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Chapter 15  Thermal Expansion and the Gas Laws 
  

"So many of the properties of matter, especially when in the gaseous form, can be 
deduced from the hypothesis that their minute parts are in rapid motion, the velocity 
increasing with the temperature, that the precise nature of this motion becomes a 
subject of rational curiosity... The relations between pressure, temperature and 
density in a perfect gas can be explained by supposing the particles to move with 
uniform velocity in straight lines, striking against the sides of the containing vessel 
and thus producing pressure."         James Clerk Maxwell 

 
15.1  Linear Expansion of Solids 
It is a well-known fact that most materials expand 
when heated. This expansion is called thermal 
expansion. (Recall that the phenomenon of 
thermal expansion was used in chapter 14 to 
devise the thermometer.) If a long thin rod of 
length L0, at an initial temperature ti, is heated to 
a final temperature tf, then the rod expands by a 
small length ∆L, as shown in figure 15.1.                                          Figure 15.1  Linear expansion. 
 

It is found by experiment that the change in length ∆L depends on the temperature change, ∆t = tf − ti; the 
initial length of the rod L0; and a constant that is characteristic of the material being heated. The experimentally 
observed linearity between ∆L and L0∆t can be represented by the equation 

 
∆L = αL0∆t                                                                              (15.1) 

 
We call the constant α the coefficient of linear expansion; table 15.1 gives this value for various materials. The 
change in length is rather small, but it is, nonetheless, very significant. 

 
Example 15.1 

 
Expansion of a railroad track. A steel railroad track was 30.0 m long when it was initially laid at a temperature of 
−6.70 0C. What is the change in length of the track when the temperature rises to 35.0 0C? 

Solution
 

The coefficient of linear expansion for steel, found from table 15.1, is αsteel = 1.20 × 10−5/0C.  The change in length 
becomes 

∆L = αL0∆t 
= (1.20 × 10−5/0C)(30.0 m)(35.0 0C − (−6.70 0C) 

= 0.0150 m = 1.50 cm  
 

Even though the change in length is relatively small, 1.50 cm in a distance of 30.0 m, it is easily measurable. The 
new length of the rod becomes  

L = L0 + ∆L 
= 30.0 m + 0.0150 m = 30.0150 m 

 
As you can see the new length is essentially the same as the old length. Why then is this thermal expansion so 
significant? Associated with this small change in length is a very large force. We can determine the force 
associated with this expansion by computing the force that is necessary to compress the rail back to its former 
length. Recall from chapter 10 that the amount that a body is stretched or compressed is given by Hooke’s law as 
 

 F  = Y ∆L                                                                                  (10.6) 
                                                                                     A         L0 

 
We can solve this equation for the force that is associated with a compression. Taking the compression of the rail 
as 0.0150 m, Young’s modulus Y for steel as 2.10 × 1011 N/m2, and assuming that the cross-sectional area of the 
rail is 130 cm2, the force necessary to compress the rail is 
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  F = AY ∆L 
              L0 

( )2 11
2

N 0.0150 m0.013 m 2.10 10  
30 0 mm .

  = ×  
  

 

= 1.37 × 106 N 
 

This force of 1.37 × 106 N (308,000 lb) that is necessary to compress the rail by 1.50 cm, is also the force 
that is necessary to prevent the rail from expanding. It is obviously an extremely large force. It is this large force 
associated with the thermal expansion that makes thermal expansion so important. It is no wonder that we see 
and hear of cases where rails and roads have buckled during periods of very high temperatures. 

 
To go to this Interactive Example click on this sentence. 

 

 
 

The expansion of the solid can be 
explained by looking at the molecular 
structure of the solid. The molecules of 
the substance are in a lattice structure. 
Any one molecule is in equilibrium with 
its neighbors, but vibrates about that 
equilibrium position. As the temperature 
of the solid is increased, the vibration of 
the molecule increases. However, the 
vibration is not symmetrical about the 
original equilibrium position. As the 
temperature increases the equilibrium 
position is displaced from the original 
equilibrium position. Hence, the mean 
displacement of the molecule from the 
original equilibrium position also 
increases, thereby spacing all the 
molecules farther apart than they were 
at the lower temperature. The fact that 
all the molecules are farther apart 
manifests itself as an increase in length 
of the material. Hence, linear expansion 
can be explained as a molecular phenomenon. The large force associated with the expansion comes from the large 
molecular forces between the molecules. 
 
 
15.2  Area Expansion of Solids 
For the long thin rod of section 15.1, only the length change was significant and that was all that we considered. 
But solids expand in all directions. If a square of thin material of length L0 and width L0, at an initial temperature 
of ti, is heated to a new temperature tf, the square of material expands, as shown in figure 15.2. The original area 
of the square is given by 

A0 = L02 
 
But each side expands by ∆L, forming a new square with sides (L0 + ∆L). Thus, the final area becomes 
 

A = (L0 + ∆L)2 
= L02 + 2L0∆L + (∆L)2 

 
The change in length ∆L is quite small to begin with, and its square (∆L)2 is even smaller, and can be neglected in 
comparison to the magnitudes of the other terms. That is, we will set the quantity (∆L)2 equal to zero in our  

Table 15.1 
Coefficients of Thermal Expansion 

        
Material 

 α Coefficient of 
Linear 

Expansion 

β Coefficient of 
Volume 

Expansion 
 × 10−5 /0C × 10−4  /0C 
Aluminum 
Brass 
Copper 
Iron 
Lead 
Steel 
Zinc 
Glass (ordinary) 
Glass (Pyrex) 
Ethyl alcohol 
Water 
Mercury 
Glass (Pyrex) 
All noncondensing gases at 
constant pressure and 0 0C. 

2.4 
1.8 
1.7 
1.2 
3.0 
1.2 
2.6 
0.9 
0.32 
 
 

 
 
 
 
 
 
 
 
 
11.0 
2.1 
1.8 
0.096 
36.6 
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analysis. Using this assumption, the final area becomes 
 

    A = L02 + 2L0∆L 
 

The change in area, caused by the thermal expansion, is 
 

∆A = Final area − Original area 
= A − A0 

= L02 + 2L0∆L − L02 
Therefore 

∆A = 2L0∆L                                        (15.2) 
However, we have already seen that 

∆L = αL0∆t                                         (15.1) 
                                                                                                                               Figure 15.2  Expansion in area. 

 
Substituting equation 15.1 into 15.2 gives 

∆A = 2L0αL0∆t 
and 

∆A = 2αL02∆t 
However, L02 = A0, the original area. Therefore 

 ∆A = 2αA0∆t                                                                             (15.3) 
 

Equation 15.3 gives us the area expansion of a material of original area A0 when subjected to a temperature 
change ∆t. Note that the coefficient of area expansion is twice the coefficient of linear expansion. Although we have 
derived this result for a square it is perfectly general and applies to any area. For example, if the material was 
circular in shape, the original area A0 would be computed from the area of a circle of radius r0 as 
 

A0 = πr02 
 

We would then find the change in area from equation 15.3. 
 

Example 15.2 
 

The change in area. An aluminum sheet 2.50 m long and 3.24 m wide is connected to some posts when it was at a 
temperature of −10.5 0C. What is the change in area of the aluminum sheet when the temperature rises to 65.0 0C? 

Solution
 

The coefficient of linear expansion for aluminum, found from table 15.1, is αAl = 2.4 × 10−5/0C. The original area of 
the sheet, just the product of the length and the width, is  
 

A0 = L1L2 
A0 = (2.50 m)(3.24 m) = 8.10 m2  

 
The change in area, found from equation 15.3, is 

∆A = 2αA0∆t 
= 2(2.4 × 10−5/0C)(8.10 m2)(65.0 0C − (−10.5 0C) 

= 0.0294 m2 = 294 cm2   
The new area of the sheet becomes  

A = A0 + ∆A 
= 8.10 m2+ 0.0294 m2 = 8.13 m2 

 
Again notice that the new area is essentially the same as the old area, and the significance of this small change in 
area is the very large force that is associated with this thermal expansion.  
 

To go to this Interactive Example click on this sentence.  
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All parts of the material expand at the same rate. For example, if there 

was a circular hole in the material, the empty hole would expand at the same rate 
as if material were actually present in the hole. We can see this in figure 15.3. 
The solid line represents the original material, whereas the dotted lines represent 
the expanded material. Many students feel that the material should expand into 
the hole, thereby causing the hole to shrink. The best way to show that the hole 
does indeed expand is to fill the hole with a plug made of the same material. As 
the material expands, so does the plug. At the end of the expansion remove the 
plug, leaving the hole. Since the plug expanded, the hole must also have grown. 
Thus, the hole expands as though it contained material. This result has many 
practical applications. 

 
 

                                                                                                              Figure 15.3  The empty hole expands  
                                                                                                                       at the same rate as if there were  

                                                                                                    material in the hole. 
 

Example 15.3 
 

Fitting a small wheel on a large shaft. We want to place a steel wheel on a steel shaft with a good tight fit. The 
shaft has a diameter of 10.010 cm. The wheel has a hole in the middle, with a diameter of 10.000 cm, and is at a 
temperature of 20 0C. If the wheel is heated to a temperature of 132 0C, will the wheel fit over the shaft? The 
coefficient of linear expansion for steel is found in table 15.1 as α = 1.20 × 10−5/0C. 

