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Chapter 4  Newton’s Laws of Motion 
 

I do not know what I may appear to the world/ but to myself I seem to have been only like a boy 
playing on the sea shore, and diverting myself in now and then finding a smoother pebble or a 
prettier shell than ordinary, while the great ocean of truth lay all undiscovered before me. 

      Sir Isaac Newton 
 
4.1  Introduction 
Chapter 3 dealt with kinematics, the study of motion. We saw that if the acceleration, initial position, and velocity 
of a body are known, then the future position and velocity of the moving body can be completely described. But one 
of the things left out of that discussion, was the cause of the body’s acceleration. If a piece of chalk is dropped, it is 
immediately accelerated downward. The chalk falls because the earth exerts a force of gravity on the chalk pulling 
it down toward the center of the earth. We will see that any time there is an acceleration, there is always a force 
present to cause that acceleration. In fact, it is Newton’s laws of motion that describe what happens to a body 
when forces are acting on it. That branch of mechanics concerned with the forces that change or produce the 
motions of bodies is called dynamics. 

As an example, suppose you get into your car and accelerate from rest to 80 km/hr. What causes that 
acceleration? The acceleration is caused by a force that begins with the car engine. The engine supplies a force, 
through a series of shafts and gears to the tires, that pushes backward on the road. The road in turn exerts a force 
on the car to push it forward. Without that force you would never be able to accelerate your car. Similarly, when 
you step on the brakes, you exert a force through the brake linings, to the wheels and tires of the car to the road. 
The road exerts a force backward on the car that causes the car to decelerate. All motions are started or stopped by 
forces. 

Before we start our discussion of Newton’s laws of motion, let us spend a few moments discussing the life 
of Sir Isaac Newton, perhaps the greatest scientist who ever lived. Newton was born in the little hamlet of 
Woolsthorpe in Lincolnshire, England, on Christmas day, 1642. It was about the same time that Galileo Galilei  

        
Figure 4.1  (a) Sir Isaac Newton  (b) The first page of Newton’s Principia. 

 
died; it was as though the torch of knowledge had been passed from one generation to another. Newton was born 
prematurely and was not expected to live; somehow he managed to survive. His father had died three months 
previously. Isaac grew up with a great curiosity about the things around him. His chief delight was to sit under a 
tree reading a book. His uncle, a member of Trinity College at Cambridge University, urged that the young 
Newton be sent to college, and Newton went to Cambridge in June, 1661. He spent the first two years at college 
learning arithmetic, Euclidean geometry, and trigonometry. He also read and listened to lectures on the 
Copernican system of astronomy. After that he studied natural philosophy. In 1665 the bubonic plague hit London 
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and Newton returned to his mother’s farm at Woolsthorpe. It was there, while observing an apple fall from a tree, 
that Newton wondered that if the pull of the earth can act through space to pull an apple from a tree, could it not 
also reach out as far as the moon and pull the moon toward the earth? This reasoning became the basis for his law 
of universal gravitation. 

Newton also invented the calculus (he called it fluxions) as a means of solving a problem in gravitation. 
(We should also note, however, that the German mathematician Gottfried Leibniz also invented the calculus 
independently of, and simultaneously with, Newton.) Newton’s work on mechanics, gravity, and astronomy was 
published in 1687 as the Mathematical Principles of Natural Philosophy. It is commonly referred to as the 
Principia, from its Latin title. Because of its impact on science, it is perhaps one of the most important books ever 
written. A copy of the first page of the Principia is shown in figure 4.1. Newton died in London on March 20, 1727, 
at the age of 84. 
 
 
4.2  Newton’s First Law of Motion 
Newton’s first law of motion can be stated as: A body at rest, will remain at rest and a body in motion at a 
constant velocity will continue in motion at that constant velocity, unless acted on by some unbalanced external 
force. By a force we mean a push or a pull that acts on a body. A more sophisticated definition of force will be 
given after the discussion of Newton’s second law. 

There are really two statements in the first law. The first statement says that a body at rest will remain at 
rest unless acted on by some unbalanced force. As an example of this first statement, suppose you placed a book on 
the desk. That book would remain there forever, unless some unbalanced force moved it. That is, you might exert a 
force to pick up the book and move it someplace else. But if neither you nor anything else exerts a force on that 
book, that book will stay there forever. Books, and other inanimate objects, do not just jump up and fly around the 
room by themselves. A body at rest remains at rest and will stay in that position forever unless acted on by some 
unbalanced external force. This law is really a simple observation of nature. This is the first part of Newton’s first 
law and it is so basic that it almost seems trivial and unnecessary. 

The second part of the statement of Newton’s first law is not quite so easy to see. This part states that a 
body in motion at a constant velocity will continue to move at that constant velocity unless acted on by some 
unbalanced external force. In fact, at first observation it actually seems to be wrong. For example, if you take this 
book and give it a shove along the desk, you immediately see that it does not keep on moving forever. In fact, it 
comes to a stop very quickly. So either Newton’s law is wrong or there must be some force acting on the book while 
it is in motion along the desk. In fact there is a force acting on the book and this force is the force of friction, which 
tends to oppose the motion of one body sliding on another. (We will go into more details on friction later in this 
chapter.) But, if instead of trying to slide the book along the desk, we tried to slide it along a sheet of ice (say on a 
frozen lake), then the book would move a much greater distance before coming to rest. The frictional force acting 
on the book by the ice is much less than the frictional force that acted on the book by the desk. But there is still a 
force, regardless of how small, and the book eventually comes to rest. However, we can imagine that in the 
limiting case where these frictional forces are completely eliminated, an object moving at a constant velocity would 
continue to move at that same velocity forever, unless it were acted on by a nonzero net force. The resistance of a 
body to a change in its motion is called inertia, and Newton’s first law is also called the law of inertia. 

If you were in outer space and were to take an object and throw it away where no forces acted on it, it 
would continue to move at a constant velocity. Yet if you take your pen and try to throw it into space, it falls to the 
floor. Why? Because the force of gravity pulls on it and accelerates it to the ground. It is not free to move in 
straight line motion but instead follows a parabolic trajectory, as we have seen in the study of projectiles. 

The first part of Newton’s first law—A body at rest, will remain at rest ...—is really a special case of the 
second statement—a body in motion at some constant velocity.… A body at rest has zero velocity, and will 
therefore have that same zero velocity forever, unless acted on by some unbalanced external force. 

Newton’s first law of motion also defines what is called an inertial coordinate system. A coordinate system 
in which objects experiencing no unbalanced forces remain at rest or continue in uniform motion, is called an 
inertial coordinate system. An inertial coordinate system (also called an inertial reference system) is a 
coordinate system that is either at rest or moving at a constant velocity with respect to another coordinate system 
that is either at rest or also moving at a constant velocity. In such a coordinate system the first law of motion holds. 
A good way to understand an inertial coordinate system is to look at a noninertial coordinate system. A rotating 
coordinate system is an example of a noninertial coordinate system. Suppose you were to stand at rest at the 
center of a merry-go-round and throw a ball to another student who is on the outside of the rotating merry-go-
round at the position 1 in figure 4.2(a). When the ball leaves your hand it is moving at a constant horizontal 
velocity, v0. Remember that a velocity is a vector, that is, it has both magnitude and direction. The ball is moving 
at a constant horizontal speed in a constant direction. The y-component of the velocity changes because of gravity,  
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    Figure 4.2  A noninertial coordinate system.                        Figure 4.3  A merry-go-round is a noninertial  
                                                                                               coordinate system. 

 
but not the x-component. You, being at rest at the center, are in an inertial coordinate system. The person on the 
rotating merry-go-round is rotating and is in a noninertial coordinate system. As observed by you, at rest at the 
center of the merry-go-round, the ball moves through space at a constant horizontal velocity. But the person 
standing on the outside of the merry-go-round sees the ball start out toward her, but then it appears to be 
deflected to the right of its original path, as seen in figure 4.2(b). Thus, the person on the merry-go-round does not 
see the ball moving at a constant horizontal velocity, even though you, at the center, do, because she is rotating 
away from her original position. That student sees the ball changing its direction throughout its flight and the ball 
appears to be deflected to the right of its path. The person on the rotating merry-go-round is in a noninertial 
coordinate system and Newton’s first law does not hold in such a coordinate system. That is, the ball in motion at a 
constant horizontal velocity does not appear to continue in motion at that same horizontal velocity. Thus, when 
Newton’s first law is applied it must be done in an inertial coordinate system. In this book nearly all coordinate 
systems will be either inertial coordinate systems or ones that can be approximated by inertial coordinate systems, 
hence Newton’s first law will be valid. The earth is technically not an inertial coordinate system because of its 
rotation about its axis and its revolution about the sun. The acceleration caused by the rotation about its axis is 
only about 1/300 of the acceleration caused by gravity, whereas the acceleration due to its orbital revolution is 
about 1/1650 of the acceleration due to gravity. Hence, as a first approximation, the earth can usually be used as 
an inertial coordinate system. 

Before discussing the second law, let us first discuss Newton’s third law because its discussion is somewhat 
shorter than the second. 
 
 
4.3  Newton’s Third Law of Motion 
Newton stated his third law in the succinct form, “Every action has 
an equal but opposite reaction.” Let us express Newton’s third law 
of motion in the form, if there are two bodies, A and B, and if body 
A exerts a force on body B, then body B will exert an equal but 
opposite force on body A. The first thing to observe in Newton’s third 
law is that two bodies are under consideration, body A and body B. 
This contrasts to the first (and second) law, which apply to a single 
body. As an example of the third law, consider the case of a person 
leaning against the wall, as shown in figure 4.4. The person is body 
A, the wall is body B. The person is exerting a force on the wall, and 
Newton’s third law states that the wall is exerting an equal but 
opposite force on the person. 

The key to Newton’s third law is that there are two different 
bodies exerting two equal but opposite forces on each other. Stated 
mathematically this becomes 

                                                                                                    Figure 4.4  Forces involved when you 
                                                                                                                    lean against a wall. 
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 FAB = −FBA                                                                               (4.1) 

 
where FAB is the force on body A exerted by body B and FBA is the force on body B exerted by body A. Equation 4.1 
says that all forces in nature exist in pairs. There is no such thing as a single isolated force. We call FBA the action 
force, whereas we call FAB the reaction force (although either force can be called the action or reaction force). 
Together these forces are an action-reaction pair. 

Another example of the application of Newton’s third law is a book 
resting on a table, as seen in figure 4.5. A gravitational force, directed 
toward the center of the earth, acts 
on that book. We call the 
gravitational force on the book its 
weight w. By Newton’s third law 
there is an equal but opposite force 
w’ acting on the earth. The forces w 
and w’ are the action and reaction 
pair of Newton’s third law, and note 
how they act on two different bodies, 
the book and the earth. The force w 
acting on the book should cause it to 
fall toward the earth. However, 
because the table is in the way, the 
force down on the book is applied to 
the table. Hence the book exerts a 

                                                                       Figure 4.5  Newton’s third law of motion. 
 

force down on the table. We label this force on the table, F’N. By Newton’s third law the table exerts an equal but 
opposite force upward on the book. We call the equal but upward force acting on the book the normal force, and 
designate it as FN. When used in this context, normal means perpendicular to the surface. 

If we are interested in the forces acting on the book, they are the gravitational force, which we call the 
weight w, and the normal force FN. Note however, that these two forces are not an action-reaction pair because 
they act on the same body, namely the book. 

We will discuss Newton’s third law in more detail when we consider the law of conservation of momentum 
in chapter 8. 
 
 
4.4  Newton’s Second Law of Motion 
Newton’s second law of motion is perhaps the most basic, if not the most important, law of all of physics. We begin 
our discussion of Newton’s second law by noting that whenever an object is dropped, the object is accelerated down 
toward the earth. We know that there is a force acting on the body, a force called the force of gravity. The force of 
gravity appears to be the cause of the acceleration downward. We therefore ask the question, Do all forces cause 
accelerations? And if so, what is the relation of the acceleration to the causal force? 
 
Experimental Determination of Newton’s Second Law 
To investigate the relation between forces and acceleration, we will go into the laboratory and perform an 
experiment with a propelled glider on an air track, as seen in figure 4.6.1 

We turn a switch on the glider to apply a voltage to the airplane motor mounted on top of the glider. As the 
propeller turns, it exerts a force on the glider that pulls the glider down the track. We turn on a spark timer, 
giving a record of the position of the glider as a function of time. From the spark timer tape, we determine the 
acceleration of the glider as we did in chapter 3. We then connect a piece of Mylar tape to the back of the glider 
and pass it over an air pulley at the end of the track. Weights are hung from the Mylar tape until the force exerted 
by the weights is equal to the force exerted by the propeller. The glider will then be at rest. In this way, we 
determine the force exerted by the propeller. This procedure is repeated several times with different battery 
voltages. If we plot the acceleration of the glider against the force, we get the result shown in figure 4.7. 

                                                           
1.  See Nolan and Bigliani, Experiments in Physics, 2d ed.,  

Pearson Custom Publishing

98



 
Chapter 4  Newton’s Laws of Motion                                                                                                             4-5 

           Figure 4.6  Glider and airplane motor.                     Figure 4.7  Plot of the acceleration a versus  
                                                                                  the applied force F for a propelled glider. 

 
Whenever a graph of two variables is a straight line, as in figure 4.7, the dependent variable is directly 

proportional to the independent variable. (See appendix C for a discussion of proportions.) Therefore this graph 
tells us that the acceleration of the glider is directly proportional to the applied force, that is, 
 

a ∝ F                                                                                    (4.2) 
 

Thus, not only does a force cause an acceleration of a body but that acceleration is directly proportional to 
that force, and in the direction of that force. That is, if we double the force, we double the acceleration; if we triple 
the force, we triple the acceleration; and so forth. 

Let us now ask, how is the acceleration affected by the mass of the object being moved? To answer this 
question we go back to the laboratory and our experiment. This time we connect together two gliders of known 
mass and place them on the air track. Hence, the mass of the body in motion is increased. We turn on the propeller 
and the gliders go down the air track with the spark timer again turned on. Then we analyze the spark timer tape 
to determine the acceleration of the two gliders. We repeat the experiment with three gliders and then with four 
gliders, all of known mass. We determine the acceleration for each increased mass and plot the acceleration of the 
gliders versus the mass of the gliders, as shown in figure 4.8(a). The relation between acceleration and mass is not  

   
Figure 4.8  Plot of (a) the acceleration a versus the mass m and (b) the acceleration a versus the reciprocal of the 

mass (1/m) for the propelled gliders. 
 

particularly obvious from this graph except that as the mass gets larger, the acceleration gets smaller, which 
suggests that the acceleration may be related to the reciprocal of the mass. We then plot the acceleration against 
the reciprocal of the mass in figure 4.8(b), and obtain a straight line. 

