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Chapter 8  Momentum and Its Conservation   
  

The quantity of motion is the measure of the same, arising from the 
velocity and quantity conjointly. 

         Isaac Newton, Principia 
  
8.1  Momentum 
In dealing with some problems in mechanics, we find that in many cases, it is exceedingly difficult, if not 
impossible, to determine the forces that are acting on a body, and/or for how long the forces are acting. These 
difficulties can be overcome, however, by using the concept of momentum. 

The linear momentum of a body is defined as the product of the mass of the body in motion times its 
velocity. That is, 

 p = mv                                                                               (8.1) 
 

Because velocity is a vector, linear momentum is also a vector, and points in the same direction as the velocity 
vector. We use the word linear here to indicate that the momentum of the body is along a line, in order to 
distinguish it from the concept of angular momentum. Angular momentum applies to bodies in rotational motion 
and will be discussed in chapter 9. In this book, whenever the word momentum is used by itself it will mean linear 
momentum. 

This definition of momentum may at first seem rather arbitrary. Why not define it in terms of v2, or v3? We 
will see that this definition is not arbitrary at all. Let us consider Newton’s second law 

 
F = ma = m∆v 
                     ∆t 

However, since ∆v = vf − vi, we can write this as 
f im

t
− 

=  ∆ 

v v
F                                                                         (8.2) 

F = mvf − mvi 

        ∆t 
 

But mvf = pf, the final value of the momentum, and mvi = pi, the initial value of the momentum. Substituting this 
into equation 8.2, we get 

F = pf − pi                                                                            (8.3) 
         ∆t 

 
However, the final value of any quantity, minus the initial value of that quantity, is equal to the change of that 
quantity and is denoted by the delta ∆ symbol. Hence, 

pf − pi = ∆p                                                                       (8.4) 
 

the change in the momentum. Therefore, Newton’s second law becomes 
 

 F = ∆p                                                                                (8.5) 
                                                                                                           ∆t         

 
Newton’s second law in terms of momentum can be stated as: When a resultant applied force F acts on a body, 
it causes the linear momentum of that body to change with time. 

The interesting thing we note here is that this is essentially the form in which Newton expressed his 
second law. Newton did not use the word momentum, however, but rather the expression, “quantity of motion,” 
which is what today would be called momentum. Thus, defining momentum as p = mv is not arbitrary at all. In 
fact, Newton’s second law in terms of the time rate of change of momentum is more basic than the form F = ma. In 
the form F = ma, we assume that the mass of the body remains constant. But suppose the mass does not remain 
constant? As an example, consider an airplane in flight. As it burns fuel its mass decreases with time. At any one 
instant, Newton’s second law in the form F = ma, certainly holds and the aircraft’s acceleration is 
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a =  F  
       m 

 
But only a short time later the mass of the aircraft is no longer m, and therefore the acceleration changes. Another 
example of a changing mass system is a rocket. Newton’s second law in the form F = ma does not properly describe 
the motion because the mass is constantly changing. Also when objects move at speeds approaching the speed of 
light, the theory of relativity predicts that the mass of the body does not remain a constant, but rather it increases. 
In all these variable mass systems, Newton’s second law in the form F = ∆p/∆t is still valid, even though F = ma is 
not. 
 
 
8.2  The Law of Conservation of Momentum 
A very interesting result, and one of extreme importance, is found by considering the behavior of mechanical 
systems containing two or more particles. Recall from chapter 7 that a system is an aggregate of two or more 
particles that is treated as an individual unit. Newton’s second law, in the form of equation 8.5, can be applied to 
the entire system if F is the total force acting on the system and p is the total momentum of the system. Forces 
acting on a system can be divided into two categories: external forces and internal forces. External forces are 
forces that originate outside the system and act on the system. Internal forces are forces that originate within the 
system and act on the particles within the system. The net force acting on and within the system is equal to the 
sum of the external forces and the internal forces. If the total external force F acting on the system is zero then, 
since 

F = ∆p                                                                                (8.5) 
      ∆t  

this implies that 
∆p = 0 

                                                                                                    ∆t        
or 

∆p = 0                                                                                   (8.6) 
But 

∆p = pf − pi 
Therefore, 

pf − pi = 0 
and 

   pf = pi                                                                                   (8.7) 
 

Equation 8.7 is called the law of conservation of linear momentum. It says that if the total external 
force acting on a system is equal to zero, then the final value of the total momentum of the system is equal to the 
initial value of the total momentum of the system. That is, the total momentum is a constant, or as usually stated, 
the total momentum is conserved. 

As an example of the law of conservation of momentum let us consider the head-on collision of two billiard 
balls. The collision is shown in a stroboscopic picture in figure 8.1 and schematically in figure 8.2. Initially the ball 
of mass m1 is moving to the right with an initial velocity v1i, while the second ball of mass m2 is moving to the left 
with an initial velocity v2i. 

At impact, the two balls collide, and ball 1 exerts a force F21 on ball 2, toward the right. But by Newton’s 
third law, ball 2 exerts an equal but opposite force on ball 1, namely F12. (The notation, Fij, means that this is the 
force on ball i, caused by ball j.) If the system is defined as consisting of the two balls that are enclosed within the 
green region of figure 8.2, then the net force on the system of the two balls is equal to the forces on ball 1 plus the 
forces on ball 2, plus any external forces acting on these balls. The forces F12 and F21 are internal forces in that 
they act completely within the system. 

It is assumed in this problem that there are no external horizontal forces acting on either of the balls. 
Hence, the net force on the system is 

Net F = F12 + F21 
But by Newton’s third law 

F21 = −F12 

Pearson Custom Publishing

240



 

 
Chapter 8  Momentum and Its Conservation                                                                                                          8-3 

           
Figure 8.1  Collision of billiard balls is an                      Figure 8.2  Example of conservation of momentum.  
            example of conservation of momentum. 
 
Therefore, the net force becomes 

Net F = F12 + (−F12) = 0                                                                     (8.8) 
 

That is, the net force acting on the system of the two balls during impact is zero, and equation 8.7, the law of 
conservation of momentum, must hold. The total momentum of the system after the collision must be equal to the 
total momentum of the system before the collision. Although the momentum of the individual bodies within the 
system may change, the total momentum will not. After the collision, ball m1 moves to the left with a final velocity 
v1f, and ball m2 moves off to the right with a final velocity v2f. 

We will go into more detail on collisions in section 8.5. The important thing to observe here, is what takes 
place during impact. First, we are no longer considering the motion of a single body, but rather the motion of two 
bodies. The two bodies are the system. Even though there is a force on ball 1 and ball 2, these forces are internal 
forces, and the internal forces can not exert a net force on the system, only an external force can do that. Whenever 
a system exists without external forces—a system that we call a closed system—the net force on the system is always 
zero and the law of conservation of momentum always holds. 

The law of conservation of momentum is a consequence of Newton’s third law. Recall that because of the 
third law, all forces in nature exist in pairs; there is no such thing as a single isolated force. Because all internal 
forces act in pairs, the net force on an isolated system must always be zero, and the system’s momentum must 
always be conserved. Therefore, all systems to which the law of conservation of momentum apply, must consist of 
at least two bodies and could consist of even millions or more, such as the number of atoms in a gas. If the entire 
universe is considered as a closed system, then it follows that the total momentum of the universe is also a 
constant. 

The law of conservation of momentum, like the law of conservation of energy, is independent of the type of 
interaction between the interacting bodies, that is, it applies to colliding billiard balls as well as to gravitational, 
electrical, magnetic, and other similar interactions. It applies on the atomic and nuclear level as well as on the 
astronomical level. It even applies in cases where Newtonian mechanics fails. Like the conservation of energy, the 
conservation of momentum is one of the fundamental laws of physics. 
 
 
8.3  Examples of the Law of Conservation of Momentum 
Firing a Gun or a Cannon 
Let us consider the case of firing a bullet from a gun. The bullet and the gun are the system to be analyzed and 
they are initially at rest in our frame of reference. We also assume that there are no external forces acting on the 
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system. Because there is no motion of the bullet with respect to the gun at this point, the initial total momentum 
of the system of bullet and gun pi is zero, as shown in figure 8.3(a). 

At the moment the trigger of the gun is 
pulled, a controlled chemical explosion takes 
place within the gun, figure 8.3(b). A force FBG 
is exerted on the bullet by the gun through the 
gases caused by the exploding gun powder. But 
by Newton’s third law, an equal but opposite 
force FGB is exerted on the gun by the bullet. 
Since there are no external forces, the net force 
on the system of bullet and gun is 

 
Net Force = FBG + FGB               (8.9) 

 
But by Newton’s third law 
 

FBG = −FGB 
 
Therefore, in the absence of external forces, 

                                                                               Figure 8.3  Conservation of momentum in firing a gun. 
 

the net force on the system of bullet and gun is equal to zero: 
 

Net Force = FBG − FBG = 0                                                             (8.10) 
Thus, momentum is conserved and 

pf = pi                                                                          (8.11) 
However, because the initial total momentum was zero, 

pi = 0                                                                              (8.12) 
 

the total final momentum must also be zero. But because the bullet is moving with a velocity vB to the right, and 
therefore has momentum to the right, the gun must move to the left with the same amount of momentum in order 
for the final total momentum to be zero, figure 8.3(c). That is, calling pfB the final momentum of the bullet, and pfG 
the final momentum of the gun, the total final momentum is 
 

pf = pfB + pfG = 0 
mBvB + mGvG = 0 

Solving for the velocity vG of the gun, we get 
 vG = −mB vB                                                                         (8.13) 

                                                                                                  mG             
 

Because vB is the velocity of the bullet to the right, we see that because 
of the minus sign in equation 8.13, the velocity of the gun must be in 
the opposite direction, namely to the left. We call vG the recoil velocity 
and its magnitude is 

 vG = mB vB                                       (8.14) 
                                                            mG             

 
Even though vB, the speed of the bullet, is quite large, vG, the recoil 
speed of the gun, is relatively small because vB is multiplied by the 
ratio of the mass of the bullet mB to the mass of the gun mG. Because 
mB is relatively small, while mG is relatively large, the ratio is a small 
number.  
                                                                                                                                   Figure 8.4  Recoil of a cannon. 
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Example 8.1 
 

Recoil of a gun. If the mass of the bullet is 5.00 g, and the mass of the gun is 10.0 kg, and the velocity of the bullet 
is 300 m/s, find the recoil speed of the gun. 