Solution
 

The present area of the hole in the wheel is not large enough to fit over the cross-sectional area of the shaft. We 
want to heat the wheel so that the new expanded area of the heated hole in the wheel will be large enough to fit 
over the area of the shaft. With the present dimensions the wheel can not fit over the shaft. If we place the wheel 
in an oven at 132 0C, the wheel expands. We can solve this problem by looking at the area of the hole and the 
shaft, but it can also be analyzed by looking at the diameter of the hole and the diameter of the shaft. When the 
wheel is heated, the diameter of the hole increases by 
 

  ∆LH = αL0∆t 
= (1.20 × 10−5/0C)(10.000 cm)(132 0C − 20 0C) 

= 1.34 × 10−2 cm 
The new hole in the wheel has the diameter 
 

L = L0 + ∆L = 10.000 cm + 0.013 cm 
= 10.013 cm 

 
Because the diameter of the hole in the wheel is now greater than the diameter of the shaft, the wheel now fits 
over the shaft. When the combined wheel and shaft is allowed to cool back to the original temperature of 20 0C, the 
hole in the wheel tries to contract to its original size, but is not able to do so, because of the presence of the shaft. 
Therefore, enormous forces are exerted on the shaft by the wheel, holding the wheel permanently on the shaft. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
15.3  Volume Expansion of Solids and Liquids 
All materials have three dimensions, length, width, and height. When a body is heated, all three dimensions 
should expand and hence its volume should increase. Let us consider a cube of length L0 on each side, at an initial 
temperature ti. Its initial volume is 

V0 = L03 
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If the material is heated to a new temperature tf, then each side L0 of the cube undergoes an expansion ∆L. The 
final volume of the cube is 

V = (L0 + ∆L)3 
= L03 + 3 L02∆L + 3L0(∆L)2 + (∆L)3 

 
Because ∆L is itself a very small quantity, the terms in (∆L)2 and (∆L)3 can be neglected. Therefore, 
 

V = L03 + 3 L02∆L 
 

The change in volume due to the expansion becomes 
 

∆V = V − V0 
= L03 + 3 L02∆L − L03 

∆V = 3 L02∆L                                                                           (15.4) 
However, the linear expansion ∆L was given by 

∆L = αL0∆t                                                                              (15.1) 
Substituting this into equation 15.4 gives 

∆V = 3 L02αL0∆t 
   = 3α L03∆t 

Since L03 is equal to V0, this becomes 
∆V = 3αV0∆t                                                                             (15.5) 

 
We now define a new coefficient, called the coefficient of volume expansion β, for solids as 
 

 β = 3α                                                                                 (15.6) 
 

Therefore, the change in volume of a substance when subjected to a change in temperature is 
 

 ∆V = βV0∆t                                                                             (15.7) 
 

Although we derived equation 15.7 for a solid cube, it is perfectly general and applies to any volume of a 
solid and even for any volume of a liquid. However, since α has no meaning for a liquid, we must determine β 
experimentally for the liquid. Just as a hole in a surface area expands with the surface area, a hole in a volume 
also expands with the volume of the solid. Hence, when a hollow glass tube expands, the empty volume inside the 
tube expands as though there were solid glass present. 

 
Example 15.4 

 
The change in volume. An aluminum box 0.750 m long, 0.250 m wide, and 0.450 m high is at a temperature of 
−15.6 0C. What is the change in volume of the aluminum box when the temperature rises to 120 0C? 

Solution
 

The coefficient of linear expansion for aluminum, found from table 15.1, is αAl = 2.4 × 10−5/0C. The original volume 
of the box, found from the product of the length, width, and height, is 
 

V0 = L1L2L3 
V0 = (0.750 m)(0.250 m)(0.450 m) = 0.0844 m3  

 
The change in volume, found from equation 15.5, is 

     ∆V = 3αV0∆t 
= 3(2.4 × 10−5/0C)(0.0844 m3)(120 0C − (−15.6 0C) 

= 0.00082 m3 = 8.24 cm3   
The new volume of the box becomes  

V = V0 + ∆V 
=0.0844 m3 +0.00082 m3  = 0.0852 m3 
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Again notice that the new volume is very close to the original volume.  
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.5 
 

How much mercury overflows? An open glass tube is filled to the top with 25.0 cm3 of mercury at an initial 
temperature of 20.0 0C. If the mercury and the tube are heated to 100 0C, how much mercury will overflow from 
the tube? 

Solution
 

The change in volume of the mercury, found from equation 15.7 with βHg = 1.80 × 10−4 /0C found from table 15.1, is 
 

∆VHg = βHgV0∆t 
= (1.80 × 10−4/0C)(25.0 cm3)(100 0C − 20 0C) 

= 0.360 cm3 
 
If the glass tube did not expand, this would be the amount of mercury that overflows. But the glass tube does 
expand and is therefore capable of holding a larger volume. The increased volume of the glass tube is found from 
equation 15.7 but this time with βg = 0.27 × 10−4 /0C 

     ∆Vg = βgV0∆t 
= (0.27 × 10−4 /0C)(25.0 cm3)(100 0C − 20.0 0C) 

= 0.054 cm3 
 

That is, the tube is now capable of holding an additional 0.054 cm3 of mercury. The amount of mercury that 
overflows is equal to the difference in the two volume expansions. That is, 
 

Overflow = ∆VHg − ∆Vg 
= 0.360 cm3 − 0.054 cm3 

= 0.306 cm3 
 

To go to this Interactive Example click on this sentence. 
 

 
 
  

15.4  Volume Expansion of Gases: Charles’ Law 
Consider a gas placed in a tank, as shown in figure 15.4. The weight of the piston exerts a constant pressure on the 
gas. When the tank is heated, the pressure of the gas first increases. But the increased pressure in the tank 
pushes against the freely moving piston, and the piston moves until the pressure inside the tank is the same as 
the pressure exerted by the weight of the piston. Therefore the pressure in the tank remains a constant 
throughout the entire heating process. The volume of the gas increases during the heating process, as we can see 
by the new volume occupied by the gas in the top cylinder. In fact, we find the increased volume by multiplying the 
area of the cylinder by the distance the piston moves in the cylinder. If the volume of the gas is plotted against the 
temperature of the gas, in Celsius degrees, we obtain the straight line graph in figure 15.5. If the equation for this 
straight line is written in the point-slope form1 

                                                           
1
The point-slope form of a straight line is obtained by the definition of the slope of a straight line, namely 

m = ∆y 
       ∆x 

or                                                                                
∆y = m∆x 

Using the meaning of ∆y and ∆x, we get 
      y − y1 = m(x − x1) 

Pearson Custom Publishing

454



 
Chapter 15  Thermal Expansion and the Gas Laws                                                                                             15-7 

 
  y − y1 = m(x − x1) 

we get 
  V − V0 = m(t − t0) 

 
where V is the volume of the gas at the temperature t, V0 is the 
volume of the gas at t0 = 0 0C, and m is the slope of the line. We can 
also write this equation in the form 
 

∆V = m∆t                                        (15.8) 
 

Note that equation 15.8, which shows the change in volume of a gas, 
looks like the volume expansion formula 15.7, for the change in 
volume of solids and liquids, that is, 
 

∆V = βV0∆t                                       (15.7) 
                                                                                                                        

Let us assume, therefore, that the form of the equation for volume 
expansion is the same for gases as it is for solids and liquids. If we use 
this assumption, then 

βV0 = m 
 

Hence the coefficient of volume expansion for the gas is found 
experimentally as 

β =  m  
       V0 

 
where m is the measured slope of the line. If we repeat this 
experiment many times for many different gases we find that 

 
                                                                                                                    Figure 15.4  Volume expansion of a gas. 

 
β =     1     = 3.66 × 10−3  /0C 

                                                                                273 0C                      
 

for all noncondensing gases at constant pressure. This result was first found by the French physicist, J. Charles 
(1746-1823). This is a rather interesting result, since the value of β is different for different solids and liquids, and 
yet it is a constant for all gases. 

Equation 15.7 can now be rewritten as 
 V − V0 = βV0(t − t0) 

Because t0 = 0 0C, we can simplify this to 
V − V0 = βV0t 

and 
V = V0 + βV0t 

or 
V = V0(1 + βt)                                                                            (15.9) 

Note that if the temperature t = −273 0C, then 
 

( )
0

0 00
2731 1 1 0

273
CV V V

C
 −

= + = − = 
 

 

 
That is, the plot of V versus t intersects the t-axis at −273 0C, as shown in figure 15.5. Also observe that there is a 
linear relation between the volume of a gas and its temperature in degrees Celsius. Since β = 1/273 0C, equation 
15.9 can be simplified further into 

0

0 00 0
2731

273 273
t C tV V V

C C
 + = + =   

   
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It was the form of this equation that led to the definition of the 
Kelvin or absolute temperature scale in the form                                                                                                                  
 

 T K = t 0C + 273                                 (15.10) 
 

With this definition of temperature, the volume of the gas is directly 
proportional to the absolute temperature of the gas, that is, 
 

0

273
VV T 

=  
 

                                    (15.11) 

                                                                                                                 Figure 15.5  Plot of V versus t for a gas at 
                                                                                                                      constant pressure. 

 
Changing the temperature scale is equivalent to moving the 

vertical coordinate of the graph, the volume, from the 0 0C mark in 
figure 15.5, to the −273 0C mark, and this is shown in figure 15.6. 
Thus, the volume of a gas at constant pressure is directly proportional 
to the absolute temperature of the gas. This result is known as 
Charles’ law.  