Again notice the linear relation. This time, however, the acceleration is directly proportional to the 
reciprocal of the mass. Or saying it another way, the acceleration is inversely proportional to the mass of the 
moving object. (See appendix C for a discussion of inverse proportions.) That is, 

 
a ∝  1                                                                                   (4.3) 

          m 
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Thus, the greater the mass of a body, the smaller will be its acceleration for a given force. Hence, the mass of a 
body is a measure of the body’s resistance to being put into accelerated motion. Equations 4.2 and 4.3 can be 
combined into a single proportionality, namely 

a ∝  F                                                                                    (4.4) 
                                                                                                   m           

 
The result of this experiment shows that the acceleration of a body is directly proportional to the applied 

force and inversely proportional to the mass of the moving body. The proportionality in relation 4.4 can be 
rewritten as an equation if a constant of proportionality k is introduced (see the appendix on proportions). Thus, 

 
F = kma                                                                                 (4.5) 

 
Let us now define the unit of force in such a way that k will be equal to the value one, thereby simplifying 

the equation. The unit of force in SI units, thus defined, is 
 

1 newton = 1 kg m  
                            s2 

 
The abbreviation for a newton is the capital letter N. A newton is the net amount of force required to give a mass of 
1 kg an acceleration of 1 m/s2. Hence, force is now defined as more than a push or a pull, but rather a force is a 
quantity that causes a body of mass m to have an acceleration a. Recall from chapter 1 that the mass of an object is 
a fundamental quantity. We now see that force is a derived quantity. It is derived from the fundamental quantities 
of mass in kilograms, length in meters, and time in seconds. 

A check on dimensions shows that k is indeed equal to unity in this way of defining force, that is, 
 

F = kma 
newton = (k) kg m/s2 
kg m/s2 = (k) kg m/s2 

k = 1 
Equation 4.5 therefore becomes 

 F = ma                                                                                  (4.6) 
 

Equation 4.6 is the mathematical statement of Newton’s second law of motion. This is perhaps the most 
fundamental of all the laws of classical physics. Newton’s second law of motion can be stated in words as: If an 
unbalanced external force F acts on a body of mass m, it will give that body an acceleration a. The acceleration is 
directly proportional to the applied force and inversely proportional to the mass of the body. We must understand 
by Newton’s second law that the force F is the resultant external force acting on the body. Sometimes, to be more 
explicit, Newton’s second law is written in the form 

 
Σ F = ma                                                                                 (4.7) 

 
where the Greek letter sigma, Σ , means “the sum of.” Thus, if there is more than one force acting on a body, it is 
the resultant unbalanced force that causes the body to be accelerated. For example, if a book is placed on a table as 
in figure 4.5, the forces acting on the book are the force of gravity pulling the book down toward the earth, while 
the table exerts a normal force upward on the book. These forces are equal and opposite, so that the resultant 
unbalanced force acting on the book is zero. Hence, even though forces act on the book, the resultant of these 
forces is zero and there is no acceleration of the book. It remains on the table at rest. 

Newton’s second law is the fundamental principle that relates forces to motions, and is the foundation of 
mechanics. Thus, if an unbalanced force acts on a body, it will give it an acceleration. In particular, the 
acceleration is found from equation 4.7 to be 

 a = Σ F                                                                                    (4.8) 
                                                                                                   m    

 
It is a matter of practice that Σ is usually left out of the equations but do not forget it; it is always implied because 
it is the resultant force that causes the acceleration. 

Once the acceleration of the body is known, its future position and velocity at any time can be determined 
using the kinematic equations developed in chapter 3, namely, 
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x = v0t +  1  at2                                                                        (3.14) 
                2 

    v = v0 + at                                                                                (3.10) 
and 

v2 = v02 + 2ax                                                                            (3.16) 
 

provided, of course, that the force, and therefore the acceleration, are constant. When the force and acceleration 
are not constant, more advanced mathematical techniques are required. 

Our determination of Newton’s second law has been based on the experimental work performed on the air 
track. Since the air track is one dimensional, the equations have been written in their one dimensional form. 
However, recall that acceleration is a vector quantity and therefore force, which is equal to that acceleration times 
mass, must also be written as a vector quantity. Newton’s second law should therefore be written in the more 
general vector form as 

 F = ma                                                                              (4.9) 
 

The kinematic equations must also be used in their vector form. 
 
Newton’s First Law of Motion Is Consistent with His Second Law of Motion 
Newton’s first law of motion can be shown to be consistent with his second law of motion in the following manner. 
Let us start with Newton’s second law 

F = ma                                                                              (4.9) 
 

However, the acceleration is defined as the change in velocity with time. Thus, 
 

F = ma = m ∆v 
                      ∆t         

 
If there is no resultant force acting on the body, then F = 0. Hence, 
 

0 = m ∆v 
          ∆t 

and therefore 
∆v = 0                                                                                  (4.10) 

 
which says that there is no change in the velocity of a body if there is no resultant applied force. Another way to 
see this is to note that 

∆v = vf − v0 = 0                                                                            (4.11) 
Hence, 

vf = v0                                                                                  (4.12) 
 

That is, if there is no applied force (F = 0), then the final velocity vf is always equal to the original velocity v0. But 
that in essence is the first law of motion—a body in motion at a constant velocity will continue in motion at that 
same constant velocity, unless acted on by some unbalanced external force. 

Also note that the first part of the first law, a body at rest will remain at rest unless acted on by some 
unbalanced external force, is the special case of v0 = 0. That is, 

 
vf = v0 = 0 

 
indicates that if a body is initially at rest (v0 = 0), then at any later time its final velocity is still zero (vf = v0 = 0), 
and the body will remain at rest as long as F is equal to zero. Thus, the first law, in addition to defining an inertial 
coordinate system, is also consistent with Newton’s second law. If the first law was not necessary to define an 
inertial coordinate system it would not be necessary to define it as a separate law, because as just shown, it is 
actually built into the second law of motion. 

The ancient Greeks knew that a body at rest under no forces would remain at rest. And they knew that by 
applying a force to the body they could set it into motion. However, they erroneously assumed that the force had to 
be exerted continuously in order to keep the body in motion. Galileo was the first to show that this is not true, and 
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Newton showed in his second law that the net force is necessary only to start the body into motion, that is, to 
accelerate it from rest to a velocity v. Once it is moving at the velocity v, the net force can be removed and the 
body will continue in motion at that same velocity v. 

 
An Example of Newton’s Second Law  

Example 4.1 
 

Motion of a block on a smooth horizontal 
surface. A 10.0-kg block is placed on a 
smooth horizontal table, as shown in 
figure 4.9. A horizontal force of 6.00 N is 
applied to the block. Find (a) the 
acceleration of the block, (b) the position 
of the block at t = 5.00 s, and (c) the 
velocity of the block at t = 5.00 s. 
 
 
 
 

                                                                        Figure 4.9  Motion of a block on a smooth horizontal surface. 

Solution
 

a. First we draw the forces acting on the block as in the diagram. The statement that the table is smooth implies 
that there is only a negligible frictional force between the block and the table and it can be ignored. The only 
unbalanced force2 acting on the block is the force F, and the acceleration is immediately found from Newton’s 
second law as 

     a =  F   =  6.00 N  = 0.600 kg m/s2 
                                                                              m      10.0 kg                  kg 

= 0.600 m/s2 
 

Note here that this acceleration takes place only as long as the force is applied. If the force is removed, for 
any reason, then the acceleration becomes zero, and the block continues to move with whatever velocity it had at 
the time that the force was removed. 
b.  Now that the acceleration of the block is known, its position at any time can be found using the kinematic 
equations developed in chapter 3, namely, 

x = v0t +  1  at2                                                                         (3.14) 
             2   

But because the block is initially at rest v0 = 0, 
 

 x =  1  at2 =  1  (0.600 m/s2)(5.00 s)2 
                                                                           2            2   

= 7.50 m 
 

c.  The velocity at the end of 5.00 s, found from equation 3.10, is 
 

v = v0 + at 
= 0 + (0.600 m/s2)(5.00 s) 

= 3.00 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

                                                           
2Note that there are two other forces acting on the block. One is the weight w of the block, which acts downward, and the other is the normal 
force FN that the table exerts upward on the block. However, these forces are balanced and do not cause an acceleration of the block. 
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In summary, we see that Newton’s second law tells us the acceleration imparted to a body because of the forces 
acting on it. Once this acceleration is known, the position and velocity of the body at any time can be determined by 
using the kinematic equations. 
 
Special Case of Newton’s Second Law—The Weight of a Body Near the Surface of the 
Earth 
Newton’s second law tells us that if an unbalanced force acts on a body of mass m, it will give it an acceleration a. 
Let the body be a pencil that you hold in your hand. Newton’s second law says that if there is an unbalanced force 
acting on this pencil, it will receive an acceleration. If you let go of the pencil it immediately falls down to the 
surface of the earth. It is an object in free-fall and, as we have seen, an object in free-fall has an acceleration whose 
magnitude is g. That is, if Newton’s second law is applied to the pencil 
 

F = ma 
 

But the acceleration a is the acceleration due to gravity, and its magnitude is g. Therefore, Newton’s second law 
can be written as 

F = mg                                                                                 (4.13) 
 

But this gravitational force pulling an object down toward the earth is called the weight of the body, and its 
magnitude is w. Hence, 

F = w 
and Newton’s second law becomes 

 w = mg                                                                                (4.14) 
 
Equation 4.14 thus gives us a relationship between the mass of a body and the weight of a body. 

 
Example 4.2 

 
Finding the weight of a mass. Find the weight of a 1.00-kg mass. 

Solution
 

The weight of a 1.00-kg mass, found from equation 4.14, is 
 

w = mg = (1.00 kg)(9.80 m/s2) = 9.80 kg m/s2 
= 9.80 N 

Hence, a mass of 1 kg has a weight of 9.80 N. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

In pointing out the distinction between the weight of an object and the mass of an object in chapter 1, we 
said that a woman on the moon would weigh one-sixth of her weight on the earth. We can now see why. The 
acceleration due to gravity on the moon gm is only about one-sixth of the acceleration due to gravity here on the 
surface of the earth gE. That is, 

gm =  1  gE 
   6 

Hence, the weight of a woman on the moon would be 
 

wm = mgm = m( 1  gE) =  1 (mgE) =  1  wE 
                                                                                         6             6               6    
 
The weight of a woman on the moon would be one-sixth of her weight here on the earth. The mass of the woman 
would be the same on the earth as on the moon, but her weight would be different. 

We can see from equations 4.6 and 4.14 that the weight of a body in SI units should be expressed in terms 
of newtons. And in the scientific community it is. However, the business community does not always follow 
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science. The United States is now switching over to SI units, but instead of expressing weights in newtons, as 
defined, the weights of objects are erroneously being expressed in terms of kilograms, a unit of mass. 

As an example, if you go to the supermarket and buy a can of vegetables, you will see stamped on the can 
 

NET WT 0.453 kg 
 

This is really a mistake, as we now know, because we know that there is a difference between the weight and the 
mass of a body. To get around this problem, a physics student should realize that in commercial and everyday use, 
the word “weight” nearly always means mass. So when you buy something that the businessman says weighs 1 kg, 
he means that it has the weight of a 1-kg mass. We have seen that the weight of a 1-kg mass is 9.80 N. In this text 
the word kilogram will always mean mass, and only mass. If however, you come across any item marked as a 
weight and expressed in kilograms in your everyday life, you can convert that mass to its proper weight in 
newtons by simply multiplying the mass by 9.80 m/s2. 

 
Example 4.3 

 
Weight and mass at the supermarket. While at the supermarket you buy a bag of potatoes labeled, NET WT 5.00 
kg. What is the correct weight expressed in newtons? 

Solution
 

We find the weight in newtons by multiplying the mass in kg by 9.80 m/s2. Hence, 
 

w = (5.00 kg)(9.80 m/s2) = 49.0 N 
 

To go to this Interactive Example click on this sentence. 
 

 
 
 

4.5  Applications of Newton’s Second Law  
A Block on a Frictionless Inclined Plane 
Let us find the acceleration of a block that is to slide down a 
frictionless inclined plane. (The statement that the plane is 
frictionless means that it is not necessary to take into account the 
effects of friction on the motion of the block.) The velocity and the 
displacement of the block at any time can then be found from the 
kinematic equations. (Note that this problem is equivalent to 
placing a glider on the tilted air track in the laboratory.) The first 
thing to do is to draw a diagram of all the forces acting on the block, 
as shown in figure 4.10. A diagram showing all the forces acting on 
a body is called a force diagram or a free-body diagram. Note that 
all the forces are drawn as if they were acting at the geometrical 
center of the body. (The reason for this will be discussed in more 
detail later when we study the center of mass of a body, but for now 
we will just say that the body moves as if all the forces were acting 
at the center of the body.) 

The first force we consider is the weight of the body w, 
which acts down toward the center of the earth and is hence 
                                                                                                              Figure 4.10  A block on a frictionless inclined 

                                                                                                                             plane. 
 

perpendicular to the base of the incline. The plane itself exerts a force upward on the block that we denote by the 
symbol FN, and call the normal force. (Recall that a normal force is, by definition, a force that is always 
perpendicular to the surface.) 

Let us now introduce a set of axes that are parallel and perpendicular to the plane, as shown in figure 
4.10. Thus the parallel axis is the x-axis and lies in the direction of the motion, namely down the plane. The y-axis 
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is perpendicular to the inclined plane, and points upward away from the plane. Take the weight of the block and 
resolve it into components, one parallel to the plane and one perpendicular to the plane. Recall from chapter 2, on 
the components of vectors, that if the plane makes an angle θ with the horizontal, then the acute angle between w 
and the perpendicular to the plane is also the angle θ. Hence, the component of w parallel to the plane w|| is 
 

w|| = w sin θ                                                                             (4.15) 
 
whereas the component perpendicular to the plane w ⊥ is 
 

w ⊥ = w cos θ                                                                            (4.16) 
 

as can be seen in figure 4.10. One component of the weight, namely w cos θ, holds the block against the plane, 
while the other component, w sin θ, is the force that acts on the block causing the block to accelerate down the 
plane. To find the acceleration of the block down the plane, we use Newton’s second law, 
 

F = ma                                                                                  (4.6) 
 

The force acting on the block to cause the acceleration is given by equation 4.15. Hence, 
 

w sin θ = ma                                                                           (4.17) 
But by equation 4.14 

w = mg                                                                           (4.14) 
Substituting this into equation 4.17 gives 

mg sin θ = ma 
 

Because the mass is contained on both sides of the equation, it divides out, leaving 
 

 a = g sin θ                                                                              (4.18) 
 

as the acceleration of the block down a frictionless inclined plane. An interesting thing about this result is that 
equation 4.18 does not contain the mass m. That is, the acceleration down the plane is the same, whether the block 
has a large mass or a small mass. The acceleration is thus independent of mass. This is similar to the case of the 
freely falling body. There, a body fell at the same acceleration regardless of its mass. Hence, both accelerations are 
independent of mass. If the angle of the inclined plane is increased to 900, then the acceleration becomes  
 

           a = g sin θ = g sin 900 = g (1) = g 
 

Therefore, at θ = 900 the block goes into free-fall. When θ is equal to 00, the acceleration is zero. We can use the 
inclined plane to obtain any acceleration from zero up to the acceleration due to gravity g, by simply changing the 
angle θ. Notice that the algebraic solution to a problem gives a formula rather than a number for the answer. One 
of the reasons why algebraic solutions to problems are superior to numerical ones is that we can examine what 
happens at the extremes (for example at 900 or 00) to see if they make physical sense, and many times special 
cases can be considered. 

