
second condition of equilibrium must also apply. Hence, the sum of the torques clockwise must be set equal to the 
sum of the torques counterclockwise, 

Σ τcw = Σ τccw                                                                           (5.24) 
 

Taking the left end of the meter stick as the axis of rotation, the second condition, equation 5.24, becomes 
 

w2l = Fx                                                                               (5.28) 
 

Since we already found F from the first condition, and w2 and l are known, we can solve for x, the point where the 
stick should be lifted: 

x = w2l = (10.0 N)(100 cm)  
                                                                                  F             20.0 N 

= 50.0 cm 
 
The meter stick should be lifted at its exact geometrical center. 

The net effect of these forces can be seen in figure 5.15(b). The force up F is equal to the weight down W. 
The torque clockwise is balanced by the counterclockwise torque, and there is no tendency for rotation. The stick, 
with its equal weights at both ends, acts as though all the weights were concentrated at the geometrical center of 
the stick. This point that behaves as if all the weight of the body acts through it, is called the center of gravity 
(cg) of the body. Hence the center of gravity of the system, in this case a meter stick and two equal weights 
hanging at the ends, is located at the geometrical center of the meter stick. 

The center of gravity is located at the center of the stick because of the symmetry of the problem. The 
torque clockwise about the center of the stick is w2 times l/2, while the torque counterclockwise about the center of 
the stick is w1 times l/2, as seen in figure 5.15(c). Because the weights w1 and w2 are equal, and the lever arms (l/2) 
are equal, the torque clockwise is equal to the torque counterclockwise. Whenever such symmetry between the 
weights and the lever arms exists, the center of gravity is always located at the geometric center of the body or 
system of bodies. 

 
Example 5.4 

 
The center of gravity when there is no symmetry. If weight w2 in the preceding discussion is changed to 20.0 N, 
where will the center of gravity of the system be located? 

Solution
 

The first condition of equilibrium yields 
Σ Fy = 0 

F − w1 − w2 = 0 
F = w1 + w2 = 10.0 N + 20.0 N 

 = 30.0 N 
 

The second condition of equilibrium again yields equation 5.28, 
 

w2l = Fx 
The location of the center of gravity becomes  

   x = w2l = (20.0 N)(100 cm)  
                                                                                    F             30.0 N 

= 66.7 cm 
 

Thus, when there is no longer the symmetry between weights and lever arms, the center of gravity is no longer 
located at the geometric center of the system. 
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To go to this Interactive Example click on this sentence. 

 

 
 
General Definition of the Center of Gravity 
In the previous section we assumed that the weight of the meter stick was negligible compared to the weights w1 
and w2. Suppose the weights w1 and w2 are eliminated and we want to pick up the meter stick all by itself. The 
weight of the meter stick can no longer be ignored. But how can the weight of the meter stick be handled? In the 
previous problem w1 and w2 were discrete weights. Here, the weight of the meter stick is distributed throughout 
the entire length of the stick. How can the center of gravity of a continuous mass distribution be determined 
instead of a discrete mass distribution? From the symmetry of the uniform meter stick, we expect that the center 
of gravity should be located at the geometric center of the 100-cm meter stick, that is, at the point x = 50 cm. At 
this center point, half the mass of the stick is to the left of center, while the other half of the mass is to the right of 
center. The half of the mass on the left side creates a torque counterclockwise about the center of the stick, while 
the half of the mass on the right side creates a torque clockwise. Thus, the uniform meter stick has the same 
symmetry as the stick with two equal weights acting at its ends, and thus must have its center of gravity located 
at the geometrical center of the meter stick, the 50-cm mark. 

To find a general equation for the center of gravity of a body, let us find the equation for the center of 
gravity of the uniform meter 
stick shown in figure 5.16.  

The meter stick is 
divided up into 10 equal parts, 
each of length 10 cm. Because 
the meter stick is uniform, 
each 10-cm portion contains 
1/10 of the total weight of the 
meter stick, W. Let us call 
each small weight wi, where 
the i is a subscript that 
identifies which w is being 
considered. 

                                                             Figure 5.16  The weight distribution of a uniform meter stick. 
 
Because of the symmetry of the uniform mass distribution, each small weight wi acts at the center of each 

10-cm portion. The center of each ith portion, denoted by xi, is shown in the figure. If a force F is exerted upward at 
the center of gravity xcg, the meter stick should be balanced. If we apply the first condition of equilibrium to the 
stick we obtain 

Σ Fy = 0                                                                                    (5.5) 
F − w1 − w2 − w3 − . . . − w10 = 0 

F = w1 + w2 + w3 + . . . + w10  
 

A shorthand notation for this sum can be written as 

1 2 3 10
1

...
n

i
i

w w w w w
=

+ + + + + = ∑  

 
The Greek letter Σ again means “sum of,” and when placed in front of wi it means “the sum of each wi.” The 
notation i = 1 to n, means that we will sum up some n wi’s .In this case, n = 10. Using this notation, the first 
condition of equilibrium becomes 

1

n

i
i

F w W
=

= =∑                                                                            (5.29) 

 
The sum of all these wi’s is equal to the total weight of the meter stick W. 

The second condition of equilibrium, 
Σ τcw = Σ τccw                                                                         (5.24) 

 
when applied to the meter stick, with the axis taken at the zero of the meter stick, yields 
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(w1x1 + w2x2 + w3x3 + . . . + w10x10) = Fxcg 

 
In the shorthand notation this becomes 

 
1

n

i i cg
i

w x Fx
=

=∑  

Solving for xcg, we have 

1

n

i i
i

cg

w x
x

F
==
∑

                                                                             (5.30) 

 
Using equation 5.29, the general expression for the x-coordinate of the center of gravity of a body is given by 
 

         1

n

i i
i

cg

w x
x

W
==
∑

                                                                            (5.31) 

 
Applying equation 5.31 to the uniform meter stick we have 
 

xcg = Σ wixi  = w1x1 + w2x2 + . . . + w10x10  
                                                                            W                         W 

 
but since w1 = w2 = w3 = w4 = . . . = w10 = W/10, it can be factored out giving 
 

xcg = W/10 (x1 + x2 + x3 + . . . + x10)  
                                                                               W                                 

= 1/10 (5 + 15 + 25 + 45 + . . . + 95) 
= 500/10 
= 50 cm 

 
The center of gravity of the uniform meter stick is located at its geometrical center, just as expected from 
symmetry considerations. The assumption that the weight of a body can be located at its geometrical center, 
provided that its mass is uniformly distributed, has already been used throughout this book. Now we have seen 
that this was a correct assumption. 

To find the center of gravity of a two-dimensional body, the x-coordinate of the cg is found from equation 
5.31, while the y-coordinate, found in an analogous manner, is 

 

1

n

i i
i

cg

w y
y

W
==
∑

                                                                           (5.32) 

 
For a nonuniform body or one with a nonsymmetrical shape, the problem becomes much more complicated 

with the sums in equations 5.31 and 5.32 becoming integrals and will not be treated in this book. 
 
Examples Illustrating the Concept of the Center of Gravity  

Example 5.5 
 

The center of gravity of a weighted beam. A weight of 50.0 N is hung from one end of a uniform beam 12.0 m long. 
If the beam weighs 25.0 N, where and with what force should the beam be picked up so that it remains horizontal? 
The problem is illustrated in figure 5.17. 

Solution
 

Because the beam is uniform, the weight of the beam wB is located at the geometric center of the beam. Let us 
assume that the center of gravity of the system of beam and weight is located at a distance x from the right side of 
the beam. The body is in equilibrium, and the equations of equilibrium become 
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Σ Fy = 0                                         (5.5) 

F − wB − w1 = 0 
F = wB + w1 

= 25.0 N + 50.0 N = 75.0 N 
 
Taking the right end of the beam as the axis about which the 
torques are computed, we have 
 

Σ τcw = Σ τccw                                (5.24) 
                                                                                                            Figure 5.17  The center of gravity of a 

                                                                                                                          weighted beam. 
 

The force F will cause a torque clockwise about the right end, while the force wB will cause a counterclockwise 
torque. Hence, 

Fx = wB l   
              2 

Thus, the center of gravity of the system is located at 
 

xcg = wB l/2 
         F 

= (25.0 N)(6.0 m)  = 2.0 m  
                                                                                     75.0 N           

 
Therefore, we should pick up the beam 2.0 m from the right hand side with a force of 75.0 N. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 5.6 
 

The center of gravity of an automobile. The front wheels of an automobile, when run onto a platform scale, are 
found to support 8010 N, while the rear wheels can support 6680 N. The auto has a 2.00-m. wheel base (distance 
from the front axle to the rear axle wb). Locate the center of gravity of the car. The car is shown in figure 5.18. 

Solution
 

If the car pushes down on the scales with forces w1 and w2, then the scale exerts normal forces upward of FN1 and 
FN2, respectively, on the car. The total weight of the car is W and can be located at the center of gravity of the car. 
Since the location of this cg is unknown, let us assume that it is at a distance x from the front wheels. Because the 
car is obviously in equilibrium, the conditions of equilibrium are applied. Thus, 

 
Σ Fy = 0                                                                                  (5.5) 

From figure 5.18, we see that this is 
                    FN1 + FN2 − W = 0 

               FN1 + FN2 = W 
 
Solving for W, the weight of the car, we get 
 

W = 8010 N + 6680 N = 14,700 N 
 

The second condition of equilibrium, using the front axle of the car as the 
axis, gives  

                                                                                                                                     Figure 5.18  The center of 
                                                                                                                                             gravity of an automobile. 

 
Σ τcw = Σ τccw                                                                           (5.24) 

w

x

cg

FN1FN2

wb

cw
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The force FN2 will cause a clockwise torque about the front axle, while W will cause a counterclockwise torque. 
Hence, 

      FN2 (2.00 m) = Wxcg 
Solving for the center of gravity, we get 

         xcg = FN2 (2.00 m) 
               W 

     = (6680 N)(2.00 m) 
        14,700 N 

= 0.910 m  
 

That is, the cg of the car is located 0.910 m behind the front axle of the car. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Center of Mass 
The center of mass (cm) of a body or system of bodies is defined as that point that moves in the same way that a 
single particle of the same mass would move when acted on by the same forces. Hence, the point reacts as if all the 
mass of the body were concentrated at that point. All the external forces can be considered to act at the center of 
mass when the body undergoes any translational acceleration. The general motion of any rigid body can be 
resolved into the translational motion of the center of mass and the rotation about the center of mass. On the 
surface of the earth, where g, the acceleration due to gravity, is relatively uniform, the center of mass (cm) of the 
body will coincide with the center of gravity (cg) of the body. To see this, take equation 5.31 and note that 
 

  wi = mig 
Substituting this into equation 5.31 we get 

xcg = Σ wixi  = Σ (mig)xi  
                                                                                                Σ wi        Σ (mig) 
Factoring the g outside of the summations, we get 

xcg =  g Σ mixi                                                                      (5.33) 
                     g Σ mi 

 
The right-hand side of equation 5.33 is the defining relation for the center of mass of a body, and we will 

write it as 
 xcm = Σ mixi  = Σ mixi                                                                        (5.34) 

                                                                                                Σ mi                 M               
 

where M is the total mass of the body. Equation 5.34 represents the x-coordinate of the center of mass of the body. 
We obtain a similar equation for the y-coordinate by replacing the letter x with the letter y in equation 5.34: 
 

 
ycm = Σ miyi  = Σ miyi                                                                      (5.35) 

                                                                                                  Σ mi                 M       
 

Example 5.7 
 

Finding the center of mass. Three masses, m1 = 20.0 g, m2 = 40.0 g, and m3 = 5.00 g are located on the x-axis at 
10.0, 20.0, and 25.0 cm, respectively, as shown in figure 5.19. Find the center of mass of the system of three 
masses. 

Solution
 

The center of mass is found from equation 5.34 with n = 3. Thus, 
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xcm = Σ mixi  = m1x1 + m2x2 + m3x3  
                                             Σ mi            m1 + m2 + m3 

= (20.0 g)(10.0 cm) + (40.0 g)(20.0 cm) + (5.00 g)(25.0 cm) 
  20.0 g + 40.0 g + 5.00 g 

= 1125 g cm 
  65.0 g 

= 17.3 cm 
 

The center of mass of the three masses is at 17.3 cm. 
 

To go to this Interactive Example click on this sentence. 
                                                                                                                Figure 5.19  The center of mass. 

 

 
 
The Crane Boom 

A large uniform boom is connected to the mast by a hinge pin at the 
point A in figure 5.20. A load wL is to be supported at the other end B. 
A cable is also tied to B and connected to the mast at C to give 
additional support to the boom. We want to determine all the forces 
that are acting on the boom in order to make sure that the boom, hinge 
pin, and cable are capable of withstanding these forces when the boom 
is carrying the load wL. 

First, what are the forces acting on the boom? Because the 
boom is uniform, its weight wB can be situated at its center of gravity, 
which coincides with its geometrical center. There is a tension T in the 
cable acting at an angle θ to the boom. At the hinge pin, there are two 
forces acting. The first, denoted by V, is a vertical force acting on  

     
                                   (a)                                                                                         (b) 

Figure 5.20  The crane boom. 
 

the end of the boom. If this force were not acting on the boom at this end point, this end of the boom would fall 
down. That is, the pin with this associated force V is holding the boom up. 

Second, there is also a horizontal force H acting on the boom toward the right. The horizontal component of 
the tension T pushes the boom into the mast. The force H is the reaction force that the mast exerts on the boom. If 
there were no force H, the boom would go right through the mast. The vector sum of these two forces, V and H, is 
sometimes written as a single contact force at the location of the hinge pin. However, since we want to have the 
forces in the x- and y-directions, we will leave the forces in the vertical and horizontal directions. The tension T in 
the cable also has a vertical component Ty, which helps to hold up the load and the boom. 

Let us now determine the forces V, H, and T acting on the system when θ = 30.00, wB = 270 N, wL = 900 N, 
and the length of the boom, l = 6.00 m. The first thing to do to solve this problem is to observe that the body, the 
boom, is at rest under the action of several different forces, and must therefore be in equilibrium. Hence, the first 
and second conditions of equilibrium must apply: 

Σ Fy = 0                                                                                (5.5) 
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Σ Fx = 0                                                                                     (5.4) 
Σ τcw = Σ τccw                                                                           (5.24) 

 
Using figure 5.20, we observe which forces are acting in the y-direction. Equation 5.5 becomes 
 

Σ Fy = V + Ty − wB − wL = 0 
or 

V + Ty = wB + wL                                                                        (5.36) 
 

Note from figure 5.20 that Ty = T sin θ. The right-hand side of equation 5.36 is known, because wB and wL are 
known. But the left-hand side contains the two unknowns, V and T, so we can not proceed any further with this 
equation at this time. 

Let us now consider the second of the equilibrium equations, namely equation 5.4. Using figure 5.20, notice 
that the force in the positive x-direction is H, while the force in the negative x-direction is Tx. Thus, the 
equilibrium equation 5.4 becomes 

Σ Fx = H − Tx = 0 
or 

H = Tx = T cos θ                                                                         (5.37) 
 

There are two unknowns in this equation, namely H and T. At this point, we have two equations with the three 
unknowns V, H, and T. We need another equation to determine the solution of the problem. This equation comes 
from the second condition of equilibrium, equation 5.24. In order to compute the torques, we must first pick an axis 
of rotation. Remember, any point can be picked for the axis to pass through. For convenience we pick the point A 
in figure 5.20, where the forces V and H are acting, for the axis of rotation to pass through. The forces wB and wL 
are the forces that produce the clockwise torques about the axis at A, while Ty produces the counterclockwise 
torque. Therefore, equation 5.24 becomes 

wB(l/2) + wL(l) = Ty(l) = T sin θ (l)                                                          (5.38) 
 

After dividing term by term by the length l, we can solve equation 5.38 for T. Thus, 
 

T sin θ = (wB/2) + wL  
The tension in the cable is therefore 

T = (wB/2) + wL                                                                         (5.39) 
         sin θ 

 
Substituting the values of wB, wL, and θ, into equation 5.39 we get 
 

T = (270 N/2) + 900 N 
    sin 30.00 

or 
T = 2070 N 

 
The tension in the cable is 2070 N. We can find the second unknown force H by substituting this value of T into 
equation 5.37: 

H = T cos θ = (2070 N)cos 30.00 
and 

H = 1790 N 
 

The horizontal force exerted on the boom by the hinge pin is 1790 N. We find the final unknown force V by 
substituting T into equation 5.36, and solving for V, we get 
 

V = wB + wL − T sin θ                                                                     (5.40) 
= 270 N + 900 N − (2070 N)sin 30.00 

= 135 N 
 

The hinge pin exerts a force of 135 N on the boom in the vertical direction. To summarize, the forces acting on the 
boom are V = 135 N, H = 1790 N, and T = 2070 N. The reason we are concerned with the value of these forces, is 

Pearson Custom Publishing

157



5-20                                                                                                                                                               Mechanics 

that the boom is designed to carry a particular load. If the boom system is not capable of withstanding these forces 
the boom will collapse. For example, we just found the tension in the cable to be 2070 N. Is the cable that will be 
used in the system capable of withstanding a tension of 2070 N? If it is not, the cable will break, the boom will 
collapse, and the load will fall down. On the other hand, is the hinge pin capable of taking a vertical stress of 135 
N and a horizontal stress of 1790 N? If it is not designed to withstand these forces, the pin will be sheared and 
again the entire system will collapse. Also note that this is not a very well designed boom system in that the hinge 
pin must be able to withstand only 135 N in the vertical while the horizontal force is 1790 N. In designing a real 
system the cable could be moved to a much higher position on the mast thereby increasing the angle θ, reducing 
the component Tx, and hence decreasing the force component H. 

There are many variations of the boom problem. Some have the boom placed at an angle to the horizontal. 
Others have the cable at any angle, and connected to almost any position on the boom. But the procedure for the 
solution is still the same. The boom is an object in equilibrium and equations 5.4, 5.5, and 5.24 must apply. 
Variations on the boom problem presented here are included in the problems at the end of the chapter. 
 
The Ladder 
A ladder of length L is placed against a wall, as 
shown in figure 5.21. A person, of weight wP, 
ascends the ladder until the person is located a 
distance d from the top of the ladder. We want to 
determine all the forces that are acting on the 
ladder. We assume that the ladder is uniform. 
Hence, the weight of the ladder wL can be located 
at its geometrical center, that is, at L/2. There are 
two forces acting on the bottom of the ladder, V 
and H. The vertical force V represents the 
reaction force that the ground exerts on the 
ladder. That is, since the ladder pushes against 
the ground, the ground must exert an equal but 
opposite force upward on the ladder. 

With the ladder in this tilted position, 
there is a tendency for the ladder to slip to the left 
at the ground. If there is a tendency for the ladder 
to be in motion to the left, then there must be a 
frictional force tending to oppose that motion, and 
therefore that frictional force must act toward the 
right. We call this horizontal frictional force H. At 
the top of the ladder there is a force F on the 
ladder that acts normal to the wall. This force is 
the force that the wall exerts on the ladder and is 
the reaction force to the force  

                                                                         Figure 5.21  The ladder. 
 

that the ladder exerts on the wall. There is also a tendency for the ladder to slide down the wall and therefore 
there should also be a frictional force on the ladder acting upward at the wall. To solve the general case where 
there is friction at the wall is extremely difficult. We simplify the problem by assuming that the wall is smooth 
and hence there is no frictional force acting on the top of the ladder. Thus, whatever results that are obtained in 
this problem are an approximation to reality. 

Since the ladder is at rest under the action of several forces it must be in static equilibrium. Hence, the 
first and second conditions of equilibrium must apply. Namely, 

 
Σ Fy = 0                                                                                     (5.5) 
Σ Fx = 0                                                                                     (5.4) 

Σ τcw = Σ τccw                                                                           (5.24) 
 

Figure 5.21 shows that the force upward is V, while the forces downward are wL and wp. Substituting these values 
into equation 5.5 gives 

Σ Fy = V − wL − wp = 0 
or 
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 V = wL + wp                                                                              (5.41) 
 

The figure also shows that the force to the right is H, while the force to the left is F. Equation 5.4 therefore 
becomes 

Σ Fx = H − F = 0 
or 

 H = F                                                                                  (5.42) 
 

It is important that you see how equations 5.41 and 5.42 are obtained from figure 5.21. This is the part that really 
deals with the physics of the problem. Once all the equations are obtained, their solution is really a matter of 
simple mathematics. 

Before we can compute any of the torques for the second condition of equilibrium, we must pick an axis of 
rotation. As already pointed out, we can pick any axis to compute the torques. We pick the base of the ladder as 
the axis of rotation. The forces V and H go through this axis and, therefore, V and H produce no torques about this 
axis, because they have no lever arms. Observe from the figure that the weights wL and wp are the forces that 
produce clockwise torques, while F is the force that produces the counterclockwise torque. Recall, that torque is 
the product of the force times the lever arm, where the lever arm is the perpendicular distance from the axis of 
rotation to the direction or line of action of the force. Note from figure 5.21 that the distance from the axis of 
rotation to the center of gravity of the ladder does not make a 900 angle with the force wL, and therefore L/2 cannot 
be a lever arm. If we drop a perpendicular from the axis of rotation to the line showing the direction of the vector 
wL, we obtain the lever arm (LA) given by 

   (LA)1 = (L/2) cos θ 
Thus, the torque clockwise produced by wL is 

τ1cw = wL(L/2) cos θ                                                                     (5.43) 
 

Similarly, the lever arm associated with the weight of the person is 
 

(LA)2 = (L − d) cos θ 
Hence, the second torque clockwise is 

τ2cw = wp(L − d) cos θ                                                                   (5.44) 
 

The counterclockwise torque is caused by the force F. However, the ladder does not make an angle of 900 
with the force F, and the length L from the axis of rotation to the wall, is not a lever arm. We obtain the lever arm 
associated with the force F by dropping a perpendicular from the axis of rotation to the direction of the force vector 
F, as shown in figure 5.21. Note that in order for the force vector to intersect the lever arm, the line from the force 
had to be extended until it did intersect the lever arm. We call this extended line the line of action of the force. This 
lever arm (LA)3 is equal to the height on the wall where the ladder touches the wall, and is found by the 
trigonometry of the figure as 

(LA)3 = L sin θ 
 

Hence, the counterclockwise torque produced by F is 
 

τccw = FL sin θ                                                                           (5.45) 
 

Substituting equations 5.43, 5.44, and 5.45 into equation 5.24 for the second condition of equilibrium, yields 
 

 wL(L/2)cos θ + wp(L − d)cos θ = FL sin θ                                                      (5.46) 
 

The physics of the problem is now complete. It only remains to solve the three equations 5.41, 5.42, and 5.46 
mathematically. There are three equations with the three unknowns V, H, and F. 

As a typical problem, let us assume that the following data are given: θ = 60.00, wL = 178 N, wp = 712 N, L 
= 6.10 m, and d = 1.53 m. Equation 5.46, solved for the force F, gives 

 
 F = wL(L/2)cos θ + wp(L − d)cos θ                                                         (5.47) 

                                                                                                 L sin θ                       
Substituting the values just given, we have 
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F = 178 N(3.05 m)cos 60.00 + 712 N(4.58 m) cos 60.00 
6.10 m sin 60.00 

= 271 m N + 1630 m N 
5.28 m 
= 360 N 

However, since H = F from equation 5.42, we have 
  H = 360 N 

Solving for V from equation 5.41 we obtain 
    V = wL + wp = 178 N + 712 N 

           = 890 N 
 

Thus, we have found the three forces F, V, and H acting on the ladder. 
As a variation of this problem, we might ask, “What is the minimum value of the coefficient of friction 

between the ladder and the ground, such that the ladder will not slip out at the ground?” Recall from setting up 
this problem, that H is indeed a frictional force, opposing the tendency of the bottom of the ladder to slip out, and 
as such is given by 

H = fs = µsFN                                                                        (5.48) 
 

But the normal force FN that the ground exerts on the ladder, seen from figure 5.21, is the vertical force V. Hence, 
 

H = µsV 
 

The coefficient of friction between the ground and the ladder is therefore 
 

µs =  H  
        V 

 
For this particular example, the minimum coefficient of friction is 
 

µs =  360 N  
         890 N   
µs = 0.404 

 
If µs is not equal to, or greater than 0.404, then the necessary frictional force H is absent and the ladder will slide 
out at the ground. 
 
Applications of the Theory of Equilibrium to the Health Sciences  

Example 5.8 
 

A weight lifter’s dumbbell curls. A weight lifter is lifting a dumbbell that weighs 334 N, as shown in figure 5.22(a) 
The biceps muscle exerts a force FM upward on the forearm at a point approximately 5.08 cm from the elbow joint. 
The forearm weighs approximately 66.8 N and its center of gravity is located approximately 18.5 cm from the 
elbow joint. The upper arm exerts a force at the elbow joint that we denote by FJ. The dumbbell is located 
approximately 36.8 cm from the elbow. What force must be exerted by the biceps muscle in order to lift the 
dumbbell? 

Solution
 

The free body diagram for the arm is shown in figure 5.22(b). The first condition of equilibrium gives 
 

Σ Fy = FM − FJ − wA − wD = 0 
FM = FJ + wA + wD                                                                      (5.49) 

FM = FJ + 66.8 N + 334 N 
FM = FJ + 401 N                                                                         (5.50) 

  
Taking the elbow joint as the axis, the second condition of equilibrium gives 

 
Σ τcw = Σ τccw 
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Figure 5.22  The arm lifting a weight. 

 
wAxcg + wDl = FmxM                                                                     (5.51) 

The force exerted by the biceps muscle becomes 
FM = wAxcg + wDl                                                                        (5.52) 

           xM 
= (66.8 N)(0.185 m) + (334 N)(0.368 m) 

0.0508 m 
= 2660 N 

 
Thus, the biceps muscle exerts the relatively large force of 2660 N in lifting the 334 N dumbbell. We can now find 
the force at the joint, from equation 5.50, as 

FJ = FM − 401 N 
= 2660 N − 401 N = 2260 N 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 5.9 
 

A weight lifter’s bend over rowing. A weight lifter bends over at an angle of 50.00 to the horizontal, as shown in 
figure 5.23(a). He holds a barbell that weighs 668 N, wB, that is located at LB = 50.8 cm. The spina muscle in his 
back supplies the force FM to hold the spine of his back in this position. The length L of the man’s spine is 
approximately 68.6 cm. The spina muscle acts approximately 2L/3 = 45.7 cm from the base of the spine and makes 
an angle of 12.00 with the spine, as shown. The man’s head weighs about 62.3 N, wH, and this force acts at the top 
of the spinal column, as shown. The torso of the man weighs about 356 N and this is denoted by wT, and is located 
at the center of gravity of the torso, which is taken as L/2 = 34.3 cm. At the base of the spinal column is the fifth 
lumbar vertebra, which acts as the axis about which the body bends. A reaction force FR acts on this fifth lumbar 
vertebra, as shown in the figure. Determine the reaction force FR and the muscular force FM on the spine. 

Solution
 

A free body diagram of all the forces is shown in figure 5.23(b). Note that the angle β is 
 

                   β = 900 − θ + 120 = 900 − 500 + 120 = 520 
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                                                       Figure 5.23  Forces on the spinal column. 
 

 
The first condition of equilibrium yields 

      Σ Fy = 0 
FR sin θ − wT − wB − wH − FM cos β = 0 

or 
FR sin θ = wT + wB + wH + FM cos β                                                       (5.53) 

and 
Σ Fx = 0 

FR cos θ − FM sin β = 0 
or 

FR cos θ = FM sin β                                                                     (5.54) 
The second condition of equilibrium gives 

Σ τcw = Σ τccw  
wT(L/2)cos θ + FMcos β (2L/3)cos θ + wBLBcos θ  + wHL cos θ = FM sin β (2L/3)sin θ               (5.55) 

 
Solving for FM, the force exerted by the muscles, gives 
 

 FM = wT(L/2)cos θ + wBLBcos θ + wHL cos θ                                              (5.56) 
                sin β (2L/3)sin θ − cos β (2L/3)cos θ 

= (356 N)(34.3 cm)(cos 500) + (668 N)(50.8 cm)(cos 500) + (62.3 N)(68.6 cm)(cos 500) 
(sin 520)(45.7 cm)(sin 500) − (cos 520)(45.7 cm)(cos 500) 

= 3410 N 
 

The reaction force FR on the base of the spine, found from equation 5.54, is 
 

FR = FM sin β 
         cos θ 

= (3410 N)sin 520  = 4180 N  
                                                                                      cos 500              
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Thus in lifting a 668 N barbell there is a force on the spinal disk at the base of the spine of 4180 N1. That is, the 
force on the spine is 6 times greater than the weight that is lifted. 
 

 
 

 
 
 

Have you ever wondered … ? 
An Essay on the Application of Physics. 

Traction  
 

Have you ever wondered, while visiting Uncle Johnny in the 
hospital, what they were doing to that poor man in the other 
bed (figure 1)? As you can see in figure 2, they have him 
connected to all kinds of pulleys, ropes, and weights. It looks 
like some kind of medieval torture rack, where they are 
stretching the man until he tells all he knows. Or perhaps 
the man is a little short for his weight and they are just 
trying to stretch him to normal size. 

Of course it is none of these things, but the idea of 
stretching is correct. Actually the man in the other bed is in 
traction. Traction is essentially a process of exerting a force 
on a skeletal structure in order to hold a bone in a prescribed 
position. Traction is used in the treatment of fractures and is 
a direct application of a body in equilibrium under a number 
of forces. The object of traction is to exert 

                                                                                      Figure 1  A man in traction. 
 

sufficient force to keep the two sections of the fractured bone in alignment and just touching while they heal. The 
traction process thus prevents muscle contraction that might cause misalignment at the fracture. The traction 
force can be exerted through a splint or by a steel pin passed directly through the bone. 

An example of one type of traction, shown in figure 2, is known as Russell traction and is used in the 
treatment of a fracture of the femur. Let us analyze the problem from the point of view of equilibrium. First note 
that almost all of the forces on the bone are transmitted 
by the ropes that pass around the pulleys. The 
characteristic of all the systems with pulleys and ropes 
that are used in traction is that the tension in the taut 
connecting rope is everywhere the same. Thus, the 
forces exerted on the bone are the tensions T1, T2, T3, 
the weight of the leg wL, and the force exerted by the 
muscles FM. The first condition of equilibrium applied 
to the leg yields 

Σ Fy = 0  
= T1 sin θ + T3 − T2 sin θ − wL = 0    (5H.1) 

 
The function of the pulleys is to change the direction of 
the force, but the tension in the rope is everywhere the 
same. But the tension T is supplied by the weight w  

                                                                                               Figure 2  Russell traction. 
 
that is hung from the end of the bed and is thus equal to the weight w. Hence, 

 
T1 = T2 = T3 = w                                                                          H.2) 

                                                           
1What are these forces in pounds? 
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Equation 5H.1 now becomes 

w sin θ + w − w sin θ − wL = 0 
or 

w = wL                                                                               (5H.3) 
 

Thus the weight w hung from the bottom of the bed must be equal to the weight of the leg wL. 
The second equation of the first condition of equilibrium is 

 
Σ Fx = 0 

FM − T1 cos θ − T2 cos θ = 0                                                              (5H.4) 
Using equation 5H.2 this becomes 

FM − w cos θ − w cos θ = 0 
FM = w cos θ + w cos θ 

Thus, 
FM = 2w cos θ                                                                         (5H.5) 

 
which says that by varying the angle θ, the force to overcome muscle contraction can be varied to any value 
desired. In this analysis, the force exerted to overcome the muscle contraction lies along the axis of the bone. 
Variations of this technique can be used if we want to have the traction force exerted at any angle because of the 
nature of the medical problem. 
 
 

The Language of Physics 
 
Statics 
That portion of the study of 
mechanics that deals with bodies in 
equilibrium (p. ). 
 
Equilibrium 
A body is said to be in equilibrium 
under the action of several forces if 
the body has zero translational 
acceleration and no rotational 
motion (p. ). 
 
The first condition of 
equilibrium 
For a body to be in equilibrium the 
vector sum of all the forces acting 
on the body must be zero. This can 
also be stated as: a body is in 
equilibrium if the sum of all the 
forces in the x-direction is equal to 
zero and the sum of all the forces in 
the y-direction is equal to zero (p. ). 
 
Torque 
Torque is defined as the product of 
the force times the lever arm. 
Whenever an unbalanced torque 

acts on a body at rest, it will put 
that body into rotational motion 
(p. ). 
 
Lever arm 
The lever arm is defined as the 
perpendicular distance from the 
axis of rotation to the direction or 
line of action of the force. If the 
force acts through the axis of 
rotation of the body, it has a zero 
lever arm and cannot cause a 
torque to act on the body (p. ). 
 
The second condition of 
equilibrium 
In order for a body to be in 
rotational equilibrium, the sum of 
the torques acting on the body must 
be equal to zero. This can also be 
stated as: the necessary condition 
for a body to be in rotational 
equilibrium is that the sum of all 
the torques clockwise must be equal 
to the sum of all the torques 
counterclockwise (p. ). 
 

Center of gravity (cg) 
The point that behaves as though 
the entire weight of the body is 
located at that point. For a body 
with a uniform mass distribution 
located in a uniform gravitational 
field, the center of gravity is located 
at the geometrical center of the 
body (p. ). 
 
Center of mass (cm) 
The point of a body at which all the 
mass of the body is assumed to be 
concentrated. For a body with a 
uniform mass distribution, the 
center of mass coincides with the 
geometrical center of the body. 
When external forces act on a body 
to put the body into translational 
motion, all the forces can be 
considered to act at the center of 
mass of the body. For a body in a 
uniform gravitational field, the 
center of gravity coincides with the 
center of mass of the body (p. ). 
 

 
Summary of Important Equations 

  
First condition of equilibrium 

                Σ F = 0                (5.1) 
 

First condition of equilibrium 
                ΣFx = 0               (5.4) 

Σ Fy = 0               (5.5) 
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Torque 
    τ = r⊥F = rF⊥ = rF sin θ     (5.21) 

 
Second condition of equilibrium 

              Σ τ = 0                (5.25) 
 
Second condition of equilibrium 

            Σ τcw = Σ τccw            (5.24) 
 
Center of gravity 

       xcg = Σ wixi             (5.31) 
       W 

        ycg = Σ wiyi            (5.32) 
      W 

Center of mass 
         xcm = Σ mixi  = Σ mixi      (5.34) 

                      Σ mi               M 
ycm = Σ miyi = Σ miyi      (5.35) 

                        Σ mi         M 

 
Questions for Chapter 5 

 
1. Why can a body moving at 

constant velocity be considered as a 
body in equilibrium? 

2. Why cannot an accelerated 
body be considered as in 
equilibrium? 

3. Why can a point outside the 
body in equilibrium be considered 
as an axis to compute torques? 

4. What is the difference 
between the center of mass of a 
body and its center of gravity? 

5. A ladder is resting against a 
wall and a person climbs up the 
ladder. Is the ladder more likely to 
slip out at the bottom as the person 
climbs closer to the top of the 
ladder? Explain. 

6. When flying an airplane a 
pilot frequently changes from the 
fuel tank in the right wing to the 

fuel tank in the left wing. Why does 
he do this? 

7. Where would you expect the 
center of gravity of a sphere to be 
located? A cylinder? 

*8. When lifting heavy objects 
why is it said that you should bend 
your knees and lift with your legs 
instead of your back? Explain. 

9. A short box and a tall box are 
sitting on the floor of a truck. If the 
truck makes a sudden stop, which 
box is more likely to tumble over? 
Why? 

*10. A person is sitting at the 
end of a row boat that is at rest in 
the middle of the lake. If the person 
gets up and walks toward the front 
of the boat, what will happen to the 
boat? Explain in terms of the center 
of mass of the system. 

11. Is it possible for the center 
of gravity of a body to lie outside of 
the body? (Hint: consider a 
doughnut.) 

*12. Why does an obese person 
have more trouble with lower back 
problems than a thin person? 

13. Describe how a lever works 
in terms of the concept of torque. 

*14. Describe how you could 
determine the center of gravity of 
an irregular body such as a plate, 
experimentally. 

*15. Engineers often talk about 
the moment of a force acting on a 
body. Is there any difference 
between the concept of a torque 
acting on a body and the moment of 
a force acting on a body? 

 

 
Problems for Chapter 5 

 
5.1 The First Condition of 

Equilibrium 
1. In a laboratory experiment 

on a force table, three forces are in 
equilibrium. One force of 0.300 N 
acts at an angle of 40.00. A second 
force of 0.800 N acts at an angle of 
1200. What is the magnitude and 
direction of the force that causes 
equilibrium? 

2. Two ropes each 3.05 m long 
are attached to the ceiling at two 
points located 4.58 m apart. The 
ropes are tied together in a knot at 
their lower end and a load of 312 N 
is hung on the knot. What is the 
tension in each rope? 

3. What force must be applied 
parallel to the plane to make the 
block move up the frictionless plane 
at constant speed? 

            
Diagram for problem 3. 

 
4. Two ropes are attached to the 

ceiling as shown, making angles of 
40.00 and 20.00. A weight of 100 N 
is hung from the knot. What is the 
tension in each rope? 

 
Diagram for problem 4. 

 
5. Find the force F, parallel to 

the frictionless plane, that will 
allow the system to move at 
constant speed. 
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Diagram for problem 5. 

 
6. A weightless rope is stretched 

horizontally between two poles 7.63 
m apart. Spiderman, who weighs 
712 N, balances himself at the 
center of the rope, and the rope is 
observed to sag 0.153 m at the 
center. Find the tension in each 
part of the rope. 

7. A weightless rope is stretched 
horizontally between two poles 7.63 
m apart. Spiderman, who weighs 
712 N, balances himself 1.53 m 
from one end, and the rope is 
observed to sag 9.15 cm there. What 
is the tension in each part of the 
rope? 

8. A force of 15.0 N is applied to 
a 15.0-N block on a rough inclined 
plane that makes an angle of 52.00 
with the horizontal. The force is 
parallel to the plane. The block 
moves up the plane at constant 
velocity. Find the coefficient of 
kinetic friction between the block 
and the plane. 

9. With what force must a 5.00-
N eraser be pressed against a 
blackboard for it to be in static 
equilibrium? The coefficient of 
static friction between the board 
and the eraser is 0.250. 

10. A traffic light, weighing 668 
N is hung from the center of a cable 
of negligible weight that is 
stretched horizontally between two 
poles that are 18.3 m apart. The 
cable is observed to sag 0.610 m. 
What is the tension in the cable? 

11. A traffic light that weighs 
600 N is hung from the cable as 
shown. What is the tension in each 
cable? Assume the cable to be 
massless. 

   
Diagram for problem 11.                

 
12. Your car is stuck in a snow 

drift. You attach one end of a 15.3-
m rope to the front of the car and 
attach the other end to a nearby 
tree, as shown in the figure. If you 
can exert a force of 668 N on the 
center of the rope, thereby 
displacing it 0.915 m to the side, 
what will be the force exerted on 
the car? 

 
Diagram for problem 12. 

 
13. What force is indicated on 

the scale in part a and part b of the 
diagram if m1 = m2 = 20.0 kg? 

 (a) 

 
                      (b) 

Diagram for problem 13. 
 

*14. Find the tension in each 
cord of the figure, if the block 
weighs 100 N. 

 
Diagram for problem 14. 

 
5.2 The Concept of Torque 

15. A force of 4.45 N is applied 
to a door knob perpendicular to a 
75.0-cm. door. What torque is 
produced to open the door? 

16.  A horizontal force of 50.0 N 
is applied at an angle of 28.50 to a 
door knob of a 75.0-cm door. What 
torque is produced to open the door? 

17. A door knob is placed in the 
center of a 75.0-cm door. If a force of 
4.45 N is exerted perpendicular to 
the door at the knob, what torque is 
produced to open the door? 

18. Compute the net torque 
acting on the pulley in the diagram 
if the radius of the pulley is 0.250 m 
and the tensions are T1 = 50.0 N 
and T2 = 30.0 N. 

 
Diagram for problem 18. 

 
19. Find the torque produced by 

the bicycle pedal in the diagram if 
the force F = 11.0 N, the radius of 
the crank r = 18.0 cm, and angle θ = 
37.00. 
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   Diagram for problem 19. 
 

5.5 Examples of Rigid Bodies in 
Equilibrium 
Parallel Forces 

20. Two men are carrying a 
9.00-m telephone pole that has a 
mass of 115 kg. If the center of 
gravity of the pole is 3.00 m from 
the right end, and the men lift the 
pole at the ends, how much weight 
must each man support? 

21. A uniform board that is 5.00 
m long and weighs 450 N is 
supported by two wooden horses, 
0.500 m from each end. If a 800-N 
person stands on the board 2.00 m 
from the right end, what force will 
be exerted on each wooden horse? 

22. A 300-N boy and a 250-N 
girl sit at opposite ends of a 4.00-m 
seesaw. Where should another 250-
N girl sit in order to balance the 
seesaw? 

23. A uniform beam 3.50 m long 
and weighing 90.0 N carries a load 
of 110 N at one end and 225 N at 
the other end. It is held horizontal, 
while resting on a wooden horse 
1.50 m from the heavier load. What 
torque must be applied to keep it at 
rest in this position? 

24. A uniform pole 5.00 m long 
and weighing 100 N is to be carried 
at its ends by a man and his son. 
Where should a 250-N load be hung 
on the pole, such that the father 
will carry twice the load of his son? 

25. A meter stick is hung from 
two scales that are located at the 
20.0- and 70.0-cm marks of the 
meter stick. Weights of 2.00 N are 
placed at the 10.0- and 40.0-cm 
marks, while a weight of 1.00 N is 
placed at the 90.0-cm mark. The 
weight of the uniform meter stick is 

1.50 N. Determine the scale 
readings at A and B in the diagram. 

 
Diagram for problem 25. 

 
Center of Gravity of a Body 

26. A tapered pole 3.05 m long 
weighs 111 N. The pole balances at 
its mid-point when a 22.3-N weight 
hangs from the slimmer end. Where 
is the center of gravity of the pole? 

*27. A loaded wheelbarrow that 
weighs 334 N has its center of 
gravity 0.610 m from the front 
wheel axis. If the distance from the 
wheel axis to the end of the handles 
is 1.83 m, how much of the weight 
of the wheelbarrow is supported by 
each arm? 

*28. Find the center of gravity 
of the carpenters square shown in 
the diagram. 

 
Diagram for problem 28. 

 
29. The front and rear axles of a 

1110-kg car are 2.50 m apart. If the 
center of gravity of the car is 
located 1.15 m behind the front 
axle, find the load supported by the 
front and rear wheels of the car. 

30. A very bright but lonesome 
child decides to make a seesaw for 
one. The child has a large plank, 
and a wooden horse to act as a 
fulcrum. Where should the child 

place the fulcrum, such that the 
plank will balance, when the child 
is sitting on the end? The child 
weighs 267 N and the plank weighs 
178 N and is 3.05 m long. (Hint: 
find the center of gravity of the 
system.) 

 
Center of Mass 

31. Four masses of 20.0, 40.0, 
60.0, and 80.0 g are located at the 
respective distances of 10.0, 20.0, 
30.0, and 40.0 cm from an origin. 
Find the center of mass of the 
system. 

32. Three masses of 15.0, 45.0, 
and 25.0 g are located on the x-axis 
at 10.0, 25.0, and 45.0 cm. Two 
masses of 25.0 and 33.0 g are 
located on the y-axis at 35.0 and 
50.0 cm, respectively. Find the 
center of mass of the system. 

*33. A 1.00-kg circular metal 
plate of radius 0.500 m has 
attached to it a smaller circular 
plate of the same material of 0.100 
m radius, as shown in the diagram. 
Find the center of mass of the 
combination with respect to the 
center of the large plate. 

 
Diagram for problem 33. 

 
*34. This is the same problem 

as 33 except the smaller circle of 
material is removed from the larger 
plate. Where is the center of mass 
now? 

  
Crane Boom Problems 

35. A horizontal uniform boom 
that weighs 200 N and is 5.00 m 
long supports a load wL of 1000 N, 
as shown in the figure. Find all the 
forces acting on the boom. 
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Diagram for problem 35.              

 
36. A horizontal, uniform boom 

4.00 m long that weighs 200 N 
supports a load wL of 1000 N. A guy 
wire that helps to support the 
boom, is attached 1.00 m in from 
the end of the boom. Find all the 
forces acting on the boom. 

 
Diagram for problem 36. 

 
37. A horizontal, uniform boom 

4.50 m long that weighs 250 N 
supports a 295 N load wL. A guy 
wire that helps to support the boom 
is attached 1.0 m in from the end of 
the boom, as in the diagram for 
problem 40. If the maximum 
tension that the cable can 
withstand is 1700 N, how far out on 
the boom can a 95.0-kg repairman 
walk without the cable breaking? 

38. A uniform beam 4.00 m long 
that weighs 200 N is supported, as 
shown in the figure. The boom lifts 
a load wL of 1000 N. Find all the 
forces acting on the boom. 

 
Diagram for problem 38. 

 
*39. A uniform beam 4.00 m 

long that weighs 200 N is 
supported, as shown in the figure. 
The boom lifts a load wL of 1000 N. 
Find all the forces acting on the 
boom. 

 
Diagram for problem 39.      

 
40. A 356-N sign is hung on a 

uniform steel pole that weighs 111 
N, as shown in the figure. Find all 
the forces acting on the boom. 

 
Diagram for problem 40. 

 
Ladder Problems 

41. A uniform ladder 6.00 m 
long weighing 120 N leans against a 
frictionless wall. The base of the 

ladder is 1.00 m away from the 
wall. Find all the forces acting on 
the ladder. 

42. A uniform ladder 6.00 m 
long weighing 120 N leans against a 
frictionless wall. A girl weighing 
400 N climbs three-fourths of the 
way up the ladder. If the base of the 
ladder makes an angle of 75.00 with 
the ground, find all the forces 
acting on the ladder. Compute all 
torques about the base of the 
ladder. 

43. Repeat problem 42, but 
compute all torques about the top of 
the ladder. Is there any difference 
in the results of the problem? 

44. A uniform ladder 4.58 m 
long weighing 111 N leans against a 
frictionless wall. If the base of the 
ladder makes an angle of 40.00 with 
the ground, what is the minimum 
coefficient of friction between the 
ladder and the ground such that the 
ladder will not slip out? 

*45. A uniform ladder 5.50 m 
long with a mass of 12.5 kg leans 
against a frictionless wall. The base 
of the ladder makes an angle of 
48.00 with the ground. If the 
coefficient of friction between the 
ladder and the ground is 0.300, how 
high can a 82.3-kg man climb the 
ladder before the ladder starts to 
slip? 

 
Applications to the Health 
Sciences 

46. A weight lifter is lifting a 
dumbbell as in the example shown 
in figure 5.22 only now the forearm 
makes an angle of 30.00 with the 
horizontal. Using the same data as 
for that problem find the force FM 
exerted by the biceps muscle and 
the reaction force at the elbow joint 
FJ. Assume that the force FM 
remains perpendicular to the arm. 

47. Consider the weight lifter in 
the example shown in figure 5.23. 
Determine the forces FM and FR if 
the angle θ = 00.00. 

*48. The weight of the upper 
body of the person in the 
accompanying diagram acts 
downward about 8.00 cm in front of 
the fifth lumbar vertebra. This 
weight produces a torque about the 
fifth lumbar vertebra. To 
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counterbalance this torque the 
muscles in the lower back exert a 
force FM that produces a counter 
torque. These muscles exert their 
force about 5.00 cm behind the fifth 
lumbar vertebra. If the person 
weighs 801 N find the force exerted 
by the lower back muscles FM and 
the reaction force FR that the 
sacrum exerts upward on the fifth 
lumbar vertebra. The weight of the 
upper portion of the body is about 
65% of the total body weight. 

    
Diagram for problem 48.   

 

   
Diagram for problem 49. 

 
*49. Consider the same 

situation as in problem 48 except 
that the person is overweight. The 
center of gravity with the additional 

weight is now located 15.0 cm in 
front of the fifth lumbar vertebra 
instead of the previous 8.00 cm. 
Hence a greater torque will be 
exerted by this additional weight. 
The distance of the lower back 
muscles is only slightly greater at 
6.00 cm. If the person weighs 1070 
N find the force FR on the fifth 
lumbar vertebra and the force FM 
exerted by the lower back muscles. 

*50. A 668-N person stands 
evenly on the balls of both feet. The 
Achilles tendon, which is located at 
the back of the ankle, provides a 
tension TA to help balance the 
weight of the body as seen in the 
diagram. The distance from the ball 
of the foot to the Achilles tendon is 
approximately 18.0 cm. The tibia 
leg bone pushes down on the foot 
with a force FT. The distance from 
the tibia to the ball of the foot is 
about 14.0 cm. The ground exerts a 
reaction force FN upward on the ball 
of the foot that is equal to half of 
the body weight. Draw a free body 
diagram of the forces acting and 
determine the force exerted by the 
Achilles tendon and the tibia. 

           
Diagram for problem 50. 

 
Additional Problems 

*51. If w weighs 100 N, find 
(a) the tension in ropes 1, 2, and 3 
and (b) the tension in ropes 4, 5, 
and 6. The angle θ = 52.00 and the 
angle φ = 33.00. 

  
Diagram for problem 51. 

 
*52. Block A rests on a table 

and is connected to another block B 
by a rope that is also connected to a 
wall. If MA = 15.0 kg and µs = 0.200, 
what must be the value of MB to 
start the system into motion? 

 
Diagram for problem 52.                     

 
53. In the pulley system shown, 

what force F is necessary to keep 
the system in equilibrium? 

 
Diagram for problem 53. 
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*54. A sling is used to support a 
leg as shown in the diagram. The 
leg is elevated at an angle of 20.00. 
The bed exerts a reaction force R on 
the thigh as shown. The weight of 
the thigh, leg, and ankle are given 
by wT = 192 N, wL = 85.4 N, and wA 
= 30.1 N, respectively, and the 
locations of these weights are as 
shown. The sling is located 68.6 cm 
from the point O in the diagram. A 
free body diagram is shown in part 
b of the diagram. Find the weight w 
that is necessary to put the leg into 
equilibrium. 

 

 
(a) 

 

 
(b) 

Diagram for problem 54. 
 
*55. Find the tensions T1, T, 

and T2 in the figure if w1 = 500 N 
and w2 = 300 N. The angle θ = 35.00 
and the angle φ = 25.00. 

 
Diagram for problem 55. 

 
*56. The steering wheel of an 

auto has a diameter of 45.7 cm. The 
axle that it is connected to has a 

diameter of 5.08 cm If a force of 111 
N is exerted on the rim of the 
wheel, (a) what is the torque 
exerted on the steering wheel, 
(b) what is the torque exerted on 
the axle, and (c) what force is 
exerted on the rim of the axle? 

57. One type of simple machine 
is called a wheel and axle. A wheel 
of radius 35.0 cm is connected to an 
axle of 2.00 cm radius. A force of Fin 
= 10.0 N is applied tangentially to 
the wheel. What force Fout is 
exerted on the axle? The ratio of the 
output force Fout to the input force 
Fin is called the ideal mechanical 
advantage (IMA) of the system. 
Find the IMA of this system. 

*58. A box 1.00 m on a side 
rests on a floor next to a small piece 
of wood that is fixed to the floor. 
The box weighs 500 N. At what 
height h should a force of 400 N be 
applied so as to just tip the box? 

*59. A 200-N door, 0.760 m wide 
and 2.00 m long, is hung by two 
hinges. The top hinge is located 
0.230 m down from the top, while 
the bottom hinge is located 0.330 m 
up from the bottom. Assume that 
the center of gravity of the door is 
at its geometrical center. Find the 
horizontal force exerted by each 
hinge on the door. 

*60. A uniform ladder 6.00 m 
long weighing 100 N leans against a 
frictionless wall. If the coefficient of 
friction between the ladder and the 
ground is 0.400, what is the 
smallest angle θ that the ladder can 
make with the ground before the 
ladder starts to slip? 

*61. If an 800-N man wants to 
climb a distance of 5.00 m up the 
ladder of problem 60, what angle θ 
should the ladder make with the 
ground such that the ladder will not 
slip? 

*62. A uniform ladder 6.10 m 
long weighing 134 N leans against a 
rough wall, that is, a wall where 
there is a frictional force between 
the top of the ladder and the wall. 
The coefficient of static friction is 
0.400. If the base of the ladder 
makes an angle θ of 40.00 with the 
ground when the ladder begins to 
slip down the wall, find all the 
forces acting on the ladder. (Hint: 

With a rough wall there will be a 
vertical force fs acting upward at 
the top of the ladder. In general, 
this force is unknown but we do 
know that it must be less than µsFN. 
At the moment the ladder starts to 
slip, this frictional force is known 
and is given by the equation of 
static friction, namely, fs = µsFN = 
µsF. Although there are now four 
unknowns, there are also four 
equations to solve for them.) 

*63. A 1000-N person stands 
three-quarters of the way up a 
stepladder. The step side weighs 
89.0 N, is 1.83 m long, and is 
uniform. The rear side weighs 44.5 
N, is also uniform, and is also 1.83 
m long. A hinge connects the front 
and back of the ladder at the top. A 
weightless tie rod, 45.8 cm in 
length, is connected 61.0 cm from 
the top of the ladder. Find the 
forces exerted by the floor on the 
ladder and the tension in the tie 
rod. 

 
Interactive Tutorials 

64. Concurrent Forces. Two 
ropes are attached to the ceiling, 
making angles θ = 20.00 and φ = 
40.00, suspending a mass m = 50.0 
kg. Calculate the tensions T1 and T2 
in each rope. 

65. Parallel Forces. A uniform 
beam of length L = 10.0 m and mass 
m = 5.00 kg is held up at each end 
by a force FA (at 0.00 m) and force 
FB (at 10.0 m). If a weight W = 400 
N is placed at the position x = 8.00 
m, calculate forces FA and FB. 

66. The crane boom. A uniform 
boom of weight wB = 250 N and 
length l = 8.00 m is connected to the 
mast by a hinge pin at the point A 
in figure 5.20. A load wL = 1200 N is 
supported at the other end. A cable 
is connected at the end of the boom 
making an angle θ = 55.00, as 
shown in the diagram. Find the 
tension T in the cable and the 
vertical V and horizontal H forces 
that the hinge pin exerts on the 
boom. 

67. A uniform ladder. A uniform 
ladder of weight w1 = 100 N and 
length L = 20.0 m leans against a 
frictionless wall at a base angle θ = 
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60.00. A person weighing wp = 150 
N climbs the ladder a distance d = 
6.00 m from the base of the ladder. 
Calculate the horizontal H and 

vertical V forces acting on the 
ladder, and the force F exerted by 
the wall on the top of the ladder. 

 

To go to these Interactive 
Tutorials click on this sentence. 

 
 

To go to another chapter, return to the table of contents by clicking on this sentence.   
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Chapter 6  Uniform Circular Motion,  
Gravitation, and Satellites  

 
That’s one small step for man, one giant leap for mankind.  Neil Armstrong, 
as he stepped on the surface of the moon July 20, 1969 

 
6.1  Uniform Circular Motion 
Uniform circular motion is defined as motion in a circle at constant speed. Motion in a circle with changing 
speeds will be discussed in chapter 9. A car moving in a circle at the constant speed of 20 km/hr is an example of a 
body in uniform circular motion. At every point on that circle the car would be moving at 20 km/hr. This type of 
motion is shown in figure 
6.1. At the time t0, the car 
is located at the point A 
and is moving with the 
velocity v0, which is 
tangent to the circle at 
that point. At a later time 
t, the car will have moved 
through the angle θ, and 
will be located at the 
point B. At the point B 
the car has a velocity v, 
which is tangent to the 
circle at B. (The velocity 
is always tangent to the 
circle, because at any 
instant the tangent 
specifies the direction of 
motion.) The lengths of 

                                                    (a)                                                      (b)     
                                               Figure 6.1  Uniform circular motion. 

 
the two vectors, v and v0, are the same because the magnitude of any vector is represented as the length of that 
vector. The magnitude of the velocity is the speed, which is a constant for uniform circular motion. 

The first thing we observe in figure 6.1 is that the direction of the velocity vector has changed in going 
from the point A to the point B. Recall from chapter 3, on kinematics, that the acceleration is defined as the 
change in velocity with time, that is, 

a = ∆v                                                                                (6.1) 
      ∆t 

 
Even though the speed is a constant in uniform circular motion, the direction is always changing with time. Hence, 
the velocity is changing with time, and there must be an acceleration. Thus, motion in a circle at constant speed is 
accelerated motion. We must now determine the direction of this acceleration and its magnitude. 
 
 
6.2  Centripetal Acceleration and its Direction 
To determine the direction of the centripetal acceleration, let us start by moving the vector v, located at the point 
B in figure 6.1, parallel to itself to the point A, as shown in figure 6.2. The difference between the two velocity 
vectors is v − v0 and points approximately toward the center of the circle in the direction shown. But this 
difference between the velocity vectors is the change in the velocity vector ∆v, that is, 
 

∆v = v − v0                                                                                  (6.2) 
But from equation 6.1 

∆v = a∆t                                                                                 (6.3) 
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This is a vector equation, and whatever direction the left-hand side of the equation has, the right-hand side must 
have the same direction. Therefore, the vector ∆v points in the same direction as the acceleration vector a.  
Observe from figure 6.2 that ∆v points approximately toward the center of the circle. (If the angle θ, between the 
points A and B, were made very small, then ∆v would point exactly at the center of the circle.) Thus, since ∆v 
points toward the center, the acceleration vector must also point toward the center of the circle. This is the 
characteristic of uniform circular motion. Even though the body is moving at constant speed, there is an 
acceleration and the acceleration vector points toward the center of the circle. This acceleration is called the 
centripetal acceleration. 

The word centripetal means “center seeking” or seeking the center. If this circular motion were shown at 
intervals of 450, we would obtain the picture shown in figure 6.3. Observe in figure 6.3 that no matter where the 
body is on the circle, the centripetal acceleration always points toward the center of the circle. 

                           
           Figure 6.2  The direction of the centripetal              Figure 6.3  The centripetal acceleration always points  
                                      acceleration.                                                          toward the center of the circle. 

 
What is the magnitude of this acceleration? The problem of calculating accelerations of objects moving in 

circles at constant speed was first solved by Christian Huygens (1629-1695) in 1673, and his solution is effectively 
the same one that we use today. The argument is basically a geometric one. However, before the magnitude of the 
centripetal acceleration can be determined, we need first to determine how an angle is defined in terms of radian 
measure. 
 
 
6.3  Angles Measured in Radians 
In addition to the usual unit of degrees used to measure an angle, an 
angle can also be measured in another unit called a radian. As the 
body moves along the arc s of the circle from point A to point B in 
figure 6.4, it sweeps out an angle θ in the time t. This angle θ, 
measured in radians (abbreviated rad), is defined as the ratio of the 
arc length s traversed to the radius of the circle r. That is, 
 

θ =  s   = arc length                                  (6.4) 
        r         radius              

 
Thus an angle of 1 radian is an angle swept out such that the distance 
s, traversed along the arc, is equal to the radius of the circle: 
 

θ =  s  =  r  = 1 rad  
                                                   r      r  

 
Figure 6.4  Definition of an angle expressed  

                                                                                                                  in radians. 

Pearson Custom Publishing

174



 
Chapter 6  Uniform Circular Motion, Gravitation, and Satellites                                                                          6-3 

  
Notice that a radian is a dimensionless quantity. If s is measured in meters and r is measured in meters, then the 
ratio yields units of meters over meters and the units will thus cancel. 

For an entire rotation around the circle, that is, for one revolution, the arc subtended is the circumference 
of the circle, 2πr. Therefore, an angle of one revolution, measured in radians, becomes 

 
θ =  s  = 2πr  = 2π rad 

                                                                                      r       r 
 

That is, one revolution is equal to 2π rad. The relationship between an angle measured in degrees, and one 
measured in radians can be found from the fact that one revolution is also equal to 360 degrees. Thus, 
 

  1 rev = 2π rad = 3600 
and solving for a radian, we get 

        1 rad =  3600 = 57.2960   
      2π        

Similarly, 
1 degree = 0.01745 rad 

 
For ease in calculations on an electronic calculator it is helpful to use the conversion factor 
 

π rad = 1800 
 

In almost all problems in circular motion the angles will be measured in radians. 
The relationship between the arc length s and the angle θ, measured in radians, for circular motion, found 

from equation 6.4, is 
 s = rθ                                                                                  (6.5) 

 
 
6.4 The Magnitude of the Centripetal Acceleration 
Having determined the relation between the arc length s and the angle θ swept out, we can now determine the 
magnitude of the centripetal acceleration. In moving at the constant speed v, along the arc of the circle from A to B 
in figure 6.2, the body has traveled the distance 

s = vt                                                                                   (6.6) 
 

But in this same time t, the angle θ has been swept out in moving the distance s along the arc. If the distance s 
moved along the arc from equations 6.5 and 6.6 are equated, we have 
 

rθ = vt 
Solving for θ, we obtain 

θ =  vt                                                                                    (6.7) 
       r 

 
This is the angle θ swept out in the uniform circular motion, in terms of the speed v, time t, and the radius r of the 
circle. We will return to equation 6.7 in a moment, but first let us look at the way that these velocity vectors are 
changing with time. 

As we see in figure 6.3, the velocity vector v points in a different direction at every instant of time. Let us 
slide each velocity vector in figure 6.3 parallel to itself to a common point. If we draw a curve connecting the tips of 
each velocity vector, we obtain the circle shown in figure 6.5. That is, since the magnitude of the velocity vector is 
a constant, a circle of radius v is generated. As the object moves from A to B and sweeps out the angle θ in figure 
6.2, the velocity vector also moves through the same angle θ, figure 6.5. To prove this, notice that the velocity 
vectors v0 at A and v at B are each tangent to the circle there, figure 6.6. In moving through the angle θ in going 
from A to B, the velocity vector turns through this same angle θ. This is easily seen in figure 6.6. The angle α is 

 
α  =  π  − θ                                                                                (6.8) 

   2 
while the angle β is 
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β =  π  − α                                                                               (6.9) 

   2 
Substituting equation 6.8 into equation 6.9 gives 

2 2
π π

β θ = − − 
 

 

 
Hence, β , the angle between v and v0 in figure 6.6, is 

    β = θ 
 

                  
                   Figure 6.5  The velocity circle.                                  Figure 6.6  The angle between the velocity 

                                                                                             vectors v and v0 is the same as the angle θ 
                                                                                                 swept out in moving from point A to point B. 

 
Thus, the angle between the velocity vectors v and v0 is the same as the angle θ swept out in moving from point A 
to point B. 

Therefore, in moving along the velocity circle in figure 6.5, an amount of arc s’ is swept out with the angle 
θ. This velocity circle has a radius of v, the constant speed in the circle. Using equation 6.4, as it applies to the 
velocity circle, we have 

θ = arc length  =  s’                                                                       (6.10) 
          radius         v 

 
If the angle θ is relatively small, then the arc of the circle s’ is approximately equal to the chord of the circle v − v0 
in figure 6.5.1 That is, 

arc ≈ chord 
s’ = |v − v0| 

But 
v − v0 = at 

hence, 
s’ = at 

Substituting this result into equation 6.10 gives 
θ = at                                                                                  (6.11) 
       v   

 
Thus we have obtained a second relation for the angle θ swept out, expressed now in terms of acceleration, speed, 
and time. Return to equation 6.7, which gave us the angle θ swept out as the moving body went from point A to 

                                                           
1  Note that v − v0 is the magnitude of the difference in the velocity vectors and is the straight line between the tip of the velocity vector v0 and 

the tip of the velocity vector v, and as such, is equal to the chord of the circle in figure 6.5. 
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point B along the circular path, and compare it to equation 6.11, which gives the angle θ swept out in the velocity 
circle. Because both angles θ are equal, equation 6.11 can now be equated to equation 6.7, giving 
 

θ = θ 
 at  =  vt  
 v       r 

Solving for the acceleration we obtain 
 a =  v2   
      r           

 
Placing a subscript c on the acceleration to remind us that this is the centripetal acceleration, we then have 
 

 ac =  v2                                                                                 (6.12) 
                                                                                                    r                        

 
Therefore, for the uniform circular motion of an object moving at constant speed v in a circle of radius r, the 

object undergoes an acceleration ac, pointed toward the center of the circle, and having the magnitude given by 
equation 6.12. 

 
Example 6.1 

 
Find the centripetal acceleration. An object moves in a circle of 10.0-m radius, at a constant speed of 5.00 m/s. 
What is its centripetal acceleration? 

Solution
 

The centripetal acceleration, found from equation 6.12, is 
 

ac =  v2                                                                                   (6.12) 
    r 

= (5.00 m/s)2 
 10.0 m 

= 2.50 m/s2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 6.2 
 

The special case of the centripetal acceleration equal to the gravitational acceleration. At what uniform speed 
should a body move in a circular path of 8.50 m radius such that the acceleration experienced will be the same as 
the acceleration due to gravity? 

Solution
 

We find the velocity of the moving body in terms of the centripetal acceleration by solving equation 6.12 for v: 
 

1cv ra=  
 

To have the body experience the same acceleration as the acceleration due to gravity, we set ac = g and get 
 

1cv ra rg= =  

 ( )( )28.50 m 9.80 m/s=  
= 9.13 m/s 
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To go to this Interactive Example click on this sentence. 

 

 
 
 

6.5  The Centripetal Force 
We have just seen that an object in uniform circular motion experiences a centripetal acceleration. However, 
because of Newton’s second law of motion, there must be a force acting on the object to give it the necessary 
centripetal acceleration. Applying Newton’s second law to the body in uniform circular motion we have 
 

F = ma = mac = mv2                                                                     (6.13) 
                            r 

 
A subscript c is placed on the force to remind us that this is the centripetal force, and equation 6.13 becomes 
 

 Fc = mv2                                                                               (6.14) 
            r                 

 
The force, given by equation 6.14, that causes an object to move in a circle at constant speed is called the 

centripetal force. Because the centripetal acceleration is pointed toward the center of the circle, then from 
Newton’s second law in vector form, we see that 

Fc = mac                                                                          (6.15) 
 

Hence, the centripetal force must also point toward the center of 
the circle. Therefore, when an object moves in uniform circular 
motion there must always be a centripetal force acting on the 
object toward the center of the circle as seen in figure 6.7. 

We should note here that we need to physically supply 
the force to cause the body to go into uniform circular motion. The 
centripetal force is the amount of force necessary to put the body 
into uniform circular motion, but it is not a real physical force in 
itself that is applied to the body. It is the amount of force 
necessary, but something must supply that force, such as a 
tension, a weight, gravity, and the like. As an example, consider 
the motion of a rock, tied to a string of negligible mass, and 
whirled in a horizontal circle, at constant speed v. At every 
instant of time there must be a centripetal force acting on the 
rock to pull it toward the center of the circle, if the rock is to move 
in the circle. This force is supplied by your hand, and transmitted 
to the rock, by the string. It is evident that such a force must be 
acting by the following consideration. Consider the  

                            Figure 6.7 The centripetal force always points  
                                                                                                                          toward the center of the circle. 

 
object at point A in figure 6.8 moving with a velocity v at a time t. By Newton’s first law, a body in motion at a 
constant velocity will continue in motion at that same constant velocity, unless acted on by some unbalanced 
external force. Therefore, if there were no centripetal force acting on the object, the object would continue to move 
at its same constant velocity and would fly off in a direction tangent to the circle. In fact, if you were to cut the 
string, while the rock is in motion, you would indeed observe the rock flying off tangentially to the original circle. 
(Cutting the string removes the centripetal force.) 
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Figure 6.8 The string supplies the centripetal force on a rock moving in a circle. 

 
Example 6.3 

 
Finding the centripetal force. A 500-g rock attached to a string is whirled in a horizontal circle at the constant 
speed of 10.0 m/s. The length of the string is 1.00 m. Neglecting the effects of gravity, find (a) the centripetal 
acceleration of the rock and (b) the centripetal force acting on the rock. 

Solution
 

a. The centripetal acceleration, found from equation 6.12, is 
 

 ac =  v2  = (10.0 m/s)2 = 100 m2/s2  
       r         1.00 m                 m 

= 100 m/s2 
 

b. The centripetal force, which is supplied by the tension in the string, found from equation 6.14, is 
 

Fc = mv2  = (0.500 kg)(10.0 m/s)2  = 50.0 kg m2 
        r                   1.00 m                          m s2   

= 50.0 N 
 

Notice how the units combine so that the final unit is a newton, the unit of force. 
 

To go to this Interactive Example click on this sentence. 
 

 
  
 
6.6  The Centrifugal Force 
In the preceding example of the rock revolving in a horizontal circle, there was a centripetal force acting on the 
rock by the string. But by Newton’s third law, if body A exerts a force on body B, then body B exerts an equal but 
opposite force on body A. Thus, if the string (body A) exerts a force on the rock (body B), then the rock (body B) 
must exert an equal but opposite force on the string (body A). This reaction force to the centripetal force is called 
the centrifugal force. Note that the centrifugal force does not act on the same body as does the centripetal force. 
The centripetal force acts on the rock, the centrifugal force acts on the string. The centrifugal force is shown in 
figure 6.9 as the dashed line that goes around the rock to emphasize that the force does not act on the rock but on 
the string. 
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If we wish to describe the motion of the rock, then we must 
use the centripetal force, because it is the centripetal force that acts 
on the rock and is necessary for the rock to move in a circle. The 
reaction force is the centrifugal force. But the centrifugal force does 
not act on the rock, which is the object in motion. 

The word centrifugal means to fly from the center, and hence 
the centrifugal force acts away from the center. This has been the 
cause of a great deal of confusion. Many people mistakenly believe 
that the centrifugal force acts outward on the rock, keeping it out on 
the end of the string. We can show that this reasoning is incorrect by 
merely cutting the string. If there really were a centrifugal force 
acting outward on the rock, then the moment the string is cut the 
rock should fly radially away from the center of the circle, as in 
figure 6.10(a). It is a matter of observation that the rock does not fly 
away radially but rather flies away tangentially as predicted by 
Newton’s first law. 

                                                                                                  Figure 6.9  The centrifugal force is the 
                                                                                                                        reaction force on the string. 

 
A similar example is 

furnished by a car wheel when 
it goes through a puddle of 
water, as in figure 6.10(b). 
Water droplets adhere to the 
wheel. The water droplet is 
held to the wheel by the 
adhesive forces between the 
water molecules and the tire. 
As the wheel turns, the drop of 
water wants to move in a 
straight line as it is governed 
by Newton’s first law but the 
adhesive force keeps the drop 
attached to the wheel. That is, 
the adhesive force is supplying 
the necessary  

                                              Figure 6.10  There is no radial force outward acting on the rock. 
 

centripetal force. As the wheel spins faster, v increases and the centripetal force necessary to keep the droplet 
attached to the wheel also increases (Fc = mv2/r). If the wheel spins fast enough, the adhesive force is no longer 
large enough to supply the necessary centripetal force and the water droplet on the rotating wheel flies away 
tangentially from the wheel according to Newton’s first law. 

Another example illustrating the difference between centripetal force and centrifugal force is supplied by a 
car when it goes around a turn, as in figure 6.10(c). Suppose you are in the passenger seat as the driver makes a 
left turn. Your first impression as you go through the turn is that you feel a force pushing you outward against the 
right side of the car. We might assume that there is a centrifugal force acting on you and you can feel that 
centrifugal force pushing you outward toward the right. This however is not a correct assumption. Instead what is 
really happening is that at the instant the driver turns the wheels, a frictional force between the wheels and the 
pavement acts on the car to deviate it from its straight line motion, and deflects it toward the left. You were 
originally moving in a straight line at an initial velocity v. By Newton’s first law, you want to continue in that 
same straight ahead motion. But now the car has turned and starts to push inward on you to change your motion 
from the straight ahead motion, to a motion that curves toward the left. It is the right side of the car, the floor, and 
the seat that is supplying, through friction, the necessary centripetal force on you to turn your straight ahead 
motion into circular motion. There is no centrifugal force pushing you toward the right, but rather the car, through 
friction, is supplying the centripetal force on you to push you to the left. 

Other mistaken beliefs about the centrifugal force will be mentioned as we proceed. However, in almost all 
of the physical problems that you will encounter, you can forget entirely about the centrifugal force, because it will 
not be acting on the body in motion. Only in a noninertial coordinate system, such as a rotating coordinate system, 

Pearson Custom Publishing

180



 
Chapter 6  Uniform Circular Motion, Gravitation, and Satellites                                                                          6-9 

do “fictitious” forces such as the centrifugal force need to be introduced. However, in this book we will limit 
ourselves to inertial coordinate systems. 
 
 
6.7  Examples of Centripetal Force 
The Rotating Disk in the Amusement Park 
Amusement parks furnish many examples of the application of centripetal force and circular motion. In one such 
park there is a large, horizontal, highly polished wooden disk, very close to a highly polished wooden floor. While 
the disk is at rest, children come and sit down on it. Then the disk starts to rotate faster and faster until the 
children slide off the disk onto the floor. 

Let us analyze this circular motion. In particular let us determine the maximum velocity that the child can 
move and still continue to move in the circular path. At any instant of time, the child has some tangential velocity 
v, as seen in figure 6.11. By Newton’s first law, the child has the tendency to continue moving in that tangential 
direction at the velocity v. However, if the child is to move in a circle, there must be some force acting on the child 
toward the center of the circle. In this case that force is supplied by the static friction between the seat of the pants 
of the child and the wooden disk. If that frictional force is present, the child will continue moving in the circle. 
That is, the necessary centripetal force is supplied by the force of static friction and therefore 

 
   Fc = fs                                                                               (6.16) 

 
The frictional force, obtained from equation 
4.44, is 

  fs ≤ µsFN 
 

Recall that the frictional force is usually less 
than the product µsFN, and is only equal at the 
moment that the body is about to slip. In this 
example, we are finding the maximum velocity 
of the child and that occurs when the child is 
about to slip off the disk. Hence, we will use the 
equality sign for the frictional force in equation 
4.44. Using the centripetal force from equation 
6.14 and the frictional force from equation 4.44, 
we obtain                                                                                     Figure 6.11  The rotating disk. 
 

mv2 = µsFN                                                                              (6.17) 
                                                                                         r              

 
As seen from figure 6.11, FN = w = mg. Therefore, equation 6.17 becomes 

 
mv2 = µsmg                                                                            (6.18) 

                                                                                          r              
 

The first thing that we observe in equation 6.18 is that the mass m of the child is on both sides of the equation and 
divides out. Thus, whatever happens to the child, it will happen to a big massive child or a very small one. When 
equation 6.18 is solved for v, we get 

sv rgµ=                                                                              (6.19) 
 

This is the maximum speed that the child can move and still stay in the circular path. For a speed greater than 
this, the frictional force will not be great enough to supply the necessary centripetal force. Depending on the 
nature of the children’s clothing, µs will, in general, be different for each child, and therefore each child will have a 
different maximum value of v allowable. If the disk’s speed is slowly increased until v is greater than that given by 
equation 6.19, there is not enough frictional force to supply the necessary centripetal force, and the children 
gleefully slide tangentially from the disk in all directions across the highly polished floor. 
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Example 6.4 
 

The rotating disk. A child is sitting 1.50 m from the center of a highly polished, wooden, rotating disk. The 
coefficient of static friction between the disk and the child is 0.30. What is the maximum tangential speed that the 
child can have before slipping off the disk? 

Solution
 

The maximum speed, obtained from equation 6.19, is 
 

sv rgµ=  

 ( )( )( )20.30 1.50 m 9.80 m/s=  
= 2.1 m/s 

 
To go to this Interactive Example click on this sentence. 

 

 
 
The Rotating Circular Room in the Amusement Park 
In another amusement park there is a ride that consists of a large circular room. (It looks as if you were on the 
inside of a very large barrel.) Everyone enters the room and stands against the wall. The door closes, and the 
entire room starts to rotate. As the speed increases each person feels as if he or she is being pressed up against the 
wall. Eventually, as everyone is pinned against the wall, the floor of the room drops out about 1 or 1.5 m, leaving 
all the children apparently hanging on the wall. After several minutes of motion, the rotation slows down and the 
children eventually slide down the wall to the lowered floor and the ride ends. 

Let us analyze the motion, in particular let us find the value of µs, the minimum value of the coefficient of 
static friction such that the child will not slide down the wall. The room is shown in figure 6.12. As the room 
reaches its operational speed, the child, at any instant, has a velocity v that is tangential to the room, as in figure 
6.12(a). By Newton’s first law, the child should continue in this straight line motion, but the wall of the room 
exerts a normal force on the child toward the center of the room, causing the child to deviate from the straight line 
motion and into the circular motion of the wall of the room. This normal force of the wall on the child, toward the 
center of the room, supplies the necessary centripetal force. When the floor drops out, the weight w of the child is 
acting downward and would cause the child to slide down the wall. But the frictional force fs between the wall and 
the child’s clothing opposes the weight, as seen in figure 6.12(b). The child does not slide down the wall  

Figure 6.12  Circular room in an amusement park. 
 
because the frictional force fs is equal to the weight of the child: 
 

fs = w                                                                                  (6.20) 
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The frictional force fs is again given by equation 4.44. We are looking for the minimum value of µs that will just 
keep the child pinned against the wall. That is, the child will be just on the verge of slipping down the wall. Hence, 
we use the equality sign in equation 4.44. Thus, the frictional force is 
 

fs = µsFN                                                                            (6.21) 
 

where FN is the normal force holding the two objects in contact. The centripetal force Fc is supplied by the normal 
force FN, that is, 

Fc = FN = mv2                                                                          (6.22) 
                   r 

 
Therefore, the greater the value of the normal force, the greater will be the frictional force. Substituting equation 
6.21 into 6.20 gives 

µsFN = w                                                                               (6.23) 
 

Substituting the normal force FN from equation 6.22 into equation 6.23 gives 
 

µs mv2  = w 
                                                                                             r  
But the weight w of the child is equal to mg. Thus, 

µsmv2 = mg                                                                             (6.24) 
                                                                                            r           

 
Notice that the mass m is contained on both sides of equation 6.24 and can be canceled. Hence, 
 

µs v2 = g                                                                                 (6.25) 
                                                                                             r          

 
We can solve equation 6.25 for µs, the minimum value of the coefficient of static friction such that the child will not 
slide down the wall: 

µs = rg                                                                                 (6.26) 
         v2 

 
Example 6.5 

 
The rotating room. The radius r of the rotating room is 4.50 m, and the speed v of the child is 12.0 m/s. Find the 
minimum value of µs to keep the child pinned against the wall.   

Solution
 

The minimum value of µs, found from equation 6.26, is 
 

µs = rg = (4.50 m)(9.80 m/s2) = 0.306  
                                                                          v2            (12.0 m/s)2 

 
As long as µs is greater than 0.306, the child will be held against the wall. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

As the ride comes to an end, the speed v decreases, thereby decreasing the centripetal force, which is 
supplied by the normal force FN. The frictional force, fs = µsFN, also decreases and is no longer capable of holding 
up the weight w of the child, and the child slides slowly down the wall. 

Again, we should note that there is no centrifugal force acting on the child pushing the child against the 
wall. It is the wall that is pushing against the child with the centripetal force that is supplied by the normal force. 
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There are many variations of this ride in different amusement parks, where you are held tight against a rotating 
wall. The analysis will be similar. 
 
A Car Making a Turn on a Level Road 
Consider a car making a turn at a corner. The portion of the turn can be approximated by an arc of a circle of 
radius r, as shown in figure 6.13. If the car makes the turn at a constant speed v, then during that turn, the car is 
going through uniform circular motion and there must be some centripetal force acting on the car. The necessary 
centripetal force is supplied by the frictional force between the tires of the car and the pavement. 

        
Figure 6.13  A car making a turn on a level road. 

 
Let us analyze the motion, in particular let us find the minimum coefficient of static friction that must be 

present between the tires of the car and the pavement in order for the car to make the turn without skidding. As 
the steering wheel of the car is turned, the tires turn into the direction of the turn. But the tire also wants to 
continue in straight line motion by Newton’s first law. Because all real tires are slightly deformed, part of the tire 
in contact with the road is actually flat. Hence, the portion of the tire in contact with the ground has a tendency to 
slip and there is therefore a frictional force that opposes this motion. Hence, the force that allows the car to go into 
that circular path is the static frictional force fs between the flat portion of the tire and the road. The problem is 
therefore very similar to the rotating disk discussed previously. The frictional force fs is again given by equation 
4.44. We are looking for the minimum value of µs that will just keep the car moving in the circle. That is, the car 
will be just on the verge of slipping. Hence, we use the equality sign in equation 4.44. Because the centripetal force 
is supplied by the frictional force, we equate them as 

 
Fc = fs                                                                              (6.27) 

 
We obtain the centripetal force from equation 6.14 and the frictional force from equation 6.21. Hence, 
 

mv2 = µsFN 
                                                                                         r             

 
But as we can see from figure 6.13, the normal force FN is equal to the weight w, thus, 
 

      mv2 = µsw 
                                                                                             r             
The weight of the car w = mg, therefore, 

mv2 = µsmg                                                                          (6.28) 
                                                                                             r                     
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Notice that the mass m is on each side of equation 6.28 and can be divided out. Solving equation 6.28 for the 
minimum coefficient of static friction that must be present between the tires of the car and the pavement, gives 
 

  µs =  v2                                                                                (6.29) 
           rg 

 
Because equation 6.29 is independent of the mass of the car, the effect will be the same for a large massive car or a 
small one. 

 
Example 6.6 

 
Making a turn on a level road. A car is traveling at 30.0 km/hr in a circle of radius r = 60.0 m. Find the minimum 
value of µs for the car to make the turn without skidding. 

Solution
 

The minimum coefficient of friction, found from equation 6.29, is  
 

µs =  v2   
         rg 

= [(30.0 km/hr )(1.00 m/s)/(3.60 km/hr)]2 
(60.0 m)(9.80 m/s2) 

= 0.118 
 

The minimum value of the coefficient of static friction between the tires and the road must be 0.118. 
For all values of µs, equal to or greater than this value, the car can make the turn without skidding. From 

table 4.1, the coefficient of friction for a tire on concrete is much greater than this, and there will be no problem in 
making the turn. However, if there is snow or freezing rain, then the coefficient of static friction between the tires 
and the snow or ice will be much lower. If it is lower than the value of 0.118 just determined, then the car will skid 
out in the turn. That is, there will no longer be enough frictional force to supply the necessary centripetal force. 

 
To go to this Interactive Example click on this sentence. 

 

 
 

If you ever go into a skid what should you do? The standard procedure is to turn the wheels of the car into 
the direction of the skid. You are then no longer trying to make the turn, and therefore you no longer need the 
centripetal force. You will stop skidding and proceed in the direction that was originally tangent to the circle. By 
tapping the brakes, you then slow down so that you can again try to make the turn. At a slower speed you may 
now be able to make the turn. As an example, if the speed of the car in example 6.6 is reduced from 30.0 km/hr to 
15.0 km/hr, that is, in half, then from equation 6.29 the minimum value of µs would be cut by a fourth. Therefore, 
µs = 0.030. The car should then be able to make the turn. 

Even on a hot sunny day with excellent road conditions there could be a problem in making the original 
turn, if the car is going too fast. 

 
Example 6.7 

 
Making a level turn while driving too fast. If the car in example 6.6 tried to make the turn at a speed of 90.0 km/hr, 
that is, three times faster than before, what would the value of µs have to be? 

Solution
 

The minimum coefficient of friction, found from equation 6.29, is 
 

µs = (3v0)2  = 9 (v02)  = 9 µs0 = 1.06 
                                                                              rg             rg 
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That is, by increasing the speed by a factor of three, the necessary value of µs has been increased by a factor of 9 to 
the value of 1.06. 

To go to this Interactive Example click on this sentence. 
 

 
 

From the possible values of µs given in table 4.1, we cannot get such high values of µs. Therefore, the car 
will definitely go into a skid. When the original road was designed, it could have been made into a more gentle 
curve with a much larger value of the radius of curvature r, thereby reducing the minimum value of µs needed. 
This would certainly help, but there are practical constraints on how large we can make r. 
 
A Car Making a Turn on a Banked Road 
On large highways that handle cars at high speeds, the roads are usually banked to make the turns easier. By 
banking the road, a component of the reaction force of the road points into the center of curvature of the road, and 
that component will supply the necessary centripetal force to move the car in the circle. The car on the banked 
road is shown in figure 6.14. The road is banked at an angle θ. The forces acting on  

                    
Figure 6.14  A car making a turn on a banked road. 

 
the car are the weight w, acting downward, and the reaction force of the road FN, acting upward on the car, 
perpendicular to the road. We resolve the force FN into vertical and horizontal components. Using the value of θ as 
shown, the vertical component is FN cos θ, while the horizontal component is FN sin θ. As we can see from the 
figure, the horizontal component points toward the center of the circle. Hence, the necessary centripetal force is 
supplied by the component FN sin θ. That is, 

Fc = FN sin θ                                                                           (6.30) 
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The vertical component is equal to the weight of the car, that is, 
 

w = FN cos θ                                                                            (6.31) 
 

The problem can be simplified by eliminating FN by dividing equation 6.30 by equation 6.31: 
 

FN sin θ = Fc = mv2/r  
                                                                               FN cos θ    w      mg 

 
and finally, using the fact that sin θ/cos θ = tan θ, we have 

 
tan θ =  v2                                                                               (6.32) 
             rg 

Solving for θ, the angle of bank, we get 
 θ = tan−1 v2                                                                             (6.33) 

                                                                                                       rg        
  

which says that if the road is banked by this angle θ, then the necessary centripetal force for any car to go into the 
circular path will be supplied by the horizontal component of the reaction force of the road. 

 
Example 6.8 

 
Making a turn on a banked road. The car from example 6.7 is to manipulate a turn with a radius of curvature of 
60.0 m at a speed of 90.0 km/hr = 25.0 m/s. At what angle should the road be banked for the car to make the turn? 

Solution
 

To have the necessary centripetal force, the road should be banked at the angle θ given by equation 6.33 as 
 

   ( )
( )( )

22
1 1

2

25.0 m/s
tan tan

60.0 m 9.80 m/s
v
rg

θ − −
 
 = =
  

  

       = 46.70 
 

This angle is a little large for practical purposes. A reasonable compromise might be to increase the radius of 
curvature r, to a higher value, say r = 180 m, then, 
 

( )
( )( )

22
1 1

2

25.0 m/s
tan tan

180 m 9.80 m/s
v
rg

θ − −
 
 = =
  

 

= 19.50 
a more reasonable angle of bank. 

The design of the road becomes a trade-off between the angle of bank and the radius of curvature, but the 
necessary centripetal force is supplied by the horizontal component of the reaction force of the road on the car. 

 
To go to this Interactive Example click on this sentence. 

 

 
 
An Airplane Making a Turn 
During straight and level flight, the following forces act on the aircraft shown in figure 6.15: T is the thrust on the 
aircraft pulling it forward into the air, w is the weight of the aircraft acting downward, L is the lift on the aircraft 
that causes the plane to ascend, and D is the drag on the aircraft that tends to slow down the aircraft. The drag is 
opposite to the thrust. Lift and drag are just the vertical and horizontal components of the fluid force of the air on  
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Figure 6.15  Forces acting on an aircraft in flight. 

 
the aircraft. In normal straight and level flight, the aircraft is in equilibrium under all these forces. The lift 
overcomes the weight and holds the plane up; the thrust overcomes the frictional drag forces, allowing the plane to 
fly at a constant speed. An aircraft has three ways of changing the direction of its motion. 

Yaw Control: By applying a force on the rudder pedals with his feet, the pilot can make the plane turn to 
the right or left, as shown in figure 6.16(a). 

Pitch Control: By pushing the stick forward, the pilot can make the plane dive; by pulling the stick 
backward, the pilot can make the plane climb, as shown in figure 6.16(b). 

Roll Control: By pushing the stick to the right, the pilot makes the plane roll to the right; by pushing the 
stick to the left, the pilot makes the plane roll to the left, as shown in figure 6.16(c). 

    

 
Figure 6.16  (a) Yaw of an aircraft. (b) Pitch of an aircraft. (c) Roll of an aircraft. 

 
To make a turn to the right or left, therefore, the pilot could simply use the rudder pedals and yaw the 

aircraft to the right or left. However, this is not an efficient way to turn an aircraft. As the aircraft yaws, it exposes 
a larger portion of its fuselage to the air, causing a great deal of friction. This increased drag causes the plane to 
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slow down. To make the most efficient turn, a pilot performs a coordinated turn. In a coordinated turn, the pilot 
yaws, rolls, and pitches the aircraft simultaneously. The attitude of the aircraft is as shown in figure 6.17. In level 
flight the forces acting on the plane in the vertical are the lift L and the weight w. If the aircraft was originally in 
equilibrium in level flight, then L = w. Because of the turn, however, only a component of the lift is in the vertical, 
that is, 

L cos θ = w 
 

Therefore, the aircraft loses altitude in a turn, unless the pilot pulls back on the stick, pitching the nose of the 
aircraft upward. This new attitude of the aircraft increases the angle of attack of the wings, thereby increasing the 
lift L of the aircraft. In this way the turn can be made at a constant altitude. 

   
Figure 6.17  Forces acting on the aircraft during a turn. 

 
The second component of the lift, L sin θ, supplies the necessary centripetal force for the aircraft to make 

its turn. That is, 
L sin θ = Fc = mv2                                                                      (6.34) 

                           r 
while 

L cos θ = w = mg                                                                     (6.35) 
Dividing equation 6.34 by equation 6.35 gives 

L sin θ  = mv2/r 
                                                                                   L cos θ       mg 

tan θ =  v2                                                                               (6.36) 
             rg 

 
That is, for an aircraft traveling at a speed v, and trying to make a turn of radius of curvature r, the pilot must 
bank or roll the aircraft to the angle θ given by equation 6.36. Note that this is the same equation found for the 
banking of a road. A similar analysis would show that when a bicycle makes a turn on a level road, the rider leans 
into the turn by the same angle θ given by equation 6.36, to obtain the necessary centripetal force to make the 
turn. 
 
The Centrifuge 
The centrifuge is a device for separating particles of different densities in a liquid. The liquid is placed in a test 
tube and the test tube in the centrifuge, as shown in figure 6.18. The centrifuge spins at a high speed. The more 
massive particles in the mixture separate to the bottom of the test tube while the particles of smaller mass 
separate to the top. There is no centrifugal force acting on these particles to separate them as is often stated in 
chemistry, biology, and medical books. Instead, each particle at any instant has a tangential velocity v and wants 
to continue at that same velocity by Newton’s first law. The centripetal force necessary to move the particles in a 
circle is given by equation 6.14 (Fc = mv2/r). The normal force of the bottom of the glass tube on the particles 
supplies the necessary centripetal force on the particles to cause them to go into circular motion. The same normal 
force on a small mass causes it to go into circular motion more easily than on a large massive particle. The result 
is that the more massive particles are found at the bottom of the test tube, while the particles of smaller mass are 
found at the top of the test tube. 
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Figure 6.18  The centrifuge. 

 
  
6.8  Newton’s Law of Universal Gravitation 
Newton observed that an object, an apple, released near the surface 
of the earth, was accelerated toward the earth. Since the cause of an 
acceleration is an unbalanced force, there must, therefore, be a force 
pulling objects toward the earth. If you throw a projectile at an initial 
velocity v0, as seen in figure 6.19, then instead of that object moving 
off into space in a straight line as Newton’s first law dictates, it is 
continually acted on by a force pulling it back to earth. If you were 
strong enough to throw the projectile with greater and greater initial 
velocities, then the projectile paths would be as shown in figure 6.20. 
The distance down range would become greater and greater until at 
some initial velocity, the projectile would not hit the earth at all, but 
would go right around it in an orbit. But at any point along its path  

                                                                                                                  Figure 6.19  Motion of an apple or a 
                                                                                                                   projectile. 

 

                                              
        Figure 6.20  The same force acting on a projectile            Figure 6.21  A page from Newton’s Principia. 
                              acts on the moon.    
 
the projectile would still have a force acting on it pulling it down toward the surface of the earth just as it had in 
figure 6.19. Figure 6.21 shows a page from the translated version of Newton’s Principia showing these ideas. 

Newton was led to the conclusion that the same force that causes the apple to fall to the earth also causes 
the moon to be pulled to the earth. Thus, the moon moves in its orbit about the earth because it is pulled toward 
the earth. It is falling toward the earth. But if there is a force between the moon and the earth, why not a force 
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between the sun and the earth? Or for that matter why not a force between the sun and all the planets? Newton 
proposed that the same gravitational force that acts on objects near the surface of the earth also acts on all the 
heavenly bodies. This was a revolutionary hypothesis at that time, for no one knew why the planets revolved 
around the sun. Following this line of reasoning to its natural conclusion, Newton proposed that there was a force 
of gravitation between each and every mass in the universe. 

Newton’s law of universal gravitation was stated as follows: between every two masses in the universe 
there is a force of attraction between them that is directly proportional to the product of their masses, and inversely 
proportional to the square of the distance separating them. If the two 
masses are as shown in figure 6.22 with r the distance between the 
centers of the two masses, then the force of attraction is 

 
 F = Gm1m2                                       (6.37) 

                                                             r2                
 

where G is a constant, called the universal gravitational constant, 
given by 

G = 6.67 × 10−11 N m2 

                           kg2 
                                                                                                             Figure 6.22  Newton’s law of universal 

                                                                                                             gravitation. 
 

We assume here that the radii of the masses are relatively small compared to the distance separating them so that 
the distance separating the masses is drawn to the center of the masses. Such masses are sometimes treated as 
point masses or particles. Spherical masses are usually treated like particles. 

Note here that the numerical value of the constant G was determined by a celebrated experiment by Henry 
Cavendish (1731-1810) over 100 years after Newton’s statement of the law of gravitation. Cavendish used a 
torsion balance with known masses. The force between the masses was measured and G was then calculated. 

 
Example 6.9 

 
The force on the earth. Determine the gravitational force that the sun exerts on the earth.  

Solution
 

The mass of the sun is ms = 1.99 × 1030 kg, while the mass of the earth is me = 5.97 × 1024 kg. The mean radius of 
the earth in its orbit around the sun is res = 1.50 × 1011 m.  The gravitational force that the sun exerts on the 
earth, determined from Newton’s law of universal gravitation, equation 6.37, is 
 

F = Gmsme   
                                                                                                 res2           

( )( )
( )

30 242
11

2 211

1.99 10  kg 5.97 10  kg N m6.67 10
kg 1.50 10  m

−
× × 

= × 
  ×

 

= 3.52 × 1022 N 
This is a rather large force. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
6.9  Gravitational Force between Two 1-Kg Masses 
Newton’s law of universal gravitation says that there is a force between any two masses in the universe. Let us set 
up a little experiment to test this law. Let us take two standard 1-kg masses and place them on the desk, so that 
they are 1 m apart, as shown in figure 6.23. According to Newton’s theory of gravitation, there is a force between 
these masses, and according to Newton’s second law, they should be accelerated toward each other. However, we 
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observe that the two masses stay right where they are. They do not 
move together! Is Newton’s law of universal gravitation correct or isn’t 
it? 

Let us compute the gravitational force between these two 1-kg 
masses. We assume that the gravitational force acts at the center of 
each of the 1-kg masses. By equation 6.37, we have 

 
F = Gm1m2  = 6.67 × 10−11 N m2 (1 kg)(1 kg)  

                                  r2                               kg2         (1 m)2 
 

and therefore the force acting between these two 1-kg masses is                                                                                                         
 

F = 6.67 × 10−11 N 
 

This is, of course, a very small force. In fact, if this is written in 
ordinary decimal notation we have 

                                                                                                                     
                                                                                                               Figure 6.23  Two 1-kg masses sitting on a table. 

 
F = 0.0000000000667 N 

 
A very, very small force indeed. (Sometimes it is worth while for the beginning student to write numbers in this 
ordinary notation to get a better “feel” for the meaning of the numbers that are expressed in scientific notation.) 

If we redraw figure 6.23 showing all the forces acting on the 
masses, we get figure 6.24. The gravitational force on mass m2 is trying 
to pull it toward the left.  

But if the body tends to slide toward the left, there is a force of 
static friction that acts to oppose that tendency and acts toward the 
right. The frictional force that must be overcome is 

 
fs = µsFN2 = µsw2 = µsm2g 

 
Assuming a reasonable value of µs = 0.50 we obtain for this frictional 
force, 

fs = µsm2g = (0.50)(1.00 kg)(9.80 m/s2) = 4.90 N 
 

Hence, to initiate the movement of the 1-kg mass across the table, a 
force greater than 4.90 N is needed. As you can see, the gravitational 
force (6.67 × 10−11 N) is nowhere near this value, and is thus not great 
enough to overcome the force of static friction. Hence you do not, in 
general, observe different masses attracting each other. That is, two 
chairs do not slide across the room and collide due to the gravitational 
force between them. 

                                                                                                                         Figure 6.24  Gravitational force on  
                                                                                                                                        two 1-kg masses. 

 
If these small 1-kg masses were taken somewhere out in space, where there is no frictional force opposing 

the gravitational force, the two masses would be pulled together. It will take a relatively long time for the masses 
to come together because the force, and hence the acceleration is small, but they will come together within a few 
days. 
 
 
6.10  Gravitational Force between a 1-Kg Mass and the Earth 
The reason why the computed gravitational force between the two 1-kg masses was so small is because G, the 
universal gravitational constant, is very small compared to the masses involved. If, instead of considering two 1-kg 
masses, we consider one mass to be the 1-kg mass and the second mass to be the earth, then the force between 
them is very noticeable. If you let go of the 1-kg mass, the gravitational force acting on it immediately pulls it 
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toward the surface of the earth. The cause of the greater force in this case is the 
larger mass of the earth. In fact, let us determine the gravitational force on a 1-kg 
mass near the surface of the earth. Figure 6.25 shows a mass m1 of 1 kg a distance 
h above the surface of the earth. The radius of the earth re is re = 6.371 × 106 m, 
and its mass me is me = 5.977 × 1024 kg. The separation distance between m1 and 
me is 

r = re + h ≈ re                                                (6.38) 
 

since re # h. The gravitational force acting on that 1-kg mass is 
 

Fg = Gmem1                                                   (6.39) 
       re2 

( )( )
( )

242
11

2 26

5.977 10  kg 1.00 kg N m6.67 10
kg 6.371 10  m

−
× 

= × 
  ×

 

= 9.82 N 
                                                                                                                                 Figure 6.25  Gravitational force 
                                                                                                                                          on a 1-kg mass near the surface 

                                                                                                           of the earth. 
 

This number should be rather familiar. Recall that the weight of a 1.00-kg mass was determined from Newton’s 
second law as 

w = mg = (1.00 kg)(9.80 m/s2) = 9.80 N 
 

(The standard value of g = 9.80 m/s2 has been used. We will see shortly that g can actually vary between 9.78 m/s2 
at the equator to 9.83 m/s2 at the pole. Also the radius of the earth re used in equation 6.39 is the mean value of re. 
The actual value of re varies slightly with latitude.) 

The point to notice here is that the weight of a body is in fact the gravitational force acting on that body by 
the earth and pulling it down toward the center of the earth. Thus, the weight of a body is actually determined by 
Newton’s law of universal gravitation. This points up even further the difference between the mass and the weight 
of a body. 
 
 
6.11  The Acceleration Due to Gravity and Newton’s Law of Universal 
Gravitation 
Newton’s second law states that when an external unbalanced force acts on an object, it will give that object an 
acceleration a, that is, 

F = ma 
 

But if the force acting on a body near the surface of the earth is the gravitational force, then that body experiences 
the acceleration g of a freely falling body, as shown in section 3.7. That is, the force acting on the object is called its 
weight, and it experiences the acceleration g. Thus, Newton’s second law becomes 
   

w = mg                                                                               (6.40) 
 

But as just shown, the weight of a body is equal to the gravitational force acting on that body and 
therefore, 

w = Fg                                                                             (6.41) 
 

Using equations 6.40 and 6.39 we get 
mg = Gmem                                                                           (6.42) 
            re2 

Solving for g, we obtain 
 g = Gme                                                                                (6.43) 

                                                                                                  re2      
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That is, the acceleration due to gravity, g, which in chapter 3 was accepted as an experimental fact, can be 
deduced from theoretical considerations of Newton’s second law and his law of universal gravitation. 

 
Example 6.10 

 
g on the earth. Determine the acceleration due to gravity g at the surface of the earth. 

Solution
 

The value of g, determined from equation 6.43, is 
g = Gme 

     re2 

( )
( )

242
11

2 26

5.977 10  kg N m6.67 10
kg 6.371 10  m

−
× 

= × 
  ×

 

 = 9.82 m/s2 
 

Newton introduced his law of universal gravitation, and a by-product of it is a theoretical explanation of 
the acceleration due to gravity g. This is an example of the beauty and simplicity of physics. There is no way that 
we could have predicted the relation of equation 6.43 from purely experimental grounds. Yet Newton’s second law 
and his law of universal gravitation, in combination, have made that prediction. 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
6.12  Variation of the Acceleration Due to Gravity 
We can see from equation 6.43 why the acceleration due to gravity g is very 
nearly a constant. G is a constant and me is a constant, but re is not exactly a 
constant. The earth is not, in fact, a perfect sphere. It is, rather, an oblate 
spheroid. That is, the radius of the earth at the equator ree is slightly greater 
than the radius of the earth at the poles rep, as seen in figure 6.26. The diagram 
is, of course, exaggerated to show this difference. The actual values of ree and 
rep are 

ree = 6.378 × 106 m 
rep = 6.356 × 106 m 

with the mean radius  
re = 6.371 × 106 m 

                                                                                                                               Figure 6.26  The earth is an oblate 
                                                                                                                                  spheroid. 

 
The variation in the radius of the earth is thus quite small. However, the variation, although small, does 

contribute to the observed variation in the acceleration due to gravity on the earth from a low of 9.78 m/s2 at the 
equator to a high of 9.83 m/s2 at the North Pole, as seen in table 6.1. This analysis also assumes that the earth is 
not rotating. A more sophisticated analysis takes into account the variation in g caused by the centripetal 
acceleration, which varies with latitude 
on the surface of the earth. The standard 
value of g, adopted for most calculations 
in physics, is 

g = 9.80 m/s2 
 

the value at 450 north latitude at the 
surface of the earth. 

At greater heights, g also varies 
slightly from that given in equation 6.43 

Table 6.1 
Different Values of g on the Earth 
Location Value of g in m/s2 

Equator at sea level 
New York City 

450 N latitude (standard) 
North Pole 

Pikes Peak - elevation 4293 m 
Denver, Colorado - elevation 1638 m 

9.78 
9.80 
9.80 
9.83 
9.79 
9.80 
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because of the approximation 
re ≈ re + h 

 
that was made for that equation. Although this approximation is, in general, quite good for most locations, if you 
are on the top of a mountain, such as Pikes Peak, this higher altitude (large value of h) will give you a slightly 
smaller value of g, as we can see in table 6.1. 

Again it is quite remarkable that these slight variations in the observed experimental values of g on the 
surface of this earth can be explained and predicted by Newton’s law of universal gravitation, with slight 
corrections for the radius of the earth, the centripetal acceleration (which is a function of latitude), and the height 
of the location above mean sea level. There are also slight local variations in g due to the nonhomogeneous nature 
of the mass distribution of the earth. These variations in g due to different mass distributions are used in 
geophysical explorations. One of the many scientific experiments performed on the moon was a mapping of the 
acceleration due to gravity on the moon to disclose the possible locations of different mineral deposits. 
 
 
6.13  Acceleration Due to Gravity on the Moon and on Other Planets 
Equation 6.43 was derived on the basis of the gravitational force of the earth 
acting on a mass near the surface of the earth. The result is perfectly general 
however. If, for example, an object were placed close to the surface of the moon, 
as shown in figure 6.27, the force on that mass would be its lunar weight, which 
is just the gravitational force of the moon acting on it. Therefore the weight of 
an object on the moon is 

wm = Fg                                                 (6.44) 
This becomes 

mgm = Gmmm                                             (6.45) 
                 rm2 

 
where gm is the acceleration due to gravity on the moon and mm and rm are the 
mass and radius of the moon, respectively. Hence, the acceleration due to 
gravity on the moon is 

 gm = Gmm                                                (6.46) 
                                                                       rm2       

 
                                                                                                                               Figure 6.27  A mass placed close to 

                                                                                                                                                 the surface of the moon. 
 

Equation 6.46 is identical to equation 6.43 except for the subscripts. Therefore, we can use equation 6.43 to 
determine the acceleration due to gravity on any of the planets, simply by using the mass of that planet and the 
radius of that planet in equation 6.43. 

 
Example 6.11 

 
g on the moon. Determine the acceleration due to gravity on the moon. 

Solution
 

The acceleration due to gravity on the moon, found by solving equation 6.46, is 
 

gm = Gmm  
          rm2 

( )
( )

222
11

2 26

7.34 10  kg N m6.67 10
kg 1.738 10  m

−
× 

= × 
  ×

 

= 1.62 m/s2 = 0.165 ge ≈  1  ge 
                                   6 

 
The acceleration due to gravity on the moon is approximately 1/6 the acceleration due to gravity on the earth. 
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To go to this Interactive Example click on this sentence. 

 

 
 
Because the weight of an object is 

   w = mg 
the weight of an object on the moon is 

          wm = mgm = m(1/6 ge) = 1/6 (mge) = 1/6 we 
 
which is 1/6 of the weight that it had on the earth. That is, if you weigh 180 lb on earth, you will only weigh 30 lb 
on the moon. 

Table 6.2 is a list of 
the masses, radii, and 
values of g on the various 
planets. Note that the 
most massive planet is 
Jupiter, and it has an 
acceleration due to gravity 
of 

gJ = 2.37 ge 
 

Therefore, the weight of an 
object on Jupiter will be 
 

wJ = 2.37 we 
 

If you weighed 180 lb on 
earth, you would weigh 
427 lb on Jupiter. 

 
 
6.14  Satellite Motion 
Consider the motion of a satellite around its parent body. This could be the motion of the earth around the sun, the 
motion of any planet around the sun, the motion of the moon around the earth, the motion of any other moon 
around its planet, or the motion of an artificial satellite around the earth, the moon, another planet, and so forth. 

Let us start with the analysis of the motion of an artificial satellite in a circular orbit around the earth. 
Perhaps the first person to ever conceive of the possibility of an artificial earth satellite was Sir Isaac Newton, 
when he wrote in 1686 in his Principia: 

 
But if we now imagine bodies to be projected in the directions of lines parallel to the horizon from 
greater heights, as of 5, 10, 100, 1000, or more miles or rather as many semi-diameters of the earth, 
those bodies according to their different velocity, and the different force of gravity in different heights, 
will describe arcs either concentric with the earth, or variously eccentric, and go on revolving through 
the heavens in those orbits just as the planets do in their orbits.2 

 
For the satellite to be in motion in a circular orbit, there must be a centripetal force acting on the satellite 

to force it into the circular motion. This centripetal force acting on the satellite, is supplied by the force of gravity 
of the earth. Let us assume that the satellite is in orbit a distance h above the surface of the earth, as shown in 
figure 6.28. Because the centripetal force is supplied by the gravitational force, we have   

 
Fc = Fg                                                                             (6.47) 

Or 
 
                                                           
2. Quoted from Sir Isaac Newton’s Mathematical Principles of Natural Philosophy, p. 552. Translated by A. Motte. University of California 
Press, 1960. 

Table 6.2 
Some Characteristics of the Planets and the Moon 

Planet Mean Orbital 
Radius (m) 

Mass (kg) Mean Radius 
of Planet (m) 

g at 
Equator 

(m/s2) 

(ge) 

Mercury  5.80 × 1010 3.24 × 1023 2.340 × 106 3.95 0.4 
Venus 1.08 × 1011 4.86 × 1024 6.10 × 106 8.71 0.89 
Earth 1.50 × 1011 5.97 × 1024 6.371 × 106 9.78 1 
Mars 2.28 × 1011 6.40 × 1023 3.32 × 106 3.84 0.39 

Jupiter 7.80 × 1011 1.89 × 1027 69.8 × 106 23.16 2.37 
Saturn 1.43 × 1012 5.67 × 1026 58.2 × 106 11.2 1.14 
Uranus 2.88 × 1012 8.67 × 1025 23.8 × 106 9.46 0.97 
Neptune 4.52 × 1012 1.05 × 1026 22.4 × 106 13.66 1.4 

Pluto 5.91 × 1012 6.6 × 1023 2.9 × 106 5.23 0.53 
Earth’s 
Moon 

3.84 × 108 7.34 × 1022 1.738 × 106 1.62 1/6 
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msv2 = Gmems                                                                                                     (6.48) 
                                                              r            r2 

 
Solving for the speed of the satellite in the circular orbit, we obtain 

 
eGmv

r
=                                               (6.49) 

                                                                                                                                
The first thing that we note is that ms, the mass of the satellite, 

divided out of equation 6.48. This means that the speed of the satellite is 
independent of its mass. That is, the speed is the same, whether it is a very 
large massive satellite or a very small one. 

                                                                                                                           Figure 6.28  Satellite motion. 
 
Equation 6.49 represents the speed that a satellite must have if it is to remain in a circular orbit, at a 

distance r from the center of the earth. Because the satellite is at a height h above the surface of the earth, the 
orbital radius r is 

r = re + h                                                                                (6.50) 
 

Equation 6.49 also says that the speed depends only on the radius of the orbit r. For large values of r, the 
required speed will be relatively small; whereas for small values of r, the speed v must be much larger. If the 
actual speed of a satellite at a distance r is less than the value of v, given by equation 6.49, then the satellite will 
move closer toward the earth. If it gets close enough to the earth’s atmosphere, the air friction will slow the 
satellite down even further, eventually causing it to spiral into the earth. The increased air friction will then cause 
it to burn up and crash. If the actual speed at the distance r is greater than that given by equation 6.49, then the 
satellite will go farther out into space, eventually going into either an elliptical, parabolic, or hyperbolic orbit, 
depending on the speed v. 

How do we get the satellite into this circular orbit? The 
satellite is placed in the orbit by a rocket. The rocket is launched 
vertically from the earth, and at a predetermined altitude it pitches 
over, so as to approach the desired circular orbit tangentially. The 
engines are usually turned off and the rocket coasts on a projectile 
trajectory to the orbital intercept point I in figure 6.29. Let the velocity 
of the rocket on the ascent trajectory at the point of intercept be vA. 
The velocity necessary for the satellite to be in circular orbit at the 
height h is v and its speed is given by equation 6.49. Therefore, the 
rocket must undergo a change in velocity ∆v to match its ascent 
velocity to the velocity necessary for the circular orbit. That is, 

 
∆v = v − vA                                         (6.51) 

 
This change in velocity is of course produced by the thrust of 
                                                                                                              Figure 6.29  Placing a satellite in a 

                                                                                                                  circular orbit. 
 

the rocket engines. How long should these engines be turned on to get this necessary change in speed ∆v? As a first 
approximation we take Newton’s second law in the form 

 
F = ma = m∆v 
                    ∆t 

Solving Newton’s second law for ∆t, gives 
∆t =  m ∆v                                                                             (6.52) 

       F 
 

where F is the thrust of the rocket engine, ∆v is the necessary speed change, determined from equation 6.51; and 
m is the mass of the space craft at this instant of time. Therefore, equation 6.52 tells the astronaut the length of 

Satellite

me v

sm
Fg

Earth
h

re

r
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time to “burn” his engines. At the end of this time the engines are shut off, and the spacecraft has the necessary 
orbital speed to stay in its circular orbit. 

This is, of course, a greatly simplified version of orbital insertion, for we need not only the magnitude of ∆v 
but also its direction. An attitude control system is necessary to determine the proper direction for the ∆v. Also it 
is important to note that using equation 6.52 is only an approximation, because as the spacecraft burns its rocket 
propellant, its mass m is continually changing. This example points out a deficiency in using Newton’s second law 
in the form F = ma, because this form assumes that the mass under consideration is a constant. In chapter 8, on 
momentum, we will write Newton’s second law in another form that allows for the case of variable mass. 

We should also note here that the orbits of all the planets around the sun are ellipses rather than circles. 
But, in general, the amount of ellipticity is relatively small, and as a first approximation it is quite often assumed 
that their orbits are circular. For this approximation, we can use equation 6.49, with the appropriate change in 
subscripts, to determine the approximate speed of any of the planets. For precise astronomical work, the elliptical 
orbit must be used. Extremely precise experimental determinations of the orbits of the planets were made by the 
Danish astronomer Tycho Brahe (1546-1609). Johannes Kepler (1571-1630) analyzed this work and expressed the 
result in what are now called Kepler’s laws of planetary motion. Kepler’s laws are 

1.  The orbit of each planet is an ellipse with the sun at one focus. 
2.  The speed of the planet varies in such a way that the line joining the planet and the sun sweeps out equal 

areas in equal times. 
3.  The cube of the semimajor axes of the elliptical orbit is proportional to the square of the time for the planet 

to make a complete revolution about the sun. 
 

Example 6.12 
 

Determine the speed of the earth in its orbit about the sun, shown in figure 6.30. 

Solution
 

The mass of the sun is msun = 1.99 × 1030 kg. The mean orbital radius of the earth around the sun, found in table 
6.2, is res = 1.50 × 1011 m. The speed of the earth around the sun ves, found from equation 6.49, is 
 

s
es

es

Gmv
r

=  

( )
( )

302
11

2 11

1.99 10  kg N m6.67 10
kg 1.50 10  m

−
× 

= × 
× 

 

= 2.97 × 104 m/s = 29.7 km/s = 66,600 mi/hr 
 

That is, as you sit and read this book, you are speeding through space at 
66,600 mph. This is a little over 18 miles each second. The mean orbital speed 
of any of the planets or satellites can be determined in the same way. 
                                                                                                                              Figure 6.30  The speed of the earth  

                                                                                                                                              in its orbit about the sun. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
6.15  The Geosynchronous Satellite 
An interesting example of satellite motion is the geosynchronous satellite. The geosynchronous satellite is a 
satellite whose orbital motion is synchronized with the rotation of the earth. In this way the geosynchronous 
satellite is always over the same point on the equator as the earth turns. The geosynchronous satellite is obviously 
very useful for world communication, weather observations, and military use. 

What should the orbital radius of such a satellite be, in order to stay over the same point on the earth’s 
surface? The speed necessary for the circular orbit, given by equation 6.49, is 

 

Sun
Earth

res
ms

esv

em
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eGmv
r

=  

 
But this speed must be equal to the average speed of the satellite in one day, namely 
 

v =  s  = 2πr                                                                              (6.53) 
                                                                                             t       τ 

 
where τ is the period of revolution of the satellite that is equal to one day. That is, the satellite must move in one 
complete orbit in a time of exactly one day. Because the earth rotates in one day and the satellite will revolve 
around the earth in one day, the satellite at A’ will always stay over the same point on the earth A, as in figure 
6.31(a). That is, the satellite is at A’, which is directly above the point A on the earth. As the earth rotates, A’ is  

        
(a)                                                           (b) 

Figure 6.31  The geosynchronous satellite. 
 

always directly above A. Setting equation 6.53 equal to equation 6.49 for the speed of the satellite, we have 
 

2 eGmr
r

π
τ

=                                                                          (6.54) 

Squaring both sides of equation 6.54 gives 
4π2r2  = Gme  

                                                                                                  τ2          r 
or 

r3 = Gmeτ2 
     4π2 

Solving for r, gives the required orbital radius of 
1/32

24
eGmr τ

π
 

=  
 

                                                                         (6.55) 

 
Substituting the values for the earth into equation 6.55 gives 
 

( )( ) ( )
( )

1/3211 2 2 24

2

6.67 10 N m / kg 5.97 10  kg 24 hr 3600 s/hr

4 3.14159
r

−  × ×   =
 
 

 

r = 4.22 × 107 m = 4.22 × 104 km = 26,200 miles 
 

the orbital radius, measured from the center of the earth, for a geosynchronous satellite. A satellite at this height 
will always stay directly above a particular point on the surface of the earth. 

A satellite communication system can be set up by placing several geosynchronous satellites in orbits over 
different points on the surface of the earth. As an example, suppose four geosynchronous satellites were placed in 
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orbit, as shown in figure 6.31(b). Let us say that we want to communicate, by radio or television, between the 
points A and B, which are on opposite sides of the earth. The communication would first be sent from point A to 
geosynchronous satellite 1, which would retransmit the communication to geosynchronous satellite 2. This 
satellite would then transmit to geosynchronous satellite 3, which would then transmit to the point B on the 
opposite side of the earth. Since these geosynchronous satellites appear to hover over one place on earth, 
continuous communication with any place on the surface of the earth can be attained. 

 
 

Have you ever wondered ...? 
An Essay on the Application of Physics. 

Space Travel. 
 

Earth is the cradle of man, but man was never made to stay in a cradle forever. 
                                                                           K. Tsiolkovsky 

       
Have you ever wondered what it would be like to go to the moon or perhaps to another 
planet or to travel anywhere in outer space? But how can you get there? How can you 
travel into space? 

Man has long had a fascination with the possibility of space travel. Jules 
Verne’s novel, From the Earth to the Moon, was first published in 1868. In it he 
describes a trip to the moon inside a gigantic cannon shell. It is interesting to note that 
he says 

 
Now as the Moon is never in the zenith, or directly overhead, in countries further 
than 280 from the equator, to decide on the exact spot for casting the Columbiad 
became a question that required some nice consultation. [And then a little 
further on] The 28th parallel of north latitude, as every school boy knows, strikes 
the American continent a little below Cape Canaveral. (pp. 66 and 68) 

 
As I am sure we all know, Cape Canaveral is the site of the present Kennedy 

Space Center, the launch site for the Apollo mission to the moon. The first astronauts 
landed on the moon on July 20, 1969, just over a hundred years after the publication of 
Verne’s novel. (Actually Jules Verne did not pick Cape Canaveral as the launch site, 
but rather Tampa, Florida, a relatively short distance away, because of its “position and easiness of approach, both 
by sea and land.”)3 

The idea of space travel left the realm of science fiction by the work of three men, Konstantin Tsiolkovsky, 
a Russian; Robert Goddard, an American; and Hermann Oberth, a German. Tsiolkovsky’s first paper, “Free 
Space,” was published in 1883. In his Dreams of Earth and Sky, 1895, he wrote of an artificial earth satellite. 
Goddard’s first paper, “A Method of Reaching Extreme Altitudes,” was written in 1919. The extreme altitudes he 
was referring to was the moon. Goddard launched the first liquid-fueled rocket in history on March 16, 1926. 
Meanwhile, Oberth published his work, The Rocket into Inter Planetary Space, in 1923, which culminated with the 
German V-2 rocket in World War II. Another analysis of the problems associated with space flight was published 
in 1925 by Walter Hohmann in Die Erreichbarkeit der Himmelskorper (The Attainability of the Heavenly Bodies). 
In the preface, Hohmann says, 

 
The present work will contribute to the recognition that space travel is to be taken seriously and that the 
final successful solution of the problem cannot be doubted, if existing technical possibilities are purposefully 
perfected as shown by conservative mathematical treatment. 

 
Hohmann’s original work had been written 10 years previous to its publication. In this work, Hohmann 

shows how to get to the Moon, Venus, and Mars. His simple approach to reach these heavenly bodies is by use of 
the cotangential ellipse. Before this approach is described, let us first say a word about the elliptical orbit. 

                                                           
3.  From the Earth to the Moon in The Space Novels of Jules Verne, p. 69, Dover Publications, N.Y. 
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Just as the speed of a satellite in a circular orbit is determined by equation 6.49, we can determine the 
speed of a satellite in an elliptical orbit. The mathematical derivation is slightly more complicated and will not be 
given here, but the result is quite simple. The speed of a satellite in an elliptical orbit is given by 

 
2 1v GM
r a

 = − 
 

                                                                         (6H.1) 

 
where a is a constant of the orbit called the semimajor axis of the ellipse and is shown in figure 1.  

Let us assume that this is an elliptical satellite orbit 
about the earth. The earth is located at the focus of the ellipse, 
labeled E in figure 1 and r is the distance from the center of the 
earth to the satellite S, at any instant of time. The first thing we 
observe about elliptical motion is that the speed v is not a 
constant as it is for circular orbital motion. The speed varies 
with the location r in the orbit as we see in equation 6H.1. When 
the satellite is at its closest approach to the earth, r = rp, the 
satellite is said to be at its perigee position. From equation 6H.1 
we see that because this is the smallest value of r in the orbit, 
this corresponds to the greatest speed of the satellite. Hence, the 
satellite moves at its greatest speed when it is closest to the 
earth. When the satellite is at its farthest position from the 

                                                                                            Figure 1  An elliptical orbit. 
 

earth, r = ra, the satellite is said to be at its apogee position. Because this is the largest value of r in the orbit, it is 
the largest value of r in equation 6H.1. Since r is in the denominator of equation 6H.1, the largest value of r 
corresponds to the smallest value of v. Hence, the satellite moves at its slowest speed when it is the farthest 
distance from the earth. Thus, the motion in the orbit is not uniform, it speeds up as the satellite approaches the 
earth and slows down as the satellite recedes away from the earth. 

We can express the semimajor axis of the ellipse in terms of the perigee and apogee distances by observing 
from figure 1 that 

2a = ra + rp 
or 

a = ra + rp                                                                          (6H.2) 
      2 

 
For the special case where the ellipse degenerates into a circle, ra = rp = r, the radius of the circular orbit and then 
  

      a = ra + rp = r + r  = 2r  = r  
                                                                                        2           2        2 
 
The equation for the speed, equation 6H.1 then becomes 
 

2 1v GM
r r

 = − 
 

 

GMv
r

=                                                                            (6H.3) 

 
But equation 6H.3 is the equation for the speed of a satellite in a circular orbit, equation 6.49. Hence, the elliptical 
orbit is the more general orbit, with the circular orbit as a special case. 

 
Example 6H.1 

 
The earth is at its closest position to the sun, its perihelion, on about January 3 when it is approximately 1.47 × 
1011 m away from the sun. The earth reaches its aphelion distance, its greatest distance, on July 4, when it is 

Pearson Custom Publishing

201



 
6-30                                                                                                                                                              Mechanics  

about 1.53 × 1011 m away from the sun. Find the speed of the earth at its perihelion and aphelion position in its 
orbit. 

Solution
 

The semimajor axis of the elliptical orbit, found from equation 6H.2, is 
 

a = ra + rp                                                                           (6H.2) 
     2 

= 1.53 × 1011 m + 1.47 × 1011 m 
    2   

= 1.50 × 1011 m 
 

The speed of the earth at perihelion is found from equation 6H.1 with r = rp, the perihelion distance, 
 

2 1
sv GM

r a
 = − 
 

 

Hence, 

p s
p

2 1v GM
r a

 
= −  

 
 

( )( )11 2 2 30
p 11 11

2 16.67 10 N m / kg 1.99 10  kg
1.47 10  m 1.50 10  m

v −  = × × − × × 
 

 = 3.03 × 104 m/s 
 

The speed of the earth at aphelion is found from equation 6H.1 with r = ra = 1.53 × 1011 m, 
 

a s
a

2 1v GM
r a

 
= − 

 
 

( )( )11 2 2 30
a 11 11

2 16.67 10 N m / kg 1.99 10  kg
1.53 10  m 1.50 10  m

v −  = × × − × × 
 

= 2.92 × 104 m/s 
 

It is thus easy to see why the earth, in its orbit about the sun, is sometimes approximated as a circular 
orbit. The aphelion distance, perihelion distance, and the mean distance are very close, that is, 1.53 × 1011 m, 1.47 
× 1011 m, and 1.50 × 1011 m, respectively. Also the speed of the earth at aphelion, perihelion, and in a circular 
orbit is 2.92 × 104 m/s, 3.03 × 104 m/s, and 2.97 × 104 m/s, respectively, which are also very close. The error in 
using the circular approximation rather than the elliptical analysis is no more than about 2%. 

 
To go to this Interactive Example click on this sentence. 

 

 
 
The simplest approach to space flight to the moon or to a planet is by use of the Hohmann transfer ellipse. 

Let us assume that the spacecraft is launched from the surface of the earth on an ascent trajectory. It is then 
desired to place the spacecraft in a circular parking orbit about the earth. If the circular parking orbit is to be at a 
height he above the surface of the earth then the necessary speed for the spacecraft, given by equation 6.49, is 

 
e

oe
e e

GMv
r h

=
+

                                                                            (6H.4) 

 
Knowing the speed of the spacecraft on the ascent trajectory from an on-board inertial navigational system, 
equation 6.51 is then used to determine the necessary “delta v,” ∆v, to get into this orbit. The engines are then 
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turned on for the value of ∆t, determined by equation 6.52, and the spacecraft is thus inserted into the circular 
parking orbit about the earth. 

Before descending to the surface of the moon, it 
would be desirable to first go into a circular lunar 
parking orbit. To get to this circular lunar parking 
orbit, a “cotangential ellipse,” the Hohmann transfer 
ellipse, is placed onto the two parking orbits, such that 
the focus of the ellipse is placed at the center of mass of 
the earth-moon system, and the ellipse is tangential to 
each parking orbit, as seen in figure 2. All positions in 
the orbit are measured from the center of mass of the 
earth-moon system. The semimajor axis a, of this 
ellipse, found from figure 2, is 

 
a = rem + rm + hm + re + he                (6H.5) 

2 
where 
rem is the distance from the center of the earth to the 
center of the moon. 
rm is the radius of the moon. 

                                                                                           Figure 2  The Hohmann transfer orbit. 
 
hm is the height of the spacecraft above the surface of the moon. 
re is the radius of the earth. 
hm is the height of the spacecraft above the surface of the earth when it is in its circular parking orbit. 

The insertion of the spacecraft into the transfer ellipse occurs at the perigee position of the elliptical orbit, 
which from figure 2 is 

rp = rcm + re + he                                                                                       (6H.6) 
 

where rcm is the distance from the center of earth to the center of mass of the earth-moon system. The necessary 
speed to get into this cotangential ellipse at the perigee position, found from equation 6H.1, is 
 

TEp e
p

2 1v GM
r a

 
= −  

 
                                                                    (6H.7) 

 
where a and rp are found from equations 6H.5 and 6H.6, respectively. The notation vTEp stands for the speed in the 
transfer ellipse at perigee. 

Because the speed of the spacecraft in the earth parking orbit is known, equation 6H.4, and the necessary 
speed for the transfer orbit is known, equation 6H.7, the necessary change in speed (∆vI) of the spacecraft is just 
the difference between these speeds. Hence, the required ∆v for insertion into the transfer ellipse is given by 

 
∆vI = vTEp − voe                                                                      (6H.8) 

 
The spacecraft engines must be turned on to supply this necessary change in speed (∆v). When this ∆vI is achieved, 
the spacecraft engines are turned off and the spacecraft coasts toward the moon. If the engines are not turned on 
again, then the spacecraft would coast to the moon, reach it, and would then continue back toward the earth on 
the second half of the transfer ellipse. Thus, if there were some type of malfunction on the spacecraft, it would 
automatically return to earth. 

Assuming there is no failure, the astronauts on board the spacecraft would like to change from their 
transfer orbit into the circular lunar parking orbit. The speed of the spacecraft on the transfer ellipse is given by 
equation 6H.1, with r = ra the apogee distance, as 

TEa e
a

2 1v GM
r a

 
= − 

 
                                                                 (6H.9) 

The apogee distance ra, found from figure 2, is 
ra = rem + rm + hm − rcm                                                          (6H.10) 
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The necessary speed that the spacecraft must have to enter a circular lunar parking orbit vom is found from 

modifying equation 6.49 to  
m

om
m m

GMv
r h

=
+

                                                                         (6H.11) 

 
where Mm is the mass of the moon, rm is the radius of the moon, and hm is the height of the spacecraft above the 
surface of the moon in its circular lunar parking orbit. The necessary change in speed to transfer from the 
Hohmann ellipse to the circular lunar parking orbit is obtained by subtracting equation 6H.11 from equation 6H.9. 
Thus the necessary ∆v is 

∆vII = vTEa − vom                                                                     (6H.12) 
 

The spacecraft engines are turned on to obtain this necessary change in speed. When the engines are shut off the 
spacecraft will have the speed vom, and will stay in the circular lunar parking orbit until the astronauts are ready 
to descend to the lunar surface. The process is repeated for the return to earth. 

The Hohmann transfer is the simplest of the transfer orbits and is also the orbit of minimum energy. 
However, it has the disadvantage of having a large flight time. In the very early stages of the Apollo program, the 
Hohmann transfer ellipse was considered for the lunar transfer orbit. However, because of its long flight time, it 
was discarded for a hyperbolic transfer orbit that had been perfected by the Jet Propulsion Laboratories in 
California on its Ranger, Surveyor, and Lunar Orbiter unmanned spacecrafts to the moon. The hyperbolic orbit 
requires a great deal more energy, but its flight time is 
relatively small. The procedure for a trip on a 
hyperbolic orbit is similar to the elliptical orbit, only 
another equation is necessary for the speed of the 
spacecraft in the hyperbolic orbit. The principle 
however is the same. Determine the current speed in 
the particular orbit, then determine the speed that is 
necessary for the other orbit. The difference between 
the two of them is the necessary ∆v. The spacecraft 
engines are turned on until this value of ∆v is obtained. 
A typical orbital picture for this type of transfer is 
shown in figure 3. 

 
                                                                             Figure 3  A hyperbolic transfer orbit. 

 
Unmanned satellites have since traveled to Mars, Venus, Saturn, Jupiter, Uranus, and Neptune. And 

what about manned trips to these planets? On July 20, 1989, the twentieth anniversary of the first landing on the 
moon, the president of the United States, George Bush, announced to the world that the United States will begin 
planning a manned trip to the planet Mars and eventually to an exploration of our entire solar system. Man is 
thus getting ready to leave his cradle. 
 
 

The Language of Physics 
Uniform circular motion 
Motion in a circle at constant speed. 
Because the velocity vector changes 
in direction with time, this type of 
motion is accelerated motion (p. ). 
 
Centripetal acceleration 
When a body moves in uniform 
circular motion, the acceleration is 
called centripetal acceleration. The 
direction of the centripetal 
acceleration is toward the center of 
the circle (p. ). 

 
Radian 
A unit that is used to measure an 
angle. It is defined as the ratio of 
the arc length subtended to the 
radius of the circle, where 2π 
radians equals 3600 (p. ). 
 
Centripetal force 
The force that is necessary to cause 
an object to move in a circle at 
constant speed. The centripetal 

force acts toward the center of the 
circle (p. ). 
 