In general, if the state of the gas is considered at two different 
temperatures, we have 

 
                                                                                                  Figure 15.6 The volume V of a gas is directly 
                                                                                                       proportional to its absolute temperature T. 

                                                          0
1 1273

VV T 
=  

 
  

and 
0

2 2273
VV T 

=  
 

 

Hence, 
 V1   =  V0  = V2  

                                                                                    T1       273    T2 
Therefore, 

V1  =  V2               p = constant                                               (15.12) 
                                                                                      T1      T2    
which is another form of Charles’ law. 

Figures 15.5 and 15.6 are slightly misleading in that they show the variation of the volume V with the 
temperature T of a gas down 
to −273 0C or 0 K. However, 
the gas will have condensed 
to a liquid and eventually to 
a solid way before this point 
is reached. A plot of V 
versus T for all real gases is 
shown in figure 15.7. Note 
that when each line is 
extrapolated, they all 
intersect at −273 0C or 0 K. 
Although they all have 
different slopes m, the 
coefficient of volume 
expansion (β = m/V0) is the 
same for all the gases. 

 
                                          Figure 15.7  Plot of volume versus temperature for real gases. 
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15.5  Gay-Lussac’s Law 
Consider a gas contained in a tank, as shown in figure 15.8. The 
tank is made of steel and there is a negligible change in the volume 
of the tank, and hence the gas, as it is heated. A pressure gauge 
attached directly to the tank, is calibrated to read the absolute 
pressure of the gas in the tank. A thermometer reads the 
temperature of the gas in degrees Celsius. The tank is heated, 
thereby increasing the temperature and the pressure of the gas, 
which are then recorded. If we plot the pressure of the gas versus 
the temperature, we obtain the graph of figure 15.9. The equation of 
the resulting straight line is 

            p − p0 = m’(t − t0) 
 
where p is the pressure of the gas at the temperature t, p0 is the 
pressure at the temperature t0, and m’ is the slope of the line. The 
prime is placed on the slope to distinguish it from the slope 
determined in section 15.4. Because t0 = 0 0C, this simplifies to 
 

p − p0 = m’t 
or 

   p = m’t + p0                                   (15.13) 
                                                                                                               Figure 15.8  Changing the pressure of a gas. 
It is found experimentally that the slope is 
 

m’ = p0β 
 

where p0 is the absolute pressure of the gas and β is the coefficient of 
volume expansion for a gas. Therefore equation 15.13 becomes 
 

p = p0βt + p0 
and 

p = p0(βt + 1)                                   (15.14) 
 

                                                                                                              Figure 15.9  A plot of pressure versus 
                                                                                                                               temperature for a gas. 

 
Thus, the pressure of the gas is a linear function of the temperature, as in the case of Charles’ law. Since β 

= 1/273 0C this can be written as 
0

0 00 0
2731

273 273
t t Cp p p

C C
 + = + =   

   
                                                         (15.15) 

 
But the absolute or Kelvin scale has already been defined as 
 

 T K = t  0C + 273 
Therefore, equation 15.15 becomes 

0

273
pp T 

=  
 

                                                                          (15.16) 

 
which shows that the absolute pressure of a gas at constant volume is directly proportional to the absolute 
temperature of the gas, a result known as Gay-Lussac’s law, in honor of the French chemist Joseph Gay-Lussac 
(1778-1850). For a gas in different states at two different temperatures, we have 
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0
1 1273

pp T 
=  

 
        and          0

2 2273
pp T 

=  
 

  

or 
p1  =  p2                   V = constant                                               (15.17) 

                                                                                 T1      T2         
 
Equation 15.17 is another form of Gay-Lussac’s law. (Sometimes this law is also called Charles’ law, since Charles 
and Gay-Lussac developed these laws independently of each other.) 
 
  
15.6  Boyle’s Law 
Consider a gas contained in a cylinder at a constant temperature, as shown in figure 15.10. By pushing the piston 
down into the cylinder, we increase the pressure of the gas and decrease the volume of the gas. If the pressure is 
increased in small increments, the gas remains in thermal equilibrium with the temperature reservoir, and the 
temperature of the gas remains a constant. We measure the volume of the gas for each increase in pressure and 
then plot the pressure of the gas as a function of the reciprocal of the volume of the gas. The result is shown in 
figure 15.11. Notice that the pressure is inversely proportional to the volume of the gas at constant temperature. 
We can write this as 

p ∝  1  
       V 

or 
 pV = constant                                                                        (15.18) 

 
That is, the product of the pressure and volume of a gas at constant temperature is equal to a constant, a result 
known as Boyle’s law, in honor of the British physicist and chemist Robert Boyle (1627-1691). For a gas in two 
different equilibrium states at the same temperature, we write this as 
 

p1V1 = constant 
and 

p2V2 = constant 
Therefore, 

   p1V1 = p2V2                       T = constant                                   (15.19) 
 
another form of Boyle’s law. 

       
           Figure 15.10  The change in pressure and                           Figure 15.11  Plot of the pressure p versus the 
               volume of a gas at constant temperature.                                        reciprocal of the volume 1/V for a gas. 
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15.7  The Ideal Gas Law 
The three gas laws, 

V1  =  V2                 p = constant                                           (15.12) 
                                                                                        T1      T2     

 
p1  =  p2                 V = constant                                           (15.17) 

                                                                                        T1      T2  
 

   p1V1 = p2V2              T = constant                                           (15.19) 
can be combined into one equation, namely, 

p1V1 = p2V2                                                                              (15.20) 
                                                                                      T1        T2             

 
Equation 15.20 is a special case of a relation known as the ideal gas law. Hence, we see that the three previous 
laws, which were developed experimentally, are special cases of this ideal gas law, when either the pressure, 
volume, or temperature is held constant. The ideal gas law is a more general equation in that none of the variables 
must be held constant. Equation 15.20 expresses the relation between the pressure, volume, and temperature of 
the gas at one time, with the pressure, volume, and temperature at any other time. For this equality to hold for 
any time, it is necessary that 

pV  = constant                                                                       (15.21) 
                                                                                       T           

 
This constant must depend on the quantity or mass of the gas. A convenient unit to describe the amount of the gas 
is the mole. One mole of any gas is that amount of the gas that has a mass in grams equal to the atomic or 
molecular mass (M) of the gas. The terms atomic mass and molecular mass are often erroneously called atomic 
weight and molecular weight in chemistry. 

As an example of the use of the mole, consider the gas oxygen. One molecule of oxygen gas consists of two 
atoms of oxygen, and is denoted by O2. The atomic mass of oxygen is found in the Periodic Table of the Elements in 
appendix E, as 16.00. The molecular mass of one mole of oxygen gas is therefore 

 
MO2 = 2(16) = 32 g/mole 

 
Thus, one mole of oxygen has a mass of 32 g. The mole is a convenient quantity to express the mass of a gas 
because one mole of any gas at a temperature of 0 0C and a pressure of 1 atmosphere, has a volume of 22.4 liters. 
Also Avogadro’s law states that every mole of a gas contains the same number of molecules. This number is called 
Avogadro’s number NA and is equal to 6.022 × 1023 molecules/mole. 

The mass of any gas will now be represented in terms of the number of moles, n. We can write the constant 
in equation 15.21 as n times a new constant, which shall be called R, that is, 

 
 pV  = nR                                                                                  (15.22) 

                                                                                     T           
 
To determine this constant R let us evaluate it for 1 mole of gas at a pressure of 1 atm and a temperature of 0 0C, 
or 273 K, and a volume of 22.4 L. That is, 

R = pV  = (1 atm)(22.4 L)    
                                                                                  nT     (1 mole)(273 K) 

R = 0.08205 atm L 
                      mole K 

Converted to SI units, this constant is 
 

2 3 3
5L atm  N/m 10  m0.08205 1.013 10  

mole K atm 1 L
R

−   = ×   
   

 

R = 8.314       J      
                      mole K 
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We call the constant R the universal gas constant, and it is the same for all gases. We can now write equation 
15.22 as 

 pV = nRT                                                                             (15.23) 
 

Equation 15.23 is called the ideal gas equation. An ideal gas is one that is described by the ideal gas equation. 
Real gases can be described by the ideal gas equation as long as their density is low and the temperature is well 
above the condensation point (boiling point) of the gas. Remember that the temperature T must always be expressed 
in Kelvin units. Let us now look at some examples of the use of the ideal gas equation. 

 
Example 15.6 

 
Find the temperature of the gas. The pressure of an ideal gas is kept constant while 3.00 m3 of the gas, at an initial 
temperature of 50.0 0C, is expanded to 6.00 m3. What is the final temperature of the gas? 

Solution
 

The temperature must be expressed in Kelvin units. Hence the initial temperature becomes 
 

T1 = t 0C + 273 = 50.0 + 273 = 323 K 
 

We find the final temperature of the gas by using the ideal gas equation in the form of equation 15.20, namely, 
 

p1V1 = p2V2  
                                                                                        T1        T2        

 
However, since the pressure is kept constant, p1 = p2, and cancels out of the equation. Therefore, 
 

 V1  = V2  
                                                                                          T1     T2 
and the final temperature of the gas becomes 

T2 =  V2  T1 
   V1 

( )
3

3
6.00 m 323
3.00 m

K 
=  

 
 

 = 646 K 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.7 
 

Find the volume of the gas. A balloon is filled with helium at a pressure of 2.03 × 105 N/m2, a temperature of 
35.0 0C, and occupies a volume of 3.00 m3. The balloon rises in the atmosphere. When it reaches a height where 
the pressure is 5.07 × 104 N/m2, and the temperature is −20.0 0C, what is its volume? 

