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Chapter 12  Wave Motion 
 

"Query  17. If a stone be thrown into stagnating water, the waves excited thereby 
continue some time to arise in the place where the stone fell into the water, and are 
propagated from thence in concentric circles upon the surface of the water to great 
distances."         Isaac Newton 

 
12.1  Introduction 
Everyone has observed that when a rock is thrown into a pond of water, waves are produced that move out from 
the point of the disturbance in a series of concentric circles. The wave is a propagation of the disturbance through 
the medium without any net displacement of the 
medium. In this case the rock hitting the water 
initiates the disturbance and the water is the 
medium through which the wave travels. Of the 
many possible kinds of waves, the simplest to 
understand, and the one that we will analyze, is 
the wave that is generated by an object executing 
simple harmonic motion. As an example, 
consider the mass m executing simple harmonic 
motion in figure 12.1. Attached to the right of m 
is a very long spring. The spring is so long that it 
is not necessary to consider what happens to the 
spring at its far end at this time. When the mass 
m is pushed out to the position x = A, the portion 
of the spring immediately to the right of A is 
compressed. This compression exerts a force on 
the portion of the spring immediately to its right, 
thereby compressing it. It in turn compresses 
part of the spring to its immediate right. The 
process continues with the compression moving 
along the spring, as shown in figure 12.1. As the 
mass m moves in simple harmonic motion to the 
displacement x = −A, the spring immediately to 
its right becomes elongated. We call the 
elongation of the spring a rarefaction; it is the 
converse of a compression. As the mass m 
returns to its equilibrium position, the 
rarefaction moves down the length of the spring. 
The combination of a compression and 
rarefaction comprise part of a longitudinal wave. 
A longitudinal wave is a wave in which the 
particles of the medium oscillate in simple 

                                                                                    Figure 12.1  Generation of a longitudinal wave. 
 
harmonic motion parallel to the direction of the wave propagation. The compressions and rarefactions propagate 
down the spring, as shown in figure 12.1(f). The mass m in simple harmonic motion generated the wave and the 
wave moves to the right with a velocity v. Every portion of the medium, in this case the spring, executes simple 
harmonic motion around its equilibrium position. The medium oscillates back and forth with motion parallel to the 
wave velocity. Sound is an example of a longitudinal wave. 

Another type of wave, and one easier to visualize, is a transverse wave. A transverse wave is a wave in 
which the particles of the medium execute simple harmonic motion in a direction perpendicular to its direction of 
propagation. A transverse wave can be generated by a mass having simple harmonic motion in the vertical 
direction, as shown in figure 12.2. A horizontal string is connected to the mass as shown. As the mass executes 
simple harmonic motion in the vertical direction, the end of the string does likewise. As the end moves up and 
down, it causes the particle next to it to follow suit. It, in turn, causes the next particle to move. Each particle 
transmits the motion to the next particle along the entire length of the string. The resulting wave propagates in 
the horizontal direction with a velocity v, while any one particle of the string executes simple harmonic motion in 
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the vertical direction. The 
particle of the string is moving 
perpendicular to the direction 
of wave propagation, and is 
not moving in the direction of 
the wave. 

Using figure 12.3, let us 
now define the characteristics 
of a transverse wave moving 
in a horizontal direction. 

The displacement of any 
particle of the wave is the 
displacement of that particle 
from its equilibrium position 
and is measured by the 
vertical distance y. 

                                                     Figure 12.2  A transverse wave. 
 

The amplitude of the wave is the maximum value of the 
displacement and is denoted by A in figure 12.3. 

The wavelength of a wave is the distance, in the direction of 
propagation, in which the wave repeats itself and is denoted by λ. 

The period T of a wave is the time it takes for one complete 
wave to pass a particular point. 

The frequency f of a wave is defined as the number of waves 
passing a particular point per second. It is obvious from the 
definitions that the frequency is the reciprocal of the period, that is, 

 
f =  1                                             (12.1) 

                                                             T       
 

                                                                                                             Figure 12.3  Characteristics of a simple wave. 
 

The speed of propagation of the wave is the distance the wave travels in unit time. Because a wave of one 
wavelength passes a point in a time of one period, its speed of propagation is 

 
v = distance traveled  =  λ                                                                     (12.2) 

                                                                                        time                T 
Using equation 12.1, this becomes 

 v = λf                                                                                  (12.3) 
 

Equation 12.3 is the fundamental equation of wave propagation. It relates the speed of the wave to its wavelength 
and frequency. 

 
Example 12.1 

 
Wavelength of sound. The human ear can hear sounds from a low of 20.0 Hz up to a maximum frequency of about 
20,000 Hz. If the speed of sound in air at a temperature of 0 0C is 331 m/s, find the wavelengths associated with 
these frequencies. 

Solution
 

The wavelength of a sound wave, determined from equation 12.3, is 
 

λ =  v   
    f 

=     331 m/s     
       20.0 cycles/s 
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= 16.6 m 
and 

λ =  v   
    f 

 =       331 m/s        
          20,000 cycles/s 

= 0.0166 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 
The types of waves we consider in this chapter are called mechanical waves. The wave causes a transfer of 

energy from one point in the medium to another point in the medium without the actual transfer of matter between 
these points. Another type of wave, called an electromagnetic wave, is capable of traveling through empty space 
without the benefit of a medium. This type of wave is extremely unusual in this respect and we will treat it in 
more detail in chapters 25 and 29. 
 
 
12.2  Mathematical Representation of a Wave 
The simple wave shown in figure 12.3 is a picture of a transverse wave in a string at a particular time, let us say 
at t = 0. The wave can be described as a sine wave and can be expressed mathematically as 
 

y = A sin x                                                                           (12.4) 
 

The value of y represents the displacement of the string at every position x along the string, and A is the 
maximum displacement, and is called the amplitude of the wave. Equation 12.4 is plotted in figure 12.4. We see 
that the wave repeats itself for 
x = 3600 = 2π rad. Also plotted 
in figure 12.4 is y = A sin 2x 
and y = A sin 3x. Notice from 
the figure that y = A sin 2x 
repeats itself twice in the same 
interval of 2π that y = A sin x 
repeats itself only once. Also 
note that y = A sin 3x repeats 
itself three times in that same 
interval of 2π. The wave y = A 
sin kx would repeat itself k 
times in the interval of 2π. We 
call the space interval in which 
y = A sin x repeats itself its 
wavelength, denoted by λ1. 
Thus, when x = λ1 = 2π, the 
wave starts to repeat itself. 
The wave represented by y = A 
sin 2x repeats itself for 2x = 2π,  

                                                 Figure 12.4  Plot of A sin x, A sin 2x, and A sin 3x. 
 
and hence its wavelength is 

λ2 = x = 2π = π 
       2 

 
The wave y = A sin 3x repeats itself when 3x = 2π, hence its wavelength is 
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λ3 = x = 2π  
              3 

Using this notation any wave can be represented as 
 y = A sin kx                                                                            (12.5) 

 
where k is a number, called the wave number. The wave repeats itself whenever 
 

kx = 2π                                                                                 (12.6) 
 

Because the value of x for a wave to repeat itself is its wavelength λ, equation 12.6 can be written as 
 

kλ = 2π                                                                               (12.7) 
We can obtain the wavelength λ from equation 12.7 as 

 λ = 2π                                                                               (12.8) 
                                                                                                      k      

 
Note that equation 12.8 gives the wavelengths in figure 12.4 by letting k have the values 1, 2, 3, and so forth, that 
is, 

λ1 = 2π 
       1 

λ2 = 2π 
       2 

λ3 = 2π 
       3 

λ4 = 2π 
       4 

 
We observe that the wave number k is the number of waves contained in the interval of 2π. We can express the wave 
number k in terms of the wavelength λ by rearranging equation 12.8 into the form 
 

 k = 2π                                                                                  (12.9) 
                                                                                                           λ           

 
Note that in order for the units to be consistent, the wave number must have units of m−1. The quantity x in 
equation 12.5 represents the location of any point on the string and is measured in meters. The quantity kx in 
equation 12.5 has the units (m−1m = 1) and is thus a dimensionless quantity and represents an angle measured in 
radians. Also note that the wave number k is a different quantity than the spring constant k, discussed in chapter 
11. 

Equation 12.5 represents a snapshot of the wave at t = 0. That is, it gives the displacement of every 
particle of the string at time t = 0. As time passes, this wave, and every point on it, moves. Since each particle of 
the string executes simple harmonic motion in the vertical, we can look at the particle located at the point x = 0 
and see how that particle moves up and down with time. Because the particle executes simple harmonic motion in 
the vertical, it is reasonable to represent the displacement of the particle of the string at any time t as 

 
 y = A sin ωt                                                                           (12.10) 

 
just as a simple harmonic motion on the x-axis was represented as x = A cos ωt in chapter 11. The quantity t is the 
time and is measured in seconds, whereas the quantity ω is an angular velocity or an angular frequency and is 
measured in radians per second. Hence the quantity ωt represents an angle measured in radians. The 
displacement y repeats itself when t = T, the period of the wave. Since the sine function repeats itself when the 
argument is equal to 2π, we have 

ωT = 2π                                                                               (12.11) 
The period of the wave is thus 

T = 2π 
       ω 

 
but the period of the wave is the reciprocal of the frequency. Therefore, 
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T =  1  = 2π 
        f      ω 

 
Solving for the angular frequency ω, in terms of the frequency f, we get 
 

 ω = 2πf                                                                              (12.12) 
 

Notice that the wave is periodic in both space and time. The space period is represented by the wavelength λ, and the 
time by the period T. 

Equation 12.5 represents every point on the string at t = 0, while equation 12.10 represents the point x = 0 
for every time t. Obviously the general equation for a wave must represent every point x of the wave at every time 
t. We can arrange this by combining equations 12.5 and 12.10 into the one equation for a wave given by 

 
 y = A sin(kx − ωt)                                                                      (12.13) 

 
The reason for the minus sign for ωt is explained below. We can find the relation between the wave number k and 
the angular frequency ω by combining equations 12.7 and 12.11 as 
 

kλ = 2π                                                                                 (12.7) 
ωT = 2π                                                                               (12.11) 

Thus, 
ωT = kλ 

and 
 ω = kλ 
      T 

 
However, the wavelength λ, divided by the period T is equal to the velocity of propagation of the wave v, equation 
12.2. Therefore, the angular frequency becomes 

 ω = kv                                                                             (12.14) 
Now we can write equation 12.13 as 

y = A sin(kx − kvt)                                                                   (12.15) 
or 

y = A sin k(x − vt)                                                                   (12.16) 
 

The minus sign before the velocity v determines the direction of propagation of the wave. As an example, 
consider the wave 

y1 = A sin k(x − vt)                                                                   (12.17) 
 

We will now see that this is the equation of a wave traveling to the right with a speed v at any time t. A little later 
in time, ∆t, the wave has moved a distance ∆x to the right such that the same point of the wave now has the 
coordinates x + ∆x and t + ∆t, figure 12.5(a). Then we represent the wave as 

 
y2 = A sin k[(x + ∆x) − v(t + ∆t)] 

or 
y2 = A sin k[(x − vt) + ∆x − v∆t]                                                            (12.18) 

 
If this equation for y2 is to represent the same wave as y1, then y2 must be equal to y1. It is clear from equations 
12.18 and 12.17 that if 

v = ∆x                                                                              (12.19) 
           ∆t 

the velocity of the wave to the right, then 
∆x − v∆t = ∆x − ∆x ∆t = 0 

                ∆t 
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and y2 is equal to y1. Because the term ∆x − v∆t is indeed equal to zero, y2 is the same wave as y1 only displaced a 
distance ∆x to the right in the time ∆t. Thus, equation 12.17 represents a wave traveling to the right with a 
velocity of propagation v. 

A wave traveling to the 
left is depicted in figure 12.5(b) 
and we will begin by 
representing it as 

 
y3 = A sin k(x − vt)     (12.20) 

 
In a time ∆t, the wave y3 moves a 
distance −∆x to the left. The 
coordinates (x,t) of a point on y3 
now has the coordinates x − ∆x 
and t + ∆t for the same point on 
y4. We can now write the new 
wave as 
 

y4 = A sin k[(x − ∆x) − v(t + ∆t)] 
 
or 
 
y4 = A sin k[(x − vt) + (−∆x − v∆t)]                              

(12.21) 
 
The wave y4 represents the same 
wave as y3, providing −∆x − v∆t = 
0 in equation 12.21. If v = −∆x/∆t, 
the velocity of the wave to the 
left, then 
 

                                                    Figure 12.5  A traveling wave. 
 

0xx v t x t
t

−∆ −∆ − ∆ = −∆ − ∆ = ∆ 
 

 
Thus, −∆x − v∆t is indeed equal to zero, and wave y4 represents the same wave as y3 only it is displaced a distance 
−∆x to the left in the time ∆t. Instead of writing the equation 12.20 as a wave to the left with v a negative number, 
it is easier to write the equation for the wave to the left as 
 

y = A sin k(x + vt)                                                                      (12.22) 
 

where v is now a positive number. Therefore, equation 12.22 represents a wave traveling to the left, with a speed 
v. In summary, a wave traveling to the right can be represented either as 
 

 y = A sin k(x − vt)                                                                      (12.23) 
or 

 y = A sin(kx − ωt)                                                                      (12.24) 
 

and a wave traveling to the left can be represented as either 
 

y = A sin k(x + vt)                                                                    (12.25) 
or 

 y = A sin(kx + ωt)                                                                    (12.26) 
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Example 12.2 
 

Characteristics of a wave. A particular wave is given by 
 

y = (0.200 m) sin[(0.500 m−1)x − (8.20 rad/s)t] 
 

Find (a) the amplitude of the wave, (b) the wave number, (c) the wavelength, (d) the angular frequency, (e) the 
frequency, (f) the period, (g) the velocity of the wave (i.e., its speed and direction), and (h) the displacement of the 
wave at x = 10.0 m and t = 0.500 s. 