Centrifugal force 
The reaction force to the centripetal 
force. The reaction force does not 
act on the same body as the 
centripetal force. That is, if a string 
were tied to a rock and the rock 
were swung in a horizontal circle at 
constant speed, the centripetal force 
would act on the rock while the 
centrifugal force would act on the 
string (p. ). 
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Centrifuge 
A device for separating particles of 
different densities in a liquid. The 
centrifuge spins at a high speed. 
The more massive particles in the 
mixture will separate to the bottom 
of the test tube while the particles 
of smaller mass will separate to the 
top (p. ). 
 
Newton’s law of universal 
gravitation 
Between every two masses in the 
universe there is a force of 

attraction that is directly 
proportional to the product of their 
masses and inversely proportional 
to the square of the distance 
separating them (p. ). 
 
Kepler’s laws of planetary 
motion 
(1) The orbit of each planet is an 
ellipse with the sun at one focus. 
(2) The speed of the planet varies in 
such a way that the line joining the 
planet and the sun sweeps out 
equal areas in equal times. (3) The 

cube of the semimajor axes of the 
elliptical orbit is proportional to the 
square of the time for the planet to 
make a complete revolution about 
the sun (p. ). 
 
Geosynchronous satellite 
A satellite whose orbital motion is 
synchronized with the rotation of 
the earth. In this way the satellite 
is always over the same point on 
the equator as the earth turns (p. ). 
 

 
Summary of Important Equations 

 
Definition of angle in radians 

                  θ =  s                     (6.4) 
                              r 
 
Arc length         s = r θ               (6.5) 
 
Centripetal acceleration 
                         ac = v2             (6.12) 

       r   
 

Centripetal force 
 Fc = mac = mv2         (6.14) 

                                      r   
Angle of bank for circular turn 

              θ = tan−1 v2              (6.33) 
                                  rg      
Newton’s law of universal 
gravitation     F = Gm1m2         (6.37) 
                                   r2     
 

The acceleration due to gravity on 
earth             ge = Gme             (6.43) 
                               r2    
The acceleration due to gravity on 
the moon      gm = Gmm            (6.46) 
                                rm2      
Speed of a satellite in a circular 

orbit          eGMv
r

=             (6.49) 

 
Questions for Chapter 6 

 
1. If a car is moving in uniform 

circular motion at a speed of 5.00 
m/s and has a centripetal 
acceleration of 2.50 m/s2, will the 
speed of the car increase at 2.50 m/s 
every second? 

2. Does it make any sense to say 
that a car in uniform circular 
motion is moving with a velocity 
that is tangent to a circle and yet 
the acceleration is perpendicular to 
the tangent? Should not the 
acceleration be tangential because 
that is the direction that the car is 
moving? 

3. If a car is moving in uniform 
circular motion, and the 
acceleration is toward the center of 
that circle, why does the car not 
move into the center of the circle? 

4. Answer the student’s 
question, “If an object moving in 
uniform circular motion is 
accelerated motion, why doesn’t the 
speed change with time?” 

5. Reply to the student’s 
statement, “I know there is a 

centrifugal force acting on me when 
I move in circular motion in my car 
because I can feel the force pushing 
me against the side of the car.” 

*6. Is it possible to change to a 
noninertial coordinate system, say a 
coordinate system that is fixed to 
the rotating body, to study uniform 
circular motion? In this rotating 
coordinate system is there a 
centrifugal force? 

7. If you take a pail of water 
and turn it upside down all the 
water will spill out. But if you take 
the pail of water, attach a rope to 
the handle, and turn it rapidly in a 
vertical circle the water will not 
spill out when it is upside down at 
the top of the path. Why is this? 

*8. In high-performance jet 
aircraft the pilot must wear a 
pressure suit that exerts pressure 
on the abdomen and upper thighs of 
the pilot when the pilot pulls out of 
a steep dive. Why is this necessary? 

9. If the force of gravity acting 
on a body is directly proportional to 

its mass, why does a massive body 
fall at the same rate as a less 
massive body? 

10. Why does the earth bulge at 
the equator and not at the poles? 

11. If the acceleration due to 
gravity varies from place to place on 
the surface of the earth, how does 
this affect records made in the 
Olympics in such sports as shot put, 
javelin throwing, high jump, and 
the like? 

12. What is wrong with 
applying Newton’s second law in 
the form F = ma to satellite motion? 
Does this same problem occur in the 
motion of an airplane? 

*13. How can you use Kepler’s 
second law to explain that the earth 
moves faster in its motion about the 
sun when it is closer to the sun? 

14. Could you place a 
synchronous satellite in a polar 
orbit about the earth? At 450 
latitude? 

15. Explain how you can use a 
Hohmann transfer orbit to allow 
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one satellite in an earth orbit to 
rendezvous with another satellite in 
a different earth orbit. 

*16. A satellite is in a circular 
orbit. Explain what happens to the 
orbit if the engines are momentarily 
turned on to exert a thrust (a) in 
the direction of the velocity, 
(b) opposite to the velocity, 
(c) toward the earth, and (d) away 
from the earth. 

17. A projectile fired close to the 
earth falls toward the earth and 
eventually crashes to the earth. The 
moon in its orbit about the earth is 
also falling toward the earth. Why 
doesn’t it crash into the earth? 

*18. The gravitational force on 
the earth caused by the sun is 
greater than the gravitational force 
on the earth caused by the moon. 
Why then does the moon have a 

greater effect on the tides than the 
sun? 

*19. How was the universal 
gravitational constant G 
determined experimentally? 

20. A string is tied to a rock and 
then the rock is put into motion in a 
vertical circle. Is this an example of 
uniform circular motion? 

 
Problems for Chapter 6 

 
6.3  Angles Measured in 
Radians 

1. Express the following angles 
in radians: (a) 3600, (b) 2700, 
(c) 1800, (d) 900, (e) 600, (f) 300, and 
(g) 1 rev. 

2. Express the following angles 
in degrees: (a) 2π rad, (b) π rad, (c) 1 
rad, and (d) 0.500 rad. 

3. A record player turns at 33-
1/3 rpm. What distance along the 
arc has a point on the edge moved 
in 1.00 min if the record has a 
diameter of 10.0 in.? 

 
6.4 and 6.5  The Centripetal 
Acceleration and the 
Centripetal Force 

4. A 4.00-kg stone is whirled at 
the end of a 2.00-m rope in a 
horizontal circle at a speed of 15.0 
m/s. Ignoring the gravitational 
effects (a) calculate the centripetal 
acceleration and (b) calculate the 
centripetal force. 

5. An automatic washing 
machine, in the spin cycle, is 
spinning wet clothes at the outer 
edge at 8.00 m/s. The diameter of 
the drum is 0.450 m. Find the 
acceleration of a piece of clothing in 
this spin cycle. 

6. A 1500-kg car moving at 86.0 
km/hr goes around a curve of 325-m 
radius. What is the centripetal 
acceleration? What is the 
centripetal force on the car? 

7. An electron is moving at a 
speed of 2.00 × 106 m/s in a circle of 
radius 0.0500 m. What is the force 
on the electron? 

8. Find the centripetal force on 
a 318-N girl on a merry-go-round 

that turns through one revolution 
in 40.0 s. The radius of the merry-
go-round is 3.00 m. 

 
6.7  Examples of Centripetal 
Force 

9. A boy sits on the edge of a 
polished wooden disk. The disk has 
a radius of 3.00 m and the 
coefficient of friction between his 
pants and the disk is 0.300. What is 
the maximum speed of the disk at 
the moment the boy slides off? 

10. A 1200-kg car begins to skid 
when traveling at 80.0 km/hr 
around a level curve of 125-m 
radius. Find the centripetal 
acceleration and the coefficient of 
friction between the tires and the 
road. 

11. At what angle should a 
bobsled turn be banked if the sled, 
moving at 26.0 m/s, is to round a 
turn of radius 100 m? 

12. A motorcyclist goes around 
a curve of 100-m radius at a speed 
of 95.0 km/hr, without leaning into 
the turn. (a) What must the 
coefficient of friction between the 
tires and the road be in order to 
supply the necessary centripetal 
force? (b) If the road is iced and the 
motorcyclist can not depend on 
friction, at what angle from the 
vertical should the motorcyclist 
lean to supply the necessary 
centripetal force? 

13. At what angle should a 
highway be banked for cars 
traveling at a speed of 100 km/hr, if 
the radius of the road is 400 m and 
no frictional forces are involved? 

14. A 910-kg airplane is flying 
in a circle with a speed of 370 
km/hr. The aircraft is banked at an 
angle of 30.00. Find the radius of 
the turn in meters. 

15. An airplane is flying in a 
circle with a speed of 650 km/hr. At 
what angle with the horizon should 
a pilot make a turn of radius of 8.00 
km such that a component of the lift 
of the aircraft supplies the 
necessary centripetal force for the 
turn? 

 
6.8  Newton’s Law of Universal 
Gravitation 

16. Two large metal spheres are 
separated by a distance of 2.00 m 
from center to center. If each sphere 
has a mass of 5000 kg, what is the 
gravitational force between them? 

17. A 5.00-kg mass is 1.00 m 
from a 10.0-kg mass. (a) What is the 
gravitational force that the 5.00-kg 
mass exerts on the 10.0-kg mass? 
(b) What is the gravitational force 
that the 10.0-kg mass exerts on the 
5.00-kg mass? (c) If both masses are 
free to move, what will their initial 
acceleration be? 

18. Three point masses of 10.0 
kg, 20.0 kg, and 30.0 kg are located 
on a line at 10.0 cm, 50.0 cm, and 
80.0 cm, respectively. Find the 
resultant gravitational force on 
(a) the 10.0-kg mass, (b) the 20.0-kg 
mass, and (c) the 30.0-kg mass. 

19. A boy meets a girl for the 
first time and is immediately 
attracted to her. If he has a mass of 
75.0 kg and she has a mass of 50.0 
kg and they are separated by a 

Pearson Custom Publishing

206



 
Chapter 6  Uniform Circular Motion, Gravitation, and Satellites                                                                          6-35 

distance of 3.00 m, is their 
attraction purely physical? 

 
Diagram for problem 19. 

 
20. What is the gravitational 

force between a proton and an 
electron in a hydrogen atom if they 
are separated by a distance of 5.29 
× 10−11 m? 

 
6.11-6.13  The Acceleration Due 
to Gravity 

21. What is the value of g at a 
distance from the center of the 
earth of (a) 1 earth radius, (b) 2 
earth radii, (c) 10 earth radii, and 
(d) at the distance of the moon? 

22. What is the weight of a 
body, in terms of its weight at the 
surface of the earth, at a distance 
from the center of the earth of (a) 1 
earth radius, (b) 2 earth radii, (c) 10 
earth radii, and (d) at the distance 
of the moon? How can an object in a 
satellite, at say 2 earth radii, be 
considered to be weightless? 

23. Calculate the acceleration 
due to gravity on the surface of 
Mars. What would a man who 
weighs 801 N on earth weigh on 
Mars? 

*24. It is the year 2020 and a 
base has been established on Mars. 
An enterprising businessman 
decides to buy coffee on earth at 
$1.12/N and sell it on Mars for 
$2.25/N. How much does he make 
or lose per newton when he sells it 
on Mars? Ignore the cost of 
transportation from earth to Mars. 

25. The sun’s radius is 110 
times that of the earth, and its 
mass is 333,000 times as large. 
What would be the weight of a 1.00-
kg object at the surface of the sun, 

assuming that it does not melt or 
evaporate there? 

 
6.14  Satellite Motion 

26. What is the velocity of the 
moon around the earth in a circular 
orbit? What is the time for one 
revolution? 

27. Calculate the velocity of the 
earth in an approximate circular 
orbit about the sun. Calculate the 
time for one revolution. 

28. A satellite is in a circular 
orbit 1130 km above the surface of 
the earth. Find its speed and its 
period of revolution. 

29. Calculate the speed of a 
satellite orbiting 100 km above the 
surface of Mars. What is its period? 

*30. An Apollo space capsule 
orbited the moon in a circular orbit 
at a height of 112 km above the 
surface. The time for one complete 
orbit, the period T, was 120 min. 
Find the mass of the moon. 

*31. A satellite orbits the earth 
in a circular orbit in 130 min. What 
is the distance of the satellite to the 
center of the earth? What is its 
height above the surface? What is 
its speed? 

 
Additional Problems 

*32. A rock attached to a string 
hangs from the roof of a moving 
train. If the train is traveling at 
80.5 km/hr around a level curve of 
153-m radius, find the angle that 
the string makes with the vertical. 

 
Diagram for problem 32. 

 
33. Find the centripetal force 

due to the rotation of the earth 

acting on a 100 kg person at (a) the 
equator, (b) 45.00 north latitude, 
and (c) the north pole. 

34. Find the resultant vector 
acceleration caused by the 
acceleration due to gravity and the 
centripetal acceleration for a person 
located at (a) the equator, (b) 45.00 
north latitude, and (c) the north 
pole. 

*35. A 90-kg pilot pulls out of a 
vertical dive at 685 km/hr along an 
arc of a circle of 1500-m radius. 
Find the centripetal acceleration, 
centripetal force, and the net force 
on the pilot at the bottom of the 
dive. 

 
Diagram for problem 35. 

 
*36. What is the minimum 

speed of an airplane in making a 
vertical loop such that an object in 
the plane will not fall during the 
peak of the loop? The radius of the 
loop is 300 m. 

*37. A rope is attached to a pail 
of water and the pail is then rotated 
in a vertical circle of 80.0-cm 
radius. What must the minimum 
speed of the pail of water be such 
that the water will not spill out? 

38. A mass is attached to a 
string and is swung in a vertical 
circle. At a particular instant the 
mass is moving at a speed v, and its 
velocity vector makes an angle θ 
with the horizontal. Show that the 
normal component of the 
acceleration is given by 

 
T + w sinθ = mv2/r 

 
and the tangential component of 
the acceleration is given by 

 
aT = −g cosθ 
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Hence show why this motion in a 
vertical circle is not uniform 
circular motion. 

*39. A 10.0-N ball attached to a 
string 1.00 m long moves in a 
horizontal circle. The string makes 
an angle of 60.00 with the vertical. 
(a) Find the tension in the string. 
(b) Find the component of the 
tension that supplies the necessary 
centripetal force. (c) Find the speed 
of the ball. 

 
Diagram for problem 39. 

 
40. A mass mA = 35.0 g is on a 

smooth horizontal table. It is 
connected by a string that passes 
through the center of the table to a 
mass mB = 25.0 g. At what uniform 
speed should mA move in a circle of 
radius r = 40.0 cm such that mass 
mB remains motionless? 

*41. Three point masses of 30.0 
kg, 50.0 kg, and 70.0 kg are located 
at the vertices of an equilateral 
triangle 1.00 m on a side. Find the 
resultant gravitational force on 
each mass. 

*42. Four metal spheres are 
located at the corners of a square of 
sides of 0.300 m. If each sphere has 
a mass of 10.0 kg, find the force on 
the sphere in the lower right-hand 
corner. 

43. What is the gravitational 
force between the earth and the 
moon? If a steel cable can withstand 
a force of 7.50 × 104 N/cm2, what 
must the diameter of a steel cable 
be to sustain the equivalent force? 

*44. At what speed would the 
earth have to rotate such that the 
centripetal force at the equator 
would be equal to the weight of a 
body there? If the earth rotated at 

this velocity, how long would a day 
be? If a 890-N man stood on a 
weighing scale there, what would 
the scales read? 

*45. What would the mass of 
the earth have to be in order that 
the gravitational force is 
inadequate to supply the necessary 
centripetal force to keep a person on 
the surface of the earth at the 
equator? What density would this 
correspond to? Compare this to the 
actual density of the earth. 

*46. Compute the gravitational 
force of the sun on the earth. Then 
compute the gravitational force of 
the moon on the earth. Which do 
you think would have a greater 
effect on the tides, the sun or the 
moon? Which has the greatest 
effect? 

*47. Find the force exerted on 
1.00 kg of water by the moon when 
(a) the 1.00 kg is on the side nearest 
the moon and (b) when the 1.00 kg 
is on the side farthest from the 
moon. Would this account for tides? 

*48. By how much does (a) the 
sun and (b) the moon change the 
value of g at the surface of the 
earth? 

49. How much greater would 
the range of a projectile be on the 
moon than on the earth? 

*50. Find the point between the 
earth and the moon where the 
gravitational forces of earth and 
moon are equal. Would this be a 
good place to put a satellite? 

*51. An earth satellite is in a 
circular orbit 177 km above the 
earth. The period, the time for one 
orbit, is 88.0 min. Determine the 
velocity of the satellite and the 
acceleration due to gravity in the 
satellite at the satellite altitude. 

*52. Show that Kepler’s third 
law, which shows the relationship 
between the period of motion and 
the radius of the orbit, can be found 
for circular orbits by equating the 
centripetal force to the 
gravitational force, and obtaining 

 
T 2 = 4π2r3   

  Gm 
 

*53. Using Kepler’s third law 
from problem 52, find the mass of 
the sun. If the radius of the sun is 
7.00 × 108 m, find its density. 

*54. The speed of the earth 
around the sun was found, using 
dynamical principles in the 
example 6.11 of section 6.14, to be 
29.7 km/s. Show that this result is 
consistent with a purely 
kinematical calculation of the speed 
of the earth about the sun. 

*55. A better approximation for 
equation 6.52, the “burn time” for 
the rocket engines, can be obtained 
if the rate at which the rocket fuel 
burns, is a known constant. The 
rate at which the fuel burns is then 
given by 

∆m/∆t = K. 
 

Hence, the mass at any time during 
the burn will be given by (m0 − 
K∆t), where m0 is the initial mass of 
the rocket ship before the engines 
are turned on. Show that for this 
approximation the time of burn 
becomes 

∆t =    m0∆v     
   F + K∆v 

 
*56. If a spacecraft is to transfer 

from a 370 km earth parking orbit 
to a 150 km lunar parking orbit by 
a Hohmann transfer ellipse, find 
(a) the location of the center of mass 
of the earth-moon system, (b) the 
perigee distance of the transfer 
ellipse, (c) the apogee distance, 
(d) the semimajor axis of the ellipse, 
(e) the speed of the spacecraft in the 
earth circular parking orbit, (f) the 
speed necessary for insertion into 
the Hohmann transfer ellipse, 
(g) the necessary ∆v for this 
insertion, (h) the speed of the 
spacecraft in a circular lunar 
parking orbit, (i) the speed of the 
spacecraft on the Hohmann 
transfer at time of lunar insertion, 
and (j) the necessary ∆v for 
insertion into the lunar parking 
orbit. 

 
Interactive Tutorials 

57. Newton’s law of gravity. Two 
masses m1 = 5.10 × 1021 kg and m2 
= 3.00 × 1014 kg are separated by a 
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distance r = 4.30 × 105 m. Calculate 
their gravitational force of 
attraction. 

58. Acceleration due to gravity. 
Planet X has mass mp = 3.10 × 1025 
kg and a radius rp = 5.40 × 107 m. 
Calculate the acceleration due to 
gravity g at distances of 1-10 planet 
radii from the planet’s surface, and 
plot the results. 

59. Angle of bank. Find the 
angle of bank for a car making a 
turn on a banked road. 

60. Speed of a satellite. Find the 
speed of a satellite in a circular 
orbit about its parent body. 

61. Space flight. You are to plan 
a trip to the planet Mars using the 
Hohmann transfer ellipse described 
in the “Have you ever wondered ...?” 
section. The spacecraft is to 
transfer from a 925-km earth 
circular parking orbit to a 185-km 
circular parking orbit around Mars. 
Find (a) the center of mass of the 
Earth-Sun-Mars system, (b) the 
perigee distance of the transfer 
ellipse, (c) the apogee distance of 
the transfer ellipse, (d) the 

semimajor axis of the ellipse, (e) the 
speed of the spacecraft in the earth 
parking orbit, (f) the speed 
necessary for insertion into the 
Hohmann transfer ellipse, (g) the 
necessary ∆v for insertion into the 
transfer ellipse, (h) the necessary 
speed in the Mars circular parking 
orbit, (i) the speed of the spacecraft 
in the transfer ellipse at Mars, and 
(j) the necessary ∆v for insertion 
into the Mars parking orbit. 

 
To go to these Interactive 

Tutorials click on this sentence. 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 

 

Pearson Custom Publishing

209



Pearson Custom Publishing

210



 

Chapter 7 Energy and Its Conservation                                                                                                                7-1 

Chapter 7  Energy and Its Conservation 
 

The fundamental principle of natural philosophy is to attempt to reduce the 
apparently complex physical phenomena to some simple fundamental ideas and 
relations.                                       Einstein and Infeld 

 
7.1   Energy   
The fundamental concept that connects all of the apparently diverse areas of natural phenomena such as 
mechanics, heat, sound, light, electricity, magnetism, chemistry, and others, is the concept of energy. Energy can 
be subdivided into well-defined forms, such as (1) mechanical energy, (2) heat energy, (3) electrical energy, 
(4) chemical energy, and (5) atomic energy. In any process that occurs in nature, energy may be transformed from 
one form to another. The history of technology is one of a continuing process of transforming one type of energy 
into another. Some examples include the light bulb, generator, motor, microphone, and loudspeakers. 

In its simplest form, energy can be defined as the ability of a body or system of bodies to perform work. A 
system is an aggregate of two or more particles that is treated as an individual unit. In order to describe the energy 
of a body or a system, we must first define the concept of work. 
 
 
7.2  Work 
Almost everyone has an intuitive grasp for the concept of work. 
However, we need a precise definition of the concept of work so let us 
define it as follows. Let us exert a force F on the block in figure 7.1, 
causing it to be displaced a distance x along the table. The work W 
done in displacing the body a distance x along the table is defined as 
the product of the force acting on the body, in the direction of the 
displacement, times the displacement x of the body. Mathematically 
this is 

W = Fx                                             (7.1) 
 
We will always use a capital W to designate the work done, in order 

                                                                                                                 Figure 7.1 The concept of work. 
 
to distinguish it from the weight of a body, for which we use the lower case w. The important thing to observe here 
is that there must be a displacement x if work is to be done. If you push as hard as you can against the wall with 
your hands, then from the point of view of physics, you do no work on the wall as long as the wall has not moved 
through a displacement x. This may not appeal to you intuitively because after pushing against that wall for a 
while, you will become tired and will feel that you certainly did do work. But again, from the point of view of 
physics, no work on the wall is accomplished because there is no displacement of the wall. In order to do work on 
an object, you must exert a force F on that object and move that object from one place to another. If that object is 
not moved, no work is done. 

From the point of view of expending energy in pushing against the immovable wall, your body used 
chemical energy in its tissues and muscles to hold your hands against the wall. As the body uses this energy, it 
becomes tired and that energy must eventually be replaced by eating. We will consider the energy used by the 
body in sustaining the force chemical energy. But, in terms of mechanical energy, no work is done in pressing your 
hands against an immovable wall. Hence, work as it is used here, is mechanical work. 

In order to be consistent with the definition of work stated above, if the force acting on the body is not 
parallel to the displacement, as in figure 7.2, then the work done is the product of the force in the direction of the 
displacement, times the displacement. That is, the x-component of the force, 
 

Fx = F cos θ 
 

is the component of the force in the direction of the displacement. Therefore, the work done on the body is 
 

W = (F cos θ)x 
which is usually written as 
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 W = Fx cos θ                                        (7.2) 
 

This is the general equation used to find the work done on a 
body. If the force is in the same direction as the displacement, then 
the angle θ equals zero. But cos 00 = 1, and equation 7.2 reduces to 
equation 7.1, where the force was in the direction of the 
displacement. 
 
 
 
                                                                                                                Figure 7.2 Work done when the force is not  

                                                                                                                             in the direction of the displacement. 
Units of Work 
Since the unit of force in SI units is a newton, and the unit of length is a meter, the SI unit of work is defined as 1 
newton meter, which we call 1 joule, that is, 

 1 joule = 1 newton meter 
Abbreviated, this is 

1 J = 1 N m 
 

One joule of work is done when a force of one newton acts on a body, moving it through a distance of one meter. The 
unit joule is named after James Prescott Joule (1818-1889), a British physicist. Since energy is the ability to do 
work, the units of work will also be the units of energy.1  

 
Example 7.1 

 
Work done in lifting a box. What is the minimum amount of work that is necessary to lift a 3.00-kg box to a height 
of 4.00 m (figure 7.3)? 

Solution
 

We find the work done by noting that F is the force that is necessary to 
lift the block, which is equal to the weight of the block, and is given by 

 
F = w = mg = (3.00 kg)(9.80 m/s2) = 29.4 N 

 
The displacement is the distance h that the block is lifted. Since the 
force is in the same direction as the displacement, θ is equal to zero in 
equation 7.2. Thus, 

W = Fx cos θ = Fh cos 00  
= Fh = (29.4 N)(4.00 m)  

= 118 N m = 118 J 
 

Note here that if a force of only 29.4 N is exerted to lift the block, then 
the block will be in equilibrium and will not be lifted from the table at  
                                                                                                                        Figure 7.3 Work done in lifting a box. 

 
all. If, however, a force that is just infinitesimally greater than w is exerted for just an infinitesimal period of time, 
then this will be enough to set w into motion. Once the block is moving, then a force F, equal to w, will keep it 
moving upward at a constant velocity, regardless of how small that velocity may be. In all such cases where forces 
                                                      
1
In the British engineering system, the force is expressed in pounds and the distance in feet. Hence, the unit of work is defined as 

1 unit of work = 1 ft lb 
 

One foot-pound is the work done when a force of one pound acts on a body moving it through a distance of one foot. Unlike SI units, the unit of 
work in the British engineering system is not given a special name. The conversion factor between work in the British Engineering System and 
the International System of Units is  

1 ft lb = 1.36 J 
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are exerted to lift objects, such that F = w, we will tacitly assume that some additional force was applied for an 
infinitesimal period of time, to start the motion. 
 

To go to this Interactive Example click on this sentence. 

 
 

Example 7.2 
 

When the force is not in the same direction as the displacement. A 
force of 15.0 N acting at an angle of 25.00 to the horizontal is used to 
pull a box a distance of 5.00 m across a floor (figure 7.4). How much 
work is done? 

 
 
 
 
 
 

                                                                                    
Figure 7.4 Work done when pulling a box. 

Solution
 

The work done, found by using equation 7.2, is 
 

W = Fx cos θ = (15.0 N)(5.00 m)(cos 25.00) 
= 68.0 N m = 68.0 J 

 
To go to this Interactive Example click on this sentence. 

 
Example 7.3 

 
Work done keeping a satellite in orbit. Find the work done to keep a satellite in a circular orbit about the earth. 

 
Figure 7.5 The work done to keep a satellite in orbit. 

Solution
 

A satellite in a circular orbit about the earth has a gravitational force acting on it that is perpendicular to the 
orbit, as seen in figure 7.5. The displacement of the satellite in its orbit is perpendicular to that gravitational force. 
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Note that if the displacement is perpendicular to the direction of the applied force, then θ is equal to 900, and cos 
900 = 0. Hence, the work done on the satellite by gravity, found from equation 7.2, is 
 

W = Fx cos θ = Fx cos 900 = 0 
 

Therefore, no work is done by gravity on the satellite as it moves in its orbit. Work had to be done to get the 
satellite into the orbit, but once there, no additional work is required to keep it moving in that orbit. In general, 
whenever the applied force is perpendicular to the displacement, no work is done by that applied force. 
 

 
 

Example 7.4 
 

Work done in stopping a car. A force of 3800 N is applied to a car to bring it to rest in a distance x = 135 m, as 
shown in figure 7.6. How much work is done in stopping the car? 

 
Figure 7.6  Work done in stopping a car. 

 
Solution

 
To determine the work done in bringing the car to rest, note that the applied force is opposite to the displacement 
of the car. Therefore, θ is equal to 1800 in equation 7.2. Hence, the work done, found from equation 7.2, is 
 

W = Fx cos θ = (3800 N)(135 m) cos 1800 

    = −5.13 × 105 J 
 

Notice that cos 1800 = −1, and hence, the work done is negative. In general, whenever the force is opposite to the 
displacement, the work will always be negative. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
7.3  Power 
When you walk up a flight of stairs, you do work because you are lifting your body up those stairs. You know, 
however, that there is quite a difference between walking up those stairs slowly and running up them very 
rapidly. The work that is done is the same in either case because the net result is that you lifted up the same 
weight w to the same height h. But you know that if you ran up the stairs you would be more tired than if you 
walked up them slowly. There is, therefore, a difference in the rate at which work is done. 

Power is defined as the time rate of doing work. We express this mathematically as 
 

Power = work done 
               time 
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 P =  W                                                                                    (7.3) 
                                                                                                   t             

 
When you ran up the stairs rapidly, the time t was small, and therefore the power P, which is the work divided by 
that small time, was relatively large. Whereas, when you walked up the stairs slowly, t was much larger, and 
therefore the power P was smaller than before. Hence, when you go up the stairs rapidly you expend more power 
than when you go slowly. 
 
Units of Power 
In SI units, the unit of power is defined as a watt, that is, 
 

1 watt = 1   joule   
                    second 

which we abbreviate as 
1 W = 1  J  
             s 

 
One watt of power is expended when one joule of work is done each second. The watt is named in honor of James 
Watt (1736-1819), a Scottish engineer who perfected the steam engine2. The kilowatt, a unit with which you may 
already be more familiar, is a thousand watts: 

1 kw = 1000 W 
 

Another unit with which you may also be familiar is the kilowatt-hour (kwh), but this is not a unit of power, but 
energy, as can be seen from equation 7.3. Since 

P =  W   
      t 

then 
W = Pt = (kilowatt)(hour) 

 
Your monthly electric bill is usually expressed in kilowatt-hours, which is the amount of electric energy you have 
used for that month. It is the number of kilowatts of power that you used times the number of hours that you used 
them. To convert kilowatt-hours to joules note 
 

1 kwh = (1000 J/s)(1 hr)(3600 s/hr) = 3.6 × 106 J 
 

Example 7.5 
 

Power expended. A person pulls a block with a force of 15.0 N at an angle of 25.00 with the horizontal. If the block 
is moved 5.00 m in the horizontal direction in 5.00 s, how much power is expended? 

Solution
 

The power expended, found from equations 7.3 and 7.2, is 
 

P =  W  = Fx cos θ  
                                                                                          t            t 

= (15.0 N)(5.00 m)cos 25.00 = 13.6 N m = 13.6 W  
                                                                         5.00 s                             s 

                                                      
2
The unit of power in the British engineering system should be 

   P =  W  = ft lb 
                                                                                                                       t        s 
 
and although this would be the logical unit to express power in the British engineering system, it is not the unit used. Instead, the unit of power 
in the British engineering system is the horsepower. The horsepower is defined as 
    

         1 horsepower = 1 hp = 550 ft lb  = 745.7 W 
                                 s 
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To go to this Interactive Example click on this sentence. 

 

 
 

When a constant force acts on a body in the direction of the body’s motion, we can also express the power 
as 

     P =  W  = Fx  = F  x   
                                                                                            t       t           t 
but 

  x  = v 
                                                                                             t      
the velocity of the moving body. Therefore, 

 P = Fv                                                                                  (7.4) 
 

is the power expended by a force F, acting on a body that is moving at the velocity v. 
 

Example 7.6 
 

Power to move your car. An applied force of 5500 N keeps a car moving at 95 km/hr. How much power is expended 
by the car? 

Solution
 

The power expended by the car, found from equation 7.4, is 
 

km 1 hr 1000 m(5500 N) 95
hr 3600 s 1 km

P Fv    = =    
   

 

= 1.45 × 105 N m/s = 1.45 × 105 J/s 
= 1.45 × 105 W 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
7.4  Gravitational Potential Energy 
Gravitational potential energy is defined as the energy that a body possesses by virtue of its position. If the block 
shown in figure 7.7, were lifted to a height h above the table, then that block would have potential energy in that 
raised position. That is, in the raised position, the block has the ability to do work whenever it is allowed to fall. 
The most obvious example of gravitational potential energy is a waterfall (figure 7.8). Water at the top of the falls 
has potential energy. When the water falls to the bottom, it can be used to turn turbines and thus do work. A 
similar example is a pile driver. A pile driver is basically a large weight that is raised above a pile that is to be 
driven into the ground. In the raised position, the driver has potential energy. When the weight is released, it falls 
and hits the pile and does work by driving the pile into the ground. 

Therefore, whenever an object in the gravitational field of the earth is placed in a position above some 
reference plane, then that object will have potential energy because it has the ability to do work. 

As in all the concepts studied in physics, we want to make this concept of potential energy quantitative. 
That is, how much potential energy does a body have in the raised position? How should potential energy be 
measured? 

Because work must be done on a body to put the body into the position where it has potential energy, the 
work done is used as the measure of this potential energy. That is, the potential energy of a body is equal to the work 
done to put the body into the particular position. Thus, the potential energy (PE) is 
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                 Figure 7.7  Gravitational potential energy.               Figure 7.8  Water at the top of the falls has 
                                                                                                                          potential energy. 

 
PE = Work done to put body into position                                                 (7.5) 

 
We can now compute the potential energy of the block in figure 7.7 as 
 

PE = Work done 
PE = W = Fh = wh                                                                      (7.6) 

 
The applied force F necessary to lift the weight is set equal to the weight w of the block. And since w = mg, the 
potential energy of the block becomes 

 PE = mgh                                                                                (7.7) 
 

We should emphasize here that the potential energy of a body is referenced to a particular plane, as in figure 7.9.  
 

                           
          Figure 7.9  Reference plane for potential energy.                 Figure 7.10  Changing potential energy. 

 
If we raise the block a height h1 above the table, then with respect to the table it has a potential energy 
 

                PE1 = mgh1 
While at the same position, it has the potential energy 

                 PE2 = mgh2 
with respect to the floor, and 

                 PE3 = mgh3 
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with respect to the ground outside the room. All three potential energies are different because the block can do 
three different amounts of work depending on whether it falls to the table, the floor, or the ground. Therefore, it is 
very important that when the potential energy of a body is stated, it is stated with respect to a particular reference 
plane. We should also note that it is possible for the potential energy to be negative with respect to a reference 
plane. That is, if the body is not located above the plane but instead is found below it, it will have negative 
potential energy with respect to that plane. In such a position the body can not fall to the reference plane and do 
work, but instead work must be done on the body to move the body up to the reference plane. 

 
Example 7.7 

 
The potential energy. A mass of 1.00 kg is raised to a height of 1.00 m 
above the floor (figure 7.11). What is its potential energy with respect to 
the floor? 

Solution
 

The potential energy, found from equation 7.7, is 
 

PE = mgh = (1.00 kg)(9.80 m/s2)(1.00 m) 
= 9.80 J 

 
To go to this Interactive Example click on this sentence. 

 
 

Figure 7.11  The potential energy of a block. 

 
 

In addition to gravitational potential energy, a body can have elastic potential energy and electrical 
potential energy. An example of elastic potential energy is a compressed spring. When the spring is compressed, 
the spring has potential energy because when it is released, it has the ability to do work as it expands to its 
normal position. Its potential energy is equal to the work that is done to compress it. We will discuss the spring 
and its potential energy in much greater detail in chapter 11 on simple harmonic motion. We will discuss electric 
potential energy in chapter 19 on electric fields. 
 
 
7.5  Kinetic Energy 
In addition to having energy by virtue of its position, a body can also possess energy by virtue of its motion. When 
we bring a body in motion to rest, that body is able to do work. The kinetic energy of a body is the energy that a 
body possesses by virtue of its motion. Because work had to be done to place a body into motion, the kinetic energy 
of a moving body is equal to the amount of work that must be done to bring a body from rest into that state of 
motion. Conversely, the amount of work that you must do in order to bring a moving body to rest is equal to the 
negative of the kinetic energy of the body. That is, 

 
Kinetic energy (KE) = Work done to put body into motion 

= −Work done to bring body to a stop                                       (7.8) 
 

The work done to put a body at rest into motion is positive and hence the kinetic energy is positive, and the body 
has gained energy. The work done to bring a body in motion to a stop is negative, and hence the change in its 
kinetic energy is negative. This means that the body has lost energy as it goes from a velocity v to a zero velocity. 

Consider a block at rest on the frictionless table as shown in figure 7.12. A constant net force F is applied 
to the block to put it into motion. When it is a distance x away, it is moving at a speed v. What is its kinetic energy 
at this point? The kinetic energy, found from equation 7.8, is 

 
KE = Work done = W = Fx                                                                 (7.9) 
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But by Newton’s second law, the force acting on the body gives the 
body an acceleration. That is, F = ma, and substituting this into 
equation 7.9 we have 

KE = Fx = max                                (7.10) 
               

But for a body moving at constant acceleration, the kinematic 
equation 3.16 was 

v2 = v02 + 2ax 
 

Since the block started from rest, v0 = 0, giving us 
 

                                                                                                           Figure 7.12  The kinetic energy of a body. 
 

v2 = 2ax 
Solving for the term ax, 

ax =  v2                                                                                 (7.11) 
        2 

 
Substituting equation 7.11 back into equation 7.10, we have 
 

KE = m(ax) = mv2 
                      2 

or 
 KE =  1  mv2                                                                            (7.12) 

                                                                                                  2                         
 

Equation 7.12 is the classical expression for the kinetic energy of a body in motion at speed v. 
 

Example 7.8 
 

Kinetic energy. Let the block of figure 7.12 have a mass m = 2.00 kg and let it be moving at a speed of 5.00 m/s 
when x = 5.00 m. What is its kinetic energy at x = 5.00 m? 

Solution
 

Using equation 7.12 for the kinetic energy we obtain 
 

KE =  1 mv2 =  1  (2.00 kg)(5.00 m/s)2 
                                                                            2             2 

= 25.0 kg m2/s2 = 25.0(kg m/s2)m = 25.0 N m 
= 25.0 J 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 7.9 
 

The effect of doubling the speed on the kinetic energy. If a car doubles its speed, what happens to its kinetic energy? 
Solution

 
Let us assume that the car of mass m is originally moving at a speed v0. Its original kinetic energy is 
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(KE)0 =  1  mv02 
    2 

 
If the speed is doubled, then v = 2v0 and its kinetic energy is 
 

 KE =  1 mv2 =  1 m(2v0)2 =  1 m4v02  
                                                                              2             2                  2 

= 4( 1 mv02) = 4KE0 
                                                                                       2                

 
That is, doubling the speed results in quadrupling the kinetic energy. Increasing the speed by a factor of 4 
increases the kinetic energy by a factor of 16. This is why automobile accidents at high speeds cause so much 
damage. 

To go to this Interactive Example click on this sentence. 
 

 
 

Before we leave this section, we should note that in our derivation of the kinetic energy, work was done to 
bring an object from rest into motion. The work done on the body to place it into motion was equal to the acquired 
kinetic energy of the body. If an object is already in motion when the constant force is applied to it, the work done 
is equal to the change in kinetic energy of the body. That is, equation 7.9 can be written as 

 
Work done = W = Fx 

W = Fx = max 
 

but if the block is already in motion at an initial velocity v0 when the force was applied, 
 

v2 = v02 + 2ax 
ax = v2 − v02 

      2 
Hence, 

2 2
0 

2
v v

W Fx ma x m
 −

= = =  
 

 

= mv2 − mv02    
                                                                                           2         2 

= KEf − KEi = ∆KE 
 

Thus, the work done on a body is equal to the change in the kinetic energy of that body. 
 
 
7.6  The Conservation of Energy 
When we say that something is conserved, we mean that that quantity is a constant and does not change with 
time. It is a somewhat surprising aspect of nature that when a body is in motion, its position is changing with 
time, its velocity is changing with time, yet certain characteristics of that motion still remain constant. One of the 
quantities that remain constant during motion is the total energy of the body. The analysis of systems whose 
energy is conserved leads us to the law of conservation of energy. 

In any closed system, that is, an isolated system, the total energy of the system remains a constant. This is 
the law of conservation of energy. There may be a transfer of energy from one form to another, but the total energy 
remains the same. 

As an example of the conservation of energy applied to a mechanical system without friction, let us go back 
and look at the motion of a projectile in one dimension. Assume that a ball is thrown straight upward with an 
initial velocity v0. The ball rises to some maximum height and then descends to the ground, as shown in figure 
7.13. At the point 1, a height h1 above the ground, the ball has a potential energy given by 
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PE1 = mgh1                                             (7.13) 
 

At this same point it is moving at a velocity v1 and thus has a kinetic energy 
given by 

KE1 =  1 mv12                                          (7.14) 
        2 

 
The total energy of the ball at point 1 is the sum of its potential energy and 
its kinetic energy. Hence, using equations 7.13 and 7.14, we get 

 
 E1 = PE1 + KE1                                      (7.15) 

 
 E1 = mgh1 +  1 mv12                                    (7.16) 

                                                                          2                       
 

                                                                                                                       Figure 7.13  The conservation of energy 
                                                                                                                                           and projectile motion. 

 
When the ball reaches point 2 it has a new potential energy because it is higher up, at the height h2. Hence, its 
potential energy is 

PE2 = mgh2 
 

As the ball rises, it slows down. Hence, it has a smaller velocity v2 at point 2 than it had at point 1. Its kinetic 
energy is now 

 KE2 =  1 mv22  
    2 

 
The total energy of the ball at position 2 is the sum of its potential energy and its kinetic energy: 
 

E2 = PE2 + KE2                                                                         (7.17) 
 E2 = mgh2 +  1 mv22                                                                     (7.18) 

                                                                                                        2                      
 

Let us now look at the difference in the total energy of the ball between when it is at position 2 and when it 
is at position 1. The change in the total energy of the ball between position 2 and position 1 is 

 
∆E = E2 − E1                                                                        (7.19) 

Using equations 7.16 and 7.18, this becomes 
 

∆E = mgh2 +  1 mv22 − mgh1 −  1 mv12 
                                                                                        2                           2   
Simplifying, 

∆E = mg(h2 − h1) +  1 m(v22 − v12)                                                           (7.20) 
               2 

 
Let us return, for the moment, to the third of the kinematic equations for projectile motion developed in chapter 3, 
namely 

v2 = v02 − 2gy                                                                            (3.24) 
 

Recall that v was the velocity of the ball at a height y above the ground, and v0 was the initial velocity at the 
ground. We can apply equation 3.24 to the present situation by noting that v2 is the velocity of the ball at a height 
h2 − h1 = y, above the level where the velocity was v1. Hence, we can rewrite equation 3.24 as 
 

v22 = v12 − 2gy  
Rearranging terms, this becomes 

v22 − v12 = −2gy                                                                        (7.21) 
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If we substitute equation 7.21 into equation 7.20, we get 
 

∆E = mg(h2 − h1) +  1 m(−2gy) 
                  2 

But, as we can see from figure 7.13, h2 − h1 = y. Hence, 
 

∆E = mgy − mgy 
or 

 ∆E = 0                                                                                 (7.22) 
 

which tells us that there is no change in the total energy of the ball between the arbitrary levels 1 and 2. But, 
since ∆E = E2 − E1 from equation 7.19, equation 7.22 is also equivalent to 
 

∆E = E2 − E1 = 0                                                                        (7.23) 
Therefore, 

 E2 = E1 = constant                                                                      (7.24) 
 

That is, the total energy of the ball at position 2 is equal to the total energy of the ball at position 1. Equations 
7.22, 7.23, and 7.24 are equivalent statements of the law of conservation of energy. There is no change in the total 
energy of the ball throughout its entire flight. Or similarly, the total energy of the ball remains the same throughout 
its entire flight, that is, it is a constant. 

We can glean even more information from these equations by combining equations 7.15, 7.17, and 7.23 into 
 

    ∆E = E2 − E1 = PE2 + KE2 − PE1 − KE1 = 0 
PE2 − PE1 + KE2 − KE1 = 0                                                                (7.25) 

But, 
PE2 − PE1 = ∆PE                                                                  (7.26) 

is the change in the potential energy of the ball, and 
KE2 − KE1 = ∆KE                                                                 (7.27) 

 
is the change in the kinetic energy of the ball. Substituting equations 7.26 and 7.27 back into equation 7.25 gives 
 

∆PE + ∆KE = 0                                                                       (7.28) 
or 

 ∆PE = −∆KE                                                                           (7.29) 
 

Equation 7.29 says that the change in potential energy of the ball will always be equal to the change in the 
kinetic energy of the ball. Hence, if the velocity decreases between level 1 and level 2, ∆KE will be negative. When 
this is multiplied by the minus sign in equation 7.29, we obtain a positive number. Hence, there is a positive 
increase in the potential energy ∆PE. Thus, the amount of kinetic energy of the ball lost between levels 1 and 2 will 
be equal to the gain in potential energy of the ball between the same two levels. Thus, energy can be transformed 
between kinetic energy and potential energy but, the total energy will always remain a constant. The energy 
described here is mechanical energy. But the law of conservation of energy is, in fact, more general and applies to 
all forms of energy, not only mechanical energy. We will say more about this later. 

This transformation of energy between kinetic and potential is illustrated in figure 7.14. When the ball is 
launched at the ground with an initial velocity v0, all the energy is kinetic, as seen on the bar graph. When the ball 
reaches position 1, it is at a height h1 above the ground and hence has a potential energy associated with that 
height. But since the ball has slowed down to v1, its kinetic energy has decreased. But the sum of the kinetic 
energy and the potential energy is still the same constant energy, Etot. The ball has lost kinetic energy but its 
potential energy has increased by the same amount lost. That is, energy was transformed from kinetic energy to 
potential energy. At position 2 the kinetic energy has decreased even further but the potential energy has 
increased correspondingly. At position 3, the ball is at the top of its trajectory. Its velocity is zero, hence its kinetic 
energy at the top is also zero. The total energy of the ball is all potential. At position 4, the ball has started down. 
Its kinetic energy is small but nonzero, and its potential energy is starting to decrease. At position 5, the ball is 
moving much faster and the kinetic energy has increased accordingly. The potential energy has decreased to 
account for the increase in the kinetic energy. At position 6, the ball is back on the ground, and hence has no 
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potential energy. All of the energy has been converted back into kinetic energy. As we can observe from the bar 
graph, the total energy remained constant throughout the flight. 

 
 Figure 7.14  Bar graph of energy during projectile motion. 

 
Example 7.10 

 
Conservation of energy and projectile motion. A 0.140-kg ball is thrown upward with an initial velocity of 35.0 m/s. 
Find (a) the total energy of the ball, (b) the maximum height of the ball, and (c) the kinetic energy and velocity of 
the ball at 30.0 m. 

Solution
 

a.  The total energy of the ball is equal to the initial kinetic energy of the ball, that is, 
 

Etot = KEi =  1 mv2 
              2 

=  1 (0.140 kg)(35.0 m/s)2 
                                                                                2                                

= 85.8 J 
 

b.  At the top of the trajectory the velocity of the ball is equal to zero and hence its kinetic energy is also zero 
there. Thus, the total energy at the top of the trajectory is all in the form of potential energy. Therefore, 
 

Etot = PE = mgh 
and the maximum height is 

h = Etot   
      mg 

=              85.8 J            
               (0.140 kg)(9.80 m/s2) 

= 62.5 m 
 

c.  The total energy of the ball at 30 m is equal to the total energy of the ball initially. That is, 
 

E30 = PE30 + KE30 = Etot 
The kinetic energy of the ball at 30.0 m is 

   KE30 = Etot − PE30 = Etot − mgh30 
                                = 85.8 J − (0.140 kg)(9.80 m/s2)(30.0 m) 

= 44.6 J 
The velocity of the ball at 30 m is found from 

   1 mv2 = KE30 
                                                                                       2                  
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302 KE
v

m
=  

2(44.6 J)
0.140 kg

=  

= 25.2 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Another example of this transformation of energy back and forth between kinetic and potential is given by 
the pendulum. The simple pendulum, as shown in figure 7.15, is a string, one end of which is attached to the 
ceiling, the other to a bob. The pendulum is pulled to the right so 
that it is a height h above its starting point. All its energy is in the 
form of potential energy. When it is released, it falls toward the 
center. As its height h decreases, it loses potential energy, but its 
velocity increases, increasing its kinetic energy. At the center 
position h is zero, hence its potential energy is zero. All its energy is 
now kinetic, and the bob is moving at its greatest velocity. Because 
of the inertia of the bob it keeps moving toward the left. As it does, 
it starts to rise, gaining potential energy. This gain in potential 
energy is of course accompanied by a corresponding loss in kinetic 
energy, until the bob is all the way to the left. At that time its 
velocity and hence kinetic energy is zero and, since it is again at the 
height h, all its energy is potential and equal to the potential energy 
at the start. 

We can find the maximum velocity, which occurs at the  
                                                                                                Figure 7.15  The simple pendulum. 

 
bottom of the swing, by equating the total energy at the bottom of the swing to the total energy at the top of the 
swing: 

Ebottom = Etop  
KEbottom = PEtop                                                                                                              (7.30) 
  1 mv2 = mgh      

                                                                                       2                       
  2v gh=                                                                              (7.31) 

 
Thus, the velocity at the bottom of the swing is independent of the mass of the bob and depends only on the height. 

 
Example 7.11 

 
A Pendulum. A pendulum bob is pulled to the right such that it is at a height of 50.0 cm above it lowest position. 
Find its velocity at its lowest point. 

Solution
 

The velocity of the pendulum bob at the bottom of its swing is given by equation 7.31 as  
 

2v gh=  
22(9.80 m/s )(0.500 m)v =  

v = 3.13 m/s 
 

To go to this Interactive Example click on this sentence. 
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Example 7.12 
 

Conservation of Energy. A 3.75 kg-block is pushed from point A, figure 7.16, with a velocity vA = 2.50 m/s at a 
height hA = 5.00 m. It slides down the frictionless hill, moves over the flat frictionless surface at the bottom and 
then slides up the frictionless inclined hill. (a) Find the total energy of the block. (b) How far up the plane will the 
block slide before coming to rest. The plane makes an angle θ = 35.00 with the horizontal. 

Solution
 

a. The total energy of the block at point A is  
 

 EA = mghA + 1 mvA2 
             2 

= (3.75 kg)(9.80 m/s2)(5.00 m) + (1/2)(3.75 kg)(2.50 m/s)2 
= 184 J + 11.7 J 

= 196 J 
 

b.  At the maximum distance of travel of the block up the 
inclined hill the block will come to rest and therefore vB 
= 0.                                                                                      

                                                                                                 Figure 7.16  Conservation of energy. 
        

  Etot = EA = EB = mghB 
but hB = x sin θ. Therefore 

EA = mgx sin θ 
x =       EA       

           mg sin θ 
=                  196 J                  

                    (3.75)(9.80 m/s2) sin 35.00 
= 9.30 m 

 
To go to this Interactive Example click on this sentence. 

 
 

 
Let us now consider the following important example showing the relationship between work, potential 

energy, and kinetic energy. 
 

Example 7.13 
 

When the work done is not equal to the potential energy. A 5.00-kg block is lifted vertically through a height of 5.00 
m by a force of 60.0 N. Find (a) the work done in lifting the block, (b) the potential energy of the block at 5.00 m, 
(c) the kinetic energy of the block at 5.00 m, (d) the velocity of the block at 5.00 m. 
 

Solution
 

a.  The work done in lifting the block, found from equation 7.1, is 
 

W = Fy = (60.0 N)(5.00 m) = 300 J 
 

b.  The potential energy of the block at 5.00 m, found from equation 7.7, is 
 

PE = mgh = (5.00 kg)(9.80 m/s2)(5.00 m) = 245 J 

x

vA

hA

h B

θ

A
B
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It is important to notice something here. We defined the potential energy as the work done to move the body into 
its particular position. Yet in this problem the work done to lift the block is 300 J, while the PE is only 245 J. The 
numbers are not the same. It seems as though something is wrong. Looking at the problem more carefully, 
however, we see that everything is okay. In the defining relation for the potential energy, we assumed that the 
work done to raise the block to the height h is done at a constant velocity, approximately a zero velocity. 
(Remember the force up F was just equal to the weight of the block). In this problem, the weight of the block is 
 

w = mg = (5.00 kg)(9.80 m/s2) = 49.0 N 
 

Since the force exerted upward of 60.0 N is greater than the weight of the block, 49.0 N, the block is 
accelerated upward and arrives at the height of 5.00 m with a nonzero velocity and hence kinetic energy. Thus, the 
work done has raised the mass and changed its velocity so that the block arrives at the 5.00-m height with both a 
potential energy and a kinetic energy. 
c.  The kinetic energy is found by the law of conservation of energy, equation 7.15, 
 

Etot = KE + PE 
Hence, the kinetic energy is 

KE = Etot − PE 
 

The total energy of the block is equal to the total amount of work done on the block, namely 300 J, and as shown, 
the potential energy of the block is 245 J. Hence, the kinetic energy of the block at a height of 5.00 m is 
 

KE = Etot − PE = 300 J − 245 J = 55 J 
 

d.  The velocity of the block at 5.00 m, found from equation 7.12 for the kinetic energy of the block, is 
 

KE = 1 mv2  
  2                       

2 KE 2(55 J)
5.00 kg

v
m

= =  

= 4.69 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
7.7  Further Analysis of the Conservation of Energy 
There are many rather difficult problems in physics that are greatly 
simplified and easily solved by the principle of conservation of energy. In 
fact, in advanced physics courses, most of the analysis is done by energy 
methods. Let us consider the following simple example. A block starts 
from rest at the top of the frictionless plane, as seen in figure 7.17. What 
is the speed of the block at the bottom of the plane? 

Let us first solve this problem by Newton’s second law. The force 
acting on the block down the plane is w sin θ, which is a constant. 
Newton’s second law gives 

F = ma 
w sin θ = ma 

mg sin θ = ma 
 

Hence, the acceleration down the plane is 
 
                                                                                                                    Figure 7.17  A block on an inclined plane. 
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a = g sin θ                                                                               (7.32) 

 
which is a constant. The speed of the block at the bottom of the plane is found from the kinematic formula, 
 

v2 = v02 + 2ax 
2v ax=  

or, since a = g sin θ, 
2 sin  v g xθ=                                                                           (7.33) 

but 
x sin θ = h 

Therefore, 
2v gh=                                                                               (7.34) 

 
The problem is, of course, quite simple because the force acting on the 
block is a constant and hence the acceleration is a constant. The 
kinematic equations were derived on the basis of a constant 
acceleration and can be used only when the acceleration is a constant. 
What happens if the forces and accelerations are not constant? As an 
example, consider the motion of a block that starts from rest at the 
top of a frictionless curved surface, as shown in figure 7.18. The 
weight w acting downward is always the same, but at each position, 
the angle the block makes with the horizontal is different. Therefore, 
the force is different at every position on the surface, and hence the 
acceleration is different at every point. Thus, the simple techniques 
developed so far can not be used. (The calculus would be needed for 
the solution of this case of variable acceleration.) 
 
                                                                                                                   Figure 7.18  A block on a curved surface. 

 
Let us now look at the same problem from the point of view of energy. The law of conservation of energy 

says that the total energy of the system is a constant. Therefore, the total energy at the top must equal the total 
energy at the bottom, that is, 

Etop = Ebot 
 

The total energy at the top is all potential because the block starts from rest (v0 = 0, hence KE = 0), while at the 
bottom all the energy is kinetic because at the bottom h = 0 and hence PE = 0. Therefore, 
 

   PEtop = KEbot 

      mgh =  1 mv2 
           2 

2v gh=                                                                             (7.35)           
 

the speed of the block at the bottom of the plane. We have just solved a very difficult problem, but by using the law 
of conservation of energy, its solution is very simple. 

A very interesting thing to observe here is that the speed of the block down a frictionless inclined plane of 
height h, equation 7.34, is the same as the speed of a block down the frictionless curved surface of height h, 
equation 7.35. In fact, if the block were dropped over the top of the inclined plane (or curved surface) so that it fell 
freely to the ground, its speed at the bottom would be found as 

 
Etop = Ebot 

mgh =  1 mv2 
     2 

2v gh=  
 

Pearson Custom Publishing

227



 

 
7-18                                                                                                                                                               Mechanics 

which is the same speed obtained for the other two cases. This is a characteristic of the law of conservation of 
energy. The speed of the moving object at the bottom is the same regardless of the path followed by the moving 
object to get to the final position. This is a consequence of the fact that the same amount of energy was used to 
place the block at the top of the plane for all three cases, and therefore that same amount of energy is obtained 
when the block returns to the bottom of the plane. 

The energy that the block has at the top of the plane is equal to the work done on the block to place the 
block at the top of the plane. If the block in figure 7.19 is lifted vertically to the top of the plane, the work done is 
 

W = Fh = wh = mgh   (7.36) 
 

If the block is pushed 
up the frictionless plane at a 
constant speed, then the 
work done is 

 
W = Fx = w sin θ x 
W = mgx sin θ        (7.37) 

but 
x sin θ = h 

 
and hence, the work done in 
pushing the block up the 
plane is 
 

                                          Figure 7.19  A conservative system. 
 

W = mgh                                                                              (7.38) 
 

which is the identical amount of work just found in lifting the block vertically into the same position. Therefore, 
the energy at the top is independent of the path taken to get to the top. Systems for which the energy is the same 
regardless of the path taken to get to that position are called conservative systems. Conservative systems are 
systems for which the energy is conserved, that is, the energy remains constant throughout the motion. A 
conservative system is a system in which the difference in energy is the same regardless of the path taken between 
two different positions. In a conservative system the total mechanical energy is conserved. 

For a better 
understanding of a conservative 
system it is worthwhile to 
consider a nonconservative 
system. The nonconservative 
system that we will examine is 
an inclined plane on which 
friction is present, as shown in 
figure 7.20. Let us compute the 
work done in moving the block 
up the plane at a constant 
speed. The force F, exerted up 
the plane, is 

 
F = w sin θ + fk      (7.39) 

where 
 

fk = µkFN = µkw cos θ  (7.40) 
or 

F = w sin θ + µkw cos θ 
or    

                                                 Figure 7.20  A nonconservative system. 
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F = mg sin θ + µkmg cos θ                                                                  (7.41) 

 
The work done in sliding the block up the plane is 

 
Ws = Fx = (mg sin θ + µkmg cos θ)x 

= mgx sin θ + µkmgx cos θ                                                           (7.42) 
but 

x sin θ = h 
Therefore, 

Ws = mgh + µkmgx cos θ                                                                 (7.43) 
 

That is, the work done in sliding the block up the plane against friction is greater than the amount of work 
necessary to lift the block to the top of the plane. The work done in lifting it is 
 

WL = mgh 
 

But there appears to be a contradiction here. Since both blocks end up at the same height h above the ground, they 
should have the same energy mgh. This seems to be a violation of the law of conservation of energy. The problem is 
that an inclined plane with friction is not a conservative system. Energy is expended by the person exerting the force, 
to overcome the friction of the inclined plane. The amount of energy lost is found from equation 7.43 as 
 

Elost = µkmgx cos θ                                                                        (7.44) 
 

This energy that is lost in overcoming friction shows up as heat energy in the block and the plane. At the top of the 
plane, both blocks will have the same potential energy. But we must do more work to slide the block up the 
frictional plane than in lifting it straight upward to the top. 

If we now let the block slide down the plane, the same amount of energy, equation 7.44, is lost in 
overcoming friction as it slides down. Therefore, the total energy of the block at the bottom of the plane is less than 
in the frictionless case and therefore its speed is also less. That is, the total energy at the bottom is now 

 
  1 mv2 = mgh − µkmgx cos θ                                                               (7.45) 

                                                                            2                                        
and the speed at the bottom is now 

2 2 coskv gh gxµ θ= −                                                                      (7.46) 
 

Notice that the speed of the block down the rough plane, equation 7.46, is less than the speed of the block down a 
smooth plane, equation 7.34. 

Any time a body moves against friction, there is always an amount of mechanical energy lost in 
overcoming this friction. This lost energy always shows up as heat energy. The law of conservation of energy, 
therefore, holds for a nonconservative system, if we account for the lost mechanical energy of the system as an 
increase in heat energy of the system, that is,  

 Etot = KE + PE + Q                                                                       (7.47) 
 

where Q is the heat energy gained or lost during the process. We will say more about this when we discuss the 
first law of thermodynamics in chapter 17. 

 
Example 7.14 

 
Losing kinetic energy to friction. A 1.50-kg block slides along a smooth horizontal surface at 2.00 m/s. It then 
encounters a rough horizontal surface. The coefficient of kinetic friction between the block and the rough surface is 
µk = 0.400. How far will the block move along the rough surface before coming to rest? 
 

Solution
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When the block slides along the smooth surface it has a total energy that is equal to its kinetic energy. When the 
block slides over the rough surface it slows down and loses its kinetic energy. Its kinetic energy is equal to the 
work done on the block by friction as it is slowed to a stop. Therefore, 
 

KE = Wf  
 1 mv2 = fkx = µkFNx = µkwx = µkmgx   

                                                                   2 
 

Solving for x, the distance the block moves as it comes to a stop, we get 
 

µkmgx =  1  mv2 
       2 

21
2

k

v
x

gµ
=  

21
2

2

(2 m/s)
(0.400)(9.80 m/s )

=  

= 0.510 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

Have you ever wondered . . . ? 
An Essay on the Application of Physics 

The Great Pyramids 
 

Have you ever wondered how the great pyramids of Egypt 
were built? The largest, Cheops, located 10 mi outside of 
the city of Cairo, figure 1, is about 400 ft high and 
contains more than 2 1/2 million blocks of limestone and 
granite weighing between 2 and 70 ton, apiece. Yet these 
pyramids were built over 4000 years ago. How did these 
ancient people ever raise these large stones to such great 
heights with the very limited equipment available to 
them? 

It is usually supposed that the pyramids were 
built using the principle of the mechanical advantage 
obtained by the inclined plane. The first level of stones for 
the pyramid were assembled on the flat surface, as in 
figure 2(a). Then an incline was built out of sand and 
pressed against the pyramid, as in figure 2(b). Another 
level of stones were then put into place. As each 
succeeding level was made, more sand was added to the 
incline in order to reach the next level. The process 
continued with additional sand added to the incline for  

                                                                                             Figure 1  The great pyramid of Cheops. 
 

each new level of stones. When the final stones were at the top, the sand was removed leaving the pyramids as 
seen today. 

The advantage gained by using the inclined plane can be explained as follows. An ideal frictionless 
inclined plane is shown in figure 3. A stone that has the weight ws is to be lifted from the ground to the height h. If 
it is lifted straight up, the work that must be done to lift the stone to the height h, is 
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W1 = FAh = wsh                                       (H7.1) 
 

where FA is the applied force to lift the stone and ws is the weight of the 
stone. 

If the same stone is on an inclined plane, then the component of the 
weight of the stone, ws sin θ, acts down the plane and hence a force, F = ws 
sin θ, must be exerted on the stone in order to push the stone up the plane. 
The work done pushing the stone a distance L up the plane is 

 
W2 = FL                                              (H7.2) 

 
Whether the stone is lifted to the top of the plane directly, or pushed up the 
inclined plane to the top, the stone ends up at the top and the work done in 
pushing the stone up the plane is equal to the work done in lifting the 
stone to the height h. Therefore, 

W2 = W1                                             (H7.3) 
FL = wsh                                           (H7.4) 

 
Figure 2  The construction of the pyramids. 

 
Hence, the force F that 
must be exerted to push 
the block up the inclined 
plane is 

F =  h ws    (H7.5) 
L 

 
If the length of the 
incline L is twice as 
large as the height h 
(i.e., L = 2h), then the 
force necessary to push 
the stone up the incline 
is 

 
                                  Figure 3  The inclined plane. 

 
F =  h ws =  h ws = ws 

                                                                                      L         2h         2 
 

Therefore, if the length of the incline is twice the length of the height, the force necessary to push the stone up the 
incline is only half the weight of the stone. If the length of the incline is increased to L = 10h, then the force F is 
 

F =  h ws =   h  ws = ws 
                                                                                     L         10h        10 
 
That is, by increasing the length of the incline to ten times the height, the force that we must exert to push the 
stone up the incline is only 1/10 of the weight of the stone. Thus by making L very large, the force that we must 
exert to push the stone up the inclined plane is made relatively small. If L = 100h, then the force necessary would 
only be one-hundredth of the weight of the stone. 

The inclined plane is called a simple machine. With it, we have amplified our ability to move a very heavy 
stone to the top of the hill. This amplification is called the ideal mechanical advantage (IMA) of the inclined plane 
and is defined as 

Ideal mechanical advantage = Force out                                                       (H7.6) 
                                             Force in 

or 
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IMA = Fout                                                                         (H7.7) 
            Fin 

 
The force that we get out of the machine, in this example, is the weight of the stone ws, which ends up at 

the top of the incline, while the force into the machine is equal to the force F that is exerted on the stone in 
pushing it up the incline. Thus, the ideal mechanical advantage is  

 
IMA = ws                                                                           (H7.8) 
          F 

Using equation H7.4 this becomes 
IMA = ws  =  L                                                                       (H7.9) 

                                                                                                F       h 
Hence if L = 10h, the IMA is 

IMA = 10 h  = 10 
      h 

and the amplification of the force is 10. 
The angle θ of the inclined plane, found from the 

geometry of figure 3, is 
sin θ =  h                                (H7.10) 
            L 

 
Thus, by making θ very small, a slight incline, a very small 
force could be applied to move the very massive stones of the 
pyramid into position. The inclined plane does not give us 
something for nothing, however. The work done in lifting the 
stone or pushing the stone is the same. Hence, the smaller 
force F must be exerted for a very large distance L to do the 
same work as lifting the very massive stone to the relatively 
short height h. However, if we are limited by the force F that 
we can exert, as were the ancient Egyptians, then the 
inclined plane gives us a decided advantage. An aerial view of 
the pyramid of Dashur is shown in figure 4. Notice the ramp 
under the sands leading to the pyramid.3 
 
 

                                                                                                    Figure 4  Aerial view of the pyramid of Dashur. 
 

The Language of Physics 
 

                                                      
3
This picture is taken from Secrets of the Great Pyramids by Peter Tompkins, Harper Colophon Books, 1978. 

Energy 
The ability of a body or system of 
bodies to perform work (p. ). 
 
System 
An aggregate of two or more 
particles that is treated as an 
individual unit (p. ). 
Work 
The product of the force acting on a 
body in the direction of the 
displacement, times the 
displacement of the body (p. ). 
 

Power 
The time rate of doing work (p. ). 
Gravitational potential energy 
The energy that a body possesses by 
virtue of its position in a 
gravitational field. The potential 
energy is equal to the work that 
must be done to put the body into 
that particular position (p. ). 
 
Kinetic energy 
The energy that a body possesses by 
virtue of its motion. The kinetic 
energy is equal to the work that 

must be done to bring the body from 
rest into that state of motion (p. ). 
 
Closed system 
An isolated system that is not 
affected by any external influences 
(p. ). 
 
Law of conservation of energy 
In any closed system, the total 
energy of the system remains a 
constant. To say that energy is 
conserved means that the energy is 
a constant (p. ). 
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Conservative system 
A system in which the difference in 
energy is the same regardless of the 

path taken between two different 
positions. In a conservative system 

the total mechanical energy is 
conserved (p. ). 
 

 
Summary of Important Equations 

 
Work done         W = Fx             (7.1) 
 
Work done in general 

              W = Fx cos θ          (7.2) 
 
Power               P = W/t              (7.3) 
 
Power of moving system 

                       P = Fv                  (7.4) 
 
Gravitational potential energy 

             PE = mgh               (7.7) 
 
Kinetic energy 

       KE =  1 mv2        (7.12) 
                                  2 

Total mechanical energy 
            Etot = KE + PE          
 
Conservation of mechanical energy 

∆E = E2 − E1 = 0         (7.23) 
E2 = E1 = constant      (7.24) 

 
Questions for Chapter 7 

 
1. If the force acting on a body 

is perpendicular to the 
displacement, how much work is 
done in moving the body? 

2. A person is carrying a heavy 
suitcase while walking along a 
horizontal corridor. Does the person 
do work (a) against gravity 
(b) against friction? 

3. A car is moving at 90 km/hr 
when it is braked to a stop. Where 
does all the kinetic energy of the 
moving car go? 

*4. A rowboat moves in a 
northerly direction upstream at 3 

km/hr relative to the water. If the 
current moves south at 3 km/hr 
relative to the bank, is any work 
being done? 

*5. For a person to lose weight, 
is it more effective to exercise or to 
cut down on the intake of food? 

6. If you lift a body to a height h 
with a force that is greater than the 
weight of a body, where does the 
extra energy go? 

7. Potential energy is energy 
that a body possesses by virtue of 
its position, while kinetic energy is 
energy that a body possesses by 

virtue of its speed. Could there be 
an energy that a body possesses by 
virtue of its acceleration? Discuss. 

8. For a conservative system, 
what is ∆E/∆t? 

9. Describe the transformation 
of energy in a pendulum as it moves 
back and forth. 

10. If positive work is done 
putting a body into motion, is the 
work done in bringing a moving 
body to rest negative work? 
Explain. 

 

 
Problems for Chapter 7 

 
7.2  Work 

1. A 2200-N box is raised 
through a height of 4.60 m. How 
much work is done in lifting the box 
at a constant velocity? 

2. How much work is done if 
(a) a force of 150 N is used to lift a 
10.0-kg mass to a height of 5.00 m 
and (b) a force of 150 N, parallel to 
the surface, is used to pull a 10.0-kg 
mass, 5.00 m on a horizontal 
surface? 

3. A force of 8.00 N is used to 
pull a sled through a distance of 
100 m. If the force makes an angle 
of 40.00 with the horizontal, how 
much work is done? 

4. A person pushes a lawn 
mower with a force of 50.0 N at an 
angle of 35.00 below the horizontal. 

If the mower is moved through a 
distance of 25.0 m, how much work 
is done? 

5. A consumer’s gas bill 
indicates that they have used a 
total of 37 therms of gas for a 30-
day period. Express this energy in 
joules. A therm is a unit of energy 
equal to 100,000 Btu and a Btu 
(British thermal unit) is a unit of 
energy equal to 778 ft lb. 

6. A 670-kg man lifts a 200-kg 
mass to a height of 1.00 m above 
the floor and then carries it through 
a horizontal distance of 10.0 m. 
How much work is done (a) against 
gravity in lifting the mass, 
(b) against gravity in carrying it 
through the horizontal distance, 

and (c) against friction in carrying 
it through the horizontal distance? 

7. Calculate the work done in 
(a) pushing a 4.00-kg block up a 
frictionless inclined plane 10.0 m 
long that makes an angle of 30.00 
with the horizontal and (b) lifting 
the block vertically from the ground 
to the top of the plane, 5.00 m high. 
(c) Compare the force used in parts 
a and b. 
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Diagram for problem 7. 

 
8. A 110-kg football player does 

a chin-up by pulling himself up by 
his arms an additional height of 
50.0 cm above the floor. If he does a 
total of 25 chin-ups, how much work 
does he do? 

 
7.3  Power 

9. A consumer’s electric bill 
indicates that they have used a 
total of 793 kwh of electricity for a 
30-day period. Express this energy 
in (a) joules and (b) ft lb. (c) What is 
the average power used per hour? 

10. A 665-N person climbs a 
rope at a constant velocity of 
0.600 m/s in a period of time of 10.0 
s. (a) How much power does the 
person expend? (b) How much work 
is done? 

11. You are designing an 
elevator that must be capable of 
lifting a load (elevator plus 
passengers) of 17,800 N to a height 
of 12 floors (36.6 m) in 1 min. What 
horsepower motor should you 
require if half of the power is used 
to overcome friction? 

12. A locomotive pulls a train at 
a velocity of 88.0 km/hr with a force 
of 55,000 N. What power is exerted 
by the locomotive? 

 
7.4 Gravitational Potential 
Energy 

13. Find the potential energy of 
a 7.00-kg mass that is raised 2.00 m 
above the desk. If the desk is 1.00 m 
high, what is the potential energy of 
the mass with respect to the floor? 

14. A 5.00-kg block is at the top 
of an inclined plane that is 4.00 m 
long and makes an angle of 35.00 

with the horizontal. Find the 
potential energy of the block. 

15. A 15.0-kg sledge hammer is 
2.00 m high. How much work can it 
do when it falls to the ground? 

16. A pile driver lifts a 2200-N 
hammer 3.00 m before dropping it 
on a pile. If the pile is driven 10.0 
cm into the ground when hit by the 
hammer, what is the average force 
exerted on the pile? 

 
7.5  Kinetic Energy 

17. What is the kinetic energy 
of the earth as it travels at a 
velocity of 30.0 km/s in its orbit 
about the sun? 

18. Compare the kinetic energy 
of a 1200-kg auto traveling at 
(a) 30.0 km/hr, (b) 60.0 km/hr, and 
(c) 120 km/hr. 

19. If an electron in a hydrogen 
atom has a velocity of 2.19 × 106 
m/s, what is its kinetic energy? 

20. A 700-kg airplane traveling 
at 320 km/hr is 1500 m above the 
terrain. What is its kinetic energy 
and its potential energy? 

21. A 10.0-g bullet, traveling at 
a velocity of 900 m/s hits and is 
embedded 2.00 cm into a large piece 
of oak wood that is fixed at rest. 
What is the kinetic energy of the 
bullet? What is the average force 
stopping the bullet? 

22. A little league baseball 
player throws a baseball (0.15 kg) 
at a speed of 8.94 m/s. (a) How 
much work must be done to catch 
this baseball? (b) If the catcher 
moves his glove backward by 2.00 
cm while catching the ball, what is 
the average force exerted on his 
glove by the ball? (c) What is the 
average force if the distance is 20.0 
cm? Is there an advantage in 
moving the glove backward? 

 
7.6  The Conservation of Energy 

23. A 2.00-kg block is pushed 
along a horizontal frictionless table 
a distance of 3.00 m, by a horizontal 
force of 12.0 N. Find (a) how much 
work is done by the force, (b) the 
final kinetic energy of the block, 
and (c) the final velocity of the 

block. (d) Using Newton’s second 
law, find the acceleration and then 
the final velocity. 

24. A 2.75-kg block is placed at 
the top of a 40.00 frictionless 
inclined plane that is 40.0 cm high. 
Find (a) the work done in lifting the 
block to the top of the plane, (b) the 
potential energy at the top of the 
plane, (c) the kinetic energy when 
the block slides down to the bottom 
of the plane, (d) the velocity of the 
block at the bottom of the plane, 
and (e) the work done in sliding 
down the plane. 

25. A projectile is fired 
vertically with an initial velocity of 
60.0 m/s. Using the law of 
conservation of energy, find how 
high the projectile rises. 

26. A 3.00-kg block is lifted 
vertically through a height of 6.00 
m by a force of 40.0 N. Find (a) the 
work done in lifting the block, 
(b) the potential energy of the block 
at 6.00 m, (c) the kinetic energy of 
the block at 6.00 m, and (d) the 
velocity of the block at 6.00 m. 

27. Apply the law of 
conservation of energy to an 
Atwood’s machine and find the 
velocity of block A as it hits the 
ground. mB = 40.0 g, mA = 50.0 g, hB 

= 0.500 m, and hA = 1.00 m. 

  
Diagram for problem 27.                            

 
*28. Determine the velocity of 

block 1 when the height of block 1 is 
equal to h1/4. m1 = 35.0 g, m2 = 20.0 
g, h1 = 1.50 m, and h2 = 2.00 m.   
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Diagram for problem 28. 
 
29. A 250-g bob is attached to a 

string 1.00 m long to make a 
pendulum. If the pendulum bob is 
pulled to the right, such that the 
string makes an angle of 15.00 with 
the vertical, what is (a) the 
maximum potential energy, (b) the 
maximum kinetic energy, and 
(c) the maximum velocity of the bob 
and where does it occur? 

30. A 45.0-kg girl is on a swing 
that is 2.00 m long. If the swing is 
pulled to the right, such that the 
rope makes an angle of 30.00 with 
the vertical, what is (a) the 
maximum potential energy of the 
girl, (b) her maximum kinetic 
energy, and (c) the maximum 
velocity of the swing and where 
does it occur? 

 
7.7  Further Analysis of the 
Conservation of Energy 

31. A 3.56-kg mass moving at a 
speed of 3.25 m/s enters a region 
where the coefficient of kinetic 
friction is 0.500. How far will the 
block move before it comes to rest? 

32. A 5.00-kg mass is placed at 
the top of a 35.00 rough inclined 
plane that is 30.0 cm high. The 
coefficient of kinetic friction 
between the mass and the plane is 
0.400. Find (a) the potential energy 
at the top of the plane, (b) the work 
done against friction as it slides 
down the plane, (c) the kinetic 
energy of the mass at the bottom of 
the plane, and (d) the velocity of the 
mass at the bottom of the plane. 

 
Diagram for problem 32. 

 
33. A 100-g block is pushed 

down a rough inclined plane with 
an initial velocity of 1.50 m/s. The 
plane is 2.00 m long and makes an 
angle of 35.00 with the horizontal. If 
the block comes to rest at the 
bottom of the plane, find (a) its total 
energy at the top, (b) its total 
energy at the bottom, (c) the total 
energy lost due to friction, (d) the 
frictional force, and (e) the 
coefficient of friction. 

 
Diagram for problem 33. 

 
34. A 1.00-kg block is pushed 

along a rough horizontal floor with 
a horizontal force of 5.00 N for a 
distance of 5.00 m. If the block is 
moving at a constant velocity of 
4.00 m/s, find (a) the work done on 
the block by the force, (b) the 
kinetic energy of the block, and 
(c) the energy lost to friction. 

 
35. A 2200-N box is pushed 

along a rough floor by a horizontal 
force. The block moves at constant 
velocity for a distance of 4.50 m. If 
the coefficient of friction between 
the box and the floor is 0.30, how 
much work is done in moving the 
box? 

36. A 44.5-N package slides 
from rest down a portion of a 
circular mail chute that is at the 
height h = 6.10 m above the ground. 

Its velocity at the bottom is 6.10 
m/s. How much energy is lost due to 
friction? 

 
Diagram for problem 36. 

 
37. A 6.68-kg package slides 

from rest down a portion of a 
circular mail chute that is 4.58 m 
above the ground. Its velocity at the 
bottom is 7.63 m/s. How much 
energy is lost due to friction? 

38. In the diagram m2 = 3.00 kg, 
m1 = 5.00 kg, h2 = 1.00 m, h1 = 0.750 
m, and µk = 0.400. Find (a) the 
initial total energy of the system, 
(b) the work done against friction as 
m2 slides on the rough surface, 
(c) the velocity v1 of mass m1 as it 
hits the ground, and (d) the kinetic 
energy of m1 as it hits the ground. 

Diagram for problem 38. 
 

*39. A 5.00-kg body is placed at 
the top of the track, position A, 2.00 
m above the base of the track, as 
shown in the diagram. (a) Find the 
total energy of the block. (b) The 
block is allowed to slide from rest 
down the frictionless track to the 
position B. Find the velocity of the 
body at B. (c) The block then moves 
over the level rough surface of µk = 
0.300. How far will the block move 
before coming to rest? 

 
Diagram for problem 39. 
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40. A 0.500-kg ball is dropped 

from a height of 3.00 m. Upon 
hitting the ground it rebounds to a 
height of 1.50 m. (a) How much 
mechanical energy is lost in the 
rebound, and what happens to this 
energy? (b) What is the velocity just 
before and just after hitting the 
ground? 

 
Additional Problems 

*41. The concept of work can be 
used to describe the action of a 
lever. Using the principle of work in 
equals work out, show that 

 
Fout =  rin  Fin  

    rout 

 
Show how this can be expressed 

in terms of a mechanical advantage.  

 
Diagram for problem 41. 

 
*42. Show how the inclined 

plane can be considered as a simple 
machine by comparing the work 
done in sliding an object up the 
plane with the work done in lifting 
the block to the top of the plane. 
How does the inclined plane supply 
a mechanical advantage? 

43. A force acting on a 300-g 
mass causes it to move at a 
constant speed over a rough 
surface. The coefficient of kinetic 
friction is 0.350. Find the work 
required to move the mass a 
distance of 2.00 m. 

44. A 5.00-kg projectile is fired 
at an angle of 58.00 above the 
horizontal with the initial velocity 
of 30.0 m/s. Find (a) the total 
energy of the projectile, (b) the total 
energy in the vertical direction, 
(c) the total energy in the horizontal 

direction, (d) the total energy at the 
top of the trajectory, (e) the 
potential energy at the top of the 
trajectory, (f) the maximum height 
of the projectile, (g) the kinetic 
energy at the top of the trajectory, 
and (h) the velocity of the projectile 
as it hits the ground. 

45. It takes 20,000 W to keep a 
1600-kg car moving at a constant 
speed of 60.0 km/hr on a level road. 
How much power is required to 
keep the car moving at the same 
speed up a hill inclined at an angle 
of 22.00 with the horizontal? 

46. John consumes 5000 
kcal/day. His metabolic efficiency is 
70.0%. If his normal activity utilizes 
2000 kcal/day, how many hours will 
John have to exercise to work off 
the excess calories by (a) walking, 
which uses 3.80 kcal/hr; 
(b) swimming, which uses 8.00 
kcal/hr; and (c) running, which uses 
11.0 kcal/hr? 

47. A 2.50-kg mass is at rest at 
the bottom of a 5.00-m-long rough 
inclined plane that makes an angle 
of 25.00 with the horizontal. When a 
constant force is applied up the 
plane and parallel to it, it causes 
the mass to arrive at the top of the 
incline at a speed of 0.855 m/s. Find 
(a) the total energy of the mass 
when it is at the top of the incline, 
(b) the work done against friction, 
and (c) the magnitude of the applied 
force. The coefficient of friction 
between the mass and the plane is 
0.350. 

*48. A 2.00-kg block is placed at 
the position A on the track that is 
3.00 m above the ground. Paths A-B 
and C-D of the track are 
frictionless, while section B-C is 
rough with a coefficient of kinetic 
friction of 0.350 and a length of 1.50 
m. Find (a) the total energy of the 
block at A, (b) the velocity of the 
block at B, (c) the energy lost along 
path B-C, and (d) how high the 
block rises along path C-D. 

 
Diagram for problem 48.   

 
49. A mass m = 3.50 kg is 

launched with an initial velocity v0 
= 1.50 m/s from the position A at a 
height h = 3.80 m above the 
reference plane in the diagram for 
problem 48. Paths A-B and C-D of 
the track are frictionless, while 
path B-C is rough with a coefficient 
of kinetic friction of 0.300 and a 
length of 3.00 m. Find (a) the 
number of oscillations the block 
makes before coming to rest along 
the path B-C and (b) where the 
block comes to rest on path B-C. 

50. A ball starts from rest at 
position A at the top of the track. 
Find (a) the total energy at A, 
(b) the total energy at B, (c) the 
velocity of the ball at B, and (d) the 
velocity of the ball at C. 

 
  Diagram for problem 50. 
 
51. A 20.0-kg mass is at rest on 

a rough horizontal surface. It is 
then accelerated by a net constant 
force of 8.6 N. After the mass has 
moved 1.5 m from rest, the force is 
removed and the mass comes to rest 
in 2.00 m. Using energy methods 
find the coefficient of kinetic 
friction. 

52. In an Atwood’s machine mB 

= 30.0 g, mA = 50.0 g, hB = 0.400 m, 
and hA = 0.800 m. The machine 
starts from rest and mass mA 
acquires a velocity of 1.25 m/s as it 
strikes the ground. Find the energy 
lost due to friction in the bearings 
of the pulley. 
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Diagram for problem 52. 

 
*53. What is the total energy of 

the Atwood’s machine in the 
position shown in the diagram? If 
the blocks are released and m1 falls 
through a distance of 1.00 m, what 
is the kinetic and potential energy 
of each block, and what are their 
velocities? 

 
Diagram for problem 53. 

 
*54. The gravitational potential 

energy of a mass m with respect to 
infinity is given by 

 
PE = −GmEm 

            r 
 

where G is the universal 
gravitational constant, mE is the 
mass of the earth, and r is the 
distance from the center of the 
earth to the mass m. Find the 
escape velocity of a spaceship from 
the earth. (The escape velocity is 
the necessary velocity to remove a 
body from the gravitational 
attraction of the earth.) 

*55. Modify problem 54 and find 
the escape velocity for (a) the moon, 
(b) Mars, and (c) Jupiter. 

*56. The entire Atwood’s 
machine shown is allowed to go into 
free-fall. Find the velocity of m1 and 
m2 when the entire system has 
fallen 1.00 m. 

  
Diagram for problem 56.                     

 
*57. A 1.50-kg block moves 

along a smooth horizontal surface 
at 2.00 m/s. The horizontal surface 
is at a height h0 above the ground. 
The block then slides down a rough 
hill, 20.0 m long, that makes an 
angle of 30.00 with the horizontal. 
The coefficient of kinetic friction 
between the block and the hill is 
0.600. How far down the hill will 
the block move before coming to 
rest?  

 
Diagram for problem 57. 

 
*58. At what point above the 

ground must a car be released such 
that when it rolls down the track 
and into the circular loop it will be 
going fast enough to make it 
completely around the loop? The 
radius of the circular loop is R. 
 

 

   
Diagram for problem 58.                   

 
*59. A 1.50-kg block moves 

along a smooth horizontal surface 
at 2.00 m/s. It then encounters a 
smooth inclined plane that makes 
an angle of 53.00 with the 
horizontal. How far up the incline 
will the block move before coming to 
rest? 

 
Diagram for problem 59. 

 
*60. Repeat problem 59, but in 

this case the inclined plane is rough 
and the coefficient of kinetic friction 
between the block and the plane is 
0.400. 

*61. In the diagram mass m1 is 
located at the top of a rough 
inclined plane that has a length l1 = 
0.500 m. m1 = 0.500 kg, m2 = 0.200 
kg, µk1 = 0.500, µk2 = 0.300, θ = 
50.00, and φ = 50.00. (a) Find the 
total energy of the system in the 
position shown. (b) The system is 
released from rest. Find the work 
done for block 1 to overcome friction 
as it slides down the plane. (c) Find 
the work done for block 2 to 
overcome friction as it slides up the 
plane. (d) Find the potential energy 
of block 2 when it arrives at the top 
of the plane. (e) Find the velocity of 
block 1 as it reaches the bottom of 
the plane. (f) Find the kinetic 
energy of each block at the end of 
their travel. 
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Diagram for problem 61.  

 
*62. If a constant force acting 

on a body is plotted against the 
displacement of the body from x1 to 
x2, as shown in the diagram, then 
the work done is given by 

 
W = F(x2 − x1)                    

      = Area under the curve 
 

Show that this concept can be 
extended to cover the case of a 
variable force, and hence find the 
work done for the variable force, F 
= kx, where k = 2.00 N/m as the 
body is displaced from x1 to x2. 
Draw a graph showing your results.                   

 
Diagram for problem 62. 

 
Interactive Tutorials 

63. Projectile motion. A 
projectile of mass m = 100 kg is 
fired vertically upward at a velocity 
v0 = 50.0 m/s. Calculate its potential 

energy PE (relative to the ground), 
its kinetic energy KE, and its total 
energy Etot for the first 10.0 s of 
flight. Plot a graph of each energy 
as a function of time. 

64. Atwood’s machine. Consider 
the general motion in an Atwood’s 
machine such as the one shown in 
the diagram of problem 27; mA = 
0.650 kg and is at a height hA = 2.55 
m above the reference plane and 
mass mB = 0.420 kg is at a height 
hB = 0.400 m. If the system starts 
from rest, find (a) the initial 
potential energy of mass A, (b) the 
initial potential energy of mass B, 
and (c) the total energy of the 
system. When mA has fallen a 
distance yA = 0.75 m, find (d) the 
potential energy of mass A, (e) the 
potential energy of mass B, (f) the 
speed of each mass at that point, 
(g) the kinetic energy of mass A, 
and (h) the kinetic energy of mass 
B. (i) When mass A hits the ground, 
find the speed of each mass. 

65. Combined motion. Consider 
the general motion in the combined 
system shown in the diagram of 
problem 38; m1 = 0.750 kg and is at 
a height h1 = 1.85 m above the 
reference plane and mass m2 = 
0.285 kg is at a height h2 = 2.25 m, 
µk = 0.450. If the system starts from 
rest, find (a) the initial potential 
energy of mass 1, (b) the initial 
potential energy of mass 2, and 
(c) the total energy of the system. 
When m1 has fallen a distance y1 = 
0.35 m, find (d) the potential energy 
of mass 1, (e) the potential energy 
of mass 2, (f) the energy lost due to 
friction as mass 2 slides on the 
rough surface, (g) the speed of each 
mass at that point, (h) the kinetic 

energy of mass 1, and (i) the kinetic 
energy of mass 2. (j) When mass 1 
hits the ground, find the speed of 
each mass. 

66. General motion. Consider 
the general case of motion shown in 
the diagram with mass mA initially 
located at the top of a rough 
inclined plane of length lA, and 
mass mB is at the bottom of the 
second plane; xA is the distance 
from the mass A to the bottom of 
the plane. Let mA = 0.750 kg, mB = 
0.250 kg, lA = 0.550 m, θ = 40.00, φ = 
30.00, µkA = 0.400, µkB = 0.300, and 
xA = 0.200 m. When xA = 0.200 m, 
find (a) the initial total energy of 
the system, (b) the distance block B 
has moved, (c) the potential energy 
of mass A, (d) the potential energy 
of mass B, (e) the energy lost due to 
friction for block A, (f) the energy 
lost due to friction for block B, 
(g) the velocity of each block, (h) the 
kinetic energy of mass A, and (i) the 
kinetic energy of mass B. 

Diagram for problem 66. 
 

To go to these Interactive 
Tutorials click on this sentence. 

 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 8  Momentum and Its Conservation   
  

The quantity of motion is the measure of the same, arising from the 
velocity and quantity conjointly. 

         Isaac Newton, Principia 
  
8.1  Momentum 
In dealing with some problems in mechanics, we find that in many cases, it is exceedingly difficult, if not 
impossible, to determine the forces that are acting on a body, and/or for how long the forces are acting. These 
difficulties can be overcome, however, by using the concept of momentum. 

The linear momentum of a body is defined as the product of the mass of the body in motion times its 
velocity. That is, 

 p = mv                                                                               (8.1) 
 

Because velocity is a vector, linear momentum is also a vector, and points in the same direction as the velocity 
vector. We use the word linear here to indicate that the momentum of the body is along a line, in order to 
distinguish it from the concept of angular momentum. Angular momentum applies to bodies in rotational motion 
and will be discussed in chapter 9. In this book, whenever the word momentum is used by itself it will mean linear 
momentum. 

This definition of momentum may at first seem rather arbitrary. Why not define it in terms of v2, or v3? We 
will see that this definition is not arbitrary at all. Let us consider Newton’s second law 

 
F = ma = m∆v 
                     ∆t 

However, since ∆v = vf − vi, we can write this as 
f im

t
− 

=  ∆ 

v v
F                                                                         (8.2) 

F = mvf − mvi 

        ∆t 
 

But mvf = pf, the final value of the momentum, and mvi = pi, the initial value of the momentum. Substituting this 
into equation 8.2, we get 

F = pf − pi                                                                            (8.3) 
         ∆t 

 
However, the final value of any quantity, minus the initial value of that quantity, is equal to the change of that 
quantity and is denoted by the delta ∆ symbol. Hence, 

pf − pi = ∆p                                                                       (8.4) 
 

the change in the momentum. Therefore, Newton’s second law becomes 
 

 F = ∆p                                                                                (8.5) 
                                                                                                           ∆t         

 
Newton’s second law in terms of momentum can be stated as: When a resultant applied force F acts on a body, 
it causes the linear momentum of that body to change with time. 

The interesting thing we note here is that this is essentially the form in which Newton expressed his 
second law. Newton did not use the word momentum, however, but rather the expression, “quantity of motion,” 
which is what today would be called momentum. Thus, defining momentum as p = mv is not arbitrary at all. In 
fact, Newton’s second law in terms of the time rate of change of momentum is more basic than the form F = ma. In 
the form F = ma, we assume that the mass of the body remains constant. But suppose the mass does not remain 
constant? As an example, consider an airplane in flight. As it burns fuel its mass decreases with time. At any one 
instant, Newton’s second law in the form F = ma, certainly holds and the aircraft’s acceleration is 
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a =  F  
       m 

 
But only a short time later the mass of the aircraft is no longer m, and therefore the acceleration changes. Another 
example of a changing mass system is a rocket. Newton’s second law in the form F = ma does not properly describe 
the motion because the mass is constantly changing. Also when objects move at speeds approaching the speed of 
light, the theory of relativity predicts that the mass of the body does not remain a constant, but rather it increases. 
In all these variable mass systems, Newton’s second law in the form F = ∆p/∆t is still valid, even though F = ma is 
not. 
 
 
8.2  The Law of Conservation of Momentum 
A very interesting result, and one of extreme importance, is found by considering the behavior of mechanical 
systems containing two or more particles. Recall from chapter 7 that a system is an aggregate of two or more 
particles that is treated as an individual unit. Newton’s second law, in the form of equation 8.5, can be applied to 
the entire system if F is the total force acting on the system and p is the total momentum of the system. Forces 
acting on a system can be divided into two categories: external forces and internal forces. External forces are 
forces that originate outside the system and act on the system. Internal forces are forces that originate within the 
system and act on the particles within the system. The net force acting on and within the system is equal to the 
sum of the external forces and the internal forces. If the total external force F acting on the system is zero then, 
since 

F = ∆p                                                                                (8.5) 
      ∆t  

this implies that 
∆p = 0 

                                                                                                    ∆t        
or 

∆p = 0                                                                                   (8.6) 
But 

∆p = pf − pi 
Therefore, 

pf − pi = 0 
and 

   pf = pi                                                                                   (8.7) 
 

Equation 8.7 is called the law of conservation of linear momentum. It says that if the total external 
force acting on a system is equal to zero, then the final value of the total momentum of the system is equal to the 
initial value of the total momentum of the system. That is, the total momentum is a constant, or as usually stated, 
the total momentum is conserved. 

As an example of the law of conservation of momentum let us consider the head-on collision of two billiard 
balls. The collision is shown in a stroboscopic picture in figure 8.1 and schematically in figure 8.2. Initially the ball 
of mass m1 is moving to the right with an initial velocity v1i, while the second ball of mass m2 is moving to the left 
with an initial velocity v2i. 

At impact, the two balls collide, and ball 1 exerts a force F21 on ball 2, toward the right. But by Newton’s 
third law, ball 2 exerts an equal but opposite force on ball 1, namely F12. (The notation, Fij, means that this is the 
force on ball i, caused by ball j.) If the system is defined as consisting of the two balls that are enclosed within the 
green region of figure 8.2, then the net force on the system of the two balls is equal to the forces on ball 1 plus the 
forces on ball 2, plus any external forces acting on these balls. The forces F12 and F21 are internal forces in that 
they act completely within the system. 

It is assumed in this problem that there are no external horizontal forces acting on either of the balls. 
Hence, the net force on the system is 

Net F = F12 + F21 
But by Newton’s third law 

F21 = −F12 
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Figure 8.1  Collision of billiard balls is an                      Figure 8.2  Example of conservation of momentum.  
            example of conservation of momentum. 
 
Therefore, the net force becomes 

Net F = F12 + (−F12) = 0                                                                     (8.8) 
 

That is, the net force acting on the system of the two balls during impact is zero, and equation 8.7, the law of 
conservation of momentum, must hold. The total momentum of the system after the collision must be equal to the 
total momentum of the system before the collision. Although the momentum of the individual bodies within the 
system may change, the total momentum will not. After the collision, ball m1 moves to the left with a final velocity 
v1f, and ball m2 moves off to the right with a final velocity v2f. 

We will go into more detail on collisions in section 8.5. The important thing to observe here, is what takes 
place during impact. First, we are no longer considering the motion of a single body, but rather the motion of two 
bodies. The two bodies are the system. Even though there is a force on ball 1 and ball 2, these forces are internal 
forces, and the internal forces can not exert a net force on the system, only an external force can do that. Whenever 
a system exists without external forces—a system that we call a closed system—the net force on the system is always 
zero and the law of conservation of momentum always holds. 

The law of conservation of momentum is a consequence of Newton’s third law. Recall that because of the 
third law, all forces in nature exist in pairs; there is no such thing as a single isolated force. Because all internal 
forces act in pairs, the net force on an isolated system must always be zero, and the system’s momentum must 
always be conserved. Therefore, all systems to which the law of conservation of momentum apply, must consist of 
at least two bodies and could consist of even millions or more, such as the number of atoms in a gas. If the entire 
universe is considered as a closed system, then it follows that the total momentum of the universe is also a 
constant. 

The law of conservation of momentum, like the law of conservation of energy, is independent of the type of 
interaction between the interacting bodies, that is, it applies to colliding billiard balls as well as to gravitational, 
electrical, magnetic, and other similar interactions. It applies on the atomic and nuclear level as well as on the 
astronomical level. It even applies in cases where Newtonian mechanics fails. Like the conservation of energy, the 
conservation of momentum is one of the fundamental laws of physics. 
 
 
8.3  Examples of the Law of Conservation of Momentum 
Firing a Gun or a Cannon 
Let us consider the case of firing a bullet from a gun. The bullet and the gun are the system to be analyzed and 
they are initially at rest in our frame of reference. We also assume that there are no external forces acting on the 
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system. Because there is no motion of the bullet with respect to the gun at this point, the initial total momentum 
of the system of bullet and gun pi is zero, as shown in figure 8.3(a). 

At the moment the trigger of the gun is 
pulled, a controlled chemical explosion takes 
place within the gun, figure 8.3(b). A force FBG 
is exerted on the bullet by the gun through the 
gases caused by the exploding gun powder. But 
by Newton’s third law, an equal but opposite 
force FGB is exerted on the gun by the bullet. 
Since there are no external forces, the net force 
on the system of bullet and gun is 

 
Net Force = FBG + FGB               (8.9) 

 
But by Newton’s third law 
 

FBG = −FGB 
 
Therefore, in the absence of external forces, 

                                                                               Figure 8.3  Conservation of momentum in firing a gun. 
 

the net force on the system of bullet and gun is equal to zero: 
 

Net Force = FBG − FBG = 0                                                             (8.10) 
Thus, momentum is conserved and 

pf = pi                                                                          (8.11) 
However, because the initial total momentum was zero, 

pi = 0                                                                              (8.12) 
 

the total final momentum must also be zero. But because the bullet is moving with a velocity vB to the right, and 
therefore has momentum to the right, the gun must move to the left with the same amount of momentum in order 
for the final total momentum to be zero, figure 8.3(c). That is, calling pfB the final momentum of the bullet, and pfG 
the final momentum of the gun, the total final momentum is 
 

pf = pfB + pfG = 0 
mBvB + mGvG = 0 

Solving for the velocity vG of the gun, we get 
 vG = −mB vB                                                                         (8.13) 

                                                                                                  mG             
 

Because vB is the velocity of the bullet to the right, we see that because 
of the minus sign in equation 8.13, the velocity of the gun must be in 
the opposite direction, namely to the left. We call vG the recoil velocity 
and its magnitude is 

 vG = mB vB                                       (8.14) 
                                                            mG             

 
Even though vB, the speed of the bullet, is quite large, vG, the recoil 
speed of the gun, is relatively small because vB is multiplied by the 
ratio of the mass of the bullet mB to the mass of the gun mG. Because 
mB is relatively small, while mG is relatively large, the ratio is a small 
number.  
                                                                                                                                   Figure 8.4  Recoil of a cannon. 
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Example 8.1 
 

Recoil of a gun. If the mass of the bullet is 5.00 g, and the mass of the gun is 10.0 kg, and the velocity of the bullet 
is 300 m/s, find the recoil speed of the gun. 

Solution
 

The recoil speed of the gun, found from equation 8.14, is 
  

vG = mB vB 
   mG 

= 5.00 × 10−3 kg 300 m/s  
                                                                                       10.0 kg              

= 0.150 m/s = 15.0 cm/s 
 

which is relatively small compared to the speed of the bullet. Because it is necessary for this recoil velocity to be 
relatively small, the mass of the gun must always be relatively large compared to the mass of the bullet. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
An Astronaut in Space Throws an Object Away 
Consider the case of an astronaut repairing the outside of his 
spaceship while on an untethered extravehicular activity. While 
trying to repair the radar antenna he bangs his finger with a wrench. 
In pain and frustration he throws the wrench away. What happens to 
the astronaut? 

Let us consider the system as an isolated system consisting of 
the wrench and the astronaut. Let us place a coordinate system, a 
frame of reference, on the spaceship. In the analysis that follows, we 
will measure all motion with respect to this reference system. In this 
frame of reference there is no relative motion of the wrench and the 
astronaut initially and hence their total initial momentum is zero, as 
shown in figure 8.5(a). 

During the throwing process, the astronaut exerts a force FwA 
on the wrench. But by Newton’s third law, the wrench exerts an equal 
but opposite force FAw on the astronaut, figure 8.5(b). The net force on 
this isolated system is therefore zero and the law of conservation of 
momentum must hold. Thus, the final total momentum must equal 
the initial total momentum, that is, 

 
pf = pi 

 
But initially, pi = 0 in our frame of reference. Also, the final total 
momentum is the sum of the final momentum of the wrench and the 
astronaut, figure 8.5(c). Therefore, 
 

pf = pfw + pfA = 0 
mwvfw + mAvfA = 0 

 
 

                                                                                                                  Figure 8.5  Conservation of momentum 
                                                                                                                       and an astronaut. 

Solving for the final velocity of the astronaut, we get 
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 vfA = −mw vfw                                                                        (8.15) 

                                                                                                 mA                        
                                                                                       

Thus, as the wrench moves toward the left, the astronaut must recoil toward the right. The magnitude of the final 
velocity of the astronaut is 

 vfA = mw  vfw                                                                                                              (8.16) 
                                                                                                  mA                      

 
Example 8.2 

 
The hazards of being an astronaut. An 80.0-kg astronaut throws a 0.250-kg wrench away at a speed of 3.00 m/s. 
Find (a) the speed of the astronaut as he recoils away from his space station and (b) how far will he be from the 
space ship in 1 hr? 

Solution
 

a. The recoil speed of the astronaut, found from equation 8.16, is 
 

vfA = mw vfw  
  mA 

= (0.250 kg)(3.00 m/s) 
80.0 kg 

= 9.38 × 10−3 m/s 
 

b.  Since the astronaut is untethered, the distance he will travel is 
 

xA = vfAt = (9.38 × 10−3 m/s)(3600 s) 
= 33.8 m 

 
The astronaut will have moved a distance of 33.8 m away from his space ship in 1 hr. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
A Person on the Surface of the Earth Throws a Rock Away 
The result of the previous subsection may at first seem somewhat difficult to believe. An astronaut throws an 
object away in space and as a consequence of it, the astronaut moves off in the opposite direction. This seems to 
defy our ordinary experiences, for if a person on the 
surface of the earth throws an object away, the person 
does not move backward. What is the difference?      

Let an 80.0-kg person throw a 0.250-kg rock 
away, as shown in figure 8.6. As the person holds the 
rock, its initial velocity is zero. The person then 
applies a force to the rock accelerating it from zero 
velocity to a final velocity vf. While the rock is leaving 
the person’s hand, the force FRp is exerted on the rock 
by the person. But by Newton’s third law, the rock is 
exerting an equal but opposite force FpR on the 
person. But the system that is now being analyzed is 
not an isolated system, consisting only of the person 
and the rock. Instead, the system also contains the  

                                                                                         Figure 8.6  A person throwing a rock on the  
                                                                                                             surface of the earth. 
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surface of the earth, because the person is connected to it by friction. The force FpR, acting on the person, is now 
opposed by the frictional force between the person and the earth and prevents any motion of the person. 

As an example, let us assume that in throwing the rock the person’s hand moves through a distance x of 
1.00 m, as shown in figure 8.6(a), and it leaves the person’s hand at a velocity of 3.00 m/s. The acceleration of the 
rock can be found from the kinematic equation 

v2 = v02 + 2aRx 
by solving for aR. Thus, 

              aR =  v2  = (3.00 m/s)2 = 4.50 m/s2 
  2x        2(1.00 m)  

 
The force acting on the rock FRp, found by Newton’s second law, is 

 
FRp = mRaR = (0.250 kg)(4.50 m/s2) 

= 1.13 N 
 
But by Newton’s third law this must also be the force exerted on the person by the 
rock, FpR. That is, there is a force of 1.13 N acting on the person, tending to push that person to the left. But since 
the person is standing on the surface of the earth there is a frictional force that tends to oppose that motion and is 
shown in figure 8.6(b). The maximum value of that frictional force is 
 

 fs = µsFN = µswp 
The weight of the person wp is 

wp = mg = (80.0 kg)(9.80 m/s2) = 784 N 
 

Assuming a reasonable value of µs = 0.500 (leather on wood), we have 
 

fs = µswp = (0.500)(784 N) 
= 392 N 

 
That is, before the person will recoil from the process of throwing the rock, the recoil force FpR, acting on 

the person, must be greater than the maximum frictional force of 392 N. We found the actual reaction force on the 
person to be only 1.13 N, which is no where near the amount necessary to overcome friction. Hence, when a person 
on the surface of the earth throws an object, the person does not recoil like an astronaut in space. 

If friction could be minimized, then the throwing of the object would result in a recoil velocity. For 
example, if a person threw a rock to the right, while standing in a boat on water, then because the frictional force 
between the boat and the water is relatively small, the person and the boat would recoil to the left. 

In a similar way, if a person is standing at the back of a boat, which is at rest, and then walks toward the 
front of the boat, the boat will recoil backward to compensate for his forward momentum. 
 
 
8.4  Impulse 
Let us consider Newton’s second law in the form of change in momentum as found in equation 8.5, 
 

         F = ∆p 
                 ∆t 

If both sides of equation 8.5 are multiplied by ∆t, we have 
F∆t = ∆p                                                                       (8.17) 

 
The quantity F∆t, is called the impulse1 of the force and is given by 
 

J = F∆t                                                                            (8.18) 
 

                                                      
1
In some books the letter I is used to denote the impulse. In order to not confuse it with the moment of inertia of a body, also designated by the 

letter I and treated in detail in chapter 9, we will use the letter J for impulse 
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The impulse J is a measure of the force that is acting, times the time that force is acting. Equation 8.17 then 
becomes 

J = ∆p                                                                             (8.19) 
 

That is, the impulse acting on a body changes the momentum of that body. Since ∆p = pf − pi, equation 8.19 also 
can be written as 

J = pf − pI                                                                           (8.20) 
 

In many cases, the force F that is exerted is not a constant during the collision process. In that case an 
average force Favg can be used in the computation of the impulse. That is, 

 
Favg∆t = ∆p                                                                          (8.21) 

 
Examples of the use of the concept of impulse can be found in such sports as baseball, golf, tennis, and the 

like, see figure 8.7. If you participated in such sports,  

               
Figure 8.7  Physics in sports. When hitting (a) a baseball or (b) a tennis ball, the “follow-through” is very 

important. 
 

you were most likely told that the “follow through” is extremely important. For example, consider the process of 
hitting a golf ball. The ball is initially at rest on the tee. As the club hits the ball, the club exerts an average force 
Favg on the ball. By “following through” with the golf club, as shown in figure 8.8, we mean that the longer the 
time interval ∆t that the club is exerting its force on the ball, the greater is the impulse imparted to the ball and 
hence the greater will be the change in momentum of the ball. The greater change in momentum implies a greater 
change in the velocity of the ball and hence the ball will travel a greater distance. 

The principle is the same in baseball, tennis, and other similar sports. The better the follow through, the 
longer the bat or racket is in contact with the ball and the greater the change in momentum the ball will have. 
Those interested in the application of physics to sports can read the excellent book, Sport Science by Peter 
Brancazio (Simon and Schuster, 1984). 
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Figure 8.8  The effect of “follow through” in hitting a golf ball. 

 
 
8.5  Collisions in One Dimension 
We saw in section 8.2 that momentum is always conserved in a collision if the net external force on the system is 
zero. In physics three different kinds of collisions are usually studied. Momentum is conserved in all of them, but 
kinetic energy is conserved in only one. These different types of collisions are 
 

1.  A perfectly elastic collision—a collision in which no kinetic energy is lost, that is, kinetic energy is 
conserved. 

2.  An inelastic collision —a collision in which some kinetic energy is lost. All real collisions belong to 
this category. 

3.  A perfectly inelastic collision —a collision in which the two objects stick together during the 
collision. A great deal of kinetic energy is usually lost in this collision. 

In all real collisions in the macroscopic world, some kinetic energy is lost. As an example, consider a 
collision between two billiard balls. As the balls collide they are temporarily deformed. Some of the kinetic energy 
of the balls goes into the potential energy of deformation. Ideally, as each ball returns to its original shape, all the 
potential energy stored by the ball is converted back into the kinetic energy of the ball. In reality, some kinetic 
energy is lost in the form of heat and sound during the deformation process. The mere fact that we can hear the 
collision indicates that some of the mechanical energy has been transformed into sound energy. But in many cases, 
the amount of kinetic energy that is lost is so small that, as a first approximation, it can be neglected. For such 
cases we assume that no energy is lost during the collision, and the collision is treated as a perfectly elastic 
collision. The reason why we like to solve perfectly elastic collisions is simply that they are much easier to analyze 
than inelastic collisions. 

 
Perfectly Elastic Collisions Between Unequal Masses  
Consider the collision shown in figure 8.9 between two different masses, m1 and m2, having initial velocities v1i 
and v2i, respectively. We assume that v1i is greater than v2i, so that a collision will occur. We can write the law of 
conservation of momentum as 

   pi = pf 
That is, 

    Total momentum before collision = Total momentum after collision 
      p1i + p2i = p1f + p2f 

or 
 m1v1i + m2v2i = m1v1f + m2v2f                                                            (8.22) 
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where the subscript i stands for the initial values of the 
momentum and velocity (before the collision) while f 
stands for the final values (after the collision). This is a 
vector equation. If the collision is in one dimension only, 
and motion to the right is considered positive, then we 
can rewrite equation 8.22 as the scalar equation 
 

 m1v1i + m2v2i = m1v1f + m2v2f              (8.23) 
 

Usually we know v1i and v2i and need to find v1f and v2f. 
In order to solve for these final velocities, we need 
another equation. 

The second equation comes from the law of 
conservation of energy. Since the collision occurs on a 
flat surface, which we take as our reference level and 
assign the height zero, there is no change in potential 
energy to consider during the collision. Thus, we need 
only consider the conservation of kinetic energy. The law 
of conservation of energy, therefore, becomes 

 
                                                                                         Figure 8.9  A perfectly elastic collision. 

 
KEBC = KEAC                                                                         (8.24) 

That is, 
Kinetic energy before collision = Kinetic energy after collision                                   (8.25) 

 
which becomes 

  1 m1v1i2 +  1 m2v2i2 =  1 m1v1f2 +  1  m2v2f2                                                    (8.26) 
                                                                2                2                2                2 

 
If the initial values of the speed of the two bodies are known, then we find the final values of the speed by solving 
equations 8.23 and 8.26 simultaneously. The algebra involved can be quite messy for a direct simultaneous 
solution. (A simplified solution is given below. However, even the simplified solution is a little long. Those 
students not interested in the derivation can skip directly to the solution in equation 8.30.) 

To simplify the solution, we rewrite equation 8.23, the conservation of momentum, in the form 
 

m1(v1i − v1f) = m2(v2f − v2i)                                                                  (8.27) 
 

where the masses have been factored out. Similarly, we factor the masses out in equation 8.26, the conservation of 
energy, and rewrite it in the form 

m1( v1i2 − v1f2) = m2( v2f2 − v2i2)                                                              (8.28) 
 

We divide equation 8.28 by equation 8.27 to eliminate the mass terms: 
 

m1(v1i2 − v1f2) = m2( v2f2 − v2i2)  
                                                                         m1(v1i − v1f)      m2(v2f − v2i) 

 
Note that we can rewrite the numerators as products of factors: 
 

(v1i + v1f)(v1i − v1f) = (v2i + v2f)(v2f − v2i)  
                                                                          v1i − v1f                                v2f − v2i 
which simplifies to 

v1i + v1f = v2i + v2f                                                                         (8.29) 
Solving for v2f in equation 8.29, we get 

v2f = v1i + v1f − v2i 
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Substituting this into equation 8.27, we have 
 

m1(v1i − v1f) = m2[(v1i + v1f − v2i) − v2i] 
m1v1i − m1v1f = m2v1i + m2v1f − m2v2i − m2v2i  

Collecting terms of v1f, we have 
−m1v1f − m2v1f = −2m2v2i + m2v1i − m1v1i 

 
Multiplying both sides of the equation by −1, we get 
 

+m1v1f + m2v1f = +2m2v2i − m2v1i + m1v1i 
Simplifying, 

(m1 + m2)v1f = (m1 − m2)v1i + 2m2v2i  
 

Solving for the final speed of ball 1, we have 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
                                                           (8.30) 

 
In a similar way, we can solve equation 8.29 for v1f, which we then substitute into equation 8.27. After the 

same algebraic treatment (which is left as an exercise), the final speed of the second ball becomes 
 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

                                                           (8.31) 

 
Equations 8.30 and 8.31 were derived on the assumption that balls 1 and 2 were originally moving with a 

positive velocity to the right before the collision, and both balls had a positive velocity to the right after the 
collision. If v1f comes out to be a negative number, ball 1 will have a negative velocity after the collision and will 
rebound to the left. 

If the collision looks like the one depicted in figure 8.2, we can still use equations 8.30 and 8.31. However, 
ball 2 will be moving to the left, initially, and will thus have a negative velocity v2i. This means that v2i has to be a 
negative number when placed in these equations. If v1f comes out to be a negative number in the calculations, that 
means that ball 1 has a negative final velocity and will be moving to the left. 

 
Example 8.3 

 
Perfectly elastic collision, ball 1 catches up with ball 2. Consider the perfectly elastic collision between masses m1 = 
100 g and m2 = 200 g. Ball 1 is moving with a velocity v1i of 30.0 cm/s to the right, and ball 2 has a velocity v2i = 
20.0 cm/s, also to the right, as shown in figure 8.9. Find the final velocities of the two balls. 

Solution
 

The final velocity of the first ball, found from equation 8.30, is 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

( ) ( )100 g  200 g 2(200 g)30.0 cm/s 20.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= +   

   
 

 = 16.7 cm/s 
 
Since v1f is a positive quantity, the final velocity of ball 1 is toward the right. The final velocity of the second ball, 
obtained from equation 8.31, is 
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1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

( ) ( )2(100 g) 100 g  200 g30.0 cm/s 20.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= −   

   
 

 = 26.7 cm/s 
 

Since v2f is a positive quantity, the second ball has a positive velocity and is moving toward the right. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 8.4 
 

Perfectly elastic collision with masses approaching each other. Consider the perfectly elastic collision between 
masses m1 = 100 g, m2 = 200 g, with velocity v1i = 20.0 cm/s to the right, and velocity v2i = −30.0 cm/s to the left, as 
shown in figure 8.2. Find the final velocities of the two balls. 

Solution
 

The final velocity of ball 1, found from equation 8.30, is 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

( ) ( )100 g  200 g 2(200 g)20.0 cm/s 30.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= + −   

   
 

= −46.7 cm/s 
 

Since v1f is a negative quantity, the final velocity of the first ball is negative, indicating that the first ball moves to 
the left after the collision. The final velocity of the second ball, found from equation 8.31, is 
 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

     ( ) ( )2(100 g) 100 g  200 g20.0 cm/s 30.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= − −   

   
 

  = 3.33 cm/s 
 

Since v2f is a positive quantity, the final velocity of ball 2 is positive, and the ball will move toward the right. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Let us now look at a few special types of collisions. 
 

Between Equal Masses If the elastic collision occurs between two equal masses, then the final velocities after the 
collision are again given by equations 8.30 and 8.31, only with mass m1 set equal to m2. That is, 
 

2 2 2
1f 1i 2i

2 2 2 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   
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= 0 + 2m2 v2i   
    2m2 
v1f = v2i                                                                                 (8.32) 

and 
2 2 2

2f 1i 2i
2 2 2 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

= 2m2 v1i + 0   
                                                                                         2m2             

v2f = v1i                                                                                 (8.33) 
 

Equations 8.32 and 8.33 tell us that the bodies exchange their velocities during the collision. 
 
Both Masses Equal, One Initially at Rest This is the same case, except that one mass is initially at rest, that 
is, v2i = 0. From equation 8.32 we get  

v1f = v2i = 0                                                                            (8.34) 
while equation 8.33 remains the same 

   v2f = v1i 
 

as before. This is an example of the first body being “stopped cold” while the second one “takes off” with the 
original velocity of the first ball. 
 
A Ball Thrown against a Wall When you throw a ball against a 
wall, figure 8.10, you have another example of a collision. Assuming 
the collision to be elastic, equations 8.30 and 8.31 apply. The wall is 
initially at rest, so v2i = 0. Because the wall is very massive compared 
to the ball we can say that 

m2 # m1 
which implies that 

  m1 − m2 ≈ −m2 
and 

 m1 + m2 ≈ m2 
 
Solving equation 8.30 for v1f, we have 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

 
                                                                                                                      Figure 8.10  A ball bouncing off a wall. 

 
2

1i
2

 0
 

m v
m

 −
= + 

 
 

 Therefore, the final velocity of the ball is 
v1f = −v1i                                                                            (8.35) 

 
The negative sign indicates that the final velocity of the ball is negative, so the ball rebounds from the wall and is 
now moving toward the left with the original speed. 

The velocity of the wall, found from equation 8.31, is 
 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

1
1i

2

2 0m v
m

 
= − 

 
 

Pearson Custom Publishing

251



 

 
8-14                                                                                                                                                               Mechanics 

However, since 
m2 # m1 

then 
 2m1  ≈ 0 

                    m2       
Therefore, 

v2f = 0                                                                               (8.36) 
 

The ball rebounds from the wall with the same speed that it hit the wall, and the wall, because it is so massive, 
remains at rest. 
 
Inelastic Collisions 
Let us consider for a moment equation 8.29, which we developed earlier in the section, namely 
 

v1i + v1f = v2f + v2i 
 

If we rearrange this equation by placing all the initial velocities on one side of the equation and all the final 
velocities on the other, we have 

v1i − v2i = v2f − v1f                                                                         (8.37) 
However, as we can observe from figure 8.9, 

 v1i − v2i = VA                                                                             (8.38) 
 

that is, the difference in the velocities of the two balls is equal to the velocity of approach VA of the two billiard 
balls. (The velocity of approach is also called the relative velocity between the two balls.) As an example, if ball 1 is 
moving to the right initially at 10.00 cm/s and ball 2 is moving to the right initially at 5.00 cm/s, then the velocity 
at which they approach each other is 

VA = v1i − v2i = 10.00 cm/s − 5.00 cm/s 
= 5.00 cm/s 

Similarly, 
 v2f − v1f = VS                                                                            (8.39) 

 
is the velocity at which the two balls separate. That is, if the final velocity of ball 1 is toward the left at the velocity 
v1f = −10.0 cm/s, and ball 2 is moving to the right at the velocity v2f = 5.00 cm/s, then the velocity at which they 
move away from each other, the velocity of separation, is 
 

VS = v2f − v1f = 5.00 cm/s − (−10.0 cm/s) 
        = 15.0 cm/s 

Therefore, we can write equation 8.37 as 
 VA = VS                                                                                 (8.40) 

 
That is, in a perfectly elastic collision, the velocity of approach of the two bodies is equal to the velocity of 
separation. 

In an inelastic collision, the velocity of separation is not equal to the velocity of approach, and a new 
parameter, the coefficient of restitution, is defined as a measure of the inelastic collision. That is, we define the 
coefficient of restitution e as 

e = VS                                                                              (8.41) 
       VA   

and the velocity of separation becomes 
 VS = eVA                                                                            (8.42) 

 
For a perfectly elastic collision e = 1. For a perfectly inelastic collision e = 0, which implies VS = 0. Thus, the objects 
stick together and do not separate at all. For the inelastic collision 
 

0 < e < 1                                                                              (8.43) 
 

Pearson Custom Publishing

252



 

 
Chapter 8  Momentum and Its Conservation                                                                                                          8-15 

Determination of the Coefficient of Restitution If the inelastic collision is between a ball and the earth, as 
shown in figure 8.11, then, because the earth is so massive, v2i = v2f = 0. Equation 8.42 reduces to 
 

v1f = ev1i                                                                               (8.44) 
 

       
Figure 8.11  Imperfectly elastic collision of a ball with the earth. 

 
The ball attained its speed v1i by falling from the height h0, where it had the potential energy 
 

PE0 = mgh0 
Immediately before impact its kinetic energy is 

    KEi =  1 mv1i2 
      2 

And, by the law of the conservation of energy, 
  KEi = PE0 

or 
 1 mv1i2 = mgh0 

                                                                                     2                         
 

Thus, the initial speed before impact with the earth is 
1 02iv gh=                                                                       (8.45) 

 
After impact, the ball rebounds with a speed v1f, and has a kinetic energy of 

 
KEf =  1  mv1f2 

 2 
  

which will be less than KEi because some energy is lost in the collision. After the collision the ball rises to a new 
height h, as seen in the figure. The final potential energy of the ball is 
 

PEf = mgh 
However, by the law of conservation of energy 

   KEf = PEf  
 1 mv1f2 = mgh    

                                                                                     2                          
Hence, the final speed after the collision is 

     1f 2v gh=                                                                           (8.46) 
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We can now find the coefficient of restitution from equations 8.44, 8.45, and 8.46, as 
 

1f

1 00

2
2i

v gh he
v hgh

= = =                                                                    (8.47) 

 
Thus, by measuring the final and initial heights of the ball and taking their ratio, we can find the coefficient of 
restitution. 

The loss of energy in an inelastic collision can easily be found using equation 8.42, 
 

  VS = eVA 
The kinetic energy after separation is 

KES =  1  mVS 2                                                                       (8.48) 
        2    

Substituting for VS from equation 8.42 gives, 
   KES =  1 m(eVA)2 

 2     
KES =  1 me2VA2 

2  
KES = e2( 1 mVA2) 

      2 
 

But ½ mVA2 is the kinetic energy of approach. Therefore the relation between the kinetic energy after separation 
and the initial kinetic energy is given by 

KES = e2KEA                                                                          (8.49) 
 

The total amount of energy lost in the collision can now be found as 
 

∆Elost = KEA − KES 
     = KEA − e2KEA                                                                  (8.50) 

∆Elost = (1 − e2)KEA                                                                     (8.51) 
 

Example 8.5 
 

An imperfectly elastic collision. A 20.0-g racquet ball is dropped from a height of 1.00 m and impacts a tile floor. If 
the ball rebounds to a height of 76.0 cm, (a) what is the coefficient of restitution, (b) what percentage of the initial 
energy is lost in the collision, and (c) what is the actual energy lost in the collision? 

Solution
 

a. The coefficient of restitution, found from equation 8.47, is 
 

0

76.0 cm 0.872
100 cm

he
h

= = =  

 
b.  The percentage energy lost, found from equation 8.51, is 
 

∆Elost = (1 − e2)KEA 
                   = (1 − (0.872)2)KEA 

         = 0.240 KEA 
                             = 24.0% of the initial KE 

 
c.  The actual energy lost in the collision with the floor is 
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∆E = PE0 − PEf 

= mgh0 − mgh 
= (0.020 kg)(9.80 m/s2)(1.00 m) − (0.020 kg)(9.80 m/s2)(0.76 m) 

= 0.047 J lost 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Perfectly Inelastic Collision  
Between Unequal Masses In the perfectly inelastic collision, figure 8.12, the two bodies join together during the 
collision process and move off together as one body after the collision. We assume that v1i is greater than v2i, so a 
collision will occur. The law of conservation of momentum, when applied to figure 8.12, becomes 

 
Figure 8.12  (a) Perfectly inelastic collision. (b) A football player being tackled is also an example of a perfectly 

inelastic collision. 
 

m1v1i + m2v2i = (m1 + m2)Vf                                                                  (8.52) 
 

Taking motion to the right as positive, we write this in the scalar form, 
 

m1v1i + m2v2i = (m1 + m2)Vf                                                                 (8.53) 
 

Solving for the final speed Vf of the combined masses, we get 
 

iif v
mm

mv
mm

mV 2
21

2
1

21

1








+

+







+

=                                                        (8.54) 

 
It is interesting to determine the initial and final values of the kinetic energy of the colliding bodies. 
 

KEi =  1 m1v1i2 +  1 m2v2i2                                                              (8.55) 
                                                                                           2                2 

KEf =  1 (m1 + m2)Vf2                                                                     (8.56) 
                                                                                            2              
Is kinetic energy conserved for this collision? 
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Example 8.6 
 

A perfectly inelastic collision. A 50.0-g piece of clay moving at a velocity of 5.00 cm/s to the right has a head-on 
collision with a 100-g piece of clay moving at a velocity of −10.0 cm/s to the left. The two pieces of clay stick 
together during the impact. Find (a) the final velocity of the clay, (b) the initial kinetic energy, (c) the final kinetic 
energy, and (d) the amount of energy lost in the collision. 

Solution
 

a. The initial velocity of the first piece of clay is positive, because it is in motion toward the right. The initial 
velocity of the second piece of clay is negative, because it is in motion toward the left. The final velocity of the clay, 
given by equation 8.54, is 

1 2
1 2

1 2 1 2
f i i

m mV v v
m m m m

   
= +   + +   

 

( ) ( )50.0 g 100.0 g5.00 cm/s 10.0 cm/s
50.0 g 100.0 g 50.0 g 100.0 g

   
= + −   + +   

 

= −5.00 cm/s = −5.00 × 10−2 m/s 
 

The minus sign means that the velocity of the combined pieces of clay is negative and they are therefore moving 
toward the left, not toward the right as we assumed in figure 8.12. 
b.  The initial kinetic energy, found from equation 8.55, is 
 

 KEi =  1 m1v1i2 +  1 m2v2i2 
                                                                                       2                2 

=  1 (0.050 kg)(5.00 × 10−2 m/s)2 +  1 (0.100 kg)(−10.0 × 10−2 m/s)2 
                                              2                                                    2   

= 5.63 × 10−4 J 
 

c.  The kinetic energy after the collision, found from equation 8.56, is 
 

KEf =  1 (m1 + m2)Vf2 
                                                                                          2           

=  1 (0.050 kg + 0.100 kg)(−5.00 × 10−2 m/s)2 
                                                                2 

   = 1.88 × 10−4 J 
 
d.  The mechanical energy lost in the collision is found from 
 

∆E = KEi − KEf 
= 5.63 × 10−4 J − 1.88 × 10−4 J 

= 3.75 × 10−4 J 
 

Hence, 3.75 × 10−4 J of energy are lost in the deformation caused by the collision. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
8.6  Collisions in Two Dimensions —Glancing Collisions 
In the collisions treated so far, the collisions were head-on collisions, and the forces exerted on the two colliding 
bodies were on a line in the direction of motion of the two bodies. As an example, consider the collision to be 
between two billiard balls. For a head-on collision, as in figure 8.13(a), the force on ball 2 caused by ball 1, F21, is  
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Figure 8.13  Comparison of one-dimensional and two-dimensional collisions. 

 
in the positive x-direction, while F12, the force on ball 1 caused by ball 2, is in the negative x-direction. After the 
collision, the two balls move along the original line of action. In a glancing collision, on the other hand, the motion 
of the centers of mass of each of the two balls do not lie along the same line of action, figure 8.13(b). Hence, when 
the balls collide, the force exerted on each ball does not lie along the original line of action but is instead a force 
that is exerted along the line connecting the center of mass of each ball, as shown in the diagram. Thus the force 
on ball 2 caused by ball 1, F21, is a two-dimensional vector, and so is F12, the force on ball 1 caused by ball 2. As we 
can see in the diagram, these forces can be decomposed into x- and y-components. Hence, a y-component of force 
has been exerted on each ball causing it to move out of its original direction of motion. Therefore, after the 
collision, the two balls move off in the directions indicated. All glancing collisions must be treated as two-
dimensional problems. Since the general solution of the two-dimensional collision problem is even more 
complicated than the one-dimensional problem solved in the last section, we will solve only some special cases of 
the two-dimensional problem. 

Consider the glancing collision between two billiard 
balls shown in figure 8.14. Ball 1 is moving to the right at the 
velocity v1i and ball 2 is at rest (v2i = 0). After the collision, 
ball 1 is found to be moving at an angle θ = 45.00 above the 
horizontal and ball 2 is moving at an angle φ = 45.00 below the 
horizontal. Let us find the velocities of both balls after the 
collision. As in all collisions, the law of conservation of 
momentum holds, that is, 

pf = pi 
m1v1f + m2v2f = m1v1i 

 
The last single vector equation is equivalent to the two scalar 
equations 

m1v1f cos θ + m2v2f cos φ = m1v1i                 (8.57) 
m1v1f sin θ − m2v2f sin φ = 0                        (8.58 

 
Solving equation 8.58 for v2f with θ = φ = 45.00, we get 

 
m1v1f sin 45.00 = m2v2f sin 45.00  

 
                                                                                                          Figure 8.14  A glancing collision 

 
v2f =  m1 v1f                                                                           (8.59) 
          m2 
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Inserting equation 8.59 into equation 8.57 we can solve for v1f as 
 

0 01
1 1f 2 1f 1 1

2

cos45.0 cos45.0 i
mm v m v m v
m

 
+ = 

 
 

2m1v1f cos 45.00 = m1v1i  
v1f =        v1i                                                                           (8.60) 

                     2 cos 45.00  
 

Example 8.7 
 

A glancing collision. Billiard ball 1 is moving at a speed of v1i = 10.0 cm/s, when it has a glancing collision with an 
identical billiard ball that is at rest. After the collision, θ = φ = 45.00. The mass of the billiard ball is 0.170 kg. 
(a) Find the speed of ball 1 and 2 after the collision. (b) Is energy conserved in this collision? 