Solution
 

The recoil speed of the gun, found from equation 8.14, is 
  

vG = mB vB 
   mG 

= 5.00 × 10−3 kg 300 m/s  
                                                                                       10.0 kg              

= 0.150 m/s = 15.0 cm/s 
 

which is relatively small compared to the speed of the bullet. Because it is necessary for this recoil velocity to be 
relatively small, the mass of the gun must always be relatively large compared to the mass of the bullet. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
An Astronaut in Space Throws an Object Away 
Consider the case of an astronaut repairing the outside of his 
spaceship while on an untethered extravehicular activity. While 
trying to repair the radar antenna he bangs his finger with a wrench. 
In pain and frustration he throws the wrench away. What happens to 
the astronaut? 

Let us consider the system as an isolated system consisting of 
the wrench and the astronaut. Let us place a coordinate system, a 
frame of reference, on the spaceship. In the analysis that follows, we 
will measure all motion with respect to this reference system. In this 
frame of reference there is no relative motion of the wrench and the 
astronaut initially and hence their total initial momentum is zero, as 
shown in figure 8.5(a). 

During the throwing process, the astronaut exerts a force FwA 
on the wrench. But by Newton’s third law, the wrench exerts an equal 
but opposite force FAw on the astronaut, figure 8.5(b). The net force on 
this isolated system is therefore zero and the law of conservation of 
momentum must hold. Thus, the final total momentum must equal 
the initial total momentum, that is, 

 
pf = pi 

 
But initially, pi = 0 in our frame of reference. Also, the final total 
momentum is the sum of the final momentum of the wrench and the 
astronaut, figure 8.5(c). Therefore, 
 

pf = pfw + pfA = 0 
mwvfw + mAvfA = 0 

 
 

                                                                                                                  Figure 8.5  Conservation of momentum 
                                                                                                                       and an astronaut. 

Solving for the final velocity of the astronaut, we get 
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 vfA = −mw vfw                                                                        (8.15) 

                                                                                                 mA                        
                                                                                       

Thus, as the wrench moves toward the left, the astronaut must recoil toward the right. The magnitude of the final 
velocity of the astronaut is 

 vfA = mw  vfw                                                                                                              (8.16) 
                                                                                                  mA                      

 
Example 8.2 

 
The hazards of being an astronaut. An 80.0-kg astronaut throws a 0.250-kg wrench away at a speed of 3.00 m/s. 
Find (a) the speed of the astronaut as he recoils away from his space station and (b) how far will he be from the 
space ship in 1 hr? 

Solution
 

a. The recoil speed of the astronaut, found from equation 8.16, is 
 

vfA = mw vfw  
  mA 

= (0.250 kg)(3.00 m/s) 
80.0 kg 

= 9.38 × 10−3 m/s 
 

b.  Since the astronaut is untethered, the distance he will travel is 
 

xA = vfAt = (9.38 × 10−3 m/s)(3600 s) 
= 33.8 m 

 
The astronaut will have moved a distance of 33.8 m away from his space ship in 1 hr. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
A Person on the Surface of the Earth Throws a Rock Away 
The result of the previous subsection may at first seem somewhat difficult to believe. An astronaut throws an 
object away in space and as a consequence of it, the astronaut moves off in the opposite direction. This seems to 
defy our ordinary experiences, for if a person on the 
surface of the earth throws an object away, the person 
does not move backward. What is the difference?      

Let an 80.0-kg person throw a 0.250-kg rock 
away, as shown in figure 8.6. As the person holds the 
rock, its initial velocity is zero. The person then 
applies a force to the rock accelerating it from zero 
velocity to a final velocity vf. While the rock is leaving 
the person’s hand, the force FRp is exerted on the rock 
by the person. But by Newton’s third law, the rock is 
exerting an equal but opposite force FpR on the 
person. But the system that is now being analyzed is 
not an isolated system, consisting only of the person 
and the rock. Instead, the system also contains the  

                                                                                         Figure 8.6  A person throwing a rock on the  
                                                                                                             surface of the earth. 
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surface of the earth, because the person is connected to it by friction. The force FpR, acting on the person, is now 
opposed by the frictional force between the person and the earth and prevents any motion of the person. 

As an example, let us assume that in throwing the rock the person’s hand moves through a distance x of 
1.00 m, as shown in figure 8.6(a), and it leaves the person’s hand at a velocity of 3.00 m/s. The acceleration of the 
rock can be found from the kinematic equation 

v2 = v02 + 2aRx 
by solving for aR. Thus, 

              aR =  v2  = (3.00 m/s)2 = 4.50 m/s2 
  2x        2(1.00 m)  

 
The force acting on the rock FRp, found by Newton’s second law, is 

 
FRp = mRaR = (0.250 kg)(4.50 m/s2) 

= 1.13 N 
 
But by Newton’s third law this must also be the force exerted on the person by the 
rock, FpR. That is, there is a force of 1.13 N acting on the person, tending to push that person to the left. But since 
the person is standing on the surface of the earth there is a frictional force that tends to oppose that motion and is 
shown in figure 8.6(b). The maximum value of that frictional force is 
 

 fs = µsFN = µswp 
The weight of the person wp is 

wp = mg = (80.0 kg)(9.80 m/s2) = 784 N 
 

Assuming a reasonable value of µs = 0.500 (leather on wood), we have 
 

fs = µswp = (0.500)(784 N) 
= 392 N 

 
That is, before the person will recoil from the process of throwing the rock, the recoil force FpR, acting on 

the person, must be greater than the maximum frictional force of 392 N. We found the actual reaction force on the 
person to be only 1.13 N, which is no where near the amount necessary to overcome friction. Hence, when a person 
on the surface of the earth throws an object, the person does not recoil like an astronaut in space. 

If friction could be minimized, then the throwing of the object would result in a recoil velocity. For 
example, if a person threw a rock to the right, while standing in a boat on water, then because the frictional force 
between the boat and the water is relatively small, the person and the boat would recoil to the left. 

In a similar way, if a person is standing at the back of a boat, which is at rest, and then walks toward the 
front of the boat, the boat will recoil backward to compensate for his forward momentum. 
 
 
8.4  Impulse 
Let us consider Newton’s second law in the form of change in momentum as found in equation 8.5, 
 

         F = ∆p 
                 ∆t 

If both sides of equation 8.5 are multiplied by ∆t, we have 
F∆t = ∆p                                                                       (8.17) 

 
The quantity F∆t, is called the impulse1 of the force and is given by 
 

J = F∆t                                                                            (8.18) 
 

                                                      
1
In some books the letter I is used to denote the impulse. In order to not confuse it with the moment of inertia of a body, also designated by the 

letter I and treated in detail in chapter 9, we will use the letter J for impulse 
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The impulse J is a measure of the force that is acting, times the time that force is acting. Equation 8.17 then 
becomes 

J = ∆p                                                                             (8.19) 
 

That is, the impulse acting on a body changes the momentum of that body. Since ∆p = pf − pi, equation 8.19 also 
can be written as 

J = pf − pI                                                                           (8.20) 
 

In many cases, the force F that is exerted is not a constant during the collision process. In that case an 
average force Favg can be used in the computation of the impulse. That is, 

 
Favg∆t = ∆p                                                                          (8.21) 

 
Examples of the use of the concept of impulse can be found in such sports as baseball, golf, tennis, and the 

like, see figure 8.7. If you participated in such sports,  

               
Figure 8.7  Physics in sports. When hitting (a) a baseball or (b) a tennis ball, the “follow-through” is very 

important. 
 

you were most likely told that the “follow through” is extremely important. For example, consider the process of 
hitting a golf ball. The ball is initially at rest on the tee. As the club hits the ball, the club exerts an average force 
Favg on the ball. By “following through” with the golf club, as shown in figure 8.8, we mean that the longer the 
time interval ∆t that the club is exerting its force on the ball, the greater is the impulse imparted to the ball and 
hence the greater will be the change in momentum of the ball. The greater change in momentum implies a greater 
change in the velocity of the ball and hence the ball will travel a greater distance. 

The principle is the same in baseball, tennis, and other similar sports. The better the follow through, the 
longer the bat or racket is in contact with the ball and the greater the change in momentum the ball will have. 
Those interested in the application of physics to sports can read the excellent book, Sport Science by Peter 
Brancazio (Simon and Schuster, 1984). 
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Figure 8.8  The effect of “follow through” in hitting a golf ball. 

 
 
8.5  Collisions in One Dimension 
We saw in section 8.2 that momentum is always conserved in a collision if the net external force on the system is 
zero. In physics three different kinds of collisions are usually studied. Momentum is conserved in all of them, but 
kinetic energy is conserved in only one. These different types of collisions are 
 

1.  A perfectly elastic collision—a collision in which no kinetic energy is lost, that is, kinetic energy is 
conserved. 

2.  An inelastic collision —a collision in which some kinetic energy is lost. All real collisions belong to 
this category. 

3.  A perfectly inelastic collision —a collision in which the two objects stick together during the 
collision. A great deal of kinetic energy is usually lost in this collision. 

In all real collisions in the macroscopic world, some kinetic energy is lost. As an example, consider a 
collision between two billiard balls. As the balls collide they are temporarily deformed. Some of the kinetic energy 
of the balls goes into the potential energy of deformation. Ideally, as each ball returns to its original shape, all the 
potential energy stored by the ball is converted back into the kinetic energy of the ball. In reality, some kinetic 
energy is lost in the form of heat and sound during the deformation process. The mere fact that we can hear the 
collision indicates that some of the mechanical energy has been transformed into sound energy. But in many cases, 
the amount of kinetic energy that is lost is so small that, as a first approximation, it can be neglected. For such 
cases we assume that no energy is lost during the collision, and the collision is treated as a perfectly elastic 
collision. The reason why we like to solve perfectly elastic collisions is simply that they are much easier to analyze 
than inelastic collisions. 