Galileo used the inclined plane extensively to study motion. Since he did not have good devices available to 
him for measuring time, it was difficult for him to study the velocity and acceleration of a body. By using the 
inclined plane at relatively small angles of θ, however, he was able to slow down the motion so that he could more 
easily measure it. 

Because we now know the acceleration of the block down the plane, we can determine its velocity and 
position at any time, or its velocity at any position, using the kinematic equations of chapter 3. However, now the 
acceleration a is determined from equation 4.18. 

Note also in this discussion that if Newton’s second law is applied to the perpendicular component we 
obtain 

  F⊥ = ma⊥ = 0 
 

because there is no acceleration perpendicular to the plane. Hence, 
 

F⊥ = FN − w cos θ = 0 
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and 
FN = w cos θ                                                                          (4.19) 

 
Example 4.4 

 
A block sliding down a frictionless inclined plane. A 10.0-kg block is placed on a frictionless inclined plane, 5.00 m 
long, that makes an angle of 30.00 with the horizontal. If the block starts from rest at the top of the plane, what 
will its velocity be at the bottom of the incline? 

Solution
 

The velocity of the block at the bottom of the plane is found from the 
kinematic equation 

v2 = v02 + 2ax  
Hence, 

2v ax=  
 

Before solving for v, we must first determine the acceleration a. 
Using Newton’s second law we obtain 
 

a =  F   = w sin θ  = mg sin θ  
                                         m          m               m 

= g sin θ = (9.80 m/s2) sin 30.00 

= 4.90 m/s2 
Hence, 

2v ax=  

( )( )22 4.90 m/s 5.00 m=  
                                                  = 7.00 m/s                                                         Figure 4.11  Diagram for example 4.4.   

 
The velocity of the block at the bottom of the plane is 7.00 m/s in a direction pointing down the inclined plane. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

It is perhaps appropriate here to discuss the different concepts of mass. In chapter 1, we gave a very 
simplified definition of mass by saying that mass is a measure of the amount of matter in a body. We picked a 
certain amount of matter, called it a standard, and gave it the name kilogram. This amount of matter was not 
placed into motion. It was just the amount of matter in a platinum-iridium cylinder 39 mm in diameter and 39 mm 
high. The amount of matter in any other body was then compared to this standard kilogram mass. But this 
comparison was made by placing the different pieces of matter on a balance scale. As pointed out in chapter 1, the 
balance can be used to show an equality of the amount of matter in a body only because the gravitational force 
exerts a force downward on each pan of the balance. Mass determined in this way is actually a measure of the 
gravitational force on that amount of matter, and hence mass measured on a balance is called gravitational mass. 

In the experimental determination of Newton’s second law using the propeller glider, we added additional 
gliders to the air track to increase the mass that was in motion. The acceleration of the combined gliders was 
determined as a function of their mass and we observed that the acceleration was inversely proportional to that 
mass. Thus, mass used in this way represents the resistance of matter to be placed into motion. For a person, it 
would be more difficult to give the same acceleration to a very large mass of matter than to a very small mass of 
matter. This characteristic of matter, whereby it resists motion is called inertia. The resistance of a body to be set 
into motion is called the inertial mass of that body. Hence, in Newton’s second law, 

 
F = ma                                                                               (4.9) 
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the mass m stands for the inertial mass of the body. Just as we can determine the gravitational mass of any body 
in terms of the standard mass of 1 kg using a balance, we can determine the inertial mass of any body in terms of 
the standard mass of 1 kg using Newton’s second law. 

As an example, let us go back into the laboratory and use the propelled glider we used early in section 4.4. 
For a given battery voltage the glider has a constant force acting on the glider. For a glider of mass m1, the force 
causes the glider to have an acceleration a1, which can be represented by Newton’s second law as 
 

F = m1a1                                                                                (4.20) 
 

If a new glider of mass m2 is used with the same battery setting, and thus the same force F, the glider m2 will 
experience the acceleration a2. We can also represent this by Newton’s second law as 
 

F = m2a2                                                                                (4.21) 
 

Because the force is the same in equations 4.20 and 4.21, the two equations can be set equal to each other giving 
 

m2a2 = m1a1 
Solving for m2, we get 

 m2 =  a1  m1                                                                              (4.22) 
                                                                                                a2                   

 
Thus, the inertial mass of any body can be determined in terms of a mass m1 and the ratio of the accelerations of the 
two masses. If the mass m1 is taken to be the 1-kg mass of matter that we took as our standard, then the mass of 
any body can be determined inertially in this way. Equation 4.22 defines the inertial mass of a body. 

 
Example 4.5 

 
Finding the inertial mass of a body. A 1.00-kg mass experiences an acceleration of 3.00 m/s2 when acted on by a 
certain force. A second mass experiences an acceleration of 8.00 m/s2 when acted on by the same force. What is the 
value of the second mass? 

Solution
 

The value of the second mass, found from equation 4.22, is 
 

m2 =  a1  m1  
   a2 

= 3.00 m/s2 (1 kg) 
                                                                                     8.00 m/s2           

= 0.375 kg 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Masses measured by the gravitational force can be denoted as mg, while masses measured by their 
resistance to motion (i.e., inertial masses) can be represented as mi. Then, for the motion of a block down the 
frictionless inclined plane, equation 4.17, 

w sin θ = ma 
 

should be changed as follows. The weight of the mass in equation 4.17 is determined in terms of a gravitational 
mass, and is written as 

w = mgg                                                                               (4.23) 
 

whereas the mass in Newton’s second law is written in terms of the inertial mass mi. Hence, equation 4.17 
becomes 

mgg sin θ = mia                                                                         (4.24) 
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It is, however, a fact of experiment that no differences have been found in the two masses even though they are 
determined differently. That is, experiments performed by Newton could detect no differences between 
gravitational and inertial masses. Experiments carried out by Roland von Eötvös (1848-1919) in 1890 showed that 
the relative difference between inertial and gravitational mass is at most 10−9, and Robert H. Dicke found in 1961 
the difference could be at most 10−11. That is, the differences between the two masses are 
 

mi − mg ≤ 0.000000001 kg (Eötvös), 
mi − mg ≤ 0.00000000001 kg (Dicke). 

Hence, as best as can be determined, 
mi = mg                                                                             (4.25) 

 
Because of this equivalence between the two different characteristics of mass, the masses on each side of equation 
4.24 divide out, giving us the previously found relation, a = g sin θ. Since a freely falling body is the special case of 
a body on a 900 inclined plane, the equivalence of these two types of masses is the reason that all objects fall at the 
same acceleration g near the surface of the earth. This equivalence of gravitational and inertial mass led Einstein 
to propose it as a general principle called the equivalence principle of which more is said in chapter 30 when 
general relativity is discussed. 
 
Combined Motion 
Up to now we have been considering the motion of a single body. What 
if there is more than one body in motion, say a locomotive pulling 
several train cars? How do we apply Newton’s second law? Let us 
consider a very simple combined motion of two blocks on a smooth 
table, connected by a massless string, as shown in figure 4.12. By a 
smooth table, we mean there is a negligible frictional force between  

                                                                                                                  Figure 4.12  Simple combined motion. 
 

the blocks and the table so that the blocks will move freely over the table. By a massless string we mean that the 
mass of the connecting string is so small compared to the other masses in the problem that it can be ignored in the 
solution of the problem. We want to find the motion of the blocks. In other words, what is the acceleration of the 
blocks, and their velocity and position at any time? The two blocks, taken together, are sometimes called a system. 

A force is applied to the first block by pulling on a string with the force F.  Applying Newton’s second law 
to the first mass mA, we see that the force F is exerting a force on mA to the right. But there is a string connecting 
mA to mB and the force to the right shows up as a force on the string, which we denote by T, that pulls mB also to 
the right. But by Newton’s third law if mass mA pulls mB to the right, then mB tries to pull mA to the left. We denote 
the force on mA caused by mB as T’, and by Newton’s third law the magnitudes are equal, that is, T = T’. Newton’s 
second law applied to the first mass now gives  

F + T’ = mA a                                                                            (4.26) 
 

Equation 4.26 is a vector equation. To simplify its solution, we use our previous convention with vectors in one 
dimension. That is, the direction to the right (+x) is taken as positive and the direction to the left (−x) as negative. 
Therefore, equation 4.26 can be simplified to 

F − T’ = mA a                                                                            (4.27) 
 

We can not solve equation 4.27 for the unknown acceleration a at this time because the tension T’ in the string is 
also unknown. We obviously need more information. We have one equation with two unknowns, the acceleration a 
and the tension T’. Whenever we want to solve a system of algebraic equations for some unknowns, we must always 
have as many equations as there are unknowns in order to obtain a solution. Since there are two unknowns here, 
we need another equation. We obtain that second equation by applying Newton’s second law to block B: 
 

T = mB a                                                                               (4.28) 
 

Notice that the magnitude of the acceleration of block B is also a because block B and block A are tied together by 
the string and therefore have the same motion. As we already mentioned, T = T’ and we can substitute equation 
4.28 for T into equation 4.27 for T’. That is,  

F − T’ = F − T = mA a 
F − mB a = mA a 

 T  T’ F
m

A
m

B
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F = mA a + mB a = (mA + mB )a 
 
and solving for the acceleration of the system of two masses we obtain 
 

 a =       F                                                                                   (4.29) 
                                                                                             mA + mB      

 
Alternate Solution to the Problem There is another way to compute the acceleration of this combined system that 
in a sense is a lot easier. But it is an intuitive way of solving the problem. Some students can see the solution right 
away, others can not. Let us again start with Newton’s second law and solve for the acceleration a of the system 
 

a =  F                                                                                      (4.8) 
    m 

 
Thus, the acceleration of the system is equal to the total resultant force applied to the system divided by the total 
mass of the system that is in motion. The total force that is accelerating the system is the force F.  The total mass 
that is in motion is the sum of the two masses, mA and mB. Therefore, the acceleration of the system, found from 
equation 4.8, is 

a =       F       
            mA + mB 

 
Notice that this is the same acceleration that we just determined in equation 4.29.  

 
Example 4.6 

 
Combined motion of two blocks moving on a smooth horizontal surface. A block of mass mA = 200 g is connected by 
a string of negligible mass to a second block of mass mB = 400 g. The blocks are at rest on a smooth table as shown 
in figure 4.12. A force of 2.50 N in the positive x-direction is applied to mass mA. Find (a) the acceleration of each 
block, (b) the tension in the connecting string, (c) the position of mass A after 1.50 s, and (d) the velocity of mass A 
at 1.50 s. 

Solution
 

a.  The magnitude of the acceleration, obtained from equation 4.29, is 
 

a =       F        =             2.50 N           
                                                                              mA + mB      0.200 kg + 0.400 kg 

= 4.17 m/s2 
b.  The tension, found from equation 4.28, is 
 

T = mB a = (0.400 kg)(4.17 m/s2) = 1.67 N 
 

Notice that the tension T in the string, which is the force on mass mB, is less than the applied force F as should be 
expected because the applied force F must move two masses mA and mB while the tension T in the connecting 
string only has to move one mass, mB.  
c.  The position of mass A after 1.50 s is found from the kinematic equation 
 

x = v0t +  1  at2 
         2 

 
Because the block starts from rest, v0 = 0, and the block moves the distance 
 

x =  1  at2 =  1 (4.17 m/s2)(1.50 s)2 
                                                                            2            2 

= 4.69 m 
 

d.  The velocity of block A is found from the kinematic equation 
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v = v0 + at 
= 0 + (4.17 m/s2)(1.50 s) 

= 6.25 m/s 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Combined Motion of a Block on a Frictionless Horizontal Plane and a Block Falling 
Vertically 
Let us now find the acceleration of a block, on a smooth horizontal 
table, that is connected by a cord that passes over a pulley to 
another block that is hanging over the end of the table, as shown 
in figure 4.13(a). By a smooth table, we mean there is a negligible 
frictional force between the block and the table so that the block 
will move freely over the table. We also assume that the mass of 
the connecting cord and pulley is negligible and can be ignored in 
this problem. 

To determine the acceleration, we will use Newton’s second 
law. However, before we can do so, we must draw a very careful 
free-body diagram showing all the forces that are acting on the two 
blocks, as is done in figure 4.13(b). The forces acting on block A are 
its weight wA, pulling it downward, and the tension T in the cord. 
It is this tension T in the cord that restrains block A from falling  

                                                                                                              Figure 4.13  Combined motion.   
 

freely. The forces acting on body B are its weight wB, the normal force FN that the table exerts on block B, and the 
tension T’ in the cord that acts to pull block B toward the right. Newton’s second law, applied to block A, gives 
 

F = mAa 
 

Here F is the total resultant force acting on block A and therefore, 
 

F = T + wA = mAa                                                                    (4.30) 
 

Equation 4.30 is a vector equation. To simplify its solution, we use our previous convention with vectors in one 
dimension. That is, the upward direction (+y) is taken as positive and the downward direction (−y) as negative. 
Therefore, equation 4.30 can be simplified to 

T − wA = −mAa                                                                             (4.31) 
 

However, we can not yet solve equation 4.31 for the acceleration, because the tension T in the cord is unknown. 
Since there are two unknowns here, we need another equation. We obtain that second equation by applying 
Newton’s second law to block B: 

F = mBa 
 

Here F is the resultant force on block B and, from figure 4.13(b), we can see that 
 

FN + wB + T’ = mBa 
 
This vector equation is equivalent to the two component equations 

 
FN − wB = 0                                                                            (4.32) 

and 
T ’ = mB a                                                                              (4.33) 

 
The right-hand side of equation 4.32 is zero, because there is no acceleration of block B perpendicular to the table. 
It reduces to 
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FN = wB 
 

That is, the normal force that the table exerts on block B is equal to the weight of block B.  
Equation 4.33 is Newton’s second law for the motion of block B to the right. Now we make the assumption 

that 
T’ = T 

 
that is, the magnitude of the tension in the cord pulling on block B is the same as the magnitude of the tension in 
the cord restraining block A. This is a valid assumption providing the mass of the pulley is very small and friction 
in the pulley bearing is negligible. The only effect of the pulley is to change the direction of the string and hence 
the direction of the tension. (In chapter 9 we will again solve this problem, taking the rotational motion of the 
pulley into account without the assumption of equal tensions.) Therefore, equation 4.33 becomes 
 

 T = mBa                                                                                (4.34) 
 

We now have enough information to solve for the acceleration of the system. That is, there are the two 
equations 4.31 and 4.34 and the two unknowns a and T. By subtracting equation 4.34 from equation 4.31, we 
eliminate the tension T from both equations: 

                                   T − wA = −mAa                                                                       (4.31) 
  Subtract                                  T = mBa                                                                         (4.34) 

T − T − wA = −mAa − mBa  
 − wA = −mAa − mB a 

wA = (mA + mB)a 
Solving for the acceleration a, 

a =      wA     
           mA + mB 

To simplify further we note that 
wA = mAg 

 
Therefore, the acceleration of the system of two blocks is 
 

  a =     mA     g                                                                            (4.35) 
                                                                                            mA + mB           

 
To determine the tension T in the cord, we use equations 4.34 and 4.35: 

 
 T = mBa =   mBmA   g                                                                     (4.36) 

                                                                                                  mA + mB        
 

Since the acceleration of the system is a constant we can determine the position and velocity of block B in the x-
direction at any time using the kinematic equations 

x = v0t +  1  at2                                                                      (3.14) 
                   2  

v = v0 + at                                                                             (3.10) 
and 

v2 = v02 + 2ax                                                                         (3.16) 
 

with the acceleration now given by equation 4.35. We find the position of block A at any time using the same 
equations, but with x replaced by the displacement y. 
 