Solution
 

a. The speed of ball 1, found from equation 8.60, is 
v1f =        v1i         

                2 cos 45.00  
       =    10.0 cm/s     
             2 cos 45.00 

    = 7.07 cm/s 
and the speed of ball 2, found from equation 8.59, is 

    v2f =  m1 v1f 
        m2     

        =  m1 v1f  
       m1  

                      = v1f = 7.07 cm/s 
b.  The kinetic energy before the collision is 
 

 KEi =  1 m1v1i2 =   1 (0.170 kg)(0.100 m/s)2 
                                                                         2                  2                                 

= 8.50 × 10−4 J 
while the kinetic energy after the collision is 

    KEf =  1 m1v1f2 +  1 m2v2f2 
                                                                                         2               2 

                        =  1 (0.170 kg)(0.0707 m/s)2 +  1 (0.170 kg)(0.0707 m/s)2  
                                                                   2                                            2 

  = 8.50 × 10−4 J 
 

Notice that the kinetic energy after the collision is equal to the kinetic energy before the collision. Therefore the 
collision is perfectly elastic. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 8.8 
 

Colliding cars. Two cars collide at an intersection as shown in figure 8.15. Car 1 has a mass of 1200 kg and is 
moving at a velocity of 95.0 km/hr due east and car 2 has a mass of 1400 kg and is moving at a velocity of 100 
km/hr due north. The cars stick together and move off as one at an angle θ as shown in the diagram. Find (a) the 
angle θ and (b) the final velocity of the combined cars. 
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Solution
 

a. This is an example of a perfectly inelastic collision in two dimensions. The 
law of conservation of momentum yields 
 

pf = pi 
(m1 + m2)Vf = m1v1i + m2v2i                                 (8.61) 

 
Resolving this equation into its x- and y-component equations, we get for the 
x-component: 

(m1 + m2)Vf cos θ = m1v1i                                   (8.62) 
and for the y-component: 

(m1 + m2)Vf sin θ = m2v2i                                   (8.63) 
 

Dividing the y-component equation by the x-component equation we get 
 

(m1 + m2)Vf sin θ = _m2v2i    
                                            (m1 + m2)Vf cos θ      m1v1i 

sin θ = m2v2i 
                                                       cos θ    m1v1i 

tan θ = m2v2i 
                                                                    m1v1i 

 
tan θ = (1400 kg)(100 km/hr) 
             (1200 kg)(95.0 km/hr) 

θ = 50.80 
 

b.  The combined final speed, found by solving for Vf in equation 8.62, is 
 

Vf =          m1v1i        
               (m1 + m2)cos θ 

=      (1200 kg)(95.0 km/hr)      
         (1200 kg + 1400 kg)cos 50.80 

= 69.4 km/hr 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

*8.7  A Variable Mass System  
Up to now in our analysis of mechanical systems, the mass of the system has always remained a constant. What 
happens if the mass is not a constant? Newton’s second law in the form F = ma can not be used because m is not a 
constant. In many of these problems, however, we can use Newton’s second law in terms of momentum, and if we 
take the system large enough, the total force F acting on the system will be zero and the law of conservation of 
momentum can be applied. As an example of a variable mass system let us consider a train car of mass mT = 1500 
kg, which contains 35 rocks, each of mass mr = 30.0 kg. The train is initially at rest. A man now throws out each 
rock from the rear of the train at a speed vr = 8.50 m/s. When the man throws out a rock in one direction, the train 
will recoil in the opposite direction, just as a gun recoils when a bullet is fired from a gun. The law of conservation 
of momentum applied to the system of train and rocks yields   
 

pi = pf 
 

Figure 8.15  A perfectly inelastic 
glancing collision. 
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Since the train and its rocks are initially at rest, the initial momentum of the system of train and rocks, pi, is zero. 
Hence  

0 = pf  
 
and the final momentum of the system of train and rocks, pf, must also be zero. Hence, when a rock is thrown out 
of the rear of the train in the negative x-direction, the velocity of the rock is to the left and is negative and hence 
the momentum of the rock is also negative. The train recoils to the right in the positive x-direction and hence the 
velocity of the train is toward the right and is positive, and the momentum of the train is also positive. When one 
rock is thrown from the train, the final total momentum of the train and rocks, pf, must still be zero. Therefore, the 
law of conservation of momentum gives  

0 = pT − pr 
 

where pT is the momentum of the train and pr is the momentum of the thrown rock. The initial mass of the train is 
equal to the mass of the train mT plus the mass of the N rocks Nmr, that is, mT + Nmr. When the first rock is 
thrown from the train, there will be N − 1 rocks still left on the train. Hence the mass of the train plus rocks is now 
mT + (N − 1)mr and the momentum of the train is [mT + (N − 1)mr]VT1, where VT1 is the velocity of the train plus 
rocks when one rock has been thrown away. The momentum of the rock that has been thrown away is just − mrvr. 
The law of conservation of momentum now becomes    
 

0 = [mT + (N − 1)mr]VT1 − mrvr  
and 

[mT + (N − 1) mr]VT1 = + mrvr 
 

The recoil velocity of the train when one rock is thrown out, VT1, becomes 
 

VT1 =           mrvr                                                                                 (8.64) 
          [mT + (N − 1) mr] 

VT1 =           (30 kg)(8.5 m/s)                 
                   1500 kg + (35 − 1)(30 kg) 

VT1 = 0.101 m/s 
 
Thus, when the man throws out the first rock to the left, the train recoils with the velocity 0.101 m/s to the right.  

When the man throws out the second rock, the train and its rocks are now moving at the velocity VT1, and 
the system now has the initial momentum  

pi = [mT + (N − 1)mr]VT1 
 
When the second rock is thrown from the train, there will be N − 2 rocks still left on the train. Hence the mass of 
the train plus rocks is now mT + (N − 2)mr. (Notice how the mass of the system is decreasing with each rock thrown 
out.) The momentum of the train plus rocks is now [mT + (N − 2)mr]VT2, where VT2 is the recoil velocity of the train 
plus rocks when the second rock has been thrown away. The final momentum of the train and rocks when the 
second rock is thrown out is  

   pf = [mT + (N − 2)mr]VT2 − mrvr 
 
Applying the law of conservation of momentum to the system when the second rock is thrown out now yields  
 

pi = pf  
[mT + (N − 1)mr]VT1 = [mT + (N − 2)mr]VT2 − mrvr  

or 
[mT + (N − 2)mr]VT2 = [mT + (N − 1)mr]VT1+ mrvr 

 
The recoil velocity VT2 of the train when the man throws out the second rock, becomes 
 

VT2 = [mT + (N − 1)mr]VT1+ mrvr                                                             (8.65) 
 mT + (N − 2)mr 

 

Pearson Custom Publishing

260



 

 
Chapter 8  Momentum and Its Conservation                                                                                                          8-23 

VT2 = [(1500 kg) + (35 − 1)(30 kg)](0.101 m/s) + [(30 kg)(8.5 m/s)] 
 1500 kg + (35 − 2)(30 kg) 

VT2 = 0.205 m/s 
 

When the 3rd rock is thrown out of the train, the recoil velocity VT3 of the train is found as an extension of 
equation 8.65 as 

VT3 = [mT + (N − 2)mr]VT2 + mrvr                                                             (8.66) 
      mT + (N − 3)mr 

VT3 = [(1500 kg) + (35 − 2)(30 kg)](0.205 m/s) + [(30 kg)(8.5 m/s)] 
 1500 kg + (35 − 3)(30 kg) 

VT3 = 0.311 m/s 
 

Notice that the velocity of the combined train and its rocks increased from 0 to 0.101 m/s when the first rock was 
thrown out, and from 0.101 m/s to 0.205 m/s when the second rock was thrown out, and from 0.205 m/s to 0.311 
m/s when the third rock was thrown out. The velocity of the train plus rocks will continue to increase as each rock 
is thrown out while the mass of the train plus rocks will continue to decrease. We can continue calculating the 
velocity of the train as each rock is thrown out. When the nth rock is thrown out of the train, the recoil velocity VTn 
of the train is found as an extension of equation 8.66 as 

 
VTn = [mT + (N − (n − 1)mr]VT(n   − 1) + mrvr                                                    (8.67) 

      mT + (N − n)mr 
 
A plot of the velocity of the train as a function of the number of rocks thrown out of the train is shown in figure 
8.16. Notice that the velocity of the train increases as more rocks are thrown out. Notice in this graph that when 
the number of rocks n to be thrown out 
of the train exceeds the total number of 
rocks N available, the velocity of the 
train becomes constant. This problem of 
a varying mass system is very much 
like a rocket propulsion problem. The 
rocks thrown from the train are like the 
fuel ejected from the rocket.  

The initial mass of the system 
is equal to the mass of the train plus 
the mass of the rocks. As each rock is 
thrown out, the mass of the system 
decreases. If we plot the mass of the 
train and its rocks as a function of the 
number of rocks thrown out of the train 
we get figure 8.17. 

 
 

                                           Figure 8.16  The recoil velocity of the train as a function 
                                                                         of the number of rocks n thrown out of the train. 

 
If we compare figure 8.17 with figure 8.16 we see that as the mass of the train decreases the velocity of the train 
increases, a characteristic of varying mass systems. 

Since the velocity of the train is increasing, the motion is an example of accelerated motion. The 
acceleration of the train is found from the definition of acceleration as   

 
a = ∆v/∆t 

 
If the man throws out the rocks at the rate R = 1.5 rocks/s, this rate can be written as  
 

R =  n                                                                                    (8.68) 
      ∆t 
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where n is the number of rocks thrown out and ∆t is the time. Hence the time interval term ∆t in the acceleration 
term, can be written from equation 8.68 in terms of the rate R at which the rocks are thrown as    

 
∆t =  n                                                                                  (8.69) 

           R  
The acceleration of the train can now be 
found as  

a =  ∆v =  ∆v  
         ∆t     n/R   

a = ∆v R                (8.70) 
   n 

 
Using equation 8.70 let us find the 
acceleration in the interval between 
throwing out rock 1 and rock 2. The 
number of rocks thrown out is then n = 
1 and the acceleration becomes 
 

                                                                  Figure 8.17  The decrease in the mass of the train rock system as a  
                                                                                          function of the number of rocks thrown out of the train. 

 
 a = ∆v R  

   n 
a = (0.205 m/s  − 0.101 m/s) (1.5 rocks/s)  

                                                                                    1 rock  
a = 0.156 m/s2  

 
If we perform this calculation of the acceleration for all the rocks that are thrown out and then draw a graph of the 
acceleration of the train as a function of time we obtain the graph of figure 8.18. Notice that the acceleration of a 
variable mass system is not a constant but varies with time. As more rocks are thrown out of the train, the greater 
is the acceleration, and when all the rocks are thrown out, the acceleration becomes zero. (For a more detailed look 
at this type of variable mass 
motion, see interactive tutorial 
#65 at the end of this chapter. 
This variable mass tutorial will 
allow you to change the masses 
of the train and rocks, the rate at 
which rocks are thrown and their 
velocities, and will show you the 
velocity and acceleration for all 
these different combinations.) A 
more detailed analysis of 
variable mass systems, such as a 
rocket propulsion system, 
requires the calculus for its 
description and will not be given 
here. 

                                                   
Figure 8.18  The acceleration of the train as a function of time. 

 
 
 
 
 

Decreasing Mass

0
1000
2000
3000

0 10 20 30 40 50

Number of rocks
M

as
s 

(k
g)

Acceleration of train as a function of tim e

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

Tim e (s)

A
c
c
e
l
e
r
a
t
i

Pearson Custom Publishing

262



 

 
Chapter 8  Momentum and Its Conservation                                                                                                          8-25 

The Language of Physics 
 

Linear momentum 
The product of the mass of the body 
in motion times its velocity (p. ). 
 
Newton’s second law in terms of 
linear momentum 
When a resultant applied force acts 
on a body, it causes the linear 
momentum of that body to change 
with time (p. ). 
 
External forces 
Forces that originate outside the 
system and act on the system (p. ). 
 
Internal forces 
Forces that originate within the 
system and act on the particles 
within the system (p. ). 
 
Law of conservation of linear 
momentum 
If the total external force acting on 
a system is equal to zero, then the 
final value of the total momentum 

of the system is equal to the initial 
value of the total momentum of the 
system. Thus, the total momentum 
is a constant, or as usually stated, 
the total momentum is conserved. 
The law of conservation of 
momentum is a consequence of 
Newton’s third law (p. ). 
 
Impulse 
The product of the force that is 
acting and the time that the force is 
acting. The impulse acting on a 
body is equal to the change in 
momentum of the body (p. ). 
 
Perfectly elastic collision 
A collision in which no kinetic 
energy is lost, that is, the kinetic 
energy is conserved. Momentum is 
conserved in all collisions for which 
there are no external forces. In this 
type of collision, the velocity of 
separation of the two bodies is 

equal to the velocity of approach 
(p. ). 
 
Inelastic collision 
A collision in which some kinetic 
energy is lost. The velocity of 
separation of the two bodies in this 
type of collision is not equal to the 
velocity of approach. The coefficient 
of restitution is a measure of the 
inelastic collision (p. ). 
 
Perfectly inelastic collision 
A collision in which the two objects 
stick together during the collision. 
A great deal of kinetic energy is 
usually lost in this type of collision 
(p. ). 
 
Coefficient of restitution 
The measure of the amount of the 
inelastic collision. It is equal to the 
ratio of the velocity of separation of 
the two bodies to the velocity of 
approach (p. ). 

 
Summary of Important Equations 

 
Definition of momentum 
                        p = mv              (8.1) 
 
Newton’s second law in terms of 
momentum       F = ∆p               (8.5) 
                                    ∆t 
 
Law of conservation of momentum 
for Fnet = 0  

       pf = pi                 (8.7) 
 
Recoil speed of a gun 

             vG = mB vB            (8.14) 
                            mG 
 
Impulse          J = F∆t             (8.18) 
 
Impulse is equal to the change in 
momentum       J = ∆p            (8.19) 
 
Conservation of momentum in a 
collision 
m1v1i + m2v2i = m1v1f + m2v2f  (8.22) 
 

Conservation of momentum in 
scalar form, both bodies in motion 
in same direction, and  v1i > v2i. 
m1v1i + m2v2i = m1v1f + m2v2f   (8.23) 
 
Conservation of energy in a 
perfectly elastic collision 
 
 1 m1v1i2 +  1 m2v2i2  
 2                2   
            =  1 m1v1f2 +  1  m2v2f2  (8.26) 
                2                2 
 
Final velocity of ball 1 in a perfectly 
elastic collision 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

                           (8.30) 
 

Final velocity of ball 2 in a perfectly 
elastic collision 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

  

                          (8.31) 

 
The velocity of approach 

      v1i − v2i = VA             (8.38) 
 
The velocity of separation 

v2f − v1f = VS            (8.39) 
 
For any collision    VS = eVA    (8.42) 
 
For a perfectly elastic collision 

e = 1 
 
For an inelastic collision 

 0 < e < 1              (8.43) 
 
For a perfectly inelastic collision 
                      e = 0 
 
Perfectly inelastic collision        

1 2
1 2

1 2 1 2
f i i

m mV v v
m m m m

   
= +   + +   

  

                                                (8.54) 
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Questions for Chapter 8 

 
1. If the velocity of a moving 

body is doubled, what does this do 
to the kinetic energy and the 
momentum of the body? 

2. Why is Newton’s second law 
in terms of momentum more 
appropriate than the form F = ma? 

3. State and discuss the law of 
conservation of momentum and 
show its relation to Newton’s third 
law of motion. 

4. Discuss what is meant by an 
isolated system and how it is 
related to the law of conservation of 
momentum. 

5. Is it possible to have a 
collision in which all the kinetic 
energy is lost? Describe such a 
collision. 

6. An airplane is initially flying 
at a constant velocity in plane and 
level flight. If the throttle setting is 
not changed, explain what happens 
to the plane as it continues to burn 
its fuel? 

*7. In the early days of rocketry 
it was assumed by many people 
that a rocket would not work in 
outer space because there was no 
air for the exhaust gases to push 
against. Explain why the rocket 
does work in outer space. 

8. Discuss the possibility of a 
fourth type of collision, a super 
elastic collision, in which the 
particles have more kinetic energy 
after the collision than before. As 

an example, consider a car colliding 
with a truck loaded with dynamite. 

9. If the net force acting on a 
body is equal to zero, what happens 
to the center of mass of the body? 

*10. A bird is sitting on a swing 
in an enclosed bird cage that is 
resting on a mass balance. If the 
bird leaves the swing and flies 
around the cage without touching 
anything, does the balance show 
any change in its reading? 

11. From the point of view of 
impulse, explain why an egg thrown 
against a wall will break, while an 
egg thrown against a loose vertical 
sheet will not. 
 

 
Problems for Chapter 8 

 
8.1  Momentum 

1. What is the momentum of a 
1450-kg car traveling at a speed of 
80.0 km/hr? 

2. A 1500-kg car traveling at 
137 km/hr collides with a tree and 
comes to a stop in 0.100 s. What is 
the change in momentum of the 
car? What average force acted on 
the car during impact? What is the 
impulse? 

3. Answer the same questions 
in problem 2 if the car hit a sand 
barrier in front of the tree and came 
to rest in 0.300 s. 

4. A 0.150-kg ball is thrown 
straight upward at an initial 
velocity of 30.0 m/s. Two seconds 
later the ball has a velocity of 10.4 
m/s. Find (a) the initial momentum 
of the ball, (b) the momentum of the 
ball at 2 s, (c) the force acting on 
the ball, and (d) the weight of the 
ball. 

5. How long must a force of 5.00 
N act on a block of 3.00-kg mass in 
order to give it a velocity of 4.00 
m/s? 

6. A force of 25.0 N acts on a 
10.0-kg mass in the positive x-

direction, while another force of 
13.5 N acts in the negative x-
direction. If the mass is initially at 
rest, find (a) the time rate of change 
of momentum, (b) the change in 
momentum after 1.85 s, and (c) the 
velocity of the mass at the end of 
1.85 s. 

  
8.2 and 8.3 Conservation of 
Momentum 

7. A 10.0-g bullet is fired from a 
5.00-kg rifle with a velocity of 300 
m/s. What is the recoil velocity of 
the rifle? 

8. In an ice skating show, a 
90.0-kg man at rest pushes a 45.0-
kg woman away from him at a 
speed of 1.50 m/s. What happens to 
the man? 

9. A 5000-kg cannon fires a 
shell of 3.00-kg mass with a velocity 
of 250 m/s. What is the recoil 
velocity of the cannon? 

10. A cannon of 3.50 × 103 kg 
fires a shell of 2.50 kg with a 
muzzle speed of 300 m/s. What is 
the recoil velocity of the cannon? 

11. A 70.0-kg boy at rest on 
roller skates throws a 0.910-kg ball 

horizontally with a speed of 7.60 
m/s. With what speed does the boy 
recoil? 

12. An 80.0-kg astronaut 
pushes herself away from a 1200-kg 
space capsule at a velocity of 3.00 
m/s. Find the recoil velocity of the 
space capsule. 

13. A 78.5-kg man is standing 
in a 275-kg boat. The man walks 
forward at 1.25 m/s relative to the 
water. What is the final velocity of 
the boat? Neglect any resistive force 
of the water on the boat. 

14. A water hose sprays 2.00 kg 
of water against the side of a 
building in 1 s. If the velocity of the 
water is 15.0 m/s, what force is 
exerted on the wall by the water? 
(Assume that the water does not 
bounce off the wall of the building.) 

 
8.4 Impulse 

15. A boy kicks a football with 
an average force of 66.8 N for a 
time of 0.185 s. (a) What is the 
impulse? (b) What is the change in 
momentum of the football? (c) If the 
football has mass of 250 g, what is 
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the velocity of the football as it 
leaves the kicker’s foot? 

16. A baseball traveling at 150 
km/hr is struck by a bat and goes 
straight back to the pitcher at the 
same speed. If the baseball has a 
mass of 200 g, find (a) the change in 
momentum of the baseball, (b) the 
impulse imparted to the ball, and 
(c) the average force acting if the 
bat was in contact with the ball for 
0.100 s. 

17. A 10.0-kg hammer strikes a 
nail at a velocity of 12.5 m/s and 
comes to rest in a time interval of 
0.004 s. Find (a) the impulse 
imparted to the nail and (b) the 
average force imparted to the nail. 

18. If a gas molecule of mass 
5.30 × 10−26 kg and an average 
speed of 425 m/s collides 
perpendicularly with a wall of a 
room and rebounds at the same 
speed, what is its change of 
momentum? What impulse is 
imparted to the wall? 

 
8.5 Collisions in One Dimension 

19. Two gliders moving toward 
each other, one of mass 200 g and 
the other of 250 g, collide on a 
frictionless air track. If the first 
glider has an initial velocity of 25.0 
cm/s toward the right and the 
second of −35.0 cm/s toward the left, 
find the velocities after the collision 
if the collision is perfectly elastic. 

20. A 250-g glider overtakes 
and collides with a 200-g glider on 
an air track. If the 250-g glider is 
moving at 35.0 cm/s and the second 
glider at 25.0 cm/s, find the 
velocities after the collision if the 
collision is perfectly elastic. 

*21. A 200-g ball makes a 
perfectly elastic collision with an 
unknown mass that is at rest. If the 
first ball rebounds with a final 
speed of v1f = ½ v1i, (a) what is the 
unknown mass, and (b) what is the 
final velocity of the unknown mass? 

22. A 30.0-g ball, m1, collides 
perfectly elastically with a 20.0-g 
ball, m2. If the initial velocities are 
v1i = 50.0 cm/s to the right and v2i = 
−30.0 cm/s to the left, find the final 

velocities v1f and v2f. Compute the 
initial and final momenta. Compute 
the initial and final kinetic 
energies. 

23. A 150-g ball moving at a 
velocity of 25.0 cm/s to the right 
collides with a 250-g ball moving at 
a velocity of 18.5 cm/s to the left. 
The collision is imperfectly elastic 
with a coefficient of restitution of 
0.65. Find (a) the velocity of each 
ball after the collision, (b) the 
kinetic energy before the collision, 
(c) the kinetic energy after the 
collision, and (d) the percentage of 
energy lost in the collision. 

24. A 1150-kg car traveling at 
110 km/hr collides “head-on” with a 
9500-kg truck traveling toward the 
car at 40.0 km/hr. The car becomes 
stuck to the truck during the 
collision. What is the final velocity 
of the car and truck? 

25. A 3.00-g bullet is fired at 
200 m/s into a wooden block of 10-
kg mass that is at rest. If the bullet 
becomes embedded in the wooden 
block, find the velocity of the block 
and bullet after impact. 

26. A 9500-kg freight car 
traveling at 5.50 km/hr collides 
with an 8000-kg stationary freight 
car. If the cars couple together, find 
the resultant velocity of the cars 
after the collision. 

27. Two gliders are moving 
toward each other on a frictionless 
air track. Glider 1 has a mass of 
200 g and glider 2 of 250 g. The first 
glider has an initial speed of 25.0 
cm/s while the second has a speed of 
35.0 cm/s. If the collision is 
perfectly inelastic, find (a) the final 
velocity of the gliders, (b) the 
kinetic energy before the collision, 
and (c) the kinetic energy after the 
collision. (d) How much energy is 
lost, and where did it go? 

 
8.6 Collisions in Two 
Dimensions — Glancing 
Collisions 

28. A 105-kg linebacker moving 
due east at 40.0 km/hr tackles a 
79.5-kg halfback moving south at 
65.0 km/hr. The two stick together 

during the collision. What is the 
resultant velocity of the two of 
them? 

29. A 10,000-kg truck enters an 
intersection heading north at 
45 km/hr when it makes a perfectly 
inelastic collision with a 1000-kg 
car traveling at 90 km/hr due east. 
What is the final velocity of the car 
and truck? 

*30. Billiard ball 2 is at rest 
when it is hit with a glancing 
collision by ball 1 moving at a 
velocity of 50.0 cm/s toward the 
right. After the collision ball 1 
moves off at an angle of 35.00 from 
the original direction while ball 2 
moves at an angle of 40.00, as 
shown in the diagram. The mass of 
each billiard ball is 0.017 kg. Find 
the final velocity of each ball after 
the collision. Find the kinetic 
energy before and after the 
collision. Is the collision elastic? 

 
Diagram for problem 30. 

 
31. A 0.150-kg ball, moving at a 

speed of 25.0 m/s, makes an elastic 
collision with a wall at an angle of 
40.00, and rebounds at an angle of 
40.00. Find (a) the change in 
momentum of the ball and (b) the 
magnitude and direction of the 
momentum imparted to the wall. 
The diagram is a view from the top. 
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Diagram for problem 31. 

  
Additional Problems 

*32. A 0.250-kg ball is dropped 
from a height of 1.00 m. It rebounds 
to a height of 0.750 m. If the ground 
exerts a force of 300 N on the ball, 
find the time the ball is in contact 
with the ground. 

33. A 200-g ball is dropped from 
the top of a building. If the speed of 
the ball before impact is 40.0 m/s, 
and right after impact it is 25.0 
cm/s, find (a) the momentum of the 
ball before impact, (b) the 
momentum of the ball after impact, 
(c) the kinetic energy of the ball 
before impact, (d) the kinetic energy 
of the ball after impact, and (e) the 
coefficient of restitution of the ball. 

*34. A 0.50-kg ball is dropped 
from a height of 1.00 m and 
rebounds to a height of 0.620 m. 
Approximately how many bounces 
will the ball make before losing 90% 
of its energy? 

35. A 60.0-g tennis ball is 
dropped from a height of 1.00 m. If 
it rebounds to a height of 0.560 m, 
(a) what is the coefficient of 
restitution of the tennis ball and 
the floor, and (b) how much energy 
is lost in the collision? 

*36. A 25.0-g bullet strikes a 
5.00-kg ballistic pendulum that is 
initially at rest. The pendulum rises 
to a height of 14.0 cm. What is the 
initial speed of the bullet? 

37. A 25.0-g bullet with an 
initial speed of 400 m/s strikes a 5-
kg ballistic pendulum that is 
initially at rest. (a) What is the 
speed of the combined bullet-
pendulum after the collision? 

(b) How high will the pendulum 
rise? 

 
Diagram for problem 36. 

 
38. An 80-kg caveman, 

standing on a branch of a tree 5 m 
high, swings on a vine and catches 
a 60-kg cavegirl at the bottom of the 
swing. How high will both of them 
rise? 

 
*39. A hunter fires an 

automatic rifle at an attacking lion 
that weighs 1335 N. If the lion is 
moving toward the hunter at 3.00 
m/s, and the rifle bullets weigh 
0.550 N each and have a muzzle 
velocity of 762 m/s, how many 
bullets must the man fire at the 
lion in order to stop the lion in his 
tracks? 

*40. Two gliders on an air track 
are connected by a compressed 
spring and a piece of thread as 
shown; m1 = 300 g and m2 is 
unknown. If the connecting string is 
cut, the gliders separate. Glider 1 
experiences the velocity v1 = 10.0 
cm/s, and glider 2 experiences the 
velocity v2 = 20.0 cm/s, what is the 
unknown mass? 

Diagram for problem 40. 
 
*41. Two gliders on an air track 

are connected by a compressed 

spring and a piece of thread as 
shown. The masses of the gliders 
are m1 = 300 g and m2 = 250 g. The 
connecting string is cut and the 
compressed string causes the two 
gliders to separate from each other. 
If glider 1 has moved 35.0 cm from 
its starting point, where is glider 2 
located? 

*42. Two balls, m1 = 100 g and 
m2 = 200 g, are suspended near 
each other as shown. The two balls 
are initially in contact. Ball 2 is 
then pulled away so that it makes a 
45.00 angle with the vertical and is 
then released. (a) Find the velocity 
of ball 2 just before impact and the 
velocity of each ball after the 
perfectly elastic impact. (b) How 
high will each ball rise? 

 
Diagram for problem 42. 

 
*43. Two swimmers 

simultaneously dive off opposite 
ends of a 110-kg boat. If the first 
swimmer has a mass m1 = 66.7 kg 
and a velocity of 1.98 m/s toward 
the right, while the second 
swimmer has a mass m2 = 77.8 kg 
and a velocity of −7.63 m/s toward 
the left, what is the final velocity of 
the boat? 

*44. Show that the kinetic 
energy of a moving body can be 
expressed in terms of the linear 
momentum as KE = p2/2m. 

*45. A machine gun is mounted 
on a small train car and fires 100 
bullets per minute backward. If the 
mass of each bullet is 10.0 g and the 
speed of each bullet as it leaves the 
gun is 900 m/s, find the average 
force exerted on the gun. If the 
mass of the car and machine gun is 
225 kg, what is the acceleration of 
the train car while the gun is firing? 
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*46. An open toy railroad car of 
mass 250 g is moving at a constant 
speed of 30 cm/s when a wooden 
block of 50 g is dropped into the 
open car. What is the final speed of 
the car and block? 

 
*47. Masses m1 and m2 are 

located on the top of the two 
frictionless inclined planes as 
shown in the diagram. It is given 
that m1 = 30.0 g, m2 = 50.0 g, l1 = 
50.0 cm, l2 = 20.0 cm, l = 100 cm, θ1 
= 50.00, and θ2 = 25.00. Find (a) the 
speeds v1 and v2 at the bottom of 
each inclined plane, note that ball 1 
reaches the bottom of the plane 
before ball 2; (b) the position 
between the planes where the 
masses will collide elastically; 
(c) the speeds of the two masses 
after the collision; and (d) the final 
locations l1’ and l2’ where the two 
masses will rise up the plane after 
the collision. 

  
Diagram for problem 47. 

 
*48. The mass m1 = 40.0 g is 
initially located at a height h1 = 
1.00 m on the frictionless surface 
shown in the diagram. It is then 
released from rest and collides with 
the mass m2 = 70.0 g, which is at 
rest at the bottom of the surface. 
After the collision, will the mass m2 
make it over the top of the hill at 
position B, which is at a height of 
0.500 m? 

 
Diagram for problem 48. 

 
*49. Two balls of mass m1 and 

m2 are placed on a frictionless 
surface as shown in the diagram. 
Mass m1 = 30.0 g is at a height h1 = 
50.0 cm above the bottom of the 
bowl, while mass m2 = 60.0 g is at a 
height of 3/4 h1. The distance l = 
100 cm. Assuming that both balls 
reach the bottom at the same time, 
find (a) the speed of each ball at the 
bottom of each surface, (b) the 
position where the two balls collide, 
(c) the speed of each ball after the 
collision, and (d) the height that 
each ball will rise to after the 
collision. 

 
Diagram for problem 49. 

 
*50. A person is in a small train 

car that has a mass of 225 kg and 
contains 225 kg of rocks. The train 
is initially at rest. The person starts 
to throw large rocks, each of 45.0 kg 
mass, from the rear of the train at a 
speed of 1.50 m/s. (a) If the person 
throws out 1 rock what will the 
recoil velocity of the train be? The 
person then throws out another 
rock at the same speed. (b) What is 
the recoil velocity now? (c) The 
person continues to throw out the 
rest of the rocks one at a time. 
What is the final velocity of the 
train when all the rocks have been 
thrown out? 

*51. A bullet of mass 20.0 g is 
fired into a block of mass 5.00 kg 
that is initially at rest. The 
combined block and bullet moves a 
distance of 5.00 m over a rough 
surface of coefficient of kinetic 
friction of 0.500, before coming to 
rest. Find the initial velocity of the 
bullet. 

*52. A bullet of mass 20.0 g is 
fired at an initial velocity of 200 m/s 
into a 15.0-kg block that is initially 
at rest. The combined bullet and 
block move over a rough surface of 
coefficient of kinetic friction of 
0.500. How far will the combined 
bullet and block move before 
coming to rest? 

53. A 0.150-kg bullet moving at 
a speed of 250 m/s hits a 2.00-kg 
block of wood, which is initially at 
rest. The bullet emerges from the 
block of wood at 150 m/s. Find 
(a) the final velocity of the block of 
wood and (b) the amount of energy 
lost in the collision. 

 
*54. A 5-kg pendulum bob, at a 

height of 0.750 m above the floor, 
swings down to the ground where it 
hits a 2.15 kg block that is initially 
at rest. The block then slides up a 
30.00 incline. Find how far up the 
incline the block will slide if (a) the 
plane is frictionless and (b) if the 
plane is rough with a value of µk = 
0.450. 

 
Diagram for problem 54. 

 
*55. A 0.15-kg baseball is 

thrown upward at an initial velocity 
of 35.0 m/s. Two seconds later, a 
20.0-g bullet is fired at 250 m/s into 
the rising baseball. How high will 
the combined bullet and baseball 
rise? 

*56. A 25-g ball slides down a 
smooth inclined plane, 0.850 m 
high, that makes an angle of 35.00 
with the horizontal. The ball slides 
into an open box of 200-g mass and 
the ball and box slide on a rough 
surface of µk = 0.450. How far will 
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the combined ball and box move 
before coming to rest? 

*57. A 25-g ball slides down a 
smooth inclined plane, 0.850 m 
high, that makes an angle of 35.00 
with the horizontal. The ball slides 
into an open box of 200-g mass and 
the ball and box slide off the end of 
a table 1.00 m high. How far from 
the base of the table will the 
combined ball and box hit the 
ground? 

 
Diagram for problem 57. 

 
*58. A 1300-kg car collides with 

a 15,000-kg truck at an intersection 
and they couple together and move 
off as one leaving a skid mark 5 m 
long that makes an angle of 30.00 
with the original direction of the 
car. If µk = 0.700, find the initial 
velocities of the car and truck 
before the collision. 

 
Diagram for problem 58. 

 
59. A bomb of mass M = 2.50 

kg, moving in the x-direction at a 
speed of 10.5 m/s, explodes into 
three pieces. One fragment, m1 = 
0.850 kg, flies off at a velocity of 3.5 
m/s at an angle of 30.00 above the x-
axis. Fragment m2 = 0.750 kg, flies 
off at an angle of 136.50 above the 

positive x-axis, and the third 
fragment flies off at an angle of 
3300 with respect to the positive x-
axis. Find the velocities of m2 and 
m3. 

 
Interactive Tutorials 

60. Recoil velocity of a gun. A 
bullet of mass mb = 10.0 g is fired at 
a velocity vb = 300 m/s from a rifle 
of mass mr = 5.00 kg. Calculate the 
recoil velocity vr of the rifle. If the 
bullet is in the barrel of the rifle for 
t = 0.004 s, what is the bullet’s 
acceleration and what force acted 
on the bullet? Assume the force is a 
constant. 

61. An inelastic collision. A car 
of mass m1 = 1000 kg is moving at a 
velocity v1 = 50.0 m/s and collides 
inelastically with a car of mass m2 = 
750 kg moving in the same 
direction at a velocity of v2 = 20.0 
m/s. Calculate (a) the final velocity 
vf of both vehicles; (b) the initial 
momentum pi; (c) the final 
momentum pf; (d) the initial kinetic 
energy KEi; (e) the final kinetic 
energy KEf of the system; (f) the 
energy lost in the collision ∆E; and 
(g) the percentage of the original 
energy lost in the collision, %Elost. 

62. A perfectly elastic collision. 
A mass, m1 = 3.57 kg, moving at a 
velocity, v1 = 2.55 m/s, overtakes 
and collides with a second mass, m2 
= 1.95 kg, moving at a velocity v2 = 
1.35 m/s. If the collision is perfectly 
elastic, find (a) the velocities after 
the collision, (b) the momentum 
before the collision, (c) the 
momentum after the collision, 
(d) the kinetic energy before the 
collision, and (e) the kinetic energy 
after the collision. 

63. An imperfectly elastic 
collision. A mass, m = 2.84 kg, is 
dropped from a height h0 = 3.42 m 
and hits a wooden floor. The mass 
rebounds to a height h = 2.34 m. If 
the collision is imperfectly elastic, 
find (a) the velocity of the mass as it 
hits the floor, v1i; (b) the velocity of 
the mass after it rebounds from the 
floor, v1i; (c) the coefficient of 
restitution, e; (d) the kinetic energy, 

KEA, just as the mass approached 
the floor; (e) the kinetic energy, 
KES, after the separation of the 
mass from the floor; (f) the actual 
energy lost in the collision; (g) the 
percentage of energy lost in the 
collision; (h) the momentum before 
the collision; and (i) the momentum 
after the collision. 

64. An imperfectly elastic 
collision—the bouncing ball. A ball 
of mass, m = 1.53 kg, is dropped 
from a height h0 = 1.50 m and hits a 
wooden floor. The collision with the 
floor is imperfectly elastic and the 
ball only rebounds to a height h = 
1.12 m for the first bounce. Find 
(a) the initial velocity of the ball, vi, 
as it hits the floor on its first 
bounce; (b) the velocity of the ball 
vf, after it rebounds from the floor 
on its first bounce; (c) the coefficient 
of restitution, e; (d) the initial 
kinetic energy, KEi, just as the ball 
approaches the floor; (e) the final 
kinetic energy, KEf, of the ball after 
the bounce from the floor; (f) the 
actual energy lost in the bounce, 
Elost/bounce; and (g) the percentage of 
the initial kinetic energy lost by the 
ball in the bounce, %Elost/bounce. The 
ball continues to bounce until it 
loses all its energy. (h) Find the 
cumulative total percentage energy 
lost, % Energy lost, for all the 
bounces. (i) Plot a graph of the % of 
Total Energy lost as a function of 
the number of bounces. 

65. A variable mass system. A 
train car of mass mT = 1500 kg, 
contains 35 rocks each of mass mr = 
30 kg. The train is initially at rest. 
A man throws out each rock from 
the rear of the train at a speed vr = 
8.50 m/s. (a) When the man throws 
out one rock, what will the recoil 
velocity, VT, of the train be? 
(b) What is the recoil velocity when 
the man throws out the second 
rock? (c) What is the recoil velocity 
of the train when the nth rock is 
thrown out? (d) If the man throws 
out each rock at the rate R = 1.5 
rocks/s, find the change in the 
velocity of the train and its 
acceleration. (e) Draw a graph of 
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the velocity of the train as a 
function of the number of rocks 
thrown out of the train. (f) Draw a 
graph of the mass of the train as a 
function of the number of rocks 
thrown out of the train. (g) Draw a 

graph of the acceleration of the 
train as a function of the number of 
rocks thrown out and (h) Draw a 
graph of the acceleration of the 
train as a function of time. 

 

To go to these Interactive 
Tutorials click on this sentence. 

 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 9   Rotational Motion 
 

In experimental philosophy we are to look upon propositions inferred by general induc-
tion from phenomena as accurately or very nearly true, notwithstanding any contrary 
hypothesis that may be imagined, till such time as other phenomena occur, by which 
they may either be made more accurate, or liable to exceptions.  

     Isaac Newton 
 
9.1  Introduction 
Up to now, the main emphasis in the description of the motion of a body dealt with the translational motion of that 
body. But in addition to translating, a body can also rotate about some axis, called the axis of rotation. Therefore, 
for a complete description of the motion of a body we also need to describe any rotational motion the body might 
have. As a matter of fact, the most general motion of a rigid body is composed of the translation of the center of 
mass of the body plus its rotation about the center of mass. 

In the analysis of rotational motion, we will see a great similarity to translational motion. In fact, this 
chapter can serve as a review of all the mechanics discussed so far. 
 
 
9.2  Rotational Kinematics 
In the study of translational kinematics the first concept we defined was the position of an object. The position of 
the body was defined as the displacement x from a reference point. In a similar way, the position of a point on a ro-
tating body is defined by the angular displacement θ from some refer-
ence line that connects the point to the axis of rotation, as shown in fig-
ure 9.1. That is, if the point was originally at P, and a little later it is at 
the point P’, then the body has rotated through the angular displace-
ment θ. If the angular displacement is small it can be represented as a 
vector that is perpendicular to the plane of the motion.1 If the angular 
displacement is a positive quantity, the rotation of the body is counter-
clockwise and the angular displacement vector points upward. If the an-
gular displacement is a negative quantity, the rotation of the body is 
clockwise and the angular displacement vector points downward. The 
magnitude of the angular displacement is the angle θ itself. We measure 
the angle θ in radians, which we defined in section 6.3.  
                                                                                                                       Figure 9.1  The angular displacement. 

 
The linear distance between the points P and P’ is given by the arc length s, and is related to the angular dis-
placement by 

 s = rθ                                                                                    (6.5) 
 

The average velocity of a translating body was defined as the displacement of the body divided by the time 
for that displacement: 

vavg = ∆x 
           ∆t 

 
In the same way, the average angular velocity of a rotating body is defined as the angular displacement of 

the body about the axis of rotation divided by the time for that displacement: 
 

 ωavg = ∆θ                                                                                  (9.1) 
            ∆t        

 
The units for angular velocity are radians/second, abbreviated as rad/s. It is important to remember that the ra-
dian is a dimensionless quantity, and can be added or deleted from an equation whenever it is convenient. The an-
gular velocity, like the angular displacement, can also be represented as a vector quantity that is also perpendicu-

                                                           
1See question 10 at the end of this chapter 
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lar to the plane of the motion. It is positive and points upward for counterclockwise rotations and is negative and 
points downward for clockwise rotations.        

The similarities between translational and rotational motion can be seen in table 9.1. The relation between 
the linear velocity of a point on the rotating body and the angular velocity of the body is found by dividing both 
sides of equation 6.5 by t, that is, 

 
 s =  rθ 

                              t       t 
 
but s/t = v and θ/t = ω. Therefore, 
 

 v = rω                     (9.2) 
 

Equation 9.2 says that for a body rotat-
ing at an angular velocity ω, the farther 
the distance r that the body is from the 
axis of rotation, the greater is its linear 
velocity. This can be seen in figure 
9.2(a). You may recall when you were a 
child and went on the merry-go-round, 
you usually wanted to ride on the out-
side horses because they moved the fast-
est. You can now see why. They are at 
the greatest distance from the axis of ro-
tation and hence have the greatest linear 
velocity. The linear velocity of a point on 
the rotating body can also be called the 
tangential velocity because the point is moving along the tangential direction at any instant.  
 

         
Figure 9.2  The linear velocity varies with the distance r from the center of the  

rotating body. 
 
Another example of the relation between the tangential velocity and the angular velocity is seen in the old 

fashioned “whip” that you formed by holding hands while you were ice skating or roller skating, figure 9.2(b). The 
person at the inside end of the “whip” hardly moved at all (r = 0), but the person at the far end of the whip (maxi-
mum r) moved at very high speeds. 

 

Table 9.1 
Comparison of Translational and Rotational Motion 

Translational Motion Rotational Motion 
vavg = ∆x =  x 
           ∆t      t  

v = ∆x 
      ∆t 
a = ∆v  

                                  ∆t           
v = v0 + at 

x = v0t +  1 at2 
          2 

v2 = v02 + 2ax 
KE =  1 mv2 

   2 
F = ma 
p = mv 
F = ∆p 
      ∆t 
pf = pi 

ωavg = ∆θ =  θ  
                              ∆t      t 

ω = ∆θ 
      ∆t 

 α = ∆ω  
                                 ∆t            

ω = ω0 + αt 
θ = ω0t +  1 αt2 

          2 
ω2 = ω02 + 2αθ 

KE =  1 Iω2 
    2 

τ = Iα 
L = Iω 
τ = ∆L 
     ∆t 

Lf = Li 
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Example 9.1 
 

The angular velocity of a wheel. A wheel of radius 15.0 cm starts from rest and turns through 2.00 rev in 3.00 s. 
(a) What is its average angular velocity? (b) What is the tangential velocity of a point on the rim of the wheel? 

Solution
 

a. The average angular velocity, found from equation 9.1, is 
 

ωavg =  θ  
          t 

= (2.00 rev)(2π rad) 
      3.00 s   (1 rev)  

= 4.19 rad/s 
 

Note that we accomplished the conversion from revolutions to radians using the identity that one revolution is 
equal to 2π radians. 
b.  The tangential velocity of a point on the rim of the wheel, found from equation 9.2, is 
 

v = rω 
= (0.150 m)(4.19 rad/s) 

= 0.628 m/s 
 

To go to this Interactive Example click on this sentence. 

 
 
In the study of kinematics we defined the average translational acceleration of a body in equations 3.7 and 

3.9 as the change in the velocity of the body with time, that is 
 

a = ∆v = v − v0  
                                                                                                    ∆t        t        

 
Because we considered only problems where motion was at constant acceleration, the average acceleration was 
equal to the instantaneous acceleration. In the same way, we now define the average angular acceleration α of 
the rotating body as the change in the angular velocity of the body with time, that is, 

 
 α = ∆ω = ω − ω0                                                                            (9.3) 

                                                                                                   ∆t         t               
 

Again, since the only problems that we will consider concern motion at constant angular acceleration, the 
average angular acceleration is equal to the angular acceleration at any instant of time. We should note that angu-
lar acceleration, like angular velocity, can also be represented as a vector that lies along the axis of rotation of the 
rotating body. If the angular velocity vector is increasing with time, α is positive, and points upward from the 
plane of the rotation. If the angular velocity is decreasing with time, α is negative, and points downward into the 
plane of the rotation. The units for angular acceleration are radians/second per second, abbreviated as rad/s2. 

From the definition of the acceleration, equation 3.9, the first of the kinematic equations became 
 

v = v0 + at                                                                               (3.10) 
 

the velocity of the moving body at any instant of time. Similarly, if equation 9.3 is solved for ω, we have 
 

 ω = ω0 + αt                                                                              (9.4) 
 

the first of the kinematical equations for rotational motion. Equation 9.4 gives the angular velocity of the ro-
tating body at any instant of time for a constant acceleration, α. 
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Example 9.2 

 
The angular acceleration of a cylinder. A cylinder rotating at 10.0 rad/s is accelerated to 50.0 rad/s in 10.0 s. What 
is the angular acceleration of the cylinder? 

Solution
 

The angular acceleration, found from equation 9.4, is 
 

α = ω − ω0 = 50.0 rad/s − 10.0 rad/s  
                                                                              t                     10.0 s 

= 4.00 rad/s2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 9.3 
 

The angular velocity of a crankshaft. A crankshaft rotating at 10.0 rad/s undergoes an angular acceleration of 
0.500 rad/s2. What is the angular velocity of the shaft after 10.0 s? 

Solution
 

The angular velocity, found from equation 9.4, is 
ω = ω0 + αt 

= 10.0 rad/s + (0.500 rad/s2)(10.0 s) 
= 15.0 rad/s 

 
To go to this Interactive Example click on this sentence. 

 

 
 
The relationship between the magnitude of the tangential acceleration of a point on the rim of the rotating 

body and the angular acceleration is found by dividing both sides of equation 9.2 by t, that is, 
 

v = rω                                                                                   (9.2) 
  v  = rω 

                                                                                            t       t    
but v/t = a and ω/t = α, therefore, 

 a = rα                                                                                   (9.5) 
 

Equation 9.5 gives the relationship between the magnitude of the tangential acceleration and the angular accel-
eration. 

The next kinematic derivation was the equation giving the position of the moving body as a function of 
time. Recall that the average velocity was substituted in the equation x = vavgt to yield the kinematic equation for 
the position of the moving body as a function of time as 

 
      x = v0t +  1 at2 

                2 
 

Similarly, to find the angular displacement of a rotating body at any instant of time, we use equation 9.1 in the 
form 

θ = ωavgt                                                                                (9.6) 
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But for a body rotating at constant angular acceleration, the average angular velocity is 
 

ωavg = ω + ω0                                                                             (9.7) 
              2 

 
where ω0 is the initial angular velocity and ω is the final angular velocity at some time t. Substituting 9.7 into 9.6 
gives 

0

2
t

ω ω
θ

+ =  
 

                                                                           (9.8) 

 
Substituting equation 9.4 for the angular velocity ω into equation 9.8 gives 
 

( )0 0

2
t

t
ω α ω

θ
 + +

=  
 

 

Rearranging terms we get 
 θ = ω0t +  1 αt2                                                                             (9.9) 

                                                                                                     2                
 

Equation 9.9 gives the angular displacement of the rotating body as a function of time for constant angular accel-
eration. This is the second kinematic equation for rotational motion. 

 
Example 9.4 

 
The angular displacement of a wheel. A wheel rotating at 15.0 rad/s undergoes an angular acceleration of 10.0 
rad/s2. Through what angle has the wheel turned when t = 5.00 s? 

Solution
 

The angular displacement, found from equation 9.9, is 
 

θ = ω0t +  1 αt2 
          2 

= (15.0 rad/s)(5.00 s) +  1 (10.0 rad/s2)(5.00 s)2 
    2 

= 200 rad 
 

To go to this Interactive Example click on this sentence. 
 

 
 

We obtained the third translational kinematic equation, 
 

v2 = v02 + 2ax                                                                            (3.16) 
 

from the first two translational kinematic equations by eliminating the time t between them. We can find a similar 
equation for the angular velocity as a function of the angular displacement by eliminating the time between equa-
tions 9.4 and 9.9 and we suggest that the student do this as an exercise. We will obtain the third kinematic equa-
tion for rotational motion in a slightly different manner, however. Let us start with 
 

v2 = v02 + 2ax                                                                            (3.16) 
 

But we know that a relationship exists between the translational variables and the rotational variables. Those re-
lationships are 
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s = rθ                                                                                    (6.5) 
v = rω                                                                                   (9.2) 
a = rα                                                                                   (9.5) 

 
For the rotating body, we replace the linear distance x by the distance s along the arc of the circle. If we substitute 
the above equations into equation 3.16, we get 

    v2 = v02 + 2as 
  (rω)2 = (rω0)2 + 2(rα)(rθ) 

  r2ω2 = r2ω02 + 2r2αθ   
Dividing each term by r2, we obtain 

 ω2 = ω02 + 2αθ                                                                           (9.10) 
 

Equation 9.10 represents the angular velocity of the rotating body at any angular displacement θ for constant angu-
lar acceleration α. 

 
Example 9.5 

 
The angular velocity at a particular angular displacement. A wheel, initially rotating at 10.0 rad/s, undergoes an 
angular acceleration of 5.00 rad/s2. What is the angular velocity when the wheel has turned through an angle of 
50.0 rad? 

Solution
 

The angular velocity, found from equation 9.10, is 
   ω2 = ω02 + 2αθ 

   = (10.0 rad/s)2 + 2(5.00 rad/s2)(50.0 rad) 
   = 100 rad2/s2 + 500 rad2/s2 = 600 rad2/s2 

   ω = 24.5 rad/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Note in table 9.1 the similarity in the translational and rotational equations. Everywhere there is an x in 
the translational equations, there is a θ in the rotational equations. Everywhere there is a v in the translational 
equations, there is an ω in the rotational equations. And finally, everywhere there is an a in the translational 
equations, there is an α in the rotational equations. We will see additional analogues as we proceed in the discus-
sion of rotational motion. 

Another way to express the magnitude of the centripetal acceleration discussed in chapter 6, 
 

ac =  v2                                                                                  (6.12) 
      r 

is to use 
v = rω                                                                                    (9.2) 

to obtain 
ac = ω2r2 

        r 
 

Hence, we can represent the magnitude of the centripetal acceleration in terms of the angular velocity as 
 

 ac = ω2r                                                                                (9.11) 
 

For nonuniform circular motion, the resultant acceleration of a point on a rim of a rotating body becomes 
the vector sum of the tangential acceleration and the centripetal acceleration, as seen in figure 9.3. 
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Example 9.6 
 

The total acceleration of a point on a rotating body. A cylinder 35.0 cm in diameter is at rest initially. It is then 
given an angular acceleration of 0.0400 rad/s2. Find (a) the angular velocity at 7.00 s, (b) the centripetal accelera-
tion of a point at the edge of the cylinder at 7.00 s, (c) the tangential acceleration at the edge of the cylinder at 7.00 
s, and (d) the resultant acceleration of a point at the edge of the cylinder at 7.00 s. 

Solution
 

a. The angular velocity at 7.00 s, found from equation 9.4, is 
 

ω = ω0 + αt 
= 0 + (0.0400 rad/s2)(7.00 s) 

= 0.280 rad/s 
 
b.  The centripetal acceleration, found from equation 9.11, is 
 

ac = ω2r 
= (0.280 rad/s)2(17.5 cm) 

= 1.37 cm/s2 

 
c.  The tangential acceleration, found from equation 9.5, is 

Figure 9.3  The total acceleration of a point  
on a rotating body is equal to the vector sum 

 of the tangential acceleration and the  
centripetal acceleration. 

aT = rα = (17.5 cm)(0.0400 rad/s2) 
= 0.700 cm/s2 

 
d.  The resultant acceleration at 7.00 s, found from figure 9.3, is 
 

( ) ( )2 2
c Ta a a= +  

( ) ( )2 22 21.37 cm/s 0.700 cm/s= +  
= 1.54 cm/s2 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
9.3  The Kinetic Energy of Rotation 
Let us consider the motion of four point masses m1, m2, m3, and m4 lo-
cated at distances r1, r2, r3, and r4, respectively, rotating at an angular 
speed ω about an axis through the point 0, as shown in figure 9.4. 

Let us assume that the masses are connected to the center of 
rotation by rigid, massless rods. (A massless rod is one whose mass is 
so small compared to the mass at the end of the rod that we can ne-
glect it in the analysis.) Let us determine the total kinetic energy of 
these rotating masses. The total energy is equal to the sum of the ki-
netic energy of each mass. That is, 

 
KEtotal = KE1 + KE2 + KE3 + KE4 + . . .  

                                                                                                       Figure 9.4  Rotational kinetic energy. 
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The plus sign and dots after the last term indicate that if there are more than the four masses considered, another 
term is added for each additional mass. Because each mass is rotating with the same angular velocity ω, each has 
a linear velocity v, as shown. Since the kinetic energy of each mass is 
 

KE =  1 mv2 
   2 

the total kinetic energy is 
KEtot =  1 m1v12 +  1 m2v22 +  1 m3v32 +  1 m4v42 + . . .                                    (9.12) 

                                                                           2               2               2              2 
but from equation 9.2, 

v = rω 
hence, for each mass 

v1 = r1ω 
v2 = r2ω 
v3 = r3ω                                                                                         (9.13) 
v4 = r4ω 

 
Substituting equations 9.13 back into equation 9.12, gives 
 

 KEtot =  1  m1(r1ω)2 +  1 m2(r2ω)2 +  1 m3(r3ω)2 +  1 m4(r4ω)2 + … 
                                                           2                    2                    2                    2 

 =  1 m1r12ω2 +  1 m2r22ω2 +  1 m3r32ω2 +  1 m4r42ω2 + … 
                                                        2                   2                  2                   2 

  
Note that there is a 1/2 and an ω2 in every term, so let us factor them out: 
 

  KEtot =  1 (m1r12 + m2r22 + m3r32 + m4r42+ ...)ω2 
                                                                         2                 

 
Looking at the form of the equation for the translational kinetic energy (½ mv2), and remembering all the 

symmetry in the translational-rotational equations, it is reasonable to expect that the equation for the rotational 
kinetic energy might have an analogous form. That symmetry is maintained by defining the term in parentheses 
as the moment of inertia, the rotational analogue of the mass m. That is, the moment of inertia about the axis of 
rotation for these four masses is 

I = (m1r12 + m2r22 + m3r32 + m4r42+ ...)                                                          (9.14) 
 

We will discuss the concept of the moment of inertia in more detail in section 9.4. For now, we see that the equa-
tion for the total energy of the four rotating masses is 

                 KEtot =  1  Iω2 
                        2 

 
And finally let us note that the total kinetic energy of the rotating masses can simply be called the kinetic en-
ergy of rotation. Therefore, the kinetic energy of rotation about a specified axis is 

 
 KErot =  1 Iω2                                                                           (9.15) 

                                                                                                     2                
   
 
9.4  The Moment of Inertia 
The concept of mass m was introduced to give a measure of the inertia of a body, that is, its resistance to a change 
in its translational motion. Now we introduce the moment of inertia to give a measurement of the resistance of the 
body to a change in its rotational motion. For example, the larger the moment of inertia of a body, the more diffi-
cult it is to put that body into rotational motion. Conversely, the larger the moment of inertia of a body, the more 
difficult it is to stop its rotational motion. 
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For the particular configuration studied in section 9.3, the moment of inertia about the axis of rotation was 
defined as 

I = (m1r12 + m2r22 + m3r32 + m4r42 + ...)                                                     (9.14) 
 

For any number of masses, this definition can be generalized to 
 

2
i

1

n

i
i

I m r
=

= ∑                                                                           (9.16) 

 
where the Greek letter sigma, Σ, means the “sum of,” as used before. The subscript i on m and r means that the in-
dex i takes on the values from 1 up to the number n. So when n = 4 the identical result found in equation 9.14 is 
obtained. 

For the very special case of the moment of inertia of a single mass m rotating about an axis, equation 9.16 
reduces to (i = n = 1), 

 I = mr2                                                                                (9.17) 
 

Thus, the significant feature for rotational motion is not the mass of the rotating body, but rather the square of the 
distance of that body from the axis of rotation. A small mass m, at a great distance r from the axis of rotation, has 
a greater moment of inertia than a large mass, very close to the axis of rotation. 

For continuous mass 
distributions, the moments of 
inertia are given in figure 9.5. 
More extensive tables of mo-
ments of inertia are found in 
various handbooks, such as the 
Handbook of Chemistry and 
Physics (published by the 
Chemical Rubber Co. Press, 
Cleveland, Ohio), if the need 
for them arises. 

It is important to note 
here that when we ask for the 
moment of inertia of a body, we 
must specify about what axis 
the rotation will occur. Be-
cause r is different for each 
axis, and since I varies as r2, I 
is also different for each axis. 
As an example, consider the 
slender rod in figure 9.5. When 
the axis is taken through the 
center of the rod, as shown, I = 
1/12 ml2, while if the axis of ro-
tation is at the end of the rod, 
then I = 1/3 ml2. The unit for 
the moment of inertia is kg m2 
and has no special name. 
 
 
 

                                             Figure 9.5  Moments of inertia for various mass distributions. 
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9.5  Newton’s Laws for Rotational Motion 
Let us consider a single mass m connected by a rigid rod, of negligible mass, to an 
axis passing through the point 0, as shown in figure 9.6. Let us apply a tangential 
force F, in the plane of the page, to the body of mass m. The force acting on the 
constrained body causes a torque, given by 

τ = rF                                                (9.18) 
 
This torque causes the body to rotate about the axis through 0. The force F acting  

 
Figure 9.6  Torque causes a body 

                                                                                                                                                   to rotate. 
on the mass m causes a tangential acceleration given by Newton’s second law as 
 

F = ma                                                                                  (9.19) 
If we substitute equation 9.19 into 9.18, we have 

τ = rma                                                                                (9.20) 
 
But the tangential acceleration a is related to the angular acceleration by 

 
a = rα                                                                                  (9.5) 

Substituting this into equation 9.20, gives 
τ = rm(rα) = mr2α                                                                       (9.21) 

 
But, as already seen, the moment of inertia of a single mass rotating about an axis is 
 

I = mr2                                                                               (9.17) 
Therefore, equation 9.21 becomes 

 τ = Iα                                                                                 (9.22) 
 

Equation 9.22 is Newton’s second law for rotational motion. Although this equation was derived for a single mass, 
it is true in general, and Newton’s second law for rotational motion can be stated as: When an unbalanced ex-
ternal torque acts on a body of moment of inertia I, it gives that body an angular acceleration, α. The angular accel-
eration is directly proportional to the torque and inversely proportional to the moment of inertia, that is, 
 

α =  τ                                                                                  (9.23) 
                                                                                                    I       

 
The problems of rotational dynamics are very similar to those in translational dynamics. We will consider 

rotational motion only in the x-y plane. The angular displacement vector, angular velocity vector, angular accel-
eration vector, and the torque vector are all perpendicular to the plane of the rotation. By determining the torque 
acting on a body, we can find the angular acceleration from Newton’s second law, equation 9.23. For constant 
torque, the angular acceleration is a constant and hence we can use the rotational kinematic equations. Therefore, 
we find the angular velocity and displacement at any time from the kinematic equations 

 
ω = ω0 + αt                                                                               (9.4) 

and 
θ = ω0t +  1 αt2                                                                           (9.9) 

              2 
 

To determine Newton’s first law for rotational motion, we note that 
 

τ = Iα = I∆ω 
                ∆t 

and if there is no external torque (i.e., if τ = 0), then 
     ∆ω = 0 
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ωf − ωi = 0 
or 

 ωf = ωi                                                                             (9.24) 
 

That is, equation 9.24 says that if there is no external torque acting on a body, then a body rotating at an initial 
angular velocity ωi will continue to rotate at that same angular velocity forever. 

Stated in more formal terms, Newton’s first law for rotational motion is A body in motion at a constant 
angular velocity will continue in motion at that same angular velocity, unless acted on by some unbalanced external 
torque. 

One of the most obvious examples of Newton’s first law for rotational motion is the earth itself. Somehow, 
someway in its creation, the earth was given an initial angular velocity ωi of 7.27 × 10−5 rad/s. Since there is no ex-
ternal torque acting on the earth it continues to rotate at this same angular velocity. 

For completeness, we can state Newton’s third law of rota-
tional motion as If body A and body B have the same common axis of 
rotation, and if body A exerts a torque on body B, then body B exerts an 
equal but opposite torque on body A. That is, if body A exerts a torque on 
body B that tends to rotate body B in a clockwise direction, then body B 
will exert a torque on body A that will tend to rotate body A in a coun-
terclockwise direction. An application of this principle is found in a heli-
copter (see figure 9.7). As the main rotor blades above the helicopter 
turn counterclockwise, the helicopter itself would start to turn clock-
wise. To prevent this rotation of the helicopter, a second but smaller set 
of rotor blades are located at the side and end of the helicopter to furnish 
a countertorque to prevent the helicopter from turning. 
 
 
 
 

                                                                                                                        Figure 9.7  Newton’s third law for 
                                                                                                                        rotational motion and the helicopter. 

 
 
9.6  Rotational Dynamics 
Now let us look at some examples of the use of Newton’s laws in solving problems in rotational motion. 

 
Example 9.7 

 
Rotational dynamics of a cylinder. Consider a solid cylinder of mass m = 3.00 kg and radius r = 0.500 m, which is 
free to rotate about an axis through its center, as shown in figure 9.8. The cylinder is initially at rest when a con-
stant force of 8.00 N is applied tangentially to the cylinder. Find (a) the moment of inertia of the cylinder, (b) the 
torque acting on the cylinder, (c) the angular acceleration of the cylinder, (d) its angular velocity after 10.0 s, and 
(e) its angular displacement after 10.0 s. 

Solution
 

a. The equation for the moment of inertia of a cylinder about its main axis, found in figure 9.5, is 
 

I =  1 mr2 
2  

               =  1 (3.00 kg)(0.500 m)2 
                                                                                         2                             

= 0.375 kg m2 
 
b. The torque acting on the cylinder is the product of the force times the lever arm. From figure 9.8, we see that 
the lever arm is just the radius of the cylinder. Therefore, 
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τ = rF                                           (9.18) 
= (0.500 m)(8.00 N) 

= 4.00 m N 
 
c. The angular acceleration of the cylinder, determined by Newton’s 
second law, is 

α =  τ                                             (9.23) 
        I 

=   4.00 m N   = 10.7 m kg m/s2 
                                     0.375 kg m2                 kg m2 

= 10.7 rad/s2 
 

Note that in the solution all the units cancel out except the s2 in the 
denominator. We then introduced the unit radian in the numerator to 

Figure 9.8  Rotational motion of a cylinder. 
 
 give us the desired unit for angular acceleration, namely, rad/s2. Recall that the radian is a unit that can be mul-
tiplied by or divided into an equation at will, because the radian is a dimensionless quantity. It was defined as the 
ratio of the arc length to the radius of the circle, 
 

θ =  s  = meter = 1 = radian 
                                                                                 r      meter 
 
d. To determine the angular velocity of the rotating cylinder we use the kinematic equation for the angular veloc-
ity, namely 

ω = ω0 + αt                                                                              (9.4) 
= 0 + 10.7 rad (10.0 s) 

   s2 

= 107 rad/s 
 
e. The angular displacement, found by the kinematic equation, is 

 
θ = ω0t +  1  αt2                                                                          (9.9) 
               2 

 = 0 +  1  (10.7 rad/s2)(10.0 s)2 
                                                                                    2                           

= 535 rad 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 9.8 
 

Combined translational and rotational motion of a sphere rolling down an inclined plane. A solid sphere of 1.00 kg 
mass rolls down an inclined plane of angle θ = 300, as shown in figure 9.9. Find (a) the acceleration of the sphere, 
(b) its velocity at the bottom of the 1.00 m long plane, and (c) the frictional force acting on the sphere. 

Solution
 

a. First, we draw all the forces acting on the sphere. The component of the weight acting down the plane, w sin θ, 
is shown acting through the center of mass of the sphere. Because of this force there is a tendency for the sphere to 
slide down the plane. A force of static friction opposes this motion and is directed up the plane, as shown. This fric-
tional force can not be shown as acting at the center of the body as was done in problems with “blocks” sliding on 
the inclined plane. It is this frictional force acting at the point of contact of the sphere that creates the necessary 
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torque to rotate the sphere so that it rolls down the plane. The motion is 
therefore composed of two motions, the translation of the center of mass 
of the sphere, and the rotation about the center of mass of the sphere. 
Applying Newton’s second law for the translational motion of the center 
of mass of the sphere gives 

F = ma 
w sin θ − fs = ma                                     (9.25) 

 
Applying the second law for the rotation of the sphere about its center of 
mass gives 

τ = Iα                                              (9.22) 
 
But the torque is the product of the frictional force fs and the radius of 
the sphere. Therefore, 

                                                                                                                   Figure 9.9  A sphere rolling down an 
                                                                                                                           inclined plane. 

 
fsr = Iα                                                                                 (9.26) 

 
Now we eliminate the frictional force fs between the two equations 9.25 and 9.26. That is, from 9.26, 
 

fs = Iα 
     r 

Substituting this into equation 9.25, we get 
w sin θ − Iα = ma 

     r 
 
The moment of inertia of a solid sphere, found from figure 9.5, is 

 
I =  2 mr2                                                                             (9.27) 

    5 
Therefore, 

ma = w sin θ − ( 2 mr2) α  
                                                                                                        5         r     

= w sin θ −  2 mrα 
            5    

But recall that 
a = rα                                                                                 (9.5) 

Therefore, 
ma = w sin θ −  2 ma 

                    5 
ma +  2 ma = mg sin θ 

                                                                                        5               
 7 a = g sin θ 

                                                                                       5                  
Solving for the acceleration of the sphere, we get 

 a =  5 g sin θ                                                                           (9.28) 
                                                                                               7                          

a =  5 (9.80 m/s2)sin 30.00 
                                                                                  7                          

= 3.50 m/s2 
 
b. The velocity of the center of mass of the sphere at the bottom of the plane is found from the kinematic equation 
 

v2 = v02 + 2ax                                                                  (3.16) 
Because the sphere starts from rest, v0 = 0. Therefore, 
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    2v ax=  
     ( )( )( )22 3.50 m/s 1.00 m=  

         = 2.65 m/s 
 
c. The frictional force can be determined from equation 9.25, that is, 
 

w sin θ − fs = ma 
fs = w sin θ − ma 

= mg sin θ − m( 5 g sin θ) 
             7 

=  2 mg sin θ 
                                                                                          7            

=  2 (1.00 kg)(9.80 m/s2)sin 30.00 
                                                                          7                                            

= 1.40 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 

As we can see the general motion of a rigid body can become quite complicated. We will see in section 9.8 
how these problems can be simplified by the use of the law of conservation of energy. 
 
*Combined Translational and Rotational Motion Treated by Newton’s Second Law 
It is appropriate here to return to some of the problems discussed in 
chapter 4, in which we assumed that the tension in the rope on both 
sides of a pulley are equal. Let us analyze these problems taking the 
rotational motion of the pulley into account. Consider the problem of a 
block moving on a rough horizontal surface, as shown in figure 9.10. 
What is the acceleration of each block in the system? 

Applying Newton’s second law to block A, we obtain 
 

 T1 − wA = −mAa                                     (9.29) 
 
Applying the second law to block B, we get 

 
T2 − fk = mBa                                      (9.30) 

 
We find the frictional force fk from 
 

     fk = µkFN = µkwB 
 

Figure 9.10  Combined motion taking the 
      rotational motion of the pulley into account. 

 
Substituting this into equation 9.30, gives 

T2 − µkwB = mBa                                                                         (9.31) 
 

It was at this point in chapter 4 that we made the assumption that the tension T1 = T2, and then determined the 
acceleration of each block of the system. Let us now look a little more closely at the assumption of the equality of 
tensions. The string exerts a force T1 upward on weight wA, but by Newton’s third law the weight wA exerts a force 
down on the string, call it T1’. Figure 9.11 shows the pulley with the appropriate tensions in the string. The force 
T1’ acting on the pulley causes a torque  

τ1 = T1’R 
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which tends to rotate the pulley clockwise. The radius of the pulley is R. 

Similarly, the string exerts a tension force T2 on mass mB. But by New-
ton’s third law, block B exerts a force on the string, which we call T2’. The force                                                                     
T2’ causes a counterclockwise torque about the axis of the pulley, given by 

 
τ2 = T2’R 

 
Because the motion of the system causes the pulley to rotate in a clockwise di-
rection, the net torque on the pulley is equal to the difference in these two 
torques, namely, 

 τ = τ1 − τ2 
τ = T1’R − T2’R                                             (9.32) 

Figure 9.11  Forces acting on the 
                                                                                                                                                          pulley. 
But by Newton’s second law for rotational motion, 

τ = Iα                                                                                (9.22) 
Substituting equation 9.22 into equation 9.32, gives 

          Iα = T1’R − T2’R 
Iα = (T1’ − T2’)R                                                                     (9.33) 

From figure 9.10 and Newton’s third law, we have 
T1’ = T1                                                                           (9.34) 
T2’ = T2                                                                           (9.34) 

Substituting equations 9.34 into equation 9.33, gives 
Iα = (T1 −T2)R                                                                     (9.35) 

 
However, the angular acceleration α = a/R. Therefore, equation 9.35 becomes 

 
 I a  = (T1 − T2)R                                                                      (9.36) 

                                                                                         R                                                 
 
The pulley resembles a disk, whose moment of inertia, found from figure 9.5, is IDisk = ½ MR2, where M is the mass 
of the pulley and R is the radius of the pulley. Substituting this result into equation 9.36, gives 
 

( 1 MR2) a  = (T1 − T2)R 
                                                                               2          R 
Simplifying, 

 1 Ma = (T1 − T2)                                                                        (9.37) 
                                                                                     2                                                    

 
There are now three equations 9.29, 9.31, and 9.37 in terms of the three unknowns a, T1, and T2. Solving 

equation 9.29 for T1, gives 
 T1 = wA − mAa                                                                       (9.38) 

Solving equation 9.31 for T2, gives 
   T2 = µkwB + mBa                                                                   (9.39) 

Subtracting equation 9.39 from equation 9.38, we get 
 

T1 − T2 = wA − mAa − µkwB − mBa 
 
Substituting for T1 − T2 from equation 9.37, gives 
 

 1 Ma = wA − mAa − µkwB − mBa 
                                                                       2                                               

 
Gathering the terms with a in them to the left-hand side of the equation, we get 
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 1 Ma + mAa + mBa = wA − µkwB 

                                                                       2 
 
Factoring out the a, and writing each weight w as mg, we get 
 

a( 1 M + mA + mB) = mAg − µkmBg 
                                                                         2                                            

 
Solving for the acceleration of the system, we have 

 a =   (mA − µkmB)g                                                                  (9.40) 
                       mA + mB + M/2        

 
It is immediately apparent in equation 9.40 that the acceleration of the system depends on the mass M of the pul-
ley. If this mass is very small compared to the masses mA and mB (i.e., M ≈ 0), then equation 9.40 would reduce to 
the simpler problem already found in equation 4.62. 

 
Example 9.9 

 
Combined translational and rotational motion. If mA = 2.00 kg, mB = 6.00 kg, µk = 0.300, and M = 8.00 kg in figure 
9.10, find the acceleration of each block of the system. 

Solution
 

The acceleration of each block in the system, found from equation 9.40, is 
 

a =     (mA − µkmB)g       
        mA + mB + M/2 

= [2.00 kg − (0.300)(6.00 kg)](9.80 m/s2) 
2.00 kg + 6.00 kg + 8.00 kg/2 

= 0.163 m/s2 
 

If we compare this example with example 4.13 in chapter 4, we see a relatively large difference in the acceleration 
of the system by assuming M to be negligible. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 9.10 
 

The effect of a smaller pulley. Let us repeat example 9.9, but now let us use a much smaller plastic pulley, with M 
= 25 g. Find the acceleration of each block of the system. 

Solution
 

The acceleration of each block, again found from equation 9.40, is 
 

a =   (mA − µkmB)g    
        mA + mB + M/2 

= [2.00 kg − (0.300)(6.00 kg)](9.80 m/s2) 
2.00 kg + 6.00 kg + 0.025 kg/2 

= 0.244 m/s2 
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which agrees very closely to the value found in example 4.13, of chapter 4, when the effect of the pulley was as-
sumed to be negligible. 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 9.11 
 

The tension in the strings. If the radius of the pulley is 5.00 cm, find the tension in the strings of examples 9.9 and 
9.10. 

Solution
 

For example 9.9, the tension T1, found from equation 9.38, is 
 

T1 = wA − mAa = mAg − mAa = mA(g − a) 
= (2.00 kg)(9.80 m/s2 − 0.163 m/s2) 

= 19.3 N 
Tension T2, found from equation 9.39, is 

T2 = µkwB + mBa 
= µkmBg + mBa 

= (0.300)(6.00 kg)(9.80 m/s2) + (6.00 kg)(0.163 m/s2) 
= 17.6 N + 0.978 N 

= 18.6 N 
 
Thus the tensions in the strings on both sides of the pulley are unequal. It is this difference in the tensions that 
causes the torque, 

τ = R(T1 − T2) 
= (0.05 m)(19.3 N − 18.6 N) 

= 3.50 × 10−2 m N 
 

on the pulley. This torque gives the pulley its angular acceleration. 
For example 9.10, the tension T1 is again found from equation 9.38, only now the acceleration of the system 

is 0.244 m/s2. Thus, 
T1 = wA − mAa = mAg − mAa = mA(g − a) 

= (2.00 kg)(9.80 m/s2 − 0.244 m/s2) 
    = 19.1 N 

Tension T2, found from equation 9.39, is 
T2 = µkwB + mBa 
= µkmBg + mBa 

= (0.300)(6.00 kg)(9.80 m/s2) + (6.00 kg)(0.244 m/s2) 
= 17.6 N + 1.46 N 

= 19.1 N 
 

Hence in this case, where the pulley has a small mass, the tensions are equal, at least to three significant figures, 
and there is no resultant torque to cause the pulley to rotate. The two tensions must be different to cause a net 
torque to rotate the pulley. 

To go to this Interactive Example click on this sentence. 
 

 
 
Atwood’s Machine 
Let us reconsider the Atwood’s machine problem solved in chapter 4, only this time we no longer assume the ten-
sions on each side of the pulley to be equal, figure 9.12. We apply Newton’s second law to mass mA to obtain 
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 T1 − wA = −mAa                                                                          (9.41) 

Applying the second law to mass mB, we obtain 
 T2 − wB = mBa                                                                           (9.42) 

 
Let us now consider the pulley. The tension T1’ causes a clockwise torque, 
 

τ1 = T1’R 
 

whereas the tension T2’ causes the counterclockwise torque, 
 

       τ2 = T2’R 
The net torque acting on the pulley is 
 

τ = τ1 − τ2 = T1’R − T2’R 
 

But by Newton’s second law for rotational motion 
  

τ = Iα 
Therefore, 

Iα = (T1’ − T2’)R                                                 (9.43) 
 

However, by Newton’s third law of motion 
 

   T2’ = T2 
   T1’ = T1 

 
Hence, the second law, equation 9.43, becomes 
 

Iα = (T1 − T2)R                                             (9.44) 
Figure 9.12  Atwood’s machine with  

the rotational motion of the pulley  
taken into account. 

The moment of inertia of the pulley, found in figure 9.5, is 
 

Idisk =  1  MR2 
  2 

 
and the angular acceleration is given by α = a/R. Substituting these two values into equation 9.44, gives 
 

 1 MR2(a/R) = (T1 − T2)R 
                                                                             2                                     
or 

 1 Ma = (T1 − T2)                                                                         (9.45) 
                                                                                    2                                                        

 
There are now three equations, 9.41, 9.42, and 9.45, for the three unknowns, a, T1, and T2. Subtracting equation 
9.41 from equation 9.42, we get 

T2 − wB − T1 + wA = mBa + mAa 
or 

T2 − T1 = wB − wA + mBa + mAa                                                              (9.46) 
 

Substituting the value for T2 − T1 from equation 9.45 into equation 9.46, we get 
 

− 1 Ma = wB − wA + mBa + mAa 
                                                                          2                                          
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Gathering the terms with the acceleration a onto one side of the equation, 
 

 1 Ma + mBa + mAa = wA − wB 
                                                                         2                                            
Factoring out the a, we get, 

   a( 1 M + mB + mA) = wA − wB 
                                                                               2                                    
 
Expressing the weights as w = mg, and solving for the acceleration of each mass of the system, we get 
 

 a =     (mA − mB)g                                                                           (9.47) 
       mA + mB + M/2    

 
Equation 9.47 is the acceleration of each mass in Atwood’s machine, when the rotational motion of the pul-

ley is taken into account. If the mass of the pulley M is very small, then equation 9.47 reduces to the simplified so-
lution in equation 4.38. 

 
Example 9.12 

 
Combined motion in an Atwood’s machine. In an Atwood’s machine, mB = 30.0 g, mA = 50.0 g, and the mass M of 
the pulley is 2.00 kg. Find the acceleration of each mass. 

Solution
 

The acceleration, found from equation 9.47, is 
a =     (mA − mB)g      

          mA + mB + M/2 
=    (50.0 g − 30.0 g)(9.80 m/s2)    
    [50.0 g + 30.0 g + (2000 g)/2] 

= 0.181 m/s2 
 
If the pulley were made of light plastic and, therefore, had a negligible mass, then the acceleration of the system 
would have been, a = 2.45 m/s2, which is a very significant difference. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 9.13 
 

Velocity in an Atwood’s machine. If block mA of example 9.12, located a distance hA = 2.00 m above the floor, falls 
from rest, find its velocity as it hits the floor. 

Solution
 

Because mA falls at the constant acceleration given by equation 9.47, the kinematic equation can be used to find its 
velocity at the floor. Thus, 

v2 = v02 + 2ay 

A2 2v ay ah= =  

( )( )22 0.181 m/s 2.00 m=  

 = 0.850 m/s 
 

To go to this Interactive Example click on this sentence. 
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9.7  Angular Momentum and Its Conservation 
Just as the linear momentum of a body was defined as the product of its mass and its linear velocity, p = mv, the 
angular momentum of a rotating body is defined as the product of its moment of inertia and its angular velocity. 
That is, the angular momentum L, with respect to a given axis, is defined as 
 

 L = Iω                                                                                 (9.48) 
 

As the concept of momentum led to an alternative form of Newton’s second law for the translational case, angular 
momentum also leads to an alternative form for the rotational case, as shown below. 
 

Translational Case Rotational Case 
F = ma = m∆v 
                   ∆t 
F = m(vf − vi) 

          ∆t 
F = mvf − mvi = pf − pi 

                                 ∆t                     ∆t 
F = ∆p 
      ∆t 

τ = Iα = I ∆ω 
                ∆t 

τ = I(ωf − ωi) 
                                     ∆t 

τ = Iωf − Iωi = Lf − Li 
                             ∆t            ∆t 

τ = ∆L 
     ∆t 

 
Thus, we can write Newton’s second law in terms of angular momentum as 

 
τ = ∆L                                                                                  (9.49) 
      ∆t 

 
If we apply equation 9.49 to a system of bodies, the total torque τ arises from two sources, external torques 

and internal torques. Because of Newton’s third law for rotational motion, the internal torques will add to zero and 
equation 9.49 becomes 

 τext = ∆L                                                                               (9.50) 
                                                      ∆t     

 
If the total external torque acting on the system is zero, then 

 
0 = ∆L 
         ∆t 

∆L = 0                                                                              (9.51) 
Lf − Li = 0 

Therefore, 
 Lf = Li                                                                             (9.52) 
 

Equations 9.51 and 9.52 are a statement of the law of conservation of angular momentum. They say: if the to-
tal external torque acting on a system is zero, then there is no change in the angular momentum of the system, and 
the final angular momentum is equal to the initial angular momentum. 

Let us now consider some examples of the conservation of angular momentum. 
 

The Rotating Earth 
Because there is no external torque acting on the earth, τ = 0, and there is conservation of angular momentum. 
Hence, 

Lf = Li                                                                                  (9.52) 
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But since the angular momentum is the product of the moment of iner-
tia and the angular velocity, this becomes 
 

 Ifωf = Iiωi                                         (9.53) 
 

However, the moment of inertia of the earth does not change with time 
and thus, If = Ii. Therefore, 

  ωf = ωi 
 

That is, the angular velocity of the earth is a constant and will continue 
to spin forever with the same angular velocity unless it is acted on by 
some external torque. We also assume that the moment of inertia of the 
earth does not change. 
 
 
 

Figure 9.13  Because there is no torque acting on  
the earth, its angular momentum is conserved, and it 

 will continue to spin with the same angular velocity forever. 
 
The Spinning Ice Skater 
The familiar picture of the spinning ice skater, as shown in figure 9.14, gives another example of the conservation 
of angular momentum. As the skater (body A) pushes against the ice (body B), thereby creating a torque, the ice 
(body B) pushes back on the skater (body A), creating a torque on her. The net torque on the skater and the ice is 
therefore zero and angular momentum is conserved. 

Figure 9.14  The spinning ice skater. 
 

Because the earth is so massive there will be no measurable change in the angular momentum of the earth 
and we need consider only the skater. The skater first starts spinning relatively slowly with her hands out-
stretched. We assume that any friction between the skater and the ice is negligible. As the skater draws her arms 
to her sides, she starts to spin very rapidly. Let us analyze the motion by the law of conservation of angular mo-
mentum. The conservation of angular momentum gives 

Lf = Li                                                                             (9.52) 
or 

Ifωf = Iiωi                                                                          (9.53) 
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For simplicity of calculation, let us assume that the skater is holding a set of dumbbells in her hands so 
that her moment of inertia can be considered to come only from the dumbbells. (That is, we assume that the mo-
ment of inertia of the girl’s hands and arms can be considered negligible compared to the dumbbells in order to 
simplify the calculation.) The skater’s initial moment of inertia is 

 
Ii = mri2 

 
where m is the mass of the dumbbells and ri the distance from the center of the body (the axis of rotation) to the 
outstretched dumbbells. When the skater pulls her hand down to her side the new moment of inertia is 
 

If = mrf2 
 

where rf is now the distance from the axis of rotation to the dumbbell, as seen in figure 9.14(b). As we can immedi-
ately see from the figure, rf is less than ri, therefore If is less than Ii. But if the moment of inertia is changing, what 
happens to the skater as a consequence of the conservation of angular momentum? The angular momentum must 
remain the same, as given by equation 9.53. The final angular momentum must be equal to the initial angular 
momentum, which is equal to the product of Iiωi, which remains a constant. Thus, the final angular momentum 
Ifωf must equal that same constant. But if If has decreased, the only way to maintain the equality is to have the fi-
nal value of the angular velocity ωf increase. And this is, in fact, exactly what happens. As the girl’s arms are 
dropped to her side, the spinning increases. When the skater wishes to come out of the spin, she merely raises her 
arms to the original outstretched position, her moment of inertia increases and her angular velocity decreases. 
 
A Man Diving from a Diving Board 
When a man pushes down on a diving board, the board reacts by pushing back on him, as in figure 9.15. As the 
man leans forward at the start of the dive, the reaction force on him causes a torque to set him into rotational  

  
Figure 9.15  A man diving from a diving board. 

 
motion, about an axis through his center of mass, with a relatively small angular velocity ωi. As the man leaves 
the board there is no longer a torque acting on him, and his angular momentum must be conserved. His initial 
moment of inertia is Ii, and he is spinning at an angular velocity ωi. If he now bends his knees and pulls his legs 
and arms up toward himself to form a ball, his moment of inertia decreases to a value If. But by the conservation 
of angular momentum 

Ifωf = Iiωi                                                                               (9.53) 
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Since If has decreased, his angular velocity ωf must increase to maintain the equality of the conservation of mo-
mentum. The man now rotates relatively rapidly for one or two turns. He then stretches his body out to its original 
configuration with the larger value of the moment of inertia. His angular velocity then decreases to the relatively 
low value ωi that he started with. If he has timed his dive properly, his outstretched body will enter the water 
head first at the end of his dive. The force of gravity acts on the man throughout the motion and causes the center 
of mass of the man to follow the parabolic trajectory associated with any projectile. Thus, the center of mass of the 
man is moving under the force of gravity while the man rotates around his center of mass. A trapeze artist uses 
the same general techniques when she rotates her body while moving through the air from one trapeze to another. 
 
Rotational Collision (an Idealized Clutch) 
Consider two disks rotating independently, as shown in figure 9.16(a). The original angular momentum of the two 
rotating disks is the sum of the angular momentum of each disk, that is, 

 
Li = L1i + L2i                                                                              (9.54) 

 
The initial angular momentum of disk 1 is 
 

    L1i = I1ω1i 
 

and the initial angular momentum of disk 2 is 
 

   L2i = I2ω2i 
 

Hence, the total initial angular momentum is 
 

                                                                             Figure 9.16  Rotational collision—the clutch. 
 

Li = I1ω1i + I2ω2i                                                                            (9.55) 
 

The two disks are now forced together along their axes. Initially there may be some slipping of the disks but very 
quickly the two disks are coupled together by friction and spin as one, with one final angular velocity ωf, as shown 
in figure 9.16(b). During the coupling process disk 1 exerted a torque on disk 2, while by Newton’s third law, disk 2 
exerted an equal but opposite torque on disk 1. Therefore, the net torque is zero and angular momentum must be 
conserved; that is, the final value of the angular momentum must equal the initial value: 
 

Lf = Li                                                                              (9.52) 
 

The final value of the angular momentum is the sum of the angular momentum of each disk: 
 

Lf = L1f + L2f 
 

The final value of the angular momentum of disk 1 is 
    L1f = I1ωf 

while for disk 2, we have 
   L2f = I2ωf 

 
Note that both disks have the same final angular velocity, since they are coupled together. The final momentum is 
therefore 

Lf = I1ωf + I2ωf = (I1 + I2)ωf                                                               (9.56) 
 

Substituting equations 9.55 and 9.56 into the conservation of angular momentum, equation 9.52, we get 
 

(I1 + I2)ωf = I1ω1i + I2ω2i                                                               (9.57) 
 
Solving for the final angular velocity of the coupled disks, we have 
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 ωf = I1ω1i + I2ω2i                                                                       (9.58) 

                                                                                              I1 + I2                       
  

This idealized device is the basis of a clutch. For a real clutch, the first spinning disk could be attached to the shaft 
of a motor, while the second disk could be connected through a set of gears to the wheels of the vehicle. When disk 
2 is coupled to disk 1, the wheels of the vehicle turn. When the disks are separated, the wheels are disengaged. 
 
 
9.8 Combined Translational and Rotational Motion Treated by the Law of 
Conservation of Energy 
Let us now consider the motion of a ball that rolls, without slipping, 
down an inclined plane, as shown in figure 9.17. In particular, let us 
find the velocity of the ball at the bottom of the one meter long in-
cline. By the law of conservation of energy, the total energy at the top 
of the plane must be equal to the total energy at the bottom of the 
plane. Because the ball is initially at rest at the top of the plane, all 
the energy at the top is potential energy: 
 

Etop = PEtop = mgh 
 

Figure 9.17  Combined translational and  
                                                                                                                             rotational motion. 

 
At the bottom of the plane the potential energy is zero because h = 0. Since the body is translating at the bottom of 
the incline, it has a translational kinetic energy of its center of mass of 1/2 mv2. But it is also rotating about its 
center of mass at the bottom of the plane, and therefore it also has a kinetic energy of rotation of 1/2 Iω2. Therefore 
the total energy at the bottom of the plane is 

Ebot = KEtrans + KErot 

Ebot =  1 mv2 +  1 Iω2                                                                   (9.59) 
                                                                                              2             2 

 
Equating the total energy at the bottom to the total energy at the top, we have 

 
Ebot = Etop 

 1 mv2 +  1 Iω2 = mgh                                                                  (9.60) 
                                                                                   2             2  
 
The moment of inertia for the ball is the same as a solid sphere, 

 
I =  2 mr2                                                                               (9.61) 

 5 
 

The angular velocity ω of the rotating ball is related to the linear velocity of a point on the surface of the ball by 
 

ω =  v                                                                                  (9.62) 
        r 

 
The distance that a point on the edge of the ball moves along the incline is the same as the distance that the center 
of mass of the ball moves along the incline. Hence, the velocity of the edge of the ball is equal to the velocity of the 
center of mass of the ball. Substituting equations 9.61 and 9.62 into equation 9.60, we have 

 

( )
2

2 21 1 2
2 2 5

v
mv mr mgh

r
 + = 
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2
2 21 1 2

2 2 5 2
v

mv mr mgh
r

+ =  

Simplifying, 
 v2 +  v2 = gh 

                                                                                       2       5 
5v2 + 2v2  = gh  

                                                                                          10        
 7 v2 = gh  

                                                                                         10             
( )10

7v gh=                                                                            (9.63) 
 

the velocity of the ball at the bottom of the plane. The height h, found from the trigonometry of the triangle in fig-
ure 9.17, is 

h = l sin θ = (1 m)sin 30.00 = 0.500 m 
 

Therefore the velocity at the bottom of the plane is 
 

( )( )( )210
7 9.80 m/s 0.500 mv =  

= 2.65 m/s 
 

Note that this is the same result obtained in example 9.8 in section 9.6. The energy approach is obviously much 
easier. 

As another example of the combined 
translational and rotational motion of a rigid body, 
let us consider the Atwood’s machine shown in 
figure 9.18(a). Using the law of conservation of 
energy let us find the velocity of the mass mA as it 
hits the ground. The total energy of the system in 
the configuration shown consists only of the 
potential energy of the two masses mA and mB, that 
is, 

 
Etot = mAghA + mBghB             (9.64) 

 
When the system is released, mA loses potential 
energy as it falls but gains kinetic energy due to its 
motion. Mass, mB gains potential energy as it rises 
and also acquires a kinetic energy. The pulley, 
when set into rotational motion, also has kinetic 
energy of rotation. The total energy of the system 
as mA strikes the ground, found from figure 9.18(b), 
is 
 

       Etot = PEB + KEA + KEB + KEpulley 
 

                                                                                   Figure 9.18  Atwood’s machine revisited. 
              

Etot = mBg(hA + hB) +  1 mAv2 +  1 mBv2 +  1 Iω2                                                 (9.65) 
                                                                                              2              2              2                   

 
The speed of masses A and B are equal because they are tied together by the string. The moment of inertia of the 
pulley (disk), found from figure 9.5, is 

Idisk =  1 MR2                                                                          (9.66)  
        2 
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Also, the angular velocity ω of the disk is related to the tangential velocity of the string as it passes over the pulley 
by 

ω =  v                                                                                   (9.67) 
      R 

 
Substituting equations 9.66 and 9.67 into equation 9.65, gives 

 

( )
2

2 2 21 1 1 1
tot B A B A B2 2 2 2( ) v

E m g h h m v m v MR
R

 = + + + +  
 

                                         (9.65) 

Simplifying, 
( ) 2 21 1

tot B A B A B2 4( )E m g h h m m v Mv= + + + +  
or 

21
tot B A B A B2( )

2
M

E m g h h m m v = + + + + 
 

                                                 (9.68) 

 
By the law of conservation of energy, we equate the total energy in the initial configuration, equation 9.64, 

to the total energy in the final configuration, equation 9.68, obtaining 
 

21
A A B B B A B A B2( )

2
M

m gh m gh m g h h m m v + = + + + + 
 

 

21
A B A A B B B A B B2 2

M
m m v m gh m gh m gh m gh + + = + − − 

 
 

 21
A B A B A2 ( )

2
M

m m v m m gh + + = − 
 

 

 
 v2 =     (mA − mB)ghA        

             1 (mA + mB + M/2) 
                                                                                        2                      
Solving for v, we get 

A B A

1
A B2

( )

2

m m gh
v

M
m m

−
=

 + + 
 

                                                              (9.69) 

 
Example 9.14 

 
Conservation of energy and combined translational and rotational motion. If mB = 30.0 g, mA = 50.0 g, and the mass 
of the pulley M is 2.00 kg in figure 9.18, find the velocity of mass mA as it falls through the distance hA = 2.00 m. 

Solution
 

The velocity of block A, found from equation 9.69, is 
 

A B A

1
A B2

( )

2

m m gh
v

M
m m

−
=

 + + 
 

 

( )( )2

1
2

(0.0500 kg 0.0300 kg) 9.80 m/s 2.00 m
2.00 kg0.0500 kg + 0.0300 kg

2

v
−

=
 + 
 

 

= 0.850 m/s 
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Note that this is the same result obtained by treating the Atwood’s machine by Newton’s laws of motion rather 
than the energy technique. 

To go to this Interactive Example click on this sentence. 
 

 
 
 
9.9  Work in Rotational Motion 
The work done in translating a body from one position to another was found in chapter 7 as 
 

W = Fx                                                                                   (7.1) 
 

where F is the force in the direction of the displacement and x is the magnitude of the displacement. We can find 
the work done in causing a body to rotate from equation 7.1 and figure 9.19. In figure 9.19, a string is wrapped 
around the disk and pulled with a constant force F, causing the disk to 
rotate through the angle θ. The rim of the disk moves through the dis-
tance s. The work done by the force is 
 

  W = Fx 
But x = s and s = rθ. Therefore, 

W = F rθ                                         (9.70) 
 
But F times r is equal to the torque τ acting on the disk, that is 

 
Fr = τ                                             (9.71) 

 
Substituting equation 9.71 into equation 9.70 gives the work done to 
rotate the disk as 

 W = τθ                                            (9.72) 
 

                                                                                                                       Figure 9.19  Work in rotational motion. 
The power expended in rotating the disk for a time t is 

P =  W   = τ θ                                                                     (9.73) 
                     t         t  

but θ/t = ω, the angular velocity. Therefore, 
 P = τω                                                                           (9.74) 

 
Example 9.15 

 
Work done in rotational motion. A constant force of 5.00 N is applied to a string that is wrapped around a disk of 
0.500-m radius. If the wheel rotates through an angle of 2.00 rev, how much work is done? 

Solution
 

The work done, given by equation 9.72, is 
W = τθ = rFθ 

( )( )( ) 2 π  rad0.500 m 5.00 N 2.00 rev
rev

 =  
 

 

= 31.4 J 
 

To go to this Interactive Example click on this sentence. 
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Have you ever wondered . . . ? 
An Essay on the Application of Physics 

Attitude Control of Airplanes and Spaceships 
 

Have you ever wondered how an airplane or space vehicle is able to change its direction of flight? A plane 
or spacecraft can turn, climb, and dive. But how does it do this? 
 
Attitude Control of Aircraft 
An aircraft changes its attitude by the use of control sur-
faces, figure 1. As we saw in section 6.7, an airplane has 
three ways of changing the direction of its motion. They 
are yaw, pitch, and roll. Yaw is a rotation about the verti-
cal axis of the aircraft. The control surface to yaw the air-
craft is the rudder, which is located at the rear of the verti-
cal stabilizer. Pitch is a rotation about the lateral axis of 
the aircraft. The control surface to pitch the aircraft is the 
elevator, which is located at the rear of the horizontal sta-
bilizer. Roll is a rotation about the longitudinal axis of the 
aircraft. The control surfaces to roll the aircraft are the ai-
lerons, which are located on the trailing edge of the wings. 

 
                                                                                           Figure 1  Control surfaces. 

 
1.  Yaw Control: Yaw is a rotation of the aircraft about a vertical axis that passes through the center of gravity of 
the aircraft, as shown in figure 2. The aircraft can yaw to the right or left, as seen from the position of the pilot in 
the aircraft. 
Before the pilot presses either rudder pedal in the cockpit, 
the rudder is aligned with the vertical stabilizer and the 
air streams past the rudder exerting no unbalanced forces 
on it. When the pilot presses the right rudder pedal the 
rudder moves toward the right, as seen from above and 
behind the aircraft, figure 3(a). In this position the air 
stream exerts a normal force F on the rudder surface, as 
shown in the figure. If we draw the line r from the center 
of gravity of the aircraft to the point of application of the 
force, we see that this force produces a torque about the 
vertical axis. We find the lever arm for this torque by 
dropping a perpendicular from the axis of rotation to the 
line of action of the force. As seen in the figure, the lever 
arm is r sin ψ. Hence, the torque is  
 

τ = Fr sin ψ                            (9H.1) 
 

This torque produces a clockwise torque about the 
center of gravity causing the aircraft to rotate (yaw) to  

                                                                                    Figure 2  Aircraft yaw. 
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Figure 3  Dynamics of aircraft yaw. 

 
When the pilot presses the left rudder pedal, the rudder moves toward the left, as seen from above and be-

hind the aircraft, figure 3(b). For this case the force of the air on the rudder produces a counterclockwise torque 
that causes the aircraft to rotate to the left, as seen in the diagram. Thus the rudder is a control surface that pro-
duces a torque on the aircraft that causes it to rotate either clockwise or counterclockwise about the vertical axis. 

  
2. Pitch Control: Pitch is a rotation of the aircraft about a lateral axis that passes through the center of gravity 
of the aircraft, figure 4. In straight and level flight, the thrust vector of the aircraft lies along the longitudinal axis 
of the aircraft and thus the aircraft moves straight ahead. 

When the pilot pulls the “stick” backward, the elevator is pushed upward, figure 5(a). The air that hits the 
elevator exerts a normal force F on the elevator, as seen in the diagram. If we draw the line r from the center of 
gravity of the aircraft to the point of application of the force, we see that this force produces a clockwise torque 
about the lateral axis of the aircraft. We find the lever arm for this torque by dropping a perpendicular from the 
axis of rotation to the line of action of the force. 

As seen in the figure, the lever arm is r sin θ. Hence the torque acting on the aircraft is given by 
 

τ = Fr sin θ                                                                             (9H.2) 
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This torque causes the aircraft to rotate (pitch) about the 
lateral axis, such that the tail goes downward and the nose 
goes upward, figure 5(a). The thrust vector of the aircraft is 
no longer horizontal but now makes a positive angle with the 
horizontal, and hence the plane climbs. The farther back the 
pilot pulls on the stick the greater the torque and hence the 
steeper the climb. 

When the pilot pushes the stick forward, the elevator 
is pushed downward, figure 5(b). The air that hits the eleva-
tor exerts a normal force F on the elevator, as shown. We 
find the lever arm for this torque by dropping a perpendicu-
lar from the axis of rotation to the line of action of the force, 
as shown. The resulting counterclockwise torque  

                                                                                                Figure 4  Aircraft pitch. 
 

pushes the tail up and the nose down. The thrust vector now falls below the horizontal and the plane dives. The 
farther forward the pilot pushes the stick, the greater the torque and hence the steeper the dive. In this way the 
pilot can make the aircraft climb or dive. 

 
Figure 5 Dynamics of aircraft pitch. 
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3.  Roll Control: Roll is a rotation of the aircraft about 
the longitudinal axis of the aircraft. When the pilot 
pushes the stick to the left, the plane will roll to the left; 
when he pushes the stick to the right, the plane will roll 
to the right, figure 6. 

When the pilot pushes the stick to the left, the 
right aileron is pushed downward and the left aileron is 
pushed upward, figure 7(c). The wind blowing over the 
wings exerts a force on the ailerons as shown in figure 
7(a,b). The force acting on the raised left aileron pushes 
the left wing downward, while the force acting on the 
lowered right aileron pushes the right wing upward. The 
ailerons act similar to the elevator in that they produce a 
torque about the lateral axis of the aircraft. However, 
with one aileron up and one down the torques they  

                                                                                              Figure 6 Aircraft roll. 
 

Figure 7  Dynamics of aircraft roll. 
 

produce to pitch the aircraft are equal and opposite and hence have no effect on pitching the aircraft. However, the 
force up on the right wing and the force down on the left wing cause a counterclockwise torque about the longitu-
dinal axis, as viewed from the rear of the aircraft (the view that is seen by the pilot). Therefore the aircraft rolls to 
the left, figure 7(c). When the aircraft has rolled to the required bank angle, the pilot places the stick back to the 
neutral position and the aircraft stays at this angle of bank. To bring the aircraft back to level flight the pilot must 
push the stick to the right. The aircraft now rolls to the right until the aircraft is level. Then the pilot places the 
stick in the neutral position. 

To roll the aircraft to the right the pilot pushes the stick to the right. The right aileron now goes up and 
the left aileron now goes down, figure 7(d). The force down on the right wing and the force up on the left wing 
causes a clockwise torque about the longitudinal axis. Thus, the aircraft rotates (rolls) to the right. 

The force exerted on a control surface by the air creates the necessary torque to rotate the aircraft in any 
specified direction. 
 
Attitude Control of Space Vehicles 
An aircraft will not work in space because there is no air to exert the necessary lift on the wings of the aircraft. 
Nor can rudders, elevators, or ailerons work in space because there is no air to exert forces on the control surfaces 
to change the attitude of the vehicle. 

To control the attitude of a space vehicle, reaction control jets are used. Figure 8 is a line drawing of the 
Lunar Module (LM) that landed on the moon. Notice the reaction control jets located on the sides of the Lunar  
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Figure 8  The Lunar Module. 
 
Module. The reaction control system consists of 16 small rocket thrusters placed around the vehicle to control the 
translation and rotation of the Lunar Module. Also notice that the axes of the spacecraft are the same as the axes 
of an aircraft. Thus a rotation about the vertical axis of the spacecraft is called yaw, rotation about the lateral axis 
is called pitch, and rotation about the longitudinal axis is called roll. 
Figure 8(b) is a top view of the Lunar Module. Notice that there are four thruster assemblies, each containing four 
rocket jets, located on the Lunar Module. 
 
1.  Yaw Control: For the spacecraft to yaw to the left the four reaction jets shown in figure 9(a) are fired to create 
a torque counterclockwise about the vertical axis of the Lunar Module. Each jet exerts a force F on the Lunar 
Module, which in turn creates a torque about the vertical axis. The total torque is the sum of the four torques. For 
the spacecraft to yaw to the right the four reaction jets shown in figure 9(b) are fired to create a torque clockwise 
about the vertical axis of the Lunar Module. Notice that a different set of jets are used to yaw to the right than to 
yaw to the left. 
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Figure 9 Dynamics of Lunar Module yaw. 

 
2.  Pitch Control: For the Lunar Module to pitch downward, the two reaction jets on each side of the Lunar Mod-
ule (total of 4 jets) shown in figure 10(a) are fired to create a torque counterclockwise about the lateral axis of the 
Lunar Module. For the spacecraft to pitch upward the two reaction jets on each side of the Lunar Module (total of 
4 jets) shown in figure 10(b) are fired to create a torque clockwise about the lateral axis of the Lunar Module. 

    
Figure 10  Dynamics of Lunar Module pitch. 

  
3.  Roll Control: For the spacecraft to roll to the left the two reaction jets on each side of the Lunar Module (total 
of 4 jets) shown in figure 11(a) are fired to create a torque counterclockwise about the longitudinal axis of the Lu-
nar Module. (Don’t forget that left and right are defined from the position of the pilot. Figure 11 shows the Lunar 
Module from a front view, and hence left and right appear to be reversed.) 

Figure 11  Dynamics of Lunar Module roll. 
 

A roll to the right is accomplished by firing the two reaction jets on each side of the Lunar Module (total of 
4 jets) shown in figure 11(b) to create a torque clockwise about the longitudinal axis of the Lunar Module. Thus the 
Lunar Module, and any spacecraft for that matter, can control its attitude by supplying torques for its rotation by 
the suitable firing of the different reaction control jets. 
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The Language of Physics 

 
Angular displacement 

The angle that a body rotates 
through while in rotational motion 
(p. ). 

 
Angular velocity 

The change in the angular dis-
placement of a rotating body about 
the axis of rotation with time (p. ). 

 
Angular acceleration 

The change in the angular ve-
locity of a rotating body with time 
(p. ). 

 
Kinematic equations for rota-
tional motion 

A set of equations that give the 
angular displacement and angular 
velocity of a rotating body at any 
instant of time, and the angular ve-
locity at a particular angular dis-
placement, if the angular accelera-
tion of the body is constant (p. ). 

 
Kinetic energy of rotation 

The energy that a body pos-
sesses by virtue of its rotational 
motion (p. ). 

 
Moment of inertia 

The measure of the resistance 
of a body to a change in its rota-
tional motion. It is the rotational 
analogue of mass, which is a meas-
ure of the resistance of a body to a 
change in its translational motion. 
The larger the moment of inertia of 
a body the more difficult it is to put 
that body into rotational motion 
(p. ). 

 
Newton’s second law for rota-
tional motion 

When an unbalanced external 
torque acts on a body, it gives that 
body an angular acceleration. The 
angular acceleration is directly pro-
portional to the torque and in-
versely proportional to the moment 
of inertia (p. ). 

 
Newton’s first law for rotational 
motion 

A body in motion at a constant 
angular velocity will continue in 
motion at that same constant angu-
lar velocity unless acted upon by 
some unbalanced external torque 
(p. ). 

 
Newton’s third law of rotational 
motion 

If body A and body B have the 
same axis of rotation, and if body A 
exerts a torque on body B, then 
body B exerts an equal but opposite 
torque on body A (p. ). 

 
Angular momentum 

The product of the moment of 
inertia of a rotating body and its 
angular velocity (p. ). 

 
Law of conservation of angular 
momentum 

If the total external torque act-
ing on a system is zero, then there 
is no change in the angular momen-
tum of the system, and the final an-
gular momentum is equal to the ini-
tial angular momentum (p. ).

 
Summary of Important Equations 

 
Angular velocity   ω = ∆θ =  θ    (9.1) 
                                         ∆t      t    
 
Angular acceleration 

          α = ∆ω = ω − ω0           (9.3) 
                           ∆t            t         
 
Kinematic equations  

               ω = ω0 + αt            (9.4) 
θ = ω0t +  1 αt2      (9.9) 

                                       2 
ω2 = ω02 + 2αθ      (9.10) 

 
Relations between translational 
and rotational variables 

 s = rθ                 (6.5) 
v = rω                  (9.2) 
a = rα                (9.5) 

 
Centripetal acceleration 
                       ac = ω2r               (9.11) 
 
Kinetic energy of rotation 

     KErot =  1  Iω2           (9.15) 
                               2 
 
Moment of inertia  

  2
i

1

n

i
i

I m r
=

= ∑             (9.16) 

 
Moment of inertia for a single mass 

                  I = mr2                 (9.17) 
 
Newton’s second law for rotational 
motion            τ = Iα                  (9.22) 
 

Angular momentum 
   L = Iω                    (9.48) 

 
Newton’s second law in terms of 
momentum        τ = ∆L            (9.49) 
                                     ∆t 
 
Law of conservation of angular 
momentum (no external torques) 

    Lf = Li                   (9.52) 
 
Work done in rotational motion 

                   W = τθ                 (9.72) 
 
Power expended in rotational  
motion           P = τω                (9.74) 
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Questions for Chapter 9 
 

1. Discuss the similarity be-
tween the equations for transla-
tional motion and the equations for 
rotational motion. 

2. When moving in circular mo-
tion at a constant angular velocity, 
why does the body at the greatest 
distance from the axis of rotation 
move faster than the body closest to 
the axis of rotation? 

3. It is easy to observe the angu-
lar velocity of the second hand of a 
clock. Why is it more difficult to ob-
serve the angular velocity of the 
minute and hour hands of the 
clock? 

*4. If a cylinder, a ball, and a 
ring are placed at the top of an in-
clined plane and then allowed to 
roll down the plane, in what order 
will they arrive at the bottom of the 
plane? Why? 

*5. How would you go about ap-
proximating the rotational kinetic 
energy of our galaxy? 

6. Which would be more diffi-
cult to put into rotational motion, a 
large sphere or a small sphere? 
Why?  

7. Why must the axis of rotation 
be specified when giving the mo-
ment of inertia of an object? 

*8. If two balls collide such that 
the force transmitted lies along a 
line connecting the center of mass 
of each body, can either ball be put 
into rotational motion? If the balls 
collide in a glancing collision in 
which there is also friction between 
the two surfaces as they collide, can 
either ball be put into rotational 
motion? Draw a diagram of the col-
lision in both cases and discuss both 
possibilities. 

*9. As long as there are no ex-
ternal torques acting on the earth, 

the earth will continue to spin for-
ever at its present angular velocity. 
Discuss the possibility of small per-
turbative torques that might act on 
the earth and what effect they 
might have. 

*10. We said that the angular 
displacement θ could be treated as a 
vector. Consider a rotation of your 
book through an angular displace-
ment of 900 about the x-axis, then a 
rotation through an angular dis-
placement of 900 about the y-axis, 
and finally a rotation through an 
angular displacement of 900 about 
the z-axis. Would you get the same 
result if you changed the order of 
the rotations to the y-, x-, and then 
z-axis? So should angular displace-
ments be treated as vectors? What 
happens if the angular displace-
ments are infinitesimal or at least 
very small? Then can angles be 
treated as vectors? What about the 
angular velocity ω = ∆θ/∆t and the 
angular acceleration α = ∆ω/∆t? Is it 
legitimate to consider these quanti-
ties as vectors?  

*11. If the instantaneous angu-
lar velocity can be considered as a 
vector, should the angular momen-
tum also be considered as a vector? 
If so, what direction would it have? 
What would the change in the di-
rection of the angular momentum 
look like? 

*12. It is said that if you throw 
a cat, upside down, into the air, it 
will always land on its feet. Discuss 
this possibility from the point of 
view of the cat moving his legs and 
tail and thus changing his moment 
of inertia and hence his angular ve-
locity. 

 

 
A falling cat lands on all four 

legs. 

 
Problems for Chapter 9 

 
9.2  Rotational Kinematics 

1. Express the following angu-
lar velocities of a phonograph turn-
table in terms of rad/s. (a) 33 1/3 

rpm (revolutions per minute), (b) 45 
rpm, and (c) 78 rpm. 

2. Determine the angular veloc-
ity of the following hands of a clock: 

(a) the second hand, (b) the minute 
hand, and (c) the hour hand. 

3. A cylinder 15.0 cm in diame-
ter rotates at 1000 rpm. (a) What is 
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its angular velocity in rad/s? 
(b) What is the tangential velocity 
of a point on the rim of the cylin-
der? 

4. A circular saw blade rotating 
at 3600 rpm is reduced to 3450 rpm 
in 2.00 s. What is the angular accel-
eration of the blade? 

5. A circular saw blade rotating 
at 3600 rpm is braked to a stop in 6 
s. What is the angular acceleration? 
How many revolutions did the blade 
make before coming to a stop? 

6. A wheel 50.0 cm in diameter 
is rotating at an initial angular ve-
locity of 0.010 rad/s. It is given an 
acceleration of 0.050 rad/s2. Find 
(a) the angular velocity at 5.00 s, 
(b) the angular displacement at 
5.00 s, (c) the tangential velocity of 
a point on the rim at 5.00 s, (d) the 
tangential acceleration of a point on 
the rim, (e) the centripetal accelera-
tion of a point on the rim, and 
(f) the resulting acceleration of a 
point on the rim. 

 
9.3  The Kinetic Energy of Rota-
tion 

7. Find the kinetic energy of a 
2.00-kg cylinder, 25.0 cm in diame-
ter, if it is rotating about its longi-
tudinal axis at an angular velocity 
of 0.550 rad/s. 

8. A 3.00-kg ball, 15.0 cm in di-
ameter, rotates at an angular veloc-
ity of 3.45 rad/s. Find its kinetic en-
ergy. 

 
9.4  The Moment of Inertia 

9. Calculate the moment of in-
ertia of a 0.500-kg meterstick about 
an axis through its center, and per-
pendicular to its length. 

10. Compute the moment of in-
ertia through its center of a 7.27 kg 
bowling ball of radius 10.2 cm. 

11. Find the moment of inertia 
for the system of point masses 
shown for (a) rotation about the y-
axis and (b) for rotation about the x-
axis. Given are m1 = 2.00 kg, m2 = 
3.50 kg, r1 = 0.750 m, and r2 = 0.873 
m. 

 
Diagram for problem 11. 

 
*12. Find the moment of inertia 

for the system shown for rotation 
about (a) the y-axis, (b) the x-axis, 
and (c) an axis going through 
masses m2 and m4. Assume m1 = 
0.532 kg, m2 = 0.425 kg, m3 = 0.879 
kg, and m4 = 0.235 kg. 

 
Diagram for problem 12. 

 
9.5  Newton’s Laws for Rota-
tional Motion and 9.6 Rota-
tional Dynamics 

13. A solid wheel of mass 5.00 
kg and radius 0.350 m is set in mo-
tion by a constant force of 6.00 N 
applied tangentially. Determine the 
angular acceleration of the wheel. 

14. A torque of 5.00 m N is ap-
plied to a body. Of this torque, 2.00 
m N of it is used to overcome fric-
tion in the bearings. The body has a 
resultant angular acceleration of 
5.00 rad/s2. (a) When the applied 
torque is removed, what is the an-
gular acceleration of the body? (b) If 
the angular velocity of the body was 
100 rad/s when the applied torque 
was removed how long will it take 
the body to come to rest? 

15. A mass of 200 g is attached 
to a wheel by a string wrapped 
around the wheel. The wheel has a 
mass of 1.00 kg. Find the accelera-

tion of the mass. Assume that the 
moment of inertia of the wheel is 
the same as a disk. 

 
Diagram for problem 15. 

 
16. A mass mA of 10.0 kg is at-

tached to another mass mB of 4.00 
kg by a string that passes over a 
pulley of mass M = 1.00 kg. The co-
efficient of kinetic friction between 
block B and the table is 0.400. Find 
(a) the acceleration of each block of 
the system, (b) the tensions in the 
cords, and (c) the velocity of block A 
as it hits the floor 0.800 m below its 
starting point. 

 
Diagram for problem 16. 

 
17. A mass mA = 200 g, and an-

other mass mB = 100 g are attached 
to an Atwood’s machine that has a 
pulley mass M = 1.00 kg. (a) Find 
the acceleration of each block of the 
system. (b) Find the velocity of 
mass A as it hits the floor 1.50 me-
ters below its starting point. 
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Diagram for problem 17. 

 
9.7  Angular Momentum and Its 
Conservation 
*18. A 75-kg student stands at the 
edge of a large disk of 150-kg mass 
that is rotating freely at an angular 
velocity of 0.800 rad/s. The disk has 
a radius of R = 3.00 m. (a) Find the 
initial moment of inertia of the disk 
and student and its kinetic energy. 
The student now walks toward the 
center of the disk. Find the moment 
of inertia, the angular velocity, and 
the kinetic energy when the student 
is at (b) 3R/4, (c) R/2, and (d) R/4. 

19. Two disks are to be made 
into an idealized clutch. Disk 1 has 
a mass of 3.00 kg and a radius of 
20.0 cm, while disk 2 has a mass of 
1.00 kg and a radius of 20.0 cm. If 
disk 2 is originally at rest and disk 
1 is rotating at 2000 rpm, what is 
the final angular velocity of the 
coupled disks? 

       
Diagram for problem 19.   

 
*20. Two beads are fixed on a thin 
long wire on the x-axis at r1 = 0.700 

m and r2 = 0.800 m, as shown in the 
diagram. Assume m1 = 85.0 g and 
m2 = 63.0 g. The combination is 
spinning about the y-axis at an an-
gular velocity of 4.00 rad/s. A catch 
is then released allowing the beads 
to move freely to the stops at the 
end of the wire, which is 1.00 m 
from the origin. Find (a) the initial 
moment of inertia of the system, 
(b) the initial angular momentum of 
the system, (c) the initial kinetic 
energy of the system, (d) the final 
angular momentum of the system, 
(e) the final angular velocity of the 
system, and (f) the final kinetic en-
ergy of the system. 

 
Diagram for problem 20. 

 
9.8  Combined Translational 
and Rotational Motion Treated 
by the Law of Conservation of 
Energy 

21. Find the velocity of (a) a cyl-
inder and (b) a ring at the bottom of 
an inclined plane that is 2.00 m 
high. The cylinder and ring start 
from rest and roll down the plane. 

22. Compute the velocity of a 
cylinder at the bottom of a plane 1.5 
m high if (a) it slides without rotat-
ing on a frictionless plane and (b) it 
rotates on a rough plane. 

23. A 1.50-kg solid ball, 10.0 cm 
in radius, is rolling on a table at a 
velocity of 0.500 m/s. (a) What is its 
angular velocity about its center of 
mass? (b) What is the translational 
kinetic energy of its center of mass? 
(c) What is its rotational kinetic en-
ergy about its center of mass? 
(d) What is its total kinetic energy? 

24. Using the law of conserva-
tion of energy for the Atwood’s ma-
chine shown, find the velocity of mA 

at the ground, if mA = 20.0 g, mB = 
10.0 g, M = 1.00 kg, and r = 15.0 cm. 

 
Diagram for problem 24. 

 
9.9  Work in Rotational Motion 

25. A constant force of 2.50 N 
acts tangentially on a cylinder of 
12.5-cm radius and the cylinder ro-
tates through an angle of 5.00 rev. 
How much work is done in rotating 
the cylinder? 

26. An engine operating at 1800 
rpm develops 200 hp, what is the 
torque developed? 

 
Additional Problems 

27. Determine (a) the angular 
velocity of the earth, (b) its moment 
of inertia, and (c) its kinetic energy 
of rotation. (d) Compare this with 
its kinetic energy of translation. 
(e) Find the angular momentum of 
the earth. 

 
Diagram for problem 27. 

 
28. The earth rotates once in a 

day. If the earth could collapse into 
a smaller sphere, what would be the 
radius of that sphere that would 
give a point on the equator a linear 
velocity equal to the velocity of light 
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c = 3.00 × 108 m/s? Use the initial 
angular velocity of the earth and 
the moment of inertia determined 
in problem 27. 

29. A disk of 10.0-cm radius, 
having a mass of 100 g, is set into 
motion by a constant tangential 
force of 2.00 N. Determine (a) the 
moment of inertia of the disk, 
(b) the torque applied to the disk, 
(c) the angular acceleration of the 
disk, (d) the angular velocity at 2.00 
s, (e) the angular displacement at 
2.00 s, (f) the kinetic energy at 2.00 
s, and (g) the angular momentum at 
2.00 s. 

30. A 3.50-kg solid disk of 25.5 
cm diameter has a cylindrical hole 
of 3.00-cm radius cut into it. The 
hole is 1.00 cm in from the edge of 
the solid disk. Find (a) the initial 
moment of inertia of the disk about 
an axis perpendicular to the disk 
before the hole was cut into it and 
(b) the moment of inertia of the 
solid disk with the hole in it. State 
the assumptions you use in solving 
the problem. 

*31. Due to slight effects caused 
by tidal friction between the water 
and the land and the nonsphericity 
of the sun, there is a slight angular 
deceleration of the earth. The 
length of a day will increase by ap-
proximately 1.5 × 10−3 s in a cen-
tury. (a) What will be the angular 
velocity of the earth after one cen-
tury? (b) What will be the change in 
the angular velocity of the earth per 
century? (c) As a first approxima-
tion, is it reasonable to assume that 
there are no external torques acting 
on the earth and the angular veloc-
ity of the earth is a constant? 

32. A string of length 1.50 m 
with a small bob at one end is con-
nected to a horizontal disk of negli-
gible radius at the other end. The 
disk is put into rotational motion 
and is now rotating at an angular 
velocity ω = 5.00 rad/s. Find the an-
gle that the string makes with the 
vertical. 

33. A constant force of 5.00 N 
acts on a disk of 3.00-kg mass and 
diameter of 50.0 cm for 10.0 s. De-

termine (a) the angular accelera-
tion, (b) the angular velocity after 
10.0 s, and (c) the kinetic energy af-
ter 10.0 s. (d) Compute the work 
done to cause the disk to rotate and 
compare with your answer to part c. 

 
Diagram for problem 33.  

 
*34. A 5.00-kg block is at rest at 

the top of the inclined plane shown 
in the diagram. The plane makes an 
angle of 32.50 with the horizontal. A 
string is attached to the block and 
tied around the disk, which has a 
mass of 2.00 kg and a radius of 8.00 
cm. Find the acceleration of the 
block down the plane if (a) the 
plane is frictionless, and (b) the 
plane is rough with a value of µk = 
0.54.            

 
Diagram for problem 34. 

 
35. A large cylinder has a ra-

dius of 12.5 cm and it is pressed 
against a smaller cylinder of radius 
4.50 cm such that the two axes of 
the cylinders are parallel. When the 
larger cylinder rotates about its 
axis, it causes the smaller cylinder 
to rotate about its axis. The larger 
cylinder accelerates from rest to a 
constant angular velocity of 20 
rad/s. Find (a) the tangential veloc-
ity of a point on the surface of the 
large cylinder, (b) the tangential ve-
locity of a point on the surface of 

the smaller cylinder, and (c) the an-
gular velocity of the smaller cylin-
der. Can you think of this setup as 
a kind of mechanical advantage? 

*36. A small disk of r1 = 5.00-cm 
radius is attached to a larger disk of 
r2 = 15.00-cm radius such that they 
have a common axis of rotation, as 
shown in the diagram. The small 
disk has a mass M1 = 0.250 kg and 
the large disk has a mass M2 = 
0.850 kg. A string is wrapped 
around the small disk and a force is 
applied to the string causing a con-
stant tangential force of 2.00 N to 
be applied to the disk. Find (a) the 
applied torque, (b) the moment of 
inertia of the system, (c) the angu-
lar acceleration of the system, and 
(d) the angular velocity at 4.00 s. 

 
Diagram for problem 36. 

 
*37. Repeat problem 36 with 

the string wrapped around the 
large disk instead of the small disk. 

*38. A small disk of mass M1 = 
50.0 g is connected to a larger disk 
of mass M2 = 200.0 g such that they 
have a common axis of rotation. The 
small disk has a radius r1 = 10.0 
cm, while the large disk has a ra-
dius of r2 = 30.0 cm. A mass m1 = 
25.0 g is connected to a string that 
is wrapped around the small disk, 
while a mass m2 = 35.0 g is con-
nected to a string and wrapped 
around the large disk, as shown in 
the diagram. Find (a) the moment 
of inertia of each disk, (b) the mo-
ment of inertia of the combined 
disks, (c) the net torque acting on 
the disks, (d) the angular accelera-
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tion of the disks, (e) the angular ve-
locity of the disks at 4.00 s, (f) the 
kinetic energy of the disks at 4.00 s, 
and (g) the angular momentum of 
the disks at 4.00 s. 

 
Diagram for problem 38. 

 
*39. One end of a string is 

wrapped around a pulley and the 
other end is connected to the ceil-
ing, which is 3.00 m above the floor. 
The mass of the pulley is 200 g and 
has a radius of 10.0 cm. The pulley 
is released from rest and is allowed 
to fall. Find (a) the initial total en-
ergy of the system, and (b) the ve-
locity of the pulley just before it hits 
the floor. 

40. This is essentially the same 
problem as problem 39 but is to be 
treated by Newton’s second law for 
rotational motion. Find the angular 
acceleration of the cylinder and the 
tension in the string. 

*41. A 1.5-kg disk of 0.500-m 
radius is rotating freely at an angu-
lar velocity of 2.00 rad/s. Small 5-g 
balls of clay are dropped onto the 
disk at 3/4 of the radius at a rate of 
4 per second. Find the angular ve-
locity of the disk at 10.0 s. 

 
Diagram for problem 41. 

 
*42. A space station is to be 

built in orbit in the shape of a large 
wheel of outside radius 100.0 m and 
inside radius of 97.0 m. The satel-
lite is to rotate such that it will 
have a centripetal acceleration ex-
actly equal to the acceleration of 
gravity g on earth. The astronauts 
will then be able to walk about and 
work on the rim of the wheel in an 
environment similar to earth. (a) At 
what angular velocity must the 
wheel rotate to simulate the earth’s 
gravity? (b) If the mass of the 
spaceship is 40,000 kg, what is its 
approximate moment of inertia? 
(c) How much energy will be neces-
sary to rotate the space station? 
(d) If it takes 20.0 rev to bring the 
space station up to its operating 
angular velocity, what torque must 
be applied in the form of gas jets at-
tached to the outer rim of the 
wheel? 

 
Diagram for problem 42. 

 
*43. At the instant that ball 1 is 

released from rest at the top of a 
rough inclined plane a second ball 
(2) moves past it on the horizontal 
surface below at a constant velocity 
of 2.30 m/s. The plane makes an 
angle θ = 35.00 with the horizontal 
and the height of the plane is 0.500 
m. Using Newton’s second law for 
combined translational and rota-
tional motion find (a) the accelera-
tion a of ball 1 down the plane, 
(b) the velocity of ball 1 at the base 

of the incline, (c) the time it takes 
for ball 1 to reach the bottom of the 
plane, (d) the distance that ball 2 
has moved in this time, and (e) at 
what horizontal distance from the 
base of the incline will ball 1 over-
take ball 2. 

   
Diagram for problem 43. 
 

Interactive Tutorials 
44. A cylinder of mass m = 4.00 

kg and radius r = 2.00 m is rotating 
at an angular velocity ω = 3600 
rpm. Calculate (a) its angular veloc-
ity ω in rad/s, (b) its moment of in-
ertia I, (c) its rotational kinetic en-
ergy KErot, and (d) its angular mo-
mentum L. 

45. A mass m = 2.00 kg is at-
tached by a string that is wrapped 
around a frictionless solid cylinder 
of mass M = 8.00 kg and radius R = 
0.700 m that is free to rotate. Calcu-
late (a) the acceleration a of the 
mass m and (b) the tension T in the 
string. 

46. Rotational Dynamics. A cyl-
inder of mass m = 2.35 kg and ra-
dius r = 0.345 m is initially rotating 
at an angular velocity ω0 = 1.55 
rad/s when a constant force F = 9.25 
N is applied tangentially to the cyl-
inder as in figure 9.8. Find (a) the 
moment of inertia I of the cylinder, 
(b) the torque τ acting on the cylin-
der, (c) the angular acceleration α of 
the cylinder, (d) the angular veloc-
ity ω of the cylinder at t = 4.55 s, 
and (e) the angular displacement θ 
at t = 4.55 s. 

47. The moment of inertia of a 
continuous mass distribution. A me-
terstick, m = 0.149 kg, lies on the x-
axis with the zero of the meterstick 
at the origin of the coordinate sys-
tem. Determine the moment of iner-
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tia of the meterstick about an axis 
that passes through the zero of the 
meterstick and perpendicular to it. 
Assume that the meterstick can be 
divided into N = 10 equal parts. 

48. This is a generalization of 
Interactive Tutorial problem 72 of 
chapter 4 but it also takes the rota-
tional motion of the pulley into ac-
count. Derive the formula for the 
magnitude of the acceleration of the 
system shown in the diagram for 
problem 57 of chapter 4. The pulley 
has a mass M and the radius R. As 
a general case assume that the coef-
ficient of kinetic friction between 
block A and the surface is µkA and 
between block B and the surface is 
µkB. Solve for all the special cases 
that you can think of. In all the 
cases, consider different values for 
the mass M of the pulley and see 
the effect it has on the results of the 
problem. 

49. An Atwood’s machine taking 
the rotational motion of the pulley 
into account. Consider the general 
motion in an Atwood’s machine 
such as the one shown in figure 
9.18. Mass mA = 0.650 kg and is at a 
height hA = 2.55 m above the refer-
ence plane and mass mB = 0.420 kg 
is at a height hB = 0.400 m. The pul-
ley has a mass of M = 2.00 kg and a 
radius R = 0.100 m. If the system 

starts from rest, find (a) the initial 
potential energy of mass A, (b) the 
initial potential energy of mass B, 
and (c) the total energy of the sys-
tem. When mass mA has fallen a 
distance yA = 0.750 m, find (d) the 
potential energy of mass A, (e) the 
potential energy of mass B, (f) the 
speed of each mass at that point, 
(g) the kinetic energy of mass A, 
(h) the kinetic energy of mass B, 
(i) the moment of inertia of the pul-
ley (assume it to be a disk), (j) the 
angular velocity ω of the pulley, and 
(k) the rotational kinetic energy of 
the pulley. (l) When mass A hits the 
ground, find the speed of each mass 
and the angular velocity of the pul-
ley. 

50. Combined motion taking the 
rotational motion of the pulley into 
account. Consider the general mo-
tion in the combined system shown 
in the diagram of problem 16. Mass 
mA = 0.750 kg and is at a height hA 
= 1.85 m above the reference plane 
and mass mB = 0.285 kg is at a 
height hB = 2.25 m, µk = 0.450. The 
pulley has a mass M = 1.85 kg and 
a radius R = 0.0800 m. If the sys-
tem starts from rest, find (a) the 
initial potential energy of mass A, 
(b) the initial potential energy of 
mass B, and (c) the total energy of 
the system. When mA has fallen a 

distance yA = 0.35 m, find (d) the 
potential energy of mass A, (e) the 
potential energy of mass B, (f) the 
energy lost due to friction as mass 
B slides on the rough surface, 
(g) the speed of each mass at that 
point, (h) the kinetic energy of mass 
A, (i) the kinetic energy of mass B, 
(j) the moment of inertia of the pul-
ley (assumed to be a disk), (k) the 
angular velocity ω of the pulley, and 
(l) the rotational kinetic energy of 
the pulley. (m) When mass A hits 
the ground, find the speed of each 
mass. 

51. Changing the moment of in-
ertia of a rotating disk. A disk of 
mass M = 3.55 kg and a radius R = 
1.25 m is rotating freely at an ini-
tial angular velocity ωi = 1.45 rad/s. 
Small balls of clay of mass mb = 
0.025 kg are dropped onto the rotat-
ing disk at the radius r = 0.85 m at 
the rate of n = 5 ball/s. Find (a) the 
initial moment of inertia of the 
disk, (b) the initial angular momen-
tum of the disk, and (c) the angular 
velocity ω at t = 6.00s. (d) Plot the 
angular velocity ω as a function of 
the number of balls dropped. 

 
To go to these Interactive 

Tutorials click on this sentence. 

 
  

To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 10  Elasticity 
  
“If I have seen further than other men, it is because I stood on the shoulders of giants.” 

Isaac Newton 
 
10.1  The Atomic Nature of Elasticity 
Elasticity is that property of a body by which it experiences a change in size or shape whenever a deforming force 
acts on the body. When the force is removed the body returns to its original size and shape. Most people are 
familiar with the stretching of a rubber band. All materials, however, have this same elastic property, but in most 
materials it is not so pronounced. 

The explanation of the elastic property of solids is found in an atomic description of a solid. Most solids are 
composed of a very large number of atoms or molecules arranged in a fixed pattern called the lattice structure of 
a solid and shown schematically in figure 10.1(a). These atoms or molecules are held in their positions by 
electrical forces. The electrical force between the molecules is attractive and tends to pull the molecules together. 
Thus, the solid resists being pulled apart. Any one molecule in figure 10.1(a) has an attractive force pulling it to 
the right and an equal attractive force pulling it to the left. There are also equal attractive forces pulling the 
molecule up and down, and in and out. A repulsive force between the molecules also tends to repel the molecules if 
they get too close together. This is why solids are difficult to compress. To explain this repulsive force we would 
need to invoke the Pauli exclusion principle of quantum mechanics (which we discuss in section 32.8). Here we 
simply refer to all these forces as molecular forces. 