Solution
 

The characteristics of the wave are determined by writing the wave in the standard form 
 

y = A sin(kx − ωt) 
 

a.  The amplitude A is determined by inspection of both equations as A = 0.200 m. 
 
b.  The wave number k is found from inspection to be k = 0.500 m−1 or a half a wave in an interval of 2π. 
 
c.  The wavelength λ, found from equation 12.8, is 
 

λ = 2π =       2π       
                                                                                           k      0.500 m−1 

= 12.6 m 
d.  The angular frequency ω, found by inspection, is 

          ω = 8.20 rad/s 
 

e.  The frequency f of the wave, found from equation 12.12, is 
 

f =  ω  = 8.20 rad/s = 1.31 cycles/s = 1.31 Hz 
                                                                  2π      2π rad 

 
f.  The period of the wave is the reciprocal of the frequency, thus 
 

T =  1  =       1       = 0.766 s 
                                                                                  f      1.31 Hz 

 
g.  The speed of the wave, found from equation 12.14, is 
 

v =  ω  = 8.20 rad/s = 16.4 m/s  
                                                                               k      0.500 m−1 
We could also have determined this by 

      v = fλ = (1.31  1 )(12.6 m) = 16.4 m/s 
                                                                                             s          

 
The direction of the wave is to the right because the sign in front of ω is negative. 
h.  The displacement of the wave at x = 10.0 m and t = 0.500 s is 
 

y = (0.200 m)sin[(0.500 m−1)(10.0 m) − (8.20 rad/s)(0.500 s)] 
= (0.200 m)sin[0.900 rad] = (0.200 m)(0.783) 

= 0.157 m 
 

To go to this Interactive Example click on this sentence. 
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12.3  The Speed of a Transverse Wave on a String 
Let us consider the motion of a transverse wave on a string, as shown in figure 12.6. The wave is moving to the 
right with a velocity v. Let us observe the wave by moving with the wave at the same velocity v. In this reference 
frame, the wave appears stationary, while 
the particles composing the string appear 
to be moving through the wave to the left. 
One such particle is shown at the top of the 
wave of figure 12.6 moving to the left at the 
velocity v. If we consider only a small 
portion of the top of the wave, we can 
approximate it by an arc of a circle of 
radius R, as shown. If the angle θ is small, 
the length of the string considered is small 
and the mass m of this small portion of the 
string can be approximated by a mass 
moving in uniform circular motion. Hence, 
there must be a centripetal force acting on 
this small portion of the string and its 
magnitude is given by 
 

                                                                           Figure 12.6  Velocity of a transverse wave. 
 

Fc = mv2                                                                             (12.27) 
        R 

 
This centripetal force is supplied by the tension in the string. In figure 12.6, the tensions on the right and left side 
of m are resolved into components. There is a force T cos θ acting to the right of m and a force T cos θ acting to the 
left. These components are equal and opposite and cancel each other out, thus exerting a zero net force in the 
horizontal direction. The components T sin θ on the right and left side of m act downward on m and thus supply 
the necessary centripetal force for m to be in uniform circular motion. Thus, 
 

Fc = 2T sin θ 
 

Since we assume that θ is small, the sin θ can be replaced by the angle θ itself, expressed in radians. Thus, 
 

Fc = 2T θ                                                                             (12.28) 
 

The small portion of the string l approximates an arc of a circle and the arc of a circle is given by s = Rθ. Therefore, 
 

s =  l  +  l  = R(θ + θ) = 2θR 
                                                                                 2     2 
and 

θ =   l    
        2R 

The centripetal force, equation 12.28, becomes 
Fc = 2T  l    

              2R 
and 

Fc = Tl                                                                               (12.29) 
         R 

 
Equating the centripetal force in equations 12.27 and 12.29 we get 
 

mv2 = Tl  
R       R 
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v2 = Tl =   T   
                                                                                              m     m/l 
Solving for the speed of the wave we get 

/
Tv

m l
=                                                                              (12.30) 

 
Therefore, the speed of a transverse wave in a string is given by equation 12.30, where T is the tension in the string 
and m/l is the mass per unit length of the string. The greater the tension in the string, the greater the speed of 
propagation of the wave. The greater the mass per unit length of the string, the smaller the speed of the wave. We 
will discuss equation 12.30 in more detail when dealing with traveling waves on a vibrating string in section 12.6. 

 
Example 12.3 

 
Play that guitar. Find the tension in a 60.0-cm guitar string that has a mass of 1.40 g if it is to play the note G 
with a frequency of 396 Hz. Assume that the wavelength of the note will be two times the length of the string, or λ 
= 120 cm (this assumption will be justified in section 12.6). 

Solution
 

The speed of the wave, found from equation 12.3, is 
 

v = λf = (1.20 m)(396 cycles/s) 
= 475 m/s 

The mass density of the string is 
  m = 1.40 × 10−3 kg = 2.33 × 10−3 kg/m 

                                                                  l           0.600 m 
 

The tension that the guitar string must have in order to play this note, found from equation 12.30, is 
 

              T = v2 m  = (475 m/s)2(2.33 × 10−3 kg/m) 
                                                                                  l                            

= 526 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 12.4 
 

Sounds flat to me. If the tension in the guitar string of example 12.3 was 450 N, would the guitar play that note 
flat or sharp? 

Solution
 

The mass density of the string is 2.33 × 10−3 kg/m. With a tension of 450 N, the speed of the wave is 
 

      3
450 N

/ 2.33 10  kg/m
Tv

m l −= =
×

  

         = 439 m/s 
The frequency of the wave is then 

f =  v  = 439 m/s = 366 Hz 
                                                                                          λ      1.20 m 

 
The string now plays a note at too low a frequency and the note is flat by 396 Hz − 366 Hz = 30 Hz. 
 

To go to this Interactive Example click on this sentence. 
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12.4  Reflection of a Wave at a Boundary 
In the analysis of the vibrating string we assumed that the string was infinitely long so that it was not necessary 
to consider what happens when the wave gets to the end of the string. Now we need to rectify this omission by 
considering the reflection of a wave at a boundary. To simplify the discussion let us deal with a single pulse 
rather than the continuous waves dealt with in the preceding sections. First, let us consider how a pulse is 
generated. Take a piece of string fixed at one end and hold the other end in your hand, as shown in figure 12.7(a). 
The string and hand are at rest. If the hand is moved up rapidly, the 
string near the hand will also be pulled up. This is shown in figure 
12.7(b) with arrows pointing upward representing the force upward 
on the particles of the string. Each particle that moves upward exerts 
a force on the particle immediately to its right by the tension in the 
string. In this way, the force upward is passed from particle to 
particle along the string. In figure 12.7(c), the hand is quickly moved 
downward pulling the end of the string down with it. The force acting 
on the string downward is shown by the arrows pointing downward 
in figure 12.7(c). Note that the arrows pointing upward caused by the 
force upward in figure 12.7(b) are still upward and moving toward 
the right. In figure 12.7(d), the hand has returned to the equilibrium 
position and is at rest. However, the motion of the hand upward and 
downward has created a pulse that is moving along the string with a 
velocity of propagation v. The arrows upward represent the force 
pulling the string upward in advance of the center of the pulse, while 
the arrows downward represent the force pulling the string 
downward, behind the center of the pulse, back to its rest position. As 
the pulse propagates so will these forces. Let us now consider what 
happens to this pulse as it comes to a boundary, in this case, the end 
of the string. 
                                                                                                                Figure 12.7  Creation of a pulse on a string. 
 
The End of the String Is Not Fixed Rigidly but Is Allowed to Move 
Let us first consider the case of a pulse propagating along a string that is free to move at its end point. This is 
shown in figure 12.8. The end of the stationary string, figure 12.8(a), is attached to a ring that is free to move in 
the vertical direction on a frictionless pole. A pulse is now sent down the string in figure 12.8(b). Let us consider 
the forces on the string that come from the pulse, that is, we will ignore the gravitational forces on the string. The 
arrows up and down on the pulse represent the forces upward and downward, respectively, on the particles of the 
string. The pulse propagates to the right in figure 12.8(c) and reaches the ring in figure 12.8(d). The force upward 
that has been propagating to the right causes the ring on the end of the string to move upward. The ring now rises 
to the height of the pulse as the center of the pulse arrives at the ring, figure 12.8(e). Although there is no 
additional force upward on the ring, the ring continues to move upward because of its momentum. 

We can also consider this from an energy standpoint. At the location of the top of the pulse, the ring has a 
kinetic energy upward. The ring continues upward until this kinetic energy is lost. As the ring moves upward it 
now pulls the string up with it, eventually overcoming the forces downward at the rear of the pulse, until the 
string to the left of the ring has a net force upward acting on it, figure 12.8(f). This upward force is now propagated 
along the string to the left by pulling each adjacent particle to its left upward. Because the ring pulled upward on 
the string, by Newton’s third law the string also pulls downward on the ring, and the ring eventually starts 
downward, figure 12.8(g). As the ring moves downward it exerts a force downward on the string, as shown by the 
arrows in figure 12.8(h). The forces upward and downward propagate to the left as the pulse shown in figure 
12.8(i). 

The net result of the interaction of the pulse to the right with the movable ring is a reflected pulse of the 
same size and shape that now moves to the left with the same speed of propagation. The incoming pulse was right 
side up, and the reflected pulse is also right side up. The movable ring at the end of the string acts like the hand, 
moving up and down to create the pulse in figure 12.7. 
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The End of the String Is Fixed Rigidly and Not Allowed to Move 
A pulse is sent down a string that has the end fixed to a wall, as in figure 12.9(a). Let us consider the 

forces on the string that come from the pulse, that is, we will ignore the gravitational forces on the string. The 
front portion of the pulse has forces that are acting upward and are represented by arrows pointing upward. The  

 

Figure 12.9  A reflected pulse on a string with  
                                   a fixed  end. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.8  Reflection of a pulse on a string that is  
                      free to move in the transverse direction. 

 
back portion of the pulse has forces acting downward, and these forces are represented by arrows pointing 
downward. Any portion of the string in advance of the pulse has no force in the vertical direction acting on the 
string because the pulse has not arrived yet. Hence, in figure 12.9(a), there are no vertical forces acting on that 
part of the string that is tied to the wall. In figure 12.9(b), the leading edge of the pulse has just arrived at the 
wall. This leading edge has forces acting upward, and when they make contact with the wall they exert a force 
upward on the wall. But because of the enormous mass of the wall compared to the mass of the string, this upward 
force can not move the wall upward as it did with the ring in the previous case. The end of the string remains 
fixed. But by Newton’s third law this upward force on the wall causes a reaction force downward on the string 
pulling the string down below the equilibrium position of the string, figure 12.9(c). This initiates the beginning of a 
pulse that moves to the left. At this point the picture becomes rather complicated, because while the back portion 
of the original pulse is still moving toward the right, the front portion has become reflected and is moving toward 
the left, figure 12.9(d). The resulting pulse becomes a superposition of these two pulses, one traveling toward the 
right, the other toward the left. The forces acting on each particle of the string become the sum of the forces caused 
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by each pulse. When the back portion of the original pulse reaches the wall it exerts a force downward on the wall. 
By Newton’s third law the wall now exerts a reaction force upward on the string that pulls the string of the rear of 
the pulse upward to its equilibrium position, figure 12.9(e). The pulse has now been completely reflected by the 
wall and moves to the left with the same speed v, figure 12.9(f). Note, however, that in reflecting the pulse, the 
reaction force of the wall on the string has caused the reflected pulse to be inverted or turned upside down. Hence, 
a wave or pulse that is reflected from a fixed end is inverted. The reflected pulse is said to be 1800 out of phase with 
the incident pulse. This was not the case for the string whose end was free to move.  
 
Reflection and Transmission of a Wave at the Boundary of Two Different Media 
When an incident wave impinges upon a boundary separating two different media, part of the incident wave is 
transmitted into the second medium while part is reflected back into the first medium. We can easily see this 
effect by connecting together two strings of different mass densities. Let us consider two different cases of the 
reflection and transmission of a wave at the boundary of two different media. 
 
Case 1:  The Wave Goes from the Less Dense Medium to the More Dense Medium 
Consider the string in figure 12.10(a). The left-hand side of the combined string is a light string of mass density 
m1/l, while the right-hand side is a heavier string of mass density m2/l, where m2 is greater than m1. The combined 
string is pulled tight so that both strings have the same tension T. A 
pulse is now sent down the lighter string at a velocity v1 to the right 
in figure 12.10(b). As the pulse hits the boundary between the two 
strings, the upward force in the leading edge of the pulse on string 1 
exerts an upward force on string 2. Because string 2 is much more 
massive than string 1, the boundary acts like the fixed end in figure 
12.9, and the reaction force of the massive string causes an inverted 
reflected pulse to travel back along string 1, as shown in figure 
12.10(c). Because the massive string is not infinite, like a rigid wall, 
the forces of the incident pulse pass through to the massive string, 
thus also transmitting a pulse along string 2, as shown in figure 
12.10(c). Since string 2 is more massive than string 1, the 
transmitted force can not displace the massive string elements of 
string 2 as much as in string 1. Hence the amplitude of the 
transmitted pulse is less than the amplitude of the incident pulse. 

Figure 12.10  A pulse goes from a less dense 
 medium to a more dense medium. 