Intuitive Solution to the Problem The problem can also be solved intuitively. Let us again start with Newton’s 
second law and solve for the acceleration a of the system 

a =  F                                                                               (4.8) 
                 m 

 
The acceleration of the system is equal to the total resultant force applied to the system divided by the total mass of 
the system that is in motion. The total force that is accelerating the system is the weight wA. The tension T in the 
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string just transmits the total force from one block to another. The total mass that is in motion is the sum of the 
two masses, mA and mB. Therefore, the acceleration of the system, found from equation 4.8, is 
 

a =      wA       
            mA + mB 

or 
      a =       mA     g 

         mA + mB 
  

Notice that this is the same acceleration that we determined previously in equation 4.35. The only disadvantage of 
this second technique is that it does not tell the tension in the cord. Which technique should the student use in the 
solution of the problem? That depends on the student. If you can see the intuitive approach, and wish to use it, do 
so. If not, follow the first step-by-step approach. 

 
Example 4.7 

 
Combined motion of a block moving on a smooth horizontal surface 
and a mass falling vertically. A 6.00-kg block rests on a smooth 
table. It is connected by a string of negligible mass to a 2.00-kg 
block hanging over the end of the table, as shown in figure 4.14. 
Find (a) the acceleration of each block, (b) the tension in the 
connecting string, (c) the position of mass A after 0.400 s, and 
(d) the velocity of mass A at 0.400 s. 

 
 
 
 
 
 
 

                                                                                                                  Figure 4.14  Diagram for example 4.7. 

Solution
 

a.  To solve the problem, we draw all the forces that are acting on the system and then apply Newton’s second law. 
The magnitude of the acceleration, obtained from equation 4.35, is 
 

a =     mA      g =           2.00 kg         (9.80 m/s2) 
                                                                mA + mB         2.00 kg + 6.00 kg 

= 2.45 m/s2 
b.  The tension, found from equation 4.34, is 
 

T = mB a = (6.00 kg)(2.45 m/s2) = 14.7 N 
 

c.  The position of mass A after 0.400 s is found from the kinematic equation 
 

y = v0t +  1  at2 
         2 

 
Because the block starts from rest, v0 = 0, and the block falls the distance 
 

y =  1  at2 =  1 (−2.45 m/s2)(0.400 s)2  
                                                                          2            2 

= −0.196 m 
 

d.  The velocity of block A is found from the kinematic equation 
 

v = v0 + at 
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= 0 + (−2.45 m/s2)(0.400 s) 
= −0.980 m/s 

 
The negative sign is used for the acceleration of block A because it accelerated in the negative y-direction. Hence, y 
= −0.196 m indicates that the block is below its starting position. The negative sign on the velocity indicates that 
block A is moving in the negative y-direction. If we had done the same analysis for block B, the results would have 
been positive because block B is moving in the positive x-direction. 
 

To go to this Interactive Example click on this sentence. 
 

 
 
Atwood’s Machine 
Atwood’s machine is a system that consists of a pulley, with a mass mA on one side, 
connected by a string of negligible mass to another mass mB on the other side, as 
shown in figure 4.15. 

We assume that mA is larger than mB. When the system is released, the mass 
mA will fall downward, pulling the lighter mass mB, on the other side, upward. We 
would like to determine the acceleration of the system of two masses. When we know 
the acceleration we can determine the position and velocity of each of the masses at 
any time from the kinematic equations. 

Let us start by drawing all the forces acting on the masses in figure 4.15 and 
then apply Newton’s second law to each mass. (The assumption that the tension T in 
the rope is the same for each mass is again utilized. We will solve this problem again 
in chapter 9, on rotational motion, where the rotating pulley is massive and hence the 
tensions on both sides of the pulley are not the same.) 

For mass A, Newton’s second law is 
 

FA = mAa 
or 

T + wA = mAa                                                  (4.37) 
                                                                                                                                    Figure 4.15  Atwood’s machine.   

 
We can simplify this equation by taking the upward direction as positive and the downward direction as negative, 
that is, 

 T − wA = −mAa                                                                           (4.38) 
 

We cannot yet solve for the acceleration of the system, because the tension T in the string is unknown. Another 
equation is needed to eliminate T. We obtain this equation by applying Newton’s second law to mass B: 

 
FB = mB a 

T + wB = mB a                                                                        (4.39) 
 
Simplifying again by taking the upward direction as positive and the downward direction as negative, we get 
 

 T − wB = + mBa                                                                        (4.40) 
 

We thus have two equations, 4.38 and 4.40, in the two unknowns of acceleration a and tension T. The tension T is 
eliminated by subtracting equation 4.40 from equation 4.38. That is, 
 

 T − wA = −mAa                                                                      (4.38) 
Subtract                    T − wB = mBa                                                                        (4.40) 

T − wA − T + wB = −mAa − mBa 
 wB − wA = −(mA + mB)a  

Solving for a, we obtain 
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a =  wA − wB     
       mA + mB 

       = mA g − mBg  
        mA + mB 

Hence, the acceleration of each mass of the system is 

   
 + 

A B

A B

m m
a g

m m

 −
=  

 
                                                         (4.41) 

 
We find the tension T in the string from equation 4.38 as 
 

  T = wA − mAa                                                                            (4.38) 
   T = mAg − mAa 

Hence, 
T = mA(g − a)                                                                          (4.42) 

is the tension in the string of the Atwood’s machine. 
 

Special Cases Any formulation in physics should reduce to some simple, recognizable form when certain 
restrictions are placed on the motion. As an example, suppose a 7.25 kg bowling ball is placed on one side of 
Atwood’s machine and a small 30.0-g marble on the other side. What kind of motion would we expect? The bowling 
ball is so large compared to the marble that the bowling ball should fall like a freely falling body. What does the 
formulation for the acceleration in equation 4.41 say? 

If the bowling ball is mA and the marble is mB, then mA is very much greater than mB and can be written 
mathematically as 

mA >> mB 
Then, 

mA + mB ≈ mA 
As an example, 

7.25 kg + 0.030 kg = 7.28 kg ≈ 7.25 = mA 
Similarly, 

mA − mB ≈ mA 
As an example, 

7.25 kg − 0.030 = 7.22 kg ≈ 7.25 = mA 
                                               
Therefore the acceleration of the system, equation 4.41, becomes 
 

  
 + 

A B A

A B A

m m m
a g g g

m m m

 −
= = = 

 
 

 
That is, the equation for the acceleration of the system reduces to the acceleration due to gravity, as we would 
expect if one mass is very much larger than the other. 

Another special case is where both masses are equal. That is, if 
 

  mA = mB 
then the acceleration of the system is 

   0
 + 2

A B A A

A B A

m m m m
a g g

m m m

 − −
= = = 

 
 

 
That is, if both masses are equal there is no acceleration of the system. The system is either at rest or moving at a 
constant velocity. 
 
Intuitive Solution to Atwood’s Machine A simpler solution to Atwood’s machine can be obtained directly from 
Newton’s second law by the intuitive approach. The acceleration of the system, found from Newton’s second law, is 
 

a =  F   
      m         
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where F is the resultant force acting on the system and m is the total mass in motion. The resultant force acting on 
the system is the difference between the two weights, wA − wB, and the total mass of the system is the sum of the 
two masses that are in motion, namely mA + mB. Thus, 
 

     
 +  + 

A B A B

A B A B

w w m mF
a g

m w w m m

 − −
= = =  

 
 

 
the same result we found before in equation 4.41.  

 
Example 4.8 

 
Atwood’s machine. A 15.8-kg mass and a 10.5-kg mass are placed on an Atwood’s machine. Find (a) the 
acceleration of the system, and (b) the tension in the connecting string. 

Solution
 

a. The acceleration of the system is found from equation 4.41 as  
 

  
 + 

A B

A B

m m
a g

m m

 −
=  

 
 

( )215.8 kg  10.5 kg 9.80 m/s
15.8 kg + 10.5 kg

− 
=  

 
 

a = 1.97 m/s2  
 
b. The tension in the connecting string is found from equation 4.42 as 
 

T = mA(g − a) 
= (15.8 kg)(9.80 m/s2 − 1.97 m/s2) 

T = 124 N  
 

To go to this Interactive Example click on this sentence. 
 

 
 
The Weight of a Person Riding in an Elevator 
A scale is placed on the floor of an elevator. An 87.2 kg person enters the elevator when it is at rest and stands on 
the scale. What does the scale read when (a) the elevator is at rest, (b) the elevator is accelerating upward at 1.50 
m/s2, (c) the acceleration becomes zero and the elevator moves at the constant velocity of 1.50 m/s upward, (d) the 
elevator decelerates at 1.50 m/s2 before coming to rest, and (e) the cable breaks and the elevator is in free-fall? 

A picture of the person in the elevator showing the forces that are acting is drawn in figure 4.16. The forces 
acting on the person are his weight w, acting down, and the reaction force of the elevator floor acting upward, 
which we call FN. Applying Newton’s second law we obtain 

 
FN + w = ma                                                                         (4.43) 

 
a.  If the elevator is at rest then a = 0 in equation 4.43. Therefore, 
 

FN + w = 0 
FN = −w 

 
which shows that the floor of the elevator is exerting a force upward, through the scale, on the person, that is 
equal and opposite to the force that the person is exerting on the floor. Hence, 
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Figure 4.16  Forces acting on a person in an elevator.  

 
FN = w = mg  

= (87.2 kg)(9.80 m/s2)  
= 855 N 

 
We usually think of the operation of a scale in terms of us pressing down on the scale, but we can just as easily 
think of the scale as pushing upward on us. Thus, the person would read 855 N on the scale which would be called 
the weight of the person. 
b.  The doors of the elevator are now closed and the elevator accelerates upward at a rate of 1.50 m/s2. Newton’s 
second law is again given by equation 4.43. We can write this as a scalar equation if the usual convention of 
positive for up and negative for down is taken. Hence, 
 

FN − w = ma 
Solving for FN, we get 

FN = w + ma                                                                             (4.44) 
 

Substituting the given values into equation 4.44 gives 
 

FN = 855 N + (87.2 kg)(1.50 m/s2) 
   = 855 N + 131 N 

= 986 N 
 
That is, the floor is exerting a force upward on the person of 986 N. Therefore, the scale would now read 986 N. 
Does the person now really weigh 986 N? Of course not. What the scale is reading is the person’s weight plus the 
additional force of 131 N that is applied to the person, via the scales and floor of the elevator, to cause the person 
to be accelerated upward along with the elevator. I am sure that all of you have experienced this situation. When 
you step into an elevator and it accelerates upward you feel as though there is a force acting on you, pushing you 
down. Your knees feel like they might buckle. It is not that something is pushing you down, but rather that the 
floor is pushing you up. The floor is pushing upward on you with a force greater than your own weight in order to 
put you into accelerated motion. That extra force upward on you of 131 N is exactly the force necessary to give you 
the acceleration of +1.50 m/s2. 
c.  The acceleration now stops and the elevator moves upward at the constant velocity of 1.50 m/s. What does the 
scale read now? 

Newton’s second law is again given by equation 4.43, but since a = 0, 
 

FN = w = 855 N 
 

Notice that this is the same value as when the elevator was at rest. This is a very interesting phenomenon. The 
scale reads the same whether you are at rest or moving at a constant velocity. That is, if you are in motion at a 
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constant velocity, and you have no external references to observe that motion, you cannot tell that you are in motion 
at all. 

I am sure you also have experienced this while riding an elevator. First you feel the acceleration and then 
you feel nothing. Your usual reaction is to ask “are we moving, or are we at rest?” You then look for a crack around 
the elevator door to see if you can see any signs of motion. Without a visual reference, the only way you can sense a 
motion is if that motion is accelerated. 
d.  The elevator now decelerates at 1.50 m/s2. What does the scale read? Newton’s second law is again given by 
equation 4.43, and writing it in the simplified form, we have 
 

FN − w = −ma                                                                            (4.45) 
 

The minus sign on the right-hand side of equation 4.45 indicates that the acceleration vector is opposite to the 
direction of the motion because the elevator is decelerating. Solving equation 4.45 for FN gives 
 

FN = w − ma 
FN = 855 N − (87.2 kg)(1.50 m/s2) 

     = 855 N − 131 N 
= 724 N   

 
Hence, the force acting on the person is less than the person’s weight. The effect is very noticeable when you walk 
into an elevator and accelerate downward (which is the same as decelerating when the elevator is going upward). 
You feel as if you are falling. Well, you are falling. 

At rest the floor exerts a force upward on a 855-N person of 855 N, now it only exerts a force upward of 724 
N. The floor is not exerting enough force to hold the person up. Therefore, the person falls. It is a controlled fall of 
1.50 m/s2, but a fall nonetheless. The scale in the elevator now reads 724 N. The difference in that force and the 
person’s weight is the force that accelerates the person downward. 
e.  Let us now assume that the cable breaks. What is the acceleration of the system now. Newton’s second law is 
again given by equation 4.43, or in simplified form by 

FN − w = −ma                                                                        (4.45) 
 

But if the cable breaks, the elevator becomes a freely falling body with an acceleration g. Therefore, equation 4.45 
becomes 

FN − w = −mg 
 

The force that the elevator exerts upward on the person becomes 
 

FN = w − mg 
But the weight w is equal to mg. Thus, 

FN = w − w = 0 
or 

FN = 0 
 

Because the scale reads the force that the floor is pushing upward on the person, the scale now reads zero. 
This is why it is sometimes said that in free-fall you are weightless, because in free-fall the scale that reads your 
weight now reads zero. This is a somewhat misleading statement because you still have mass, and that mass is 
still attracted down toward the center of the earth. And in this sense you still have a weight pushing you 
downward. The difference here is that, while standing on the scale, the scale says that you are weightless, only 
because the scale itself is also in free-fall. As your feet try to press against the scale to read your weight, the scale 
falls away from them, and does not permit the pressure of your feet against the scale, and so the scale reads zero. 
From a reference system outside of the elevator, you would say that the falling person still has weight and that 
weight is causing that person to accelerate downward at the value g. However, in the frame of reference of the 
elevator, not only the person seems weightless, but all weights and gravitational forces on anything around the 
person seem to have disappeared. Normally, at the surface of the earth, if a person holds a pen and then lets go, the 
pen falls. But in the freely falling elevator, if a person lets go of the pen it will not fall to the floor, but will appear 
to be suspended in space in front of the person as if it were floating. According to the reference frame outside the 
elevator the pen is accelerating downward at the same rate as the person. But in the elevator, both are falling at 
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the value g and therefore do not move with respect to one another. In the freely falling reference system of the 
elevator, the force of gravity and its acceleration appear to have been eliminated. 
 
 
4.6  Friction  
Whenever we try to slide one body over another body there is a force 
that opposes that motion. This opposing force is called the force of 
friction. For example, if this book is placed on the desk and a 
force is exerted on the book toward the right, there is a force of 
friction acting on the book toward the left opposing the applied 
force, as shown in figure 4.17. 