Solution
 

First we convert the two temperatures to absolute temperature units as 
 

T1 = 35.0 0C + 273 = 308 K 
and 

T2 = −20.0 0C + 273 = 253 K 
We use the ideal gas law in the form 

 p1V1  = p2V2  
                                                                                         T1        T2 
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Solving for V2 gives, for the final volume, 
V2 = p1T2 V1  

   p2T1 

( )
5 2

3
4 2

 (2.03 10  N/m )(253 K) 3.00 m
(5.07 10  N/m )(308 K)

 ×
=  × 

 

= 9.87 m3 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.8 
 

Find the pressure of the gas. What is the pressure produced by 2.00 moles of a gas at 35.0 0C contained in a volume 
of 5.00 × 10−3 m3? 

Solution
 

We convert the temperature of 35.0 0C to Kelvin by 
 

T = 35.0 0C + 273 = 308 K 
We use the ideal gas law in the form 

pV = nRT                                                                              (15.23) 
Solving for p, 

   p = nRT  = (2.00 moles)(8.314 J /mole K)(308 K)  
                                                                   V                         5.00 × 10−3 m3 

= 1.02 × 106 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 15.9 
 

Find the number of molecules in the gas. Compute the number of molecules in a gas contained in a volume of 10.0 
cm3 at a pressure of 1.013 × 105 N/m2, and a temperature of 30 K. 

Solution
 

The number of molecules in a mole of a gas is given by Avogadro’s number NA, and hence the total number of 
molecules N in the gas is given by 

 N = nNA                                                                           (15.24) 
 

Therefore we first need to determine the number of moles of gas that are present. From the ideal gas law, 
 

pV = nRT 
( )5 2 3 3

6 3

(1.013 10  N/m ) 10.0 cm  1.00 m
(8.314 J/mole K)(30 K) 10  cm

pVn
RT

×  
= =  

 
 

 = 4.06 × 10−3 moles 
The number of molecules is now found as 
 

3 23 molecules(4.06 10  mole) 6.022 10
moleAN nN −  = = × × 

 
 

= 2.44 × 1021 molecules 
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To go to this Interactive Example click on this sentence. 

 

 
 

Example 15.10 
 

Find the gauge pressure of the gas. An automobile tire has a volume of 81,900 cm3 and contains air at a gauge 
pressure of 2.07 × 105 N/m2 when the temperature is 0.00 0C. What is the gauge pressure when the temperature 
rises to 30.0 0C? 

Solution
 

When a gauge is used to measure pressure, it reads zero when it is under normal atmospheric pressure of 1.013 × 
105 N/m2. The pressure used in the ideal gas equation must be the absolute pressure, that is, the total pressure, 
which is the pressure read by the gauge plus atmospheric pressure. Therefore, 

  
 pabsolute = pgauge + patm                                                                (15.25) 

Thus, the initial pressure of the gas is 
 

p1 = pgauge + patm = 2.07 × 105 N/m2 + 1.01 × 105 N/m2 
= 3.08 × 105 N/m2  

 
The initial volume of the tire is V1 = 81,900 cm3 and the change in that volume is small enough to be neglected, so 
V2 = 81,900 cm3. The initial temperature is 

  T1 = 0.00 0C + 273 = 273 K 
and the final temperature is 

   T2 = 30.0 0C + 273 = 303 K 
 

Solving the ideal gas equation for the final pressure, we get 
 

p2 = V1T2 p1  
  V2T1 

( )
3

5 2
3

 (81,900 cm )(303 K) 3.08 10  N/m
(81,900 cm )(273 K)

 
= × 

 
 

     = 3.42 × 105 N/m2  absolute pressure 
 

Expressing this pressure in terms of gauge pressure we get 
 

p2gauge = p2absolute − patm 
= 3.42 × 105 N/m2 − 1.01 × 105 N/m2 

= 2.41 × 105 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

15.8  The Kinetic Theory of Gases 
Up to now the description of a gas has been on the macroscopic level, a large-scale level, where the characteristics 
of a gas, such as its pressure, volume, and temperature, are measured without regard to the internal structure of 
the gas itself. In reality, a gas is composed of a large number of molecules in random motion. The large-scale 
characteristics of gases should be explainable in terms of the motion of these molecules. The analysis of a gas at 
this microscopic level (the molecular level) is called the kinetic theory of gases. 

In the analysis of a gas at the microscopic level we make the following assumptions: 
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1.  A gas is composed of a very large number of molecules that are in random motion. 
2.  The volume of the individual molecules is very small compared to the total volume of the gas. 
3.  The collisions of the molecules with the walls and other molecules are elastic and hence there is no energy lost 

during a collision. 
4. The forces between molecules are negligible except during a collision. Hence, there is no potential energy 

associated with any molecule. 
5.  Finally, we assume that the molecules obey Newton’s laws of motion. 

Let us consider one of the very many molecules contained in the box shown in figure 15.12. For simplicity 
we assume that the box is a cube of length L. The gas molecule has a mass m and is moving at a velocity v. The x-
component of its velocity is vx. For the moment we only consider the motion in the x-direction. The pressure that 
the gas exerts on the walls of the box is caused by the collision of the gas molecule with the walls. The pressure is 
defined as the force acting per unit area, that is, 

p =  F                                                                                 (15.26) 
     A 

 
where A is the area of the wall where the collision occurs, and is simply 
 

A = L2 
 

and F is the force exerted on the wall as the molecule collides with the 
wall and can be found by Newton’s second law in the form 
 

F = ∆P                                          (15.27) 
          ∆t 

 
So as not to confuse the symbols for pressure and momentum, we will 
use the lower case p for pressure, and we will use the upper case P for 
momentum. Because momentum is conserved in a collision, the change 
in momentum of the molecule ∆P, is the difference between the 
momentum after the collision PAC and the momentum before the 
collision PBC. Also, since the collision is elastic the velocity of the 
molecule after the collision is −vx. Therefore, the change in momentum 
of the molecule is 
 
                                                                                                                   Figure 15.12  The kinetic theory of a gas. 

 
                                                                ∆P = PAC − PBC = −mvx − mvx 

                                                                  = −2mvx           change in momentum of the molecule 
 

But the change in the momentum imparted to the wall is the negative of this, or 
 

  ∆P = 2mvx      momentum imparted to wall 
 

Therefore, using Newton’s second law, the force imparted to the wall becomes 
 

F = ∆P  = 2mvx                                                                          (15.28) 
    ∆t         ∆t 

 
The quantity ∆t should be the time that the molecule is in contact with the wall. But this time is unknown. 

The impulse that the gas particle gives to the wall by the collision is given by 
 

Impulse = F∆t = ∆P                                                                      (15.29) 
 

and is shown as the area under the force-time graph of figure 15.13. Because the time ∆t for the collision is 
unknown, a larger time interval tbc, the time between collisions, can be used with an average force Favg, such that 
the product of Favgtbc is equal to the same impulse as F∆t. We can see this in figure 15.13. We see that the impulse, 
which is the area under the curve, is the same in both cases. 
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At first this may seem strange, but if you 
think about it, it does make sense. The actual 
force in the collision is large, but acts for a very 
short time. After the collision, the gas particle 
rebounds from the first wall, travels back to the 
far wall, rebounds from it, and then travels to the 
first wall again, where a new collision occurs. For 
the entire traveling time of the particle the actual 
force on the wall is zero. 

Because we think of the pressure on a 
wall as being present at all times, it is reasonable 
to talk about a smaller average force that is 
acting continuously for the entire time tbc. As long 
as the impulse is the same in both cases, the 
momentum imparted to the wall is the same in 
both cases. Equation 15.29 becomes 

 
Impulse = F∆t = Favgtbc = ∆P      (15.30) 

 
The force imparted to the wall, equation 15.28, 
becomes 
 
                                                                                     Figure 15.13  Since the impulse (the area under the curve) is 
                                                                                                                the same, the change in momentum is the same. 
 

