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Chapter 13  Fluids 
 

"When did science begin?  Where did it begin?  It began whenever and wherever men 
tried to solve the innumerable problems of life.  The first solutions were mere 
expedients, but that must do for a beginning.  Gradually the expedients would be 
compared, generalized, rationalized, simplified, interrelated, integrated;  the texture 
of science would be slowly woven"      George Sarton 

 
13.1  Introduction 
Matter is usually said to exist in three phases: solid, liquid, and gas. Solids are hard bodies that resist 
deformations, whereas liquids and gases have the characteristic of being able to flow. A liquid flows and takes the 
shape of whatever container in which it is placed. A gas also flows into a container and spreads out until it 
occupies the entire volume of the container. A fluid is defined as any substance that can flow, and hence liquids 
and gases are both considered to be fluids. 

Liquids and gases are made up of billions upon billions of molecules in motion and to properly describe 
their behavior, Newton’s second law should be applied to each of these molecules. However, this would be a 
formidable task, if not outright impossible, even with the use of modern high-speed computers. Also, the actual 
motion of a particular molecule is sometimes not as important as the overall effect of all those molecules when 
they are combined into the substance that is called the fluid. Hence, instead of using the microscopic approach of 
dealing with each molecule, we will treat the fluid from a macroscopic approach. That is, we will analyze the fluid 
in terms of its large-scale characteristics, such as its mass, density, pressure, and its distribution in space. 

The study of fluids will be treated from two different approaches. First, we will consider only fluids that 
are at rest. This portion of the study of fluids is called fluid statics or hydrostatics. Second, we will study the 
behavior of fluids when they are in motion. This part of the study is called fluid dynamics or hydrodynamics. 
Let us start the study of fluids by defining and analyzing the macroscopic variables. 
 
 
13.2  Density 
The density of a substance is defined as the amount 
of mass in a unit volume of that substance. We use 
the symbol ρ (the lower case Greek letter rho) to 
designate the density and write it as 
 

 ρ =  m                              (13.1) 
                                              V            

 
A substance that has a large density has a 

great deal of mass in a unit volume, whereas a 
substance of low density has a small amount of mass 
in a unit volume. Density is expressed in SI units as 
kg/m3, and occasionally in the laboratory as g/cm3. 
Densities of solids and most liquids are very nearly 
constant but the densities of gases vary greatly with 
temperature and pressure. Table 13.1 is a list of 
densities for various materials. We observe from the 
table that in interstellar space the densities are 
extremely small, of the order of 10−18 to 10−21 kg/m3. 
That is, interstellar space is almost empty space. 
The density of the proton and neutron is of the order 
of 1017 kg/m3, which is an extremely large density. 
Hence, the nucleus of a chemical element is 
extremely dense. Because an atom of hydrogen has 
an approximate density of 2680 kg/m3, whereas the 
proton in the nucleus of that hydrogen atom has a 
density of about 1.5 × 1017 kg/m3, we see that the 

Table 13.1 
Densities of Various Materials 

Substance kg/m3 
Air (0 0C, 1 atm pressure) 1.29 
Aluminum 2,700 
Benzene 879 
Blood 1.05 × 103 
Bone 1.7 × 103 
Brass 8,600 
Copper 8,920 
Critical density for universe to 
collapse under gravitation 

5 × 10−27 

Planet Earth 5,520 
Ethyl alcohol 810 
Glycerine 1,260 
Gold 19,300 
Hydrogen atom 2,680 
Ice 920 
Interstellar space 10−18-10−21 
Iron 7,860 
Lead 11,340 
Mercury 13,630 
Nucleus 1 × 1017  
Proton 1.5 × 1017 
Silver 10,500 
Sun (avg) 1,400 
Water (pure) 1,000 
Water (sea) 1,030 
Wood (maple) 620-750 
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density of the nucleus is about 1013 times as great as the density of the atom. Hence, an atom consists almost 
entirely of empty space with the greatest portion of its mass residing in a very small nucleus. 

 
Example 13.1 

 
The density of an irregularly shaped object. In order to find the density of an irregularly shaped object, the object is 
placed in a beaker of water that is filled completely to the top. Since no two objects can occupy the same space at 
the same time, 25.0 cm3 of the water, which is equal to the volume of the unknown object, overflows into an 
attached calibrated beaker. The object is placed on a balance scale and is found to have a mass of 262.5 g. Find the 
density of the material 

Solution
 

The density, found from equation 13.1, is 
 

ρ =  m  =  262.5 g  = 10.5   g   = 10,500  kg  
                                                                     V      25.0 cm3             cm3                 m3 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 13.2 
 

Your own water bed. A person would like to design a water bed for the home. If the size of the bed is to be 2.20 m 
long, 1.80 m wide, and 0.300 m deep, what mass of water is necessary to fill the bed? 

Solution
 

The mass of the water, found from equation 13.1, is 
 m = ρV                                                                                 (13.2) 

 
The density is found from table 13.1. Hence, the mass of water required is 
 

( ) ( )( )3
kg1000 2.20 m 1.80 m 0.300 m
m

m Vρ  = =  
 

 

= 1190 kg 
 

As a matter of curiosity let us compute the weight of this water. The weight of the water is given by 
 

w = mg = (1190 kg)(9.80 m/s2) = 11,600 N 
 

To give you a “feel” for this weight of water, it is equivalent to 2620 lb. In some cases, it will be necessary to 
reinforce the floor underneath this water bed or the bed might end up in the basement below. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
13.3  Pressure 
Pressure is defined as the magnitude of the normal force acting per unit surface area. The pressure is thus a scalar 
quantity. We write this mathematically as 
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 p =  F                                                                                   (13.3) 
                                                                                                   A         

 
The SI unit for pressure is newton/meter2, which is given the special name pascal, in honor of the French 
mathematician, physicist, and philosopher, Blaise Pascal (1623-1662) and is abbreviated Pa.1 Hence, 1 Pa = 1 
N/m2. Pressures are not limited to fluids, as the following examples show. 

 
Example 13.3 

 
Pressure exerted by a man. A man has a mass of 90.0 kg. At one particular moment when he walks, his right heel is 
the only part of his body that touches the ground. If the heel of his shoe measures 9.00 cm by 8.30 cm, what 
pressure does the man exert on the ground? 

Solution
 

The pressure that the man exerts on the ground, given by equation 13.3, is 
 

p =  F  
      A 

=  w  = mg   =  (90.0 kg)(9.80 m/s2)  
                                                                        A      A         (0.090 m)(0.083 m) 

= 1.18 × 105 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 13.4 
 

Pressure exerted by a woman. A 45.0-kg woman is wearing “high-heel” shoes. The cross section of her high-heel 
shoe measures 1.27 cm by 1.80 cm. At a particular moment when she is walking, only one heel of her shoe makes 
contact with the ground. What is the pressure exerted on the ground by the woman? 

Solution
 

The pressure exerted on the ground, found from equation 13.3, is 
 

p =  F   
      A    

=  w  = mg   =   (45.0 kg)(9.80 m/s2)   
                                                                        A      A        (0.0127 m)(0.0180 m) 

= 1.93 × 106 N/m2 
 

Thus, the 45.0-kg woman exerts a pressure through her high heel of 1.93 × 106 N/m2, whereas the man, who has 
twice as much mass, exerts a pressure of only 1.18 × 105 N/m2. That is, the woman exerts about 16 times more 
pressure than the man. The key to the great difference lies in the definition of pressure. Pressure is the force 
exerted per unit area. Because the area of the woman’s high heel is so very small, the pressure becomes very large. 
The area of the man’s heel is relatively large, hence the pressure he exerts is relatively small. When they are wearing 
high heels, women usually do not like to walk on soft ground because the large pressure causes the shoe to sink 
into the ground. 

To go to this Interactive Example click on this sentence. 
 

 
                                                           
1
In the British engineering system the units are lb/in.2, which is sometimes denoted by psi. 
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A further example of the effect of the surface area on pressure is found in the application of snowshoes. 

Here, a person’s weight is distributed over such a large area that the pressure exerted on the snow is very small. 
Hence, the person is capable of walking in deep snow, while another person, wearing ordinary shoes, would sink 
into the snow finding walking almost impossible. 

Pressure exerted by a fluid is easily determined with the aid of 
figure 13.1, which represents a pool of water. We want to determine the 
pressure p at the bottom of the pool caused by the water in the pool. By our 
definition, equation 13.3, the pressure at the bottom of the pool is the 
magnitude of the force acting on a unit area of the bottom of the pool. But 
the force acting on the bottom of the pool is caused by the weight of all the 
water above it. Thus, 

p =  F  = weight of water                                (13.4) 
                                                     A             area 

 
p =  w  = mg                                          (13.5) 

          A       A  
 

Figure 13.1  Pressure in a pool of water. 
 

We have set the weight w of the water equal to mg in equation 13.5. The mass of the water in the pool, given by 
equation 13.2, is 

m = ρV 
 

The volume of all the water in the pool is just equal to the area A of the bottom of the pool times the depth h of the 
water in the pool, that is, 

V = Ah                                                                                (13.6) 
 

Substituting equations 13.2 and 13.6 into equation 13.5 gives for the pressure at the bottom of the pool: 
 

p = mg  = ρVg  = ρAhg  
                                                                                     A         A          A     
Thus, 

 p = ρgh                                                                                (13.7) 
 

(Although we derived equation 13.7 to determine the water pressure at the bottom of a pool of water, it is 
completely general and gives the water pressure at any depth h in the pool.) Equation 13.7 says that the water 
pressure at any depth h in any pool is given by the product of the density of the water in the pool, the acceleration 
due to gravity g, and the depth h in the pool. Equation 13.7 is sometimes called the hydrostatic equation. 

 
Example 13.5 

 
Pressure in a swimming pool. Find the water pressure at a depth of 3.00 m in a swimming pool. 

Solution
 

The density of water, found in table 13.1, is 1000 kg/m3, and the water pressure, found from equation 13.7, is 
 

   p = ρgh 
= (1000 kg/m3)(9.80 m/s2)(3.00 m) 
= 2.94 × 104 N/m2 = 2.94 × 104 Pa 

 
To go to this Interactive Example click on this sentence. 
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The pressure at the depth of 3 m in the pool in figure 13.1 is the same everywhere. Hence, the force exerted 

by the fluid is the same in all directions. That is, the force is the same in up-down, right-left, or in-out directions. If 
the force due to the fluid were not the same in all directions, then the fluid would flow in the direction away from 
the greatest pressure and would not be a fluid at rest. A fluid at rest is a fluid in equilibrium. Thus, in example 
13.5, the pressure is 2.94 × 104 Pa at every point at a depth of 3 m in the pool and exerts the same force in every 
direction at that depth. You experience this pressure when swimming at a depth of 3.00 m as a pressure on your 
ears. As you swim up to the surface, the pressure on your ears decreases because h is decreasing. Or to look at it 
another way, the closer you swim up toward the surface, the smaller is the amount of water that is above you. 
Because the pressure is caused by the weight of that water above you, the smaller the amount of water, the 
smaller will be the pressure. 