The basis of this frictional force stems from the fact that 
the surfaces that slide over each other are really not smooth at all. 

                                                                                                               Figure 4.17  The force of friction. 
 
 The top of the desk feels smooth to the hand, and so does 

the book, but that is because our hands themselves are not 
particularly smooth. In fact, if we magnified the surface of the book, 
or the desk, thousands of times, we would see a great irregularity in 
the supposedly “smooth” surface, as shown in figure 4.18. 

As we try to slide the book along the desk these little 
microscopic chunks of the material get in each others way, and get 
stuck in the “mountains” and “valleys” of the other material,  

                                                                                                  Figure 4.18  The “smooth” surfaces of 
                                                                                                           contact that cause frictional forces.   

 
thereby opposing the tendency of motion. This is why it is difficult to slide one body over another. To get the body 
into motion we have to break off, or ride over, these microscopic chunks of matter. Because these chunks are 
microscopic, we do not immediately see the effect of this loss of material. Over a long period of time, however, the 
effect is very noticeable. As an example, if you observe any step of a stairway, which should be flat and level, you 
will notice that after a long period of time the middle of the stair is worn from the thousands of times a foot slid on 
the step in the process of walking up or down the stairs. This effect occurs whether the stairs are made of wood or 
even marble. 

The same wearing process occurs on the soles and heels of shoes, and eventually they must be replaced. In 
fact the walking process can only take place because there is friction between the shoes and the ground. In the 
process of walking, in order to step forward, you must press your foot 
backward on the ground. But because there is friction between your 
shoe and the ground, there is a frictional force tending to oppose that 
motion of your shoe backward and therefore the ground pushes 
forward on your shoe, which allows you to walk forward, as shown in 
figure 4.19. 
If there were no frictional force, your foot would slip backward and you 
would not be able to walk. This effect can be readily observed by trying 
to walk on ice. As you push your foot backward, it slips on the ice. You 
might be able to walk very slowly on the ice because there is some 
friction between your shoes and the ice. But try to run on the ice and 
see how difficult it is. If friction were entirely eliminated you could not 
walk at all. 
                                                                                                             Figure 4.19  You can walk because of friction. 
 
Force of Static Friction 
If this book is placed on the desk, as in figure 4.20, and a small force F1 is exerted to the right, we observe that the 
book does not move. There must be a frictional force f1 to the left that opposes the tendency of motion to the right. 
That is, f1 = −F1. 

If we increase the force to the right to F2, and again observe that the book does not move, the opposing 
frictional force must also have increased to some new value f2, where f2 = −F2. If we now increase the force to the 
right to some value F3, the book just begins to move. The frictional force to the left has increased to some value f3, 
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where f3 is infinitesimally less than F3. The force to the right is 
now greater than the frictional force to the left and the book starts 
to move to the right. When the object just begins to move, it has 
been found experimentally that the frictional force is 
 

fs = µsFN                                      (4.46) 
 
where FN is the normal or perpendicular force holding the two 
bodies in contact with each other. As we can see in figure 4.20, the 
forces acting on the book in the vertical are the weight of the body 
w, acting downward, and the normal force FN of the desk, pushing 
upward on the book. In this case, since the acceleration of the book 

                                                                                                               Figure 4.20  The force of static friction. 
 
in the vertical is zero, the normal force FN is exactly equal to the weight of the book w. (If the desk were tilted, FN 
would still be the force holding the two objects together, but it would no longer be equal to w.) 

The quantity µs in equation 4.46 is called the coefficient of static friction and depends on the materials of 
the two bodies which are in contact. Coefficients of static friction for various materials are given in table 4.1. It 
should be noted that these values are approximate and will vary depending on the condition of the rubbing 
surfaces.   

As we have seen, the force of 
static friction is not always equal to 
the product of µs and FN, but can be 
less than that amount, depending 
on the value of the applied force 
tending to move the body. 
Therefore, the force of static 
friction should be written as 

 
            fs ≤ µsFN             (4.47) 

 
where the symbol ≤ means “equal 
to, or less than.” The only time that 
the equality holds is when the object 
is just about to go into motion. 
 
Force of Kinetic Friction 
Once the object is placed into motion, it is easier to keep it in motion. That is, the force that is necessary to keep 
the object in motion is much less than the force necessary to start the object into motion. In fact once the object is 
in motion, we no longer talk of the force of static friction, but rather we talk of the force of kinetic friction or 
sliding friction. For a moving object the frictional force is found experimentally as 
 

 fk = µkFN                                                                               (4.48) 
 

and is called the force of kinetic friction. The quantity µk is called the coefficient of kinetic friction and is also given 
for various materials in table 4.1. Note from the table that the coefficients of kinetic friction are less than the 
coefficients of static friction. This means that less force is needed to keep the object in motion, than it is to start it 
into motion. 

We should note here, that these laws of friction are empirical laws, and are not exactly like the other laws 
of physics. For example, with Newton’s second law, when we apply an unbalanced external force on a body of mass 
m, that body is accelerated by an amount given by a = F/m, and is always accelerated by that amount. Whereas 
the frictional forces are different, they are average results. That is, on the average equations 4.47 and 4.48 are 
correct. At any one given instant of time a force equal to fs = µsFN, could be exerted on the book of figure 4.20, and 
yet the book might not move. At still another instance of time a force somewhat less than fs = µsFN, is exerted and 
the book does move. Equation 4.46 represents an average result over very many trials. On the average, this 
equation is correct, but any one individual case may not conform to this result. Hence, this law is not quite as 
exact as the other laws of physics. In fact, if we return to figure 4.18, we see that it is not so surprising that the 

      Table 4.1 
Approximate Coefficients of Static and Kinetic Friction for Various 

Materials in Contact 
Materials in Contact µs µk 

Glass on glass  
Steel on steel (lubricated) 
Wood on wood 
Wood on stone 
Rubber tire on dry concrete 
Rubber tire on wet concrete 
Leather on wood 
Teflon on steel 
Copper on steel 

0.95 
0.15 
0.50 
0.50 
1.00 
0.70 
0.50 
0.04 
0.53 

0.40 
0.09 
0.30 
0.40 
0.70 
0.50 
0.40 
0.04 
0.36 
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frictional laws are only averages, because at any one instant of time there are different interactions between the 
“mountains” and “valleys” of the two surfaces. 

When two substances of the same material are slid over each other, as for example, copper on copper, we 
get the same kind of results. But if the two surfaces could be made “perfectly smooth,” the frictional force would 
not decrease, but would rather increase. When we get down to the atomic level of each surface that is in contact, 
the atoms themselves have no way of knowing to which piece of copper they belong, that is, do the atoms belong to 
the top piece or to the bottom piece. The molecular forces between the atoms of copper would bind the two copper 
surfaces together. 

In most applications of friction in technology, it is usually desirable to minimize the friction as much as 
possible. Since liquids and gases show much lower frictional effects (liquids and gases possess a quality called 
viscosity—a fluid friction), a layer of oil is usually placed between two metal surfaces as a lubricant, which reduces 
the friction enormously. The metal now no longer rubs on metal, but rather slides on the layer of the lubricant 
between the surfaces. 

For example, when you put oil in your car, the oil is 
distributed to the moving parts of the engine. In particular, the oil 
coats the inside wall of the cylinders in the engine. As the piston 
moves up and down in the cylinder it slides on this coating of oil, and 
the friction between the piston and the cylinder is reduced. 

Similarly when a glider is placed on an air track, the glider 
rests on a layer or cushion of air. The air acts as the lubricant, 
separating the two surfaces of glider and track. Hence, the frictional 
force between the glider and the air track is so small that in almost 
all cases it can be neglected in studying the motion of the glider. 

When the skates of an ice skater press on the ice, the 
increased pressure causes a thin layer of the ice to melt. This liquid 
water acts as a lubricant to decrease the frictional force on the ice 
skater. Hence the ice skater seems to move effortlessly over the ice, 
figure 4.21.  

 
Rolling Friction 
To reduce friction still further, a wheel or ball of some type is 
introduced. When something can roll, the frictional force becomes 
very much less. Many machines in industry are designed with ball 
bearings, so that the moving object rolls on the ball bearings and 
friction is greatly reduced.                                                                      Figure 4.21  An ice skater takes advantage  
                                                                                                                                      of reduced friction.   
 

The whole idea of rolling friction is tied to the concept of the wheel. Some even consider the beginning of 
civilization as having started with the invention of the wheel, although many never even think of a wheel as 
something that was invented. The wheel goes so far back into the history of mankind that no one knows for certain 
when it was first used, but it was an invention. In fact, there were some societies that never discovered the wheel. 

The frictional force of a wheel is very small compared with the force of sliding friction, because, 
theoretically, there is no relative motion between the rim of a wheel and the surface over which it rolls. Because 
the wheel touches the surface only at a point, there is no sliding friction. The 
small amount of rolling friction that does occur in practice is caused by the 
deformation of the wheel as it rolls over the surface, as shown in figure 4.22. 
Notice that the part of the tire in contact with the ground is actually flat, not 
circular. 

In practice, that portion of the wheel that is deformed does have a 
tendency to slide along the surface and does produce a frictional force. So the 
smaller the deformation, the smaller the frictional force. The harder the 
substance of the wheel, the less it deforms. For example, with steel on steel 
there is very little deformation and hence very little friction. 

Figure 4.22  The deformation of a  
                                                                                                                          rolling wheel. 
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4.7 Applications of Newton’s Second Law Taking Friction  
into Account  

Example 4.9 
 

A box on a rough floor. A 220-N wooden box is at rest on a wooden floor, as shown in figure 4.23. (a) What 
horizontal force is necessary to start the box into motion? (b) If a force of 90.0 N is continuously applied once the 
box is in motion, what will be its acceleration? 

Solution
 

a. Whenever a problem says that a surface is rough, it means that 
we must take friction into account in the solution of the problem. 
The minimum force necessary to overcome static friction is found 
from equation 4.46. Hence, using the value of µs from table 4.1 we 
get 

F = fs = µsFN 
= µsw = (0.50)(220 N) 

= 110 N 
 

 
                                                                                                                 Figure 4.23   A box on a rough floor. 

 
Note that whenever we say that F = fs, we mean that F is an infinitesimal amount greater than fs, and that 

it acts for an infinitesimal period of time. If the block is at rest, and F = fs, then the net force acting on the block 
would be zero, its acceleration would be zero, and the block would therefore remain at rest forever. Thus, F must 
be an infinitesimal amount greater than fs for the block to move. Now an infinitesimal quantity is, as the name 
implies, an extremely small quantity, so for all practical considerations we can assume that the force F plus the 
infinitesimal quantity, is just equal to the force F in all our equations. This is a standard technique that we will 
use throughout the study of physics. We will forget about the infinitesimal quantity and just say that the applied 
force is equal to the force to be overcome. But remember that there really must be that infinitesimal amount more, 
if the motion is to start. 
b.  Newton’s second law applied to the box is 

F − fk = ma                                                                           (4.49) 
 

The force of kinetic friction, found from equation 4.48 and table 4.1, is 
 

fk = µkFN = µkw  
= (0.30)(220 N)  

= 66.0 N 
 

The acceleration of the block, found from equation 4.49, is 
 

a =  F − fk   =  F − fk   
                                                                                          m                  w/g      

=   90.0 N − 66.0 N   
     220 N/ 9.80 m/s2 

= 1.07 m/s2 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.10 
 

A block on a rough inclined plane. Find the acceleration of a block on an inclined plane, as shown in figure 4.24, 
taking friction into account. 
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Solution
 

The problem is very similar to the one solved in figure 4.10, which 
was for a frictionless plane. We draw all the forces and their 
components as before, but now we introduce the frictional force. 
Because the frictional force always opposes the sliding motion, and w 
sin θ acts to move the block down the plane, the frictional force fk in 
opposing that motion must be pointed up the plane, as shown in 
figure 4.24. The block is given a slight push to overcome any force of 
static friction. To determine the acceleration, we use Newton’s second 
law, 

F = ma                                           (4.9) 
 

However, we can write this as two component equations, one parallel 
to the inclined plane and the other perpendicular to it. 
Components Parallel to the Plane: Taking the direction down the 
plane as positive, Newton’s second law becomes 
 

 w sin θ − fk = ma                                  (4.50) 
 

Notice that this is very similar to the equation for the frictionless           Figure 4.24  Block on an inclined plane 
                                                                                                                    with friction. 

plane, except for the term fk, the force of friction that is slowing down  
this motion. 
 
Components Perpendicular to the Plane: Newton’s second law for the perpendicular components is  
 

 FN − w cos θ = 0                                                                          (4.51) 
 

The right-hand side is zero because there is no acceleration perpendicular to the plane. That is, the block does not 
jump off the plane or crash through the plane so there is no acceleration perpendicular to the plane. The only 
acceleration is the one parallel to the plane, which was just found. 

The frictional force fk, given by equation 4.48, is 
 

fk = µkFN 
 

where FN is the normal force holding the block in contact with the plane. When the block was on a horizontal 
surface FN was equal to the weight w. But now it is not. Now FN, found from equation 4.51, is 
 

FN = w cos θ                                                                            (4.52) 
 

That is, because the plane is tilted, the force holding the block in contact with the plane is now w cos θ rather than 
just w. Therefore, the frictional force becomes 

fk = µkFN = µkw cos θ                                                                     (4.53) 
 

Substituting equation 4.53 back into Newton’s second law, equation 4.50, we get 
 

    w sin θ − µkw cos θ = ma 
but since w = mg this becomes 

     mg sin θ − µkmg cos θ = ma 
 

Since the mass m is in every term of the equation it can be divided out, and the acceleration of the block down the 
plane becomes 

 a = g sin θ − µkg cos θ                                                                     (4.54) 
 

Note that the acceleration is independent of the mass m, since it canceled out of the equation. Also note that this 
equation reduces to the result for a frictionless plane, equation 4.18, when there is no friction, that is, when µk = 0. 
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In this example, if µk = 0.300 and θ = 30.00, the acceleration becomes 
 

a = g sin θ − µkg cos θ 
= (9.80 m/s2)sin 30.00 − (0.300)(9.80 m/s2)cos 30.00 

= 4.90 m/s2 − 2.55 m/s2 
= 2.35 m/s2 

 
Notice the difference between the acceleration when there is no friction (4.90 m/s2) and when there is (2.35 m/s2). 
The block was certainly slowed down by friction. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.11 
 

Pulling a block on a rough floor. What force is necessary to pull a 220-N wooden box at a constant speed over a 
wooden floor by a rope that makes an angle θ of 300 above the horizontal, as shown in figure 4.25? 

Solution
 

Let us start by drawing all the forces that are acting on the box in figure 4.25. We 
break down the applied force into its components Fx and Fy. If Newton’s second law 
is applied to the horizontal components, we obtain 
 

Fx − fk = max                                                  (4.55) 
 

However, since the box is to move at constant speed, the acceleration ax must be 
zero. Therefore,  

Fx − fk = 0 
Or 
                                                                                                                                 Figure 4.25  Pulling a block on a 

                                                                                                                                          rough floor.   
 

F cos θ − fk = 0                                                                           (4.56) 
but 

fk = µkFN  
 

where FN is the normal force holding the box in contact with the floor. Before we can continue with our solution we 
must determine FN. 