Figure 10.1  (a) Lattice structure of a solid. (b) Actual pictures of atoms in a solar cell. 
 
The net result of all these molecular forces is that each molecule is in a position of equilibrium. If we try to 

pull one side of a solid material to the right, let us say, then we are in effect pulling all these molecules slightly 
away from their equilibrium position. The displacement of any one molecule from its equilibrium position is quite 
small, but since there are billions of molecules, the total molecular displacements are directly measurable as a 
change in length of the material. When the applied force is removed, the attractive molecular forces pull all the 
molecules back to their original positions, and the material returns to its original length. 

If we now exert a force on the material in order to compress it, we cause the molecules to be again 
displaced from their equilibrium position, but this time they are pushed closer together. The repulsive molecular 
force prevents them from getting too close together, but the total molecular displacement is directly measurable as 
a reduction in size of the original material. When the compressive force is removed, the repulsive molecular force 
causes the atoms to return to their equilibrium position and the solid returns to its original size. Hence, the elastic 
properties of matter are a manifestation of the molecular forces that hold solids together. Figure 10.1(b) shows a 
typical lattice structure of atoms in a solar cell analyzed with a scanning tunneling microscope. 
 
 
10.2  Hooke’s Law--Stress and Strain 
If we apply a force to a rubber band, we find that the rubber band stretches. Similarly, if we attach a wire to a 
support, as shown in figure 10.2, and sequentially apply forces of magnitude F, 2F, and 3F to the wire, we find 
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that the wire stretches by an amount ∆L, 2∆L, and 3∆L, respectively. (Note that the amount of stretching is 
greatly exaggerated in the diagram for illustrative purposes.) The 
deformation, ∆L, is directly proportional to the magnitude of the 
applied force F and is written mathematically as 
 

∆L ∝ F                                            (10.1) 
 

This aspect of elasticity is true for all solids. It would be 
tempting to use equation 10.1 as it stands to formulate a theory of 
elasticity, but with a little thought it becomes obvious that although it 
is correct in its description, it is incomplete. 

Let us consider two wires, one of cross-sectional area A, and 
another with twice that area, namely 2A, as shown in figure 10.3. 
When we apply a force F to the first wire, that force is distributed over 
all the atoms in that cross-sectional area A. If we subject the second 
wire to the same applied force F, then this same force is  

                                                                                                   Figure 10.2  Stretching an object. 
 
distributed over twice as many atoms in the area 2A as it was in the area A. 
Equivalently we can say that each atom receives only half the force in the area 
2A that it received in the area A. Hence, the total stretching of the 2A wire is 
only 1/2 of what it was in wire A. Thus, the elongation of the wire ∆L is 
inversely proportional to the cross-sectional area A of the wire, and this is 
written 

∆L ∝  1                                                   (10.2) 
         A           

 
Note also that the original length of the wire must have something to 

do with the amount of stretch of the wire. For if a force of magnitude F is 
applied to two wires of the same cross-sectional area, but one has length L0  

Figure 10.3  The deformation is inversely 
 proportional to the cross-sectional  

area of the wire. 
 

and the other has length 2L0, the same force is transmitted to every 
molecule in the length of the wire. But because there are twice as 
many molecules to stretch apart in the wire having length 2L0, there is 
twice the deformation, or 2∆L, as shown in figure 10.4. We write this 
as the proportion 

∆L ∝ L0                                           (10.3) 
 

The results of equations 10.1, 10.2 and 10.3 are, of course, also 
deduced experimentally. The deformation ∆L of the wire is thus 
directly proportional to the magnitude of the applied force F (equation 
10.1), inversely proportional to the cross-sectional area A (equation 
10.2), and directly proportional to the original length of the wire L0 
(equation 10.3). These results can be incorporated into the one 
proportionality 

∆L ∝ FL0 
        A 

which we rewrite in the form 
 F  ∝ ∆L                                         (10.4) 

   A       L0     
Figure 10.4  The deformation is directly  

proportional to the original length of the wire. 
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The ratio of the magnitude of the applied force to the cross-sectional area of the wire is called the stress 
acting on the wire, while the ratio of the change in length to the original length of the wire is called the strain of the 
wire. Equation 10.4 is a statement of Hooke’s law of elasticity, which says that in an elastic body the stress is 
directly proportional to the strain, that is, 

 stress ∝ strain                                                                          (10.5) 
 

The stress is what is applied to the body, while the resulting effect is called the strain. 
To make an equality out of this proportion, we must introduce a constant of proportionality (see appendix 

C on proportionalities). This constant depends on the type of material used, since the molecules, and hence the 
molecular forces of each material, are different. This constant, called Young’s modulus of elasticity is denoted 
by the letter Y. Equation 10.4 thus becomes 

  F  = Y ∆L                                                                               (10.6) 
                                                                                         A         L0          

 
The value of Y for various materials is given in table 10.1. 

 
Table 10.1 

Some Elastic Constants 
Substance Young’s 

Modulus 
Shear 

Modulus 
Bulk Modulus Elastic Limit Ultimate 

Tensile  
Stress 

 N/m2 × 1010 N/m2 × 1010 N/m2 × 1010 N/m2 × 108 N/m2 × 108 
Aluminum 
Bone 
Brass 
Copper 
Iron 
Lead 
Steel 

7.0 
1.5 
9.1 
11.0 
9.1 
1.6 
21 

3 
8.0 
3.6 
4.2 
7.0 
0.56 
8.4 

7 
 
6 
14 
10 
0.77 
16 

1.4 
 
3.5 
1.6 
1.7 
 
2.4 

1.4 
1.30 
4.5 
4.1 
3.2 
0.2 
4.8 

 
Example 10.1 

 
Stretching a wire. A steel wire 1.00 m long with a diameter d = 1.00 mm has a 10.0-kg mass hung from it. (a) How 
much will the wire stretch? (b) What is the stress on the wire? (c) What is the strain? 

Solution
 

a. The cross-sectional area of the wire is given by 
 

A = πd2 = π(1.00 × 10−3 m)2 = 7.85 × 10−7 m2 
                                                                    4                   4 
 
We assume that the cross-sectional area of the wire does not change during the stretching process. The force 
stretching the wire is the weight of the 10.0-kg mass, that is, 
 

F = mg = (10.0 kg)(9.80 m/s2) = 98.0 N 
 

Young’s modulus for steel is found in table 10.1 as Y = 21 × 1010 N/m2. The elongation of the wire, found from 
modifying equation 10.6, is 

∆L = FL0 
       AY 

=                 (98.0 N)(1.00 m)               
                 (7.85 × 10−7 m2)(21.0 × 1010 N/m2) 

   = 0.594 × 10−3 m = 0.594 mm 
b.  The stress acting on the wire is 

  F  =        98.0 N        = 1.25 × 108 N/m2 
                                                                 A      7.85 × 10−7 m2 
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c.  The strain of the wire is 
∆L = 0.594 × 10−3 m = 0.594 × 10−3 

                                                                   L0           1.00 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 
The applied stress on the wire cannot be increased 

indefinitely if the wire is to remain elastic. Eventually a point is 
reached where the stress becomes so great that the atoms are pulled 
permanently away from their equilibrium position in the lattice 
structure. This point is called the elastic limit of the material and is 
shown in figure 10.5. When the stress exceeds the elastic limit the 
material does not return to its original size or shape when the stress 
is removed. The entire lattice structure of the material has been 
altered. If the stress is increased beyond the elastic limit, eventually 
the ultimate stress point is reached. This is the highest point on the 
stress-strain curve and represents the greatest stress that the 
material can bear. Brittle materials break suddenly at this point, 
while some ductile materials can be stretched a little more due to a 
decrease in the cross-sectional area of the material. But they too 
break shortly thereafter at the breaking point. Hooke’s law is only  
                                                                                                                     Figure 10.5  Stress-strain relationship. 

 
valid below the elastic limit, and it is only that region that will concern us. 

Although we have been discussing the stretching of an elastic body, a body is also elastic under 
compression. If a large load is placed on a column, then the column is compressed, that is, it shrinks by an amount 
∆L. When the load is removed the column returns to its original length. 

 
Example 10.2 

 
Compressing a steel column. A 445,000-N load is placed on top of a steel column 3.05 m long and 10.2 cm in 
diameter. By how much is the column compressed? 

Solution
 

The cross-sectional area of the column is 
     A = πd 2 = π(10.2 cm)2 = 81.7 cm2 

                                                                                4               4 
 
The change in length of the column, found from equation 10.6, is 
 

∆L = FL0 
       AY 

( )( )
( )( )

2

2 10 2

445,000 N 3.05 m  100 cm
1 m81.7 cm 21 10  N/m

 =  ×  
 

   = 7.91 × 10−4 m = 0.0791 cm = 0.791 mm 
 

Note that the compression is quite small (0.791 mm) considering the very large load (445,000 N). This is indicative 
of the very strong molecular forces in the lattice structure of the solid. 
 

To go to this Interactive Example click on this sentence. 
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Example 10.3 

 
Exceeding the ultimate compressive strength. A human bone is subjected to a compressive force of 5.00 × 105 N/m2. 
The bone is 25.0 cm long and has an approximate area of 4.00 cm2. If the ultimate compressive strength for a bone 
is 1.70 × 108 N/m2, will the bone be compressed or will it break under this force? 

Solution
 

The stress acting on the bone is found from 
 

 F  =   5.00 × 105 N  = 12.5 × 108 N/m2 
                                                                 A      4.00 ×10−4 m2 
   
Since this stress exceeds the ultimate compressive stress of a bone, 1.70 × 108 N/m2, the bone will break. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
10.3  Hooke’s Law for a Spring 
A simpler formulation of Hooke’s law is sometimes useful and can be found from equation 10.6 by a slight 
rearrangement of terms. That is, solving equation 10.6 for F gives 
 

F = AY ∆L  
L0 
 

Because A, Y, and L0 are all constants, the term AY/L0 can be set equal to a new constant k, namely 
 

k =  AY                                                                             (10.7) 
              L0 

We call k a force constant or a spring constant. Then, 
 

F = k∆L                                           (10.8) 
 

The change in length ∆L of the material is simply the final 
length L minus the original length L0. We can introduce a new 
reference system to measure the elongation, by calling the location of 
the end of the material in its unstretched position, x = 0. Then we 
measure the stretch by the value of the displacement x from the 
unstretched position, as seen in figure 10.6. Thus, ∆L = x, in the new  
reference system, and we can write equation 10.8 as 

 
 F = kx                                             (10.9) 

 
                                                                                                               Figure 10.6  Changing the reference system. 

 
Equation 10.9 is a simplified form of Hooke’s law that we use in vibratory motion containing springs. For a helical 
spring, we can not obtain the spring constant from equation 10.7 because the geometry of a spring is not the same 
as a simple straight wire. However, we can find k experimentally by adding various weights to a spring and 
measuring the associated elongation x, as seen in figure 10.7(a). A plot of the magnitude of the applied force F 
versus the elongation x gives a straight line that goes through the origin, as in figure 10.7(b). Because Hooke’s law 
for the spring, equation 10.9, is an equation of the form of a straight line passing through the origin, that is, 
 

y = mx 
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the slope m of the straight line is the spring constant k. In this way, we can determine experimentally the spring 
constant for any spring. 

             
(a)                                                                       (b) 

Figure 10.7  Experimental determination of a spring constant. 
 

Example 10.4 
 

The elongation of a spring. A spring with a force constant of 50.0 N/m is loaded with a 0.500-kg mass. Find the 
elongation of the spring. 

Solution
 

The elongation of the spring, found from Hooke’s law, equation 10.9, is 
 

x =  F  = mg 
     k       k 

= (0.500 kg)(9.80 m/s2) 
50.0 N/m 
= 0.098 m 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
10.4  Elasticity of Shape--Shear 
In addition to being stretched or compressed, a body can be deformed by changing the shape of the body. If the 
body returns to its original shape when the distorting stress is removed, the body exhibits the property of elasticity 
of shape, sometimes called shear. 

As an example, consider the cube fixed to the surface in figure 10.8(a). A tangential force Ft is applied at 
the top of the cube, a distance h above the bottom. The magnitude of this force Ft times the height h of the cube 
would normally cause a torque to act on the cube to rotate it. However, since the cube is not free to rotate, the body 
instead becomes deformed and changes its shape, as shown in figure 10.8(b). The normal lattice structure is shown 
in figure 10.8(c), and the deformed lattice structure in figure 10.8(d). The tangential force applied to the body 
causes the layers of atoms to be displaced sideways; one layer of the lattice structure slides over another. The 
tangential force thus causes a change in the shape of the body that is measured by the angle φ, called the angle of 
shear. We can also relate φ to the linear change from the original position of the body by noting from figure 10.8(b) 
that 

tan φ = ∆x 
             h 
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Because the deformations are usually quite small, as a first approximation the tan φ can be replaced by the angle φ 
itself, expressed in radians. Thus, 
 

φ = ∆x               (10.10) 
     h 

 
Equation 10.10 represents the 
shearing strain of the body. 

The tangential force Ft 
causes a deformation φ of the body 
and we find experimentally that 

 
φ ∝ Ft              (10.11) 

 
That is, the angle of shear is directly 
proportional to the magnitude of the 
applied tangential force Ft. We also 
find the deformation of the cube 
experimentally to be inversely 
proportional to the area of the top of 
the cube. With a larger area, the 
distorting force is spread over more  

                                              Figure 10.8  Elasticity of shear. 
 

molecules and hence the corresponding deformation is less. Thus, 
 

φ ∝  1                                                                               (10.12) 
          A 

 
Equations 10.11 and 10.12 can be combined into the single equation 
 

φ ∝  Ft                                                                           (10.13) 
          A 

 
Note that Ft/A has the dimensions of a stress and it is now defined as the shearing stress: 
 

Shearing stress =  Ft                                                                   (10.14) 
                           A 

 
Since φ is the shearing strain, equation 10.13 shows the familiar proportionality that stress is directly proportional 
to the strain. Introducing a constant of proportionality S, called the shear modulus, Hooke’s law for the elasticity 
of shear is given by 

 Ft  = Sφ                                                                            (10.15) 
                                                                                          A                                     

 
Values of S for various materials are given in table 10.1. The larger the value of S, the greater the resistance to 
shear. Note that the shear modulus is smaller than Young’s modulus Y. This implies that it is easier to slide layers 
of molecules over each other than it is to compress or stretch them. The shear modulus is also known as the torsion 
modulus and the modulus of rigidity. 

 
Example 10.5 

 
Elasticity of shear. A sheet of copper 0.750 m long, 1.00 m high, and 0.500 cm thick is acted on by a tangential 
force of 50,000 N, as shown in figure 10.9. The value of S for copper is 4.20 × 1010 N/m2. Find (a) the shearing 
stress, (b) the shearing strain, and (c) the linear displacement ∆x. 

Solution
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a. The area that the tangential force is acting over is 
 

A = bt = (0.750 m)(5.00 × 10−3 m) 
= 3.75 × 10−3 m2 

 
where b is the length of the base and t is the 
thickness of the copper sheet shown in figure 
10.9. The shearing stress is 
 

 Ft  =      50,000 N     = 1.33 × 107 N/m2  
        A       3.75 × 10−3 m2 

 
 

                                                                              Figure 10.9  An example of shear. 
 

b.  The shearing strain, found from equation 10.15, is 
 

φ =  Ft/A  =  1.33 × 107 N/m2    
                                                                                 S         4.20 × 1010 N/m2 

= 3.17 × 10−4 rad 
 

c.  The linear displacement ∆x, found from equation 10.10, is 
 

∆x = hφ = (1.00 m)(3.17 × 10−4 rad) 
= 3.17 × 10−4 m = 0.317 mm 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
10.5  Elasticity of Volume 
If a uniform force is exerted on all sides of an object, as in figure 
10.10, such as a block under water, each side of the block is 
compressed. Thus, the entire volume of the block decreases. The 
compressional stress is defined as 
 

stress =  F                                        (10.16) 
            A 

 
where F is the magnitude of the normal force acting on the cross-
sectional area A of the block. The strain is measured by the change in 
volume per unit volume, that is, 
 

strain = ∆V                                       (10.17) 
             V0 

 
                                                                                                               Figure 10.10  Volume elasticity. 

 
Since the stress is directly proportional to the strain, by Hooke’s law, we have 

 
     F  ∝  ∆V                                                                              (10.18) 

                                                                                         A        V0 
 

To obtain an equality, we introduce a constant of proportionality B, called the bulk modulus, and Hooke’s law for 
elasticity of volume becomes 
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  F  = −B ∆V                                                                           (10.19) 
                                                                                         A           V0       

 
The minus sign is introduced in equation 10.19 because an increase in the stress (F/A) causes a decrease in the 
volume, leaving ∆V negative. The bulk modulus is a measure of how difficult it is to compress a substance. The 
reciprocal of the bulk modulus B, called the compressibility k, is a measure of how easy it is to compress the 
substance. The bulk modulus B is used for solids, while the compressibility k is usually used for liquids. 

Quite often the body to be compressed is immersed in a liquid. In dealing with liquids and gases it is 
convenient to deal with the pressure exerted by the liquid or gas. We will see in detail in chapter 13 that pressure 
is defined as the force that is acting over a unit area of the body, that is, 

 
p =  F   
     A 

 
For the case of volume elasticity, the stress F/A, acting on the body by the fluid, can be replaced by the pressure of 
the fluid itself. Thus, Hooke’s law for volume elasticity can also be written as 
 

 p = −B∆V                                                                           (10.20) 
                                                                                                      V0           

 
Example 10.6 

 
Elasticity of volume. A solid copper sphere of 0.500-m3 volume is placed 30.5 m below the ocean surface where the 
pressure is 3.00 × 105 N/m2. What is the change in volume of the sphere? The bulk modulus for copper is 14 × 1010 
N/m2. 

Solution
 

The change in volume, found from equation 10.20, is 
 

∆V = − V0  p 
       B 

= −(0.500 m3)(3.00 × 105 N/m2) 
14 × 1010 N/m2 

= −1.07 × 10−6 m3 
 
The minus sign indicates that the volume has decreased. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

The Language of Physics 
 

Elasticity 
That property of a body by 

which it experiences a change in 
size or shape whenever a deforming 
force acts on the body. The elastic 
properties of matter are a 
manifestation of the molecular 
forces that hold solids together (p. ). 

 
Lattice structure of a solid 

A regular, periodically repeated, 
three-dimensional array of the 

atoms or molecules comprising the 
solid (p. ). 

 
Stress 

For a body that can be either 
stretched or compressed, the stress 
is the ratio of the applied force 
acting on a body to the cross-
sectional area of the body (p. ). 

 
 
 

Strain 
For a body that can be either 

stretched or compressed, the ratio 
of the change in length to the 
original length of the body is called 
the strain (p. ). 

 
Hooke’s law 

In an elastic body, the stress is 
directly proportional to the strain 
(p. ). 
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Young’s modulus of elasticity 
The proportionality constant in 

Hooke’s law. It is equal to the ratio 
of the stress to the strain (p. ). 

 
Elastic limit 

The point where the stress on a 
body becomes so great that the 
atoms of the body are pulled 
permanently away from their 
equilibrium position in the lattice 
structure. When the stress exceeds 
the elastic limit, the material will 
not return to its original size or 
shape when the stress is removed. 
Hooke’s law is no longer valid above 
the elastic limit (p. ). 

 
Shear 
That elastic property of a body that 
causes the shape of the body to be 

changed when a stress is applied. 
When the stress is removed the 
body returns to its original shape 
(p. ). 
 
Shearing strain 
The angle of shear, which is a 
measure of how much the body’s 
shape has been deformed (p. ). 
 
Shearing stress 
The ratio of the tangential force 
acting on the body to the area of the 
body over which the tangential 
force acts (p. ). 
 
Shear modulus 
The constant of proportionality in 
Hooke’s law for shear. It is equal to 
the ratio of the shearing stress to 
the shearing strain (p. ). 

 
Bulk modulus 
The constant of proportionality in 
Hooke’s law for volume elasticity. It 
is equal to the ratio of the 
compressional stress to the strain. 
The strain for this case is equal to 
the change in volume per unit 
volume (p. ). 
 
Elasticity of volume 
When a uniform force is exerted on 
all sides of an object, each side of 
the object becomes compressed. 
Hence, the entire volume of the 
body decreases. When the force is 
removed the body returns to its 
original volume (p. ). 

 
Summary of Important Equations 

 
Hooke’s law in general 
                stress ∝ strain        (10.5) 
 
Hooke’s law for stretching or 
compression     F  = Y ∆L         (10.6) 
                         A         L0 
 
 

Hooke’s law for a spring 
                       F = kx                 (10.9) 
 
Hooke’s law for shear  

 Ft  = Sφ                (10.15) 
                    A      
 
 

Hooke’s law for volume elasticity 
               F  = −B ∆V                (10.19) 
              A           V0 
 
Hooke’s law for volume elasticity 

  p = −B∆V               (10.20) 
                            V0 

Questions for Chapter 10 
 

1. Why is concrete often 
reinforced with steel? 

*2. An amorphous solid such as 
glass does not have the simple 
lattice structure shown in figure 
10.1. What effect does this have on 
the elastic properties of glass? 

3. Discuss the assumption that 
the diameter of a wire does not 
change when under stress. 

4. Compare the elastic 
constants of a human bone with the 
elastic constants of other materials 
listed in table 10.1. From this 
standpoint discuss the bone as a 
structural element. 

5. Why are there no Young’s 
moduli for liquids or gases?  

6. Describe the elastic 
properties of a cube of jello. 

7. If you doubled the diameter 
of a human bone, what would 
happen to the maximum 
compressive force that the bone 
could withstand without breaking? 

*8. In the profession of 
Orthodontics, a dentist uses braces 
to realign teeth. Discuss this 
process from the point of view of 
stress and strain. 

*9. Discuss Hooke’s law as it 
applies to the bending of a beam 

that is fixed at one end and has a 
load placed at the other end. 

 
Diagram for question 9. 

 
*10. How do the elastic 

properties of a material affect the 
vibration of that material? 

 
Problems for Chapter 10 

 
10.2  Hooke’s Law--Stress and 
Strain 

1. An aluminum wire has a 
diameter of 0.850 mm and is 

subjected to a force of 1000 N. Find 
the stress acting on the wire. 

2. A copper wire experiences a 
stress of 5.00 × 103 N/m2. If the 

diameter of the wire is 0.750 mm, 
find the force acting on the wire. 
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3. A brass wire 0.750 cm long is 
stretched by 0.001 cm. Find the 
strain of the wire. 

4. A steel wire, 1.00 m long, has 
a diameter of 1.50 mm. If a mass of 
3.00 kg is hung from the wire, by 
how much will it stretch? 

5. A load of 223,000 N is placed 
on an aluminum column 10.2 cm in 
diameter. If the column was 
originally 1.22 m high find the 
amount that the column has 
shrunk. 

6. A mass of 25,000 kg is placed 
on a steel column, 3.00 m high and 
15.0 cm in diameter. Find the 
decrease in length of the column 
under this compression. 

 
Diagram for problem 6. 

 
7. An aluminum wire, 1.50 m 

long, has a diameter of 0.750 mm. If 
a force of 60.0 N is suspended from 
the wire, find (a) the stress on the 
wire, (b) the elongation of the wire, 
and (c) the strain of the wire. 

8. A copper wire, 1.00 m long, 
has a diameter of 0.750 mm. When 
an unknown weight is suspended 
from the wire it stretches 0.200 
mm. What was the load placed on 
the wire? 

9. A steel wire is 1.00 m long 
and has a diameter of 0.75 mm. 
Find the maximum value of a mass 
that can be suspended from the 
wire before exceeding the elastic 
limit of the wire. 

10. A steel wire is 1.00 m long 
and has a 10.0-kg mass suspended 
from it. What is the minimum 
diameter of the wire such that the 
load will not exceed the elastic limit 
of the wire? 

11. Find the maximum load 
that can be applied to a brass wire, 
0.750 mm in diameter, without 
exceeding the elastic limit of the 
wire. 

12. Find the maximum change 
in length of a 1.00-m brass wire, of 
0.800 mm diameter, such that the 
elastic limit of the wire is not 
exceeded. 

13. If the thigh bone is about 
25.0 cm in length and about 4.00 cm 
in diameter determine the 
maximum compression of the bone 
before it will break. The ultimate 
compressive strength of bone is 1.70 
× 108 N/m2. 

14. If the ultimate tensile 
strength of glass is 7.00 × 107 N/m2, 
find the maximum weight that can 
be placed on a glass cylinder of 
0.100 m2 area, 25.0 cm long, if the 
glass is not to break. 

15. A human bone is 2.00 cm in 
diameter. Find the maximum 
compression force the bone can 
withstand without fracture. The 
ultimate compressive strength of 
bone is 1.70 × 108 N/m2. 

16. A copper rod, 0.400 cm in 
diameter, supports a load of 150 kg 
suspended from one end. Will the 
rod return to its initial length when 
the load is removed or has this load 
exceeded the elastic limit of the 
rod? 

 
10.3  Hooke’s Law for a Spring 

17. A coil spring stretches 4.00 
cm when a mass of 500 g is 
suspended from it. What is the force 
constant of the spring? 

18. A coil spring stretches by 
2.00 cm when an unknown load is 
placed on the spring. If the spring 
has a force constant of 3.5 N/m, find 
the value of the unknown force. 

19. A coil spring stretches by 
2.50 cm when a mass of 750 g is 
suspended from it. (a) Find the 
force constant of the spring. (b) How 
much will the spring stretch if 800 g 
is suspended from it? 

20. A horizontal spring 
stretches 20.0 cm when a force of 
10.0 N is applied to the spring. By 
how much will it stretch if a 30.0-N 
force is now applied to the spring? 
If the same spring is placed in the 
vertical and a weight of 10.0 N is 
hung from the spring, will the 
results change? 

21. A coil spring stretches by 
4.50 cm when a mass of 250 g is 
suspended from it. What force is 
necessary to stretch the spring an 
additional 2.50 cm? 

 
10.4  Elasticity of Shape--Shear 

22. A brass cube, 5.00 cm on a 
side, is subjected to a tangential 
force. If the angle of shear is 
measured in radians to be 0.010 
rad, what is the magnitude of the 
tangential force? 

23. A copper block, 7.50 cm on a 
side, is subjected to a tangential 
force of 3.5 × 103 N. Find the angle 
of shear. 

24. A copper cylinder, 7.50 cm 
high, and 7.50 cm in diameter, is 
subjected to a tangential force of 3.5 
× 103 N. Find the angle of shear. 
Compare this result with problem 
23. 

          
Diagram for problem 24. 

 
Diagram for problem 25. 

 
25. An annular copper cylinder, 

7.50 cm high, inner radius of 2.00 
cm and outer radius of 3.75 cm, is 
subjected to a tangential force of 3.5 
× 103 N. Find the angle of shear. 
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Compare this result with problems 
23 and 24. 

 
10.5  Elasticity of Volume 

26. A cube of lead 15.0 cm on a 
side is subjected to a uniform 
pressure of 5.00 × 105 N/m2. By how 
much does the volume of the cube 
change? 

27. A liter of glycerine contracts 
0.21 cm3 when subject to a pressure 
of 9.8 × 105 N/m2. Calculate the 
bulk modulus of glycerine. 

28. A pressure of 1.013 × 107 
N/m2 is applied to a volume of 15.0 
m3 of water. If the bulk modulus of 
water is 0.020 × 1010 N/m2, by how 
much will the water be compressed? 

29. Repeat problem 28, only this 
time use glycerine that has a bulk 
modulus of 0.45 × 1010 N/m2. 

30. Normal atmospheric 
pressure is 1.013 × 105 N/m2. How 
many atmospheres of pressure 
must be applied to a volume of 
water to compress it to 1.00% of its 
original volume? The bulk modulus 
of water is 0.020 × 1010 N/m2. 

31. Find the ratio of the density 
of water at the bottom of a 50.0-m 
lake to the density of water at the 
surface of the lake. The pressure at 
the bottom of the lake is 4.90 × 105 
N/m2. (Hint: the volume of the 
water will be decreased by the 
pressure of the water above it.) The 
bulk modulus for water is 0.21 × 
1010 N/m2. 

 
Additional Problems 

32. A lead block 50.0 cm long, 
10.0 cm wide, and 10.0 cm thick, 
has a force of 200,000 N placed on 
it. Find the stress, the strain, and 
the change in length if (a) the block 
is standing upright, and (b) the 
block is lying flat. 

33. An aluminum cylinder must 
support a load of 450,000 N. The 
cylinder is 5.00 m high. If the 
maximum allowable stress is 1.4 × 
108, what must be the minimum 
radius of the cylinder in order for 
the cylinder to support the load? 
What will be the length of the 
cylinder when under load? 

34. This is essentially the same 
problem as 33, but now the cylinder 

is made of steel. Find the minimum 
radius of the steel cylinder that is 
necessary to support the load and 
compare it to the radius of the 
aluminum cylinder. The maximum 
allowable stress for steel is 2.4 × 
1010 N/m2. 

35. How many 1.00-kg masses 
may be hung from a 1.00-m steel 
wire, 0.750 mm in diameter, 
without exceeding the elastic limit 
of the wire? 

36. A solid copper cylinder 1.50 
m long and 10.0 cm in diameter, 
has a mass of 5000 kg placed on its 
top. Find the compression of the 
cylinder. 

37. This is the same problem as 
36, except that the cylinder is an 
annular cylinder with an inner 
radius of 3.50 cm and outer radius 
of 5.00 cm. Find the compression of 
the cylinder and compare with 
problem 36. 

38. This is the same problem as 
problem 36 except the body is an I-
beam with the dimensions shown in 
the diagram. Find the compression 
of the I-beam and compare to 
problems 36 and 37. The crossbar 
width is 2.00 cm. 

 
Diagram for problem 38.  

 
*39. Two pieces of metal rod, 2.00 
cm thick, are to be connected 
together by riveting a steel plate to 
them as shown in the diagram. Two 
rivets, each 1.00 cm in diameter, 
are used. What is the maximum 
force that can be applied to the 
metal rod without exceeding a 
shearing stress of 8.4 × 108 N/m2.                           

 
Diagram for problem 39. 

 
*40. A copper and steel wire are 

welded together at their ends as 
shown. The original length of each 
wire is 50.0 cm and each has a 
diameter of 0.780 mm. A mass of 
10.0 kg is suspended from the 
combined wire. By how much will 
the combined wire stretch? 

    
Diagram for problem 40. 

 
*41. A copper and steel wire 

each 50.0 cm in length and 0.780 
mm in diameter are connected in 
parallel to a load of 98.0 N, as 
shown in the diagram. If the strain 
is the same for each wire, find 
(a) the force on wire 1, (b) the force 
on wire 2, and (c) the total 
displacement of the load. 

 
Diagram for problem 41. 

 
*42. Repeat problem 41 with 

the diameter of wire 1 equal to 1.00 
mm and the diameter of wire 2 
equal to 1.50 mm. 
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*43. Two steel wires of 
diameters 1.50 mm and 1.00 mm, 
and each 50.0 cm long, are welded 
together in series as shown in the 
diagram. If a weight of 98.0 N is 
suspended from the bottom of the 
combined wire, by how much will 
the combined wire stretch? 

 
Diagram for problem 43.                  

 
*44. Two springs are connected 

in parallel as shown in the diagram. 
The spring constants are k1 = 5.00 
N/m and k2 = 3.00 N/m. A force of 
10.0 N is applied as shown. If the 
strain is the same in each spring, 
find (a) the displacement of mass m, 

(b) the force on spring 1, and (c) the 
force on spring 2. 

 
Diagram for problem 44. 

 
*45. Two springs are connected 

in series as shown in the diagram. 
The spring constants are k1 = 5.00 
N/m and k2 = 3.00 N/m. A force of 
10.0 N is applied as shown. Find 
(a) the displacement of mass m, 
(b) the displacement of spring 1, 
and (c) the displacement of spring 2. 

 
Diagram for problem 45. 

 
Interactive Tutorials 

46. Hooke’s Law. Young’s 
modulus for a wire is Y = 2.10 × 
1011 N/m2. The wire has an initial 
length of L0 = 0.700 m and a 
diameter d = 0.310 mm. A force F = 
1.00 N is applied in steps from 1.00 
to 10.0 N. Calculate the wire’s 
change in length ∆L with increasing 
load F, and graph the result. 

 
To go to these Interactive 

Tutorials click on this sentence. 
 

 
 

To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 11  Simple Harmonic Motion 
 

"We are to admit no more causes of natural things than such as are both true and 
sufficient to explain their appearances."                             Isaac Newton 

 
11.1  Introduction to Periodic Motion 
Periodic motion is any motion that repeats itself in equal intervals of time. The uniformly rotating earth 
represents a periodic motion that repeats itself every 24 hours. The motion of the earth around the sun is periodic, 
repeating itself every 12 months. A vibrating spring and a pendulum also exhibit periodic motion. The period of 
the motion is defined as the time for the motion to repeat itself. A special type of periodic motion is simple 
harmonic motion and we now proceed to investigate it. 
 
 
11.2  Simple Harmonic Motion 
An example of simple harmonic motion is the vibration of a mass m, attached to a spring of negligible mass, as the 
mass slides on a frictionless surface, as shown in figure 11.1. We say that the mass, in the unstretched position, 
figure 11.1(a), is in its equilibrium position. If an applied force FA acts on the mass, the mass will be displaced to 
the right of its equilibrium position a distance x, figure 11.1(b). The distance that the spring stretches, obtained 
from Hooke’s law, is 

FA = kx 
 

The displacement x is defined as the distance the body moves from its 
equilibrium position. Because FA is a force that pulls the mass to the 
right, it is also the force that pulls the spring to the right. By Newton’s 
third law there is an equal but opposite elastic force exerted by the 
spring on the mass pulling the mass toward the left. Since this force 
tends to restore the mass to its original position, we call it the 
restoring force FR. Because the restoring force is opposite to the 
applied force, it is given by 

FR = −FA = −kx                                     (11.1) 
 

When the applied force FA is removed, the elastic restoring force FR is 
then the only force acting on the mass m, figure 11.1(c), and it tries to 
restore m to its equilibrium position. We can then find the acceleration 
of the mass from Newton’s second law as 
 

ma = FR 
        = −kx 

Thus, 
a = − k  x                                         (11.2) 

                                                               m            
 

Equation 11.2 is the defining equation for simple harmonic motion. 
Simple harmonic motion is motion in which the acceleration of a 
body is directly proportional to its displacement from the equilibrium 
position but in the opposite direction. A vibrating system that executes 
simple harmonic motion is sometimes called a harmonic oscillator. 
Because the acceleration is directly proportional to the displacement x 
                                                                                                                       Figure 11.1  The vibrating spring. 
 
in simple harmonic motion, the acceleration of the system is not constant but varies with x. At large displacements, 
the acceleration is large, at small displacements the acceleration is small. Describing the vibratory motion of the 
mass m requires some new techniques because the kinematic equations derived in chapter 3 were based on the 
assumption that the acceleration of the system was a constant. As we can see from equation 11.2, this assumption 
is no longer valid. We need to derive a new set of kinematic equations to describe simple harmonic motion, and we 
will do so in section 11.3. However, let us first look at the motion from a physical point of view. The mass m in 
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figure 11.2(a) is pulled a 
distance x = A to the right, and 
is then released. The maximum 
restoring force on m acts to the 
left at this position because 
 

FRmax = −kxmax = −kA 
 

The maximum displacement A 
is called the amplitude of the 
motion. At this position the 
mass experiences its maximum 
acceleration to the left. From 
equation 11.2 we obtain 
 

a = − k A  
     m 

 
The mass continues to 

move toward the left while the 
acceleration continuously 
decreases. At the equilibrium 
position, figure 11.2(b), x = 0 
and hence, from equation 11.2, 
the acceleration is also zero. 
However, because the mass has 
inertia it moves past the 
equilibrium position to negative 
values of x, thereby 
compressing the spring. The 
restoring force FR now points to 

                                         Figure 11.2  Detailed motion of the vibrating spring. 
 

the right, since for negative values of x, 
FR = −k(−x) = kx 

 
The force acting toward the right causes the mass to slow down, eventually coming to rest at x = −A. At this point, 
figure 11.2(c), there is a maximum restoring force pointing toward the right 
 

FRmax = −k(−A)max = kA 
and hence a maximum acceleration 

amax = −  k (−A)  =  k A 
                                                                                             m            m 

 
also to the right. The mass moves to the right while the force FR and the acceleration a decreases with x until x is 
again equal to zero, figure 11.2(d). Then FR and a are also zero. Because of the inertia of the mass, it moves past 
the equilibrium position to positive values of x. The restoring force again acts toward the left, slowing down the 
mass. When the displacement x is equal to A, figure 11.2(e), the mass momentarily comes to rest and then the 
motion repeats itself. One complete motion from x = A and back to x = A is called a cycle or an oscillation. The 
period T is the time for one complete oscillation, and the frequency f is the number of complete oscillations or 
cycles made in unit time. The period and the frequency are reciprocal to each other, that is, 
 

 f =  1                                                                                   (11.3) 
                                                                                                  T     
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The unit for a period is the second, while the unit for frequency, called a hertz, is one cycle per second. The hertz is 
abbreviated, Hz. Also note that a cycle is a number not a dimensional quantity and can be dropped from the 
computations whenever doing so is useful. 
 
 
11.3 Analysis of Simple Harmonic Motion -- The Reference Circle 
As pointed out in section 11.2, the acceleration of the mass in the vibrating spring system is not a constant, but 
rather varies with the displacement x. Hence, the kinematic equations of chapter 3 can not be used to describe the 
motion. (We derived those equations on the assumption that the acceleration was constant.) Thus, a new set of 
equations must be derived to describe simple harmonic motion. 

Simple harmonic motion is related to the uniform circular motion studied in chapter 6. An analysis of 
uniform circular motion gives us a set of equations to describe simple harmonic motion. As an example, consider a 
point Q moving in uniform circular motion with an angular velocity ω, as shown in figure 11.3(a). At a particular 
instant of time t, the angle θ that Q has turned through is 

 
θ = ωt                                                                                 (11.4) 

         
 The projection of point Q onto the x-axis gives the 
point P. As Q rotates in the circle, P oscillates back 
and forth along the x-axis, figure 11.3(b). That is, 
when Q is at position 1, P is at 1. As Q moves to 
position 2 on the circle, P moves to the left along the 
x-axis to position 2’ .As Q moves to position 3, P moves 
on the x-axis to position 3’, which is of course the 
value of x = 0. As Q moves to position 4 on the circle, P 
moves along the negative x-axis to position 4’ .When Q 
arrives at position 5, P is also there. As Q moves to 
position 6 on the circle, P moves to position 6’ on the x-
axis. Then finally, as Q moves through positions 7, 8, 
and 1, P moves through 7’, 8’, and 1, respectively. The 
oscillatory motion of point P on the x-axis corresponds 
to the simple harmonic motion of a body m moving 
under the influence of an elastic restoring force, as 
shown in figure 11.2. 

The position of P on the x-axis and hence the 
position of the mass m is described in terms of the 
point Q and the angle θ found in figure 11.3(a) as 
 

x = A cos θ                           (11.5) 
 

Here A is the amplitude of the vibratory motion and  
                                                                                                     Figure 11.3  Simple harmonic motion and  

                                                                                         the reference circle. 
using the value of θ from equation 11.4 we have 

x = A cos ωt                                                                             (11.6) 
 

Equation 11.6 is the first kinematic equation for simple harmonic motion; it gives the displacement of the vibrating 
body at any instant of time t. The angular velocity ω of point Q in the reference circle is related to the frequency 
of the simple harmonic motion. Because the angular velocity was defined as 
 

ω =  θ                                                                                   (11.7) 
       t 

 
then, for a complete rotation of point Q, θ rotates through an angle of 2π rad. But this occurs in exactly the time for 
P to execute one complete vibration. We call this time for one complete vibration the period T. Hence, we can 
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also write the angular velocity, equation 11.7, as 
ω =  θ  = 2π                                                                             (11.8) 
         t      T    

 
Since the frequency f is the reciprocal of the period T (equation 11.3) we can write equation 11.8 as 
 

 ω = 2πf                                                                                (11.9) 
 

Thus, the angular velocity of the uniform circular motion in the reference circle is related to the frequency 
of the vibrating system. Because of this relation between the angular velocity and the frequency of the system, we 
usually call the angular velocity ω the angular frequency of the vibrating system. We can substitute equation 11.9 
into equation 11.6 to give another form for the first kinematic equation of simple harmonic motion, namely 

 
x = A cos(2πft)                                                                         (11.10) 

 
We can find the velocity of the mass m attached to the end of the spring in figure 11.2 with the help of the 

reference circle in figure 11.3(c). The point Q moves with the tangential velocity VT. The x-component of this 
velocity is the velocity of the point P and hence the velocity of the mass m. From figure 11.3(c) we can see that 

 
v = −VT sin θ                                                                         (11.11) 

 
The minus sign indicates that the velocity of P is toward the left at this position. The linear velocity VT of the point 
Q is related to the angular velocity ω by equation 9.2 of chapter 9, that is 
 

v = rω 
 

For the reference circle, v = VT and r is the amplitude A. Hence, the tangential velocity VT is given by 
 

VT = ωA                                                                              (11.12) 
 

Using equations 11.11, 11.12, and 11.4, the velocity of point P becomes 
 

 v = −ωA sin ωt                                                                        (11.13) 
 

Equation 11.13 is the second of the kinematic equations for simple harmonic motion and it gives the speed of the 
vibrating mass at any time t. 

A third kinematic equation for simple harmonic motion giving the speed of the vibrating body as a function 
of displacement can be found from equation 11.13 by using the trigonometric identity 

 
    sin2θ + cos2θ = 1 

or 
2sin  1 cosθ θ= ± −  

From figure 11.3(a) or equation 11.5, we have 
cos θ =  x   
           A 

Hence, 
2

2sin  1 x
A

θ = ± −                                                                      (11.14) 

 
Substituting equation 11.14 back into equation 11.13, we get 
 

2

2  1 xv A
A

ω= ± −  

or 
2 2  v A xω= ± −                                                                       (11.15) 

Pearson Custom Publishing

328



 

 
Chapter 11  Simple Harmonic Motion                                                                                                                  11-5 

 
Equation 11.15 is the third of the kinematic equations for simple harmonic motion and it gives the velocity of the 
moving body at any displacement x. The ± sign in equation 11.15 indicates the direction of the vibrating body. If 
the body is moving to the right, then the positive sign (+) is used. If the body is moving to the left, then the 
negative sign (−) is used. 

Finally, we can find the acceleration of the vibrating body using the reference circle in figure 11.3(d). The 
point Q in uniform circular motion experiences a centripetal acceleration ac pointing toward the center of the circle 
in figure 11.3(d). The x-component of the centripetal acceleration is the acceleration of the vibrating body at the 
point P. That is, 

a = −ac cos θ                                                                          (11.16) 
 

The minus sign again indicates that the acceleration is toward the left. But recall from chapter 6 that the 
magnitude of the centripetal acceleration is 

ac =  v2                                                                                (6.12) 
         r 

 
where v represents the tangential speed of the rotating object, which in the present case is VT, and r is the radius 
of the circle, which in the present case is the radius of the reference circle A. Thus, 
 

ac =  VT2  
       A 

But we saw in equation 11.12 that VT = ωA, therefore 
   ac = ω2A 

 
The acceleration of the mass m, equation 11.16, thus becomes 
 

 a = −ω2A cos ωt                                                                        (11.17) 
 

Equation 11.17 is the fourth of the kinematic equations for simple harmonic motion. It gives the acceleration of the 
vibrating body at any time t. This equation has no counterpart in chapter 3, because there the acceleration was 
always a constant. Also, since F = ma by Newton’s second law, the force acting on the mass m, becomes 
 

F = −mω2A cos ωt                                                                       (11.18) 
 

Thus, the force acting on the mass m is a variable force. 
Equations 11.6 and 11.17 can be combined into the simple equation 

 
a = −ω2x                                                                              (11.19) 

If equation 11.19 is compared with equation 11.2, 
a = −  k  x 

     m 
 
we see that the acceleration of the mass at P, equation 11.19, is directly proportional to the displacement x and in 
the opposite direction. But this is the definition of simple harmonic motion as stated in equation 11.2. Hence, the 
projection of a point at Q, in uniform circular motion, onto the x-axis does indeed represent simple harmonic 
motion. Thus, the kinematic equations developed to describe the motion of the point P, also describe the motion of 
a mass attached to a vibrating spring. 

An important relation between the characteristics of the spring and the vibratory motion can be easily 
deduced from equations 11.2 and 11.19. That is, because both equations represent the acceleration of the vibrating 
body they can be equated to each other, giving  

ω2 =  k  
        m 

or 
k
m

ω =                                                                              (11.20) 
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The value of ω in the kinematic equations is expressed in terms of the force constant k of the spring and the mass 
m attached to the spring. The physics of simple harmonic motion is thus connected to the angular frequency ω of 
the vibration. 

In summary, the kinematic equations for simple harmonic motion are 
 

x = A cos ωt                                                                               (11.6) 
v = − ωA sin ωt                                                                        (11.13) 

2 2  v A xω= ± −                                                                     (11.15) 
a = − ω2A cos ωt                                                                       (11.17) 
F = − mω2A cos ωt                                                                    (11.18) 

where, from equations 11.9 and 11.20, we have 

2 kf
m

ω π= =  

 
A plot of the displacement, velocity, and 

acceleration of the vibrating body as a function of 
time are shown in figure 11.4. We can see that the 
mathematical description follows the physical 
description in figure 11.2. When x = A, the 
maximum displacement, the velocity v is zero, while 
the acceleration is at its maximum value of −ω2A. 
The minus sign indicates that the acceleration is 
toward the left. The force is at its maximum value of 
−mω2A, where the minus sign shows that the 
restoring force is pulling the mass back toward its 
equilibrium position. At the equilibrium position x = 
0, a = 0, and F = 0, but v has its maximum velocity 
of −ωA toward the left. As x goes to negative values, 
the force and the acceleration become positive, 
slowing down the motion to the left, and hence v 
starts to decrease. At x = −A the velocity is zero and 
the force and acceleration take on their maximum 
values toward the right, tending to restore the mass 
to its equilibrium position. As x becomes less 
negative, the velocity to the right increases, until it 
picks up its maximum value of ωA at x = 0, the 
equilibrium position, where F and a are both zero. 
Because of this large velocity, the mass passes the 
equilibrium position in its motion toward the right. 
However, as soon as x becomes positive, the force 
and the acceleration become negative thereby 
slowing down the mass until its velocity becomes 
zero at the maximum displacement A. One entire 
cycle has been completed, and the motion starts over 
again. (We should emphasize here that in this  

                                                                                         Figure 11.4  Displacement, velocity, and acceleration in 
                                                                                  simple harmonic motion. 

 
vibratory motion there are two places where the velocity is instantaneously zero, x = A and x = −A, even though 
the instantaneous acceleration is nonzero there.) 

Sometimes the vibratory motion is so rapid that the actual displacement, velocity, and acceleration at 
every instant of time are not as important as the gross motion, which can be described in terms of the frequency or 
period of the motion. We can find the frequency of the vibrating mass in terms of the spring constant k and the 
vibrating mass m by setting equation 11.9 equal to equation 11.20. Thus, 
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2 kf
m

ω π= =  

Solving for the frequency f, we obtain 
1

2
kf
mπ

=                                                                            (11.21) 

 
Equation 11.21 gives the frequency of the vibration. Because the period of the vibrating motion is the reciprocal of 
the frequency, we get for the period 

2 mT
k

π=                                                                            (11.22) 

 
Equation 11.22 gives the period of the simple harmonic motion in terms of the mass m in motion and the spring 
constant k. Notice that for a particular value of m and k, the period of the motion remains a constant throughout 
the motion. 

 
Example 11.1 

 
An example of simple harmonic motion. A mass of 0.300 kg is placed on a vertical spring and the spring stretches 
by 10.0 cm. It is then pulled down an additional 5.00 cm and then released. Find (a) the spring constant k, (b) the 
angular frequency ω, (c) the frequency f, (d) the period T, (e) the maximum velocity of the vibrating mass, (f) the 
maximum acceleration of the mass, (g) the maximum restoring force, (h) the velocity of the mass at x = 2.00 cm, 
and (i) the equation of the displacement, velocity, and acceleration at any time t. 

Solution
 

Although the original analysis dealt with a mass on a horizontal frictionless surface, the results also apply to a 
mass attached to a spring that is allowed to vibrate in the vertical direction. The constant force of gravity on the 
0.300-kg mass displaces the equilibrium position to x = 10.0 cm. When the additional force is applied to displace 
the mass another 5.00 cm, the mass oscillates about the equilibrium position, located at the 10.0-cm mark. Thus, 
the force of gravity only displaces the equilibrium position, but does not otherwise influence the result of the 
dynamic motion. 
a.  The spring constant, found from Hooke’s law, is 
 

k = FA  =  mg  
                                                                                             x         x 

= (0.300 kg)(9.80 m/s2) 
0.100 m 

= 29.4 N/m 
 

b.  The angular frequency ω, found from equation 11.20, is 
 

k
m

ω =  

29.4 N/m
0.300 kg

=  

= 9.90 rad/s 
 
c.  The frequency of the motion, found from equation 11.9, is 
 

f =  ω  
      2π 

= 9.90 rad/s 
  2π rad 
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= 1.58 cycles  = 1.58 Hz  
                                                                                            s         

 
d.  We could find the period from equation 11.22 but since we already know the frequency f, it is easier to compute 
T from equation 11.3. Thus, 

T =  1  =          1         = 0.633 s 
                                                                                f     1.58 cycles/s 

 
e.  The maximum velocity, found from equation 11.13, is 
 

vmax = ωA = (9.90 rad/s)(5.00 × 10−2 m) 
= 0.495 m/s 

 
f.  The maximum acceleration, found from equation 11.17, is 
 

amax = ω2A = (9.90 rad/s)2(5.00 × 10−2 m) 
= 4.90 m/s2 

 
g.  The maximum restoring force, found from Hooke’s law, is 
 

Fmax = kxmax = kA 
= (29.4 N/m)(5.00 × 10−2 m) 

= 1.47 N 
 
h.  The velocity of the mass at x = 2.00 cm, found from equation 11.15, is 
 

2 2  v A xω= ± −  

( ) ( ) ( )2 22 2 9.90 rad/s  5.00 10  m 2.00 10  mv − −= ± × − ×  

= ± 0.454 m/s 
 

where v is positive when moving to the right and negative when moving to the left. 
i.  The equation of the displacement at any instant of time, found from equation 11.6, is 
 

x = A cos ωt 
= (5.00 × 10−2 m) cos(9.90 rad/s)t 

 
The equation of the velocity at any instant of time, found from equation 11.13, is 
 

v = −ωA sin ωt 
= −(9.90 rad/s)(5.00 × 10−2 m)sin(9.90 rad/s)t 

= −(0.495 m/s)sin(9.90 rad/s)t 
 

The equation of the acceleration at any time, found from equation 11.17, is 
 

a = −ω2A cos ωt 
= −(9.90 rad/s)2(5.00 × 10−2 m)cos(9.90 rad/s)t 

= −(4.90 m/s2)cos(9.90 rad/s)t 
 

To go to this Interactive Example click on this sentence. 
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11.4  The Potential Energy of a Spring 
In chapter 7 we defined the gravitational potential energy of a body as the energy that a body possesses by virtue 
of its position in a gravitational field. A body can also have elastic potential energy. For example, a compressed 
spring has potential energy because it has the ability to do work as it expands to its equilibrium configuration. 
Similarly, a stretched spring must also contain potential energy because it has the ability to do work as it returns to 
its equilibrium position. Because work must be done on a body to put the body into the configuration where it has 
the elastic potential energy, this work is used as the measure of the potential energy. Thus, the potential energy 
of a spring is equal to the work that you, the external agent, must do to compress (or stretch) the spring to its 
present configuration. We defined the potential energy as 
 

PE = W = Fx                                                                           (11.23) 
 

However, we can not use equation 11.23 in its present form to determine the potential energy of a spring. Recall 
that the work defined in this way, in chapter 7, was for a constant force. We have seen in this chapter that the 
force necessary to compress or stretch a spring is not a constant but is rather a variable force depending on the 
value of x, (F = −kx). We can still solve the problem, however, by using the average value of the force between the 
value at the equilibrium position and the value at the position x. That is, because the restoring force is directly 
proportional to the displacement, the average force exerted in moving the mass m from x = 0 to the value x in 
figure 11.5(a) is 

Favg = F0 + F    
            2 

      
Figure 11.5  The potential energy of a spring. 

 
Thus, we find the potential energy in this configuration by using the average force, that is, 
 

PE = W = Favgx 
0

2
F FW x+ = =  

 
 

0
2
kx x+ =  

 
 

Hence, 
 PE =  1  kx2                                                                           (11.24) 

                                                                                                  2        
 

Because of the x2 in equation 11.24, the potential energy of a spring is always positive, whether x is positive or 
negative. The zero of potential energy is defined at the equilibrium position, x = 0. 

Note that equation 11.24 could also be derived by plotting the force F acting on the spring versus the 
displacement x of the spring, as shown in figure 11.5(b). Because the work is equal to the product of the force F 
and the displacement x, the work is also equal to the area under the curve in figure 11.5(b). The area of that 
triangle is ½ (x)(F) = ½ (x)(kx) = ½kx2. (For the more general problem where the force is not a linear function of the 
displacement x, if the force is plotted versus the displacement x, the work done, and hence the potential energy, 
will still be equal to the area under the curve.) 
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Example 11.2 
 

The potential energy of a spring. A spring, with a spring constant of 29.4 N/m, is stretched 5.00 cm. How much 
potential energy does the spring possess? 

Solution
 

The potential energy of the spring, found from equation 11.24, is 
 

PE =  1 kx2 
     2 

  =  1 (29.4 N/m)(5.00 × 10−2 m)2 
                                                                            2                                         

= 3.68 × 10−2 J 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

11.5  Conservation of Energy and the Vibrating Spring 
The vibrating spring system of figure 11.2 can also be described in terms of the law of conservation of energy. 
When the spring is stretched to its maximum displacement A, work is done on the spring, and hence the spring 
contains potential energy. The mass m attached to the spring also has that potential energy. The total energy of 
the system is equal to the potential energy at the maximum displacement because at that point, v = 0, and 
therefore the kinetic energy is equal to zero, that is, 

Etot = PE =  1  kA2                                                                (11.25) 
                         2   

 
When the spring is released, the mass moves to a smaller displacement x, and is moving at a speed v. At 

this arbitrary position x, the mass will have both potential energy and kinetic energy. The law of conservation of 
energy then yields 

Etot = PE + KE 
 Etot =  1 kx2 +  1 mv2                                                                   (11.26) 

                                                                                            2           2                   
 

But the total energy imparted to the mass m is given by equation 11.25. Hence, the law of conservation of energy 
gives 

Etot = Etot 
  1 kA2 =  1 kx2 +  1  mv2                                                                   (11.27) 

                                                                             2            2           2                       
 

We can also use equation 11.27 to find the velocity of the moving body at any displacement x. Thus, 
 

  1 mv2 =  1 kA2 −  1 kx2  
                                                                               2             2           2 

v2 =  k (A2 − x2) 
                                                                                            m      

( )2 2 kv A x
m

= ± −                                                                      (11.28) 

 
We should note that this is the same equation for the velocity as derived earlier (equation 11.15). It is informative 
to replace the values of x and v from their respective equations 11.6 and 11.13 into equation 11.26. Thus, 
 

Etot =  1 k(A cos ωt)2 +  1 m(−ωA sin ωt)2 
                                                                           2                         2 
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or 
Etot =  1 kA2 cos2ωt +  1 mω2A2 sin2ωt 

                                      2                       2              
but since 

ω2 =  k  
       m 

Etot =  1 kA2 cos2ωt +  1 m k A2 sin2ωt 
                                      2                       2     m                    

=  1 kA2 cos2ωt +  1 kA2 sin2ωt                 (11.29) 
                                          2                       2 
 
These terms are plotted in figure 11.6. 

                                                                                                                 Figure 11.6  Conservation of energy and 
                                                                                                                                   simple harmonic motion. 

 
The total energy of the vibrating system is a constant and this is shown as the horizontal line, Etot. At t = 0 

the total energy of the system is potential energy (v is zero, hence the kinetic energy is zero). As the time increases 
the potential energy decreases and the kinetic energy increases, as shown. However, the total energy remains the 
same. From equation 11.24 and figure 11.6, we see that at x = 0 the potential energy is zero and hence all the 
energy is kinetic. This occurs when t = T/4. The maximum velocity of the mass m occurs here and is easily found by 
equating the maximum kinetic energy to the total energy, that is, 

 
 1 mvmax2  =  1 kA2  

                                                                                  2                  2  

max  kv A A
m

ω= =                                                                      (11.30) 

 
When the oscillating mass reaches x = A, the kinetic energy becomes zero since 
 

 1 kA2 =  1 kA2 +  1 mv2 
                                                                              2            2           2 

 1 mv2 =  1 kA2 −  1 kA2 = 0 
                                                                           2            2            2    

= KE = 0 
 

As the oscillation continues there is a constant interchange of energy between potential energy and kinetic 
energy but the total energy of the system remains a constant. 

 
Example 11.3 

 
Conservation of energy applied to a spring. A horizontal spring has a spring constant of 29.4 N/m. A mass of 300 g 
is attached to the spring and displaced 5.00 cm. The mass is then released. Find (a) the total energy of the system, 
(b) the maximum velocity of the system, and (c) the potential energy and kinetic energy for x = 2.00 cm. 

Solution
 

a. The total energy of the system is 
    Etot =  1 kA2 

         2 
=  1 (29.4 N/m)(5.00 × 10−2 m)2 

                                                                           2                                          
= 3.68 × 10−2 J 

 
b. The maximum velocity occurs when x = 0 and the potential energy is zero. Therefore, using equation 11.30, 
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max  kv A
m

=  

( )2
max 1

29.4 N/m 5.00 10  m
3.00 10  kg

v −
−= ×

×
 

= 0.495 m/s 
c. The potential energy at 2.00 cm is 

       PE =  1 kx2 =  1 (29.4 N/m)(2.00 × 10−2 m)2 
                                                                           2           2 

= 5.88 × 10−3 J 
The kinetic energy at 2.00 cm is 

KE =  1 mv2 =  1 m k (A2 − x2) 
                                                                                  2             2    m 

=  1 (29.4 N/m)[(5.00 × 10−2 m)2 − (2.00 × 10−2 m)2] 
                                                          2 

= 3.09 × 10−2 J 
 
Note that the sum of the potential energy and the kinetic energy is equal to the same value for the total energy 
found in part a. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
11.6  The Simple Pendulum 
Another example of periodic motion is a pendulum. A simple pendulum is a bob that is attached to a string and 
allowed to oscillate, as shown in figure 11.7(a). The bob oscillates because there is a restoring force, given by 

Figure 11.7  The simple pendulum. 
 

  Restoring force = −mg sin θ                                                               (11.31) 
 

This restoring force is just the component of the weight of the bob that is perpendicular to the string, as shown in 
figure 11.7(b). If Newton’s second law, F = ma, is applied to the motion of the pendulum bob, we get 
 

   −mg sin θ = ma 
 

The tangential acceleration of the pendulum bob is thus  
a = −g sin θ                                                                     (11.32) 

 
Note that although this pendulum motion is periodic, it is not, in general, simple harmonic motion because the 
acceleration is not directly proportional to the displacement of the pendulum bob from its equilibrium position. 
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However, if the angle θ of the simple pendulum is small, then the sine of θ can be replaced by the angle θ itself, 
expressed in radians. (The discrepancy in using θ rather than the sin θ is less than 0.2% for angles less than 10 
degrees.) That is, for small angles 

sin θ ≈ θ 
The acceleration of the bob is then 

a = −gθ                                                                              (11.33) 
 

From figure 11.7 and the definition of an angle in radians (θ = arc length/radius), we have 
 

θ =  s  
     l 

 
where s is the actual path length followed by the bob. Thus 
 

a = −g  s                                                                               (11.34) 
          l 

 
The path length s is curved, but if the angle θ is small, the arc length s is approximately equal to the chord x, 
figure 11.7(c). Hence, 

 a = − g  x                                                                              (11.35) 
                                                                                                      l         

 
which is an equation having the same form as that of the equation for simple harmonic motion. Therefore, if the 
angle of oscillation θ is small, the pendulum will execute simple harmonic motion. For simple harmonic motion of a 
spring, the acceleration was found to be 

a = −  k x                                                                             (11.2) 
           m 

  
We can now use the equations developed for the vibrating spring to describe the motion of the pendulum. We find 
an equivalent spring constant of the pendulum by setting equation 11.2 equal to equation 11.35. That is 
 

 k  =  g  
m      l  

or 
 kP = mg                                                                             (11.36) 

                                                                                                      l              
 
Equation 11.36 states that the motion of a pendulum can be described by the equations developed for the vibrating 
spring by using the equivalent spring constant of the pendulum kp. Thus, the period of motion of the pendulum, 
found from equation 11.22, is 

p
p

2 mT
k

π=  

2
/

m
mg l

π=  

p 2 lT
g

π=                                                                            (11.37) 

 
The period of motion of the pendulum is independent of the mass m of the bob but is directly proportional 

to the square root of the length of the string. If the angle θ is equal to 150 on either side of the central position, 
then the true period differs from that given by equation 11.37 by less than 0.5%. 

The pendulum can be used as a very simple device to measure the acceleration of gravity at a particular 
location. We measure the length l of the pendulum and then set the pendulum into motion. We measure the period 
by a clock and obtain the acceleration of gravity from equation 11.37 as 
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 g = 4π2 l                                                                              (11.38) 

                                                                                                 Tp2       
 

Example 11.4 
 

The period of a pendulum. Find the period of a simple pendulum 1.50 m long. 

Solution
 

The period, found from equation 11.37, is 

p 2 lT
g

π=  

2
1.50 m2  

9.80 m/s
π=  

= 2.46 s 
 

To go to this Interactive Example click on this sentence.  
 

 
 

Example 11.5 
 

The length of a pendulum. Find the length of a simple pendulum whose period is 1.00 s. 

Solution
 

The length of the pendulum, found from equation 11.37, is 
 

l =  T p2 g 
  4π2 

= (1.00 s)2 (9.80 m/s2) 
                                                                                       4π2                  

= 0.248 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 11.6 
 

The pendulum and the acceleration due to gravity. A pendulum 1.50 m long is observed to have a period of 2.47 s at 
a certain location. Find the acceleration of gravity there. 

Solution
 

The acceleration of gravity, found from equation 11.38, is  
 

 g = 4π2 l 
     Tp2 

=    4π2   (1.50 m) 
                                                                                     (2.47 s)2              

= 9.71 m/s2 
 

To go to this Interactive Example click on this sentence. 
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We can also use a pendulum to measure an acceleration. If a pendulum is placed on board a rocket ship in 

interstellar space and the rocket ship is accelerated at 9.80 m/s2, the pendulum oscillates with the same period as 
it would at rest on the surface of the earth. An enclosed person or thing on the rocket ship could not distinguish 
between the acceleration of the rocket ship at 9.80 m/s2 and the acceleration due to gravity of 9.80 m/s2 on the 
earth. (This is an example of Einstein’s principle of equivalence in general relativity.) An oscillating pendulum of 
measured length l can be placed in an elevator and the period T measured. We can use equation 11.38 to measure 
the resultant acceleration experienced by the pendulum in the elevator. 
 
 
11.7  Springs in Parallel and in Series 
Sometimes more than one spring is used in a vibrating system. The motion of the system will depend on the way 
the springs are connected. As an 
example, suppose there are three 
massless springs with spring 
constants k1, k2, and k3. These 
springs can be connected in 
parallel, as shown in figure 
11.8(a), or in series, as in figure 
11.8(b). The period of motion of 
either configuration can be found 
by using an equivalent spring 
constant kE.       
 

                                                     Figure 11.8  Springs in parallel and in series. 
 
Springs in Parallel 
If the total force pulling the mass m a distance x to the right is Ftot, this force will distribute itself among the three 
springs such that there will be a force F1 on spring 1, a force F2 on spring 2, and a force F3 on spring 3. If the 
displacement of each spring is equal to x, then the springs are said to be in parallel. Then we can write the total 
force as 

Ftot = F1 + F2 + F3                                                                       (11.39) 
 

However, since we assumed that each spring was displaced the same distance x, Hooke’s law for each spring is 
 

F1 = k1x 
F2 = k2x 
F3 = k3x                                                                               (11.40) 

 
Substituting equation 11.40 into equation 11.39 gives 
 

Ftot = k1x + k2x + k3x 
      = (k1 + k2 + k3)x 

 
We now define an equivalent spring constant kE for springs connected in parallel as 
 

 kE = k1 + k2 + k3                                                                         (11.41) 
 

Hooke’s law for the combination of springs is given by 
Ftot = kEx                                                                            (11.42) 

 
The springs in parallel will execute a simple harmonic motion whose period, found from equation 11.22, is 
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E 1 2 3

2 2m mT
k k k k

π π= =
+ +

                                                            (11.43) 

 
Springs in Series 
If the same springs are connected in series, as in figure 11.8(b), the total force Ftot displaces the mass m a distance 
x to the right. But in this configuration, each spring stretches a different amount. Thus, the total displacement x is 
the sum of the displacements of each spring, that is, 
 

x = x1 + x2 + x3                                                                          (11.44) 
 

The displacement of each spring, found from Hooke’s law, is 
 

x1 =  F1  
      k1 

x2 =  F2  
      k2 

x3 =  F3                                                                               (11.45) 
       k3 

 
Substituting these values of the displacement into equation 11.44, yields 

 
x =  F1  +  F2  +  F3                                                                      (11.46) 

                                                                                        k1           k2      k3 
 
But because the springs are in series the total applied force is transmitted equally from spring to spring. Hence, 
 

Ftot = F1 = F2 = F3                                                                       (11.47) 
 

Substituting equation 11.47 into equation 11.46, gives 
 

x =  Ftot  +  Ftot  +  Ftot                                                                 (11.46) 
                                                                                        k1             k2        k3 
and 

tot
1 2 3

1 1 1x F
k k k

 
= + + 

 
                                                                 (11.48) 

 
We now define the equivalent spring constant for springs connected in series as 

 
 1  =  1  +  1  + 1                                                                       (11.49) 

                                                                                     kE     k1     k2     k3  
 
Thus, the total displacement, equation 11.48, becomes 

x = Ftot                                                                          (11.50) 
           kE             

and Hooke’s law becomes 
Ftot = kEx                                                                             (11.51) 

 
where kE is given by equation 11.49. Hence, the combination of springs in series executes simple harmonic motion 
and the period of that motion, given by equation 11.22, is 
 

E 1 2 3

1 1 12 2mT m
k k k k

π π
 

= = + + 
 

                                                    (11.52) 
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Example 11.7 
 

Springs in parallel. Three springs with force constants k1 = 10.0 N/m, k2 = 12.5 N/m, and k3 = 15.0 N/m are 
connected in parallel to a mass of 0.500 kg. The mass is then pulled to the right and released. Find the period of 
the motion. 

Solution
 

The period of the motion, found from equation 11.43, is 
 

1 2 3

2 mT
k k k

π=
+ +

 

0.500 kg2
10.0 N/m 12.5 N/m 15.0 N/m

T π=
+ +

 

= 0.726 s 
 

To go to this Interactive Example click on this sentence. 

 
 

Example 11.8 
 

Springs in series. The same three springs as in example 11.7 are now connected in series. Find the period of the 
motion. 

Solution
 

The period, found from equation 11.52, is 

1 2 3

1 1 12T m
k k k

π
 

= + + 
 

 

( ) 1 1 12 0.500 kg
10.0 N/m 12.5 N/m 15.0 N/m

π  = + + 
 

 

= 2.21 s 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

The Language of Physics 
 

Periodic motion 
Motion that repeats itself in equal 
intervals of time (p. ). 
 
Displacement 
The distance a vibrating body 
moves from its equilibrium position 
(p. ). 
 
 
 

Simple harmonic motion 
Periodic motion in which the 
acceleration of a body is directly 
proportional to its displacement 
from the equilibrium position but in 
the opposite direction. Because the 
acceleration is directly proportional 
to the displacement, the 
acceleration of the body is not 
constant. The kinematic equations 
developed in chapter 3 are no 

longer valid to describe this type of 
motion (p. ). 
 
Amplitude 
The maximum displacement of the 
vibrating body (p. ). 
 
Cycle 
One complete oscillation or 
vibratory motion (p. ). 
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Period 
The time for the vibrating body to 
complete one cycle (p. ). 
 
Frequency 
The number of complete cycles or 
oscillations in unit time. The 
frequency is the reciprocal of the 
period (p. ). 
 
Reference circle 
A body executing uniform circular 
motion does so in a circle. The 
projection of the position of the 
rotating body onto the x- or y-axis is 
equivalent to simple harmonic 
motion along that axis. Thus, 

vibratory motion is related to 
motion in a circle, the reference 
circle (p. ). 
 
Angular velocity 
The angular velocity of the uniform 
circular motion in the reference 
circle is related to the frequency of 
the vibrating system. Hence, the 
angular velocity is called the 
angular frequency of the vibrating 
system (p. ). 
 
Potential energy of a spring 
The energy that a body possesses by 
virtue of its configuration. A 
compressed spring has potential 

energy because it has the ability to 
do work as it expands to its 
equilibrium configuration. A 
stretched spring can also do work 
as it returns to its equilibrium 
configuration (p. ). 
 
Simple pendulum 
A bob that is attached to a string 
and allowed to oscillate to and fro 
under the action of gravity. If the 
angle of the pendulum is small the 
pendulum will oscillate in simple 
harmonic motion (p. ). 
 

 
Summary of Important Equations 

 
Restoring force in a spring 

              FR = −kx               (11.1) 
 
Defining relation for simple 
harmonic motion 

               a = − k  x                 (11.2) 
                            m 
 
Frequency        f =  1               (11.3) 
                              T 
 
Displacement in simple harmonic 
motion         x = A cos ωt          (11.6) 
 
Angular frequency    ω = 2πf   (11.9) 
 
Velocity as a function of time in 
simple harmonic motion 

     v = −ωA sin ωt         (11.13) 
 
Velocity as a function of 
displacement  

      2 2  v A xω= ± −        (11.15) 
 
 

Acceleration as a function of time 
   a = −ω2A cos ωt       (11.17) 

 
Angular frequency of a spring 

     k
m

ω =              (11.20) 

 
Frequency in simple harmonic 

 motion       1
2

kf
mπ

=           (11.21) 

 
Period in simple harmonic motion 

            2 mT
k

π=            (11.22) 

 
Potential energy of a spring 

   PE =  1 kx2              (11.24) 
                            2 
 
Conservation of energy for a 
vibrating spring    

 1  kA2 =  1 kx2 +  1  mv2    (11.27) 
       2             2           2 
      

Period of motion of a simple 

pendulum       p 2 lT
g

π=      (11.37) 

 
Equivalent spring constant for 
springs in parallel 

     kE = k1 + k2 + k3        (11.41) 
 
Period of motion for springs in 
parallel 

   
1 2 3

2 mT
k k k

π=
+ +

        (11.43) 

      
Equivalent spring constant for 
springs in series 

 1  =  1  +  1  + 1         (11.49) 
              kE     k1     k2     k3   

 
Period of motion for springs in 
series 

1 2 3

1 1 12T m
k k k

π
 

= + + 
 

      (11.52) 

 
Questions for Chapter 11 

 
1. Can the periodic motion of 

the earth be considered to be an 
example of simple harmonic 
motion? 

2. Can the kinematic equations 
derived in chapter 3 be used to 
describe simple harmonic motion? 

3. In the simple harmonic 
motion of a mass attached to a 
spring, the velocity of the mass is 
equal to zero when the acceleration 
has its maximum value. How is this 
possible? Can you think of other 
examples in which a body has zero 

velocity with a nonzero 
acceleration? 

4. What is the characteristic of 
the restoring force that makes 
simple harmonic motion possible? 

5. Discuss the significance of 
the reference circle in the analysis 
of simple harmonic motion. 
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6. How can a mass that is 
undergoing a one-dimensional 
translational simple harmonic 
motion have anything to do with an 
angular velocity or an angular 
frequency, which is a characteristic 
of two or more dimensions? 

7. How is the angular frequency 
related to the physical 
characteristics of the spring and the 
vibrating mass in simple harmonic 
motion? 

*8. In the entire derivation of 
the equations for simple harmonic 
motion we have assumed that the 
springs are massless and friction 
can be neglected. Discuss these 
assumptions. Describe qualitatively 
what you would expect to happen to 
the motion if the springs are not 
small enough to be considered 
massless. 

*9. Describe how a geological 
survey for iron might be 

undertaken on the moon using a 
simple pendulum. 

*10. How could a simple 
pendulum be used to make an 
accelerometer? 

*11. Discuss the assumption 
that the displacement of each 
spring is the same when the springs 
are in parallel. Under what 
conditions is this assumption valid 
and when would it be invalid? 

 
Problems for Chapter 11 

 
11.2 Simple Harmonic Motion 
and 11.3 Analysis of Simple 
Harmonic Motion 

1. A mass of 0.200 kg is 
attached to a spring of spring 
constant 30.0 N/m. If the mass 
executes simple harmonic motion, 
what will be its frequency? 

2. A 30.0-g mass is attached to a 
vertical spring and it stretches 10.0 
cm. It is then stretched an 
additional 5.00 cm and released. 
Find its period of motion and its 
frequency. 

3. A 0.200-kg mass on a spring 
executes simple harmonic motion at 
a frequency f. What mass is 
necessary for the system to vibrate 
at a frequency of 2f ? 

4. A simple harmonic oscillator 
has a frequency of 2.00 Hz and an 
amplitude of 10.0 cm. What is its 
maximum acceleration? What is its 
acceleration at t = 0.25 s? 

5. A ball attached to a string 
travels in uniform circular motion 
in a horizontal circle of 50.0 cm 
radius in 1.00 s. Sunlight shining 
on the ball throws its shadow on a 
wall. Find the velocity of the 
shadow at (a) the end of its path 
and (b) the center of its path. 

6. A 50.0-g mass is attached to a 
spring of force constant 10.0 N/m. 
The spring is stretched 20.0 cm and 
then released. Find the 
displacement, velocity, and 
acceleration of the mass at 0.200 s. 

7. A 25.0-g mass is attached to a 
vertical spring and it stretches 15.0 

cm. It is then stretched an 
additional 10.0 cm and then 
released. What is the maximum 
velocity of the mass? What is its 
maximum acceleration? 

8. The displacement of a body in 
simple harmonic motion is given by 
x = (0.15 m)cos[(5.00 rad/s)t]. Find 
(a) the amplitude of the motion, 
(b) the angular frequency, (c) the 
frequency, (d) the period, and 
(e) the displacement at 3.00 s. 

9. A 500-g mass is hung from a 
coiled spring and it stretches 10.0 
cm. It is then stretched an 
additional 15.0 cm and released. 
Find (a) the frequency of vibration, 
(b) the period, and (c) the velocity 
and acceleration at a displacement 
of 10.0 cm. 

10. A mass of 0.200 kg is placed 
on a vertical spring and the spring 
stretches by 15.0 cm. It is then 
pulled down an additional 10.0 cm 
and then released. Find (a) the 
spring constant, (b) the angular 
frequency, (c) the frequency, (d) the 
period, (e) the maximum velocity of 
the mass, (f) the maximum 
acceleration of the mass, (g) the 
maximum restoring force, and 
(h) the equation of the 
displacement, velocity, and 
acceleration at any time t. 

 
11.5  Conservation of Energy 
and the Vibrating Spring 

11. A simple harmonic oscillator 
has a spring constant of 5.00 N/m. 
If the amplitude of the motion is 

15.0 cm, find the total energy of the 
oscillator. 

12. A body is executing simple 
harmonic motion. At what 
displacement is the potential 
energy equal to the kinetic energy? 

13. A 20.0-g mass is attached to 
a horizontal spring on a smooth 
table. The spring constant is 3.00 
N/m. The spring is then stretched 
15.0 cm and then released. What is 
the total energy of the motion? 
What is the potential and kinetic 
energy when x = 5.00 cm? 

14. A body is executing simple 
harmonic motion. At what 
displacement is the speed v equal to 
one-half the maximum speed? 

 
11.6  The Simple Pendulum 

15. Find the period and 
frequency of a simple pendulum 
0.75 m long. 

16. If a pendulum has a length 
L and a period T, what will be the 
period when (a) L is doubled and 
(b) L is halved? 

17. Find the frequency of a 
child’s swing whose ropes have a 
length of 3.25 m. 

18. What is the period of a 
0.500-m pendulum on the moon 
where gm = (1/6)ge? 

19. What is the period of a 
pendulum 0.750 m long on a 
spaceship (a) accelerating at 4.90 
m/s2 and (b) moving at constant 
velocity? 

20. What is the period of a 
pendulum in free-fall? 
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21. A pendulum has a period of 
0.750 s at the equator at sea level. 
The pendulum is carried to another 
place on the earth and the period is 
now found to be 0.748 s. Find the 
acceleration due to gravity at this 
location. 

 
11.7  Springs in Parallel and in 
Series 

*22. Springs with spring 
constants of 5.00 N/m and 10.0 N/m 
are connected in parallel to a 5.00-
kg mass. Find (a) the equivalent 
spring constant and (b) the period 
of the motion. 

*23. Springs with spring 
constants 5.00 N/m and 10.0 N/m 
are connected in series to a 5.00-kg 
mass. Find (a) the equivalent spring 
constant and (b) the period of the 
motion. 

 
Additional Problems 

24. A 500-g mass is attached to 
a vertical spring of spring constant 
30.0 N/m. How far should the 
spring be stretched in order to give 
the mass an upward acceleration of 
3.00 m/s2? 

25. A ball is caused to move in a 
horizontal circle of 40.0-cm radius 
in uniform circular motion at a 
speed of 25.0 cm/s. Its projection on 
the wall moves in simple harmonic 
motion. Find the velocity and 
acceleration of the shadow of the 
ball at (a) the end of its motion, 
(b) the center of its motion, and 
(c) halfway between the center and 
the end of the motion. 

*26. The motion of the piston in 
the engine of an automobile is 
approximately simple harmonic. If 
the stroke of the piston (twice the 
amplitude) is equal to 20.3 cm and 
the engine turns at 1800 rpm, find 
(a) the acceleration at x = A and 
(b) the speed of the piston at the 
midpoint of the stroke. 

*27. A 535-g mass is dropped 
from a height of 25.0 cm above an 
uncompressed spring of k = 20.0 
N/m. By how much will the spring 
be compressed? 

28. A simple pendulum is used 
to operate an electrical device. 
When the pendulum bob sweeps 

through the midpoint of its swing, it 
causes an electrical spark to be 
given off. Find the length of the 
pendulum that will give a spark 
rate of 30.0 sparks per minute. 

*29. The general solution for 
the period of a simple pendulum, 
without making the assumption of 
small angles of swing, is given by 

 
2 21

2

2 2 431
2 4

( ) sin1
22
( ) ( ) sin         ...

2

lT
g

θ

π
θ

 
+ 

 =
 

+ + 
 

 
Find the period of a 1.00-m 
pendulum for θ = 10.00, 30.00, and 
50.00 and compare with the period 
obtained with the small angle 
approximation. Determine the 
percentage error in each case by 
using the small angle 
approximation. 

30. A pendulum clock on the 
earth has a period of 1.00 s. Will 
this clock run slow or fast, and by 
how much if taken to (a) Mars, 
(b) Moon, and (c) Venus? 

*31. A pendulum bob, 355 g, is 
raised to a height of 12.5 cm before 
it is released. At the bottom of its 
path it makes a perfectly elastic 
collision with a 500-g mass that is 
connected to a horizontal spring of 
spring constant 15.8 N/m, that is at 
rest on a smooth surface. How far 
will the spring be compressed? 

Diagram for problem 31. 
 
*32. A 500-g block is in simple 

harmonic motion as shown in the 
diagram. A mass m’ is added to the 
top of the block when the block is at 
its maximum extension. How much 
mass should be added to change the 
frequency by 25%? 

 

 
Diagram for problem 32. 

 
*33. A pendulum clock keeps 

correct time at a location at sea 
level where the acceleration of 
gravity is equal to 9.80 m/s2. The 
clock is then taken up to the top of a 
mountain and the clock loses 3.00 s 
per day. How high is the mountain? 

*34. Three people, who together 
weigh 1880 N, get into a car and the 
car is observed to move 5.08 cm 
closer to the ground. What is the 
spring constant of the car springs? 

*35. In the accompanying 
diagram, the mass m is pulled down 
a distance of 9.50 cm from its 
equilibrium position and is then 
released. The mass then executes 
simple harmonic motion. Find 
(a) the total potential energy of the 
mass with respect to the ground 
when the mass is located at 
positions 1, 2, and 3; (b) the total 
energy of the mass at positions 1, 2, 
and 3; and (c) the speed of the mass 
at position 2. Assume m = 55.6 g, 
k = 25.0 N/m, h0 = 50.0 cm. 

 
Diagram for problem 35. 

 
*36. A 20.0-g ball rests on top of 

a vertical spring gun whose spring 
constant is 20 N/m. The spring is 
compressed 10.0 cm and the gun is 
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then fired. Find how high the ball 
rises in its vertical trajectory. 

*37. A toy spring gun is used to 
fire a ball as a projectile. Find the 
value of the spring constant, such 
that when the spring is compressed 
10.0 cm, and the gun is fired at an 
angle of 62.50, the range of the 
projectile will be 1.50 m. The mass 
of the ball is 25.2 g. 

*38. In the simple pendulum 
shown in the diagram, find the 
tension in the string when the 
height of the pendulum is (a) h, 
(b) h/2, and (c) h = 0. The mass m = 
500 g, the initial height h = 15.0 cm, 
and the length of the pendulum l = 
1.00 m. 

 
Diagram for problem 38. 

 
*39. A mass is attached to a 

horizontal spring. The mass is given 
an initial amplitude of 10.0 cm on a 
rough surface and is then released 
to oscillate in simple harmonic 
motion. If 10.0% of the energy is 
lost per cycle due to the friction of 
the mass moving over the rough 
surface, find the maximum 
displacement of the mass after 1, 2, 
4, 6, and 8 complete oscillations. 

*40. Find the maximum 
amplitude of vibration after 2 
periods for a 85.0-g mass executing 
simple harmonic motion on a rough 
horizontal surface of µk = 0.350. The 
spring constant is 24.0 N/m and the 
initial amplitude is 20.0 cm. 

41. A 240-g mass slides down a 
circular chute without friction and 
collides with a horizontal spring, as 
shown in the diagram. If the 
original position of the mass is 25.0 
cm above the table top and the 
spring has a spring constant of 18 

N/m, find the maximum distance 
that the spring will be compressed. 

 
Diagram for problem 41. 

 
*42. A 235-g block slides down a 

frictionless inclined plane, 1.25 m 
long, that makes an angle of 34.00 
with the horizontal. At the bottom 
of the plane the block slides along a 
rough horizontal surface 1.50 m 
long. The coefficient of kinetic 
friction between the block and the 
rough horizontal surface is 0.45. 
The block then collides with a 
horizontal spring of k = 20.0 N/m. 
Find the maximum compression of 
the spring. 

 
Diagram for problem 42. 

 
*43. A 335-g disk that is free to 

rotate about its axis is connected to 
a spring that is stretched 35.0 cm. 
The spring constant is 10.0 N/m. 
When the disk is released it rolls 
without slipping as it moves toward 
the equilibrium position. Find the 
speed of the disk when the 
displacement of the spring is equal 
to −17.5 cm. 

*44. A 25.0-g ball moving at a 
velocity of 200 cm/s to the right 
makes an inelastic collision with a 
200-g block that is initially at rest 
on a frictionless surface. There is a 
hole in the large block for the small 
ball to fit into. If k = 10 N/m, find 

the maximum compression of the 
spring. 

          
Diagram for problem 43.                     

 
Diagram for problem 44. 

 
*45. Show that the period of 

simple harmonic motion for the 
mass shown is equivalent to the 
period for two springs in parallel. 

  
Diagram for problem 45.  

 
*46. A nail is placed in the wall 

at a distance of l/2 from the top, as 
shown in the diagram. A pendulum 
of length 85.0 cm is released from 
position 1. (a) Find the time it takes 
for the pendulum bob to reach 
position 2. When the bob of the 
pendulum reaches position 2, the 
string hits the nail. (b) Find the 
time it takes for the pendulum bob 
to reach position 3. 

 
Diagram for problem 46. 
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*47. A spring is attached to the 
top of an Atwood’s machine as 
shown. The spring is stretched to A 
= 10 cm before being released. Find 
the velocity of m2 when x = −A/2. 
Assume m1 = 28.0 g, m2 = 43.0 g, 
and k = 10.0 N/m. 

 
  Diagram for problem 47.  

 
*48. A 280-g block is connected 

to a spring on a rough inclined 
plane that makes an angle of 35.50 
with the horizontal. The block is 
pulled down the plane a distance A 
= 20.0 cm, and is then released. The 
spring constant is 40.0 N/m and the 
coefficient of kinetic friction is 
0.100. Find the speed of the block 
when the displacement x = −A/2. 

 
Diagram for problem 48. 

 
49. The rotational analog of 

simple harmonic motion, is angular 
simple harmonic motion, wherein a 
body rotates periodically clockwise 
and then counterclockwise. Hooke’s 
law for rotational motion is given by  

τ = −C θ  

where τ is the torque acting on the 
body, θ is the angular displacement, 
and C is a constant, like the spring 
constant. Use Newton’s second law 
for rotational motion to show 
 

α =  C  θ 
                        I  

 
Use the analogy between the 

linear result, a = −ω2x, to show that 
the frequency of vibration of an 
object executing angular simple 
harmonic motion is given by 

 
1

2
Cf
Iπ

=  

 
Interactive Tutorials 

50. Simple Pendulum. Calculate 
the period T of a simple pendulum 
located on a planet having a 
gravitational acceleration of g = 
9.80 m/s2, if its length l = 1.00 m is 
increased from 1 to 10 m in steps of 
1.00 m. Plot the results as the 
period T versus the length l. 

51. Simple Harmonic Motion. 
The displacement x of a body 
undergoing simple harmonic motion 
is given by the formula x = A cos ωt, 
where A is the amplitude of the 
vibration, ω is the angular 
frequency in rad/s, and t is the time 
in seconds. Plot the displacement x 
as a function of t for an amplitude A 
= 0.150 m and an angular frequency 
ω = 5.00 rad/s as t increases from 0 
to 2 s in 0.10 s increments. 

52. The Vibrating Spring. A 
mass m = 0.500 kg is attached to a 
spring on a smooth horizontal table. 
An applied force FA = 4.00 N is used 
to stretch the spring a distance x0 = 
0.150 m. (a) Find the spring 
constant k of the spring. The mass 
is returned to its equilibrium 
position and then stretched to a 
value A = 0.15 m and then released. 
The mass then executes simple 
harmonic motion. Find (b) the 
angular frequency ω, (c) the 
frequency f, (d) the period T, (e) the 
maximum velocity vmax of the 
vibrating mass, (f) the maximum 
acceleration amax of the vibrating 

mass, (g) the maximum restoring 
force FRmax, and (h) the velocity of 
the mass at the displacement x = 
0.08 m. (i) Plot the displacement x, 
velocity v, acceleration a, and the 
restoring force FR at any time t. 

53. Conservation of Energy and 
the Vibrating Horizontal Spring. A 
mass m = 0.350 kg is attached to a 
horizontal spring. The mass is then 
pulled a distance x = A = 0.200 m 
from its equilibrium position and 
when released the mass executes 
simple harmonic motion. Find 
(a) the total energy Etot of the mass 
when it is at its maximum 
displacement A from its equilibrium 
position. When the mass is at the 
displacement x = 0.120 m find, 
(b) its potential energy PE, (c) its 
kinetic energy KE, and (d) its speed 
v. (e) Plot the total energy, potential 
energy, and kinetic energy of the 
mass as a function of the 
displacement x. The spring constant 
k = 35.5 N/m. 

54. Conservation of Energy and 
the Vibrating Vertical Spring. A 
mass m = 0.350 kg is attached to a 
vertical spring. The mass is at a 
height h0 = 1.50 m from the floor. 
The mass is then pulled down a 
distance A = 0.220 m from its 
equilibrium position and when 
released executes simple harmonic 
motion. Find (a) the total energy of 
the mass when it is at its maximum 
displacement A below its 
equilibrium position, (b) the 
gravitational potential energy when 
it is at the displacement x = 0.120 
m, (c) the elastic potential energy 
when it is at the same displacement 
x, (d) the kinetic energy at the 
displacement x, and (e) the speed of 
the mass when it is at the 
displacement x. The spring constant 
k = 35.5 N/m. 

To go to these Interactive 
Tutorials click on this sentence.

To go to another chapter, return to the table of contents by clicking on this sentence.    
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Chapter 12  Wave Motion 
 

"Query  17. If a stone be thrown into stagnating water, the waves excited thereby 
continue some time to arise in the place where the stone fell into the water, and are 
propagated from thence in concentric circles upon the surface of the water to great 
distances."         Isaac Newton 

 
12.1  Introduction 
Everyone has observed that when a rock is thrown into a pond of water, waves are produced that move out from 
the point of the disturbance in a series of concentric circles. The wave is a propagation of the disturbance through 
the medium without any net displacement of the 
medium. In this case the rock hitting the water 
initiates the disturbance and the water is the 
medium through which the wave travels. Of the 
many possible kinds of waves, the simplest to 
understand, and the one that we will analyze, is 
the wave that is generated by an object executing 
simple harmonic motion. As an example, 
consider the mass m executing simple harmonic 
motion in figure 12.1. Attached to the right of m 
is a very long spring. The spring is so long that it 
is not necessary to consider what happens to the 
spring at its far end at this time. When the mass 
m is pushed out to the position x = A, the portion 
of the spring immediately to the right of A is 
compressed. This compression exerts a force on 
the portion of the spring immediately to its right, 
thereby compressing it. It in turn compresses 
part of the spring to its immediate right. The 
process continues with the compression moving 
along the spring, as shown in figure 12.1. As the 
mass m moves in simple harmonic motion to the 
displacement x = −A, the spring immediately to 
its right becomes elongated. We call the 
elongation of the spring a rarefaction; it is the 
converse of a compression. As the mass m 
returns to its equilibrium position, the 
rarefaction moves down the length of the spring. 
The combination of a compression and 
rarefaction comprise part of a longitudinal wave. 
A longitudinal wave is a wave in which the 
particles of the medium oscillate in simple 

                                                                                    Figure 12.1  Generation of a longitudinal wave. 
 
harmonic motion parallel to the direction of the wave propagation. The compressions and rarefactions propagate 
down the spring, as shown in figure 12.1(f). The mass m in simple harmonic motion generated the wave and the 
wave moves to the right with a velocity v. Every portion of the medium, in this case the spring, executes simple 
harmonic motion around its equilibrium position. The medium oscillates back and forth with motion parallel to the 
wave velocity. Sound is an example of a longitudinal wave. 

Another type of wave, and one easier to visualize, is a transverse wave. A transverse wave is a wave in 
which the particles of the medium execute simple harmonic motion in a direction perpendicular to its direction of 
propagation. A transverse wave can be generated by a mass having simple harmonic motion in the vertical 
direction, as shown in figure 12.2. A horizontal string is connected to the mass as shown. As the mass executes 
simple harmonic motion in the vertical direction, the end of the string does likewise. As the end moves up and 
down, it causes the particle next to it to follow suit. It, in turn, causes the next particle to move. Each particle 
transmits the motion to the next particle along the entire length of the string. The resulting wave propagates in 
the horizontal direction with a velocity v, while any one particle of the string executes simple harmonic motion in 
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the vertical direction. The 
particle of the string is moving 
perpendicular to the direction 
of wave propagation, and is 
not moving in the direction of 
the wave. 

Using figure 12.3, let us 
now define the characteristics 
of a transverse wave moving 
in a horizontal direction. 

The displacement of any 
particle of the wave is the 
displacement of that particle 
from its equilibrium position 
and is measured by the 
vertical distance y. 

                                                     Figure 12.2  A transverse wave. 
 

The amplitude of the wave is the maximum value of the 
displacement and is denoted by A in figure 12.3. 

The wavelength of a wave is the distance, in the direction of 
propagation, in which the wave repeats itself and is denoted by λ. 

The period T of a wave is the time it takes for one complete 
wave to pass a particular point. 

The frequency f of a wave is defined as the number of waves 
passing a particular point per second. It is obvious from the 
definitions that the frequency is the reciprocal of the period, that is, 

 
f =  1                                             (12.1) 

                                                             T       
 

                                                                                                             Figure 12.3  Characteristics of a simple wave. 
 

The speed of propagation of the wave is the distance the wave travels in unit time. Because a wave of one 
wavelength passes a point in a time of one period, its speed of propagation is 

 
v = distance traveled  =  λ                                                                     (12.2) 

                                                                                        time                T 
Using equation 12.1, this becomes 

 v = λf                                                                                  (12.3) 
 

Equation 12.3 is the fundamental equation of wave propagation. It relates the speed of the wave to its wavelength 
and frequency. 

 
Example 12.1 

 
Wavelength of sound. The human ear can hear sounds from a low of 20.0 Hz up to a maximum frequency of about 
20,000 Hz. If the speed of sound in air at a temperature of 0 0C is 331 m/s, find the wavelengths associated with 
these frequencies. 

Solution
 

The wavelength of a sound wave, determined from equation 12.3, is 
 

λ =  v   
    f 

=     331 m/s     
       20.0 cycles/s 
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= 16.6 m 
and 

λ =  v   
    f 

 =       331 m/s        
          20,000 cycles/s 

= 0.0166 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 
The types of waves we consider in this chapter are called mechanical waves. The wave causes a transfer of 

energy from one point in the medium to another point in the medium without the actual transfer of matter between 
these points. Another type of wave, called an electromagnetic wave, is capable of traveling through empty space 
without the benefit of a medium. This type of wave is extremely unusual in this respect and we will treat it in 
more detail in chapters 25 and 29. 
 
 
12.2  Mathematical Representation of a Wave 
The simple wave shown in figure 12.3 is a picture of a transverse wave in a string at a particular time, let us say 
at t = 0. The wave can be described as a sine wave and can be expressed mathematically as 
 

y = A sin x                                                                           (12.4) 
 

The value of y represents the displacement of the string at every position x along the string, and A is the 
maximum displacement, and is called the amplitude of the wave. Equation 12.4 is plotted in figure 12.4. We see 
that the wave repeats itself for 
x = 3600 = 2π rad. Also plotted 
in figure 12.4 is y = A sin 2x 
and y = A sin 3x. Notice from 
the figure that y = A sin 2x 
repeats itself twice in the same 
interval of 2π that y = A sin x 
repeats itself only once. Also 
note that y = A sin 3x repeats 
itself three times in that same 
interval of 2π. The wave y = A 
sin kx would repeat itself k 
times in the interval of 2π. We 
call the space interval in which 
y = A sin x repeats itself its 
wavelength, denoted by λ1. 
Thus, when x = λ1 = 2π, the 
wave starts to repeat itself. 
The wave represented by y = A 
sin 2x repeats itself for 2x = 2π,  

                                                 Figure 12.4  Plot of A sin x, A sin 2x, and A sin 3x. 
 
and hence its wavelength is 

λ2 = x = 2π = π 
       2 

 
The wave y = A sin 3x repeats itself when 3x = 2π, hence its wavelength is 
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λ3 = x = 2π  
              3 

Using this notation any wave can be represented as 
 y = A sin kx                                                                            (12.5) 

 
where k is a number, called the wave number. The wave repeats itself whenever 
 

kx = 2π                                                                                 (12.6) 
 

Because the value of x for a wave to repeat itself is its wavelength λ, equation 12.6 can be written as 
 

kλ = 2π                                                                               (12.7) 
We can obtain the wavelength λ from equation 12.7 as 

 λ = 2π                                                                               (12.8) 
                                                                                                      k      

 
Note that equation 12.8 gives the wavelengths in figure 12.4 by letting k have the values 1, 2, 3, and so forth, that 
is, 

λ1 = 2π 
       1 

λ2 = 2π 
       2 

λ3 = 2π 
       3 

λ4 = 2π 
       4 

 
We observe that the wave number k is the number of waves contained in the interval of 2π. We can express the wave 
number k in terms of the wavelength λ by rearranging equation 12.8 into the form 
 

 k = 2π                                                                                  (12.9) 
                                                                                                           λ           

 
Note that in order for the units to be consistent, the wave number must have units of m−1. The quantity x in 
equation 12.5 represents the location of any point on the string and is measured in meters. The quantity kx in 
equation 12.5 has the units (m−1m = 1) and is thus a dimensionless quantity and represents an angle measured in 
radians. Also note that the wave number k is a different quantity than the spring constant k, discussed in chapter 
11. 

Equation 12.5 represents a snapshot of the wave at t = 0. That is, it gives the displacement of every 
particle of the string at time t = 0. As time passes, this wave, and every point on it, moves. Since each particle of 
the string executes simple harmonic motion in the vertical, we can look at the particle located at the point x = 0 
and see how that particle moves up and down with time. Because the particle executes simple harmonic motion in 
the vertical, it is reasonable to represent the displacement of the particle of the string at any time t as 

 
 y = A sin ωt                                                                           (12.10) 

 
just as a simple harmonic motion on the x-axis was represented as x = A cos ωt in chapter 11. The quantity t is the 
time and is measured in seconds, whereas the quantity ω is an angular velocity or an angular frequency and is 
measured in radians per second. Hence the quantity ωt represents an angle measured in radians. The 
displacement y repeats itself when t = T, the period of the wave. Since the sine function repeats itself when the 
argument is equal to 2π, we have 

ωT = 2π                                                                               (12.11) 
The period of the wave is thus 

T = 2π 
       ω 

 
but the period of the wave is the reciprocal of the frequency. Therefore, 
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T =  1  = 2π 
        f      ω 

 
Solving for the angular frequency ω, in terms of the frequency f, we get 
 

 ω = 2πf                                                                              (12.12) 
 

Notice that the wave is periodic in both space and time. The space period is represented by the wavelength λ, and the 
time by the period T. 

Equation 12.5 represents every point on the string at t = 0, while equation 12.10 represents the point x = 0 
for every time t. Obviously the general equation for a wave must represent every point x of the wave at every time 
t. We can arrange this by combining equations 12.5 and 12.10 into the one equation for a wave given by 

 
 y = A sin(kx − ωt)                                                                      (12.13) 

 
The reason for the minus sign for ωt is explained below. We can find the relation between the wave number k and 
the angular frequency ω by combining equations 12.7 and 12.11 as 
 

kλ = 2π                                                                                 (12.7) 
ωT = 2π                                                                               (12.11) 

Thus, 
ωT = kλ 

and 
 ω = kλ 
      T 

 
However, the wavelength λ, divided by the period T is equal to the velocity of propagation of the wave v, equation 
12.2. Therefore, the angular frequency becomes 

 ω = kv                                                                             (12.14) 
Now we can write equation 12.13 as 

y = A sin(kx − kvt)                                                                   (12.15) 
or 

y = A sin k(x − vt)                                                                   (12.16) 
 

The minus sign before the velocity v determines the direction of propagation of the wave. As an example, 
consider the wave 

y1 = A sin k(x − vt)                                                                   (12.17) 
 

We will now see that this is the equation of a wave traveling to the right with a speed v at any time t. A little later 
in time, ∆t, the wave has moved a distance ∆x to the right such that the same point of the wave now has the 
coordinates x + ∆x and t + ∆t, figure 12.5(a). Then we represent the wave as 

 
y2 = A sin k[(x + ∆x) − v(t + ∆t)] 

or 
y2 = A sin k[(x − vt) + ∆x − v∆t]                                                            (12.18) 

 
If this equation for y2 is to represent the same wave as y1, then y2 must be equal to y1. It is clear from equations 
12.18 and 12.17 that if 

v = ∆x                                                                              (12.19) 
           ∆t 

the velocity of the wave to the right, then 
∆x − v∆t = ∆x − ∆x ∆t = 0 

                ∆t 
 

Pearson Custom Publishing

351



 
12-6                                                                                                          Vibratory Motion, Wave Motion and Fluids 

and y2 is equal to y1. Because the term ∆x − v∆t is indeed equal to zero, y2 is the same wave as y1 only displaced a 
distance ∆x to the right in the time ∆t. Thus, equation 12.17 represents a wave traveling to the right with a 
velocity of propagation v. 

A wave traveling to the 
left is depicted in figure 12.5(b) 
and we will begin by 
representing it as 

 
y3 = A sin k(x − vt)     (12.20) 

 
In a time ∆t, the wave y3 moves a 
distance −∆x to the left. The 
coordinates (x,t) of a point on y3 
now has the coordinates x − ∆x 
and t + ∆t for the same point on 
y4. We can now write the new 
wave as 
 

y4 = A sin k[(x − ∆x) − v(t + ∆t)] 
 
or 
 
y4 = A sin k[(x − vt) + (−∆x − v∆t)]                              

(12.21) 
 
The wave y4 represents the same 
wave as y3, providing −∆x − v∆t = 
0 in equation 12.21. If v = −∆x/∆t, 
the velocity of the wave to the 
left, then 
 

                                                    Figure 12.5  A traveling wave. 
 

0xx v t x t
t

−∆ −∆ − ∆ = −∆ − ∆ = ∆ 
 

 
Thus, −∆x − v∆t is indeed equal to zero, and wave y4 represents the same wave as y3 only it is displaced a distance 
−∆x to the left in the time ∆t. Instead of writing the equation 12.20 as a wave to the left with v a negative number, 
it is easier to write the equation for the wave to the left as 
 

y = A sin k(x + vt)                                                                      (12.22) 
 

where v is now a positive number. Therefore, equation 12.22 represents a wave traveling to the left, with a speed 
v. In summary, a wave traveling to the right can be represented either as 
 

 y = A sin k(x − vt)                                                                      (12.23) 
or 

 y = A sin(kx − ωt)                                                                      (12.24) 
 

and a wave traveling to the left can be represented as either 
 

y = A sin k(x + vt)                                                                    (12.25) 
or 

 y = A sin(kx + ωt)                                                                    (12.26) 
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Example 12.2 
 

Characteristics of a wave. A particular wave is given by 
 

y = (0.200 m) sin[(0.500 m−1)x − (8.20 rad/s)t] 
 

Find (a) the amplitude of the wave, (b) the wave number, (c) the wavelength, (d) the angular frequency, (e) the 
frequency, (f) the period, (g) the velocity of the wave (i.e., its speed and direction), and (h) the displacement of the 
wave at x = 10.0 m and t = 0.500 s. 

Solution
 

The characteristics of the wave are determined by writing the wave in the standard form 
 

y = A sin(kx − ωt) 
 

a.  The amplitude A is determined by inspection of both equations as A = 0.200 m. 
 
b.  The wave number k is found from inspection to be k = 0.500 m−1 or a half a wave in an interval of 2π. 
 
c.  The wavelength λ, found from equation 12.8, is 
 

λ = 2π =       2π       
                                                                                           k      0.500 m−1 

= 12.6 m 
d.  The angular frequency ω, found by inspection, is 

          ω = 8.20 rad/s 
 

e.  The frequency f of the wave, found from equation 12.12, is 
 

f =  ω  = 8.20 rad/s = 1.31 cycles/s = 1.31 Hz 
                                                                  2π      2π rad 

 
f.  The period of the wave is the reciprocal of the frequency, thus 
 

T =  1  =       1       = 0.766 s 
                                                                                  f      1.31 Hz 

 
g.  The speed of the wave, found from equation 12.14, is 
 

v =  ω  = 8.20 rad/s = 16.4 m/s  
                                                                               k      0.500 m−1 
We could also have determined this by 

      v = fλ = (1.31  1 )(12.6 m) = 16.4 m/s 
                                                                                             s          

 
The direction of the wave is to the right because the sign in front of ω is negative. 
h.  The displacement of the wave at x = 10.0 m and t = 0.500 s is 
 

y = (0.200 m)sin[(0.500 m−1)(10.0 m) − (8.20 rad/s)(0.500 s)] 
= (0.200 m)sin[0.900 rad] = (0.200 m)(0.783) 

= 0.157 m 
 

To go to this Interactive Example click on this sentence. 
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12.3  The Speed of a Transverse Wave on a String 
Let us consider the motion of a transverse wave on a string, as shown in figure 12.6. The wave is moving to the 
right with a velocity v. Let us observe the wave by moving with the wave at the same velocity v. In this reference 
frame, the wave appears stationary, while 
the particles composing the string appear 
to be moving through the wave to the left. 
One such particle is shown at the top of the 
wave of figure 12.6 moving to the left at the 
velocity v. If we consider only a small 
portion of the top of the wave, we can 
approximate it by an arc of a circle of 
radius R, as shown. If the angle θ is small, 
the length of the string considered is small 
and the mass m of this small portion of the 
string can be approximated by a mass 
moving in uniform circular motion. Hence, 
there must be a centripetal force acting on 
this small portion of the string and its 
magnitude is given by 
 

                                                                           Figure 12.6  Velocity of a transverse wave. 
 

Fc = mv2                                                                             (12.27) 
        R 

 
This centripetal force is supplied by the tension in the string. In figure 12.6, the tensions on the right and left side 
of m are resolved into components. There is a force T cos θ acting to the right of m and a force T cos θ acting to the 
left. These components are equal and opposite and cancel each other out, thus exerting a zero net force in the 
horizontal direction. The components T sin θ on the right and left side of m act downward on m and thus supply 
the necessary centripetal force for m to be in uniform circular motion. Thus, 
 

Fc = 2T sin θ 
 

Since we assume that θ is small, the sin θ can be replaced by the angle θ itself, expressed in radians. Thus, 
 

Fc = 2T θ                                                                             (12.28) 
 

The small portion of the string l approximates an arc of a circle and the arc of a circle is given by s = Rθ. Therefore, 
 

s =  l  +  l  = R(θ + θ) = 2θR 
                                                                                 2     2 
and 

θ =   l    
        2R 

The centripetal force, equation 12.28, becomes 
Fc = 2T  l    

              2R 
and 

Fc = Tl                                                                               (12.29) 
         R 

 
Equating the centripetal force in equations 12.27 and 12.29 we get 
 

mv2 = Tl  
R       R 
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v2 = Tl =   T   
                                                                                              m     m/l 
Solving for the speed of the wave we get 

/
Tv

m l
=                                                                              (12.30) 

 
Therefore, the speed of a transverse wave in a string is given by equation 12.30, where T is the tension in the string 
and m/l is the mass per unit length of the string. The greater the tension in the string, the greater the speed of 
propagation of the wave. The greater the mass per unit length of the string, the smaller the speed of the wave. We 
will discuss equation 12.30 in more detail when dealing with traveling waves on a vibrating string in section 12.6. 

 
Example 12.3 

 
Play that guitar. Find the tension in a 60.0-cm guitar string that has a mass of 1.40 g if it is to play the note G 
with a frequency of 396 Hz. Assume that the wavelength of the note will be two times the length of the string, or λ 
= 120 cm (this assumption will be justified in section 12.6). 

Solution
 

The speed of the wave, found from equation 12.3, is 
 

v = λf = (1.20 m)(396 cycles/s) 
= 475 m/s 

The mass density of the string is 
  m = 1.40 × 10−3 kg = 2.33 × 10−3 kg/m 

                                                                  l           0.600 m 
 

The tension that the guitar string must have in order to play this note, found from equation 12.30, is 
 

              T = v2 m  = (475 m/s)2(2.33 × 10−3 kg/m) 
                                                                                  l                            

= 526 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 12.4 
 

Sounds flat to me. If the tension in the guitar string of example 12.3 was 450 N, would the guitar play that note 
flat or sharp? 

Solution
 

The mass density of the string is 2.33 × 10−3 kg/m. With a tension of 450 N, the speed of the wave is 
 

      3
450 N

/ 2.33 10  kg/m
Tv

m l −= =
×

  

         = 439 m/s 
The frequency of the wave is then 

f =  v  = 439 m/s = 366 Hz 
                                                                                          λ      1.20 m 

 
The string now plays a note at too low a frequency and the note is flat by 396 Hz − 366 Hz = 30 Hz. 
 

To go to this Interactive Example click on this sentence. 
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12.4  Reflection of a Wave at a Boundary 
In the analysis of the vibrating string we assumed that the string was infinitely long so that it was not necessary 
to consider what happens when the wave gets to the end of the string. Now we need to rectify this omission by 
considering the reflection of a wave at a boundary. To simplify the discussion let us deal with a single pulse 
rather than the continuous waves dealt with in the preceding sections. First, let us consider how a pulse is 
generated. Take a piece of string fixed at one end and hold the other end in your hand, as shown in figure 12.7(a). 
The string and hand are at rest. If the hand is moved up rapidly, the 
string near the hand will also be pulled up. This is shown in figure 
12.7(b) with arrows pointing upward representing the force upward 
on the particles of the string. Each particle that moves upward exerts 
a force on the particle immediately to its right by the tension in the 
string. In this way, the force upward is passed from particle to 
particle along the string. In figure 12.7(c), the hand is quickly moved 
downward pulling the end of the string down with it. The force acting 
on the string downward is shown by the arrows pointing downward 
in figure 12.7(c). Note that the arrows pointing upward caused by the 
force upward in figure 12.7(b) are still upward and moving toward 
the right. In figure 12.7(d), the hand has returned to the equilibrium 
position and is at rest. However, the motion of the hand upward and 
downward has created a pulse that is moving along the string with a 
velocity of propagation v. The arrows upward represent the force 
pulling the string upward in advance of the center of the pulse, while 
the arrows downward represent the force pulling the string 
downward, behind the center of the pulse, back to its rest position. As 
the pulse propagates so will these forces. Let us now consider what 
happens to this pulse as it comes to a boundary, in this case, the end 
of the string. 
                                                                                                                Figure 12.7  Creation of a pulse on a string. 
 
The End of the String Is Not Fixed Rigidly but Is Allowed to Move 
Let us first consider the case of a pulse propagating along a string that is free to move at its end point. This is 
shown in figure 12.8. The end of the stationary string, figure 12.8(a), is attached to a ring that is free to move in 
the vertical direction on a frictionless pole. A pulse is now sent down the string in figure 12.8(b). Let us consider 
the forces on the string that come from the pulse, that is, we will ignore the gravitational forces on the string. The 
arrows up and down on the pulse represent the forces upward and downward, respectively, on the particles of the 
string. The pulse propagates to the right in figure 12.8(c) and reaches the ring in figure 12.8(d). The force upward 
that has been propagating to the right causes the ring on the end of the string to move upward. The ring now rises 
to the height of the pulse as the center of the pulse arrives at the ring, figure 12.8(e). Although there is no 
additional force upward on the ring, the ring continues to move upward because of its momentum. 

We can also consider this from an energy standpoint. At the location of the top of the pulse, the ring has a 
kinetic energy upward. The ring continues upward until this kinetic energy is lost. As the ring moves upward it 
now pulls the string up with it, eventually overcoming the forces downward at the rear of the pulse, until the 
string to the left of the ring has a net force upward acting on it, figure 12.8(f). This upward force is now propagated 
along the string to the left by pulling each adjacent particle to its left upward. Because the ring pulled upward on 
the string, by Newton’s third law the string also pulls downward on the ring, and the ring eventually starts 
downward, figure 12.8(g). As the ring moves downward it exerts a force downward on the string, as shown by the 
arrows in figure 12.8(h). The forces upward and downward propagate to the left as the pulse shown in figure 
12.8(i). 

The net result of the interaction of the pulse to the right with the movable ring is a reflected pulse of the 
same size and shape that now moves to the left with the same speed of propagation. The incoming pulse was right 
side up, and the reflected pulse is also right side up. The movable ring at the end of the string acts like the hand, 
moving up and down to create the pulse in figure 12.7. 
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The End of the String Is Fixed Rigidly and Not Allowed to Move 
A pulse is sent down a string that has the end fixed to a wall, as in figure 12.9(a). Let us consider the 

forces on the string that come from the pulse, that is, we will ignore the gravitational forces on the string. The 
front portion of the pulse has forces that are acting upward and are represented by arrows pointing upward. The  

 

Figure 12.9  A reflected pulse on a string with  
                                   a fixed  end. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.8  Reflection of a pulse on a string that is  
                      free to move in the transverse direction. 

 
back portion of the pulse has forces acting downward, and these forces are represented by arrows pointing 
downward. Any portion of the string in advance of the pulse has no force in the vertical direction acting on the 
string because the pulse has not arrived yet. Hence, in figure 12.9(a), there are no vertical forces acting on that 
part of the string that is tied to the wall. In figure 12.9(b), the leading edge of the pulse has just arrived at the 
wall. This leading edge has forces acting upward, and when they make contact with the wall they exert a force 
upward on the wall. But because of the enormous mass of the wall compared to the mass of the string, this upward 
force can not move the wall upward as it did with the ring in the previous case. The end of the string remains 
fixed. But by Newton’s third law this upward force on the wall causes a reaction force downward on the string 
pulling the string down below the equilibrium position of the string, figure 12.9(c). This initiates the beginning of a 
pulse that moves to the left. At this point the picture becomes rather complicated, because while the back portion 
of the original pulse is still moving toward the right, the front portion has become reflected and is moving toward 
the left, figure 12.9(d). The resulting pulse becomes a superposition of these two pulses, one traveling toward the 
right, the other toward the left. The forces acting on each particle of the string become the sum of the forces caused 
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by each pulse. When the back portion of the original pulse reaches the wall it exerts a force downward on the wall. 
By Newton’s third law the wall now exerts a reaction force upward on the string that pulls the string of the rear of 
the pulse upward to its equilibrium position, figure 12.9(e). The pulse has now been completely reflected by the 
wall and moves to the left with the same speed v, figure 12.9(f). Note, however, that in reflecting the pulse, the 
reaction force of the wall on the string has caused the reflected pulse to be inverted or turned upside down. Hence, 
a wave or pulse that is reflected from a fixed end is inverted. The reflected pulse is said to be 1800 out of phase with 
the incident pulse. This was not the case for the string whose end was free to move.  
 
Reflection and Transmission of a Wave at the Boundary of Two Different Media 
When an incident wave impinges upon a boundary separating two different media, part of the incident wave is 
transmitted into the second medium while part is reflected back into the first medium. We can easily see this 
effect by connecting together two strings of different mass densities. Let us consider two different cases of the 
reflection and transmission of a wave at the boundary of two different media. 
 
Case 1:  The Wave Goes from the Less Dense Medium to the More Dense Medium 
Consider the string in figure 12.10(a). The left-hand side of the combined string is a light string of mass density 
m1/l, while the right-hand side is a heavier string of mass density m2/l, where m2 is greater than m1. The combined 
string is pulled tight so that both strings have the same tension T. A 
pulse is now sent down the lighter string at a velocity v1 to the right 
in figure 12.10(b). As the pulse hits the boundary between the two 
strings, the upward force in the leading edge of the pulse on string 1 
exerts an upward force on string 2. Because string 2 is much more 
massive than string 1, the boundary acts like the fixed end in figure 
12.9, and the reaction force of the massive string causes an inverted 
reflected pulse to travel back along string 1, as shown in figure 
12.10(c). Because the massive string is not infinite, like a rigid wall, 
the forces of the incident pulse pass through to the massive string, 
thus also transmitting a pulse along string 2, as shown in figure 
12.10(c). Since string 2 is more massive than string 1, the 
transmitted force can not displace the massive string elements of 
string 2 as much as in string 1. Hence the amplitude of the 
transmitted pulse is less than the amplitude of the incident pulse. 

Figure 12.10  A pulse goes from a less dense 
 medium to a more dense medium. 

 
Because the tension in each string is the same, the speed of the pulses in medium 1 and 2 are 
 

1
1 /
Tv

m l
=                                                                              (12.31) 

2
2 /
Tv

m l
=                                                                             (12.32) 

 
Because the tension T in each string is the same, they can be equated to find the speed of the pulse in medium 2 as 
 

1
2 1

2

/
/

m lv v
m l

=                                                                           (12.33) 

 
However, because m2 is greater than m1, equation 12.33 implies that v2 will be less than v1. That is, the speed v2 of 
the transmitted pulse will be less than v1, the speed of the incident and reflected pulses. Thus, the pulse slows 
down in going from the less dense medium to the more dense medium. If a sinusoidal wave were propagated along 
the string instead of the pulse, part of the wave would be reflected and part would be transmitted. However, 
because of the boundary, the wavelength of the transmitted wave would be different from the incident wave. To 
see this, note that the frequency of the wave must be the same on both sides of the boundary. (Since the frequency 
is the number of waves per second, and the same number pass from medium 1 into medium 2, we have f1 = f2.) The 
wavelength of the incident wave, found from equation 12.3, is 
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    λ1 =  v1  

          f 
whereas the wavelength of the transmitted wave λ2 is 

     λ2 =  v2  
           f 

Because the frequency is the same, 
    f =  v1 
           λ1 

and 
    f =  v2  
           λ2 

they can be equated giving 
 v1  =  v2  
 λ1       λ2 

Thus, the wavelength of the transmitted wave λ2 is 
 λ2 =  v2 λ1                                                                           (12.34) 

                                                                                                    v1                  
 

Since v2 is less than v1, equation 12.34 tells us that λ2 is less than λ1. Hence, when a wave goes from a less dense 
medium to a more dense medium, the wavelength of the transmitted wave is less than the wavelength of the incident 
wave. 

Although these results were derived from waves on a string, they are quite general. In chapter 27 we will 
see that when a light wave goes from a region of low density such as a vacuum or air, into a more dense region, 
such as glass, the speed of the light wave decreases and its wavelength also decreases. 

 
Example 12.5 

 
A wave going from a less dense to a more dense medium. One end of a 60.0-cm steel wire of mass 1.40 g is welded to 
the end of a 60.0-cm steel wire of 6.00 g mass. The combined wires are placed under uniform tension. (a) If a wave 
propagates down the lighter wire at a speed of 475 m/s, at what speed will it be transmitted along the heavier 
wire? (b) If the wavelength on the first wire is 1.20 m, what is the wavelength on the second wire? 

Solution
 

a. The mass per unit length of each wire is 
 

 m1 = 1.40 × 10−3 kg = 2.33 × 10−3 kg/m  
                                                                  l          0.600 m 

 
 m2  = 6.00 × 10−3 kg = 1.00 × 10−2 kg/m 

                                                                 l            0.600 m 
 

The speed of the transmitted wave, found from equation 12.33, is 
 

1
2 1

2

/
/

m lv v
m l

=  

( )
3

2
2.33 10  kg/m 475 m/s
1.00 10  kg/m

−

−

×
=

×
 

= 229 m/s 
 

b.  The wavelength of the transmitted wave, found from equation 12.34, is 
 

λ2 = v2 λ1   
   v1 
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( )229 m/s 1.20 m
475 m/s

 =  
 

 

= 0.580 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Case 2:  A Wave Goes from a More Dense Medium to a  Less Dense Medium 
Consider the string in figure 12.11(a). The left-hand side of the combined 
string is a heavy string of mass density m1/l, whereas the right-hand side 
is a light string of mass density m2/l, where m2 is now less than m1. A 
pulse is sent down the string in figure 12.11(b). When the pulse hits the 
boundary the boundary acts like the free end of the string in figure 12.8 
because of the low mass of the second string. A pulse is reflected along 
the string that is erect or right side up, figure 12.11(c). However, the 
forces of the incident pulse are transmitted very easily to the lighter 
second string and a transmitted pulse also appears in string 2, figure 
12.11(c). Because the tension is the same in both strings, a similar 
analysis to case 1 shows that when a wave goes from a more dense 
medium to a less dense medium, the transmitted wave moves faster than 
the incident wave and has a longer wavelength. 
 
 

Figure 12.11  A pulse goes from a more 
 dense medium to a less dense medium. 

 
Example 12.6 

 
A wave going from a more dense medium to a less dense medium. The first half of a combined string has a linear 
mass density of 0.100 kg/m, whereas the second half has a linear mass density of 0.0500 kg/m. A sinusoidal wave 
of wavelength 1.20 m is sent along string 1. If the combined string is under a tension of 10.0 N, find (a) the speed 
of the incident wave in string 1, (b) the speed of the transmitted wave in string 2, (c) the wavelength of the 
transmitted wave, and (d) the speed and wavelength of the reflected wave. 

Solution
 

a. The speed of the incident wave in string 1, found from equation 12.31, is 
 

1
1 /
Tv

m l
=  

10.0 N
0.100 kg/m

=  

= 10.0 m/s 
 

b.  The speed of the transmitted wave in string 2, found from equation 12.32, is 
 

2
2 /
Tv

m l
=  

10.0 N
0.050 kg/m

=  

= 14.1 m/s 
 

c.  The wavelength of the transmitted wave, found from equation 12.34, is 
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λ2 = v2 λ1  

   v1 

( )14.1 m/s 1.20 m
10.0 m/s

 =  
 

 

= 1.69 m 
 

d.  The speed and wavelength of the reflected wave are the same as the incident wave because the reflected wave 
is in the same medium as the incident wave. Note that the mass of string 1 is greater than string 2 and the speed 
of the wave in medium 2 is greater than the speed of the wave in medium 1 (i.e., v2 > v1). Also note that the 
wavelength of the transmitted wave is greater than the wavelength of the incident wave (i.e., λ2 > λ1). 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
12.5  The Principle of Superposition 
Up to this point in our discussion we have considered only one wave passing through a medium at a time. What 
happens if two or more waves pass through the same medium at the same time? To solve the problem of multiple 
waves we use the principle of superposition. This principle is based on the vector addition of the displacement 
associated with each wave. The principle of superposition states that whenever two or more wave disturbances 
pass a particular point in a medium, the resultant displacement of the point of the medium is the sum of the 
displacements of each individual wave disturbance. For example, if the two waves 
 

y1 = A1 sin(k1x − ω1t) 
y2 = A2 sin(k2x − ω2t) 

 
are acting in a medium at the same time, the resultant wave is given by 

 
 y = y1 + y2                                                                             (12.35) 

or 
y1 = A1 sin(k1x − ω1t) + A2 sin(k2x − ω2t)                                                   (12.36) 

 
The superposition principle holds as long as the resultant displacement of the medium does not exceed its 

elastic limit. Sometimes the two waves are said to interfere with each other, or cause interference. 
 

Example 12.7 
 

Superposition. The following two waves interfere with each other: 
 

y1 = (5.00 m)sin[(0.800 m−1)x − (6.00 rad/s)t] 
y2 = (10.00 m)sin[(0.900 m−1)x − (3.00 rad/s)t] 

 
Find the resultant displacement when x = 5.00 m and t = 1.10 s. 

Solution
 

The resultant displacement found by the superposition principle, equation 12.35, is 
 

y = y1 + y2 
where 

y1 = (5.00 m)sin[(0.800 m−1)(5.00 m) − (6.00 rad/s)(1.10 s)] 
= (5.00 m)sin(4.00 rad − 6.6 rad) 

= (5.00 m)sin(−2.60 rad) 
= (5.00 m)(−0.5155) = −2.58 m 
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and 
y2 = (10.00 m)sin[(0.900 m−1)(5.00 m) − (3.00 rad/s)(1.10 s)] 

= (10.00 m)sin(4.50 rad − 3.30 rad) 
= (10.00 m)sin(1.20 rad) 

= (10.00 m)(0.932) = 9.32 m 
Hence, the resultant displacement is 

y = y1 + y2 = −2.58 m + 9.32 m 
= 6.74 m 

 
Note that this is the resultant displacement only for the values of x = 5.00 m and t = 1.10 s. We can find the entire 
resultant wave for any value of the time by substituting a series of values of x into the equation for that value of t. 
Then we determine the resultant displacement y for each value of x. A graph of the resultant displacement y 
versus x gives a snapshot of the resultant wave at that value of time t. The process can be repeated for various 
values of t, and the sequence of the graphs will show how that resultant wave travels with time. (See interactive 
tutorial #44 at the end of this chapter.) 
 

To go to this Interactive Example click on this sentence. 
 

 
 

It is possible that when dealing with two or more waves the waves may not be in phase with each other. Two 
waves are in phase if they reach their maximum amplitudes at the same time, are zero at the same time, and have 
their minimum amplitudes at the same time. An example of two waves in phase is shown in figure 12.12(a). An 
example of two waves that are out of phase with each other is shown in figure 12.12(b). Note that the second wave 
does not have its maximum, zero, and minimum displacements at the same place as the first wave. Instead these 
positions are translated to the right of their position in wave y1. We say that wave 2 is out of phase with wave 1 by 
an angle φ, where φ is measured in radians. The equation for the first wave is 
 

y1 = A1 sin(kx − ωt)                                                                    (12.37) 
 

whereas the equation for the wave displaced to the right is 
 

 y2 = A2 sin(kx − ωt − φ)                                                                 (12.38) 
 

      
Figure 12.12  Phase of a wave. 

 
The angle φ is called the phase angle and is a measure of how far wave 2 is displaced in the horizontal from wave 
1. Just as the minus sign on −ωt indicated a wave traveling to the right, the minus sign on φ indicates a wave 
displaced to the right. The second wave lags the first wave by the phase angle φ. That is, wave 2 has its maximum, 
zero, and minimum displacements after wave 1 does, and the amount of lag is given by the phase angle φ. If the 
wave was displaced to the left, the equation for the wave would be 
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y2 = A2 sin(kx − ωt + φ)                                                                  (12.39) 
 

An important special case of the addition of waves is shown in figure 12.13. When two waves are in phase with 
each other, φ = 0 in equation 12.38, and the waves are said to exhibit constructive interference, figure 12.13(a). 
That is, 

y1 = A sin(kx − ωt) 
y2 = A sin(kx − ωt) 

and the resultant wave is 
y = y1 + y2 = 2A sin(kx − ωt)                                                             (12.40) 

 
That is, the resultant amplitude has doubled. If the two waves are 1800, or π rad, out of phase with each other, 
then y2 is 

y2 = A2 sin(kx − ωt − π) 
 

Setting kx − ωt = B and π = C, we can use the formula for the sine of the difference between two angles, which is 
found in appendix B. That is, 

sin(B − C) = sin B cos C − cos B sin C                                            (12.41) 
Thus, 
sin[(kx − ωt) − π] = sin(kx − ωt)cos π 

 − cos(kx − ωt)sin π    (12.42) 
 

But sin π = 0, and the last term drops out. And 
because the cos π = −1, equation 12.42 becomes 
 

sin[(kx − ωt) − π] = −sin(kx − ωt) 
 

Therefore we can write the second wave as 
 

y2 = −A sin(kx − ωt)               (12.43) 
 

The superposition principle now yields 
 
                          y = y1 + y2 

= A sin(kx − ωt) − A sin(kx − ωt) = 0      (12.44) 
 

Thus, if the waves are 1800 out of phase the 
resultant wave is zero everywhere. This is shown in 
figure 12.13(b) and is called destructive 
interference. Wave 2 has completely canceled out 
the effects of wave 1. 

                                                                Figure 12.13  Interference of waves. 
 
A more general solution for the interference of two waves of the same frequency, same wave number, same 

amplitude, and in the same direction but out of phase with each other by a phase angle φ, can be easily determined 
by the superposition principle. Let the two waves be 

 
y1 = A sin(kx − ωt)                                                                       (12.45) 
y2 = A sin(kx − ωt − φ)                                                                 (12.46) 

The resultant wave is 
y = y1 + y2 = A sin(kx − ωt) + A sin(kx − ωt − φ)                                                (12.47) 

 
To simplify this result, we use the trigonometric identity found in appendix B for the sum of two sine functions, 
namely 

sin sin 2sin cos
2 2

B C B CB C + −   + =    
   

                                                   (12.48) 

For this problem 
B = kx − ωt 
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and 
C = kx − ωt − φ 

Thus, 

( ) ( )sin sin 2sin cos
2 2

kx t kx t kx t kx tkx t kx t ω ω φ ω ω φ
ω ω φ

− + − − − − + +   − + − − =    
   

 

2sin cos
2 2

kx t φ φ
ω   = − −   

   
                                                               (12.49) 

 
Substituting equation 12.49 into equation 12.47 we obtain for the resultant wave 
 

2 cos sin
2 2

y A kx tφ φ
ω   = − −   

   
                                                            (12.50) 

 
Equation 12.50 is a more general result than found before and contains constructive and destructive interference 
as special cases. For example, if φ = 0 the two waves are in phase and since cos 0 = 1, equation 12.50 becomes 
 

y = 2A sin(kx − ωt) 
 

which is identical to equation 12.40 for constructive interference. Also for the special case of φ = 1800 = π rad, the 
cos(π/2) = cos 900 = 0, and equation 12.50 becomes y = 0, the special case of destructive interference, equation 
12.44. 

 
Example 12.8 

 
Interference. The following two waves interfere: 
 

y1 = (5.00 m)sin[(0.200 m−1)x − (5.00 rad/s)t] 
y2 = (5.00 m)sin[(0.200 m−1)x − (5.00 rad/s)t − 0.500 rad] 

 
Find the equation for the resultant wave. 

Solution
 

The resultant wave, found from equation 12.50, is 
 

2 cos sin
2 2

y A kx tφ φ
ω   = − −   

   
 

10.500 rad 0.500 rad2(5.00 m)cos sin (0.200 m ) (5.00 rad/s)
2 2

y x t−   = − −   
   

 

= (10.00 m)(0.9689)sin[(0.200 m−1)x − (5.00 rad/s)t − 0.250 rad] 
= (9.69 m)sin[(0.200 m−1)x − (5.00 rad/s)t − 0.250 rad] 

 
We can now plot an actual picture of the resultant wave for a particular value of t for a range of values of x. (See 
interactive tutorial #44 at the end of this chapter.) 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
12.6  Standing Waves -- The Vibrating String 
If a string is fixed at both ends and a wave train is sent down the string, then, as shown before, the wave is 
reflected from the fixed ends. Hence, there are two wave trains on the string at the same time. One is traveling to 
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the right, while the reflected wave is traveling toward the left, figure 12.14. We can find the resultant wave by the 
superposition principle. That is, if wave 1 is a wave to the right, we can express it as  

 
y1 = A sin(kx − ωt)                                                                     (12.51) 

whereas we can express the wave to the left as   
 

y2 = A sin(kx + ωt)                                  (12.52) 
 
The resultant wave is the sum of these two waves or 
 

y = y1 + y2 = A sin(kx − ωt) + A sin(kx + ωt)               (12.53) 
 
To add these two sine functions, we use the trigonometric identity in 
equation 12.48. That is, 

sin sin 2sin cos
2 2

B C B CB C + −   + =    
   

 

 
where B = kx − ωt and C = kx + ωt. Thus, 
 
                                                                                                                Figure 12.14  Formation of standing waves. 
 