 
Because the tension in each string is the same, the speed of the pulses in medium 1 and 2 are 
 

1
1 /
Tv

m l
=                                                                              (12.31) 

2
2 /
Tv

m l
=                                                                             (12.32) 

 
Because the tension T in each string is the same, they can be equated to find the speed of the pulse in medium 2 as 
 

1
2 1

2

/
/

m lv v
m l

=                                                                           (12.33) 

 
However, because m2 is greater than m1, equation 12.33 implies that v2 will be less than v1. That is, the speed v2 of 
the transmitted pulse will be less than v1, the speed of the incident and reflected pulses. Thus, the pulse slows 
down in going from the less dense medium to the more dense medium. If a sinusoidal wave were propagated along 
the string instead of the pulse, part of the wave would be reflected and part would be transmitted. However, 
because of the boundary, the wavelength of the transmitted wave would be different from the incident wave. To 
see this, note that the frequency of the wave must be the same on both sides of the boundary. (Since the frequency 
is the number of waves per second, and the same number pass from medium 1 into medium 2, we have f1 = f2.) The 
wavelength of the incident wave, found from equation 12.3, is 
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    λ1 =  v1  

          f 
whereas the wavelength of the transmitted wave λ2 is 

     λ2 =  v2  
           f 

Because the frequency is the same, 
    f =  v1 
           λ1 

and 
    f =  v2  
           λ2 

they can be equated giving 
 v1  =  v2  
 λ1       λ2 

Thus, the wavelength of the transmitted wave λ2 is 
 λ2 =  v2 λ1                                                                           (12.34) 

                                                                                                    v1                  
 

Since v2 is less than v1, equation 12.34 tells us that λ2 is less than λ1. Hence, when a wave goes from a less dense 
medium to a more dense medium, the wavelength of the transmitted wave is less than the wavelength of the incident 
wave. 

Although these results were derived from waves on a string, they are quite general. In chapter 27 we will 
see that when a light wave goes from a region of low density such as a vacuum or air, into a more dense region, 
such as glass, the speed of the light wave decreases and its wavelength also decreases. 

 
Example 12.5 

 
A wave going from a less dense to a more dense medium. One end of a 60.0-cm steel wire of mass 1.40 g is welded to 
the end of a 60.0-cm steel wire of 6.00 g mass. The combined wires are placed under uniform tension. (a) If a wave 
propagates down the lighter wire at a speed of 475 m/s, at what speed will it be transmitted along the heavier 
wire? (b) If the wavelength on the first wire is 1.20 m, what is the wavelength on the second wire? 

Solution
 

a. The mass per unit length of each wire is 
 

 m1 = 1.40 × 10−3 kg = 2.33 × 10−3 kg/m  
                                                                  l          0.600 m 

 
 m2  = 6.00 × 10−3 kg = 1.00 × 10−2 kg/m 

                                                                 l            0.600 m 
 

The speed of the transmitted wave, found from equation 12.33, is 
 

1
2 1

2

/
/

m lv v
m l

=  

( )
3

2
2.33 10  kg/m 475 m/s
1.00 10  kg/m

−

−

×
=

×
 

= 229 m/s 
 

b.  The wavelength of the transmitted wave, found from equation 12.34, is 
 

λ2 = v2 λ1   
   v1 
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( )229 m/s 1.20 m
475 m/s

 =  
 

 

= 0.580 m 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Case 2:  A Wave Goes from a More Dense Medium to a  Less Dense Medium 
Consider the string in figure 12.11(a). The left-hand side of the combined 
string is a heavy string of mass density m1/l, whereas the right-hand side 
is a light string of mass density m2/l, where m2 is now less than m1. A 
pulse is sent down the string in figure 12.11(b). When the pulse hits the 
boundary the boundary acts like the free end of the string in figure 12.8 
because of the low mass of the second string. A pulse is reflected along 
the string that is erect or right side up, figure 12.11(c). However, the 
forces of the incident pulse are transmitted very easily to the lighter 
second string and a transmitted pulse also appears in string 2, figure 
12.11(c). Because the tension is the same in both strings, a similar 
analysis to case 1 shows that when a wave goes from a more dense 
medium to a less dense medium, the transmitted wave moves faster than 
the incident wave and has a longer wavelength. 
 
 

Figure 12.11  A pulse goes from a more 
 dense medium to a less dense medium. 

 
Example 12.6 

 
A wave going from a more dense medium to a less dense medium. The first half of a combined string has a linear 
mass density of 0.100 kg/m, whereas the second half has a linear mass density of 0.0500 kg/m. A sinusoidal wave 
of wavelength 1.20 m is sent along string 1. If the combined string is under a tension of 10.0 N, find (a) the speed 
of the incident wave in string 1, (b) the speed of the transmitted wave in string 2, (c) the wavelength of the 
transmitted wave, and (d) the speed and wavelength of the reflected wave. 

Solution
 

a. The speed of the incident wave in string 1, found from equation 12.31, is 
 

1
1 /
Tv

m l
=  

10.0 N
0.100 kg/m

=  

= 10.0 m/s 
 

b.  The speed of the transmitted wave in string 2, found from equation 12.32, is 
 

2
2 /
Tv

m l
=  

10.0 N
0.050 kg/m

=  

= 14.1 m/s 
 

c.  The wavelength of the transmitted wave, found from equation 12.34, is 
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λ2 = v2 λ1  

   v1 

( )14.1 m/s 1.20 m
10.0 m/s

 =  
 

 

= 1.69 m 
 

d.  The speed and wavelength of the reflected wave are the same as the incident wave because the reflected wave 
is in the same medium as the incident wave. Note that the mass of string 1 is greater than string 2 and the speed 
of the wave in medium 2 is greater than the speed of the wave in medium 1 (i.e., v2 > v1). Also note that the 
wavelength of the transmitted wave is greater than the wavelength of the incident wave (i.e., λ2 > λ1). 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
12.5  The Principle of Superposition 
Up to this point in our discussion we have considered only one wave passing through a medium at a time. What 
happens if two or more waves pass through the same medium at the same time? To solve the problem of multiple 
waves we use the principle of superposition. This principle is based on the vector addition of the displacement 
associated with each wave. The principle of superposition states that whenever two or more wave disturbances 
pass a particular point in a medium, the resultant displacement of the point of the medium is the sum of the 
displacements of each individual wave disturbance. For example, if the two waves 
 

y1 = A1 sin(k1x − ω1t) 
y2 = A2 sin(k2x − ω2t) 

 
are acting in a medium at the same time, the resultant wave is given by 

 
 y = y1 + y2                                                                             (12.35) 

or 
y1 = A1 sin(k1x − ω1t) + A2 sin(k2x − ω2t)                                                   (12.36) 

 
The superposition principle holds as long as the resultant displacement of the medium does not exceed its 

elastic limit. Sometimes the two waves are said to interfere with each other, or cause interference. 
 

Example 12.7 
 

Superposition. The following two waves interfere with each other: 
 

y1 = (5.00 m)sin[(0.800 m−1)x − (6.00 rad/s)t] 
y2 = (10.00 m)sin[(0.900 m−1)x − (3.00 rad/s)t] 

 
Find the resultant displacement when x = 5.00 m and t = 1.10 s. 

Solution
 

The resultant displacement found by the superposition principle, equation 12.35, is 
 

y = y1 + y2 
where 

y1 = (5.00 m)sin[(0.800 m−1)(5.00 m) − (6.00 rad/s)(1.10 s)] 
= (5.00 m)sin(4.00 rad − 6.6 rad) 

= (5.00 m)sin(−2.60 rad) 
= (5.00 m)(−0.5155) = −2.58 m 
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and 
y2 = (10.00 m)sin[(0.900 m−1)(5.00 m) − (3.00 rad/s)(1.10 s)] 

= (10.00 m)sin(4.50 rad − 3.30 rad) 
= (10.00 m)sin(1.20 rad) 

= (10.00 m)(0.932) = 9.32 m 
Hence, the resultant displacement is 

y = y1 + y2 = −2.58 m + 9.32 m 
= 6.74 m 

 
Note that this is the resultant displacement only for the values of x = 5.00 m and t = 1.10 s. We can find the entire 
resultant wave for any value of the time by substituting a series of values of x into the equation for that value of t. 
Then we determine the resultant displacement y for each value of x. A graph of the resultant displacement y 
versus x gives a snapshot of the resultant wave at that value of time t. The process can be repeated for various 
values of t, and the sequence of the graphs will show how that resultant wave travels with time. (See interactive 
tutorial #44 at the end of this chapter.) 
 

To go to this Interactive Example click on this sentence. 
 

 
 

It is possible that when dealing with two or more waves the waves may not be in phase with each other. Two 
waves are in phase if they reach their maximum amplitudes at the same time, are zero at the same time, and have 
their minimum amplitudes at the same time. An example of two waves in phase is shown in figure 12.12(a). An 
example of two waves that are out of phase with each other is shown in figure 12.12(b). Note that the second wave 
does not have its maximum, zero, and minimum displacements at the same place as the first wave. Instead these 
positions are translated to the right of their position in wave y1. We say that wave 2 is out of phase with wave 1 by 
an angle φ, where φ is measured in radians. The equation for the first wave is 
 

y1 = A1 sin(kx − ωt)                                                                    (12.37) 
 

whereas the equation for the wave displaced to the right is 
 

 y2 = A2 sin(kx − ωt − φ)                                                                 (12.38) 
 

      
Figure 12.12  Phase of a wave. 

 
The angle φ is called the phase angle and is a measure of how far wave 2 is displaced in the horizontal from wave 
1. Just as the minus sign on −ωt indicated a wave traveling to the right, the minus sign on φ indicates a wave 
displaced to the right. The second wave lags the first wave by the phase angle φ. That is, wave 2 has its maximum, 
zero, and minimum displacements after wave 1 does, and the amount of lag is given by the phase angle φ. If the 
wave was displaced to the left, the equation for the wave would be 
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y2 = A2 sin(kx − ωt + φ)                                                                  (12.39) 
 

An important special case of the addition of waves is shown in figure 12.13. When two waves are in phase with 
each other, φ = 0 in equation 12.38, and the waves are said to exhibit constructive interference, figure 12.13(a). 
That is, 

y1 = A sin(kx − ωt) 
y2 = A sin(kx − ωt) 

and the resultant wave is 
y = y1 + y2 = 2A sin(kx − ωt)                                                             (12.40) 

 
That is, the resultant amplitude has doubled. If the two waves are 1800, or π rad, out of phase with each other, 
then y2 is 

y2 = A2 sin(kx − ωt − π) 
 

Setting kx − ωt = B and π = C, we can use the formula for the sine of the difference between two angles, which is 
found in appendix B. That is, 

sin(B − C) = sin B cos C − cos B sin C                                            (12.41) 
Thus, 
sin[(kx − ωt) − π] = sin(kx − ωt)cos π 

 − cos(kx − ωt)sin π    (12.42) 
 

But sin π = 0, and the last term drops out. And 
because the cos π = −1, equation 12.42 becomes 
 

sin[(kx − ωt) − π] = −sin(kx − ωt) 
 

Therefore we can write the second wave as 
 

y2 = −A sin(kx − ωt)               (12.43) 
 

The superposition principle now yields 
 
                          y = y1 + y2 

= A sin(kx − ωt) − A sin(kx − ωt) = 0      (12.44) 
 

Thus, if the waves are 1800 out of phase the 
resultant wave is zero everywhere. This is shown in 
figure 12.13(b) and is called destructive 
interference. Wave 2 has completely canceled out 
the effects of wave 1. 

                                                                Figure 12.13  Interference of waves. 
 
A more general solution for the interference of two waves of the same frequency, same wave number, same 

amplitude, and in the same direction but out of phase with each other by a phase angle φ, can be easily determined 
by the superposition principle. Let the two waves be 

 
y1 = A sin(kx − ωt)                                                                       (12.45) 
y2 = A sin(kx − ωt − φ)                                                                 (12.46) 

The resultant wave is 
y = y1 + y2 = A sin(kx − ωt) + A sin(kx − ωt − φ)                                                (12.47) 

 
To simplify this result, we use the trigonometric identity found in appendix B for the sum of two sine functions, 
namely 

sin sin 2sin cos
2 2

B C B CB C + −   + =    
   

                                                   (12.48) 

For this problem 
B = kx − ωt 
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and 
C = kx − ωt − φ 

Thus, 

( ) ( )sin sin 2sin cos
2 2

kx t kx t kx t kx tkx t kx t ω ω φ ω ω φ
ω ω φ

− + − − − − + +   − + − − =    
   

 

2sin cos
2 2

kx t φ φ
ω   = − −   

   
                                                               (12.49) 

 
Substituting equation 12.49 into equation 12.47 we obtain for the resultant wave 
 

2 cos sin
2 2

y A kx tφ φ
ω   = − −   

   
                                                            (12.50) 

 
Equation 12.50 is a more general result than found before and contains constructive and destructive interference 
as special cases. For example, if φ = 0 the two waves are in phase and since cos 0 = 1, equation 12.50 becomes 
 

y = 2A sin(kx − ωt) 
 

which is identical to equation 12.40 for constructive interference. Also for the special case of φ = 1800 = π rad, the 
cos(π/2) = cos 900 = 0, and equation 12.50 becomes y = 0, the special case of destructive interference, equation 
12.44. 

 
Example 12.8 

 
Interference. The following two waves interfere: 
 

y1 = (5.00 m)sin[(0.200 m−1)x − (5.00 rad/s)t] 
y2 = (5.00 m)sin[(0.200 m−1)x − (5.00 rad/s)t − 0.500 rad] 

 
Find the equation for the resultant wave. 