Just as there is a water pressure at the bottom of a swimming pool caused by the weight of all the water 
above the bottom, there is also an air pressure exerted on every object at the surface of the earth caused by the 
weight of all the air that is above us in the atmosphere. That is, there is an atmospheric pressure exerted on us, 
given by equation 13.3 as 

p =  F  =  weight of air                                                                 (13.8) 
       A            area 

 
However we can not use the same result obtained for the pressure in the pool of water, the hydrostatic 

equation 13.7, because air is compressible and hence its density ρ is not constant with height throughout the 
vertical portion of the atmosphere. The pressure of air at any height in the atmosphere can be found by the use of 
calculus and the density variation in the atmosphere. However, since calculus is beyond the scope of this course, 
we will revert to the use of experimentation to determine the pressure of the atmosphere. 

The pressure of the air in the atmosphere was first measured by 
Evangelista Torricelli (1608-1647), a student of Galileo, by the use of a 
mercury barometer. A long narrow tube is filled to the top with 
mercury, chemical symbol Hg. It is then placed upside down into a 
reservoir filled with mercury, as shown in figure 13.2.  

The mercury in the tube starts to flow out into the reservoir, but 
it comes to a stop when the top of the mercury column is at a height h 
above the top of the mercury reservoir, as also shown in figure 13.2. The 
mercury does not empty completely because the normal pressure of the 
atmosphere p0 pushes downward on the mercury reservoir. Because the 
force caused by the pressure of a fluid is the same in all directions, there 
is also a force acting upward inside the tube at the height of the mercury 
reservoir, and hence there is also a pressure p0 acting upward as shown 
in figure 13.2. This force upward is capable of holding the weight of the 
mercury in the tube up to a height h. Thus, the pressure exerted by the 
mercury in the tube is exactly balanced by the normal atmospheric 
pressure on the reservoir, that is, 

 
p0 = pHg                                          (13.9) 

 
But the pressure of the mercury in the tube pHg, given by equation 13.7,  

                                                                                                                          Figure 13.2  A mercury barometer. 
is 

pHg = ρHggh                                                                           (13.10) 
 

Substituting equation 13.10 back into equation 13.9, gives 
 

p0 = ρHggh                                                                            (13.11) 
 

Equation 13.11 says that normal atmospheric pressure can be determined by measuring the height h of the 
column of mercury in the tube. It is found experimentally, that on the average, normal atmospheric pressure can 
support a column of mercury 76.0 cm high, or 760 mm high. The unit of 1.00 mm of Hg is sometimes called a torr 
in honor of Torricelli. Hence, normal atmospheric pressure can also be given as 760 torr. Using the value of the 
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density of mercury of 1.360 × 104 kg/m3, found in table 13.1, normal atmospheric pressure, determined from 
equation 13.11, is 

( )4
0 Hg 3 2

kg m1.360 10  9.80 0.760 m
m s

p ghρ   = = ×  
  

 

= 1.013 × 105 N/m2 = 1.013 × 105 Pa 
 

Thus, the average or normal atmospheric pressure acting on us at the surface of the earth is 1.013 × 105 Pa, which 
is a rather large number as we will see presently. In the study of meteorology, the science of the weather, a 
different unit of pressure is usually employed, namely the millibar, abbreviated mb. The conversion factor between 
millibars and Pa (see appendix A) is 

1 Pa = 10−2 mb 
 

Using this conversion factor, normal atmospheric pressure2 can also be expressed as 
 

( )
2

5
0

10  mb1.013 10  Pa
1 Pa

p
− 

= ×  
 

 

= 1013 mb 
 

On all surface weather maps in a weather station, pressures are always expressed in terms of millibars. 
The mercury barometer is thus a very accurate means of determining air pressure. The value of 76.0 cm or 

1013 mb are only normal or average values. When the barometer is kept at the same location and the height of the 
mercury column is recorded daily, the value of h is found to vary slightly. When the value of h becomes greater 
than 76.0 cm of Hg, the pressure of the atmosphere has increased to a higher pressure. It is then said that a high-
pressure area has moved into your region. When the value of h becomes less than 76.0 cm of Hg, the pressure of 
the atmosphere has decreased to a lower pressure and a low-pressure area has moved in. The barometer is 
extremely important in weather observation and prediction because, as a general rule of thumb, high atmospheric 
pressures usually are associated with clear skies and good weather. Low-pressure areas, on the other hand, are 
usually associated with cloudy skies, precipitation, and in general bad weather. (For further detail on the weather 
see the “Have You Ever Wondered” section at the end of chapter 17.) 

The mercury barometer, after certain 
corrections for instrument height above sea level 
and ambient temperature, is an extremely 
accurate device to measure atmospheric 
pressure and can be found in every weather 
station throughout the world. Its chief limitation 
is its size. It must always remain vertical, and 
the glass tube and reservoir are somewhat 
fragile. Hence, another type of barometer is also 
used to measure atmospheric pressure. It is 
called an aneroid barometer, and is shown in 
figure 13.3. It is based on the principle of a 
partially evacuated, waferlike, metal cylinder 
called a Sylphon cell. When the 

                                                          Figure 13.3  An aneroid barometer. 
 
atmospheric pressure increases, the cell decreases in size. A combination of linkages and springs are connected to 
the cell and to a pointer needle that moves over a calibrated scale that indicates the pressure. The aneroid 
barometer is a more portable device that is rugged and easily used, although it is originally calibrated with a 
                                                           
2
To express normal atmospheric pressure in the British engineering system, the conversion factor 

1 Pa = 1.45 × 10−4 lb/in.2 
found in appendix A, is used. Hence, normal atmospheric pressure can also be expressed as 

( )0

4 21.45 10  lb/in51.013 10  Pa 1 Pap
 
 
 
 

−××=  

      = 14.7 lb/in.2 
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mercury barometer. The word aneroid means not containing fluid. The aneroid barometer is calibrated in both 
centimeters of Hg and inches of Hg. Using a conversion factor, we can easily see that a height of 29.92 in. of Hg 
also corresponds to normal atmospheric pressure. Hence, as seen in figure 13.3, the pressure can be measured in 
terms of inches of mercury. Also note that regions of high pressure (30 in. of Hg) are labeled to indicate fair 
weather, while regions of low pressure (29 in. of Hg) are labeled to indicate rain or poor weather. 

As we go up into the atmosphere the pressure decreases, because there is less air above us. The aneroid 
barometer will read smaller and smaller pressures with altitude. Instead of calibrating the aneroid barometer in 
terms of centimeters of mercury or inches of mercury, we can also calibrate it in terms of feet or meters above the 
surface of the earth where this air pressure is found. An aneroid barometer so calibrated is called an altimeter, a 
device to measure the altitude or height of an airplane. The height of the plane is not really measured, the 
pressure is. But in the standard atmosphere, a particular pressure is found at a particular height above the 
ground. Hence, when the aneroid barometer measures this pressure, it corresponds to a fixed altitude above the 
ground. The pilot can read this height directly from the newly calibrated aneroid barometer, the altimeter. 

Let us now look at some examples associated with atmospheric pressure. 
 

Example 13.6 
 

Why you get tired by the end of the day. The top of a student’s head is approximately circular with a radius of 8.90 
cm. What force is exerted on the top of the student’s head by normal atmospheric pressure? 

Solution
 

The area of the top of the student’s head is found from 
 

A = πr2 = π(0.089 m)2 = 0.0249 m2 
 

We find the magnitude of the force exerted on the top of the student’s head by rearranging equation 13.3 into the 
form 

 F = pA                                                                              (13.12) 
Hence, 

( )5 2
2

N1.013 10  0.0249 m
m

F  = × 
 

 

=  2520 N  
 

This is a rather large force (2520 N = 567 lb) to have exerted on our heads all day long. However, we do not notice 
this enormous force because when we breathe air into our nose or mouth that air is exerting the same force 
upward inside our head. Thus, the difference in force between the top of the head and the inside of the head is 
zero. 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 13.7 
 

Atmospheric pressure on the walls of your house. Find the force on the outside wall of a ranch house, 3.05 m high 
and 10.7 m long, caused by normal atmospheric pressure. 

Solution
 

The area of the wall of the house is given by 
A = (length)(height) 
= (10.7 m)(3.05 m) 

= 32.6 m2 
The force on the wall, given by equation 13.12, is 
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( )5 2
2

N1.013 10  32.6 m
m

F pA  = = × 
 

 

= 3.30 × 106 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 
The force on the outside wall of the house in example 13.7 is thus 3.30 × 106 N = 743,000 lb. This is truly 

an enormous force. Why doesn’t the wall collapse under this great force? The wall does not collapse because that 
same atmospheric air is also inside the house. Remember that air is a fluid and flows. Hence, in addition to being 
outside the house, the air also flows to the inside of the house. Because the force exerted by the pressure in the 
fluid is the same in all directions, the air inside the house exerts the same force of 3.30 × 106 N against the inside 
wall of the house, as shown in figure 13.4(a). The net force on the wall is therefore 
 

Net force = (force)in − (force)out 

= 3.30 × 106 N − 3.30 × 106 N 
= 0 

 

Figure 13.4  Pressure on the walls in a house. 
 

A very interesting case occurs when this net force is not zero. Suppose a tornado, an extremely violent 
storm, were to move over your house, as shown in figure 13.4(b). The pressure inside the tornado is very low. No 
one knows for sure how low, because it is slightly difficult to run into a tornado with a barometer to measure it. In 
the very few cases on record where tornadoes actually went over a weather station, there was never anything left 
of the weather station, to say nothing of the barometer that was in that station. That is, neither the barometer nor 
the weather station were ever found again. The pressure can be estimated, however, from the very high winds 
associated with the tornado. A good estimate is that the pressure inside the tornado is at least 10% below the 
actual atmospheric pressure. Let us assume that the actual pressure is the normal atmospheric pressure of 1013 
mb, then 10% of that is 101 mb. Thus, the pressure in the tornado is approximately 

 
2

4 2
2

1 N/m1013 mb 101 mb (912 mb) 9.12 10  N/m
10  mb−

 
− = = × 

 
 

   
When the tornado goes over the house, the force on the outside wall is given by 
 

( )4 2
2

N9.12 10  32.6 m
m

F pA  = = × 
 

 

= 2.97 × 106 N  
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The force on the outside wall is now 2.97 × 106 N (= 668,000 lb) while the original air inside the house is still there 
and is still exerting a force of 3.30 × 106 N outward on the walls. The net force on the house is now 
 

Net force = 3.30 × 106 N − 2.97 × 106 N 
= 3.30 × 105 N 

 
There is now a net force acting outward on the wall of 3.30 × 105 N (about 75,000 lb), enough to literally explode 
the walls of the house outward. This pressure differential, with its accompanying winds, accounts for the 
enormous destruction associated with a tornado. Thus, the force exerted by atmospheric pressure can be extremely 
significant. 

It has always been customary to open the doors and windows in a house whenever a tornado is in the 
vicinity in the hope that a great deal of the air inside the house will flow out through these open windows and 
doors. Hence, the pressure differential between the inside and the outside walls of the house will be minimized. 
However many victims of tornadoes do not follow this procedure, because tornadoes are spawned out of severe 
thunderstorms, which are usually accompanied by torrential rain. Usually the first thing one does in a house is to 
close the windows once the rain starts. A picture of a typical tornado is shown in figure 13.4(c). 