( ) ( ) ( ) ( )2 sin cos
2 2

kx t kx t kx t kx t
y A

ω ω ω ω   − + + − − +
=       

   
 

2 22 sin cos
2 2
kx ty A ω−   =    

   
 

and 
y = 2A sin(kx)cos(−ωt) 

Using the fact that 
cos(−θ) = cos(θ) 

the resultant wave is 
 y = 2A sin(kx)cos(ωt)                                                                   (12.54) 

 
For reasons that will appear shortly, this is the equation of a standing wave or a stationary wave. 

The amplitude of the resultant standing wave is 2A sin(kx), and note that it varies with x. To find the 
positions along x where this new amplitude has its minimum values, note that sin(kx) = 0 whenever 

 
kx = nπ 

 
for values of n = 1, 2, 3, .… That is, the sine function is zero whenever the argument kx is a multiple of π. Thus, 
solving for x, 

x = nπ                                                                               (12.55) 
          k 

But the wave number k was defined in equation 12.9 as 
 

k = 2π 
      λ 

Substituting this value into equation 12.55, we get 
    x = nπ =    nπ   
          k       2π/λ      

and 
 x = nλ                                                                               (12.56) 

                                                                                                   2      
 

Equation 12.56 gives us the location of the zero values of the amplitude. Thus we see that they occur for values of x 
of λ/2, 2λ/2 = λ, 3λ/2, 4λ/2 = 2λ, and so on, as measured from either end. These points, where the amplitude of the 
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standing wave is zero, are called nodes. Stated another way, a node is the position of zero amplitude. These nodes 
are independent of time, that is, the amplitude at these points is always zero. 

The maximum values of the amplitude occur whenever sin(kx) = 1, which happens whenever kx is an odd 
multiple of π/2. That is, sin(kx) = 1 when 

kx = (2n − 1) π  
                    2 

for n = 1, 2, 3, .... 
The term 2n − 1 always gives an odd number for any value of n. (As an example, when n = 2, 2n − 1 = 3, 

etc.) The location of the maximum amplitudes is therefore at  
 

2 1
2
nx

k
π

− =  
 

  

But since k = 2π/λ, this becomes  
x = (2n − 1)π 
      2(2π/λ) 

and 
 x = (2n − 1)λ = (2n − 1) λ                                                                (12.57) 

                                                                                         4                        4       
 

The maximum amplitudes are thus located at x = λ/4, 3λ/4, 5λ/4, and so forth. The position of maximum amplitude 
is called an antinode. Note that at this position the displacement of the resultant wave is a function of time. The 
original two traveling waves and 
the resultant standing wave are 
shown in figure 12.15 for values of 
time of 0, T/4, T/2, 3T/4, and T, 
where T is the period of the wave. 
Recall that ω = 2π/T. Therefore, cos 
ωt = cos(2πt/T). Note that the waves 
are moving to the left and the right, 
but the resultant wave does not 
travel at all, it is a standing wave 
on a string. The node of the 
standing wave at x = λ/2 remains a 
node for all times. Thus, the string 
can not move up and down at that 
point, and can not therefore 
transmit any energy past that point. 
Thus, the resultant wave does not 
move along the string but is 
stationary or standing. 

How many different types 
of standing waves can be produced 
on this string? The only restriction 
on the number or types of different 
waves is that the ends of the string 
must be tied down or fixed. That is, 
there must be a node at the ends of 
the string, which implies that the 
displacement y must always equal 
zero for x = 0, and for x = L, the 
length of the string. When x is 
equal to zero the displacement is  

 
y = 2A sin[k(0)]cos(ωt) = 0    (12.58) 

                                                     Figure 12.15  Standing wave on a string. 
 

When x = L, the displacement of the standing wave is 
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y = 2A sin(kL)cos(ωt)                                                             (12.59) 
 

Equation 12.59 is not in general always equal to zero. Because it must always be zero in order to satisfy the 
boundary condition of y = 0 for x = L, it is necessary that 

                 sin(kL) = 0 
which is true whenever kL is a multiple of π, that is, 

    kL = nπ 
 

for n = 1, 2, 3, …. This places a restriction on the number of waves that can be placed on the string. The only 
possible wave numbers the wave can have are therefore 

  k = nπ                                                                            (12.60) 
                                                                                                      L         

 
Therefore, we must write the displacement of the standing wave as 
 

( )2 sin cosn xy A t
L
π

ω =  
 

                                                               (12.61) 

 
Because k = 2π/λ, a restriction on the possible wave numbers k is also a restriction on the possible 

wavelengths λ that can be found on the string. Thus, 
 

k = 2π = nπ  
                                                                                                        λ     L 
or 

λ = 2L                                                                                (12.62) 
     n 

 
That is, the only wavelengths that are allowed on the string are λ = 2L, L, 2L/3, and so forth. In other words, not 
all wavelengths are possible; only those that satisfy equation 12.62 will have fixed end points. Only a discrete set 
of wavelengths is possible. Figure 12.16 shows some of the possible modes of vibration. 

We can find the frequency of any wave on the string with the 
aid of equations 12.3 and 12.30 as 

 
f =  v  
     λ 

/
Tv

m l
=  

Thus, 

      1
/

Tf
m lλ

=                                     (12.63) 

 
However, since the only wavelengths possible are those for λ = 2L/n, 
equation 12.62, the frequencies of vibration are 
 
                                                                                                               Figure 12.16  The normal modes of vibration 

                                                                                                        of a string. 
 

2 /
n Tf
L m l

=                                                                          (12.64) 

with n = 1, 2, 3, … 
Equation 12.64 points out that there are only a discrete number of frequencies possible for the vibrating 

string, depending on the value of n. The simplest mode of vibration, for n = 1, is called the fundamental mode of 
vibration. As we can see from figure 12.16, a half of a wavelength fits within the length L of the string (i.e., L = λ/2 
or λ = 2L). Thus, the fundamental mode of vibration has a wavelength of 2L. We obtain the fundamental 
frequency f1 from equation 12.64 by setting n = 1. Thus, 
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     1
1

2 /
Tf

L m l
=                                                                           (12.65) 

 
For n = 2 we have what is called the first overtone or second harmonic. From figure 12.16, we see that one 

entire wavelength fits within one length L of the string (i.e., L = λ). We obtain the frequency of the second 
harmonic from equation 12.64 by letting n = 2. Hence, 

 

 2 1
2 2

2 /
Tf f

L m l
= =                                                                     (12.66) 

 
In general, we find the frequency of any higher mode of vibration from 
 

 fn = nf1                                                                              (12.67) 
 

A string that vibrates at a frequency given by equation 12.64 or 12.67 is said to be vibrating at one of its natural 
frequencies. 

The possible waves for n = 3 and n = 4 are also shown in figure 12.16. Note that the nth harmonic contains 
n half wavelengths within the distance L. We can also observe that the location of the nodes and antinodes agrees 
with equations 12.56 and 12.57. Also note from equation 12.64 that the larger the tension T in the string, the 
higher the frequency of vibration. If we were considering a violin string, we would hear this higher frequency as a 
higher pitch. The smaller the tension in the string the lower the frequency or pitch. The string of any stringed 
instrument, such as a guitar, violin, cello, and the like, is tuned by changing the tension of the string. Also note 
from equation 12.64 that the larger the mass density m/l of the string, the smaller the frequency of vibration, 
whereas the smaller the mass density, the higher the frequency of the vibration. Thus, the mass density of each 
string of a stringed instrument is different in order to give a larger range of possible frequencies. Moving the 
finger of the left hand, which is in contact with the vibrating string, changes the point of contact of the string and 
thus changes the value of L, the effective length of the vibrating string. This in turn changes the possible 
wavelengths and frequencies that can be obtained from that string. 

When we pluck a 
string, one or more of the 
natural frequencies of the 
string is excited. In a real 
string, internal frictions soon 
cause these vibrations to die 
out. However, if we apply a 
periodic force to the string at 
any one of these natural 
frequencies, the mode of 
vibration continues as long as 
the driving force is continued.  

                                                  Figure 12.17  Forced vibration of a string. 
 
We call this type of vibration a forced vibration, and we can easily 
set up a demonstration of forced vibration in the laboratory, as 
shown in figure 12.17. We connect one end of a string to an 
electrical vibrator of a fixed frequency and pass the other end over a 
pulley that hangs over the end of the table. We place weights on this 
end of the string to produce the tension in the string. We add 
weights until the string vibrates in its fundamental mode. When the 
tension is adjusted so that the natural frequency of the string is the 
same as that of the electrical vibrator, the amplitude of vibration 
increases rapidly. This condition where the driving frequency is 
equal to the natural frequency of the system is called resonance. 
The tension in the string can be changed by changing the weights 
that are added to the end of the string, until all the harmonics are 

                                                                                                               Figure 12.18  The envelope of the vibration. 
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produced one at a time. The string vibrates so rapidly that the eye perceives only a blur whose shape is that of the 
envelope of the vibration, as shown in figure 12.18. 

 
Example 12.9 

 
The tension in a guitar string. A guitar string 60.0 cm long has a linear mass density of 6.50 × 10−3 kg/m. If this 
string is to play a fundamental frequency of 220 Hz, what must the tension be in the string? 

Solution
 

We find the tension necessary in the string by solving equation 12.64 for T, that is  
 

2 /
n Tf
L m l

=  

f2 =     n2T     
      4L2(m/l) 

and 
T = 4L2f2(m/l)  

      n2 
= 4(0.600 m)2(220 Hz)2(6.5 × 10−3 kg/m) 

12 
= 4.53 × 102 N 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 12.10 
 

The frequencies and wavelengths of a guitar string. Find (a) the frequencies and (b) the wavelengths of the 
fundamental, second, third, and fourth harmonics of example 12.9. 

Solution
 

a. The fundamental frequency is given in example 12.9 as 220 Hz. The frequency of the next three harmonics, 
found from equation 12.67, are 

fn = nf1 

f2 = 2f1 = 2(220 Hz) = 440 Hz 
f3 = 3f1 = 3(220 Hz) = 660 Hz 
f4 = 4f1 = 4(220 Hz) = 880 Hz 

 
b.  The wavelength of the fundamental, found from equation 12.62, is 
 

λn = 2L   
      n 

λ1 = 2(60.0 cm) 
     1 

 = 120 cm 
The wavelengths of the harmonics are 

λ2 = 2L  = 2(60.0 cm) = 60.0 cm 
                                                                               2             2 

λ3 = 2L  = 2(60.0 cm) = 40.0 cm 
                                                                               3             3 

λ4 = 2L  = 2(60.0 cm) = 30.0 cm 
                                                                               4             4 
 

To go to this Interactive Example click on this sentence. 
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Example 12.11 
 

The displacement of the third harmonic. Find the value of the displacement for the third harmonic of example 
12.10 if x = 30.0 cm and t = 0. 

Solution
 

This displacement, found from equation 12.61, is 

( )2 sin cosn xy A t
L
π

ω =  
 

 

  [ ]3 (30.0 cm)2 sin cos (0)
60.0 cm

A π
ω =   

 

32 sin 2
2

A Aπ = = − 
 

 

 
To go to this Interactive Example click on this sentence. 

 

 
  
 
12.7  Sound Waves 
A sound wave is a longitudinal wave, that is, a particle of the medium executes simple harmonic motion in a 
direction that is parallel to the velocity of propagation. A sound wave can be propagated in a solid, liquid, or a gas. 
The speed of sound in the medium depends on the density of the medium and on its elastic properties. We will 
state without proof that the speed of sound in a solid is 

Yv
ρ

=                                                                             (12.68) 

 
where Y is Young’s modulus and ρ is the density of the medium. The speed of sound in a fluid is 
 

Bv
ρ

=                                                                            (12.69) 

 
where B is the bulk modulus and ρ is the density. The speed of sound in a gas is 

 

    pv γ
ρ

=                                                                            (12.70) 

 
where γ is a constant called the ratio of the specific heats of the gas and is equal to 1.40 for air (we discuss the 
specific heats of gases and their ratio in detail in chapter 17); p is the pressure of the gas; and ρ is the density of 
the gas. Note that the pressure and the density of a gas varies with the temperature of the gas and hence the 
speed of sound in a gas depends on the gas temperature. It can be shown, with the help of the ideal gas equation 
derived in chapter 15, that the speed of sound in air is 

v = (331 + 0.606t) m/s                                                       (12.71) 
 

where t is the temperature of the air in degrees Celsius. 
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Example 12.12 
 

The speed of sound. Find the speed of sound in (a) iron, (b) water, and (c) air. 

Solution
 

a. We find the speed of sound in iron from equation 12.68, where Y for iron is 9.1 × 1010 N/m2 (from table 10.1). 
The density of iron is 7.8 × 103 kg/m3. Hence, 

 Yv
ρ

=                                                                              (12.68) 

10 2

3 3
9.1 10  N/m
7.8 10  kg/m

×
=

×
 

= 3420 m/s 
 

b.  We find the speed of sound in water from equation 12.69, where B = 2.30 × 109 N/m2 and ρ = 1.00 × 103 kg/m3. 
Thus, 

Bv
ρ

=                                                                                (12.69) 

9 2

3 3
2.30 10  N/m
1.00 10  kg/m

×
=

×
 

= 1520 m/s 
 

c.  We find the speed of sound in air from equation 12.70 with normal atmospheric pressure p = 1.013 × 105 N/m2 
and ρ = 1.29 kg/m3. Hence, 

pv γ
ρ

=                                                                             (12.70) 

5 2

3
(1.40)(1.013 10  N/m )

1.29 kg/m
×

=  

= 331 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 12.13 
 

The speed of sound as a function of temperature. Find the speed of sound in air at a room temperature of 20.0 0C. 

Solution
 

The speed of sound at 20.0 0C, found from equation 12.71, is 
 

v = (331 + 0.606t) m/s 
= [331 + 0.606(20.0)] m/s 

= 343 m/s 
 

To go to this Interactive Example click on this sentence. 

 
Example 12.14 

 
Range of wavelengths. The human ear can detect sound only in the frequency spectrum of about 20.0 to 20,000 Hz. 
Find the wavelengths corresponding to these frequencies at room temperature. 
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Solution
 

The corresponding wavelengths, found from equation 12.3, with v = 343 m/s as found in example 12.13, are 
 

λ =  v  = 343 m/s = 17.2 m 
                                                                                  f      20.0 Hz 
and 

λ =  v  =    343 m/s    = 0.0172 m 
                                                                             f       20,000 Hz 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Just as standing transverse waves can be set up on a vibrating 

string, standing longitudinal waves can be set up in closed and open 
organ pipes. Let us first consider the closed organ pipe. A traveling 
sound wave is sent down the closed organ pipe and is reflected at the 
closed end. Thus, there are two traveling waves in the pipe and they 
superimpose to form a standing wave in the pipe. An analysis of this 
standing longitudinal wave would lead to equation 12.54 for the 
resultant standing wave found from the superposition of a wave 
moving to the right and one moving to the left. The boundary 
conditions that must be satisfied are that the pressure wave must 
have a node at the closed end of the organ pipe and an antinode at the 
open end. The simplest wave is shown in figure 12.19(a). Although 
sound waves are longitudinal, the standing wave in the pipe is shown 
as a transverse standing wave to more easily show the nodes and 
antinodes. At the node, the longitudinal wave has zero amplitude, 
whereas at the antinode, the longitudinal wave has its maximum 
amplitude. It is obvious from the figure that only a quarter of a 
wavelength can fit in the length L of the pipe, hence the wavelength of 
the fundamental λ is equal to four times the length of the pipe. We 
must make a distinction here between an overtone and a harmonic. An 
overtone is a frequency higher than the fundamental frequency. A 
harmonic is an overtone that is a multiple of the fundamental 
frequency. Hence, the nth harmonic is n times the fundamental, or first 
harmonic. A harmonic is an overtone but an overtone is not 
necessarily a harmonic. We call the second possible standing wave in 
figure 12.19 the second overtone; it contains three quarter 
wavelengths in the distance L, whereas the third overtone has five. 
We can generalize the wavelength of all possible standing waves in the 
closed pipe to 

 λn =     4L                                        (12.72) 
                                                             2n − 1       

 
for n = 1, 2, 3, …, where the value of 2n − 1 always gives an odd 
number for any value of n. We can obtain the frequency of each 
standing wave from equations 12.3 and 12.72 as 
 

fn =  v  =        v           
                                                            λn       4L/(2n − 1) 

 
                                                                                                                Figure 12.19  Standing waves in a closed  

                                                                                                                     organ pipe. 
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fn = (2n − 1)v                                                                             2.73) 
                                                                                                 4L 

 
When n is equal to 1, the frequency is f1 = v/4L; when n is equal to 2, the frequency is f = 3(v/4L), which is three 
times the fundamental frequency and is thus the third harmonic. Because n = 2 is the first frequency above the 
fundamental it is called the first overtone, but it is also the third harmonic; n = 3 gives the second overtone, which 
is equal to the fifth harmonic. Thus, for an organ pipe closed at one end and open at the other, the (n − 1)th 
overtone is equal to the (2n − 1)th harmonic. Note that the allowable frequencies are all odd harmonics of the 
fundamental frequency. That is, n = 1 gives the fundamental 
frequency (zeroth overtone), which is the first harmonic; n = 2 gives 
the first overtone, which is the third harmonic; n = 3 gives the second 
overtone, which is the fifth harmonic; and so forth. Because the even 
harmonics are missing the distinction between overtones and 
harmonics must be made. Figure 12.19(d) shows a typical pipe organ. 

Standing waves can also be set up in an open organ pipe, but 
now the boundary conditions necessitate an antinode at both ends of 
the pipe, as shown in figure 12.20. For simplicity, the longitudinal 
standing wave is again depicted as a transverse standing wave in the 
figure. The node is the position of zero amplitude and the antinodes at 
the ends of the open pipe are the position of maximum amplitude of 
the longitudinal standing wave. From inspection of the figure we can 
see that the wavelength of the nth harmonic is 

 
λn = 2L                                          (12.74) 
       n 

and its frequency is 
fn =  v  =    v      

           λn     2L/n  
 fn = nv                                         (12.75) 

                                                              2L       
 

Equation 12.75 gives the frequency of the nth harmonic for an organ 
pipe open at both ends. For the open organ pipe, even and odd 
multiples of the fundamental frequency are possible. The (n − 1)th 
overtone is equal to the nth harmonic. 

 
                                                                                                                 Figure 12.20  Standing waves in an open 

                                                                                                               organ pipe. 
 

Example 12.15 
 

The length of a closed organ pipe. Find the length of a closed organ pipe that can produce the musical note A = 440 
Hz. Assume that the speed of sound in air is 343 m/s. 

Solution
 

We find the length of the closed organ pipe from equation 12.73 by solving for L. Thus, 
 

L = (2n − 1)v 
      4fn 

We obtain the fundamental note for n = 1: 
L = (2n − 1)(343 m/s) 

     4(440 cycles/s) 
= 0.195 m 

 
To go to this Interactive Example click on this sentence. 
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Example 12.16 
 

Open and closed organ pipes. If the length of an organ pipe is 4.00 m, find the frequency of the fundamental for 
(a) a closed pipe and (b) an open pipe. Assume that the speed of sound is 343 m/s. 

Solution
 

a. The frequency of the fundamental for the closed pipe, found from equation 12.73 with n = 1, is 
 

fn = (2n − 1)v 
      4L 

f1 = [2(1) − 1](343 m/s) 
      4(4.00 m) 

= 21.4 Hz 
 

b.  The frequency of the fundamental for an open pipe, found from equation 12.75, is 
 

fn =  nv  
       2L 

f1 = (1)(343 m/s) 
      2(4.00 m) 

= 42.9 Hz 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Note that the frequency of the fundamental of the open organ pipe is exactly twice the frequency of the 

fundamental in the closed organ pipe. Table 12.1 gives a summary of the harmonics for the vibrating string and 
the organ pipe. 

Table 12.1 
Summary of Some Different Harmonics for the Musical Note A, 

Which Has the Fundamental Frequency of 440 Hz 
Vibrating String 

n 
1 
2 
3 

Harmonic 
first 
second 
third 

Overtone 
fundamental 
first 
second 

Frequency (Hz) 
440 
880 
1320 

Organ Pipe Opened at One End 
n 
1 
2 
3 

Harmonic 
first 
third 
fifth 

Overtone 
fundamental 
first 
second 

Frequency (Hz) 
440 
1320 
2200 

                                                                        
 
12.8  The Doppler Effect 
Almost everyone has observed the change in frequency of a train whistle or a car horn as it approaches an observer 
and as it recedes from the observer. The change in frequency of the sound due to the motion of the sound source is 
an example of the Doppler effect. In general, this change in frequency of the sound wave can be caused by the 
motion of the sound source, the motion of the observer, or both. Let us consider the different possibilities. 
 
Case 1:  The Observer and the Sound Source Are Stationary 
This case is the normal case where there is no relative motion between the source and the observer and is shown 
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in figure 12.21. When the source emits a sound of frequency fs, the sound waves propagate out from the source in a 
series of concentric circles. The distance between each circle is the wavelength of the sound. The sound propagates at 
a speed v, and the frequency heard by the observer fo is simply 
 

fo =  v  = fs                                      (12.76) 
  λ 
 

That is, the stationary observer hears the same frequency as the one 
emitted from the stationary source. 
 
Case 2:  The Observer Is Stationary But the Source Is 
Moving 
When the source of sound moves with a velocity, vs, to the right, the 
emitted waves are no longer concentric circles but rather appear as in 
figure 12.22. Each wave is symmetrical about the point of emission, 
but since the point of emission is moving to the right, the circular 
wave associated with each emission is also moving to the  
                                                                                                             Figure 12.21  Observer and source stationary. 
 

     
Figure 12.22  Doppler effect with the source moving and the observer stationary. 

 
right. Hence the waves bunch up in advance of the moving source and spread out behind the source. The frequency 
that an observer hears is just the speed of propagation of the wave divided by its wavelength, that is, 
 

f =  v                                                                                 (12.77) 
       λ 

 
We can use equation 12.77 to describe qualitatively what the observer hears. As the wave approaches the observer, 
the waves bunch up and hence the effective wavelength λ appears smaller in the front of the wave. From equation 
12.77 we can see that if λ decreases, the frequency f must increase. Thus, when a moving source approaches a 
stationary observer the observed frequency is higher than the emitted frequency of the source. When the source 
reaches the observer, the observer hears the frequency emitted. As the source passes and recedes from the 
observer the effective wavelength λ appears longer. Hence, from equation 12.77, if λ increases, the frequency f, 
heard by the observer, is lower than the frequency emitted by the source. Thus, when a moving source recedes from 
a stationary observer the observed frequency is lower than the emitted frequency of the source. To get a quantitative 
description of the observed frequency we proceed as follows. 
 
a)  Moving Source Approaches a Stationary Observer 
The effective wavelength measured by the stationary observer in front of the moving source is simply the total 
distance AB, in figure 12.22, divided by the total number of waves in that distance, that is, 
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λf = distance AB                                                                       (12.78) 
        # of waves 

 
In a time t, the moving source has moved a distance 0A, in figure 12.22, which is given by the speed of the source 
vs times the time t. The distance 0B is given by the speed of the wave v times the time t. Hence, the distance AB in 
figure 12.22 is 

distance AB = vt − vst                                                                  (12.79) 
 

whereas the number of waves between A and B is just the number of waves emitted per unit time, fs, the frequency 
of the source, times the time t. Thus, 

# of waves in AB = (# of waves emitted)t = fst                                              (12.80) 
                           time 

 
Substituting equations 12.79 and 12.80 into equation 12.78, the effective wavelength in front of the source is 
 

λf = vt − vst                                                                           (12.81) 
         fst 

λf = v − vs 
      fs 

 
However, from equation 12.77, the observed frequency in front of the approaching source fof is 
 

fof =  v  =       v        
                                                                                                      λf    (v − vs)/fs 
or 

 fof =     v    fs                                                                           (12.82) 
                                                                                               v − vs                  

 
Equation 12.82 gives the frequency that is observed by a stationary observer who is in front of an approaching 
source. 
 
b) A Moving Source Recedes from a Stationary Observer 
The effective wavelength λb heard by the stationary observer behind the moving source is equal to the total 
distance CA divided by the number of waves between C and A, that is, 
 

λb = distance CA                                                                      (12.83) 
        # of waves 

 
However, from figure 12.22, we see that the distance CA is 

 
distance CA = vt + vst                                                                    (12.84) 

 
whereas the number of waves between C and A is the number of waves emitted per unit time, times the time t, 
that is, 

# of waves in CA = (# of waves emitted)t = fst                                                (12.85) 
                        time 

 
Substituting equations 12.84 and 12.85 into equation 12.83 yields the effective wavelength behind the receding 
source 

λb = vt + vst 
       fst 

or 
λb = v + vs                                                                          (12.86) 

      fs 
 

Substituting this effective wavelength into equation 12.77, we obtain 
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fob =  v   =        v         

                                                                                                     λb    (v + vs)/fs 
or 

 fob =     v     fs                                                                           (12.87) 
                                                                                              v + vs                 

 
Equation 12.87 gives the frequency observed by a stationary observer who is behind the receding source. 

 
Example 12.17 

 
Doppler effect - moving source. A train moving at 25.00 m/s emits a whistle of frequency 200.0 Hz. If the speed of 
sound in air is 343.0 m/s, find the frequency observed by a stationary observer (a) in advance of the moving source 
and (b) behind the moving source. 

Solution
 

a. The observed frequency in advance of the approaching source, found from equation 12.82, is 
 

fof =     v     fs 
    v − vs 

( )343.0 m/s 200.0 Hz
343.0 m/s 25.00 m/s

 =  − 
 

= 215.7 Hz 
 

Note that the observed frequency in front of the approaching source is higher than the frequency emitted by the 
source. 
b. The observed frequency behind the receding source, found from equation 12.87, is 
 

fob =     v     fs 
    v + vs 

( )343.0 m/s 200.0 Hz
343.0 m/s 25.00 m/s

 =  + 
 

= 186.4 Hz 
 

Note that the observed frequency behind the receding source is lower than the frequency emitted by the source. 
Also note that the change in the frequency is not symmetrical. That is, the change in frequency when the train is 
approaching is equal to 15.7 Hz, whereas the change in frequency when the train is receding is equal to 13.6 Hz. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Case 3:  The Source Is Stationary But the Observer Is Moving 
For a stationary source the sound waves are emitted as concentric circles, as shown in figure 12.23. 
 
a) The Observer Is Moving toward the Source at a Velocity vo 
When the observer approaches the stationary source at a velocity vo, the relative velocity between the observer 
and the wave is 

vrel = vo + v 
 
This relative velocity has the effect of having the emitted wave pass the observer at a greater velocity than 
emitted. The observed frequency heard while approaching the source is 
 

foA = vrel = vo + v 
                                                                                                      λ           λ 
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But the wavelength emitted by the source does not change, and is simply 

 
λ =  v                            (12.88) 

                                                 fs           
Hence, 

foA = vo + v 
          v/fs 

 
Hence, the frequency observed by the moving observer 
as it approaches the stationary source is 
 

 foA = vo + v fs                       (12.89) 
                                                 v                            

 
 
 
 

                                                                                       Figure 12.23  Doppler effect, the source is stationary 
                                                                                                  but the observer is moving. 

 
b) The Observer Is Moving Away from the Source at a Velocity vo 
When the observer moves away from the source, the relative velocity between the wave and the observer is 

 
vrel = v − vo 

 
This reduced relative velocity has the effect of having the sound waves move past the receding observer at a slower 
rate. Thus, the observed frequency of the receding observer foR is  
 

foR = vrel  = v − vo  
                                                                                                     λ          λ 

 
The wavelength λ of the emitted sound is still given by equation 12.88, and the observed frequency becomes 
 

foR = v − vo 
        v/fs 

 
Thus, the frequency observed by an observer who is receding from a stationary source is 
 

 foR = v − vo  fs                                                                        (12.90) 
                                                                                                  v                     

 
Example 12.18 

 
Doppler effect - moving observer. A stationary source emits a whistle at a frequency of 200.0 Hz. If the velocity of 
propagation of the sound wave is 343.0 m/s, find the observed frequency if (a) the observer is approaching the 
source at 25.00 m/s and (b) the observer is receding from the source at 25.00 m/s. 

Solution
 

a. The frequency observed by the approaching observer, found from equation 12.89, is 
 

foA = vo + v fs  
       v 

( )25.00 m/s 343.0 m/s 200.0 Hz
343.0 m/s

+ =  
 

 

= 214.6 Hz 
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Note that the frequency observed by the approaching observer is greater than the emitted frequency of 200.0 Hz. 
However, observe that it is not the same numerical value found when the source was moving (215.7 Hz). The 
reason for the difference in the observed frequency is that the physical problems are not the same. 
b.  The frequency observed by the receding observer, found from equation 12.90, is 
 

foR = v − vo fs  
    v 

( )343.0 m/s 25.00 m/s 200.0 Hz
343.0 m/s

− =  
 

 

= 185.4 Hz 
 

Note that the frequency observed by the receding observer is less than the frequency emitted by the source. Also 
note that the frequency observed by the receding observer for a stationary source, foR = 185.4 Hz, is not the same 
frequency as observed by a stationary observer behind the receding source fob = 186.4 Hz. Finally, notice that 
when the source is stationary, the change in the frequency of approach, 14.6 Hz, is equal to the change in the 
frequency of recession, 14.6 Hz. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Case 4:  Both the Source and the Observer Are Moving 
If both the source and the observer are moving we can combine equations 12.82, 12.87, 12.89, and 12.90 into the 
one single equation 

 fo =  v ± vo  fs                                                                           (12.91) 
                                                                                          v ∓ vs               
with the convention that 
+ vo corresponds to the observer approaching 
− vo corresponds to the observer receding 
− vs corresponds to the source approaching 
+ vs corresponds to the source receding 

 
Example 12.19 

 
Doppler effect - both source and observer move. A sound source emits a frequency of 200.0 Hz at a velocity of 343.0 
m/s. If both the source and the observer move at a velocity of 12.50 m/s, find the observed frequency if (a) the 
source and the observer are moving toward each other and (b) the source and the observer are moving away from 
each other. 

Solution
 

a. If the source and observer are approaching each other, the observed frequency, found from equation 12.91 with 
vo positive and vs negative, is 

fo =  v + vo  fs 
   v − vs 

( )343.0 m/s 12.50 m/s 200.0 Hz
343.0 m/s 12.50 m/s

+ =  − 
 

= 215.1 Hz 
 

Note that the frequency observed is higher than the frequency emitted, and although the relative motion between 
the source and the observer is still 25.00 m/s, the observed frequency is different from that found in both examples 
12.17 and 12.18 (215.7 Hz and 214.6 Hz). 
b. If the source and observer are moving away from each other, then the observed frequency, found from equation 
12.91 with vo negative and vs positive, is 
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fo =  v − vo fs  
    v + vs 

( )343.0 m/s 12.50 m/s 200.0 Hz
343.0 m/s 12.50 m/s

− =  + 
 

= 185.9 Hz 
 

Note that the observed frequency is lower than the emitted frequency, and although the relative velocity between 
observer and source is still 25.00 m/s, the observed frequency is different from that found in examples 12.17 and 
12.18 (186.4 Hz and 185.4 Hz). 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
12.9  The Transmission of Energy in a Wave and the Intensity of a Wave 
We have defined a wave as the propagation of a disturbance through a medium. The disturbance causes the 
particles of the medium to be set into motion. As we have seen, if the wave is a transverse wave, the particles 
oscillate in a direction perpendicular to the direction of the wave propagation. The oscillating particles possess 
energy, and this energy is passed from particle to particle of the medium. Thus, the wave transmits energy as it 
propagates. Let us now determine the amount of energy transmitted by a wave. 

Let us consider a transverse wave on a string, whose particles are executing simple harmonic motion. If 
there is no energy loss due to friction, the total energy transmitted by the wave is equal to the total energy of the 
vibrating particle, that is, 

Etransmitted = (Etot)particle 
 

The total energy possessed by a single particle in simple harmonic motion, given by a variation of equation 11.25, 
is 

Etot =  1  kR2                                                                         (12.92) 
       2 

 
where the letter R is now used for the amplitude of the vibration and hence the wave. Recall that k, in this 
equation, is the spring constant that was shown in chapter 11 to be related to the angular frequency by 
 

ω2 =  k   
       m 

 
where m was the mass of the particle in motion. Solving for the spring constant k, we get 
 

k = ω2m                                                                             (12.93) 
 

Also recall that the angular frequency was related to the frequency of vibration by equation 12.12 as 
 

  ω = 2πf 
Substituting equation 12.12 into equation 12.93 yields 

k = (2πf)2m                                                                       (12.94) 
Substituting equation 12.94 into equation 12.92 gives 
 

Etot =  1 (2πf)2mR2 
                                                                                             2         
The energy transmitted by the wave is therefore 

 Etransmitted = 2π2mf 2R2                                                              (12.95) 
 
Notice that the energy transmitted by the wave is directly proportional to the square of the frequency of the wave 
and directly proportional to the square of the amplitude of the wave. 
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Example 12.20 
 

Energy transmitted by a wave. The frequency and amplitude of a transverse wave on a string are doubled. What 
effect does this have on the amount of energy transmitted? 

Solution
 

The energy of the original wave, given by equation 12.95, is 
 

Eo = 2π2mf02R02 
 

The frequency of the new wave is f = 2fo, and the amplitude of the new wave is R = 2Ro. The energy transmitted by 
the new wave is 

E = 2π2mf2R2 = 2π2m(2fo)2(2Ro)2 
= 16(2π2mf02R02) = 16Eo 

 
To go to this Interactive Example click on this sentence. 

 

 
 
We derived equation 12.95 for the transmission of energy by a transverse wave on a string. It is, however, 
completely general and can be used for any mechanical wave. 

It is sometimes more convenient to describe the wave in terms of its intensity. The intensity of a wave is 
defined as the energy of the wave that passes a unit area in a unit time. That is, we define the intensity 
mathematically as 

 I =  E                                                                                  (12.96) 
                                                                                                 At            

 
The unit of intensity is the watt per square meter, W/m2. Substituting the energy of a wave from equation 12.95 
into equation 12.96 gives 

I = 2π2mf2R2                                                                            (12.97) 
   At 

 
Because the density of a medium is defined as the mass per unit volume, the mass of the particle in simple 
harmonic motion can be replaced by 

m = ρV 
 

And the volume of the medium can be expressed as the cross-sectional area A of the medium that the wave is 
moving through times a distance l the wave moves through (i.e., V = Al). The mass m then becomes 
 

m = ρAl                                                                             (12.98) 
 

Substituting equation 12.98 into equation 12.97 yields 
 

I = 2π2ρAlf2R2 
At 
 

Notice that the cross-sectional area term in both numerator and denominator cancel, and l/t is the velocity of the 
wave v. Hence, 

 I = 2π2ρvf2R2                                                                          (12.99) 
 

Equation 12.99 gives the intensity of a mechanical wave of frequency f and amplitude R, moving at a velocity v in 
a medium of density ρ. 
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Example 12.21 
 

The intensity of a sound wave. A trumpet player plays the note A at a frequency of 440 Hz, with an amplitude of 
7.80 × 10−3 mm. If the density of air is 1.29 kg/m3 and the speed of sound is 331 m/s, find the intensity of the sound 
wave. 

Solution
 

The intensity of the sound wave, found from equation 12.99, is 
 

I = 2π2ρvf2R2 

= 2π2(1.29 kg/m3)(331 m/s)(440 Hz)2(7.80 × 10−6 m)2 
= 9.93 × 10−2 W/m2 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 

Have you ever wondered . . . ? 
An Essay on the Application of Physics 

The Production and Reception of Human Sound 
 

Humans use sound waves to communicate with each other. Sound is produced in the larynx, sometimes 
called the voice box, which is a cartilaginous organ of the throat that contains the vocal cords, figure 1(a). It is the 
vocal cords that are responsible for producing human sound. The cords are horizontal folds in the mucous 
membrane lining of the larynx, figure 1(b). 

The vocal cords contain elastic fibers. As air is exhaled from the lungs, it passes over these elastic fibers 
and sets them into vibration. The cords 
can be visualized as the vibrating strings 
studied in this chapter. The frequency of 
the produced sound can be varied by 
changing the tension in the vocal cords 
similar to the vibrating string. The 
greater the tension on the cords, the 
higher the frequency, or pitch, of the 
emitted sound. The lower the tension on 
the cords, the lower the pitch. 

When you hum, you set up a 
standing wave of a particular frequency 
on your vocal cords. The exhaled air that 
passes over these cords picks up the 
vibration of the cords. As the air is 
expelled from your mouth, it is observed 
as a longitudinal wave at the frequency of 
the vibrating vocal cords. When you 
speak, the expelled air and vibrating vocal 
cords initiate the sound, but your mouth, 
lips, and tongue modify it to produce the 
vowels and consonants that make up the 
words of speech. 

 
                                                              Figure 1  The vocal cords. 

 
An interesting observation in the production of sound can be demonstrated by humming with your mouth 

closed. If you now pinch your nose closed, the humming will stop because the air will no longer flow over the vocal 
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cords. If you are fortunate enough to have survived a case of choking on either food or drink, you will recall that 
when the choking begins you usually panic and try to yell to anyone to tell them that you are choking. 
Unfortunately, as you try to speak you find that you are unable to do so. Since the windpipe has been closed, no air 
can pass over the vocal cords to initiate the vibration that starts the speaking process. Many people die from 
choking simply because they are unable to communicate their condition to someone who can help. The usual 
procedure to communicate your choking condition is to get someone’s attention. Then, point to your throat and 
cross your throat with your finger as though you were cutting your throat. If the other person is aware of the sign 
and realizes that you are choking, he or she can save you by initiating the Heimlich maneuver. This consists of 
holding you from behind and wrapping his or her arms around you. Then the person presses against your 
diaphragm with his or her arms. By pressing in and upward, a force is exerted on your lungs that tends to 
compress the lungs. This in turn increases the pressure of the air in your lungs until it is great enough to force the 
closed valve open, thereby expelling the food that was causing you to choke. This then permits you to breathe 
normally and you observe that you now have your voice back to communicate with anyone. 

Your ears are used to detect sound. The human ear can be divided into three parts: the outer ear, the 
middle ear, and the inner ear, figure 2. The outer ear acts as a funnel to channel the sound wave to the ear drum. 
These sound vibrations set the 
ear drum into vibration. These 
vibrations are then passed 
through the middle ear by 
three bones called the malleus 
(hammer), incus (anvil), and 
stapes (stirrup). These bones 
effectively amplify the 
amplitude of the vibration and 
then pass it on to the inner 
ear. The inner ear is a system 
of cavities. One of these 
cavities is the cochlea, a bony 
labyrinth in the shape of a 
spiral. The cochlea contains a 
fluid, through which the 
amplified vibration is passed to 
the auditory nerve on its way 
to the brain. The brain then 
interprets this sound as either 
speech, music, noise, and so 
forth. 

The loudness of a 
sound as heard by the human  

                                      Figure 2  The human ear. 
 
ear is not directly proportional to the intensity of the sound, but rather is proportional to the logarithm of 

the intensity. The human ear can hear sounds of intensities as low as I0 = 1.00 × 10−12 W/m2, which is called the 
threshold of hearing, to higher than 1.00 W/m2, which is called the threshold of pain. Because of the enormous 
variation in intensity that the human ear can hear, a logarithmic scale is usually used to measure sound. The 
intensity level ß of a sound wave, measured in decibels (dB), is defined as 

 

0

10 log I
I

β
 

=  
 

                                                                       (12H.1) 

 
where I0 is the reference level, taken to be the threshold of hearing. The decibel is 1/10 of a bel, which was named 
to honor Alexander Graham Bell. 

 
Example 12H.1 

 
The intensity of sound in decibels. Find the intensity level of sound waves that are the following multiples of the 
threshold of hearing: (a) I = I0, (b) I = 2I0, (c) I = 5I0, (d) I = 10I0, and (e) I = 100I0. 
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Solution
 

a. The intensity level, found from equation 12H.1, is 
 

0

10 log I
I

β
 

=  
 

                                                                          (12H.1) 

0

0

10 log 10log1 0 dBI
I

β
 

= = = 
 

 

 
Because the log of 1 is equal to zero the intensity level at the threshold of hearing is 0 dB. 
b.  For I = 2I0, the intensity level is 

0

0

210log 10log 2 3.01 dBI
I

β
 

= = = 
 

 

c.  For I = 5I0 the intensity level is 
0

0

510log 10log5 6.99 dBI
I

β
 

= = = 
 

 

d.  For I = 10I0 the intensity level is 
0

0

1010log 10log10 10.00 dBI
I

β
 

= = = 
 

 

e.  For I = 100I0 the intensity level is 
0

0

10010log 10log100 20.00 dBI
I

β
 

= = = 
 

 

 
Thus, doubling the intensity level of a sound from 10 to 20 dB, a factor of 2, actually corresponds to an intensity 
increase from 10I0 to 100I0, or by a factor of 10. Similarly, an increase in the intensity level from 10 to 30 dB, a 
factor of 3, would correspond to an increase in the intensity from 10I0 to 1000I0, or a factor of 100. 
 

 
 

Example 12H.2 
 

Heavy traffic noise. A busy street with heavy traffic has an intensity level of 70 dB. Find the intensity of the sound. 

Solution
 

We find the intensity by solving equation 12H.1 for I. Hence, 
 

0

log
10

I
I

β  
=  

 
 

But the definition of the common logarithm is 
              if y = log x      then x = 10y 

For our case this becomes 

        if   
0

log
10

I
I

β  
=  

 
     then  10

0

10I
I

β

=      

Hence, 
I = I010β/10 

And 
I = I01070/10 = (1.00 × 10−12 W/m2)(107) 

= 1.00 × 10−5 W/m2 
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The human ear is responsive to a large range of frequencies and intensities. A typical response curve is 

shown in figure 3. The intensity level of sound is plotted against the frequency of the sound. The continuous 
curved line at the bottom represents the 
response curve of a normal ear. The lowest 
region on the curve occurs from about 1000 
Hz to about 4000 Hz. These frequencies 
can be heard by the normal ear at very low 
intensity levels. On the other hand, to 
hear a frequency of 100 Hz the intensity 
level would have to be increased to about 
35 dB. And for a normal ear to hear a 
frequency of about 20,000 Hz the intensity 
level would have to be increased to about 
40 dB. At an intensity of 20 dB a 
frequency of 1000 Hz can easily be heard, 
but a frequency of 100 Hz could not be 
heard at all. 

With age, the frequencies that the 
human ear can hear decreases. Many 
people resort to a hearing aid to overcome 
this hearing deficiency. A test is made of 
the person’s ability to hear a sound of a 
known intensity level and frequency. The  

                                                             Figure 3  Graph of intensity level of sound versus the 
                                                                         frequency of the sound for a human ear. 

 
person is placed in a soundproof booth and earphones are placed over his or her ears. The examiner then plays 
pure sounds at a known frequency. He or she starts at a low intensity level and increases the intensity in small 
steps until the individual hears that particular frequency. When the individual hears the sound, he or she presses 
a button to let the examiner know that he or she has heard the sound. The examiner then marks an x on the graph 
of the frequency and intensity level of the normal ear shown in figure 3. The x’s represent the actual frequencies 
heard at a particular intensity level. By knowing the frequencies that the person can no longer hear very well, a 
hearing aid, which is essentially a miniature electronic amplifier, is designed to amplify those frequencies, and 
thus bring the sound of that frequency up to a normal intensity level for that individual. For example the x’s in 
figure 3 indicate that the individual’s hearing response has deteriorated. In particular, the hearing response in the 
midrange frequency is much worse than at the low end or the high end of the spectrum. (The x’s in the midrange 
are farther away from the normal curve.) Thus a hearing aid that amplifies the frequencies in the middle range of 
the audio spectrum would be useful for the individual. We would certainly not want to amplify the entire audio 
spectrum, for then we would be amplifying some of the frequencies that the person already hears reasonably well. 

It is interesting to note that not only humans use sounds to communicate but animals do also. Some 
animals communicate at a higher frequency than can be heard by humans. These sounds are called ultrasonic and 
occur at frequencies above 20,000 Hz. Birds and dogs can hear these ultrasounds and bats even use them for 
navigation in a kind of sound radar. Ultrasound is used in sonar systems to detect submarines. It is also used in a 
variety of medical applications, including diagnosis and treatment. For example, chiropractors and physical 
therapists routinely use ultrasound for relief of lower back pain. 
 
 

The Language of Physics 
 
Wave 
A wave is a propagation of a 
disturbance through a medium (p. ). 
 
Longitudinal wave 
A wave in which the particles of the 
medium oscillate in simple 

harmonic motion parallel to the 
direction of the wave propagation 
(p. ). 
 
Transverse wave 
A wave in which the particles of the 
medium execute simple harmonic 

motion in a direction perpendicular 
to its direction of propagation (p. ). 
 
Displacement 
The distance that a particle of the 
medium is displaced from its 
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equilibrium position as the wave 
passes by (p. ). 
 
Amplitude 
The maximum value of the 
displacement (p. ). 
 
Wavelength 
The distance, in the direction of 
propagation, in which the wave 
repeats itself (p. ). 
 
Period 
The time it takes for one complete 
wave to pass a particular point. 
Hence, it is the time for a wave to 
repeat itself (p. ). 
 
Frequency 
The number of waves passing a 
particular point per second (p. ). 
 
Reflection of a wave at a 
boundary 
If a wave on a string traveling to 
the right is reflected from a 
nonfixed end, the reflected wave 
moves to the left with the same size 
and shape as the incident wave. If a 
wave on a string is traveling to the 
right and is reflected from a fixed 
end, the reflected wave is the same 
size and shape but is now inverted 
(p. ). 
 
Reflection and transmission of 
a wave at the boundary of two 
different media 
(1) Boundary between a less dense 
medium and a more dense medium. 
The boundary acts as a fixed end 
and the reflected wave is inverted. 
The transmitted wave slows down 
on entering the more dense medium 
and the wavelength of the 
transmitted wave is less than the 
wavelength of the incident wave 
(p. ). 
(2) Boundary between a more dense 
medium and a less dense medium. 
The boundary acts as a nonfixed 
end and the reflected wave is not 
inverted, but is rather right side up. 
The transmitted wave speeds up on 
entering the less dense medium and 
the wavelength of the transmitted 
wave is greater than the 

wavelength of the incident wave 
(p. ). 
 
Principle of superposition 
Whenever two or more wave 
disturbances pass a particular point 
in a medium, the resultant 
displacement of the point of the 
medium is the sum of the 
displacements of each individual 
wave disturbance (p. ). 
 
Phase angle 
The measure of how far one wave is 
displaced in the direction of 
propagation from another wave 
(p. ). 
 
Constructive interference 
When two interfering waves are in 
phase with each other (phase angle 
= 0) the amplitude of the combined 
wave is a maximum (p. ). 
 
Destructive interference 
When two interfering waves are 
1800 out of phase with each other 
the amplitude of the combined wave 
is zero (p. ). 
 
Node 
The point where the amplitude of a 
standing wave is zero (p. ). 
 
Antinode 
The point where the amplitude of a 
standing wave is a maximum (p. ). 
 
Standing wave on a string 
For a string fixed at both ends, a 
wave train is sent down the string. 
The wave is reflected from the fixed 
ends. Hence, there are two wave 
trains on the string, one traveling 
to the right and one traveling to the 
left. The resultant wave is the 
superposition of the two traveling 
waves. It is called a standing wave 
or a stationary wave because the 
resultant standing wave does not 
travel at all. The node of the 
standing wave remains a node for 
all times. Thus, the string can not 
move up and down at that point, 
and can not transmit any energy 
past that point. Because the string 
is fixed at both ends, only certain 

wavelengths and frequencies are 
possible. When the string vibrates 
at these specified wavelengths, the 
string is said to be vibrating at one 
of its normal modes of vibration, 
and the string is vibrating at one of 
its natural frequencies (p. ). 
 
Fundamental frequency 
The lowest of the natural 
frequencies of a vibrating system 
(p. ). 
 
Resonance 
When a force is applied, whose 
frequency is equal to the natural 
frequency of the system, the system 
vibrates at maximum amplitude 
(p. ). 
 
Sound wave 
A sound wave is a longitudinal 
wave that can be propagated in a 
solid, liquid, or gas (p. ). 
 
Overtone 
An overtone is a frequency higher 
than the fundamental frequency 
(p. ). 
 
Harmonic 
A harmonic is an overtone that is a 
multiple of the fundamental 
frequency. Hence, the nth harmonic 
is n times the fundamental 
frequency, or first harmonic (p. ). 
 
Doppler effect 
The change in the wavelength and 
hence the frequency of a sound 
caused by the relative motion 
between the source and the 
observer. When a moving source 
approaches a stationary observer 
the observed frequency is higher 
than the emitted frequency of the 
source. When a moving source 
recedes from a stationary observer, 
the observed frequency is lower 
than the emitted frequency of the 
source (p. ). 
 
Intensity of a wave 
The energy of a wave that passes a 
unit area in a unit time (p. ). 
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Summary of Important Equations 
 

Frequency of a wave   f =  1    (12.1) 
                                           T 
 
Fundamental equation of wave 
propagation       v = λf              (12.3) 
 
Wave number       k = 2π          (12.9) 
                                         λ 
 
Equation of a wave traveling to the 
right      y = A sin(kx − ωt)     (12.13) 
 
Equation of a wave traveling to the 
left        y = A sin(kx + ωt)      (12.26) 
 
Angular frequency  ω = 2πf    (12.12) 
 
Angular frequency   ω = kv    (12.14) 
 
Velocity of transverse wave on a 

string         
/

Tv
m l

=              (12.30) 

 
Change in wavelength in second 
medium        λ2 =  v2  λ1         (12.34) 
                              v1 
 
Principle of superposition 

  y = y1 + y2 + y3 + …    (12.35) 
 

Equation of wave displaced to the 
right by phase angle φ 

y = A sin(kx − ωt − φ)      (12.38) 
 
Interference of two waves out of 
phase by angle φ 

     2 cos sin
2 2

y A kx tφ φ
ω   = − −   

   
 

(12.50) 
 
The equation of the displacement of 
a standing wave on a string 

( )2 sin cosn xy A t
L
π

ω =  
 

     (12.61) 

   
Location of nodes of standing wave 

               x = nλ                     (12.56) 
                          2 
 
Location of antinodes 

x = (2n − 1) λ          (12.57) 
                                     4 
 
Possible wavelengths on vibrating 
string              λ = 2L              (12.62) 

    n 
 
Frequency of vibrating string 

    
2 /
n Tf
L m l

=          (12.64) 

 

Frequency of higher modes of 
vibration          fn = nf1           (12.67) 
  
Speed of sound in a solid 

               Yv
ρ

=                (12.68) 

 
Speed of sound in a fluid 

       Bv
ρ

=                 (12.69) 

 
Speed of sound in a gas 

         pv γ
ρ

=              (12.70) 

 
Doppler frequency shift 

     fo =  v ± vo  fs            (12.91) 
                        v ∓ vs 
 
Energy transmitted by wave 

  Etransmitted = 2π2mf2R2     (12.95) 
 
Intensity of a wave 

     I = 2π2ρvf2R2            (12.99) 
 
Intensity of a sound wave in 

decibels    
0

10 log I
I

β
 

=  
 

     (12H.1) 

 
Questions for Chapter 12 

 
1. Discuss the relation between 

simple harmonic motion and wave 
motion. Is it possible to create 
waves in a medium where the 
particles do not execute simple 
harmonic motion? 

2. State the differences between 
transverse waves and longitudinal 
waves. 

3. Describe how sound is made 
and heard by a human. 

4. Discuss the statement “When 
a person is young enough to hear all 
the frequencies of a good stereo 
system, he can not afford to buy it. 
And when he can afford to buy it, 
he can not hear all the frequencies.” 

5. Discuss the statement that a 
wave is periodic in both space and 
time. 

6. Why are there four different 
strings on a violin? Describe what a 
violin player does when she “tunes” 
the violin. 

7. Discuss what happens to a 
pulse that is reflected from a fixed 
end and a free end. 

*8. A wave is reflected from, 
and transmitted through, a more 
dense medium. What criteria would 
you use to estimate how much 
energy is reflected and how much is 
transmitted? 

9. If the wavelength of a wave 
decreases as it enters a medium, 

what does this tell you about the 
medium? 

10. When does the 
superposition principle fail in the 
analysis of combined wave motions? 

11. Discuss what is meant by a 
standing wave and give some 
examples. 

12. Discuss the difference 
between overtones and harmonics 
for a vibrating string, an open 
organ pipe, and a closed organ pipe. 

*13. Discuss the possible uses of 
ultrasound in medicine. 

*14. Discuss the Doppler effect 
on sound waves. Could the Doppler 
effect be applied to light waves? 
What would be the medium for the 
propagation? 
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*15. How could the Doppler 
effect be used to determine if the 
universe is expanding or 
contracting? 

16. If two sounds of very nearly 
the same frequency are played 
together, the two waves will 
interfere with each other. The 
slight difference in frequency will 

cause an alternate rising and 
lowering of the intensity of the 
combined sound. This phenomenon 
is called beats. How can this 
technique be used to tune a piano? 

 
Problems for Chapter 12 

 
12.1 Introduction 

1. Find the period of a sound 
wave of (a) 20.0 Hz and (b) 20,000 
Hz. 

2. A sound wave has a 
wavelength of 2.25 × 10−2 m and a 
frequency of 15,000 Hz. Find its 
speed. 

3. Find the wavelength of a 
sound wave of 60.0 Hz at 20.0 0C. 

 
12.2 Mathematical 
Representation of a Wave 

4. At a time t = 0, a certain 
wave is given by y = 10 sin 5x. Find 
the (a) amplitude of the wave and 
(b) its wavelength. 

5. You want to generate a wave 
that has a wavelength of 20.0 cm 
and moves with a speed of 80.0 m/s. 
Find (a) the frequency of such a 
wave, (b) its wave number, and 
(c) its angular frequency. 

6. A particular wave is given by 
y = (8.50 m)sin[(0.800 m−1)x − (5.40 
rad/s)t]. Find (a) the amplitude of 
the wave, (b) the wave number, 
(c) the wavelength, (d) the angular 
frequency, (e) the frequency, (f) the 
period, (g) the velocity of the wave, 
and (h) the displacement of the 
wave at x = 5.87 m and t = 2.59 s. 

7. A certain wave has a 
wavelength of 25.0 cm, a frequency 
of 230 Hz, and an amplitude of 1.85 
cm. Find (a) the wave number k and 
(b) the angular frequency ω. 
(c) Write the equation for this wave 
in the standard form y = A sin(kx − 
ωt). 

 
12.3  The Speed of a Transverse 
Wave on a String 

8. A 60.0-cm guitar string has a 
mass of 1.40 g. If it is to play the 
note A at a frequency of 440 Hz, 
what must the tension be in the 
string? Assume that the wavelength 

of the note is twice the length of the 
string. 

9. A 1.50-m length of wire with 
a mass of 0.035 kg is stretched 
between two points. Find the 
necessary tension in the wire such 
that the wave may travel from one 
end to another in a time of 0.0900 s. 

10. A guitar string that has a 
mass per unit length of 2.33 × 10−3 
kg/m is tightened to a tension of 
655 N. What frequency will be 
heard if the string is 60.0 cm long? 
Is this a standard note or is it sharp 
or flat? (Remember that the 
wavelength of the note played is 
twice the length of the string.) 

 
12.4  Reflection of a Wave at a 
Boundary 

11. One end of a 100-cm wire of 
3.45 g is welded to a 90.0-cm wire of 
9.43 g. (a) If a wave moves along 
the first wire at a speed of 528 m/s, 
find its speed along the second wire. 
(b) If the wavelength on the first 
wire is 1.76 cm, find the wavelength 
of the wave on the second wire. 

 
Diagram for problem 11. 

 
12. The first end of a combined 

string has a linear mass density of 
4.20 × 10−3 kg/m, whereas the 
second end has a mass density of 
10.5 kg/m. (a) If a 60.0-cm wave is 
to be sent along the first string at a 
speed of 8.56 m/s, what must the 
tension in the string be? (b) What is 
the wavelength of the reflected and 
transmitted wave? 

13. The first end of a combined 
string has a linear mass density of 
8.00 kg/m, whereas the second 
string has a density of 2.00 kg/m. If 
the speed of the wave in the first 
string is 10.0 m/s, find (a) the speed 
of the wave in the second string and 
(b) the tension in the string. (c) If a 
wave of length 60.0 cm is observed 
in the first string, find the 
wavelength and frequency of the 
wave in the second string. 

14. The first end of a combined 
string has a linear mass density of 
6.00 kg/m, whereas the second 
string has a density of 2.55 kg/m. 
The tension in the string is 350 N. 
If a vibration with a frequency of 20 
vibrations is imparted to the first 
string, find the frequency, velocity, 
and wavelength of (a) the incident 
wave, (b) the reflected wave, and 
(c) the transmitted wave. 

 
12.5 The Principle of 
Superposition 

15. The following two waves 
interfere with each other: 

 
y1 = (10.8 m)sin[(0.654 m−1)x 
                                  −(2.45 rad/s)t] 
 
y2 = (6.73 m)sin[(0.893 m−1)x −(6.82 
                                             rad/s)t] 

 
Find the resultant displacement 

when x = 0.782 m and t = 5.42 s. 
16. The following two waves 

combine: 
 

y1 = (10.8 m)sin[(0.654 m−1)x 
                                   −(2.45 rad/s)t] 

 
y2 = (10.8 m)sin[(0.654 m−1)x  
                 −(2.45 rad/s)t − 0.834 rad] 

 
(a) Find the equation of the 

resultant wave. (b) Find the 

Pearson Custom Publishing

388



 
Chapter 12  Wave Motion                                                                                                                      12-43 

displacement of the resultant wave 
when x = 0.895 m and t = 6.94 s. 

 
12.6  Standing Waves - The 
Vibrating String 

17. The E string of a violin is 
vibrating at a fundamental 
frequency of 659 Hz. Find the 
wavelength and frequency of the 
third, fifth, and seventh harmonics. 
Let the length of the string be 60.0 
cm. 

18. A steel wire that is 1.45 m 
long and has a mass of 45 g is 
placed under a tension of 865 N. 
What is the frequency of its fifth 
harmonic? 

19. A violin string plays a note 
at 440 Hz. What would the 
frequency of the wave on the string 
be if the tension in the string is 
(a) increased by 20.0% and 
(b) decreased by 20.0%? 

20. A note is played on a guitar 
string 60.0 cm long at a frequency 
of 432 Hz. By how much should the 
string be shortened by pressing on 
it to play a note of 440 Hz? 

21. A cello string, 75.0 cm long 
with a linear mass density of 7.25 × 
10−3 kg/m, is to produce a 
fundamental frequency of 440 Hz. 
(a) What must be the tension in the 
string? (b) Find the frequency of the 
next three higher harmonics. 
(c) Find the wavelength of the 
fundamental and the next three 
higher harmonics. 

 
12.7  Sound Waves 

22. A sound wave in air has a 
velocity of 335 m/s. Find the 
temperature of the air. 

23. A lightning flash is observed 
and 12 s later the associated 
thunder is heard. How far away is 
the lightning if the air temperature 
is 15.0 0C? 
24. A soldier sees the flash from a 
cannon that is fired in the distance 
and 10 s later he hears the roar of 
the cannon. If the air temperature 
is 33 0C, how far away is the 
cannon? 

 
Diagram for problem 23. 

 
25. A sound wave is sent to the 

bottom of the ocean by a ship in 
order to determine the depth of the 
ocean at that point. The sound wave 
returns to the boat in a time of 1.45 
s. Find the depth of the ocean at 
this point. Use the bulk modulus of 
water to be 2.30 × 109 N/m2 and the 
density of seawater to be 1.03 × 103 
kg/m3. 

26. Find the speed of sound in 
aluminum, copper, and lead. 

27. You are trying to design 
three pipes for a closed organ pipe 
system that will give the following 
notes with their corresponding 
fundamental frequencies, C = 261.7 
Hz, D = 293.7 Hz, E = 329.7 Hz. 
Find the length of each pipe. 
Assume that the speed of sound in 
air is 343 m/s. 

28. Repeat problem 27 for an 
open organ pipe. 

 
12.8  The Doppler Effect 

29. A train is moving at a speed 
of 90.0 m/s and emits a whistle of 
frequency 400.0 Hz. If the speed of 
sound is 343 m/s, find the frequency 
observed by an observer who is at 
rest (a) in advance of the moving 
source and (b) behind the moving 
source. 

30. A stationary police car turns 
on a siren at a frequency of 300 Hz. 
If the speed of sound in air is 343 
m/s find the observed frequency if 
(a) the observer is approaching the 
police car at 35.0 m/s and (b) the 
observer is receding from the police 
car at 35.0 m/s. 

31. A police car traveling at 
90.0 m/s, turns on a siren at a 
frequency of 350 Hz as it tries to 
overtake a gangster’s car moving 
away from the police car at a speed 
of 85 m/s. If the speed of sound in 

air is 343 m/s find the frequency 
heard by the gangster. 

32. Two trains are approaching 
each other, each at a speed of 
100 m/s. They each emit a whistle 
at a frequency of 225 Hz. If the 
speed of sound in air is 343 m/s, 
find the frequency that each train 
engineer hears. 

33. A train moving east at a 
velocity of 20 m/s emits a whistle at 
a frequency of 348 Hz. Another 
train, farther up the track and 
moving east at a velocity of 30 m/s, 
hears the whistle from the first 
train. If the speed of sound in air is 
343 m/s, what is the frequency of 
the sound heard by the second train 
engineer? 

 
Additional Problems 

34. One end of a violin string is 
connected to an electrical vibrator 
of 120 Hz, whereas the other end 
passes over a pulley and supports a 
mass of 10.0 kg, as shown in figure 
12.17. The string is 60.0 cm long 
and has a mass of 12.5 g. What is 
the wavelength and speed of the 
wave produced? 

*35. Three solid cylinders, the 
first of lead, the second of brass, 
and the third of aluminum, each 
10.0 m long, are welded together. If 
the first pipe is struck with a 
hammer at its end, how long will it 
take for the sound to pass through 
the cylinders? 

*36. A sound wave of 200 Hz in 
a steel cylinder is transmitted into 
water and then into air. Find the 
wavelength of the sound in each 
medium. 

*37. A railroad worker hits a 
steel track with a hammer. The 
sound wave through the steel track 
reaches an observer and 3.00 s later 
the sound wave through the air also 
reaches the observer. If the air 
temperature is 22.0 0C, how far 
away is the worker? 

Diagram for problem 37. 
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38. A tuning fork of 512 Hz is 
set into vibration above a long 
vertical tube containing water. A 
standing wave is observed as a 
resonance between the original 
wave and the reflected wave. If the 
speed of sound in air is 343 m/s, 
how far below the top of the tube is 
the water level? 

39. The intensity of an ordinary 
conversation is about 3 × 10−6 
W/m2. Find the intensity level of the 
sound. 

40. An indoor rock concert has 
an intensity level of 70 dB. Find the 
intensity of the sound. 

41. The intensity level of a 500 
Hz sound from a television program 
is about 40 dB. If the speed of sound 
is 343 m/s, find the amplitude of the 
sound wave. 

*42. The speed of high-
performance aircraft is sometimes 
given in terms of Mach numbers, 
where a Mach number is the ratio 
of the speed of the aircraft to the 
speed of sound at that level. Thus, a 
plane traveling at a speed of 343 
m/s at sea level where the 
temperature is 20.0 0C would be 
traveling at Mach 1. If the 
temperature of the atmosphere 

increased to 30.0 0C, and the 
aircraft is still moving at 343 m/s, 
what is its Mach number? 

 
Interactive Tutorials 

43. Resonance. A tuning fork of 
frequency f = 512 Hz is set into 
vibration above a long vertical 
cylinder filled with water. As the 
water in the tube is lowered, 
resonance occurs between the 
initial wave traveling down the 
cylinder and the second wave that 
is reflected from the water surface 
below. Calculate (a) the wavelength 
λ of the sound wave in air and 
(b) the three resonance positions as 
measured from the top of the tube. 
The velocity of sound in air is v = 
343 m/s. 

44. The superposition of any two 
waves. Given the following two 
waves: 

y1 = A1 sin(k1x − ω1t) 
y2 = A2 sin(k2x − ω2t − φ) 

 
For each wave find (a) the 

wavelength λ, (b) the frequency f, 
(c) the period T, and (d) the velocity 
v. Since each wave is periodic in 
both space and time, (e) for the 
value x = 2.00 m plot each wave and 

the sum of the two waves as a 
function of time t. (f) For the time t 
= 0.500 s, plot each wave and the 
sum of the two waves as a function 
of the distance x. For the initial 
conditions take A1 = 3.50 m, k1 = 
0.55 m−1, ω1 = 4.25 rad/s, A2 = 4.85 
m, k2 = 0.85 m−1, ω2 = 2.58 rad/s, 
and φ = 0. Then consider all the 
special cases listed in the tutorial 
itself. 

45. A vibrating string. A 60.0-
cm string with a mass of 1.40 g is to 
produce a fundamental frequency of 
440 Hz. Find (a) the tension in the 
string, (b) the frequency of the next 
four higher harmonics, and (c) the 
wavelength of the fundamental and 
the next four higher harmonics. 

46. General purpose Doppler 
Effect Calculator. The Doppler 
Effect Calculator will calculate the 
observed frequency of a sound wave 
for the motion of the source or the 
observer, whether either or both are 
approaching or receding. 

 
To go to these Interactive 

Tutorials click on this sentence.

 
  

To go to another chapter, return to the table of contents by clicking on this sentence.  
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Chapter 13  Fluids 
 

"When did science begin?  Where did it begin?  It began whenever and wherever men 
tried to solve the innumerable problems of life.  The first solutions were mere 
expedients, but that must do for a beginning.  Gradually the expedients would be 
compared, generalized, rationalized, simplified, interrelated, integrated;  the texture 
of science would be slowly woven"      George Sarton 

 
13.1  Introduction 
Matter is usually said to exist in three phases: solid, liquid, and gas. Solids are hard bodies that resist 
deformations, whereas liquids and gases have the characteristic of being able to flow. A liquid flows and takes the 
shape of whatever container in which it is placed. A gas also flows into a container and spreads out until it 
occupies the entire volume of the container. A fluid is defined as any substance that can flow, and hence liquids 
and gases are both considered to be fluids. 

Liquids and gases are made up of billions upon billions of molecules in motion and to properly describe 
their behavior, Newton’s second law should be applied to each of these molecules. However, this would be a 
formidable task, if not outright impossible, even with the use of modern high-speed computers. Also, the actual 
motion of a particular molecule is sometimes not as important as the overall effect of all those molecules when 
they are combined into the substance that is called the fluid. Hence, instead of using the microscopic approach of 
dealing with each molecule, we will treat the fluid from a macroscopic approach. That is, we will analyze the fluid 
in terms of its large-scale characteristics, such as its mass, density, pressure, and its distribution in space. 

The study of fluids will be treated from two different approaches. First, we will consider only fluids that 
are at rest. This portion of the study of fluids is called fluid statics or hydrostatics. Second, we will study the 
behavior of fluids when they are in motion. This part of the study is called fluid dynamics or hydrodynamics. 
Let us start the study of fluids by defining and analyzing the macroscopic variables. 
 
 
13.2  Density 
The density of a substance is defined as the amount 
of mass in a unit volume of that substance. We use 
the symbol ρ (the lower case Greek letter rho) to 
designate the density and write it as 
 

 ρ =  m                              (13.1) 
                                              V            

 
A substance that has a large density has a 

great deal of mass in a unit volume, whereas a 
substance of low density has a small amount of mass 
in a unit volume. Density is expressed in SI units as 
kg/m3, and occasionally in the laboratory as g/cm3. 
Densities of solids and most liquids are very nearly 
constant but the densities of gases vary greatly with 
temperature and pressure. Table 13.1 is a list of 
densities for various materials. We observe from the 
table that in interstellar space the densities are 
extremely small, of the order of 10−18 to 10−21 kg/m3. 
That is, interstellar space is almost empty space. 
The density of the proton and neutron is of the order 
of 1017 kg/m3, which is an extremely large density. 
Hence, the nucleus of a chemical element is 
extremely dense. Because an atom of hydrogen has 
an approximate density of 2680 kg/m3, whereas the 
proton in the nucleus of that hydrogen atom has a 
density of about 1.5 × 1017 kg/m3, we see that the 

Table 13.1 
Densities of Various Materials 

Substance kg/m3 
Air (0 0C, 1 atm pressure) 1.29 
Aluminum 2,700 
Benzene 879 
Blood 1.05 × 103 
Bone 1.7 × 103 
Brass 8,600 
Copper 8,920 
Critical density for universe to 
collapse under gravitation 

5 × 10−27 

Planet Earth 5,520 
Ethyl alcohol 810 
Glycerine 1,260 
Gold 19,300 
Hydrogen atom 2,680 
Ice 920 
Interstellar space 10−18-10−21 
Iron 7,860 
Lead 11,340 
Mercury 13,630 
Nucleus 1 × 1017  
Proton 1.5 × 1017 
Silver 10,500 
Sun (avg) 1,400 
Water (pure) 1,000 
Water (sea) 1,030 
Wood (maple) 620-750 
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density of the nucleus is about 1013 times as great as the density of the atom. Hence, an atom consists almost 
entirely of empty space with the greatest portion of its mass residing in a very small nucleus. 

 
Example 13.1 

 
The density of an irregularly shaped object. In order to find the density of an irregularly shaped object, the object is 
placed in a beaker of water that is filled completely to the top. Since no two objects can occupy the same space at 
the same time, 25.0 cm3 of the water, which is equal to the volume of the unknown object, overflows into an 
attached calibrated beaker. The object is placed on a balance scale and is found to have a mass of 262.5 g. Find the 
density of the material 

Solution
 

The density, found from equation 13.1, is 
 

ρ =  m  =  262.5 g  = 10.5   g   = 10,500  kg  
                                                                     V      25.0 cm3             cm3                 m3 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 13.2 
 

Your own water bed. A person would like to design a water bed for the home. If the size of the bed is to be 2.20 m 
long, 1.80 m wide, and 0.300 m deep, what mass of water is necessary to fill the bed? 

Solution
 

The mass of the water, found from equation 13.1, is 
 m = ρV                                                                                 (13.2) 

 
The density is found from table 13.1. Hence, the mass of water required is 
 

( ) ( )( )3
kg1000 2.20 m 1.80 m 0.300 m
m

m Vρ  = =  
 

 

= 1190 kg 
 

As a matter of curiosity let us compute the weight of this water. The weight of the water is given by 
 

w = mg = (1190 kg)(9.80 m/s2) = 11,600 N 
 

To give you a “feel” for this weight of water, it is equivalent to 2620 lb. In some cases, it will be necessary to 
reinforce the floor underneath this water bed or the bed might end up in the basement below. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
13.3  Pressure 
Pressure is defined as the magnitude of the normal force acting per unit surface area. The pressure is thus a scalar 
quantity. We write this mathematically as 
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 p =  F                                                                                   (13.3) 
                                                                                                   A         

 
The SI unit for pressure is newton/meter2, which is given the special name pascal, in honor of the French 
mathematician, physicist, and philosopher, Blaise Pascal (1623-1662) and is abbreviated Pa.1 Hence, 1 Pa = 1 
N/m2. Pressures are not limited to fluids, as the following examples show. 

 
Example 13.3 

 
Pressure exerted by a man. A man has a mass of 90.0 kg. At one particular moment when he walks, his right heel is 
the only part of his body that touches the ground. If the heel of his shoe measures 9.00 cm by 8.30 cm, what 
pressure does the man exert on the ground? 

Solution
 

The pressure that the man exerts on the ground, given by equation 13.3, is 
 

p =  F  
      A 

=  w  = mg   =  (90.0 kg)(9.80 m/s2)  
                                                                        A      A         (0.090 m)(0.083 m) 

= 1.18 × 105 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 13.4 
 

Pressure exerted by a woman. A 45.0-kg woman is wearing “high-heel” shoes. The cross section of her high-heel 
shoe measures 1.27 cm by 1.80 cm. At a particular moment when she is walking, only one heel of her shoe makes 
contact with the ground. What is the pressure exerted on the ground by the woman? 

Solution
 

The pressure exerted on the ground, found from equation 13.3, is 
 

p =  F   
      A    

=  w  = mg   =   (45.0 kg)(9.80 m/s2)   
                                                                        A      A        (0.0127 m)(0.0180 m) 

= 1.93 × 106 N/m2 
 

Thus, the 45.0-kg woman exerts a pressure through her high heel of 1.93 × 106 N/m2, whereas the man, who has 
twice as much mass, exerts a pressure of only 1.18 × 105 N/m2. That is, the woman exerts about 16 times more 
pressure than the man. The key to the great difference lies in the definition of pressure. Pressure is the force 
exerted per unit area. Because the area of the woman’s high heel is so very small, the pressure becomes very large. 
The area of the man’s heel is relatively large, hence the pressure he exerts is relatively small. When they are wearing 
high heels, women usually do not like to walk on soft ground because the large pressure causes the shoe to sink 
into the ground. 

To go to this Interactive Example click on this sentence. 
 

 
                                                           
1
In the British engineering system the units are lb/in.2, which is sometimes denoted by psi. 
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A further example of the effect of the surface area on pressure is found in the application of snowshoes. 

Here, a person’s weight is distributed over such a large area that the pressure exerted on the snow is very small. 
Hence, the person is capable of walking in deep snow, while another person, wearing ordinary shoes, would sink 
into the snow finding walking almost impossible. 

Pressure exerted by a fluid is easily determined with the aid of 
figure 13.1, which represents a pool of water. We want to determine the 
pressure p at the bottom of the pool caused by the water in the pool. By our 
definition, equation 13.3, the pressure at the bottom of the pool is the 
magnitude of the force acting on a unit area of the bottom of the pool. But 
the force acting on the bottom of the pool is caused by the weight of all the 
water above it. Thus, 

p =  F  = weight of water                                (13.4) 
                                                     A             area 

 
p =  w  = mg                                          (13.5) 

          A       A  
 

Figure 13.1  Pressure in a pool of water. 
 

We have set the weight w of the water equal to mg in equation 13.5. The mass of the water in the pool, given by 
equation 13.2, is 

m = ρV 
 

The volume of all the water in the pool is just equal to the area A of the bottom of the pool times the depth h of the 
water in the pool, that is, 

V = Ah                                                                                (13.6) 
 

Substituting equations 13.2 and 13.6 into equation 13.5 gives for the pressure at the bottom of the pool: 
 

p = mg  = ρVg  = ρAhg  
                                                                                     A         A          A     
Thus, 

 p = ρgh                                                                                (13.7) 
 

(Although we derived equation 13.7 to determine the water pressure at the bottom of a pool of water, it is 
completely general and gives the water pressure at any depth h in the pool.) Equation 13.7 says that the water 
pressure at any depth h in any pool is given by the product of the density of the water in the pool, the acceleration 
due to gravity g, and the depth h in the pool. Equation 13.7 is sometimes called the hydrostatic equation. 

 
Example 13.5 

 
Pressure in a swimming pool. Find the water pressure at a depth of 3.00 m in a swimming pool. 

Solution
 

The density of water, found in table 13.1, is 1000 kg/m3, and the water pressure, found from equation 13.7, is 
 

   p = ρgh 
= (1000 kg/m3)(9.80 m/s2)(3.00 m) 
= 2.94 × 104 N/m2 = 2.94 × 104 Pa 

 
To go to this Interactive Example click on this sentence. 
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The pressure at the depth of 3 m in the pool in figure 13.1 is the same everywhere. Hence, the force exerted 

by the fluid is the same in all directions. That is, the force is the same in up-down, right-left, or in-out directions. If 
the force due to the fluid were not the same in all directions, then the fluid would flow in the direction away from 
the greatest pressure and would not be a fluid at rest. A fluid at rest is a fluid in equilibrium. Thus, in example 
13.5, the pressure is 2.94 × 104 Pa at every point at a depth of 3 m in the pool and exerts the same force in every 
direction at that depth. You experience this pressure when swimming at a depth of 3.00 m as a pressure on your 
ears. As you swim up to the surface, the pressure on your ears decreases because h is decreasing. Or to look at it 
another way, the closer you swim up toward the surface, the smaller is the amount of water that is above you. 
Because the pressure is caused by the weight of that water above you, the smaller the amount of water, the 
smaller will be the pressure. 

Just as there is a water pressure at the bottom of a swimming pool caused by the weight of all the water 
above the bottom, there is also an air pressure exerted on every object at the surface of the earth caused by the 
weight of all the air that is above us in the atmosphere. That is, there is an atmospheric pressure exerted on us, 
given by equation 13.3 as 

p =  F  =  weight of air                                                                 (13.8) 
       A            area 

 
However we can not use the same result obtained for the pressure in the pool of water, the hydrostatic 

equation 13.7, because air is compressible and hence its density ρ is not constant with height throughout the 
vertical portion of the atmosphere. The pressure of air at any height in the atmosphere can be found by the use of 
calculus and the density variation in the atmosphere. However, since calculus is beyond the scope of this course, 
we will revert to the use of experimentation to determine the pressure of the atmosphere. 

The pressure of the air in the atmosphere was first measured by 
Evangelista Torricelli (1608-1647), a student of Galileo, by the use of a 
mercury barometer. A long narrow tube is filled to the top with 
mercury, chemical symbol Hg. It is then placed upside down into a 
reservoir filled with mercury, as shown in figure 13.2.  

The mercury in the tube starts to flow out into the reservoir, but 
it comes to a stop when the top of the mercury column is at a height h 
above the top of the mercury reservoir, as also shown in figure 13.2. The 
mercury does not empty completely because the normal pressure of the 
atmosphere p0 pushes downward on the mercury reservoir. Because the 
force caused by the pressure of a fluid is the same in all directions, there 
is also a force acting upward inside the tube at the height of the mercury 
reservoir, and hence there is also a pressure p0 acting upward as shown 
in figure 13.2. This force upward is capable of holding the weight of the 
mercury in the tube up to a height h. Thus, the pressure exerted by the 
mercury in the tube is exactly balanced by the normal atmospheric 
pressure on the reservoir, that is, 

 
p0 = pHg                                          (13.9) 

 
But the pressure of the mercury in the tube pHg, given by equation 13.7,  

                                                                                                                          Figure 13.2  A mercury barometer. 
is 

pHg = ρHggh                                                                           (13.10) 
 

Substituting equation 13.10 back into equation 13.9, gives 
 

p0 = ρHggh                                                                            (13.11) 
 

Equation 13.11 says that normal atmospheric pressure can be determined by measuring the height h of the 
column of mercury in the tube. It is found experimentally, that on the average, normal atmospheric pressure can 
support a column of mercury 76.0 cm high, or 760 mm high. The unit of 1.00 mm of Hg is sometimes called a torr 
in honor of Torricelli. Hence, normal atmospheric pressure can also be given as 760 torr. Using the value of the 
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density of mercury of 1.360 × 104 kg/m3, found in table 13.1, normal atmospheric pressure, determined from 
equation 13.11, is 

( )4
0 Hg 3 2

kg m1.360 10  9.80 0.760 m
m s

p ghρ   = = ×  
  

 

= 1.013 × 105 N/m2 = 1.013 × 105 Pa 
 

Thus, the average or normal atmospheric pressure acting on us at the surface of the earth is 1.013 × 105 Pa, which 
is a rather large number as we will see presently. In the study of meteorology, the science of the weather, a 
different unit of pressure is usually employed, namely the millibar, abbreviated mb. The conversion factor between 
millibars and Pa (see appendix A) is 

1 Pa = 10−2 mb 
 

Using this conversion factor, normal atmospheric pressure2 can also be expressed as 
 

( )
2

5
0

10  mb1.013 10  Pa
1 Pa

p
− 

= ×  
 

 

= 1013 mb 
 

On all surface weather maps in a weather station, pressures are always expressed in terms of millibars. 
The mercury barometer is thus a very accurate means of determining air pressure. The value of 76.0 cm or 

1013 mb are only normal or average values. When the barometer is kept at the same location and the height of the 
mercury column is recorded daily, the value of h is found to vary slightly. When the value of h becomes greater 
than 76.0 cm of Hg, the pressure of the atmosphere has increased to a higher pressure. It is then said that a high-
pressure area has moved into your region. When the value of h becomes less than 76.0 cm of Hg, the pressure of 
the atmosphere has decreased to a lower pressure and a low-pressure area has moved in. The barometer is 
extremely important in weather observation and prediction because, as a general rule of thumb, high atmospheric 
pressures usually are associated with clear skies and good weather. Low-pressure areas, on the other hand, are 
usually associated with cloudy skies, precipitation, and in general bad weather. (For further detail on the weather 
see the “Have You Ever Wondered” section at the end of chapter 17.) 

The mercury barometer, after certain 
corrections for instrument height above sea level 
and ambient temperature, is an extremely 
accurate device to measure atmospheric 
pressure and can be found in every weather 
station throughout the world. Its chief limitation 
is its size. It must always remain vertical, and 
the glass tube and reservoir are somewhat 
fragile. Hence, another type of barometer is also 
used to measure atmospheric pressure. It is 
called an aneroid barometer, and is shown in 
figure 13.3. It is based on the principle of a 
partially evacuated, waferlike, metal cylinder 
called a Sylphon cell. When the 

                                                          Figure 13.3  An aneroid barometer. 
 
atmospheric pressure increases, the cell decreases in size. A combination of linkages and springs are connected to 
the cell and to a pointer needle that moves over a calibrated scale that indicates the pressure. The aneroid 
barometer is a more portable device that is rugged and easily used, although it is originally calibrated with a 
                                                           
2
To express normal atmospheric pressure in the British engineering system, the conversion factor 

1 Pa = 1.45 × 10−4 lb/in.2 
found in appendix A, is used. Hence, normal atmospheric pressure can also be expressed as 

( )0

4 21.45 10  lb/in51.013 10  Pa 1 Pap
 
 
 
 

−××=  

      = 14.7 lb/in.2 
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mercury barometer. The word aneroid means not containing fluid. The aneroid barometer is calibrated in both 
centimeters of Hg and inches of Hg. Using a conversion factor, we can easily see that a height of 29.92 in. of Hg 
also corresponds to normal atmospheric pressure. Hence, as seen in figure 13.3, the pressure can be measured in 
terms of inches of mercury. Also note that regions of high pressure (30 in. of Hg) are labeled to indicate fair 
weather, while regions of low pressure (29 in. of Hg) are labeled to indicate rain or poor weather. 

As we go up into the atmosphere the pressure decreases, because there is less air above us. The aneroid 
barometer will read smaller and smaller pressures with altitude. Instead of calibrating the aneroid barometer in 
terms of centimeters of mercury or inches of mercury, we can also calibrate it in terms of feet or meters above the 
surface of the earth where this air pressure is found. An aneroid barometer so calibrated is called an altimeter, a 
device to measure the altitude or height of an airplane. The height of the plane is not really measured, the 
pressure is. But in the standard atmosphere, a particular pressure is found at a particular height above the 
ground. Hence, when the aneroid barometer measures this pressure, it corresponds to a fixed altitude above the 
ground. The pilot can read this height directly from the newly calibrated aneroid barometer, the altimeter. 

Let us now look at some examples associated with atmospheric pressure. 
 

Example 13.6 
 

Why you get tired by the end of the day. The top of a student’s head is approximately circular with a radius of 8.90 
cm. What force is exerted on the top of the student’s head by normal atmospheric pressure? 

Solution
 

The area of the top of the student’s head is found from 
 

A = πr2 = π(0.089 m)2 = 0.0249 m2 
 

We find the magnitude of the force exerted on the top of the student’s head by rearranging equation 13.3 into the 
form 

 F = pA                                                                              (13.12) 
Hence, 

( )5 2
2

N1.013 10  0.0249 m
m

F  = × 
 

 

=  2520 N  
 

This is a rather large force (2520 N = 567 lb) to have exerted on our heads all day long. However, we do not notice 
this enormous force because when we breathe air into our nose or mouth that air is exerting the same force 
upward inside our head. Thus, the difference in force between the top of the head and the inside of the head is 
zero. 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 13.7 
 

Atmospheric pressure on the walls of your house. Find the force on the outside wall of a ranch house, 3.05 m high 
and 10.7 m long, caused by normal atmospheric pressure. 

Solution
 

The area of the wall of the house is given by 
A = (length)(height) 
= (10.7 m)(3.05 m) 

= 32.6 m2 
The force on the wall, given by equation 13.12, is 
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( )5 2
2

N1.013 10  32.6 m
m

F pA  = = × 
 

 

= 3.30 × 106 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 
The force on the outside wall of the house in example 13.7 is thus 3.30 × 106 N = 743,000 lb. This is truly 

an enormous force. Why doesn’t the wall collapse under this great force? The wall does not collapse because that 
same atmospheric air is also inside the house. Remember that air is a fluid and flows. Hence, in addition to being 
outside the house, the air also flows to the inside of the house. Because the force exerted by the pressure in the 
fluid is the same in all directions, the air inside the house exerts the same force of 3.30 × 106 N against the inside 
wall of the house, as shown in figure 13.4(a). The net force on the wall is therefore 
 

Net force = (force)in − (force)out 

= 3.30 × 106 N − 3.30 × 106 N 
= 0 

 

Figure 13.4  Pressure on the walls in a house. 
 

A very interesting case occurs when this net force is not zero. Suppose a tornado, an extremely violent 
storm, were to move over your house, as shown in figure 13.4(b). The pressure inside the tornado is very low. No 
one knows for sure how low, because it is slightly difficult to run into a tornado with a barometer to measure it. In 
the very few cases on record where tornadoes actually went over a weather station, there was never anything left 
of the weather station, to say nothing of the barometer that was in that station. That is, neither the barometer nor 
the weather station were ever found again. The pressure can be estimated, however, from the very high winds 
associated with the tornado. A good estimate is that the pressure inside the tornado is at least 10% below the 
actual atmospheric pressure. Let us assume that the actual pressure is the normal atmospheric pressure of 1013 
mb, then 10% of that is 101 mb. Thus, the pressure in the tornado is approximately 

 
2

4 2
2

1 N/m1013 mb 101 mb (912 mb) 9.12 10  N/m
10  mb−

 
− = = × 

 
 

   
When the tornado goes over the house, the force on the outside wall is given by 
 

( )4 2
2

N9.12 10  32.6 m
m

F pA  = = × 
 

 

= 2.97 × 106 N  

 

Pearson Custom Publishing

398



 

 
Chapter 13  Simple Harmonic Motion                                                                                                                  13-9 

 
The force on the outside wall is now 2.97 × 106 N (= 668,000 lb) while the original air inside the house is still there 
and is still exerting a force of 3.30 × 106 N outward on the walls. The net force on the house is now 
 

Net force = 3.30 × 106 N − 2.97 × 106 N 
= 3.30 × 105 N 

 
There is now a net force acting outward on the wall of 3.30 × 105 N (about 75,000 lb), enough to literally explode 
the walls of the house outward. This pressure differential, with its accompanying winds, accounts for the 
enormous destruction associated with a tornado. Thus, the force exerted by atmospheric pressure can be extremely 
significant. 

It has always been customary to open the doors and windows in a house whenever a tornado is in the 
vicinity in the hope that a great deal of the air inside the house will flow out through these open windows and 
doors. Hence, the pressure differential between the inside and the outside walls of the house will be minimized. 
However many victims of tornadoes do not follow this procedure, because tornadoes are spawned out of severe 
thunderstorms, which are usually accompanied by torrential rain. Usually the first thing one does in a house is to 
close the windows once the rain starts. A picture of a typical tornado is shown in figure 13.4(c). 

Now that we have discussed atmospheric pressure, it is obvious that the total pressure exerted at a depth 
h in a pool of water must be greater than the value determined previously, because the air above the pool is 
exerting an atmospheric pressure on the top of the pool. This additional pressure is transmitted undiminished 
throughout the pool. Hence, the total or absolute pressure observed at the depth h in the pool is the sum of the 
atmospheric pressure plus the pressure of the water itself, that is, 

 
pabs = p0 + pw                                                                 (13.13) 

Using equation 13.7, this becomes 
pabs = p0 + ρgh                                                                  (13.14) 

 
Example 13.8 

 
Absolute pressure. What is the absolute pressure at a depth of 3.00 m in a swimming pool? 

Solution
 

The water pressure at a depth of 3.00 m has already been found to be pw = 2.94 × 104 Pa, the absolute pressure, 
found by equation 13.13, is 

pabs = p0 + pw 
= 1.013 × 105 Pa + 2.94 × 104 Pa 

= 1.31 × 105 Pa 
 

To go to this Interactive Example click on this sentence. 
 

 
 
When the pressure of the air in an automobile tire is measured, the actual pressure being measured is 

called the gauge pressure, that is, the pressure as indicated on the measuring device that is called a gauge. This 
measuring device, the gauge, reads zero when it is actually under normal atmospheric pressure. Thus, the total 
pressure or absolute pressure of the air inside the tire is the sum of the pressure recorded on the gauge plus 
normal atmospheric pressure. We can write this mathematically as 

 
pabs = pgauge + p0                                                                    (13.15) 

 
Example 13.9 

 
Gauge pressure and absolute pressure. A gauge placed on an automobile tire reads a pressure of 34.0 lb/in.2. What 
is the absolute pressure of the air in the tire? 

Pearson Custom Publishing

399



 

 
13-10                                                                                                          Vibratory Motion, Wave Motion and Fluids 

Solution
 

The absolute pressure of the air in the tire, found from equation 13.15, is 
 

pabs = pgauge + p0 
= 34.0  lb  + 14.7  lb  

                                                                                            in.2            in.2 

= 48.7 lb/in.2 = 3.36 × 105 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
13.4  Pascal's Principle 
The pressure exerted on the bottom of a pool of water by the water itself is given by ρgh. However, there is also an 
atmosphere over the pool, and, as we saw in section 13.3, there is thus an additional pressure, normal atmospheric 
pressure p0, exerted on the top of the pool. This pressure on the top of the pool is transmitted through the pool 
waters so that the total pressure at the bottom of the pool is the 
sum of the pressure of the water plus the pressure of the 
atmosphere, equations 13.13 and 13.14. The addition of both 
pressures is a special case of a principle, called Pascal’s 
principle and it states that if the pressure at any point in an 
enclosed fluid at rest is changed (∆p), the pressure changes by an 
equal amount (∆p), at all points in the fluid. As an example of the 
use of Pascal’s principle, let us consider the hydraulic lift shown in 
figure 13.5. A noncompressible fluid fills both cylinders and the 
connecting pipe. The smaller cylinder has a piston of cross-
sectional area a, whereas the larger cylinder has a cross-sectional 
area A. As we can see in the figure, the cross-sectional area A of  

                                                                                                           Figure 13.5  The hydraulic lift. 
 

the larger cylinder is greater than the cross-sectional area a of the smaller cylinder. If a small force f is applied to 
the piston of the small cylinder, this creates a change in the pressure of the fluid given by 
 

∆p =   f                                                                                (13.16) 
        a 

 
But by Pascal’s principle, this pressure change occurs at all points in the fluid, and in particular at the large piston 
on the right. This same pressure change applied to the right piston gives 
 

∆p =  F                                                                                (13.17) 
         A 

 
where F is the force that the fluid now exerts on the large piston of area A. Because these two pressure changes 
are equal by Pascal’s principle, we can set equation 13.17 equal to equation 13.16. Thus, 
 

∆p = ∆p 
 F  =  f  
 A       a      

The force F on the large piston is therefore 
F =  A  f                                                                              (13.18) 

                                                                                                  a      
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Since the area A is greater than the area a, the force F will be greater than f. Thus, the hydraulic lift is a device 
that is capable of multiplying forces. 

 
Example 13.10 

 
Amplifying a force. The radius of the small piston in figure 13.5 is 5.00 cm, whereas the radius of the large piston 
is 30.0 cm. If a force of 2.00 N is applied to the small piston, what force will occur at the large piston? 

Solution
 

The area of the small piston is 
a = πr12 = π(5.00 cm)2 = 78.5 cm2 

while the area of the large piston is 
A = πr22 = π(30.0 cm)2 = 2830 cm2 

 
The force exerted by the fluid on the large piston, found from equation 13.18, is 
 

F =  A f 
     a 

( )
2

2
2830 cm 2.00 N
78.5 cm

 
=  

 
 

= 72.1 N 
 

Thus, the relatively small force of 2.00 N applied to the small piston produces the rather large force of 72.1 N at 
the large piston. The force has been magnified by a factor of 36. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
It is interesting to compute the work that is done when the force f is applied to the small piston in figure 

13.5. When the force f is applied, the piston moves through a displacement y1, such that the work done is given by 
 

W1 = fy1 
But from equation 13.16 

f = a∆p 
Hence, the work done is 

W1 = a(∆p)y1                                                                          (13.19) 
 

When the change in pressure is transmitted through the fluid, the force F is exerted against the large piston and 
the work done by the fluid on the large piston is 

W2 = Fy2 
 

where y2 is the distance that the large piston moves and is shown in figure 13.5. But the force F, found from 
equation 13.17, is 

 F = A∆p 
 
The work done on the large piston by the fluid becomes 
 

W2 = A(∆p)y2                                                                          (13.20) 
 

Applying the law of conservation of energy to a frictionless hydraulic lift, the work done to the fluid at the small 
piston must equal the work done by the fluid at the large piston, hence 
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W1 = W2                                                                               (13.21) 
 

Substituting equations 13.19 and 13.20 into equation 13.21, gives 
 

a(∆p)y1 = A(∆p)y2                                                                      (13.22) 
 

Because the pressure change ∆p is the same throughout the fluid, it cancels out of equation 13.22, leaving 
 

     ay1 = Ay2 
Solving for the distance y1 that the small piston moves 

 y1 =  A y2                                                                          (13.23) 
                                                                                                     a                  

 
Since A is much greater than a, it follows that y1 must be much greater than y2. 

 
Example 13.11 

 
You can never get something for nothing. The large piston of example 13.10 moves through a distance of 0.200 cm. 
By how much must the small piston be moved? 

Solution
 

The areas of the pistons are given from example 13.10 as A = 2830 cm2 and a = 78.5 cm2, hence the distance that 
the small piston must move, given by equation 13.23, is 
 

y1 =  A  y2 
   a 

( )
2

2
2830 cm 0.200 N
78.5 cm

 
=  

 
 

= 7.21 cm 
 

Although a very large force is obtained at the large piston, the large piston is displaced by only a very 
small amount. Whereas the input force f, on the small piston is relatively small, the small piston must move 
through a relatively large displacement (36 times greater than the large piston). Usually there are a series of 
valves in the connecting pipe and the small cylinder is connected to a fluid reservoir also by valves. Hence, many 
displacements of the small piston can be made, each time adding additional fluid to the right cylinder. In this way 
the final displacement y2 can be made as large as desired. 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
13.5  Archimedes' Principle 
The variation of pressure with depth has a surprising consequence, it allows the fluid to exert buoyant forces on 
bodies immersed in the fluid. If this buoyant force is equal to the weight of the body, the body floats in the fluid. 
This result was first enunciated by Archimedes (287-212 BC) and is now called Archimedes’ principle.  

Archimedes’ principle states that a body immersed in a fluid is buoyed up by a force that is equal to the 
weight of the fluid displaced. This principle can be verified with the help of figure 13.6. 

If we submerge a cylindrical body into a fluid, such as water, then the bottom of the body is at some depth 
h1 below the surface of the water and experiences a water pressure p1 given by 

 
p1 = ρgh1                                                                            (13.24) 
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where ρ is the density of the water. Because the force due to the 
pressure acts equally in all directions, there is an upward force on 
the bottom of the body. The force upward on the body is given by 
 

F1 = p1A                                       (13.25) 
 

where A is the cross-sectional area of the cylinder. Similarly, the top 
of the body is at a depth h2 below the surface of the water, and 
experiences the water pressure p2 given by 
 

p2 = ρgh2                                      (13.26) 
 

However, in this case the force due to the water pressure is acting 
downward on the body causing a force downward given by 

                                                                                                                  Figure 13.6  Archimedes’ principle. 
 

F2 = p2A                                                                               (13.27) 
 

Because of the difference in pressure at the two depths, h1 and h2, there is a different force on the bottom of the 
body than on the top of the body. Since the bottom of the submerged body is at the greater depth, it experiences 
the greater force. Hence, there is a net force upward on the submerged body given by 
 

Net force upward = F1 − F2 
 

Replacing the forces F1 and F2 by their values in equations 13.25 and 13.27, this becomes 
 

Net force upward = p1A − p2A 
 

Replacing the pressures p1 and p2 from equations 13.24 and 13.26, this becomes 
 

Net force upward = ρgh1A − ρgh2 
A = ρgA(h1 − h2)                                                                       (13.28) 

But 
A(h1 − h2) = V 

 
the volume of the cylindrical body, and hence the volume of the water displaced. Equation 13.28 thus becomes 
 

Net force upward = ρgV                                                                 (13.29) 
 

But ρ is the density of the water and from the definition of the density 
 

ρ =  m                                                                                 (13.1) 
        V 

Substituting equation 13.1 back into equation 13.29 gives 
 

Net force upward =  m gV 
                           V 

              = mg 
But mg = w, the weight of the water displaced. Hence, 

 
 Net force upward = Weight of water displaced                                            (13.30) 

 
The net force upward on the body is called the buoyant force (BF). When the buoyant force on the body is equal to 
the weight of the body, the body does not sink in the water but rather floats, figure 13.7(b). Since the buoyant force 
is equal to the weight of the water displaced, a body floats when the weight of the body is equal to the weight of the 
fluid displaced. 
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Example 13.12 

 
Wood floats. A block of oak wood 5.00 cm high, 5.00 cm wide, and 10.0 cm long is placed into a tub of water, figure 
13.7(a). The density of the wood is 7.20 × 102 kg/m3. How far will the block of wood sink before it floats? 

          
Figure 13.7  A body floats when the buoyant force is equal to the weight of the body.  

 

Solution
 

The block of wood will float when the buoyant force (BF), which is the weight of the fluid displaced by the volume 
of the body submerged, is equal to the weight of the body. The weight of the block of wood is found from 
 

w = mg = ρVg 
 
The volume of the wooden block is V = Ah. Thus, the weight of the wooden block is 
 

w = (7.20 × 102 kg/m3)(0.0500 m)(0.0500 m)(0.100 m)(9.80 m/s2) 
= 1.76 N 

 
The buoyant force is equal to the weight of the water displaced, and for the body to float, this buoyant force must 
also equal the weight of the block. Hence, 

BF = wwater = wwood 
wwater = mwater g = ρwaterVg = ρwaterAhg                                                        (13.31) 

Thus, 
ρwaterAhg = wwood 

h =    wwood                                                                             (13.32) 
           ρwaterAg 

=                                       1.76 N                                   
                                    (1.00 × 103 kg/m3)(0.0500 m)(0.100 m)(9.80 m/s2) 

= 0.0359 m = 3.59 cm 
 

Thus, the block sinks to a depth of 3.59 cm. At this point the buoyant force becomes equal to the weight of the 
wooden block and the wooden block floats. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Pearson Custom Publishing

404



 

 
Chapter 13  Simple Harmonic Motion                                                                                                                  13-15 

Example 13.13 
 

Iron sinks. Repeat example 13.12 for a block of iron of the same dimensions. 

Solution
 

The density of iron, found from table 13.1, is 7860 kg/m3. The weight of the iron block is given by 
 

wiron = mg = ρVg 
= (7860 kg/m3)(0.0500 m)(0.0500 m)(0.100 m)(9.80 m/s2) 

= 19.3 N 
 

The depth that the iron block would have to sink in order to displace its own weight, again found from equation 
13.32, is 

h =    wiron       
         ρwaterAg 

=                                     19.3 N                                   
                                     (1.00 × 103 kg/m3)(0.0500 m)(0.100 m)(9.80 m/s2) 

= 39.4 cm 
 

But the block is only 10 cm high. Hence, the buoyant force is not great enough to lift an iron block of this size, and 
the iron block sinks to the bottom. 

Another way to look at this problem is to calculate the buoyant force on this piece of iron. The buoyant 
force on the iron, given by equation 13.29, is 

Net force upward = ρgV 
= (1 × 103 kg/m3)(9.80 m/s2)(0.0500 m)(0.500 m)(0.100 m) 

= 2.45 N 
 

Thus, the net force upward on a block of iron of this size is 2.45 N. But the block weighs 19.3 N. Hence, the weight 
of the iron is greater than the buoyant force and the iron block sinks to the bottom. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

But ships are made of iron and they do not sink. Why should the block sink and not the ship? If this same 
weight of iron is made into thin slabs, these thin slabs could be welded together into a boat structure of some kind. 
By increasing the size and hence the volume of this iron boat, a greater volume of water can be displaced. An 
increase in the volume of water displaced increases the buoyant force. If this can be made equal to the weight of 
the iron boat, then the boat floats. 

 
Example 13.14 

 
An iron boat. The iron block of example 13.13 is cut into 16 slices, each 5.00 cm by 10.0 cm by 5/16 cm. They are 
now welded together to form a box 20.0 cm wide by 10.0 cm long by 10.0 cm high, as shown in figure 13.8. Will this 
iron body now float or will it sink? 

Solution
 

In this new configuration the iron displaces a much greater volume of water, and since the buoyant force is equal 
to the weight of the water displaced it is possible that this new configuration will float. We assume that no mass of 
iron is lost in cutting the blocks into the 16 slabs, and that the weight of the welding material is negligible. Thus, 
the weight of the box is also equal to 19.3 N. This example is analyzed in the same way as the previous example. 
Let us solve for the depth that the iron box must sink in order that the buoyant force be equal to the weight of the 
box. Thus, the depth that the box sinks, again found from the modified equation 13.32, is 
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h =     wbox      

        ρwaterAg 
=                                19.3 N                                 

                                   (1.00 × 103 kg)(0.200 m)(0.100 m)(9.80 m/s2) 
 = 9.84 × 10−2 m = 9.84 cm   

                                   
Because the iron box is 10 cm high, it sinks to a depth of 9.84 cm and it 
then floats. Note that this is the same mass of iron that sank in 
example 13.13. That same mass can now float because the new 
distribution of that mass results in a displacement of a much larger  

                                                                                                                    Figure 13.8  Iron can float.  
 

volume of water. Since the buoyant force is equal to the weight of the water displaced, by increasing the volume 
taken up by the iron and the enclosed space, the amount of the water displaced has increased and so has the 
buoyant force. 

To go to this Interactive Example click on this sentence. 
 

 
 
Examples 13.12-13.14 dealt with bodies submerged in water, but remember that Archimedes’ principle 

applies to all fluids. 
  
 
13.6  The Equation of Continuity 
Up to now, we have studied only fluids at rest. Let us now study fluids in motion, the subject matter of 
hydrodynamics. The study of fluids in motion is relatively complicated, but the analysis can be simplified by 
making a few assumptions. Let us assume that the fluid is incompressible and flows freely without any turbulence 
or friction between the various parts of the fluid itself and any boundary containing the fluid, such as the walls of 
a pipe. A fluid in which friction can be neglected is called a nonviscous fluid. A fluid, flowing steadily without 
turbulence, is usually referred to as being in streamline flow. The rather complicated analysis is further simplified 
by the use of two great conservation principles: the conservation of mass, and the conservation of energy. The law 
of conservation of mass results in a mathematical equation, usually called the equation of continuity. The law of 
conservation of energy is the basis of Bernoulli’s theorem, the subject matter of section 13.7. 

Let us consider an incompressible fluid flowing in the pipe of figure 13.9. At a particular instant of time 
the small mass of fluid ∆m, 
shown in the left-hand portion 
of the pipe will be considered. 
This mass is given by a slight 
modification of equation 13.2, 
as 

∆m = ρ∆V       (13.33) 
 

Because the pipe is cylindrical, 
the small portion of volume of 
fluid is given by the product of 
the cross-sectional area A1  

                                                       Figure 13.9  The law of conservation of mass and the equation of continuity. 
 
times the length of the pipe ∆x1 containing the mass ∆m, that is, 
 

∆V = A1∆x1                                                                           (13.34) 
 

The length ∆x1 of the fluid in the pipe is related to the velocity v1 of the fluid in the left-hand pipe. Because the 
fluid in ∆x1 moves a distance ∆x1 in time ∆t, ∆x1 = v1∆t. Thus, 
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∆x1 = v1∆t                                                                             (13.35) 

 
Substituting equation 13.35 into equation 13.34, we get for the volume of fluid, 

 
∆V = A1v1∆t                                                                          (13.36) 

 
Substituting equation 13.36 into equation 13.33 yields the mass of the fluid as 

 
∆m = ρA1v1∆t                                                                         (13.37) 

 
We can also express this as the rate at which the mass is flowing in the left-hand portion of the pipe by dividing 
both sides of equation 13.37 by ∆t, thus 

 ∆m = ρA1v1                                                                          (13.38) 
                                                                                                   ∆t                               

 
Example 13.15 

 
Flow rate. What is the mass flow rate of water in a pipe whose diameter d is 10.0 cm when the water is moving at 
a velocity of 0.322 m/s. 

Solution
 

The cross-sectional area of the pipe is 
A1 = πd12 = π(0.100 m)2    

                                                                                       4               4 
= 7.85 × 10−3 m2 

The flow rate, found from equation 13.38, is 
∆m = ρA1v1    

                                                                                                ∆t                  
= (1.00 × 103 kg/m3)(7.85 × 10−3 m2)(0.322 m/s) 

= 2.53 kg/s 
 

Thus 2.53 kg of water flow through the pipe per second. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
When this fluid reaches the narrow constricted portion of the pipe to the right in figure 13.9, the same 

amount of mass ∆m is given by 
∆m = ρ∆V                                                                            (13.39) 

 
But since ρ is a constant, the same mass ∆m must occupy the same volume ∆V. However, the right-hand pipe is 
constricted to the narrow cross-sectional area A2. Thus, the length of the pipe holding this same volume must 
increase to a larger value ∆x2, as shown in figure 13.9. Hence, the volume of fluid is given by 

 
∆V = A2∆x2                                                                           (13.40) 

 
The length of pipe ∆x2 occupied by the fluid is related to the velocity of the fluid by 

 
∆x2 = v2∆t                                                                            (13.41) 

 
Substituting equation 13.41 back into equation 13.40, we get for the volume of fluid, 
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∆V = A2v2∆t                                                                           (13.42) 
 

It is immediately obvious that since A2 has decreased, v2 must have increased for the same volume of fluid to flow. 
Substituting equation 13.42 back into equation 13.39, the mass of the fluid flowing in the right-hand portion of the 
pipe becomes 

∆m = ρA2v2∆t                                                                         (13.43) 
 

Dividing both sides of equation 13.43 by ∆t yields the rate at which the mass of fluid flows through the right-hand 
side of the pipe, that is, 

 ∆m = ρA2v2                                                                           (13.44) 
                                                                                                  ∆t                                  

 
But the law of conservation of mass states that mass is neither created nor destroyed in any ordinary 

mechanical or chemical process. Hence, the law of conservation of mass can be written as 
 

Mass flowing into the pipe = mass flowing out of the pipe 
or 

∆m = ∆m                                                                              (13.45) 
                                                                                                  ∆t       ∆t       

 
Thus, setting equation 13.38 equal to equation 13.44 yields 

 
ρA1v1 = ρA2v2                                                                          (13.46) 

 
Equation 13.46 is called the equation of continuity and is an indirect statement of the law of conservation of 
mass. Since we have assumed an incompressible fluid, the densities on both sides of equation 13.46 are equal and 
can be canceled out leaving 

 A1v1 = A2v2                                                                            (13.47) 
 

Equation 13.47 is a special form of the equation of continuity for incompressible fluids (i.e., liquids). 
Applying equation 13.47 to figure 13.9, we see that the velocity of the fluid v2 in the narrow pipe to the 

right is given by 
 v2 = A1v1                                                                               (13.48) 

                                                                                               A2              
 

Because the cross-sectional area A1 is greater than the cross-sectional area A2, the ratio A1/A2 is greater than one 
and thus the velocity v2 must be greater than v1. 

 
Example 13.16 

 
Applying the equation of continuity. In example 13.15 the cross-sectional area A1 was 7.85 × 10−3 m2 and the 
velocity v1 was 0.322 m/s. If the diameter of the pipe to the right in figure 13.9 is 4.00 cm, find the velocity of the 
fluid in the right-hand pipe. 

Solution
 

The cross-sectional area of the right-hand side of the pipe is 
 

A2 = πd22 
      4 

= π(0.0400 m)2 

   4 
= 1.26 × 10−3 m2 

 
The velocity of the fluid on the right-hand side v2, found from equation 13.48, is 
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( )
3 2

1
2 1 3 2

2

7.85 10  m 0.322 m/s
1.26 10  m

Av v
A

−

−

 ×
= =  × 

 

= 2.01 m/s 
 

The fluid velocity increased more than six times when it flowed through the constricted pipe. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Therefore, as a general rule, the equation of continuity for liquids, equation 13.47, says that when the cross-
sectional area of a pipe gets smaller, the velocity of the fluid must become greater in order that the same amount of 
mass passes a given point in a given time. Conversely, when the cross-sectional area increases, the velocity of the 
fluid must decrease. Equation 13.47, the equation of continuity, is sometimes written in the equivalent form 

 
    Av = constant                                                                         (13.49) 

 
Example 13.17 

 
Flow rate revisited. What is the flow of mass per unit time for the example 13.16? 

Solution
 

The rate of mass flow for the right-hand side of the pipe, given by equation 13.44, is 
 

∆m = ρA2v2 
                                                                                                ∆t               

= (1.0 × 103 kg/m3)(1.26 × 10−3 m2)(2.01 m/s) 
= 2.53 kg/s 

 
Note that this is the same rate of flow found earlier for the left-hand side of the pipe, as it must be by the law of 
conservation of mass. 

A compressible fluid (i.e., a gas) can have a variable density, and requires an additional equation to specify 
the flow velocity. 

To go to this Interactive Example click on this sentence. 
 

 
 
  
13.7  Bernoulli’s Theorem 
Bernoulli’s theorem is a fundamental theory of hydrodynamics that describes a fluid in motion. It is really the 
application of the law of conservation of energy to fluid flow. Let us consider the fluid flowing in the pipe of figure 
13.10. The left-hand side of the pipe has a uniform cross-sectional area A1, which eventually tapers to the uniform 
cross-sectional area A2 of the right-hand side of the pipe. The pipe is filled with a nonviscous, incompressible fluid. 
A uniform pressure p1 is applied, such as from a piston, to a small element of mass of the fluid ∆m and causes this 
mass to move through a distance ∆x1 of the pipe. Because the fluid is incompressible, the fluid moves throughout 
the rest of the pipe. The same small mass ∆m, at the right-hand side of the pipe, moves through a distance ∆x2. 
The work done on the system by moving the small mass through the distance ∆x1 is given by the definition of work 
as 

 W1 = F1∆x1 
 

Using equation 13.12, we can express the force F1 moving the mass to the right in terms of the pressure exerted on 
the fluid as 
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F1 = p1A1 

Hence, 
W1 = p1A1∆x1 

But 
A1∆x1 = ∆V 

 
the volume of the fluid moved 
through the pipe. Thus, we can 
write the work done on the 
system as 

 W1 = p1∆V1      (13.50) 
 

As this fluid moves through the 
system, the fluid itself does 
work by exerting a force F2 on 
the mass ∆m on the right side, 
moving it through the distance 
∆x2. Hence, the work done by 
the fluid system is 
 

                                          Figure 13.10  Bernoulli’s theorem. 
 

W2 = F2∆x2 
 

But we can express the force F2 in terms of the pressure p2 on the right side by 
 

F2 = p2A2 
Therefore, the work done by the system is 

W2 = p2A2∆x2 
But 

A2∆x2 = ∆V2 
 

the volume moved through the right side of the pipe. Thus, the work done by the system becomes 
 

W2 = p2∆V2                                                                            (13.51) 
But since the fluid is incompressible, 

∆V1 = ∆V2 = ∆V 
 

Hence, we can write the two work terms, equations 13.50 and 13.51, as 
 

W1 = p1∆V 
W2 = p2∆V 

 
The net work done on the system is equal to the difference between the work done on the system and the work 
done by the system. Hence, 

Net work done on the system = Won − Wby 
= W1 − W2 = p1∆V − p2∆V 

 Net work done on the system = (p1 − p2)∆V                                               (13.52) 
 

By the law of conservation of energy, the net work done on the system produces a change in the energy of the 
system. The fluid at position 1 is at a height h1 above the reference level and therefore possesses a potential 
energy given by 

PE1 = (∆m)gh1                                                                       (13.53) 
 
Because this same fluid is in motion at a velocity v1, it possesses a kinetic energy given by 
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KE1 =  1 (∆m)v12                                                                       (13.54) 

 2   
 

Similarly at position 2, the fluid possesses the potential energy 
 

PE2 = (∆m)gh2                                                                         (13.55) 
and the kinetic energy 

KE2 =  1 (∆m)v22                                                                      (13.56) 
   2  

 
Therefore, we can now write the law of conservation of energy as 

 
Net work done on the system = Change in energy of the system                              (13.57) 
Net work done on the system = (Etot)2 − (Etot)1                                                           (13.58) 
Net work done on the system = (PE2 + KE2) − (PE1 + KE1)                                       (13.59) 

 
Substituting equations 13.52 through 13.56 into equation 13.59 we get 

 
(p1 − p2)∆V = [(∆m)gh2 +  1 (∆m)v22 ] − [(∆m)gh1 +  1 (∆m)v12 ]                                   (13.60) 

                                                                                        2                                       2   
But the total mass of fluid moved ∆m is given by 

∆m = ρ∆V                                                                             (13.61) 
 

Substituting equation 13.61 back into equation 13.60, gives 
 

(p1 − p2)∆V = ρ(∆V)gh2 +  1 ρ(∆V)v22 − ρ(∆V)gh1 −  1 ρ(∆V )v12  
                                                                                         2                                      2    
Dividing each term by ∆V gives 

(p1 − p2) = ρgh2 +  1 ρv22 − ρgh1 −  1 ρv12                                                        (13.62) 
                                                                                          2                        2 

 
If we place all the terms associated with the fluid at position 1 on the left-hand side of the equation and all the 
terms associated with the fluid at position 2 on the right-hand side, we obtain 
 

 p1 + ρgh1 +  1 ρv12 = p2 + ρgh2 +  1  ρv22                                                      (13.63) 
                                                                                    2                               2                     

 
Equation 13.63 is the mathematical statement of  
 

Bernoulli’s theorem. It says that the sum of the pressure, the potential energy per unit volume, and the 
kinetic energy per unit volume at any one location of the fluid is equal to the sum of the pressure, the potential 
energy per unit volume, and the kinetic energy per unit volume at any other location in the fluid, for a 
nonviscous, incompressible fluid in streamlined flow. 
 

Since this sum is the same at any arbitrary point in the fluid, the sum itself must therefore be a constant. Thus, 
we sometimes write Bernoulli’s equation in the equivalent form 

 
 p + ρgh +  1 ρv2 = constant                                                              (13.64) 

                                                                                          2                                                         
 

Example 13.18 
 

Applying Bernoulli’s theorem. In figure 13.10, the pressure p1 = 2.94 × 103 N/m2, whereas the velocity of the water 
is v1 = 0.322 m/s. The diameter of the pipe at location 1 is 10.0 cm and it is 5.00 m above the ground. If the 
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diameter of the pipe at location 2 is 4.00 cm, and the pipe is 2.00 m above the ground, find the velocity of the water 
v2 at position 2, and the pressure p2 of the water at position 2. 

Solution
 

The area A1 is 
A1 = πd12 =  π (0.100 m)2 = 7.85 × 10−3 m2  

                                                                        4        4 
whereas the area A2 is 

A2 = πd22 =  π (0.0400 m)2 = 1.26 × 10−3 m2  
                                                                      4         4 

 
The velocity at location 2 is found from the equation of continuity, equation 13.48, as 
 

( )
3 2

1
2 1 3 2

2

7.85 10  m 0.322 m/s
1.26 10  m

Av v
A

−

−

 ×
= =  × 

 

= 2.01 m/s 
 

The pressure at location 2 is found from rearranging Bernoulli’s equation 13.63 as 
 

 p2 = p1 + ρgh1 +  1 ρv12 − ρgh2 − 1  ρv22 
                                                                                             2                       2 

( )

( ) ( )

( )

3 3
2 3 2

23 31
2 3 3 2

231
2 3

N kg m2.94 10  1 10  9.80 5.00 m
m m s

kg kg m        1 10  0.322 m/s 1 10  9.80 2.00 m
m m s

kg          1 10  2.01 m/s
m

  = × + ×  
  

    + × − ×    
    

 − × 
 

 

 
= 2.94 × 103 N/m2 + 4.9 × 104 N/m2 + 5.18 × 101 N/m2  

− 1.96 × 104 N/m2 − 2.02 × 103 N/m2 

= 3.04 × 104 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
13.8  Application of Bernoulli’s Theorem 
Let us now consider some special cases of Bernoulli’s theorem. 
 
The Venturi Meter 
Let us first consider the constricted tube studied in figure 13.9 and slightly modified and redrawn in figure 
13.11(a). Since the tube is completely horizontal h1 = h2 and there is no difference in potential energy between the 
locations 1 and 2. Bernoulli’s equation therefore reduces to  

 
p1 +  1  ρv12 = p2 +  1  ρv22                                                               (13.65) 

                                                                                     2                     2 
 
But by the equation of continuity, 

v2 = A1 v1                                                                             (13.48) 
     A2 
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Figure 13.11  A Venturi meter. 

 
Since A1 is greater than A2, v2 must be greater than v1, as shown before. Let us rewrite equation 13.65 as 
 

p2 = p1 +  1 ρv12 − 1  ρv22  
                                                                                            2            2 
or 

p2 = p1 +  1 ρ(v12 − v22)                                                                (13.66) 
    2       

 
But since v2 is greater than v1, the quantity (1/2)ρ(v12 − v22) is a negative quantity and when we subtract it from p1, 
p2 must be less than p1. Thus, not only does the fluid speed up in the constricted tube, but the pressure in the 
constricted tube also decreases.  
 

Example 13.19 
 

When the velocity increases, the pressure decreases. In example 13.16, associated with figure 13.9, the velocity v1 in 
area A1 was 0.322 m/s and the velocity v2 in area A2 was found to be 2.01 m/s. If the pressure in the left pipe is 2.94 
× 103 Pa, what is the pressure p2 in the constricted pipe? 

Solution
 

The pressure p2, found from equation 13.66, is 
    p2 = p1 +  1 ρ(v12 − v22)  

                                                                                                2    
    = 2.94 × 103 Pa + (1/2)(1 × 103 kg/m3)[(0.322 m/s)2 − (2.01 m/s)2] 

= 2.94 × 103 N/m2 − 1.97 × 103 N/m2 = 9.7 × 102 Pa 
 

Thus, the pressure of the water in the constricted portion of the tube has decreased to 9.7 × 102 Pa. Note that in 
example 13.18 of section 13.7 the pressure in the constricted area of the pipe was greater than in the larger area of 
the pipe. This is because in that example the pipe was not all at the same level (i.e., h1 ≠ h2). An additional 
pressure arose on the right side because of the differences in the heights of the two pipes. 
 

To go to this Interactive Example click on this sentence. 
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The effect of the decrease in pressure with the increase in speed of the fluid in a horizontal pipe is called the 
Venturi effect, and a simple device called a Venturi meter, based on this Venturi effect, is used to measure the 
velocity of fluids in pipes. A Venturi meter is shown schematically in figure 13.11(b). The device is basically the 
same as the pipe in 13.11(a) except for the two vertical pipes connected to the main pipe as shown. These open 
vertical pipes allow some of the water in the pipe to flow upward into the vertical pipes. The height that the water 
rises in the vertical pipes is a function of the pressure in the horizontal pipe. As just seen, the pressure in pipe 1 is 
greater than in pipe 2 and thus the height of the vertical column of water in pipe 1 will be greater than the height 
in pipe 2. By actually measuring the height of the fluid in the vertical columns the pressure in the horizontal pipe 
can be determined by the hydrostatic equation 13.7. Thus, the pressure in pipe 1 is 

 
p1 = ρgh01 

and the pressure in pipe 2 is 
p2 = ρgh02 

 
where h01 and h02 are the heights shown in figure 13.11(b). We can now write Bernoulli’s equation 13.65 as 
 

ρgh01 +  1 ρv12 = ρgh02 +  1 ρv22  
                                                                                     2                         2 

 
Replacing v2 by its value from the continuity equation 13.65, we get 
 

2
2 11 1

01 1 02 12 2
2

Agh v gh v
A

ρ ρ ρ ρ
  

+ = +   
   

 

2
2 211 1

01 02 1 12 22
2

Agh gh v v
A

ρ ρ ρ ρ− = + −  

( )
2

211
01 02 12 2

2

1Ag h h v
A

ρ ρ
 

− = + − 
 

 

Solving for v12, we have 
( )

( )
01 022

1 2 21
1 22 / 1

g h h
v

A A
ρ

ρ

−
=

 − 
 

Solving for v1, we get 
( )

( )
01 02

1 2 2
1 2

2
/ 1

g h h
v

A A
−

=
−

                                                                     (13.67) 

 
Equation 13.67 now gives us a simple means of determining the velocity of fluid flow in a pipe. The main pipe 
containing the fluid is opened and the Venturi meter is connected between the opened pipes. When the fluid starts 
to move, the heights h01 and h02 are measured. Since the cross-sectional areas are easily determined by measuring 
the diameters of the pipes, the velocity of the fluid flow is easily calculated from equation 13.67. 

 
Example 13.20 

 
A Venturi meter. A Venturi meter reads heights of h01 = 30.0 cm and h02 = 10.0 cm. Find the velocity of flow v1 in 
the pipe. The area A1 = 7.85 × 10−3 m2 and area A2 = 1.26 × 10−3 m2. 

Solution
 

The velocity of flow v1 in the main pipe, found from equation 13.67, is 
 

( )
( )

01 02
1 2 2

1 2

2
/ 1

g h h
v

A A
−

=
−

 

Pearson Custom Publishing

414



 

 
Chapter 13  Simple Harmonic Motion                                                                                                                  13-25 

( )
( )
( )

2

1 23 2

23 2

2(9.80 m/s ) 0.300 m 0.100 m

7.85 10  m
1

1.26 10  m

v
−

−

−
=

×
−

×

 

= 0.322 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

The Flow of a Liquid Through an Orifice 
Let us consider the large tank of water shown in figure 13.12. Let the 
top of the fluid be location 1 and the orifice be location 2. Bernoulli’s 
theorem applied to the tank, taken from equation 13.63, is 
 

p1 + ρgh1 +  1 ρv12 = p2 + ρgh2 +  1  ρv22 
                                                2                               2 

 
But the pressure at the top of the tank and the outside pressure at the 
orifice are both p0, the normal atmospheric pressure. Also, because of  

                                                                                                                     Figure 13.12  Flow from an orifice. 
 
the very large volume of fluid, the small loss through the orifice causes an insignificant vertical motion of the top 
of the fluid. Thus, v1 ≈ 0. Bernoulli’s equation becomes 
 

p0 + ρgh1 + = p0 + ρgh2 +  1  ρv22  
                                                                                                                2 

 
The pressure term p0 on both sides of the equation cancels out. Also h2 is very small compared to h1 and it can be 
neglected, leaving 

ρgh1 =  1 ρv22  
                                                                                                  2 
Solving for the velocity of efflux, we get 

2 12v gh=                                                                            (13.68) 
 

Notice that the velocity of efflux is equal to the velocity that an object would acquire when dropped from the height 
h1. 

 
Example 13.21 

 
The velocity of efflux. A large water tank, 10.0 m high, springs a leak at the bottom of the tank. Find the velocity of 
the escaping water. 

Solution
 

The velocity of efflux, found from equation 13.68, is 
 

( )2
2 12 2 9.80 m/s (10.0 m)v gh= =   

= 14.0 m/s 
 

To go to this Interactive Example click on this sentence. 
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The Curving Baseball 
When a nonspinning ball is thrown through the air it follows the straight line path shown in figure 13.13(a). The 
air moves over the top and bottom of the ball with a speed vA. If the ball is now released with a downward spin, as 
shown in figure 13.13(b), then the spinning ball drags some air around with it. At the top of the ball, there is a 
velocity of the air vA to the left, and a velocity of the dragged air on the spinning baseball vS to the right. Thus, the 
relative velocity of the air with respect to the ball is vA − vS at the top of the ball. At the bottom of the ball the 
dragged air caused by the spin of the baseball vS is in the same direction as the velocity of the air vA moving past 
the ball. Thus, the relative velocity of the air with respect to the bottom of the ball is vA + vS. Hence, the velocity of 
the air at the top of the ball, vA − vS, is less than the velocity of the air at the bottom of the ball, vA + vS. By the 
Venturi principle, the pressure of the fluid is smaller where the velocity is greater. Thus, the pressure on the 
bottom of the ball is less than the pressure on the top, that is, 
 

ptop < pbottom 
 

But the pressure is related to the force by p = F/A. Hence, the force acting on the top of the ball is greater than the 
force acting on the bottom of the ball, that is, 

   

Figure 13.13  The curving baseball. 
 

Ftop < Fbottom 
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Therefore, the ball curves downward, or sinks, as it approaches the batter. By spinning the ball to the right (i.e., 
clockwise) as viewed from above, the ball curves toward the right. By spinning the ball to the left (i.e., 
counterclockwise) as viewed from above the ball, the ball curves toward the left. Spins about various axes through 
the ball can cause the ball to curve to the left and downward, to the left and upward, and so on. 
 
Lift on an Airplane Wing 
Another example of the Venturi effect can be seen with an aircraft wing, as shown in figure 13.14. The air flowing 
over the top of the wing has a greater distance to travel than the air flowing under the bottom of the wing. In order 
for the flow to be streamlined and for the air at the leading edge of the wing to arrive at the trailing edge at the 
same time, whether it goes above or below the wing, the velocity of the air over the top of the wing must be  

Figure 13.14  An airfoil. 
 
greater than the velocity of the air at the bottom of the wing. But by the Venturi principle, if the velocity is greater 
at the top of the wing, the pressure must be less there than at the bottom of the wing. Thus, p2 is greater than p1 
and therefore F2 < F1. That is, there is a net positive force F2 − F1 acting upward on the wing, producing lift on the 
airplane wing. 

 
 

Have you ever wondered . . . ? 
An Essay on the Application of Physics 
The Flow of Blood in the Human Body 

 
Human blood consists of a plasma, the fluid, and red and white corpuscles that are immersed in the 

plasma. Because blood is a fluid, the laws of physics can be applied to the flow of blood throughout the body. A 
schematic diagram of the circulatory system, which transports blood and oxygen around the body, is shown in 
figure 1. It consists of (1) the heart, which is the pump that is responsible for supplying the pressure to move the 
blood; (2) the lungs, which are the source of oxygen for all the cells of the body; (3) the arteries, which are 
connecting blood vessels that pass the blood from the heart to various parts of the body; (4) the capillaries, which 
are extremely small blood vessels that bring the oxygenated blood down to the layer of human cells; and (5) the 
veins, which are blood vessels that return deoxygenated blood to the heart to complete the circulatory system. 

The heart is the pump that circulates the blood throughout the body and a diagram of it is shown in figure 
2. Blood, containing carbon dioxide, returns to the heart by the veins and enters the right auricle. It is then 
pumped from the right ventricle to the pulmonary artery to the lungs where it dumps the waste carbon dioxide 
and picks up a new supply of oxygen. It then returns to the left auricle of the heart. The left ventricle then pumps 
this oxygen rich blood to the aorta, the main artery of the body, for distribution to the rest of the body. 

For a person at rest, the heart pumps approximately 5.00 liters of blood per minute (8.33 × 10−5 m3/s) at a 
rate of about 70 beats per minute. For a person engaged in very strenuous exercise the heart can pump up to 25.0 
liters of blood per minute (41.7 × 10−5 m3/s) at a rate of about 180 beats per minute. We can determine the speed of 
the blood as it enters the aorta by a generalization of equation 13.36, as  
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 ∆V  = AavA                             (13H.1) 
                                               ∆t             

 
where ∆V/∆t is the rate at which the blood is flowing from 
the heart into the aorta, AA is the cross-sectional area of the 
aorta, and vA is the speed of the blood in the aorta. The 
diameter of the aorta is about 2.00 cm giving an area of  
 

A = πr2 

= π(0.01 m)2 = 3.14 × 10−4 m2 
 

The speed of the blood in the aorta is therefore 
 

vA = ∆V/∆t                               (13H.2) 
     AA 

=  8.33 × 10−5 m3/s 
  3.14 × 10−4 m2 

= 0.265 m/s = 26.5 cm/s 
 

We can determine the speed of the blood in the capillaries 
by the continuity equation 13.47, as 
 

AAvA = AcvC                           (13H.3) 
 

where AA is the cross-sectional area of the aorta, which was 
just determined as 3.14 × 10−4 m2; vA is the speed of the 
blood in the aorta, which was just found to be 26.5 cm/s;  

                                                                                                    Figure 1  The circulatory system. 
 
and AC is the cross-sectional 
area of a capillary tube, which 
is quite small. However, 
because there are literally 
billions of these capillaries the 
effective cross-sectional area of 
all these capillaries combined 
is approximately 2500 × 10−4 
m2. The speed of the blood in 
the capillary becomes 

 
vC = AA vA  

   AC 

( )
4 2

4 2
3.14 10  m 26.5 cm/s
2500 10  m

−

−

 ×
=  × 

 

= 0.0333 cm/s 
 

Thus, the blood moves 
relatively slowly at the level of 
the capillaries. 

 
 
 

                                      Figure 2  The human heart. 
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Finally, we should note that the body controls the flow of blood through the arteries by muscles that 
surround the arteries. When the muscles contract, the diameter of the artery is reduced. From the equation of 
continuity, Av = constant. By decreasing the diameter of the artery, the cross-sectional area of the artery decreases 
and hence the speed of blood must increase through the artery. Alternatively, when the muscles are relaxed, the 
diameter of the artery increases to its former size, the cross-sectional area increases, and the speed of the blood 
decreases. With advancing age the arterial muscles lose some of this ability to contract, a situation called 
hardening of the arteries, and the control of blood flow is somewhat diminished. 