Favg = ∆P  = 2mvx                                                                     (15.31) 
             tbc       tbc 

 
We find the time between the collision tbc by noting that the particle moves a distance 2L between the collisions. 
Since the speed vx is the distance traveled per unit time, we have 
 

vx = 2L 
        tbc 

Hence, the time between collisions is 
tbc = 2L                                                                              (15.32) 

           vx 
 

Therefore, the force imparted to the wall by this single collision becomes 
 

Favg = 2mvx  = mvx2                                                                     (15.33) 
                                                                                            2L/vx       L 

 
The total change in momentum per second, and hence the total force on the wall caused by all the 

molecules is the sum of the forces caused by all of the molecules, that is, 
 

Favg = F1avg + F2avg + F3avg + . . . + Fnavg                                                      (15.34) 
 

where N is the total number of molecules. Substituting equation 15.33 for each gas molecule, we have 
 

Favg = mvx12 + mvx22 + mvx32 + . . . + mvxN2 
                                                                           L          L           L                   L 

Favg =  m(vx12 + vx22 + vx32 + . . . + vxN2)                                                          (15.35) 
                                                                         L          
 
Let us multiply and divide equation 15.35 by the total number of molecules N, that is, 
 

Favg =  mN(vx12 + vx22 + vx32 + . . . + vxN2)                                                (15.36) 
                                                                                  L                     N 
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But the term in parentheses is the definition of an average value. That is, 
 

vxavg2 = (vx12 + vx22 + vx32 + . . . + vxN2)                                                             (15.37) 
                                                                                            N 

 
As an example, if you have four exams in the semester, your average grade is the sum of the four exams divided by 
4. Here, the sum of the squares of the x-component of the velocity of each molecule, divided by the total number of 
molecules, is equal to the average of the square of the x-component of velocity. Therefore equation 15.36 becomes 
 

   Favg = mN vxavg2 
    L 

 
But since the pressure is defined as p = F/A, from equation 15.26, we have 

 
p = Favg = Favg = mN vxavg2 = mN vxavg2                                                     (15.38) 

                                                                         A        L2       L3                 V 
or 

       pV = Nmvxavg2                                                                     (15.39) 
The square of the actual three-dimensional speed is 

                v2 = vx2 + vy2 + vz2 
and averaging over all molecules 

      vavg2 = vxavg2 + vyavg2 + vzavg2  
 
But because the motion of any gas molecule is random, 
 

 vxavg2 = vyavg2 = vzavg2  
 
That is, there is no reason why the velocity in one direction should be any different than in any other direction, 
hence their average speeds should be the same. Therefore, 
 

vavg2 = 3vxavg2 
or 

vxavg2 = vavg2                                                                            (15.40) 
           3 

Substituting equation 15.40 into equation 15.39, we get 
 

pV = Nm vavg2 
3 

 
Multiplying and dividing the right-hand side by 2, gives 

2
avg2

3 2
mv

pV N
 

=   
 

                                                                (15.41) 

 
The total number of molecules of the gas is equal to the number of moles of gas times Avogadro’s number - the 
number of molecules in one mole of gas - that is, 

N = nNA                                                                             (15.24) 
 

Substituting equation 15.24 into equation 15.41, gives 
2
avg

A
2
3 2

mv
pV nN

 
=   

 
                                                             (15.42) 

 
Recall that the ideal gas equation was derived from experimental data as 
 

pV = nRT                                                                            (15.23) 
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The left-hand side of equation 15.23 contains the pressure and volume of the gas, all macroscopic quantities, and 
all determined experimentally. The left-hand side of equation 15.42, on the other hand, contains the pressure and 
volume of the gas as determined theoretically by Newton’s second law. If the theoretical formulation is to agree 
with the experimental results, then these two equations must be equal. Therefore equating equation 15.23 to 
equation 15.42, we have 

2
avg

A
2
3 2

mv
nRT nN

 
=   

 
 

or 
2
avg

A

3
2 2

mvR T
N

 
= 

 
                                                                       (15.43) 

  
where R/NA is the gas constant per molecule. It appears so often that it is given the special name the Boltzmann 
constant and is designated by the letter k. Thus, 

     k =  R  = 1.38 × 10−23 J/K                                                          (15.44) 
                                                                                        NA                                     
Therefore, equation 15.43 becomes 

  3 kT =  1 mvavg2                                                                        (15.45) 
                                                                                    2           2                           

 
Equation 15.45 relates the macroscopic view of a gas to the microscopic view. Notice that the absolute 

temperature T of the gas (a macroscopic variable) is a measure of the mean translational kinetic energy of the 
molecules of the gas (a microscopic variable). The higher the temperature of the gas, the greater the average 
kinetic energy of the gas, the lower the temperature, the smaller the average kinetic energy. Observe from 
equation 15.45 that if the absolute temperature of a gas is 0 K, then the mean kinetic energy of the molecule would 
be zero and its speed would also be zero. This was the original concept of absolute zero, a point where all molecular 
motion would cease. This concept of absolute zero can not really be derived from equation 15.45 because all gases 
condense to a liquid and usually a solid before they reach absolute zero. So the assumptions used to derive 
equation 15.45 do not hold and hence the equation can not hold down to absolute zero. Also, in more advanced 
studies of quantum mechanics it is found that even at absolute zero a molecule has energy, called its zero point 
energy. Equation 15.45 is, of course, perfectly valid as long as the gas remains a gas. 

  
Example 15.11 

 
The kinetic energy of a gas molecule. What is the average kinetic energy of the oxygen and nitrogen molecules in a 
room at room temperature? 

Solution
 

Room temperature is considered to be 20 0C or 293 K. Therefore the mean kinetic energy, found from equation 
15.45, is 

KEavg =  1 mvavg2 =  3 kT  
                                                                                           2                2       

( )233 J1.38 10 293 K
2 K

− = × 
 

 

= 6.07 × 10−21 J 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Notice that the average kinetic energy of any one molecule is quite small. This is because the mass of any molecule 
is quite small. The energy of the gas does become significant, however, because there are usually so many 
molecules in the gas. Because the average kinetic energy is given by 3/2 kT, we see that oxygen and nitrogen and 
any other molecule of gas at the same temperature all have the same average kinetic energy. Their speeds, 
however, are not all the same because the different molecules have different masses. 
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The average speed of a gas molecule can be determined by solving equation 15.45 for vavg. That is, 
 

  1 mvavg2 =  3 kT 
                                                                                    2                2 

 vavg2 = 3 kT  
                                                                                                 m 
and 

rms
3kTv
m

=                                                                           (15.46) 

 
This particular average value of the speed, vrms, is usually called the root-mean-square value, or rms value for 
short, of the speed v. It is called the rms speed, because it is the square root of the mean of the square of the speed. 
Occasionally the rms speed of a gas molecule is called the thermal speed. To determine the rms speed from 
equation 15.46, we must know the mass m of one molecule. The mass m of any molecule is found from 
 

 m =  M                                                                                (15.47) 
         NA         

 
That is, the mass m of one molecule is equal to the molecular mass M of that gas divided by Avogadro’s number NA. 

 
Example 15.12 

 
The rms speed of a gas molecule. Find the rms speed of an oxygen and nitrogen molecule at room temperature. 

Solution
 

The molecular mass of O2 is 32 g/mole. Therefore the mass of one molecule of O2 is 
 

mO2 =  M  =                 32 g/mole                
                                                                                 NA     6.022 × 1023 molecules/mole 

= 5.31 × 10−23 g/molecule = 5.31 × 10−26 kg/molecule 
 
The rms speed, found from 15.46, is 

( )( )23

rms 26

3 1.38 10  J/K 293 K3
5.31 10  kg

kTv
m

−

−

×
= =

×
 

= 478 m/s 
 

Notice that the rms speed of an oxygen molecule is 478 m/s at room temperature, whereas the speed of sound at 
this temperature is about 343 m/s. 

The mass of a nitrogen molecule is found from 

2N
A

Mm
N

=  

 
The atomic mass of nitrogen is 14, and since there are two atoms of nitrogen in one molecule of nitrogen gas N2, 
the molecular mass of nitrogen is  

M = 2(14) = 28 g/mole 
Therefore 

2N 23
A

28 g/mole
6.022 10  molecules/mole

Mm
N

= =
×

 

= 4.65 × 10-23 g/molecule = 4.65 × 10−26 kg/molecule 
 

The rms speed of a nitrogen molecule is therefore 
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( )( )23

rms 26

3 1.38 10  J/K 293 K3
4.65 10  kg

kTv
m

−

−

×
= =

×
 

= 511 m/s 
 
Note from the example that both speeds are quite high. The average speed of nitrogen is greater than the average 
speed of oxygen because the mass of the nitrogen molecule is less than the mass of the oxygen molecule. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

“Have you ever wondered . . . ?” 
An Essay on the Application of Physics 

Relative Humidity and the Cooling 
of the Human Body 

 
Have you ever wondered why you feel so 

uncomfortable on those dog days of August when the 
weatherman says that it is very hot and humid (figure 1)? 
What has humidity got to do with your being comfortable? 
What is humidity in the first place? 

To understand the concept of humidity, we must 
first understand the concept of evaporation. Consider the 
two bowls shown in figure 2. Both are filled with water. 
Bowl 1 is open to the environment, whereas a glass plate is 
placed over bowl 2. If we leave the two bowls overnight, on 
returning the next day we would find bowl 1 empty while 
bowl 2 would still be filled with water. What happened to 
the water in bowl 1? The water in bowl 1 has evaporated 
into the air and is gone. Evaporation is the process by 
which water goes from the liquid state to the gaseous state 
at any temperature. Boiling, as you recall, is the process by 
which water goes from the liquid state to the gaseous state 
at the boiling point of 100 0C. That is, it is possible for 
liquid water to go to the gaseous state at any temperature. 

Just as there is a latent heat of vaporization for 
boiling water (Lv = 2.26 × 106 J/kg), the latent heat of 

   
                                                                                    Figure 1  One of those dog days of summer when 

                                                                                                        you never stop perspiring. 
 

vaporization of water at 0 0C is Lv = 2.51 × 106 J/kg. The 
latent heat at any in-between temperature can be found 
by interpolation. Thus, in order to evaporate 1 kg of 
water into the air at 0 0C, you would have to supply 2.51 
× 106 J of thermal energy to the water. 