If Newton’s second law is applied to the vertical forces we have 
 

Fy + FN − w = may                                                                     (4.57) 
 

but because there is no acceleration in the vertical direction, ay is equal to zero. Therefore, 
 

Fy + FN − w = 0 
Solving for FN we have 

FN = w − Fy 
or 

 FN = w − F sin θ                                                                       (4.58) 
 

Note that FN is not simply equal to w, as it was in example 4.9, but rather to w − F sin θ. The y-component of the 
applied force has the effect of lifting part of the weight from the floor. Hence, the force holding the box in contact 
with the floor is less than its weight. The frictional force therefore becomes 
 

fk = µkFN = µk(w − F sin θ)                                                              (4.59) 
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and substituting this back into equation 4.56, we obtain 
 

F cos θ − µk(w − F sin θ) = 0 
or 

F cos θ + µkF sin θ − µkw = 0 
Factoring out the force F, 

F(cos θ + µk sin θ) = µkw 
 

and finally, solving for the force necessary to move the block at a constant speed, we get 
 

F =          µkw                                                                                (4.60) 
                                                                                        cos θ + µk sin θ    

 
Using the value of µk = 0.30 (wood on wood) from table 4.1 and substituting the values for w, θ, and µk into 

equation 4.60, we obtain 
F =           µkw           =         (0.30)(220 N)         

                                                                      cos θ + µk sin θ       cos 300 + 0.30 sin 300 
= 65.0 N 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 4.12 
 

Combined motion of two blocks moving on a rough horizontal 
surface. A block of mass mA = 200 g is connected by a string of 
negligible mass to a second block of mass mB = 400 g. The blocks 
are at rest on a rough table with a coefficient of kinetic friction of 
0.300, as shown in figure 4.26. A force of 2.50 N in the positive x-
direction is applied to mass mA. Find (a) the acceleration of each 
block, (b) the tension in the connecting string, (c) the position of 
mass A after 1.50 s, and (d) the velocity of mass A at 1.50 s. 
                                                                                                     Figure 4.26  Simple combined motion with friction. 

Solution
 

a.  Applying Newton’s second law to the first mass gives  
 

F − T’ − fkA = mA a                                                                        (4.61) 
where the force of kinetic friction on block A is 
 

fkA = µkAFN = µkAwA = µkAmAg 
 

Substituting this into equation 4.61, we have 
F − T’ − µkAmAg = mA a                                                                  (4.62) 

 
We now apply Newton’s second law to block B to obtain 

T − fkB = mB a                                                                     (4.63) 
where the force of kinetic friction on block B is 
 

fkB = µkBFN = µkBwB = µkBmBg 
 

Substituting this into equation 4.63, we have 
T − µkBmBg = mB a                                                                         (4.64) 
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Notice that the magnitude of the acceleration of block B is also a because block B and block A are tied together by 
the string and therefore have the same motion. Since T = T’ by Newton’s third law, we can substitute T  into 
equation 4.62 for T’.  We now add equations 4.62 and 4.64 to eliminate the tension T in the two equations for 
Newton’s second law, and obtain 

 F − T − µkAmAg = mA a 
        T − µkBmBg = mB a       

F − T − µkAmAg +T − µkBmBg = mA a + mB a           
F − µkAmAg  − µkBmBg = (mA + mB )a 

 
and solving for the acceleration of the system of two masses we obtain 
 

 a =  F − µkAmAg  − µkBmBg                                                              (4.65) 
                                                                                                 mA + mB                 

=  2.50 N − (0.300)(0.200 kg)(9.80 m/s2) − (0.300)(0.400 kg)(9.80 m/s2) 
                                                                              0.200 kg + 0.400 kg 

= 1.23 m/s2 
b.  The tension is found from equation 4.64 as  

T − µkBmBg = mB a 
T = µkBmBg + mB a 

T = mB[µkBg + a]                                                                        (4.66) 
T = (0.400 kg)[(0.300)(9.80 m/s2) + 1.23 m/s2] = 1.67 N 

 
c.  The position of mass A after 1.50 s is found from the kinematic equation 
 

x = v0t +  1  at2 
         2 

 
Because the block starts from rest, v0 = 0, and the block moves the distance 
 

x =  1  at2 =  1 (1.23 m/s2)(1.50 s)2  
                                                                            2            2 

= 1.38 m 
 

d.  The velocity of block A is found from the kinematic equation 
 

v = v0 + at 
= 0 + (1.23 m/s2)(1.50 s) 

= 1.84 m/s 
 

It is interesting and informative to compare this example with example 4.6, which solves the same problem 
without friction. Notice that with friction, the acceleration, velocity, and displacement of the moving bodies are 
less than without friction, as you would expect. In fact if there were no friction µkA = µkB = 0 and equation 4.65 
would reduce to equation 4.29 for the simpler problem done without friction in example 4.6. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.13 
 

Combined motion of a block moving on a rough horizontal surface and a mass falling vertically. Find the 
acceleration of a block, on a “rough” table, connected by a cord passing over a pulley to a second block hanging over 
the table, as shown in figure 4.27. Mass mA = 2.00 kg, mB = 6.00 kg, and µk = 0.30 (wood on wood). 

Solution
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This problem is similar to the problem solved in figure 4.13, only 
now the effects of friction are taken into account. We still assume 
that the mass of the string and the pulley are negligible. All the 
forces acting on the two blocks are drawn in figure 4.27. We apply 
Newton’s second law to block A, obtaining 

 
T − wA = −mAa                            (4.67) 

 
Applying it to block B, we obtain 

T − fk = mBa                              (4.68) 
where the force of kinetic friction is 

fk = µkFN = µkwB                    (4.69) 
 

Figure 4.27  Combined motion of a block moving  
on a rough horizontal surface and a mass falling  

                                                                                                       vertically. 
Substituting equation 4.69 into equation 4.68, we have 

 T − µkwB = mBa                                                                  (4.70) 
 

We eliminate the tension T in the equations by subtracting equation 4.67 from equation 4.70. Thus, 
 

T − µkwB = mBa                                                                     (4.70) 
Subtract                             T − wA = −mAa                                                                   (4.67) 

T − µkwB − T + wA = mB a + mAa  
wA − µkwB = (mB + mA)a  

Solving for the acceleration a, we have 
a =  wA − µkwB  
      mA + mB 

But since w = mg, this becomes 
k  

 + 
A B

A B

m m
a g

m m
µ −

=  
 

                                                                      (4.71) 

 
the acceleration of the system. Note that if there is no friction, µk = 0 and the equation reduces to equation 4.32, 
the acceleration without friction. 

If mA = 2.00 kg, mB = 6.00 kg, and µk = 0.30 (wood on wood), then the acceleration of the system is 
 

( )2k  2.00 kg  (0.30)6.00 kg 9.80 m/s
 + 2.00 kg + 6.00 kg

A B

A B

m m
a g

m m
µ − − 

= =   
  

 

= 0.245 m/s2 
 

This is only one-tenth of the acceleration obtained when there was no friction. It is interesting to see what 
happens if µk is equal to 0.40 instead of the value of 0.30 used in this problem. For this new value of µk, the 
acceleration becomes 

( )2k  2.00 kg  (0.40)6.00 kg 9.80 m/s
 + 2.00 kg + 6.00 kg

A B

A B

m m
a g

m m
µ − − 

= =   
  

 

= −0.49 m/s2 
 

The negative sign indicates that the acceleration is in the opposite direction of the applied force, which is 
of course absurd; that is, the block on the table mB would be moving to the left while block mA would be moving up. 
Something is very wrong here. In physics we try to analyze nature and the way it works. But, obviously nature 
just does not work this way. This is a very good example of trying to use a physics formula when it doesn’t apply. 
Equation 4.71, like all equations, was derived using certain assumptions. If those assumptions hold in the 
application of the equation, then the equation is valid. If the assumptions do not hold, then the equation is no 
longer valid. Equation 4.71 was derived from Newton’s second law on the basis that block mB was moving to the 
right and therefore the force of kinetic friction that opposed that motion would be to the left. For µk = 0.40 the 
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force of friction is greater than the tension in the cord and the block does not move at all, that is, the acceleration 
of the system is zero. In fact if we look carefully at equation 4.71 we see that the acceleration will be zero if 

 
mA − µkmB = 0 

which becomes 
µkmB = mA 

and 
µk =  mA                                                                                  (4.72) 

       mB 
 

Whenever µk is equal to or greater than this ratio the acceleration is always zero. Even if we push the block to 
overcome static friction the kinetic friction is still too great and the block remains at rest. Whenever you solve a 
problem, always look at the numerical answer and see if it makes sense to you. 
 

To go to this Interactive Example click on this sentence. 
 

 
 

Example 4.14 
 

_Pushing a block up a rough inclined plane. What force F is necessary to push a 5.00-kg block up a rough inclined 
plane at a constant velocity? 

Solution
 

The first thing to note is that if the block is to be pushed up the plane, 
then the frictional force, which always opposes the sliding motion, must 
act down the plane. The forces are shown in figure 4.28. Newton’s second 
law for the parallel component becomes 
 

− F + w sin θ + fk = 0                                     (4.73) 
 

The right-hand side of equation 4.73 is 0 because the block is to be moved 
at constant velocity, that is, a = 0. The frictional force fk is 

 
fk = µkFN = µkw cos θ                                   (4.74) 

 
Hence, equation 4.73 becomes 
 

F = w sin θ + fk = w sin θ + µkw cos θ 
Finally, 

Figure 4.28  Pushing a block up a rough  
                                                                                                                        inclined plane. 

 
 F = w(sin θ + µk cos θ)                                                                       (4.75) 

 
is the force necessary to push the block up the plane at a constant velocity. The weight of the block is found from  
 

w = mg = (5.00 kg)(9.80 m/s2) = 49.0 N 
And the force is now found as  

   F = w(sin θ + µk cos θ) 
F = 49 N (sin 30.0 + (0.3) cos 30.0) 

F = 37.2 N 
 

It is appropriate to say something more about this force. If the block is initially at rest on the plane, then 
there is a force of static friction acting up the plane opposing the tendency of the block to slide down the plane. 
When the force is exerted to move the block up the plane, then the tendency for the sliding motion is up the plane. 
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Now the force of static friction reverses and acts down the plane. When the applied force F is slightly greater than 
w sin θ + fs, the block will just be put into motion up the plane. Now that the block is in motion, the frictional force 
to be overcome is the force of kinetic friction, which is less than the force of static friction. The force necessary to 
move the block up the plane at constant velocity is given by equation 4.75. Because the net force acting on the 
block is zero, the acceleration of the block is zero. If the block is at rest with a zero net force, then the block would 
have to remain at rest. However, the block was already set into motion by overcoming the static frictional forces, 
and since it is in motion, it will continue in that motion as long as the force given by equation 4.75 is applied. 

 
To go to this Interactive Example click on this sentence. 

 

 
 

Example 4.15 
 

A book pressed against a rough wall. A 0.510-kg book is held against a wall by pressing it against the wall with a 
force of 25.0 N. What must be the minimum coefficient of friction between the book and the wall, such that the 
book does not slide down the wall? The forces acting on the book are shown in figure 4.29. 

Solution
 

The book has a tendency to slide down the wall because of its weight. Because frictional forces always tend to 
oppose sliding motion, there is a force of static friction acting upward on the book. If the book is not to fall, then fs 
must not be less than the weight of the book w. Therefore, let 

fs = w = mg                                                            (4.76) 
but 

fs = µsFN = µsF                                                       (4.77) 
 

Substituting equation 4.77 into equation 4.76, we obtain 
Figure 4.29  A book pressed  

against a rough wall. 
  µsF = mg 

Solving for the coefficient of static friction, we obtain 
 

µs =  mg  =  (0.510 kg)(9.80 m/s2)  = 0.200  
                                                                        F                 25.0 N 

 
Therefore, the minimum coefficient of static friction to hold the book against the wall is µs = 0.200. This principle 
of pressing an object against a wall to hold it up is used in your everyday life. As an example, consider the cabinets 
on your kitchen wall. The cabinets are nailed or screwed into the wall, placing the back of the cabinet in tight 
contact with the kitchen wall. The load of all the dishes and canned goods your mom stores in those cabinets are 
held up by the force of static friction between the back of the cabinet and the kitchen wall.  
 

To go to this Interactive Example click on this sentence. 
 

 
 
 
4.8  Determination of the Coefficients of Friction 
If the coefficient of friction for any two materials can not be found in a standardized table, it can always be found 
experimentally in the laboratory as follows. 
 
Coefficient of Static Friction 
To determine the coefficient of static friction, we use an inclined plane whose surface is made up of one of the 
materials. As an example, let the plane be made of pine wood and the block that is placed on the plane will be 
made of oak wood. The forces acting on the block are shown in figure 4.30. We increase the angle θ of the plane  
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until the block just begins to slide. We measure this angle where the 
block starts to slip and call it θs, the angle of repose. 

We assume that the acceleration a of the block is still zero, 
because the block is just on the verge of slipping. Applying Newton’s 
second law to the block gives 

w sin θs − fs = 0                                 (4.78) 
where 

fs = µsFN = µsw cos θs                             (4.79) 
 

Substituting equation 4.79 back into equation 4.78 we have 
 

w sin θs − µsw cos θs = 0 
w sin θs = µsw cos θs 

 
µs =  sin θs   
         cos θs 

 
Therefore, the coefficient of static friction is 

 
Figure 4.30  Determining the coefficient of  

                                                                                                                static friction. 
 

 µs = tan θs                                                                             (4.80) 
 

That is, the coefficient of static friction µs is equal to the tangent of the angle θs, found experimentally. With this 
technique, the coefficient of static friction between any two materials can easily be found. 
 
Coefficient of Kinetic Friction 
The coefficient of kinetic friction is found in a similar way. We again 
place a block on the inclined plane and vary the angle, but now we give 
the block a slight push to overcome the force of static friction. The block 
then slides down the plane at a constant velocity. Experimentally, this 
is slightly more difficult to accomplish because it is difficult to tell 
when the block is moving at a constant velocity, rather than being 
accelerated. However, with a little practice we can determine when it is 
moving at constant velocity. We measure the angle at which the block 
moves at constant velocity and call it θk. Since there is no acceleration, 
Newton’s second law becomes 

w sin θk − fk = 0                                  (4.81) 
but 

fk = µkFN = µkw cos θk 
w sin θk − µkw cos θk = 0 

w sin θk = µkw cos θk 
µk =  sin θk    
         cos θk 

 
Figure 4.31  Determining the coefficient  

                                                                                                                              of kinetic friction. 
 

Therefore, the coefficient of kinetic friction for the two materials in contact is  
 

 µk = tan θk                                                                            (4.82) 
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“Have you ever wondered ...?” 
An Essay on the Application of Physics 

The Physics of Sports 
 
Have you ever wondered, while watching a baseball 
game, why the pitcher goes through all those 
gyrations (figure 1) in order to throw the baseball to 
the batter? Why can’t he throw the ball like all the 
rest of the players? No one else on the field goes 
through that big windup. Is there a reason for him to 
do that? 