Now that we have discussed atmospheric pressure, it is obvious that the total pressure exerted at a depth 
h in a pool of water must be greater than the value determined previously, because the air above the pool is 
exerting an atmospheric pressure on the top of the pool. This additional pressure is transmitted undiminished 
throughout the pool. Hence, the total or absolute pressure observed at the depth h in the pool is the sum of the 
atmospheric pressure plus the pressure of the water itself, that is, 

 
pabs = p0 + pw                                                                 (13.13) 

Using equation 13.7, this becomes 
pabs = p0 + ρgh                                                                  (13.14) 

 
Example 13.8 

 
Absolute pressure. What is the absolute pressure at a depth of 3.00 m in a swimming pool? 

Solution
 

The water pressure at a depth of 3.00 m has already been found to be pw = 2.94 × 104 Pa, the absolute pressure, 
found by equation 13.13, is 

pabs = p0 + pw 
= 1.013 × 105 Pa + 2.94 × 104 Pa 

= 1.31 × 105 Pa 
 

To go to this Interactive Example click on this sentence. 
 

 
 
When the pressure of the air in an automobile tire is measured, the actual pressure being measured is 

called the gauge pressure, that is, the pressure as indicated on the measuring device that is called a gauge. This 
measuring device, the gauge, reads zero when it is actually under normal atmospheric pressure. Thus, the total 
pressure or absolute pressure of the air inside the tire is the sum of the pressure recorded on the gauge plus 
normal atmospheric pressure. We can write this mathematically as 

 
pabs = pgauge + p0                                                                    (13.15) 

 
Example 13.9 

 
Gauge pressure and absolute pressure. A gauge placed on an automobile tire reads a pressure of 34.0 lb/in.2. What 
is the absolute pressure of the air in the tire? 
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Solution
 

The absolute pressure of the air in the tire, found from equation 13.15, is 
 

pabs = pgauge + p0 
= 34.0  lb  + 14.7  lb  

                                                                                            in.2            in.2 

= 48.7 lb/in.2 = 3.36 × 105 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
13.4  Pascal's Principle 
The pressure exerted on the bottom of a pool of water by the water itself is given by ρgh. However, there is also an 
atmosphere over the pool, and, as we saw in section 13.3, there is thus an additional pressure, normal atmospheric 
pressure p0, exerted on the top of the pool. This pressure on the top of the pool is transmitted through the pool 
waters so that the total pressure at the bottom of the pool is the 
sum of the pressure of the water plus the pressure of the 
atmosphere, equations 13.13 and 13.14. The addition of both 
pressures is a special case of a principle, called Pascal’s 
principle and it states that if the pressure at any point in an 
enclosed fluid at rest is changed (∆p), the pressure changes by an 
equal amount (∆p), at all points in the fluid. As an example of the 
use of Pascal’s principle, let us consider the hydraulic lift shown in 
figure 13.5. A noncompressible fluid fills both cylinders and the 
connecting pipe. The smaller cylinder has a piston of cross-
sectional area a, whereas the larger cylinder has a cross-sectional 
area A. As we can see in the figure, the cross-sectional area A of  

                                                                                                           Figure 13.5  The hydraulic lift. 
 

the larger cylinder is greater than the cross-sectional area a of the smaller cylinder. If a small force f is applied to 
the piston of the small cylinder, this creates a change in the pressure of the fluid given by 
 

∆p =   f                                                                                (13.16) 
        a 

 
But by Pascal’s principle, this pressure change occurs at all points in the fluid, and in particular at the large piston 
on the right. This same pressure change applied to the right piston gives 
 

∆p =  F                                                                                (13.17) 
         A 

 
where F is the force that the fluid now exerts on the large piston of area A. Because these two pressure changes 
are equal by Pascal’s principle, we can set equation 13.17 equal to equation 13.16. Thus, 
 

∆p = ∆p 
 F  =  f  
 A       a      

The force F on the large piston is therefore 
F =  A  f                                                                              (13.18) 

                                                                                                  a      
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Since the area A is greater than the area a, the force F will be greater than f. Thus, the hydraulic lift is a device 
that is capable of multiplying forces. 

 
Example 13.10 

 
Amplifying a force. The radius of the small piston in figure 13.5 is 5.00 cm, whereas the radius of the large piston 
is 30.0 cm. If a force of 2.00 N is applied to the small piston, what force will occur at the large piston? 

Solution
 

The area of the small piston is 
a = πr12 = π(5.00 cm)2 = 78.5 cm2 

while the area of the large piston is 
A = πr22 = π(30.0 cm)2 = 2830 cm2 

 
The force exerted by the fluid on the large piston, found from equation 13.18, is 
 

F =  A f 
     a 

( )
2

2
2830 cm 2.00 N
78.5 cm

 
=  

 
 

= 72.1 N 
 

Thus, the relatively small force of 2.00 N applied to the small piston produces the rather large force of 72.1 N at 
the large piston. The force has been magnified by a factor of 36. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
It is interesting to compute the work that is done when the force f is applied to the small piston in figure 

13.5. When the force f is applied, the piston moves through a displacement y1, such that the work done is given by 
 

W1 = fy1 
But from equation 13.16 

f = a∆p 
Hence, the work done is 

W1 = a(∆p)y1                                                                          (13.19) 
 

When the change in pressure is transmitted through the fluid, the force F is exerted against the large piston and 
the work done by the fluid on the large piston is 

W2 = Fy2 
 

where y2 is the distance that the large piston moves and is shown in figure 13.5. But the force F, found from 
equation 13.17, is 

 F = A∆p 
 
The work done on the large piston by the fluid becomes 
 

W2 = A(∆p)y2                                                                          (13.20) 
 

Applying the law of conservation of energy to a frictionless hydraulic lift, the work done to the fluid at the small 
piston must equal the work done by the fluid at the large piston, hence 
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W1 = W2                                                                               (13.21) 
 

Substituting equations 13.19 and 13.20 into equation 13.21, gives 
 

a(∆p)y1 = A(∆p)y2                                                                      (13.22) 
 

Because the pressure change ∆p is the same throughout the fluid, it cancels out of equation 13.22, leaving 
 

     ay1 = Ay2 
Solving for the distance y1 that the small piston moves 

 y1 =  A y2                                                                          (13.23) 
                                                                                                     a                  

 
Since A is much greater than a, it follows that y1 must be much greater than y2. 

 
Example 13.11 

 
You can never get something for nothing. The large piston of example 13.10 moves through a distance of 0.200 cm. 
By how much must the small piston be moved? 

Solution
 

The areas of the pistons are given from example 13.10 as A = 2830 cm2 and a = 78.5 cm2, hence the distance that 
the small piston must move, given by equation 13.23, is 
 

y1 =  A  y2 
   a 

( )
2

2
2830 cm 0.200 N
78.5 cm

 
=  

 
 

= 7.21 cm 
 

Although a very large force is obtained at the large piston, the large piston is displaced by only a very 
small amount. Whereas the input force f, on the small piston is relatively small, the small piston must move 
through a relatively large displacement (36 times greater than the large piston). Usually there are a series of 
valves in the connecting pipe and the small cylinder is connected to a fluid reservoir also by valves. Hence, many 
displacements of the small piston can be made, each time adding additional fluid to the right cylinder. In this way 
the final displacement y2 can be made as large as desired. 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 
13.5  Archimedes' Principle 
The variation of pressure with depth has a surprising consequence, it allows the fluid to exert buoyant forces on 
bodies immersed in the fluid. If this buoyant force is equal to the weight of the body, the body floats in the fluid. 
This result was first enunciated by Archimedes (287-212 BC) and is now called Archimedes’ principle.  

Archimedes’ principle states that a body immersed in a fluid is buoyed up by a force that is equal to the 
weight of the fluid displaced. This principle can be verified with the help of figure 13.6. 

If we submerge a cylindrical body into a fluid, such as water, then the bottom of the body is at some depth 
h1 below the surface of the water and experiences a water pressure p1 given by 

 
p1 = ρgh1                                                                            (13.24) 
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where ρ is the density of the water. Because the force due to the 
pressure acts equally in all directions, there is an upward force on 
the bottom of the body. The force upward on the body is given by 
 

F1 = p1A                                       (13.25) 
 

where A is the cross-sectional area of the cylinder. Similarly, the top 
of the body is at a depth h2 below the surface of the water, and 
experiences the water pressure p2 given by 
 

p2 = ρgh2                                      (13.26) 
 

However, in this case the force due to the water pressure is acting 
downward on the body causing a force downward given by 

                                                                                                                  Figure 13.6  Archimedes’ principle. 
 

F2 = p2A                                                                               (13.27) 
 

Because of the difference in pressure at the two depths, h1 and h2, there is a different force on the bottom of the 
body than on the top of the body. Since the bottom of the submerged body is at the greater depth, it experiences 
the greater force. Hence, there is a net force upward on the submerged body given by 
 

Net force upward = F1 − F2 
 

Replacing the forces F1 and F2 by their values in equations 13.25 and 13.27, this becomes 
 

Net force upward = p1A − p2A 
 

Replacing the pressures p1 and p2 from equations 13.24 and 13.26, this becomes 
 

Net force upward = ρgh1A − ρgh2 
A = ρgA(h1 − h2)                                                                       (13.28) 

But 
A(h1 − h2) = V 

 
the volume of the cylindrical body, and hence the volume of the water displaced. Equation 13.28 thus becomes 
 

Net force upward = ρgV                                                                 (13.29) 
 

But ρ is the density of the water and from the definition of the density 
 

ρ =  m                                                                                 (13.1) 
        V 

Substituting equation 13.1 back into equation 13.29 gives 
 

Net force upward =  m gV 
                           V 

              = mg 
But mg = w, the weight of the water displaced. Hence, 

 
 Net force upward = Weight of water displaced                                            (13.30) 

 
The net force upward on the body is called the buoyant force (BF). When the buoyant force on the body is equal to 
the weight of the body, the body does not sink in the water but rather floats, figure 13.7(b). Since the buoyant force 
is equal to the weight of the water displaced, a body floats when the weight of the body is equal to the weight of the 
fluid displaced. 
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Example 13.12 

 
Wood floats. A block of oak wood 5.00 cm high, 5.00 cm wide, and 10.0 cm long is placed into a tub of water, figure 
13.7(a). The density of the wood is 7.20 × 102 kg/m3. How far will the block of wood sink before it floats? 

          
Figure 13.7  A body floats when the buoyant force is equal to the weight of the body.  

 

Solution
 

The block of wood will float when the buoyant force (BF), which is the weight of the fluid displaced by the volume 
of the body submerged, is equal to the weight of the body. The weight of the block of wood is found from 
 

w = mg = ρVg 
 
The volume of the wooden block is V = Ah. Thus, the weight of the wooden block is 
 

w = (7.20 × 102 kg/m3)(0.0500 m)(0.0500 m)(0.100 m)(9.80 m/s2) 
= 1.76 N 

 
The buoyant force is equal to the weight of the water displaced, and for the body to float, this buoyant force must 
also equal the weight of the block. Hence, 

BF = wwater = wwood 
wwater = mwater g = ρwaterVg = ρwaterAhg                                                        (13.31) 

Thus, 
ρwaterAhg = wwood 

h =    wwood                                                                             (13.32) 
           ρwaterAg 

=                                       1.76 N                                   
                                    (1.00 × 103 kg/m3)(0.0500 m)(0.100 m)(9.80 m/s2) 

= 0.0359 m = 3.59 cm 
 

Thus, the block sinks to a depth of 3.59 cm. At this point the buoyant force becomes equal to the weight of the 
wooden block and the wooden block floats. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Pearson Custom Publishing

404



 

 
Chapter 13  Simple Harmonic Motion                                                                                                                  13-15 

Example 13.13 
 

Iron sinks. Repeat example 13.12 for a block of iron of the same dimensions. 