The molecules in the water in bowl 1 are moving 
about in a random order. But their attractive molecular 
forces still keep them together. These molecules can now 
absorb heat from the surroundings.  

                                                                         Figure 2  Evaporation. 
 
This absorbed energy shows up as an increase in the kinetic energy of the molecule, and hence an increase 

in the velocity of the molecule. When the liquid molecule has absorbed enough energy it moves right out of the 
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liquid water into the air above as a molecule of water vapor. (Remember the water molecule is the same whether it 
is a solid, liquid, or gas, namely H2O, two atoms of hydrogen and one atom of oxygen. The difference is only in the 
energy of the molecule.) 

Since the most energetic of the water molecules escape from the liquid, the molecules left behind have 
lower energy, hence the temperature of the remaining liquid decreases. Hence, evaporation is a cooling process. 
The water molecule that evaporated took the thermal energy with it, and the water left behind is just that much 
cooler. 

The remaining water in bowl 1 now absorbs energy from the environment, thereby increasing the 
temperature of the water in the bowl. This increased thermal energy is used by more liquid water molecules to 
escape into the air as more water vapor. The process continues until all the water in bowl 1 is evaporated. 

Now when we look at bowl 2, the water is still 
there. Why didn’t all that water evaporate into the air? To 
explain what happens in bowl 2 let us do the following 
experiment. We place water in a container and place a 
plate over the water. Then we allow dry air, air that does 
not contain water vapor, to fill the top portion of the closed 
container, figure 3(a). Using a thermometer, we measure 
the temperature of the air as t = 20 0C, and using a 
pressure gauge we measure the pressure of the air p0, in 
the container. Now we remove the plate separating the dry 
air from the water by sliding it out of the closed container. 
As time goes by, we observe that the pressure recorded by 
the pressure gauge increases, figure 3(b). This occurs 
because some of the liquid water molecules evaporate into 
the air as water vapor. Water vapor is a gas like any other 
gas and it exerts a pressure. It is this water vapor pressure 
that is being recorded as the increased pressure on the 
gauge. The gauge is reading the air pressure of the dry air 
plus the actual water vapor pressure of the gas, p0 + pawv. 
Subtracting p0 from p0 + pawv, gives the actual water vapor 
pressure, pawv. As time goes on, the water vapor pressure  

                                                                                          Figure 3  Water vapor in the air. 
 

increases as more and more water molecules evaporate into the air. However, after a while, the pressure indicated 
by the gauge becomes a constant. At this point the air contains the maximum amount of water vapor that it can 
hold at that temperature. As new molecules evaporate into the air, some of the water vapor molecules condense 
back into the liquid, figure 3(c). An equilibrium condition is established, whereby just as many water vapor 
molecules are condensing as liquid water molecules are evaporating. At this point, the air is said to be saturated. 
That is, the air contains the maximum amount of water vapor that it can hold at that temperature. The vapor 
pressure read by the gauge is now called the saturation water vapor pressure, pswv. 

The amount of water vapor in the air is called humidity. A measure of the amount of water vapor in the air 
is given by the relative humidity, RH, and is defined as the ratio of the amount of water vapor actually present in 
the air to the amount of water vapor that the air can hold at a given temperature and pressure, times 100%. The 
amount of water vapor in the air is directly proportional to the water vapor pressure. Therefore, we can determine 
the relative humidity, RH, of the air as  

 
actual vapor pressureRH = 100%

satutation vapor pressure
 
 
 

                                                 (15H.1) 

avp

svp

RH = 100%
p
p

 
  
 

                                                                  (15H.2) 

 
When the air is saturated, the actual vapor pressure recorded by the gauge is equal to the saturation vapor 

pressure and hence, the relative humidity is 100%. If the air in the container is heated, we notice that the pressure 
indicated by the pressure gauge increases, figure 3(d). Part of the increased pressure is caused by the increase of 
the pressure of the air. This increase can be calculated by the ideal gas equation and subtracted from the gauge 
reading, so that we can determine any increase in pressure that would come from an increase in the actual water 
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vapor pressure. We notice that by increasing the air temperature to 25 0C, the water vapor pressure also increases. 
After a while, however, the water vapor pressure again becomes a constant. The air is again saturated. We see 
from this experiment that the maximum amount of water vapor that the air can hold is a function of temperature. 
At low temperatures the air can hold only a little water vapor, while at high temperatures the air can hold much 
more water vapor. 

We can now see why the water in bowl 2 in figure 2 did not disappear. Water evaporated from the liquid 
into the air above, increasing the relative humidity of the air. However, once the air became saturated, the relative 
humidity was equal to 100%, and no more water vapor could evaporate into it. This is why you can still see the 
water in bowl 2, there is no place for it to go. 

Because of the temperature dependence of water vapor in the air, when the temperature of the air is 
increased, the capacity of the air to hold water increases. Therefore, if no additional water is added to the air, the 
relative humidity will decrease because the capacity of the air to hold water vapor has increased. Conversely, 
when the air temperature is decreased, its capacity to hold water vapor decreases, and therefore the relative 
humidity of the air increases. This temperature dependence causes a decrease in the relative humidity during the 
day light hours, and an increase in the relative humidity during the night time hours, with the maximum relative 
humidity occurring in the early morning hours just before sunrise. 

The amount of evaporation depends on the following factors: 
1.  The vapor pressure. Whenever the actual vapor pressure is less than the maximum vapor pressure allowable at 

that temperature, the saturation vapor pressure, then evaporation will readily occur. Greater evaporation 
occurs whenever the air is dry, that is, at low relative humidities. Less evaporation occurs when the air is 
moist, that is, at high relative humidities. 

2.  Wind movement and turbulence. Air movement and turbulence replaces air near the water surface with less 
moist air and increases the rate of evaporation. 

Now that we have discussed the concepts of relative humidity we can understand how the body cools itself. 
Through the process of perspiration, the body secretes microscopic droplets of water onto the surface of the skin of 
the body. As these tiny droplets of water evaporate into the air, they cool the body. As long as the relative 
humidity of the air is low, evaporation occurs readily, and the body cools itself. However whenever the relative 
humidity becomes high, it is more difficult for the microscopic droplets of water to evaporate into the air. The body 
can not cool itself, and the person feels very uncomfortable. 

We are all aware of the discomfort caused by the hot and humid days of August. The high relative 
humidity prevents the normal evaporation and cooling of the body. As some evaporation occurs from the body, the 
air next to the skin becomes saturated, and no further cooling can occur. If a fan is used, we feel more comfortable 
because the fan blows the saturated air next to our skin away and replaces it with air that is slightly less 
saturated. Hence, the evaporation process can continue while the fan is in operation and the body cools itself. 
Another way to cool the human body in the summer is to use an air conditioner. The air conditioner not only cools 
the air to a lower temperature, but it also removes a great deal of water vapor from the air, thereby decreasing the 
relative humidity of the air and permitting the normal evaporation of moisture from the skin. (Note that if the air 
conditioner did not remove water vapor from the air, cooling the air would increase the relative humidity making 
us even more uncomfortable.) 

In the hot summertime, people enjoy swimming as a cooling experience. Not only the immersion of the 
body in the cool water is so satisfying, but when the person comes out of the water, evaporation of the sea or pool 
water from the person adds to the cooling. It is also customary to wear loose clothing in the summertime. The 
reason for this is to facilitate the flow of air over the body and hence assist in the evaporation process. Tight fitting 
clothing prevents this evaporation process and the person feels hotter. If you happen to live in a dry climate (low 
relative humidity), then you can feel quite comfortable at 85 0F, while a person living in a moist climate (high 
relative humidity) is very uncomfortable at the same 85 0F. 

What many people do not realize is that you can also feel quite uncomfortable even in the wintertime, 
because of the humidity of the air. If the relative humidity is very low in your home then evaporation occurs very 
rapidly, cooling the body perhaps more than is desirable. As an example, the air temperature might be 70 0F but if 
the relative humidity is low, say 30%, then evaporation readily occurs from the skin of the body, and the person 
feels cold even though the air temperature is 70 0F. In this case the person can feel more comfortable if he or she 
uses a humidifier. A humidifier is a device that adds water vapor to the air. By increasing the water vapor in the 
air, and hence increasing the relative humidity, the rate of evaporation from the body decreases. The person no 
longer feels cold at 70 0F, but feels quite comfortable. If too much water vapor is added to the air, increasing the 
relative humidity to near a 100%, then evaporation from the body is hampered, the body is not able to cool itself, 
and the person feels too hot even though the temperature is only 70 0F. Thus too high or too low a relative 
humidity makes the human body uncomfortable. 
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We should also note that the evaporation process is also used to cool the human body for medical purposes. 
If a person is running a high fever, then an alcohol rub down helps cool the body down to normal temperature. The 
principle of evaporation as a cooling device is the same, only alcohol is very volatile and evaporates very rapidly. 
This is because the saturation vapor pressure of alcohol at 20 0C is much higher than the saturation vapor 
pressure of water. At 20 0C, water has a saturation vapor pressure of 17.4 mm of Hg, whereas ethyl alcohol has a 
saturation vapor pressure of 44 mm of Hg. The larger the saturation vapor pressure of a liquid, the greater is the 
amount of its vapor that the air can hold and hence the greater is the rate of vaporization. Because the alcohol 
evaporates much more rapidly than water, much greater cooling occurs than when water evaporates. Ethyl ether 
and ethyl chloride have saturation vapor pressures of 442 mm and 988 mm of Hg, respectively. Ethyl chloride with 
its very high saturation vapor pressure, evaporates so rapidly that it freezes the skin, and is often used as a local 
anesthetic for minor surgery. 
 