 
Perfectly Elastic Collisions Between Unequal Masses  
Consider the collision shown in figure 8.9 between two different masses, m1 and m2, having initial velocities v1i 
and v2i, respectively. We assume that v1i is greater than v2i, so that a collision will occur. We can write the law of 
conservation of momentum as 

   pi = pf 
That is, 

    Total momentum before collision = Total momentum after collision 
      p1i + p2i = p1f + p2f 

or 
 m1v1i + m2v2i = m1v1f + m2v2f                                                            (8.22) 
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where the subscript i stands for the initial values of the 
momentum and velocity (before the collision) while f 
stands for the final values (after the collision). This is a 
vector equation. If the collision is in one dimension only, 
and motion to the right is considered positive, then we 
can rewrite equation 8.22 as the scalar equation 
 

 m1v1i + m2v2i = m1v1f + m2v2f              (8.23) 
 

Usually we know v1i and v2i and need to find v1f and v2f. 
In order to solve for these final velocities, we need 
another equation. 

The second equation comes from the law of 
conservation of energy. Since the collision occurs on a 
flat surface, which we take as our reference level and 
assign the height zero, there is no change in potential 
energy to consider during the collision. Thus, we need 
only consider the conservation of kinetic energy. The law 
of conservation of energy, therefore, becomes 

 
                                                                                         Figure 8.9  A perfectly elastic collision. 

 
KEBC = KEAC                                                                         (8.24) 

That is, 
Kinetic energy before collision = Kinetic energy after collision                                   (8.25) 

 
which becomes 

  1 m1v1i2 +  1 m2v2i2 =  1 m1v1f2 +  1  m2v2f2                                                    (8.26) 
                                                                2                2                2                2 

 
If the initial values of the speed of the two bodies are known, then we find the final values of the speed by solving 
equations 8.23 and 8.26 simultaneously. The algebra involved can be quite messy for a direct simultaneous 
solution. (A simplified solution is given below. However, even the simplified solution is a little long. Those 
students not interested in the derivation can skip directly to the solution in equation 8.30.) 

To simplify the solution, we rewrite equation 8.23, the conservation of momentum, in the form 
 

m1(v1i − v1f) = m2(v2f − v2i)                                                                  (8.27) 
 

where the masses have been factored out. Similarly, we factor the masses out in equation 8.26, the conservation of 
energy, and rewrite it in the form 

m1( v1i2 − v1f2) = m2( v2f2 − v2i2)                                                              (8.28) 
 

We divide equation 8.28 by equation 8.27 to eliminate the mass terms: 
 

m1(v1i2 − v1f2) = m2( v2f2 − v2i2)  
                                                                         m1(v1i − v1f)      m2(v2f − v2i) 

 
Note that we can rewrite the numerators as products of factors: 
 

(v1i + v1f)(v1i − v1f) = (v2i + v2f)(v2f − v2i)  
                                                                          v1i − v1f                                v2f − v2i 
which simplifies to 

v1i + v1f = v2i + v2f                                                                         (8.29) 
Solving for v2f in equation 8.29, we get 

v2f = v1i + v1f − v2i 
 

Pearson Custom Publishing

248



 

 
Chapter 8  Momentum and Its Conservation                                                                                                          8-11 

Substituting this into equation 8.27, we have 
 

m1(v1i − v1f) = m2[(v1i + v1f − v2i) − v2i] 
m1v1i − m1v1f = m2v1i + m2v1f − m2v2i − m2v2i  

Collecting terms of v1f, we have 
−m1v1f − m2v1f = −2m2v2i + m2v1i − m1v1i 

 
Multiplying both sides of the equation by −1, we get 
 

+m1v1f + m2v1f = +2m2v2i − m2v1i + m1v1i 
Simplifying, 

(m1 + m2)v1f = (m1 − m2)v1i + 2m2v2i  
 

Solving for the final speed of ball 1, we have 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
                                                           (8.30) 

 
In a similar way, we can solve equation 8.29 for v1f, which we then substitute into equation 8.27. After the 

same algebraic treatment (which is left as an exercise), the final speed of the second ball becomes 
 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

                                                           (8.31) 

 
Equations 8.30 and 8.31 were derived on the assumption that balls 1 and 2 were originally moving with a 

positive velocity to the right before the collision, and both balls had a positive velocity to the right after the 
collision. If v1f comes out to be a negative number, ball 1 will have a negative velocity after the collision and will 
rebound to the left. 

If the collision looks like the one depicted in figure 8.2, we can still use equations 8.30 and 8.31. However, 
ball 2 will be moving to the left, initially, and will thus have a negative velocity v2i. This means that v2i has to be a 
negative number when placed in these equations. If v1f comes out to be a negative number in the calculations, that 
means that ball 1 has a negative final velocity and will be moving to the left. 

 
Example 8.3 

 
Perfectly elastic collision, ball 1 catches up with ball 2. Consider the perfectly elastic collision between masses m1 = 
100 g and m2 = 200 g. Ball 1 is moving with a velocity v1i of 30.0 cm/s to the right, and ball 2 has a velocity v2i = 
20.0 cm/s, also to the right, as shown in figure 8.9. Find the final velocities of the two balls. 

Solution
 

The final velocity of the first ball, found from equation 8.30, is 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

( ) ( )100 g  200 g 2(200 g)30.0 cm/s 20.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= +   

   
 

 = 16.7 cm/s 
 
Since v1f is a positive quantity, the final velocity of ball 1 is toward the right. The final velocity of the second ball, 
obtained from equation 8.31, is 
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1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

( ) ( )2(100 g) 100 g  200 g30.0 cm/s 20.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= −   

   
 

 = 26.7 cm/s 
 

Since v2f is a positive quantity, the second ball has a positive velocity and is moving toward the right. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 8.4 
 

Perfectly elastic collision with masses approaching each other. Consider the perfectly elastic collision between 
masses m1 = 100 g, m2 = 200 g, with velocity v1i = 20.0 cm/s to the right, and velocity v2i = −30.0 cm/s to the left, as 
shown in figure 8.2. Find the final velocities of the two balls. 

Solution
 

The final velocity of ball 1, found from equation 8.30, is 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

( ) ( )100 g  200 g 2(200 g)20.0 cm/s 30.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= + −   

   
 

= −46.7 cm/s 
 

Since v1f is a negative quantity, the final velocity of the first ball is negative, indicating that the first ball moves to 
the left after the collision. The final velocity of the second ball, found from equation 8.31, is 
 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

     ( ) ( )2(100 g) 100 g  200 g20.0 cm/s 30.0 cm/s
100 g + 200 g 100 g + 200 g

−   
= − −   

   
 

  = 3.33 cm/s 
 

Since v2f is a positive quantity, the final velocity of ball 2 is positive, and the ball will move toward the right. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Let us now look at a few special types of collisions. 
 

Between Equal Masses If the elastic collision occurs between two equal masses, then the final velocities after the 
collision are again given by equations 8.30 and 8.31, only with mass m1 set equal to m2. That is, 
 

2 2 2
1f 1i 2i

2 2 2 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
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= 0 + 2m2 v2i   
    2m2 
v1f = v2i                                                                                 (8.32) 

and 
2 2 2

2f 1i 2i
2 2 2 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

= 2m2 v1i + 0   
                                                                                         2m2             

v2f = v1i                                                                                 (8.33) 
 

Equations 8.32 and 8.33 tell us that the bodies exchange their velocities during the collision. 
 
Both Masses Equal, One Initially at Rest This is the same case, except that one mass is initially at rest, that 
is, v2i = 0. From equation 8.32 we get  

v1f = v2i = 0                                                                            (8.34) 
while equation 8.33 remains the same 

   v2f = v1i 
 

as before. This is an example of the first body being “stopped cold” while the second one “takes off” with the 
original velocity of the first ball. 
 
A Ball Thrown against a Wall When you throw a ball against a 
wall, figure 8.10, you have another example of a collision. Assuming 
the collision to be elastic, equations 8.30 and 8.31 apply. The wall is 
initially at rest, so v2i = 0. Because the wall is very massive compared 
to the ball we can say that 

m2 # m1 
which implies that 

  m1 − m2 ≈ −m2 
and 

 m1 + m2 ≈ m2 
 
Solving equation 8.30 for v1f, we have 
 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

 
                                                                                                                      Figure 8.10  A ball bouncing off a wall. 

 
2

1i
2

 0
 

m v
m

 −
= + 

 
 

 Therefore, the final velocity of the ball is 
v1f = −v1i                                                                            (8.35) 

 
The negative sign indicates that the final velocity of the ball is negative, so the ball rebounds from the wall and is 
now moving toward the left with the original speed. 

The velocity of the wall, found from equation 8.31, is 
 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

 

1
1i

2

2 0m v
m

 
= − 

 
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However, since 
m2 # m1 

then 
 2m1  ≈ 0 

                    m2       
Therefore, 

v2f = 0                                                                               (8.36) 
 

The ball rebounds from the wall with the same speed that it hit the wall, and the wall, because it is so massive, 
remains at rest. 
 
Inelastic Collisions 
Let us consider for a moment equation 8.29, which we developed earlier in the section, namely 
 

v1i + v1f = v2f + v2i 
 

If we rearrange this equation by placing all the initial velocities on one side of the equation and all the final 
velocities on the other, we have 

v1i − v2i = v2f − v1f                                                                         (8.37) 
However, as we can observe from figure 8.9, 

 v1i − v2i = VA                                                                             (8.38) 
 

that is, the difference in the velocities of the two balls is equal to the velocity of approach VA of the two billiard 
balls. (The velocity of approach is also called the relative velocity between the two balls.) As an example, if ball 1 is 
moving to the right initially at 10.00 cm/s and ball 2 is moving to the right initially at 5.00 cm/s, then the velocity 
at which they approach each other is 

VA = v1i − v2i = 10.00 cm/s − 5.00 cm/s 
= 5.00 cm/s 

Similarly, 
 v2f − v1f = VS                                                                            (8.39) 

 
is the velocity at which the two balls separate. That is, if the final velocity of ball 1 is toward the left at the velocity 
v1f = −10.0 cm/s, and ball 2 is moving to the right at the velocity v2f = 5.00 cm/s, then the velocity at which they 
move away from each other, the velocity of separation, is 
 

VS = v2f − v1f = 5.00 cm/s − (−10.0 cm/s) 
        = 15.0 cm/s 

Therefore, we can write equation 8.37 as 
 VA = VS                                                                                 (8.40) 

 
That is, in a perfectly elastic collision, the velocity of approach of the two bodies is equal to the velocity of 
separation. 