A good indication of how well the heart is 
functioning is obtained by measuring the pressure that the 
heart exerts when pumping blood, and when at rest. The 
device used to measure blood pressure is called a 
sphygmomanometer. (The word is derived from the Greek 
word sphygmos, meaning pulse, and the word manometer, 
which is a pressure measuring device. Hence, a 
sphygmomanometer is a device for measuring pulse 
pressure, or blood pressure.) The device consists of an air 
bag, called a cuff, that is wrapped around the upper arm of 
the patient at the level of the heart. A hand pump is used 
to inflate the cuff, and the pressure exerted by the cuff on 
the arm is measured by the mercury manometer. The 
pressure exerted by the cuff is increased until the pressure 
is great enough to collapse the brachial artery in the arm, 
cutting off the blood supply to the rest of the arm. A 
stethoscope is placed over the brachial artery and the 
pressure in the cuff is slowly decreased. When the pressure 
in the cuff becomes low enough, the pressure exerted by the 
heart is large enough to force the artery open and some 
blood squirts through. This blood flowing through the  

                                                                                       Figure 3  A nurse measures the blood pressure of  
                                                            a patient. 

 
narrow restriction becomes turbulent and makes a noise as it enters the open portion of the artery. The physician 
hears this noise through the stethoscope, and simultaneously observes the pressure indicated on the manometer, 
expressed in terms of mm of Hg. At this point the pressure exerted by the heart, called the systolic pressure, is 
equal to the pressure exerted by the cuff. A normal systolic pressure is around 120 mm of Hg. 

As the pressure in the cuff is decreased the turbulent flow noise is still heard in the stethoscope until the 
lowest pressure exerted by the heart, the diastolic pressure, is equal to the pressure exerted by the cuff. At this 
point the artery is completely open and the blood is no longer in turbulent flow and the characteristic noise 
disappears. The pressure is read from the mercury manometer at this point. This pressure is the pressure that the 
heart exerts when it is at rest. The normal diastolic pressure is around 80 mm of Hg. The combined systolic and 
diastolic pressures are usually indicated in the form 120/80. If the systolic pressure becomes too high, above about 
150 mm of Hg, the patient has high blood pressure. If the systolic pressure becomes too large for a long period of 
time, damage can be done to the different organs of the body. If the systolic pressure becomes extremely large, 
arteries in the brain can rupture and the person will have a stroke. If the diastolic pressure exceeds 90 mm of Hg, 
the person is also said to have high blood pressure. This type of high blood pressure causes eventual damage to the 
heart itself, because it is operating under high pressures even while it is supposed to be resting. 

For the type of streamlined flow considered in this chapter the flow of fluid per unit time was shown to be 
 

∆V  = Av                                                                                (13.36)  
                                                                                                ∆t          

 
which is essentially the equation of continuity. In this type of flow the speed v was the same throughout the cross-
sectional area A considered. However, some fluids have a significant frictional force between the layers of the fluid, 
and this frictional effect, known as the viscosity of the fluid, must then be taken into account. A fluid in which 
frictional effects are significant is called a viscous fluid and the fluid flow is referred to as laminar flow, flow in 
layers. For such viscous fluids the speed v is not the same throughout the cross-sectional area A. The maximum 
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speed occurs at the center of the pipe or tube, whereas the speed is essentially zero at the walls of the pipe. 
Experimental work by J. L. Poiseuille (1799-1869), a French scientist, and subsequently confirmed by theory, 
showed that the flow rate for viscous fluids is given by 
 

∆V = (∆p)πR4                                                                         (13H.4) 
                                                                                              ∆t         8ηL 

 
where ∆p is the pressure difference between both ends of the pipe, R is the radius of the pipe, L is the length of the 
pipe, and η is the coefficient of viscosity of the fluid. Equation 13H.4 is called Poiseuille’s equation. Note that the 
flow rate is inversely proportional to the coefficient of viscosity of the fluid. Thus, a very viscous fluid (high value 
of η) flows very slowly compared to a fluid of low viscosity. That is, everything else being equal, molasses flows at a 
slower rate than water. Human blood is a viscous fluid, the greater the number of red corpuscles in the blood the 
greater the viscosity. The viscosity of human blood varies from about 1.50 × 10−3 (N/m2)s for plasma, to about 4.00 
× 10−3 (N/m2)s for whole blood. Also note that the flow rate depends on the fourth power of the radius of the pipe. If 
the radius is doubled, the flow rate is multiplied by a factor of 16. This relation is important in the selection of the 
size of hypodermic needles. 

 
Example 13H.1 

 
A blood transfusion. A person is receiving a blood transfusion. The bottle containing the blood is elevated 75.0 cm 
above the arm of the person. The needle is 4.00 cm long and has a diameter of 0.500 mm. Find the rate at which 
the blood flows through the needle. 

Solution
 

The rate of flow of blood is found from equation 13H.4, where η, the viscosity of blood, is 4.00 × 10−3 Ns/m2. Let us 
assume that the total pressure differential is obtained by the effects of gravity from the hydrostatic equation, 
equation 13.7. The density of blood is about 1050 kg/m3. Thus, 
 

∆p = ρgh 
= (1050 kg/m3)(9.80 m/s2)(0.750 m) 

      = 7.72 × 103 Pa 
The blood flow rate now obtained is 

∆V = (∆p)πR4                                                                          (13H.4) 
                                                                                             ∆t        8ηL 

= (7.72 × 103 N/m2)(π)(0.250 × 10−3 m)4 
8(4.00 × 10−3 Ns/m2)(0.0400 m) 

= 7.40 × 10−8 m3/s 
 

 
 
 

The Language of Physics 
 

Fluids 
A fluid is any substance that can 
flow. Hence, liquids and gases are 
both considered to be fluids (p. ). 
 
Fluid statics or hydrostatics 
The study of fluids at rest (p. ). 
 
Fluid dynamics or 
hydrodynamics 
The study of fluids in motion (p. ). 

Density 
The amount of mass in a unit 
volume of a substance (p. ). 
 
Pressure 
The magnitude of the normal force 
acting per unit surface area (p. ). 
 
The hydrostatic equation 
An equation that gives the pressure 
of a fluid at a particular depth (p. ). 

 
Barometer 
An instrument that measures 
atmospheric pressure (p. ). 
 
Gauge pressure 
The pressure indicated on a 
pressure measuring gauge. It is 
equal to the absolute pressure 
minus normal atmospheric pressure 
(p. ). 
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Pascal’s principle 
If the pressure at any point in an 
enclosed fluid at rest is changed, 
the pressure changes by an equal 
amount at all points in the fluid 
(p. ). 
 
Archimedes’ principle 
A body immersed in a fluid is 
buoyed up by a force that is equal to 
the weight of the fluid displaced. A 
body floats when the weight of the 
body is equal to the weight of the 
fluid displaced (p. ). 
 
Law of conservation of mass 

In any ordinary mechanical or 
chemical process, mass is neither 
created nor destroyed (p. ). 
 
The equation of continuity 
An equation based on the law of 
conservation of mass, that indicates 
that when the cross-sectional area 
of a pipe gets smaller, the velocity 
of the fluid must become greater. 
Conversely, when the cross-
sectional area increases, the 
velocity of the fluid must decrease 
(p. ). 
 
Bernoulli’s theorem 
The sum of the pressure, the 
potential energy per unit volume, 
and the kinetic energy per unit 

volume at any one location of the 
fluid is equal to the sum of the 
pressure, the potential energy per 
unit volume, and the kinetic energy 
per unit volume at any other 
location in the fluid, for a 
nonviscous, incompressible fluid in 
streamlined flow (p. ). 
 
Venturi effect 
The effect of the decrease in 
pressure with the increase in speed 
of the fluid in a horizontal pipe (p. ). 
 
Venturi meter 
A device that uses the Venturi 
effect to measure the velocity of 
fluids in pipes (p. ). 
 

 
Summary of Important Equations 

 
Density         ρ =  m                 (13.1) 
                            V  
Mass            m = ρV                 (13.2) 
 
Pressure         p =  F                (13.3) 
                              A   
 
Hydrostatic equation 

                p = ρgh               (13.7) 
 
Force              F = pA              (13.12) 
 
Absolute and gauge pressure 

      pabs = pgauge + p0       (13.15) 

 
Hydraulic lift    F =  A f          (13.18) 
                                   a 
                          y1 =  A y2            (13.23) 
                                   a 
  
Archimedes’ principle 
Buoyant force = Weight of water 

 displaced  (13.30) 
 
Mass flow rate    ∆m = ρAv    (13.38) 
                               ∆t              
 
Equation of continuity 

    A1v1 = A2v2           (13.47) 

Av = constant         (13.49) 
 
Work done in moving a fluid 

              W = p∆V               (13.50) 
 
Bernoulli’s theorem 
p1 + ρgh1 +  1 ρv12 =  
                    2       p2 + ρgh2 +  1  ρv22 

                                       2 
(13.63) 

and 
p + ρgh +  1 ρv2 = constant   (13.64) 

                   2      

 
 Questions for Chapter 13 

 
1. Discuss the differences 

between solids, liquids, and gases. 
*2. Hieron II, King of Syracuse 

in ancient Greece, asked his 
relative Archimedes to determine if 
the gold crown made for him by the 
local goldsmith, was solid gold or a 
mixture of gold and silver. How did 
Archimedes, or how could you, 
determine whether or not the crown 
was pure gold? 

3. When you fly in an airplane 
you find that your ears keep 
“popping” when the plane is 

ascending or descending. Explain 
why. 

4. Using a barometer and the 
direction of the wind, describe how 
you could make a reasonable 
weather forecast. 

*5. A pilot uses an aneroid 
barometer as an altimeter that is 
calibrated to a standard 
atmosphere. What happens to the 
aircraft if the temperature of the 
atmosphere does not coincide with 
the standard atmosphere? 

*6. Does a sphygmomanometer 
measure gauge pressure or absolute 
pressure? 

7. How would you define a 
mechanical advantage for the 
hydraulic lift? 

8. In example 13.13, could the 
iron block sink to a depth of 39.4 cm 
in a pool of water 100 cm deep and 
then float at that point? Why or 
why not? 

9. How does eating foods very 
high in cholesterol have an effect on 
the arteries and hence the flow of 
blood in the body? 
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*10. Why is an intravenous 
bottle placed at a height h above 

the arm of a patient? 

 
Problems for Chapter 13 

 
13.2  Density 

1. A cylinder 3.00 cm in 
diameter and 3.00 cm high has a 
mass of 15.0 g. What is its density? 

2.  Find the mass of a cube of 
iron 10.0 cm on a side. 

3. A gold ingot is 50.0 cm by 
20.0 cm by 10.0 cm. Find (a) its 
mass and (b) its weight. 

4. Find the mass of the air in a 
room 6.00 m by 8.00 m by 3.00 m. 

5. Assume that the earth is a 
sphere. Compute the average 
density of the earth. 

6. Find the weight of 1.00 liter 
of air. 

7. A crown, supposedly made of 
gold, has a mass of 8.00 kg. When it 
is placed in a full container of 
water, 691 cm3 of water overflows. 
Is the crown made of pure gold or is 
it mixed with some other materials? 

8. A solid brass cylinder 10.0 cm 
in diameter and 25.0 cm long is 
soldered to a solid iron cylinder 10.0 
cm in diameter and 50.0 cm long. 
Find the weight of the combined 
cylinder. 

9. An annular cylinder of 2.50-
cm inside radius and 4.55-cm 
outside radius is 10.5 cm high. If 
the cylinder has a mass of 5.35 kg, 
find its density. 

 
13.3  Pressure 

10. As mentioned in the text, a 
non-SI unit of pressure is the torr, 
named after Torricelli, which is 
equal to the pressure exerted by a 
column of mercury 1 mm high. 
Express a pressure of 2.53 × 105 Pa 
in torrs. 

*11. From the knowledge of 
normal atmospheric pressure at the 
surface of the earth, compute the 
approximate mass of the 
atmosphere. 

12. A barometer reads a height 
of 72.0 cm of Hg. Express this 
atmospheric pressure in terms of 

(a) in. of Hg, (b) mb, (c) lb/in.2, and 
(d) Pa. 

13. (a) A “high” pressure area of 
1030 mb moves into an area. What 
is this pressure expressed in N/m2 
and lb/in.2? (b) A “low” pressure 
area of 980 mb moves into an area. 
What is this pressure expressed in 
N/m2 and lb/in.2? 

14. Normal systolic blood 
pressure is approximately 120 mm 
of Hg and normal diastolic pressure 
is 80 mm of Hg. Express these 
pressures in terms of Pa and lb/in.2. 

15. The point of a 10-penny nail 
has a diameter of 1.00 mm. If the 
nail is driven into a piece of wood 
with a force of 150 N, find the 
pressure that the tip of the nail 
exerts on the wood. 

16. The gauge pressure in the 
tires of your car is 2.42 × 105 N/m2. 
What is the absolute pressure of the 
air in the tires? 

17. What is the water pressure 
and the absolute pressure in a 
swimming pool at depths of (a) 1.00 
m, (b) 2.00 m, (c) 3.00 m, and 
(d) 4.00 m? 

18. Find the force exerted by 
normal atmospheric pressure on the 
top of a table 1.00 m high, 1.00 m 
long, 0.75 m wide, and 0.10 m thick. 
What is the force on the underside 
of the table top exerted by normal 
atmospheric pressure? 

19. A portion of the roof of a 
home is 12.2 m long and 6.50 m 
high, and makes an angle of 40.00 
with the horizontal. What force is 
exerted on the top of this roof by 
normal atmospheric pressure?   

20. If normal atmospheric 
pressure can support a column of 
Hg 76.0 cm high, how high a 
column will it support of (a) water, 
(b) benzene, (c) alcohol, and 
(d) glycerine? 

21. What is the minimum 
pressure of water entering a 
building if the pressure at the 

second floor faucet, 4.60 m above 
the ground, is to be 3.45 × 104 N/m2 
? 

22. The water main pressure 
entering a house is 31.0 N/cm2. 
What is the pressure at the second 
floor faucet, 6.00 m above the 
ground? What is the maximum 
height of any faucet such that water 
will still flow from it? 

23. A barometer reads 76.0 cm 
of Hg at the base of a tall building. 
The barometer is carried to the roof 
of the building and now reads 75.6 
cm of Hg. If the average density of 
the air is 1.28 kg/m3, what is the 
height of the building? 

24. The hatch of a submarine is 
100 cm by 50.0 cm. What force is 
exerted on this hatch by the water 
when the submarine is 50.0 m 
below the surface? 

 
13.4  Pascal’s Principle 

25. In the hydraulic lift of figure 
13.5, the diameter d1 = 10.0 cm and 
d2 = 50.0 cm. If a force of 10.0 N is 
applied at the small piston, (a) what 
force will appear at the large 
piston? (b) If the large piston is to 
move through a height of 2.00 m, 
what must the total displacement of 
the small piston be? 

26. In a hydraulic lift, the large 
piston exerts a force of 25.0 N when 
a force of 3.50 N is applied to the 
smaller piston. If the smaller piston 
has a radius of 12.5 cm, and the lift 
is 65.0% efficient, what must be the 
radius of the larger piston? 

27. The theoretical mechanical 
advantage (TMA) of a hydraulic lift 
is equal to the ratio of the force that 
you get out of the lift to the force 
that you must put into the lift. 
Show that the theoretical 
mechanical advantage of the 
hydraulic lift is given by 

TMA = Fout = Aout = yin 
                 Fin     Ain      yout 
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where Aout is the area of the output 
piston, Ain is the area of the input 
piston, yin is the distance that the 
input piston moves, and yout is the 
distance that the output piston 
moves. 

 
13.5  Archimedes’ Principle 

28. Find the weight of a cubic 
block of iron 5.00 cm on a side. This 
block is now hung from a spring 
scale such that the block is totally 
submerged in water. What would 
the scale indicate for the weight 
(called the apparent weight) of the 
block? 

 
Diagram for problem 28. 

 
29. A copper cylinder 5.00 cm 

high and 3.00 cm in diameter is 
hung from a spring scale such that 
the cylinder is totally submerged in 
ethyl alcohol. Find the apparent 
weight of the block. 

30. Find the buoyant force on a 
brass block 10.5 cm long by 12.3 cm 
wide by 15.0 cm high when placed 
in (a) water, (b) glycerine, and 
(c) mercury. 

31. If the iron block in example 
13.13 were placed in a pool of 
mercury instead of the water would 
it float or sink? If it floats, to what 
depth does it sink before it floats? 

*32. A block of wood sinks 8.00 
cm in pure water. How far will it 
sink in salt water? 

33. A weather balloon contains 
33.5 m3 of helium at the surface of 
the earth. Find the largest load this 
balloon is capable of lifting. The 
density of helium is 0.1785 kg/m3. 

 
13.6  The Equation of 
Continuity 

34. A 2.50-cm pipe is connected 
to a 0.900-cm pipe. If the velocity of 
the fluid in the 2.50-cm pipe is 1.50 
m/s, what is the velocity in the 
0.900-cm pipe? How much water 
flows per second from the 0.900-cm 
pipe? 

35. A duct for a home air-
conditioning unit is 35.0 cm in 
diameter. If the duct is to remove 
the air in a room 9.00 m by 6.00 m 
by 3.00 m high every 15.0 min, 
what must the velocity of the air in 
the duct be? 

 
13.7  Bernoulli’s Theorem 

 
36. Water enters the house from 

a main at a pressure of 1.5 × 105 Pa 
at a speed of 40.0 cm/s in a pipe 
4.00 cm in diameter. What will be 
the pressure in a 2.00-cm pipe 
located on the second floor 6.00 m 
high when no water is flowing from 
the upstairs pipe? When the water 
starts flowing, at what velocity will 
it emerge from the upstairs pipe? 

37. A can of water 30.0 cm high 
sits on a table 80.0 cm high. If the 
can develops a leak 5.00 cm from 
the bottom, how far away from the 
table will the water hit the floor? 

38. Water rises to a height h01 = 
35.0 cm, and h02 = 10.0 cm, in a 
Venturi meter, figure 13.11(b). The 
diameter of the first pipe is 4.00 cm, 
whereas the diameter of the second 
pipe is 2.00 cm. What is the velocity 
of the water in the first and second 
pipe? What is the mass flow rate 
and the volume flow rate? 

 
Additional Problems 

39. A car weighs 12,500 N and 
the gauge pressure of the air in 
each tire is 2.00 × 105 N/m2. 
Assuming that the weight of the car 
is evenly distributed over the four 
tires, (a) find the area of each tire 
that is flat on the ground and (b) if 
the width of the tire is 15.0 cm, find 
the length of the tire that is in 
contact with the ground. 

40. A certain portion of a 
rectangular, concrete flood wall is 
12.0 m high and 30.0 m long. 
During severe flooding of the river, 
the water level rises to a height of 
10.0 m. Find (a) the water pressure 
at the base of the flood wall, (b) the 
average water pressure exerted on 
the flood wall, and (c) the average 
force exerted on the flood wall by 
the water. 

41. The Vehicle Assembly 
Building at the Kennedy Space 
Center is 160 m high. Assuming the 
density of air to be a constant, find 
the difference in atmospheric 
pressure between the ground floor 
and the ceiling of the building. 

42. If the height of a water 
tower is 20.0 m, what is the 
pressure of the water as it comes 
out of a pipe at the ground? 

*43. A 20.0-g block of wood 
floats in water to a depth of 5.00 
cm. A 10.0-g block is now placed on 
top of the first block, but it does not 
touch the water. How far does the 
combination sink? 

Diagram for problem 43. 
 
*44. An iron ball, 4.00 cm in 

diameter, is dropped into a tank of 
water. Assuming that the only 
forces acting on the ball are gravity 
and the buoyant force, determine 
the acceleration of the ball. Discuss 
the assumption made in this 
problem. 

*45. If 80% of a floating cylinder 
is beneath the water, what is the 
density of the cylinder? 

*46. From knowing that the 
density of an ice cube is 920 kg/m3 
can you determine what percentage 
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of the ice cube will be submerged 
when in a glass of water? 

*47. Find the equation for the 
length of the side of a cube of 
material that will give the same 
buoyant force as (a) a sphere of 
radius r and (b) a cylinder of radius 
r and height h, if both objects are 
completely submerged. 

*48. Find the radius of a solid 
cylinder that will experience the 
same buoyant force as an annular 
cylinder of radii r2 = 4.00 cm and r1 
= 3.00 cm. Both cylinders have the 
same height h. 

*49. A cone of maximum radius 
r0 and height h0, is placed in a fluid, 
as shown in the diagram. The 
volume of a right circular cone is 
given by  

Vcone =  1  πr2h 
    3   

 
(a) Find the equation for the 

weight of the cone. (b) If the cone 
sinks so that a height h1 remains 
out of the fluid, find the equation 
for the volume of the cone that is 
immersed in the fluid. (c) Find the 
equation for the buoyant force 
acting on the cone. (d) Show that 
the height h1 that remains out of 
the fluid is given by 

 
( )3

1 1 /  c fh hoρ ρ= −  

 
where ρc is the density of the cone 
and ρf is the density of the fluid. 
(e) If we approximate an iceberg by 
a cone, find the percentage height of 
the iceberg that sticks out of the 
salt water, and the percentage 
volume of the iceberg that is below 
the water. 

  
Diagram for problem 49. 

 
*50. A can 30.0 cm high is filled to 
the top with water. Where should a 
hole be made in the side of the can 
such that the escaping water 
reaches the maximum distance x in 
the horizontal direction? (Hint: 
calculate the distance x for values of 
h from 0 to 30.0 cm in steps of 5.00 
cm.)                             

 
Diagram for problem 50. 

 
51. In the flow of fluid from an 

orifice in figure 13.12, it was 
assumed that the vertical motion of 
the water at the top of the tank was 
very small, and hence v1 was set 
equal to zero. Show that if this 
assumption does not hold, the 
velocity of the fluid from the orifice 
v2 can be given by 

 

( )2 4 4
2 1

2
1 /

ghv
d d

=
−

 

  
where d1 is the diameter of the tank 
and d2 is the diameter of the orifice. 

*52. A wind blows over the roof 
of a house at 136 km/hr. What is 
the difference in pressure acting on 
the roof because of this velocity? 

(Hint: the air inside the attic is still, 
that is, v = 0 inside the house.) 

*53. If air moves over the top of 
an airplane wing at 150 m/s and 
120 m/s across the bottom of the 
wing, find the difference in pressure 
between the top of the wing and the 
bottom of the wing. If the area of 
the wing is 15.0 m2, find the force 
acting upward on the wing. 

 
Interactive Tutorials 

54. Buoyant force. Find the 
buoyant force BF and apparent 
weight AW of a solid sphere of 
radius r = 0.500 m and density ρ = 
7.86 × 103 kg/m3, when immersed 
in a fluid whose density is ρf = 1.00 
× 103 kg/m3. 

55. Archimedes’ principle. A 
solid block of wood of length L = 
15.0 cm, width W = 20.0 cm, and 
height h0 = 10.0 cm, is placed into a 
pool of water. The density of the 
block is 680 kg/m3. (a) Will the 
block sink or float? (b) If it floats, 
how deep will the block be 
submerged when it floats? (c) What 
percentage of the original volume is 
submerged? 

56. The equation of continuity 
and flow rate. Water flows in a pipe 
of diameter d1 = 4.00 cm at a 
velocity of 35.0 cm/s, as shown in 
figure 13.9. The diameter of the 
tapered part of the pipe is d2 = 2.55 
cm. Find (a) the velocity of the fluid 
in the tapered part of the pipe, 
(b) the mass flow rate, and (c) the 
volume flow rate of the fluid. 

57. Bernoulli’s theorem. Water 
flows in an elevated, tapered pipe, 
as shown in figure 13.10. The first 
part of the pipe is at a height h1 = 
3.58 m above the ground and the 
water is at a pressure p1 = 5000 
N/m2, the diameter d1 = 25.0 cm, 
and the velocity of the water is v1 = 
0.553 m/s. If the diameter of the 
tapered part of the pipe is d2 = 10.0 
cm and the height of the pipe above 
the ground is h2 = 1.25 m, find 
(a) the velocity v2 of the fluid in the 
tapered part of the pipe and (b) the 
pressure p2 of the water in the 
tapered part of the pipe. 
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 To go to these Interactive 
Tutorials click on this sentence. 

 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 14  Temperature and Heat  
 

"The determination of temperature has long been recognized as a problem of the 
greatest importance in physical science.  It has accordingly been made a subject of 
most careful attention, and, especially in late years, of very elaborate and refined 
experimental researches: and we are thus at present in possession of as complete a 
practical solution of the problem as can be desired, even for the most accurate 
investigation."       William Thompson, Lord Kelvin 

 
14.1  Temperature 
The simplest and most intuitive definition of temperature is that temperature is a measure of the hotness or 
coldness of a body. That is, if a body is hot it has a high temperature, if it is cold it has a low temperature. This is 
not a very good definition, as we will see in a moment, but it is one that most people have a “feel” for, because we 
all know what hot and cold is. Or do we? 

Let us reconsider the 
“thought experiment” treated 
in chapter 1. We place three 
beakers on the table, as shown 
in figure 14.1. Several ice 
cubes are placed into the first 
beaker of water, whereas 
boiling water is poured into the 
third beaker. We place equal 
amounts of the ice water from 
beaker one and the boiling 
water from beaker three into 
the second beaker to form a 
mixture. I now take my left 
hand and plunge it into beaker 
one, and conclude that  

                                  Figure 14.1   A “thought experiment’’ on temperature. 
 

it is cold. After drying off my left hand, I place it into the middle mixture. After coming from the ice water, the 
mixture in the second beaker feels hot by comparison. So I conclude that the mixture is hot. 

I now take my right hand and plunge it into the boiling water of beaker three. (This is of course the reason 
why this is only a “thought experiment.”) I conclude that the water in beaker three is certainly hot. Drying off my 
hand again I then place it into beaker two. After the boiling water, the mixture feels cold by comparison, so I 
conclude that the mixture is cold. After this relatively scientific experiment, my conclusion is contradictory. That 
is, I found the middle mixture to be either hot or cold depending on the sequence of the measurement. Thus, the 
hotness or coldness of a body is not a good concept to use to define the temperature of a body. Although we may 
have an intuitive feel for hotness or coldness, we can not use our intuition for any precise scientific work. 
 
The Thermometer 
In order to make a measurement of the temperature of a body, a new technique, other than estimating hotness or 
coldness, must be found. Let us look for some characteristic of matter that changes as it is heated. The simplest 
such characteristic is that most materials expand when they are heated. Using this characteristic of matter we 
take a glass tube and fill it with a liquid, as shown in figure 14.2. When the liquid is heated it expands and rises 
up the tube. The height of the liquid in the tube can be used to measure the hotness or coldness of a body. The 
device will become a thermometer. 

In order to quantify the process, we need to place numerical values on the glass tube, thus assigning a 
number that can be associated with the hotness or coldness of a body. This is the process of calibrating the 
thermometer. 

First, we place the thermometer into the mixture of ice and water of beaker 1 in figure 14.1. The liquid 
lowers to a certain height in the glass tube. We scratch a mark on the glass at that height, and arbitrarily call it 0 
degrees. Since it is the point where ice is melting in the water, we call 00 the melting point of ice. (Or similarly, the 
freezing point of water.) 
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Then we place the glass tube into beaker three, which contains the 
boiling water. (We assume that heat is continuously applied to beaker three to 
keep the water boiling.) The liquid in the glass tube is thus heated and expands 
to a new height. We mark this new height on the glass tube and arbitrarily call it 
1000. Since the water is boiling at this point, we call it the boiling point of water. 

Because the liquid in the tube expands linearly, to a first approximation, 
the distance between 00 and 1000 can be divided into 100 equal parts. Any one of 
these divisions can be further divided into fractions of a degree. Thus, we obtain 
a complete scale of temperatures ranging from 0 to 100 degrees. Then we place 
this thermometer into the mixture of beaker two. The liquid in the glass rises to 
some number, and that number, whatever it may be, is the temperature of the 
mixture. That number is a numerical measure of the hotness or coldness of the 
body. We call this device a thermometer, and in particular this scale of 
temperature that has 00 for the melting point of ice and 1000 for the boiling point 
of water is called the Celsius temperature scale and is shown in figure 14.3(a). 
This scale is named after the Swedish astronomer, Anders Celsius, who proposed 
it in 1742. 

 
                                                                                                                                   Figure 14.2   A thermometer. 

 
Another, perhaps more familiar, temperature scale is the Fahrenheit temperature scale shown in 

figure 14.3(b). The melting point of ice on this scale is 32 0F and the boiling point of water is 212 0F. At first glance 
it might seem rather strange to 
pick 320 for the freezing point 
and 2120 for the boiling point of 
water. As a matter of fact 
Gabriel Fahrenheit, the German 
physicist, was not trying to use 
pure water as his calibration 
points. When the scale was first 
made, 0 0F corresponded to the 
lowest temperature then known, 
the temperature of freezing brine 
(a salt water mixture), and 
100 0F was meant to be the 
temperature of the human body. 
Fahrenheit proposed his scale in 
1714. 

                                                   Figure 14.3  The temperature scales. 
 
In addition to the Celsius and Fahrenheit scales there are other temperature scales, the most important of 

which is the Kelvin or absolute scale, as shown in figure 14.3(c). The melting point of ice on this scale is 273 K and 
the boiling point of water is 373 K. The Kelvin temperature scale does not use the degree symbol for a 
temperature. To use the terminology correctly, we should say that, “zero degrees Celsius corresponds to a 
temperature of 273 Kelvin.” The Kelvin scale is extremely important in dealing with the behavior of gases. In fact, 
it was in the study of gases that Lord Kelvin first proposed the absolute scale in 1848. We will discuss this more 
natural introduction to the Kelvin scale in the study of gases in chapter 15. For the present, however, the 
implications of the Kelvin scale can still be appreciated by looking at the molecular structure of a solid. 

The simplest picture of a solid, if it could be magnified trillions of times, is a large array of atoms or 
molecules in what is called a lattice structure, as shown in figure 14.4. Each dot in the figure represents an atom 
or molecule, depending on the nature of the substance. Each molecule is in equilibrium with all the molecules 
around it. The molecule above exerts a force upward on the molecule, whereas the molecule below exerts a force 
downward. Similarly, there are balanced forces from right and left and in and out. The molecule is therefore in 
equilibrium. In fact every molecule of the solid is in equilibrium. When heat is applied to a solid body, the added 
energy causes a molecule to vibrate around its equilibrium position. As any one molecule vibrates, it interacts with 
its nearest neighbors causing them to vibrate, which in turn causes its nearest neighbors to vibrate, and so on. 
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Hence, the heat energy applied to the solid shows up as vibrational 
energy of the molecules of the solid. The higher the temperature of 
the solid, the larger is the vibrational motion of its molecules. The 
lower the temperature, the smaller is the vibrational motion of its 
molecules. Thus, the temperature of a body is really a measure of 
the mean or average kinetic energy of the vibrating molecules of the 
body. 

It is therefore conceivable that if you could lower and lower 
the temperature of the body, the motion of the molecules would 
become less and less until at some very low temperature, the 
vibrational motion of the molecules would cease altogether. They 
would be frozen in one position. This point is called absolute zero, 
and is 0 on the Kelvin temperature scale. From work in quantum  

                                                                                                        Figure 14.4  Simple lattice structure. 
 

mechanics, however, it is found that even at absolute zero, the molecules contain a certain amount of energy called 
the zero point energy. 

Even though temperature is really a measure of the mean kinetic energy of the molecules of a substance, 
from an experimental point of view it is difficult to make a standard of temperature in this way. Therefore, the 
International System of units considers temperature to be a firth fundamental quantity and it is added to the four 
fundamental quantities of length, mass, time, and electric charge. The SI unit of temperature is the kelvin, and is 
defined as 1/273.16 of the temperature of the triple point of water. The triple point of water is that point on a 
pressure-temperature diagram where the three phases of water, the solid, the liquid, and the gas, can coexist in 
equilibrium at the same pressure and temperature. 
 
Temperature Conversions 
The Celsius temperature scale is the recognized temperature scale in most scientific work and in most countries of 
the world. The Fahrenheit scale will eventually become obsolete along with the entire British engineering system 
of units. For the present, however, it is still necessary to convert from one temperature scale to another. That is, if 
a temperature is given in degrees Fahrenheit, how can it be expressed in degrees Celsius, and vice versa? It is 
easy to see how this conversion can be made. 

The principle of the 
thermometer is based on the linear 
expansion of the liquid in the tube. 
For two identical glass tubes 
containing the same liquid, the 
expansion of the liquid is the same 
in both tubes. Therefore, the height 
of the liquid columns is the same for 
each thermometer, as shown in 
figure 14.5. The ratio of these 
heights in each thermometer is also 
equal. Therefore, 

 
 

                                            Figure 14.5  Converting one temperature scale to another. 
 

1 1

0 0Celsius Fahrenheit

h h
h h

   
=   

   
 

These ratios, found from figure 14.5, are 
  t 0C − 00  =  t 0F − 320  

                                                                               1000 − 00      2120 − 320 
 t 0C   = t 0F − 320 

                                                                                  1000          1800 
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Solving for the temperature in degrees Celsius 
 

t 0C = 1000(t 0F − 320) 
                                                                                         1800        
Simplifying, 

 t 0C =  5 (t 0F − 320)                                                                      (14.1) 
                                                                                             9                                       

 
Equation 14.1 allows us to convert a temperature in degrees Fahrenheit to degrees Celsius. 

 
Example 14.1 

 
Fahrenheit to Celsius. If room temperature is 68 0F, what is this temperature in Celsius degrees? 

Solution
 

The temperature in Celsius degrees, found from equation 14.1, is 
 

t 0C =  5 (t 0F − 320) =  5 (680 − 320) =  5 (36) 
                                                                        9                        9                       9 

= 20 0C 
 

To go to this Interactive Example click on this sentence. 
 

 
 
To convert a temperature in degrees Celsius to one in Fahrenheit, we solve equation 14.1 for t 0F to obtain 
 

 t 0F =  9 t 0C + 320                                                                    (14.2) 
                                                                                                 5                                    

 
Example 14.2 

 
Celsius to Fahrenheit. A temperature of −5.00 0C is equivalent to what Fahrenheit temperature? 

Solution
 

The temperature in degrees Fahrenheit, found from equation 14.2, is 
 

 t 0F =  9 t 0C + 320 =  9 (−5.000) + 320 = −9 + 320 
                                                                     5                      5    

= 23 0F 
 

To go to this Interactive Example click on this sentence. 
 

 
 
We can also find a conversion of absolute temperature to Celsius temperatures from figure 14.5, as 
 

1 1

0 0Celsius Kelvin

h h
h h

   
=   

   
 

 t 0C − 00  =  T K − 273  
                                                                              1000 − 00      373 − 273 
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 t 0C  = T K − 273 
                                                                                   100           100 

 
Therefore, the conversion of Kelvin temperature to Celsius temperatures is given by 

 
 t 0C = T K − 273                                                                         (14.3) 

And the reverse conversion by 
 T K = t 0C + 273                                                                         (14.4) 

 
For very precise work, 0 0C is actually equal to 273.16 K. In such cases, equations 14.3 and 14.4 should be modified 
accordingly. 

 
Example 14.3 

 
Celsius to Kelvin. Normal room temperature is considered to be 20.0 0C, find the value of this temperature on the 
Kelvin scale. 

Solution
 

The absolute temperature, found from equation 14.4, is 
 

T K = t 0C + 273 = 20.0 + 273 = 293 K 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Note, in this book we will try to use the following convention: temperatures in Celsius and Fahrenheit will 

be represented by the lower case t, whereas Kelvin or absolute temperatures will be represented by a capital T. 
However, in some cases where time and temperature are found in the same equation, the lower case t will be used 
for time, and the upper case T will be used for temperature regardless of the unit used for temperature. 
  
 
14.2  Heat 
A solid body is composed of trillions upon trillions of atoms or molecules arranged in a lattice structure, as shown 
in figure 14.4. Each of these molecules possess an electrical potential energy and a vibrational kinetic energy. The 
sum of the potential energy and kinetic energy of all these molecules is called the internal energy of the body. 
When that internal energy is transferred between two bodies as a result of the difference in temperatures between 
the two bodies it is called heat. 

Heat is thus the amount of internal energy flowing from a body at a higher temperature to a body at a lower 
temperature. Hence, a body does not contain heat, it contains internal energy. When the body cools, its internal 
energy is decreased; when it is heated, its internal energy is increased. A useful analogy is to compare the internal 
energy of a body to the money you have in a savings bank, whereas heat is analogous to the deposits or 
withdrawals of money. 

Whenever two bodies at different temperatures are brought into contact, thermal energy always flows from 
the hotter body to the cooler body until they are both at the same temperature. When this occurs we say the two 
bodies are in thermal equilibrium. This is essentially the principle behind the thermometer. The thermometer is 
placed in contact with the body whose temperature is desired. Thermal energy flows from the hotter body to the 
cooler body until thermal equilibrium is reached. At that point, the thermometer is at the same temperature as the 
body. Hence, the thermometer is capable of measuring the temperature of a body. 

The traditional unit of heat was the kilocalorie, which was defined as the quantity of heat required to 
raise the temperature of 1 kg of water 1 0C, from 14.5 0C to 15.5 0C. It may seem strange to use the unit of 
kilocalorie for heat since heat is a flow of energy, and the unit of energy is a joule. Historically it was not known 
that heat was a form of energy, but rather it was assumed that heat was a material quantity contained in bodies 
and was called Caloric. It was assumed that a hot body contained a great deal of caloric while a cold body 
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contained only a small quantity of caloric. It was not until Benjamin Thompson’s (1753-1814) experiments on the 
boring of cannons in 1798, that it became known that heat was, in fact, a form of energy. Later James Prescott 
Joule (1818-1889) performed experiments to show the exact equivalence between mechanical energy and heat 
energy. That equivalence is called the mechanical equivalent of heat and is 

 
1 kilocalorie = 1000 calories = 4186 J 

 
The unit of heat in the British engineering system is the British thermal unit, abbreviated Btu. One Btu 

is the heat required to raise the temperature of 1 lb of water 1 0F, from 58.5 0F to 59.5 0F. The relation between the 
Btu, the kilocalorie (kcal), the foot-pound (ft lb), and the joule is 

 
1 Btu = 0.252 kcal = 778 ft lb = 1055 J 

 
In terms of the SI unit of energy, the joule, it takes 4186 J of energy to raise the temperature of 1 kg of water 1 0C, 
from 14.5 0C to 15.5 0C. 

We should also mention that the kilocalorie is sometimes called the large calorie and is identical to the 
unit used by dietitians. Thus when dietitians specify a diet as consisting of 1500 calories a day, they really mean 
that it is 1500 kcal per day. 

 
 
14.3  Specific Heat 
When the temperature of several substances is raised the same amount, each substance does not absorb the same 
amount of thermal energy. This can be shown by Tyndall’s demonstration in figure 14.6. 

Four balls made of 
aluminum, iron, brass, and 
lead, all of the same mass, are 
placed in a beaker of boiling 
water, as shown in figure 
14.6(a). After about 10 or 15 
minutes, these balls will reach 
thermal equilibrium with the 
water and will all be at the 
same temperature as the 
boiling water. The four balls 
are then placed on a piece of 
paraffin, as shown in figure 
14.6(b). Almost immediately, 
the aluminum ball melts the 
wax and falls through the 
paraffin, as shown in figure  

                          Figure 14.6  Tyndall’s demonstration. 
 

14.6(c). A little later in time the iron ball melts its way through the wax. The brass ball melts part of the wax and 
sinks into it deeply. However, it does not melt enough wax to fall through. The lead ball barely melts the wax and 
sits on the top of the sheet of paraffin. 

How can this strange behavior of the four different balls be explained? Since each ball was initially in the 
boiling water, each absorbed energy from the boiling water. When the balls were placed on the sheet of paraffin, 
each ball gave up that energy to the wax, thereby melting the wax. But since each ball melted a different amount 
of wax in a given time, each ball must have given up a different amount of energy to the wax. Therefore each ball 
must have absorbed a different quantity of energy while it was in the boiling water. Hence, different bodies absorb 
a different quantity of thermal energy even when subjected to the same temperature change. 

To handle the problem of different bodies absorbing different quantities of thermal energy when subjected 
to the same temperature change, the specific heat c of a body is defined as the amount of thermal energy Q 
required to raise the temperature of a unit mass of the material 1 0C. In terms of the SI unit joules, the specific heat 
c of a body is defined as the number of joules Q required to raise the temperature of 1 kg of the material 1 0C. Thus, 
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 c =   Q                                                                                  (14.5) 
       m∆t        

 
We observe from this definition that the specific heat of water in SI units is 4186 J/kg 0C, since 4186 J 

raises the temperature of 1 kg of water 1 0C. All other materials 
have a different value for the specific heat. Some specific heats are 
shown in table 14.1. Note that water has the largest specific heat. 

Having defined the specific heat by equation 14.5, we can 
rearrange that equation into the form 

 
 Q = mc∆t                                       (14.6) 

 
Equation 14.6 represents the amount of thermal energy Q that will 
be absorbed or liberated in any process. 

Using equation 14.6 it is now easier to explain the Tyndall 
demonstration. The thermal energy absorbed by each ball while in 
the boiling water is 

QAl = mcAl∆t 
Qiron = mciron∆t 

Qbrass = mcbrass∆t 
Qlead = mclead∆t 

 
Because all the balls went from room temperature to 100 0C, the 
boiling point of water, they all experienced the same temperature 
change ∆t. Because all the masses were equal, the thermal energy 
absorbed by each ball is directly proportional to its specific heat. 
We can observe from table 14.1 that 

cAl = 900 J/(kg 0C) 
ciron = 452 J/(kg 0C) 
cbrass = 394 J/(kg 0C) 
clead = 130 J/(kg 0C) 

 
Because the specific heat of aluminum is the largest of the four materials, the aluminum ball absorbs the greatest 
amount of thermal energy while in the water. Hence, it also liberates the greatest amount of thermal energy to 
melt the wax and should be the first ball to melt through the wax. Iron, brass, and lead absorb less thermal energy 
respectively because of their lower specific heats and consequently liberate thermal energy to melt the wax in this 
same sequence. Hence, Tyndall’s demonstration can be explained by the different specific heats of the four 
materials. 

If the masses are not the same, then the amount of thermal energy absorbed depends on the product of the 
mass m and the specific heat c. The ball with the largest value of mc absorbs the most heat energy. 

 
Example 14.4 

 
Absorption of thermal energy. A steel ball at room temperature is placed in a pan of boiling water. If the mass of 
the ball is 200 g, how much thermal energy is absorbed by the ball? 

Solution
 

The thermal energy absorbed by the ball, given by equation 14.6, is 
 

Q = mc∆t 

( ) ( )0 0
0

 J0.200 kg 452 100 C 20.0 C
kg C

 
= − 

 
 

= 7230 J 
 

Table 14.1 
Specific Heats of Various Materials 

Material     J     
kg 0C 

Air 
Aluminum 
Brass 
Copper 
Glass 
Gold 
Iron 
Lead 
Platinum 
Silver 
Steel 
Tin 
Tungsten 
Zinc 
Water 
Ice 
Steam 

1009 
900.0 
393.5 
385.1 
837.2 
129.8 
452.1 
129.8 
134.0 
238.6 
452.1 
226.0 
134.0 
389.3 
4186 
2093 
2013 
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An interesting thing to note is that once the ball reaches the 100 0C mark, it is at the same temperature as 
the water and hence, there is no longer a transfer of thermal energy into the ball no matter how long the ball is 
left in the boiling water. All the thermal energy supplied to the pot containing the ball and the water will then go 
into boiling away the water. 

 
To go to this Interactive Example click on this sentence. 

 
 
 

 
Example 14.5 

 
The final temperature. If a 500-g aluminum block at an initial temperature of 10.0 0C absorbs 85500 J of energy in 
a thermal process, what will its new temperature be? 

Solution
 

The specific heat of aluminum, found from table 14.1, is 900 J/(kg 0C). The change in temperature is found as 
  

Q = mc∆t 
∆t =  Q  
        mc 

∆t =          (85500 J)           
                   (0.5 kg)( 900 J/kg 0C) 

∆t =190 0C 
The final temperature is found from 

∆t = tf - ti 
and hence 

tf = ∆t + ti 
tf = (190 0C) + ( 10 0C) 

tf = 200 0C  
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
14.4  Calorimetry 
Calorimetry is defined as the measurement of heat. These measurements are 
performed in a device called a calorimeter. The simplest of all calorimeters 
consists of a metal container placed on a plastic insulating ring inside a larger 
highly polished metallic container, as shown in figure 14.7. The space between 
the two containers is filled with air to minimize the thermal energy lost from 
the inner calorimeter cup to the environment. The highly polished outer 
container reflects any external radiated energy that might otherwise make its 
way to the inner cup. A plastic cover is placed on the top of the calorimeter to 
prevent any additional loss of thermal energy to the environment. The inner 
cup is thus insulated from the environment, and all measurements of thermal 
energy absorption or liberation are made here. A thermometer is placed 
through a hole in the cover so that the temperature inside the calorimeter can 
be measured. The calorimeter is used to measure the specific heat of various 
substances, and the latent heat of fusion and vaporization of water. 

                                                                                                                                      Figure 14.7  A calorimeter. 
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The basic principle underlying the calorimeter is the conservation of energy. The thermal energy lost by 
those bodies that lose thermal energy is equal to the thermal energy gained by those bodies that gain thermal  
energy. We write this conservation principle mathematically as 

 
Thermal energy lost = Thermal energy gained                                               (14.7) 

 
As an example of the use of the calorimeter, let us determine the specific heat of a sample of iron of mass 

ms. We place the iron sample in a pot of boiling water until the iron sample eventually reaches the temperature of 
boiling water, namely 100 0C. Meanwhile we place the inner calorimeter cup on a scale and determine its mass mc. 
Then we place water within the cup and again place it on the scale to determine its mass. The difference between 
these two scale readings is the mass of water mw in the cup. We place the inner cup into the calorimeter and place 
a thermometer through a hole in the cover of the calorimeter so that the initial temperature of the water tiw is 
measured. 

After the iron sample reaches 100 0C, we place it within the inner calorimeter cup, and close the cover 
quickly. As time progresses, the temperature of the water, as recorded by the thermometer, starts to rise. It 
eventually stops at a final equilibrium temperature tfw of the water, the sample, and the calorimeter can. The iron 
sample was the hot body and it lost thermal energy, whereas the water and the can, which is in contact with the 
water, absorb this thermal energy as is seen by the increased temperature of the mixture. We analyze the problem 
by the conservation of energy, equation 14.7, as 

 
Thermal energy lost = Thermal energy gained 

Qs = Qw + Qc                                                                          (14.8) 
 

That is, the thermal energy lost by the sample Qs is equal to the thermal energy gained by the water Qw plus the 
thermal energy gained by the calorimeter cup Qc. However, the thermal energy absorbed or liberated in any 
process, given by equation 14.6, is 

Q = mc∆t 
Using equation 14.6 in equation 14.8, gives 

mscs∆ts = mwcw∆tw + mccc∆tc                                                             (14.9) 
where 

ms is the mass of the sample 
mw is the mass of the water 
mc is the mass of the calorimeter cup 
cs is the specific heat of the sample 
cw is the specific heat of the water 
cc is the specific heat of the calorimeter cup 

 
The change in the temperature of the sample is the difference between its initial temperature of 100 0C and its 
final equilibrium temperature tfw. That is, 

∆ts = 100 0C − tfw                                                                     (14.10) 
 

The change in temperature of the water and calorimeter cup are equal since the water is in contact with the cup 
and thus has the same temperature. Therefore, 

∆tw = ∆tc = tfw − tiw                                                                    (14.11) 
 
Substituting equations 14.10 and 14.11 into equation 14.9, yields 

 
mscs(100 − tfw) = mwcw(tfw − tiw) + mccc(tfw − tiw)                                              (14.12) 

 
All the quantities in equation 14.12 are known except for the specific heat of the sample, cs. Solving for the specific 
heat yields 

 cs = mwcw(tfw − tiw) + mccc(tfw − tiw)                                                       (14.13) 
                                                                                              ms(100 − tfw)                                 

 

Pearson Custom Publishing

435



 

 
14-10                                                                                                          Vibratory Motion, Wave Motion and Fluids 

Example 14.6 
 

Find the specific heat. A 0.0700-kg iron specimen is used to determine the specific heat of iron. The following 
laboratory data were found: 

ms = 0.0700 kg            tiw = 20.0 0C 
mc = 0.0600 kg            tfw = 23.5 0C 

                    cc = 900 J/kg 0C         mw = 0.150 kg 
   ts = 100 0C                                         

Find the specific heat of the specimen. 

Solution
 

The specific heat of the iron specimen, found from equation 14.13, is 
 

cs = mwcw(tfw − tiw) + mccc(tfw − tiw) 
ms(100 − tfw) 

= (0.150 kg)(4186 J/kg 0C)(23.5 0C − 20.0 0C) 
                            + (0.0600 kg)(900 J/kg 0C)(23.5 0C − 20 0C) 

               (0.0700 kg)(100 0C − 23.5 0C) 
= 446 J/kg 0C 

 
which is in good agreement with the accepted value of the specific heat of iron of 452 J/kg 0C 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
14.5  Change of Phase 
Matter exists in three states called the phases of matter. They are the solid phase, the liquid phase, and the 
gaseous phase. Let us see how one phase of matter is changed into another. 

Let us examine the behavior of matter when it is heated over a relatively large range of temperatures. In 
particular, let us start with a piece of ice at −20.0 0C and heat it to a temperature of 120 0C. We place the ice inside 
a strong, tightly sealed, windowed enclosure containing a thermometer. Then we apply heat, as shown in figure 
14.8. We observe the temperature as a function of time and plot it, as in figure 14.9. 

As the heat is applied to the 
solid ice, the temperature of the block 
increases with time until 0 0C is 
reached. At this point the temperature 
remains constant, even though heat is 
being continuously applied. Looking at 
the block of ice, through the window in 
the container, we observe small drops 
of liquid water forming on the block of 
ice. The ice is starting to melt. We 
observe that the temperature remains 
constant until every bit of the solid ice 
is converted into the liquid water. We 
are observing a change of phase. 
That is, the ice is changing from the 
solid phase into the liquid phase. As 
soon as all the ice is melted, we again  
       
                                                    Figure 14.8  Converting ice to water to steam.     Figure 14.9  Changes of phase. 
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observe an increase in the temperature of the liquid water. The temperature increases up to 100 0C, and then 
levels off. Thermal energy is being applied, but the temperature is not changing. Looking through the window into 
the container, we see that there are bubbles forming throughout the liquid. The water is boiling. The liquid water 
is being converted to steam, the gaseous state of water. The temperature remains at this constant value of 100 0C 
until every drop of the liquid water has been converted to the gaseous steam. After that, as we continuously supply 
heat, we observe an increase in the temperature of the steam. Superheated steam is being made. (Note, you should 
not try to do this experiment on your own, because enormous pressures can be built up by the steam, causing the 
closed container to explode.) 

Let us go back and analyze this experiment more carefully. As the thermal energy was supplied to the 
below freezing ice, its temperature increased to 0 0C. At this point the temperature remained constant even though 
heat was being continuously applied. Where did this thermal energy go if the temperature never changed? The 
thermal energy went into the melting of the ice, changing its phase from the solid to the liquid phase. If we 
observe the solid in terms of its lattice structure, figure 14.4, we can see that each molecule is vibrating about its 
equilibrium position. As heat is applied, the vibration increases, until at 0 0C, the vibrations of the molecules 
become so intense that the molecules literally pull apart from one another changing the entire structure of the 
material. This is the melting process. The amount of heat necessary to tear these molecules apart is a constant and 
is called the latent heat of fusion of that material. The latent heat of fusion Lf, is the amount of heat necessary to 
convert 1 kg of the solid to 1 kg of the liquid. For water, it is found experimentally that it takes 334,000 J of 
thermal energy to melt 1 kg of ice. Hence we take the latent heat of fusion of water to be 

 
Lf = 3.34 × 105 J/kg 

 
If we must supply 3.34 × 105 J/kg to melt ice, then we must take away 3.34 × 105 J/kg to freeze water. Thus, the 
heat of fusion is equal to the heat of melting. The word latent means hidden or invisible, and not detectable as a 
temperature change. Heat supplied that does change the temperature is called sensible heat, because it can be 
sensed by a thermometer. 

In the liquid state there are still molecular forces holding the molecules together, but because of the energy 
and motion of the molecules, these forces can not hold the molecules in the relatively rigid position they had in the 
solid state. This is why the liquid is able to flow and take the shape of any container in which it is placed. 

As the water at 0 0C is further heated, the molecules absorb more and more energy, increasing their mean 
velocity within the liquid. This appears as a rise in temperature of the liquid. At 100 0C, so much energy has been 
imparted to the water molecules, that the molecular speeds have increased to the point that the molecules are 
ready to pull away from the molecular forces holding the liquid together. As further thermal energy is applied, the 
molecules fly away into space as steam. The temperature of the water does not rise above 100 0C because all the 
applied heat is supplying the molecules with the necessary energy to escape from the liquid. 

The heat that is necessary to convert 1 kg of the liquid to 1 kg of the gas is called the latent heat of 
vaporization Lv. For water, it is found experimentally that it takes 2,260,000 J of thermal energy to boil 1 kg of 
liquid water. Hence we take the latent heat of vaporization of water to be 

 
Lv = 2.26 × 106 J/kg 

 
Because this amount of thermal energy must be given to water to convert it to steam, this same quantity of 
thermal energy is given up to the environment when steam condenses back into the liquid state. Therefore, the 
heat of vaporization is equal to the heat of condensation. 

Liquid water can also be converted to the gaseous state at any temperature, a process called evaporation. 
Thus, water left in an open saucer overnight will be gone by morning. Even though the temperature of the water 
remained at the room temperature, the liquid was converted to a gas. It evaporated into the air. The gaseous state 
of water is then usually referred to as water vapor rather than steam. At 0 0C the latent heat of vaporization is 
2.51 × 106 J/kg. All substances can exist in the three states of matter, and each substance has its own heat of 
fusion and heat of vaporization. 

Note also that another process is possible whereby a solid can go directly to a gas and vice versa without 
ever going through the liquid state. This process is called sublimation. Many students have seen this 
phenomenon with dry ice (which is carbon dioxide in the solid state). The ice seems to be smoking. Actually, 
however, the solid carbon dioxide is going directly into the gaseous state. The gas, like the dry ice, is so cold that it 
causes water vapor in the surrounding air to condense, which is seen as the “smoky” clouds around the solid 
carbon dioxide. 

Pearson Custom Publishing

437



 

 
14-12                                                                                                          Vibratory Motion, Wave Motion and Fluids 

A more common phenomena, but not as spectacular, is the conversion of water vapor, a gas, directly into 
ice crystals, a solid, in the sublimation process commonly known as frost. On wintry mornings when you first get 
up and go outside your home, you sometimes see ice all over the tips of the grass in the yard and over the 
windshield and other parts of your car. The water vapor in the air did not first condense to water droplets and 
then the water droplets froze. Instead, the grass and the car surfaces were so cold that the water vapor in the air 
went directly from the gaseous state into the solid state without ever going through the liquid state. 

The reverse process whereby the solid goes directly into the gas also occurs in nature, but it is not as 
noticeable as frost. There are times in the winter when a light covering of snow is observed on the ground. The 
temperature may remain below freezing, and an overcast sky may prevent any sun from heating up or melting 
that snow. Yet, in a day or so, some of that snow will have disappeared. It did not melt, because the temperature 
always remained below freezing. Some of the snow crystals went directly into the gaseous state as water vapor. 

Just as there is a latent heat of fusion Lf and latent heat of vaporization Lv there is also a latent heat of 
sublimation Ls. Its value is given by 

Ls = 2.83 × 106 J/kg 
 

Thus, the heat that is necessary to convert 1.00 kg of the solid ice into 1.00 kg of the gaseous water vapor is called 
the latent heat of sublimation. 

It is interesting to note here that there is no essential difference in the water molecule when it is either a 
solid, a liquid, or a gas. The molecule consists of the same two hydrogen atoms bonded to one oxygen atom. The 
difference in the state is related to the different energy, and hence speed of the molecule in the different states. 

Notice that it takes much more energy to convert 1 kg of water to 1 kg of steam, than it does to convert 1 
kg of ice to 1 kg of liquid water, almost seven times as much. This is also why a steam burn can be so serious, since 
the steam contains so much energy. Let us now consider some more examples. 

 
Example 14.7 

 
Converting ice to steam. Let us compute the thermal energy that is necessary to convert 5.00 kg of ice at −20.0 0C 
to superheated steam at 120 0C. 

Solution
 

The necessary thermal energy is given by 
Q = Qi + Qf + Qw + Qv + Qs                                                         (14.14) 

where 
Qi is the energy needed to heat the ice up to 0 0C 
Qf is the energy needed to melt the ice 
Qw is the energy needed to heat the water to 100 0C 
Qv is the energy needed to boil the water 
Qs is the energy needed to heat the steam to 120 0C 
 
The necessary thermal energy to warm up the ice from −20.0 0C to 0 0C is found from 
 

Qi = mici[00 − (−20.0 0C)] 
 

The latent heat of fusion is the amount of heat needed per kilogram to melt the ice. The total amount of 
heat needed to melt all the ice is the heat of fusion times the number of kilograms of ice present. Hence, the 
thermal energy needed to melt the ice is 

 Qf = miLf                                                                          (14.15) 
 

The thermal energy needed to warm the water from 0 0C to 100 0C is 
 

Qw = mwcw(100 0C − 0 0C) 
 

The latent heat of vaporization is the amount of heat needed per kilogram to boil the water. The total 
amount of heat needed to boil all the water is the heat of vaporization times the number of kilograms of water 
present. Hence, the thermal energy needed to convert the liquid water at 100 0C to steam at 100 0C is 
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 Qv = mwLv                                                                         (14.16) 

and 
Qs = mscs(120 0C − 100 0C) 

 
is the thermal energy needed to convert the steam at 100 0C to superheated steam at 120 0C. Substituting all these 
equations into equation 14.14 gives 

 
                                              Q = mici[0 0C − (−20 0C)] + miLf + mwcw(100 0C − 0 0C)  

     + mwLv + mscs(120 0C − 100 0C)               (14.17) 
 

Using the values of the specific heat from table 14.1, we get  
 

( ) ( ) ( )o 5
0

 J  J5.00 kg 2093 20.0 C 5.00 kg 3.34 10
kg kg C

Q    
= + ×   

  
 

              ( ) ( ) ( )o 6
0

 J  J5.00 kg 4186 100.0 C 5.00 kg 2.26 10
kg kg C

   
+ + ×   

  
 

              ( ) ( )o
0

 J5.00 kg 2013 20.0 C
kg C

 
+  

 
 

    
= 0.209 × 106 J + 1.67 × 106 J + 2.09 × 106 J + 11.3 × 106 J + 0.201 × 106 J  

= 15.5 × 106 J 
 

Therefore, we need 15.5 × 106 J of thermal energy to convert 5.00 kg of ice at −20.0 0C to superheated steam at 
120 0C. Note the relative size of each term’s contribution to the total thermal energy. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 14.8 
 

Latent heat of fusion. The heat of fusion of water Lf can be found in the laboratory using a calorimeter. If 31.0 g of 
ice mi at 0 0C are placed in a 60.0-g calorimeter cup mc that contains 170 g of water mw at an initial temperature 
tiw of 20.0 0C, after the ice melts, the final temperature of the water tfw is found to be 5.57 0C. Find the heat of 
fusion of water from this data. The specific heat of the calorimeter is 900 J/kg 0C. 

Solution
 

From the fundamental principle of calorimetry 
 

Thermal energy gained = Thermal energy lost 
Qf + Qiw = Qw + Qc                                                                   (14.18) 

 
where Qf is the thermal energy necessary to melt the ice through the fusion process and Qiw is the thermal energy 
necessary to warm the water that came from the melted ice. We call this water ice water to distinguish it from the 
original water in the container. This liquid water is formed at 0 0C and will be warmed to the final equilibrium 
temperature of the mixture tfw. The thermal energy lost by the original water in the calorimeter is Qw, and Qc is 
the thermal energy lost by the calorimeter itself. Equation 14.18 therefore becomes 
 

miLf + miwcw(tfw − 0 0C) = mwcw(tiw − tfw) + mccc(tiw − tfw) 
 

We find the heat of fusion by solving for Lf, as 
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Lf = (mwcw + mccc)(tiw − tfw) − miwcw(tfw − 0 0C)                                                 (14.19) 

mi 
 

Since the laboratory data were taken in grams we convert them to kilograms and the heat of fusion is found as 
 

         Lf = [(0.170 kg)(4186 J/kg 0C) + (0.060 kg)(900 J/kg 0C)](20.0 0C − 5.57 0C) 
                                                                                    − (0.031 kg)(4186 J/kg 0C)(5.57 0C − 0 0C)            

0.031 kg 
Lf = 3.33 × 105 J/kg 

 
Note that this is in very good agreement with the standard value of 3.34 × 105 J/kg. 
 

To go to this Interactive Example click on this sentence.        
 

 
 

Example 14.9 
 

Latent heat of vaporization. The heat of vaporization Lv of water can be found in the laboratory by passing steam 
at 100 0C into a calorimeter containing water. As the steam condenses and cools it gives up thermal energy to the 
water and the calorimeter. In the experiment the following data were taken: 
 
mass of calorimeter cup            mc = 60.0 g 
mass of water                     mw = 170 g 
mass of condensed steam   ms = 3.00 g 
initial temperature of water                  tiw = 19.9 0C 
final temperature of water              tfw = 30.0 0C 
specific heat of calorimeter                  cc = 900 J/kg 0C 
 
Find the heat of vaporization from this data. 

Solution
 

To determine the heat of vaporization let us start with the fundamental principle of calorimetry 
 

Thermal energy lost = Thermal energy gained 
Qv + Qsw = Qw + Qc                                                                      (14.20) 

 
where Qv is the thermal energy necessary to condense the steam and Qsw is the thermal energy necessary to cool 
the water that came from the condensed steam. We use the subscript sw to remind us that this is the water that 
came from the steam in order to distinguish it from the original water in the container. This liquid water is formed 
at 100 0C and will be cooled to the final equilibrium temperature of the mixture tfw. Here Qw is the thermal energy 
gained by the original water in the calorimeter and Qc is the thermal energy gained by the calorimeter itself. 
Equation 14.20 therefore becomes 
 

msLv + mswcw(100 0C − tfw) = mwcw(tfw − tiw) + mccc(tfw − tiw) 
 

Solving for the heat of vaporization, 
 

Lv = mwcw(tfw − tiw) + mccc(tfw − tiw) − mswcw(100 0C − tfw)                                    (14.21) 
ms 

Therefore, 
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Lv = (0.170 kg)(4186 J/kg 0C)(30.0 0C − 19.9 0C) 
           + (0.060 kg)(900 J/kg 0C)(30.00 − 19.9 0C) 

                  − (0.003 kg)(4186 J/kg 0C)(100 0C − 30.00)      
0.003 kg 

 
Thus, we find from the experimental data that the heat of vaporization is 
 

Lv = 2.28 × 106 J/kg 
 

which is in good agreement with the standard value of 2.26 × 106 J/kg. 
 

To go to this Interactive Example click on this sentence.  
 

 
 

Example 14.10 
 

Mixing ice and water. If 10.0 g of ice, at 0 0C, are mixed with 50.0 g of water at 80.0 0C, what is the final 
temperature of the mixture? 

Solution
 

When the ice is mixed with the water it will gain heat from the water. The law of conservation of thermal energy 
becomes 

    Thermal energy gained = Thermal energy lost 
Qf + Qiw = Qw      

 

where Qf is the heat gained by the ice as it goes through the melting process. When the ice melts, it becomes water 
at 0 0C. Let us call this water ice water to distinguish it from the original water in the container. Thus, Qiw is the 
heat gained by the ice water as it warms up from 0 0C to the final equilibrium temperature tfw. Finally, Qw is the 
heat lost by the original water, which is at the initial temperature tiw. Thus, 
 

miLf + miwcw(tfw − 0 0C) = mwcw(tiw − tfw) 
 

where mi is the mass of the ice, miw is the mass of the ice water, and mw is the mass of the original water. Solving 
for the final temperature of the water we get 
 

miLf + miwcwtfw = mwcwtiw − mwcwtfw 
miwcwtfw + mwcwtfw = mwcwtiw − miLf 
(miwcw + mwcw)tfw = mwcwtiw − miLf 

tfw = mwcwtiw − miLf 

        miwcw + mwcw 
 
The final equilibrium temperature of the water becomes 
 

tfw = (0.050 kg)(4186 J/kg 0C)(80.0 0C) − (0.010 kg)(3.35 × 105 J/kg) 
(0.010 kg)(4186 J/kg 0C) + (0.050 kg)(4186 J/kg 0C) 

= 16744 J − 3350 J 
251 J/0C 
= 53.3 0C 

 
To go to this Interactive Example click on this sentence. 
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Example 14.11 

 
Something is wrong here. Repeat example 14.10 with the initial temperature of the water at 10.0 0C. 

Solution
 

Using the same equation as for the final water temperature in example 14.10, we get 
 

tfw = mwcwtiw − miLf 

        miwcw + mwcw 
Thus, 

tfw = (0.050 kg)(4186 J/kg 0C)(10.0 0C) − (0.010 kg)(3.35 × 105 J/kg) 
(0.010 kg)(4186 J/kg 0C) + (0.050 kg)(4186 J/kg 0C) 

= 2093 J − 3350 J 
251 J/0C 

= −5.00 0C 
 

There is something very wrong here! Our answer says that the final temperature is 50 below zero. But this is 
impossible. The temperature of the water can not be below 0 0C and still be water, and the ice that was placed in 
the water can not convert all the water to ice and cause all the ice to be at a temperature of 50 below zero. 
Something is wrong. Let us check our equation. The equation worked for the last example, why not now? The 
equation was derived with the assumption that all the ice that was placed in the water melted. Is this a correct 
assumption? The energy necessary to melt all the ice is found from 
 

Qf = miLf = (0.01 kg)(3.35 × 105 J/kg) = 3350 J 
 
The energy available to melt the ice comes from the water. The maximum thermal energy available occurs when 
all the water is cooled to 0 0C. Therefore, the maximum available energy is 
 

Qw = mwcw(tiw − 0 0C) = (0.05 kg)(4186 J/kg 0C)(10.0 0C) 
= 2093 J 

 
The amount of energy available to melt all the ice is 2093 J and it would take 3350 J to melt all the ice present. 
Therefore, there is not enough energy to melt the ice. Hence, our initial assumption that all the ice melted is 
incorrect. Thus, our equation is no longer valid. There is an important lesson to be learned here. All through our 
study of physics we make assumptions in order to derive equations. If the assumptions are correct, the equations 
are valid and can be used to predict some physical phenomenon. If the assumptions are not correct, the final 
equations are useless. In this problem there is still ice left and hence the final temperature of the mixture is 0 0C. 
The amount of ice that actually melted can be found by using the relation 
 

fQf = Qw 
where f is the fraction of the ice that melts. Thus, 

f =  Qw   
    Qf 

 =  2093 J 
     3350 J 
= 0.625 

 
Therefore, only 62.5% of the ice melted and the final temperature of the mixture is 0 0C. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Pearson Custom Publishing

442



 

 
Chapter 14  Temperature and Heat                                                                                                                      14-17 

 
The Language of Physics 

 
Temperature 
The simplest definition of 
temperature is that temperature is 
a measure of the hotness or 
coldness of a body. A better 
definition is that temperature is a 
measure of the mean kinetic energy 
of the molecules of the body (p. ). 
 
Thermometer 
A device for measuring the 
temperature of a body (p. ). 
 
Celsius temperature scale 
A temperature scale that uses 00 for 
the melting point of ice and 1000 for 
the boiling point of water (p. ). 
 
Fahrenheit temperature scale 
A temperature scale that uses 320 
for the melting point of ice and 2120 
for the boiling point of water (p. ). 
 
Kelvin temperature scale 
The absolute temperature scale. 
The lowest temperature attainable 
is absolute zero, the 0 K of this 
scale. The temperature for the 
melting point of ice is 273 K and 
373 K for the boiling point of water 
(p. ). 
 
Internal energy 
The sum of the potential and 
kinetic energy of all the molecules 
of a body (p. ). 
 
Heat 
The flow of thermal energy from a 
body at a higher temperature to a 
body at a lower 

temperature. When a body cools, its 
internal energy is decreased; when 
it is heated, its internal energy is 
increased (p. ). 
 
Thermal equilibrium 
Whenever two bodies at different 
temperatures are touched together, 
thermal energy always flows from 
the hotter body to the cooler body 
until they are both at the same 
temperature. When this occurs the 
two bodies are said to be in thermal 
equilibrium (p. ). 
 
Kilocalorie 
An older unit of heat. It is defined 
as the amount of thermal energy 
required to raise the temperature of 
1 kg of water 1 0C (p. ). 
 
British thermal unit (Btu) 
The unit of heat in the British 
engineering system of units. It is 
the amount of thermal energy 
required to raise the temperature of 
1 lb of water 1 0F (p. ). 
 
Mechanical equivalent of heat 
The equivalence between 
mechanical energy and thermal 
energy. One kcal is equal to 4186 J 
(p. ). 
 
Specific heat 
A characteristic of a material. It is 
defined as the number of joules of 
energy required to raise the 
temperature of 1 kg of the material 
1 0C (p. ). The specific heat of water 
is 4186 J/kg 0C. 

 
Calorimetry 
The measurement of heat (p. ). 
 
Calorimeter 
An instrument that is used to make 
measurements of heat. The basic 
principle underlying the 
calorimeter is the conservation of 
energy. The thermal energy lost by 
those bodies that lose thermal 
energy is equal to the thermal 
energy gained by those bodies that 
gain thermal energy (p. ). 
 
Phases of matter 
Matter exists in three phases, the 
solid phase, the liquid phase, and 
the gaseous phase (p. ). 
 
Change of phase 
The change in a body from one 
phase of matter to another. As an 
example, melting is a change from 
the solid state of a body to the 
liquid state. Boiling is a change in 
state from the liquid state to the 
gaseous state (p. ). 
 
Latent heat of fusion 
The amount of heat necessary to 
convert 1 kg of the solid to 1 kg of 
the liquid (p. ). 
 
Latent heat of vaporization 
The amount of heat necessary to 
convert 1 kg of the liquid to 1 kg of 
the gas (p. ). 
 

 
Summary of Important Equations 

 
Convert Fahrenheit temperature to 
Celsius   t 0C =  5 (t 0F − 320)   (14.1) 
                          9 
Convert Celsius temperature to 
Fahrenheit 

t 0F =  9  t 0C + 320        (14.2) 
                          5 

Convert Celsius temperature to 
Kelvin      T K = t 0C + 273     (14.4) 
 
Thermal energy absorbed or 
liberated       Q = mc∆t            (14.6) 
 
 

Principle of calorimetry 
Thermal energy gained  

     = Thermal energy lost   (14.7) 
 
Fusion         Qf = miLf            (14.15) 
 
Vaporization    Qv = mwLv     (14.16) 
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Questions for Chapter 14 
 

1. What is the difference 
between temperature and heat? 

2. Explain how a bathtub of 
water at 5 0C can contain more 
thermal energy than a cup of coffee 
at 95 0C. 

3. Discuss how the human body 
uses the latent heat of vaporization 
to cool itself through the process of 
evaporation. 

*4. Relative humidity is defined 
as the percentage of the amount of 
water vapor in the air to the 

maximum amount of water vapor 
that the air can hold at that 
temperature. Discuss how the 
relative humidity affects the 
process of evaporation in general 
and how it affects the human body 
in particular. 

*5. It is possible for a gas to go 
directly to the solid state without 
going through the liquid state, and 
vice versa. The process is called 
sublimation. An example of such a 
process is the formation of frost. 

Discuss the entire process of 
sublimation, the latent heat 
involved, and give some more 
examples of the process. 

*6. Why does ice melt when an 
object is placed upon it? Describe 
the process of ice skating from the 
pressure of the skate on the ice. 

 

 
Problems for Chapter 14 

 
14.1 Temperature 

1. Convert the following normal 
body temperatures to degrees 
Celsius: (a) oral temperature of 
98.6 0F, (b) rectal temperature of 
99.6 0F, and (c) axial (armpit) 
temperature of 97.6 0F. 

2. Find the value of absolute 
zero on the Fahrenheit scale. 

3. For what value is the 
Fahrenheit temperature equal to 
the Celsius temperature? 

4. Convert the following 
temperatures to Fahrenheit: 
(a) 38.0 0C, (b) 68.0 0C, (c) 250 0C, 
(d) −10.0 0C, and (e) −20.0 0C. 

5. Convert the following 
Fahrenheit temperatures to 
Celsius: (a) −23.0 0F, (b) 12.5 0F, 
(c) 55.0 0F, (d) 90.0 0F, and 
(e) 180 0F. 

6. A temperature change of 5 0F 
corresponds to what temperature 
change in Celsius degrees? 

*7. Derive an equation to 
convert the temperature in 
Fahrenheit degrees to its 
corresponding Kelvin temperature. 

*8. Derive an equation to 
convert the change in temperature 
in Celsius degrees to a change in 
temperature in Fahrenheit degrees. 

 
14.3  Specific Heat 

9. A 450-g ball of copper at 
20.0 0C is placed in a pot of boiling 
water until equilibrium is reached. 

How much thermal energy is 
absorbed by the ball? 

10. A 250-g glass marble is 
taken from a freezer at −23.0 0C 
and placed into a beaker of boiling 
water. How much thermal energy is 
absorbed by the marble? 

11. How much thermal energy 
must be supplied by an electric 
immersion heater if you wish to 
raise the temperature of 5.00 kg of 
water from 20.0 0C to 100 0C? 

 
Diagram for problem 11. 

 
12. A 2.00-kg mass of copper 

falls from a height of 3.00 m to an 
insulated floor. What is the 
maximum possible temperature 
increase of the copper? 

13. An iron block slides down an 
iron inclined plane at a constant 
speed. The plane is 10.0 m long and 
is inclined at an angle of 35.00 with 
the horizontal. Assuming that half 
the energy lost to friction goes into 
the block, what is the difference in 

temperature of the block from the 
top of the plane to the bottom of the 
plane? 

 
Diagram for problem 13. 

 
14. A 2000-kg car is traveling at 

96.6 km/hr when it is braked to a 
stop. What is the maximum 
possible thermal energy generated 
in the brakes? 

15. How much thermal energy 
is absorbed by an aluminum ball 
20.0 cm in diameter, initially at a 
temperature of 20.0 0C, if it is 
placed in boiling water? 

 
14.4  Calorimetry 

16. If 30.0 g of water at 5.00 0C 
are mixed with 50.0 g of water at 
70.0 0C and 25.0 g of water at 
100 0C, find the resultant 
temperature of the mixture. 

17. If 80.0 g of lead shot at 
100 0C is placed into 100 g of water 
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at 20.0 0C in an aluminum 
calorimeter of 60.0-g mass, what is 
the final temperature? 

 
18. A 100-g mass of an 

unknown material at 100 0C is 
placed in an aluminum calorimeter 
of 60.0 g that contains 150 g of 
water at an initial temperature of 
20.0 0C. The final temperature is 
observed to be 21.5 0C. What is the 
specific heat of the substance and 
what substance do you think it is? 

 
Diagram for problem 18. 

 
19. A 100-g mass of an 

unknown material at 100 0C, is 
placed in an aluminum calorimeter 
of 60.0-g mass that contains 150 g 
of water at an initial temperature of 
15.0 0C. At equilibrium the final 
temperature is 19.5 0C. What is the 
specific heat of the material and 
what material is it? 

 
20. How much water at 50.0 0C 

must be added to 60.0 kg of water 
at 10.0 0C to bring the final mixture 
to 20.0 0C? 

21. A 100-g aluminum 
calorimeter contains 200 g of water 
at 15.0 0C. If 100.0 g of lead at 
50.0 0C and 60.0 g of copper at 
60.0 0C are placed in the 
calorimeter, what is the final 
temperature in the calorimeter? 

22. A 200-g piece of platinum is 
placed inside a furnace until it is in 
thermal equilibrium. The platinum 
is then placed in a 100-g aluminum 
calorimeter containing 400 g of 
water at 5.00 0C. If the final 
equilibrium temperature of the 

water is 10.0 0C, find the 
temperature of the furnace. 

 
14.5  Change of Phase 

23. How many joules are needed 
to change 50.0 g of ice at −10.0 0C to 
water at 20.0 0C? 

24. If 50.0 g of ice at 0.0 0C are 
mixed with 50.0 g of water at 
80.0 0C what is the final 
temperature of the mixture? 

25. How much ice at 0 0C must 
be mixed with 50.0 g of water at 
75.0 0C to give a final water 
temperature of 20 0C? 

26. If 50.0 g of ice at 0.0 0C are 
mixed with 50.0 g of water at 
20.0 0C, what is the final 
temperature of the mixture? How 
much ice is left in the mixture? 

27. How much heat is required 
to convert 10.0 g of ice at −15.0 0C 
to steam at 105 0C? 

28. In the laboratory, 31.0 g of 
ice at 0 0C is placed into an 85.0-g 
copper calorimeter cup that 
contains 155 g of water at an initial 
temperature of 23.0 0C. After the ice 
melts, the final temperature of the 
water is found to be 6.25 0C. From 
this laboratory data, find the heat 
of fusion of water and the 
percentage error between the 
standard value and this 
experimental value. 

29. A 100-g iron ball is heated 
to 100 0C and then placed in a hole 
in a cake of ice at 0.00 0C. How 
much ice will melt? 

 
Diagram for problem 29. 

 

30. How much steam at 100 0C 
must be mixed with 300 g of water 
at 20.0 0C to obtain a final water 
temperature of 80.0 0C? 

31. How much steam at 100 0C 
must be mixed with 1 kg of ice at 
0.00 0C to produce water at 20.0 0C?            

32. In the laboratory, 6.00 g of 
steam at 100 0C is placed into an 
85.0-g copper calorimeter cup that 
contains 155 g of water at an initial 
temperature of 18.5 0C. After the 
steam condenses, the final 
temperature of the water is found 
to be 41.0 0C. From this laboratory 
data, find the heat of vaporization 
of water and the percentage error 
between the standard value and 
this experimental value. 

*33. An electric stove is rated at 
1 kW of power. If a pan containing 
1.00 kg of water at 20.0 0C is placed 
on this stove, how long will it take 
to boil away all the water? 

34. An electric immersion 
heater is rated at 0.200 kW of 
power. How long will it take to boil 
100 cm3 of water at an initial 
temperature of 20.0 0C? 

 
Additional Problems 

35. A 890-N man consumes 
3000 kcal of food per day. If this 
same energy were used to heat the 
same weight of water, by how much 
would the temperature of the water 
change? 

36. An electric space heater is 
rated at 1.50 kW of power. How 
many kcal of thermal energy does it 
produce per second? How many 
Btu’s of thermal energy per hour 
does it produce? 

*37. A 0.055-kg mass of lead at 
an initial temperature of 135 0C, a 
0.075-kg mass of brass at an initial 
temperature of 185 0C, and a 
0.0445-kg of ice at an initial 
temperature of −5.25 0C is placed 
into a calorimeter containing 0.250 
kg of water at an initial 
temperature of 23.0 0C. The 
aluminum calorimeter has a mass 
of 0.085 kg. Find the final 
temperature of the mixture. 
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38. A 100-g lead bullet is fired 
into a fixed block of wood at a speed 
of 350 m/s. If the bullet comes to 
rest in the block, what is the 
maximum change in temperature of 
the bullet? 

*39. A 35-g lead bullet is fired 
into a 6.5-kg block of a ballistic 
pendulum that is initially at rest. 
The combined bullet-pendulum 
rises to a height of 0.125 m. Find 
(a) the speed of the combined bullet-
pendulum after the collision, (b) the 
original speed of the bullet, (c) the 
original kinetic energy of the bullet, 
(d) the kinetic energy of the 
combined bullet-pendulum after the 
collision, and (e) how much of the 
initial mechanical energy was 
converted to thermal energy in the 
collision. If 50% of the energy lost 
shows up as thermal energy in the 
bullet, what is the change in energy 
of the bullet? 

*40. After 50.0 g of ice at 0 0C is 
mixed with 200 g of water, also at 
0 0C, in an insulated cup of 15.0-cm 
radius, a paddle wheel, 15.0 cm in 
radius, is placed inside the cup and 
set into rotational motion. What 
force, applied at the end of the 
paddle wheel, is necessary to rotate 
the paddle wheel at 60 rpm, for 10.0 
minutes such that the final 
temperature of the mixture will be 
15.0 0C? 

 
Diagram for problem 40. 

 
*41. A 75.0-kg patient is 

running a fever of 105 0F (40.6 0C) 
and is given an alcohol rub down to 
lower the body temperature. If the 
specific heat of the human body is 
approximately 3474 J/(kg 0C), and 
the heat of vaporization of alcohol is 
8.50 × 105 J/kg, find (a) the amount 
of heat that must be removed to 
lower the temperature to 102 0F 
(38.9 0C) and (b) the volume of 
alcohol required. 

42. How much thermal energy 
is required to heat the air in a 
house from 15.0 0C to 20.0 0C if the 
house is 14.0 m long, 9.00 m wide, 
and 3.00 m high? 

43. A classroom is at an initial 
temperature of 20 0C. If 35 students 
enter the class and each liberates 
heat to the air at the rate of 100 W, 
find the final temperature of the air 
in the room 50 min later, assuming 
all the heat from the students goes 
into heating the air. The classroom 
is 10.0 m long, 9.00 m wide, and 
4.00 m high. 

44. How much fuel oil is needed 
to heat a 570-liter tank of water 
from 10.0 0C to 80.0 0C if oil is 
capable of supplying 3.88 × 107 J of 
thermal energy per liter of oil? 

45. How much heat is necessary 
to melt 100 kg of aluminum initially 
at a temperature of 20 0C? The 
melting point of aluminum is 
660 0C and its heat of fusion is 3.77 
× 105 J/kg. 

*46. If the heat of combustion of 
natural gas is 3.71 × 107 J/m3, how 
many cubic meters are needed to 
heat 0.580 m3 of water from 10.0 0C 
to 75.0 0C in a hot water heater if 
the system is 63% efficient? 

* 47. If the heat of combustion 
of coal is 2.78 × 107 J/kg, how many 
kilograms of coal are necessary to 
heat 0.580 m3 of water from 10.0 0C 
to 75.0 0C in a hot water heater if 
the system is 63% efficient? 

* 48. The solar constant is the 
amount of energy from the sun 
falling on the earth per second, per 
unit area and is given as SC = 1350 
J/(s m2). If an average roof of a 

house is 60.0 m2, how much energy 
impinges on the house in an 8-hr 
period? Express the answer in 
joules, kWhr, Btu, and kcal. 
Assuming you could convert all of 
this heat at 100% efficiency, how 
much fuel could you save if #2 fuel 
oil supplies 1.47 × 108 J/gal; 
natural gas supplies  3.71 × 107 
J/m3; electricity supplies 3.59 × 106 
J/kWhr? 

49. How much thermal energy 
can you store in a 5680-liter tank of 
water if the water has been 
subjected to a temperature change 
of 35.0 0C in a solar collector? 

50. A 5.94-kg lead ball rolls 
without slipping down a rough 
inclined plane 1.32 m long that 
makes an angle of 40.00 with the 
horizontal. The ball has an initial 
velocity v0 = 0.25 m/s. The ball is 
not perfectly spherical and some 
energy is lost due to friction as it 
rolls down the plane. The ball 
arrives at the bottom of the plane 
with a velocity v = 3.00 m/s, and 
80.0% of the energy lost shows up 
as a rise in the temperature of the 
ball. Find (a) the height of the 
incline, (b) the initial potential 
energy of the ball, (c) the initial 
kinetic energy of translation, (d) the 
initial kinetic energy of rotation, 
(e) the initial total energy of the 
ball, (f) the final kinetic energy of 
translation, (g) the final kinetic 
energy of rotation, (h) the final total 
mechanical energy of the ball at the 
bottom of the plane, (i) the energy 
lost by the ball due to friction, and 
(j) the increase in the temperature 
of the ball. 

*51. The energy that fuels 
thunderstorms and hurricanes 
comes from the heat of 
condensation released when 
saturated water vapor condenses to 
form the droplets of water that 
become the clouds that we see in 
the sky. Consider the amount of air 
contained in an imaginary box 5.00 
km long, 10.0 km wide, and 30.0 m 
high that covers the ground at the 
surface of the earth at a particular 
time. The air temperature is 20 0C 
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and is saturated with all the water 
vapor it can contain at that 
temperature, which is 17.3 × 10−3 
kg of water vapor per m3. The air in 
this imaginary box is now lifted into 
the atmosphere where it is cooled to 
0 0C. Since the air is saturated, 
condensation occurs throughout the 
cooling process. The maximum 
water vapor the air can contain at 
0 0C is 4.847 × 10−3 kg of water 
vapor per m3. (The heat of 
vaporization of water varies with 
temperatures from 2.51 × 106 J/kg 
at 0 0C to 2.26 × 106 J/kg at 100 0C. 
We will assume an average 
temperature of 10.0 0C for the 
cooling process.) Find (a) the 
volume of saturated air in the 
imaginary box, (b) the mass of 
water vapor in this volume at 
20.0 0C, (c) the mass of water vapor 
in this volume at 0 0C, (d) the heat 
of vaporization of water at 10.0 0C, 
and (e) the thermal energy given off 
in the condensation process. 
(f) Discuss this quantity of energy 
in terms of the energy that powers 
thunderstorms and hurricanes. 

 
Diagram for problem 51. 
 
 
 

Interactive Tutorials 
52. Convert ice to water. Find 

the total amount of thermal energy 
in joules necessary to convert ice of 
mass mi = 2.00 kg at an initial 
temperature tii = −20.0 0C to water 
at a final water temperature of tfw = 
88.3 0C. The specific heat of ice is ci 
= 2093 J/kg 0C, water is cw = 4186 
J/kg 0C, and the latent heat of 
fusion of water is Lf = 3.34 × 105 
J/kg. 

53. Equilibrium. If a sample of 
lead shot of mass ms = 0.080 kg and 
initial temperature tis = 100 0C is 
placed into a mass of water mw = 
0.100 kg in an aluminum 
calorimeter of mass mc = 0.060 kg 
at an initial temperature tiw = 
20.0 0C, what is the final 
equilibrium temperature of the 
water, calorimeter, and lead shot? 
The specific heats are water cw = 
4186 J/kg 0C, calorimeter cc = 900 
J/kg 0C, and lead sample cs = 129.8 
J/kg 0C. 

54. Temperature Conversion 
Calculator. The Temperature 
Conversion Calculator will permit 
you to convert temperatures in one 
unit to a temperature in another 
unit. 

55. Specific heat. A specimen of 
lead, ms = 0.250 kg, is placed into 
an oven where it acquires an initial 
temperature tis = 200 0C. It is then 
removed and placed into a 
calorimeter of mass mc = 0.060 kg 
and specific heat cc = 900 J/kg 0C 
that contains water, mw = 0.200 kg, 
at an initial temperature tiw = 
10.0 0C. The specific heat of water is 
cw = 4186 J/kg 0C. The final 
equilibrium temperature of the 
water in the calorimeter is observed 

to be tfw = 16.7 0C. Find the specific 
heat cs of this sample. 

56. Converting ice to 
superheated steam. Find the total 
amount of thermal energy in joules 
necessary to convert ice of mass mi 
= 12.5 kg at an initial temperature 
tii = −25.0 0C to superheated steam 
at a temperature tss = 125 0C. The 
specific heat of ice is ci = 2093 
J/kg 0C, water is cw = 4186 J/kg 0C, 
and steam is cs = 2013 J/kg 0C. The 
latent heat of fusion of water is Lf = 
3.34 × 105 J/kg, and the latent heat 
of vaporization is Lv = 2.26 × 106 
J/kg. 

57. A mixture. How much ice at 
an initial temperature of tii = 
−15.0 0C must be added to a 
mixture of three specimens 
contained in a calorimeter in order 
to make the final equilibrium 
temperature of the water tfw = 
12.5 0C? The three specimens and 
their characteristics are sample 1: 
zinc; ms1 = 0.350 kg, cs1 = 389 
J/kg 0C, initial temperature tis1 = 
150 0C; sample 2: copper; ms2 = 
0.180 kg, cs2 = 385 J/kg 0C, initial 
temperature tis2 = 100 0C; and 
sample 3: tin; ms3 = 0.350 kg, cs3 = 
226 J/kg 0C, initial temperature tis3 
= 180 0C. The calorimeter has a 
mass mc = 0.060 kg and specific 
heat cc = 900 J/kg 0C and contains 
water, mw = 0.200 kg, at an initial 
temperature tiw = 19.5 0C. The 
specific heat of water is cw = 4186 
J/kg 0C. 

 
To go to these Interactive 

Tutorials click on this sentence. 

 
To go to another chapter, return to the table of contents by clicking on this sentence.   
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Chapter 15  Thermal Expansion and the Gas Laws 
  

"So many of the properties of matter, especially when in the gaseous form, can be 
deduced from the hypothesis that their minute parts are in rapid motion, the velocity 
increasing with the temperature, that the precise nature of this motion becomes a 
subject of rational curiosity... The relations between pressure, temperature and 
density in a perfect gas can be explained by supposing the particles to move with 
uniform velocity in straight lines, striking against the sides of the containing vessel 
and thus producing pressure."         James Clerk Maxwell 

 
15.1  Linear Expansion of Solids 
It is a well-known fact that most materials expand 
when heated. This expansion is called thermal 
expansion. (Recall that the phenomenon of 
thermal expansion was used in chapter 14 to 
devise the thermometer.) If a long thin rod of 
length L0, at an initial temperature ti, is heated to 
a final temperature tf, then the rod expands by a 
small length ∆L, as shown in figure 15.1.                                          Figure 15.1  Linear expansion. 
 

It is found by experiment that the change in length ∆L depends on the temperature change, ∆t = tf − ti; the 
initial length of the rod L0; and a constant that is characteristic of the material being heated. The experimentally 
observed linearity between ∆L and L0∆t can be represented by the equation 

 
∆L = αL0∆t                                                                              (15.1) 

 
We call the constant α the coefficient of linear expansion; table 15.1 gives this value for various materials. The 
change in length is rather small, but it is, nonetheless, very significant. 

 
Example 15.1 

 
Expansion of a railroad track. A steel railroad track was 30.0 m long when it was initially laid at a temperature of 
−6.70 0C. What is the change in length of the track when the temperature rises to 35.0 0C? 

Solution
 

The coefficient of linear expansion for steel, found from table 15.1, is αsteel = 1.20 × 10−5/0C.  The change in length 
becomes 

∆L = αL0∆t 
= (1.20 × 10−5/0C)(30.0 m)(35.0 0C − (−6.70 0C) 

= 0.0150 m = 1.50 cm  
 

Even though the change in length is relatively small, 1.50 cm in a distance of 30.0 m, it is easily measurable. The 
new length of the rod becomes  

L = L0 + ∆L 
= 30.0 m + 0.0150 m = 30.0150 m 

 
As you can see the new length is essentially the same as the old length. Why then is this thermal expansion so 
significant? Associated with this small change in length is a very large force. We can determine the force 
associated with this expansion by computing the force that is necessary to compress the rail back to its former 
length. Recall from chapter 10 that the amount that a body is stretched or compressed is given by Hooke’s law as 
 

 F  = Y ∆L                                                                                  (10.6) 
                                                                                     A         L0 

 
We can solve this equation for the force that is associated with a compression. Taking the compression of the rail 
as 0.0150 m, Young’s modulus Y for steel as 2.10 × 1011 N/m2, and assuming that the cross-sectional area of the 
rail is 130 cm2, the force necessary to compress the rail is 
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  F = AY ∆L 
              L0 

( )2 11
2

N 0.0150 m0.013 m 2.10 10  
30 0 mm .

  = ×  
  

 

= 1.37 × 106 N 
 

This force of 1.37 × 106 N (308,000 lb) that is necessary to compress the rail by 1.50 cm, is also the force 
that is necessary to prevent the rail from expanding. It is obviously an extremely large force. It is this large force 
associated with the thermal expansion that makes thermal expansion so important. It is no wonder that we see 
and hear of cases where rails and roads have buckled during periods of very high temperatures. 

 
To go to this Interactive Example click on this sentence. 

 

 
 

The expansion of the solid can be 
explained by looking at the molecular 
structure of the solid. The molecules of 
the substance are in a lattice structure. 
Any one molecule is in equilibrium with 
its neighbors, but vibrates about that 
equilibrium position. As the temperature 
of the solid is increased, the vibration of 
the molecule increases. However, the 
vibration is not symmetrical about the 
original equilibrium position. As the 
temperature increases the equilibrium 
position is displaced from the original 
equilibrium position. Hence, the mean 
displacement of the molecule from the 
original equilibrium position also 
increases, thereby spacing all the 
molecules farther apart than they were 
at the lower temperature. The fact that 
all the molecules are farther apart 
manifests itself as an increase in length 
of the material. Hence, linear expansion 
can be explained as a molecular phenomenon. The large force associated with the expansion comes from the large 
molecular forces between the molecules. 
 
 
15.2  Area Expansion of Solids 
For the long thin rod of section 15.1, only the length change was significant and that was all that we considered. 
But solids expand in all directions. If a square of thin material of length L0 and width L0, at an initial temperature 
of ti, is heated to a new temperature tf, the square of material expands, as shown in figure 15.2. The original area 
of the square is given by 

A0 = L02 
 
But each side expands by ∆L, forming a new square with sides (L0 + ∆L). Thus, the final area becomes 
 

A = (L0 + ∆L)2 
= L02 + 2L0∆L + (∆L)2 

 
The change in length ∆L is quite small to begin with, and its square (∆L)2 is even smaller, and can be neglected in 
comparison to the magnitudes of the other terms. That is, we will set the quantity (∆L)2 equal to zero in our  

Table 15.1 
Coefficients of Thermal Expansion 

        
Material 

 α Coefficient of 
Linear 

Expansion 

β Coefficient of 
Volume 

Expansion 
 × 10−5 /0C × 10−4  /0C 
Aluminum 
Brass 
Copper 
Iron 
Lead 
Steel 
Zinc 
Glass (ordinary) 
Glass (Pyrex) 
Ethyl alcohol 
Water 
Mercury 
Glass (Pyrex) 
All noncondensing gases at 
constant pressure and 0 0C. 

2.4 
1.8 
1.7 
1.2 
3.0 
1.2 
2.6 
0.9 
0.32 
 
 

 
 
 
 
 
 
 
 
 
11.0 
2.1 
1.8 
0.096 
36.6 
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analysis. Using this assumption, the final area becomes 
 

    A = L02 + 2L0∆L 
 

The change in area, caused by the thermal expansion, is 
 

∆A = Final area − Original area 
= A − A0 

= L02 + 2L0∆L − L02 
Therefore 

∆A = 2L0∆L                                        (15.2) 
However, we have already seen that 

∆L = αL0∆t                                         (15.1) 
                                                                                                                               Figure 15.2  Expansion in area. 

 
Substituting equation 15.1 into 15.2 gives 

∆A = 2L0αL0∆t 
and 

∆A = 2αL02∆t 
However, L02 = A0, the original area. Therefore 

 ∆A = 2αA0∆t                                                                             (15.3) 
 

Equation 15.3 gives us the area expansion of a material of original area A0 when subjected to a temperature 
change ∆t. Note that the coefficient of area expansion is twice the coefficient of linear expansion. Although we have 
derived this result for a square it is perfectly general and applies to any area. For example, if the material was 
circular in shape, the original area A0 would be computed from the area of a circle of radius r0 as 
 

A0 = πr02 
 

We would then find the change in area from equation 15.3. 
 

Example 15.2 
 

The change in area. An aluminum sheet 2.50 m long and 3.24 m wide is connected to some posts when it was at a 
temperature of −10.5 0C. What is the change in area of the aluminum sheet when the temperature rises to 65.0 0C? 

Solution
 

The coefficient of linear expansion for aluminum, found from table 15.1, is αAl = 2.4 × 10−5/0C. The original area of 
the sheet, just the product of the length and the width, is  
 

A0 = L1L2 
A0 = (2.50 m)(3.24 m) = 8.10 m2  

 
The change in area, found from equation 15.3, is 

∆A = 2αA0∆t 
= 2(2.4 × 10−5/0C)(8.10 m2)(65.0 0C − (−10.5 0C) 

= 0.0294 m2 = 294 cm2   
The new area of the sheet becomes  

A = A0 + ∆A 
= 8.10 m2+ 0.0294 m2 = 8.13 m2 

 
Again notice that the new area is essentially the same as the old area, and the significance of this small change in 
area is the very large force that is associated with this thermal expansion.  
 

To go to this Interactive Example click on this sentence.  
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All parts of the material expand at the same rate. For example, if there 

was a circular hole in the material, the empty hole would expand at the same rate 
as if material were actually present in the hole. We can see this in figure 15.3. 
The solid line represents the original material, whereas the dotted lines represent 
the expanded material. Many students feel that the material should expand into 
the hole, thereby causing the hole to shrink. The best way to show that the hole 
does indeed expand is to fill the hole with a plug made of the same material. As 
the material expands, so does the plug. At the end of the expansion remove the 
plug, leaving the hole. Since the plug expanded, the hole must also have grown. 
Thus, the hole expands as though it contained material. This result has many 
practical applications. 

 
 

                                                                                                              Figure 15.3  The empty hole expands  
                                                                                                                       at the same rate as if there were  

                                                                                                    material in the hole. 
 

Example 15.3 
 

Fitting a small wheel on a large shaft. We want to place a steel wheel on a steel shaft with a good tight fit. The 
shaft has a diameter of 10.010 cm. The wheel has a hole in the middle, with a diameter of 10.000 cm, and is at a 
temperature of 20 0C. If the wheel is heated to a temperature of 132 0C, will the wheel fit over the shaft? The 
coefficient of linear expansion for steel is found in table 15.1 as α = 1.20 × 10−5/0C. 

Solution
 

The present area of the hole in the wheel is not large enough to fit over the cross-sectional area of the shaft. We 
want to heat the wheel so that the new expanded area of the heated hole in the wheel will be large enough to fit 
over the area of the shaft. With the present dimensions the wheel can not fit over the shaft. If we place the wheel 
in an oven at 132 0C, the wheel expands. We can solve this problem by looking at the area of the hole and the 
shaft, but it can also be analyzed by looking at the diameter of the hole and the diameter of the shaft. When the 
wheel is heated, the diameter of the hole increases by 
 

  ∆LH = αL0∆t 
= (1.20 × 10−5/0C)(10.000 cm)(132 0C − 20 0C) 

= 1.34 × 10−2 cm 
The new hole in the wheel has the diameter 
 

L = L0 + ∆L = 10.000 cm + 0.013 cm 
= 10.013 cm 

 
Because the diameter of the hole in the wheel is now greater than the diameter of the shaft, the wheel now fits 
over the shaft. When the combined wheel and shaft is allowed to cool back to the original temperature of 20 0C, the 
hole in the wheel tries to contract to its original size, but is not able to do so, because of the presence of the shaft. 
Therefore, enormous forces are exerted on the shaft by the wheel, holding the wheel permanently on the shaft. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
15.3  Volume Expansion of Solids and Liquids 
All materials have three dimensions, length, width, and height. When a body is heated, all three dimensions 
should expand and hence its volume should increase. Let us consider a cube of length L0 on each side, at an initial 
temperature ti. Its initial volume is 

V0 = L03 
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If the material is heated to a new temperature tf, then each side L0 of the cube undergoes an expansion ∆L. The 
final volume of the cube is 

V = (L0 + ∆L)3 
= L03 + 3 L02∆L + 3L0(∆L)2 + (∆L)3 

 
Because ∆L is itself a very small quantity, the terms in (∆L)2 and (∆L)3 can be neglected. Therefore, 
 

V = L03 + 3 L02∆L 
 

The change in volume due to the expansion becomes 
 

∆V = V − V0 
= L03 + 3 L02∆L − L03 

∆V = 3 L02∆L                                                                           (15.4) 
However, the linear expansion ∆L was given by 

∆L = αL0∆t                                                                              (15.1) 
Substituting this into equation 15.4 gives 

∆V = 3 L02αL0∆t 
   = 3α L03∆t 

Since L03 is equal to V0, this becomes 
∆V = 3αV0∆t                                                                             (15.5) 

 
We now define a new coefficient, called the coefficient of volume expansion β, for solids as 
 

 β = 3α                                                                                 (15.6) 
 

Therefore, the change in volume of a substance when subjected to a change in temperature is 
 

 ∆V = βV0∆t                                                                             (15.7) 
 

Although we derived equation 15.7 for a solid cube, it is perfectly general and applies to any volume of a 
solid and even for any volume of a liquid. However, since α has no meaning for a liquid, we must determine β 
experimentally for the liquid. Just as a hole in a surface area expands with the surface area, a hole in a volume 
also expands with the volume of the solid. Hence, when a hollow glass tube expands, the empty volume inside the 
tube expands as though there were solid glass present. 

 
Example 15.4 

 
The change in volume. An aluminum box 0.750 m long, 0.250 m wide, and 0.450 m high is at a temperature of 
−15.6 0C. What is the change in volume of the aluminum box when the temperature rises to 120 0C? 

Solution
 

The coefficient of linear expansion for aluminum, found from table 15.1, is αAl = 2.4 × 10−5/0C. The original volume 
of the box, found from the product of the length, width, and height, is 
 

V0 = L1L2L3 
V0 = (0.750 m)(0.250 m)(0.450 m) = 0.0844 m3  

 
The change in volume, found from equation 15.5, is 

     ∆V = 3αV0∆t 
= 3(2.4 × 10−5/0C)(0.0844 m3)(120 0C − (−15.6 0C) 

= 0.00082 m3 = 8.24 cm3   
The new volume of the box becomes  

V = V0 + ∆V 
=0.0844 m3 +0.00082 m3  = 0.0852 m3 
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Again notice that the new volume is very close to the original volume.  
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.5 
 

How much mercury overflows? An open glass tube is filled to the top with 25.0 cm3 of mercury at an initial 
temperature of 20.0 0C. If the mercury and the tube are heated to 100 0C, how much mercury will overflow from 
the tube? 

Solution
 

The change in volume of the mercury, found from equation 15.7 with βHg = 1.80 × 10−4 /0C found from table 15.1, is 
 

∆VHg = βHgV0∆t 
= (1.80 × 10−4/0C)(25.0 cm3)(100 0C − 20 0C) 

= 0.360 cm3 
 
If the glass tube did not expand, this would be the amount of mercury that overflows. But the glass tube does 
expand and is therefore capable of holding a larger volume. The increased volume of the glass tube is found from 
equation 15.7 but this time with βg = 0.27 × 10−4 /0C 

     ∆Vg = βgV0∆t 
= (0.27 × 10−4 /0C)(25.0 cm3)(100 0C − 20.0 0C) 

= 0.054 cm3 
 

That is, the tube is now capable of holding an additional 0.054 cm3 of mercury. The amount of mercury that 
overflows is equal to the difference in the two volume expansions. That is, 
 

Overflow = ∆VHg − ∆Vg 
= 0.360 cm3 − 0.054 cm3 

= 0.306 cm3 
 

To go to this Interactive Example click on this sentence. 
 

 
 
  

15.4  Volume Expansion of Gases: Charles’ Law 
Consider a gas placed in a tank, as shown in figure 15.4. The weight of the piston exerts a constant pressure on the 
gas. When the tank is heated, the pressure of the gas first increases. But the increased pressure in the tank 
pushes against the freely moving piston, and the piston moves until the pressure inside the tank is the same as 
the pressure exerted by the weight of the piston. Therefore the pressure in the tank remains a constant 
throughout the entire heating process. The volume of the gas increases during the heating process, as we can see 
by the new volume occupied by the gas in the top cylinder. In fact, we find the increased volume by multiplying the 
area of the cylinder by the distance the piston moves in the cylinder. If the volume of the gas is plotted against the 
temperature of the gas, in Celsius degrees, we obtain the straight line graph in figure 15.5. If the equation for this 
straight line is written in the point-slope form1 

                                                           
1
The point-slope form of a straight line is obtained by the definition of the slope of a straight line, namely 

m = ∆y 
       ∆x 

or                                                                                
∆y = m∆x 

Using the meaning of ∆y and ∆x, we get 
      y − y1 = m(x − x1) 
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  y − y1 = m(x − x1) 

we get 
  V − V0 = m(t − t0) 

 
where V is the volume of the gas at the temperature t, V0 is the 
volume of the gas at t0 = 0 0C, and m is the slope of the line. We can 
also write this equation in the form 
 

∆V = m∆t                                        (15.8) 
 

Note that equation 15.8, which shows the change in volume of a gas, 
looks like the volume expansion formula 15.7, for the change in 
volume of solids and liquids, that is, 
 

∆V = βV0∆t                                       (15.7) 
                                                                                                                        

Let us assume, therefore, that the form of the equation for volume 
expansion is the same for gases as it is for solids and liquids. If we use 
this assumption, then 

βV0 = m 
 

Hence the coefficient of volume expansion for the gas is found 
experimentally as 

β =  m  
       V0 

 
where m is the measured slope of the line. If we repeat this 
experiment many times for many different gases we find that 

 
                                                                                                                    Figure 15.4  Volume expansion of a gas. 

 
β =     1     = 3.66 × 10−3  /0C 

                                                                                273 0C                      
 

for all noncondensing gases at constant pressure. This result was first found by the French physicist, J. Charles 
(1746-1823). This is a rather interesting result, since the value of β is different for different solids and liquids, and 
yet it is a constant for all gases. 

Equation 15.7 can now be rewritten as 
 V − V0 = βV0(t − t0) 

Because t0 = 0 0C, we can simplify this to 
V − V0 = βV0t 

and 
V = V0 + βV0t 

or 
V = V0(1 + βt)                                                                            (15.9) 

Note that if the temperature t = −273 0C, then 
 

( )
0

0 00
2731 1 1 0

273
CV V V

C
 −

= + = − = 
 

 

 
That is, the plot of V versus t intersects the t-axis at −273 0C, as shown in figure 15.5. Also observe that there is a 
linear relation between the volume of a gas and its temperature in degrees Celsius. Since β = 1/273 0C, equation 
15.9 can be simplified further into 

0

0 00 0
2731

273 273
t C tV V V

C C
 + = + =   
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It was the form of this equation that led to the definition of the 
Kelvin or absolute temperature scale in the form                                                                                                                  
 

 T K = t 0C + 273                                 (15.10) 
 

With this definition of temperature, the volume of the gas is directly 
proportional to the absolute temperature of the gas, that is, 
 

0

273
VV T 

=  
 

                                    (15.11) 

                                                                                                                 Figure 15.5  Plot of V versus t for a gas at 
                                                                                                                      constant pressure. 

 
Changing the temperature scale is equivalent to moving the 

vertical coordinate of the graph, the volume, from the 0 0C mark in 
figure 15.5, to the −273 0C mark, and this is shown in figure 15.6. 
Thus, the volume of a gas at constant pressure is directly proportional 
to the absolute temperature of the gas. This result is known as 
Charles’ law.  

In general, if the state of the gas is considered at two different 
temperatures, we have 

 
                                                                                                  Figure 15.6 The volume V of a gas is directly 
                                                                                                       proportional to its absolute temperature T. 

                                                          0
1 1273

VV T 
=  

 
  

and 
0

2 2273
VV T 

=  
 

 

Hence, 
 V1   =  V0  = V2  

                                                                                    T1       273    T2 
Therefore, 

V1  =  V2               p = constant                                               (15.12) 
                                                                                      T1      T2    
which is another form of Charles’ law. 

Figures 15.5 and 15.6 are slightly misleading in that they show the variation of the volume V with the 
temperature T of a gas down 
to −273 0C or 0 K. However, 
the gas will have condensed 
to a liquid and eventually to 
a solid way before this point 
is reached. A plot of V 
versus T for all real gases is 
shown in figure 15.7. Note 
that when each line is 
extrapolated, they all 
intersect at −273 0C or 0 K. 
Although they all have 
different slopes m, the 
coefficient of volume 
expansion (β = m/V0) is the 
same for all the gases. 

 
                                          Figure 15.7  Plot of volume versus temperature for real gases. 
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15.5  Gay-Lussac’s Law 
Consider a gas contained in a tank, as shown in figure 15.8. The 
tank is made of steel and there is a negligible change in the volume 
of the tank, and hence the gas, as it is heated. A pressure gauge 
attached directly to the tank, is calibrated to read the absolute 
pressure of the gas in the tank. A thermometer reads the 
temperature of the gas in degrees Celsius. The tank is heated, 
thereby increasing the temperature and the pressure of the gas, 
which are then recorded. If we plot the pressure of the gas versus 
the temperature, we obtain the graph of figure 15.9. The equation of 
the resulting straight line is 

            p − p0 = m’(t − t0) 
 
where p is the pressure of the gas at the temperature t, p0 is the 
pressure at the temperature t0, and m’ is the slope of the line. The 
prime is placed on the slope to distinguish it from the slope 
determined in section 15.4. Because t0 = 0 0C, this simplifies to 
 

p − p0 = m’t 
or 

   p = m’t + p0                                   (15.13) 
                                                                                                               Figure 15.8  Changing the pressure of a gas. 
It is found experimentally that the slope is 
 

m’ = p0β 
 

where p0 is the absolute pressure of the gas and β is the coefficient of 
volume expansion for a gas. Therefore equation 15.13 becomes 
 

p = p0βt + p0 
and 

p = p0(βt + 1)                                   (15.14) 
 

                                                                                                              Figure 15.9  A plot of pressure versus 
                                                                                                                               temperature for a gas. 

 
Thus, the pressure of the gas is a linear function of the temperature, as in the case of Charles’ law. Since β 

= 1/273 0C this can be written as 
0

0 00 0
2731

273 273
t t Cp p p

C C
 + = + =   

   
                                                         (15.15) 

 
But the absolute or Kelvin scale has already been defined as 
 

 T K = t  0C + 273 
Therefore, equation 15.15 becomes 

0

273
pp T 

=  
 

                                                                          (15.16) 

 
which shows that the absolute pressure of a gas at constant volume is directly proportional to the absolute 
temperature of the gas, a result known as Gay-Lussac’s law, in honor of the French chemist Joseph Gay-Lussac 
(1778-1850). For a gas in different states at two different temperatures, we have 
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0
1 1273

pp T 
=  

 
        and          0

2 2273
pp T 

=  
 

  

or 
p1  =  p2                   V = constant                                               (15.17) 

                                                                                 T1      T2         
 
Equation 15.17 is another form of Gay-Lussac’s law. (Sometimes this law is also called Charles’ law, since Charles 
and Gay-Lussac developed these laws independently of each other.) 
 
  
15.6  Boyle’s Law 
Consider a gas contained in a cylinder at a constant temperature, as shown in figure 15.10. By pushing the piston 
down into the cylinder, we increase the pressure of the gas and decrease the volume of the gas. If the pressure is 
increased in small increments, the gas remains in thermal equilibrium with the temperature reservoir, and the 
temperature of the gas remains a constant. We measure the volume of the gas for each increase in pressure and 
then plot the pressure of the gas as a function of the reciprocal of the volume of the gas. The result is shown in 
figure 15.11. Notice that the pressure is inversely proportional to the volume of the gas at constant temperature. 
We can write this as 

p ∝  1  
       V 

or 
 pV = constant                                                                        (15.18) 

 
That is, the product of the pressure and volume of a gas at constant temperature is equal to a constant, a result 
known as Boyle’s law, in honor of the British physicist and chemist Robert Boyle (1627-1691). For a gas in two 
different equilibrium states at the same temperature, we write this as 
 

p1V1 = constant 
and 

p2V2 = constant 
Therefore, 

   p1V1 = p2V2                       T = constant                                   (15.19) 
 
another form of Boyle’s law. 

       
           Figure 15.10  The change in pressure and                           Figure 15.11  Plot of the pressure p versus the 
               volume of a gas at constant temperature.                                        reciprocal of the volume 1/V for a gas. 
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15.7  The Ideal Gas Law 
The three gas laws, 

V1  =  V2                 p = constant                                           (15.12) 
                                                                                        T1      T2     

 
p1  =  p2                 V = constant                                           (15.17) 

                                                                                        T1      T2  
 

   p1V1 = p2V2              T = constant                                           (15.19) 
can be combined into one equation, namely, 

p1V1 = p2V2                                                                              (15.20) 
                                                                                      T1        T2             

 
Equation 15.20 is a special case of a relation known as the ideal gas law. Hence, we see that the three previous 
laws, which were developed experimentally, are special cases of this ideal gas law, when either the pressure, 
volume, or temperature is held constant. The ideal gas law is a more general equation in that none of the variables 
must be held constant. Equation 15.20 expresses the relation between the pressure, volume, and temperature of 
the gas at one time, with the pressure, volume, and temperature at any other time. For this equality to hold for 
any time, it is necessary that 

pV  = constant                                                                       (15.21) 
                                                                                       T           

 
This constant must depend on the quantity or mass of the gas. A convenient unit to describe the amount of the gas 
is the mole. One mole of any gas is that amount of the gas that has a mass in grams equal to the atomic or 
molecular mass (M) of the gas. The terms atomic mass and molecular mass are often erroneously called atomic 
weight and molecular weight in chemistry. 

As an example of the use of the mole, consider the gas oxygen. One molecule of oxygen gas consists of two 
atoms of oxygen, and is denoted by O2. The atomic mass of oxygen is found in the Periodic Table of the Elements in 
appendix E, as 16.00. The molecular mass of one mole of oxygen gas is therefore 

 
MO2 = 2(16) = 32 g/mole 

 
Thus, one mole of oxygen has a mass of 32 g. The mole is a convenient quantity to express the mass of a gas 
because one mole of any gas at a temperature of 0 0C and a pressure of 1 atmosphere, has a volume of 22.4 liters. 
Also Avogadro’s law states that every mole of a gas contains the same number of molecules. This number is called 
Avogadro’s number NA and is equal to 6.022 × 1023 molecules/mole. 

The mass of any gas will now be represented in terms of the number of moles, n. We can write the constant 
in equation 15.21 as n times a new constant, which shall be called R, that is, 

 
 pV  = nR                                                                                  (15.22) 

                                                                                     T           
 
To determine this constant R let us evaluate it for 1 mole of gas at a pressure of 1 atm and a temperature of 0 0C, 
or 273 K, and a volume of 22.4 L. That is, 

R = pV  = (1 atm)(22.4 L)    
                                                                                  nT     (1 mole)(273 K) 

R = 0.08205 atm L 
                      mole K 

Converted to SI units, this constant is 
 

2 3 3
5L atm  N/m 10  m0.08205 1.013 10  

mole K atm 1 L
R

−   = ×   
   

 

R = 8.314       J      
                      mole K 
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We call the constant R the universal gas constant, and it is the same for all gases. We can now write equation 
15.22 as 

 pV = nRT                                                                             (15.23) 
 

Equation 15.23 is called the ideal gas equation. An ideal gas is one that is described by the ideal gas equation. 
Real gases can be described by the ideal gas equation as long as their density is low and the temperature is well 
above the condensation point (boiling point) of the gas. Remember that the temperature T must always be expressed 
in Kelvin units. Let us now look at some examples of the use of the ideal gas equation. 

 
Example 15.6 

 
Find the temperature of the gas. The pressure of an ideal gas is kept constant while 3.00 m3 of the gas, at an initial 
temperature of 50.0 0C, is expanded to 6.00 m3. What is the final temperature of the gas? 

Solution
 

The temperature must be expressed in Kelvin units. Hence the initial temperature becomes 
 

T1 = t 0C + 273 = 50.0 + 273 = 323 K 
 

We find the final temperature of the gas by using the ideal gas equation in the form of equation 15.20, namely, 
 

p1V1 = p2V2  
                                                                                        T1        T2        

 
However, since the pressure is kept constant, p1 = p2, and cancels out of the equation. Therefore, 
 

 V1  = V2  
                                                                                          T1     T2 
and the final temperature of the gas becomes 

T2 =  V2  T1 
   V1 

( )
3

3
6.00 m 323
3.00 m

K 
=  

 
 

 = 646 K 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.7 
 

Find the volume of the gas. A balloon is filled with helium at a pressure of 2.03 × 105 N/m2, a temperature of 
35.0 0C, and occupies a volume of 3.00 m3. The balloon rises in the atmosphere. When it reaches a height where 
the pressure is 5.07 × 104 N/m2, and the temperature is −20.0 0C, what is its volume? 

Solution
 

First we convert the two temperatures to absolute temperature units as 
 

T1 = 35.0 0C + 273 = 308 K 
and 

T2 = −20.0 0C + 273 = 253 K 
We use the ideal gas law in the form 

 p1V1  = p2V2  
                                                                                         T1        T2 
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Solving for V2 gives, for the final volume, 
V2 = p1T2 V1  

   p2T1 

( )
5 2

3
4 2

 (2.03 10  N/m )(253 K) 3.00 m
(5.07 10  N/m )(308 K)

 ×
=  × 

 

= 9.87 m3 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.8 
 

Find the pressure of the gas. What is the pressure produced by 2.00 moles of a gas at 35.0 0C contained in a volume 
of 5.00 × 10−3 m3? 

Solution
 

We convert the temperature of 35.0 0C to Kelvin by 
 

T = 35.0 0C + 273 = 308 K 
We use the ideal gas law in the form 

pV = nRT                                                                              (15.23) 
Solving for p, 

   p = nRT  = (2.00 moles)(8.314 J /mole K)(308 K)  
                                                                   V                         5.00 × 10−3 m3 

= 1.02 × 106 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.9 
 

Find the number of molecules in the gas. Compute the number of molecules in a gas contained in a volume of 10.0 
cm3 at a pressure of 1.013 × 105 N/m2, and a temperature of 30 K. 

Solution
 

The number of molecules in a mole of a gas is given by Avogadro’s number NA, and hence the total number of 
molecules N in the gas is given by 

 N = nNA                                                                           (15.24) 
 

Therefore we first need to determine the number of moles of gas that are present. From the ideal gas law, 
 

pV = nRT 
( )5 2 3 3

6 3

(1.013 10  N/m ) 10.0 cm  1.00 m
(8.314 J/mole K)(30 K) 10  cm

pVn
RT

×  
= =  

 
 

 = 4.06 × 10−3 moles 
The number of molecules is now found as 
 

3 23 molecules(4.06 10  mole) 6.022 10
moleAN nN −  = = × × 

 
 

= 2.44 × 1021 molecules 
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To go to this Interactive Example click on this sentence. 

 

 
 

Example 15.10 
 

Find the gauge pressure of the gas. An automobile tire has a volume of 81,900 cm3 and contains air at a gauge 
pressure of 2.07 × 105 N/m2 when the temperature is 0.00 0C. What is the gauge pressure when the temperature 
rises to 30.0 0C? 

Solution
 

When a gauge is used to measure pressure, it reads zero when it is under normal atmospheric pressure of 1.013 × 
105 N/m2. The pressure used in the ideal gas equation must be the absolute pressure, that is, the total pressure, 
which is the pressure read by the gauge plus atmospheric pressure. Therefore, 

  
 pabsolute = pgauge + patm                                                                (15.25) 

Thus, the initial pressure of the gas is 
 

p1 = pgauge + patm = 2.07 × 105 N/m2 + 1.01 × 105 N/m2 
= 3.08 × 105 N/m2  

 
The initial volume of the tire is V1 = 81,900 cm3 and the change in that volume is small enough to be neglected, so 
V2 = 81,900 cm3. The initial temperature is 

  T1 = 0.00 0C + 273 = 273 K 
and the final temperature is 

   T2 = 30.0 0C + 273 = 303 K 
 

Solving the ideal gas equation for the final pressure, we get 
 

p2 = V1T2 p1  
  V2T1 

( )
3

5 2
3

 (81,900 cm )(303 K) 3.08 10  N/m
(81,900 cm )(273 K)

 
= × 

 
 

     = 3.42 × 105 N/m2  absolute pressure 
 

Expressing this pressure in terms of gauge pressure we get 
 

p2gauge = p2absolute − patm 
= 3.42 × 105 N/m2 − 1.01 × 105 N/m2 

= 2.41 × 105 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

15.8  The Kinetic Theory of Gases 
Up to now the description of a gas has been on the macroscopic level, a large-scale level, where the characteristics 
of a gas, such as its pressure, volume, and temperature, are measured without regard to the internal structure of 
the gas itself. In reality, a gas is composed of a large number of molecules in random motion. The large-scale 
characteristics of gases should be explainable in terms of the motion of these molecules. The analysis of a gas at 
this microscopic level (the molecular level) is called the kinetic theory of gases. 

In the analysis of a gas at the microscopic level we make the following assumptions: 
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1.  A gas is composed of a very large number of molecules that are in random motion. 
2.  The volume of the individual molecules is very small compared to the total volume of the gas. 
3.  The collisions of the molecules with the walls and other molecules are elastic and hence there is no energy lost 

during a collision. 
4. The forces between molecules are negligible except during a collision. Hence, there is no potential energy 

associated with any molecule. 
5.  Finally, we assume that the molecules obey Newton’s laws of motion. 

Let us consider one of the very many molecules contained in the box shown in figure 15.12. For simplicity 
we assume that the box is a cube of length L. The gas molecule has a mass m and is moving at a velocity v. The x-
component of its velocity is vx. For the moment we only consider the motion in the x-direction. The pressure that 
the gas exerts on the walls of the box is caused by the collision of the gas molecule with the walls. The pressure is 
defined as the force acting per unit area, that is, 

p =  F                                                                                 (15.26) 
     A 

 
where A is the area of the wall where the collision occurs, and is simply 
 

A = L2 
 

and F is the force exerted on the wall as the molecule collides with the 
wall and can be found by Newton’s second law in the form 
 

F = ∆P                                          (15.27) 
          ∆t 

 
So as not to confuse the symbols for pressure and momentum, we will 
use the lower case p for pressure, and we will use the upper case P for 
momentum. Because momentum is conserved in a collision, the change 
in momentum of the molecule ∆P, is the difference between the 
momentum after the collision PAC and the momentum before the 
collision PBC. Also, since the collision is elastic the velocity of the 
molecule after the collision is −vx. Therefore, the change in momentum 
of the molecule is 
 
                                                                                                                   Figure 15.12  The kinetic theory of a gas. 

 
                                                                ∆P = PAC − PBC = −mvx − mvx 

                                                                  = −2mvx           change in momentum of the molecule 
 

But the change in the momentum imparted to the wall is the negative of this, or 
 

  ∆P = 2mvx      momentum imparted to wall 
 

Therefore, using Newton’s second law, the force imparted to the wall becomes 
 

F = ∆P  = 2mvx                                                                          (15.28) 
    ∆t         ∆t 

 
The quantity ∆t should be the time that the molecule is in contact with the wall. But this time is unknown. 

The impulse that the gas particle gives to the wall by the collision is given by 
 

Impulse = F∆t = ∆P                                                                      (15.29) 
 

and is shown as the area under the force-time graph of figure 15.13. Because the time ∆t for the collision is 
unknown, a larger time interval tbc, the time between collisions, can be used with an average force Favg, such that 
the product of Favgtbc is equal to the same impulse as F∆t. We can see this in figure 15.13. We see that the impulse, 
which is the area under the curve, is the same in both cases. 
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At first this may seem strange, but if you 
think about it, it does make sense. The actual 
force in the collision is large, but acts for a very 
short time. After the collision, the gas particle 
rebounds from the first wall, travels back to the 
far wall, rebounds from it, and then travels to the 
first wall again, where a new collision occurs. For 
the entire traveling time of the particle the actual 
force on the wall is zero. 

Because we think of the pressure on a 
wall as being present at all times, it is reasonable 
to talk about a smaller average force that is 
acting continuously for the entire time tbc. As long 
as the impulse is the same in both cases, the 
momentum imparted to the wall is the same in 
both cases. Equation 15.29 becomes 

 
Impulse = F∆t = Favgtbc = ∆P      (15.30) 

 
The force imparted to the wall, equation 15.28, 
becomes 
 
                                                                                     Figure 15.13  Since the impulse (the area under the curve) is 
                                                                                                                the same, the change in momentum is the same. 
 

Favg = ∆P  = 2mvx                                                                     (15.31) 
             tbc       tbc 

 
We find the time between the collision tbc by noting that the particle moves a distance 2L between the collisions. 
Since the speed vx is the distance traveled per unit time, we have 
 

vx = 2L 
        tbc 

Hence, the time between collisions is 
tbc = 2L                                                                              (15.32) 

           vx 
 

Therefore, the force imparted to the wall by this single collision becomes 
 

Favg = 2mvx  = mvx2                                                                     (15.33) 
                                                                                            2L/vx       L 

 
The total change in momentum per second, and hence the total force on the wall caused by all the 

molecules is the sum of the forces caused by all of the molecules, that is, 
 

Favg = F1avg + F2avg + F3avg + . . . + Fnavg                                                      (15.34) 
 

where N is the total number of molecules. Substituting equation 15.33 for each gas molecule, we have 
 

Favg = mvx12 + mvx22 + mvx32 + . . . + mvxN2 
                                                                           L          L           L                   L 

Favg =  m(vx12 + vx22 + vx32 + . . . + vxN2)                                                          (15.35) 
                                                                         L          
 
Let us multiply and divide equation 15.35 by the total number of molecules N, that is, 
 

Favg =  mN(vx12 + vx22 + vx32 + . . . + vxN2)                                                (15.36) 
                                                                                  L                     N 
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But the term in parentheses is the definition of an average value. That is, 
 

vxavg2 = (vx12 + vx22 + vx32 + . . . + vxN2)                                                             (15.37) 
                                                                                            N 

 
As an example, if you have four exams in the semester, your average grade is the sum of the four exams divided by 
4. Here, the sum of the squares of the x-component of the velocity of each molecule, divided by the total number of 
molecules, is equal to the average of the square of the x-component of velocity. Therefore equation 15.36 becomes 
 

   Favg = mN vxavg2 
    L 

 
But since the pressure is defined as p = F/A, from equation 15.26, we have 

 
p = Favg = Favg = mN vxavg2 = mN vxavg2                                                     (15.38) 

                                                                         A        L2       L3                 V 
or 

       pV = Nmvxavg2                                                                     (15.39) 
The square of the actual three-dimensional speed is 

                v2 = vx2 + vy2 + vz2 
and averaging over all molecules 

      vavg2 = vxavg2 + vyavg2 + vzavg2  
 
But because the motion of any gas molecule is random, 
 

 vxavg2 = vyavg2 = vzavg2  
 
That is, there is no reason why the velocity in one direction should be any different than in any other direction, 
hence their average speeds should be the same. Therefore, 
 

vavg2 = 3vxavg2 
or 

vxavg2 = vavg2                                                                            (15.40) 
           3 

Substituting equation 15.40 into equation 15.39, we get 
 

pV = Nm vavg2 
3 

 
Multiplying and dividing the right-hand side by 2, gives 

2
avg2

3 2
mv

pV N
 

=   
 

                                                                (15.41) 

 
The total number of molecules of the gas is equal to the number of moles of gas times Avogadro’s number - the 
number of molecules in one mole of gas - that is, 

N = nNA                                                                             (15.24) 
 

Substituting equation 15.24 into equation 15.41, gives 
2
avg

A
2
3 2

mv
pV nN

 
=   

 
                                                             (15.42) 

 
Recall that the ideal gas equation was derived from experimental data as 
 

pV = nRT                                                                            (15.23) 
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The left-hand side of equation 15.23 contains the pressure and volume of the gas, all macroscopic quantities, and 
all determined experimentally. The left-hand side of equation 15.42, on the other hand, contains the pressure and 
volume of the gas as determined theoretically by Newton’s second law. If the theoretical formulation is to agree 
with the experimental results, then these two equations must be equal. Therefore equating equation 15.23 to 
equation 15.42, we have 

2
avg

A
2
3 2

mv
nRT nN

 
=   

 
 

or 
2
avg

A

3
2 2

mvR T
N

 
= 

 
                                                                       (15.43) 

  
where R/NA is the gas constant per molecule. It appears so often that it is given the special name the Boltzmann 
constant and is designated by the letter k. Thus, 

     k =  R  = 1.38 × 10−23 J/K                                                          (15.44) 
                                                                                        NA                                     
Therefore, equation 15.43 becomes 

  3 kT =  1 mvavg2                                                                        (15.45) 
                                                                                    2           2                           

 
Equation 15.45 relates the macroscopic view of a gas to the microscopic view. Notice that the absolute 

temperature T of the gas (a macroscopic variable) is a measure of the mean translational kinetic energy of the 
molecules of the gas (a microscopic variable). The higher the temperature of the gas, the greater the average 
kinetic energy of the gas, the lower the temperature, the smaller the average kinetic energy. Observe from 
equation 15.45 that if the absolute temperature of a gas is 0 K, then the mean kinetic energy of the molecule would 
be zero and its speed would also be zero. This was the original concept of absolute zero, a point where all molecular 
motion would cease. This concept of absolute zero can not really be derived from equation 15.45 because all gases 
condense to a liquid and usually a solid before they reach absolute zero. So the assumptions used to derive 
equation 15.45 do not hold and hence the equation can not hold down to absolute zero. Also, in more advanced 
studies of quantum mechanics it is found that even at absolute zero a molecule has energy, called its zero point 
energy. Equation 15.45 is, of course, perfectly valid as long as the gas remains a gas. 

  
Example 15.11 

 
The kinetic energy of a gas molecule. What is the average kinetic energy of the oxygen and nitrogen molecules in a 
room at room temperature? 

Solution
 

Room temperature is considered to be 20 0C or 293 K. Therefore the mean kinetic energy, found from equation 
15.45, is 

KEavg =  1 mvavg2 =  3 kT  
                                                                                           2                2       

( )233 J1.38 10 293 K
2 K

− = × 
 

 

= 6.07 × 10−21 J 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Notice that the average kinetic energy of any one molecule is quite small. This is because the mass of any molecule 
is quite small. The energy of the gas does become significant, however, because there are usually so many 
molecules in the gas. Because the average kinetic energy is given by 3/2 kT, we see that oxygen and nitrogen and 
any other molecule of gas at the same temperature all have the same average kinetic energy. Their speeds, 
however, are not all the same because the different molecules have different masses. 
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The average speed of a gas molecule can be determined by solving equation 15.45 for vavg. That is, 
 

  1 mvavg2 =  3 kT 
                                                                                    2                2 

 vavg2 = 3 kT  
                                                                                                 m 
and 

rms
3kTv
m

=                                                                           (15.46) 

 
This particular average value of the speed, vrms, is usually called the root-mean-square value, or rms value for 
short, of the speed v. It is called the rms speed, because it is the square root of the mean of the square of the speed. 
Occasionally the rms speed of a gas molecule is called the thermal speed. To determine the rms speed from 
equation 15.46, we must know the mass m of one molecule. The mass m of any molecule is found from 
 

 m =  M                                                                                (15.47) 
         NA         

 
That is, the mass m of one molecule is equal to the molecular mass M of that gas divided by Avogadro’s number NA. 