The Language of Physics 
 
Thermal expansion 
Most materials expand when 
heated (p. ). 
 
Charles’ law 
The volume of a gas at constant 
pressure is directly proportional to 
the absolute temperature of the gas 
(p. ). 
 
Gay-Lussac’s law 
The absolute pressure of a gas at 
constant volume is directly 
proportional to the absolute 
temperature of the gas (p. ). 
 
Boyle’s law 
The product of the pressure and 
volume of a gas at constant 
temperature is equal to a constant 
(p. ). 

 
The ideal gas law 
The general gas law that contains 
Charles’, Gay-Lussac’s, and Boyle’s 
law as special cases. It states that 
the product of the pressure and 
volume of a gas divided by the 
absolute temperature of the gas is a 
constant (p. ). 
 
Mole 
One mole of any gas is that amount 
of the gas that has a mass in grams 
equal to the 
atomic or molecular mass of the 
gas. One mole of any gas at a 
temperature of 0 0C and a pressure 
of one atmosphere, has a volume of 
22.4 liters (p. ). 
 
 

Avogadro’s number 
Every mole of a gas contains the 
same number of molecules, namely, 
6.022 × 1023 molecules. The mass of 
one molecule is equal to the 
molecular mass of that gas divided 
by Avogadro’s number (p. ). 
 
Kinetic theory of gases 
The analysis of a gas at the 
microscopic level, treated by 
Newton’s laws of motion. The 
kinetic theory shows that the 
absolute temperature of a gas is a 
measure of the mean translational 
kinetic energy of the molecules of 
the gas (p. ). 
 
 

 
Summary of Important Equations 

 
Linear expansion 

  ∆L = αL0∆t           (15.1)     
 
Area expansion 

   ∆A = 2αA0∆t          (15.3) 
 
Volume expansion 

   ∆V = 3αV0∆t          (15.5) 
 
Coefficient of volume expansion for 
solids             β = 3α                (15.6) 
 
Volume expansion 

  ∆V = βV0∆t            (15.7) 

 
Ideal gas law  p1V1 = p2V2    (15.20) 
                         T1       T2 

pV = nRT         (15.23) 
 
Number of molecules 

      N = nNA            (15.24) 
 
Absolute pressure  

  pabs = pgauge + patm        (15.25) 
 
Temperature and mean kinetic 
energy      3 kT =  1 mvavg2     (15.45) 
                 2           2 

 
rms speed of a molecule 

rms
3kTv
m

=            (15.46) 

 
Mass of a molecule 

      m =  M                (15.47) 
                             NA 
 
Total mass of the gas 
                     mtotal = nM 
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Questions for Chapter 15 
 

1. Describe the process of 
expansion from a microscopic point 
of view. 

2. Explain why it is necessary to 
make a temperature correction 
when measuring atmospheric 
pressure with a barometer. 

*3. In the very upper portions of 
the atmosphere there are extremely 
few molecules present. Discuss the 
concept of temperature as it would 
be applied in this portion of the 
atmosphere. As an extension, 
discuss the concept of temperature 
as it would be applied in outer 
space. 

4. Explain the introduction of 
the Kelvin temperature scale in the 
application of Charles’ law. 

5. Describe the meaning and 
application of gauge pressure. 

*6. Would you expect the ideal 
gas equation to be applicable to a 
volume that is of the same order of 
magnitude as the size of a 
molecule? 

7. If a gas is at an extremely 
high density, what effect would this 
have on the assumptions 
underlying the kinetic theory of 
gases? 

8. From the point of view of the 
time between collisions of a gas 

molecule and the walls of the 
container, what happens if the 
container is reduced to half its 
original size? 

9. From the point of view of the 
kinetic theory of gases, explain why 
there is no atmosphere on the 
moon. 

10. When an astronomer 
observes the stars at night in an 
observatory, the observatory is not 
heated but remains at the same 
temperature as the outside air. 
Why should the astronomer do this? 

 

 
Problems for Chapter 15 

 
15.1  Linear Expansion of Solids 

1. An aluminum rod measures 
2.00 m at 10.0 0C. Find its length 
when the temperature rises to 
135 0C. 

2. A brass ring has a diameter 
of 20.0 cm when placed in melting 
ice at 0 0C. What will its diameter 
be if it is placed in boiling water? 

3. An aluminum ring, 7.00 cm 
in diameter at 5.00 0C, is to be 
heated and slipped over an 
aluminum shaft whose diameter is 
7.003 cm at 5.00 0C. To what 
temperature should the ring be 
heated? If the ring is not heated, to 
what temperature should the shaft 
be cooled such that the ring will fit 
over the shaft? 

 
Diagram for problem 3. 

 
4. The iron rim of a wagon 

wheel has an internal diameter of 
80.0 cm when the temperature is 
100 0C. What is its diameter when 
it cools to 0.00 0C? 

5. A steel measuring tape, 
correct at 0.00 0C measures a 

distance L when the temperature is 
30.0 0C. What is the error in the 
measurement due to the expansion 
of the tape? 

6. Steel rails 20.0 m long are 
laid when the temperature is 
5.00 0C. What separation should be 
left between the rails to allow for 
thermal expansion when the 
temperature rises to 38.5 0C? If the 
cross-sectional area of a rail is 230 
cm2, what force is associated with 
this expansion? 

7. Find the ratio of the 
circumference of a brass ring to its 
diameter when the ring has a 
diameter of 20.0 cm when placed in 
melting ice at 0 0C, and when 
placed in boiling water? Is there 
something special about this ratio? 

 
15.2  Area Expansion of Solids 

8. A sheet of brass measures 
4.00 m by 3.00 m at 5.00 0C. What 
is the area of the sheet at 175 0C? 

9. If the radius of a copper circle 
is 20.0 cm at 0.00 0C, what will its 
area be at 100 0C? 

10. A piece of aluminum has a 
hole 0.850 cm in diameter at 
20.0 0C. To what temperature 
should the sheet be heated so that 
an aluminum bolt 0.865 cm in 
diameter will just fit into the hole? 

 

15.3  Volume Expansion of 
Solids and Liquids 

11. A chemistry student fills a 
Pyrex glass flask to the top with 
100 cm3 of Hg at 0.00 0C. How much 
mercury will spill out of the tube, 
and have to be cleaned up by the 
student, if the temperature rises to 
35.0 0C? 

12. A tube is filled to a height of 
20.0 cm with mercury at 0.00 0C. If 
the tube has a cross-sectional area 
of 25.0 mm2, how high will the 
mercury rise in the tube when the 
temperature is 30.0 0C? Neglect the 
expansion of the tube. 

 
Diagram for problem 12. 

 
13. Since the volume of a 

material changes with a change in 
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temperature, show that the density 
ρ at any temperature is given by 

 
ρ =       ρ0        

     1 + β∆t 
 

where ρ0 is the density at the lower 
temperature. 

 
15.7  The Ideal Gas Law 

14. If 2.00 g of oxygen gas are 
contained in a tank of 500 cm3 at a 
pressure of 1.38 × 105 N/m2, what is 
the temperature of the gas? 

15. What is the pressure 
produced by 2 moles of gas at 
20.0 0C contained in a volume of 
5.00 × 10− 4 m3 ? 

16. One mole of hydrogen is at a 
pressure of 2.03 × 105 N/m2 and a 
volume of 0.25 m3. What is its 
temperature? 

17. Compute the number of 
molecules in a gas contained in a 
volume of 50.0 cm3 at a pressure of 
2.03 × 105 N/m2 and a temperature 
of 300 K. 

18. An automobile tire has a 
volume of 0.0800 m3 and contains 
air at a gauge pressure of 2.48 × 
105 N/m2 when the temperature is 
3.50 0C. What is the gauge pressure 
when the temperature rises to 
37.0 0C? 

19. (a) How many moles of gas 
are contained in 0.300 kg of H2 gas? 
(b) How many molecules of H2 are 
there in this mass? 

20. Nitrogen gas, at a pressure 
of 150 N/m2, occupies a volume of 
20.0 m3 at a temperature of 30.0 0C. 
Find the mass of this nitrogen gas 
in kilograms. 

21. One mole of nitrogen gas at 
a pressure of 1.01 × 105 N/m2 and a 
temperature of 300 K expands 
isothermally to double its volume. 
What is its new pressure? 
(Isothermal means at constant 
temperature.) 

22. An ideal gas occupies a 
volume of 4.00 × 10−3 m3 at a 
pressure of 1.01 × 105 N/m2 and a 
temperature of 273 K. The gas is 
then compressed isothermally to 
one half of its original volume. 
Determine the final pressure of the 
gas. 

23. The pressure of a gas is kept 
constant while 3.00 m3 of the gas at 
an initial temperature of 50.0 0C is 
expanded to 6.00 m3. What is the 
final temperature of the gas? 

24. The volume of O2 gas at a 
temperature of 20.0 0C is 4.00 × 
10−3 m3. The temperature of the gas 
is raised to 100 0C while the 
pressure remains constant. What is 
the new volume of the gas? 