Solution
 

The resultant wave, found from equation 12.50, is 
 

2 cos sin
2 2

y A kx tφ φ
ω   = − −   

   
 

10.500 rad 0.500 rad2(5.00 m)cos sin (0.200 m ) (5.00 rad/s)
2 2

y x t−   = − −   
   

 

= (10.00 m)(0.9689)sin[(0.200 m−1)x − (5.00 rad/s)t − 0.250 rad] 
= (9.69 m)sin[(0.200 m−1)x − (5.00 rad/s)t − 0.250 rad] 

 
We can now plot an actual picture of the resultant wave for a particular value of t for a range of values of x. (See 
interactive tutorial #44 at the end of this chapter.) 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
12.6  Standing Waves -- The Vibrating String 
If a string is fixed at both ends and a wave train is sent down the string, then, as shown before, the wave is 
reflected from the fixed ends. Hence, there are two wave trains on the string at the same time. One is traveling to 
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the right, while the reflected wave is traveling toward the left, figure 12.14. We can find the resultant wave by the 
superposition principle. That is, if wave 1 is a wave to the right, we can express it as  

 
y1 = A sin(kx − ωt)                                                                     (12.51) 

whereas we can express the wave to the left as   
 

y2 = A sin(kx + ωt)                                  (12.52) 
 
The resultant wave is the sum of these two waves or 
 

y = y1 + y2 = A sin(kx − ωt) + A sin(kx + ωt)               (12.53) 
 
To add these two sine functions, we use the trigonometric identity in 
equation 12.48. That is, 

sin sin 2sin cos
2 2

B C B CB C + −   + =    
   

 

 
where B = kx − ωt and C = kx + ωt. Thus, 
 
                                                                                                                Figure 12.14  Formation of standing waves. 
 

( ) ( ) ( ) ( )2 sin cos
2 2

kx t kx t kx t kx t
y A

ω ω ω ω   − + + − − +
=       

   
 

2 22 sin cos
2 2
kx ty A ω−   =    

   
 

and 
y = 2A sin(kx)cos(−ωt) 

Using the fact that 
cos(−θ) = cos(θ) 

the resultant wave is 
 y = 2A sin(kx)cos(ωt)                                                                   (12.54) 

 
For reasons that will appear shortly, this is the equation of a standing wave or a stationary wave. 

The amplitude of the resultant standing wave is 2A sin(kx), and note that it varies with x. To find the 
positions along x where this new amplitude has its minimum values, note that sin(kx) = 0 whenever 

 
kx = nπ 

 
for values of n = 1, 2, 3, .… That is, the sine function is zero whenever the argument kx is a multiple of π. Thus, 
solving for x, 

x = nπ                                                                               (12.55) 
          k 

But the wave number k was defined in equation 12.9 as 
 

k = 2π 
      λ 

Substituting this value into equation 12.55, we get 
    x = nπ =    nπ   
          k       2π/λ      

and 
 x = nλ                                                                               (12.56) 

                                                                                                   2      
 

Equation 12.56 gives us the location of the zero values of the amplitude. Thus we see that they occur for values of x 
of λ/2, 2λ/2 = λ, 3λ/2, 4λ/2 = 2λ, and so on, as measured from either end. These points, where the amplitude of the 
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standing wave is zero, are called nodes. Stated another way, a node is the position of zero amplitude. These nodes 
are independent of time, that is, the amplitude at these points is always zero. 

The maximum values of the amplitude occur whenever sin(kx) = 1, which happens whenever kx is an odd 
multiple of π/2. That is, sin(kx) = 1 when 

kx = (2n − 1) π  
                    2 

for n = 1, 2, 3, .... 
The term 2n − 1 always gives an odd number for any value of n. (As an example, when n = 2, 2n − 1 = 3, 

etc.) The location of the maximum amplitudes is therefore at  
 

2 1
2
nx

k
π

− =  
 

  

But since k = 2π/λ, this becomes  
x = (2n − 1)π 
      2(2π/λ) 

and 
 x = (2n − 1)λ = (2n − 1) λ                                                                (12.57) 

                                                                                         4                        4       
 

The maximum amplitudes are thus located at x = λ/4, 3λ/4, 5λ/4, and so forth. The position of maximum amplitude 
is called an antinode. Note that at this position the displacement of the resultant wave is a function of time. The 
original two traveling waves and 
the resultant standing wave are 
shown in figure 12.15 for values of 
time of 0, T/4, T/2, 3T/4, and T, 
where T is the period of the wave. 
Recall that ω = 2π/T. Therefore, cos 
ωt = cos(2πt/T). Note that the waves 
are moving to the left and the right, 
but the resultant wave does not 
travel at all, it is a standing wave 
on a string. The node of the 
standing wave at x = λ/2 remains a 
node for all times. Thus, the string 
can not move up and down at that 
point, and can not therefore 
transmit any energy past that point. 
Thus, the resultant wave does not 
move along the string but is 
stationary or standing. 

How many different types 
of standing waves can be produced 
on this string? The only restriction 
on the number or types of different 
waves is that the ends of the string 
must be tied down or fixed. That is, 
there must be a node at the ends of 
the string, which implies that the 
displacement y must always equal 
zero for x = 0, and for x = L, the 
length of the string. When x is 
equal to zero the displacement is  

 
y = 2A sin[k(0)]cos(ωt) = 0    (12.58) 

                                                     Figure 12.15  Standing wave on a string. 
 

When x = L, the displacement of the standing wave is 
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y = 2A sin(kL)cos(ωt)                                                             (12.59) 
 

Equation 12.59 is not in general always equal to zero. Because it must always be zero in order to satisfy the 
boundary condition of y = 0 for x = L, it is necessary that 

                 sin(kL) = 0 
which is true whenever kL is a multiple of π, that is, 

    kL = nπ 
 

for n = 1, 2, 3, …. This places a restriction on the number of waves that can be placed on the string. The only 
possible wave numbers the wave can have are therefore 

  k = nπ                                                                            (12.60) 
                                                                                                      L         

 
Therefore, we must write the displacement of the standing wave as 
 

( )2 sin cosn xy A t
L
π

ω =  
 

                                                               (12.61) 

 
Because k = 2π/λ, a restriction on the possible wave numbers k is also a restriction on the possible 

wavelengths λ that can be found on the string. Thus, 
 

k = 2π = nπ  
                                                                                                        λ     L 
or 

λ = 2L                                                                                (12.62) 
     n 

 
That is, the only wavelengths that are allowed on the string are λ = 2L, L, 2L/3, and so forth. In other words, not 
all wavelengths are possible; only those that satisfy equation 12.62 will have fixed end points. Only a discrete set 
of wavelengths is possible. Figure 12.16 shows some of the possible modes of vibration. 

We can find the frequency of any wave on the string with the 
aid of equations 12.3 and 12.30 as 

 
f =  v  
     λ 

/
Tv

m l
=  

Thus, 

      1
/

Tf
m lλ

=                                     (12.63) 

 
However, since the only wavelengths possible are those for λ = 2L/n, 
equation 12.62, the frequencies of vibration are 
 
                                                                                                               Figure 12.16  The normal modes of vibration 

                                                                                                        of a string. 
 

2 /
n Tf
L m l

=                                                                          (12.64) 

with n = 1, 2, 3, … 
Equation 12.64 points out that there are only a discrete number of frequencies possible for the vibrating 

string, depending on the value of n. The simplest mode of vibration, for n = 1, is called the fundamental mode of 
vibration. As we can see from figure 12.16, a half of a wavelength fits within the length L of the string (i.e., L = λ/2 
or λ = 2L). Thus, the fundamental mode of vibration has a wavelength of 2L. We obtain the fundamental 
frequency f1 from equation 12.64 by setting n = 1. Thus, 
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     1
1

2 /
Tf

L m l
=                                                                           (12.65) 

 
For n = 2 we have what is called the first overtone or second harmonic. From figure 12.16, we see that one 

entire wavelength fits within one length L of the string (i.e., L = λ). We obtain the frequency of the second 
harmonic from equation 12.64 by letting n = 2. Hence, 

 

 2 1
2 2

2 /
Tf f

L m l
= =                                                                     (12.66) 

 
In general, we find the frequency of any higher mode of vibration from 
 

 fn = nf1                                                                              (12.67) 
 

A string that vibrates at a frequency given by equation 12.64 or 12.67 is said to be vibrating at one of its natural 
frequencies. 

The possible waves for n = 3 and n = 4 are also shown in figure 12.16. Note that the nth harmonic contains 
n half wavelengths within the distance L. We can also observe that the location of the nodes and antinodes agrees 
with equations 12.56 and 12.57. Also note from equation 12.64 that the larger the tension T in the string, the 
higher the frequency of vibration. If we were considering a violin string, we would hear this higher frequency as a 
higher pitch. The smaller the tension in the string the lower the frequency or pitch. The string of any stringed 
instrument, such as a guitar, violin, cello, and the like, is tuned by changing the tension of the string. Also note 
from equation 12.64 that the larger the mass density m/l of the string, the smaller the frequency of vibration, 
whereas the smaller the mass density, the higher the frequency of the vibration. Thus, the mass density of each 
string of a stringed instrument is different in order to give a larger range of possible frequencies. Moving the 
finger of the left hand, which is in contact with the vibrating string, changes the point of contact of the string and 
thus changes the value of L, the effective length of the vibrating string. This in turn changes the possible 
wavelengths and frequencies that can be obtained from that string. 

When we pluck a 
string, one or more of the 
natural frequencies of the 
string is excited. In a real 
string, internal frictions soon 
cause these vibrations to die 
out. However, if we apply a 
periodic force to the string at 
any one of these natural 
frequencies, the mode of 
vibration continues as long as 
the driving force is continued.  

                                                  Figure 12.17  Forced vibration of a string. 
 
We call this type of vibration a forced vibration, and we can easily 
set up a demonstration of forced vibration in the laboratory, as 
shown in figure 12.17. We connect one end of a string to an 
electrical vibrator of a fixed frequency and pass the other end over a 
pulley that hangs over the end of the table. We place weights on this 
end of the string to produce the tension in the string. We add 
weights until the string vibrates in its fundamental mode. When the 
tension is adjusted so that the natural frequency of the string is the 
same as that of the electrical vibrator, the amplitude of vibration 
increases rapidly. This condition where the driving frequency is 
equal to the natural frequency of the system is called resonance. 
The tension in the string can be changed by changing the weights 
that are added to the end of the string, until all the harmonics are 

                                                                                                               Figure 12.18  The envelope of the vibration. 
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produced one at a time. The string vibrates so rapidly that the eye perceives only a blur whose shape is that of the 
envelope of the vibration, as shown in figure 12.18. 

 
Example 12.9 

 
The tension in a guitar string. A guitar string 60.0 cm long has a linear mass density of 6.50 × 10−3 kg/m. If this 
string is to play a fundamental frequency of 220 Hz, what must the tension be in the string? 

Solution
 

We find the tension necessary in the string by solving equation 12.64 for T, that is  
 

2 /
n Tf
L m l

=  

f2 =     n2T     
      4L2(m/l) 

and 
T = 4L2f2(m/l)  

      n2 
= 4(0.600 m)2(220 Hz)2(6.5 × 10−3 kg/m) 

12 
= 4.53 × 102 N 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 12.10 
 

The frequencies and wavelengths of a guitar string. Find (a) the frequencies and (b) the wavelengths of the 
fundamental, second, third, and fourth harmonics of example 12.9. 

Solution
 

a. The fundamental frequency is given in example 12.9 as 220 Hz. The frequency of the next three harmonics, 
found from equation 12.67, are 

fn = nf1 

f2 = 2f1 = 2(220 Hz) = 440 Hz 
f3 = 3f1 = 3(220 Hz) = 660 Hz 
f4 = 4f1 = 4(220 Hz) = 880 Hz 

 
b.  The wavelength of the fundamental, found from equation 12.62, is 
 

λn = 2L   
      n 

λ1 = 2(60.0 cm) 
     1 

 = 120 cm 
The wavelengths of the harmonics are 

λ2 = 2L  = 2(60.0 cm) = 60.0 cm 
                                                                               2             2 

λ3 = 2L  = 2(60.0 cm) = 40.0 cm 
                                                                               3             3 

λ4 = 2L  = 2(60.0 cm) = 30.0 cm 
                                                                               4             4 
 

To go to this Interactive Example click on this sentence. 
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Example 12.11 
 

The displacement of the third harmonic. Find the value of the displacement for the third harmonic of example 
12.10 if x = 30.0 cm and t = 0. 

Solution
 

This displacement, found from equation 12.61, is 

( )2 sin cosn xy A t
L
π

ω =  
 

 

  [ ]3 (30.0 cm)2 sin cos (0)
60.0 cm

A π
ω =   

 

32 sin 2
2

A Aπ = = − 
 

 

 
To go to this Interactive Example click on this sentence. 

 

 
  
 
12.7  Sound Waves 
A sound wave is a longitudinal wave, that is, a particle of the medium executes simple harmonic motion in a 
direction that is parallel to the velocity of propagation. A sound wave can be propagated in a solid, liquid, or a gas. 
The speed of sound in the medium depends on the density of the medium and on its elastic properties. We will 
state without proof that the speed of sound in a solid is 

Yv
ρ

=                                                                             (12.68) 

 
where Y is Young’s modulus and ρ is the density of the medium. The speed of sound in a fluid is 
 

Bv
ρ

=                                                                            (12.69) 

 
where B is the bulk modulus and ρ is the density. The speed of sound in a gas is 

 

    pv γ
ρ

=                                                                            (12.70) 

 
where γ is a constant called the ratio of the specific heats of the gas and is equal to 1.40 for air (we discuss the 
specific heats of gases and their ratio in detail in chapter 17); p is the pressure of the gas; and ρ is the density of 
the gas. Note that the pressure and the density of a gas varies with the temperature of the gas and hence the 
speed of sound in a gas depends on the gas temperature. It can be shown, with the help of the ideal gas equation 
derived in chapter 15, that the speed of sound in air is 

v = (331 + 0.606t) m/s                                                       (12.71) 
 

where t is the temperature of the air in degrees Celsius. 
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Example 12.12 
 

The speed of sound. Find the speed of sound in (a) iron, (b) water, and (c) air. 