In an inelastic collision, the velocity of separation is not equal to the velocity of approach, and a new 
parameter, the coefficient of restitution, is defined as a measure of the inelastic collision. That is, we define the 
coefficient of restitution e as 

e = VS                                                                              (8.41) 
       VA   

and the velocity of separation becomes 
 VS = eVA                                                                            (8.42) 

 
For a perfectly elastic collision e = 1. For a perfectly inelastic collision e = 0, which implies VS = 0. Thus, the objects 
stick together and do not separate at all. For the inelastic collision 
 

0 < e < 1                                                                              (8.43) 
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Determination of the Coefficient of Restitution If the inelastic collision is between a ball and the earth, as 
shown in figure 8.11, then, because the earth is so massive, v2i = v2f = 0. Equation 8.42 reduces to 
 

v1f = ev1i                                                                               (8.44) 
 

       
Figure 8.11  Imperfectly elastic collision of a ball with the earth. 

 
The ball attained its speed v1i by falling from the height h0, where it had the potential energy 
 

PE0 = mgh0 
Immediately before impact its kinetic energy is 

    KEi =  1 mv1i2 
      2 

And, by the law of the conservation of energy, 
  KEi = PE0 

or 
 1 mv1i2 = mgh0 

                                                                                     2                         
 

Thus, the initial speed before impact with the earth is 
1 02iv gh=                                                                       (8.45) 

 
After impact, the ball rebounds with a speed v1f, and has a kinetic energy of 

 
KEf =  1  mv1f2 

 2 
  

which will be less than KEi because some energy is lost in the collision. After the collision the ball rises to a new 
height h, as seen in the figure. The final potential energy of the ball is 
 

PEf = mgh 
However, by the law of conservation of energy 

   KEf = PEf  
 1 mv1f2 = mgh    

                                                                                     2                          
Hence, the final speed after the collision is 

     1f 2v gh=                                                                           (8.46) 
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We can now find the coefficient of restitution from equations 8.44, 8.45, and 8.46, as 
 

1f

1 00

2
2i

v gh he
v hgh

= = =                                                                    (8.47) 

 
Thus, by measuring the final and initial heights of the ball and taking their ratio, we can find the coefficient of 
restitution. 

The loss of energy in an inelastic collision can easily be found using equation 8.42, 
 

  VS = eVA 
The kinetic energy after separation is 

KES =  1  mVS 2                                                                       (8.48) 
        2    

Substituting for VS from equation 8.42 gives, 
   KES =  1 m(eVA)2 

 2     
KES =  1 me2VA2 

2  
KES = e2( 1 mVA2) 

      2 
 

But ½ mVA2 is the kinetic energy of approach. Therefore the relation between the kinetic energy after separation 
and the initial kinetic energy is given by 

KES = e2KEA                                                                          (8.49) 
 

The total amount of energy lost in the collision can now be found as 
 

∆Elost = KEA − KES 
     = KEA − e2KEA                                                                  (8.50) 

∆Elost = (1 − e2)KEA                                                                     (8.51) 
 

Example 8.5 
 

An imperfectly elastic collision. A 20.0-g racquet ball is dropped from a height of 1.00 m and impacts a tile floor. If 
the ball rebounds to a height of 76.0 cm, (a) what is the coefficient of restitution, (b) what percentage of the initial 
energy is lost in the collision, and (c) what is the actual energy lost in the collision? 

Solution
 

a. The coefficient of restitution, found from equation 8.47, is 
 

0

76.0 cm 0.872
100 cm

he
h

= = =  

 
b.  The percentage energy lost, found from equation 8.51, is 
 

∆Elost = (1 − e2)KEA 
                   = (1 − (0.872)2)KEA 

         = 0.240 KEA 
                             = 24.0% of the initial KE 

 
c.  The actual energy lost in the collision with the floor is 
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∆E = PE0 − PEf 

= mgh0 − mgh 
= (0.020 kg)(9.80 m/s2)(1.00 m) − (0.020 kg)(9.80 m/s2)(0.76 m) 

= 0.047 J lost 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Perfectly Inelastic Collision  
Between Unequal Masses In the perfectly inelastic collision, figure 8.12, the two bodies join together during the 
collision process and move off together as one body after the collision. We assume that v1i is greater than v2i, so a 
collision will occur. The law of conservation of momentum, when applied to figure 8.12, becomes 

 
Figure 8.12  (a) Perfectly inelastic collision. (b) A football player being tackled is also an example of a perfectly 

inelastic collision. 
 

m1v1i + m2v2i = (m1 + m2)Vf                                                                  (8.52) 
 

Taking motion to the right as positive, we write this in the scalar form, 
 

m1v1i + m2v2i = (m1 + m2)Vf                                                                 (8.53) 
 

Solving for the final speed Vf of the combined masses, we get 
 

iif v
mm

mv
mm

mV 2
21

2
1

21

1








+

+







+

=                                                        (8.54) 

 
It is interesting to determine the initial and final values of the kinetic energy of the colliding bodies. 
 

KEi =  1 m1v1i2 +  1 m2v2i2                                                              (8.55) 
                                                                                           2                2 

KEf =  1 (m1 + m2)Vf2                                                                     (8.56) 
                                                                                            2              
Is kinetic energy conserved for this collision? 
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Example 8.6 
 

A perfectly inelastic collision. A 50.0-g piece of clay moving at a velocity of 5.00 cm/s to the right has a head-on 
collision with a 100-g piece of clay moving at a velocity of −10.0 cm/s to the left. The two pieces of clay stick 
together during the impact. Find (a) the final velocity of the clay, (b) the initial kinetic energy, (c) the final kinetic 
energy, and (d) the amount of energy lost in the collision. 

Solution
 

a. The initial velocity of the first piece of clay is positive, because it is in motion toward the right. The initial 
velocity of the second piece of clay is negative, because it is in motion toward the left. The final velocity of the clay, 
given by equation 8.54, is 

1 2
1 2

1 2 1 2
f i i

m mV v v
m m m m

   
= +   + +   

 

( ) ( )50.0 g 100.0 g5.00 cm/s 10.0 cm/s
50.0 g 100.0 g 50.0 g 100.0 g

   
= + −   + +   

 

= −5.00 cm/s = −5.00 × 10−2 m/s 
 

The minus sign means that the velocity of the combined pieces of clay is negative and they are therefore moving 
toward the left, not toward the right as we assumed in figure 8.12. 
b.  The initial kinetic energy, found from equation 8.55, is 
 

 KEi =  1 m1v1i2 +  1 m2v2i2 
                                                                                       2                2 

=  1 (0.050 kg)(5.00 × 10−2 m/s)2 +  1 (0.100 kg)(−10.0 × 10−2 m/s)2 
                                              2                                                    2   

= 5.63 × 10−4 J 
 

c.  The kinetic energy after the collision, found from equation 8.56, is 
 

KEf =  1 (m1 + m2)Vf2 
                                                                                          2           

=  1 (0.050 kg + 0.100 kg)(−5.00 × 10−2 m/s)2 
                                                                2 

   = 1.88 × 10−4 J 
 
d.  The mechanical energy lost in the collision is found from 
 

∆E = KEi − KEf 
= 5.63 × 10−4 J − 1.88 × 10−4 J 

= 3.75 × 10−4 J 
 

Hence, 3.75 × 10−4 J of energy are lost in the deformation caused by the collision. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
8.6  Collisions in Two Dimensions —Glancing Collisions 
In the collisions treated so far, the collisions were head-on collisions, and the forces exerted on the two colliding 
bodies were on a line in the direction of motion of the two bodies. As an example, consider the collision to be 
between two billiard balls. For a head-on collision, as in figure 8.13(a), the force on ball 2 caused by ball 1, F21, is  
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Figure 8.13  Comparison of one-dimensional and two-dimensional collisions. 

 
in the positive x-direction, while F12, the force on ball 1 caused by ball 2, is in the negative x-direction. After the 
collision, the two balls move along the original line of action. In a glancing collision, on the other hand, the motion 
of the centers of mass of each of the two balls do not lie along the same line of action, figure 8.13(b). Hence, when 
the balls collide, the force exerted on each ball does not lie along the original line of action but is instead a force 
that is exerted along the line connecting the center of mass of each ball, as shown in the diagram. Thus the force 
on ball 2 caused by ball 1, F21, is a two-dimensional vector, and so is F12, the force on ball 1 caused by ball 2. As we 
can see in the diagram, these forces can be decomposed into x- and y-components. Hence, a y-component of force 
has been exerted on each ball causing it to move out of its original direction of motion. Therefore, after the 
collision, the two balls move off in the directions indicated. All glancing collisions must be treated as two-
dimensional problems. Since the general solution of the two-dimensional collision problem is even more 
complicated than the one-dimensional problem solved in the last section, we will solve only some special cases of 
the two-dimensional problem. 