Solution
 

The density of iron, found from table 13.1, is 7860 kg/m3. The weight of the iron block is given by 
 

wiron = mg = ρVg 
= (7860 kg/m3)(0.0500 m)(0.0500 m)(0.100 m)(9.80 m/s2) 

= 19.3 N 
 

The depth that the iron block would have to sink in order to displace its own weight, again found from equation 
13.32, is 

h =    wiron       
         ρwaterAg 

=                                     19.3 N                                   
                                     (1.00 × 103 kg/m3)(0.0500 m)(0.100 m)(9.80 m/s2) 

= 39.4 cm 
 

But the block is only 10 cm high. Hence, the buoyant force is not great enough to lift an iron block of this size, and 
the iron block sinks to the bottom. 

Another way to look at this problem is to calculate the buoyant force on this piece of iron. The buoyant 
force on the iron, given by equation 13.29, is 

Net force upward = ρgV 
= (1 × 103 kg/m3)(9.80 m/s2)(0.0500 m)(0.500 m)(0.100 m) 

= 2.45 N 
 

Thus, the net force upward on a block of iron of this size is 2.45 N. But the block weighs 19.3 N. Hence, the weight 
of the iron is greater than the buoyant force and the iron block sinks to the bottom. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

But ships are made of iron and they do not sink. Why should the block sink and not the ship? If this same 
weight of iron is made into thin slabs, these thin slabs could be welded together into a boat structure of some kind. 
By increasing the size and hence the volume of this iron boat, a greater volume of water can be displaced. An 
increase in the volume of water displaced increases the buoyant force. If this can be made equal to the weight of 
the iron boat, then the boat floats. 

 
Example 13.14 

 
An iron boat. The iron block of example 13.13 is cut into 16 slices, each 5.00 cm by 10.0 cm by 5/16 cm. They are 
now welded together to form a box 20.0 cm wide by 10.0 cm long by 10.0 cm high, as shown in figure 13.8. Will this 
iron body now float or will it sink? 

Solution
 

In this new configuration the iron displaces a much greater volume of water, and since the buoyant force is equal 
to the weight of the water displaced it is possible that this new configuration will float. We assume that no mass of 
iron is lost in cutting the blocks into the 16 slabs, and that the weight of the welding material is negligible. Thus, 
the weight of the box is also equal to 19.3 N. This example is analyzed in the same way as the previous example. 
Let us solve for the depth that the iron box must sink in order that the buoyant force be equal to the weight of the 
box. Thus, the depth that the box sinks, again found from the modified equation 13.32, is 
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h =     wbox      

        ρwaterAg 
=                                19.3 N                                 

                                   (1.00 × 103 kg)(0.200 m)(0.100 m)(9.80 m/s2) 
 = 9.84 × 10−2 m = 9.84 cm   

                                   
Because the iron box is 10 cm high, it sinks to a depth of 9.84 cm and it 
then floats. Note that this is the same mass of iron that sank in 
example 13.13. That same mass can now float because the new 
distribution of that mass results in a displacement of a much larger  

                                                                                                                    Figure 13.8  Iron can float.  
 

volume of water. Since the buoyant force is equal to the weight of the water displaced, by increasing the volume 
taken up by the iron and the enclosed space, the amount of the water displaced has increased and so has the 
buoyant force. 

To go to this Interactive Example click on this sentence. 
 

 
 
Examples 13.12-13.14 dealt with bodies submerged in water, but remember that Archimedes’ principle 

applies to all fluids. 
  
 
13.6  The Equation of Continuity 
Up to now, we have studied only fluids at rest. Let us now study fluids in motion, the subject matter of 
hydrodynamics. The study of fluids in motion is relatively complicated, but the analysis can be simplified by 
making a few assumptions. Let us assume that the fluid is incompressible and flows freely without any turbulence 
or friction between the various parts of the fluid itself and any boundary containing the fluid, such as the walls of 
a pipe. A fluid in which friction can be neglected is called a nonviscous fluid. A fluid, flowing steadily without 
turbulence, is usually referred to as being in streamline flow. The rather complicated analysis is further simplified 
by the use of two great conservation principles: the conservation of mass, and the conservation of energy. The law 
of conservation of mass results in a mathematical equation, usually called the equation of continuity. The law of 
conservation of energy is the basis of Bernoulli’s theorem, the subject matter of section 13.7. 

Let us consider an incompressible fluid flowing in the pipe of figure 13.9. At a particular instant of time 
the small mass of fluid ∆m, 
shown in the left-hand portion 
of the pipe will be considered. 
This mass is given by a slight 
modification of equation 13.2, 
as 

∆m = ρ∆V       (13.33) 
 

Because the pipe is cylindrical, 
the small portion of volume of 
fluid is given by the product of 
the cross-sectional area A1  

                                                       Figure 13.9  The law of conservation of mass and the equation of continuity. 
 
times the length of the pipe ∆x1 containing the mass ∆m, that is, 
 

∆V = A1∆x1                                                                           (13.34) 
 

The length ∆x1 of the fluid in the pipe is related to the velocity v1 of the fluid in the left-hand pipe. Because the 
fluid in ∆x1 moves a distance ∆x1 in time ∆t, ∆x1 = v1∆t. Thus, 
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∆x1 = v1∆t                                                                             (13.35) 

 
Substituting equation 13.35 into equation 13.34, we get for the volume of fluid, 

 
∆V = A1v1∆t                                                                          (13.36) 

 
Substituting equation 13.36 into equation 13.33 yields the mass of the fluid as 

 
∆m = ρA1v1∆t                                                                         (13.37) 

 
We can also express this as the rate at which the mass is flowing in the left-hand portion of the pipe by dividing 
both sides of equation 13.37 by ∆t, thus 

 ∆m = ρA1v1                                                                          (13.38) 
                                                                                                   ∆t                               

 
Example 13.15 

 
Flow rate. What is the mass flow rate of water in a pipe whose diameter d is 10.0 cm when the water is moving at 
a velocity of 0.322 m/s. 

Solution
 

The cross-sectional area of the pipe is 
A1 = πd12 = π(0.100 m)2    

                                                                                       4               4 
= 7.85 × 10−3 m2 

The flow rate, found from equation 13.38, is 
∆m = ρA1v1    

                                                                                                ∆t                  
= (1.00 × 103 kg/m3)(7.85 × 10−3 m2)(0.322 m/s) 

= 2.53 kg/s 
 

Thus 2.53 kg of water flow through the pipe per second. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
When this fluid reaches the narrow constricted portion of the pipe to the right in figure 13.9, the same 

amount of mass ∆m is given by 
∆m = ρ∆V                                                                            (13.39) 

 
But since ρ is a constant, the same mass ∆m must occupy the same volume ∆V. However, the right-hand pipe is 
constricted to the narrow cross-sectional area A2. Thus, the length of the pipe holding this same volume must 
increase to a larger value ∆x2, as shown in figure 13.9. Hence, the volume of fluid is given by 

 
∆V = A2∆x2                                                                           (13.40) 

 
The length of pipe ∆x2 occupied by the fluid is related to the velocity of the fluid by 

 
∆x2 = v2∆t                                                                            (13.41) 

 
Substituting equation 13.41 back into equation 13.40, we get for the volume of fluid, 
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∆V = A2v2∆t                                                                           (13.42) 
 

It is immediately obvious that since A2 has decreased, v2 must have increased for the same volume of fluid to flow. 
Substituting equation 13.42 back into equation 13.39, the mass of the fluid flowing in the right-hand portion of the 
pipe becomes 

∆m = ρA2v2∆t                                                                         (13.43) 
 

Dividing both sides of equation 13.43 by ∆t yields the rate at which the mass of fluid flows through the right-hand 
side of the pipe, that is, 

 ∆m = ρA2v2                                                                           (13.44) 
                                                                                                  ∆t                                  

 
But the law of conservation of mass states that mass is neither created nor destroyed in any ordinary 

mechanical or chemical process. Hence, the law of conservation of mass can be written as 
 

Mass flowing into the pipe = mass flowing out of the pipe 
or 

∆m = ∆m                                                                              (13.45) 
                                                                                                  ∆t       ∆t       

 
Thus, setting equation 13.38 equal to equation 13.44 yields 

 
ρA1v1 = ρA2v2                                                                          (13.46) 

 
Equation 13.46 is called the equation of continuity and is an indirect statement of the law of conservation of 
mass. Since we have assumed an incompressible fluid, the densities on both sides of equation 13.46 are equal and 
can be canceled out leaving 

 A1v1 = A2v2                                                                            (13.47) 
 

Equation 13.47 is a special form of the equation of continuity for incompressible fluids (i.e., liquids). 
Applying equation 13.47 to figure 13.9, we see that the velocity of the fluid v2 in the narrow pipe to the 

right is given by 
 v2 = A1v1                                                                               (13.48) 

                                                                                               A2              
 

Because the cross-sectional area A1 is greater than the cross-sectional area A2, the ratio A1/A2 is greater than one 
and thus the velocity v2 must be greater than v1. 

 
Example 13.16 

 
Applying the equation of continuity. In example 13.15 the cross-sectional area A1 was 7.85 × 10−3 m2 and the 
velocity v1 was 0.322 m/s. If the diameter of the pipe to the right in figure 13.9 is 4.00 cm, find the velocity of the 
fluid in the right-hand pipe. 

Solution
 

The cross-sectional area of the right-hand side of the pipe is 
 

A2 = πd22 
      4 

= π(0.0400 m)2 

   4 
= 1.26 × 10−3 m2 

 
The velocity of the fluid on the right-hand side v2, found from equation 13.48, is 
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( )
3 2

1
2 1 3 2

2

7.85 10  m 0.322 m/s
1.26 10  m

Av v
A

−

−

 ×
= =  × 

 

= 2.01 m/s 
 

The fluid velocity increased more than six times when it flowed through the constricted pipe. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Therefore, as a general rule, the equation of continuity for liquids, equation 13.47, says that when the cross-
sectional area of a pipe gets smaller, the velocity of the fluid must become greater in order that the same amount of 
mass passes a given point in a given time. Conversely, when the cross-sectional area increases, the velocity of the 
fluid must decrease. Equation 13.47, the equation of continuity, is sometimes written in the equivalent form 

 
    Av = constant                                                                         (13.49) 

 
Example 13.17 

 
Flow rate revisited. What is the flow of mass per unit time for the example 13.16? 

Solution
 

The rate of mass flow for the right-hand side of the pipe, given by equation 13.44, is 
 

∆m = ρA2v2 
                                                                                                ∆t               

= (1.0 × 103 kg/m3)(1.26 × 10−3 m2)(2.01 m/s) 
= 2.53 kg/s 

 
Note that this is the same rate of flow found earlier for the left-hand side of the pipe, as it must be by the law of 
conservation of mass. 

A compressible fluid (i.e., a gas) can have a variable density, and requires an additional equation to specify 
the flow velocity. 

To go to this Interactive Example click on this sentence. 
 