Solution
 

a. We find the speed of sound in iron from equation 12.68, where Y for iron is 9.1 × 1010 N/m2 (from table 10.1). 
The density of iron is 7.8 × 103 kg/m3. Hence, 

 Yv
ρ

=                                                                              (12.68) 

10 2

3 3
9.1 10  N/m
7.8 10  kg/m

×
=

×
 

= 3420 m/s 
 

b.  We find the speed of sound in water from equation 12.69, where B = 2.30 × 109 N/m2 and ρ = 1.00 × 103 kg/m3. 
Thus, 

Bv
ρ

=                                                                                (12.69) 

9 2

3 3
2.30 10  N/m
1.00 10  kg/m

×
=

×
 

= 1520 m/s 
 

c.  We find the speed of sound in air from equation 12.70 with normal atmospheric pressure p = 1.013 × 105 N/m2 
and ρ = 1.29 kg/m3. Hence, 

pv γ
ρ

=                                                                             (12.70) 

5 2

3
(1.40)(1.013 10  N/m )

1.29 kg/m
×

=  

= 331 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 12.13 
 

The speed of sound as a function of temperature. Find the speed of sound in air at a room temperature of 20.0 0C. 

Solution
 

The speed of sound at 20.0 0C, found from equation 12.71, is 
 

v = (331 + 0.606t) m/s 
= [331 + 0.606(20.0)] m/s 

= 343 m/s 
 

To go to this Interactive Example click on this sentence. 

 
Example 12.14 

 
Range of wavelengths. The human ear can detect sound only in the frequency spectrum of about 20.0 to 20,000 Hz. 
Find the wavelengths corresponding to these frequencies at room temperature. 
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Solution
 

The corresponding wavelengths, found from equation 12.3, with v = 343 m/s as found in example 12.13, are 
 

λ =  v  = 343 m/s = 17.2 m 
                                                                                  f      20.0 Hz 
and 

λ =  v  =    343 m/s    = 0.0172 m 
                                                                             f       20,000 Hz 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Just as standing transverse waves can be set up on a vibrating 

string, standing longitudinal waves can be set up in closed and open 
organ pipes. Let us first consider the closed organ pipe. A traveling 
sound wave is sent down the closed organ pipe and is reflected at the 
closed end. Thus, there are two traveling waves in the pipe and they 
superimpose to form a standing wave in the pipe. An analysis of this 
standing longitudinal wave would lead to equation 12.54 for the 
resultant standing wave found from the superposition of a wave 
moving to the right and one moving to the left. The boundary 
conditions that must be satisfied are that the pressure wave must 
have a node at the closed end of the organ pipe and an antinode at the 
open end. The simplest wave is shown in figure 12.19(a). Although 
sound waves are longitudinal, the standing wave in the pipe is shown 
as a transverse standing wave to more easily show the nodes and 
antinodes. At the node, the longitudinal wave has zero amplitude, 
whereas at the antinode, the longitudinal wave has its maximum 
amplitude. It is obvious from the figure that only a quarter of a 
wavelength can fit in the length L of the pipe, hence the wavelength of 
the fundamental λ is equal to four times the length of the pipe. We 
must make a distinction here between an overtone and a harmonic. An 
overtone is a frequency higher than the fundamental frequency. A 
harmonic is an overtone that is a multiple of the fundamental 
frequency. Hence, the nth harmonic is n times the fundamental, or first 
harmonic. A harmonic is an overtone but an overtone is not 
necessarily a harmonic. We call the second possible standing wave in 
figure 12.19 the second overtone; it contains three quarter 
wavelengths in the distance L, whereas the third overtone has five. 
We can generalize the wavelength of all possible standing waves in the 
closed pipe to 

 λn =     4L                                        (12.72) 
                                                             2n − 1       

 
for n = 1, 2, 3, …, where the value of 2n − 1 always gives an odd 
number for any value of n. We can obtain the frequency of each 
standing wave from equations 12.3 and 12.72 as 
 

fn =  v  =        v           
                                                            λn       4L/(2n − 1) 

 
                                                                                                                Figure 12.19  Standing waves in a closed  

                                                                                                                     organ pipe. 
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fn = (2n − 1)v                                                                             2.73) 
                                                                                                 4L 

 
When n is equal to 1, the frequency is f1 = v/4L; when n is equal to 2, the frequency is f = 3(v/4L), which is three 
times the fundamental frequency and is thus the third harmonic. Because n = 2 is the first frequency above the 
fundamental it is called the first overtone, but it is also the third harmonic; n = 3 gives the second overtone, which 
is equal to the fifth harmonic. Thus, for an organ pipe closed at one end and open at the other, the (n − 1)th 
overtone is equal to the (2n − 1)th harmonic. Note that the allowable frequencies are all odd harmonics of the 
fundamental frequency. That is, n = 1 gives the fundamental 
frequency (zeroth overtone), which is the first harmonic; n = 2 gives 
the first overtone, which is the third harmonic; n = 3 gives the second 
overtone, which is the fifth harmonic; and so forth. Because the even 
harmonics are missing the distinction between overtones and 
harmonics must be made. Figure 12.19(d) shows a typical pipe organ. 

Standing waves can also be set up in an open organ pipe, but 
now the boundary conditions necessitate an antinode at both ends of 
the pipe, as shown in figure 12.20. For simplicity, the longitudinal 
standing wave is again depicted as a transverse standing wave in the 
figure. The node is the position of zero amplitude and the antinodes at 
the ends of the open pipe are the position of maximum amplitude of 
the longitudinal standing wave. From inspection of the figure we can 
see that the wavelength of the nth harmonic is 

 
λn = 2L                                          (12.74) 
       n 

and its frequency is 
fn =  v  =    v      

           λn     2L/n  
 fn = nv                                         (12.75) 

                                                              2L       
 

Equation 12.75 gives the frequency of the nth harmonic for an organ 
pipe open at both ends. For the open organ pipe, even and odd 
multiples of the fundamental frequency are possible. The (n − 1)th 
overtone is equal to the nth harmonic. 

 
                                                                                                                 Figure 12.20  Standing waves in an open 

                                                                                                               organ pipe. 
 

Example 12.15 
 

The length of a closed organ pipe. Find the length of a closed organ pipe that can produce the musical note A = 440 
Hz. Assume that the speed of sound in air is 343 m/s. 

Solution
 

We find the length of the closed organ pipe from equation 12.73 by solving for L. Thus, 
 

L = (2n − 1)v 
      4fn 

We obtain the fundamental note for n = 1: 
L = (2n − 1)(343 m/s) 

     4(440 cycles/s) 
= 0.195 m 

 
To go to this Interactive Example click on this sentence. 
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Example 12.16 
 

Open and closed organ pipes. If the length of an organ pipe is 4.00 m, find the frequency of the fundamental for 
(a) a closed pipe and (b) an open pipe. Assume that the speed of sound is 343 m/s. 

Solution
 

a. The frequency of the fundamental for the closed pipe, found from equation 12.73 with n = 1, is 
 

fn = (2n − 1)v 
      4L 

f1 = [2(1) − 1](343 m/s) 
      4(4.00 m) 

= 21.4 Hz 
 

b.  The frequency of the fundamental for an open pipe, found from equation 12.75, is 
 

fn =  nv  
       2L 

f1 = (1)(343 m/s) 
      2(4.00 m) 

= 42.9 Hz 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Note that the frequency of the fundamental of the open organ pipe is exactly twice the frequency of the 

fundamental in the closed organ pipe. Table 12.1 gives a summary of the harmonics for the vibrating string and 
the organ pipe. 

Table 12.1 
Summary of Some Different Harmonics for the Musical Note A, 

Which Has the Fundamental Frequency of 440 Hz 
Vibrating String 

n 
1 
2 
3 

Harmonic 
first 
second 
third 

Overtone 
fundamental 
first 
second 

Frequency (Hz) 
440 
880 
1320 

Organ Pipe Opened at One End 
n 
1 
2 
3 

Harmonic 
first 
third 
fifth 

Overtone 
fundamental 
first 
second 

Frequency (Hz) 
440 
1320 
2200 

                                                                        
 
12.8  The Doppler Effect 
Almost everyone has observed the change in frequency of a train whistle or a car horn as it approaches an observer 
and as it recedes from the observer. The change in frequency of the sound due to the motion of the sound source is 
an example of the Doppler effect. In general, this change in frequency of the sound wave can be caused by the 
motion of the sound source, the motion of the observer, or both. Let us consider the different possibilities. 
 
Case 1:  The Observer and the Sound Source Are Stationary 
This case is the normal case where there is no relative motion between the source and the observer and is shown 
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in figure 12.21. When the source emits a sound of frequency fs, the sound waves propagate out from the source in a 
series of concentric circles. The distance between each circle is the wavelength of the sound. The sound propagates at 
a speed v, and the frequency heard by the observer fo is simply 
 

fo =  v  = fs                                      (12.76) 
  λ 
 

That is, the stationary observer hears the same frequency as the one 
emitted from the stationary source. 
 
Case 2:  The Observer Is Stationary But the Source Is 
Moving 
When the source of sound moves with a velocity, vs, to the right, the 
emitted waves are no longer concentric circles but rather appear as in 
figure 12.22. Each wave is symmetrical about the point of emission, 
but since the point of emission is moving to the right, the circular 
wave associated with each emission is also moving to the  
                                                                                                             Figure 12.21  Observer and source stationary. 
 

     
Figure 12.22  Doppler effect with the source moving and the observer stationary. 

 
right. Hence the waves bunch up in advance of the moving source and spread out behind the source. The frequency 
that an observer hears is just the speed of propagation of the wave divided by its wavelength, that is, 
 

f =  v                                                                                 (12.77) 
       λ 

 
We can use equation 12.77 to describe qualitatively what the observer hears. As the wave approaches the observer, 
the waves bunch up and hence the effective wavelength λ appears smaller in the front of the wave. From equation 
12.77 we can see that if λ decreases, the frequency f must increase. Thus, when a moving source approaches a 
stationary observer the observed frequency is higher than the emitted frequency of the source. When the source 
reaches the observer, the observer hears the frequency emitted. As the source passes and recedes from the 
observer the effective wavelength λ appears longer. Hence, from equation 12.77, if λ increases, the frequency f, 
heard by the observer, is lower than the frequency emitted by the source. Thus, when a moving source recedes from 
a stationary observer the observed frequency is lower than the emitted frequency of the source. To get a quantitative 
description of the observed frequency we proceed as follows. 
 
a)  Moving Source Approaches a Stationary Observer 
The effective wavelength measured by the stationary observer in front of the moving source is simply the total 
distance AB, in figure 12.22, divided by the total number of waves in that distance, that is, 
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λf = distance AB                                                                       (12.78) 
        # of waves 

 
In a time t, the moving source has moved a distance 0A, in figure 12.22, which is given by the speed of the source 
vs times the time t. The distance 0B is given by the speed of the wave v times the time t. Hence, the distance AB in 
figure 12.22 is 

distance AB = vt − vst                                                                  (12.79) 
 

whereas the number of waves between A and B is just the number of waves emitted per unit time, fs, the frequency 
of the source, times the time t. Thus, 

# of waves in AB = (# of waves emitted)t = fst                                              (12.80) 
                           time 

 
Substituting equations 12.79 and 12.80 into equation 12.78, the effective wavelength in front of the source is 
 

λf = vt − vst                                                                           (12.81) 
         fst 

λf = v − vs 
      fs 

 
However, from equation 12.77, the observed frequency in front of the approaching source fof is 
 

fof =  v  =       v        
                                                                                                      λf    (v − vs)/fs 
or 

 fof =     v    fs                                                                           (12.82) 
                                                                                               v − vs                  

 
Equation 12.82 gives the frequency that is observed by a stationary observer who is in front of an approaching 
source. 
 
b) A Moving Source Recedes from a Stationary Observer 
The effective wavelength λb heard by the stationary observer behind the moving source is equal to the total 
distance CA divided by the number of waves between C and A, that is, 
 

λb = distance CA                                                                      (12.83) 
        # of waves 

 
However, from figure 12.22, we see that the distance CA is 

 
distance CA = vt + vst                                                                    (12.84) 

 
whereas the number of waves between C and A is the number of waves emitted per unit time, times the time t, 
that is, 

# of waves in CA = (# of waves emitted)t = fst                                                (12.85) 
                        time 

 
Substituting equations 12.84 and 12.85 into equation 12.83 yields the effective wavelength behind the receding 
source 

λb = vt + vst 
       fst 

or 
λb = v + vs                                                                          (12.86) 

      fs 
 

Substituting this effective wavelength into equation 12.77, we obtain 
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fob =  v   =        v         

                                                                                                     λb    (v + vs)/fs 
or 

 fob =     v     fs                                                                           (12.87) 
                                                                                              v + vs                 

 
Equation 12.87 gives the frequency observed by a stationary observer who is behind the receding source. 

 
Example 12.17 

 
Doppler effect - moving source. A train moving at 25.00 m/s emits a whistle of frequency 200.0 Hz. If the speed of 
sound in air is 343.0 m/s, find the frequency observed by a stationary observer (a) in advance of the moving source 
and (b) behind the moving source. 