 
Example 15.12 

 
The rms speed of a gas molecule. Find the rms speed of an oxygen and nitrogen molecule at room temperature. 

Solution
 

The molecular mass of O2 is 32 g/mole. Therefore the mass of one molecule of O2 is 
 

mO2 =  M  =                 32 g/mole                
                                                                                 NA     6.022 × 1023 molecules/mole 

= 5.31 × 10−23 g/molecule = 5.31 × 10−26 kg/molecule 
 
The rms speed, found from 15.46, is 

( )( )23

rms 26

3 1.38 10  J/K 293 K3
5.31 10  kg

kTv
m

−

−

×
= =

×
 

= 478 m/s 
 

Notice that the rms speed of an oxygen molecule is 478 m/s at room temperature, whereas the speed of sound at 
this temperature is about 343 m/s. 

The mass of a nitrogen molecule is found from 

2N
A

Mm
N

=  

 
The atomic mass of nitrogen is 14, and since there are two atoms of nitrogen in one molecule of nitrogen gas N2, 
the molecular mass of nitrogen is  

M = 2(14) = 28 g/mole 
Therefore 

2N 23
A

28 g/mole
6.022 10  molecules/mole

Mm
N

= =
×

 

= 4.65 × 10-23 g/molecule = 4.65 × 10−26 kg/molecule 
 

The rms speed of a nitrogen molecule is therefore 
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( )( )23

rms 26

3 1.38 10  J/K 293 K3
4.65 10  kg

kTv
m

−

−

×
= =

×
 

= 511 m/s 
 
Note from the example that both speeds are quite high. The average speed of nitrogen is greater than the average 
speed of oxygen because the mass of the nitrogen molecule is less than the mass of the oxygen molecule. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

“Have you ever wondered . . . ?” 
An Essay on the Application of Physics 

Relative Humidity and the Cooling 
of the Human Body 

 
Have you ever wondered why you feel so 

uncomfortable on those dog days of August when the 
weatherman says that it is very hot and humid (figure 1)? 
What has humidity got to do with your being comfortable? 
What is humidity in the first place? 

To understand the concept of humidity, we must 
first understand the concept of evaporation. Consider the 
two bowls shown in figure 2. Both are filled with water. 
Bowl 1 is open to the environment, whereas a glass plate is 
placed over bowl 2. If we leave the two bowls overnight, on 
returning the next day we would find bowl 1 empty while 
bowl 2 would still be filled with water. What happened to 
the water in bowl 1? The water in bowl 1 has evaporated 
into the air and is gone. Evaporation is the process by 
which water goes from the liquid state to the gaseous state 
at any temperature. Boiling, as you recall, is the process by 
which water goes from the liquid state to the gaseous state 
at the boiling point of 100 0C. That is, it is possible for 
liquid water to go to the gaseous state at any temperature. 

Just as there is a latent heat of vaporization for 
boiling water (Lv = 2.26 × 106 J/kg), the latent heat of 

   
                                                                                    Figure 1  One of those dog days of summer when 

                                                                                                        you never stop perspiring. 
 

vaporization of water at 0 0C is Lv = 2.51 × 106 J/kg. The 
latent heat at any in-between temperature can be found 
by interpolation. Thus, in order to evaporate 1 kg of 
water into the air at 0 0C, you would have to supply 2.51 
× 106 J of thermal energy to the water. 

The molecules in the water in bowl 1 are moving 
about in a random order. But their attractive molecular 
forces still keep them together. These molecules can now 
absorb heat from the surroundings.  

                                                                         Figure 2  Evaporation. 
 
This absorbed energy shows up as an increase in the kinetic energy of the molecule, and hence an increase 

in the velocity of the molecule. When the liquid molecule has absorbed enough energy it moves right out of the 
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liquid water into the air above as a molecule of water vapor. (Remember the water molecule is the same whether it 
is a solid, liquid, or gas, namely H2O, two atoms of hydrogen and one atom of oxygen. The difference is only in the 
energy of the molecule.) 

Since the most energetic of the water molecules escape from the liquid, the molecules left behind have 
lower energy, hence the temperature of the remaining liquid decreases. Hence, evaporation is a cooling process. 
The water molecule that evaporated took the thermal energy with it, and the water left behind is just that much 
cooler. 

The remaining water in bowl 1 now absorbs energy from the environment, thereby increasing the 
temperature of the water in the bowl. This increased thermal energy is used by more liquid water molecules to 
escape into the air as more water vapor. The process continues until all the water in bowl 1 is evaporated. 

Now when we look at bowl 2, the water is still 
there. Why didn’t all that water evaporate into the air? To 
explain what happens in bowl 2 let us do the following 
experiment. We place water in a container and place a 
plate over the water. Then we allow dry air, air that does 
not contain water vapor, to fill the top portion of the closed 
container, figure 3(a). Using a thermometer, we measure 
the temperature of the air as t = 20 0C, and using a 
pressure gauge we measure the pressure of the air p0, in 
the container. Now we remove the plate separating the dry 
air from the water by sliding it out of the closed container. 
As time goes by, we observe that the pressure recorded by 
the pressure gauge increases, figure 3(b). This occurs 
because some of the liquid water molecules evaporate into 
the air as water vapor. Water vapor is a gas like any other 
gas and it exerts a pressure. It is this water vapor pressure 
that is being recorded as the increased pressure on the 
gauge. The gauge is reading the air pressure of the dry air 
plus the actual water vapor pressure of the gas, p0 + pawv. 
Subtracting p0 from p0 + pawv, gives the actual water vapor 
pressure, pawv. As time goes on, the water vapor pressure  

                                                                                          Figure 3  Water vapor in the air. 
 

increases as more and more water molecules evaporate into the air. However, after a while, the pressure indicated 
by the gauge becomes a constant. At this point the air contains the maximum amount of water vapor that it can 
hold at that temperature. As new molecules evaporate into the air, some of the water vapor molecules condense 
back into the liquid, figure 3(c). An equilibrium condition is established, whereby just as many water vapor 
molecules are condensing as liquid water molecules are evaporating. At this point, the air is said to be saturated. 
That is, the air contains the maximum amount of water vapor that it can hold at that temperature. The vapor 
pressure read by the gauge is now called the saturation water vapor pressure, pswv. 

The amount of water vapor in the air is called humidity. A measure of the amount of water vapor in the air 
is given by the relative humidity, RH, and is defined as the ratio of the amount of water vapor actually present in 
the air to the amount of water vapor that the air can hold at a given temperature and pressure, times 100%. The 
amount of water vapor in the air is directly proportional to the water vapor pressure. Therefore, we can determine 
the relative humidity, RH, of the air as  

 
actual vapor pressureRH = 100%

satutation vapor pressure
 
 
 

                                                 (15H.1) 

avp

svp

RH = 100%
p
p

 
  
 

                                                                  (15H.2) 

 
When the air is saturated, the actual vapor pressure recorded by the gauge is equal to the saturation vapor 

pressure and hence, the relative humidity is 100%. If the air in the container is heated, we notice that the pressure 
indicated by the pressure gauge increases, figure 3(d). Part of the increased pressure is caused by the increase of 
the pressure of the air. This increase can be calculated by the ideal gas equation and subtracted from the gauge 
reading, so that we can determine any increase in pressure that would come from an increase in the actual water 
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vapor pressure. We notice that by increasing the air temperature to 25 0C, the water vapor pressure also increases. 
After a while, however, the water vapor pressure again becomes a constant. The air is again saturated. We see 
from this experiment that the maximum amount of water vapor that the air can hold is a function of temperature. 
At low temperatures the air can hold only a little water vapor, while at high temperatures the air can hold much 
more water vapor. 

We can now see why the water in bowl 2 in figure 2 did not disappear. Water evaporated from the liquid 
into the air above, increasing the relative humidity of the air. However, once the air became saturated, the relative 
humidity was equal to 100%, and no more water vapor could evaporate into it. This is why you can still see the 
water in bowl 2, there is no place for it to go. 

Because of the temperature dependence of water vapor in the air, when the temperature of the air is 
increased, the capacity of the air to hold water increases. Therefore, if no additional water is added to the air, the 
relative humidity will decrease because the capacity of the air to hold water vapor has increased. Conversely, 
when the air temperature is decreased, its capacity to hold water vapor decreases, and therefore the relative 
humidity of the air increases. This temperature dependence causes a decrease in the relative humidity during the 
day light hours, and an increase in the relative humidity during the night time hours, with the maximum relative 
humidity occurring in the early morning hours just before sunrise. 

The amount of evaporation depends on the following factors: 
1.  The vapor pressure. Whenever the actual vapor pressure is less than the maximum vapor pressure allowable at 

that temperature, the saturation vapor pressure, then evaporation will readily occur. Greater evaporation 
occurs whenever the air is dry, that is, at low relative humidities. Less evaporation occurs when the air is 
moist, that is, at high relative humidities. 

2.  Wind movement and turbulence. Air movement and turbulence replaces air near the water surface with less 
moist air and increases the rate of evaporation. 

Now that we have discussed the concepts of relative humidity we can understand how the body cools itself. 
Through the process of perspiration, the body secretes microscopic droplets of water onto the surface of the skin of 
the body. As these tiny droplets of water evaporate into the air, they cool the body. As long as the relative 
humidity of the air is low, evaporation occurs readily, and the body cools itself. However whenever the relative 
humidity becomes high, it is more difficult for the microscopic droplets of water to evaporate into the air. The body 
can not cool itself, and the person feels very uncomfortable. 

We are all aware of the discomfort caused by the hot and humid days of August. The high relative 
humidity prevents the normal evaporation and cooling of the body. As some evaporation occurs from the body, the 
air next to the skin becomes saturated, and no further cooling can occur. If a fan is used, we feel more comfortable 
because the fan blows the saturated air next to our skin away and replaces it with air that is slightly less 
saturated. Hence, the evaporation process can continue while the fan is in operation and the body cools itself. 
Another way to cool the human body in the summer is to use an air conditioner. The air conditioner not only cools 
the air to a lower temperature, but it also removes a great deal of water vapor from the air, thereby decreasing the 
relative humidity of the air and permitting the normal evaporation of moisture from the skin. (Note that if the air 
conditioner did not remove water vapor from the air, cooling the air would increase the relative humidity making 
us even more uncomfortable.) 

In the hot summertime, people enjoy swimming as a cooling experience. Not only the immersion of the 
body in the cool water is so satisfying, but when the person comes out of the water, evaporation of the sea or pool 
water from the person adds to the cooling. It is also customary to wear loose clothing in the summertime. The 
reason for this is to facilitate the flow of air over the body and hence assist in the evaporation process. Tight fitting 
clothing prevents this evaporation process and the person feels hotter. If you happen to live in a dry climate (low 
relative humidity), then you can feel quite comfortable at 85 0F, while a person living in a moist climate (high 
relative humidity) is very uncomfortable at the same 85 0F. 

What many people do not realize is that you can also feel quite uncomfortable even in the wintertime, 
because of the humidity of the air. If the relative humidity is very low in your home then evaporation occurs very 
rapidly, cooling the body perhaps more than is desirable. As an example, the air temperature might be 70 0F but if 
the relative humidity is low, say 30%, then evaporation readily occurs from the skin of the body, and the person 
feels cold even though the air temperature is 70 0F. In this case the person can feel more comfortable if he or she 
uses a humidifier. A humidifier is a device that adds water vapor to the air. By increasing the water vapor in the 
air, and hence increasing the relative humidity, the rate of evaporation from the body decreases. The person no 
longer feels cold at 70 0F, but feels quite comfortable. If too much water vapor is added to the air, increasing the 
relative humidity to near a 100%, then evaporation from the body is hampered, the body is not able to cool itself, 
and the person feels too hot even though the temperature is only 70 0F. Thus too high or too low a relative 
humidity makes the human body uncomfortable. 
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We should also note that the evaporation process is also used to cool the human body for medical purposes. 
If a person is running a high fever, then an alcohol rub down helps cool the body down to normal temperature. The 
principle of evaporation as a cooling device is the same, only alcohol is very volatile and evaporates very rapidly. 
This is because the saturation vapor pressure of alcohol at 20 0C is much higher than the saturation vapor 
pressure of water. At 20 0C, water has a saturation vapor pressure of 17.4 mm of Hg, whereas ethyl alcohol has a 
saturation vapor pressure of 44 mm of Hg. The larger the saturation vapor pressure of a liquid, the greater is the 
amount of its vapor that the air can hold and hence the greater is the rate of vaporization. Because the alcohol 
evaporates much more rapidly than water, much greater cooling occurs than when water evaporates. Ethyl ether 
and ethyl chloride have saturation vapor pressures of 442 mm and 988 mm of Hg, respectively. Ethyl chloride with 
its very high saturation vapor pressure, evaporates so rapidly that it freezes the skin, and is often used as a local 
anesthetic for minor surgery. 
 

The Language of Physics 
 
Thermal expansion 
Most materials expand when 
heated (p. ). 
 
Charles’ law 
The volume of a gas at constant 
pressure is directly proportional to 
the absolute temperature of the gas 
(p. ). 
 
Gay-Lussac’s law 
The absolute pressure of a gas at 
constant volume is directly 
proportional to the absolute 
temperature of the gas (p. ). 
 
Boyle’s law 
The product of the pressure and 
volume of a gas at constant 
temperature is equal to a constant 
(p. ). 

 
The ideal gas law 
The general gas law that contains 
Charles’, Gay-Lussac’s, and Boyle’s 
law as special cases. It states that 
the product of the pressure and 
volume of a gas divided by the 
absolute temperature of the gas is a 
constant (p. ). 
 
Mole 
One mole of any gas is that amount 
of the gas that has a mass in grams 
equal to the 
atomic or molecular mass of the 
gas. One mole of any gas at a 
temperature of 0 0C and a pressure 
of one atmosphere, has a volume of 
22.4 liters (p. ). 
 
 

Avogadro’s number 
Every mole of a gas contains the 
same number of molecules, namely, 
6.022 × 1023 molecules. The mass of 
one molecule is equal to the 
molecular mass of that gas divided 
by Avogadro’s number (p. ). 
 
Kinetic theory of gases 
The analysis of a gas at the 
microscopic level, treated by 
Newton’s laws of motion. The 
kinetic theory shows that the 
absolute temperature of a gas is a 
measure of the mean translational 
kinetic energy of the molecules of 
the gas (p. ). 
 
 

 
Summary of Important Equations 

 
Linear expansion 

  ∆L = αL0∆t           (15.1)     
 
Area expansion 

   ∆A = 2αA0∆t          (15.3) 
 
Volume expansion 

   ∆V = 3αV0∆t          (15.5) 
 
Coefficient of volume expansion for 
solids             β = 3α                (15.6) 
 
Volume expansion 

  ∆V = βV0∆t            (15.7) 

 
Ideal gas law  p1V1 = p2V2    (15.20) 
                         T1       T2 

pV = nRT         (15.23) 
 
Number of molecules 

      N = nNA            (15.24) 
 
Absolute pressure  

  pabs = pgauge + patm        (15.25) 
 
Temperature and mean kinetic 
energy      3 kT =  1 mvavg2     (15.45) 
                 2           2 

 
rms speed of a molecule 

rms
3kTv
m

=            (15.46) 

 
Mass of a molecule 

      m =  M                (15.47) 
                             NA 
 
Total mass of the gas 
                     mtotal = nM 
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Questions for Chapter 15 
 

1. Describe the process of 
expansion from a microscopic point 
of view. 

2. Explain why it is necessary to 
make a temperature correction 
when measuring atmospheric 
pressure with a barometer. 

*3. In the very upper portions of 
the atmosphere there are extremely 
few molecules present. Discuss the 
concept of temperature as it would 
be applied in this portion of the 
atmosphere. As an extension, 
discuss the concept of temperature 
as it would be applied in outer 
space. 

4. Explain the introduction of 
the Kelvin temperature scale in the 
application of Charles’ law. 

5. Describe the meaning and 
application of gauge pressure. 

*6. Would you expect the ideal 
gas equation to be applicable to a 
volume that is of the same order of 
magnitude as the size of a 
molecule? 

7. If a gas is at an extremely 
high density, what effect would this 
have on the assumptions 
underlying the kinetic theory of 
gases? 

8. From the point of view of the 
time between collisions of a gas 

molecule and the walls of the 
container, what happens if the 
container is reduced to half its 
original size? 

9. From the point of view of the 
kinetic theory of gases, explain why 
there is no atmosphere on the 
moon. 

10. When an astronomer 
observes the stars at night in an 
observatory, the observatory is not 
heated but remains at the same 
temperature as the outside air. 
Why should the astronomer do this? 

 

 
Problems for Chapter 15 

 
15.1  Linear Expansion of Solids 

1. An aluminum rod measures 
2.00 m at 10.0 0C. Find its length 
when the temperature rises to 
135 0C. 

2. A brass ring has a diameter 
of 20.0 cm when placed in melting 
ice at 0 0C. What will its diameter 
be if it is placed in boiling water? 

3. An aluminum ring, 7.00 cm 
in diameter at 5.00 0C, is to be 
heated and slipped over an 
aluminum shaft whose diameter is 
7.003 cm at 5.00 0C. To what 
temperature should the ring be 
heated? If the ring is not heated, to 
what temperature should the shaft 
be cooled such that the ring will fit 
over the shaft? 

 
Diagram for problem 3. 

 
4. The iron rim of a wagon 

wheel has an internal diameter of 
80.0 cm when the temperature is 
100 0C. What is its diameter when 
it cools to 0.00 0C? 

5. A steel measuring tape, 
correct at 0.00 0C measures a 

distance L when the temperature is 
30.0 0C. What is the error in the 
measurement due to the expansion 
of the tape? 

6. Steel rails 20.0 m long are 
laid when the temperature is 
5.00 0C. What separation should be 
left between the rails to allow for 
thermal expansion when the 
temperature rises to 38.5 0C? If the 
cross-sectional area of a rail is 230 
cm2, what force is associated with 
this expansion? 

7. Find the ratio of the 
circumference of a brass ring to its 
diameter when the ring has a 
diameter of 20.0 cm when placed in 
melting ice at 0 0C, and when 
placed in boiling water? Is there 
something special about this ratio? 

 
15.2  Area Expansion of Solids 

8. A sheet of brass measures 
4.00 m by 3.00 m at 5.00 0C. What 
is the area of the sheet at 175 0C? 

9. If the radius of a copper circle 
is 20.0 cm at 0.00 0C, what will its 
area be at 100 0C? 

10. A piece of aluminum has a 
hole 0.850 cm in diameter at 
20.0 0C. To what temperature 
should the sheet be heated so that 
an aluminum bolt 0.865 cm in 
diameter will just fit into the hole? 

 

15.3  Volume Expansion of 
Solids and Liquids 

11. A chemistry student fills a 
Pyrex glass flask to the top with 
100 cm3 of Hg at 0.00 0C. How much 
mercury will spill out of the tube, 
and have to be cleaned up by the 
student, if the temperature rises to 
35.0 0C? 

12. A tube is filled to a height of 
20.0 cm with mercury at 0.00 0C. If 
the tube has a cross-sectional area 
of 25.0 mm2, how high will the 
mercury rise in the tube when the 
temperature is 30.0 0C? Neglect the 
expansion of the tube. 

 
Diagram for problem 12. 

 
13. Since the volume of a 

material changes with a change in 
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temperature, show that the density 
ρ at any temperature is given by 

 
ρ =       ρ0        

     1 + β∆t 
 

where ρ0 is the density at the lower 
temperature. 

 
15.7  The Ideal Gas Law 

14. If 2.00 g of oxygen gas are 
contained in a tank of 500 cm3 at a 
pressure of 1.38 × 105 N/m2, what is 
the temperature of the gas? 

15. What is the pressure 
produced by 2 moles of gas at 
20.0 0C contained in a volume of 
5.00 × 10− 4 m3 ? 

16. One mole of hydrogen is at a 
pressure of 2.03 × 105 N/m2 and a 
volume of 0.25 m3. What is its 
temperature? 

17. Compute the number of 
molecules in a gas contained in a 
volume of 50.0 cm3 at a pressure of 
2.03 × 105 N/m2 and a temperature 
of 300 K. 

18. An automobile tire has a 
volume of 0.0800 m3 and contains 
air at a gauge pressure of 2.48 × 
105 N/m2 when the temperature is 
3.50 0C. What is the gauge pressure 
when the temperature rises to 
37.0 0C? 

19. (a) How many moles of gas 
are contained in 0.300 kg of H2 gas? 
(b) How many molecules of H2 are 
there in this mass? 

20. Nitrogen gas, at a pressure 
of 150 N/m2, occupies a volume of 
20.0 m3 at a temperature of 30.0 0C. 
Find the mass of this nitrogen gas 
in kilograms. 

21. One mole of nitrogen gas at 
a pressure of 1.01 × 105 N/m2 and a 
temperature of 300 K expands 
isothermally to double its volume. 
What is its new pressure? 
(Isothermal means at constant 
temperature.) 

22. An ideal gas occupies a 
volume of 4.00 × 10−3 m3 at a 
pressure of 1.01 × 105 N/m2 and a 
temperature of 273 K. The gas is 
then compressed isothermally to 
one half of its original volume. 
Determine the final pressure of the 
gas. 

23. The pressure of a gas is kept 
constant while 3.00 m3 of the gas at 
an initial temperature of 50.0 0C is 
expanded to 6.00 m3. What is the 
final temperature of the gas? 

24. The volume of O2 gas at a 
temperature of 20.0 0C is 4.00 × 
10−3 m3. The temperature of the gas 
is raised to 100 0C while the 
pressure remains constant. What is 
the new volume of the gas? 

25. A balloon is filled with 
helium at a pressure of 1.52 × 105 
N/m2, a temperature of 25.0 0C, and 
occupies a volume of 3.00 m3. The 
balloon rises in the atmosphere. 
When it reaches a height where the 
pressure is 5.07 × 104 N/m2 and the 
temperature is −20.0 0C, what is its 
volume? 

*26. An air bubble of 32.0 cm3 
volume is at the bottom of a lake 
10.0 m deep where the temperature 
is 5.00 0C. The bubble rises to the 
surface where the temperature is 
20.0 0C. Find the volume of the 
bubble just before it reaches the 
surface. 

27. One mole of helium is at a 
temperature of 300 K and a volume 
of 1.00 × 10−2 m3. What is its 
pressure? The gas is warmed at 
constant volume to 600 K. What is 
its new pressure? How many 
molecules are there? 

 
15.8  The Kinetic Theory of 
Gases 

28. Find the rms speed of a 
helium atom at a temperature of 
10.0 K. 

29. Find the kinetic energy of a 
single molecule when it is at a 
temperature of (a) 0.00 0C, 
(b) 20.0 0C, (c) 100 0C, (d) 1000 0C, 
and (e) 5000 0C. 

30. Find the mass of a carbon 
dioxide molecule (CO2). 

31. Find the rms speed of a 
helium atom on the surface of the 
sun, if the sun’s surface 
temperature is approximately 6000 
K. 

32. At what temperature will 
the rms speed of an oxygen 
molecule be twice its speed at room 
temperature? 

33. The rms speed of a gas 
molecule is v at a temperature of 
300 K. What is the speed if the 
temperature is increased to 900 K? 

*34. Find the total kinetic 
energy of all the nitrogen molecules 
in the air in a room 7.00 m by 10.0 
m by 4.00 m, if the air is at a 
temperature of 22.0 0C and 1 atm of 
pressure. 

35. If the rms speed of a 
monatomic gas is 445 m/s at 350 K, 
what is the atomic mass of the 
atom? What gas do you think it is? 

 
Additional Problems 

36. A barometer reads normal 
atmospheric pressure when the 
mercury column in the tube is at 
76.0 cm of Hg at 0.00 0C. If the 
pressure of the atmosphere does not 
change, but the air temperature 
rises to 35.0 0C, what pressure will 
the barometer indicate? The tube 
has a diameter of 5.00 mm. Neglect 
the expansion of the tube. 

37. Find the stress necessary to 
give the same strain that occurs 
when a steel rod undergoes a 
temperature change of 120 0C. 

*38. The symbol π is defined as 
the ratio of the circumference of a 
circle to its diameter. If a circular 
sheet of metal expands by heating, 
show that the ratio of the expanded 
circumference to the expanded 
diameter is still equal to π. 

39. A 15.0-cm strip of steel is 
welded to the left side of a 15.0-cm 
strip of aluminum. When the strip 
undergoes a temperature change ∆t, 
will the combined strip bend to the 
right or to the left? 

 
Diagram for problem 39. 
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*40. A 350-g mass is connected 
by a thin brass rod 25.0 cm long to a 
rotating shaft that is rotating at an 
initial angular speed of 5.00 rad/s. 
If the temperature changes by 
35 0C, (a) find the change in the 
moment of inertia of the system and 
(b) using the law of conservation of 
angular momentum, find the 
change in the rotational energy of 
the system. 

41. The focal length of a 
polished aluminum spherical mirror 
is given by f = R/2, where R is the 
radius of curvature of the mirror, 
and is 23.5 cm. Find the new focal 
length of the mirror if the 
temperature changes by 45.0 0C. 

*42. A 50.0-g silver ring, 12.0 
cm in diameter, is spinning about 
an axis through its center at a 
constant speed of 11.4 rad/s. If the 
temperature changes by 185 0C, 
what is the change in the angular 
momentum of the ring? The 
coefficient of linear expansion for 
silver is 1.90 × 10−5/0C. 

43. An aluminum rod is at room 
temperature. To what temperature 
would this rod have to be heated 
such that the thermal expansion is 
enough to exceed the elastic limit of 
aluminum? Compare this 
temperature with the melting point 
of aluminum. What conclusion can 
you draw? 

44. A steel pendulum is 60.0 cm 
long, at 20.0 0C. By how much does 
the period of the pendulum change 
when the temperature is 35.0 0C? 

45. Find the number of air 
molecules in a classroom 10.0 m 
long, 10.0 m wide, and 3.5 m high, if 
the air is at normal atmospheric 
pressure and a temperature of 
20.0 0C. 

46. A brass cylinder 5.00 cm in 
diameter and 8.00 cm long is at an 
initial temperature of 380 0C. It is 
placed in a calorimeter containing 
0.120 kg of water at an initial 
temperature of 5.00 0C. The 
aluminum calorimeter has a mass 
of 0.060 kg. Find (a) the final 
temperature of the water and 
(b) the change in volume of the 
cylinder. 

*47. Dalton’s law of partial 
pressure says that when two or 
more gases are mixed together, the 
resultant pressure is the sum of the 
individual pressures of each gas. 
That is, 

p = p1 + p2 + p3 + p4 + . . . 
 

If one mole of oxygen at 20.0 0C and 
occupying a volume of 2.00 m3 is 
added to two moles of nitrogen also 
at 20.0 0C and occupying a volume 
of 10.0 m3 and the final volume is 
10.0 m3, find the resultant pressure 
of the mixture. 

*48. The escape velocity from 
the earth is vE = 1.12 × 104 m/s. At 
what temperature is the rms speed 
equal to this for: (a) hydrogen (H2), 
(b) helium (He), (c) nitrogen (N2), 
(d) oxygen (O2), (e) carbon dioxide 
(CO2), and (f) water vapor (H2O)? 
From these results, what can you 
infer about the earth’s atmosphere? 

*49. The escape velocity from 
the moon is vM = 0.24 × 104 m/s. At 
what temperature is the rms speed 
equal to this for (a) hydrogen (H2), 
(b) helium (He), (c) nitrogen (N2), 
(d) oxygen (O2), (e) carbon dioxide 
(CO2), and (f) water vapor (H2O)? 
From these results, what can you 
infer about the possibility of an 
atmosphere on the moon? 

*50. Show that the velocity of a 
gas molecule at one temperature is 
related to the velocity of the 
molecule at a second temperature 
by 

2
2 1

1

Tv v
T

=  

 
*51. A room is filled with 

nitrogen gas at a temperature of 
293 K. (a) What is the average 
kinetic energy of a nitrogen 
molecule? (b) What is the rms speed 
of the molecule? (c) What is the rms 
value of the momentum of this 
molecule? (d) If the room is 4.00 m 
wide what is the average force 
exerted on the wall by this 
molecule? (e) If the wall is 4.00 m 
by 3.00 m, what is the pressure 
exerted on the wall by this 
molecule? (f) How many molecules 

moving at this speed are necessary 
to cause a pressure of 1.00 atm? 

*52. Two isotopes of a gaseous 
substance can be separated by 
diffusion if each has a different 
velocity. Show that the rms speed of 
an isotope can be given by 

 
1

2 1
2

mv v
m

=  

 
where the subscript 1 refers to 
isotope 1 and the subscript 2 refers 
to isotope 2. 

 
Interactive Tutorials 

53. Linear Expansion. A copper 
tube has the length L0 = 1.58 m at 
the initial temperature ti = 20.0 0C. 
Find its length L when it is heated 
to a final temperature tf = 100 0C. 

54. Area Expansion. A circular 
brass sheet has an area A0 = 2.56 
m2 at the initial temperature ti = 
0 0C. Find its new area A when it is 
heated to a final temperature tf = 
90 0C. 

55. Volume Expansion. A glass 
tube is filled to a height h0 = 0.762 
m of mercury at the initial 
temperature ti = 0 0C. The diameter 
of the tube is 0.085 m. How high 
will the mercury rise when the final 
temperature tf = 50 0C? Neglect the 
expansion of the glass. 

56. The Ideal Gas Law. A gas 
has a pressure p1 = 1 atm, a volume 
V1 = 4.58 m3, and a temperature t1 = 
20.0 0C. It is then compressed to a 
volume V2 = 1.78 m3 and a pressure 
p2 = 3.57 atm. Find the final 
temperature of the gas t2. 

57. Number of moles and the 
number of molecules in a gas. Find 
the number of moles and the 
number of molecules in a gas under 
a pressure p = 1 atm and a 
temperature t = 20.0 0C. The room 
has a length L = 15.0 m, a width W 
= 10.0 m, and a height h = 4.00 m. 

58. Kinetic theory. Oxygen gas 
is in a room under a pressure p = 1 
atm and a temperature of t = 
20.0 0C. The room has a length L = 
18.5 m, a width W = 12.5 m, and a 
height h = 5.50 m. For the oxygen 
gas, find (a) the kinetic energy of a 
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single molecule, (b) the total kinetic 
energy of all the oxygen molecules, 
(c) the mass of an oxygen molecule, 
and (d) the speed of the oxygen 

molecule. The molecular mass of 
oxygen is MO2 = 32.0 g/mole. 

59. Ideal Gas Equation 
Calculator. 

    
To go to these Interactive 

Tutorials click on this sentence. 
 

  
 

To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 16  Heat Transfer 
 
“There can be no doubt now, in the mind of the physicist who has associated himself 
with inductive methods, that matter is constituted of atoms, heat is movement of 
molecules , and conduction of heat, like all other irreversible phenomena, obeys, not 
dynamical, but statistical laws, namely, the laws of probability.”             Max Planck 
  

16.1  Heat Transfer 
In chapter 14 we saw that an amount of thermal energy Q, given by 
 

Q = mc∆T                                                                                (14.6) 
 

is absorbed or liberated in a sensible heating process. But how is this thermal energy transferred to, or from, the 
body so that it can be absorbed, or liberated? To answer that question, we need to discuss the mechanism of 
thermal energy transfer. The transfer of thermal energy has historically been called heat transfer. 

Thermal energy can be transferred from one body to another by any or all of the following mechanisms: 
1.  Convection 
2.  Conduction 
3.  Radiation 

 
Convection is the transfer of thermal energy by the actual motion of the medium itself. The medium in motion is 

usually a gas or a liquid. Convection is the most important heat transfer process for liquids and gases. 
Conduction is the transfer of thermal energy by molecular action, without any motion of the medium. Conduction 

can occur in solids, liquids, and gases, but it is usually most important in solids. 
Radiation is a transfer of thermal energy by electromagnetic waves. 
 
We will discuss the details of electromagnetic waves in chapter 25. For now we will say that it is not necessary to 
have a medium for the transfer of energy by radiation. For example, energy is radiated from the sun as an 
electromagnetic wave, and this wave travels through the vacuum of space, until it impinges on the earth, thereby 
heating the earth. 

Let us now go into more detail about each of these mechanisms of heat transfer. 
 
16.2  Convection 
Consider the large mass m of air at the surface of the 
earth that is shown in figure 16.1. The lines labeled T0, 
T1, T2, and so on are called isotherms and represent the 
temperature distribution of the air at the time t. An 
isotherm is a line along which the temperature is 
constant. Thus everywhere along the line T0 the air 
temperature is T0, and everywhere along the line T1 the 
air temperature is T1, and so forth. Consider a point P on 
the surface of the earth that is at a temperature T0 at 
the time t. How can thermal energy be transferred to 
this point P thereby changing its temperature? That is, 
how does the thermal energy at that point change with 
time? If we assume that there is no local infusion of 
thermal energy into the air at P, such as heating from 
the sun and the like, then the only way that thermal 

                                                                                         Figure 16.1  Horizontal convection. 
 
 energy can be transferred to P is by moving the hotter air, presently to the left of point P, to point P itself. That is, 
if energy can be transferred to the point P by convection, then the air temperature at the point P increases. This is 
equivalent to moving an isotherm that is to the left of P to the point P itself. The transfer of thermal energy per 
unit time to the point P is given by ∆Q/∆t. By multiplying and dividing by the distance ∆x, we can write this as 
 

∆Q = ∆Q  ∆x                                                                                 (16.1) 
                                                                                           ∆t      ∆x   ∆t 
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But 
∆x = v 

                                                                                                     ∆t       
 

the velocity of the air moving toward P. Therefore, equation 16.1 becomes 
 

∆Q = v ∆Q                                                                              (16.2) 
                                                                                                  ∆t         ∆x 

 
But ∆Q, on the right-hand side of equation 16.2, can be replaced with 

 
∆Q = mc∆T                                                                             (14.6) 

 
(We will need to depart from our custom of using the lower case t for temperatures in Celsius or Fahrenheit 
degrees, because we will use t to represent time. Thus, the upper case T is now used for temperature in either 
Celsius or Fahrenheit degrees.) Therefore, 

∆Q = vmc ∆T                                                                             (16.3) 
                                                                                              ∆t              ∆x 

 
Hence, the thermal energy transferred to the point P by convection becomes 

 
 ∆Q = vmc ∆T  ∆t                                                                         (16.4) 

                                                                                                               ∆x              
 

The term ∆T/∆x is called the temperature gradient, and tells how the temperature changes as we move in the x-
direction. We will assume in our analysis that the temperature gradient remains a constant. 

 
Example 16.1 

 
Energy transfer per unit mass. If the temperature gradient is 2.00 0C per 100 km and if the specific heat of air is 
1009 J/(kg 0C), how much thermal energy per unit mass is convected to the point P in 12.0 hr if the air is moving 
at a speed of 10.0 km/hr? 

Solution
 

The heat transferred per unit mass, found from equation 16.4, is 
 

∆Q = vc ∆T ∆t 
                                                                                      m          ∆x 

( )
o

0
km  J 2.00 C10.0 1009 12.0 hr
hr 100 kmkg C

   =    
   

 

= 2420 J/kg 
 

To go to this Interactive Example click on this sentence. 
 

 
 
If the mass m of the air that is in motion is unknown, the density of the fluid can be used to represent the 

mass. Because the density ρ = m/V, where V is the volume of the air, we can write the mass as 
 

m = ρV                                                                             (16.5) 
 

Therefore, the thermal energy transferred by convection to the point P becomes 
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∆Q = vρVc ∆T  ∆t                                                                         (16.6) 
                                                                                                              ∆x              

 
Sometimes it is more convenient to find the thermal energy transferred per unit volume. In this case, we can use 
equation 16.6 as 

  ∆Q = vρc∆T ∆t 
                                                                                      V           ∆x 

 
Example 16.2 

 
Energy transfer per unit volume. Using the data from example 16.1, find the thermal energy per unit volume 
transferred by convection to the point P. Assume that the density of air is ρair = 1.293 kg/m3. 

Solution
 

The thermal energy transferred per unit volume is found as 
 

∆Q = vρc∆T ∆t 
                                                                                     V           ∆x 

( )
o

3 0
km  kg  J 2.00 C10.0 1.293 1009 12.0 hr
hr 100 kmm kg C

    =     
    

 

= 3120 J /m3 
 

Note that although the number 3120 J/m3 may seem small, there are thousands upon thousands of cubic meters of 
air in motion in the atmosphere. Thus, the thermal energy transfer by convection can be quite significant. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Convection is the main mechanism of thermal energy transfer in the atmosphere. On a global basis, the 
nonuniform temperature distribution on the surface of the earth causes convection cycles that result in the 
prevailing winds. If the earth were not rotating, a huge convection cell would be established as shown in figure 
16.2(a). The equator is the hottest portion of the earth because it gets the maximum radiation from the sun. Hot 
air at the equator expands and rises into the atmosphere. Cooler air at the surface flows toward the equator to 
replace the rising air. Colder air at the poles travels toward the equator. Air aloft over the poles descends to 
replace the air at the surface that just moved toward the equator. The initial rising air at the equator flows toward 
the pole, completing the convection cycle. The net result of the cycle is to bring hot air at the surface of the 
equator, aloft, then north to the poles, returning cold air at the polar surface back to the equator. 

This simplified picture of convection on the surface of the earth is not quite correct, because the effect 
produced by the rotating earth, called the Coriolis effect, has been neglected. The Coriolis effect is caused by the 
rotation of the earth and can best be described by an example. If a projectile, aimed at New York, were fired from 
the North Pole, its path through space would be in a fixed vertical plane that has the North Pole as the starting 
point of the trajectory and New York as the ending point at the moment that the projectile is fired. However, by 
the time that the projectile arrived at the end point of its trajectory, New York would no longer be there, because 
while the projectile was in motion, the earth was rotating, and New York will have rotated away from the initial 
position it was in when the projectile was fired. A person fixed to the rotating earth would see the projectile veer 
away to the right of its initial path, and would assume that a force was acting on the projectile toward the right of 
its trajectory. This fictitious force is called the Coriolis force and this seemingly strange behavior occurs because 
the rotating earth is not an inertial coordinate system. 

The Coriolis effect can be applied to the global circulation of air in the atmosphere, causing winds in the 
northern hemisphere to be deflected to the right of their original path. The global convection cycle described above 
still occurs, but instead of one huge convection cell, there are three smaller ones, as shown in figure 16.2(b). The 
winds from the North Pole flowing south at the surface of the earth are deflected to the right of their path and 
become the polar easterlies, as shown in figure 16.2(b). As the air aloft at the equator flows north it is deflected to 
the right of its path and eventually flows in a easterly direction at approximately 300 north latitude. The piling up 
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of air at this latitude causes the air aloft to sink to the surface where it emerges from a semipermanent high-
pressure area called the subtropical high. 

 
 

 
Figure 16.2  Convection in the atmosphere. Lutgens/Tarbuck, The Atmosphere: An Introduction to Meteorology, 

4/E, 1989, pp. 186-187. Prentice-Hall, Inc., Englewood Cliffs, NJ. 
 
The air at the surface that flows north from this high-pressure area is deflected to the right of its path 

producing the mid-latitude westerlies. The air at the surface that flows south from this high-pressure area is also 
deflected to the right of its path and produces the northeast trade winds, also shown in figure 16.2(b). Thus, it is 
the nonuniform temperature distribution on the surface of the earth that is responsible for the global winds. 

Transfer of thermal energy by convection is also very important in the process called the sea breeze, which 
is shown in figure 16.3. Water has a higher specific heat than land and for the same radiation from the sun, the 
temperature of the water does not rise as high as the temperature of the land. Therefore, the land mass becomes 
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hotter than the neighboring water. The hot air over the land rises and a cool breeze blows off the ocean to replace 
the rising hot air. Air aloft descends to replace this cooler sea air and the complete cycle is as shown in figure 16.3. 
The net result of the process is to replace hot air over the 
land surface by cool air from the sea. This is one of the 
reasons why so many people flock to the ocean beaches 
during the hot summer months. The process reverses at 
night when the land cools faster than the water. The air 
then flows from the land to the sea and is called a land 
breeze.                                                                        

This same process of thermal energy transfer takes 
place on a smaller scale in any room in your home or office. 
Let us assume there is a radiator situated at one wall of the 
room, as shown in figure 16.4. The air in contact with the  

                                                                                             Figure 16.3  The sea breeze. 
 

heater is warmed, and then rises. Cooler air moves in to 
replace the rising air and a convection cycle is started. 
The net result of the cycle is to transfer thermal energy 
from the heater to the rest of the room. All these cases are 
examples of what is called natural convection. 

To help the transfer of thermal energy by 
convection, fans can be used to blow the hot air into the 
room. Such a hot air heating system, shown in figure 16.5, 
is called a forced convection system. A metal plate is 
heated to a high temperature in the furnace. A fan blows 
air over the hot metal plate, then through some ducts, to a 
low-level vent in the room to be heated. The hot air 
emerges from the vent and rises into the room. A cold air 
return duct is located near the floor on the other side of  

                                                                                    Figure 16.4  Natural convection in a room. 
 

the room, returning cool air to the furnace to start the convection cycle over again. The final result of the process is 
the transfer of thermal energy from the hot furnace to the cool room. 

To analyze the transfer of thermal energy by this forced 
convection we will assume that a certain amount of mass of air ∆m is 
moved from the furnace to the room. The thermal energy transferred 
by the convection of this amount of mass ∆m is written as 

 
∆Q = (∆m)c∆T                                    (16.7) 

                                                                                                              
where ∆T = Th − Tc, Th is the temperature of the air at the hot plate 
of the furnace, and Tc is the temperature of the colder air as it leaves 
the room. The transfer of thermal energy per unit time becomes 
 
 

                                                                                                               Figure 16.5  Forced convection. 
 

∆Q = ∆m c(Th − Tc) 
                                                                                         ∆t       ∆t 
However, 

m = ρV 
therefore 

∆m = ρ∆V 
Therefore, the thermal energy transfer becomes 

 ∆Q = ρc ∆V (Th − Tc)                                                                   (16.8) 
                                                                                           ∆t            ∆t                                 

 
where ∆V/∆t is the volume flow rate, usually expressed as m3/min in SI units. 
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Example 16.3 
 

Forced convection. A hot air heating system is rated at 8.40 × 107 J/hr. If the heated air in the furnace reaches a 
temperature of 120 0C, the room temperature is 15.6 0C, and the fan can deliver 7.00 m3/min, what is the thermal 
energy transfer per hour from the furnace to the room, and the efficiency of this system? The specific heat of air at 
constant pressure is cair = 1009 J/kg 0C and the density of air is ρ = 1.29 kg/m3. 

Solution
 

We find the thermal energy transfer per hour from equation 16.8 as  
 

∆Q = ρ c∆V (Th − Tc)   
                                                                                        ∆t           ∆t 

( )
3

0 0
3 0

 kg  J m min1.29 1009 7.00 120 C 15.6 C 60 
min hrm kg C

     = −     
     

 

= 5.71 × 107 J/hr 
 

We determine the efficiency, or rated value, of the heater as the ratio of the thermal energy out of the system to 
the thermal energy in, times 100%. Therefore, 

  ( )
7

7
 5.71 10  J/hrEff 100%
8.40 10  J/hr

 ×
=  × 

 

= 67.9% 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
16.3  Conduction 
Conduction is the transfer of thermal energy by molecular action, without any motion of the medium. Conduction 
occurs in solids, liquids, and gases, but the effect is most pronounced in solids. If one end of an iron bar is placed in 
a fire, in a relatively short time, the other end becomes hot. Thermal energy is conducted from the hot end of the 
bar to the cold end. The atoms or molecules in the hotter part of the body vibrate around their equilibrium position 
with greater amplitude than normal. This greater vibration causes the molecules to interact with their nearest 
neighbors, causing them to vibrate more also. These in turn interact with their nearest neighbors passing on this 
energy as kinetic energy of vibration. The thermal energy is thus passed from molecule to molecule along the entire 
length of the bar. The net result of these molecular vibrations is a transfer of thermal energy through the solid. 
 
Heat Flow Through a Slab of Material 
We can determine the amount of thermal energy conducted through a solid 
with the aid of figure 16.6. A slab of material of cross-sectional area A and 
thickness d is subjected to a high temperature Th on the hot side and a colder 
temperature Tc on the other side. 

It is found experimentally that the thermal energy conducted through 
this slab is directly proportional to (1) the area A of the slab — the larger the 
area, the more thermal energy transmitted; (2) the time t — the longer the 
period of time, the more thermal energy transmitted; and finally (3) the 
temperature difference, Th − Tc, between the faces of the slab. If there is a 
large temperature difference, a large amount of thermal energy flows. We can 
express these observations as the direct proportion 

 
                                                                                                                               Figure 16.6  Heat conduction  

                                                                                                                                      through a slab. 
Q ∝ A(Th − Tc)t 
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The thermal energy transmitted is also found to be inversely proportional to the thickness of the slab, that is, 
 

Q ∝  1  
       d 

 
This is very reasonable because the thicker the slab the greater the 
distance that the thermal energy must pass through. Thus, a thick 
slab implies a small amount of energy transfer, whereas a thin slab 
implies a larger amount of energy transfer. 

These two proportions can be combined into one as 
 

Q ∝ A(Th − Tc)t                                    (16.9) 
       d 

 
To make an equality out of this proportion we must introduce a 
constant of proportionality. The constant must also depend on the 
material that the slab is made of, since it is a known fact that 
different materials transfer different quantities of thermal energy. 
We will call this constant the coefficient of thermal conductivity, and 
will denote it by k. Equation 16.9 becomes 
 

Q = kA(Th − Tc)t                                (16.10) 
                                                              d                    

 
Equation 16.10 gives the amount of thermal energy transferred by 
conduction. Table 16.1 gives the thermal conductivity k for various 
materials. If k is large, then a large amount of thermal energy will 
flow through the slab, and the material is called a good conductor 
of heat. If k is small then only a small amount of thermal energy 
will flow through the slab, and the material is called a poor 
conductor or a good insulator. Note from table 16.1 that most metals are good conductors while most nonmetals 
are good insulators. The ratio (Th − Tc)/d is the temperature gradient, ∆T/∆x. Let us look at some examples of heat 
conduction. 
 

Example 16.4 
 

Heat transfer by conduction. Find the amount of thermal energy that flows per day through a solid oak wall 10.0 
cm thick, 3.00 m long, and 2.44 m high, if the temperature of the inside wall is 21.1 0C while the temperature of 
the outside wall is −6.67 0C. 

Solution
 

The thermal energy conducted through the wall, found from equation 16.10, is 
 

Q = kA(Th − Tc)t 
      d 

= (0.147 J/m s 0C)(7.32 m2)(21.1 0C − (−6.67 0C))(24 hr)(3600 s/1 hr) 
(0.100 m) 

= 2.58 × 107 J 
 
Note that Th and Tc are the temperatures of the wall and in general will be different from the air temperature 
inside and outside the room. The value Th is usually lower than the room air temperature, whereas Tc is usually 
higher than the outside air temperature. This thermal energy loss through the wall must be replaced by the home 
heating unit in order to maintain a comfortable room temperature.   
 

To go to this Interactive Example click on this sentence. 
 

Table 16.1 
Coefficient of Thermal Conductivity for 

Various Materials 
Material           J         

         m s 0C 
Aluminum 
Brass 
Copper 
Gold 
Iron 
Lead 
Nickel 
Platinum 
Silver 
Zinc 
Glass 
Concrete 
Brick 
Plaster 
White pine 
Oak 
Cork board 
Sawdust 
Glass wool 
Rock wool 
Nitrogen 
Helium 
Air 

2.34 × 102 
1.09 × 102 
4.02 × 102 
3.13 × 102 
8.79 × 101 
3.56 × 101 
9.21 × 101 
7.12 × 101 
4.27 × 102 
1.17 × 102 
7.91 × 10−1 
1.30 
6.49 × 10−1 
4.69 × 10−1 
1.13 × 10−1 
1.47 × 10−1 
3.60 × 10−2 
5.90 × 10−2 
4.14 × 10−2 
3.89 × 10−2 
2.60 × 10−2 
1.50 × 10−1 
2.30 × 10−2 

Pearson Custom Publishing

483



 
 
16-8                                                                                                          Vibratory Motion, Wave Motion and Fluids 

 
 
Equivalent Thickness of Various Walls 
The walls in most modern homes are insulated with 4 in. of glass wool that is placed within the 2×4 wooden stud 
framework that makes up the wall. This 4 in. of insulation is in reality only a nominal 4 inches because the size of 
the wooden studs is not exactly 2 in. by 4 in. The 2×4 size is the rough wood size before it is cut and sanded to its 
final size which is closer to 1 3/8 in. × 3 9/16 in. If you measure a 2×4 you will see that it is almost exactly 3.5 cm 
by 9.00 cm. So the insulation that is in the wall of most modern homes is actually 9.00 cm thick. Hence, when you 
buy 4 inches of glass wool insulation in your local lumber yard, you are really buying 9.00 cm of insulation.  

Suppose the walls of your home do not have this 9.00 cm glass wool insulation. What should the equivalent 
thickness of another wall be, in order to give the same amount of insulation as a glass wool wall if the wall is made 
of (a) concrete, (b) brick, (c) glass, (d) oak wood, or (e) aluminum? 

The amount of thermal energy that flows through the wall containing the glass wool, found from equation 
16.10, is 

      Qgw = kgwA(Th − Tc)t 
               dgw 

 
The thermal energy flowing through a concrete wall is given by 
 

Qc = kcA(Th − Tc)t 
        dc 

 
We assume in both equations that the walls have the same area, A; the same temperature difference (Th − Tc) is 
applied across each wall; and the thermal energy flows for the same time t. The subscript gw has been used for the 
wall containing the glass wool and the subscript c for the concrete wall. If both walls provide the same insulation 
then the thermal energy flow through each must be equal, that is, 

 
Qc = Qgw                                                                            (16.11) 

kcA(Th − Tc)t = kgwA(Th − Tc)t                                                           (16.12) 
                                                                                 dc                      dgw 
Therefore, 

 kc  =  kgw                                                                             (16.13) 
                                                                                          dc     dgw 

 
The equivalent thickness of the concrete wall to give the same insulation as the glass wool wall is 
 

dc =  kc dgw                                                                          (16.14) 
     kgw 

  
Using the values of thermal conductivity from table 16.1 gives for the thickness of the concrete wall 
 

 ( )
0

c
c gw 0

gw

 1.30 J/m s C= 9.00 cm
0.0414 J/m s C

k
d d

k

 
=  

 
  

     dc = 283 cm = 2.83 m 
 

Therefore it would take a concrete wall 2.83 m thick to give the same insulating ability as a 9-cm wall containing 
glass wool. Concrete is effectively a thermal sieve. Thermal energy flows through it, almost as fast as if there were 
no wall present at all. This is why uninsulated basements in most homes are difficult to keep warm. 

To determine the equivalent thickness of the brick, glass, oak wood, and aluminum walls, we equate the 
thermal energy flow through each wall to the thermal energy flow through the wall containing the glass wool as in 
equations 16.11 and 16.12. We obtain a generalization of equation 16.13 as 

 
 kb = kg = kow = kAl = kgw                                                               (16.15) 

                                                                            db    dg    dow    dAl    dgw 
with the results 
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brick         0.649 (9.00 cm) 141 cm 1.41 m
0.0414

b
b gw

gw

k
d d

k
 = = = = 
 

             

glass            0.791 (9.00 cm) 172 cm 1.72 m
0.0414

g
g gw

gw

k
d d

k
 = = = = 
 

          

oak wood    0.147 (9.00 cm) 32.0 cm 0.320 m
0.0414

ow
ow gw

gw

k
d d

k
 = = = = 
 

               

aluminum   234 (9.00 cm) 50900 cm 509 m
0.0414

Al
Al gw

gw

k
d d

k
 = = = = 
 

             

 
We see from these results that concrete, brick, glass, wood, and aluminum are not very efficient as 

insulated walls. A standard wood frame, studded wall with 9 cm of glass wool placed between the studs is far more 
efficient. 

A few years ago, aluminum siding for the home was very popular. There were countless home 
improvement advertisements that said, “You can insulate your home with beautiful maintenance free aluminum 
siding.” As you can see from the preceding calculations, such statements were extremely misleading if not outright 
fraudulent. As just calculated, the aluminum wall would have to be 509 m (1670 ft) thick, just to give the same 
insulation as the 9 cm of glass wool. Aluminum siding may have provided a beautiful, maintenance free home, but 
it did not insulate it. Today most siding for the home is made of vinyl rather than aluminum because vinyl is a 
good insulator. Most cooking utensils, pots and pans, are made of aluminum because the aluminum will readily 
conduct the thermal energy from the fire to the food to be cooked. 

Another interesting result from these calculations is the realization that a glass window would have to be 
1.72 m thick to give the same insulation as the 9 cm of glass wool in the normal wall. Since glass windows are 
usually only about 0.32 cm or less thick, relatively large thermal energy losses are experienced through the 
windows of the home.  

 
Convection Cycle in the Walls of a Home 
All these results are based on the fact that different materials have 
different thermal conductivities. The smaller the value of k, the better the 
insulator. If we look carefully at table 16.1, we notice that the smallest 
value of k is for the air itself, that is, k = 0.0230 J/(m s 0C). This would 
seem to imply that if the space between the studs of a wall were left 
completely empty, that is, if no insulating material were placed in the 
wall, the air in that space would be the best insulator. Something seems 
to be wrong, since anyone who has an uninsulated wall in a home knows 
that there is a tremendous thermal energy loss through it. The reason is 
that air is a good insulator only if it is not in motion. But the difficulty is 
that the air in an empty wall is not at rest, as we can see from figure 16.7. 
Air molecules in contact with the hot wall Th are heated by this hot wall 
absorbing a quantity of thermal energy Q. This heated air, being less 
dense than the surrounding air, rises to the top. The air that was 
originally at the top now moves down along the cold outside wall. This air 
is warmer than the cold wall and transmits some of its thermal energy to 
the cold wall where it is conducted to the outside. The air now sinks down 
along the outside wall and moves inward to the hot inside wall where it is 
again warmed and rises. A convection cycle has been established within 
the wall, whose final result is the absorption of thermal energy Q at the 
hot wall and its liberation at the cold wall, thereby producing a heat 
transfer through the wall. A great deal of thermal energy can be lost 
through the air in the wall, not by conduction, but by convection. If the air 
could be prevented from moving, that is, by stopping the convection 
current, then air would be a good insulator. This is basically what is done  

                                                                                                                        Figure 16.7  Convection currents in 
                                                                                                                                   an empty wall. 
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in using glass wool for insulation. The glass wool consists of millions of fibers of glass that create millions of tiny 
air pockets. These air pockets cannot move and hence there is no convection. The air between the fibers is still or 
dead air and acts as a good insulator. It is the dead air that is doing the insulating, not the glass fibers, because as 
we have just seen glass is not a good insulator. 

As already mentioned, glass windows are a source of large thermal energy losses in a house. The use of 
storm windows or thermal windows cuts down on the thermal energy loss significantly. However, even storm 
windows or thermal windows are not as effective as a normally insulated wall because of the convection currents 
that occur between the panes of the glass windows. 
 
The Compound Wall 
Up to now a wall has been treated as if it 
consisted of only one material. In general this is 
not the case. Walls are made up of many different 
materials of different thicknesses. We solve this 
more general problem by considering the 
compound wall in figure 16.8. We assume, for the 
present, that the wall is made up of only two 
materials. This assumption will be extended to 
cover the case of any number of materials later. 
(The analysis, although simple is a little long. 
Those students weak in algebra and only 
interested in the results for the heat conduction  

                                                                                  Figure 16.8  The compound wall. 
 
through a compound wall can skip ahead to equation 16.18.) 

Let us assume that the inside wall is the hot wall and it is at a temperature Th, whereas the outside wall is 
the cold wall and it is at a temperature Tc. The temperature at the interface of the two materials is unknown at 
this time and will be designated by Tx. The first wall has a thickness d1, and a thermal conductivity k1, whereas 
wall 2 has a thickness d2, and a thermal conductivity k2. The thermal energy flow through the first wall, given by 
equation 16.10, is 

Q1 = k1A(Th − Tx)t                                                                      (16.16) 
          d1 

 
The thermal energy flow through the second wall is given by 
 

Q2 = k2A(Tx − Tc)t  
          d2 

 
Under a steady-state condition, the thermal energy flowing through the first wall is the same as the thermal 
energy flowing through the second wall. That is, 

Q1 = Q2   
k1A(Th − Tx)t = k2A(Tx − Tc)t 

                                                                                    d1                    d2 
 

Because the cross-sectional area of the wall A is the same for each wall and the time for the thermal energy flow t 
is the same, they can be canceled out, giving 

   k1(Th − Tx)  =  k2(Tx − Tc)  
                                                                                       d1                   d2 
or 

k1Th − k1Tx = k2Tx − k2Tc 
                                                                             d1        d1        d2        d2 

 
Placing the terms containing Tx on one side of the equation, we get 
 

− k1Tx − k2Tx = − k1Th − k2Tc 
                                                                              d1       d2           d1        d2 
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 1 2 1 2

1 2 1 2
x h c

k k k k
T T T

d d d d

 
+ = + 

 
 

Solving for Tx, we get 
Tx = (k1/d1)Th + (k2/d2)Tc                                                                (16.17) 

    k1/d1 + k2/d2 
 

If Tx, in equation 16.16, is replaced by Tx, from equation 16.17, we get 
 

Q1 = k1A{Th − [(k1/d1)Th + (k2/d2)Tc]/(k1/d1 + k2/d2)}t 
d1 

= k1A  [Th(k1/d1 + k2/d2) − (k1/d1)Th − (k2/d2) Tc]t 
                                                             d1                       k1/d1 + k2/d2 

= k1A  [(k1/d1)Th + (k2/d2)Th − (k1/d1)Th − (k2/d2)Tc]t 
                                                           d1                          k1/d1 + k2/d2 

=     k1Ak2(Th − Tc)t    
     d1d2(k1/d1 + k2/d2) 
=            A(Th − Tc)t           

             (d1d2/k1k2)(k1/d1 + k2/d2) 
=   A(Th − Tc)t   
     d2/k2 + d1/k1 

 
The thermal energy flow Q1 through the first wall is equal to the thermal energy flow Q2 through the second wall, 
which is just the thermal energy flow Q going through the compound wall. Therefore, the thermal energy flow 
through the compound wall is given by 

Q =   A(Th − Tc)t                                                                        (16.18) 
         d1/k1 + d2/k2          

 
If the compound wall had been made up of more materials, then there would be additional terms, di/ki, in 

the denominator of equation 16.18 for each additional material. That is, 
 

( )

1
/

h c
n

i i
i

A T T t
Q

d k
=

−
=

∑
                                                                        (16.19) 

 
The problem is usually simplified further by defining a new quantity called the thermal resistance R, or the R 
value of the insulation, as 

 R =  d                                                                                (16.20) 
         k        

 
The thermal resistance R acts to impede the flow of thermal energy through the material. The larger the value of 
R, the smaller the quantity of thermal energy conducted through the wall. For a compound wall, the total thermal 
resistance to thermal energy flow is simply 

Rtotal = d1 + d2 + d3 + d4 + …                                                            (16.21) 
                                                                                       k1     k2    k3    k4 
 or 

 Rtotal = R1 + R2 + R3 + R4 + …                                                            (16.22) 
 

And the thermal energy flow through a compound wall is given by 
 

( )

1

h c
n

i
i

A T T t
Q

R
=

−
=

∑
                                                                      (16.23) 
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Example 16.5 
 

Heat flow through a compound wall. A wall 3.00 m by 2.44 m is made up of a thickness of 10.0 cm of brick, 10.0 cm 
of glass wool, 1.25 cm of plaster, and 0.640 cm of oak wood paneling. If the inside temperature of the wall is Th = 
18.0 0C and the outside temperature is −7.00 0C, how much thermal energy flows through this wall per day? 

Solution
  

The R value of each material, found with the aid of table 16.1, is 
 

Rbrick = dbrick =        0.100 m      = 0.154  m2 s 0C  
                                                                       kbrick     0.649 J/m s 0C                     J 
                                                    Rglass wool = dgw =        0.100 m       = 2.42  m2 s 0C 
                                                                      kgw    0.0414 J/m s 0C                   J 
                                                       Rplaster = dp  =        0.0125 m    = 0.0267 m2 s 0C 
                                                                     kp      0.469 J/m s 0C                      J 
                                                         Rwood = dw  =     0.0064 m      = 0.0435  m2 s 0C 
                                                                     kw      0.147 J/m s 0C                       J 

 
The R value of the total compound wall, found from equation 16.22, is 
 

R = R1 + R2 + R3 + R4 = 0.154 + 2.42 + 0.0267 + 0.0435 
= 2.64  m2 s 0C  

               J    
 

Note that the greatest portion of the thermal resistance comes from the glass wool. The total thermal energy 
conducted through the wall, found from equation 16.23, is 
 

( )

1

h c
n

i
i

A T T t
Q

R
=

−
=

∑
 

= (3.00 m)(2.44 m)(18.0 0C − (−7.00 0C))(24 hr)(3600 s/hr) 
2.64 m2 s 0C/J 
= 5.99 × 106 J 

 
Note that if there were no glass wool in the wall, the R value would be R = 0.224, and the thermal energy 
conducted through the wall would be 7.05 × 107 J, almost 12 times as much as the insulated wall. Remember, all 
these heat losses must be replaced by the home furnace in order to keep the temperature inside the home 
reasonably comfortable, and will require the use of fuel for this purpose. Finally, we should note that there is also 
a great heat loss in the winter through the roof of the house. To eliminate this energy loss there should be at least 
13.5 cm of insulation in the roof of the house, and in some locations 27 cm is preferable.  
 

To go to this Interactive Example click on this sentence. 
 

 
 
You should note that when you buy insulation for your home in your local lumberyard or home materials 

store, you will see ratings such as an R value of 12 for a nominal 4 in. of glass wool insulation, or an R value of 19 
for a nominal 6 in. of glass wool insulation. The units associated with these numbers are for the British 
engineering system of units, namely 

hr ft2 0F 
Btu 
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which is in the standard form used in the American construction industry today. So when using these products you 
must convert from the British engineering system of units to SI units for your calculations. You can still use the 
definition of R = d/k in problems in SI units, but then use the following conversion factor for the R value.  
 

R = 1 hr ft2 0F = 0.175 s m2 0C 
                                                                                  Btu                       J                      

 
and the numerical values will not correspond to the R values listed on the insulation itself. 

Everything that has been said about insulating our homes to prevent the loss of thermal energy in the 
winter, also applies in the summer. Only then the problem is reversed. The hot air is outside the house and the 
cool air is inside the house. The insulation will decrease the conduction of thermal energy through the walls into 
the room, keeping the room cool and cutting down or eliminating the use of air conditioning to cool the home. 
 
 
16.4  Radiation 
Radiation is the transfer of thermal energy by electromagnetic waves. As pointed out in chapter 12 on wave motion, 
any wave is characterized by its wavelength λ and frequency1 ν. The electromagnetic waves in the visible portion 
of the spectrum are called light waves. These light waves have wavelengths that vary from about 0.38 × 10−6 m for 
violet light to about 0.72 × 10−6 m for red light. Above visible red light there is an invisible, infrared portion of the 
electromagnetic spectrum. The wavelengths range from 0.72 × 10−6 m to 1.5 × 10−6 m for the near infrared, from 
1.5 × 10−6 m to 5.6 × 10−6 m for the middle infrared, and from 5.6 × 10−6 m up to 1 × 10−3 m for the far infrared. 
Most, but not all, of the radiation from a hot body falls in the infrared region of the electromagnetic spectrum. 
Every thing around you is radiating electromagnetic energy, but the radiation is in the infrared portion of the 
spectrum, which your eyes are not capable of detecting. Therefore, you are usually not aware of this radiation. 
 
The Stefan-Boltzmann Law 
Joseph Stefan (1835-1893) found experimentally, and Ludwig Boltzmann (1844-1906) found theoretically, that 
every body at an absolute temperature T radiates energy that is proportional to the fourth power of the absolute 
temperature. The result, which is called the Stefan-Boltzmann law is given by 
 

 Q = eσAT4t                                                                            (16.24) 
 

where Q is the thermal energy emitted; e is the emissivity of the body, which varies from 0 to 1; σ is a constant, 
called the Stefan-Boltzmann constant and is given by 
 

σ = 5.67 × 10−8      J        
                                s m2 K4 

 
A is the area of the emitting body, T is the absolute temperature of the body, and t is the time. 
 
Radiation from a Blackbody 
The amount of radiation depends on the radiating surface. Polished surfaces are usually poor radiators, while 
blackened surfaces are usually good radiators. Good radiators of heat are also good absorbers of radiation, while 
poor radiators are also poor absorbers. A body that absorbs all the radiation incident upon it is called a 
blackbody. The name blackbody is really a misnomer, since the sun acts as a blackbody and it is certainly not 
black. A blackbody is a perfect absorber and a perfect emitter. The substance lampblack, a finely powdered black 
soot, makes a very good approximation to a blackbody. A box, whose insides are lined with a black material like 
lampblack, can act as a blackbody. If a tiny hole is made in the side of the box and then a light wave is made to 
enter the box through the hole, the light wave will be absorbed and re-emitted from the walls of the box, over and 
over. Such a device is called a cavity resonator. For a blackbody, the emissivity e in equation 16.24 is equal to 1. 
The amount of heat absorbed or emitted from a blackbody is 

 
 Q = σAT 4t                                                                           (16.25) 

 

                                                           
1 When dealing with electromagnetic waves, the symbol ν (Greek letter nu) is used to designate the frequency instead of the letter f used for 
conventional waves. 
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Example 16.6 
 

Energy radiated from the sun. If the surface temperature of the sun is approximately 5800 K, how much thermal 
energy is radiated from the sun per unit time? Assume that the sun can be treated as a blackbody. 

Solution
 

We can find the energy radiated from the sun per unit time from equation 16.25. The radius of the sun is about 
6.96 × 108 m. Its area is therefore 

A = 4πr2 = 4π(6.96 × 108 m)2 

= 6.09 × 1018 m2 
The heat radiated from the sun is therefore 

 Q = σAT 4 
                                                                                         t              

( )( )46 18 2
2 4

  J5.67 10 6.09 10  m 5800 K
s m  K

− = × × 
 

 

= 3.91 × 1026 J/s  
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 16.7 
 

The solar constant. How much energy from the sun impinges on the top of the earth’s atmosphere per unit time per 
unit area? 

Solution
 

The energy per unit time emitted by the sun is power and was found in 
example 16.6 to be 3.91 × 1026 J/s. This total power emitted by the sun 
does not all fall on the earth because that power is distributed 
throughout space, in all directions, figure 16.9. Hence, only a small 
portion of it is emitted in the direction of  the earth. 

To find the amount of that power that reaches the earth, we 
first find the distribution of that power over a sphere, whose radius is 
the radius of the earth’s orbit, r = 1.5 × 1011 m. This gives us the 
power, or energy per unit time, falling on a unit area at the distance of 
the earth from the sun. The area of this sphere is 
 

A = 4πr2 = 4π(1.5 × 1011 m)2 
= 2.83 × 1023 m2 

 
The energy per unit area per unit time impinging on the earth is 

                                                                                                                   Figure 16.9  Radiation received on the 
                                                                                                                                earth from the sun. 

therefore 
 Q  = 3.91 × 1026 J/s = 1.38 × 103 W  

                                                                   At     2.83 × 1023 m2                      m2 
 
This value, 1.38 × 103 W/m2, the energy per unit area per unit time impinging on the edge of the atmosphere, is 
called the solar constant, and is designated as S0. 
 

To go to this Interactive Example click on this sentence. 
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Example 16.8 
 

Solar energy reaching the earth. Find the total energy from the sun impinging on the top of the atmosphere during 
a 24-hr period. 

Solution
 

The actual power impinging on the earth at the top of the atmosphere can be found by multiplying the solar 
constant S0 by the effective area A subtended by the earth. The area subtended by the earth is found from the area 
of a disk whose radius is equal to the mean radius of the earth, RE = 6.37 × 106 m. That is, 
 

A = π RE2 = π(6.37 × 106 m)2 = 1.27 × 1014 m2 
Power impinging on earth = (Solar constant)(Area) 

( )3 14 2 17
2

 W1.38 10 1.27 10  m 1.76 10  W 
m

P  = × × = × 
 

 

 
The energy impinging on the earth in a 24-hr period is found from 
 

Q = Pt = (1.76 × 1017 W)(24 hr)(3600 s/hr) 
= 1.52 × 1022 J 

 
This is an enormous quantity of energy. Obviously, solar energy, as a source of available energy for the world 
needs to be tapped. 

To go to this Interactive Example click on this sentence. 
 

 
 
All the solar energy incident on the upper atmosphere does not make it down to the surface of the earth 

because of reflection from clouds; scattering by dust particles in the atmosphere; and some absorption by water 
vapor, carbon dioxide, and ozone in the atmosphere. What is even more interesting is that this enormous energy 
received by the sun is reradiated back into space. If the earth did not re-emit this energy the mean temperature of 
the earth would constantly rise until the earth burned up. 

A body placed in any environment absorbs energy from the environment. The net energy absorbed by the 
body Q is equal to the difference between the energy absorbed by the body from the environment QA and the 
energy radiated by the body to the environment QR, that is, 

 
Q = QA − QR                                                                            (16.26) 

 
If TB is the absolute temperature of the radiating body and TE is the absolute temperature of the environment, 
then the net heat absorbed by the body is 

        Q = QA − QR = eEσATE4t − eBσATB4t 
 Q = σA(eETE4 − eBTB4)t                                                                   (16.27) 

 
where eE is the emissivity of the environment and eB is the emissivity of the body. In general these values, which 
are characteristic of the particular body and environment, must be determined experimentally. If the body and the 
environment can be approximated as blackbodies, then eB = eE = 1, and equation 16.27 reduces to the simpler form 
 

Q = σA(TE4 − TB4)t                                                                     (16.28) 
 

If the value of Q comes out negative, it represents a net loss of energy from the body. 
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Example 16.9 
 

Look at that person radiating. A person, at normal body temperature of 98.6 0F (37 0C) stands near a wall of a 
room whose temperature is 50.0 0F (10 0C). If the person’s surface area is approximately 2.00 m2, how much heat is 
lost from the person per minute? 

Solution
 

The absolute temperature of the person is 310 K while the absolute temperature of the wall is 283 K. Let us 
assume that we can treat the person and the wall as blackbodies, then the heat lost by the person, given by 
equation 16.28, is 

Q = σA(TE4 − TB4)t 

( ) ( ) ( ) ( )4 48 2
2 4
J5.67 10 2.00 m 283 K 310 K 60.0

s m  K
s−   = × −    

  

 = −1.92 × 104 J 
 
This thermal energy lost must be replaced by food energy. This result is of course only approximate, since the 
person is not a blackbody and no consideration was taken into account for the shape of the body and the insulation 
effect of the person’s clothes. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Blackbody Radiation as a Function of Wavelength 
The Stefan-Boltzmann law tells us only about the total energy emitted and nothing about the wavelengths of the 
radiation. Because all this radiation consists of electromagnetic waves, the energy is actually distributed among 
many different wavelengths. The energy distribution per unit area per unit time per unit frequency ∆ν is given by 
a relation known as Planck’s radiation law as 
 

3

2 /
2 1

1h kT

Q h
At c e ν

π ν
ν

 =  ∆ − 
                                                                (16.29) 

 
where c is the speed of light and is equal to 3 × 108 m/s, ν is the frequency of the electromagnetic wave, e is a 
constant equal to 2.71828 and is the base e used in natural logarithms, k is the Boltzmann constant given in 
chapter 15, and h is a new constant, called Planck’s constant, given by 
 

h = 6.625 × 10−34 J s 
 

This analysis of blackbody radiation by Max Planck (1858-1947) was revolutionary in its time (December 1900) 
because Planck assumed that energy was quantized into little bundles of energy equal to hν. This was the 
beginning of what has come to be known as quantum mechanics, which will be discussed later in chapter 31. 
Equation 16.29 can also be expressed in terms of the wavelength λ as 
 

2

5 /
2 1

1hc kT

Q hc
At e λ

π
λ λ

 =  ∆ − 
                                                             (16.30) 

 
A plot of equation 16.30 is shown in figure 16.10 for various temperatures. Note that T4 < T3 < T2 < T1. The first 
thing to observe in this graph is that the intensity of the radiation for a given temperature varies with the 
wavelength from zero up to a maximum value and then decreases. That is, for any one temperature, there is one 
wavelength λmax for which the intensity is a maximum. Second, as the temperature increases, the wavelength λmax 
where the maximum or peak intensity occurs shifts to shorter wavelengths. This was recognized earlier by the 
German physicist Wilhelm Wien (1864-1928) and was written in the form 
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 λmaxT = constant = 2.898 × 10−3 m K                                                            (16.31) 
 

 
and was called the Wien displacement law. Third, 
the visible portion of the electromagnetic spectrum 
(shown in the hatched area) is only a small portion of 
the spectrum, and most of the radiation from a 
blackbody falls in the infrared range of the 
electromagnetic spectrum. Because our eyes are not 
sensitive to these wavelengths, the infrared 
radiation coming from a hot body is invisible. But as 
the temperature of the blackbody rises, the peak 
intensity shifts to lower wavelengths, until, when the 
temperature is high enough, some of the blackbody 
radiation is emitted in the visible red portion of the 
spectrum and the heated body takes on a red glow. If 
the temperature continues to rise, the red glow  
 

Figure 16.10  The intensity of blackbody radiation as a 
                                                                                                                   function of wavelength and temperature. 
 
becomes a bright red, then an orange, then yellow-white, and finally blue-white as the blackbody emits more and 
more radiation in the visible range. When the blackbody emits all wavelengths in the visible portion of the 
spectrum, it appears white. (The visible range of the electromagnetic spectrum, starting from the infrared end, has 
the colors red, orange, yellow, green, blue, and violet before the ultraviolet portion of the spectrum begins.) 

 
Example 16.10 

 
The wavelength of the maximum intensity of radiation from the sun. Find the wavelength of the maximum 
intensity of radiation from the sun, assuming the sun to be a blackbody at 5800 K. 

Solution
 

The wavelength of the maximum intensity of radiation from the sun is found from the Wien displacement law, 
equation 16.31, as 

λmax = 2.898 × 10−3 m K  
       T 

 = 2.898 × 10−3 m K 
5800 K 

= 0.499 × 10−6 m = 0.499 µm 
 

That is, the wavelength of the maximum intensity from the sun lies at 0.499 µm, which is in the blue-green portion 
of the visible spectrum. It is interesting to note that some other stars, which are extremely hot, radiate mostly in 
the ultraviolet region. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Have you ever wondered . . . ? 
An Essay on the Application of Physics 

The Greenhouse Effect and Global Warming 
 
Have you ever wondered what the newscaster was talking about when she said that the earth is getting warmer 
because of the Greenhouse Effect? What is the Greenhouse Effect and what does it have to do with the heating of 
the earth? 
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The name Greenhouse Effect comes from the way the earth and its atmosphere is heated. The ultimate 
cause of heating of the earth’s atmosphere is the sun. But if this is so, then why is the top of the atmosphere 
(closer to the sun) colder than the lower atmosphere (farther from the sun)? You may have noticed snow and ice on 
the colder mountain tops while the valleys below are relatively warm. We can explain this paradox in terms of the 
radiation of the sun, the radiation of the earth, and the constituents of the atmosphere. The sun radiates 
approximately as a blackbody at 5800 K with a peak intensity occurring at 0.499 × 10−6 m, as shown in figure 1. 
 

The heavy smoke from industrial plants contribute to the Greenhouse Effect. 

Figure 1  Comparison of radiation from the sun and the earth. 
 

Example 16H.1 
 

The wavelength of the maximum intensity of radiation from the earth. Assuming that the earth has a mean 
temperature of about 300 K use the Wien displacement law to estimate the wavelength of the peak radiation from 
the earth. 

Solution
 

The wavelength of the peak radiation from the earth, found from equation 16.31, is 
 

λmax = 2.898 × 10−3 m K  
       T 
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= 2.898 × 10−3 m K 
300 K 

= 9.66 × 10−6 m 
 

which is also shown in figure 1. Notice that the maximum radiation from the earth lies well in the longer wave 
infrared region, whereas the maximum solar radiation lies in much shorter wavelengths. (Ninety-nine percent of 
the solar radiation is in wavelengths shorter than 4.0 µm, and almost all terrestrial radiation is at wavelengths 
greater than 4.0 µm.) Therefore, solar radiation is usually referred to as short-wave radiation, while terrestrial 
radiation is usually referred to as long-wave radiation. 

 

 
 
Of all the gases in the atmosphere only oxygen, ozone, water vapor, and carbon dioxide are significant 

absorbers of radiation. Moreover these gases are selective absorbers, that is, they absorb strongly in some 
wavelengths and hardly at all in others. The absorption spectrum for oxygen and ozone is shown in figure 2(b). 
The absorption of radiation is plotted against the wavelength of the radiation. An absorptivity of 1 means total 
absorption at that wavelength, whereas an absorptivity of 0 means that the gas does not absorb any radiation at 
that wavelength. Thus, when the absorptivity is 0, the gas is totally transparent to that wavelength of radiation. 
Observe from figure 2(b) that oxygen and ozone absorb almost all the ultraviolet radiation from the sun in 
wavelengths below 0.3 µm. A slight amount of ultraviolet light from the sun reaches the earth in the range 0.3 µm 
to the beginning of visible light in the violet at 0.38 µm. Also notice that oxygen and ozone are almost transparent 
to radiation in the visible and infrared region of the electromagnetic spectrum. 

Figure 2  Absorption of radiation at various wavelengths for atmospheric constituents. Lutgens/Tarbuck, The 
Atmosphere, 3/E, p. 44. Prentice-Hall, Inc., Englewood Cliffs, NJ. 
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Figure 2(d) shows the absorption spectrum for water vapor (H2O). Notice that there is no absorption in the 
ultraviolet or visible region of the electromagnetic spectrum for water vapor. However, there are a significant 
number of regions in the infrared where water vapor does absorb radiation. 

Figure 2(c) shows the absorption spectrum for carbon dioxide (CO2). Notice that there is no absorption in 
the ultraviolet or visible region of the electromagnetic spectrum for carbon dioxide. However, there are a 
significant number of regions in the infrared where carbon dioxide does absorb radiation. The bands are not quite 
as wide as for water vapor, but they are very significant as we will see shortly. Also note in figure 2(a) that nitrous 
oxide (N2O) also absorbs some energy in the infrared portion of the spectrum. 

Figure 2(e) shows the combined absorption spectrum for the atmosphere. We can see that the atmosphere 
is effectively transparent in the visible portion of the spectrum. Because the peak of the sun’s radiation falls in this 
region, the atmosphere is effectively transparent to most of the sun’s rays, and hence most of the sun’s radiation 
passes through the atmosphere as if there were no atmosphere at all. The atmosphere is like an open window to 
let in all the sun’s rays. Hence, the sun’s rays pass directly through the atmosphere where they are then absorbed 
by the surface of the earth. The earth then reradiates as a blackbody, but since its average temperature is so low 
(250-300 K), its radiation is all in the infrared region as was shown in figure 1. But the water vapor, H2O, and 
carbon dioxide, CO2, in the atmosphere absorb almost all the energy in the infrared region. Thus, the earth’s 
atmosphere is mainly heated by the absorption of the infrared radiation from the earth. Therefore, the air closest to 
the ground becomes warmer than air at much higher altitudes, and therefore the temperature of the atmosphere 
decreases with height. The warm air at the surface rises by convection, distributing the thermal energy 
throughout the rest of the atmosphere. 

This process of heating the earth’s atmosphere by terrestrial radiation is called the Greenhouse Effect. The 
reason for the name is that it was once thought that this was the way a greenhouse was heated. That is, short-
wavelength radiation from the sun passed through the glass into the greenhouse. The plants and ground in the 
greenhouse absorbed this short-wave radiation and reradiated in the infrared. The glass in the greenhouse was 
essentially opaque to this infrared radiation and reflected this radiation back into the greenhouse thus keeping 
the greenhouse warm. Because the mechanism for heating the atmosphere was thought to be similar to the 
mechanism for heating the greenhouse, the heating of the atmosphere came to be called the Greenhouse Effect. (It 
has since been shown that the dominant reason for keeping the greenhouse warm is the prevention of the 
convection of the hot air out of the greenhouse by the glass. However, the name Greenhouse Effect continues to be 
used.) 

Because carbon dioxide is an absorber of the earth’s infrared radiation, it has led to a concern over the 
possible warming of the atmosphere caused by excessive amounts of carbon dioxide that comes from the burning of 
fossil fuels, such as coal and oil, and the deforestation of large areas of trees, whose leaves normally absorb some of 
the excess carbon dioxide in the atmosphere. “For example, since 1958 concentrations of CO2 have increased from 
315 to 352 parts per million, an increase of approximately 15%.”2 Also, “During the last 100-200 years carbon 
dioxide has increased by 25%.”3 And “Everyday 100 square miles of rain forest go up in smoke, pumping one billion 
tons of carbon dioxide into the atmosphere.”4 

Almost everyone agrees that the increase in carbon dioxide in the atmosphere is not beneficial, but this is 
where the agreement ends. There is wide disagreement on the consequences of this increased carbon dioxide level. 
Let us first describe the two most extreme views. 

One scenario says that the increased level of CO2 will cause the mean temperature of the atmosphere to 
increase. This increased temperature will cause the polar ice caps to melt and increase the height of the mean sea 
level throughout the world. This in turn will cause great flooding in the low-lying regions of the world. The 
increased temperature is also assumed to cause the destruction of much of the world’s crops and hence its food 
supply. 

A second scenario says that the increased temperatures from the excessive carbon dioxide will cause 
greater evaporation from the oceans and hence greater cloud cover over the entire globe. It is then assumed that 
this greater cloud cover will reflect more of the incident solar radiation into space. This reflected radiation never 
makes it to the surface of the earth to heat up the surface. Less radiation comes from the earth to be absorbed by 
the atmosphere and hence there is a decrease in the mean temperature of the earth. This lower temperature will 
then initiate the beginning of a new ice age. 

                                                           
2 “Computer Simulation of the Greenhouse Effect,” Washington, Warren M. and Bettge, Thomas W., Computers in Physics, May/June 1990. 
3 “Climate and the Earth’s Radiation Budget,” Ramanathan, V.; Barkstrom, Bruce R.; and Harrison, Edwin F., Physics Today, May 1989. 
4  NOVA TV series, “The Infinite Voyage, Crisis in the Atmosphere.” 
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Thus one scenario has the earth burning up, the other has it freezing down. It is obvious from these two 
scenarios that much greater information on the effect of the increase in carbon dioxide in the atmosphere is 
necessary.  

Another way to look at the Greenhouse Effect is to consider the earth as a planet in space that is in 
equilibrium between the incoming solar radiation and the outgoing terrestrial radiation. As we saw in example 
16.7, the amount of energy per unit area per unit time falling on the earth from the sun is given by the solar 
constant, S0 = 1.38 × 103 J/(s m2). The actual energy per unit time impinging on the earth at the top of the 
atmosphere can be found by multiplying the solar constant S0 by the effective area Ad subtended by the earth. 
That is, Q/t = S0Ad. The area subtended by the earth Ad is found from the area of a disk whose radius is equal to 
the mean radius of the earth. That is, Ad = πRE2  

The solar radiation reaching the surface of the earth is equal to the solar radiation impinging on the top of 
the atmosphere S0Ad minus the amount of solar radiation reflected from the atmosphere, mostly from clouds. The 
albedo of the earth a, the ratio of the amount of radiation reflected to the total incident radiation, has been 
measured by satellites to be a = 0.300. Hence the amount of solar energy reaching the earth per second is given by 

 
 Q  = S0Ad − aS0Ad = S0Ad(1 − a) 

                                                                       t 
 
Assuming that the earth radiates as a blackbody it will emit the radiation 
 

 Q = σAsT4 
                                                                                         t              

  
The radiating area of the earth, As = 4πRE2, is the spherical area of the earth because the earth is radiating 
everywhere, not only in the region where it is receiving radiation from the sun. Because the earth must be in 
thermal equilibrium in its position in space, the radiation in must equal the radiation out, or 
 

 Q  = S0Ad(1 − a) = σAsT 4 
                                                                             t                                     

  
Solving for the temperature T of the earth, we get 
 

T 4 = S0Ad(1 − a) = S0πRE2 (1 − a)   
                                                                                             σAs                σ4πRE2 

= S0(1 − a) 
    4σ 

= [1.38 × 103 J/(s m2)](1 − 0.300) 
4[5.67 × 10−8 J/(s m2 K4)] 

T = 255 K 
 

That is the radiative equilibrium temperature of the earth should be 255 K. This mean radiative temperature of 
255 K is sometimes called the planetary temperature and/or the effective temperature of the earth. It is observed, 
however, that the mean temperature of the surface of the earth, averaged over time and place, is actually 288 K, 
some 33 K higher than this temperature.5 This difference in the mean temperature of the earth is attributed to the 
Greenhouse Effect. That is, the energy absorbed by the water vapor and carbon dioxide in the atmosphere causes 
the surface of the earth to be much warmer than if there were no atmosphere. It is for this reason that 
environmentalists are so concerned with the abundance of carbon dioxide in the atmosphere. 

As a contrast let us consider the planet Venus, whose main constituent in the atmosphere is carbon 
dioxide. Performing the same calculation for the solar constant in example 16.7, only using the orbital radius of 
Venus of 1.08 × 1011 m, gives a solar constant of 2668 W/m2, roughly twice that of the earth. The mean albedo of 
Venus is about 0.80 because of the large amount of clouds covering the planet. Performing the same calculation for 
the planetary temperature of Venus gives 220 K. Even though the solar constant is roughly double that of the 
earth, because of the very high albedo, the planetary temperature is some 30 K colder than the earth. However, 
the surface temperature of Venus has been found to be 750 K due to the very large amount of carbon dioxide in the 

                                                           
5 We should note that the radiative temperature of the earth is 255 K. This is a mean temperature located somewhere in the middle of the 
atmosphere. The surface temperature is much higher and temperatures in the very upper atmosphere are much lower, giving the mean of 255 
K. 
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atmosphere. Hence the Greenhouse Effect on Venus has caused the mean surface temperature to be 891 0F. There 
is apparently no limitation to the warming that can result from the Greenhouse Effect. 

More detailed computer studies of the earth’s atmosphere, using general circulation models (GCM), have 
been made. In these models, it is assumed that the amount of carbon dioxide in the atmosphere has doubled and 
the model predicts the general condition of the atmosphere over a period of twenty years. The model indicates a 
global warming of about 4.0 to 4.5 0C. (A temperature of 4 or 5 0C may not seem like much, but when you recall 
that the mean temperature of the earth during an ice age was only 3 0C cooler than presently, the variation can be 
quite significant.) The effect of the warming was to cause greater extremes of temperature. That is, hot areas were 
hotter than normal, while cold areas were colder than normal. These greater extremes of temperature will cause 
greater extremes of weather 

Stephen H. Schneider6 has said, “Sometime between 15,000 and 5,000 years ago the planet warmed up 
5 0C. Sea levels rose 300 feet and forests moved. Literally that change in 5 0C revamped the ecological face of this 
planet. Species went extinct, others grew. It took nature about 10,000 years to do that. That’s the natural rate of 
change. We’re talking about a 5 0C change from our climate models in one century.” 

Still with all this evidence many scientists are reluctant to make a definitive stand on the issue of global 
warming. As an example, “No ‘smoking gun’ evidence exists, however, to prove that the Earth’s global climate is 
warming (versus a natural climate variability) or, if it is warming, whether that warming is caused by the increase 
in carbon dioxide. Recent estimates show a warming trend, but unfortunately many problems and limitations of 
observed data make difficult the exact determination of temperature trends.”7 

Still one concern remains. If we wait until we are certain that there is a global warming caused by the 
increase of carbon dioxide in the air, will we be too late to do anything about it? 

                                                           
6 Stephen H. Schneider, Global Warming, Sierra Club Books, San Francisco, 1989. 
7 “Computer Simulation of the Greenhouse Effect,” Washington, Warren M. and Bettge, Thomas W., Computers in Physics, May/June 1990. 

 
The Language of Physics 

 
Convection 
The transfer of thermal energy by 
the actual motion of the medium 
itself (p. ). 
 
Conduction 
The transfer of thermal energy by 
molecular action. Conduction occurs 
in solids, liquids, and gases, but the 
effect is most pronounced in solids 
(p. ). 
 
Radiation 
The transfer of thermal energy by 
electromagnetic waves (p. ). 
 
Isotherm 
A line along which the temperature 
is a constant (p. ). 
 
Temperature gradient 
The rate at which the temperature 
changes with distance (p. ). 
 
Coriolis effect 
On a rotating coordinate system, 
such as the earth, objects in 
straight line motion appear to be 
deflected to the right of their 

straight line path. Their actual 
motion in space is straight, but the 
earth rotates out from under them. 
The direction of the prevailing 
winds is a manifestation of the 
Coriolis effect (p. ). 
 
Conductor 
A material that easily transmits 
heat by conduction. A conductor has 
a large value of thermal 
conductivity (p. ). 
 
Insulator 
A material that is a poor conductor 
of heat. An insulator has a small 
value of thermal conductivity (p. ). 
 
Thermal resistance, or R value 
of an insulator 
The ratio of the thickness of a piece 
of insulating material to its thermal 
conductivity (p. ). 
 
Stefan-Boltzmann law 
Every body radiates energy that is 
proportional to the fourth power of 
the absolute temperature of the 
body (p. ). 

 
Blackbody 
A body that absorbs all the 
radiation incident upon it. A 
blackbody is a perfect absorber and 
a perfect emitter. The substance 
lampblack, a finely powdered black 
soot, makes a very good 
approximation to a blackbody. The 
name is a misnomer, since many 
bodies, such as the sun, act like 
blackbodies and are not black (p. ). 
 
Solar constant 
The power per unit area impinging 
on the edge of the earth’s 
atmosphere. It is equal to 1.38 × 
103 W/m2 (p. ). 
 
Planck’s radiation law 
An equation that shows how the 
energy of a radiating body is 
distributed over the emitted 
wavelengths. Planck assumed that 
the radiated energy was quantized 
into little bundles of energy, 
eventually called quanta (p. ). 
 
Wien displacement law 
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The product of the wavelength that 
gives maximum radiation times the 

absolute temperature is a constant 
(p. ). 

 
Summary of Important Equations 

 
Heat transferred by convection 

∆Q = vmc ∆T  ∆t               (16.4) 
                             ∆x        

∆Q = vρVc ∆T  ∆t              (16.6) 
                               ∆x         

 
∆Q = ρc ∆V (Th − Tc)          (16.8) 

         ∆t          ∆t                 
Heat transferred by conduction 

  Q = kA(Th − Tc)t        (16.10) 
                           d 
Heat transferred by conduction 
through a compound wall 
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R value of insulation 

   R =  d                 (16.20) 
                            k 
 
 
Stefan-Boltzmann law, heat 
transferred by radiation 

      Q = eσAT 4t           (16.24) 
 
Radiation from a blackbody 

  Q = σAT 4t             (16.25) 
 

Energy absorbed by radiation from 
environment 

    Q = σA(eETE4 − eBTB4)t  (16.27) 
 
Planck’s radiation law        
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Wien displacement law 

   λmaxT = constant     (16.31) 

 
Questions for Chapter 16 

 
1. Explain the differences and 

similarities between convection, 
conduction, and radiation. 

*2. Explain how the process of 
convection of ocean water is 
responsible for relatively mild 
winters in Ireland and the United 
Kingdom even though they are as 
far north as Hudson’s Bay in 
Canada. 

*3. Explain from the process of 
convection why the temperature of 
the Pacific Ocean off the west coast 
of the United States is colder than 
the temperature of the Atlantic 
Ocean off the east coast of the 
United States. 

*4. Explain from the process of 
convection why it gets colder after 
the passing of a cold front and 
warmer at the approach and 
passing of a warm front. 

5. Explain the process of heat 
conduction in a gas and a liquid. 

6. Considering the process of 
heat conduction through the walls 
of your home, explain why there is 

a greater loss of thermal energy 
through the walls on a very windy 
day. 

7. Using the old saying, “if a 
little is good then more is even 
better”,  could you put 18 cm of 
glass wool insulation into the 9 cm 
space in your wall to give you even 
greater insulation?  

8. In the winter time, why does 
a metal door knob feel colder than 
the wooden door even though both 
are at the same temperature? 

9. Explain the use of venetian 
blinds for the windows of the home 
as a temperature controlling device. 
What advantage do they have over 
shades? 

10. Why are thermal lined 
drapes used to cover the windows of 
a home on cold winter nights? 

11. Why is it desirable to wear 
light colored clothing in very hot 
climates rather than dark colored 
clothing? 

12. Explain how you can still 
feel cold while sitting in a room 

whose air temperature is 70 0F, if 
the temperature of the walls is very 
much lower. 

*13. From what you now know 
about the processes of heat transfer, 
discuss the insulation of a 
calorimeter. 

14. On a very clear night, 
radiation fog can develop if there is 
sufficient moisture in the air. 
Explain. 

*15. If the maximum radiation 
from the sun falls in the blue-green 
portion of the visible spectrum, why 
doesn’t the sun appear blue-green? 

16. From the point of view of 
radiation, discuss the process of 
thermography, whereby a 
specialized camera takes pictures of 
an object in the infrared portion of 
the spectrum. Explain how this 
could be used in medicine to detect 
tumors in the human body. (The 
tumors are usually several degrees 
hotter than normal body tissue.) 

 

 
Problems for Chapter 16 

 
16.2  Convection 

1. How much thermal energy 
per unit mass is transferred by 

convection in 6.00 hr if air at the 
surface of the earth is moving at 
24.0 km/hr? The temperature 

gradient is measured as 4.00 0C per 
100 km. 
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2. Air is moving over the 
surface of the earth at 30.0 km/hr. 
The temperature gradient is 2.50 0C 
per 100 km. How much thermal 
energy per unit mass is transferred 
by convection in an 8.00-hour 
period? 

3. An air conditioner can cool 
10.5 m3 of air per minute from 
30.0 0C to 18.5 0C. How much 
thermal energy per hour is removed 
from the room in one hour? 

4. In a hot air heating system, 
air at the furnace is heated to 
93.0 0C. A window is open in the 
house and the house temperature 
remains at 13.0 0C. If the furnace 
can deliver 5.60 m3/min of air, how 
much thermal energy per hour is 
transferred from the furnace to the 
room? 

5. A hot air heating system 
rated at 6.3 × 107 J/hr has an 
efficiency of 58.0%. The fan is 
capable of moving 5.30 m3 of air per 
minute. If air enters the furnace at 
17.0 0C, what is the temperature of 
the outlet air? 

 
16.3 Conduction 

6. How much thermal energy 
flows through a glass window 0.350 
cm thick, 1.20 m high, and 0.80 m 
wide in 12.0 hr if the temperature 
on the outside of the window is 
−8.00 0C and the temperature on 
the inside of the window is 20.0 0C? 

7. Repeat problem 6, but now 
assume that there are strong gusty 
winds whose air temperature is 
−15.0 0C. 

8. Find the amount of thermal 
energy that will flow through a 
concrete wall 10.0 m long, 2.80 m 
high, and 22.0 cm wide, in a period 
of 24.0 hr, if the inside temperature 
of the wall is 20.0 0C and the 
outside temperature of the wall is 
5.00 0C. 

9. Find the amount of thermal 
energy transferred through a pine 
wood door in 6.00 hr if the door is 
0.91 m wide, 1.73 m high, and 5.00 
cm thick. The inside temperature of 
the door is 20.0 0C and the outside 
temperature of the door is −5.00 0C. 

10. How much thermal energy 
will flow per hour through a copper 
rod, 5.00 cm in diameter and 1.50 m 
long, if one end of the rod is 
maintained at a temperature of 
225 0C and the other end at 20.0 0C? 

11. One end of a copper rod has 
a temperature of 100 0C, whereas 
the other end has a temperature of 
20.0 0C. The rod is 1.25 m long and 
3.00 cm in diameter. Find the 
amount of thermal energy that 
flows through the rod in 5.00 min. 
Find the temperature of the rod at 
45.0 cm from the hot end. 

12. On a hot summer day the 
outside temperature is 35.0 0C. A 
home air conditioner is trying to 
maintain a temperature of 22.0 0C. 
If there are 12 windows in the 
house, each 0.350 cm thick and 
0.960 m2 in area, how much 
thermal energy must the air 
conditioner remove per hour to 
eliminate the thermal energy 
transferred through the windows? 

*13. A styrofoam cooler (k = 
0.201 J/m s 0C) is filled with ice at 
0 0C for a summertime party. The 
cooler is 40.0 cm high, 50.0 cm long, 
40.0 cm wide, and 3.00 cm thick. 
The air temperature is 35.0 0C. 
Find (a) the mass of ice in the 
cooler, (b) how much thermal 
energy is needed to melt all the ice, 
and (c) how long it will take for all 
the ice to melt. Assume that the 
energy to melt the ice is only 
conducted through the four sides of 
the cooler. Also take the thickness 
of the cooler walls into account 
when computing the size of the 
walls of the container. 

14. An aluminum rod 50.0 cm 
long and 3.00 cm in diameter has 
one end in a steam bath at 100 0C 
and the other end in an ice bath at 
0.00 0C. How much ice melts per 
hour? 

15. If the home thermostat is 
turned from 21.0 0C down to 15.5 0C 
for an 8-hr period at night when the 
outside temperature is −7.00 0C, 
what percentage saving in fuel can 
the home owner realize? 

16. If the internal temperature 
of the human body is 37.0 0C, the 

surface temperature is 35.0 0C, and 
there is a separation of 4.00 cm of 
tissue between, how much thermal 
energy is conducted to the skin of 
the body each second? Take the 
thermal conductivity of human 
tissue to be 0.2095 J/s m 0C and the 
area of the human skin to be 1.90 
m2. 

17. What is the R value of 
(a) 4.00 in. of glass wool and 
(b) 6.00 in. of glass wool in SI units? 

18. How thick should a layer of 
plaster be in order to provide the 
same R value as a 5.00 cm of 
concrete? 

19. A basement wall consists of 
20.0 cm of concrete, 3.00 cm of glass 
wool, 0.800 cm of sheetrock 
(plaster), and 2.00 cm of knotty pine 
paneling. The wall is 2.50 m high 
and 10.0 m long. The outside 
temperature is 1.00 0C, and we 
want to maintain the inside 
temperature of 22.0 0C. How much 
thermal energy will be lost through 
four such walls in a 24-hr period? 

20. On a summer day the attic 
temperature of a house is 71.0 0C. 
The ceiling of the house is 8.00 m 
wide by 13.0 m long and 0.950 cm 
thick plasterboard. The house is 
cooled by an air conditioner and 
maintains a 21.0 0C temperature in 
the house. (a) Find the amount of 
thermal energy transferred from 
the attic to the house in 2.00 hr. 
(b) If 15.0 cm of glass wool is now 
placed in the attic floor, find the 
amount of thermal energy 
transferred into the house. 

21. How much thermal energy 
is conducted through a thermopane 
window in 8.00 hr if the window is 
80.0 cm wide by 120 cm high, and it 
consists of two sheets of glass 0.350 
cm thick separated by an air gap of 
1.50 cm? The temperature of the 
inside window is 22.0 0C and the 
temperature of the outside window 
is −5.00 0C. Treat the thermopane 
window as a compound wall. 

22. How much thermal energy 
is conducted through a combined 
glass window and storm window in 
8.00 hr if the window is 81.0 cm 
wide by 114 cm high and 0.318 cm 
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thick? The storm window is the 
same size but is separated from the 
inside window by an air gap of 5.00 
cm. The temperature of the inside 
window is 20.0 0C and the 
temperature of the outside window 
is −7.00 0C. Treat the combination 
as a compound wall. 

 
16.4  Radiation 

23. How much thermal energy 
from the sun falls on the surface of 
the earth during an 8-hr period? 
(Ignore reflected solar radiation 
from clouds that does not make it to 
the surface of the earth.) 

 
Diagram for problem 23. 

 
24. If the mean temperature of 

the surface of the earth is 288 K, 
how much thermal energy is 
radiated into space per second? 

25. Assuming the human body 
has an emissivity, e = 1, and an 
area of approximately 2.23 m2, find 
the amount of thermal energy 
radiated by the body in 8 hr if the 
surface temperature is 95.0 0F. 

26. If the surface temperature 
of the human body is 35.0 0C, find 
the wavelength of the maximum 
intensity of radiation from the 
human body. Compare this 
wavelength to the wavelengths of 
visible light. 

27. How much energy is 
radiated per second by an 
aluminum sphere 5.00 cm in radius, 
at a temperature of (a) 20.0 0C, and 
(b) 200 0C? Assume that the sphere 
emits as a blackbody. 

28. How much energy is 
radiated per second by an iron 
cylinder 5.00 cm in radius and 10.0 
cm long, at a temperature of 
(a) 20.0 0C and (b) 200 0C? Assume 
blackbody radiation. 

29. How much energy is 
radiated per second from a wall 

2.50 m high and 3.00 m wide, at a 
temperature of 20.0 0C? What is the 
wavelength of the maximum 
intensity of radiation? 

30. A blackbody initially at 
100 0C is heated to 300 0C. How 
much more power is radiated at the 
higher temperature? 

31. A blackbody is at a 
temperature of 200 0C. Find the 
wavelength of the maximum 
intensity of radiation. 

32. A blackbody is radiating at 
a temperature of 300 K. To what 
temperature should the body be 
raised to double the amount of 
radiation? 

33. A distant star appears red, 
with a wavelength 7.000 × 10−7 m. 
What is the surface temperature of 
that star? 

 
Additional Problems 

34. An aluminum pot contains 
10.0 kg of water at 100 0C. The 
bottom of the pot is 15.0 cm in 
radius and is 3.00 mm thick. If the 
bottom of the pot is in contact with 
a flame at a temperature of 170 0C, 
how much water will boil per 
minute? 

35. Find how much energy is 
lost in one day through a concrete 
slab floor on which the den of a 
house is built. The den is 5.00 m 
wide and 6.00 m long, and the slab 
is 15.0 cm thick. The temperature of 
the ground is 3.00 0C and the 
temperature of the room is 22.0 0C. 

36. A lead bar 2.00 cm by 2.00 
cm and 10.0 cm long is welded end 
to end to a copper bar 2.00 cm by 
2.00 cm by 25.0 cm long. Both bars 
are insulated from the 
environment. The end of the copper 
bar is placed in a steam bath while 
the end of the lead bar is placed in 
an ice bath. What is the 
temperature T at the interface of 
the copper-lead bar? How much 
thermal energy flows through the 
bar per minute? 

 

 
Diagram for problem 36. 

 
37. Find the amount of thermal 

energy conducted through a wall, 
5.00 m high, 12.0 m long, and 5.00 
cm thick, if the wall is made of 
(a) concrete, (b) brick, (c) wood, and 
(d) glass. The temperature of the 
hot wall is 25.0 0C and the cold wall 
−5.00 0C. 

*38. Show that the distribution 
of solar energy over the surface of 
the earth is a function of the 
latitude angle φ. Find the energy 
per unit area per unit time hitting 
the surface of the earth during the 
vernal equinox and during the 
summer solstice at (a) the equator, 
(b) 30.00 north latitude, (c) 45.00 
north latitude, (d) 60.00 north 
latitude, and (e) 90.00 north 
latitude. At the vernal equinox the 
sun is directly overhead at the 
equator, whereas at the summer 
solstice the sun is directly overhead 
at 23.50 north latitude. 

 
Diagram for problem 38. 

 
39. An asphalt driveway, 50.0 

m2 in area and 6.00 cm thick, 
receives energy from the sun. Using 
the solar constant of 1.38 × 103 
W/m2, find the maximum change in 
temperature of the asphalt if (a) the 
radiation from the sun hits the 
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driveway normally for a 2.00-hr 
period and (b) the radiation from 
the sun hits the driveway at an 
angle of 350 for the same 2.00-hr 
period. Take the density of asphalt 
to be 1219 kg/m3 and the specific 
heat of asphalt to be 4270 J/kg 0C. 

*40. Find the amount of 
radiation from the sun that falls on 
the planets (a) Mercury, (b) Venus, 
(c) Mars, (d) Jupiter, and (e) Saturn 
in units of W/m2. 

41. If the Kelvin temperature of 
a blackbody is quadrupled, what 
happens to the rate of energy 
radiation? 

*42. A house measures 12.0 m 
by 9.00 m by 2.44 m high. The walls 
contain 10.0 cm of glass wool. 
Assume all the heat loss is through 
the walls of the house. The home 
thermostat is turned from 21.0 0C 
down to 15.0 0C for an 8-hr period 
at night when the outside 
temperature is −7.00 0C. (a) How 
much thermal energy can the home 
owner save by lowering the 
thermostat? (b) How much energy is 
used the next morning to bring the 
temperature of the air in the house 
back to 21.0 0C? (c) What is the 
savings in energy now? 

 
*43. An insulated aluminum 

rod, 1.00 m long and 25.0 cm2 in 
cross-sectional area, has one end in 
a steam bath at 100 0C and the 
other end in a cooling container. 
Water enters the cooling container 
at an input temperature of 10.0 0C 
and exits the cooling container at a 
temperature of 30.0 0C, leaving a 
mean temperature of 20.0 0C at the 
end of the aluminum rod. Find the 
mass of water that must flow 
through the cooling container per 
minute to maintain this 
equilibrium condition. 

*44. An aluminum engine, 
operating at 300 0C is cooled by 
circulating water over the end of 
the engine where the water absorbs 
enough energy to boil. The cooling 
interface has a surface area of 0.525 
m2 and a thickness of 1.50 cm. If 
the water enters the cooling 
interface of the engine at 100 0C, 

how much water must boil per 
minute to cool the engine? 

*45. When the surface through 
which thermal energy flows is not 
flat, such as in figure 16.6, the 
equation for heat transfer, equation 
16.10, is no longer accurate. With 
the help of the calculus it can be 
shown that the amount of thermal 
energy that flows through the sides 
of a rectangular annular cylinder is 
given by 

∆Q  = 2πkl∆T   
   ∆t       ln(r2/r1)    

 
where l is the length of the cylinder, 
r1 is the inside radius of the 
cylinder, and r2 is the outside 
radius of the cylinder. Steam at 
100 0C flows in a cylindrical copper 
pipe 5.00 m long, with an inside 
radius of 10.0 cm and an outside 
radius of 15 cm. Find the energy 
lost through the pipe per hour if the 
outside temperature of the pipe is 
30.0 0C. 

*46. When the surface through 
which thermal energy flows is a 
spherical shell rather than a flat 
surface, the amount of thermal 
energy that flows through the 
spherical surface can be shown to 
be given by 

   ∆Q =     4πk∆T      
               ∆t      (r2 − r1)/r1r2 

 
where r1 is the inside radius of the 
sphere and r2 is the outside radius 
of the sphere. 

Consider an igloo as half of a 
spherical shell. The inside radius is 
3.00 m and the outside radius is 
3.20 m. If the temperature inside 
the igloo is 15.0 0C and the outside 
temperature is −40.0 0C, find the 
flow of thermal energy through the 
ice per hour. The thermal 
conductivity of ice is 1.67 J/(s m 0C). 

 

 
Diagram for problem 46. 

 
*47. Show that for large values 

of r1 and r2 the solution for thermal 
energy flow through a spherical 
shell (problem 46) reduces to the 
solution for the thermal energy flow 
through a flat slab. 

*48. In problems 45 and 46 
assume that you can use the 
formula for the thermal energy flow 
through a flat slab. Find ∆Q/∆t and 
find the percentage error involved 
by making this approximation. 

49. A spherical body of 25.0-cm 
radius, has an emissivity of 0.45, 
and is at a temperature of 500.0 0C. 
How much power is radiated from 
the sphere? 

*50. Newton’s law of cooling 
states that the rate of change of 
temperature of a cooling body is 
proportional to the rate at which it 
gains or loses heat, which is 
approximately proportional to the 
difference between its temperature 
and the temperature of the 
environment. This is written 
mathematically as 

 
∆T  = −K(Tavg − Te) 

         ∆t            
 

where Tavg is the average 
temperature of the body, Te is the 
temperature of the environment, 
and K is a constant. A cup of coffee 
cools from 98.0 0C to 90.0 0C in 1.5 
min. The cup is in a room that has a 
temperature of 20.0 0C. Find (a) the 
value of K and (b) how long it will 
take for the coffee to cool from 
90.0 0C to 50.0 0C. 

*51. A much more complicated 
example of heat transfer is one that 
combines conduction and 
convection. That is, we want to 
determine the thermal energy 
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transferred from a hot level plate at 
100 0C to air at a temperature of 
20.0 0C. The thermal energy 
transferred is given by the equation 

 
Q = hA∆T t 

 
where h is a constant, called the 
convection coefficient and is a 
function of the shape, size, and 
orientation of the surface, the type 
of fluid in contact with the surface 
and the type of motion of the fluid 
itself. Values of h for various 
configurations can be found in 
handbooks. If h is equal to 7.45 J/(s 
m2 0C) and A is 2.00 m2, find the 
amount of thermal energy 
transferred per minute. 

*52. Using the same principle of 
combined conduction and 
convection used in problem 51, find 
the amount of thermal energy that 
will flow through an uninsulated 
wall 10.0 cm thick of a wood frame 
house in 1 hr. Assume that both the 
inside and outside wall have a 
thickness of 2.00 cm of pine wood 
and an area of 25.0 m2. (Hint: First 
consider the thermal energy loss 
through the inside wall, then the 
thermal energy loss through the 
10.0-cm air gap, then the thermal 
energy loss through the outside 
wall.) The temperatures at the first 
wall are 18.0 0C and 13.0 0C, and 
the temperatures at the second wall 
are 10.0 0C and −6.70 0C. The 
convection coefficient for a vertical 
wall is h = 0.177 (∆T)1/4 J/(s cm2 0C). 

*53. A thermograph is 
essentially a device that detects 
radiation in the infrared range of 
the electromagnetic spectrum. A 
thermograph can map the 
temperature distribution of the 
human body, showing regions of 
abnormally high temperatures such 
as found in tumors. Starting with 
the Stefan-Boltzmann law show 
that the ratio of the power emitted 
from tissue at a slightly higher 
temperature, T + ∆T, to the power 
emitted from normal tissue at a 
temperature T is 

 
 P2  = (1 + ∆T/T)4   

                 P1                         
 

Then show that a change of 
temperature of only 0.9 0C will give 
an approximate 1.00% increase in 
the power of the radiation 
transmitted. Assume that the body 
temperature is 37.0 0C. 

  
Interactive Tutorials 

54. Conduction. How much 
thermal energy flows through a 
glass window per second (Q/s) if the 
thickness of the window d = 0.020 
m and its cross-sectional area A = 
2.00 m2. The temperature difference 
between the window’s faces is ∆T = 
65.0 0C, and the thermal 
conductivity of glass is k = 0.791 
J/(m s 0C). 

55. Convection. A hot air 
heating system heats air to a 
temperature of 125 0C and the 
return air is at a temperature of 

17.5 0C. The fan is capable of 
moving a volume of 7.50 m3 of air in 
1 min, ∆V/∆t. The specific heat of 
air at constant pressure, c, is 1.05 × 
103 J/kg 0C and take the density of 
air, ρ to be 1.29 kg/m3. Find the 
amount of thermal energy transfer 
per hour from the furnace to the 
room. 

56. Conduction through a 
compound wall. Find the amount of 
heat conducted through a 
compound wall that has a length L 
= 8.5 m and a height h = 4.33 m. 
The wall consists of a thickness of 
d1 = 10.0 cm of brick, d2 = 1.90 cm of 
plywood, d3 = 10.2 cm of glass wool, 
d4 = 1.25 cm of plaster, and d5 = 
0.635 cm of oak wood paneling. The 
inside temperature of the wall is Th 
= 20.0 0C and the outside 
temperature of the wall is Tc = 
−9.00 0C. How much thermal energy 
flows through this wall per day? 

57. Radiation. How much 
energy is radiated in 1 s by an iron 
sphere 18.5 cm in radius at a 
temperature of 125 0C? Assume 
that the sphere radiates as a 
blackbody of emissivity e = 1. What 
is the wavelength of the maximum 
intensity of radiation? 

 
To go to these Interactive 

Tutorials click on this sentence. 
 

 
 To go to another chapter, return to the table of contents by clicking on this sentence. 
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Chapter 17:  Thermodynamics 
 

‘We can express the fundamental laws of the universe which correspond to the two 
fundamental laws of the mechanical theory of heat in the following simple form. 1. The 
energy of the universe is a constant. 2. The entropy of the universe tends toward a 
maximum.”                                              Rudolf Clausius 

 
17.1  Introduction 
Thermodynamics is the study of the relationships between heat, internal energy, and the mechanical work 
performed by a system. The system considered is usually a heat engine of some kind, although the term can also 
be applied to living systems such as plants and animals. There are two laws of thermodynamics. The first law of 
thermodynamics is the law of conservation of energy as applied to a thermodynamic system. We will apply the 
first law of thermodynamics to a heat engine and study its ramifications. The second law of thermodynamics tells 
us what processes are, and are not, possible in the operation of a heat engine. The second law is also responsible 
for telling us in which direction a particular physical process may go. For example a block can slide across a desk 
and have all of its kinetic energy converted to thermal energy by the work the block does against friction as it is 
slowed to a stop. However, the reverse process does not happen, that is, the thermal energy in the block does not 
convert itself into mechanical energy and cause the block to slide across the desk. Using the thermal energy in the 
block to cause mechanical motion is not a violation of the law of conservation of energy but it is a violation of the 
second law of thermodynamics. 
 
 
17.2  The Concept of Work Applied to a Thermodynamic System 
Consider what happens to an ideal gas in a cylinder when it is 
compressed by a constant external force F, as shown in figure 
17.1(a). The constant force exerted on top of the piston causes it to 
be displaced a distance ∆y, thereby compressing the gas in the 
cylinder. The work done on the gas by the external force in 
compressing it is 

W = F∆y                                        (17.1) 
 

This work by the external agent is positive because the external 
force and the displacement are in the same direction. The external 
force F and the external pressure p exerted on the gas by the piston 
are related by 

F = pA                                          (17.2) 
 

where A is the cross-sectional area of the piston. 
Figure 17.1  Work done in compressing a gas. 

 
Substituting equation 17.2 into equation 17.1 gives 

W = pA∆y                                                                              (17.3) 
 

which is the work done on the gas by the external agent. If the compression takes place very slowly, the constant 
external pressure exerted by the piston on the gas is equal to the internal pressure exerted by the gas throughout 
the process. Thus, equation 17.3 can also be interpreted as the work done by the gas rather than the external 
agent. This is a departure from the usual way we have analyzed the concept of work. Previously, we have always 
considered the work as being done by the external agent. From this point on, we will consider all the work to be 
done on or by the gas itself, not the external agent. The product of the area of the cylinder and the displacement of 
the gas is equal to the change in volume of the gas. That is, 
 

A∆y = ∆V                                                                                (17.4) 
 

the decrease in the volume of the gas. Substituting equation 17.4 into 17.3 gives 
 

W = p∆V                                                                               (17.5) 
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Equation 17.5 represents the amount of work done by the gas when a constant external force compresses it by an 
amount ∆V. 

This entire process can be shown on a pressure-volume ( p-V) diagram as in figure 17.1(b). The original 
state of the gas is represented as the point B in the diagram, where it has the volume VB and the pressure pA. As 
the piston moves at constant pressure, the system, the gas in the cylinder, moves from the state at point B to the 
state at point A [figure 17.1(b)] along a horizontal line indicating that the process is occurring at constant 
pressure. At point A in the figure, the gas has been compressed to the volume VA. The change in volume of the gas 
is seen to be 

    ∆V = VA _ VB                                                                              (17.6) 
  

The total work done by the gas in compressing it from the point B to the point A, found from equations 17.5 and 
17.6, is 

WBA = pA(VA _ VB) 
 
It is important to note here that the product of pA and VA _ VB represents the area of the rectangle cross-hatched in 
figure 17.1(b). Thus, the area under the curve in a p-V diagram always represents a quantity of work. When the 
area is large, it represents a large quantity of work, and when the area is small the quantity of work likewise is 
small. 

Because VA is less than VB, the quantity VA _ VB is negative. Thus, when work is done by a gas in 
compressing it, that work is always negative. Notice that there are two distinct agents here. The work done by the 
external agent in compressing the gas is positive, but the work done by the gas in a compression is negative. 

If the gas in the cylinder of figure 17.1(a) is allowed to expand back to the original volume VB, then the 
process can be represented on the same p-V diagram of figure 17.1(b) as the same straight line, now going from 
point A to the point B.  The work done by the gas in the expansion from A to B is 

 
W = p∆V = pA(VB _ VA) 

 
But now note that since VB is greater than VA, the quantity VB _ VA is now a positive quantity. Thus, when a gas 
expands, the work done by the gas is positive. (The work done on the gas by an external agent during the expansion 
would be negative. From this point on let us consider only the work done by the gas and forget any external agent.) 
Thus, the work done by a gas during expansion is positive and the work done by a gas during compression is 
negative. In either case, the work done is still the area under the line AB given by the product of the sides of the 
rectangle pA and VB _ VA. The areas are the same in both cases, however we consider the area positive when the 
gas expands and negative when the gas is compressed. 

Let us now consider the work done along the different paths of the cyclic process shown in the p-V diagram 
of figure 17.2. A cyclic process is a process that runs in a cycle eventually returning to where it started from. Thus, 
in figure 17.2(a) the cycle goes from A to B, B to C, C to D, and D back to A.  The total work done by the system as 
it goes through the cycle is simply 

Wtotal = WAB + WBC + WCD + WDA                                                           (17.7) 
where 

WAB is the work done on the path AB  
WBC is the work done on the path BC  
WCD is the work done on the path CD  
WDA is the work done on the path DA  
 

Let us consider the work done along each path separately. To simplify matters let us first look at the work 
done along the path BC. The path BC represents a process that is performed at the constant volume VB. Therefore, 
∆V = 0, and no work is performed along BC. Formally,  

                                                          
WBC = p(VB _ VB) = 0                                                                      (17.8) 

 
Similarly, along the path DA, the volume is also a constant and therefore ∆V is again zero, and hence the 

work done must also be zero. Formally, 
WDA = p(VA _ VA) = 0                                                                     (17.9) 

 
Since the work is given by p∆V, whenever V is a constant in a process, ∆V is always zero and the work is also zero 
along that path in the p-V diagram. 
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The work done along the path AB is 
 

WAB = pA∆V = pA(VB _ VA)      (17.10) 
 

Because the path AB represents an expansion, 
positive work is done by the gas, as is 
evidenced by the fact that VB _ VA is a positive 
quantity. The work done along the path AB is 
shown as the area under the line AB in figure 
17.2(b).       

The work done along the path CD is 
 

WCD = pD∆V = pD(VA _ VB)      (17.11) 
 

Since the path CD represents a compression, 
work is done on the gas. This work is 
considered negative, as we can see from the 
fact that VA _ VB, in equation 17.11, is 
negative. The work done on the gas is shown 
as the area under the line CD in figure 
17.2(c). 

The net work done by the gas in the 
cyclic process ABCDA, found from equation 
17.7 with the help of equations 17.8 through 
17.11, is 
 

Wtotal = WAB + WBC + WCD + WDA         (17.7) 
Wtotal = pA(VB _ VA) + 0 + pD(VA _ VB) + 0 

 
                                                               Figure 17.2  Work done in a cyclic process. 

 
We can rewrite this to show that the work along CD is negative, that is, VA _ VB = _(VB _ VA). Hence, 
 

Wtotal = pA(VB _ VA) _ pD(VB _ VA) 
or                                              

Wtotal = ( pA _ pD)(VB _ VA)                                                                  (17.12) 
 

Thus, equation 17.12 represents the net work done by the gas in this particular cyclic process. Note that pA _ pD is 
one side of the rectangular path of figure 17.2(a) while VB _ VA is the other side of that rectangle. Hence, their 
product in equation 17.12 represents the entire area of the rectangle enclosed by the thermodynamic path ABCDA 
and is shown as the cross-hatched area in figure 17.2(d). Another way to visualize this total area, and hence total 
work, is to subtract the area in figure 17.2(c), the negative work, from the area in figure 17.2(b), the positive work, 
and we again get the area bounded by the path ABCDA. Although this result was derived for a simple rectangular 
thermodynamic path, it is true in general. Thus, in any cyclic process, the net work done by the system is equal to 
the area enclosed by the cyclic thermodynamic path in a p-V diagram. Therefore, to get as much work as possible 
out of a system, the enclosed area must be as large as possible. The net work is positive if the cycle proceeds 
clockwise, in the p-V diagram, and negative if the cycle proceeds counterclockwise. Finally, we should note that the 
process AB takes place at the constant pressure pA. A process that takes place at a constant pressure is called an 
isobaric process. Hence, the process CD is also an isobaric process because it takes place at the constant 
pressure pD. Process BC takes place at the constant volume VB, and process DA takes place at the constant volume 
VA. A process that takes place at constant volume is called an isochoric or isometric process. 

There is another type of process that is very important in thermodynamic systems, the isothermal process. 
An isothermal process is a process that occurs at a constant temperature, that is, ∆T = 0 for the process. A picture 
of an isotherm can be drawn on a p-V diagram by using the equation of state for an ideal gas, the working 
substance in the system. Thus, the ideal gas equation, given by equation 15.23, is 
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pV = nRT 
 

Because n and R are constants, if T is also a constant, then the 
entire right-hand side of equation 15.23 is a constant. We can then 
write equation 15.23 as 

pV = constant                                  (17.13) 
 

If we plot equation 17.13 on a p-V diagram, we obtain the hyperbolic 
curves of figure 17.3. Each curve is called an isotherm and in the 
figure, T3 is greater than T2, which in turn is greater than T1. 

Let us now consider the new cyclic process shown in figure 
17.4, in which an ideal gas in a cylinder expands against a piston 
isothermally. This is shown as the path AC in the p-V diagram. To 
physically carry out the isothermal process along the path AC, the 

 
                                                                                                     Figure 17.3  Isotherms on a p-V diagram. 

 
cylinder is surrounded by a constant temperature heat reservoir. The 
cylinder either absorbs heat from, or liberates heat to, the reservoir 
in order to maintain the constant temperature. When the isothermal 
process is finished the heat reservoir is removed. The gas is then 
compressed at the constant pressure pD at point C until it reaches the 
point D.  The pressure of the gas is then increased from pD to pA 
while the volume of the gas in the cylinder is kept constant. This is 
shown as the path DA in the p-V diagram. Now let us assume that 
the points A, C, and D are the same points that were considered in 
figure 17.2(a). Recall that the net work done by the system is equal to 
the area enclosed by the cyclic path. Thus, the net work done in this 
process is equal to the cross-hatched area within the path ACDA 
shown in figure 17.4. 

                                                                                                            Figure 17.4  Cyclic process with an  
                                                                                                                                  isothermal expansion. 

 
It is important to compare figure 17.2(d) with figure 17.4. Remember the points A, C, and D in figure 17.4 

are the same as the points A, C, and D in figure 17.2(d). But the area under the enclosed curve in figure 17.2(d) is 
greater than the enclosed area in figure 17.4. Hence, a greater amount of work is done by the system in following 
the cyclic path ABCDA than the cyclic path ACDA. Thus, the work that the system does depends on the 
thermodynamic path taken. Even though both processes started at point A and returned to the same point A, the 
work done by the system is different in each case. This result is succinctly stated as: the work done depends on the 
path taken, and work is a path dependent quantity. 

 
Example 17.1 

 
Work done in a thermodynamic cycle. One mole of an ideal gas goes through the thermodynamic cycle shown in 
figure 17.2(a). If pA = 2.00 × 104 Pa, pD = 1.00 × 104 Pa, VA = 0.250 m3, and VB = 0.500 m3, find the work done 
along the path (a) AB, (b) BC, (c) CD, (d) DA, and (e) ABCDA. 

Solution
 

a. The work done along the path AB, found from equation 17.10, is 
 

WAB = pA(VB _ VA) 
= (2.00 × 104 Pa)(0.500 m3 _ 0.250 m3) 

= 5.00 × 103 N m3 
                                                                                                      m2 

= 5.00 × 103 N m 
= 5.00 × 103 J 
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b.  The work done along the path BC, found from equation 17.8, is 
 

WBC = p(VB _ VB) = 0 
 
c.  The work done along path CD, given by equation 17.11, is 
 

WCD = pD(VA _ VB) 
= (1.00 × 104 Pa)(0.250 m3 _ 0.500 m3) 

= _2.50 × 103 J 
 
Note that the work done in compressing the gas is negative. 
d.  The work done along path DA, given by equation 17.9, is 
 

WDA = p(VA _ VA) = 0 
 

e.  The total work done along the entire path ABCDA, found from equation 17.7, is 
 

Wtotal = WAB + WBC + WCD + WDA 
= 5.00 × 103 J + 0 _ 2.50 × 103 J + 0 

= 2.50 × 103 J 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
17.3  Heat Added to or Removed from a Thermodynamic System 
We saw in chapter 14 that the amount of heat added or removed from a body is given by  
                                                    

Q = mc∆T                                                                                 (14.6) 
 

Equation 14.6 can also be applied to the heat added to, or removed from, a gas, if two stipulations are made. First, 
we saw in chapter 15 that it is more convenient to express the mass m of a gas in terms of the number of moles n 
of the gas. The total mass m of the gas is the sum of the masses of all the molecules of the gas. That is, m is equal 
to the mass of one molecule times the total number of molecules in one mole of the substance, times the total 
number of moles. That is     

m = m0NAn                                                                            (17.14) 
 

where m0 is the mass of one molecule; NA is Avogadro’s number, the number of molecules in one mole of a 
substance; and n is the number of moles of the gas. Notice in equation 15.47, the product of the mass of one 
molecule times Avogadro’s number is called the molecular mass of the substance M, that is, 
 

M = m0NA                                                                             (17.15) 
 

The molecular mass is thus the mass of one mole of the gas. Substituting equation 17.15 into equation 17.14 gives 
for the mass of the gas 

 m = nM                                                                              (17.16) 
 

Equation 17.16 says that the mass of the gas is equal to the number of moles of the gas times the molecular mass 
of the gas. Substituting equation 17.16 for the mass m of the gas into equation 14.6, gives 
 

Q = nMc∆T                                                                           (17.17) 
 

Pearson Custom Publishing

509



 
17-6                                                                                                          Vibratory Motion, Wave Motion and Fluids 

The product Mc is defined as the molar specific heat of the gas, or molar heat capacity, and is represented by the 
capital letter C.  Hence, 

C = Mc                                                                              (17.18) 
 

The heat absorbed or lost by a gas undergoing a thermodynamic process is found by substituting equation 17.18 
into equation 17.17. Thus, 

Q = nC∆T                                                                            (17.19) 
 

The second stipulation for applying equation 14.6 to gases 
has to do with the specific process to which the gas is subjected. 
Equation 14.6 was based on the heat absorbed or liberated from a 
solid or a liquid body that was under constant atmospheric 
pressure. In applying equation 17.19, which is the modified 
equation 14.6, we must specify the process whereby the 
temperature change ∆T occurs. Figure 17.5 shows some possible 
processes. Let us start at the point A in the p-V diagram of figure 
17.5. The temperature at point A is T0 because point A is on the T0 
isotherm. Heat can be added to the system such that the 
temperature of the gas rises to T1. But, as we can see from figure 
17.5, there are many different ways to get to the isotherm T1. The 
thermodynamic paths AB, AC, AD, AE, or an infinite number of 
other possible paths can be followed to arrive at T1. Therefore, there 
can be an infinite number of specific heats for gases. Let us 
                                                                                                          Figure 17.5  The specific heat for a gas depends 

                                                                                                                              on the path taken in a p-V diagram. 
 

restrict ourselves to only two paths, and hence only two specific heats. The first path we consider is the path AB, 
which represents a process taking place at constant volume. The second path is path AE, which represents a 
process taking place at constant pressure. We designate the molar specific heat for a process occurring at constant 
volume by Cv, whereas we designate the molar specific heat for a process occurring at a constant pressure by Cp. It 
is found experimentally that for a monatomic ideal gas such as helium or argon, Cv = 12.5 J/mole K, whereas Cp = 
20.8 J/mole K. 

The heat absorbed by the gas as the system moves along the thermodynamic path AB in figure 17.5 is 
 

QAB = nCv∆T = nCv(T1 – T0)                                                               (17.20) 
 

The heat absorbed by the gas as the system moves along the path AE is given by 
 

QAE = nCp∆T = nCp(T1 – T0)                                                               (17.21) 
 

Although the system ends up at the same temperature T1 whether the path AB or AE is traveled, the heat that is 
absorbed along each path is different because Cp and Cv have different values. Thus, the heat absorbed or 
liberated in a thermodynamic process depends on the path that is followed. That is, heat like work is path 
dependent. Although demonstrated for a gas, this statement is true in general. 

 
Example 17.2 

 
The heat absorbed along two different thermodynamic paths. Compute the amount of heat absorbed by 1 mole of 
He gas along path (a) AB and (b) AE, of figure 17.5, if T1 = 400 K and T0 = 300 K. 