 
 
  
13.7  Bernoulli’s Theorem 
Bernoulli’s theorem is a fundamental theory of hydrodynamics that describes a fluid in motion. It is really the 
application of the law of conservation of energy to fluid flow. Let us consider the fluid flowing in the pipe of figure 
13.10. The left-hand side of the pipe has a uniform cross-sectional area A1, which eventually tapers to the uniform 
cross-sectional area A2 of the right-hand side of the pipe. The pipe is filled with a nonviscous, incompressible fluid. 
A uniform pressure p1 is applied, such as from a piston, to a small element of mass of the fluid ∆m and causes this 
mass to move through a distance ∆x1 of the pipe. Because the fluid is incompressible, the fluid moves throughout 
the rest of the pipe. The same small mass ∆m, at the right-hand side of the pipe, moves through a distance ∆x2. 
The work done on the system by moving the small mass through the distance ∆x1 is given by the definition of work 
as 

 W1 = F1∆x1 
 

Using equation 13.12, we can express the force F1 moving the mass to the right in terms of the pressure exerted on 
the fluid as 
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F1 = p1A1 

Hence, 
W1 = p1A1∆x1 

But 
A1∆x1 = ∆V 

 
the volume of the fluid moved 
through the pipe. Thus, we can 
write the work done on the 
system as 

 W1 = p1∆V1      (13.50) 
 

As this fluid moves through the 
system, the fluid itself does 
work by exerting a force F2 on 
the mass ∆m on the right side, 
moving it through the distance 
∆x2. Hence, the work done by 
the fluid system is 
 

                                          Figure 13.10  Bernoulli’s theorem. 
 

W2 = F2∆x2 
 

But we can express the force F2 in terms of the pressure p2 on the right side by 
 

F2 = p2A2 
Therefore, the work done by the system is 

W2 = p2A2∆x2 
But 

A2∆x2 = ∆V2 
 

the volume moved through the right side of the pipe. Thus, the work done by the system becomes 
 

W2 = p2∆V2                                                                            (13.51) 
But since the fluid is incompressible, 

∆V1 = ∆V2 = ∆V 
 

Hence, we can write the two work terms, equations 13.50 and 13.51, as 
 

W1 = p1∆V 
W2 = p2∆V 

 
The net work done on the system is equal to the difference between the work done on the system and the work 
done by the system. Hence, 

Net work done on the system = Won − Wby 
= W1 − W2 = p1∆V − p2∆V 

 Net work done on the system = (p1 − p2)∆V                                               (13.52) 
 

By the law of conservation of energy, the net work done on the system produces a change in the energy of the 
system. The fluid at position 1 is at a height h1 above the reference level and therefore possesses a potential 
energy given by 

PE1 = (∆m)gh1                                                                       (13.53) 
 
Because this same fluid is in motion at a velocity v1, it possesses a kinetic energy given by 
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KE1 =  1 (∆m)v12                                                                       (13.54) 

 2   
 

Similarly at position 2, the fluid possesses the potential energy 
 

PE2 = (∆m)gh2                                                                         (13.55) 
and the kinetic energy 

KE2 =  1 (∆m)v22                                                                      (13.56) 
   2  

 
Therefore, we can now write the law of conservation of energy as 

 
Net work done on the system = Change in energy of the system                              (13.57) 
Net work done on the system = (Etot)2 − (Etot)1                                                           (13.58) 
Net work done on the system = (PE2 + KE2) − (PE1 + KE1)                                       (13.59) 

 
Substituting equations 13.52 through 13.56 into equation 13.59 we get 

 
(p1 − p2)∆V = [(∆m)gh2 +  1 (∆m)v22 ] − [(∆m)gh1 +  1 (∆m)v12 ]                                   (13.60) 

                                                                                        2                                       2   
But the total mass of fluid moved ∆m is given by 

∆m = ρ∆V                                                                             (13.61) 
 

Substituting equation 13.61 back into equation 13.60, gives 
 

(p1 − p2)∆V = ρ(∆V)gh2 +  1 ρ(∆V)v22 − ρ(∆V)gh1 −  1 ρ(∆V )v12  
                                                                                         2                                      2    
Dividing each term by ∆V gives 

(p1 − p2) = ρgh2 +  1 ρv22 − ρgh1 −  1 ρv12                                                        (13.62) 
                                                                                          2                        2 

 
If we place all the terms associated with the fluid at position 1 on the left-hand side of the equation and all the 
terms associated with the fluid at position 2 on the right-hand side, we obtain 
 

 p1 + ρgh1 +  1 ρv12 = p2 + ρgh2 +  1  ρv22                                                      (13.63) 
                                                                                    2                               2                     

 
Equation 13.63 is the mathematical statement of  
 

Bernoulli’s theorem. It says that the sum of the pressure, the potential energy per unit volume, and the 
kinetic energy per unit volume at any one location of the fluid is equal to the sum of the pressure, the potential 
energy per unit volume, and the kinetic energy per unit volume at any other location in the fluid, for a 
nonviscous, incompressible fluid in streamlined flow. 
 

Since this sum is the same at any arbitrary point in the fluid, the sum itself must therefore be a constant. Thus, 
we sometimes write Bernoulli’s equation in the equivalent form 

 
 p + ρgh +  1 ρv2 = constant                                                              (13.64) 

                                                                                          2                                                         
 

Example 13.18 
 

Applying Bernoulli’s theorem. In figure 13.10, the pressure p1 = 2.94 × 103 N/m2, whereas the velocity of the water 
is v1 = 0.322 m/s. The diameter of the pipe at location 1 is 10.0 cm and it is 5.00 m above the ground. If the 
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diameter of the pipe at location 2 is 4.00 cm, and the pipe is 2.00 m above the ground, find the velocity of the water 
v2 at position 2, and the pressure p2 of the water at position 2. 

Solution
 

The area A1 is 
A1 = πd12 =  π (0.100 m)2 = 7.85 × 10−3 m2  

                                                                        4        4 
whereas the area A2 is 

A2 = πd22 =  π (0.0400 m)2 = 1.26 × 10−3 m2  
                                                                      4         4 

 
The velocity at location 2 is found from the equation of continuity, equation 13.48, as 
 

( )
3 2

1
2 1 3 2

2

7.85 10  m 0.322 m/s
1.26 10  m

Av v
A

−

−

 ×
= =  × 

 

= 2.01 m/s 
 

The pressure at location 2 is found from rearranging Bernoulli’s equation 13.63 as 
 

 p2 = p1 + ρgh1 +  1 ρv12 − ρgh2 − 1  ρv22 
                                                                                             2                       2 

( )

( ) ( )

( )

3 3
2 3 2

23 31
2 3 3 2

231
2 3

N kg m2.94 10  1 10  9.80 5.00 m
m m s

kg kg m        1 10  0.322 m/s 1 10  9.80 2.00 m
m m s

kg          1 10  2.01 m/s
m

  = × + ×  
  

    + × − ×    
    

 − × 
 

 

 
= 2.94 × 103 N/m2 + 4.9 × 104 N/m2 + 5.18 × 101 N/m2  

− 1.96 × 104 N/m2 − 2.02 × 103 N/m2 

= 3.04 × 104 N/m2 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
13.8  Application of Bernoulli’s Theorem 
Let us now consider some special cases of Bernoulli’s theorem. 
 
The Venturi Meter 
Let us first consider the constricted tube studied in figure 13.9 and slightly modified and redrawn in figure 
13.11(a). Since the tube is completely horizontal h1 = h2 and there is no difference in potential energy between the 
locations 1 and 2. Bernoulli’s equation therefore reduces to  

 
p1 +  1  ρv12 = p2 +  1  ρv22                                                               (13.65) 

                                                                                     2                     2 
 
But by the equation of continuity, 

v2 = A1 v1                                                                             (13.48) 
     A2 
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Figure 13.11  A Venturi meter. 

 
Since A1 is greater than A2, v2 must be greater than v1, as shown before. Let us rewrite equation 13.65 as 
 

p2 = p1 +  1 ρv12 − 1  ρv22  
                                                                                            2            2 
or 

p2 = p1 +  1 ρ(v12 − v22)                                                                (13.66) 
    2       

 
But since v2 is greater than v1, the quantity (1/2)ρ(v12 − v22) is a negative quantity and when we subtract it from p1, 
p2 must be less than p1. Thus, not only does the fluid speed up in the constricted tube, but the pressure in the 
constricted tube also decreases.  
 

Example 13.19 
 

When the velocity increases, the pressure decreases. In example 13.16, associated with figure 13.9, the velocity v1 in 
area A1 was 0.322 m/s and the velocity v2 in area A2 was found to be 2.01 m/s. If the pressure in the left pipe is 2.94 
× 103 Pa, what is the pressure p2 in the constricted pipe? 

Solution
 

The pressure p2, found from equation 13.66, is 
    p2 = p1 +  1 ρ(v12 − v22)  

                                                                                                2    
    = 2.94 × 103 Pa + (1/2)(1 × 103 kg/m3)[(0.322 m/s)2 − (2.01 m/s)2] 

= 2.94 × 103 N/m2 − 1.97 × 103 N/m2 = 9.7 × 102 Pa 
 

Thus, the pressure of the water in the constricted portion of the tube has decreased to 9.7 × 102 Pa. Note that in 
example 13.18 of section 13.7 the pressure in the constricted area of the pipe was greater than in the larger area of 
the pipe. This is because in that example the pipe was not all at the same level (i.e., h1 ≠ h2). An additional 
pressure arose on the right side because of the differences in the heights of the two pipes. 
 

To go to this Interactive Example click on this sentence. 
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The effect of the decrease in pressure with the increase in speed of the fluid in a horizontal pipe is called the 
Venturi effect, and a simple device called a Venturi meter, based on this Venturi effect, is used to measure the 
velocity of fluids in pipes. A Venturi meter is shown schematically in figure 13.11(b). The device is basically the 
same as the pipe in 13.11(a) except for the two vertical pipes connected to the main pipe as shown. These open 
vertical pipes allow some of the water in the pipe to flow upward into the vertical pipes. The height that the water 
rises in the vertical pipes is a function of the pressure in the horizontal pipe. As just seen, the pressure in pipe 1 is 
greater than in pipe 2 and thus the height of the vertical column of water in pipe 1 will be greater than the height 
in pipe 2. By actually measuring the height of the fluid in the vertical columns the pressure in the horizontal pipe 
can be determined by the hydrostatic equation 13.7. Thus, the pressure in pipe 1 is 

 
p1 = ρgh01 

and the pressure in pipe 2 is 
p2 = ρgh02 

 
where h01 and h02 are the heights shown in figure 13.11(b). We can now write Bernoulli’s equation 13.65 as 
 

ρgh01 +  1 ρv12 = ρgh02 +  1 ρv22  
                                                                                     2                         2 

 
Replacing v2 by its value from the continuity equation 13.65, we get 
 

2
2 11 1

01 1 02 12 2
2

Agh v gh v
A

ρ ρ ρ ρ
  

+ = +   
   

 

2
2 211 1

01 02 1 12 22
2

Agh gh v v
A

ρ ρ ρ ρ− = + −  

( )
2

211
01 02 12 2

2

1Ag h h v
A

ρ ρ
 

− = + − 
 

 

Solving for v12, we have 
( )

( )
01 022

1 2 21
1 22 / 1

g h h
v

A A
ρ

ρ

−
=

 − 
 

Solving for v1, we get 
( )

( )
01 02

1 2 2
1 2

2
/ 1

g h h
v

A A
−

=
−

                                                                     (13.67) 

 
Equation 13.67 now gives us a simple means of determining the velocity of fluid flow in a pipe. The main pipe 
containing the fluid is opened and the Venturi meter is connected between the opened pipes. When the fluid starts 
to move, the heights h01 and h02 are measured. Since the cross-sectional areas are easily determined by measuring 
the diameters of the pipes, the velocity of the fluid flow is easily calculated from equation 13.67. 