Solution
 

a. The observed frequency in advance of the approaching source, found from equation 12.82, is 
 

fof =     v     fs 
    v − vs 

( )343.0 m/s 200.0 Hz
343.0 m/s 25.00 m/s

 =  − 
 

= 215.7 Hz 
 

Note that the observed frequency in front of the approaching source is higher than the frequency emitted by the 
source. 
b. The observed frequency behind the receding source, found from equation 12.87, is 
 

fob =     v     fs 
    v + vs 

( )343.0 m/s 200.0 Hz
343.0 m/s 25.00 m/s

 =  + 
 

= 186.4 Hz 
 

Note that the observed frequency behind the receding source is lower than the frequency emitted by the source. 
Also note that the change in the frequency is not symmetrical. That is, the change in frequency when the train is 
approaching is equal to 15.7 Hz, whereas the change in frequency when the train is receding is equal to 13.6 Hz. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Case 3:  The Source Is Stationary But the Observer Is Moving 
For a stationary source the sound waves are emitted as concentric circles, as shown in figure 12.23. 
 
a) The Observer Is Moving toward the Source at a Velocity vo 
When the observer approaches the stationary source at a velocity vo, the relative velocity between the observer 
and the wave is 

vrel = vo + v 
 
This relative velocity has the effect of having the emitted wave pass the observer at a greater velocity than 
emitted. The observed frequency heard while approaching the source is 
 

foA = vrel = vo + v 
                                                                                                      λ           λ 
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But the wavelength emitted by the source does not change, and is simply 

 
λ =  v                            (12.88) 

                                                 fs           
Hence, 

foA = vo + v 
          v/fs 

 
Hence, the frequency observed by the moving observer 
as it approaches the stationary source is 
 

 foA = vo + v fs                       (12.89) 
                                                 v                            

 
 
 
 

                                                                                       Figure 12.23  Doppler effect, the source is stationary 
                                                                                                  but the observer is moving. 

 
b) The Observer Is Moving Away from the Source at a Velocity vo 
When the observer moves away from the source, the relative velocity between the wave and the observer is 

 
vrel = v − vo 

 
This reduced relative velocity has the effect of having the sound waves move past the receding observer at a slower 
rate. Thus, the observed frequency of the receding observer foR is  
 

foR = vrel  = v − vo  
                                                                                                     λ          λ 

 
The wavelength λ of the emitted sound is still given by equation 12.88, and the observed frequency becomes 
 

foR = v − vo 
        v/fs 

 
Thus, the frequency observed by an observer who is receding from a stationary source is 
 

 foR = v − vo  fs                                                                        (12.90) 
                                                                                                  v                     

 
Example 12.18 

 
Doppler effect - moving observer. A stationary source emits a whistle at a frequency of 200.0 Hz. If the velocity of 
propagation of the sound wave is 343.0 m/s, find the observed frequency if (a) the observer is approaching the 
source at 25.00 m/s and (b) the observer is receding from the source at 25.00 m/s. 

Solution
 

a. The frequency observed by the approaching observer, found from equation 12.89, is 
 

foA = vo + v fs  
       v 

( )25.00 m/s 343.0 m/s 200.0 Hz
343.0 m/s

+ =  
 

 

= 214.6 Hz 
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Note that the frequency observed by the approaching observer is greater than the emitted frequency of 200.0 Hz. 
However, observe that it is not the same numerical value found when the source was moving (215.7 Hz). The 
reason for the difference in the observed frequency is that the physical problems are not the same. 
b.  The frequency observed by the receding observer, found from equation 12.90, is 
 

foR = v − vo fs  
    v 

( )343.0 m/s 25.00 m/s 200.0 Hz
343.0 m/s

− =  
 

 

= 185.4 Hz 
 

Note that the frequency observed by the receding observer is less than the frequency emitted by the source. Also 
note that the frequency observed by the receding observer for a stationary source, foR = 185.4 Hz, is not the same 
frequency as observed by a stationary observer behind the receding source fob = 186.4 Hz. Finally, notice that 
when the source is stationary, the change in the frequency of approach, 14.6 Hz, is equal to the change in the 
frequency of recession, 14.6 Hz. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Case 4:  Both the Source and the Observer Are Moving 
If both the source and the observer are moving we can combine equations 12.82, 12.87, 12.89, and 12.90 into the 
one single equation 

 fo =  v ± vo  fs                                                                           (12.91) 
                                                                                          v ∓ vs               
with the convention that 
+ vo corresponds to the observer approaching 
− vo corresponds to the observer receding 
− vs corresponds to the source approaching 
+ vs corresponds to the source receding 

 
Example 12.19 

 
Doppler effect - both source and observer move. A sound source emits a frequency of 200.0 Hz at a velocity of 343.0 
m/s. If both the source and the observer move at a velocity of 12.50 m/s, find the observed frequency if (a) the 
source and the observer are moving toward each other and (b) the source and the observer are moving away from 
each other. 

Solution
 

a. If the source and observer are approaching each other, the observed frequency, found from equation 12.91 with 
vo positive and vs negative, is 

fo =  v + vo  fs 
   v − vs 

( )343.0 m/s 12.50 m/s 200.0 Hz
343.0 m/s 12.50 m/s

+ =  − 
 

= 215.1 Hz 
 

Note that the frequency observed is higher than the frequency emitted, and although the relative motion between 
the source and the observer is still 25.00 m/s, the observed frequency is different from that found in both examples 
12.17 and 12.18 (215.7 Hz and 214.6 Hz). 
b. If the source and observer are moving away from each other, then the observed frequency, found from equation 
12.91 with vo negative and vs positive, is 
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fo =  v − vo fs  
    v + vs 

( )343.0 m/s 12.50 m/s 200.0 Hz
343.0 m/s 12.50 m/s

− =  + 
 

= 185.9 Hz 
 

Note that the observed frequency is lower than the emitted frequency, and although the relative velocity between 
observer and source is still 25.00 m/s, the observed frequency is different from that found in examples 12.17 and 
12.18 (186.4 Hz and 185.4 Hz). 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
12.9  The Transmission of Energy in a Wave and the Intensity of a Wave 
We have defined a wave as the propagation of a disturbance through a medium. The disturbance causes the 
particles of the medium to be set into motion. As we have seen, if the wave is a transverse wave, the particles 
oscillate in a direction perpendicular to the direction of the wave propagation. The oscillating particles possess 
energy, and this energy is passed from particle to particle of the medium. Thus, the wave transmits energy as it 
propagates. Let us now determine the amount of energy transmitted by a wave. 

Let us consider a transverse wave on a string, whose particles are executing simple harmonic motion. If 
there is no energy loss due to friction, the total energy transmitted by the wave is equal to the total energy of the 
vibrating particle, that is, 

Etransmitted = (Etot)particle 
 

The total energy possessed by a single particle in simple harmonic motion, given by a variation of equation 11.25, 
is 

Etot =  1  kR2                                                                         (12.92) 
       2 

 
where the letter R is now used for the amplitude of the vibration and hence the wave. Recall that k, in this 
equation, is the spring constant that was shown in chapter 11 to be related to the angular frequency by 
 

ω2 =  k   
       m 

 
where m was the mass of the particle in motion. Solving for the spring constant k, we get 
 

k = ω2m                                                                             (12.93) 
 

Also recall that the angular frequency was related to the frequency of vibration by equation 12.12 as 
 

  ω = 2πf 
Substituting equation 12.12 into equation 12.93 yields 

k = (2πf)2m                                                                       (12.94) 
Substituting equation 12.94 into equation 12.92 gives 
 

Etot =  1 (2πf)2mR2 
                                                                                             2         
The energy transmitted by the wave is therefore 

 Etransmitted = 2π2mf 2R2                                                              (12.95) 
 
Notice that the energy transmitted by the wave is directly proportional to the square of the frequency of the wave 
and directly proportional to the square of the amplitude of the wave. 
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Example 12.20 
 

Energy transmitted by a wave. The frequency and amplitude of a transverse wave on a string are doubled. What 
effect does this have on the amount of energy transmitted? 

Solution
 

The energy of the original wave, given by equation 12.95, is 
 

Eo = 2π2mf02R02 
 

The frequency of the new wave is f = 2fo, and the amplitude of the new wave is R = 2Ro. The energy transmitted by 
the new wave is 

E = 2π2mf2R2 = 2π2m(2fo)2(2Ro)2 
= 16(2π2mf02R02) = 16Eo 

 
To go to this Interactive Example click on this sentence. 

 

 
 
We derived equation 12.95 for the transmission of energy by a transverse wave on a string. It is, however, 
completely general and can be used for any mechanical wave. 

It is sometimes more convenient to describe the wave in terms of its intensity. The intensity of a wave is 
defined as the energy of the wave that passes a unit area in a unit time. That is, we define the intensity 
mathematically as 

 I =  E                                                                                  (12.96) 
                                                                                                 At            

 
The unit of intensity is the watt per square meter, W/m2. Substituting the energy of a wave from equation 12.95 
into equation 12.96 gives 

I = 2π2mf2R2                                                                            (12.97) 
   At 

 
Because the density of a medium is defined as the mass per unit volume, the mass of the particle in simple 
harmonic motion can be replaced by 

m = ρV 
 

And the volume of the medium can be expressed as the cross-sectional area A of the medium that the wave is 
moving through times a distance l the wave moves through (i.e., V = Al). The mass m then becomes 
 

m = ρAl                                                                             (12.98) 
 

Substituting equation 12.98 into equation 12.97 yields 
 

I = 2π2ρAlf2R2 
At 
 

Notice that the cross-sectional area term in both numerator and denominator cancel, and l/t is the velocity of the 
wave v. Hence, 

 I = 2π2ρvf2R2                                                                          (12.99) 
 

Equation 12.99 gives the intensity of a mechanical wave of frequency f and amplitude R, moving at a velocity v in 
a medium of density ρ. 
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Example 12.21 
 

The intensity of a sound wave. A trumpet player plays the note A at a frequency of 440 Hz, with an amplitude of 
7.80 × 10−3 mm. If the density of air is 1.29 kg/m3 and the speed of sound is 331 m/s, find the intensity of the sound 
wave. 

Solution
 

The intensity of the sound wave, found from equation 12.99, is 
 

I = 2π2ρvf2R2 

= 2π2(1.29 kg/m3)(331 m/s)(440 Hz)2(7.80 × 10−6 m)2 
= 9.93 × 10−2 W/m2 

 
To go to this Interactive Example click on this sentence. 

 

 
 
 

Have you ever wondered . . . ? 
An Essay on the Application of Physics 

The Production and Reception of Human Sound 
 

Humans use sound waves to communicate with each other. Sound is produced in the larynx, sometimes 
called the voice box, which is a cartilaginous organ of the throat that contains the vocal cords, figure 1(a). It is the 
vocal cords that are responsible for producing human sound. The cords are horizontal folds in the mucous 
membrane lining of the larynx, figure 1(b). 

The vocal cords contain elastic fibers. As air is exhaled from the lungs, it passes over these elastic fibers 
and sets them into vibration. The cords 
can be visualized as the vibrating strings 
studied in this chapter. The frequency of 
the produced sound can be varied by 
changing the tension in the vocal cords 
similar to the vibrating string. The 
greater the tension on the cords, the 
higher the frequency, or pitch, of the 
emitted sound. The lower the tension on 
the cords, the lower the pitch. 

When you hum, you set up a 
standing wave of a particular frequency 
on your vocal cords. The exhaled air that 
passes over these cords picks up the 
vibration of the cords. As the air is 
expelled from your mouth, it is observed 
as a longitudinal wave at the frequency of 
the vibrating vocal cords. When you 
speak, the expelled air and vibrating vocal 
cords initiate the sound, but your mouth, 
lips, and tongue modify it to produce the 
vowels and consonants that make up the 
words of speech. 

 
                                                              Figure 1  The vocal cords. 

 
An interesting observation in the production of sound can be demonstrated by humming with your mouth 

closed. If you now pinch your nose closed, the humming will stop because the air will no longer flow over the vocal 
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cords. If you are fortunate enough to have survived a case of choking on either food or drink, you will recall that 
when the choking begins you usually panic and try to yell to anyone to tell them that you are choking. 
Unfortunately, as you try to speak you find that you are unable to do so. Since the windpipe has been closed, no air 
can pass over the vocal cords to initiate the vibration that starts the speaking process. Many people die from 
choking simply because they are unable to communicate their condition to someone who can help. The usual 
procedure to communicate your choking condition is to get someone’s attention. Then, point to your throat and 
cross your throat with your finger as though you were cutting your throat. If the other person is aware of the sign 
and realizes that you are choking, he or she can save you by initiating the Heimlich maneuver. This consists of 
holding you from behind and wrapping his or her arms around you. Then the person presses against your 
diaphragm with his or her arms. By pressing in and upward, a force is exerted on your lungs that tends to 
compress the lungs. This in turn increases the pressure of the air in your lungs until it is great enough to force the 
closed valve open, thereby expelling the food that was causing you to choke. This then permits you to breathe 
normally and you observe that you now have your voice back to communicate with anyone. 

Your ears are used to detect sound. The human ear can be divided into three parts: the outer ear, the 
middle ear, and the inner ear, figure 2. The outer ear acts as a funnel to channel the sound wave to the ear drum. 
These sound vibrations set the 
ear drum into vibration. These 
vibrations are then passed 
through the middle ear by 
three bones called the malleus 
(hammer), incus (anvil), and 
stapes (stirrup). These bones 
effectively amplify the 
amplitude of the vibration and 
then pass it on to the inner 
ear. The inner ear is a system 
of cavities. One of these 
cavities is the cochlea, a bony 
labyrinth in the shape of a 
spiral. The cochlea contains a 
fluid, through which the 
amplified vibration is passed to 
the auditory nerve on its way 
to the brain. The brain then 
interprets this sound as either 
speech, music, noise, and so 
forth. 