In order to understand why the pitcher goes 
through that big windup, let us first analyze the 
process of throwing a ball, figure 2. From what we 
already know about Newton’s second law, we know  

                                                                                      Figure 1  Look at that form. 
 

you must exert a force on the ball to give it an acceleration. When you 
hold the ball initially in your hand, with your hand extended behind 
your head, the ball is at rest and hence has a zero initial velocity, 
that is, v0 = 0. You now exert the force F on the ball as you move your 
arm through the distance x1. The ball is now accelerated by your arm 
from a zero initial velocity to the final velocity v1, as it leaves your 
hand. We find the velocity of the ball from the kinematic equation 
 

v12 = v02 + 2ax1                                    (H4.1) 
 

But since v0 is equal to zero, the velocity of the ball as it leaves your 
hand is 

v12 = 2ax1 
1 12v ax=                                    (H4.2) 

 
But the acceleration of the ball comes from Newton’s second law as 
 
                                                                                                                     Figure 2  The process of throwing a ball. 

 
a =   F   
       m 

Substituting this into the equation for the velocity we get 
 

1 12( / )v F m x=                                                                         (H4.3) 
 

which tells us that the velocity of the ball depends on the mass m of the ball, the force F that your arm exerts on 
the ball, and the distance x1 that you move the ball through while you are accelerating it. Since you cannot change 
the force F that your arm is capable of applying, nor the mass m of the ball, the only way to maximize the velocity 
v of the ball as it leaves your hand is to increase the value of x to as large a value as possible. 

Maximizing the value of x is the reason for the pitcher’s long windup. In figure 3, we see the pitcher 
moving his hand as far backward as possible. In order for the pitcher not to fall down as he leans that far 
backward, he lifts his left foot forward and upward to maintain his balance. As he lowers his left leg his right arm 
starts to move forward. As his left foot touches the ground, he lifts his right foot off the ground and swings his 
body around until his right foot is as far forward as he can make it, while bringing his right arm as far forward as 
he can, figure 3(b). By going through this long motion he has managed to increase the distance that he moves the 
ball through, to the value x2. The velocity of the ball as it leaves his hand is v2 and is given by 

 
2 22( / )v F m x=                                                                        (H4.4) 
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Taking the ratio of these two velocities we obtain 
 

22

1 1

2( / )
2( / )

F m xv
v F m x

=  

which simplifies to 
2 2

1 1

v x
v x

=  

The velocity v2 becomes 
2

2 1
1

 x
v v

x
=                                (H4.5) 

 
                                                                                                         Figure 3  A pitcher throwing a baseball. 

 
Hence, by going through that long windup, the pitcher has increased the distance to x2, thereby increasing the 
value of the velocity that he can throw the baseball to v2. For example, for an average person, x1 is about 1.25 m, 
while x2 is about 3.20 m. Therefore, the velocity becomes 
 

2 1
3.25 m
1.20 m

v v=  

 = 1.65 v1 
 
Thus, if a pitcher is normally capable of throwing a baseball at a speed of 95.0 km/hr, by going through the long 
windup, the speed of the ball becomes 

v2 = 1.65(95.0 km/hr) = 157 km/hr 
 

The long windup has allowed the pitcher to throw the baseball at 157 km/hr, much faster than the 95.0 km/hr that 
he could normally throw the ball. So this is why the pitcher goes through all those gyrations. 
 

The Language of Physics 
 

Dynamics 
That branch of mechanics 
concerned with the forces that 
change or produce the motions of 
bodies. The foundation of dynamics 
is Newton’s laws of motion (p. ). 
 
Newton’s first law of motion 
A body at rest will remain at rest, 
and a body in motion at a constant 
velocity will continue in motion at 
that constant velocity, unless acted 
on by some unbalanced external 
force. This is sometimes referred to 
as the law of inertia (p. ). 
 
Force 
The simplest definition of a force is 
a push or a pull that acts on a 
body. Force can also be defined in a 
more general way by Newton’s 
second law, that is, a force is that 
which causes a mass m to have an 
acceleration a (p. ). 

Inertia 
The characteristic of matter that 
causes it to resist a change in 
motion is called inertia (p. ). 
 
Inertial coordinate system 
A coordinate system that is either 
at rest or moving at a constant 
velocity with respect to another 
coordinate system that is either at 
rest or also moving at some 
constant velocity. Newton’s first 
law of motion defines an inertial 
coordinate system. That is, if a 
body is at rest or moving at a 
constant velocity in a coordinate 
system where there are no 
unbalanced forces acting on the 
body, the coordinate system is an 
inertial coordinate system. 
Newton’s first law must be applied 
in an inertial coordinate system 
(p. ). 
 

Newton’s third law of motion 
If there are two bodies, A and B, 
and if body A exerts a force on body 
B, then body B exerts an equal but 
opposite force on body A (p. ). 
 
Newton’s second law of motion 
If an unbalanced external force F 
acts on a body of mass m, it will 
give that body an acceleration a. 
The acceleration is directly 
proportional to the applied force 
and inversely proportional to the 
mass of the body. Once the 
acceleration is determined by 
Newton’s second law, the position 
and velocity of the body can be 
determined by the kinematic 
equations (p. ). 
 
Inertial mass 
The measure of the resistance of a 
body to a change in its motion is 
called the inertial mass of the body. 
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The mass of a body in Newton’s 
second law is the inertial mass of 
the body. The best that can be 
determined at this time is that the 
inertial mass of a body is equal to 
the gravitational mass of the body 
(p. ). 
 
Atwood’s machine 
A simple pulley device that is used 
to study the acceleration of a 
system of bodies (p. ). 

 
Friction 
The resistance offered to the 
relative motion of two bodies in 
contact. Whenever we try to slide 
one body over another body, the 
force that opposes the motion is 
called the force of friction (p. ). 
 
 
 
 

Force of static friction 
The force that opposes a body at 
rest from being put into motion 
(p. ). 
 
Force of kinetic friction 
The force that opposes a body in 
motion from continuing that 
motion. The force of kinetic friction 
is always less than the force of 
static friction (p. ). 

 
Summary of Important Equations 

 
Newton’s second law 

                F = ma              (4.9) 
 
The weight of a body 

        w = mg              (4.14) 
 
 
 
 

Definition of inertial mass 
                   m2 =  a1  m1          (4.22) 

    a2 
 
Force of static friction 

                 fs ≤ µsFN             (4.47) 
 
Force of kinetic friction 

        fk = µkFN            (4.48) 

 
Coefficient of static friction 

  µs = tan θs              (4.80) 
 
Coefficient of kinetic friction 

   µk = tan θk             (4.82) 
 

 
Questions for Chapter 4 

 
1. A force was originally 

defined as a push or a pull. Define 
the concept of force dynamically 
using Newton’s laws of motion. 

2. Discuss the difference 
between the ancient Greek 
philosophers’ requirement of a 
constantly applied force as a 
condition for motion with Galileo’s 
and Newton’s concept of a force to 
initiate an acceleration. 

3. Is a coordinate system that is 
accelerated in a straight line an 
inertial coordinate system? 
Describe the motion of a projectile 
in one dimension in a horizontally 
accelerated system. 

4. If you drop an object near the 
surface of the earth it is 
accelerated downward to the earth. 
By Newton’s third law, can you 
also assume that a force is exerted 
on the earth and the earth should 
be accelerated upward toward the 
object? Can you observe such an 
acceleration? Why or why not? 

*5. Discuss an experiment that 
could be performed on a tilted air 
track whereby changing the angle 

of the track would allow you to 
prove that the acceleration of a 
body is proportional to the applied 
force. Why could you not use this 
same experiment to show that the 
acceleration is inversely 
proportional to the mass? 

*6. Discuss the concept of mass 
as a quantity of matter, a measure 
of the resistance of matter to being 
put into motion, and a measure of 
the gravitational force acting on 
the mass. Has the original 
platinum-iridium cylinder, which is 
stored in Paris, France, and 
defined as the standard of mass, 
ever been accelerated so that mass 
can be defined in terms of its 
inertial characteristics? Does it 
have to? Which is the most 
fundamental definition of mass? 

7. From the point of view of the 
different concepts of mass, discuss 
why all bodies fall with the same 
acceleration near the surface of the 
earth. 

8. Discuss why the normal force 
FN is not always equal to the 

weight of the body that is in 
contact with a surface. 

9. In the discussion of Atwood’s 
machine, we assumed that the 
tension in the string is the same on 
both sides of the pulley. Can a 
pulley rotate if the tension is the 
same on both sides of the pulley? 

∗10. You are riding in an 
elevator and the cable breaks. The 
elevator goes into free fall. The 
instant before the elevator hits the 
ground, you jump upward about 
1.00 m. Will this do you any good? 
Discuss your motion with respect to 
the elevator and with respect to the 
ground. What will happen to you? 

*11. Discuss the old saying: “If 
a horse pulls on a cart with a force 
F, then by Newton’s third law the 
cart pulls backward on the horse 
with the same force F, therefore 
the horse can not move the cart.” 

12. A football is filled with 
mercury and taken into space 
where it is weightless. Will it hurt 
to kick this football since it is 
weightless? 
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*13. A 490-N lady jumps out of 
a plane to go skydiving. She 
extends her body to obtain 
maximum frictional resistance 
from the air. After a while, she 

descends at a constant speed, 
called her terminal speed. At this 
time, what is the value of the 
frictional force of the air? 

14. When a baseball player 
catches a ball he always pulls his 
glove backward. Why does he do 
this? 

 
 

Problems for Chapter 4 
 

In all problems assume that all 
objects are initially at rest, i.e., v0 = 
0, unless otherwise stated. 

 
4.4 Newton’s Second Law of 
Motion 

1. What is the weight of a 100-
kg person at the surface of the 
earth? What would the person 
weigh on Mars where g = 3.84 
m/s2? 

2. What is the mass of a 890-N 
person?  

3. What horizontal force must 
be applied to a 15.0-kg body in 
order to give it an acceleration of 
5.00 m/s2? 

4. A constant force accelerates 
a 1450-kg car from 0 to 95.0 km/hr 
in 12.0 s. Find (a) the acceleration 
of the car and (b) the force acting 
on the car that produces the 
acceleration. 

5. A 14,240-N car is traveling 
along a highway at 95.0 km/hr. If 
the driver immediately applies his 
brakes and the car comes to rest in 
a distance of 76.0 m, what average 
force acted on the car during the 
deceleration? 

6. A 910-kg car is traveling 
along a highway at 88.0 km/hr. If 
the driver immediately applies his 
brakes and the car comes to rest in 
a distance of 70.0 m, what average 
force acted on the car during the 
deceleration? 

7. A car is traveling at 95.0 
km/hr when it collides with a stone 
wall. The car comes to rest after 
the first 30.0 cm of the car is 
crushed. What was the average 
horizontal force acting on a 68.1-kg 
driver while the car came to rest? If 
five cardboard boxes, each 1.25 m 
wide and filled with sand had been 
placed in front of the wall, and the 
car moved through all that sand 
before coming to rest, what would 

the average force acting on the 
driver have been then? 

8. A rifle bullet of mass 12.0 g 
has a muzzle velocity of 75.0 m/s. 
What is the average force acting on 
the bullet when the rifle is fired, if 
the bullet is accelerated over the 
entire 1.00-m length of the rifle? 

9. A car is to tow a 2270-kg 
truck with a rope. How strong 
should the rope be so that it will 
not break when accelerating the 
truck from rest to 3.00 m/s in 12.0 
s? 

10. A force of 890 N acts on a 
body that weighs 265 N. (a) What 
is the mass of the body? (b) What is 
the acceleration of the body? (c) If 
the body starts from rest, how fast 
will it be going after it has moved 
3.00 m? 

11. A cable supports an 
elevator that weighs 8000 N. 
(a) What is the tension T in the 
cable when the elevator accelerates 
upward at 1.50 m/s2? (b) What is 
the tension when the elevator 
accelerates downward at 1.50 m/s2? 

12. A rope breaks when the 
tension exceeds 30.0 N. What is the 
minimum acceleration downward 
that a 60.0-N load can have 
without breaking the rope? 

13. A 5.00-g bullet is fired at a 
speed of 100 m/s into a fixed block 
of wood and it comes to rest after 
penetrating 6.00 cm into the wood. 
What is the average force stopping 
the bullet? 

14. A rope breaks when the 
tension exceeds 450 N. What is the 
maximum vertical acceleration 
that can be given to a 350-N load to 
lift it with this rope without 
breaking the rope? 

15. What horizontal force must 
a locomotive exert on a 9.08 × 105-
kg train to increase its speed from 

25.0 km/hr to 50.0 km/hr in moving 
60.0 m along a level track? 

16. A steady force of 70.0 N, 
exerted 43.50 above the horizontal, 
acts on a 30.0-kg sled on level 
snow. How far will the sled move in 
8.50 s? (Neglect friction.) 

17. A helicopter rescues a man 
at sea by pulling him upward with 
a cable. If the man has a mass of 
80.0 kg and is accelerated upward 
at 0.300 m/s2, what is the tension 
in the cable? 

 
4.5 Applications of Newton’s 
Second Law 

18. A force of 10.0 N acts 
horizontally on a 20.0-kg mass that 
is at rest on a smooth table. Find 
(a) the acceleration, (b) the velocity 
at 5.00 s, and (c) the position of the 
body at 5.00 s. (d) If the force is 
removed at 7.00 s, what is the 
body’s velocity at 7.00, 8.00, 9.00, 
and 10.0 s? 

19. A 200-N box slides down a 
frictionless inclined plane that 
makes an angle of 37.00 with the 
horizontal. (a) What unbalanced 
force acts on the block? (b) What is 
the acceleration of the block? 

20. A 20.0-kg block slides down 
a smooth inclined plane. The plane 
is 10.0 m long and is inclined at an 
angle of 30.00 with the horizontal. 
Find (a) the acceleration of the 
block, and (b) the velocity of the 
block at the bottom of the plane. 

21. A 90.0-kg person stands on 
a scale in an elevator. What does 
the scale read when (a) the elevator 
is ascending with an acceleration of 
1.50 m/s2, (b) it is ascending at a 
constant velocity of 3.00 m/s, (c) it 
decelerates at 1.50 m/s2, (d) it 
descends at a constant velocity of 
3.00 m/s, and (e) the cable breaks 
and the elevator is in free-fall?  
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22. A spring scale is attached to 
the ceiling of an elevator. If a mass 
of 2.00 kg is placed in the pan of 
the scale, what will the scale read 
when (a) the elevator is accelerated 
upward at 1.50 m/s2, (b) it is 
decelerated at 1.50 m/s2, (c) it is 
moving at constant velocity, and 
(d) the cable breaks and the 
elevator is in free-fall? 

*23. A block is propelled up a 
48.00 frictionless inclined plane 
with an initial velocity v0 = 1.20 
m/s. (a) How far up the plane does 
the block go before coming to rest? 
(b) How long does it take to move to 
that position? 

*24. In the diagram mA is equal 
to 3.00 kg and mB is equal to 
1.50 kg. The angle of the inclined 
plane is 38.00. (a) Find the 
acceleration of the system of two 
blocks. (b) Find the tension TB in 
the connecting string. 

                    
Diagram for problem 24. 

                            
25. The two masses mA = 2.00 

kg and mB = 20.0 kg are connected 
as shown. The table is frictionless. 
Find (a) the acceleration of the 
system, (b) the velocity of mB at t = 
3.00 s, and (c) the position of mB at 
t = 3.00 s. 