 
Example 13.20 

 
A Venturi meter. A Venturi meter reads heights of h01 = 30.0 cm and h02 = 10.0 cm. Find the velocity of flow v1 in 
the pipe. The area A1 = 7.85 × 10−3 m2 and area A2 = 1.26 × 10−3 m2. 

Solution
 

The velocity of flow v1 in the main pipe, found from equation 13.67, is 
 

( )
( )

01 02
1 2 2

1 2

2
/ 1

g h h
v

A A
−

=
−
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( )
( )
( )

2

1 23 2

23 2

2(9.80 m/s ) 0.300 m 0.100 m

7.85 10  m
1

1.26 10  m

v
−

−

−
=

×
−

×

 

= 0.322 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

The Flow of a Liquid Through an Orifice 
Let us consider the large tank of water shown in figure 13.12. Let the 
top of the fluid be location 1 and the orifice be location 2. Bernoulli’s 
theorem applied to the tank, taken from equation 13.63, is 
 

p1 + ρgh1 +  1 ρv12 = p2 + ρgh2 +  1  ρv22 
                                                2                               2 

 
But the pressure at the top of the tank and the outside pressure at the 
orifice are both p0, the normal atmospheric pressure. Also, because of  

                                                                                                                     Figure 13.12  Flow from an orifice. 
 
the very large volume of fluid, the small loss through the orifice causes an insignificant vertical motion of the top 
of the fluid. Thus, v1 ≈ 0. Bernoulli’s equation becomes 
 

p0 + ρgh1 + = p0 + ρgh2 +  1  ρv22  
                                                                                                                2 

 
The pressure term p0 on both sides of the equation cancels out. Also h2 is very small compared to h1 and it can be 
neglected, leaving 

ρgh1 =  1 ρv22  
                                                                                                  2 
Solving for the velocity of efflux, we get 

2 12v gh=                                                                            (13.68) 
 

Notice that the velocity of efflux is equal to the velocity that an object would acquire when dropped from the height 
h1. 

 
Example 13.21 

 
The velocity of efflux. A large water tank, 10.0 m high, springs a leak at the bottom of the tank. Find the velocity of 
the escaping water. 

Solution
 

The velocity of efflux, found from equation 13.68, is 
 

( )2
2 12 2 9.80 m/s (10.0 m)v gh= =   

= 14.0 m/s 
 

To go to this Interactive Example click on this sentence. 
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The Curving Baseball 
When a nonspinning ball is thrown through the air it follows the straight line path shown in figure 13.13(a). The 
air moves over the top and bottom of the ball with a speed vA. If the ball is now released with a downward spin, as 
shown in figure 13.13(b), then the spinning ball drags some air around with it. At the top of the ball, there is a 
velocity of the air vA to the left, and a velocity of the dragged air on the spinning baseball vS to the right. Thus, the 
relative velocity of the air with respect to the ball is vA − vS at the top of the ball. At the bottom of the ball the 
dragged air caused by the spin of the baseball vS is in the same direction as the velocity of the air vA moving past 
the ball. Thus, the relative velocity of the air with respect to the bottom of the ball is vA + vS. Hence, the velocity of 
the air at the top of the ball, vA − vS, is less than the velocity of the air at the bottom of the ball, vA + vS. By the 
Venturi principle, the pressure of the fluid is smaller where the velocity is greater. Thus, the pressure on the 
bottom of the ball is less than the pressure on the top, that is, 
 

ptop < pbottom 
 

But the pressure is related to the force by p = F/A. Hence, the force acting on the top of the ball is greater than the 
force acting on the bottom of the ball, that is, 

   

Figure 13.13  The curving baseball. 
 

Ftop < Fbottom 
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Therefore, the ball curves downward, or sinks, as it approaches the batter. By spinning the ball to the right (i.e., 
clockwise) as viewed from above, the ball curves toward the right. By spinning the ball to the left (i.e., 
counterclockwise) as viewed from above the ball, the ball curves toward the left. Spins about various axes through 
the ball can cause the ball to curve to the left and downward, to the left and upward, and so on. 
 
Lift on an Airplane Wing 
Another example of the Venturi effect can be seen with an aircraft wing, as shown in figure 13.14. The air flowing 
over the top of the wing has a greater distance to travel than the air flowing under the bottom of the wing. In order 
for the flow to be streamlined and for the air at the leading edge of the wing to arrive at the trailing edge at the 
same time, whether it goes above or below the wing, the velocity of the air over the top of the wing must be  

Figure 13.14  An airfoil. 
 
greater than the velocity of the air at the bottom of the wing. But by the Venturi principle, if the velocity is greater 
at the top of the wing, the pressure must be less there than at the bottom of the wing. Thus, p2 is greater than p1 
and therefore F2 < F1. That is, there is a net positive force F2 − F1 acting upward on the wing, producing lift on the 
airplane wing. 

 
 

Have you ever wondered . . . ? 
An Essay on the Application of Physics 
The Flow of Blood in the Human Body 

 
Human blood consists of a plasma, the fluid, and red and white corpuscles that are immersed in the 

plasma. Because blood is a fluid, the laws of physics can be applied to the flow of blood throughout the body. A 
schematic diagram of the circulatory system, which transports blood and oxygen around the body, is shown in 
figure 1. It consists of (1) the heart, which is the pump that is responsible for supplying the pressure to move the 
blood; (2) the lungs, which are the source of oxygen for all the cells of the body; (3) the arteries, which are 
connecting blood vessels that pass the blood from the heart to various parts of the body; (4) the capillaries, which 
are extremely small blood vessels that bring the oxygenated blood down to the layer of human cells; and (5) the 
veins, which are blood vessels that return deoxygenated blood to the heart to complete the circulatory system. 

The heart is the pump that circulates the blood throughout the body and a diagram of it is shown in figure 
2. Blood, containing carbon dioxide, returns to the heart by the veins and enters the right auricle. It is then 
pumped from the right ventricle to the pulmonary artery to the lungs where it dumps the waste carbon dioxide 
and picks up a new supply of oxygen. It then returns to the left auricle of the heart. The left ventricle then pumps 
this oxygen rich blood to the aorta, the main artery of the body, for distribution to the rest of the body. 

For a person at rest, the heart pumps approximately 5.00 liters of blood per minute (8.33 × 10−5 m3/s) at a 
rate of about 70 beats per minute. For a person engaged in very strenuous exercise the heart can pump up to 25.0 
liters of blood per minute (41.7 × 10−5 m3/s) at a rate of about 180 beats per minute. We can determine the speed of 
the blood as it enters the aorta by a generalization of equation 13.36, as  
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 ∆V  = AavA                             (13H.1) 
                                               ∆t             

 
where ∆V/∆t is the rate at which the blood is flowing from 
the heart into the aorta, AA is the cross-sectional area of the 
aorta, and vA is the speed of the blood in the aorta. The 
diameter of the aorta is about 2.00 cm giving an area of  
 

A = πr2 

= π(0.01 m)2 = 3.14 × 10−4 m2 
 

The speed of the blood in the aorta is therefore 
 

vA = ∆V/∆t                               (13H.2) 
     AA 

=  8.33 × 10−5 m3/s 
  3.14 × 10−4 m2 

= 0.265 m/s = 26.5 cm/s 
 

We can determine the speed of the blood in the capillaries 
by the continuity equation 13.47, as 
 

AAvA = AcvC                           (13H.3) 
 

where AA is the cross-sectional area of the aorta, which was 
just determined as 3.14 × 10−4 m2; vA is the speed of the 
blood in the aorta, which was just found to be 26.5 cm/s;  

                                                                                                    Figure 1  The circulatory system. 
 
and AC is the cross-sectional 
area of a capillary tube, which 
is quite small. However, 
because there are literally 
billions of these capillaries the 
effective cross-sectional area of 
all these capillaries combined 
is approximately 2500 × 10−4 
m2. The speed of the blood in 
the capillary becomes 

 
vC = AA vA  

   AC 

( )
4 2

4 2
3.14 10  m 26.5 cm/s
2500 10  m

−

−

 ×
=  × 

 

= 0.0333 cm/s 
 

Thus, the blood moves 
relatively slowly at the level of 
the capillaries. 

 
 
 

                                      Figure 2  The human heart. 
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Finally, we should note that the body controls the flow of blood through the arteries by muscles that 
surround the arteries. When the muscles contract, the diameter of the artery is reduced. From the equation of 
continuity, Av = constant. By decreasing the diameter of the artery, the cross-sectional area of the artery decreases 
and hence the speed of blood must increase through the artery. Alternatively, when the muscles are relaxed, the 
diameter of the artery increases to its former size, the cross-sectional area increases, and the speed of the blood 
decreases. With advancing age the arterial muscles lose some of this ability to contract, a situation called 
hardening of the arteries, and the control of blood flow is somewhat diminished. 

A good indication of how well the heart is 
functioning is obtained by measuring the pressure that the 
heart exerts when pumping blood, and when at rest. The 
device used to measure blood pressure is called a 
sphygmomanometer. (The word is derived from the Greek 
word sphygmos, meaning pulse, and the word manometer, 
which is a pressure measuring device. Hence, a 
sphygmomanometer is a device for measuring pulse 
pressure, or blood pressure.) The device consists of an air 
bag, called a cuff, that is wrapped around the upper arm of 
the patient at the level of the heart. A hand pump is used 
to inflate the cuff, and the pressure exerted by the cuff on 
the arm is measured by the mercury manometer. The 
pressure exerted by the cuff is increased until the pressure 
is great enough to collapse the brachial artery in the arm, 
cutting off the blood supply to the rest of the arm. A 
stethoscope is placed over the brachial artery and the 
pressure in the cuff is slowly decreased. When the pressure 
in the cuff becomes low enough, the pressure exerted by the 
heart is large enough to force the artery open and some 
blood squirts through. This blood flowing through the  

                                                                                       Figure 3  A nurse measures the blood pressure of  
                                                            a patient. 

 
narrow restriction becomes turbulent and makes a noise as it enters the open portion of the artery. The physician 
hears this noise through the stethoscope, and simultaneously observes the pressure indicated on the manometer, 
expressed in terms of mm of Hg. At this point the pressure exerted by the heart, called the systolic pressure, is 
equal to the pressure exerted by the cuff. A normal systolic pressure is around 120 mm of Hg. 