The loudness of a 
sound as heard by the human  

                                      Figure 2  The human ear. 
 
ear is not directly proportional to the intensity of the sound, but rather is proportional to the logarithm of 

the intensity. The human ear can hear sounds of intensities as low as I0 = 1.00 × 10−12 W/m2, which is called the 
threshold of hearing, to higher than 1.00 W/m2, which is called the threshold of pain. Because of the enormous 
variation in intensity that the human ear can hear, a logarithmic scale is usually used to measure sound. The 
intensity level ß of a sound wave, measured in decibels (dB), is defined as 

 

0

10 log I
I

β
 

=  
 

                                                                       (12H.1) 

 
where I0 is the reference level, taken to be the threshold of hearing. The decibel is 1/10 of a bel, which was named 
to honor Alexander Graham Bell. 

 
Example 12H.1 

 
The intensity of sound in decibels. Find the intensity level of sound waves that are the following multiples of the 
threshold of hearing: (a) I = I0, (b) I = 2I0, (c) I = 5I0, (d) I = 10I0, and (e) I = 100I0. 
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Solution
 

a. The intensity level, found from equation 12H.1, is 
 

0

10 log I
I

β
 

=  
 

                                                                          (12H.1) 

0

0

10 log 10log1 0 dBI
I

β
 

= = = 
 

 

 
Because the log of 1 is equal to zero the intensity level at the threshold of hearing is 0 dB. 
b.  For I = 2I0, the intensity level is 

0

0

210log 10log 2 3.01 dBI
I

β
 

= = = 
 

 

c.  For I = 5I0 the intensity level is 
0

0

510log 10log5 6.99 dBI
I

β
 

= = = 
 

 

d.  For I = 10I0 the intensity level is 
0

0

1010log 10log10 10.00 dBI
I

β
 

= = = 
 

 

e.  For I = 100I0 the intensity level is 
0

0

10010log 10log100 20.00 dBI
I

β
 

= = = 
 

 

 
Thus, doubling the intensity level of a sound from 10 to 20 dB, a factor of 2, actually corresponds to an intensity 
increase from 10I0 to 100I0, or by a factor of 10. Similarly, an increase in the intensity level from 10 to 30 dB, a 
factor of 3, would correspond to an increase in the intensity from 10I0 to 1000I0, or a factor of 100. 
 

 
 

Example 12H.2 
 

Heavy traffic noise. A busy street with heavy traffic has an intensity level of 70 dB. Find the intensity of the sound. 

Solution
 

We find the intensity by solving equation 12H.1 for I. Hence, 
 

0

log
10

I
I

β  
=  

 
 

But the definition of the common logarithm is 
              if y = log x      then x = 10y 

For our case this becomes 

        if   
0

log
10

I
I

β  
=  

 
     then  10

0

10I
I

β

=      

Hence, 
I = I010β/10 

And 
I = I01070/10 = (1.00 × 10−12 W/m2)(107) 

= 1.00 × 10−5 W/m2 
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The human ear is responsive to a large range of frequencies and intensities. A typical response curve is 

shown in figure 3. The intensity level of sound is plotted against the frequency of the sound. The continuous 
curved line at the bottom represents the 
response curve of a normal ear. The lowest 
region on the curve occurs from about 1000 
Hz to about 4000 Hz. These frequencies 
can be heard by the normal ear at very low 
intensity levels. On the other hand, to 
hear a frequency of 100 Hz the intensity 
level would have to be increased to about 
35 dB. And for a normal ear to hear a 
frequency of about 20,000 Hz the intensity 
level would have to be increased to about 
40 dB. At an intensity of 20 dB a 
frequency of 1000 Hz can easily be heard, 
but a frequency of 100 Hz could not be 
heard at all. 

With age, the frequencies that the 
human ear can hear decreases. Many 
people resort to a hearing aid to overcome 
this hearing deficiency. A test is made of 
the person’s ability to hear a sound of a 
known intensity level and frequency. The  

                                                             Figure 3  Graph of intensity level of sound versus the 
                                                                         frequency of the sound for a human ear. 

 
person is placed in a soundproof booth and earphones are placed over his or her ears. The examiner then plays 
pure sounds at a known frequency. He or she starts at a low intensity level and increases the intensity in small 
steps until the individual hears that particular frequency. When the individual hears the sound, he or she presses 
a button to let the examiner know that he or she has heard the sound. The examiner then marks an x on the graph 
of the frequency and intensity level of the normal ear shown in figure 3. The x’s represent the actual frequencies 
heard at a particular intensity level. By knowing the frequencies that the person can no longer hear very well, a 
hearing aid, which is essentially a miniature electronic amplifier, is designed to amplify those frequencies, and 
thus bring the sound of that frequency up to a normal intensity level for that individual. For example the x’s in 
figure 3 indicate that the individual’s hearing response has deteriorated. In particular, the hearing response in the 
midrange frequency is much worse than at the low end or the high end of the spectrum. (The x’s in the midrange 
are farther away from the normal curve.) Thus a hearing aid that amplifies the frequencies in the middle range of 
the audio spectrum would be useful for the individual. We would certainly not want to amplify the entire audio 
spectrum, for then we would be amplifying some of the frequencies that the person already hears reasonably well. 

It is interesting to note that not only humans use sounds to communicate but animals do also. Some 
animals communicate at a higher frequency than can be heard by humans. These sounds are called ultrasonic and 
occur at frequencies above 20,000 Hz. Birds and dogs can hear these ultrasounds and bats even use them for 
navigation in a kind of sound radar. Ultrasound is used in sonar systems to detect submarines. It is also used in a 
variety of medical applications, including diagnosis and treatment. For example, chiropractors and physical 
therapists routinely use ultrasound for relief of lower back pain. 
 
 

The Language of Physics 
 
Wave 
A wave is a propagation of a 
disturbance through a medium (p. ). 
 
Longitudinal wave 
A wave in which the particles of the 
medium oscillate in simple 

harmonic motion parallel to the 
direction of the wave propagation 
(p. ). 
 
Transverse wave 
A wave in which the particles of the 
medium execute simple harmonic 

motion in a direction perpendicular 
to its direction of propagation (p. ). 
 
Displacement 
The distance that a particle of the 
medium is displaced from its 
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equilibrium position as the wave 
passes by (p. ). 
 
Amplitude 
The maximum value of the 
displacement (p. ). 
 
Wavelength 
The distance, in the direction of 
propagation, in which the wave 
repeats itself (p. ). 
 
Period 
The time it takes for one complete 
wave to pass a particular point. 
Hence, it is the time for a wave to 
repeat itself (p. ). 
 
Frequency 
The number of waves passing a 
particular point per second (p. ). 
 
Reflection of a wave at a 
boundary 
If a wave on a string traveling to 
the right is reflected from a 
nonfixed end, the reflected wave 
moves to the left with the same size 
and shape as the incident wave. If a 
wave on a string is traveling to the 
right and is reflected from a fixed 
end, the reflected wave is the same 
size and shape but is now inverted 
(p. ). 
 
Reflection and transmission of 
a wave at the boundary of two 
different media 
(1) Boundary between a less dense 
medium and a more dense medium. 
The boundary acts as a fixed end 
and the reflected wave is inverted. 
The transmitted wave slows down 
on entering the more dense medium 
and the wavelength of the 
transmitted wave is less than the 
wavelength of the incident wave 
(p. ). 
(2) Boundary between a more dense 
medium and a less dense medium. 
The boundary acts as a nonfixed 
end and the reflected wave is not 
inverted, but is rather right side up. 
The transmitted wave speeds up on 
entering the less dense medium and 
the wavelength of the transmitted 
wave is greater than the 

wavelength of the incident wave 
(p. ). 
 
Principle of superposition 
Whenever two or more wave 
disturbances pass a particular point 
in a medium, the resultant 
displacement of the point of the 
medium is the sum of the 
displacements of each individual 
wave disturbance (p. ). 
 
Phase angle 
The measure of how far one wave is 
displaced in the direction of 
propagation from another wave 
(p. ). 
 
Constructive interference 
When two interfering waves are in 
phase with each other (phase angle 
= 0) the amplitude of the combined 
wave is a maximum (p. ). 
 
Destructive interference 
When two interfering waves are 
1800 out of phase with each other 
the amplitude of the combined wave 
is zero (p. ). 
 
Node 
The point where the amplitude of a 
standing wave is zero (p. ). 
 
Antinode 
The point where the amplitude of a 
standing wave is a maximum (p. ). 
 
Standing wave on a string 
For a string fixed at both ends, a 
wave train is sent down the string. 
The wave is reflected from the fixed 
ends. Hence, there are two wave 
trains on the string, one traveling 
to the right and one traveling to the 
left. The resultant wave is the 
superposition of the two traveling 
waves. It is called a standing wave 
or a stationary wave because the 
resultant standing wave does not 
travel at all. The node of the 
standing wave remains a node for 
all times. Thus, the string can not 
move up and down at that point, 
and can not transmit any energy 
past that point. Because the string 
is fixed at both ends, only certain 

wavelengths and frequencies are 
possible. When the string vibrates 
at these specified wavelengths, the 
string is said to be vibrating at one 
of its normal modes of vibration, 
and the string is vibrating at one of 
its natural frequencies (p. ). 
 
Fundamental frequency 
The lowest of the natural 
frequencies of a vibrating system 
(p. ). 
 
Resonance 
When a force is applied, whose 
frequency is equal to the natural 
frequency of the system, the system 
vibrates at maximum amplitude 
(p. ). 
 
Sound wave 
A sound wave is a longitudinal 
wave that can be propagated in a 
solid, liquid, or gas (p. ). 
 
Overtone 
An overtone is a frequency higher 
than the fundamental frequency 
(p. ). 
 
Harmonic 
A harmonic is an overtone that is a 
multiple of the fundamental 
frequency. Hence, the nth harmonic 
is n times the fundamental 
frequency, or first harmonic (p. ). 
 
Doppler effect 
The change in the wavelength and 
hence the frequency of a sound 
caused by the relative motion 
between the source and the 
observer. When a moving source 
approaches a stationary observer 
the observed frequency is higher 
than the emitted frequency of the 
source. When a moving source 
recedes from a stationary observer, 
the observed frequency is lower 
than the emitted frequency of the 
source (p. ). 
 
Intensity of a wave 
The energy of a wave that passes a 
unit area in a unit time (p. ). 
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Summary of Important Equations 
 

Frequency of a wave   f =  1    (12.1) 
                                           T 
 
Fundamental equation of wave 
propagation       v = λf              (12.3) 
 
Wave number       k = 2π          (12.9) 
                                         λ 
 
Equation of a wave traveling to the 
right      y = A sin(kx − ωt)     (12.13) 
 
Equation of a wave traveling to the 
left        y = A sin(kx + ωt)      (12.26) 
 
Angular frequency  ω = 2πf    (12.12) 
 
Angular frequency   ω = kv    (12.14) 
 
Velocity of transverse wave on a 

string         
/

Tv
m l

=              (12.30) 

 
Change in wavelength in second 
medium        λ2 =  v2  λ1         (12.34) 
                              v1 
 
Principle of superposition 

  y = y1 + y2 + y3 + …    (12.35) 
 

Equation of wave displaced to the 
right by phase angle φ 

y = A sin(kx − ωt − φ)      (12.38) 
 
Interference of two waves out of 
phase by angle φ 

     2 cos sin
2 2

y A kx tφ φ
ω   = − −   

   
 

(12.50) 
 
The equation of the displacement of 
a standing wave on a string 

( )2 sin cosn xy A t
L
π

ω =  
 

     (12.61) 

   
Location of nodes of standing wave 

               x = nλ                     (12.56) 
                          2 
 
Location of antinodes 

x = (2n − 1) λ          (12.57) 
                                     4 
 
Possible wavelengths on vibrating 
string              λ = 2L              (12.62) 

    n 
 
Frequency of vibrating string 

    
2 /
n Tf
L m l

=          (12.64) 

 

Frequency of higher modes of 
vibration          fn = nf1           (12.67) 
  
Speed of sound in a solid 

               Yv
ρ

=                (12.68) 

 
Speed of sound in a fluid 

       Bv
ρ

=                 (12.69) 

 
Speed of sound in a gas 

         pv γ
ρ

=              (12.70) 

 
Doppler frequency shift 

     fo =  v ± vo  fs            (12.91) 
                        v ∓ vs 
 
Energy transmitted by wave 

  Etransmitted = 2π2mf2R2     (12.95) 
 
Intensity of a wave 

     I = 2π2ρvf2R2            (12.99) 
 
Intensity of a sound wave in 

decibels    
0

10 log I
I

β
 

=  
 

     (12H.1) 

 
Questions for Chapter 12 

 
1. Discuss the relation between 

simple harmonic motion and wave 
motion. Is it possible to create 
waves in a medium where the 
particles do not execute simple 
harmonic motion? 

2. State the differences between 
transverse waves and longitudinal 
waves. 

3. Describe how sound is made 
and heard by a human. 

4. Discuss the statement “When 
a person is young enough to hear all 
the frequencies of a good stereo 
system, he can not afford to buy it. 
And when he can afford to buy it, 
he can not hear all the frequencies.” 

5. Discuss the statement that a 
wave is periodic in both space and 
time. 

6. Why are there four different 
strings on a violin? Describe what a 
violin player does when she “tunes” 
the violin. 

7. Discuss what happens to a 
pulse that is reflected from a fixed 
end and a free end. 

*8. A wave is reflected from, 
and transmitted through, a more 
dense medium. What criteria would 
you use to estimate how much 
energy is reflected and how much is 
transmitted? 