 
Diagram for problem 25. 

 
26. A 30.0-g mass and a 50.0-g 

mass are placed on an Atwood 
machine. Find (a) the acceleration 
of the system, (b) the velocity of the 
50.0-g block at 4.00 s, (c) the 
position of the 50.0-g mass at the 
end of the fourth second, (d) the 
tension in the connecting string. 

 
*27. Three blocks of mass m1 = 

100 g, m2 = 200 g, and m3 = 300 g 
are connected by strings as shown. 
(a) What force F is necessary to 
give the masses a horizontal 
acceleration of 4 m/s2? Find the 
tensions T1 and T2. 

     Diagram for problem 27.                           
 
*28. A force of 90.0 N acts as 

shown on the two blocks. Mass m1 
= 45.4 kg and m2 = 9.08 kg. If the 
blocks are on a frictionless surface, 
find the acceleration of each block 
and the horizontal force exerted on 
each block. 

 
Diagram for problem 28. 

 
4.7 Applications of Newton’s 
Second Law Taking Friction 
into Account 

29. If the coefficient of friction 
between the tires of a car and the 
road is 0.300, what is the minimum 
stopping distance of a car traveling 
at 85.0 km/hr? 

30. A 200-N container is to be 
pushed across a rough floor. The 
coefficient of static friction is 0.500 
and the coefficient of kinetic 
friction is 0.400. What force is 
necessary to start the container 
moving, and what force is 
necessary to keep it moving at a 
constant velocity? 

31. A 2.00-kg toy accelerates 
from rest to 3.00 m/s in 8.00 s on a 
rough surface of µk = 0.300. Find 
the applied force F. 

32. A 23.0-kg box is to be 
moved along a rough floor at a 
constant velocity. The coefficient of 
friction is µk = 0.300. (a) What force 
F1 must you exert if you push 
downward on the box as shown? 
(b) What force F2 must you exert if 
you pull upward on the box as 

shown? (c) Which is the better way 
to move the box? 

 
Diagram for problem 32. 

 
33. A 2.30-kg book is held 

against a rough vertical wall. If the 
coefficient of static friction between 
the book and the wall is 0.300, 
what force perpendicular to the 
wall is necessary to keep the book 
from sliding? 

34. A block slides along a 
wooden table with an initial speed 
of 50.0 cm/s. If the block comes to 
rest in 150 cm, find the coefficient 
of kinetic friction between the block 
and the table. 

35. What force must act 
horizontally on a 20.0-kg mass 
moving at a constant speed of 4.00 
m/s on a rough table of coefficient 
of kinetic friction of 0.300? If the 
force is removed, when will the 
body come to rest? Where will it 
come to rest? 

36. A 10.0-kg package slides 
down an inclined mail chute 15.0 m 
long. The top of the chute is 6.00 m 
above the floor. What is the speed 
of the package at the bottom of the 
chute if (a) the chute is frictionless 
and (b) the coefficient of kinetic 
friction is 0.300? 

37. In order to place a 90.8-kg 
air conditioner in a window, a 
plank is laid between the window 
and the floor, making an angle of 
40.00 with the horizontal. How 
much force is necessary to push the 
air conditioner up the plank at a 
constant speed if the coefficient of 
kinetic friction between the air 
conditioner and the plank is 0.300? 

38. If a 4.00-kg container has a 
velocity of 3.00 m/s after sliding 
down a 2.00-m plane inclined at an 
angle of 30.00, what is (a) the force 
of friction acting on the container 
and (b) the coefficient of kinetic 
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friction between the container and 
the plane? 

*39. A 445-N crate sits on the 
floor of a truck. If µs = 0.300, what 
is the maximum acceleration of the 
truck before the crate starts to slip? 

40. A skier starts from rest and 
slides a distance of 85.0 m down 
the ski slope. The slope makes an 
angle of 23.00 with the horizontal. 
(a) If the coefficient of friction 
between the skis and the slope is 
0.100, find the speed of the skier at 
the bottom of the slope. (b) At the 
bottom of the slope, the skier 
continues to move on level snow. 
Where does the skier come to a 
stop? 

*41. A mass of 2.00 kg is 
pushed up an inclined plane that 
makes an angle of 50.00 with the 
horizontal. If the coefficient of 
kinetic friction between the mass 
and the plane is 0.400, and a force 
of 50.0 N is applied parallel to the 
plane, what is (a) the acceleration 
of the mass and (b) its velocity 
after moving 3.00 m up the plane? 

42. The two masses mA = 20 kg 
and mB = 20 kg are connected as 
shown on a rough table. If the 
coefficient of friction between block 
B and the table is 0.45, find (a) the 
acceleration of each block and 
(b) the tension in the connecting 
string. 

 
Diagram for problem 42. 

 
43. To determine the coefficient 

of static friction, the following 
system is set up. A mass, mB = 2.50 
kg, is placed on a rough horizontal 
table such as in the diagram for 
problem 42. When mass mA is 
increased to the value of 1.50 kg 
the system just starts into motion. 
Determine the coefficient of static 
friction. 

44. To determine the coefficient 
of kinetic friction, the following 
system is set up. A mass, mB = 2.50 

kg, is placed on a rough horizontal 
table such as in the diagram for 
problem 42. Mass mA has the value 
of 1.85 kg, and the system goes into 
accelerated motion with a value a1. 
While mass mA falls to the floor, a 
distance x1 = 30.0 cm below its 
starting point, mass mB will also 
move through a distance x1 and 
will have acquired a velocity v1 at 
x1. When mA hits the floor, the 
acceleration a1 becomes zero. From 
this point on, the only acceleration 
mB experiences is the deceleration 
a2 caused by the force of kinetic 
friction acting on mB. Mass mB 
moves on the rough surface until it 
comes to rest at the distance x2 = 
20.0 cm. From this information, 
determine the coefficient of kinetic 
friction. 

 
Additional Problems 

*45. Find the force F that is 
necessary for the system shown to 
move at constant velocity if µk = 
0.300 for all surfaces. The masses 
are mA = 6.00 kg and mB = 2.00 kg. 

 
Diagram for problem 45. 

 
46. A pendulum is placed in a 

car at rest and hangs vertically. 
The car then accelerates forward 
and the pendulum bob is observed 
to move backward, the string 
making an angle of 15.00 with the 
vertical. Find the acceleration of 
the car. 

47. Two gliders are tied 
together by a string after they are 
connected together by a 
compressed spring and placed on 
an air track. Glider A has a mass of 
200 g and the mass of glider B is 
unknown. The string is now cut 
and the gliders fly apart. If glider B 
has an acceleration of 5.00 cm/s2 to 

the right, and the acceleration of 
glider A to the left is 20.0 cm/s2, 
find the mass of glider B. 

48. A mass of 1.87 kg is pushed 
up a smooth inclined plane with an 
applied force of 35.0 N parallel to 
the plane. If the plane makes an 
angle of 35.80 with the horizontal, 
find (a) the acceleration of the mass 
and (b) its velocity after moving 
1.50 m up the plane. 

*49. Two blocks m1 = 20.0 kg 
and m2 = 10.0 kg are connected as 
shown on a frictionless plane. The 
angle θ = 25.00 and φ = 35.00. Find 
the acceleration of each block and 
the tension in the connecting 
string. 

           
Diagram for problem 49. 

 
*50. What horizontal 

acceleration ax must the inclined 
block M have in order for the 
smaller block mA not to slide down 
the frictionless inclined plane? 
What force must be applied to the 
system to keep the block from 
sliding down the frictionless plane? 
M = 10.0 kg, mA = 1.50 kg, and θ = 
430. 

 
Diagram for problem 50. 

 
*51. If the acceleration of the 

system is 3.00 m/s2 when it is 
lifted, and mA = 5.00 kg, mB = 3.00 
kg, and mC = 2.00 kg, find the 
tensions TA, TB, and TC. 
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    Diagram for problem 51. 
 
*52. Consider the double 

Atwood’s machine as shown. If m1 
= 50.0 g, m2 = 20.0 g, and m3 = 25.0 
g, what is the acceleration of m3? 

 
Diagram for problem 52. 

 
*53. Find the tension T23 in the 

string between mass m2 and m3, if 
m1 = 10.0 kg, m2 = 2.00 kg, and m3 
= 1.00 kg. 

 
Diagram for problem 53. 

 
*54. If mA = 6.00 kg, mB = 3.00 

kg, and mC = 2.00 kg in the 
diagram, find the magnitude of the 
acceleration of the system and the 
tensions TA, TB, and TC. 

 
Diagram for problem 54. 

 
55. A force of 15.0 N acts on a 

body of mass m = 2.00 kg at an 
angle of 35.00 above the horizontal. 
If the coefficient of friction between 
the body and the surface upon 
which it is resting is 0.250, find the 
acceleration of the mass. 

*56. Find (a) the acceleration of 
mass mA in the diagram. All 
surfaces are frictionless. (b) Find 
the displacement of block A at t = 
0.500 s. The value of the masses 
are mA = 3.00 kg and mB = 5.00 kg. 

 
Diagram for problem 56. 

 
*57. Derive the formula for the 

magnitude of the acceleration of 
the system shown in the diagram. 
(a) What problem does this reduce 
to if φ = 900? (b) What problem does 
this reduce to if both θ and φ are 
equal to 900? 

 
Diagram for problem 57. 

 
*58. What force is necessary to 

pull the two masses at constant 
speed if m1 = 2.00 kg, m2 = 5.00 kg, 
µk1 = 0.300, and µk2 = 0.200? What 

is the tension T1 in the connecting 
string? 

 
Diagram for problem 58.  

 
*59. If mA = 4.00 kg, mB = 2.00 

kg, µkA = 0.300, and µkB = 0.400, 
find (a) the acceleration of the 
system down the plane and (b) the 
tension in the connecting string. 

 
Diagram for problem 59.         

 
*60. A block m = 0.500 kg slides 

down a frictionless inclined plane 
2.00 m long. It then slides on a 
rough horizontal table surface of µk 
= 0.300 for 0.500 m. It then leaves 
the top of the table, which is 1.00 m 
high. How far from the base of the 
table does the block land? 

 
Diagram for problem 60. 

*61. In the diagram mA = 6.00 
kg, mB = 3.00 kg, mC = 2.00 kg, µkC 
= 0.400, and µkB = 0.300. Find the 
magnitude of the acceleration of 
the system and the tension in each 
string. 

      
Diagram for problem 61.               
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*62. In the diagram mA = 4.00 

kg, mB = 2.00 kg, mC = 4.00 kg, and 
θ = 580. If all the surfaces are 
frictionless, find the magnitude of 
the acceleration of the system. 

 
Diagram for problem 62. 

 
*63. If mA = 6.00 kg, mB = 2.00 

kg, mC = 4.00 kg, and the coefficient 
of kinetic friction for the surfaces 
are µkB = 0.300 and µkC = 0.200 find 
the magnitude of the acceleration 
of the system shown in the diagram 
and the tension in each string. θ = 
600. 

        
Diagram for problem 63.                     

 
*64. Find (a) the magnitude of 

the acceleration of the system 
shown if µkB = 0.300, µkA = 0.200, 
mB = 3.00 kg, and mA = 5.00 kg, 
(b) the velocity of block A at 0.500 
s. 

 
Diagram for problem 64.    

 
*65. In the diagram, block B 

rests on a frictionless surface but 
there is friction between blocks B 
and C. mA = 2.00 kg, mB = 3.00 kg, 
and mC = 1 kg. Find (a) the 
magnitude of the acceleration of 
the system and (b) the minimum 

coefficient of friction between 
blocks C and B such that C will 
move with B. 

 
Diagram for problem 65. 

 
*66. When a body is moving 

through the air, the effect of air 
resistance can be taken into 
account. If the speed of the body is 
not too great, the force associated 
with the retarding force of air 
friction is proportional to the first 
power of the velocity of the moving 
body. This retarding force causes 
the velocity of a falling body at any 
time t to be 

 
v =  mg (1 − e−(k/m)t)  

                       k 
 

where m is the mass of the falling 
body and k is a constant that 
depends on the shape of the body. 
Show that this reduces to the case 
of a freely falling body if t and k are 
both small. (Hint: expand the term 
e−(k/m)t in a power series.) 

*67. Repeat problem 66, but 
now let the time t be very large 
(assume it is infinite). What does 
the velocity of the falling body 
become now? Discuss this result 
with Aristotle’s statement that 
heavier objects fall faster than 
lighter objects. Clearly distinguish 
between the concepts of velocity 
and acceleration. 

*68. If a body moves through 
the air at very large speeds the 
retarding force of friction is 
proportional to the square of the 
speed of the body, that is, f = kv2, 
where k is a constant. Find the 
equation for the terminal velocity 
of such a falling body. 

  
Interactive Tutorials 

69. An inclined plane. A 20.0-
kg block slides down from the top 

of a smooth inclined plane that is 
10.0 m long and is inclined at an 
angle θ of 300 with the horizontal. 
Find the acceleration a of the block 
and its velocity v at the bottom of 
the plane. Assume the initial 
velocity v0 = 0. 

70. An Atwood’s machine. Two 
masses mA = 40.0 kg and mB = 30.0 
kg are connected by a massless 
string that hangs over a massless, 
frictionless pulley in an Atwood’s 
machine arrangement as shown in 
figure 4.15. Calculate the 
acceleration a of the system and 
the tension T in the string. 

71. Combined motion. A mass 
mA = 40.0 kg hangs over a table 
connected by a massless string to a 
mass mB = 20.0 kg that is on a 
rough horizontal table, with a 
coefficient of friction µk = 0.400, 
that is similar to figure 4.27. 
Calculate the acceleration a of the 
system and the tension T in the 
string. 

72. Generalization of problem 
57 that also includes friction. 
Derive the formula for the 
magnitude of the acceleration of 
the system shown in the diagram 
for problem 57. As a general case, 
assume that the coefficient of 
kinetic friction between block A 
and the surface in µkA and between 
block B and the surface is µkB. 
Identify and solve for all the 
special cases that you can think of. 

73. Free fall with friction—
variable acceleration—terminal 
velocity. In the freely falling body 
studied in chapter 3, we assumed 
that the resistance of the air could 
be considered negligible. Let us 
now remove that constraint. 
Assume that there is frictional 
force caused by the motion through 
the air, and let us further assume 
that the frictional force is 
proportional to the square of the 
velocity of the moving body and is 
given by 

f = kv2 
 

Find the displacement, 
velocity, and acceleration of the 
falling body and compare it to the 
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displacement, velocity, and 
acceleration of a freely falling body 
without friction. 

74. The mass of the connecting 
string is not negligible. In the 
problem of the combined motion of 
a block on a frictionless horizontal 
plane and a block falling vertically, 
as shown in figure 4.13, it was 

assumed that the mass of the 
connecting string was negligible 
and had no effect on the problem. 
Let us now remove that constraint. 
Assume that the string is a 
massive string. The string has a 
linear mass density of 0.050 kg/m 
and is 1.25 m long. Find the 
acceleration, velocity, and 
displacement y of the system as a 

function of time, and compare it to 
the acceleration, velocity, and 
displacement of the system with 
the string of negligible mass. 

 
To go to these Interactive 
Tutorials click on this 

sentence. 

 
 To go to another chapter, return to the table of contents by clicking on this sentence. 
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