Solution
 

a. The heat absorbed along path AB, given by equation 17.20, is 
 

QAB = nCv∆T = nCv(T1 _ T0) 
= (1 mole)(12.5     J     )(400 K _ 300 K) 

mole K  
= 1250 J 
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b.  The heat absorbed along the path AE, given by equation 17.21, is 
 

QAE = nCp∆T = nCp(T1 _ T0) 
= (1 mole)(20.8      J    )(400 K _ 300 K) 

mole K 
= 2080 J 

 
Thus, a greater quantity of heat is absorbed in the process that occurs at constant pressure. This is because at 
constant pressure the volume expands and some of the heat energy is used to do work, but at constant volume no 
work is accomplished. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
17.4  The First Law of Thermodynamics 
Recall from the kinetic theory of gases studied in chapter 15 that the mean kinetic energy of a molecule, found 
from equation 15.45, is 

 KEavg =  1 mvavg2 =  3  kT 
                                                                                           2                2 
 
Thus, a change in the absolute temperature of a gas shows up as a change in the average energy of a molecule. If 
the average kinetic energy of one molecule of the gas is multiplied by N, the total number of molecules of the gas 
present in the thermodynamic system (i.e., the cylinder filled with gas), then this product represents the total 
internal energy of this quantity of gas. Recall that the internal energy of a body was defined in chapter 14 as the 
sum of the kinetic energies and potential energies of all the molecules of the body. Because the molecules of a gas 
are moving so rapidly and are widely separated on the average, only a few are near to each other at any given time 
and it is unnecessary to consider any intermolecular forces, and hence potential energies of the molecules. Thus, 
the total kinetic energy of all the molecules of a gas constitutes the total internal energy of the gas. We designate 
this internal energy of the gas by the symbol U.  The internal energy of the gas is given by 
 

U = (total number of molecules)(mean KE of each molecule) 
= NKEavg 

U = N( 3 kT)                                                                            (17.22) 
    2 

But recall from equation 15.44 that 
k =  R  
       NA 

 
Substituting equation 15.44 into equation 17.22 gives for the internal energy of an ideal gas 
 

 U = N 3  R _T  
                                                                                                 2 NA 
But the total number of molecules N was given by 

                                                      N = nNA                                                                              (15.24) 
Thus, 

U = nNA  3 R T 
                                                                                                    2 NA 
and 

                                           U= 3nRT                                                                              (17.23) 
                                                                                              2                  
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From equation 17.23 we see that a change in temperature is thus associated with a change in the internal energy 
of the gas, that is, 

                                           ∆U= 3nR∆T                                                                             (17.24) 
                                                                                             2                    

 
Let us now consider the thermodynamic system shown in 

the p-V diagram of figure 17.6. The isotherm going through point 
B is labeled TB, whereas the one that goes through points A and C 
is labeled TAC, and finally, the isotherm that goes through point D 
is called TD. Before the entire system is considered, let us first 
consider a process that proceeds isothermally from A to C.  Since 
the path AC is an isotherm, the temperature is constant and thus 
∆T = 0. But from equation 17.24, the change in internal energy ∆U 
must also be zero. That is, an isothermal expansion occurs at 
constant internal energy. But how can this be? As the gas expands 
along AC it is doing work. If the internal energy is constant, where 
does the energy come from to perform the work that is being done 
by the gas? Obviously energy must somehow be supplied in order 
for the gas to do work. Thus, a quantity of heat Q must be supplied 
to the system in order for the system to do work along an isothermal 
path. Hence, for an isothermal process, 

                                                                                                              Figure 17.6  A thermodynamic system on a 
                                                                                                       p-V diagram. 

 
Q = W                                                                               (17.25) 

 
Let us now consider the portion of the process that is along path BC in figure 17.6. The process BC is performed at 
constant volume, thus, ∆V = 0 along this path. Because the amount of work done by the gas is given as W = p∆V, if 
∆V = 0, then the work done along the path BC must also be zero. But the temperature TAC at point C is less than 
the temperature TB at the point B.  There has been a drop in temperature between points B and C and hence a 
decrease in the internal energy of the system. Since the loss of energy didn’t go into work, because ∆V = 0, heat 
must have been taken away from the system along path BC. The decrease in the internal energy of the system along 
an isometric path is caused by the heat removed from the system along BC, that is, 
 

∆U = Q                                                                               (17.26) 
 

But the heat removed from the system during a constant volume process was shown in equation 17.20 to be 
 

Q = nCv∆T                                                                            (17.27) 
 

Since the heat removed is equal to the loss in internal energy by equation 17.26, we can write the change in 
internal energy from equations 17.26 and 17.27 as 

∆U = nCv∆T                                                                          (17.28) 
 

Equation 17.28 is a general statement governing the change in internal energy during any process, not only the 
one at constant volume from which equation 17.28 was derived. Recall from equation 17.23, a result from the 
kinetic theory of gases, that U, the internal energy, is only a function of temperature. In fact if ∆U from equation 
17.24 is equated to ∆U from equation 17.28, we get 
 

 3 nR∆T = nCv∆T 
                                                                                   2                                
 
Solving for Cv, the theoretical value of the molar specific heat capacity at constant volume is found to be 
 

Cv =  3 R                                                                            (17.29) 
                                                                                                    2                   

                   

Pearson Custom Publishing

512



 

 
Chapter 17:  Thermodynamics                                                                                                                              17-9 

 
Using the value of R = 8.314 J/(mole K) found in chapter 15, the value of Cv, calculated from equation 17.29, is Cv 
= 12.5 J/(mole K), which agrees with the experimental value. 

The two special cases given by equations 17.25 and 17.26 can be combined into one general equation that 
contains 17.25 and 17.26 as special cases. This general equation is 

                                               
Q = ∆U + W                                                                           (17.30) 

 
and is called the first law of thermodynamics. Thus, we can derive equation 17.25 from 17.30 for an isothermal 
path because then the change in internal energy ∆U = 0. We can derive equation 17.26 from equation 17.30 for a 
constant volume thermodynamic path, because then ∆V = 0, and hence W = 0. The first law of thermodynamics, 
equation 17.30, says that the heat Q, added to a system will show up either as a change in internal energy ∆U of the 
system and/or as work W performed by the system. From this analysis we can see that the first law of 
thermodynamics is just the law of conservation of energy. Equation 17.30 is quite often written in the slightly 
different form:                                      

∆U = Q − W                                                                           (17.31) 
 

which is also called the first law of thermodynamics. The first law of thermodynamics can be also stated as the 
change in the internal energy of the system equals the heat added to the system minus the work done by the system 
on the outside environment. Perhaps the best way to see the application of the first law to a thermodynamic system 
is in an example. 

 
Example 17.3 

 
Applying the first law of thermodynamics. Two moles of an ideal gas are carried around the thermodynamic path 
ABCDA in figure 17.6. Here TD = 150 K, TAC = 300 K, TB = 600 K, and pA = 2.00 × 104 Pa, while pD = 1.00 × 104 
Pa.  The volume VA = 0.250 m3, while VB = 0.500 m3. Find the work done, the heat lost or absorbed, and the 
internal energy of the system for the thermodynamic paths (a) AB, (b) BC, (c) CD, (d) DA, and (e) ABCDA. 

Solution
 

a.  The work done by the expanding gas along the path AB is 
 

W = p∆V 
WAB = pA(VB − VA) 

( )4 3 3
2

N2.00 10 0.500 m  0.250 m
m

 = × − 
 

 

= 5.00 × 103 J 
The heat absorbed by the gas along path AB is 

Q = nCp∆T 
QAB = nCp(TB − TAC) 

( )J(2 moles) 20.8 600 K 300 K
mole K

 = − 
 

 

= 1.25 × 104 J 
 
The change in internal energy along path AB, found from the first law equation 17.31, is 
 

∆UAB = QAB − WAB 
= 1.25 × 104 J − 5.00 × 103 J 

= 7.50 × 103 J 
 

Thus, there is a gain of internal energy along the path AB. 
b.  The work done along path BC is 

W = p∆V 
WBC = p(VB − VB) = 0 
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= 0 
The heat lost along path BC is 

    QBC = nCv∆T = nCv(TAC − TB) 

( )J(2 moles) 12.5 300 K 600 K
mole K

 = − 
 

 

= −7.50 × 103 J 
 

The loss of internal energy in dropping from 600 K at B to 300 K at C is found from the first law as 
 

∆UBC = QBC − WBC 
= −7.50 × 103 J − 0 

= −7.50 × 103 J 
 
c.  The work done during the compression along the path CD is 
 

WCD = p∆V = pD(VA − VB) 

( )4 3 3
2

N1.00 10 0.250 m 0.500 m
m

 = × − 
 

 

       = −2.50 × 103 J 
The heat lost along the path CD is 

QCD = nCp∆T = nCp(TD − TAC) 

( )J(2 moles) 20.8 150 K 300 K
mole K

 = − 
 

 

= −6.24 × 103 J 
 

The change in internal energy along the path CD, found from the first law, is 
 

∆UCD = QCD − WCD 
= − 6.24 × 103 J − (−2.50 × 103 J) 

= −3.74 × 103 J 
 
Note that the internal energy decreased, as expected, since the temperature decreased from 300 K to 150 K. 
d.  The work done along the path DA is 

WDA = p∆V = p(VA − VA) = 0 
The heat added along the path DA is 

QDA = nCv∆T = nCv(TAC − TD) 

( )J(2 moles) 12.5 300 K 150 K
mole K

 = − 
 

 

= 3.74 × 103 J 
The change in internal energy along DA is 

∆UDA = QDA − WDA 
= 3.74 × 103 J 

 
e.  The net work done throughout the cycle ABCDA is 
 

WABCDA = WAB + WBC + WCD + WDA 
= 5.00 × 103 J + 0 − 2.50 × 103 J + 0 

= 2.50 × 103 J 
 
The net heat added throughout the cycle ABCDA is 
 

QABCDA = QAB + QBC + QCD + QDA 
= 1.25 × 104 J − 7.50 × 103 J − 6.24 × 103 J + 3.74 × 103 J 

= 2.50 × 103 J 
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Note that QAB and QDA are positive quantities, which means that heat is being added to the system along these 
two paths. Also note that QBC and QCD are negative quantities, which means that heat is being taken away from 
the system along these two paths. In general, Q is always positive when heat is added to the system and negative 
when heat is removed from the system. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
This effect is seen in figure 17.6 by drawing lines entering the enclosed thermodynamic path when heat is 

added to the system, and lines emanating from the enclosed path when heat is taken away from the system. This 
is a characteristic of all engines operating in a cycle, that is, heat is always added and some heat is always 
rejected. The net change in internal energy throughout the cycle ABCDA is 

 
∆UABCDA = ∆UAB + ∆UBC + ∆UCD + ∆UDA                                                     (17.32) 

= 7.50 × 103 J − 7.50 × 103 J − 3.74 × 103 J + 3.74 × 103 J 
= 0 

 
Note that the total change in internal energy around the entire cycle is equal to zero. This is a very reasonable result 
because the internal energy of a system depends only on the temperature of the system. If we go completely 
around the cycle, we end up at the same starting point with the same temperature. Since ∆T = 0 around the cycle, 
∆U = nCv∆T must also equal zero around the cycle. 

Applying the first law to the entire cycle we have 
 

∆UABCDA = QABCDA − WABCDA 
But as just seen, ∆UABCDA = 0, therefore, 

QABCDA = WABCDA                                                                        (17.33) 
 

That is, the energy for the net work done by the system comes from the net heat applied to the system. Looking at the 
calculations, we see that this is indeed the case since 
 

QABCDA = 2.50 × 103 J 
while 

WABCDA = 2.50 × 103 J 
 

Another very interesting thing can be learned from this example. Look at the change in internal energy from the 
point A to the point C, and note that regardless of the path chosen, the change in internal energy is the same. 
Thus, from our calculations, 

∆UAC = ∆UAB + ∆UBC = 7.50 × 103 J − 7.50 × 103 J = 0 
and 

∆UAC = −∆UAD − ∆UDC = −3.74 × 103 J + 3.74 × 103 J = 0 
 

Along the isothermal path AC 
∆UAC = 0 

 
because if T is constant, U is constant. Thus, regardless of the path chosen between two points on a p-V diagram, 
∆U is always the same. (It will not always be zero, as in this case where the points A and C happen to lie along the 
same isotherm, but whatever its numerical value, ∆U is always the same.) 

What is especially interesting about this fact is that the work done depends on the path taken, the heat 
absorbed or liberated depends on the path taken, but their difference Q − W, which is equal to ∆U is independent of 
the path taken. That is, ∆U depends only on the initial and final states of the thermodynamic system and not the 
path between the initial and final states. 

Thus, the internal energy is to a thermodynamic system what the potential energy is to a mechanical 
system. (Recall from chapter 7, section 7.7 that the work done, and hence the potential energy, was the same 
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whether an object was lifted to a height h, or moved up a frictionless inclined plane to the same height h. That is, 
the potential energy was independent of the path taken.) 

The thermodynamic system considered in figure 17.6 represents an engine of some kind. That is, heat is 
added to the engine and the engine does work. To compare one engine with another it is desirable to know how 
efficient each engine is. The efficiency of an engine can be defined in terms of what we get out of the system 
compared to what we put into the system. Heat, Qin, is put into the engine, and work, W, is performed by the 
engine, hence the efficiency of an engine can be defined as 

 
Eff = Work out =  W                                                                     (17.34) 

                                                                                          Heat in      Qin 
                                        

Example 17.4 
 

The efficiency of an engine. In example 17.3, 2.50 × 103 J of work was done by the system, whereas the heat added 
to the system was the heat added along paths AB and DA, which is equal to 1.25 × 104 J + 3.74 × 103 J, which is 
equal to 1.62 × 104 J.  Find the efficiency of that engine. 

Solution
 

The efficiency of the engine, found from equation 17.34, is 
 

3

4
in

 2.50 10  JEff 0.15
1.62 10  J

W
Q

×
= = =

×
 

  = 15% 
 

Thus, the efficiency of the engine represented by the thermodynamic cycle of figure 17.6 is only 15%. This is not a 
very efficient engine. We will discuss the maximum possible efficiency of an engine when we study the Carnot 
cycle in section 17.8. 

To go to this Interactive Example click on this sentence. 
 

 
 
Before leaving this section, however, let us take one more look at the change in the internal energy of the 

system along the path ABC. We have already seen that since the initial and final states lie on the same isotherm, 
the change in internal energy is zero. There is still, however, some more important physics to be obtained by 
further considerations of this path. The change in internal energy along the path ABC is given by 

 
∆UABC = ∆UAB + ∆UBC 

But from the first law we can write this as 
∆UABC = QAB − WAB + QBC − WBC                                                     (17.35) 

But as we have already seen 
QAB = nCp(TB − TAC) 

                                       WAB = pA(VB − VA)                                                                         (17.36) 
QBC = nCv(TAC − TB) 
WBC = p(VB − VB) = 0 

 
Substituting all these terms into equation 17.35, gives 
 

∆UABC = nCp(TB − TAC) − pA(VB − VA) + nCv(TAC − TB)                                          (17.37) 
∆UABC = nCp(TB − TAC) − nCv(TB − TAC) − pAVB + pAVA 

 
But from the ideal gas equation, 

pAVA = nRTAC                                                                       (17.38) 
and 

pAVB = pBVB = nRTB                                                                   (17.39) 
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Substituting equations 17.38 and 17.39 back into equation 17.37, we get 
 

∆UABC = nCp(TB − TAC) − nCv(TB − TAC) − nRTB + nRTAC 
= nCp(TB − TAC) − nCv(TB − TAC) − nR(TB − TAC) 

∆UABC = (Cp − Cv − R)n(TB − TAC)                                                          (17.40) 
 

However, we have already determined that ∆UABC is equal to zero. Hence, equation 17.40 implies that 
 

Cp − Cv − R = 0 
or 

Cp – Cv = R                                                                            (17.41) 
 

Thus we have determined a theoretical relation between the molar specific heat capacities and the universal gas 
constant R.  Since it has already been shown that Cv =  3/2 R in equation 17.29, Cp can now be solved for in 
equation 17.41 to obtain 

Cp = Cv + R 
=  3 R + R 

                                                                                            2        
Cp = 5R                                                                               (17.42) 

                                                                                                  2           
 
Using the value of R = 8.314 J/mole K found in chapter 15, the value of Cp is 20.8 J/mole K, which agrees with the 
experimental value of Cp for a monatomic gas. 
 
 
17.5 Some Special Cases of the First Law of Thermodynamics 
Although we have already discussed the first law of thermodynamics pretty thoroughly, let us summarize some of 
the results into special cases. 
 
An Isothermal Process 
An isothermal process is a process that occurs at constant temperature. Thus, ∆T = 0. But ∆U = nCv∆T. Therefore, 
if ∆T = 0, then ∆U = 0. The first law then becomes 

     ∆U = 0 = Q − W  
Q = W                                                                               (17.43) 

 
In an isothermal process, heat added to the system shows up as mechanical work done by the system. 
 
An Adiabatic Process 
An adiabatic process is a process that occurs without an exchange of heat between the system and its 
environment. That is, heat is neither added to nor taken away from the system during the process. Thus, Q = 0 in 
an adiabatic process. The first law of thermodynamics for an adiabatic process becomes 
 

∆U = Q − W 
W U= −∆                                                                             (17.44) 

 
Thus, in an adiabatic process, the energy for the work done by the gas comes from a loss in the internal energy of the 
gas. 

An example of an adiabatic process is the process of cloud formation in the atmosphere, which we will 
discuss in the section “Have you ever wondered’’ at the end of this chapter. 

Some processes that are not strictly speaking adiabatic can be treated as adiabatic processes because the 
process occurs so rapidly that there is not enough time for the system to exchange any significant quantities of 
heat with its environment. 

An adiabatic process can be drawn as the dashed line on the p-V diagram in figure 17.7. Note that the 
adiabatic line has a steeper slope than the isotherm.  
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Although the equation for the adiabat cannot be derived 
without the use of the calculus, we will state the result here for 
completeness: 

  constantγpV =                                 (17.45) 
 

where γ is equal to the ratio of the molar specific heats. Thus, 
 

p

v

C
C

γ =                                         (17.46) 

 
The adiabatic process is essential to the study of the Carnot cycle in 
section 17.8. 
 
 
 
                                                                                                                  Figure 17.7  Adiabats and isotherms on a 

                                                                                                               p-V diagram. 
Isochoric Process or Isometric Process 
An isochoric process is a process that occurs at constant volume, that is, ∆V = 0. Since the work done, W, is equal 
to p∆V = 0, then W must also be zero. The first law of thermodynamics for an isochoric process therefore becomes 
 

Q = ∆U                                                                               (17.47) 
 

Thus, the heat added to a system during an isochoric process shows up as an increase in the internal energy of the 
system. 
 
An Isobaric Process 
An isobaric process is a process that occurs at constant pressure, that is, ∆p = 0. Since the pressure is a constant 
for an isobaric process, the work done in an isobaric process is given by the product of the constant pressure p and 
the change in volume ∆V. That is, 

W = p∆V 
 
If the process is not an isobaric one then the pressure p has to be an average value of the pressure along the 
thermodynamic path to give the average amount of work done on that path. 
 
A Cyclic Process 
A cyclic process is one that always returns to its initial state. The process studied as ABCDA in figure 17.6 is an 
example of a cyclic process. Because the system always returns to the original state, ∆U is always equal to zero for a 
cyclic process. That is, 

∆U = 0 
 

Hence, the first law of thermodynamics for a cyclic process becomes 
 

W = Q                                                                               (17.48) 
 

Thus, the work done by the system in the cyclic process is equal to the heat added to the system on a portion of the 
cycle minus the heat removed on the remainder of the cycle. 
 
 
17.6  The Gasoline Engine 
The thermodynamic system studied so far is somewhat idealistic. In order to be more specific, let us consider the 
thermodynamic process that occurs in the gasoline engine of an automobile. The engine usually consists of four, 
six, or eight cylinders. Each cylinder has an inlet valve, an exhaust valve, a spark plug, and a movable piston, 
which is connected to the crankshaft by a piston rod. The operation of one of these cylinders is shown 
schematically in figure 17.8. The gasoline engine is approximated by an Otto cycle and is shown on the p-V 
diagram of figure 17.9. 
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Figure 17.8(a) shows the first stroke 
of the engine, which is called the intake 
stroke. The inlet valve opens and a mixture 
of air and gasoline is drawn into the cylinder 
as the piston moves downward. Because the 
inlet valve is open during this first stroke, 
the air pressure inside the cylinder is the 
same constant value as atmospheric pressure 
and is thus shown as the isobaric path OA in 
figure 17.9. When the cylinder is completely 
filled to the volume VA with the air and 
gasoline mixture, point A, the inlet valve, 
closes and the compression stroke starts, 
figure 17.8(b). The piston moves upward very 
rapidly causing an adiabatic compression of 
the air-gas mixture. This is shown as the 
adiabatic path AB in figure 17.9. When the 
piston is at its highest point (its smallest 
volume VB), a spark is applied to the mixture 
by the spark plug. This spark causes ignition 
of the air-gas mixture (a small explosion of 
the mixture), and a great deal of heat is 
supplied to the mixture by the explosion. 
This supply of heat is shown as QH on the 
path BC of figure 17.9. The explosion occurs 
so rapidly that it takes a while to overcome 
the inertia of the piston to get it into motion. 
Hence, for this small time period, the 
pressure and temperature in the cylinder 
rises very rapidly at approximately constant 
volume. This is shown as the path BC in 
figure 17.9. At the point C the force of the 
air-gas mixture is now able to overcome the 
inertia of the piston, and the piston moves 
downward very rapidly during the power 
stroke, figure 17.8(d). Because the piston 
moves very rapidly, this portion of the 
process can be approximated by the adiabatic  

                                                               Figure 17.8  The gasoline engine cycle. 
 

expansion of the gas shown as CD in figure 17.9. As the piston moves down rapidly this downward motion of the 
piston is transferred by the piston rod to the crankshaft of the engine causing the crankshaft to rotate. That is, the 
piston rod is connected off-center to the crankshaft. Thus, when the piston rod moves downward it creates a torque 
that causes the crankshaft to rotate. The rotating crankshaft is connected by a series of gears to the rear wheels of 
the car thus causing the wheels to turn and the car to move. At the end of this power stroke the piston has moved 
down to the greatest volume VA. At this point D, the exhaust valve of the cylinder opens and the higher pressure 
at D drops very rapidly to the outside pressure at A, and a good deal of heat QC is exhausted out through the 
exhaust valve. As the piston now moves upward in figure 17.8(f) all the remaining used gas-air mixture is dumped 
out through the exhaust valve. This is shown as the path AO in figure 17.9. At the position O, the exhaust valve 
closes and the inlet valve opens allowing a new mixture of air and gasoline to enter the cylinder. The process now 
starts over again as the same cycle OABCDAO of figure 17.9. The net result of the entire cycle is that heat QH is 
added along path BC, work is done equal to the area enclosed by the cyclic path, and heat QC is exhausted out of 
the system. Thus, heat has been added to the system and the system performed useful work. Four, six, or eight of 
these cylinders are ganged together with the power stroke of each cylinder occurring at a different time for each 
cylinder. This has the effect of smoothing out the torque on the crankshaft, causing a more constant rotation of the 
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crankshaft. Unfortunately practical limitations, such as compression ratio, friction, cooling, and so on, cause the 
efficiency of the gasoline engine, which uses the Otto cycle, to be limited to about 20% to 25%. 

 
Figure 17.9  The Otto cycle. 

 
 
17.7  The Ideal Heat Engine 
There are many heat engines in addition to the gasoline engine, but 
they all have one thing in common: every engine absorbs heat from a 
source at high temperature, performs some amount of mechanical work, 
and then rejects some heat at a lower temperature. This process can be 
visualized with the schematic diagram for an ideal heat engine, and 
is shown in figure 17.10. The engine is represented by the circle in the 
diagram. The engine absorbs the quantity of heat QH from a hot-
temperature reservoir, at a temperature TH. (In the gasoline engine, 
the quantity of heat QH was supplied by the combustion of the air-
gasoline mixture.) Some of this absorbed heat energy is converted to 
work, which is shown as the pipe coming out of the engine at the right. 
This corresponds to the work done during the power stroke of the 
gasoline engine. The rest of the original absorbed heat energy is 
dumped as exhaust heat QC into the low-temperature reservoir. (In the 
gasoline engine this is the hot exhaust gas that is rejected to the cooler 
environment outside the engine.)                                                                    Figure 17.10  An idealized heat engine. 
 

Because the engine operates in a cycle, ∆U = 0, and as we have already seen, the net work done is equal to 
the net heat absorbed by the engine, that is, 

W = Q 
 

But the net heat absorbed is equal to the difference between the total heat absorbed QH at the hot reservoir, and 
the heat rejected QC at the cold reservoir, that is, 

Q = QH − QC 
 

Thus, the work done by the engine is equal to the difference between the heat absorbed from the hot reservoir and 
the heat rejected to the cold reservoir 

H CW Q Q= −                                                                         (17.49) 
 

The efficiency of a heat engine can also be defined from equation 17.34 as 
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H C

in H H

 Eff Q QW W
Q Q Q

−
= = =                                                                  (17.50) 

                                                C

H

Eff 1 Q
Q

= −                                                                           (17.51) 

 
Thus, to make any heat engine as efficient as possible it is desirable to make QH as large as possible and QC as 
small as possible. It would be most desirable to have QC = 0, then the engine would be 100% efficient. Note that 
this would not be a violation of the first law of thermodynamics. However, as we will see in section 17.8, such a 
process is not possible. 

Before leaving this section we should note that a 
refrigerator, or a heat pump, is a heat engine working in reverse. A 
refrigerator is represented schematically in figure 17.11, where the 
refrigerator is represented as the circle in the diagram. Work W is 
done on the refrigerator, thereby extracting a quantity of heat QC 
from the low-temperature reservoir and exhausting the large quantity 
of heat QH to the hot reservoir. The total heat energy exhausted to the 
high-temperature reservoir QH is the sum of the work done on the 
engine plus the heat QC extracted from the low-temperature 
reservoir. Thus, 

QH = W + QC 
 
We define the equivalent of an efficiency for a refrigerator, the 
coefficient of performance, as 
 

                                                                                                                     Figure 17.11  An ideal refrigerator. 
 

Coefficient of performance = Heat removed                                                       (17.52) 
                                                                                                          Work done        

Coefficient of performance =  QC  
                                                                                                                       W 

C

H C

Coefficient of performance Q
Q Q

=
−

                                                      (17.53) 

 
 
17.8  The Carnot Cycle 
As we saw in section 17.7, it is 
desirable to get the maximum 
possible efficiency from a heat 
engine. Sadi Carnot (1796-1832) 
showed that the maximum 
efficiency of any heat engine must 
follow a cycle consisting of the 
isothermal and adiabatic paths 
shown in the p-V diagram in figure 
17.12, and now called the Carnot 
cycle. The cycle begins at point A.  
Let us now consider each path 
individually. 

 
 
 
 
 

                                                            Figure 17.12  A p-V diagram for a Carnot cycle. 

Pearson Custom Publishing

521



 
17-18                                                                                                          Vibratory Motion, Wave Motion and Fluids 

Path AB: An ideal gas is first compressed isothermally along the path AB. Since AB is an isotherm, ∆T = 0 and 
hence ∆U = 0. The first law therefore says that Q = W along path AB. That is, the work WAB done on the gas is 
equal to the heat removed from the gas QC, at the low temperature, TC. 

Path BC: Path BC is an adiabatic compression and hence Q = 0 along this path. The first law therefore becomes 
∆U = W.  That is, the work WBC done on the gas during the compression is equal to the increase in the internal 
energy of the gas as the temperature increases from TC to TH. 

Path CD: Path CD is an isothermal expansion. Hence, ∆T = 0 and ∆U = 0. Therefore, the first law becomes W = Q.  
That is, the heat added to the gas QH at the high temperature TH is equal to the work WCD done by the 
expanding gas. 

Path DA: Path DA is an adiabatic expansion, hence Q = 0 along this path. The first law becomes ∆U = W.  Thus, 
the energy necessary for the work WDA done by the expanding gas comes from the decrease in the internal 
energy of the gas. The gas decreases in temperature from TH to TC. 

 
The net effect of the Carnot cycle is that heat QH is absorbed at a high temperature TH, mechanical work W 

is done by the engine, and waste heat QC is exhausted to the low-temperature reservoir at a temperature TC. The 
net work done by the Carnot engine is 

W = QH − QC 
 

The efficiency is given by the same equations 17.50 and 17.51 as we derived before. That is, 
 

Eff = 1 −  QC                                                                           (17.51) 
                QH 

 
Lord Kelvin proposed that the ratio of the heat rejected to the heat absorbed could serve as a temperature scale. 
Kelvin then showed that for a Carnot engine 

C C

H H

Q T
Q T

=                                                                              (17.54) 

 
where TC and TH are the Kelvin or absolute temperatures of the gas. With the aid of equation 17.54, we can 
express the efficiency of a Carnot engine as 

C

H

Eff 1 T
T

= −                                                                          (17.55) 

 
The importance of equation 17.55 lies in the fact that the Carnot engine is the most efficient of all engines. If the 
efficiency of a Carnot engine can be determined, then the maximum efficiency possible for an engine operating 
between the high temperature TH and the low temperature TC is known. 

 
Example 17.5 

 
In examples 17.3 and 17.4 the engine operated between a maximum temperature of 600 K and a minimum 
temperature of 150 K.  The efficiency of that particular engine was 15%. What would the efficiency of a Carnot 
engine be, operating between these same temperatures? 

Solution
 

The efficiency of the Carnot engine, found from equation 17.55, is 
 

C

H

150 KEff 1 1 0.75
600 K

T
T

= − = − =  

 
Therefore, the maximum efficiency for any engine operating between these temperatures cannot be higher than 
75%. Obviously the efficiency of 15% for the previous cycle is not very efficient. 
 

To go to this Interactive Example click on this sentence. 
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17.9  The Second Law of Thermodynamics 
There are several processes that occur regularly in nature, but their reverse processes never occur. For example, 
we can convert the kinetic energy of a moving car to heat in the brakes of the car as the car is braked to a stop. 
However, we cannot heat up the brakes of a stopped car and expect the car to start moving. That is, we cannot 
convert the heat in the brakes to kinetic energy of the car. Thus, mechanical energy can be converted into heat 
energy but heat energy cannot be completely converted into mechanical energy. As another example, a hot cup of 
coffee left to itself always cools down to room temperature, never the other way around. There is thus a kind of 
natural direction followed by nature. That is, processes will proceed naturally in one direction, but not in the 
opposite direction. Yet in any of these types of processes there is no violation of the first law of thermodynamics 
regardless of which direction the process occurs. This unidirectionality of nature is expressed as the second law 
of thermodynamics and tells which processes will occur in nature. The second law will first be described in 
terms of the ideal heat engine and refrigerator studied in section 17.7. 
 
The Kelvin-Planck Statement of the Second Law 
No process is possible whose sole result is the absorption of heat from a 
reservoir at a single temperature and the conversion of this heat 
energy completely into mechanical work. This statement is shown 
schematically in figure 17.13. That is, the diagram in figure 17.13 
cannot occur in nature. Observe from figure 17.13 that heat QH is 
absorbed from the hot reservoir and converted completely into work. In 
figure 17.10 we saw that there had to be an amount of heat QC 
exhausted into the cold reservoir. Thus the Kelvin-Planck statement 
of the second law of thermodynamics says that there must always 
be a quantity of heat QC exhausted from the engine into a lower 
temperature reservoir. 
 
 
 
 
                                                                                                               Figure 17.13  Kelvin-Planck violation of the 

                                                                                                          second law. 
 
The Clausius Statement of the Second Law of Thermodynamics 
No process is possible whose sole result is the transfer of heat from a 
cooler to a hotter body. The Clausius statement of the second law 
of thermodynamics can best be described by the refrigerator of figure 
17.11. Work was done on the refrigerator to draw heat QC out of the 
cold reservoir to then deliver it to the hot reservoir. The Clausius 
statement says that work must always be done to do this. The violation 
of this Clausius statement of the second law is shown in figure 17.14. 
This statement of the second law of thermodynamics is essentially an 
observation of nature. Thermal energy flows from hot reservoirs (hot 
bodies) to cold reservoirs (cold bodies). The reverse process where heat 
flows from a cold body to a hot body without the application of some 
kind of work does not occur in nature. Thus, the second law of 
thermodynamics says that such processes are impossible, and the 
diagram in figure 17.14 cannot occur in nature. 
 
 

                                                                                                                    Figure 17.14  Clausius violation of the 
                                                                                                                        second law. 
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17.10  Entropy 
The second law of thermodynamics has been described in terms of statements about which processes are possible 
and which are not possible. It would certainly be more desirable to put the second law on a more quantitative 
basis. In 1865, Clausius introduced the concept of entropy to indicate what processes are possible and what ones 
are not. When a thermodynamic system changes from one equilibrium state to another in a series of small 
increments such that the system always moves through a series of equilibrium states, the system is said to go 
through a reversible process. A reversible process can be drawn as a continuous line on a p-V diagram. All the 
processes that have been considered are reversible processes. When a thermodynamic system changes from one 
equilibrium state to another along a reversible path, there is a change in entropy, ∆S of the system given by 
 

QS
T

∆
∆ =                                                                              (17.56) 

 
where ∆Q is the heat added to the system, and T is the absolute temperature of the system. 

 
Example 17.6 

 
Find the change in entropy when 5.00 kg of ice at 0.00 0C are converted into water at 0.00 0C. 

Solution
 

The heat absorbed by the ice in melting is found from 
 

∆Q = mLf = (5.00 kg)(3.34 × 105 J/kg) = 1.67× 106 J  
 
The process takes place at 0 0C which is equal to 273 K.  The change in entropy, found from equation 17.56, is 
 

∆S = ∆Q 
         T 

= 1.67× 106 J  
   273 K 

= 6.12 × 103 J/K 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Whenever heat is added to a system, ∆Q is positive, and hence, ∆S is also positive. If heat is removed from 

a system, ∆Q is negative, and therefore, ∆S is also negative. When the ice melts there is a positive increase in 
entropy. 

Entropy is a very different concept than the concept of energy. For example, in a gravitational system, a 
body always falls from a region of high potential energy to low potential energy, thereby losing potential energy. In 
contrast, in an isolated thermodynamic system, the system always changes from values of low entropy to values of 
high entropy, thereby increasing the entropy of the system. Therefore, the concept of entropy can tell us in which 
direction a process will proceed. For example, if an isolated thermodynamic system is in a state A, and we wish to 
determine if it can naturally go to state B by itself, we first measure the initial value of the entropy at A, Si, and 
the final value of the entropy at B, Sf.  The system will move from A to B only if there is an increase in the entropy 
in moving from A to B.  That is, the process is possible if 

 
f i 0S S S∆ = − <                                                                         (17.57) 

 
If ∆S is negative for the proposed process, the system will not proceed to the point B.  The second law of 
thermodynamics can also be stated as: the entropy of an isolated system increases in every natural process, and only 
those processes are possible for which the entropy of the system increases or remains a constant. The entropy of a 
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nonisolated system may either increase, or decrease, depending on whether heat is added to or taken away from 
the system. If ∆Q is equal to zero, such as in an adiabatic process, then ∆S also equals zero. Hence, an adiabatic 
process is also an isoentropic process. Just as the change in internal energy of a system from state A to state B is 
independent of the path taken to get from A to B, the entropy of a system is also independent of the path taken. 

Note from the form of equation 17.56 that the temperature T must be a constant. If the temperature is not 
a constant, as is the case in most processes, the calculus must be used to evaluate the entropy of the system. In 
some cases an average temperature of the system can be used in equation 17.56 to evaluate the entropy. 

 
Example 17.7 

 
Find the change in entropy when 5.00 kg of ice at −5.00 0C is warmed to 0.00 0C. 

Solution
 

The heat added to the ice is found from 
∆Q = mc∆T = mc(Tf − Ti) 

( )0 0
0

J(5.00 kg) 2093 0 C ( 5.00 C
kg C

 
= − − 

 
 

= 5.23 × 104 J 
 
We can use equation 17.56 to evaluate the change in entropy of the ice if an average temperature of −2.50 0C = 
270.5 K is used. Thus, 

∆S = ∆Q                                                                            (17.56) 
       T 

= 5.23 × 104 J  
   270.5 K 
= 193 J/K 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 17.8 
 

Find the change in entropy when 5.00 kg of ice at −5.00 0C are converted to water at 0.00 0C. 

Solution
 

We can find the change in entropy by dividing the problem into two parts. First, we find the change in entropy in 
warming the ice to 0.00 0C and then we find the change in entropy in melting the ice. We have already found the 
change in entropy for these two processes in examples 17.6 and 17.7. The total change in entropy is the sum of the 
change in entropy for the two processes. Therefore, 
 

∆S = ∆S1 + ∆S2 
= 193 J/K + 6.12 × 103 J/K  

= 6.31 × 103 J/K 
 

To go to this Interactive Example click on this sentence. 
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17.11  Statistical Interpretation of Entropy 
As we have seen in sections 17.9 and 17.10, the second law of thermodynamics is described in terms of statements 
about which processes in nature are possible and which are not possible. Clausius introduced the concept of 
entropy to put the second law on a more quantitative basis. He stated the second law as: the entropy of an isolated 
system increases in every natural process, and only those processes are possible for which the entropy of the system 
increases or remains a constant. But this analysis was done on a macroscopic level, that is, a large-scale level, 
where concepts of temperature, pressure, and volume were employed. But the gas, the usual working substance 
discussed, is made up of billions of molecules, as shown in the kinetic theory of gases. Ludwig Boltzmann’s 
approach to the second law of thermodynamics is a further extension of the kinetic theory, and is called statistical 
mechanics. Boltzmann looked at the molecules of the gas and asked what the most probable distribution of these 
molecules is. There is a certain order to the distribution of the molecules, with some states more probable than 
others. Thus, statistical mechanics deals with probabilities. 

As an example, let us consider the gas molecules in figure 17.15(a). The molecules are contained in the left-
hand side of a box by a partition located in the center of the box. When the partition is removed some of the  
molecules move to the right-hand side of the box 
until an equilibrium condition is reached whereby 
there are the same number of molecules in both 
sides of the box, figure 17.15(b). We now ask, can all 
the gas molecules in the entire box of figure 17.15(b) 
move to the left and be found in the original state 
shown in figure 17.15(a)? We know from experience 
that this never happens. This would be tantamount 
to all the gas molecules in the room that you are 
now sitting in moving completely to the other side of 
the room, leaving you in a vacuum. This just does  

                                                                                  Figure 17.15  Gas molecules in a partitioned box. 
 
not happen in life. However, if it did it would not violate the first law of thermodynamics. But the second law says 
some processes do not occur. This is certainly one of them. Notice that the first case in which all the molecules are 
in the left-hand side of the box is more orderly than the second case where the molecules are distributed over the 
entire box. (If the volume of the box is larger, there are more random paths for the molecules to follow and hence 
more disorder.) 

As another example of order and disorder, let us drop a piece of clay. When the clay is dropped, 
superimposed over the thermal motion of the molecules of the clay is the velocity of the clay toward the ground. 
That is, all the molecules have a motion toward the ground, which is an ordered motion. When the clay hits the 
ground and sticks to it, the kinetic energy of the falling molecules shows up as thermal energy of the clay 
molecules, which is a random or disordered motion of the molecules. Hence there is a transformation from order to 
disorder in the natural process of a collision of a falling object. Now as we know, the clay cannot gather together 
all the random thermal motion of the clay molecules and convert them to ordered translational motion upward, 
and hence the clay by itself cannot move upward. Thus the concept of which processes can occur in nature can also 
be measured by the amount of order or disorder between the initial and final states of the system. Using the 
concept of order, the second law of thermodynamics can also be stated as: an isolated system in a state of relative 
order will always pass to a state of relative disorder until it reaches the state of maximum disorder, which is 
thermal equilibrium. 

Let us return to our example of the gas molecules in a box. Although normally there are billions of 
molecules in the box, to simplify our discussion let us assume that there are only four molecules present. They are 
numbered consecutively 1, 2, 3, and 4. Let us ask how many ways we can distribute these four molecules between 
the left- and right-hand sides of the box. First we could place the four molecules all in the left-hand side of the box 
as shown in table 17.1. Thus there is only one way we can place the four molecules into the left-hand side of the 
box. Let us designate the number of ways that the four molecules can be distributed as Ni and note that N1 = 1. Next 
we see how many ways we can place one molecule in the right-hand side of the box and three in the left-hand side. 
That is, first we place molecule 1 in the right-hand side of the box, and see that that leaves molecules 2, 3, 4, in the 
left-hand side. Then we place molecule 2 in the right-hand side and see that we then have molecules 1, 3, 4 in the 
left-hand side. Continuing in this way we see from the table that there are four ways to do this. Thus, we 
designate the number of ways we can place one molecule in the right-hand side of the box and three in the left-
hand side as N2 and see that this is equal to 4. Next we see how many ways we can place two molecules in the 
right-hand side of the box and two in the left-hand side. From the table we see that there are six ways, and we 
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call this N3 = 6. Next we see 
how many ways we can 
place one molecule in the 
left-hand side of the box 
and three in the right-hand 
side. Again from the table 
we see that there are four 
ways to do this, and we call 
this N4 = 4. Finally we ask 
how many ways can the 
four molecules be placed in 
the right-hand side of the 
box and again we see from 
the table there is only one 
way. We call this N5 = 1. 
Thus there are five possible 
ways (for a total of 16 
possible states) that the 
four molecules could be 
distributed between the 
left- and right-hand sides of 
the box. 

But which of all these possibilities is the most probable? The probability that the molecules are in the state 
that they are in compared with all the possible states they could be in is given by 

 
P =  Ni × 100% 

                                                                                           N          
 

where Ni is the number of states that the molecules could be in for a particular distribution and N is the total 
number of possible states. As we see from the table, there are 16 possible states that the four molecules could be 
in. Hence the probability that the molecules are in the state where all four are on the left-hand side is 
 

 P =  N1 × 100% =  1  × 100% = 6.25%  
                                                                         N                    16       

 
That is, there is a 6.25% probability that all four molecules will be found in the left-hand side of the box. 

The probability that the distribution of the four molecules has three molecules in the left-hand side and 
one in the right-hand side is found by observing that there are four possible ways that the molecules can be 
distributed and hence N2 = 4. Therefore, 

    P =  N2 × 100% =  4  × 100% = 25% 
                                                                            N                   16 

   
Thus there is a 25% probability that there are three molecules in the left-hand side and one molecule in the right-
hand side. Continuing in this way the probabilities that the molecules will have the particular distribution is 
shown in table 17.1. Thus there is a 37.5% probability that the distribution has two molecules in each half of the 
box, a 25% probability that the distribution has one molecule in the left half of the box and three in the right half 
of the box, and finally a 6.25% probability that the distribution has no molecules in the left half of the box and four 
in the right half of the box. 

Notice that the first and last distributions (all molecules either on the left side or on the right side), are the 
most ordered and they have the lowest probability, 6.25%, for the distribution of the molecules. Also notice that 
the third distribution where there are two molecules on each side of the box has the greatest disorder and also the 
highest probability that this is the way that the molecules will be distributed. Notice that the distribution with the 
greatest possible number of states gives the highest probability. These ideas led Boltzmann to define the entropy 
of a state as 

lnS k P=                                                                             (17.58) 
 

Table 17.1 
Possible Distributions of Four Molecules in a Box 

Left Right  Ni Pi = Ni/N  S = k ln P 
1   2   3    4  1 1/16 = 6.25% 2.53 × 10−23 J/K 
     2   3   4 
1        3   4 
1   2        4 
1   2   3 

1 
     2 
          3 
               4 

 
4 

 
4/16 = 25% 

  
4.44 × 10−23 J/K 

1   2 
1        3 
     2   3 
1             4 
     2        4 
          3   4 

          3   4 
     2        4 
1             4 
     2   3 
1        3 
1   2 

 
 
6 

 
 

6/16 = 37.5% 

 
 

5.00 × 10−23 J/K 

1 
     2 
          3 
                4  

     2   3   4 
1        3   4 
1   2        4 
1   2   3 

 
4 

 
4/16 = 25% 

 
4.44 × 10−23 J/K 

 1   2   3   4 1 1/16 = 6.25%  2.53 × 10−23 J/K 
ΣNi = N = 16 ; ΣPi = 100% 
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where k is a constant, that later turned out to be the Stefan-Boltzmann constant, which is equal to 1.38 × 10−23 
J/K; ln is the natural logarithm; and P is the probability that the system is in the state specified. Thus in our 
example, the entropy of the first distribution is computed as 
 

S = k ln P = (1.38 × 10−23 J/K)(ln 6.25) 
= 2.53 × 10−23 J/K 

 
The entropy for each possible distribution is computed and shown in table 17.1. Notice that the most 

disordered state (two molecules on each side of the box) has the highest value of entropy. If we were to start the 
system with the four molecules in the left-hand box, entropy = 2.53 × 10−23 J/K, the system would move in the 
direction of maximum entropy, 5.00 × 10−23 J/K, the state with two molecules on each side of the box. As before, 
natural processes move in the direction of maximum entropy. The actual values of the computed entropy for this 
example are extremely small, because we are dealing with only four molecules. If we had only one mole of a gas in 
the box we would have 6.02 × 1023 molecules in the box, an enormous number compared with our four molecules. 
In such a case the numerical values of the entropy would be much higher. However there would still be the same 
type of distributions. The state with the greatest disorder, the same number of molecules on each side of the box, 
would be the state with the greatest value of the entropy. The state with all the molecules on one side of the box 
would have a finite but vanishingly small value of probability.  

Hence the original problem we stated in figure 17.15(a), with the gas in the left partition has the smallest 
entropy while the gas on both sides of the box in figure 17.15(b), has the greatest entropy. The process flows from 
the state of lowest entropy to the one of highest entropy. It is interesting to note that it is not impossible for the 
gas molecules on both sides of the box to all move to the left-hand side of the box, but the probability is so 
extremely small that it would take a time greater than the age of the universe for it to happen. Hence, effectively 
it will not happen. 

The state of maximum entropy is the state of maximum disorder and is the state where all the molecules 
are moving in a completely random motion. This state is, of course, the state of thermal equilibrium. We have seen 
throughout our study of heat that whenever two objects at different temperatures are brought together, the hot 
body will lose thermal energy to the cold body until the hot and cold body are at the same equilibrium 
temperature. Thus, as all bodies tend to equilibrium they all approach a state of maximum entropy. Hence, the 
universe itself tends toward a state of maximum entropy, which is a state of thermal equilibrium of all the 
molecules of the universe. This is a state of uniform temperature and density of all the atoms and molecules in the 
universe. No physical, chemical, or biological processes would be capable of occurring, however, because a state of 
total disorder cannot do any additional work. This ultimate state of the universe is sometimes called the heat 
death of the universe.    

One final thought about entropy, and that is the idea of a direction for time. All the laws of physics, except 
for the second law of thermodynamics, are invariant to a change in the direction of time. That is, for example, 
Newton’s laws of motion would work equally well if time were to run backward. If a picture were taken of a 
swinging pendulum with a video camera, and then played first forward and then backward, we could not tell from 
the picture which picture is running forward in time and which is running backward in time. They would both 
appear the same. On the other hand, if we take a video of a dropped coffee cup that hits the ground and shatters 
into many pieces we can certainly tell the difference between running the video forward or backward. When the 
video is run backward we would see a shattered coffee cup on the floor come together and repair itself and then 
jump upward onto the table. Nature does not work this way, so we know the picture must be running backward. 
Now before the coffee cup is dropped, we have a situation of order. When the cup is dropped and shattered we have 
a state of disorder. Since natural processes run from a state of order (low entropy) to one of disorder (high 
entropy), we can immediately see the time sequence that must be followed in the picture. The correct sequence to 
view the video picture is to start where the coffee cup has its lowest entropy (on the table initially at rest) and end 
where the cup has its maximum entropy (on the floor broken into many pieces). Hence the concept of entropy gives 
us a direction for time. In any natural process, the initial state has the lowest entropy, and the final state has the 
greatest entropy. Thus time flows in the direction of the increase in entropy. Stated another way, the past is the 
state of lowest entropy and the future is the state of highest entropy. Thus entropy is sometimes said to be time’s 
arrow, showing its direction. 

Because of this, there have been many speculative ideas attributed to time. What happens to time when 
the universe reaches its state of maximum entropy? Since time flows from low entropy to high entropy, what 
happens when there is no longer a change in entropy? Would there be an infinite present? An eternity?  
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Have you ever wondered? 
An Essay on the Application of Physics  

Meteorology - The Physics of the Atmosphere 
 

Have you ever wondered, while watching the weather forecast on 
your local TV station, what all those lines and arrows were on those 
maps? It looked something like figure 1.  

If we were to look at the television screen more closely we 
would see a map of the United States. At every weather station 
throughout the United States, the atmospheric pressure is measured 
and recorded on a weather map. On that map, a series of lines, 
connecting those pressures that are the same, are drawn. These 
lines are called isobars and can be seen in figure 2. An isobar is a 
line along which the pressure is constant. An isobar is analogous to 
a contour line that is drawn on a topographical map to indicate a 
certain height above mean sea level. As an example, consider the 
mountain and valley shown in figure 3(a). A series of contour lines 
are drawn around the mountain at constant heights above sea level. 
The first line is drawn at a height H = 200 m above sea level. 
Everywhere on this line the height is exactly 200 m above sea level. 
The next contour line is drawn at H = 400 m. Everywhere on this 
line the height is exactly 400 m above sea level. Between the 200 m 
contour and the 400 m contour line the height varies between 200 m 
and 400 m. The contour line for 600 m is also drawn in the figure. 
The very top of the mountain is greater than the 600 m and is the 
highest point of the mountain. The contour lines showing the valley 
are drawn at −200 m, −400 m, and −600 m. The −200 m  

                                                                                                                    Figure 1  Your local TV weatherman. 
 

contour line shows that every point on this line is 200 m 
below sea level. The bottom of the valley is the lowest 
point in the valley. If we were to look down on the 
mountain and valley from above, we would see a series of 
concentric circles representing the contour lines as they 
are shown in figure 3(b). (On a real mountain and valley 
the contours would probably not be true circles.) 

The isobars are to a weather map as contour 
lines are to a topographical map. The isobars represent 
the pressure of the atmosphere. By drawing the isobars, 
a picture of the pressure field is obtained. Normal 
atmospheric pressure is 1013.25 mb. But remember that 
normal is an average of abnormals. At any given time, 
the pressure in the atmosphere varies slightly from this 
normal value. If the atmospheric pressure is greater 
than normal at your location, then you are in a region of 
high pressure. If, on the other hand, the atmospheric  

                                                                                             Figure 2  A weather map. 
 

pressure is less than normal at your location, then you are in a region of low pressure. The isobars indicating high 
and low pressure are shown in figure 4(a). The high-pressure region can be visualized as a mountain and the low-
pressure region as a valley in figure 4(b). Air in the high-pressure region flows down the pressure mountain into 
the low-pressure valley, just as a ball would roll down a real mountain side into the valley below. This flow of air is 
called wind. Hence, air always flows out of a high-pressure area into a low-pressure area. The force on a ball 
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rolling down the mountain is the component, acting down the mountain, of the gravitational force on the ball. The 
force on a parcel of air is caused by the difference in pressure between the higher pressure and the lower  
 

      Figure 3  Contour lines on a topographical map.                   Figure 4  High and low atmospheric pressure.   
 
pressure. This force is called the pressure gradient force (PGF) per unit mass, and it is directed from the high-
pressure area to the low-pressure area. It is effectively the slope of the pressure mountain-valley. A large pressure 
gradient, corresponding to a steep slope, causes large winds, whereas a small pressure gradient, corresponding to 
a shallow slope, causes very light winds. 

If the earth were not rotating, the air would flow perpendicular to the isobars. However, the earth does 
rotate, and the rotation of the earth causes air to be deflected to the right of its original path. The deflection of air 
to the right of its path in the northern hemisphere is called the Coriolis effect. The Coriolis effect arises because 
the rotating earth is not an inertial coordinate system. For small-scale motion the rotating earth approximates an 
inertial coordinate system. However, for large-scale motion, such as the winds, the effect of the rotating earth 
must be taken into account. It is taken into account by assuming that there is a fictitious force, called the Coriolis 
force (CF) that acts to the right of the path of a parcel of air in its motion through the atmosphere. The equation 
for the Coriolis force is                                  

CF = 2vΩ sin φ                                                                        (17H.1) 
 

where CF is the Coriolis force per unit mass of air, v is the speed of the wind, Ω is the angular velocity of the earth, 
and φ is the latitude. Thus, the Coriolis force depends on the speed of the air (the greater the speed the greater the 
force) and the latitude angle φ. At the equator, φ = 0 and sin φ = 0, and hence there is no force of deflection at the 
equator. For φ = 900, sin φ = 1, hence the maximum force and deflection occur at the pole. 
Let us describe the motion of the air as it moves toward the low-pressure area. The air starts on its motion at the 
point A, figure 5(a), along a path that is perpendicular to the isobars. But the air is deflected to the right of its 
path by the Coriolis force, and ends up at the position B.  At B, the pressure gradient force is still acting toward 
the center of the low-pressure area, while the Coriolis force, acting to the right of the path, is opposite to the 
pressure gradient force.  
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An approximate balance1 exists between the two forces 
and the air parcel now moves parallel to the isobars. 
Notice that the air moves counterclockwise in a low-
pressure area.  

As the air moves over the ground, there is a 
frictional force f that acts on the air, is directed opposite 
to the direction of motion of the air, and is responsible 
for the slowing down of the air. This is shown in figure 
5(b). But, as seen in equation 17H.1, the Coriolis force is 
a function of the wind speed. If the wind speed decreases 
because of friction, the Coriolis force also decreases. 
Hence, there is no longer the balance between the 
pressure gradient force and the Coriolis force and the air 
parcel now moves toward the low-pressure area. The 
combined result of the pressure gradient force, the 

                                                                                          Figure 5  A low-pressure area. 
 

Coriolis force, and the frictional force, causes the air to spiral into the low-pressure area, as seen in figure 5(b). 
The result of the above analysis shows that air spirals counterclockwise into a low-pressure area at the 

surface of the earth. But where does all this air go? It must go somewhere. The only place for it to go is upward 
into the atmosphere. Hence, there is vertical motion upward in a low-pressure area. 

Now recall from chapter 13 that the pressure of the air in the atmosphere decreases with altitude. Hence, 
when the air rises in the low-pressure area it finds itself in a region of still lower pressure aloft. Therefore, the 
rising air from the surface expands into the lower pressure aloft. But as seen in this chapter, for a gas to expand 
the gas must do work. Since there is no heat added to, or taken away from this rising air, ∆Q = 0, and the air is 
expanding adiabatically. But as just shown in equation 17.44, the work done in the expansion causes a decrease in 
the internal energy of the gas. Hence, the rising air cools as it expands because the energy necessary for the gas to 
expand comes from the internal energy of the gas itself. Hence the temperature of the air decreases as the air 
expands and the rising air cools. 

The amount of water vapor in the air is called humidity. The maximum amount of water vapor that the air 
can hold is temperature dependent. That is, at high temperatures the air can hold a large quantity of water vapor, 
whereas at low temperatures it can only hold a much smaller quantity. If the rising air cools down far enough it 
reaches the point where the air has all the water vapor it can hold. At this point the air is said to be saturated and 
the relative humidity of the air is 100%. If the air continues to rise and cool, it cannot hold all this water vapor. 
Hence, some of the water vapor condenses to tiny drops of water. These drops of water effectively float in the air. 
(They are buoyed up by the rising air currents.) The aggregate of all these tiny drops of water suspended in the air 
is called a cloud. Hence, clouds are formed when the rising air is cooled to the condensation point. If the rising and 
cooling continue, more and more water vapor condenses until the water drops get so large that they fall and the 

                                            
1A more detailed analysis by Newton’s second law would give 
 

a =  F   = PGF + CF 
                                                                                                              M                 

 
Since the air parcel is moving in a circle of radius r, with a velocity v, the acceleration is the centripetal acceleration given by v2/r.  Hence 
Newton's second law should be written as 

 v2  = PGF + CF  
                                                                                                           r                              

  
But in very large scale motion, such as over a continent, v2/r ≈ 0.1× 10−3 m/s2, while the PGF ≈ 1.1 × 10−3 m/s2.  Thus the centripetal acceleration 
is about 1/10 of the acceleration caused by the pressure gradient force, and in this simplified analysis is neglected.  The second law then 
becomes 

0 = PGF + CF 
or 

PGF = −CF 
 

Hence the force on the air parcel is balanced between the pressure gradient force and the Coriolis force.  The wind that results from the balance 
between the PGF and the CF is called the geostrophic wind.  For a more accurate analysis and especially in smaller sized pressure systems such 
as hurricanes and tornadoes this assumption cannot be made and the centripetal acceleration must be taken into account. 
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falling drops are called rain. In summary, associated with a low-pressure area in the atmosphere is rising air. The 
cooling of this adiabatically expanding air causes the formation of clouds, precipitation, and general bad weather. 
Thus, when the weatherman says that low pressure is moving into your area, as a general rule, you can expect bad 
weather. 

Everything we said about the low-pressure area is 
reversed for a high-pressure area. The pressure gradient 
force points away from the high-pressure area. As the air 
starts out of the high-pressure area at the point A, figure 
6(a), it is moving along a path that is perpendicular to the 
isobars. The Coriolis force now acts on the air and deflects 
it to the right of its path. By the time the air reaches the 
point B, the pressure gradient force is approximately 
balanced by the Coriolis force,2 and the air moves parallel 
to the isobars. Thus, the air flows clockwise around the 
high-pressure area. The frictional force slows down the air 
and causes the Coriolis force to decrease in size. The 
pressure gradient force is now greater than the Coriolis 
force, and the air starts to spiral out of the high-pressure 
area, figure 6(b). 

                                                                                                 Figure 6  A high-pressure area. 
 
From what we have just seen, air spirals out of a high pressure area at the surface of the earth. But if all 

the air that was in the high-pressure area spirals out, what is left within the high-pressure area? If the air is not 
replenished, the area would become a vacuum. But this is impossible. Therefore, air must come from somewhere to 
replenish the air spiraling out of the high. The only place that it can come from is from the air aloft. That is, air 
aloft moves downward into the high-pressure area at the surface. Thus, there is vertical motion downward in a 
high-pressure area. 

As the air aloft descends, it finds itself in a region of still higher pressure and is compressed adiabatically. 
Thus, work is done on the gas by the atmosphere and this increase in energy shows up as an increase in the 
internal energy of the air, and hence an increase in the temperature of the descending air. Thus, the air warms up 
adiabatically as it descends. Because warmer air can hold more water vapor than colder air, the water droplets 
that made up the clouds evaporate into the air. As more and more air descends, more and more water droplets 
evaporate into the air until any clouds that were present have evaporated, leaving clear skies. Hence, high-
pressure areas are associated with clear skies and, in general, good weather. So when the weatherman tells you 
that high pressure is moving into your area, you can usually expect good weather. 

Now when you look at your TV weather map, look for the low- and high-pressure areas. If the low-pressure 
area is moving into your region, you can expect clouds and deteriorating weather. If the high-pressure area is 
moving into your region, you can expect improving weather with clear skies. 

Those other lines on the weather map are called fronts. A front is a boundary between two different air 
masses. An air mass is a large mass of air having uniform properties of temperature and moisture throughout the 
horizontal. Air sitting over the vast regions of Canada has the characteristic of being cold and dry. This air mass is 
called a continental polar air mass and is designated as a cP air mass. Air sitting over the southern ocean areas 
and the Gulf of Mexico has the characteristic of being hot and humid. This air mass is called a maritime tropical, 
mT, air mass. These two air masses interact at what is called the polar front. Much of your weather is associated 
with this polar front. If the continental polar air mass is moving forward, the polar front is called a cold front. On a 
weather map the cold front is shown either as a blue line or, if the presentation is in black and white, a black line 
with little triangles on its leading edge showing the direction of motion. If the continental polar air mass is 
retreating northward, the polar front is called a warm front. On a weather map the warm front is shown either as 
a red line or, if the presentation is in black and white, a black line with little semicircles on its edge showing the 
direction in which the front is retreating. The center of the polar front is embedded in the low-pressure area. 

With all this background, let us now analyze the weather map of figure 2. Notice that there is a large low-
pressure area over the eastern half of the United States. In general, the poorer weather will be found in this 
region. A high-pressure area is found across the western half of the United States. In general, good weather will be 
found in this region. The polar front can also be seen in figure 2. The cold front is the boundary between the cold 

                                            
2The same approximation for the balance between the PGF and the CF used in the analysis of the low-pressure area is also made for the high-
pressure area. 
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continental polar air that came out of Canada and the warm moist maritime tropical air that has moved up from 
the gulf. The arrows on the map indicate the velocity of the air. The cold dry cP air, being heavier than the warm 
tropical mT air, pushes underneath the mT air, driving it upward. The moisture in the rising tropical air 
condenses and forms a narrow band of clouds along the length of the cold front. The precipitation usually 
associated with the cold front is showery. 

The warm front is the boundary of the retreating cool air and the advancing warm moist air. The mT air, 
being lighter than the retreating cP air, rises above the colder air. The sloping front of the retreating air is much 
shallower than the slope of the advancing cold front. Therefore, the mT air rises over a very large region and gives 
a very vast region of clouds and precipitation. Thus the weather associated with a warm front is usually more 
extensive than the weather associated with a cold front. 

Your weather depends on where you are with respect to the frontal systems. If you are north of the warm 
front in figure 2, such as in Illinois, Ohio, or Pennsylvania, the temperatures will be cool, the winds will be from 
the southeast, the sky will be cloudy, and you will be getting precipitation. If you are south of the warm front and 
in advance of the cold front, such as in Alabama, Georgia, South Carolina, and Florida, the temperature will be 
warm, the humidity high, winds will be from the southwest and you will usually have nice weather. If the cold 
front has already passed you by, such as in Kansas, Oklahoma, Texas, and Arkansas, the skies will be clear or at 
least clearing, the temperature will be cold, the humidity will be low, the winds will be from the northwest, and in 
general you will have good weather. 

All the highs, lows, and fronts, move across the United States from the west toward the east. So the 
weather that you get today will change as these weather systems move toward you. 
 
 

The Language of Physics 
 
Thermodynamics 
The study of the relationships 
between heat, internal energy, and 
the mechanical work performed by 
a system. The system is usually a 
heat engine of some kind (p. ). 
 
Work 
The work done by a gas during 
expansion is positive and the work 
done by a gas during compression is 
negative. The work done is equal to 
the area under the curve in a p-V 
diagram. The work done depends on 
the thermodynamic path taken in 
the p-V diagram (p. ). 
 
Cyclic process 
A process that runs in a cycle 
eventually returning to where it 
started from. The net work done by 
the system during a cyclic process is 
equal to the area enclosed by the 
cyclic thermodynamic path in a p-V 
diagram. The net work is positive if 
the cycle proceeds clockwise, and 
negative if the cycle proceeds 
counterclockwise on the p-V 
diagram. The total change in 
internal energy around the entire 
cycle is equal to zero. The energy 

for the net work done by the system 
comes from the net heat applied to 
the system (p. ). 
 
Isobaric process 
A process that takes place at a 
constant pressure (p. ). 
 
Isochoric or isometric process 
A process that takes place at 
constant volume. The heat added to 
a system during an isochoric 
process shows up as an increase in 
the internal energy of the system 
(p. ). 
 
Isothermal process 
A process that takes place at 
constant temperature (p. ). 
 
Molecular mass 
The molecular mass of any 
substance is equal to the mass of 
one molecule of that substance 
times the total number of molecules 
in one mole of the substance 
(Avogadro’s number). Thus, the 
molecular mass of any substance is 
equal to the mass of one mole of that 
substance. Hence, the mass of a gas 
is equal to the number of moles of a 

gas times the molecular mass of the 
gas (p. ). 
 
Molar specific heat 
The product of the specific heat of a 
substance and its molecular mass 
(p. ). 
 
Heat in a thermodynamic 
process 
The heat absorbed or liberated in a 
thermodynamic process depends on 
the path that is followed in a p-V 
diagram. Thus, heat, like work, is 
path dependent. Heat is always 
positive when it is added to the 
system and negative when it is 
removed from the system (p. ). 
 
Internal energy of a gas 
The internal energy of a gas is 
equal to the sum of the kinetic 
energy of all the molecules of a gas. 
A change in temperature is 
associated with a change in the 
internal energy of a gas. Hence, an 
isothermal expansion occurs at 
constant internal energy. 
Regardless of the path chosen 
between two points in a p-V 
diagram, the change in internal 
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energy is always the same. Thus, 
the internal energy of the system is 
independent of the path taken in a 
p-V diagram; it depends only on the 
initial and final states of the 
thermodynamic system (p. ). 
 
The first law of 
thermodynamics 
The heat added to a system will 
show up either as a change in 
internal energy of the system or as 
work performed by the system. It is 
also stated in the form: the change 
in the internal energy of the system 
equals the heat added to the system 
minus the work done by the system 
on the outside environment. The 
first law is really a statement of the 
law of conservation of energy 
applied to a thermodynamic system 
(p. ). 
 
Efficiency 
The efficiency of an engine can be 
defined in terms of what we get out 
of the system compared to what we 
put into the system. It is thus equal 
to the ratio of the work performed 
by the system to the heat put into 
the system. It is desirable to make 
the efficiency of an engine as high 
as possible (p. ). 
 
Adiabatic process 
A process that occurs without an 
exchange of heat between the 

system and its environment. That 
is, heat is neither added nor taken 
away from the system during the 
process (p. ). 
 
Otto cycle 
A thermodynamic cycle that is 
approximated in the operation of 
the gasoline engine (p. ). 
 
Ideal heat engine 
An idealized engine that shows the 
main characteristics of all engines, 
namely, every engine absorbs heat 
from a source at high temperature, 
performs some amount of 
mechanical work, and then rejects 
some heat at a lower temperature 
(p. ). 
 
Refrigerator 
A heat engine working in reverse. 
That is, work is done on the 
refrigerator, thereby extracting a 
quantity of heat from a low-
temperature reservoir and 
exhausting a large quantity of heat 
to a hot reservoir (p. ). 
 
Carnot cycle 
A thermodynamic cycle of a Carnot 
engine, consisting of two isothermal 
and two adiabatic paths in a p-V 
diagram. The Carnot engine is the 
most efficient of all engines (p. ). 
 

The second law of 
thermodynamics 
The second law of thermodynamics 
tells us which processes are possible 
and which are not. The concept of 
entropy is introduced to give a 
quantitative basis for the second 
law. It is equal to the ratio of the 
heat added to the system to the 
absolute temperature of the system, 
when a thermodynamic system 
changes from one equilibrium state 
to another along a reversible path. 
In an isolated system, the system 
always changes from values of low 
entropy to values of high entropy, 
and only those processes are 
possible for which the entropy of 
the system increases or remains a 
constant (p. ). 
 
Kelvin-Planck statement of the 
second law of thermodynamics 
No process is possible whose sole 
result is the absorption of heat from 
a reservoir at a single temperature 
and the conversion of this heat 
energy completely into mechanical 
work (p. ). 
 
Clausius statement of the 
second law of thermodynamics 
No process is possible whose sole 
result is the transfer of heat from a 
cooler to a hotter body (p. ). 
 

 
Summary of Important Equations 

 
Work done by a gas 

 W = p∆V           (17.5) 
 
Mass of the gas  m = m0NAn (17.14) 
 
Molecular mass   M = m0NA  (17.15) 
 
Mass of the gas     m = nM    (17.16) 
 
Molar specific heat 

   C = Mc            (17.18) 
 
Heat absorbed or liberated by a gas 
at constant volume 

        Q = nCv ∆T          (17.20) 
 

Heat absorbed or liberated by a gas 
at constant pressure 

     Q = nCp ∆T            (17.21) 
 
Internal energy of an ideal gas 

U = 3 nRT             (17.23)                                                                                     
                          2 
 
Change in internal energy of an 
ideal gas    ∆U =  3  nR∆T     (17.24) 
                             2 
Change in internal energy of an 
ideal gas     ∆U = nCv ∆T       (17.28) 
 
Molar specific heat at constant 
volume         Cv =  3 R             (17.29)                                                                                     
                              2 

 
Molar specific heat at constant 
pressure       Cp =  5 R           (17.42) 
                               2 
 
First law of thermodynamics 

     ∆U = Q − W           (17.31) 
 
Adiabatic process       Q = 0 
First law for adiabatic process 

  W = −∆U           (17.44) 
 
Isochoric process         ∆V = 0 
First law for isochoric process 

   Q = ∆U               (17.47) 
 
Isobaric process       ∆p = 0 
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Cyclic process           ∆U = 0 
First law for cyclic process 

 W = Q                (17.48) 
 
Efficiency of any engine 

H C

in H H

 Eff Q QW W
Q Q Q

−
= = =     (17.50) 

C

H

Eff 1 Q
Q

= −                 (17.51) 

 
Efficiency of a Carnot engine 

   C

H

Eff 1 T
T

= −              (17.55) 

 
Entropy        ∆S = ∆Q            (17.56) 
                               T 

S = k ln P         (17.58)
 

Questions for Chapter 17 
 

1. Discuss the difference 
between the work done by the gas 
and the work done on the gas in any 
thermodynamic process. 

2. Why is the work done in a 
thermodynamic process a function 
of the path traversed in the p-V 
diagram? 

3. Define the following 
processes: isobaric, isothermal, 
isochoric, adiabatic, cyclic, and 
isoentropic. 

4. How is it possible that a solid 
and a liquid have one value for the 
specific heat and a gas can have an 
infinite number of specific heats? 

5. Discuss the first and second 
laws of thermodynamics. 

6. Describe what is meant by 
the statement, “the internal energy 

of a thermodynamic system is 
conservative.’’ 

7. Figure 17.7 shows a plot of 
isotherms and adiabats on a p-V 
diagram. Explain why the adiabats 
have a steeper slope. 

*8. Discuss the thermodynamic 
process in a diesel engine, and draw 
the process on a p-V diagram. 

*9. Use the first law of 
thermodynamics to describe a solar 
heating system. 

10. Can you use a home 
refrigerator to cool the home in the 
summer by leaving the door of the 
refrigerator open? 

*11. Why is a heat pump not 
very efficient in very cold climates? 

*12. Show how equation 17.54 
could be used as the basis of a 
temperature scale. 

13. Is it possible to connect a 
heat engine to a refrigerator such 
that the work done by the engine is 
used to drive the refrigerator, and 
the waste heat from the refrigerator 
is then given to the engine, to drive 
the engine thus making a perpetual 
motion machine? 

14. Discuss the concept of 
entropy and how it can be used to 
determine if a thermodynamic 
process is possible. 

*15. Discuss the statements: (a) 
entropy is sometimes called time’s 
arrow and (b) the universe will end 
in a heat death when it reaches its 
state of maximum entropy. 

 
Problems for Chapter 17 

 
17.2  The Concept of Work 
Applied to a Thermodynamic 
System 

1. How much work is done by 
an ideal gas when it expands at 
constant atmospheric pressure from 
a volume of 0.027 m3 to a volume of 
1.00 m3? 

2. What is the area of the cross-
hatched area in the p-V diagram? 
What is the work done in going 
from A to B? 

  
Diagram for Problem 2.  

 
3. What is the net work done in 

the triangular cycle ABC? 

 
Diagram for Problem 3. 

 
4. How much work is done in 

the cycle ABCDA in the diagram 
below? 
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Diagram for Problem 4. 

 
5. One mole of an ideal gas goes 

through the cycle shown. If pA = 
2.00 × 105 Pa, pD = 5.00 × 104 Pa, 
VB = 2.00 m3, and VA = 0.500 m3, 
find the work done along the paths 
(a) AB, (b) BC, (c) CD, (d) DA, and 
(e) ABCDA. 

 
Diagram for Problem 5. 

 
17.3  Heat Added to or 

Removed from a 
Thermodynamic System 

6. What is the mass of 4.00 
moles of He gas? 

7. Find the amount of heat 
required to raise the temperature of 
5.00 moles of He, 10.0 0C, at 
constant volume. 

8. Find the amount of heat 
required to raise the temperature of 
5.00 moles of He, 10.0 0C, at 
constant pressure. 

9. Compute the amount of heat 
absorbed when one mole of a 
monatomic gas, at a temperature of 
200 K, rises to a temperature of 400 
K (a) isochoricly and (b) isobaricly. 

 
17.4 The First Law of 
Thermodynamics 

10. What is the total internal 
energy of 3.00 moles of an ideal gas 
at (a) 273 K and (b) 300 K? 

11. What is the change in 
internal energy of 3.00 moles of an 

ideal gas when it is heated from 273 
K to 293 K? 

12. Find the change in the 
internal energy of 1 mole of an ideal 
gas when heated from 300 K to 500 
K. 

13. In a thermodynamic system, 
500 J of work are done and 200 J of 
heat are added. Find the change in 
the internal energy of the system. 

14. In a certain process, the 
temperature rises from 50.0 0C to 
150.0 0C as 1000 J of heat energy 
are added to 4 moles of an ideal gas. 
Find the work done by the gas 
during this process. 

15. In a thermodynamic system, 
200 J of work are done and 500 J of 
heat are added. Find the change in 
the internal energy of the system. 

16. In a certain process with an 
ideal gas, the temperature drops 
from 120 0C to 80.0 0C as 2000 J of 
heat energy are removed from the 
system and 1000 J of work are done 
by the gas. Find the number of 
moles of the gas that are present. 

17. Four moles of an ideal gas 
are carried through the cycle 
ABCDA of figure 17.6. If TD = 100 
K, TAC = TA = TC = 200 K, TB = 400 
K, pA = 0.500 × 105 Pa, and pD = 
2.50 × 104 Pa, use the ideal gas 
equation to determine the volumes 
VA and VB. 

*18. In problem 17 find the 
work done, the heat lost or 
absorbed, and the change in 
internal energy of the gas for the 
paths (a) AB, (b) BC, (c) CD, (d) DA, 
and (e) ABCDA. 

19. In a thermodynamic system, 
700 J of work are done by the 
system while the internal energy 
drops by 450 J.  Find the heat 
transferred to the gas during this 
process. 

20. If 5.00 J of work are done by 
a refrigerator and 8.00 J of heat are 
exhausted into the hot reservoir, 
how much heat was removed from 
the cold reservoir? 

21. A heat engine is operating 
at 40.0% efficiency. If 3.00 J of heat 
are added to the system, how much 
work is the engine capable of doing? 

 

17.5  Some Special Cases of the 
First Law of Thermodynamics 

22. If the temperature of 2.00 
moles of an ideal gas increases by 
40.0 K during an isochoric process, 
how much heat was added to the 
gas? 

23. If 800 J of thermal energy 
are removed from 8 moles of an 
ideal gas during an isochoric 
process, find the change in 
temperature in degrees (a) Kelvin, 
(b) Celsius, and (c) Fahrenheit. 

24. If 3.00 J of heat are added to 
a gas during an isothermal 
expansion, how much work is the 
system capable of doing during this 
process? 

25. During an isothermal 
contraction, 55.0 J of work are done 
on an ideal gas. How much thermal 
energy was extracted from the gas 
during this process? 

*26. A monatomic gas expands 
adiabatically to double its original 
volume. What is its final pressure 
in terms of its initial pressure? 

*27. One mole of He gas at 
atmospheric pressure is compressed 
adiabatically from an initial 
temperature of 20.0 0C to a final 
temperature of 100 0C. Find the 
new pressure of the gas. 

28. If 50.0 J of work are done on 
one mole of an ideal gas during an 
adiabatic compression, what is the 
temperature change of the gas? 

 
17.6  The Gasoline Engine 

*29. The crankshaft of a 
gasoline engine rotates at 1200 
revolutions per minute. The area of 
each piston is 80.0 cm2 and the 
length of the stroke is 13.0 cm. If 
the average pressure during the 
power stroke is 7.01 × 105 Pa, find 
the power developed in each 
cylinder. (Hint: remember that 
there is only one power stroke for 
every two revolutions of the 
crankshaft.) 

 
17.7 The Ideal Heat Engine 

30. An engine operates between 
room temperature of 20.0 0C and a 
cold reservoir at 5.00 0C. Find the 
maximum efficiency of such an 
engine. 
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31. What is the efficiency of a 
Carnot engine operating between 
temperatures of 300 K and 500 K? 

32. A Carnot engine is working 
in reverse as a refrigerator. Find 
the coefficient of performance if the 
engine is operating between the 
temperatures −10.5 0C and 35.0 0C. 

33. A Carnot refrigerator 
operates between −10.0 0C and 
25.0 0C. Find how much work must 
be done per joule of heat extracted. 

34. Calculate the efficiency of 
an engine that absorbs 500 J of 
thermal energy while it does 250 J 
of work. 

 
17.10  Entropy 

35. Find the change in entropy 
if 10.0 kg of ice at 0.00 0C is 
converted to water at +10.0 0C. 

36. A gas expands adiabatically 
from 300 K to 350 K.  Find the 
change in its entropy. 

*37. Find the total change in 
entropy if 2.00 kg of ice at 0.00 0C is 
mixed with 25.0 kg of water at 
20.0 0C. 

38. Find the change in entropy 
when 2.00 kg of steam at 110 0C is 
converted to water at 90.0 0C. 

39. A gas expands isothermally 
and does 500 J of work. If the 
temperature of the gas is 35.0 0C, 
find its change in entropy. 

 
Additional Problems 

40. In the thermodynamic 
system shown in the diagram, 
(a) 50.0 J of thermal energy are 
added to the system, and 20.0 J of 
work are done by the system along 
path abc. Find the change in 
internal energy along this path. 
(b) Along path adc, 10.0 J of work 
are done by the system. Find the 
heat absorbed or liberated from the 
system along this path. (c) The 
system returns from state c to its 
initial state a along path ca. If 
15.0 J of work are done on the 
system find the amount of heat 
absorbed or liberated by the system. 

 
Diagram for problem 40.  

 
41. Draw the following process 

on a p-V diagram. First 8.00 m3 of 
air at atmospheric pressure are 
compressed isothermally to a 
volume of 4.00 m3. The gas then 
expands adiabatically to 8.00 m3 
and is then compressed isobaricly to 
4.00 m3. 

42. In the diagram shown, one 
mole of an ideal gas is at 
atmospheric pressure and a 
temperature of 250 K at position a. 
(a) Find the volume of the gas at a. 
(b) The pressure of the gas is then 
doubled while the volume is kept 
constant. Find the temperature of 
the gas at position b. (c) The gas is 
then allowed to expand 
isothermally to position c. Find the 
volume of the gas at c. 

 
Diagram for problem 42. 

 
*43. Repeat problem 42, but for 

part (c) let the gas expand 
adiabatically to atmospheric 
pressure. Find the volume of the 
gas at this point. Show this point on 
the diagram. 

*44. It was stated in equation 
17.45 that for an adiabatic process 
with an ideal gas, 

pV γ = constant 
 

Show that when an ideal gas in an 
initial state, with pressure p1, 
volume V1, and temperature T1, 
undergoes an adiabatic process to a 
final state that is described by 
pressure p2, volume V2, and 
temperature T2, that 

 
p1V1

γ = p2V2
γ 

and 
T1V1

γ − 1 = T2V2
γ − 1 

and 
T1 γ/(γ − 1) = T2 γ/(γ − 1) 

                   p1            p2 
 
45. A lecture hall at 20.0 0C 

contains 100 students whose basic 
metabolism generates 4.186 × 105 
J/hr of thermal energy. If the size of 
the hall is 15.0 m by 30.0 m by 4.00 
m, what is the increase in 
temperature of the air in the hall at 
the end of 1 hr? It is desired to use 
an air conditioner to cool the room 
to 20.0 0C. If the air conditioner is 
45.0% efficient, what size air 
conditioner is necessary? 

 
Interactive Tutorials 

46. A thermodynamic cycle. 
Three moles of an ideal gas are 
carried around the thermodynamic 
cycle ABCDA shown in figure 17.6. 
Find the work done, the heat lost or 
absorbed, and the internal energy 
of the system for the 
thermodynamic paths (a) AB, 
(b) BC, (c) CD, (d) DA, and 
(e) ABCDA. The temperatures are 
TD = 147 K, TAC = 250 K, and TB = 
425 K.  The pressures are pA = 5.53 
× 104 Pa and pD = 3.25 × 104 Pa.  
The volumes are VA = 0.113 m3 and 
VB = 0.192 m3. (f) Find the 
efficiency of this system. 
 

To go to these Interactive 
Tutorials click on this sentence. 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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      E-1    

 
 

Epilogue 
 
 
 
 
 
 
 
 
 
 
 

In the first chapter of the book we said that Physics had its birthplace 
in mankind's quest for knowledge and truth.  It started with the 
earliest man as he came out of his cave.  We have surely progressed a 
great deal since that long ago time, as is evidenced by such topics 
covered in this book as atomic and nuclear physics, quantum physics, 
special and general relativity, and the unification of all the forces.  
However, in terms of what still lies ahead for us in this universe, we 
have barely taken one step out of the cave.       
 

To go to the Brief Table of Contents click on this sentence. 
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To help in making conversions you might want to use 
the Interactive Tutorial problem #49 Conversion 
Calculator at the end of Chapter 1. The Conversion 
Calculator will allow you to convert from a quantity in 
one system of units to that same quantity in another 
system of units and/or to convert to different units 
within the same system of units. This calculator is 
available on the computer disk. 
 
Length 
1 meter (m) = 100 cm = 39.4 in = 3.28 ft   
    = 6.21 × 10−4 mile 
1 centimeter (cm) = 10−2 m = 10 mm    
  = 0.394 in 
1 inch (in) = 2.54 cm = 0.0254 m  
                  = 0.083 ft 
1 foot (ft) = 0.305 m = 30.5 cm = 12 in 
1 mile (mi) = 1610 m = 1.61 km = 5280 ft 
1 kilometer (km) = 1000 m = 0.621 miles 
1 nautical mile = 1.15 mile = 6076 ft  
        = 1,852 m 
1 nanometer (nm) = 10−9 m = 10−7 cm 
1 micron (m) = 10−6 m = 1 mm = 10−4 cm 
1 Angstrom (Aÿ ) = 10−10 m = 10−8 cm 
1 mil = 10−3 in 
1 yard (yd) = 0.9144 m = 91.44 cm 
 
Area 
1 m2 = 104 cm2 = 1.55 × 103 in2 
1 cm2 = 10−4 m2 = 0.155 in2 
1 in2 = 6.45 cm2 = 6.45 × 10−4 m2 
1 ft2 = 144 in2 = 929 cm2 = 9.29 × 10−2 m2 
1 km2 = 106 m2 
1 yard2 = 0.836 m2 
 
Volume 
1 m3 = 35.3 ft3 = 6.1 × 104 in3 = 103 liters 
1 ft3 = 2.83 × 10−2 m3 = 1.73 × 103 in3    
 = 28.3 liters = 7.48 gal 
1 in3 = 1.639 × 10−5 m3 
1 U.S. gallon = 231 in3 = 0.134 ft3    
    = 3.79 × 10−3 m3 
 
Mass 
1 kg = 1000 gm = 6.85 × 10−2 slugs 
1 slug = 14.59 kg 
 
Weight 
1 lb = 4.45 N 
1 N = 0.225 lb 
 
 

 
Time 
1 year = 365.24 day = 8.76 × 103 hr    
 = 5.26 × 105 min = 3.16 × 107 s 
1 day = 1.44 × 103 min = 8.64 × 104 s 
 
Density 
1 kg/m3 = 1 × 10−3 g/m3  
              = 1.94 × 10−3 slug/ft3 
1 gm/cm3 = 1000 kg/m3 = 1.94 slug/ft3 
 
Velocity 
1 m/s = 3.28 ft/s = 2.24 miles/hr    
  = 3.60 km/hr = 1.94 knot 
1 ft/s = 0.305 m/s = 0.682 mile/hr     
= 1.10 km/hr 
88 ft/s = 60 mph 
1 mile/hr = 1.47 ft/s = 1.61 km/hr  
        = 0.869 knot = 0.447 m/s 
1 km/hr = 0.278 m/s = 0.621 mph  
              = 0.91 ft/s 
 
Acceleration 
1 m/s2 = 3.281 ft/s2 = 3.60 km/hr/s  
  = 2.24 mph/s 
1 ft/s2 = 0.3048 m/s2 
1 mph/s = 1.467 ft/s2 = 0.447 m/s2 
 
Angles 
1 radian (rad) = 57.300 = 570 18'  
                        = 0.159 rev 
1 degree (0) = 0.01745 rad 
3600 = 2π radians 
1 rev/min (rpm) = 0.1047 rad/s 
1 rad/sec = 9.55 rev/min 
 
Force 
1 Newton (N) = 105 Dynes = 0.225 lb  
   = 3.60 oz 
1 pound (lb) = 4.45 N = 16 ounces (oz) 
 
Pressure 
1 N/m2 = 1.00 Pascal = 2.09 × 10−2 lb/ft2  
     = 1.45 × 10−4 lb/in2  
            = 9.87 × 10−6 atm  
            = 7.50 × 10−4 cm of Hg  
    = 4.01 × 10−3 in of H2O = 10−5 bar  
  = 10−2 millibars (mb) 
1 lb/in2 = 144 lbs/ft2 = 6.90 × 103 N/m2  
  = 5.17 cm of Hg = 27.68 in of H2O 
1 atmosphere (atm) = 1.013 × 105 N/m2   
  = 1013 mb = 14.7 lbs/in2  

Appendix A 
Conversion Factors 
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    = 2.12 × 103 lbs/ft2 = 760 Torr  
  = 76 cm of Hg = 406.8 in H2O 
 
Energy, Work, Thermal Energy 
1 Joule (J) = 0.738 ft lb  
                  = 2.39 × 10−4 kcal  
         = 6.24 × 1018 eV  
                 = 9.481 × 10−4 Btu  
          = 107 ergs = 0.239 cal = 1 N m 
1 kilocalorie (kcal) = 4,185 J = 3.97 Btu  
             = 3077 ft lb 
1 foot pound (ft lb) = 1.36 J  
                       = 1.29 × 10−3 Btu  
                                = 3.25 × 10−4 kcal 
1 electron volt (eV) = 1.60 × 10−19 J  
                    = 1.18 × 10−19 ft lb 
1 kilowatt hour (kw hr) = 3.6 × 106 J  
                = 3,413 Btu = 860 kcal  
                         = 1.34 hp hr 
1 calorie (cal) = 4.185 J 
1 British Thermal Unit (Btu)  
                      = 0.252 kcal  
   = 778 ft lb = 1.05 × 103 J 
 

 
Power 
1 Watt (W) = 1 J/s = 0.738 ft lb/s  
             = 1.34 × 10−3 hp  
                    = 2.39 × 10−4 kcal/s 
1 horsepower (hp) = 550 ft lb/s = 746 W  
       = 2545 Btu/hr  
                         = 0.1782 kcal/s 
1 kilowatt (kW) = 1000 W = 1.34 hp 
1 refrigeration ton = 12,000 Btu/hr 
 
Electricity and Magnetism 
1 Volt (V) = 1 Joule/Coulomb = J/C 
1 Ampere (A) = 1 C/s  
                       = 6.3 × 1018 electrons/s 
1 Ohm (W) = 1 Volt/Ampere 
1 Farad = 1 Coulomb/Volt 
 
Magnetic Field Intensity  
1 Tesla (T) = 1 N/(A m) = 104 gauss  
   = 1 weber/meter2 
Magnetic Flux = 1 weber = 1 T m2 
Inductance = 1 henry  = 1 J/A2 = (V s)/A 
 

 
To go to the Brief Table of Contents click on this sentence. 
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Geometry  
 C = 2πr   Circumference of circle 
 A = πr2           Area of circle 
 A = 4πr2        Area of sphere 
 V =  4  πr3      Volume of sphere 
              3 
 V = πr2h      Volume of cylinder 
 
 Algebra 
xnxm = x(n + m)             (xn)m = xnm 
 xn   = x(n − m)              x1/m = (x)1/m  
 xm 
  1    = x                 xn/m = (xn)1/m = (x1/m)n     
1/x 
(x + y)2 = x2 + 2xy + y2 
(x − y)2 = x2 − 2xy + y2 
(x + y)3 = x3 + 3x2y + 3xy2 + y3 
(x − y)3 = x3 − 3x2y + 3xy2 − y3 
(x + y)(x − y) = x2 − y2 
 
Quadratic Equation 
     if ax2 + bx + c = 0 

     then              
2 4

2
b b acx

a
− ± −

=            

Binomial Expansion 
(1 + x)n = 1 + nx + n(n − 1)x2  
                                    2! 

                          + n(n − 1)(n − 2)x3 + ... 
                      3! 

 
Powers of Ten and Scientific Notation 
Very large or very small numbers can be written in a 
simple way by expressing them as powers of 10.  For 
example, 100,000 may be written as 105.  That is, 

 
100,000 = (10)(10)(10)(10)(10) = 1 × 105 

 
Table B-1 is a list of some powers of 10. Notice 

that 100 = 1. In numbers with positive exponents, the 
exponent is equal to the number of zeros following the 
1.  In the cases of negative exponents, the exponent is 
equal to the number of places the decimal point is 
moved to the left of the 1.  That is,  

 
1 × 10−1 = 0.1 

 
Table B-1 Powers of 10 

10−4 =  1  =     1     = 0.0001 
          104   10,000 
10−3 =  1  =      1    = 0.001 
          10³     1,000 

10−2 =  1   =   1  = 0.01 
          10²    100 
10−1 =  1  = 0.1 
           10 
100 = 1 
101 = 10 
102 = (10)(10) = 100 
103 = (10)(10)(10) = 1,000 
104 = (10)(10)(10)(10) = 10,000 
105 = (10)(10)(10)(10)(10) = 100,000 
106 = (10)(10)(10)(10)(10)(10) =1,000,000 

 
The operations using powers of 10 follow the 

same rules of exponents as in algebra.  For example, 
in algebra  

xnxm = x(n + m)  
 
While for powers of 10 it becomes 
 

10n10m = 10(n + m) 
For example,  

102103 = 102+3 = 105 
 
The division of powers of ten becomes 
 

 10n  = 10(n − m) 
                                  10m                 
For example, 

  105  = 105 − 3 = 102 
                                103      
 
The reciprocal of a power of ten becomes 
 

  1  = 10−m 
                                     10m                                 
For example, 

 1  = 10−2 
                                     102                   
Finally, we have 

   (10n)m = 10nm 
and 

10n/m = (10n)1/m = (101/m)n  
 
with the examples 

(102)3 = 106 
104/2 = (104)1/2 = 102 

 
Scientific Notation.   
Very large or very small numbers can be written in a 
very convenient way with the use of powers of ten.  
For example, the number 583,000 is equal to 5.83 × 
100,000.  However, since 100,000 = 105, we have 

Appendix B 
USEFUL MATHEMATICAL FORMULAS 
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     583,000 = 5.83 × 105 

 
Writing numbers in this notation is called expressing 
the number in scientific notation.  The expression of 
any number in scientific notation is based upon the 
fact that all numbers can be expressed as a number 
between 1 and 10 multiplied by a power of ten. As 
examples of some numbers expressed in scientific 
notation, we have 

 583,000 = 5.83 × 105 
 

    1,430 = 1.43 × 103 
   0.025 = 2.5 × 10−2 
0.00045 = 4.5 × 10−4 

 
Trigonometry 
1. Definitions. The trigonometric functions are 
defined as ratios of the sides of a right triangle.  
Using figure B-1, they are defined as  

 
Figure B-1 A right triangle for defining the 

trigonometric functions. 
 
 sinθ =  opposite side  
                                hypotenuse 
 cosθ =  adjacent side  
                                hypotenuse 
 tanθ =  opposite side  
                                adjacent side 
 secθ =    1                   
                               cosθ 
 cscθ =     1                  
                               sinθ 
 cotθ =     1                
                               tanθ 
 tanθ =  sinθ                 
                                cosθ  
 cotθ =  cosθ            
                               sinθ 
 
2.   Some Important Trigonometric Identities 
 

sin2θ + cos2θ = 1 
  sec2θ = 1 + tan2θ 
 csc2θ = 1 + cot2θ 

 
3.  Sums and Differences of the Trigonometric 
Functions 
        sin(A + B) = sinA cosB + cosA sinB 

     sin(A − B) = sinA cosB − cosA sinB 
     cos(A + B) = cosA cosB − sinA sinB 
     tan(A + B) =  tanA + tanB   
                          1 − tanA tanB 
     tan(A − B) =   tanA − tanB   
                          1 + tanA tanB 
 
4.  Double Angles and Half Angles 
 

sin2θ = 2 sinθ cosθ 
cos2θ = 1 − 2 sin2θ 

1 cossin
2 2
θ θ−  = ± 

 
 

1 coscos
2 2
θ θ+  = ± 

 
 

       
5.  Addition and Subtraction of the Trigonometric 
Functions 
 
     sinA + sinB = 2 sin(A + B) cos(A − B) 
                                         2               2 
     sinA − sinB = 2 cos(A + B) sin(A − B) 
                                         2               2 
     cosA + cosB = 2 cos(A + B) cos(A − B) 
                                         2               2 
     cosA − cosB = 2 sin(A + B) sin(A − B) 
                                         2               2 
6.  Trigonometric Functions for Negative Angles 

 
cos(−θ) = cosθ 

 sin(−θ) = − sinθ 
  tan(−θ) = − tanθ 

 
Figure B-2 should be used for the following formulas: 

 
Figure B-2 An obtuse triangle. 

 
7.  Law of Sines 

   a    =    b    =    c    
                               sinA     sinB    sinC 
 
8.  Law of Cosines 

  c2 = a2 + b2 − 2ab cosC 
 
9.  Special Case of Law of Cosines   (C = 900) 
                 c2 = a2 + b2      Pythagorean Theorem 
 

To go to the Brief Table of Contents click on 
this sentence.  
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Appendix C 
 

Proportionalities 
 

In any science, especially in physics, we constantly come upon quantities which are proportional to other 
quantities. A proportion is a relation among different quantities. There are two main types of proportions: (1) Direct 
Proportions, and (2) Inverse Proportions. 
 
Direct Proportions 
Two physical quantities are said to be directly proportional to each other if the ratio of these quantities is always 
equal to a constant. As an example consider the tabulated values of x and y in table C-1. 
 

Table C-1 
x 2 3 4 5 6 7 8 
y 4 6 8 10 12 14 16 

y/x 4/2 = 2 6/3 = 2 8/4 = 2 10/5 = 2 12/6 = 2 14/7 = 2 16/8 = 2 
          
Taking the ratio of y to x for each of these values, we get the constant value 2, as shown in the third row of the 
table. That is 

  y  = 2 = constant                                                                         (C-1) 
                                                                                    x 

 
Thus, the ratio of y to x is always a constant, and by the definition, y is directly proportional to x. If equation C-1 is 
solved for y we get 

    y = 2x                                                                                  (C-2) 
 

Equation C-2 says that y is directly proportional to x. Thus, as x increases, so does the value of y. In particular, y is 
always twice as large as x. The number 2, the value of the constant ratio y/x, is called the constant of 
proportionality. 

In general, if y is directly proportional to x, it can be written in the form 
 

y = kx                                                                                  (C-3) 
 

where k is called the constant of proportionality and can have any constant value. Thus, in table C-2, the constant 
of proportionality, k, would be equal to the value 3. In summary, the general statement for a direct proportion is 
usually written in the form 

    y ∝ x                                                                                   (C-4) 
 

Table C-2 
x 1 2 3 4 5 
y 3 6 9 12 15 

y/x 3 3 3 3 3 
                
where the symbol ∝ is a short hand notation for the words “is proportional to”. The main characteristic of a direct 
proportion is that as one variable increases, so does the other; or if one variable decreases, so does the other. When 
it is desirable to express this proportionality in terms of an equation, we introduce, 
k, the constant of proportionality and express the proportionality as the equation 
 

y = kx                                                      (C-5) 
 

Equation C-4 says that as x increases, y also increases. Equation C-5, on the other 
hand, is more general and says that as x increases, y also increases and the 
amount of the increase depends upon the value of k.   

 
             Figure C-1  Graph of a direct proportion.  
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If the data of table C-1 is plotted, we get the graph shown in figure C-1. Notice that when this data is 

plotted the result is a straight line that passes through the origin. This is a result of all direct proportions. When 
the direct proportion is expressed as an equation, such as that given by equation C-5, the equation is the equation of 
a straight line that passes through the origin. The slope of the line is equal to the constant of proportionality, k. 
Thus, as a corollary, we can say that if the relation between two variables is a straight line going through the origin 
of a graph, then those two variables are directly proportional to each other.     
 
Inverse Proportion 
An inverse proportion is one in which there is an inverse relationship between the variables. Thus, 
 

     y ∝  1                                                                                   (C-6) 
                                                                                                    x  

 
says that y is inversely proportional to x. This means that if x increases, y must decrease, or if x decreases, y must 
increase. To make an equality of C-6, a constant of proportionality k is introduced and we obtain 
 

y =  k                                                                                    (C-7) 
       x        

This is sometimes written in the equivalent form 
        yx = k                                                                                   (C-8) 

 
and sometimes this form is used for the defining form for an inverse relationship. 

As an example of an inverse proportionality consider the data of table C-3. Note that as x increases, y 
decreases, but the product of yx remains a constant. 

Table C-3 
x 5 10 15 20 25 
y 1 1/2 1/3 1/4 1/5 
yx 5 5 5 5 5 

                
 

A graph of the data of table C-3, which is an 
inverse relationship, is shown in figure C-2 and is a 
graph of a rectangular hyperbola. Thus, as a corollary, 
if the graph of y versus x is a rectangular hyperbola, 
this implies that y is inversely proportional to x. 
Sometimes it is more convenient to plot y versus the 
reciprocal of x to show the inverse proportion, because 
the plot of y versus 1/x is a straight line, as shown in 
figure C-3. Thus, if the graph of y versus 1/x is a 
straight line, then y is inversely proportional to x. 
                                                                                     Figure C-2 Graph of y vs x showing   Figure C-3  Graph of y  

                                                                                         an inverse proportionality.             vs 1/x showing an 
                                                                                                                                                  inverse proportionality. 

 
The slope of the straight line is equal to the proportionality constant, k. 
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Appendix D 
 

Physical Constants 
 
Speed of light, c = 2.998 × 108 m/s 
 
Gravitational constant, G = 6.67 × 10−11 N m2 /kg2   
           
Standard acceleration due to gravity, g = 9.80 m/s2  
 
Heat of fusion of water, Lf = 3.33 × 105 J/kg 
 
Heat of vaporization of water, Lv = 2.26 × 106 J/kg 
 
Mass of earth = 5.98 × 1024 kg 
 
Mean radius of earth,  re = 6.37 × 106 m  
 
Mean earth-sun distance, res = 1.49 × 108 km 
 
Speed of sound in air, va = 331 m/s  
 
Speed of sound in water, vw = 1460 m/s  
 
Density of dry air (STP) = 1.29 kg/m3 
 
Universal gas constant, R = 8.314 J/(mole K) 
 
Mechanical equivalent of heat = 4185 J/kcal 
 
Permittivity of free space, εo = 8.85 × 10−12 C2/(N m2) 
  
Permeability of free space, µo = 4π × 10−7 (T m)/A  
 
Electronic charge, e = 1.6021 × 10−19 C 
 
Electron rest mass, me = 9.1090 × 10−31 kg 
 
Avogadro's number, NA = 6.023 × 1023 
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1 Hydrogen H    1.01  
2 Helium  He 4.003 
3   Lithium Li  6.939 
4 Beryllium Be 9.012 
5 Boron  B 10.81 
6 Carbon  C 12.01 
7 Nitrogen N 14.01 
8 Oxygen  0 16.00 
9 Fluorine F 19.00 
10 Neon  Ne 20.18 
11 Sodium  Na 22.99 
12 Magnesium Mg 24.31 
13 Aluminum Al 26.98 
14 Silicon  Si 28.09 
15 Phosphorus P 30.98 
16 Sulfur  S 32.07 
17 Chlorine Cl 35.46 
18 Argon  Ar 39.94 
19 Potassium K 39.10 
20 Calcium Ca 40.08 
21 Scandium Sc 44.96 
22 Titanium Ti 47.90 
23 Vanadium V 50.94 
24 Chromium Cr 52.00 
25 Manganese Mn 54.94 
26 Iron  Fe 55.85 
27 Cobalt  Co 58.93 
28 Nickel  Ni 58.71 
29   Copper  Cu     63.54 
30 Zinc  Zn 65.37 
31 Gallium Ga 69.72 
32 Germanium Ge 72.59 
33 Arsenic  As 74.92 
34 Selenium Se 78.96 
35 Bromine Br 79.91 
36 Krypton Kr 83.80 
37 Rubidium Rb 85.47 
38 Strontium Sr 87.62 
39 Yttrium Y 88.91 
40 Zirconium Zr  91.22 
41 Niobium Nb 92.91 
42 Molybdenum Mo 95.94 
43 Technetium Tc 98.94 44
 Ruthenium Ru 101.1 
45 Rhodium Rh 102.9 
46 Palladium Pd 106.4 
47 Silver Ag 107.9 
48 Cadmium Cd 112.4 
49 Indium In 114.8 
50 Tin Sn 118.7 
51 Antimony Sb 121.8 
52 Tellurium Te 127.6 
53 Iodine I 126.9 

54 Xenon     Xe 131.3 
55 Cesium     Cs 132.9 
56 Barium Ba 137.3 
57 Lanthanum La 138.9 
58 Cerium Ce 140.1 
59 Praseodymium Pr 140.9 
60 Neodymium Nd 144.2 
61 Promethium Pm 145 
62 Samarium Sm 150.4 
63 Europium Eu 152.0 
64 Gadolinium Gd 157.3 
65 Terbium Tb 158.9 
66 Dysprosium Dy 162.5 
67 Holmium Ho 164.9 
68 Erbium Er 167.3 
69 Thulium Tm 168.9 
70 Ytterbium Yb 173.0 
71 Lutetium Lu 175.0 
72 Hafnium Hf 178.5 
73 Tantalum Ta 181.0 
74 Tungsten W 183.9 
75 Rhenium Re 186.2 
76 Osmium Os 190.2 
77 Iridium Ir 192.2 
78 Platinum Pt 195.1 
79 Gold Au 197.0 
80 Mercury Hg 200.6 
81 Thallium Tl 204.4 
82 Lead  Pb 207.2 
83 Bismuth Bi 209.0 
84 Polonium Po 209 
85 Astatine At 210 
86 Radon  Rn 222 
87 Francium Fr 223 
88 Radium Ra 226.0 
89 Actinium Ac 227.0 
90 Thorium  Th 232.0 
91 Protactinium  Pa 231.0 
92 Uranium     U 238.0 
93 Neptunium Np 237 
94 Plutonium Pu 244 
95 Americium Am 243 
96 Curium Cm 247 
97 Berkelium Bk 247 
98 Californium Cf 251 
99 Einsteinium Es 254 
100 Fermium Fm 257 
101 Mendelevium Md 258 
102 Nobelium No 259 
103 Lawrencium Lr 260 
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Chapter 1   
1. 169 m  
3. 2.13 m 
5. 86,400 s; 2.59 × 106 s; 3.15 × 107 s 
7. 88 ft/s 
9. 3280 ft 
11. 1090 ft/s; 736 mph 
13. 1 kg/L 

15. a. 2.37 × 109 s b. 3.95 × 107 min;  
 2.76 × 109 pulses/lifetime 
17. 6.70 × 108 mph; 2.99 × 108 m/s 
19. 9.14 m; 91.4 m 
21. 380 m; 0.236 mi; 1.49 × 104 in.; 3.80 × 105 mm 
23. 1.275 × 104 km 
25. a. 5.89 × 105 pm b. 5.89 × 10−4 mm  
      c. 5.89 × 10−5 cm d. 5.89 × 10−7 m; 4.31 × 104 waves 
27. 4050 m2 
29.  16.4 cm3 
31. 1 × 10−14 m3 to 1 × 10−12 m3;  
      6.10 × 10−10 in.3 to 6.10 × 10−8 in.3 

33. 8.6 × 10−7 mm; 3.39 × 10−8 in. 
35. a. 2.0 × 105 pm  b. 200 nm  c. 0.2 µm 
     d. 0.0002 mm  e. 2 × 10−5 cm 
37. 0.00994 slugs 
39. 0.159 m3 

41. 3.58 × 104 ft 
43. 5.10 × 1014 m2; 5.49 × 1015 ft2; 1.08 × 1021 m3;  
      3.83 × 1022 ft3; 5.51 × 103 kg/m3 

45. v = 24.84 mi/hr 
47. 4.25 min/month; 51.74 min/yr 
 
Chapter 2 
1. 172 N; 246 N 
3. F|| = 31.4 N; F| = 60.32 N 
5. a. 141 km/hr; b. 141 km/hr 
7. w|| = 6070 N; w| = 6510 N 
9. 292 m/s; 956 m/s 
11. 8.09 km at 63.70 north of east 
13. 436 km/hr at 83.00 north of west 
15. 179 N; 2980 from + x-axis 
17. a. 30.0 m; 500 N of E  b. 7.50 m; 500 N of E   
      c. 15.0 m; 500 S of W  d. 75.0 m; 500 S of W   
      e. 75.0 m; 500 N of E  f. 45.0 m; 500 S of W 
19. 4.85 m/s; θ = 48.70 
21. 113.3 N at 74.40 above the −x-axis 
23. C =276 km at 22.10 north of west 
27. 5.71 N; θ = 820; θ = 820 below + x-axis 
31. 228.3 km east of its starting point A, and 28.3 km 
south of its starting point or 40.0 km to the south east 
of the city at B 
33. Ty = 123 N; Tx = 158 N 
35. 21.30 
37. 14.4 m; −27.80 

 
Chapter 3 
1. a. 92.3 km/hr  b. 25.6 m/s 
3. 1720 m 
5. 4.33 min 
7. 4.59 m/s 
9. a.  3 m/s2;  b. 0 m/s2;  c. 2 m/s2;  d. −4 m/s2 

11. 0.300 m/s2 

13. 1.31 m/s2; 106 m 
15. 17. t = 10 s: x = 83.3 m; v = 8.33 m/s 
      t = 15 s: x = 93.7 m; v = 12.5 m/s 
      t = 20 s: x = 167 m; v = 16.7 m/s 
      t = 25 s: x = 260 m; v = 20.8 m/s 
17. 5.62 × 1017 cm/s2 

19. −6.31 m/s; 6.16 s 
21. 59.9 m 
23. 12.71 m; 84.4 m 
25. a = 0.517 m/s2; x = 784 m  
27. 18.0 s 
29. t = 2.47 s; v = −24.2 m/s 
31. 314 m 
33. 0.505 s 
35. 35.1 m; 75.9 m; 77.5 m; 39.9 m 
37. 4.44 s 
39. a. −31.8 m/s; b. 1.71 s 
41. 158 m 
43. 5430 m 
45. 9.550 
47. a. 85.8 m  b. 8.37 s  c. 240 m 
49. a. 37.0 m/s2  b. 3.78g 
51. a. 13.3 s  b. 221 m  c. 33.3 m/s 
53. t = 14.1 s; x2 = 249 m   
55. 10.5 s; 3.03 m/s2 

57. −3.19 m 
59. t = 10.1 s; v = −79 m/s  
61. v20 = −42.3 m/s downward 
63. a. 19.810 b. 152 m/s 
65. The ball is at a height of 24.3 m and clears the fence 
      by 21.3 m.  
67. a. 0.684 s  b. 12.53 m away from base of building  
 
Chapter 4 
1.  wearth = 980 N; wmars = 384 N 
3. 75.0 N 
5. −6.66 × 103 N 
7. −7.90 × 104 N opposite to direction of motion;  
    −3.80 × 103 N  
9. 568 N 
11. a. 9220 N  b. 6780 N 
13. 417 N 
15. 1.10 × 106 N 
17. 808 N 
19. a. 120 N m/s2  b. 5.88 m/s2  

Appendix F 
Answers to Odd-Numbered Problems 

Pearson Custom Publishing

551



 
A-10                                                                                                                                                         Appendix F   

21. a. 1020 N  b. 882 N  c. 747 N d. 882 N  e. 0 
23. a. 0.0989 m  b. 0.165 s 
25. a. 0.891 m/s2  b. 2.67 m/s c. 4.01 m to the right 
27. F = 2.4 N; T2 = 1.2 N; T1 = 0.400 N 
29. 94.8 m 
31. 6.63 N 
33. 75.1 N 
35. 58.8 N; 1.36 s; 2.72 m 
37. 779 N   
39. 2.94 m/s2  
41. a.  a = 20.0 m/s2  b. v = 11.0 m/s 
43. 0.600 
45. 35.3 N 
47. 800 g 
49. acceleration a = 0.887 m/s2; tension = 65.1 N 
51. TC = 25.6 N; TB = 64.0 N; TA = 128 N 
53. 7.54 N 
55. a = 4.48 m/s2 
57. a.  wAsin θ − wBsin φ  
                  mA + mB 
59. a. 2.07 m/s2  b. 1.14 N 
61. 3.83 m/s2; TA = TB = 35.8 N; TC = 15.5 N 
63. 1.25 m/s2; TA = TB = 51.3 N; TC = 42.9 N 
65. a. 3.27 m/s2  b. 0.333 
67. v = mg/k. This means, that after a relatively long 
time, the velocity of the object becomes constant. This is 
referred to as the terminal velocity. 
 
Chapter 5 
1. 0.902 N at 1010 from the +x-axis 
3. 2.87 N 
5. 133 N 
7. T1 = 9497 N; T2 = 9481 N 
9. 20.0 N 
11. T1 = 489 N; T2 = 553 N 
13. a. 196 N  b. 392 N 
15. 3.34 m N 
17. 1.67 m N 
19. τ = 1.58 m N 
21. F2 = 725 N; F1 = 525 N 
23. τ = − 95.0 m N  
25. FB = 2.70 N; FA = 3.80 N 
27. 55.7 N  
29. FB = 5000 N; FA = 5900 N 
31. 30.0 cm from the origin 
33. 0.0154 m to the right of center of large plate 
35. T = 1710 N; H = 1310 N; V = 101 N 
37. 3.50 m 
39. T = 897 N; Hinge forces: horizontal = 777 N, 
      vertical = 752 N 
41. Fwall = 10.1 N; FHfloor = 10.1 N; FVfloor = 120 N 
43. no 
45. x = 1.70 m from the base of the ladder. 
47. FM = 5240 N; FR = 5130 N 
49. FM = 1300 N; FR = 1820 N 
51. T1 = w = 100 N a. T3 = T2 = 63.5 N  
     b. T5 = T6 = 91.9 N, T4 = 38.0 N, 

53. F = w/3 
55. T1 = 872 N; T = 714 N; T2 = 710 N 
57. Fout = 175 N; IMA = 17.5  
59. 52.8 N 
61. 63.30 
63. FN1 = 700 N; FN2 = 430 N; T = 493 N 
 
Chapter 6 
1. a.  2π rad  b. 3π/2  rad  c. π rad  d. π /2 rad  
     e. π /3 rad  f. π /6 rad  g. 2π rad 
3. 53.0 m 
5. 284 m/s2 

7. F  = 7.29 × 10−17 N 
9. 2.97 m/s 
11. 34.60 
13. 11.140 
15. 22.60 
17. a. 3.34 × 10−9 N  b. 3.34 × 10−9 N  c.  a5 kg = 6.68 × 
    10−10 m/s2; a10 kg = 3.34 × 10−10 m/s2 

19. no; F = 2.78 × 10−8 N 
21. a. 9.81 m/s2  b. 2.45 m/s2  c. 0.0981 m/s2   
      d. 2.70 × 10−3 m/s2 
23. gmars = 3.87 m/s2; wmars = 316 N 
25. 270 N on the sun 
27. v = 29.7 km/s; t = 367 days 
29. v = 3530 m/s; t  = 1.69 hr 
31. r = 8.50 × 106 m; H = 2130 km; v = 6850 m/s 
33. a. 3.37 N  b. 2.39 N  c. 0 
35. ac = 24.1 m/s2; Fc = 2170 N; FN = 3050 N 
37. 2.80 m/s 
39. a. T = 20.0 N  b. Fc = 17.3 N; c. v = 3.84 m/s 
41. F30 = 2.09 × 10−7 N, θ = 24.50 above +x-axis;  
      F70 = 3.27 × 10−7 N, φ = 38.20 above −x-axis;  
      F50 = 2.96 × 10−7 N, α = 77.00 below the +x-axis; 
43. F = 1.98 × 1020 N; d = 580 km 
45. 2.05  × 1022 kg; 18.9 kg/m3  
47. 3.43 × 10−5 N; 3.21 × 10−5 N; yes 
49. 6.04 times greater 
51. 7.79 × 103 m/s; 9.26 m/s2  
53. 2.00  × 1030 kg; 1.39 × 1030 kg/m3 

 
Chapter 7 
1. 1.01 × 104 J 
3. 613 J 
5. 3.90 × 109 J 
7. a. 196 J  b. 196 J  c. The force in part a is one-half 
    the size of the force in part b. 
9. a. 2.86 × 109 J  b. 2.11 × 109 ft lb c. 3.97 × 106 J/hr  
11. 29.2 hp 
13. 137 J; 206 J 
15. 294 J 
17. 2.69 × 1033 J 
19. 2.185 × 10−18 J 
21. 4.05 × 103 J; −2.03 × 105 N 
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23. a. 36.0 J  b. 36.0 J  c. 6.00 m/s d. 6.00 m/s2; 6.00 m/s 
25. 184 m 
27. 1.48 m/s 
29. a. 0.0835 J  b. 0.0835 J  c. 0.817 m/s 
31. 1.08 m 
33. a. 1.23 J  b. 0  c. −1.23 J  d. 0.616 N e. 0.768 
35. 9900 J 
37. 105.4 J 
39. a. 98.0 J  b. 6.26 m/s  c. 6.67 m 
41. (H7.7) = MA = Fout = rin   
                               Fin     rout 
43. 2.06 J 
45. 118,000 W 
47. a. 52.7 J  b. +38.9 J  c. 18.3 N 
49. a. 4.35 trips, or a little more than 2 oscillations  b. 
    1.05 m; the object stops 1.05 m to the right of point B 
51. µ = 0.0188  
53. Etotal = 14.7 J; PE1 = 9.80 J; PE2 = 1.96 J; v1 = v2 = 
2.90 m/s; KE1 = 2.10 J; KE2 = 0.841 J 
55. a. 1680 m/s  b. 3590 m/s  c. 4.25 × 104 m/s 
57. 10.4 m 
59. 0.256 m 
61. a. 1.88 J  b. 0.787 J  c. 0.189 J  d. 0.751 J   
      e. 0.661 m/s  f. KE1 = 0.109 J; KE2 = 0.0437 J 
 
Chapter 8 
1. 3.22 × 107 kg m/s 
3. −5.72 × 104 kg m/s; −1.91 × 105 N;−5.72 × 104 kg m/s  
5. 2.4 s 
7. −0.600 m/s 
9. 0.150 m/s 
11. 0.0988 m/s 
13. −0.357 m/s 
15. a. 12.4 Ns  b. 12.4 kg m/s  c. 49.6 m/s 
17. a. 125.0 Ns  b. 3.13 × 104 N 
19. v1f = −0.417 m/s; v2f = 0.183 m/s 
21. a. 0.600 kg  b. 1/2 v1i 
23. a. −19.9 cm/s = V1f(to the left); 8.4 cm/s (to the 
     right)  b. 8.97 × 10−3 J  c. 3.85 × 10−3 J  d. −57.1% 
25. 0.060 m/s 
27. a. −0.083 m/s  b. 0.0216 J  c. 1.55 × 10−3 J  d. −2.01 
     × 10−2 J; the energy is dissipated as heat 
29. 41.8 km/hr at 78.70 N of E 
31. a. δp = −4.82 kg m/s  b. Magnitude = 4.82 kg m/s; 
      Direction = into the wall  to the right 
33. a. 8.00 kg m/s  b. 0.050 kg m/s  c. 160 J  d. 6.25 × 
    10−3 J  e. 6.25 × 10−3 
35. a. 0.748  b. 0.259 J 
37. a. 1.99 m/s  b. 0.202 m 
39. 9.55 → 10 bullets needed 
41. 42 cm to the right 
43. 4.20 m/s to the right  
45. 15.0 N; 0.0667 m/s2  
47. a. v1i = 2.74 m/s; v2i = 1.29 m/s  b. 0.727 m from the 
     left side c. v1f = −2.30 m/s; v2f = 1.73 m/s  
     d. l1' = 0.352 m l2' = 0.361 m  
49. a. v1i = 3.13 m/s; v2i = 2.71 m/s b. 0.536 m from the  

      left side  c. v1f = −4.66 m/s; v2f = 1.18 m/s  
      d. h1' = 1.11 m h2' = 0.0710 m 
51. 1.76 × 103 m/s 
53. a. 7.5 m/s b. −2940 J  
55. 137 m  
57. 0.205 m  
59. v2 = 60.3 m/s; v3 = 72.5 m/s  
 
Chapter 9 
1. a. 3.49 rad/s  b. 4.71 rad/s  c. 8.17 rad/s 
3. a. 105 rad/s  b. 7.88 m/s 
5. −62.8 rad/s2; 180 rev 
7. 2.36 × 10−3 J 
9. 0.0417 kg m2 

11. a. 3.79 kg m2  b. 0 
13. 6.86 rad/s2 

15. 2.80 m/s2 

17. a. 1.23 m/s2  b. 1.92 m/s 
19. 157 rad/s 
21. a. 5.11 m/s  b. 4.43 m/s 
23. a. 5.00 rad/s b. 0.188 J  c. 0.0750 J  d. 0.263 J 
25. 9.82 J 
27. a. 7.27 × 10−5 rad/s  b. 9.69 × 1037 kg m2  c. 2.56 × 
  1029 J d. 2.66 × 1033 J; linear KE is approximately 
     10,000 times greater than rotational KE   
      e. 7.05 × 1033 kg m2/s 
29. a. 5.00 × 10−4 kg m2  b. 0.200 m N c. 400 rad/s2  
      d. 800 rad/s  e. 800 rad  f. 160 J  g. 0.400 kg m2/s 
31. a. 7.272 × 10−5 rad/s  b. 1.263 × 10−12 rad/s  c.  yes 
33. a. 13.3 rad/s2  b. 133 rad/s  c. 829 J  d. 831 J 
35. a. 2.5 m/s  b. 2.50 m/s  c. 55.6 rad/s 
37. a. 0.300 m N  b. 9.88 × 10−3 kg m2 c. 30.4 rad/s2  
      d. 122 rad/s 
39. a. 5.88 J  b.  6.26 m/s 
41. 1.74 rad/s 
43. a. 4.02 m/s2  b. 2.65 m/s  c. 0.659 s  d. 1.52 m  
      e. 6.10 m from the base of the incline 
 
Chapter 10 
1. 1.76 × 109 N/m2 

3. 1.33 × 10−3 
5. 4.76 × 10−4 m  
7. a. 1.36 × 108 N/m2  b.  2.91 × 10−3 m  c. 1.94 × 10−3 
9. 1.08 × 103 kg 
11. 1.55 × 104 N 
13. 2.84 mm 
15. 5.34 × 104 N 
17. 123.0 N/m 
19. a. 294 N/m  b. 2.67 cm 
21. 3.81 N 
23. 1.48 × 10−5 rad 
25. 2.64 × 10−5 rad; the copper cylinder deforms 1.78 
     times more 
27. 0.467 × 1010 N/m2 

29. −0.0338 m3 

31. 1.0002334 
33. 0.32 mm; 5.01 m 
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35. 1082 masses 
37. 1.67 × 10−4 m 
39. 6.60 × 104 N 
41. a. 33.7 N  b. 64.3 N  c. 3.2 × 10−4 m 
43. 4.29 × 10−4 m 
45. a. 5.33 m  b. 2.00 m  c. 3.33 m 
 
Chapter 11 
1. 1.95 Hz 
3. 0.05 kg 
5. a. 0  b. 3.14 m/s 
7. 0.808 m/s; 6.53 m/s2 

9. a. 1.58 Hz  b. 0.633 s  c. −1.11 m/s; −9.86 m/s2 

11. 0.0563 J 
13. 0.0338 J; 3.75 × 10−3 J; 0.0301 J 
15. 1.74 s; 0.575 Hz 
17. 0.276 Hz 
19. a. 2.46 s  b.  an infinitely long period of oscillation 
21. 9.852 m/s2 

23. a. 3.33 N/m  b. 7.70 s 
25. a. 0.156 m/s2  b. 0  c. 0.078 m/s2 

27. 0.709 m 
29. T10 = 2.0109178 s, 0.190%; T30 = 2.041969 s, 1.71%;  
      T50 = 2.105713 s, 4.68% 
31. 0.231 m 
33. 4.59 km 
35. a. 444 J; 0.330 J; 0.443 J  b. 0.444 J c. 2.03 m/s 
37. 45.4 N/m 
39. A1 = 0.0949 m; A2 = 0.090 m; A4 = 0.081 m;  
     A6 = 0.0729 m; A8 = 0.0656 m 
41. 0.256 m 
43. 1.35 m/s 
45. See Solutions Guide. 
47. 0.848 m/s upward 
49.   − Cθ/T 
 
Chapter 12 
1. a. 0.050 s  b. 5.00 × 10−5 s 
3. 5.72 m 
5. a. f  = 400 Hz  b.  k = 3.14 m−1 c.  ω = 2513 rad/s 
7. a. k = 25.1 m−1  b.  ω = 1450 rad/s   
    c.  y = (0.0185 m) sin[(25.1 m−1)x − (1450 Hz)t 
9. 6.48 N 
11. a. 302 m/s  b. 1.01 cm 
13. a. 20.0 m/s  b. 800 N  c. λ2 = 1.20 m; f = 16.7 Hz 
15. 4.51 m 
17. f3 = 1980 Hz; λ3 = 40 cm,  f5 = 3300 Hz; λ5 = 24 cm 
      f7 = 4610 Hz; λ7 = 17.1 cm 
19. a. 482 Hz  b. 394 Hz 
21. a. 3160 N  b. f2 = 880 Hz; f3 = 1320 Hz; f4 = 1760 Hz   
     c. λfundamental = 120 cm; λ2 = 60 cm; λ3 = 40 cm;  
         λ4 = 30 cm 
23. 4080 m 
25. 1080 m 
27. 0.3277 m; 0.2920 m; 0.2601 m 
29. a. 542 Hz  b. 317 Hz 
31. 357 Hz 

33. 337 Hz 
35. 0.0134 s 
37. 1110 m 
39. 64.8 dB 
41. 2.14 × 10−9 m 
45. a. 650 N  b.  f2 = 880 Hz; f3 = 1320 Hz; f4 = 1760 Hz; 
      f5 = 2200 Hz  c. λ1 = 1.20 m; λ2 = 0.600 m;  
      λ3 = 0.400 m; λ4 = 0.300 m; λ5 = 0.240 m 
 
Chapter 13 
1. 0.707 gm/cm3 

3. a. 193 kg  b. 1890 N 
5. 5510 kg/m3 

7. No, the crown is not pure gold. 
9. 1.12 × 104 kg/m3 

11. 5.27 × 1018 kg 
13. a. 14.9 lb/in.2  b. 14.2 lb/in.2 

15. 1.91 × 108 Pa 
17. a. 9800 Pa  b. 1.96 × 104 Pa c. 2.94 × 104 Pa  
      d. 3.92 × 104 Pa 
19. 8.03 × 106 N 
21. 1.81 × 105 Pa 
23. 42.5 m 
25. a. 250 N  b. 50.0 N 
29. 2.81 N  
31. 5.78 cm 
33. 37.2 kg 
35. 1.87 m/s 
37. 0.922 m away 
39. a. 1.04 × 10−2 m2  b. 6.93 cm 
49. 2.02 × 103 Pa  
43. The block will be submerged 7.5 cm or an additional 
      2.5 cm.  
45. 800 kg/m3  
47. A.  ( )1/34

3l rπ=   b. 2 1/ 3( )l hrπ=   

49. a. 21
03w r h gρπ=  b. 2 3 3

0 0 12
0

1 ( )
3

V r h h
h

π= −  

      c. 2 3 3
0 0 12

0

1 ( )
3fBF r h h g
h

ρ π
 

= − 
 

 

      d. 
1/3

1 01 c

f

h hρ
ρ

 
= −  

 
    e. 92%  

53. δp = 5.22 × 103 Pa; F = 7.84 × 104 N 
  
Chapter 14 
1. a. 37.0 0C  b. 37.6 0C  c. 36.4 0C 
3. −40.0 0F 
5. a. −30.6 0C  b. −10.8 0C  c. 12.8 0C d. 32.2 0C 
    e.  82.2 0C 
7. K =  5 (t 0F + 459.40) 
            9 
9. 1.39 × 104 J 
11. 1.67 × 106 J 
13. 0.0622 0C 
15. 8.14 × 105 J 
17. 21.7 0C 
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19. 381 J/kg 0C; copper 
21. 16.6 0C 
23. 2.20 × 104 J 
25. 27.5 g 
27. 3.06 × 104 J 
29. 13.5 g 
31. 161 g 
33. 0.721 hr 
35. ∆T = 33.0 0C  
37. Tf = 12.57 0C 
39. a. V = 1.57 m/s  b. vbi = 292.3 m/s c. 1495 J   
      d. 8.05 J  e. −1487 J  f. 751 J energy lost. 
41. a. 4.35 × 105 J b. 632 cm3 
43. 22.4 0C 
45. 9.50 × 107 J 
47. 9.01 kg 
49. 8.32 × 108 J 
51. a. 1.50 × 109 m3  b. 2.60 × 107 kg  c. 7.27 × 106 kg 
     d. 2.49 × 106 J/kg  e. 4.66 × 1013 J   
    f. Thunderstorms may cover areas the size of several 
states. Our dimensions for the box of air may be on the 
order of 1000 km by 1500 km by 1 km. This volume 
contains (1 × 106 m)(1.5 × 106 m)(1 × 103 m) or 1 × 1015 
m3 of air or about 1 × 106 times greater than our 
sample box in this problem. Now imagine the amount of 
energy released in a real thunderstorm, given 
everything else the same. 
 
Chapter 15 
1. 2.006 m 
3. If we heat the ring Tf = 22.9 0C; If we cool the ring  
    Tf = −12.85  0C 
5. 0.036% 
7. The ratio of the circumference of a circle to the 
    diameter of the circle is always equal to the value π.   
9. 1261 cm2 
11. 0.5964 cm3 

13. δV = βV0δT;  V = V0 + δV = V0(1 + βδT) 
      m = ρV;  m = ρ0V0 (mass remains unchanged) 
       ρ = ρ0V0 =        ρ0V0       
              V       V0(1 + βδT) 
       ρ =        ρ0      
             1 + βδT 
15. 9.74 × 106 N/m2 
17. 2.45 × 1021 molecules 
19. a. 150 moles  b. 9.04 × 1025  molecules 
21. p2 = 0.505 × 105 N/m2 or p2 = p1/2 
23. 646 K = 373 0C 
25. 7.64 m3  
27. 2.49 × 105 N/m2; 4.99 × 105 N/m2 = 2p1;  
     6.023 × 1023 molecules 
29. a. 5.65 × 10−21 J;  b. 6.07 × 10−21 J; c. 7.72 × 10−21 J; 
     d. 2.64 × 10−20 J; e. 1.09 × 10−19 J; 
31. 6120 m/s 
33. 1.73v   
35. 44.07 g, the atom is calcium  
37. 3.02 × 108 N/m2   

39. Since the coefficient of linear expansion of 
aluminum is greater than the value for steel, the 
aluminum side will expand more. Thus, since the 
aluminum is on the right side the expansion will cause 
the strip to be bent to the left.      
41. 11.7627. 
43. 8351 0C; This temperature is higher than the 
melting point of aluminum which is 961 0C  
45. 8.79 × 1027 molecules 
47. 731 Pa  
49. a. 462 K = 189 0C  b. 924 K = 338 0C  c. 6470 K  
      d. 7390 K e. 10,200 K f. 4160 K  
51. a.  6.07 × 10−21 J  b. 511 m/s  c. 2.38 × 10−23 kg m/s   
      d. 4.86 × 10−20 N  e. 4.05 × 10−21 Pa   
      f. 2.50 × 1025 molecules 
 
Chapter 16 
1. 5810 J/kg 
3. 9.42 × 106 J 
5. 105 0C 
7. 3.28 × 108 J 
9. 1.92 × 106 J 
11. 71.2 0C 
13. a. 53.2 kg  b. 1.78 × 107 J  c. 39.8 hr to melt 
15. 19.6% is saved 
17. a. 2.45 s m2 0C/J  b. 3.68 s m2 0C/J 
19. 1.69 × 108 J 
21. 1.13 × 106 J 
23. 5.07 × 1021 J 
25. 3.28 × 107 J 
27. a. 13.1 J/s  b. 89.2 J/s 
29. 6.27 × 103 J/s; 9.89 × 10−6 m 
31. 6.13 × 10−6 m 
33. 4140 K 
35. 4.27 × 108 J 
37. a. 4.68 × 104 J/s  b. 2.34 × 104 J/s  c. 4.07 × 103 J/s 
      d. 2.85 × 104 J/s 
39. a. 31.8 0C  b. 18.2 0C 
41. Q = 256 Q0 
43. 33.6 g/min enters the container 
45. 7.85 × 109 J/hr 
47. For large values of r1 and r2, the product r1r2 is 
approximately equal to r2 and r2 − r1 is the thickness of 
the material (d). 

δQ =    4πkδT     = 4πr2kδT   = 4πr2kδT 
                 δt     (r2 − r1)/r1r2     r2 − r1             d 
4πr2 is the area of the surface of the sphere. 

δQ   = kAδt , 
                                         δt         d 
which is the same relation as that for a wall of surface 
area A. 
49. 7.16 × 103 W 
51. 7.16 × 104 J/min 
53.  P2  = σA(T + δT)4  = T4(1 + δT/T)4  
       P1          σAT4                    T4            

            
4

1 T
T

∆ = + 
 

 ; 
4

2

1

0.9 K1 1.012
310 K

P
P

 = + = 
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     P2 = 1.012 P1 = 1.00 P1 + 0.012P1 
Power increased by 1.2%. 
 
Chapter 17 
1. 9.86 × 104 J 
3. 1.52 × 105 J 
5. a. 3.00 × 105 J  b. 0  c. −7.50 × 104 J   
    d. 0  e. 2.25 × 105 J  
7. 1.77 × 104 J 
9. a. 2.50 × 103 J  b. 4.16 × 103 J 
11. 749 J 
13. −300 J 
15. Since the result is positive, the internal energy of 
     the system is increased by 300 J. 
17. 0.266 m3; 0.133 m3 

19. 250 J 
21. 1.20 J 
23. a. −8.02 K  b. −8.02 0C  c. −14.4 0F 
25. 55 J 
27. 1.85 × 105 Pa 
29. 7290 W 
31. 40% 
33. 0.117 J 
35. 1.37 × 104 J/K 
37. 148 J/K 
39. 1.62 J/K 
43. 0.031 m3 

45. 17.9 0C; 9.30 × 107 J/hr 
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