9. If the wavelength of a wave 
decreases as it enters a medium, 

what does this tell you about the 
medium? 

10. When does the 
superposition principle fail in the 
analysis of combined wave motions? 

11. Discuss what is meant by a 
standing wave and give some 
examples. 

12. Discuss the difference 
between overtones and harmonics 
for a vibrating string, an open 
organ pipe, and a closed organ pipe. 

*13. Discuss the possible uses of 
ultrasound in medicine. 

*14. Discuss the Doppler effect 
on sound waves. Could the Doppler 
effect be applied to light waves? 
What would be the medium for the 
propagation? 
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*15. How could the Doppler 
effect be used to determine if the 
universe is expanding or 
contracting? 

16. If two sounds of very nearly 
the same frequency are played 
together, the two waves will 
interfere with each other. The 
slight difference in frequency will 

cause an alternate rising and 
lowering of the intensity of the 
combined sound. This phenomenon 
is called beats. How can this 
technique be used to tune a piano? 

 
Problems for Chapter 12 

 
12.1 Introduction 

1. Find the period of a sound 
wave of (a) 20.0 Hz and (b) 20,000 
Hz. 

2. A sound wave has a 
wavelength of 2.25 × 10−2 m and a 
frequency of 15,000 Hz. Find its 
speed. 

3. Find the wavelength of a 
sound wave of 60.0 Hz at 20.0 0C. 

 
12.2 Mathematical 
Representation of a Wave 

4. At a time t = 0, a certain 
wave is given by y = 10 sin 5x. Find 
the (a) amplitude of the wave and 
(b) its wavelength. 

5. You want to generate a wave 
that has a wavelength of 20.0 cm 
and moves with a speed of 80.0 m/s. 
Find (a) the frequency of such a 
wave, (b) its wave number, and 
(c) its angular frequency. 

6. A particular wave is given by 
y = (8.50 m)sin[(0.800 m−1)x − (5.40 
rad/s)t]. Find (a) the amplitude of 
the wave, (b) the wave number, 
(c) the wavelength, (d) the angular 
frequency, (e) the frequency, (f) the 
period, (g) the velocity of the wave, 
and (h) the displacement of the 
wave at x = 5.87 m and t = 2.59 s. 

7. A certain wave has a 
wavelength of 25.0 cm, a frequency 
of 230 Hz, and an amplitude of 1.85 
cm. Find (a) the wave number k and 
(b) the angular frequency ω. 
(c) Write the equation for this wave 
in the standard form y = A sin(kx − 
ωt). 

 
12.3  The Speed of a Transverse 
Wave on a String 

8. A 60.0-cm guitar string has a 
mass of 1.40 g. If it is to play the 
note A at a frequency of 440 Hz, 
what must the tension be in the 
string? Assume that the wavelength 

of the note is twice the length of the 
string. 

9. A 1.50-m length of wire with 
a mass of 0.035 kg is stretched 
between two points. Find the 
necessary tension in the wire such 
that the wave may travel from one 
end to another in a time of 0.0900 s. 

10. A guitar string that has a 
mass per unit length of 2.33 × 10−3 
kg/m is tightened to a tension of 
655 N. What frequency will be 
heard if the string is 60.0 cm long? 
Is this a standard note or is it sharp 
or flat? (Remember that the 
wavelength of the note played is 
twice the length of the string.) 

 
12.4  Reflection of a Wave at a 
Boundary 

11. One end of a 100-cm wire of 
3.45 g is welded to a 90.0-cm wire of 
9.43 g. (a) If a wave moves along 
the first wire at a speed of 528 m/s, 
find its speed along the second wire. 
(b) If the wavelength on the first 
wire is 1.76 cm, find the wavelength 
of the wave on the second wire. 

 
Diagram for problem 11. 

 
12. The first end of a combined 

string has a linear mass density of 
4.20 × 10−3 kg/m, whereas the 
second end has a mass density of 
10.5 kg/m. (a) If a 60.0-cm wave is 
to be sent along the first string at a 
speed of 8.56 m/s, what must the 
tension in the string be? (b) What is 
the wavelength of the reflected and 
transmitted wave? 

13. The first end of a combined 
string has a linear mass density of 
8.00 kg/m, whereas the second 
string has a density of 2.00 kg/m. If 
the speed of the wave in the first 
string is 10.0 m/s, find (a) the speed 
of the wave in the second string and 
(b) the tension in the string. (c) If a 
wave of length 60.0 cm is observed 
in the first string, find the 
wavelength and frequency of the 
wave in the second string. 

14. The first end of a combined 
string has a linear mass density of 
6.00 kg/m, whereas the second 
string has a density of 2.55 kg/m. 
The tension in the string is 350 N. 
If a vibration with a frequency of 20 
vibrations is imparted to the first 
string, find the frequency, velocity, 
and wavelength of (a) the incident 
wave, (b) the reflected wave, and 
(c) the transmitted wave. 

 
12.5 The Principle of 
Superposition 

15. The following two waves 
interfere with each other: 

 
y1 = (10.8 m)sin[(0.654 m−1)x 
                                  −(2.45 rad/s)t] 
 
y2 = (6.73 m)sin[(0.893 m−1)x −(6.82 
                                             rad/s)t] 

 
Find the resultant displacement 

when x = 0.782 m and t = 5.42 s. 
16. The following two waves 

combine: 
 

y1 = (10.8 m)sin[(0.654 m−1)x 
                                   −(2.45 rad/s)t] 

 
y2 = (10.8 m)sin[(0.654 m−1)x  
                 −(2.45 rad/s)t − 0.834 rad] 

 
(a) Find the equation of the 

resultant wave. (b) Find the 
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displacement of the resultant wave 
when x = 0.895 m and t = 6.94 s. 

 
12.6  Standing Waves - The 
Vibrating String 

17. The E string of a violin is 
vibrating at a fundamental 
frequency of 659 Hz. Find the 
wavelength and frequency of the 
third, fifth, and seventh harmonics. 
Let the length of the string be 60.0 
cm. 

18. A steel wire that is 1.45 m 
long and has a mass of 45 g is 
placed under a tension of 865 N. 
What is the frequency of its fifth 
harmonic? 

19. A violin string plays a note 
at 440 Hz. What would the 
frequency of the wave on the string 
be if the tension in the string is 
(a) increased by 20.0% and 
(b) decreased by 20.0%? 

20. A note is played on a guitar 
string 60.0 cm long at a frequency 
of 432 Hz. By how much should the 
string be shortened by pressing on 
it to play a note of 440 Hz? 

21. A cello string, 75.0 cm long 
with a linear mass density of 7.25 × 
10−3 kg/m, is to produce a 
fundamental frequency of 440 Hz. 
(a) What must be the tension in the 
string? (b) Find the frequency of the 
next three higher harmonics. 
(c) Find the wavelength of the 
fundamental and the next three 
higher harmonics. 

 
12.7  Sound Waves 

22. A sound wave in air has a 
velocity of 335 m/s. Find the 
temperature of the air. 

23. A lightning flash is observed 
and 12 s later the associated 
thunder is heard. How far away is 
the lightning if the air temperature 
is 15.0 0C? 
24. A soldier sees the flash from a 
cannon that is fired in the distance 
and 10 s later he hears the roar of 
the cannon. If the air temperature 
is 33 0C, how far away is the 
cannon? 

 
Diagram for problem 23. 

 
25. A sound wave is sent to the 

bottom of the ocean by a ship in 
order to determine the depth of the 
ocean at that point. The sound wave 
returns to the boat in a time of 1.45 
s. Find the depth of the ocean at 
this point. Use the bulk modulus of 
water to be 2.30 × 109 N/m2 and the 
density of seawater to be 1.03 × 103 
kg/m3. 

26. Find the speed of sound in 
aluminum, copper, and lead. 

27. You are trying to design 
three pipes for a closed organ pipe 
system that will give the following 
notes with their corresponding 
fundamental frequencies, C = 261.7 
Hz, D = 293.7 Hz, E = 329.7 Hz. 
Find the length of each pipe. 
Assume that the speed of sound in 
air is 343 m/s. 

28. Repeat problem 27 for an 
open organ pipe. 

 
12.8  The Doppler Effect 

29. A train is moving at a speed 
of 90.0 m/s and emits a whistle of 
frequency 400.0 Hz. If the speed of 
sound is 343 m/s, find the frequency 
observed by an observer who is at 
rest (a) in advance of the moving 
source and (b) behind the moving 
source. 

30. A stationary police car turns 
on a siren at a frequency of 300 Hz. 
If the speed of sound in air is 343 
m/s find the observed frequency if 
(a) the observer is approaching the 
police car at 35.0 m/s and (b) the 
observer is receding from the police 
car at 35.0 m/s. 

31. A police car traveling at 
90.0 m/s, turns on a siren at a 
frequency of 350 Hz as it tries to 
overtake a gangster’s car moving 
away from the police car at a speed 
of 85 m/s. If the speed of sound in 

air is 343 m/s find the frequency 
heard by the gangster. 

32. Two trains are approaching 
each other, each at a speed of 
100 m/s. They each emit a whistle 
at a frequency of 225 Hz. If the 
speed of sound in air is 343 m/s, 
find the frequency that each train 
engineer hears. 

33. A train moving east at a 
velocity of 20 m/s emits a whistle at 
a frequency of 348 Hz. Another 
train, farther up the track and 
moving east at a velocity of 30 m/s, 
hears the whistle from the first 
train. If the speed of sound in air is 
343 m/s, what is the frequency of 
the sound heard by the second train 
engineer? 

 
Additional Problems 

34. One end of a violin string is 
connected to an electrical vibrator 
of 120 Hz, whereas the other end 
passes over a pulley and supports a 
mass of 10.0 kg, as shown in figure 
12.17. The string is 60.0 cm long 
and has a mass of 12.5 g. What is 
the wavelength and speed of the 
wave produced? 

*35. Three solid cylinders, the 
first of lead, the second of brass, 
and the third of aluminum, each 
10.0 m long, are welded together. If 
the first pipe is struck with a 
hammer at its end, how long will it 
take for the sound to pass through 
the cylinders? 

*36. A sound wave of 200 Hz in 
a steel cylinder is transmitted into 
water and then into air. Find the 
wavelength of the sound in each 
medium. 

*37. A railroad worker hits a 
steel track with a hammer. The 
sound wave through the steel track 
reaches an observer and 3.00 s later 
the sound wave through the air also 
reaches the observer. If the air 
temperature is 22.0 0C, how far 
away is the worker? 

Diagram for problem 37. 
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38. A tuning fork of 512 Hz is 
set into vibration above a long 
vertical tube containing water. A 
standing wave is observed as a 
resonance between the original 
wave and the reflected wave. If the 
speed of sound in air is 343 m/s, 
how far below the top of the tube is 
the water level? 

39. The intensity of an ordinary 
conversation is about 3 × 10−6 
W/m2. Find the intensity level of the 
sound. 

40. An indoor rock concert has 
an intensity level of 70 dB. Find the 
intensity of the sound. 

41. The intensity level of a 500 
Hz sound from a television program 
is about 40 dB. If the speed of sound 
is 343 m/s, find the amplitude of the 
sound wave. 

*42. The speed of high-
performance aircraft is sometimes 
given in terms of Mach numbers, 
where a Mach number is the ratio 
of the speed of the aircraft to the 
speed of sound at that level. Thus, a 
plane traveling at a speed of 343 
m/s at sea level where the 
temperature is 20.0 0C would be 
traveling at Mach 1. If the 
temperature of the atmosphere 

increased to 30.0 0C, and the 
aircraft is still moving at 343 m/s, 
what is its Mach number? 

 
Interactive Tutorials 

43. Resonance. A tuning fork of 
frequency f = 512 Hz is set into 
vibration above a long vertical 
cylinder filled with water. As the 
water in the tube is lowered, 
resonance occurs between the 
initial wave traveling down the 
cylinder and the second wave that 
is reflected from the water surface 
below. Calculate (a) the wavelength 
λ of the sound wave in air and 
(b) the three resonance positions as 
measured from the top of the tube. 
The velocity of sound in air is v = 
343 m/s. 

44. The superposition of any two 
waves. Given the following two 
waves: 

y1 = A1 sin(k1x − ω1t) 
y2 = A2 sin(k2x − ω2t − φ) 

 
For each wave find (a) the 

wavelength λ, (b) the frequency f, 
(c) the period T, and (d) the velocity 
v. Since each wave is periodic in 
both space and time, (e) for the 
value x = 2.00 m plot each wave and 

the sum of the two waves as a 
function of time t. (f) For the time t 
= 0.500 s, plot each wave and the 
sum of the two waves as a function 
of the distance x. For the initial 
conditions take A1 = 3.50 m, k1 = 
0.55 m−1, ω1 = 4.25 rad/s, A2 = 4.85 
m, k2 = 0.85 m−1, ω2 = 2.58 rad/s, 
and φ = 0. Then consider all the 
special cases listed in the tutorial 
itself. 

45. A vibrating string. A 60.0-
cm string with a mass of 1.40 g is to 
produce a fundamental frequency of 
440 Hz. Find (a) the tension in the 
string, (b) the frequency of the next 
four higher harmonics, and (c) the 
wavelength of the fundamental and 
the next four higher harmonics. 

46. General purpose Doppler 
Effect Calculator. The Doppler 
Effect Calculator will calculate the 
observed frequency of a sound wave 
for the motion of the source or the 
observer, whether either or both are 
approaching or receding. 

 
To go to these Interactive 

Tutorials click on this sentence.

 
  

To go to another chapter, return to the table of contents by clicking on this sentence.  
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