As the pressure in the cuff is decreased the turbulent flow noise is still heard in the stethoscope until the 
lowest pressure exerted by the heart, the diastolic pressure, is equal to the pressure exerted by the cuff. At this 
point the artery is completely open and the blood is no longer in turbulent flow and the characteristic noise 
disappears. The pressure is read from the mercury manometer at this point. This pressure is the pressure that the 
heart exerts when it is at rest. The normal diastolic pressure is around 80 mm of Hg. The combined systolic and 
diastolic pressures are usually indicated in the form 120/80. If the systolic pressure becomes too high, above about 
150 mm of Hg, the patient has high blood pressure. If the systolic pressure becomes too large for a long period of 
time, damage can be done to the different organs of the body. If the systolic pressure becomes extremely large, 
arteries in the brain can rupture and the person will have a stroke. If the diastolic pressure exceeds 90 mm of Hg, 
the person is also said to have high blood pressure. This type of high blood pressure causes eventual damage to the 
heart itself, because it is operating under high pressures even while it is supposed to be resting. 

For the type of streamlined flow considered in this chapter the flow of fluid per unit time was shown to be 
 

∆V  = Av                                                                                (13.36)  
                                                                                                ∆t          

 
which is essentially the equation of continuity. In this type of flow the speed v was the same throughout the cross-
sectional area A considered. However, some fluids have a significant frictional force between the layers of the fluid, 
and this frictional effect, known as the viscosity of the fluid, must then be taken into account. A fluid in which 
frictional effects are significant is called a viscous fluid and the fluid flow is referred to as laminar flow, flow in 
layers. For such viscous fluids the speed v is not the same throughout the cross-sectional area A. The maximum 
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speed occurs at the center of the pipe or tube, whereas the speed is essentially zero at the walls of the pipe. 
Experimental work by J. L. Poiseuille (1799-1869), a French scientist, and subsequently confirmed by theory, 
showed that the flow rate for viscous fluids is given by 
 

∆V = (∆p)πR4                                                                         (13H.4) 
                                                                                              ∆t         8ηL 

 
where ∆p is the pressure difference between both ends of the pipe, R is the radius of the pipe, L is the length of the 
pipe, and η is the coefficient of viscosity of the fluid. Equation 13H.4 is called Poiseuille’s equation. Note that the 
flow rate is inversely proportional to the coefficient of viscosity of the fluid. Thus, a very viscous fluid (high value 
of η) flows very slowly compared to a fluid of low viscosity. That is, everything else being equal, molasses flows at a 
slower rate than water. Human blood is a viscous fluid, the greater the number of red corpuscles in the blood the 
greater the viscosity. The viscosity of human blood varies from about 1.50 × 10−3 (N/m2)s for plasma, to about 4.00 
× 10−3 (N/m2)s for whole blood. Also note that the flow rate depends on the fourth power of the radius of the pipe. If 
the radius is doubled, the flow rate is multiplied by a factor of 16. This relation is important in the selection of the 
size of hypodermic needles. 

 
Example 13H.1 

 
A blood transfusion. A person is receiving a blood transfusion. The bottle containing the blood is elevated 75.0 cm 
above the arm of the person. The needle is 4.00 cm long and has a diameter of 0.500 mm. Find the rate at which 
the blood flows through the needle. 

Solution
 

The rate of flow of blood is found from equation 13H.4, where η, the viscosity of blood, is 4.00 × 10−3 Ns/m2. Let us 
assume that the total pressure differential is obtained by the effects of gravity from the hydrostatic equation, 
equation 13.7. The density of blood is about 1050 kg/m3. Thus, 
 

∆p = ρgh 
= (1050 kg/m3)(9.80 m/s2)(0.750 m) 

      = 7.72 × 103 Pa 
The blood flow rate now obtained is 

∆V = (∆p)πR4                                                                          (13H.4) 
                                                                                             ∆t        8ηL 

= (7.72 × 103 N/m2)(π)(0.250 × 10−3 m)4 
8(4.00 × 10−3 Ns/m2)(0.0400 m) 

= 7.40 × 10−8 m3/s 
 

 
 
 

The Language of Physics 
 

Fluids 
A fluid is any substance that can 
flow. Hence, liquids and gases are 
both considered to be fluids (p. ). 
 
Fluid statics or hydrostatics 
The study of fluids at rest (p. ). 
 
Fluid dynamics or 
hydrodynamics 
The study of fluids in motion (p. ). 

Density 
The amount of mass in a unit 
volume of a substance (p. ). 
 
Pressure 
The magnitude of the normal force 
acting per unit surface area (p. ). 
 
The hydrostatic equation 
An equation that gives the pressure 
of a fluid at a particular depth (p. ). 

 
Barometer 
An instrument that measures 
atmospheric pressure (p. ). 
 
Gauge pressure 
The pressure indicated on a 
pressure measuring gauge. It is 
equal to the absolute pressure 
minus normal atmospheric pressure 
(p. ). 
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Pascal’s principle 
If the pressure at any point in an 
enclosed fluid at rest is changed, 
the pressure changes by an equal 
amount at all points in the fluid 
(p. ). 
 
Archimedes’ principle 
A body immersed in a fluid is 
buoyed up by a force that is equal to 
the weight of the fluid displaced. A 
body floats when the weight of the 
body is equal to the weight of the 
fluid displaced (p. ). 
 
Law of conservation of mass 

In any ordinary mechanical or 
chemical process, mass is neither 
created nor destroyed (p. ). 
 
The equation of continuity 
An equation based on the law of 
conservation of mass, that indicates 
that when the cross-sectional area 
of a pipe gets smaller, the velocity 
of the fluid must become greater. 
Conversely, when the cross-
sectional area increases, the 
velocity of the fluid must decrease 
(p. ). 
 
Bernoulli’s theorem 
The sum of the pressure, the 
potential energy per unit volume, 
and the kinetic energy per unit 

volume at any one location of the 
fluid is equal to the sum of the 
pressure, the potential energy per 
unit volume, and the kinetic energy 
per unit volume at any other 
location in the fluid, for a 
nonviscous, incompressible fluid in 
streamlined flow (p. ). 
 
Venturi effect 
The effect of the decrease in 
pressure with the increase in speed 
of the fluid in a horizontal pipe (p. ). 
 
Venturi meter 
A device that uses the Venturi 
effect to measure the velocity of 
fluids in pipes (p. ). 
 

 
Summary of Important Equations 

 
Density         ρ =  m                 (13.1) 
                            V  
Mass            m = ρV                 (13.2) 
 
Pressure         p =  F                (13.3) 
                              A   
 
Hydrostatic equation 

                p = ρgh               (13.7) 
 
Force              F = pA              (13.12) 
 
Absolute and gauge pressure 

      pabs = pgauge + p0       (13.15) 

 
Hydraulic lift    F =  A f          (13.18) 
                                   a 
                          y1 =  A y2            (13.23) 
                                   a 
  
Archimedes’ principle 
Buoyant force = Weight of water 

 displaced  (13.30) 
 
Mass flow rate    ∆m = ρAv    (13.38) 
                               ∆t              
 
Equation of continuity 

    A1v1 = A2v2           (13.47) 

Av = constant         (13.49) 
 
Work done in moving a fluid 

              W = p∆V               (13.50) 
 
Bernoulli’s theorem 
p1 + ρgh1 +  1 ρv12 =  
                    2       p2 + ρgh2 +  1  ρv22 

                                       2 
(13.63) 

and 
p + ρgh +  1 ρv2 = constant   (13.64) 

                   2      

 
 Questions for Chapter 13 

 
1. Discuss the differences 

between solids, liquids, and gases. 
*2. Hieron II, King of Syracuse 

in ancient Greece, asked his 
relative Archimedes to determine if 
the gold crown made for him by the 
local goldsmith, was solid gold or a 
mixture of gold and silver. How did 
Archimedes, or how could you, 
determine whether or not the crown 
was pure gold? 

3. When you fly in an airplane 
you find that your ears keep 
“popping” when the plane is 

ascending or descending. Explain 
why. 

4. Using a barometer and the 
direction of the wind, describe how 
you could make a reasonable 
weather forecast. 

*5. A pilot uses an aneroid 
barometer as an altimeter that is 
calibrated to a standard 
atmosphere. What happens to the 
aircraft if the temperature of the 
atmosphere does not coincide with 
the standard atmosphere? 

*6. Does a sphygmomanometer 
measure gauge pressure or absolute 
pressure? 

7. How would you define a 
mechanical advantage for the 
hydraulic lift? 

8. In example 13.13, could the 
iron block sink to a depth of 39.4 cm 
in a pool of water 100 cm deep and 
then float at that point? Why or 
why not? 

9. How does eating foods very 
high in cholesterol have an effect on 
the arteries and hence the flow of 
blood in the body? 
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*10. Why is an intravenous 
bottle placed at a height h above 

the arm of a patient? 

 
Problems for Chapter 13 

 
13.2  Density 

1. A cylinder 3.00 cm in 
diameter and 3.00 cm high has a 
mass of 15.0 g. What is its density? 

2.  Find the mass of a cube of 
iron 10.0 cm on a side. 

3. A gold ingot is 50.0 cm by 
20.0 cm by 10.0 cm. Find (a) its 
mass and (b) its weight. 

4. Find the mass of the air in a 
room 6.00 m by 8.00 m by 3.00 m. 

5. Assume that the earth is a 
sphere. Compute the average 
density of the earth. 

6. Find the weight of 1.00 liter 
of air. 

7. A crown, supposedly made of 
gold, has a mass of 8.00 kg. When it 
is placed in a full container of 
water, 691 cm3 of water overflows. 
Is the crown made of pure gold or is 
it mixed with some other materials? 

8. A solid brass cylinder 10.0 cm 
in diameter and 25.0 cm long is 
soldered to a solid iron cylinder 10.0 
cm in diameter and 50.0 cm long. 
Find the weight of the combined 
cylinder. 

9. An annular cylinder of 2.50-
cm inside radius and 4.55-cm 
outside radius is 10.5 cm high. If 
the cylinder has a mass of 5.35 kg, 
find its density. 

 
13.3  Pressure 

10. As mentioned in the text, a 
non-SI unit of pressure is the torr, 
named after Torricelli, which is 
equal to the pressure exerted by a 
column of mercury 1 mm high. 
Express a pressure of 2.53 × 105 Pa 
in torrs. 

*11. From the knowledge of 
normal atmospheric pressure at the 
surface of the earth, compute the 
approximate mass of the 
atmosphere. 

12. A barometer reads a height 
of 72.0 cm of Hg. Express this 
atmospheric pressure in terms of 

(a) in. of Hg, (b) mb, (c) lb/in.2, and 
(d) Pa. 

13. (a) A “high” pressure area of 
1030 mb moves into an area. What 
is this pressure expressed in N/m2 
and lb/in.2? (b) A “low” pressure 
area of 980 mb moves into an area. 
What is this pressure expressed in 
N/m2 and lb/in.2? 

14. Normal systolic blood 
pressure is approximately 120 mm 
of Hg and normal diastolic pressure 
is 80 mm of Hg. Express these 
pressures in terms of Pa and lb/in.2. 

15. The point of a 10-penny nail 
has a diameter of 1.00 mm. If the 
nail is driven into a piece of wood 
with a force of 150 N, find the 
pressure that the tip of the nail 
exerts on the wood. 

16. The gauge pressure in the 
tires of your car is 2.42 × 105 N/m2. 
What is the absolute pressure of the 
air in the tires? 

17. What is the water pressure 
and the absolute pressure in a 
swimming pool at depths of (a) 1.00 
m, (b) 2.00 m, (c) 3.00 m, and 
(d) 4.00 m? 

18. Find the force exerted by 
normal atmospheric pressure on the 
top of a table 1.00 m high, 1.00 m 
long, 0.75 m wide, and 0.10 m thick. 
What is the force on the underside 
of the table top exerted by normal 
atmospheric pressure? 