Consider the glancing collision between two billiard 
balls shown in figure 8.14. Ball 1 is moving to the right at the 
velocity v1i and ball 2 is at rest (v2i = 0). After the collision, 
ball 1 is found to be moving at an angle θ = 45.00 above the 
horizontal and ball 2 is moving at an angle φ = 45.00 below the 
horizontal. Let us find the velocities of both balls after the 
collision. As in all collisions, the law of conservation of 
momentum holds, that is, 

pf = pi 
m1v1f + m2v2f = m1v1i 

 
The last single vector equation is equivalent to the two scalar 
equations 

m1v1f cos θ + m2v2f cos φ = m1v1i                 (8.57) 
m1v1f sin θ − m2v2f sin φ = 0                        (8.58 

 
Solving equation 8.58 for v2f with θ = φ = 45.00, we get 

 
m1v1f sin 45.00 = m2v2f sin 45.00  

 
                                                                                                          Figure 8.14  A glancing collision 

 
v2f =  m1 v1f                                                                           (8.59) 
          m2 
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Inserting equation 8.59 into equation 8.57 we can solve for v1f as 
 

0 01
1 1f 2 1f 1 1

2

cos45.0 cos45.0 i
mm v m v m v
m

 
+ = 

 
 

2m1v1f cos 45.00 = m1v1i  
v1f =        v1i                                                                           (8.60) 

                     2 cos 45.00  
 

Example 8.7 
 

A glancing collision. Billiard ball 1 is moving at a speed of v1i = 10.0 cm/s, when it has a glancing collision with an 
identical billiard ball that is at rest. After the collision, θ = φ = 45.00. The mass of the billiard ball is 0.170 kg. 
(a) Find the speed of ball 1 and 2 after the collision. (b) Is energy conserved in this collision? 

Solution
 

a. The speed of ball 1, found from equation 8.60, is 
v1f =        v1i         

                2 cos 45.00  
       =    10.0 cm/s     
             2 cos 45.00 

    = 7.07 cm/s 
and the speed of ball 2, found from equation 8.59, is 

    v2f =  m1 v1f 
        m2     

        =  m1 v1f  
       m1  

                      = v1f = 7.07 cm/s 
b.  The kinetic energy before the collision is 
 

 KEi =  1 m1v1i2 =   1 (0.170 kg)(0.100 m/s)2 
                                                                         2                  2                                 

= 8.50 × 10−4 J 
while the kinetic energy after the collision is 

    KEf =  1 m1v1f2 +  1 m2v2f2 
                                                                                         2               2 

                        =  1 (0.170 kg)(0.0707 m/s)2 +  1 (0.170 kg)(0.0707 m/s)2  
                                                                   2                                            2 

  = 8.50 × 10−4 J 
 

Notice that the kinetic energy after the collision is equal to the kinetic energy before the collision. Therefore the 
collision is perfectly elastic. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 8.8 
 

Colliding cars. Two cars collide at an intersection as shown in figure 8.15. Car 1 has a mass of 1200 kg and is 
moving at a velocity of 95.0 km/hr due east and car 2 has a mass of 1400 kg and is moving at a velocity of 100 
km/hr due north. The cars stick together and move off as one at an angle θ as shown in the diagram. Find (a) the 
angle θ and (b) the final velocity of the combined cars. 
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Solution
 

a. This is an example of a perfectly inelastic collision in two dimensions. The 
law of conservation of momentum yields 
 

pf = pi 
(m1 + m2)Vf = m1v1i + m2v2i                                 (8.61) 

 
Resolving this equation into its x- and y-component equations, we get for the 
x-component: 

(m1 + m2)Vf cos θ = m1v1i                                   (8.62) 
and for the y-component: 

(m1 + m2)Vf sin θ = m2v2i                                   (8.63) 
 

Dividing the y-component equation by the x-component equation we get 
 

(m1 + m2)Vf sin θ = _m2v2i    
                                            (m1 + m2)Vf cos θ      m1v1i 

sin θ = m2v2i 
                                                       cos θ    m1v1i 

tan θ = m2v2i 
                                                                    m1v1i 

 
tan θ = (1400 kg)(100 km/hr) 
             (1200 kg)(95.0 km/hr) 

θ = 50.80 
 

b.  The combined final speed, found by solving for Vf in equation 8.62, is 
 

Vf =          m1v1i        
               (m1 + m2)cos θ 

=      (1200 kg)(95.0 km/hr)      
         (1200 kg + 1400 kg)cos 50.80 

= 69.4 km/hr 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

*8.7  A Variable Mass System  
Up to now in our analysis of mechanical systems, the mass of the system has always remained a constant. What 
happens if the mass is not a constant? Newton’s second law in the form F = ma can not be used because m is not a 
constant. In many of these problems, however, we can use Newton’s second law in terms of momentum, and if we 
take the system large enough, the total force F acting on the system will be zero and the law of conservation of 
momentum can be applied. As an example of a variable mass system let us consider a train car of mass mT = 1500 
kg, which contains 35 rocks, each of mass mr = 30.0 kg. The train is initially at rest. A man now throws out each 
rock from the rear of the train at a speed vr = 8.50 m/s. When the man throws out a rock in one direction, the train 
will recoil in the opposite direction, just as a gun recoils when a bullet is fired from a gun. The law of conservation 
of momentum applied to the system of train and rocks yields   
 

pi = pf 
 

Figure 8.15  A perfectly inelastic 
glancing collision. 
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Since the train and its rocks are initially at rest, the initial momentum of the system of train and rocks, pi, is zero. 
Hence  

0 = pf  
 
and the final momentum of the system of train and rocks, pf, must also be zero. Hence, when a rock is thrown out 
of the rear of the train in the negative x-direction, the velocity of the rock is to the left and is negative and hence 
the momentum of the rock is also negative. The train recoils to the right in the positive x-direction and hence the 
velocity of the train is toward the right and is positive, and the momentum of the train is also positive. When one 
rock is thrown from the train, the final total momentum of the train and rocks, pf, must still be zero. Therefore, the 
law of conservation of momentum gives  

0 = pT − pr 
 

where pT is the momentum of the train and pr is the momentum of the thrown rock. The initial mass of the train is 
equal to the mass of the train mT plus the mass of the N rocks Nmr, that is, mT + Nmr. When the first rock is 
thrown from the train, there will be N − 1 rocks still left on the train. Hence the mass of the train plus rocks is now 
mT + (N − 1)mr and the momentum of the train is [mT + (N − 1)mr]VT1, where VT1 is the velocity of the train plus 
rocks when one rock has been thrown away. The momentum of the rock that has been thrown away is just − mrvr. 
The law of conservation of momentum now becomes    
 

0 = [mT + (N − 1)mr]VT1 − mrvr  
and 

[mT + (N − 1) mr]VT1 = + mrvr 
 

The recoil velocity of the train when one rock is thrown out, VT1, becomes 
 

VT1 =           mrvr                                                                                 (8.64) 
          [mT + (N − 1) mr] 

VT1 =           (30 kg)(8.5 m/s)                 
                   1500 kg + (35 − 1)(30 kg) 

VT1 = 0.101 m/s 
 
Thus, when the man throws out the first rock to the left, the train recoils with the velocity 0.101 m/s to the right.  

When the man throws out the second rock, the train and its rocks are now moving at the velocity VT1, and 
the system now has the initial momentum  

pi = [mT + (N − 1)mr]VT1 
 
When the second rock is thrown from the train, there will be N − 2 rocks still left on the train. Hence the mass of 
the train plus rocks is now mT + (N − 2)mr. (Notice how the mass of the system is decreasing with each rock thrown 
out.) The momentum of the train plus rocks is now [mT + (N − 2)mr]VT2, where VT2 is the recoil velocity of the train 
plus rocks when the second rock has been thrown away. The final momentum of the train and rocks when the 
second rock is thrown out is  

   pf = [mT + (N − 2)mr]VT2 − mrvr 
 
Applying the law of conservation of momentum to the system when the second rock is thrown out now yields  
 

pi = pf  
[mT + (N − 1)mr]VT1 = [mT + (N − 2)mr]VT2 − mrvr  

or 
[mT + (N − 2)mr]VT2 = [mT + (N − 1)mr]VT1+ mrvr 

 
The recoil velocity VT2 of the train when the man throws out the second rock, becomes 
 

VT2 = [mT + (N − 1)mr]VT1+ mrvr                                                             (8.65) 
 mT + (N − 2)mr 
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VT2 = [(1500 kg) + (35 − 1)(30 kg)](0.101 m/s) + [(30 kg)(8.5 m/s)] 
 1500 kg + (35 − 2)(30 kg) 

VT2 = 0.205 m/s 
 

When the 3rd rock is thrown out of the train, the recoil velocity VT3 of the train is found as an extension of 
equation 8.65 as 

VT3 = [mT + (N − 2)mr]VT2 + mrvr                                                             (8.66) 
      mT + (N − 3)mr 

VT3 = [(1500 kg) + (35 − 2)(30 kg)](0.205 m/s) + [(30 kg)(8.5 m/s)] 
 1500 kg + (35 − 3)(30 kg) 

VT3 = 0.311 m/s 
 

Notice that the velocity of the combined train and its rocks increased from 0 to 0.101 m/s when the first rock was 
thrown out, and from 0.101 m/s to 0.205 m/s when the second rock was thrown out, and from 0.205 m/s to 0.311 
m/s when the third rock was thrown out. The velocity of the train plus rocks will continue to increase as each rock 
is thrown out while the mass of the train plus rocks will continue to decrease. We can continue calculating the 
velocity of the train as each rock is thrown out. When the nth rock is thrown out of the train, the recoil velocity VTn 
of the train is found as an extension of equation 8.66 as 

 
VTn = [mT + (N − (n − 1)mr]VT(n   − 1) + mrvr                                                    (8.67) 

      mT + (N − n)mr 
 
A plot of the velocity of the train as a function of the number of rocks thrown out of the train is shown in figure 
8.16. Notice that the velocity of the train increases as more rocks are thrown out. Notice in this graph that when 
the number of rocks n to be thrown out 
of the train exceeds the total number of 
rocks N available, the velocity of the 
train becomes constant. This problem of 
a varying mass system is very much 
like a rocket propulsion problem. The 
rocks thrown from the train are like the 
fuel ejected from the rocket.  

The initial mass of the system 
is equal to the mass of the train plus 
the mass of the rocks. As each rock is 
thrown out, the mass of the system 
decreases. If we plot the mass of the 
train and its rocks as a function of the 
number of rocks thrown out of the train 
we get figure 8.17. 