25. A balloon is filled with 
helium at a pressure of 1.52 × 105 
N/m2, a temperature of 25.0 0C, and 
occupies a volume of 3.00 m3. The 
balloon rises in the atmosphere. 
When it reaches a height where the 
pressure is 5.07 × 104 N/m2 and the 
temperature is −20.0 0C, what is its 
volume? 

*26. An air bubble of 32.0 cm3 
volume is at the bottom of a lake 
10.0 m deep where the temperature 
is 5.00 0C. The bubble rises to the 
surface where the temperature is 
20.0 0C. Find the volume of the 
bubble just before it reaches the 
surface. 

27. One mole of helium is at a 
temperature of 300 K and a volume 
of 1.00 × 10−2 m3. What is its 
pressure? The gas is warmed at 
constant volume to 600 K. What is 
its new pressure? How many 
molecules are there? 

 
15.8  The Kinetic Theory of 
Gases 

28. Find the rms speed of a 
helium atom at a temperature of 
10.0 K. 

29. Find the kinetic energy of a 
single molecule when it is at a 
temperature of (a) 0.00 0C, 
(b) 20.0 0C, (c) 100 0C, (d) 1000 0C, 
and (e) 5000 0C. 

30. Find the mass of a carbon 
dioxide molecule (CO2). 

31. Find the rms speed of a 
helium atom on the surface of the 
sun, if the sun’s surface 
temperature is approximately 6000 
K. 

32. At what temperature will 
the rms speed of an oxygen 
molecule be twice its speed at room 
temperature? 

33. The rms speed of a gas 
molecule is v at a temperature of 
300 K. What is the speed if the 
temperature is increased to 900 K? 

*34. Find the total kinetic 
energy of all the nitrogen molecules 
in the air in a room 7.00 m by 10.0 
m by 4.00 m, if the air is at a 
temperature of 22.0 0C and 1 atm of 
pressure. 

35. If the rms speed of a 
monatomic gas is 445 m/s at 350 K, 
what is the atomic mass of the 
atom? What gas do you think it is? 

 
Additional Problems 

36. A barometer reads normal 
atmospheric pressure when the 
mercury column in the tube is at 
76.0 cm of Hg at 0.00 0C. If the 
pressure of the atmosphere does not 
change, but the air temperature 
rises to 35.0 0C, what pressure will 
the barometer indicate? The tube 
has a diameter of 5.00 mm. Neglect 
the expansion of the tube. 

37. Find the stress necessary to 
give the same strain that occurs 
when a steel rod undergoes a 
temperature change of 120 0C. 

*38. The symbol π is defined as 
the ratio of the circumference of a 
circle to its diameter. If a circular 
sheet of metal expands by heating, 
show that the ratio of the expanded 
circumference to the expanded 
diameter is still equal to π. 

39. A 15.0-cm strip of steel is 
welded to the left side of a 15.0-cm 
strip of aluminum. When the strip 
undergoes a temperature change ∆t, 
will the combined strip bend to the 
right or to the left? 

 
Diagram for problem 39. 
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*40. A 350-g mass is connected 
by a thin brass rod 25.0 cm long to a 
rotating shaft that is rotating at an 
initial angular speed of 5.00 rad/s. 
If the temperature changes by 
35 0C, (a) find the change in the 
moment of inertia of the system and 
(b) using the law of conservation of 
angular momentum, find the 
change in the rotational energy of 
the system. 

41. The focal length of a 
polished aluminum spherical mirror 
is given by f = R/2, where R is the 
radius of curvature of the mirror, 
and is 23.5 cm. Find the new focal 
length of the mirror if the 
temperature changes by 45.0 0C. 

*42. A 50.0-g silver ring, 12.0 
cm in diameter, is spinning about 
an axis through its center at a 
constant speed of 11.4 rad/s. If the 
temperature changes by 185 0C, 
what is the change in the angular 
momentum of the ring? The 
coefficient of linear expansion for 
silver is 1.90 × 10−5/0C. 

43. An aluminum rod is at room 
temperature. To what temperature 
would this rod have to be heated 
such that the thermal expansion is 
enough to exceed the elastic limit of 
aluminum? Compare this 
temperature with the melting point 
of aluminum. What conclusion can 
you draw? 

44. A steel pendulum is 60.0 cm 
long, at 20.0 0C. By how much does 
the period of the pendulum change 
when the temperature is 35.0 0C? 

45. Find the number of air 
molecules in a classroom 10.0 m 
long, 10.0 m wide, and 3.5 m high, if 
the air is at normal atmospheric 
pressure and a temperature of 
20.0 0C. 

46. A brass cylinder 5.00 cm in 
diameter and 8.00 cm long is at an 
initial temperature of 380 0C. It is 
placed in a calorimeter containing 
0.120 kg of water at an initial 
temperature of 5.00 0C. The 
aluminum calorimeter has a mass 
of 0.060 kg. Find (a) the final 
temperature of the water and 
(b) the change in volume of the 
cylinder. 

*47. Dalton’s law of partial 
pressure says that when two or 
more gases are mixed together, the 
resultant pressure is the sum of the 
individual pressures of each gas. 
That is, 

p = p1 + p2 + p3 + p4 + . . . 
 

If one mole of oxygen at 20.0 0C and 
occupying a volume of 2.00 m3 is 
added to two moles of nitrogen also 
at 20.0 0C and occupying a volume 
of 10.0 m3 and the final volume is 
10.0 m3, find the resultant pressure 
of the mixture. 

*48. The escape velocity from 
the earth is vE = 1.12 × 104 m/s. At 
what temperature is the rms speed 
equal to this for: (a) hydrogen (H2), 
(b) helium (He), (c) nitrogen (N2), 
(d) oxygen (O2), (e) carbon dioxide 
(CO2), and (f) water vapor (H2O)? 
From these results, what can you 
infer about the earth’s atmosphere? 

*49. The escape velocity from 
the moon is vM = 0.24 × 104 m/s. At 
what temperature is the rms speed 
equal to this for (a) hydrogen (H2), 
(b) helium (He), (c) nitrogen (N2), 
(d) oxygen (O2), (e) carbon dioxide 
(CO2), and (f) water vapor (H2O)? 
From these results, what can you 
infer about the possibility of an 
atmosphere on the moon? 

*50. Show that the velocity of a 
gas molecule at one temperature is 
related to the velocity of the 
molecule at a second temperature 
by 

2
2 1

1

Tv v
T

=  

 
*51. A room is filled with 

nitrogen gas at a temperature of 
293 K. (a) What is the average 
kinetic energy of a nitrogen 
molecule? (b) What is the rms speed 
of the molecule? (c) What is the rms 
value of the momentum of this 
molecule? (d) If the room is 4.00 m 
wide what is the average force 
exerted on the wall by this 
molecule? (e) If the wall is 4.00 m 
by 3.00 m, what is the pressure 
exerted on the wall by this 
molecule? (f) How many molecules 

moving at this speed are necessary 
to cause a pressure of 1.00 atm? 

*52. Two isotopes of a gaseous 
substance can be separated by 
diffusion if each has a different 
velocity. Show that the rms speed of 
an isotope can be given by 

 
1

2 1
2

mv v
m

=  

 
where the subscript 1 refers to 
isotope 1 and the subscript 2 refers 
to isotope 2. 

 
Interactive Tutorials 

53. Linear Expansion. A copper 
tube has the length L0 = 1.58 m at 
the initial temperature ti = 20.0 0C. 
Find its length L when it is heated 
to a final temperature tf = 100 0C. 

54. Area Expansion. A circular 
brass sheet has an area A0 = 2.56 
m2 at the initial temperature ti = 
0 0C. Find its new area A when it is 
heated to a final temperature tf = 
90 0C. 

55. Volume Expansion. A glass 
tube is filled to a height h0 = 0.762 
m of mercury at the initial 
temperature ti = 0 0C. The diameter 
of the tube is 0.085 m. How high 
will the mercury rise when the final 
temperature tf = 50 0C? Neglect the 
expansion of the glass. 

56. The Ideal Gas Law. A gas 
has a pressure p1 = 1 atm, a volume 
V1 = 4.58 m3, and a temperature t1 = 
20.0 0C. It is then compressed to a 
volume V2 = 1.78 m3 and a pressure 
p2 = 3.57 atm. Find the final 
temperature of the gas t2. 

57. Number of moles and the 
number of molecules in a gas. Find 
the number of moles and the 
number of molecules in a gas under 
a pressure p = 1 atm and a 
temperature t = 20.0 0C. The room 
has a length L = 15.0 m, a width W 
= 10.0 m, and a height h = 4.00 m. 

58. Kinetic theory. Oxygen gas 
is in a room under a pressure p = 1 
atm and a temperature of t = 
20.0 0C. The room has a length L = 
18.5 m, a width W = 12.5 m, and a 
height h = 5.50 m. For the oxygen 
gas, find (a) the kinetic energy of a 
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single molecule, (b) the total kinetic 
energy of all the oxygen molecules, 
(c) the mass of an oxygen molecule, 
and (d) the speed of the oxygen 

molecule. The molecular mass of 
oxygen is MO2 = 32.0 g/mole. 

59. Ideal Gas Equation 
Calculator. 

    
To go to these Interactive 

Tutorials click on this sentence. 
 

  
 

To go to another chapter, return to the table of contents by clicking on this sentence. 
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