19. A portion of the roof of a 
home is 12.2 m long and 6.50 m 
high, and makes an angle of 40.00 
with the horizontal. What force is 
exerted on the top of this roof by 
normal atmospheric pressure?   

20. If normal atmospheric 
pressure can support a column of 
Hg 76.0 cm high, how high a 
column will it support of (a) water, 
(b) benzene, (c) alcohol, and 
(d) glycerine? 

21. What is the minimum 
pressure of water entering a 
building if the pressure at the 

second floor faucet, 4.60 m above 
the ground, is to be 3.45 × 104 N/m2 
? 

22. The water main pressure 
entering a house is 31.0 N/cm2. 
What is the pressure at the second 
floor faucet, 6.00 m above the 
ground? What is the maximum 
height of any faucet such that water 
will still flow from it? 

23. A barometer reads 76.0 cm 
of Hg at the base of a tall building. 
The barometer is carried to the roof 
of the building and now reads 75.6 
cm of Hg. If the average density of 
the air is 1.28 kg/m3, what is the 
height of the building? 

24. The hatch of a submarine is 
100 cm by 50.0 cm. What force is 
exerted on this hatch by the water 
when the submarine is 50.0 m 
below the surface? 

 
13.4  Pascal’s Principle 

25. In the hydraulic lift of figure 
13.5, the diameter d1 = 10.0 cm and 
d2 = 50.0 cm. If a force of 10.0 N is 
applied at the small piston, (a) what 
force will appear at the large 
piston? (b) If the large piston is to 
move through a height of 2.00 m, 
what must the total displacement of 
the small piston be? 

26. In a hydraulic lift, the large 
piston exerts a force of 25.0 N when 
a force of 3.50 N is applied to the 
smaller piston. If the smaller piston 
has a radius of 12.5 cm, and the lift 
is 65.0% efficient, what must be the 
radius of the larger piston? 

27. The theoretical mechanical 
advantage (TMA) of a hydraulic lift 
is equal to the ratio of the force that 
you get out of the lift to the force 
that you must put into the lift. 
Show that the theoretical 
mechanical advantage of the 
hydraulic lift is given by 

TMA = Fout = Aout = yin 
                 Fin     Ain      yout 
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where Aout is the area of the output 
piston, Ain is the area of the input 
piston, yin is the distance that the 
input piston moves, and yout is the 
distance that the output piston 
moves. 

 
13.5  Archimedes’ Principle 

28. Find the weight of a cubic 
block of iron 5.00 cm on a side. This 
block is now hung from a spring 
scale such that the block is totally 
submerged in water. What would 
the scale indicate for the weight 
(called the apparent weight) of the 
block? 

 
Diagram for problem 28. 

 
29. A copper cylinder 5.00 cm 

high and 3.00 cm in diameter is 
hung from a spring scale such that 
the cylinder is totally submerged in 
ethyl alcohol. Find the apparent 
weight of the block. 

30. Find the buoyant force on a 
brass block 10.5 cm long by 12.3 cm 
wide by 15.0 cm high when placed 
in (a) water, (b) glycerine, and 
(c) mercury. 

31. If the iron block in example 
13.13 were placed in a pool of 
mercury instead of the water would 
it float or sink? If it floats, to what 
depth does it sink before it floats? 

*32. A block of wood sinks 8.00 
cm in pure water. How far will it 
sink in salt water? 

33. A weather balloon contains 
33.5 m3 of helium at the surface of 
the earth. Find the largest load this 
balloon is capable of lifting. The 
density of helium is 0.1785 kg/m3. 

 
13.6  The Equation of 
Continuity 

34. A 2.50-cm pipe is connected 
to a 0.900-cm pipe. If the velocity of 
the fluid in the 2.50-cm pipe is 1.50 
m/s, what is the velocity in the 
0.900-cm pipe? How much water 
flows per second from the 0.900-cm 
pipe? 

35. A duct for a home air-
conditioning unit is 35.0 cm in 
diameter. If the duct is to remove 
the air in a room 9.00 m by 6.00 m 
by 3.00 m high every 15.0 min, 
what must the velocity of the air in 
the duct be? 

 
13.7  Bernoulli’s Theorem 

 
36. Water enters the house from 

a main at a pressure of 1.5 × 105 Pa 
at a speed of 40.0 cm/s in a pipe 
4.00 cm in diameter. What will be 
the pressure in a 2.00-cm pipe 
located on the second floor 6.00 m 
high when no water is flowing from 
the upstairs pipe? When the water 
starts flowing, at what velocity will 
it emerge from the upstairs pipe? 

37. A can of water 30.0 cm high 
sits on a table 80.0 cm high. If the 
can develops a leak 5.00 cm from 
the bottom, how far away from the 
table will the water hit the floor? 

38. Water rises to a height h01 = 
35.0 cm, and h02 = 10.0 cm, in a 
Venturi meter, figure 13.11(b). The 
diameter of the first pipe is 4.00 cm, 
whereas the diameter of the second 
pipe is 2.00 cm. What is the velocity 
of the water in the first and second 
pipe? What is the mass flow rate 
and the volume flow rate? 

 
Additional Problems 

39. A car weighs 12,500 N and 
the gauge pressure of the air in 
each tire is 2.00 × 105 N/m2. 
Assuming that the weight of the car 
is evenly distributed over the four 
tires, (a) find the area of each tire 
that is flat on the ground and (b) if 
the width of the tire is 15.0 cm, find 
the length of the tire that is in 
contact with the ground. 

40. A certain portion of a 
rectangular, concrete flood wall is 
12.0 m high and 30.0 m long. 
During severe flooding of the river, 
the water level rises to a height of 
10.0 m. Find (a) the water pressure 
at the base of the flood wall, (b) the 
average water pressure exerted on 
the flood wall, and (c) the average 
force exerted on the flood wall by 
the water. 

41. The Vehicle Assembly 
Building at the Kennedy Space 
Center is 160 m high. Assuming the 
density of air to be a constant, find 
the difference in atmospheric 
pressure between the ground floor 
and the ceiling of the building. 

42. If the height of a water 
tower is 20.0 m, what is the 
pressure of the water as it comes 
out of a pipe at the ground? 

*43. A 20.0-g block of wood 
floats in water to a depth of 5.00 
cm. A 10.0-g block is now placed on 
top of the first block, but it does not 
touch the water. How far does the 
combination sink? 

Diagram for problem 43. 
 
*44. An iron ball, 4.00 cm in 

diameter, is dropped into a tank of 
water. Assuming that the only 
forces acting on the ball are gravity 
and the buoyant force, determine 
the acceleration of the ball. Discuss 
the assumption made in this 
problem. 

*45. If 80% of a floating cylinder 
is beneath the water, what is the 
density of the cylinder? 

*46. From knowing that the 
density of an ice cube is 920 kg/m3 
can you determine what percentage 
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of the ice cube will be submerged 
when in a glass of water? 

*47. Find the equation for the 
length of the side of a cube of 
material that will give the same 
buoyant force as (a) a sphere of 
radius r and (b) a cylinder of radius 
r and height h, if both objects are 
completely submerged. 

*48. Find the radius of a solid 
cylinder that will experience the 
same buoyant force as an annular 
cylinder of radii r2 = 4.00 cm and r1 
= 3.00 cm. Both cylinders have the 
same height h. 

*49. A cone of maximum radius 
r0 and height h0, is placed in a fluid, 
as shown in the diagram. The 
volume of a right circular cone is 
given by  

Vcone =  1  πr2h 
    3   

 
(a) Find the equation for the 

weight of the cone. (b) If the cone 
sinks so that a height h1 remains 
out of the fluid, find the equation 
for the volume of the cone that is 
immersed in the fluid. (c) Find the 
equation for the buoyant force 
acting on the cone. (d) Show that 
the height h1 that remains out of 
the fluid is given by 

 
( )3

1 1 /  c fh hoρ ρ= −  

 
where ρc is the density of the cone 
and ρf is the density of the fluid. 
(e) If we approximate an iceberg by 
a cone, find the percentage height of 
the iceberg that sticks out of the 
salt water, and the percentage 
volume of the iceberg that is below 
the water. 

  
Diagram for problem 49. 

 
*50. A can 30.0 cm high is filled to 
the top with water. Where should a 
hole be made in the side of the can 
such that the escaping water 
reaches the maximum distance x in 
the horizontal direction? (Hint: 
calculate the distance x for values of 
h from 0 to 30.0 cm in steps of 5.00 
cm.)                             

 
Diagram for problem 50. 

 
51. In the flow of fluid from an 

orifice in figure 13.12, it was 
assumed that the vertical motion of 
the water at the top of the tank was 
very small, and hence v1 was set 
equal to zero. Show that if this 
assumption does not hold, the 
velocity of the fluid from the orifice 
v2 can be given by 

 

( )2 4 4
2 1

2
1 /

ghv
d d

=
−

 

  
where d1 is the diameter of the tank 
and d2 is the diameter of the orifice. 

*52. A wind blows over the roof 
of a house at 136 km/hr. What is 
the difference in pressure acting on 
the roof because of this velocity? 

(Hint: the air inside the attic is still, 
that is, v = 0 inside the house.) 

*53. If air moves over the top of 
an airplane wing at 150 m/s and 
120 m/s across the bottom of the 
wing, find the difference in pressure 
between the top of the wing and the 
bottom of the wing. If the area of 
the wing is 15.0 m2, find the force 
acting upward on the wing. 

 
Interactive Tutorials 

54. Buoyant force. Find the 
buoyant force BF and apparent 
weight AW of a solid sphere of 
radius r = 0.500 m and density ρ = 
7.86 × 103 kg/m3, when immersed 
in a fluid whose density is ρf = 1.00 
× 103 kg/m3. 

55. Archimedes’ principle. A 
solid block of wood of length L = 
15.0 cm, width W = 20.0 cm, and 
height h0 = 10.0 cm, is placed into a 
pool of water. The density of the 
block is 680 kg/m3. (a) Will the 
block sink or float? (b) If it floats, 
how deep will the block be 
submerged when it floats? (c) What 
percentage of the original volume is 
submerged? 

56. The equation of continuity 
and flow rate. Water flows in a pipe 
of diameter d1 = 4.00 cm at a 
velocity of 35.0 cm/s, as shown in 
figure 13.9. The diameter of the 
tapered part of the pipe is d2 = 2.55 
cm. Find (a) the velocity of the fluid 
in the tapered part of the pipe, 
(b) the mass flow rate, and (c) the 
volume flow rate of the fluid. 

57. Bernoulli’s theorem. Water 
flows in an elevated, tapered pipe, 
as shown in figure 13.10. The first 
part of the pipe is at a height h1 = 
3.58 m above the ground and the 
water is at a pressure p1 = 5000 
N/m2, the diameter d1 = 25.0 cm, 
and the velocity of the water is v1 = 
0.553 m/s. If the diameter of the 
tapered part of the pipe is d2 = 10.0 
cm and the height of the pipe above 
the ground is h2 = 1.25 m, find 
(a) the velocity v2 of the fluid in the 
tapered part of the pipe and (b) the 
pressure p2 of the water in the 
tapered part of the pipe. 
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 To go to these Interactive 
Tutorials click on this sentence. 

 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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