 
 

                                           Figure 8.16  The recoil velocity of the train as a function 
                                                                         of the number of rocks n thrown out of the train. 

 
If we compare figure 8.17 with figure 8.16 we see that as the mass of the train decreases the velocity of the train 
increases, a characteristic of varying mass systems. 

Since the velocity of the train is increasing, the motion is an example of accelerated motion. The 
acceleration of the train is found from the definition of acceleration as   

 
a = ∆v/∆t 

 
If the man throws out the rocks at the rate R = 1.5 rocks/s, this rate can be written as  
 

R =  n                                                                                    (8.68) 
      ∆t 
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where n is the number of rocks thrown out and ∆t is the time. Hence the time interval term ∆t in the acceleration 
term, can be written from equation 8.68 in terms of the rate R at which the rocks are thrown as    

 
∆t =  n                                                                                  (8.69) 

           R  
The acceleration of the train can now be 
found as  

a =  ∆v =  ∆v  
         ∆t     n/R   

a = ∆v R                (8.70) 
   n 

 
Using equation 8.70 let us find the 
acceleration in the interval between 
throwing out rock 1 and rock 2. The 
number of rocks thrown out is then n = 
1 and the acceleration becomes 
 

                                                                  Figure 8.17  The decrease in the mass of the train rock system as a  
                                                                                          function of the number of rocks thrown out of the train. 

 
 a = ∆v R  

   n 
a = (0.205 m/s  − 0.101 m/s) (1.5 rocks/s)  

                                                                                    1 rock  
a = 0.156 m/s2  

 
If we perform this calculation of the acceleration for all the rocks that are thrown out and then draw a graph of the 
acceleration of the train as a function of time we obtain the graph of figure 8.18. Notice that the acceleration of a 
variable mass system is not a constant but varies with time. As more rocks are thrown out of the train, the greater 
is the acceleration, and when all the rocks are thrown out, the acceleration becomes zero. (For a more detailed look 
at this type of variable mass 
motion, see interactive tutorial 
#65 at the end of this chapter. 
This variable mass tutorial will 
allow you to change the masses 
of the train and rocks, the rate at 
which rocks are thrown and their 
velocities, and will show you the 
velocity and acceleration for all 
these different combinations.) A 
more detailed analysis of 
variable mass systems, such as a 
rocket propulsion system, 
requires the calculus for its 
description and will not be given 
here. 

                                                   
Figure 8.18  The acceleration of the train as a function of time. 
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The Language of Physics 
 

Linear momentum 
The product of the mass of the body 
in motion times its velocity (p. ). 
 
Newton’s second law in terms of 
linear momentum 
When a resultant applied force acts 
on a body, it causes the linear 
momentum of that body to change 
with time (p. ). 
 
External forces 
Forces that originate outside the 
system and act on the system (p. ). 
 
Internal forces 
Forces that originate within the 
system and act on the particles 
within the system (p. ). 
 
Law of conservation of linear 
momentum 
If the total external force acting on 
a system is equal to zero, then the 
final value of the total momentum 

of the system is equal to the initial 
value of the total momentum of the 
system. Thus, the total momentum 
is a constant, or as usually stated, 
the total momentum is conserved. 
The law of conservation of 
momentum is a consequence of 
Newton’s third law (p. ). 
 
Impulse 
The product of the force that is 
acting and the time that the force is 
acting. The impulse acting on a 
body is equal to the change in 
momentum of the body (p. ). 
 
Perfectly elastic collision 
A collision in which no kinetic 
energy is lost, that is, the kinetic 
energy is conserved. Momentum is 
conserved in all collisions for which 
there are no external forces. In this 
type of collision, the velocity of 
separation of the two bodies is 

equal to the velocity of approach 
(p. ). 
 
Inelastic collision 
A collision in which some kinetic 
energy is lost. The velocity of 
separation of the two bodies in this 
type of collision is not equal to the 
velocity of approach. The coefficient 
of restitution is a measure of the 
inelastic collision (p. ). 
 
Perfectly inelastic collision 
A collision in which the two objects 
stick together during the collision. 
A great deal of kinetic energy is 
usually lost in this type of collision 
(p. ). 
 
Coefficient of restitution 
The measure of the amount of the 
inelastic collision. It is equal to the 
ratio of the velocity of separation of 
the two bodies to the velocity of 
approach (p. ). 

 
Summary of Important Equations 

 
Definition of momentum 
                        p = mv              (8.1) 
 
Newton’s second law in terms of 
momentum       F = ∆p               (8.5) 
                                    ∆t 
 
Law of conservation of momentum 
for Fnet = 0  

       pf = pi                 (8.7) 
 
Recoil speed of a gun 

             vG = mB vB            (8.14) 
                            mG 
 
Impulse          J = F∆t             (8.18) 
 
Impulse is equal to the change in 
momentum       J = ∆p            (8.19) 
 
Conservation of momentum in a 
collision 
m1v1i + m2v2i = m1v1f + m2v2f  (8.22) 
 

Conservation of momentum in 
scalar form, both bodies in motion 
in same direction, and  v1i > v2i. 
m1v1i + m2v2i = m1v1f + m2v2f   (8.23) 
 
Conservation of energy in a 
perfectly elastic collision 
 
 1 m1v1i2 +  1 m2v2i2  
 2                2   
            =  1 m1v1f2 +  1  m2v2f2  (8.26) 
                2                2 
 
Final velocity of ball 1 in a perfectly 
elastic collision 

1 2 2
1f 1i 2i

1 2 1 2

  2
 +  + 

m m mv v v
m m m m

   −
= +   

   
 

                           (8.30) 
 

Final velocity of ball 2 in a perfectly 
elastic collision 

1 1 2
2f 1i 2i

1 2 1 2

2   
 +  + 
m m mv v v

m m m m
   −

= −   
   

  

                          (8.31) 

 
The velocity of approach 

      v1i − v2i = VA             (8.38) 
 
The velocity of separation 

v2f − v1f = VS            (8.39) 
 
For any collision    VS = eVA    (8.42) 
 
For a perfectly elastic collision 

e = 1 
 
For an inelastic collision 

 0 < e < 1              (8.43) 
 
For a perfectly inelastic collision 
                      e = 0 
 
Perfectly inelastic collision        

1 2
1 2

1 2 1 2
f i i

m mV v v
m m m m

   
= +   + +   

  

                                                (8.54) 
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Questions for Chapter 8 

 
1. If the velocity of a moving 

body is doubled, what does this do 
to the kinetic energy and the 
momentum of the body? 

2. Why is Newton’s second law 
in terms of momentum more 
appropriate than the form F = ma? 

3. State and discuss the law of 
conservation of momentum and 
show its relation to Newton’s third 
law of motion. 

4. Discuss what is meant by an 
isolated system and how it is 
related to the law of conservation of 
momentum. 

5. Is it possible to have a 
collision in which all the kinetic 
energy is lost? Describe such a 
collision. 

6. An airplane is initially flying 
at a constant velocity in plane and 
level flight. If the throttle setting is 
not changed, explain what happens 
to the plane as it continues to burn 
its fuel? 

*7. In the early days of rocketry 
it was assumed by many people 
that a rocket would not work in 
outer space because there was no 
air for the exhaust gases to push 
against. Explain why the rocket 
does work in outer space. 

8. Discuss the possibility of a 
fourth type of collision, a super 
elastic collision, in which the 
particles have more kinetic energy 
after the collision than before. As 

an example, consider a car colliding 
with a truck loaded with dynamite. 

9. If the net force acting on a 
body is equal to zero, what happens 
to the center of mass of the body? 

*10. A bird is sitting on a swing 
in an enclosed bird cage that is 
resting on a mass balance. If the 
bird leaves the swing and flies 
around the cage without touching 
anything, does the balance show 
any change in its reading? 

11. From the point of view of 
impulse, explain why an egg thrown 
against a wall will break, while an 
egg thrown against a loose vertical 
sheet will not. 
 

 
Problems for Chapter 8 

 
8.1  Momentum 

1. What is the momentum of a 
1450-kg car traveling at a speed of 
80.0 km/hr? 

2. A 1500-kg car traveling at 
137 km/hr collides with a tree and 
comes to a stop in 0.100 s. What is 
the change in momentum of the 
car? What average force acted on 
the car during impact? What is the 
impulse? 

3. Answer the same questions 
in problem 2 if the car hit a sand 
barrier in front of the tree and came 
to rest in 0.300 s. 

4. A 0.150-kg ball is thrown 
straight upward at an initial 
velocity of 30.0 m/s. Two seconds 
later the ball has a velocity of 10.4 
m/s. Find (a) the initial momentum 
of the ball, (b) the momentum of the 
ball at 2 s, (c) the force acting on 
the ball, and (d) the weight of the 
ball. 

5. How long must a force of 5.00 
N act on a block of 3.00-kg mass in 
order to give it a velocity of 4.00 
m/s? 

6. A force of 25.0 N acts on a 
10.0-kg mass in the positive x-

direction, while another force of 
13.5 N acts in the negative x-
direction. If the mass is initially at 
rest, find (a) the time rate of change 
of momentum, (b) the change in 
momentum after 1.85 s, and (c) the 
velocity of the mass at the end of 
1.85 s. 

  
8.2 and 8.3 Conservation of 
Momentum 

7. A 10.0-g bullet is fired from a 
5.00-kg rifle with a velocity of 300 
m/s. What is the recoil velocity of 
the rifle? 

8. In an ice skating show, a 
90.0-kg man at rest pushes a 45.0-
kg woman away from him at a 
speed of 1.50 m/s. What happens to 
the man? 

9. A 5000-kg cannon fires a 
shell of 3.00-kg mass with a velocity 
of 250 m/s. What is the recoil 
velocity of the cannon? 

10. A cannon of 3.50 × 103 kg 
fires a shell of 2.50 kg with a 
muzzle speed of 300 m/s. What is 
the recoil velocity of the cannon? 

11. A 70.0-kg boy at rest on 
roller skates throws a 0.910-kg ball 

horizontally with a speed of 7.60 
m/s. With what speed does the boy 
recoil? 

12. An 80.0-kg astronaut 
pushes herself away from a 1200-kg 
space capsule at a velocity of 3.00 
m/s. Find the recoil velocity of the 
space capsule. 

13. A 78.5-kg man is standing 
in a 275-kg boat. The man walks 
forward at 1.25 m/s relative to the 
water. What is the final velocity of 
the boat? Neglect any resistive force 
of the water on the boat. 

14. A water hose sprays 2.00 kg 
of water against the side of a 
building in 1 s. If the velocity of the 
water is 15.0 m/s, what force is 
exerted on the wall by the water? 
(Assume that the water does not 
bounce off the wall of the building.) 

 
8.4 Impulse 

15. A boy kicks a football with 
an average force of 66.8 N for a 
time of 0.185 s. (a) What is the 
impulse? (b) What is the change in 
momentum of the football? (c) If the 
football has mass of 250 g, what is 
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the velocity of the football as it 
leaves the kicker’s foot? 

16. A baseball traveling at 150 
km/hr is struck by a bat and goes 
straight back to the pitcher at the 
same speed. If the baseball has a 
mass of 200 g, find (a) the change in 
momentum of the baseball, (b) the 
impulse imparted to the ball, and 
(c) the average force acting if the 
bat was in contact with the ball for 
0.100 s. 

17. A 10.0-kg hammer strikes a 
nail at a velocity of 12.5 m/s and 
comes to rest in a time interval of 
0.004 s. Find (a) the impulse 
imparted to the nail and (b) the 
average force imparted to the nail. 

18. If a gas molecule of mass 
5.30 × 10−26 kg and an average 
speed of 425 m/s collides 
perpendicularly with a wall of a 
room and rebounds at the same 
speed, what is its change of 
momentum? What impulse is 
imparted to the wall? 

 
8.5 Collisions in One Dimension 

19. Two gliders moving toward 
each other, one of mass 200 g and 
the other of 250 g, collide on a 
frictionless air track. If the first 
glider has an initial velocity of 25.0 
cm/s toward the right and the 
second of −35.0 cm/s toward the left, 
find the velocities after the collision 
if the collision is perfectly elastic. 

20. A 250-g glider overtakes 
and collides with a 200-g glider on 
an air track. If the 250-g glider is 
moving at 35.0 cm/s and the second 
glider at 25.0 cm/s, find the 
velocities after the collision if the 
collision is perfectly elastic. 

*21. A 200-g ball makes a 
perfectly elastic collision with an 
unknown mass that is at rest. If the 
first ball rebounds with a final 
speed of v1f = ½ v1i, (a) what is the 
unknown mass, and (b) what is the 
final velocity of the unknown mass? 

22. A 30.0-g ball, m1, collides 
perfectly elastically with a 20.0-g 
ball, m2. If the initial velocities are 
v1i = 50.0 cm/s to the right and v2i = 
−30.0 cm/s to the left, find the final 

velocities v1f and v2f. Compute the 
initial and final momenta. Compute 
the initial and final kinetic 
energies. 

23. A 150-g ball moving at a 
velocity of 25.0 cm/s to the right 
collides with a 250-g ball moving at 
a velocity of 18.5 cm/s to the left. 
The collision is imperfectly elastic 
with a coefficient of restitution of 
0.65. Find (a) the velocity of each 
ball after the collision, (b) the 
kinetic energy before the collision, 
(c) the kinetic energy after the 
collision, and (d) the percentage of 
energy lost in the collision. 

24. A 1150-kg car traveling at 
110 km/hr collides “head-on” with a 
9500-kg truck traveling toward the 
car at 40.0 km/hr. The car becomes 
stuck to the truck during the 
collision. What is the final velocity 
of the car and truck? 

25. A 3.00-g bullet is fired at 
200 m/s into a wooden block of 10-
kg mass that is at rest. If the bullet 
becomes embedded in the wooden 
block, find the velocity of the block 
and bullet after impact. 

26. A 9500-kg freight car 
traveling at 5.50 km/hr collides 
with an 8000-kg stationary freight 
car. If the cars couple together, find 
the resultant velocity of the cars 
after the collision. 

27. Two gliders are moving 
toward each other on a frictionless 
air track. Glider 1 has a mass of 
200 g and glider 2 of 250 g. The first 
glider has an initial speed of 25.0 
cm/s while the second has a speed of 
35.0 cm/s. If the collision is 
perfectly inelastic, find (a) the final 
velocity of the gliders, (b) the 
kinetic energy before the collision, 
and (c) the kinetic energy after the 
collision. (d) How much energy is 
lost, and where did it go? 

 
8.6 Collisions in Two 
Dimensions — Glancing 
Collisions 

28. A 105-kg linebacker moving 
due east at 40.0 km/hr tackles a 
79.5-kg halfback moving south at 
65.0 km/hr. The two stick together 

during the collision. What is the 
resultant velocity of the two of 
them? 

29. A 10,000-kg truck enters an 
intersection heading north at 
45 km/hr when it makes a perfectly 
inelastic collision with a 1000-kg 
car traveling at 90 km/hr due east. 
What is the final velocity of the car 
and truck? 

*30. Billiard ball 2 is at rest 
when it is hit with a glancing 
collision by ball 1 moving at a 
velocity of 50.0 cm/s toward the 
right. After the collision ball 1 
moves off at an angle of 35.00 from 
the original direction while ball 2 
moves at an angle of 40.00, as 
shown in the diagram. The mass of 
each billiard ball is 0.017 kg. Find 
the final velocity of each ball after 
the collision. Find the kinetic 
energy before and after the 
collision. Is the collision elastic? 

 
Diagram for problem 30. 

 
31. A 0.150-kg ball, moving at a 

speed of 25.0 m/s, makes an elastic 
collision with a wall at an angle of 
40.00, and rebounds at an angle of 
40.00. Find (a) the change in 
momentum of the ball and (b) the 
magnitude and direction of the 
momentum imparted to the wall. 
The diagram is a view from the top. 
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Diagram for problem 31. 

  
Additional Problems 

*32. A 0.250-kg ball is dropped 
from a height of 1.00 m. It rebounds 
to a height of 0.750 m. If the ground 
exerts a force of 300 N on the ball, 
find the time the ball is in contact 
with the ground. 

33. A 200-g ball is dropped from 
the top of a building. If the speed of 
the ball before impact is 40.0 m/s, 
and right after impact it is 25.0 
cm/s, find (a) the momentum of the 
ball before impact, (b) the 
momentum of the ball after impact, 
(c) the kinetic energy of the ball 
before impact, (d) the kinetic energy 
of the ball after impact, and (e) the 
coefficient of restitution of the ball. 

*34. A 0.50-kg ball is dropped 
from a height of 1.00 m and 
rebounds to a height of 0.620 m. 
Approximately how many bounces 
will the ball make before losing 90% 
of its energy? 

35. A 60.0-g tennis ball is 
dropped from a height of 1.00 m. If 
it rebounds to a height of 0.560 m, 
(a) what is the coefficient of 
restitution of the tennis ball and 
the floor, and (b) how much energy 
is lost in the collision? 

*36. A 25.0-g bullet strikes a 
5.00-kg ballistic pendulum that is 
initially at rest. The pendulum rises 
to a height of 14.0 cm. What is the 
initial speed of the bullet? 

37. A 25.0-g bullet with an 
initial speed of 400 m/s strikes a 5-
kg ballistic pendulum that is 
initially at rest. (a) What is the 
speed of the combined bullet-
pendulum after the collision? 

(b) How high will the pendulum 
rise? 

 
Diagram for problem 36. 

 
38. An 80-kg caveman, 

standing on a branch of a tree 5 m 
high, swings on a vine and catches 
a 60-kg cavegirl at the bottom of the 
swing. How high will both of them 
rise? 

 
*39. A hunter fires an 

automatic rifle at an attacking lion 
that weighs 1335 N. If the lion is 
moving toward the hunter at 3.00 
m/s, and the rifle bullets weigh 
0.550 N each and have a muzzle 
velocity of 762 m/s, how many 
bullets must the man fire at the 
lion in order to stop the lion in his 
tracks? 

*40. Two gliders on an air track 
are connected by a compressed 
spring and a piece of thread as 
shown; m1 = 300 g and m2 is 
unknown. If the connecting string is 
cut, the gliders separate. Glider 1 
experiences the velocity v1 = 10.0 
cm/s, and glider 2 experiences the 
velocity v2 = 20.0 cm/s, what is the 
unknown mass? 

Diagram for problem 40. 
 
*41. Two gliders on an air track 

are connected by a compressed 

spring and a piece of thread as 
shown. The masses of the gliders 
are m1 = 300 g and m2 = 250 g. The 
connecting string is cut and the 
compressed string causes the two 
gliders to separate from each other. 
If glider 1 has moved 35.0 cm from 
its starting point, where is glider 2 
located? 

*42. Two balls, m1 = 100 g and 
m2 = 200 g, are suspended near 
each other as shown. The two balls 
are initially in contact. Ball 2 is 
then pulled away so that it makes a 
45.00 angle with the vertical and is 
then released. (a) Find the velocity 
of ball 2 just before impact and the 
velocity of each ball after the 
perfectly elastic impact. (b) How 
high will each ball rise? 

 
Diagram for problem 42. 

 
*43. Two swimmers 

simultaneously dive off opposite 
ends of a 110-kg boat. If the first 
swimmer has a mass m1 = 66.7 kg 
and a velocity of 1.98 m/s toward 
the right, while the second 
swimmer has a mass m2 = 77.8 kg 
and a velocity of −7.63 m/s toward 
the left, what is the final velocity of 
the boat? 

*44. Show that the kinetic 
energy of a moving body can be 
expressed in terms of the linear 
momentum as KE = p2/2m. 

*45. A machine gun is mounted 
on a small train car and fires 100 
bullets per minute backward. If the 
mass of each bullet is 10.0 g and the 
speed of each bullet as it leaves the 
gun is 900 m/s, find the average 
force exerted on the gun. If the 
mass of the car and machine gun is 
225 kg, what is the acceleration of 
the train car while the gun is firing? 
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*46. An open toy railroad car of 
mass 250 g is moving at a constant 
speed of 30 cm/s when a wooden 
block of 50 g is dropped into the 
open car. What is the final speed of 
the car and block? 

 
*47. Masses m1 and m2 are 

located on the top of the two 
frictionless inclined planes as 
shown in the diagram. It is given 
that m1 = 30.0 g, m2 = 50.0 g, l1 = 
50.0 cm, l2 = 20.0 cm, l = 100 cm, θ1 
= 50.00, and θ2 = 25.00. Find (a) the 
speeds v1 and v2 at the bottom of 
each inclined plane, note that ball 1 
reaches the bottom of the plane 
before ball 2; (b) the position 
between the planes where the 
masses will collide elastically; 
(c) the speeds of the two masses 
after the collision; and (d) the final 
locations l1’ and l2’ where the two 
masses will rise up the plane after 
the collision. 

  
Diagram for problem 47. 

 
*48. The mass m1 = 40.0 g is 
initially located at a height h1 = 
1.00 m on the frictionless surface 
shown in the diagram. It is then 
released from rest and collides with 
the mass m2 = 70.0 g, which is at 
rest at the bottom of the surface. 
After the collision, will the mass m2 
make it over the top of the hill at 
position B, which is at a height of 
0.500 m? 

 
Diagram for problem 48. 

 
*49. Two balls of mass m1 and 

m2 are placed on a frictionless 
surface as shown in the diagram. 
Mass m1 = 30.0 g is at a height h1 = 
50.0 cm above the bottom of the 
bowl, while mass m2 = 60.0 g is at a 
height of 3/4 h1. The distance l = 
100 cm. Assuming that both balls 
reach the bottom at the same time, 
find (a) the speed of each ball at the 
bottom of each surface, (b) the 
position where the two balls collide, 
(c) the speed of each ball after the 
collision, and (d) the height that 
each ball will rise to after the 
collision. 

 
Diagram for problem 49. 

 
*50. A person is in a small train 

car that has a mass of 225 kg and 
contains 225 kg of rocks. The train 
is initially at rest. The person starts 
to throw large rocks, each of 45.0 kg 
mass, from the rear of the train at a 
speed of 1.50 m/s. (a) If the person 
throws out 1 rock what will the 
recoil velocity of the train be? The 
person then throws out another 
rock at the same speed. (b) What is 
the recoil velocity now? (c) The 
person continues to throw out the 
rest of the rocks one at a time. 
What is the final velocity of the 
train when all the rocks have been 
thrown out? 

*51. A bullet of mass 20.0 g is 
fired into a block of mass 5.00 kg 
that is initially at rest. The 
combined block and bullet moves a 
distance of 5.00 m over a rough 
surface of coefficient of kinetic 
friction of 0.500, before coming to 
rest. Find the initial velocity of the 
bullet. 

*52. A bullet of mass 20.0 g is 
fired at an initial velocity of 200 m/s 
into a 15.0-kg block that is initially 
at rest. The combined bullet and 
block move over a rough surface of 
coefficient of kinetic friction of 
0.500. How far will the combined 
bullet and block move before 
coming to rest? 

53. A 0.150-kg bullet moving at 
a speed of 250 m/s hits a 2.00-kg 
block of wood, which is initially at 
rest. The bullet emerges from the 
block of wood at 150 m/s. Find 
(a) the final velocity of the block of 
wood and (b) the amount of energy 
lost in the collision. 

 
*54. A 5-kg pendulum bob, at a 

height of 0.750 m above the floor, 
swings down to the ground where it 
hits a 2.15 kg block that is initially 
at rest. The block then slides up a 
30.00 incline. Find how far up the 
incline the block will slide if (a) the 
plane is frictionless and (b) if the 
plane is rough with a value of µk = 
0.450. 

 
Diagram for problem 54. 

 
*55. A 0.15-kg baseball is 

thrown upward at an initial velocity 
of 35.0 m/s. Two seconds later, a 
20.0-g bullet is fired at 250 m/s into 
the rising baseball. How high will 
the combined bullet and baseball 
rise? 

*56. A 25-g ball slides down a 
smooth inclined plane, 0.850 m 
high, that makes an angle of 35.00 
with the horizontal. The ball slides 
into an open box of 200-g mass and 
the ball and box slide on a rough 
surface of µk = 0.450. How far will 
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the combined ball and box move 
before coming to rest? 

*57. A 25-g ball slides down a 
smooth inclined plane, 0.850 m 
high, that makes an angle of 35.00 
with the horizontal. The ball slides 
into an open box of 200-g mass and 
the ball and box slide off the end of 
a table 1.00 m high. How far from 
the base of the table will the 
combined ball and box hit the 
ground? 

 
Diagram for problem 57. 

 
*58. A 1300-kg car collides with 

a 15,000-kg truck at an intersection 
and they couple together and move 
off as one leaving a skid mark 5 m 
long that makes an angle of 30.00 
with the original direction of the 
car. If µk = 0.700, find the initial 
velocities of the car and truck 
before the collision. 

 
Diagram for problem 58. 

 
59. A bomb of mass M = 2.50 

kg, moving in the x-direction at a 
speed of 10.5 m/s, explodes into 
three pieces. One fragment, m1 = 
0.850 kg, flies off at a velocity of 3.5 
m/s at an angle of 30.00 above the x-
axis. Fragment m2 = 0.750 kg, flies 
off at an angle of 136.50 above the 

positive x-axis, and the third 
fragment flies off at an angle of 
3300 with respect to the positive x-
axis. Find the velocities of m2 and 
m3. 

 
Interactive Tutorials 

60. Recoil velocity of a gun. A 
bullet of mass mb = 10.0 g is fired at 
a velocity vb = 300 m/s from a rifle 
of mass mr = 5.00 kg. Calculate the 
recoil velocity vr of the rifle. If the 
bullet is in the barrel of the rifle for 
t = 0.004 s, what is the bullet’s 
acceleration and what force acted 
on the bullet? Assume the force is a 
constant. 

61. An inelastic collision. A car 
of mass m1 = 1000 kg is moving at a 
velocity v1 = 50.0 m/s and collides 
inelastically with a car of mass m2 = 
750 kg moving in the same 
direction at a velocity of v2 = 20.0 
m/s. Calculate (a) the final velocity 
vf of both vehicles; (b) the initial 
momentum pi; (c) the final 
momentum pf; (d) the initial kinetic 
energy KEi; (e) the final kinetic 
energy KEf of the system; (f) the 
energy lost in the collision ∆E; and 
(g) the percentage of the original 
energy lost in the collision, %Elost. 

62. A perfectly elastic collision. 
A mass, m1 = 3.57 kg, moving at a 
velocity, v1 = 2.55 m/s, overtakes 
and collides with a second mass, m2 
= 1.95 kg, moving at a velocity v2 = 
1.35 m/s. If the collision is perfectly 
elastic, find (a) the velocities after 
the collision, (b) the momentum 
before the collision, (c) the 
momentum after the collision, 
(d) the kinetic energy before the 
collision, and (e) the kinetic energy 
after the collision. 

63. An imperfectly elastic 
collision. A mass, m = 2.84 kg, is 
dropped from a height h0 = 3.42 m 
and hits a wooden floor. The mass 
rebounds to a height h = 2.34 m. If 
the collision is imperfectly elastic, 
find (a) the velocity of the mass as it 
hits the floor, v1i; (b) the velocity of 
the mass after it rebounds from the 
floor, v1i; (c) the coefficient of 
restitution, e; (d) the kinetic energy, 

KEA, just as the mass approached 
the floor; (e) the kinetic energy, 
KES, after the separation of the 
mass from the floor; (f) the actual 
energy lost in the collision; (g) the 
percentage of energy lost in the 
collision; (h) the momentum before 
the collision; and (i) the momentum 
after the collision. 

64. An imperfectly elastic 
collision—the bouncing ball. A ball 
of mass, m = 1.53 kg, is dropped 
from a height h0 = 1.50 m and hits a 
wooden floor. The collision with the 
floor is imperfectly elastic and the 
ball only rebounds to a height h = 
1.12 m for the first bounce. Find 
(a) the initial velocity of the ball, vi, 
as it hits the floor on its first 
bounce; (b) the velocity of the ball 
vf, after it rebounds from the floor 
on its first bounce; (c) the coefficient 
of restitution, e; (d) the initial 
kinetic energy, KEi, just as the ball 
approaches the floor; (e) the final 
kinetic energy, KEf, of the ball after 
the bounce from the floor; (f) the 
actual energy lost in the bounce, 
Elost/bounce; and (g) the percentage of 
the initial kinetic energy lost by the 
ball in the bounce, %Elost/bounce. The 
ball continues to bounce until it 
loses all its energy. (h) Find the 
cumulative total percentage energy 
lost, % Energy lost, for all the 
bounces. (i) Plot a graph of the % of 
Total Energy lost as a function of 
the number of bounces. 

65. A variable mass system. A 
train car of mass mT = 1500 kg, 
contains 35 rocks each of mass mr = 
30 kg. The train is initially at rest. 
A man throws out each rock from 
the rear of the train at a speed vr = 
8.50 m/s. (a) When the man throws 
out one rock, what will the recoil 
velocity, VT, of the train be? 
(b) What is the recoil velocity when 
the man throws out the second 
rock? (c) What is the recoil velocity 
of the train when the nth rock is 
thrown out? (d) If the man throws 
out each rock at the rate R = 1.5 
rocks/s, find the change in the 
velocity of the train and its 
acceleration. (e) Draw a graph of 
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the velocity of the train as a 
function of the number of rocks 
thrown out of the train. (f) Draw a 
graph of the mass of the train as a 
function of the number of rocks 
thrown out of the train. (g) Draw a 

graph of the acceleration of the 
train as a function of the number of 
rocks thrown out and (h) Draw a 
graph of the acceleration of the 
train as a function of time. 

 

To go to these Interactive 
Tutorials click on this sentence. 

 

 
To go to another chapter, return to the table of contents by clicking on this sentence. 
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